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Proceedings of the 16th International Conference
on Hyperbolic Problems: Theory, Numerics and
Application

Organizers: Christian Klingenberg and Michael Westdickenberg

Organizer’s Introduction

This series of bi-yearly conferences began in 1986 and celebrated its 30th
anniversary with this conference. From its very beginning, the conference set out to
bring together researchers studying theoretical issues, numerical methods and
applications in hyperbolic partial differential equations. Initially, this pursuit was
under the influence of Glimm’s major result [1], where the convergence of a useful
numerical method (in one space dimensions) gave rise to an existence proof. Even
though 30 years later, the areas of theory, numerics and applications are no longer
as closely intertwined as they were in the beginning, the organizers feel that having
them together in one conference today is much more than historical nostalgia. One
area may give impulses to another area. Given that fundamental issues in the field
of hyperbolic problems are open (e.g. is there an admissibility condition that gives
rise to well-posedness for the Euler equations in multiple space dimensions?), new
impulses from different areas are thoroughly needed.

This conference and these proceedings provide a snapshot of the activity in its
field at the time of this conference. The field is quite broad, as seen by a partial list
of subjects covered:

• hyperbolic conservation laws,
• wave equations,
• partial differential equations of mixed type,
• kinetic equations,
• theoretical questions and numerical schemes for all of the above and
• applications in physics and engineering using all of the above.

This conference over the last 30 years has developed into one of the main con-
ferences in applied mathematics. This is due to the vigour of the field, the enor-
mously challenging questions that still lie ahead and its extreme usefulness in
applications. Many researches around the world contribute to this field, so that we
expect this series of conferences will be vital for many years to come.

xi
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A Stochastic Galerkin Method
for the Fokker–Planck–Landau Equation
with Random Uncertainties

Jingwei Hu, Shi Jin and Ruiwen Shu

Abstract We propose a generalized polynomial chaos-based stochastic Galerkin
method (gPC-sG) for the Fokker–Planck–Landau (FPL) equationwith randomuncer-
tainties. The method can handle uncertainties from initial or boundary data and the
neutralizing background. By a gPC expansion and the Galerkin projection, we con-
vert the FPL equation with uncertainty into a system of deterministic equations.
A consistency result is proven for the approximation of the collision operator. To
compute efficiently the collision kernel under the gPC expansion, we use a singular
value decomposition (SVD) combined with a fast spectral method for the collision
operator. For high-dimensional random inputs, we adopt a sparse basis and use the
sparsity of a set of basis-related coefficients and the Lax–Friedrichs splitting to avoid
all the SVD involved. Numerical experiments verify the efficiency of the gPC-sG
method.

Keywords Fokker-Planck-Landau equation · Uncertainty quantification
Stochastic Galerkin method · Polynomial chaos · Sparse grids

J. Hu
Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
e-mail: jingweihu@purdue.edu

S. Jin (B) · R. Shu
Department of Mathematics, University of Wisconsin-Madison,
Madison, WI 53706, USA
e-mail: sjin@wisc.edu

R. Shu
e-mail: rshu2@math.wisc.edu

S. Jin
Department of Mathematics, Institute of Natural Sciences,
MOE-LSEC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240, China

© Springer International Publishing AG, part of Springer Nature 2018
C. Klingenberg and M. Westdickenberg (eds.), Theory, Numerics
and Applications of Hyperbolic Problems II, Springer Proceedings
in Mathematics & Statistics 237, https://doi.org/10.1007/978-3-319-91548-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91548-7_1&domain=pdf


2 J. Hu et al.

1 Introduction

First derived by Landau [6] as the grazing collision limit of the Boltzmann equation,
the Fokker–Planck–Landau (FPL) or Landau equation is a collisional kinetic model
that describes the non-equilibrium dynamics of charged particles in a plasma [16].

Let f = f (t, x, v) be the density distribution function of particles, where t is the
time, x is the space, and v is the velocity. The FPL equation with the mean-field term
(also known as the Vlasov–Poisson–Landau equation) reads

∂t f + v · ∇x f + E(t, x) · ∇v f = Q( f, f ), t > 0, x ∈ Ω ⊂ R
dx , v ∈ R

dv , (1)

where E(t, x) is the electric field given by

E(t, x) = −∇xφ(t, x), (2)

and φ(t, x) is a self-consistent electrostatic potential function satisfying the Poisson
equation

Δxφ(t, x) = μ(x) −
∫
Rdv

f (t, x, v) dv, (3)

where μ(x) is a neutralizing background satisfying

∫
Rdx

μ(x) dx =
∫
Rdx

∫
Rdv

f (t, x, v) dv dx . (4)

Q( f, f ) on the right-hand side of (1) is the FPL collision operator that models
binary interactions among particles:

Q( f, f )(v) = ∇v ·
∫
Rdv

A(v − v∗)[ f (v∗)∇v f (v) − f (v)∇v∗ f (v∗)] dv∗. (5)

Here A(w) is a semi-positive definite matrix defined by

A(w) = Ψ (w)

(
I − w ⊗ w

|w|2
)

, (6)

where I is the identity matrix. For inverse power law potentials,Ψ (w) = |w|γ+2 with
−3 ≤ γ ≤ 1. The case γ = −3 corresponds to the Coulomb interaction which is of
primary importance in plasma applications.

The collision operator Q( f, f ) possesses some important physical properties: it
preserves mass, momentum, and energy

∫
Rdv

Q( f, f )φ(v) dv = 0, φ(v) = 1, v, |v|2; (7)
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and satisfies the entropy dissipation inequality (the H -theorem)

∫
Rdv

Q( f, f ) log f dv ≤ 0. (8)

The equality only holds when f attains the local equilibrium (Maxwellian)

f (v) = M(v) = ρ

(2πT )dv/2
e− (v−u)2

2T , (9)

where ρ, u, T are the density, bulk velocity, and temperature defined as

ρ =
∫
Rdv

f dv, u = 1

ρ

∫
Rdv

v f dv, T = 1

dvρ

∫
Rdv

(v − u)2 f dv. (10)

Equation (1) needs to be supplemented with appropriate initial condition

f (0, x, v) = f 0(x, v), (11)

where f 0 can be chosen as, for example, the local equilibrium (9). For boundary con-
dition, a commonly used one is the Maxwell boundary condition: For any boundary
point x ∈ ∂Ω , let n(x) be the unit inward normal vector to the boundary, then the
inflow boundary condition is specified as

f (t, x, v) = g(t, x, v), v · n > 0, (12)

g(t, x, v) := (1 − α) f (t, x, v − 2(v · n)n) + α

(2π)
dv−1
2 T

dv+1
2

w

e
− v2

2Tw

∫
v·n<0

f (t, x, v)|v · n| dv,

(13)

where Tw = Tw(t, x) is the temperature of the wall (boundary). The constant α (0 ≤
α ≤ 1) is the accommodation coefficient with α = 1 corresponding to the purely
diffusive boundary, and α = 0 the purely specular reflective boundary.

In the past decades, the FPL equation (1) has been studied extensively both the-
oretically and numerically. The readers are referred to [16] for a review of the main
mathematical aspects, and the recent paper [1] and references therein for relevant
numerical methods. In spite of the vast amount of existing research, the study of the
FPL equation has mostly remained deterministic and ignored uncertainty. In real-
ity, however, there are many sources of uncertainties that can arise in this equation:
imprecise measurements for initial boundary conditions and physical parameters;
incomplete knowledge of the fundamental interaction mechanism between particles;
and so on. Understanding the impact of these uncertainties is critical to the simula-
tions of complex plasma systems and will allow scientists and engineers to obtain
more reliable predictions and perform better risk assessment. The goal of this paper
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is to develop an efficient stochastic numerical method for uncertainty quantification
(UQ) of the FPL equation (1).

The basic framework of ourwork is built on a probabilistic approachwhichmodels
the uncertain parameters as random variables. In the FPL equation (1), this amounts
to consider the distribution function

f = f (t, x, v, z), z ∈ Iz ∈ R
d , (14)

nowdepending on an extra argument z—a d-dimensional randomvectorwith support
Iz collecting all possible uncertainties in the system. For instance, one may consider
z = (zμ, zini, zbdry), where zμ, zini, zbdry denote, respectively, the random parameters
arising from

• the neutralizing background (3): μ = μ(x, zμ);
• the initial condition (11): f (0, x, v, z) = f 0(x, v, zini) for x ∈ Ω;
• the boundary condition (12): f (t, x, v, z) = g(t, x, v, zbdry) for x ∈ ∂Ω .

Wewill further assume the components of z are alreadymutually independent random
variables obtained through some dimension reduction technique, e.g., Karhunen–
Loève expansion [9], and do not pursue the issue of random input parameterization
in this paper.

To properly model the propagation of uncertainties, we adopt the generalized
polynomial chaos-based stochastic Galerkin (gPC-sG)method, which is widely used
in the UQ simulations nowadays [2, 3, 10, 13, 17, 18]. Simply speaking, this method
seeks to approximate the unknown function f via an orthogonal polynomial series:

f (t, x, v, z) ≈
K∑

k=1

fk (t, x, v)Φk (z) := f K (t, x, v, z), fk (t, x, v) =
∫
Iz

f (t, x, v, z)Φk (z)π(z) dz,

(15)
where {Φk(z)} is a set of d-variate polynomials of degree up to m which satisfy

∫
Iz

Φ j (z)Φk(z)π(z) dz = δ jk, 1 ≤ j, k ≤ K ,

withπ(z) being the probability distribution of z and δ jk the Kronecker delta function.
The number of basis functions is K = (m+d

m

)
. Equipped with this gPC representation,

one then proceeds as follows: (1) Substitute the expansion (15) into the original
equation and conduct a Galerkin projection. This usually results in a system of
coupled deterministic equations for the gPC coefficients { fk}Kk=1 requiring different
treatment from the corresponding deterministic equation. (2) Solve the gPC system.
(3) Use { fk}Kk=1 to reconstruct the solution in Iz via (15), or construct the solution
statistics directly, e.g., the mean and standard deviation can be retrieved as

E[ f ] = f1, S[ f ] =
√√√√ K∑

k=2

f 2k . (16)
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For the FPL equation, the main difficulty associated with solving the gPC-sG
system lies in the evaluation of the nonlinear collision operator. Similar to the work
[5], we propose a fast algorithm to efficiently compute the collision operator under
the Galerkin projection. The acceleration is achieved by combining a singular value
decomposition (SVD) of the collision kernel with the fast spectral method in the
deterministic case [11].

In the cases where the random domain Iz is high-dimensional, i.e., d is large,
the usual gPC-sG method may fail to be affordable since the number of basis func-
tions K = (m+d

m

)
is too large. To circumvent this difficulty, we use the sparse wavelet

basis as in our previous work [15]. We use N -level hierarchical piecewise
polynomial functions of degree at most m as basis functions in one dimension and
use a standard sparse grid construction to obtain basis functions in d-dimensional
random spaces.With this basis, one can achieve an accuracy of O(Nd2−N (m+1))with
K = O((m + 1)d2N Nd−1) basis functions. The accuracy is O(K−(m+1)

(log K )(m+2)(d−1)) in terms of K . This method is much more efficient than the usual
gPC-sG method if d is large.

When using the sparse grid method, K can still be too large to make an SVD of
order K affordable. Thus the following two difficulties arise. The first one is that
one can no longer afford the SVD approach for the collision operator. To avoid it,
we notice the sparsity of a basis-related tensor Sb,i jk proved in [15]. As a result,
one can compute the collision operator directly with low computational cost. The
second difficulty is that a direct computation of the numerical flux for the mean-field
term requires a diagonalization of constant flux matrices of order K . To avoid this
diagonalization, we utilize the local Lax–Friedrichs splitting [7]. In this way, one can
compute the second-order upwind flux without diagonalization of the flux matrices.

The rest of this paper is organized as follows. Section 2 describes in detail the gPC-
sG method for the FPL equation with uncertainty. Section 3 discusses the spatial and
time discretization. In Sect. 4, we give a consistency analysis of the gPC-sG method
for the collision operator. In Sect. 5, we give a sparse wavelet method for problems
with high-dimensional random inputs. Extensive numerical results are presented in
Sect. 6. Finally, the paper is concluded in Sect. 7.

2 The gPC-sG Method for the FPL Equation
with Uncertainties

In this section, we describe the gPC-sG method for the FPL equation with uncer-
tainty. We start by substituting the truncated gPC expansion (15) into Eq. (1).
Upon a standard Galerkin projection, this yields a system of equations for the gPC
coefficients fk :
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∂t fk(t, x, v)+v · ∇x fk(t, x, v) + ∇v ·
∫
Iz

E(t, x, z) f K (t, x, v, z)Φk(z)π(z) dz

= Qk( f
K , f K )(t, x, v), 1 ≤ k ≤ K ,

(17)
where Qk( f K , f K ), the kth mode of the collision operator, is defined as

Qk( f
K , f K ) :=

∫
Iz

Q( f K , f K )(t, x, v, z)Φk(z)π(z) dz. (18)

To simplify the forcing term, note that

Ek(t, x) = −∇xφk(t, x), Δxφk(t, x) = μk(x) −
∫
Rdv

fk(t, x, v) dv, (19)

where μk(x) = ∫
Iz

μ(x, z)Φk(z)π(z) dz are the gPC coefficients of the neutralizing
background μ. Then the integral term in (17) becomes

∫
Iz

(
K∑
i=1

Ei (t, x)Φi (z)

)⎛
⎝ K∑

j=1

f j (t, x, v)Φ j (z)

⎞
⎠Φk(z)π(z) dz =

K∑
j=1

Akj (t, x) f j (t, x, v),

(20)
with

Akj (t, x) :=
K∑
i=1

Si jk Ei (t, x), Si jk =
∫
Iz

Φi (z)Φ j (z)Φk(z)π(z) dz. (21)

To simplify the collision term, we define the bilinear FPL collision operator as

Q( f, g)(v) = ∇v ·
∫
Rdv

A(v − v∗)( f (v∗)∇vg(v) − f (v)∇v∗g(v∗)) dv∗, (22)

Then the collision term (18) can be expressed as

Qk( f
K , f K ) =

K∑
i, j=1

Si jk Q( fi , f j ). (23)

Due to the double summation in (23), a direct evaluation of the collision opera-
tor Qk would be very expensive. To reduce the computational cost, we follow the
approach proposed in [5]. Specifically, we pre-compute the singular value decom-
position (SVD) of the matrix {Si jk}i j for each k:

Si jk =
Rk∑
r=1

Uk
ir V

k
r j , (24)
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where Rk is the numerical rank of the matrix. Plugging (24) into (23) and rearranging
terms give

Qk( f
K , f K ) =

Rk∑
r=1

Q
(
gkr , h

k
r

)
, gkr :=

K∑
i=1

Uk
ir fi , hkr :=

K∑
j=1

V k
r j f j . (25)

Therefore, we reduce the original double summation into a single one. To compute
the bilinear term Q

(
gkr , h

k
r

)
, we apply the fast spectral method introduced in [11] for

the deterministic FPL collision operator. See Appendix for a brief description of this
method. The numerical complexity of such a computation is O(Ndv

v log Nv) where
Nv is the number of mesh points in each velocity direction, and dv is the dimension
of the velocity space. Thus, for each k, the cost of computing Qk is O(RkNdv

v log Nv)

with Rk ≤ K , and K = (m+d
m

)
is the dimension of d-variate polynomials of degree

up to m (note that the direct evaluation of Qk based on (23) requires O(K 2N 2dv
v )

operations).
The initial data is given by

fk(0, x, v) = f 0k (x, v) =
∫
Iz

f 0(x, v, z)Φk(z)π(z) dz. (26)

The Maxwell boundary condition is given by

fk(t, x, v) = gk(t, x, v), x ∈ ∂Ω, v · n > 0, (27)

with n the inward normal of ∂Ω , and

gk(t, x, v) :=
∫
Iz

g(t, x, v, z)Φk(z)π(z) dz. (28)

We consider the case where the wall temperature Tw and the accommodation coeffi-
cient α may depend on z. We assume that α(z) = ∑K

k=1 αkΦk(z). Then

g(t, x, v, z) :=(1 − α(z)) f K (t, x, v − 2(v · n)n, z)

+ α(z)

(2π)
dv−1
2 Tw(x, z)

dv+1
2

e− v2

2Tw (x,z)

∫
v·n<0

f K (t, x, v, z)|v · n| dv. (29)

Substitute into (28), one gets

gk =
K∑
j=1

(∫
Iz

(1 − α(z))Φk(z)Φ j (z)π(z) dz

)
f j (t, x, v − 2(v · n)n)

+
K∑
j=1

Dkj (x, v)
∫
v·n<0

f j (t, x, v)|v · n| dv,
(30)
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where

Dkj (x, v) =
∫
Iz

α(z)

(2π)(dv−1)/2Tw(x, z)(dv+1)/2
e− |v|2

2Tw (x,z) Φk(z)Φ j (z)π(z) dz, (31)

is a matrix that is time-independent hence can be pre-computed.

3 The Spatial and Time Discretization

In order to solve the Galerkin system (17), we split it into three steps:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t fk + v · ∇x fk = 0,

∂t fk +
K∑
j=1

Akj (t, x) · ∇v f j = 0,

∂t fk = Qk( f
K , f K ).

(32)

Note that each Akj is a vector of length dv. To achieve second-order accuracy in time,
we use the Strang splitting and the second-order Runge–Kutta method for each step.
For the transport step, we employ a second-order MUSCL scheme with the minmod
slope limiter [7]. For the forcing step, we discuss the case dv = 1 for simplicity.
The general case follows by computing the fluxes dimension by dimension. In the
case dv = 1, for each fixed x , since (Akj ) is a symmetric matrix depending on x but
not on v, the equation becomes a system of linear hyperbolic equations in v with
constant characteristic speeds which can be solved by upwind schemes. Thus we can
diagonalize the matrix A, find the Riemann invariants, and use the MUSCL scheme
on each Riemann invariant. To be precise, suppose A is written as

A = P−1DP,

where P = (Pkj ) is an invertible matrix, and D is a diagonal matrix. Then the forcing
step equations can be written as

∂t f̄k + Dkk∂v f̄k = 0,

where f̄k = ∑K
j=1 Pkj f j . These equations in f̄k are hyperbolic with constant char-

acteristic speeds and therefore can be solved by the MUSCL scheme. And then fk
is computed by

fk =
K∑
j=1

(P−1)k j f̄ j .

For the collision step, we use the fast algorithm mentioned above to compute Qk .
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To choose the time step Δt , we notice first that it has to satisfy the CFL condition
from the transport step, which is Δt ≤ Δx

Rv
, where Rv is the largest possible charac-

teristic speed. In addition, it has to satisfy the CFL condition from the forcing step,
which is Δt ≤ Δv

C1
, where the constant C1 = maxx,z |E(t, x, z)| is the maximum of

the electric field. Furthermore, due to the parabolic nature of the FPL collision oper-
ator, one has the following constraint for the collision stepΔt ≤ Δv2

C2
,where the con-

stant C2 ∼ maxx,z
∫
Rdv A(v − v∗) f (t, x, v∗, z) dv∗ is the maximum of the strength

of diffusion of the collision operator. Thus one should choose Δt to satisfy the three
restrictions.

4 Consistency Analysis of the gPC-sG Method
for the Collision Operator

Here we give a consistency analysis of the gPC-sG method for the FPL collision
operator. For simplicity, the random variable z is assumed to be one-dimensional in
this section.

Suppose the exact solution to the spatial homogeneous FPL equation

∂t f = Q( f, f ), (33)

is

f (t, v, z) =
∞∑
k=1

fk(t, v)Φk(z), fk(t, v) =
∫
Iz

f (t, v, z)Φk(z)π(z) dz. (34)

Given the gPC approximation of f :

f ≈ f K (t, v, z) =
K∑

k=1

fk(t, v)Φk(z), (35)

To analyze the consistency of the gPC-sG method, one substitutes the exact solution
f into the scheme

∂t fk ≈ Qk( f
K , f K ), (36)

and estimate the difference of the LHS and the RHS. Since f solves Eq. (33), one
has

∂t fk = Qk( f, f ). (37)

Thus it suffices to analyze Qk( f, f ) − Qk( f K , f K ), the numerical truncation error
of the collision operator. We will use the following lemma proved by Pareschi et al.
[12]:
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Lemma 1. Let g, h ∈ L2
v , then

‖Q(g, h)‖L2
v
≤ C‖h‖L1

v
‖g‖H 2

v
. (38)

We estimate the error of collision operator as follows:

|Qk( f, f ) − Qk( f
K , f K )|2

=
∣∣∣∣
∫
Iz

[Q( f, f ) − Q( f K , f K )]Φk(z)π(z) dz

∣∣∣∣
2

≤
∫
Iz

|Q( f, f ) − Q( f K , f K )|2π(z) dz
∫
Iz

|Φk(z)|2π(z) dz.

Notice

|Q( f, f ) − Q( f K , f K )|2 = |Q( f, f − f K ) − Q( f K − f, f K )|2
≤ 2[|Q( f, f − f K )|2 + |Q( f K − f, f K )|2],

Then one gets

|Qk( f, f ) − Qk( f
K , f K )|2 ≤ 2

∫
Iz

[
|Q̄( f, f − f K )|2 + |Q̄( f K − f, f K )|2

]
π(z) dz.

(39)
Integrating in v and using the lemma, we get

‖Qk( f, f ) − Qk( f
K , f K )‖2L2

v

≤ C
∫
Iz

(‖ f K‖2L1
v
‖ f − f K‖2H 2

v
+ ‖ f − f K‖2L1

v
‖ f ‖2H 2

v
)π(z) dz

≤ C
∫
Iz

(‖ f − f K‖2H 2
v
+ ‖ f − f K‖2L1

v
)π(z) dz,

where C will be a generic positive constant in the sequel. The second inequality
above is obtained by assuming that the L1

v and H 2
v norms of f are bounded, and

those norms of f K are uniformly bounded in K . Also, notice that

‖ f − f K‖ ≤ CN K
−N , ∀N ≥ 1, (40)

inwhich the norms are L1
v or H

2
v . The termCN K−N comes from the spectral accuracy

of the projection operator, assuming that f ∈ HN+2
v . Plug into (40), we end up with

the estimate
‖Qk( f, f ) − Qk( f

K , f K )‖2L2
v
≤ CN K

−2N . (41)

which shows the spectral consistency of the gPC-sGmethod for the collision operator.
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Remark 1. In the proof, we assume that the L1
v and H 2

v norms of f are bounded,
and those norms of f K are uniformly bounded in K . The regularity of f for the FPL
equation without the forcing term is proved by Guo [4] assuming that the initial data
is close enough to the global Maxwellian in a suitable Sobolev space. The result was
extended to the equation with external force by Li and Yu [8]. No result is known
for the equation we consider, where the force is self-consistent. Furthermore, the
regularity of f K is completely open. However, numerically we always observe the
boundedness of these norms. Therefore, these assumptions are reasonable.

5 A Remark on High-Dimensional Random Spaces

If the random space is high-dimensional, the usual gPC expansion, which requires
K = (m+d

d

)
basis functions where m is the maximal degree of polynomials and d

is the dimension of the random space, can be prohibitively expensive. To handle
this difficulty, we adopt the sparse technique we proposed in [15]. Using locally
supportedpiecewise polynomials and ahierarchical construction, this techniquegives
a basis with K = O((m + 1)d2N Nd−1) basis functions, where N is the number of
hierarchical levels, and m is the maximal degree of polynomials. The accuracy is
O(Nd2−N (m+1)), which is O(K−(m+1)(log K )(m+2)(d−1)) in terms of K .

With this sparse basis, the number of basis can still be moderately large so that the
SVD method for the collision operator as well as the diagonalization of the forcing
term matrix A in (32) are no longer affordable. To avoid the SVD for the colli-
sion operator computation, we follow [15] and compute Qk = ∑K

i, j=1 Si jk Q( fi , f j )
directly. The following sparsity result was proven: The number of pairs (i, j) for
which there is at least one k with Si jk �= 0 is no more than O((m + 1)2d22N Nd+1),
compared to the total number of pairs O((m + 1)2d22N N 2d−2). Only for such pairs
it is required to compute Q( fi , f j ), and thus the computational cost for Qk is still
greatly reduced if N and d are large.

To avoid the diagonalization of the forcing term matrix A, we discuss the case
dv = 1 for simplicity. The caseswith larger dv can be treated dimension by dimension.
In the case ofdv = 1,weuse the local Lax–Friedrichs splitting for the second equation
of (32) as follows:

∂t f + 1

2
(A(x) − β(x)I )∂vf + 1

2
(A(x) + β(x)I )∂vf = 0, (42)

where f = ( f1, . . . , fK ), I is the identity matrix of order K , and β(x) is a local
(in each cell) upper bound of the absolute values of the eigenvalues of the symmet-
ric matrix A(x). The eigenvalues of the first flux matrix (A(x) − β(x)I ) are all
negative, while those of the second one are all positive. Thus one can use a second-
order upwind scheme with the minmod slope limiter on each flux terms without
diagonalizing the matrices.
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6 Numerical Results

In all the numerical examples here, except for the Landau damping, we take the
physical domain to be the one-dimensional (dx = 1) interval [0, 1] and the velocity
domain to be two-dimensional (dv = 2). In all the examples, except for the six-
dimensional random domain example, we take the periodic boundary condition. We
discretize the physical domain into Nx grid points uniformly:

x j =
(
j − 1

2

)
Δx, Δx = 1

Nx
, j = 1, . . . , Nx .

The velocity domain is truncated into [−Rv, Rv]2 and discretized into Nv points in
each dimension:

v j1, j2 =
(

−Rv + ( j1 − 1

2
Δv),−Rv + ( j2 − 1

2
Δv)

)
, Δv = 2Rv

Nv
, j1, j2 = 1, . . . , Nv.

Rv is big enough so [−Rv, Rv]2 contains the support of the solution.
We assume the random variable z obeys uniform distribution on [−1, 1]d . In the

first three examples, we take d = 1. In the fourth example, we take d = 2. These
examples are computed by the gPC-sG method with the gPC basis being the nor-
malized Legendre polynomials. For the last example, d = 6, and we use the sparse
method given in the previous section.

6.1 Random Initial Data: A Shock Tube Problem

We take the random initial data to be the equilibrium with macroscopic quantities

{
ρl = 1 + 0.2

(
z+1
2

)
, ul = 0, Tl = 1, x ≤ 0.5,

ρr = 0.125, ur = 0, Tr = 0.25, x > 0.5.

We take
Nx = 100, Nv = 32, Rv = 6, K = 7, Δt = 0.001,

and compute the solution at t = 0.1 by the sG method. The result is compared with
the solution by the stochastic collocation (sC) method with the same parameters and
Nz = 10Gauss–Legendre quadrature points; see Fig. 1. To implement the sCmethod,
we take Nz Gauss–Legendre quadrature points {z j }Nz

j=1 in the random domain and
then solve the (deterministic) FPL equation at each z j . Finally, themean and standard
deviations of any quantity f are computed by
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Fig. 1 Random initial data: expectation and standard deviation of macroscopic quantities. Solid
line: sC, Nx = 100, Nv = 32, Rv = 6, Nz = 10, Δt = 0.001. Dots: sG, Nx = 100, Nv =
32, Rv = 6, K = 7, Δt = 0.001

E[ f ] =
Nz∑
j=1

f (z j )wj , S[ f ] =
√√√√ Nz∑

j=1

f (z j )2wj − (E[ f ])2, (43)

wherewj is the quadrature weight of the point z j . For the sCmethod, we verified that
the solution with Nz = 20 quadrature points is indistinguishable with the solution
with Nz = 10 quadrature points. Therefore, the Nz = 10 solution is good enough as
a reference solution. This is also true for other numerical examples except the last
one.

One can see from Fig. 1 that the results of two methods agree well. This shows
that the sG method has good accuracy.

6.2 The Landau Damping

Weuse the Landau damping to test our sGmethod for the forcing term. For simplicity,
we omit the collision term. The physical space is the interval [0, 4π ] with periodic
boundary condition, and the velocity domain is one-dimensional. The random initial
condition is
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Fig. 2 Landau damping:
expectation and standard
deviation. Solid line: sC,
Nx = 64, Nv = 128,
Rv = 6, Nz = 10,
Δt = 0.03. Dots: sG,
Nx = 64, Nv = 128,
Rv = 6, K = 7, Δt = 0.03.
Upper curve: expectation.
Lower curve: standard
deviation
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101
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L2 (E
)

f 0(x, v) = 1√
2π

(1 + (0.5 + 0.1z) cos(0.5x))e− |v|2
2 .

We take

Nx = 64, Nv = 128, Rv = 6, K = 7, Δt = 0.03,

for the sG method and compare with the sC method with the same parameters and
Nz = 10. We compare the expectation and standard deviation of the magnitude of
the electric field for t from 0 to 9.

It can be seen from Fig. 2 that the results from two methods agree well, which
shows the accuracy of the sG method. Since the uncertainty is small, the expectation
is similar to the result of [14]. The standard deviation in both examples also shows
oscillation in time, and this needs further theoretical explanations.

6.3 A Random Neutralizing Background

We take the deterministic initial data as the equilibrium with macroscopic quantities

ρ = (2 + sin(2πx))/3, u = (0.2, 0), T = (3 + cos(2πx))/4, (44)

and the random background as

μ(x, z) = 2

3
(1 + 0.2z sin(4πx)). (45)

We take

Nx = 100, Nv = 32, Rv = 8, K = 7, Δt = 0.001, (46)
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Fig. 3 Random background: expectation and standard deviation of macroscopic quantities. Solid
line: sC, Nx = 100, Nv = 32, Rv = 8, Nz = 10, Δt = 0.001. Dots: sG, Nx = 100, Nv =
32, Rv = 8, K = 7, Δt = 0.001

and compare the solution by the sC method with the same parameters and Nz = 10
Gauss–Legendre quadrature points at t = 0.1. One can see fromFig. 3 that the results
of two methods agree well, even for the standard deviations whose magnitude is
small. This shows that the sG method can efficiently handle the uncertainties from
the neutralizing background.

6.4 An Example with a Two-Dimensional Random Variable

To demonstrate that our sG method is efficient for more than one random dimension,
we give a test of our method on an example with two-dimensional random domain
Iz1,z2 = [−1, 1]2. The gPC basis is taken to be {Φk1(z1)Φk2(z2)} where Φk(z) is the
normalized Legendre polynomial of degree k, and k1 + k2 ≤ m. The initial data is
given by

f 0(x, v) = ρ0(x)

4πT 0(x)

(
e
− |v−u0(x)|2

2T 0(x) + e
− |v+u0(x)|2

2T 0(x)

)
,
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Fig. 4 Two-dimensional test with random initial data: expectation and standard deviation ofmacro-
scopic quantities. Solid line: sC, Nx = 100, Nv = 32, Rv = 6, Nz = 10, Δt = 0.001. Dots: sG,
Nx = 100, Nv = 32, Rv = 6, m = 5, Δt = 0.001

where
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ0(x, z) = 1

3

(
2 + sin(2πx) + 1

2
sin(4πx)z1 + 1

3
sin(6πx)z2

)
,

u0 = (0.2, 0),

T 0(x, z) = 1

4

(
3 + cos(2πx) + 1

2
cos(4πx)z1 + 1

3
cos(6πx)z2

)
.

The numerical parameters are

Nx = 100, Nv = 32, Rv = 6, m = 5, Δt = 0.001,

and the result is compared at t = 0.1 with the sC method with the same parameters
and Nz = 10 collocation points in each dimension. The result is shown in Fig. 4. It
can be seen that the results of the two methods agree well, which shows the accuracy
of the sG method for two-dimensional random domains.
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Fig. 5 Six-dimensional random domain example, using sparse sG: expectation and standard devi-
ation of macroscopic quantities. Nx = 100, Nv = 32, Rv = 8, Δt = 0.001, m = 0, N = 3

6.5 An Example with a Six-Dimensional Random Domain

We finally give an example with a six-dimensional random domain. To deal with the
high-dimensionality, we use the sparse sG method mentioned in Sect. 5.

We take the initial data as the equilibrium with

ρ(x, z) = 1 + exp(−100(x − 0.5)2) sin(10(x − 0.5))(0.5 + 0.1z2),

u(x, z) = 0, T = 1 + 0.5 exp(−100(x − 0.4 − 0.01z1)
2), (47)

and boundary data as the Maxwell boundary with

Tw = 1 + 0.2z3, α = 0.5 + 0.3z4. (48)

The random background is given by

μ(x, z) = 1 + 0.1z5 sin(2πx) + 0.2z6 cos(2πx). (49)

We choose numerical parameters as

Nx = 100, Nv = 32, Rv = 8, Δt = 0.001.
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We use the sparse basis with m = 0, N = 3 to solve the equation, and the result is
shown in Fig. 5. One can clearly see that near the center of the domain, the mean and
standard deviation of the density and the temperature are diffused due to the kinetic
transport term, and those of the velocity exhibit more complicated behavior due to
the forcing term. The most interesting phenomena is that near the left boundary, the
effect of the boundary condition is not influential on the mean, but is dominating
the standard deviation. In fact, for all the three standard deviations, one can see that
the uncertainty comes from boundary and propagates into the domain. Note that for
this example with six random dimensions, with the sparse approach, only 138 basis
functions are needed.

7 Conclusion

In this paper, we propose a gPC-based stochastic Galerkin method for the Fokker–
Planck–Landau equation with random uncertainties. By a gPC expansion and
Galerkin projection, we convert the FPL equation with uncertainty into a system
of deterministic equations. We prove the consistency of the gPC-sG method for the
collision operator as well as accelerate the computation of the collision kernel by a
singular value decomposition combined with a fast spectral method. We adopt the
sparse method from [15] to handle high-dimensional random inputs. To avoid the
expensive SVD operations, we take advantage of the sparsity of the tensor Sb,i jk for
the computation of the collision operator and use a flux splitting for the mean-field
term. Numerical results show the efficiency of the stochastic Galerkin method.
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On Robust and Adaptive Finite Volume
Methods for Steady Euler Equations

Guanghui Hu, Xucheng Meng and Tao Tang

Abstract In this paper, a robust and adaptive framework of finite volume solutions
for steady Euler equations is introduced. On a given mesh, the numerical solutions
evolve following the standard Godunov process and the algorithm consists of a
Newton method for the linearization of the governing equations and a geometrical
multigrid method for solving the derived linear system. To improve the simulations,
an h-adaptive method is proposed for more efficient discretization by means of local
refinement and coarsening of the mesh grids. Several numerical issues such as the
regularization of the system, selection of the reconstruction patch, treatment of the
curved boundary, aswell as the design of the error indicatorwill be discussed in detail.
The effectiveness of the proposed method is successfully examined on a variety of
benchmark tests, and it is found that all simulations can be implemented well with
one set of parameters, which shows the robustness of the method.

Keywords Steady Euler equations · Finite volume method · Adaptive method
A posteriori error estimation · Newton iteration

1 Introduction

In the study of the compressible flow, Euler equations are one fundamental governing
equations and have been playing an important role in a variety of practical applica-
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tions such as optimal design of the vehicle shape [15], physical-based simulations in
animation [31].

Steady-state flow is a typical phenomenon in the fluid dynamics in which the
distributions of the physical quantities will not change with the time evolution. Such
phenomena exist in several realistic fluid dynamics applications. For example, when
an aeroplane is in its cruise state in the stratosphere, the fluid dynamics around
the aeroplane can be described reasonably by the steady state. The theoretical and
numerical studies on the steady-state flow have great importance on the applications
such as the optimal design on the vehicle shape. In a classical optimization framework
for the optimal design, the objective functional is optimized subject to several shape
parameters. In the whole simulation, dozens of, or maybe hundreds of, steady-state
flows need to be determined with different configurations. Hence, efficiency of the
steady-state solver becomes crucial in the practical simulations.

Although there have been lots of work available in the market for solving steady
Euler equations by using finite difference methods [54], finite element methods [16],
spectral methods [28], the existence of the discontinuous solutions such as shock
and contact discontinuity makes the use of the finite volume methods [29, 33], dis-
continuous Galerkin methods [10], spectral volume methods [51] more competitive.
Besides the ability on representing discontinuous solutions, thesemethods also intro-
duce the flux to preserve the conservation property of the simulation, which makes
these methods more attractive towards delivering physical simulations. It is worth
mentioning that, recently, the fast sweeping method [12, 13] was proposed to solve
steady Euler equations, and excellent numerical results were obtained. In our pre-
vious works [21–26], an adaptive framework of finite volume solutions has been
developed for solving steady Euler equations.

There are several challenges on developing quality high-order finite volumemeth-
ods for solving Euler equations. One of the most important challenges is the solution
reconstruction. In the original Godunov scheme, the cell average is used directly
to evaluate the numerical flux. The advantage of Godunov is very attractive, i.e.
the maximum principle can be preserved naturally. However, the piecewise con-
stant approximation makes the scheme too dissipative to generate high-resolution
solution; hence, the solution variation needs to be recovered to deliver high-order
approximation for the exact solution. In the solution reconstruction, a nontrivial issue
is to develop quality limiter functions to restrain the possible nonphysical oscillation,
which is listed in [52] as one challenge for developing high-order numerical methods
for computational fluid dynamics. Another challenge is efficiency of the algorithm.
By propagating the time-dependent system for sufficiently long time is obviously
not a good idea for obtaining the steady state of the system since the low efficiency.
To effectively accelerate the simulation, several classical techniques such as local
time-stepping, enthalpy damping, residual smoothing, multigrid methods and pre-
conditioning techniques [6] have been developed and applied. Towards the efficient
discretization of the governing equations, adaptive methods such as r -adaptive meth-
ods [37, 38, 46], h-adaptive methods [5, 18, 39, 43], and hp-adaptive methods [19,
50] have been developed and still attract more and more research attention. Nowa-
days, with the dramatic development of the computer hardware, the capacity of the



On Robust and Adaptive Finite Volume Methods for Steady Euler Equations 23

high-performance computing cluster is also improved significantly. Hence, parallel
algorithms based on OpenMP [1], OpenMPI [2] as well as GPU [53] become more
and more popular in the community of computational fluid dynamics [34].

In this paper, we introduce an adaptive framework of finite volume solutions for
the steady Euler equations. On a givenmesh, the solver consists of a Newton iteration
for the linearization of the governing equations and a geometrical multigrid method
for solving the linear system. To resolve the issue on the quality high-order solution
reconstruction, the non-oscillatory k-exact reconstruction is proposedwhich provides
a unified strategy for high-order reconstruction. To handle the efficiency issue, h-
adaptive method is introduced in our method and an adjoint-based a posteriori error
estimation method is developed to generate quality error indicator. Some numerical
issues such as regularization of the linearized system are also introduced. Numerical
tests successfully show the robustness and effectiveness of the proposed method.

The rest of the paper is organized as follows. In Sect. 2, the steady Euler equations
and finite volume discretization are introduced. In Sect. 3, the solution reconstruction
will be introduced and the non-oscillatory k-exact reconstruction method will be
described in detail. In Sect. 4, our methods on partially resolving the efficiency issue
of the simulations are summarized and the adjoint weighted residual indicator as
well as implementation are introduced in detail. Three numerical tests are delivered
in Sect. 5 in which the robustness and effectiveness of the proposed framework are
successfully demonstrated. Finally, the conclusion is given.

2 Finite Volume Framework for Steady Euler Equations

2.1 Governing Equations

The inviscid two-dimensional steady Euler equations are given as

∇ · F(U ) = 0, (1)

where U and F(U ) denote the conservative variables and flux given by

U =

⎡
⎢⎢⎣

ρ

ρu
ρv

E

⎤
⎥⎥⎦ , and F(U ) =

⎡
⎢⎢⎣

ρu ρv

ρu2 + p ρuv

ρuv ρv2 + p
u(E + p) v(E + p)

⎤
⎥⎥⎦ , (2)

respectively. Here (u, v)T , ρ, p, and E denote the velocity, density, pressure, and
total energy, respectively. To close the system, we use the following equation of state
in this paper,

E = p

γ − 1
+ 1

2
ρ(u2 + v2), (3)
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where γ = 1.4 is the ratio of the specific heats of the perfect gas.
Before we get involved in the numerical methods for solving (1), let us introduce

the notations as follows to facilitate the description. The computational domain is
denoted by Ω , and T = {Ki }, i = 1, 2, . . . , Ntri is its associated triangulation in
which Ki is the i th triangle in the mesh, and Ntri is the total number of the triangle
elements in the mesh.

2.2 Newton Linearization

Certain linearization is needed since the nonlinearity of the governing Eq. (1), and
Newton iteration is employed in our work. Below we would briefly summarize the
implementation of the Newton iteration on our problem. People may refer to [21,
23, 24, 26, 39] for the details.

The governing Eq. (1) is discretized as follows. First of all, the integral form of
(1) on Ω is given by

∫
Ω

∇ · F(U )dxdy =
∑
K i

∫
K i

∇ · F(U )dxdy = 0. (4)

Then Green’s theorem gives the following equation,

∑
K i

∑
ei, j∈∂K i

∫
ei, j

F(U ) · ni, j ds = 0, (5)

where ei, j means the common edge of the elementKi and its neighbour elementK j ,
and ni, j means the unit out normal vector of ei, j with respect to the element Ki . In
the simulation, numerical flux F̄(Ui ,Uj ) is used to replace the unknown flux F(U ).
Hence, the above equations are approximated by the following ones

∑
K i

∑
ei, j∈∂K i

∫
ei, j

F̄(Ui ,Uj ) · ni, j ds = 0. (6)

To resolve the nonlinearity of (6), Newton method is employed here. We assume
that the approximation of the solution at the kth step, U (k), is known, and then the
approximation of the solution at the (k + 1)th step, U (k+1) = U (k) + ΔU (k), can be
found by solving
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∑
K i

∑
ei, j∈∂K i

∫
ei, j

F̄(U (k+1)
i ,U (k+1)

j ) · ni, j ds

=
∑
K i

∑
ei, j∈∂K i

∫
ei, j

F̄(U (k)
i + ΔU (k)

i ,U (k)
j + ΔU (k)

j ) · ni, j ds = 0,

(7)
for ΔU (k)

i which is increment of the conserved quantity on the elementKi to the kth
approximation of the solutions. By Taylor theorem and only keeping the linear part,
the linear system for ΔU can be written as

∑
K i

∑
ei, j∈∂K i

∫
ei, j

∂ F̄

∂Ui
· ni, j dsΔU (k)

i +
∑
K i

∑
ei, j∈∂K i

∫
ei, j

∂ F̄

∂Uj
· ni, j dsΔU (k)

j

= −
∑
K i

∑
ei, j∈∂K i

∫
ei, j

F̄(U (k)
i ,U (k)

j ) · ni, j ds.
(8)

Regularization is necessary to solve the linear system (8). The issue is resolved
by introducing the local residual LRi = ∑

ei, j∈∂K i

∫
ei, j

F̄(U (k)
i ,U (k)

j ) · ni, j ds, i.e. the
regularized system is written as

α
∑
K i

||LRi ||1ΔU (k)
i +

∑
K i

∑
ei, j∈∂K i

∫
ei, j

∂ F̄

∂Ui
· ni, j dsΔU (k)

i

+
∑
K i

∑
ei, j∈∂K i

∫
ei, j

∂ F̄

∂Uj
· ni, j dsΔU (k)

j = −
∑
i

L Ri ,

(9)

where || · ||1 is the l1 norm, and α > 0 is a parameter to weight the regularization.
So far, the only unknown quantity in (9) is the numerical flux F̄ . In the simulation,

this quantity is obtained by solving a local Riemann problem in which the left and
right states are determined by the solutions in the elementKi and its neighbourK j .
There are several Riemann solvers available in the market, and HLLC [48] is used
in our simulations.

A natural choice for the left and right states for Riemann problem is the cell
average of each conserved quantity. In this case, a piecewise constant approximation
of the conserved quantity is supposed, and only first-order numerical accuracy can
be expected. To improve the numerical accuracy, more accurate left and right states
in Riemann problem are desired and this can be achieved by high-order solution
reconstruction.
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3 Solution Reconstruction

With the assumption of sufficient regularity, Taylor theorem gives the following
substitution for the unknown function U (x, y) in the element K

U (x, y) = U (xK , yK ) + ∂U

∂x
|xK ,yK (x − xK ) + ∂U

∂y
|xK ,yK (y − yK )

+1

2

∂2U

∂x2
|xK ,yK (x − xK )2 + ∂2U

∂x∂y
|xK ,yK (x − xK )(y − yK )

+1

2

∂2U

∂y2
|xK ,yK (y − yK )2

+ · · · ,

(10)

where (xK i , yK i ) is the barycentre of the elementKi . The task of the reconstruction
is to recover those coefficients ∂αU/(∂xα1∂yα2), α = α1 + α2, with the cell average
Ūi = 1/|Ki |

∫
K i

U (x, y)dxdy of the conserved quantityU (x, y) in the elementKi ,
where |Ki | is the area of the element Ki .

The most popular reconstruction in the market is the linear reconstruction, i.e.

U (x, y) ≈ U (xK , yK ) + ∂U

∂x
|xK ,yK (x − xK ) + ∂U

∂y
|xK ,yK (y − yK ) := P1(x, y).

(11)
It is noted that with the assumption of the linear distribution of U (x, y) in Ki , the
constant term in (11) is the cell average, i.e. U (xK i , yK i ) = Ūi . Hence, the linear
reconstruction is to recover the gradient of U (x, y) in Ki . There are two ways to
evaluate the gradient ∇U = (∂U/∂x, ∂U/∂y)T . One is the following Green–Gauss
theorem [6], ∫

K i

∇Udxdy =
∫

∂K i

Unds. (12)

Since the linearity of U , ∇U is a constant. Hence,

∇U |K i = 1

|Ki |
∫

∂K i

Unds. (13)

Replacing U on the edge ei, j by using the average (Ūi + Ū j )/2, the above integral
can be approximated by

∇U |K i ≈ 1

|Ki |
∑
ei, j

1

2
(Ūi + Ū j )ni, j |ei, j |. (14)

The implementation of Green–Gauss approach is quite simple. However, the numer-
ical accuracy of such approximation heavily depends on the regularity of the mesh
grids. Also, it is not trivial to extend the method to the high-order cases. People may
refer to [11] for the quadratic reconstruction with Green–Gauss method.
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Fig. 1 Reconstruction patch
for the element Ki,0
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Toovercome the above issues, the least squaremethod becomes a very competitive
candidate on solution reconstruction since its ability on delivering accurate solution
even on skewed unstructured grids and on natural extension to high-order cases. To
implement the least square reconstruction on the elementKi , a reconstruction patch
Pi is needed first. In the case of the linear reconstruction, a natural choice for Pi

is Ki itself as well as its three Neumann neighbours. For example, for the element
Ki,0 = Ki in Fig. 1, the patch of the linear reconstruction for it can be chosen as
Pi = {Ki,0,Ki,1,Ki,2,Ki,3}.

With Pi for Ki , the gradient ∇U |K i,0 = (∂U/∂x |K i,0 , ∂U/∂y|K i,0)
T can be

solved from the following minimization problem,

argmin
∂U
∂x , ∂U

∂y

∑
K j∈P i ,K j �=K i,0

||P1
i (xK j , yK j ) − Ū |K j ||22. (15)

The extension to the high-order reconstruction is straightforward for the least
square approach. In the case of quadratic reconstruction, a larger patch containing at
least 6 elements is needed since there are more unknowns included in (10). Amethod
to enlargePi is to introduceNeumann neighbours of theNeumann neighbours ofKi .
However, it is found that generating Pi by selecting Ki and its Moore neighbours
is a better choice, especially when the adaptive strategy is used in the simulation,
based on our numerical experience. In this case, the patch Pi becomes

Pi = {Ki,0,Ki,1,Ki,2,Ki,3,Ki,4,Ki,5,Ki,6,Ki,7,Ki,8,Ki,9,Ki,10,Ki,11,Ki,12}.

Now the unknown quantity U (x, y) is approximated by

U (x, y) ≈ P1(x, y) + 1

2

∂2U

∂x2
|xK ,yK (x − xK )2 + ∂2U

∂x∂y
|xK ,yK (x − xK )(y − yK )

+1

2

∂2U

∂y2
|xK ,yK (y − yK )2

:= P2(x, y)
(16)

To preserve the conservative property of the reconstructed polynomial, the mini-
mization problem we need to solve becomes
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argmin
∂U
∂x , ∂U

∂y , ∂2U
∂x2

, ∂2U
∂∂y , ∂2U

∂y2

∑
K j∈P i

∥∥∥ 1

|K j |
∫
K j

P2
i (x, y)dxdy − Ū |K j

∥∥∥
2

2
. (17)

Remark 1 The above method is k-exact reconstruction [3]. To solve (17) directly,
a large amount of integrals need to be evaluated during the reconstruction. In [42],
a numerical trick is introduced to effectively save the computational resource. In
the trick, several integrals are calculated beforehand, and then the linear system
consists of those integrals by algebraic operations. Recently, the parallel k-exact
reconstruction is developed [17], which significantly improves the efficiency of the
reconstruction.

Remark 2 The conservative of U in Ki cannot be guaranteed strictly by solving
(17) in the least square sense. To preserve the conservative property rigorously, the
constant term in P2

i (x, y) is adjusted to make 1
|K i,0|

∫
K i,0

P2
i (x, y)dxdy = Ūi .

For all high-order reconstructions (≥ linear reconstructions), limiting process is
necessary to restrain the nonphysical oscillation, especiallywhen there is shock in the
solution. For linear reconstruction, there are several mature limiters available for the
unstructured meshes such as the limiter of Barth and Jespersen [4], and the limiter of
Venkatakrishnan [49]. Compared with the limiter of Barth and Jespersen, the limiter
of Venkatakrishnan has better property towards the differentiability; hence, it has
better performance on the steady-state convergence. Although these limiters work
well for the linear reconstruction, it is nontrivial for the higher-order extension. People
may refer to [41] for the contribution towards this direction. It is worth mentioning
that quality limiter for high-order methods was listed as one of the challenges in
developing high-order numerical methods for computational fluid dynamics in [52].

Weighted essentially non-oscillatory (WENO) scheme is well known for its abil-
ity on delivering high-order and non-oscillatory numerical solutions [30, 55]. For
WENO implementation on unstructured meshes, people may refer to [30] for details.
Besides the solution reconstruction, WENO has been also used as a limiter in the
discontinuous Galerkin framework [40, 44, 45, 56]. In our works [21–26], WENO
reconstruction is introduced for the solution reconstruction. Below is a brief sum-
marization for the WENO reconstruction with the assumption of the locally linear
distribution of the solutions.

In WENO reconstruction, besides the reconstruction patch Pi,0 = Pi for Ki,0

in Fig. 1, we also solve the optimization problem (15) on patchesPi,1 = {Ki,0,Ki,1,

Ki,4,Ki,5}, Pi,2 = {Ki,0,Ki,2,Ki,6,Ki,7}, and Pi,3 = {Ki,0,Ki,3,Ki,8,Ki,9}.
Correspondingly, besides the polynomial P1

i,0 = Pi from Pi,0, we also have the
candidate polynomials P1

i,1, P
1
i,2, P

1
i,3 from Pi,1, Pi,2 and Pi,3, respectively. For

each candidate P1
i, j , j = 0, 1, 2, 3, a smoothness indicator is defined by

Sj =
(

(
∂U

∂x
| j )2 + (

∂U

∂y
| j )2

)
|K j,0|. (18)

Then the weight for each polynomial is calculated by
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ω j = ω̃ j∑
k ω̃k

, ω̃ j = 1

(ε + Sj )2
, (19)

and the final polynomial for the element Ki is given by

P1
i =

∑
j

ω j P
1
i, j . (20)

Remark 3 In the definition of ω̃ j in (19), a parameter γ j [20, 30] is used as the
numerator. γ j there is designed for preserving the higher order accuracy of P1

i , i.e.
P1
i (xGQ, yGQ) = P2

i (xGQ, yGQ)where P2
i (x, y) is a quadratic polynomial obtained

by solving (16). With γ j and the nonlinear weight ω j , the reconstructed polyno-
mial Pi can preserve the third-order numerical accuracy and restrain the nonphysical
oscillation effectively in the meantime [20, 30]. However, an extra quadratic recon-
struction problem (16) as well as the parameters γ j need to be calculated, which
would slow down the simulation efficiency. In our algorithm, the numerator 1 is used
instead of γ j to avoid the extra calculations and the h-adaptive method is introduced
to remedy the accuracy issue.

The WENO reconstruction can be extended to higher order directly. People may
refer to [25, 26] for our works on non-oscillatory k-exact reconstruction.

In the traditional reconstructions, the polynomial is obtained by certain method
first, and then the limiter is introduced to remove or restrain the possible oscillation.
Recently, Chen and Li developed an integrated linear reconstruction (ILR) method
[8] in which an optimization method is proposed and solved locally for each element
to construct the polynomial. The advantages of ILR include (i) the reconstruction can
be finished by solving a single problem, i.e. the reconstructing and limiting processes
are combined together, (ii) the local maximum principle is preserved theoretically by
ILR, and (iii) no parameter is used in the reconstruction. An improved ILR method
can be found in the paper [7].

4 Towards Efficiency

Efficiency is crucial for an algorithm in its practical applications. Since the Newton
iteration is used for the linearization, a series of linearized system need to be solved
in solving a steady Euler system, which means that the efficiency of the linear solver
is important for an efficient simulation. Furthermore, in one of the most important
applications for steady Euler solver, i.e. the optimal design of the vehicle shape,
a series of steady Euler systems with different configurations need to be solved in
a single design process. Hence, how to improve the efficiency of the steady Euler
solver is also worth studying in detail.

For the first issue, a geometrical multigrid solver is developed to solve the lin-
earized system in our algorithm [21, 23–26, 39]. In this geometrical multigrid solver,
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the coarse meshes are generated by the volume agglomeration method [6, 32]. Then
the error on the coarse meshes is smoothed by blocked lower-upper Gauss–Seidel
method proposed in [9]. People may refer to our works for the details of the imple-
mentation and performance of the solver.

To resolve the second issue mentioned above, the algorithm can be improved
from the following aspects. First of all, it is the acceleration of the convergence of
the Newton iteration. In (9), the local residual of the system is used to regularize
the system. It is noted that this is a similar acceleration technique to the local time-
stepping method [6]. In both methods, local information is used to improve the
simulation. In local time-stepping method, the time-dependent Euler equations are
solved and the Courant–Friedrichs–Lewy (CFL) number is chosen locally depending
on the characteristic speed in the current control volume; hence, the evolution of the
system is not uniform in the whole flow field. In the region with low characteristic
speed, a larger CFL number can be chosen to speedup the convergence to the steady
state. In our method, there is no temporal term in the equations and we use local
residual to regularize the system. If the system is far from the steady state locally,
the local residual is a large quantity, which corresponds to effect in solving time-
dependent problem with a small CFL number. On the other hand, local residual
would be a small quantity when the system is close to the steady state locally which
corresponds to the large CFL number case. Based on our numerical experience, the
local residual regularization works very well in all cases and the simulations are not
sensitive to the selection of the parameter α in (9).

The second way to improve the implementation efficiency is to develop efficient
discretization. In the case that there is large variation of the solution in the domain,
especially there is shock in the solution, numerical discretization on a uniform mesh
is obviously not a good idea since too many mesh grids are wasted in the region
with gentle solution. In the market, adaptive mesh methods are popular towards the
efficient and nonuniform discretization of the governing equations. For example,
r -adaptive methods have been successfully used in solving Euler equations [27,
36–38, 46, 47]. In our algorithm, h-adaptive methods are introduced towards the
efficient numerical discretization [21, 22, 25, 26, 39]. To handle the local refinement
or coarsening of the mesh grids efficiently, an hierarchy geometry tree (HGT) is
developed. People may refer to [35] for HGT details. It is worth mentioning that
CPU time on local refinement or coarsening is nothing compared with the whole
CPU time in the simulation with HGT.

Another important component in adaptive method is the error indicator. The qual-
ity of the error indicator determines the quality of the nonuniform discretization.
There are basically two types error indicators in the market. One is feature-based
error indicators which depend on the numerical solution, and the other one is error
indicators based on the a posteriori error estimation. In our works, several feature-
based error indicators are tested in the h-adaptive framework such as the gradient of
the pressure [21, 26, 39] and entropy [21, 26]. Recently, an adjoint-based a posteriori
error estimation method is developed towards minimizing the numerical error of a
quantity of interest [25]. Adjoint-based analysis is a very useful tool in the applica-
tions of optimal design of vehicle shape [15] and the error estimation [14]. Below is
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a brief summary of our adjoint-based error indicator, and people may refer to [25]
for the details.

Suppose that UH is the solution on the mesh T H , and J (UH ) is the quantity
of interest. In the practical applications, the quantity of interest J (UH ) could be
the drag or lift in the simulations of flow through an airfoil, or other application-
related quantities. Now, we are interested in the error of J (UH ), i.e. J (U ) − J (UH )

where J (U ) is the exact evaluation of the quantity of interest depending on the exact
solutionU . In most cases, J (U ) is nonlinear. Then the linearization of the difference
gives

J (U ) − J (UH ) ≈ ∂ J

∂U
(U −UH ). (21)

By defining the residual R(U ) := ∇ · F(U ), the linearization of the difference
between the exact residual and approximate residual gives

R(U ) − R(UH ) ≈ ∂R

∂U
(U −UH ), (22)

which follows

U −UH ≈
(

∂R

∂U

)−1

(R(U ) − R(UH )). (23)

By plugging the above expression into (21), we get

J (U ) − J (UH ) ≈ ∂ J

∂U

(
∂R

∂U

)−1

(R(U ) − R(UH )) := ψT (R(U ) − R(UH )),

(24)
where the adjoint ψT can be obtained by solving

(
∂R

∂U

)T

ψ = ∂ J

∂U
. (25)

The implementation in [25] is as follows. First, the meshT H is uniformly refined
one time to get the new meshT h . Then the solutionUH onT H is interpolated onto
T h to get an approximationUH

h which is used in (24) to replaceU . Since we assume
that the system is solved completely on T H , the quantity R(UH ) can be reasonably
ignored in (24). There are two ways mentioned in [25] to solve the adjoint problem
(25). One is to evaluate two Jacobian matrices in (25) on T h first, and then the
equation is solved on T h . The other one is to do the same thing on T H . Compared
with the former one, the advantage of the latter strategy is that the size of the system
is much smaller, i.e. the size is only 25% of the one in former case. Furthermore,
since UH is a quality approximation to U on T H , the linear problem (25) can be
solved smoothly. It is noted that based on our numerical experience, direct evaluation
of ∂ J/∂U and ∂R/∂U onT h with the interpolation approximationUH

h would bring
difficulty on solving (25) and several Newton iterations for (9) withUH

h as the initial
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guess are necessary for the improvement. On the other hand, the disadvantage of the
latter strategy is that the convergence order of the numerical methodwill be sacrificed
a little bit. This is understandable since the information from the finer mesh would
generate more accurate error estimation.

The third strategy to improve the efficiency of our steady Euler solver is to resort
to the parallel computing. Since the operations on solution reconstruction, evaluation
of the numerical flux, and the cell average update are local, OpenMP [1] has been
introduced to realize the parallel computing on these operations in [22] in which a
reactive Euler system is solved to simulate detonation. To handle large-scale sim-
ulations, the parallelization based on MPI becomes necessary. We are working on
the parallelization of our algorithm based on domain decomposition method and
OpenMPI [2], and the results will be reported in the forthcoming paper.

5 Numerical Tests

In this section, the following three numerical tests will be implemented to demon-
strate the effectiveness of our method,

• Subsonic flow around a circular cylinder,
• Inviscid flow through a channel with a smooth bump,
• Transonic flow around a NACA 0012 airfoil.

All simulations in this paper are supported by AFVM4CFD [21–26, 39] which is
a C++ library developed and maintained by the authors and collaborators.

5.1 Subsonic Flow Through a Circular Cylinder

In this section, the subsonic flow passing a circular cylinder is simulated. The com-
putational domain is a ring, and the radii for the inner and outer circles are 0.5 and 20,
respectively. The configuration of the flow in the far field is as follows. The density
is 1, the Mach number is 0.38, the velocity vector is (cos θ, sin θ)T where θ is attack
angle and θ = 0◦ in this case. The configuration for far field flow is also used as the
initial condition for our Newton iteration.

The method with non-oscillatory 2-exact reconstruction is implemented on five
meshes with 240, 504, 800, 1776, and 3008 grid points, respectively. Since the
flow in the domain is subsonic, inviscid, and vortex free, the entropy of the flow
should be a constant same to that in the far field. Hence, we use the L2 error of
the entropy production to evaluate the convergence of the method which shown
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Fig. 2 Convergence curves for the inviscid flow through the circle

Fig. 3 Left: The Mach number isolines generated with WENO 2-exact reconstruction. Right: The
corresponding mesh

in Fig. 2. As a comparison, the results obtained with linear reconstruction in [24]
are also demonstrated here. It can be observed from the figure that both linear and
quadratic methods successfully generate theoretical convergence curves. The mesh
grids around the inner circle as well as the isolines of the Mach number can be
observed from Fig. 3.
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5.2 Inviscid Flow Through a Channel with a Smooth Bump

In this subsection, the inviscid flow through a channel with a smooth bump is sim-
ulated by adaptive method with non-oscillatory 2-exact reconstruction. This test is
a benchmark test listed in [52] in which the detailed setup for the simulation can be
found.

In Fig. 4, the following three results are shown. The first result is the conver-
gence curve generated on four successively and uniformly refined meshes. It can be
observed obviously the theoretical curve is recovered very well. The second result is
the convergence curve generated by adaptive method with error indicator obtained
only by the local residual. It is observed that the adaptive method generates much
better convergence curve, compared with the one generated by uniformly refining
the mesh. The nonuniform distribution of the mesh grids with 5940 points as well
as the corresponding isolines of the Mach number can be observed from Fig. 5 (bot-
tom). The third result is the convergence curve generated by adaptive method with
error indicator obtained by adjoint weighted residual. In the simulation, the following
functional is used as the quantity of interest,

J (U ) = 1

|Ω|
∫

Ω

|s∞ − s|
s∞

dxdy, (26)

where s∞ = p∞/ρ
γ
∞ is the far field entropy, and p∞ and ρ∞ are the far field pres-

sure and density, respectively. From Fig. 4, it can be observed that adjoint weighted
residual gives the best convergence result among three results. In Fig. 5 (top), the
distribution of the mesh grids with 3387 points and the isolines of Mach number are
shown with adjoint weighted residual method. It can be seen that the adjoint method

Fig. 4 Convergence curves
of the entropy production
with different methods
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Fig. 5 Mesh profiles and Mach isolines obtained from adjoint-based mesh adaptation with 3387
mesh grids (upper row) and residual-based mesh adaptation with 5940 mesh grids (lower row)

helps to assign more mesh grids in the region in which the entropy is more sensitive
to the local residual. Hence, this explains that with adjoint weighted residual, better
result can be generated with less mesh grids, compared with the second result in
which only local residual is used.

5.3 Transonic Flow Around a NACA 0012 Airfoil

The last numerical test is for the transonic flow through a NACA0012 airfoil. The
purpose is to show the advantage of adjoint weighted method on accurately calcu-
lating the quantity of interest in the practical applications such as drag coefficient in
this test, i.e.

J (U ) =
∫

∂Ωa

pβ · nds, (27)

where ∂Ωa is the surface of the airfoil, and n is the unit outer normal vector with
respect to ∂Ωa . The parameter β in the above formula is given as

β =
⎧⎨
⎩

(cosα, sin α)T /C∞, for drag calculation,

(− sin α, cosα)T /C∞, for lift calculation,

where C∞ = 0.5γ p∞Ma2∞l, and Ma∞ and l are the far field Mach number of the
flow and the chord length of the airfoil, respectively.

The far field flow is set up with the following configuration. The density is 1, the
Mach number is 0.8, and the velocity vector is (cos θ, sin θ)T with the attack angle
θ = 1.25◦. The far field flow state is again used as the initial guess for the Newton
iteration.

In Fig. 6 (left), the convergence history of Newton iteration on 11 successively
and adaptively refined meshes is shown and it can be observed that the residual can
be reduced towards the machine epsilon efficiently in all meshes which demonstrates
the effectiveness of the algorithm. In Fig. 6 (right), the advantage on using adaptive
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Fig. 6 Left: Residual convergence history with adaptively and successively mesh refinements
for NACA0012 airfoil with 0.8 Mach number and 1.25◦ attack angle; Right: the corresponding
convergence history of the drag coefficient (solid line), while the dashed line shows the results
given by the uniformly refining mesh

Fig. 7 Left: The mesh profile after 5 adaptive refinement. Middle: The corresponding isolines of
the Mach number. Right: The isolines of the x-momentum from the adjoint problem

method with error indicator generated by adjoint weighted residual is demonstrated
obviously, i.e. the convergence curve of the drag coefficient generated by the adaptive
method is much superior to that generated by uniformly refining the mesh and to
reach almost the same numerical accuracy (around 1.0e − 05), only over 10% mesh
grids are needed by the adaptivemeshmethod, comparedwith the uniform refinement
strategy. Figure7 shows the mesh grids around the airfoil (left), the isolines of the
Mach number (middle), and the isolines of x-momentum from the adjoint problem
(right). It can be seen that with the adjoint weighted residual, the upper and lower
shocks as well as leading edge and tail region are successfully resolved, which
guarantees the accurate calculation of drag coefficient.

Remark 4 It is worthmentioning that in all simulations in this paper and our previous
works [21, 23–26], the convergence of Newton iteration is smooth and efficient.
Furthermore, the convergence is not sensitive to the selection of the parameters,
which shows the robustness of our method.

Remark 5 In simulations with curved boundary, the direction of the out normal vec-
tor on the Gauss quadrature point is adjusted according to the exact curve. With this
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correction, the performance of the method with high-order solution reconstruction
can be significantly improved and people may refer to the simulation on Ringleb
problem in [26] for details. However, there are still errors on the other quadrature
information such as the position and weight of the quadrature point. Moreover, to
develop a framework for the optimal design of the vehicle, a flexible and powerful
tool to handle the curved boundary approximation is desirable. In our forthcoming
paper, the nonuniform rational B-splines (NURBS) will be introduced in our method
to handle the curved boundary issue and preliminary results show the excellent per-
formance of the new method.

6 Conclusion

In this paper, an efficient and robust framework of adaptive finite volume solutions on
steady Euler equations is introduced. The governing equations are discretized with
finite volume method, and the framework consists of the Newton iteration for the
linearization of the Euler system and a geometrical multigrid method for solving the
linearized system. A non-oscillatory k-exact reconstruction is developed to deliver
quality solution reconstruction to linear and higher-order cases. To improve the solver
efficiency, the h-adaptive method is introduced in the method and an adjoint-based a
posteriori error estimationmethod is developed to generate quality error indicator for
the adaptive method. Numerical results successfully show the desired convergence
behaviour of the method, and quality nonuniform meshes generated by the adaptive
method.
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The Burgers–Hilbert Equation

John K. Hunter

Abstract The Burgers–Hilbert equation consists of an inviscid Burgers equation
with a linear Hilbert-transform source term. We explain how the equation arises
as a model for waves on a vorticity discontinuity and surface waves with constant
frequency. We survey various results about the Burger–Hilbert equation, including
ones on singularity formation, shock structure, weak solutions, and the enhanced life
span of small, smooth solutions.

Keywords Conservation laws · Hilbert transform · Shock formation
Normal form transformations

1 The Burgers–Hilbert Equation

The Burgers–Hilbert (BH) equation consists of an inviscid Burgers equation for
u(x, t) with a linear source term given by the Hilbert transform of u with respect to
x :

ut +
(
1

2
u2

)
x

= H[u]. (1)

The Hilbert transform H is defined for f : R → R by

H[ f ](x) = p.v.
1

π

∫
R

f (y)

x − y
dy, Ĥ[ f ](k) = (−i sgn k) f̂ (k),

where sgn k is the sign function. Analogous expressions apply to spatially periodic
functions f : T → T.

The Hilbert transform is a skew-adjoint singular integral operator of order zero,
so the source term H[u] in (1) is conservative but non-smoothing. The BH equation
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is Hamiltonian with respect to the Hamiltonian operator ∂x ,

ut + ∂x

(
δH
δu

)
= 0, H(u) =

∫ (
1

6
u3 + 1

2
u |∂x |−1 u

)
dx,

where |∂x | = H∂x has symbol |k|.
Since H2 = − I, all solutions of the linearized equation ut = H[u] oscillate with

frequency 1. Thus, theBHequation is amodel equation for nonlinearwaveswith con-
stant, nonzero linearized frequency. From a mathematical perspective, the equation
combines aspects of conservation laws and singular integral operators.

In this paper, we survey a number of results about the BH equation. We explain
how the BH equation is related to the motion of vorticity discontinuities in fluids and
nonlinear waves with constant linearized frequency. We then describe results on the
existence and breakdown of smooth solutions, the structure of shocks, and the global
existence of weak solutions. Finally, we discuss the behavior of small-amplitude
solutions, which are the ones that model the motion of vorticity discontinuities.
In particular, we state a result on the enhanced life span of small, smooth solutions,
which is obtainedby the use of normal formmethods, andgive an asymptotic equation
that describes the behavior of small solutions over cubically nonlinear timescales.

2 Vorticity Discontinuities

A planar discontinuity in vorticity in an inviscid, two-dimensional, incompressible,
fluid flow with velocity u(x, y, t) = (u(x, y, t), v(x, y, t)) corresponds to a shear
flow u = (u, 0) with

u(y) =
{

α+y if y > 0,

α−y if y < 0,

where α+ �= α− (see Fig. 1). The vorticity vx − uy of this flow is −α+ in y > 0 and
−α− in y < 0 and jumps across y = 0. Since vorticity is advected by the fluid flow, it
is consistent to consider the motion of a vorticity discontinuity located at y = η(x, t)
with constant vorticities −α+ in y > η(x, t) and −α− in y < η(x, t).

A planar vorticity discontinuity may be regarded as an approximation of the flow
in a wide, two-dimensional channel (see Fig. 2) or as a local approximation to a
vortex patch (see Fig. 3). The boundary of a vortex patch remains smooth globally in
time (Chemin [7]) but forms thin, high-curvature filaments (see e.g., Dritschel [9]).

Rayleigh [18] showed that a vorticity discontinuity is linearly stable, in sharp
contrast to the catastrophic Kelvin–Helmholtz instability of a vortex sheet with a
jump in the tangential velocity. Rayleigh also computed the response of a vorticity
discontinuity to a sinusoidal perturbation up to fifth order in the amplitude of the
perturbation and found no sign of nonlinear instability [19]. However, as we explain
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Fig. 1 A vorticity
discontinuity with shear rates
α+ = a and α− = −a

Fig. 2 A vorticity
discontinuity in channel flow
with α± = ±1. Figure1
corresponds to the limit of
infinite channel width

Fig. 3 A vortex patch with
α+ = 0, α− = 1. The
vorticity discontinuity in
Fig. 1 corresponds to a local
approximation of the
boundary of the patch

in Sect. 7, the restriction of the perturbation to a single Fourier mode leads to a
traveling wave and eliminates the most interesting weakly nonlinear dynamics of the
discontinuity.
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The motion of the fluid is described by the two-dimensional incompressible Euler
equations for the velocity u(x, t) and the pressure p(x, t):

ut + u · ∇u + ∇ p = 0, ∇ · u = 0.

The only parameters in an unperturbed planar vorticity discontinuity are the shear
rates α±, which have the dimension of frequency; in particular, the planar geometry
does not define any length scales. As a result, the Euler equations and the unperturbed
flow are invariant under spatial dilations

x �→ λx, t �→ t, u �→ λu, p �→ λ2 p

for λ > 0. The unperturbed flow is not invariant under spatial reflections x �→ −x ,
t �→ t . Dimensional arguments then imply that the frequency of a small-amplitude
wave on a vorticity discontinuity is independent of its wavenumber; in addition,
waves propagate along the interface in only one direction (with the larger value of
α+, α− on their left). This spatial scaling invariance may be compared with the
space-time invariance x �→ λx, t �→ λt of hyperbolic conservation laws, where the
velocity of a small-amplitude wave is independent of its wavenumber.

Biello andHunter [2] showed that the followingBH equation provides an effective
equation for small-amplitudemotions of a vorticity discontinuity between shear rates
α+, α− located at y = η(x, t):

ηt +
(
1

2
β0η

2

)
x

= ω0H[η], β2
0 = α2+ + α2−

2
, ω0 = α+ − α−

2
. (2)

Here, ω0 is the linearized frequency of oscillations in the vorticity discontinuity.
As explained in Sect. 7, the remarkable fact is that when the quadratically non-

linear coefficient in the BH equation is renormalized to β0, then (at least formally)
small-amplitude solutions of the BH equation have the same asymptotic behavior
on cubically nonlinear timescales as solutions of the incompressible Euler equations
for the vorticity discontinuity.

From the point of view of normal forms, when a suitable near-identity transfor-
mation is used to eliminate the quadratic term from (2), the resulting cubic term is
exactly the one that describes the motion of a vorticity discontinuity. As shown in
[2], dimensional analysis provides a partial explanation of why this occurs by show-
ing that the BH equation is an appropriate equation to describe Hamiltonian surface
waves with constant frequency.

A BH equation was also obtained by Marsden and Weinstein [16] as a quadratic
truncation of the equation for vortex patches. In the case of a vorticity discontinuity,
their equation is

ηt +
(
1

2
γ0η

2

)
x

= ω0H[η], γ0 = α+ + α−
2

.
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This equation has a different nonlinear coefficient from (2), which may vanish, and
it does not provide a valid approximation for the motion of a vorticity discontinuity
on cubic timescales.

The linearized dispersion relation for waves on the vorticity discontinuity in the
channel flow shown in Fig. 2 is ω = ω0 tanh hk, where 2h is the width of the channel
[18]. Thus, a heuristic model equation in that case is

ηt +
(
1

2
β0η

2

)
x

= ω0T[η],

where the linear operator T has symbol −i tanh(hk). Equation (2) is the short-wave
limit of this equation.

3 Smooth Solutions and Singularity Formation

We consider the initial value problem for the BH equation

ut +
(
1

2
u2

)
x

= H[u], u(x, 0) = u0(x). (3)

This problem iswell posed in the L2-Sobolev space Hs for short timeswhen s > 3/2,
with the same proof as for the inviscid Burgers equation.

In Fig. 4, we show a numerical solution of (3) with sinusoidal initial data u0(x) =
sin x , computed using a fourth-order WENO scheme to capture shocks. We see the
typical Burgers steepening and the formation of a logarithmically cusped shock,
whose structure is described in Sect. 4.

Fig. 4 Solution of (1) with
initial data u(x, 0) = sin x at
t = 0 (blue), t = 1 (red),
t = 2 (black)
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Fig. 5 Solution of (1) with
initial data u(x, 0) = sin x at
t = 0 (blue), t = 2.5 (green),
t = 5 (red), t = 7.5
(magenta), t = 10 (black)

0 1 2 3 4 5 6

−0.5

0

0.5

1

1.5

x

u

Fig. 6 Solution of (1) for
0 ≤ t ≤ 200 with initial data
u(x, 0) = −1 + sin x . The
Galilean transformation
u �→ −1 + u, x �→ x − t
goes into a reference frame
moving with the linearized
wave speed
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At longer times, the shock weakens due the effect of the lower-order oscillatory
Hilbert-transform term, not viscous decay, and the solution appears to approach a
smooth, temporally quasi-periodic traveling wave as t → ∞ (Figs. 5 and 6). This
behavior is not unique to the BH equation; it also occurs for Whitham equations of
the form

ut +
(
1

2
u2

)
x

= k ∗ u (4)

where k ∈ L1 is an odd function. Shefter and Rosales [21] carried out a numerical
study of (4) with the kernel k(x) = sin x . Their results support the existence of a two-
dimensional invariant torus of quasi-periodic solutions that is an attracting manifold
for general solutions as a result of shock formation and decay.

Numerical simulations show that smooth initial data typically forms shocks. How-
ever, at least some small amplitude, spatially periodic initial data have global smooth
solutions.
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Theorem 1 The BH Eq. (1) has an analytic branch

a �→ ( f (x, a), c(a))

in Hk(T), k ≥ 1, of even, zero-mean, 2π-periodic, smooth traveling wave solutions
u(x, t; a) = f (x − c(a)t, a). Furthermore, as a → 0,

f (x, a) = a cos x + 1

2
a2 cos 2x + 3

8
a3 cos 3x + O(a4),

c(a) = 1 + 1

4
a2 + O(a4).

The proof is a standard application of the Crandall–Rabinowitz theorem on bifur-
cation from simple eigenvalue [22]. A similar result would apply to traveling waves
on a vorticity discontinuity, and the expansion in Theorem 1 agrees with Rayleigh’s
expansion for traveling waves on vorticity discontinuities [19]. For the BH equa-
tion, this branch of traveling waves presumably ends at a steepest wave which is not
smooth at its crest, as typically occurs for traveling wave solutions of Whitham-type
Eq. (4); see e.g., [11, 17].

The existence of solitary wave solutions of the BH equation on R is unclear. The
BH equation is invariant under the scaling x �→ λ−1x , u �→ λu, so in the long-wave
limit λ → 0, the profile of the spatially periodic traveling waves remains the same
and their amplitude goes to infinity. Any solitary wave would need to have zero
integral, otherwise H[u](x) ∼ 1

πx

∫
R
u(y) dy as |x | → ∞ would be non-integrable.

In the opposite direction, we have the following result of Castro, Córdoba, and
Gancedo [6] on the breakdown of smooth solutions.

Theorem 2 Let u0 ∈ L2(R) ∩ C1,δ(R)with 0 < δ < 1 and suppose that there exists
x0 ∈ R such that

H[u0](x0) > 0, u0(x0) ≥ (
32π‖u0‖2L2

)1/3
.

Then there is a finite time T > 0 such that the solution u : R × [0, T ) of (3) satisfies

‖u(·, t)‖C1,δ → ∞ as t → T .

The idea of the proof is to introduce characteristic coordinates x = X (ξ, t), u =
U (ξ, t), where Xt (ξ, t) = U (ξ, t) with X (ξ, 0) = ξ and U (ξ, 0) = u0(ξ), in which
case

Utt (ξ, t) +U (ξ, t) = 1

2π

∫
R

[u (X (ξ, t), t) − u(y, t)]2

[X (ξ, t) − y]2 dy.

Under the stated assumptions, we have the pointwise bound
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1

2π

∫
R

[u(x, t) − u(y, t)]2

(x − y)2
dy ≥ Cu4(x), C = 1

32π‖u‖2L2

.

Hence, if J (t) = u(X (ξ0, t), t), where X (ξ0, 0) = x0, then Jtt + J ≥ C J 4, so J (t)
blows up (and smooth solutions must break down at that time or earlier) if Jt (0) > 0
and 0 < J (0) ≤ C J 4(0).

Although this result shows that smooth solutions of theBHequation break down, it
does not show that ux blows up, as observed in the numerical solutions, nor does give
a sharp estimate for the smooth life span.1 However, it is unclear how to use a standard
argument for the blow up of v = ux , based on the Ricatti equation dv/dt + v2 =
H[v], since one lacks uniform pointwise bounds for the Hilbert transform.

4 Shocks

A significant difficulty in understanding weak solutions of the BH equation with
shocks is that the Hilbert transform is not bounded on L∞ or L1, and it generates a
logarithmic singularity on a jump discontinuity:

H[sgn x] = 2

π
log |x |.

Thus, the source term H[u] in the BH equation is singular along the trajectory of a
shock. The speed of a shock differs from the characteristic speeds on either side, and
Bressan and Zhang [4] showed that the singularity generated by the Hilbert transform
can be balanced by the nonlinear advection term.

Let

φ(x) = 2|x | log |x |
π

η(x), η(x) =
{
1 if |x | ≤ 1,

0 if |x | ≥ 2,

where η ∈ C∞
c (R) is a suitable smooth cutoff function. Define spaces

D = {
v ∈ H 2(R \ {x0}) : for some x0 ∈ Rwith v(x−

0 ) > v(x+
0 )

}
,

E = {w : w(x) = φ(x − x0) + v(x) for v ∈ Dwith jump at x0}.

Functions in D are piecewise smooth with a compressive jump discontinuity at
x0; functions in E are continuous with a logarithmic cusp at x0. Then, we have the
following result [4].

1See [1] for a similar example involving an application of functionalmethods to the inviscidBurger’s
equation.
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Fig. 7 Shock structure for the BH equation. The solution is the sum of a piecewise smooth function
with a jump discontinuity (in blue) and a continuous function with a logarithmic cusp (in red)

Theorem 3 For every u0 ∈ D, there exists T > 0 and a unique weak entropy solu-
tion u(x, t) of (3) with u(·, t) ∈ E for 0 < t ≤ T .

The structure of shocks in E is illustrated in Fig. 7. A surprising feature of these
solutions is that the strength of the logarithmic cusp is independent of the shock
strength.

Theorem 3 only holds for short times, since further shocks may form. Bressan and
Nguyen [5] proved the following global existence result for general weak solutions.

Theorem 4 If u0 ∈ L2(R), then there is a weak entropy solution u(x, t) of (3) that is
defined for all (x, t) ∈ R × [0,∞). For this solution, the function t �→ ‖u(·, t)‖L2(R)

is non-increasing and u(·, t) ∈ L∞(R) for all t > 0.

The proof uses a fractional step method between the flows defined by

ut +
(
1

2
u2

)
x

= 0, ut = H[u].

The difficulty is that Burgers equation defines a contractive nonlinear semigroup
on L1 but not on L2, whereas the Hilbert transform is bounded on L2 (and L p

for 1 < p < ∞) but not on L1. The regularizing properties of the Burgers flow,
and the Oleinik inequality, are essential to prove compactness of the fractional step
approximations. The proof in [5] does not show that the solution belongs to BV , and
the uniqueness of weak entropy solutions is largely open.

5 Small-Amplitude BH Dynamics

If ux � 1, then the nonlinear Burgers term in (1) is small compared with the linear
Hilbert transform, and (1) can be regarded as a perturbation of the linearized BH
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equation
ut = H[u]. (5)

The dynamics of the BH equation in this small-amplitude regime differs from the
usual Burgers dynamics.

The solution of (5) is given by

u(x, t) = u0(x) cos t + h0(x) sin t, h0 = H[u0].

Thus, u oscillates in time between u0, h0, −u0, and −h0, where u0 is an arbitrary
spatial profile and h0 is its Hilbert transform. The solution acts like a collection
of simple harmonic oscillators at different locations, each of which has the same
frequency; the oscillators are coupled only by the condition that their velocity is the
spatial Hilbert transform of their displacement.

When a slow nonlinear Burgers dynamics is added to these rapid linear oscilla-
tions, the spatial waveform of the solution alternately compresses and expands in
each oscillation period, and the quadratic Burgers nonlinearity averages over time to
a cubic nonlinearity. The transition from quadratic to cubic nonlinearity is illustrated
in Fig. 8, which shows the numerically computed singularity formation time Ts , at
which it appears that |ux | → ∞, as a function of amplitude ε for (3) with the initial
data

u0(x) = ε
[
2 cos x + cos 2(x + 2π2)

]
. (6)

A numerical solution for ε = 0.025 is shown in Fig. 9, and a detail of the shock
formation is shown in Fig. 10. The solution steepens and expands during each oscil-
lation period. Eventually, after 104 oscillations, a very weak shock forms for the
first time; this shock then becomes too weak to detect; in the next period, a slightly
stronger shock forms; and so on. For scalar conservation laws, shocks do not dis-
appear once formed [8], and it seems plausible that a similar result holds for the

Fig. 8 Singularity time Ts
versus amplitude ε for the
initial data (6). Green line =
quadratic Burgers equation
asymptotics; Red line =
cubic asymptotics; Blue dots
= numerical solution. (From
[2])
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Fig. 9 Solution of (3) with initial data (6) where ε = 0.025. The solution is plotted for t = 2πN
with N = 0 (blue), N = 50 (green), N = 100 (red), N = 150 (magenta), N = 200 (black). See
Fig. 12 for a surface plot

0 1 2 3 4 5 6

655

660

665

670

675

−0.05

0

0.05
t

x

u

655 660 665 670 675
0.00156242

0.00156243

0.00156244

0.00156245

0.00156246

0.00156247

0.00156248

0.00156249

0.0015625

Entopy: S = ∫ u2 dx

t

S

Fig. 10 Detail of shock formation. Left: Previous solution for 104 · 2π ≤ t ≤ 108 · 2π Right: the
L2-entropy drops by approximately 3 × 10−3 percent in first time period after shock forms

nonlocal BH equation. This argument suggests that, after the smooth solution breaks
down, tiny new shocks form in each oscillation period, then become extremely weak
as they absorb a large expansion wave generated by the background oscillation.

In the vorticity discontinuity problem, contour dynamics computations show that
singularity formation in the BH equation is associated with wave-breaking and fil-
amentatation of the vorticity discontinuity [3]. The discontinuity throws off new,
extremely thin filaments in each oscillation period, and it is conceivable that solu-
tions of the BH equation with very weak shocks provide a reasonable approximation
to filamented vorticity discontinuities (as in numerical contour surgery methods that
snip off the filaments [10]).
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6 Enhanced Life Span of Smooth Solutions

Small, smooth solutions of the BH equation, with amplitude of the order ε, have an
enhanced cubic life span of the order 1/ε2, rather than the quadratic life span of the
order 1/ε for the inviscid Burgers equation. A proof of this result may be based on
normal form methods.

Normal form methods for PDEs were introduced by Shatah [20], but standard
methods fail for the BH equation. Thus, the BH equation provides a useful test prob-
lem for the development of normal formmethods for quasi-linear PDEs; for example,
normal form methods applicable to two-dimensional water waves in holomorphic
coordinates bear a remarkable similarity to the ones for the BH equation [13].

It is convenient to transfer the small parameter ε from the initial data to the
nonlinear term in the BH equation, and consider the initial value problem

ut + ε

(
1

2
u2

)
x

= H [u] , u(x, 0; ε) = u0(x). (7)

A standard near-identity transformation u �→ v that reduces the BH equation to a
cubic normal form is given by

v = u + 1

2
ε |∂x |

(
h2

)
, h = H[u]. (8)

However, since we use a lower-order linear term H[u] to remove a higher-order
quadratic term (u2/2)x , there is a loss of derivatives in this transformation, and we
cannot carry out cubic energy estimates for v. The following result is proved in
[12, 14] by two related, but different, methods that overcome the loss of derivatives
in (8).

Theorem 5 Suppose that u0 ∈ H 2(R). There are constants k > 0 and ε0 > 0,
depending only on ‖u0‖H 2 , such that for every ε with |ε| ≤ ε0 there exists a solution
u : I ε → H 2 (R) of (7) defined on the time-interval I ε = [−k/ε2, k/ε2

]
.

In the first method, we regard the unbounded near-identity transformation as the
forward Euler approximation of a bounded and invertible near-identity flow, which
does not have a derivative loss. The BH equation is particularly simple because we
can solve explicitly for the near-identity flow.

When written in terms of the Hilbert transforms h = H[u], g = H[v], the trans-
formation h �→ g in (8) is local,

g = h − 1

2
ε
(
h2

)
x
.

This transformation agrees to O(ε) with the solution of a Burgers equation for
U (x, t, τ ), in which t occurs as a parameter and we omit the dependence on ε to
simplify the notation,
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Uτ +
(
1

2
U 2

)
x

= 0, U (x, t, 0) = h(x, t), U (x, t, ε) = g(x, t). (9)

Solving this equation by the method of characteristics, we get the transformation
h �→ g where

g(x, t) = h(ξ, t), x = ξ + εh(ξ, t) (10)

If u satisfies the BH equation in (7), then one finds that the function g given in (10)
satisfies the following cubically nonlinear integro-differential evolution equation

gt(x, t) − ε2

π
∂x

∫
(x − y)gy(y, t)φ

(
g(x, t) − g(y, t)

x − y

)
dy = H[g](x, t),

φ(c) = log (1 − c) + c.

This equation has closed H 2-energy estimates, and Theorem 5 follows [12].
In the second method, we use a modified energy suggested by the near-identity

transformation (8). The L2-energy associated with ∂k
xv is

‖∂k
xv‖2 = ‖∂k

x u‖2 + 2ε〈∂k
x u, ∂

k
xH[hhx ]〉 + ε2‖∂k

xH[hhx ]‖2, (11)

where ‖ · ‖ and 〈·, ·〉 are the L2-norm and inner product. The quartic term of O(ε2)
in (11) involves higher-order derivatives and is comparable with ‖∂k+1

x u‖2, but it is
irrelevant for cubically nonlinear energy estimates. The cubic term of O(ε) in (11)
is comparable with ‖∂k

x u‖2 because the higher-order derivatives integrate out:

〈∂k
x u, ∂

k
xH[hhx ]〉 =

(
k + 1

2

)
〈hx , (∂

k
x h)

2〉 + l.o.t.

The skew-adjointness behind this integration by parts is related to the well-posedness
of the normal form flow in (9).

This observation suggests that we drop the higher-derivative quartic term from
(11) and define a modified energy by

Ek(u) = 1

2
‖∂k

x u‖2 + 〈∂k
x u, ∂

k
xH[hhx ]〉.

For small energies and k ≥ 2, the modified energy Ek(u) is equivalent to ‖∂k
x u‖2,

and one computes directly from (7) that it has cubically nonlinear estimates, so
Theorem 5 follows [14].
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7 Asymptotic Equation for the BH Equation

The linearized dispersion relation of the BH equation for non-constant harmonic
solutions u(x, t) = eikx−iωt is ω = sgn k. Weakly nonlinear solutions are not subject
to quadratic, three-wave resonances since there are no solutions of ω1 = ω2 + ω3;
this non-resonance condition is what allows us to remove the quadratic term from
the BH equation by a near-identity transformation. There are, however, many cubic,
four-wave resonances of the form

k1 + k2 = k3 + k4, k j > 0.

As a result, the nonlinear dynamics of small-amplitude, constant-frequency waves
is qualitatively different from that of dispersive waves, which have few four-wave
resonances, and two initial spatial harmonics are sufficient to start an energy cascade
e.g., from k = 1, 2 one gets wavenumbers 3 = 2 + 2 − 1, 4 = 2 + 3 − 1 = 3 + 3 −
2, and so on.

Thus, small-amplitude, constant-frequency waves have an arbitrary spatial profile
that oscillates at the linearized frequency and deforms slowly due to the effects of
nonlinearity. Their nonlinearity is cubic, like dispersivewaves and the cubicNLS, but
four-wave interactions generate an energy cascade to higher spatial wavenumbers,
like the three-wave energy cascade for non-dispersive hyperbolic waves and the
inviscid Burgers equation. No such four-wave cascade occurs if there is only one
initial harmonic,which explainswhy it did not arise inRayleigh’s analysis of vorticity
discontinuities [19].

The BH Eq. (1) has weakly nonlinear, asymptotic solutions of the form [2]

u(x, t; ε) = εv(x, ε2t) cos t + εH[v](x, ε2t) sin t + O(ε2) as ε → 0,

where v(x, τ ) satisfies the cubically nonlinear, nonlocal asymptotic equation

vτ + 1

2
∂x

{
v2 |∂x | v − v |∂x | v2 + 1

3
|∂x | v3

}
= 0, |∂x | = H∂x . (12)

Exactly the same asymptotic equation, with a suitable nonlinear coefficient, arises
from the incompressible Euler equations for a vorticity discontinuity [2]. Conse-
quently, theBHequationwith the renormalized coefficient in (2) provides an effective
equation for small-slope motions of a vorticity discontinuity on cubically nonlinear
timescales.

The following local existence anduniqueness result for spatially periodic solutions
of (12) is proved in [15].
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Fig. 11 Solution of (13)
with initial data (6) where
ε = 0.025. The solution is
plotted for t = 2πN with
N = 0 (blue), N = 50
(green), N = 100 (red),
N = 150 (magenta),
N = 200 (black)
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Theorem 6 Suppose that u0 ∈ H 2(T). Then there exists T (‖u0‖H 2) > 0 such that
the initial value problem

ut + 1

2
∂x

{
u2 |∂x | u − u |∂x | u2 + 1

3
|∂x | u3

}
= 0,

u(x, 0) = u0(x),

(13)

has a unique solution u ∈ C(−T, T ; H 2) ∩ C1(−T, T ; H 1).

Although the nonlinear term in (13) involves two spatial derivatives, it is effec-
tively first order on smooth solutions because of the commutator identity

u2 |∂x | u − u |∂x | u2 + 1

3
|∂x | u3 = 2u [u,H] ux − [

u2,H
]
ux .

This cancelation of derivatives (or its spectral equivalent) enables one to close the
energy estimates.

Equation (13) inherits a Hamiltonian structure from the BH equation

ut + ∂x

(
δH
δu

)
= 0, H(u) =

∫ (
1

6
u |∂x | u3 − 1

4
u2 |∂x | u2

)
dx .

A numerical solution of (13) with initial data (6) is shown in Fig. 11. There is
numerical evidence of singularity formation and the existence of a weak solution,
but no proof. The solution of the asymptotic equation appears to remain continuous,
but forms a propagating, oscillatory singularity. This result is consistent with the
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Fig. 12 Left: Solution of BH equation (1) with initial data (6) where ε = 0.025. ε = 0.025 plotted
at 2π-time intervals. Right: Corresponding solution obtained from the asymptotic equation

formation of multiple shocks (or filaments) whose strength (or thickness) approaches
zero in the weakly nonlinear limit.

Finally, in Fig. 12, we compare the BH and asymptotic solutions. The asymptotic
equation provides a good approximation to the BH equation.

Acknowledgements Supported by the NSF under grant number 1616988.

References

1. S. Alinhac, Blowup for Nonlinear Hyperbolic Equations (Birkhäuser, Boston, 1995)
2. J. Biello, Hunter J.K: Nonlinear Hamiltonian waves with constant frequency and surface waves

on vorticity discontinuities. Comm. Pure Appl. Math. 63, 303–336 (2009)
3. J. Biello, J.K. Hunter, unpublished
4. A. Bressan, T. Zhang, Piecewise smooth solutions to the Burgers-Hilbert equations. Comm.

Math. Sci. 15, 165–184 (2017)
5. A. Bressan, K.T. Nguyen, Global existence of weak solutions for the Burgers-Hilbert equation.

SIAM J. Math. Anal. 46, 2884–2904 (2014)
6. A. Castro, D. Córdoba, F. Gancedo, Singularity formation for a surface wave model. Nonlin-

earity 23, 2835–2847 (2010)
7. J.Y. Chemin, Persistance de structures gomtriques dans les fluides incompressibles bidimen-

sionnels. Ann. Sci. École Norm. Sup. 26, 517–542 (1993)
8. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 4th edn. (Springer-

Verlag, Heidelberg, 2016)
9. D.G. Dritschel, The repeated filamentation of two-dimensional vorticity interfaces. J. Fluid

Mech. 194, 511–547 (1988)
10. D.G. Dritschel, Contour dynamics and contour surgery. Comput. Phys. Rep. 10, 77–146 (1989)
11. J.K. Hunter, Numerical solution of some nonlinear dispersive wave equations. Lect. Appl.

Math. 26, 301–316 (1990)
12. M. Ifrim, J.K. Hunter, Enhanced life span of smooth solutions of a Burgers-Hilbert equation.

SIAM J. Math. Anal. 44, 2039–2052 (2012)
13. J.K. Hunter, M. Ifrim, D. Tataru, Two dimensional water waves in holomorphic coordinates.

Comm. Math. Phys. 346, 483–552 (2016)



The Burgers–Hilbert Equation 57

14. J.K.Hunter,M. Ifrim,D. Tataru, T.K.Wong, Long time solutions for a Burgers-Hilbert equation
via a modified energy method. Proc. Am. Math. Soc. 143, 3407–3412 (2015)

15. M. Ifrim, Normal form transformations for Quasilinear wave equations. Thesis (Ph.D.), Uni-
versity of California, Davis, 2012

16. J. Marsden, A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible
fluids. Phys. D 7, 305–323 (1983)

17. R.L. Pego, Some explicit resonating waves in weakly nonlinear gas dynamics. Stud. Appl.
Math. 79, 263–270 (1988)

18. L. Rayleigh, On the stability or instability of certain fluid motions. Proc. Lond. Math. Soc. 11,
57 (1880)

19. L. Rayleigh, On the propagation of waves upon the plane surface separating two portions of
fluid of different vorticities. Proc. Lond. Math. Soc. 27, 13–18 (1895)

20. J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations. Comm. Pure Appl.
Math. 38, 685–696 (1985)

21. M. Shefter, R.R. Rosales, Quasiperiodic solutions in weakly nonlinear gas dynamics. I. Numer-
ical results in the inviscid case. Stud. Appl. Math. 103, 279–337 (1999)

22. E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. I (Springer-Verlag, New
York, 1986)



General Linear Methods
for Time-Dependent PDEs

Alexander Jaust and Jochen Schütz

Abstract The hybridized discontinuous Galerkin method has been successfully
applied to time-dependent problems using implicit time integrators. These integra-
tors stem from the ‘classical’ class of backward differentiation formulae (BDF) and
diagonally implicit Runge–Kutta (DIRK) methods. We extend this to the class of
general linear methods (GLMs) that unify multistep and multistage methods into
one framework. We focus on diagonally implicit multistage integration methods
(DIMSIMs) that can have the same desirable stability properties like DIRK meth-
ods while also having high stage order. The presented numerical results confirm
that the applied DIMSIMs achieve expected approximation properties for linear and
nonlinear problems.

Keywords General linear method · Hybridized discontinuous galerkin method
Time-dependent · CFD

1 Introduction

Discontinuous Galerkin methods [12, 20, 21] have been recognized as powerful
discretization methods for differential equations stemming from a variety of applica-
tions.A severe drawback of thesemethods is the large number of unknowns compared
to the other numerical schemes. This becomes particularly problematic for steady-
state problems or stiff time-dependent problems, as those problems are usually solved
through implicit solution techniques that couple the unknowns globally.

The number of globally coupled unknowns may be greatly reduced by hybridiza-
tion [9]. This leads to the class of so-called hybridized discontinuousGalerkin (HDG)
methods [1, 17, 18, 22]. HDG has initially been developed for steady-state prob-
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lems; it can be applied to time-dependent problems though yielding a differential
algebraic equation (DAE). The latter needs time integration schemes being able to
handle stiff problems. Good results have been obtained with backward differentia-
tion formulae (BDF) and diagonally implicit Runge–Kutta (DIRK) schemes [15, 17,
18]; an approach using multiderivative time integrators has been studied in [16].

In this work, we study the coupling of an HDG method to a diagonally implicit
multistage integration method (DIMSIM) in Nordsieck representation [4, 7]. These
methods are a subclass of general linear methods (GLMs) [3, 5, 8, 13]. GLMs are
a generalization of multistep and multistage methods and therefore contain these
schemes as special cases. Their advantage over classical time integrators such as
BDF and DIRK methods is that one can obtain methods with high accuracy that are
L- and A-stable while having stage order q > 1, being particularly important for
very stiff problems. Moreover, there are techniques available to adapt the time step
size and the order of the scheme [2, 13, 14] and an extension to implicit–explicit
(IMEX) methods exists as well [24].

This work is structured as follows: First, we briefly introduce the HDG method
and show its coupling to aGLM.Then, numerical results are presented and discussed.
We end with conclusions and outlook.

2 Numerical Method

We consider partial differential equations of convection–diffusion type that can be
written as

wt + ∇ · ( f (w) − fv(w,∇w)) = 0 ∀ (x, t) ∈ Ω × [0, T ] (1)

w(x, 0) = w0(x) ∀ x ∈ Ω (2)

on a domain Ω ⊂ R
2. The system consists of m ≥ 1 equations; the functions f and

fv are given, possibly nonlinear functions. Both Euler and Navier–Stokes equations
are covered by this framework. As it is frequently done, we reformulate the PDE (1)
as a first-order PDE by introducing the additional unknown σ := ∇w:

σ = ∇w ∀ (x, t) ∈ Ω × [0, T ] (3)

wt + ∇ · ( f (w) − fv(w, σ )) = 0 ∀ (x, t) ∈ Ω × [0, T ] (4)

w(x, 0) = w0(x) ∀ x ∈ Ω. (5)

If the system is of first order, i.e., fv ≡ 0, then (3) is not needed.
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2.1 The Hybridized Discontinuous Galerkin Method

For a proper discretization, the domain Ω has to be partitioned into a set of subdo-
mains such that

Ω =
N⋃

k=1

Ωk .

The number of subdomains is denoted by N . For a hybridized discretization, we
also need the set of all edges Γ . It contains intersecting subdomains Ωk ∩ Ωk ′ and
subdomains intersecting the domain boundary Ωk ∩ ∂Ω . The number of all edges
is given by N̂ = |Γ |. Furthermore, we need spaces for the approximations of w, σ
and the additional hybrid unknown λ on the edges. The following standard spaces
are considered:

Hh := {q ∈ L2(Ω) | q|Ωk ∈ Π P(Ωk) ∀k = 1, . . . , N }2m
Vh := {q ∈ L2(Ω) | q|Ωk ∈ Π P(Ωk) ∀k = 1, . . . , N }m
Mh := {q ∈ L2(Γl) | q|Γl ∈ Π P(Γl) ∀k = 1, . . . , N̂ , Γl ∈ Γ }m .

For a shorter notation, we also define the following abbreviations for standard scalar
products on elements and edges

(h1, h2) :=
N∑

k=1

∫

Ωk

h1 · h2 dx,

〈h1, h2〉 :=
N∑

k=1

∫

∂Ωk

h1 · h2 dσ, 〈h1, h2〉Γ :=
N̂∑

l=1

∫

Γl

h1 · h2 dσ.

Moreover, we use the one-side value of a quantity u(x) at a point x ∈ ∂Ωk or x ∈ Γl

defined as
u±(x) := lim

ε→0
u(x ± εn)

where n is the outward pointing normal vector of ∂Ωk or the normal vector defined
for Γl . The jump operator �·� is defined as

�u� := (u− − u+)n, �u� := (u− − u+) · n

for scalar quantities u (left) and for vector quantities u (right).
Applying the HDG method in a standard way yields the task of finding σh ∈ Hh ,

wh ∈ Vh and λh ∈ Mh such that
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(σh − ∇wh, τh) − 〈λh − w−
h , τ−

h · n〉 = 0 ∀τh ∈ Hh (6)

((wh)t , ϕh) − ( f (wh) − fv(wh, σh),∇ϕh) + 〈( f̂ − f̂v) · n, ϕ−
h 〉 = 0 ∀ϕh ∈ Vh (7)

〈� f̂ − f̂v� · n, μh〉Γ = 0 ∀μh ∈ Mh (8)

is fulfilled for all times t ∈ [0, T ]. The fluxes on element boundaries ∂Ωk have been
replaced by numerical fluxes

f̂ := f (λh) − α(λh − w−
h )n, f̂v := fv(λh, σ

−
h ) + β(λh − w−

h )n

with positive real parameters α and β. The parameters have to be chosen carefully to
ensure stability of the scheme. For a detailed description on how boundary conditions
are incorporated, we refer to [23]. Note that a time derivative of only wh occurs in
the equation. Therefore, the equations form a set of differential algebraic equations
(DAEs).

The number of unknowns in (6)–(8) is larger than for the initial problem where
λh would be absent. However, this formulation allows to apply static condensation
such that the global number of unknowns can be greatly reduced [9].

In order to obtain a more compact notation, we will abbreviate the set of ansatz
and test spaces by

Xh := Hh × Vh × Mh

and the vector of unknowns by

wh := (σh,wh, λh).

Then, we can write (6)–(8) compactly as

T ((wh)t , ϕh) + N (wh; xh) = 0, ∀xh ∈ Xh (9)

where T is the vector containing time derivatives and N represents the spatial
discretization of the problem.

2.2 General Linear Methods

In this work, we discretize (9) using general linear methods [3, 5, 13, 14]. These
can be seen as generalization of standard methods like multistage (such as DIRK) or
multistep (such as BDF) methods. Multistage methods rely on only r = 1 external
approximation—the solution at the previous time step—but compute s ≥ 1 internal
approximations during stages. Multistep methods rely on r ≥ 1 external approxi-
mations that are passed from one time step to another, but have only s = 1 internal
approximation that equals the solution at the new time step. General linear methods
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allow the usage of several internal approximations s ≥ 1 and external approximations
r ≥ 1.

In order to give a brief idea of the method, we start with an ordinary differential
equation (ODE)

y′(t) = g(t, y), y(0) = y0 (10)

with unknown y, time t and a given initial condition y0. The ODE shall be solved
on a uniform grid in time with tn := t0 + n · Δt . An approximation using a GLM is
obtained via

Yi =
s∑

j=1

ai jΔtG j +
r∑

j=1

ui j y
[n−1]
j , i = 1, . . . , s (11)

y[n]
i =

s∑

j=1

bi jΔtG j +
r∑

j=1

vi j y
[n−1]
j , i = 1, . . . , r (12)

as described in [5]. External approximations are stored in y[n−1]
j for j = 1, . . . , r .

Additionally, in each time step s internal approximations Yi (i = 1, . . . , s) are com-
puted. G j := g(Y j ) is often referred to as stage derivative because, due to the ODE
(10), it describes the derivative of Y j . This is similar to Runge–Kutta methods. Once
all internal approximations are known, the external approximations y[n]

i are updated.
The collections of Yi ,G j , y

[n−1]
j and y[n]

j are often written as single vectors consisting
of the data

Y =

⎡

⎢⎢⎢⎣

Y1
Y2
...

Ys

⎤

⎥⎥⎥⎦ , G =

⎡

⎢⎢⎢⎣

G1

G2
...

Gs

⎤

⎥⎥⎥⎦ , y[n−1] =

⎡

⎢⎢⎢⎣

y[n−1]
1

y[n−1]
2
...

y[n−1]
r

⎤

⎥⎥⎥⎦ , y[n] =

⎡

⎢⎢⎢⎣

y[n]
1

y[n]
2
...

y[n]
r

⎤

⎥⎥⎥⎦ . (13)

The shape of the method depends heavily on the choice of values to be stored in
y[n] and y[n−1]. This also depends on the method and the way it is represented. Pure
multistep methods may store solutions at previous times yn−r , yn−r+1, . . . , yn−1, the
corresponding derivatives g(yn−r ), g(yn−r+1), . . . , g(yn−1) or both. Pure multistage
methods only need to store the solution of the previous time yn−1.

Order and stability of the method depend on the careful choice of coefficients ai j ,
ui j , bi j and vi j . The coefficients of the method can be compactly written as matrices

[
A U
B V

]
, A ∈ R

s×s, B ∈ R
r×s,U ∈ R

s×r , V ∈ R
r×r . (14)

In this work, we focus on a special class of general linear methods that are also
called diagonally implicit multistage integration methods (DIMSIMs) [4, 7, 13].
These are closely related to (singly) diagonally implicit Runge–Kutta methods in the
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sense that

A =

⎡

⎢⎢⎢⎣

λ

a21 λ
...

. . .
. . .

as1 . . . as(s−1) λ

⎤

⎥⎥⎥⎦

is a lower triangularmatrixwith nonzero entries on the diagonal. This allows to solve a
system in each stage instead of getting amuch larger system in case of nonzero entries
on the upper triangular part. Furthermore, it is possible to choose the other coefficients
in such a way that stability properties are equal to DIRK methods; i.e., A- and L-
stable DIMSIMs are available. We use DIMSIMs of order p = 1 to p = 3 that were
presented in [13]. For the applied DIMSIMs, the stage order equals p. We will refer
to the methods as DIMSIM1, DIMSIM2, and DIMSIM3 to distinguish between the
schemes of different order. Each method has s = p internal and r = p + 1 external
approximations. These DIMSIMs are formulated in Nordsieck formulation [7, 19]
which means that y[n] is the Nordsieck vector

y[n] =

⎡

⎢⎢⎢⎢⎢⎣

y(tn)
Δt y′(tn)

Δt2y(2)(tn)
...

Δtr y(r)(tn)

⎤

⎥⎥⎥⎥⎥⎦
(15)

that stores y and its first r derivatives. Using the specific form (15) has the advantage
that time step adaptation can be easily incorporated since it only requires rescaling
of the Nordsieck vector. This has been successfully applied in [2, 6, 13] to ODEs.
In this work, we do not pursue this any further, and leave it for future work.

Because it is extremely unhandy to compute higher derivatives of theODE’s right-
hand side, in practice, one usually uses an approximation to the Nordsieck vector [7].
In the case of the first-order method with r = 2, it is self-starting since the Nordsieck
vector is given by

y[0] =
(

y(t0)
Δtg(y(t0))

)
=

(
y0

Δtg(y0)

)
. (16)

Higher order methods require a different approach. In [27], the author constructed
special Runge–Kutta schemes that compute an approximation to the Nordsieck vec-
tor at t = 0. In [13, 14], the author describes an approach where the higher order
DIMSIMs are started from lower order DIMSIMs. In this work, we use an approach
similar to the starting procedure of backwards differentiation formulae. We use an
already available DIRK scheme of suitable order and compute r equidistant approxi-
mations to the solution at times ti = i · Δt, i = 1, . . . , r − 1. These values are used
together with the given initial data to construct an approximation to the Nordsieck
vector using interpolation.
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2.3 Applying DIMSIMs to the HDG Method

In (9), the semidiscrete form of the equations is already in the shape of a DAE.
Therefore, we have to solve (11)–(12) with slightly modified notation. In each stage
i of the method, we compute an internal approximation by solving

T (wn,i
h , ϕh) = −Δt

i∑

j=1

ai jN (wn,i
h ; xh) +

r∑

j=1

ui jT (y[n−1]
j , ϕh), ∀xh ∈ Xh .

(17)
(Note that we have defined xh = (τh, ϕh, μh).) Once all stage values w

n,i
h are known,

we obtain the updated solution from

T (y[n]
i , ϕh) = −

s∑

j=1

bi jΔtN (wn,i
h ; xh) +

r∑

j=1

vi jT (y[n−1]
j , ϕh) (18)

which only requires the local inversion of a mass matrix on each element. Here,
y[n−1] stores an approximation to the Nordsieck vector,

y[n−1] =

⎡

⎢⎢⎢⎣

wn−1
h

Δt d
dt w

n−1
h

...

Δtr dr

dtr w
n−1
h

⎤

⎥⎥⎥⎦ + O(Δt p+1). (19)

Note that p is the order of the applied DIMSIM.

3 Numerical Results

In this section, we present numerical results obtained from the HDG discretization
with DIMSIM time integrators in order to verify the approach. The first test case is a
linear convection–diffusion equationwhere the exact solution is known. In the second
test case, the more involved Navier–Stokes equations are solved and the results are
compared to other numerical experiments. The system of equations is solved using
Newton’s method until the absolute residual drops below 10−10. The arising linear
system is then solved with a restarted GMRES until the relative residual drops below
10−12 for the first and 10−10 for the second test problem.
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Fig. 1 Errors of DIMSIM schemes of order 1 to 3 (left) and Runge–Kutta schemes of same order
(right) are presented

3.1 Linear Convection–Diffusion Equation

We first consider a 2D Gaussian that rotates on the domain Ω = [−0.5, 0.5]2 in
counterclockwise direction. The same problem has been studied for HDG for dif-
ferent time integrators also in previous works; see, for example, [15, 17]. The flux
functions are

f (w) = (−4x, 4y)T , fv(w,∇w) = ε∇w

with given diffusion constant ε = 10−3. The computation is run until final time
T = π

4 , and Dirichlet boundary conditions are specified everywhere. The solution to
this problem is known, allowing us to compute the error of our method and check for
correct order of convergence. The coarsest grid has N = 8 triangular elements, and
the time step on this grid is Δt = π

16 . We use polynomials of degree P = 2 for the
spatial discretization such that the expect spatial order of convergence is P + 1 = 3.
This shall not affect the order of convergence in time because we consider methods
of order p = 3 at most.

In Fig. 1, we present the errors obtained under uniform refinement. On the left
we show the solution for DIMSIM time integration, and on the right the solution for
DIRK time integrationwith same order of accuracy in time.Weobserve that themeth-
ods retain the correct order of convergence in time. Moreover, the errors produced
are almost identical to the ones obtained from the classical DIRK discretizations.

3.2 Navier–Stokes Equations

As second test case, we consider the compressible Navier–Stokes equations in two
space dimensions. They are also of convection–diffusion type, but the fluxes are
nonlinear functions and it is a system of four equations. This makes it a much more
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Table 1 Values of the Strouhal number Sr and the drag coefficient from the literature

Sr cD

Gopinath [10] 0.1866 1.3406

Henderson [11] — 1.336

Williamson [25] 0.1919 —

Table 2 Values of the Strouhal number Sr and the drag coefficient for DIMSIM1

P = 1 Sr cD

Δt = 1 0.1733 1.2110

Δt = 5 0.0000 0.9723

Δt = 10 0.0000 0.9723

P = 2 Sr cD

Δt = 1 0.1733 1.2164

Δt = 5 0.1222 0.9542

Δt = 10 0.0000 0.9228

P = 3 Sr cD

Δt = 1 0.1733 1.2171

Δt = 5 0.1238 0.9492

Δt = 10 0.0000 0.9181

complicated compared to the first problem. A description of the fluxes can be found
in [22].

We consider the flow around a cylinder at Reynolds number Re = 180 and Mach
numberMa = 0.2. At these flow conditions, vortices shed from the cylinder which is
known asKármán vortex street.We compute the solution on amesh that extends to 20
diameters around the cylinder. The mesh has N = 2916 elements, and it is the same
that has been used in previous publications [15, 26]. The newly implemented time-
stepping schemes are evaluated using three different time step sizes Δt ∈ {1, 5, 10}
and polynomials of degree P ∈ {1, 2, 3}. The flow field is initialized with free stream
conditions. At simulation time around t ≈ 750, the vortex street develops. We look
at the fully evolved vortex street in the interval t ∈ [1,000; 10,000] and compute the
mean drag coefficient cD and the Strouhal number Sr. These can be compared to data
from the literature given in Table 1. The results from our computations are given in
Tables 2, 3 and 4.

The DIMSIM1 fails to obtain an unsteady solution for low polynomial degrees
and/or large time step because it is not accurate enough to catch the time-dependent
features of the solution (seeTable 2).Wehaveobserved similar behavior for time steps
Δt > 10 even for higher order time integrators before [15]. Therefore, it is crucial
to choose a discretization in time that is sufficiently accurate. This may be achieved
by reducing the time step size Δt or by using time integrators of higher accuracy.
Sufficiently small time stepsΔt and large P finally reveal the time-dependent nature
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Table 3 Values of the Strouhal number Sr and the drag coefficient for DIMSIM2

P = 1 Sr cD

Δt = 1 0.1898 1.3455

Δt = 5 0.1849 1.3449

Δt = 10 0.1733 1.3317

P = 2 Sr cD

Δt = 1 0.1898 1.3649

Δt = 5 0.1882 1.3714

Δt = 10 0.1774 1.3401

P = 3 Sr cD

Δt = 1 0.1898 1.3651

Δt = 5 0.1882 1.3727

Δt = 10 0.1774 1.3405

Table 4 Values of the Strouhal number Sr and the drag coefficient for DIMSIM3

P = 1 Sr cD

Δt = 1 0.1898 1.3448

Δt = 5 0.1832 1.3216

Δt = 10 0.1667 1.2803

P = 2 Sr cD

Δt = 1 0.1898 1.3645

Δt = 5 0.1882 1.3377

Δt = 10 0.1708 1.2840

P = 3 Sr cD

Δt = 1 0.1898 1.3649

Δt = 5 0.1882 1.3385

Δt = 10 0.1708 1.2845

of the problem. The obtained values for the mean drag coefficient and the Strouhal
number are still off from the values obtained from literature, but tend to grow for
decreasing Δt and therefore get closer to the reference data.

DIMSIM2 and DIMSIM3 time integrators show much better results even for
large time step sizes. In all cases, the time-dependent behavior of the flow has been
recognized (see Tables 3 and 4). Even for spatial discretizations with P = 1, the
observed Strouhal number is close to the one obtained for P > 1. One sees that for
Δt = 1, the Strouhal number rounded to four significant digits coincides for all P
and both integrators. Even for a fixed larger time step and P > 1, the respective
Strouhal numbers tend to coincide at least for the respective time integrator. This
also means that the results rather depend on the resolution in time than in space. In
the case of Δt < 10 and P > 1, the observed Strouhal numbers are in between the
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Strouhal numbers reported from the literature (see Table 1) and therefore seem to be
reasonable.

The weak dependency of the obtained coefficients on P can also be observed in
the mean drag coefficient. The difference in the values of the coefficient of a given
integrator for two different values of P is much lower than for different time step
sizes. It is interesting to see that for DIMSIM3 for all P and DIMSIM2 for P = 1 the
mean drag coefficient slightly grows with decreasing Δt . However, DIMSIM2 with
P > 1 seems to overpredict the drag coefficient atΔt = 5which drops down to lower
values forΔt = 1. These values are very close to the one obtained by DIMSIM3 and
Δt = 1. In comparison to the mean drag coefficients from literature (see Table 1),
we obtain slightly larger values for Δt = 1. Nevertheless, the values are still in a
reasonable range.

It shows that the values obtained for the drag coefficient and the Strouhal number
are reasonable compared to data from literature if a resolution in space and espe-
cially time is sufficient. In our setting, the DIMSIM2 and DIMSIM3 time integrators
show reasonable results even when used with rather large time step sizes while the
DIMSIM1 time integrator suffers from its low approximation order.

4 Conclusion and Outlook

Wehave presented the application of general linearmethods to anHDGdiscretization
in space. The resulting system of equations is similar to the system one obtains from
classical BDF of DIRK methods. The numerical experiments confirm the expected
order of convergence in time and the plausibility of the results.

Future work will include the evaluation of the performance of DIMSIM time
integrators for HDG schemes. In this setting, time step adaption is crucial in order
to be competitive to other methods. Another interesting topic is the coupling of
implicit–explicit (IMEX) general linear methods with the hybridized discontinuous
Galerkin methods.
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An Invariant-Region-Preserving (IRP)
Limiter to DG Methods for Compressible
Euler Equations

Yi Jiang and Hailiang Liu

Abstract We introduce an explicit invariant-region-preserving limiter applied toDG
methods for compressible Euler equations. The invariant region considered consists
of positivity of density and pressure and a maximum principle of a specific entropy.
Themodified polynomial by the limiter preserves the cell average, lies entirelywithin
the invariant region, and does not destroy the high order of accuracy for smooth
solutions, as long as the cell average stays away from the boundary of the invariant
region. Numerical tests are presented to illustrate the properties of the limiter. In
particular, the tests on Riemann problems show that the limiter helps to damp the
oscillations near discontinuities.

Keywords Gas dynamics · Discontinuous Galerkin method · Invariant region
2010 Mathematics Subject Classification 65M60 · 35L65 · 35L45

1 Introduction

We consider the one-dimensional version of the compressible Euler equations for
the perfect gas in gas dynamics:

wt + F(w)x = 0, t > 0, x ∈ R,

w = (ρ,m, E)�, F(w) = (m, ρu2 + p, (E + p)u)�
(1)

with

m = ρu, E = 1

2
ρu2 + p

γ − 1
, (2)
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where γ > 0 is a constant (γ = 1.4 for the air), ρ is the density, u is the velocity,
m is the momentum, E is the total energy, and p is the pressure; supplemented by

initial data w0(x). For the associated entropy function s = log
(

p(x)
ργ (x)

)
, it is known

that
A = {(ρ,m, E)�, ρ > 0, p > 0, s ≥ s0} (3)

for any s0 ∈ R is an invariant region in the sense that ifw0(x) ∈ A, thenw(x, t) ∈ A
for all t > 0 (see e.g. [3, 10]). At numerical level this set is proved to be invariant by
the first-order Lax–Friedrichs scheme (see [1]), and by the first-order finite element
method (see [2]), in which a larger class of hyperbolic conservation laws is consid-
ered. It is difficult, if not impossible, to preserve such set by a high-order numerical
method unless some nonlinear limiter is imposed at each step while marching in
time. In this work, we design such a limiter.

In recent years, an interesting mathematical literature has developed devoted to
high-order maximum-principle-preserving schemes for scalar conservation equa-
tions (see [13]) and positivity-preserving schemes for hyperbolic systems including
compressible Euler equations (see e.g. [7, 14, 16]). In [7] up to third-order positivity-
preserving finite volume schemes are constructed based on positivity-preserving
properties by the corresponding first-order schemes for both density and pressure of
one- and two-dimensional compressible Euler equations. Following [7], positivity-
preserving high-order DG schemes for compressible Euler equations were first intro-
duced in [14], where the limiter in [13] is generalized. A recent work by Zhang and
Shu in [15] introduced a minimum-entropy-principle-preserving limiter for high-
order schemes to the compressible Euler equation. In their work, the limiter for
entropy part is enforced separately from the ones for the density and pressure and is
given implicitly with the limiter parameter solved by Newton’s iteration.

For the isentropic gas dynamics, the invariant region is bounded by two global
Riemann invariants; for which the authors have designed an explicit limiter in [4] to
preserve the underlying invariant region, called an invariant-region-preserving (IRP)
limiter. Our goals in this work are to design an IRP limiter for the compressible Euler
system (1) and to rigorously prove that such a limiter does not destroy the high-order
accuracy.Our limiter differs from that in [15] in twoaspects: (i) it is given in an explicit
form; (ii) the scaling reconstruction depends on a uniform parameter for the whole
vector solution polynomial; in addition to the rigorous proof of the preservation of the
accuracy by the limiter. As a result, the limiter preserves the positivity of density and
pressure and also a maximum principle for the specific entropy [11], with reduced
computational costs in numerical implementations.
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2 The Limiter

We construct a novel limiter based on both the cell average (strictly in A) and the
high-order polynomial approximation, which is not entirely in A; through a linear
convex combination as in [13, 15].

2.1 Averaging is Contraction

For initial density ρ0 > 0 and pressure p0 > 0, we fix

s0 = inf
x
log

(
p0(x)

ρ
γ

0 (x)

)
, (4)

and define q = (s0 − s)ρ, then the set A is equivalent to the following set:

Σ = {w : ρ > 0, p > 0, q ≤ 0}, (5)

which is convex due to the concavity of p and convexity of q. By using set Σ we
are able to work out an explicit limiter which has the invariant-region-preserving
property. Numerically, the set of admissible states is defined as

Σε = {w : ρ ≥ ε, p ≥ ε, q ≤ 0}, (6)

with its interior denoted by

Σε
0 = {w : ρ > ε, p > ε, q < 0}, (7)

where ε is a small positive number chosen (say as 10−13 in practice) so that q is well
defined.

For any bounded interval I (or bounded domain in multi-dimensional case), we
define the average of w(x) by

w̄ = 1

|I |
∫

I
w(x)dx (8)

where |I | is the measure of I . Such an averaging operator is a contraction:

Lemma 1. Letw(x) be non-trivial piecewise continuous vector functions. Ifw(x) ∈
Σε for all x ∈ I , then w̄ ∈ Σε

0 for any bounded interval I .

Proof. For the entropy part, since q is convex, using Jensen’s inequality and the
assumption, we have
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q(w̄) = q

(
1

|I |
∫

I
w(x)dx

)
≤ 1

|I |
∫

I
q(w(x))dx ≤ 0. (9)

With thiswe can showq(w̄) < 0.Otherwise, ifq(w̄) = 0,wemust haveq(w(x)) = 0
for almost all x ∈ I ; that is

(s0 − s(w̄))ρ̄ = (s0 − s(w(x)))ρ(x). (10)

By taking average of this relation over I on both sides, we have for g1 = sρ,

s0ρ̄ − g1(w̄) = s0ρ̄ − 1

|I |
∫

I
g1(w(x))dx . (11)

This gives
1

|I |
∫

I
g1(w(x))dx = g1(w̄). (12)

By taking the Taylor expansion around w̄, we have

g1(w(x)) = g1(w̄) + �wg1(w̄) · ξ + ξ�H1ξ, ∀x ∈ I, ξ := w(x) − w̄, (13)

which upon integration yields 1
|I |

∫
I ξ T H1ξdx = 0, where H1 is the Hessian matrix

of g1. This when combined with the strict concavity of g1 ensures that w(x) ≡ w̄,
which contradicts the assumption.

We can show p(w̄) > ε by a similar contradiction argument. The density part
with ρ̄ > ε is obvious.

2.2 Reconstruction

Let wh(x) = (ρh(x),mh(x), Eh(x))� be a vector of polynomials of degree k over
an interval I , which is a high-order approximation to the smooth function w(x) =
(ρ(x),m(x), E(x))� ∈ Σε. We assume that the average w̄h ∈ Σε

0 , but wh(x) is not
entirely located in Σε for x ∈ I , then we can use the average as a reference in the
following reconstruction

w̃h(x) = θwh(x) + (1 − θ)w̄h, (14)

where
θ = min{1, θ1, θ2, θ3}, (15)

with

θ1 = ρ̄h − ε

ρ̄h − ρh,min
, θ2 = p(w̄h) − ε

p(w̄h) − ph,min
, θ3 = −q(w̄h)

qh,max − q(w̄h)
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and

ρh,min = min
x∈I ρh(x), ph,min = min

x∈I p(wh(x)), qh,max = max
x∈I q(wh(x)). (16)

Note that p(w̄h) > ph,min andq(w̄h) < qh,max due to the concavity of p and convexity
of q. Therefore θ ′

i s are well defined and positive, for i = 1, 2, 3. We can prove that
this reconstruction has three desired properties, summarized in the following.

Theorem 1. The reconstructed polynomial w̃h(x) satisfies the following three prop-
erties:

(i) the average is preserved, i.e., w̄h = ¯̃wh;
(ii) w̃h(x) lies entirely within invariant region Σε,∀x ∈ I ;
(iii) order of accuracy is maintained, i.e., ‖w̃h − w‖∞ ≤ C‖wh − w‖∞, provided

‖wh − w‖∞ is sufficient small, where C is a positive constant that only depends
on w̄h,w, and the invariant region Σε.

Proof. (i) Since 0 < θ ≤ 1 is a uniform constant, average preservation is obvious.
(ii) If ρh,min ≥ ε, ph,min ≥ ε, and qh,max ≤ 0, then θ = 1, no reconstruction is needed.
When θ = θ1, we have

ρ̃h(x) =θ1ρh(x) + (1 − θ1)ρ̄h

=(ρ̄h − ε)
ρh(x) − ρh,min

ρ̄h − ρh,min
+ ε ≥ ε.

(17)

Since θ1 ≤ θ2, we have (p(w̄h) − ph,min)θ1 + ε ≤ p(w̄h). Therefore, by the concav-
ity of p, we have

p(w̃h) ≥θ1 p(wh) + (1 − θ1)p(w̄h)

=θ1(p(wh) − p(w̄h)) + p(w̄h)

≥θ1(p(wh) − p(w̄h)) + (p(w̄h) − ph,min)θ1 + ε

=θ1(p(wh) − ph,min) + ε ≥ ε.

(18)

For entropy part, since θ1 ≤ θ3, we have θ1(qh,max − q(w̄h)) ≤ −q(w̄h). Therefore,
by the convexity of q, we have

q(w̃h) <θ1q(wh) + (1 − θ1)q(w̄h)

=θ1(q(wh) − q(w̄h)) + q(w̄h)

≤θ1(qh,max − q(w̄h)) + q(w̄h) ≤ 0.

(19)

In the case that θ = θ2 or θ3 the proof is similar.
(iii) We prove for the case θ = θ2, the other cases are similar. In such case, we only
need to prove

‖w̃h − wh‖∞ ≤ C‖wh − w‖∞, (20)
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from which (iii) follows by using the triangle inequality. Here and in what follows
‖ · ‖∞ := maxx∈I | · |. We prove (20) in four steps.

Step 1. From (14) it follows that

‖w̃h − wh‖∞ =(1 − θ2)‖w̄h − wh‖∞

=
max
x∈I |w̄h − wh(x)|
p(w̄h) − ph,min

(ε − ph,min).
(21)

Step 2. The overshoot estimate. Since w(x) ∈ Σε,

ε − ph,min ≤ max
x

(p(w) − p(wh)) ≤ C1‖w − wh‖∞, C1 := ‖�p‖∞. (22)

Step 3. We map I to [0, 1] by ξ = (x − a)/(b − a) for I = [a, b], and let lα(ξ)

(α = 1, · · · , N ) be the Lagrange interpolating polynomials at quadrature points ξ̂ α ∈
[0, 1] with N = k + 1, then wh(x) − w̄h = ∑N

α=1(wh(x̂α) − w̄h)lα(ξ), where x̂α =
a + (b − a)ξ̂ α . Hence, we have

max
x∈I |w̄h − wh(x)| ≤ max

ξ∈[0,1]

N∑
α=1

|lα(ξ)||w̄h − wh(x̂
α)|

≤C2 max
α

|w̄h − wh(x̂
α)|,

(23)

where C2 = Λk+1([0, 1]) .= max
ξ∈[0,1]

N∑
α=1

|lα(ξ)| is the Lebesgue constant. Note that

max
α

|w̄h − wh(x̂α)| ≤ max
α

|ρ̄h − ρh(x̂α)| + max
α

|m̄h − mh(x̂α)| + max
α

|Ēh − Eh(x̂α)|.
(24)

Define
f̂h,min

.= min
α

f (wh(x̂
α)), f̂h,max

.= max
α

f (wh(x̂
α)), (25)

we can show that

max
α

| f̄h − fh(x̂
α))| ≤ max{ f̄h − f̂h,min, f̂h,max − f̄h} ≤ C3( f̄h − f̂h,min), (26)

where

C3 = max

⎧⎨
⎩1,

1 − min
α

ŵα

min
α

ŵα

⎫⎬
⎭ . (27)

Here fh = ρh,mh, Eh . The type of estimates using C2 and C3 is known, see [12,
Lemma 7, Appendix C], where the proof was accredited to Mark Ainsworth.

Step 4. The above three steps lead to
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‖w̃h − wh‖∞ ≤ C1C2C3
B

p(w̄h) − ph,min
‖w − wh‖∞, (28)

with
B = ρ̄h − ρ̂h,min + m̄h − m̂h,min + Ēh − Êh,min. (29)

On one hand, we have ph,min ≤ ε since θ = θ2 ≤ 1, leading to

p(w̄h) − ph,min ≥ p(w̄h) − ε; (30)

On the other hand the assumption θ = θ2 ≤ θ1 implies

ρ̄h − ρ̂h,min ≤
(

ρ̄h − ε

p(w̄h) − ε

)
· (

p(w̄h) − ph,min
)
. (31)

By the assumption on the smallness of ‖wh − w‖∞ we have

m̄h − m̂h,min ≤ 2‖m − mh‖∞ + m̄ − mmin (32)

and
Ēh − Êh,min ≤ Ē + 1. (33)

where E ≥ ε
γ−1 is used. Collecting the above estimates we take

C4 = ρ̄h − ε + 2‖m − mh‖∞ + m̄ − mmin + Ē + 1

p(w̄h) − ε
(34)

to conclude the desired estimate in (iii) with C = Π4
i=1Ci .

2.3 Algorithm

Let wn
h be the numerical solution generated from a high-order scheme of an abstract

form
wn+1

h = L (wn
h), (35)

where wn
h = wn

h(x) ∈ Vh , which is a finite element space of piecewise polynomials
of degree k over each computational cell I . Assume λ = Δt

h is the mesh ratio, where
h is the characteristic length of the mesh size.

Provided that scheme (35) has the following property: there exists λ0, and a test
set SI in each computational cell I such that if

λ ≤ λ0 and wn
h ∈ Σε, x ∈ SI (36)
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then
w̄n+1

h ∈ Σε
0 , (37)

then the IRP limiter can be applied with I replaced by SI in (16), i.e.,

ρh,min = min
x∈SI

ρh(x), ph,min = min
x∈SI

p(wh(x)), qh,max = max
x∈SI

q(wh(x)). (38)

Our algorithm is given as follows:
Step 1. Initialization: take the piecewise L2 projection of w0 onto Vh , such that

∫

I
(w0

h(x) − w0(x))φ(x)dx = 0, ∀φ ∈ Vh . (39)

Also from w0, we compute s0 as defined in (4) to determine the invariant region Σε.
Step 2. Impose the modified limiter (14), (15) with (38) on wn

h for n = 0, 1, · · · .
Step 3. Update by the scheme:

wn+1
h = L (w̃n

h). (40)

Return to Step 2.

Remark 1. Indeed the limiter (14), (15) with (38) can well enhance the efficiency
of computation, and we will use this modified IRP limiter in the numerical experi-
ments. Note that with (38), (i) and (iii) in Theorem 1 remain valid, and the resulting
reconstructed polynomial lies within invariant region Σε only for x ∈ SI .

Remark 2. Notice that Lemma 1 ensures that w̄0
h lies strictly within Σε

0 ; therefore,
the limiter is valid already at the initialization step.

Remark 3. Some sufficient conditions for (36) to ensure the cell average propagation
property (37) for the DG method have been obtained for one-dimensional case [14],
as well as for rectangular meshes [14, 15] and triangular meshes ([16]) in two-
dimensional cases. For example, the test set SI and the CFL condition given in [14,
Theorem 2.1] is

SI = {x̂α, α = 1, · · · , N }, (41)

which is a set of N -point LegendreGauss–Lobatto quadrature on I with 2N − 3 ≥ k,
and

λ‖(|u| + c)‖∞ ≤ 1

2
ŵ1, (42)

where ŵ1 is the first Legendre Gauss–Lobatto quadrature weights for the interval
[− 1

2 ,
1
2 ] such that

∑N
α ŵα = 1.
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3 Numerical Tests

We present numerical tests for the IRP limiter applied to a general high-order DG
scheme with the Lax–Friedrich numerical flux, using a proper time discretization.
The semi-discrete DG scheme we take is a closed ODE system of the form

d

dt
W = L(W), (43)

whereW consists of the unknown coefficients of the numerical solution in terms of
the spatial basis, and L is the corresponding spatial operator.

We consider the following two types of time discretizations.

• The third-order SSP Runge–Kutta (RK3) method in [9] reads as

W(1) =Wn + Δt L(Wn)

W(2) =3

4
Wn + 1

4
W(1) + 1

4
Δt L

(
W(1)

)

Wn+1 =1

3
Wn + 2

3
W(2) + 2

3
Δt L

(
W(2)

)
.

(44)

• The third-order SSP multi-stage (MS) method in [8] reads as

Wn+1 = 16

27
(Wn + 3Δt L(Wn)) + 11

27

(
Wn−3 + 12

11
Δt L(Wn−3

)
. (45)

We apply the limiter at each time stage or each time step.

Remark 4. In the implementation of the third-order SSPmulti-stepmethod,we apply
SSP RK3 method in the first three-time evolutions to obtain the starting values.

In all of the following examples γ = 1.4 is taken.

Example 1. Accuracy Test
We first test the accuracy of the IRP DG scheme. The initial condition is

ρ0(x) = 1 + 1

2
sin(2πx), u0(x) = 1, p0(x) = 1. (46)

The domain is [0, 1] and the boundary condition is periodic. The exact solution is

ρ(x, y, t) = 1 + 1

2
sin(2π(x − t)), u(x, t) = 1, p(x, t) = 1. (47)

The results presented in Tables 1 and 2 show that using IRP limiter does not destroy
high-order accuracy.
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Table 1 Numerical accuracy study of the p2 DG method

P2 DG SSP RK SSP multi-step

N L∞Error Order L1Error Order L∞Error Order L1Error Order

8 5.43E-04 / 5.77E-04 / 5.35E-04 / 5.70E-04 /

16 8.98E-05 2.60 8.55E-05 2.75 8.89E-05 2.59 8.53E-05 2.74

32 1.04E-05 3.11 1.09E-05 2.98 1.03E-05 3.11 1.08E-05 2.99

64 1.33E-06 2.97 1.40E-06 2.95 1.34E-06 2.94 1.39E-06 2.95

128 1.67E-07 2.99 1.75E-07 3.00 1.75E-07 2.94 1.76E-07 2.98

Table 2 Numerical accuracy study of the p3 DG method

P3 DG SSP RK SSP multi-step

N L∞Error Order L1Error Order L∞Error Order L1Error Order

8 1.44E-05 / 1.09E-05 / 1.42E-05 / 1.08E-05 /

16 1.39E-06 3.37 7.23E-07 3.92 1.37E-06 3.37 7.07E-07 3.94

32 7.06E-08 4.30 6.14E-08 3.56 6.93E-08 4.31 5.99E-08 3.56

64 6.34E-09 3.48 3.18E-09 4.27 6.21E-09 3.48 3.03E-09 4.30

128 3.50E-10 4.18 2.12E-10 3.91 3.30E-10 4.23 1.97E-10 3.94

In the following examples, we solve (1) subject to several different Riemann initial
data. We compare the numerical solution obtained from the DG scheme with IRP
limiter (14), (15) with (38) and the one obtained from the DG scheme with only
positivity-preserving limiter, that is, using θ = min{1, θ1, θ2}, where θ1 and θ2 are
defined as in (15).

Example 2. Lax Shock Tube Problem
Consider the Lax initial data:

(ρ,m, E) =
{

(0.445, 0.311, 8.928), x < 0,

(0.5, 0, 1.4275), x > 0,
(48)

which induces a composite wave, a rarefaction wave followed by a contact disconti-
nuity and then by a shock. We calculate the exact solution by following the formulas
given in [6, Sect. 14.11]. The P2-DG scheme with SSP RK3 method in time dis-
cretization is tested on N = 100 cells over x ∈ [−2, 2] at final time T = 0.5. From
Fig. 1, we see that the IRP limiter helps to damp oscillations near the discontinuities.

Example 3. Shu–Osher Shock Tube Problem
Consider the Shu–Osher problem:

(ρ, u, p) =
{

(3.857143, 2.629369, 10.3333), x < −4,

(1 + 0.2 sin 5x, 0, 1), x ≥ −4.
(49)
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Fig. 1 Lax shock tube problem. Exact solution (solid line) versus numerical solution (dots); Top:
with positive-preserving limiter; Bottom: with IRP limiter
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Fig. 2 Shu–Osher problem. Exact solution (solid line) versus numerical solution (dots); Left: with
positive-preserving limiter; Right: with IRP limiter
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The P2-DG scheme with SSP RK3 method in time discretization is tested on N =
100 cells over x ∈ [−5, 5] at final time T = 1.8. The reference solution is obtained
from P2-DGschemewithSSPRK3methodon N = 2560 cells. The results presented
in Fig. 2 show that the shock is captured well.

4 Conclusion and Future Work

In this work, we introduced a novel IRP limiter for the one-dimensional compressible
Euler equations. The limiter is made so that the reconstructed polynomial preserves
the cell average, lies entirely within the invariant region, and does not destroy the
original high-order of accuracy for smooth solutions.Moreover, this limiter is explicit
and easy for computer implementation. Let us point out that the IRP limiter (14) may
be applied to multi-dimensional compressible Euler equations as well if we replace
I in (16) by multi-dimensional cells or test set in each cell. Implementation details
are in a forthcoming paper [5]. Future work would be to investigate IRP limiters for
more general hyperbolic systems or specific systems in important applications.

Acknowledgements This work was supported in part by the National Science Foundation under
Grant DMS1312636 and by NSF Grant RNMS (KI-Net) 1107291.
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β-Schemes with Source Terms
and the Convergence Analysis

Nan Jiang

Abstract The schemes concerned in this study are non-homogeneousβ-schemes for
m = 2. The homogeneous counterparts (HCPs) of the schemes were constructed by
Osher and Chakravarthy (J Oscil Theory Comput Methods Compens Compact 229–
274, 1986, [8]).Theentire familiesofβ-schemesaredefined for0 < β ≤ (m

(2m
m

)
)(−1),

where m is an integer between 2 and 8. These schemes are 2m − 1 order accurate,
variation diminishing, 2m + 1 point bandwidth, conservative approximations to the
conservation laws. Although the numerical results have been shown to be very effec-
tive (Osher and Chakravarthy in J Oscil Theory Comput Methods Compens Com-
pact 229–274, 1986, [8], Osher and Chakravarthy in SIAM J Numer Anal 21:955–
984 1984, [7]), the entropy convergence of these schemes has been open. The goal of
this paper is to show that, when m = 2, β-schemes with source terms indeed persist
entropy consistency for non-homogeneous scalar convex conservation laws by using
author’s recent result on extended Yang’s wave tracing theory (Jiang in On wave-
wise entropy inequalities for high-resolution schemes with source terms II: the fully-
discrete case, submitted, [4], Yang in SIAM J Numer Anal 36(1):1–31, 1999, [10]).
The entropy convergence of the HCPs of these schemeswas established by the author
(Jiang in Int J Numer Anal Model 14(1):103–125, 2017, [6]).

Keywords β-schemes with source terms · Entropy convergence · Conservation
laws

1 Introduction

We consider numerical approximations to the scalar conservation laws
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{
ut + f (u)x = q(u),

u(x, 0) = u0(x),
(1)

where f ∈ C1(R), q ∈ C1(R), and u0 ∈ BV (R). Here, BV stands for the subspace
of L1

loc consisting of functions with bounded total variation. For the numerical meth-
ods concerned, let λ = τ

h be fixed, where h and τ are spatial and temporal steps,
respectively, and unk = u(xk, tn) be the nodal values of the piecewise constant mesh
function uh(x, t) approximating the solution of (1). In this study, numerical schemes
admit the conservative form

un+1
k = H(unk−p, · · · , unk+p;λ) = unk − λ(gnk+1/2 − gnk−1/2) + τq(unk ), (2)

where the numerical flux g is given by gnk+1/2 = gk+1/2[unk ], and

gk+1/2[v] = g(vk−p+1, vk−p+2, · · · , vk, · · · , vk+p), (3)

for any data {v j }. The function g is Lipschitz continuous with respect to its 2p
arguments and is consistent with the conservation law in the sense that

g(u, u, · · · , u) ≡ f (u). (4)

In particular, the schemes that we will focus on are special cases of non-
homogeneous β-schemes whenm = 2. The HCPs of these schemes were introduced
by Osher and Chakravarthy [8] in the 1980s. 1980s is very productive and influential
era in terms of analysis and design of numerical methods in order to solve hyperbolic
conservation laws. For instance, the emerging of the higher order flux limitermethods
was from the necessity in balance of the weakness of the first-order (although conver-
gent) schemes and the oscillations of the higher order ones. Some other approaches
based onwell-understood design principleswere entailed byENOandWENO,which
when combinedwith SSPmethods are truly effective that can achieve uniformly high-
order accuracy for systems and multi-dimensional cases. The methods invented in
the 1980s are still relevant in recently developed state-of-the-art schemes. They are
often embedded in or partial steps of today’smodern schemes. For example, they have
been integrated into the design and implementation of uniformly high-order bound-
preserving [9, 11] as well as entropy stable (ECENO) schemes [2].

The paper is organized as follows. In the remaining part of this section, we review
the notions of the extremum paths, extremum traceability of a scheme, and then we
establish the sufficient conditions for the extremum traceableness of the schemes,
which is necessary for analyzing the entropy convergence of the schemes. In Sect. 2,
we present one of the extended Yang’s [4] convergence criteria, an important entropy
estimate, and finally the main result.

First, we introduce the non-homogeneous β-schemes for the case of m = 2.
Throughout the paper, to improve the readability, we use the shorthand notations of
f nk := f (unk ), Δunk±1/2 = ±(unk±1 − unk ), and f nk±1/2 := Δ f nk±1/2 = ±( f nk±1 − f nk ).
Also, whenever there is no ambiguity in the context, we employ the simplified nota-
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tions: uk := un+1
k , uk := unk , fk := f nk , and f ±

k±1/2 := ( f nk±1/2)
±, where k and n are

the spatial and temporal indexes, respectively. Let gE
k+1/2 := gE (unk , u

n
k+1) be the flux

of an E-scheme [7] that is characterized by the inequality: sgn ( unk+1 − unk )[gE
k+1/2 −

f (u) ] ≤ 0, for all u in between unk and unk+1. Then, the flux differences are defined
by

f +
k+1/2 = fk+1 − gE

k+1/2, and f −
k+1/2 = gE

k+1/2 − fk . (5)

At the time level t = tn , for all k, we define a series of local CFL numbers

ν+
k+1/2 = λ f +

k+1/2/Δuk+1/2, and ν−
k+1/2 = λ f −

k+1/2/Δuk+1/2. (6)

Clearly, we have ν+
k+1/2 ≥ 0 and ν−

k+1/2 ≤ 0. For convenience, we also set

r+
k = f +

k−1/2/ f
+
k+1/2, and r−

k = f −
k+1/2/ f

−
k−1/2. (7)

The operator “minmod,” or “mm” in short, is defined by

minmod(x, y) = mm(x, y) =

⎧
⎪⎨

⎪⎩

x, if |x | ≤ |y| and xy > 0,

y, if |x | > |y| and xy > 0,

0, if xy ≤ 0,

(8)

which can be converted to, divided by x , a monotone-increasing function

φ(r) = max(0,min(1, r)) =

⎧
⎪⎨

⎪⎩

1, if r ≥ 1,

r, if 0 ≤ r ≤ 1,

0, if r ≤ 0,

(9)

with r = y/x . Clearly,φ(r)has a symmetry propertyφ(r)/r = φ(1/r),which is very
helpful to rewrite a β-scheme into an increment form. The operator of “minmod” of
three quantities is defined by

minmod[ x, y, z ] = minmod[minmod[ x, y ], z ],

which is independent of the order of x, y, and z. Now, for m = 2 and 0 < β ≤ 1
12 , a

β-scheme with a source term (see [8] for the HCP) is given by

uk = uk − λ ( gk+1/2 − gk−1/2 ) + τq(uk), (10)

where
gk+1/2 = gE

k+1/2 − (1/12 + β)( f −
k+3/2)

(1) − (1/2 − 2β)( f −
k+1/2)

(0)

+(1/12 − β)( f −
k−1/2)

(−1) − (1/12 − β)( f +
k+3/2)

(1)

+(1/2 − 2β)( f +
k+1/2)

(0) + (1/12 + β)( f +
k−1/2)

(−1). (11)
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The superscripts shown over the f ± denote flux limited values of f ± and are com-
puted as follows:

( f −
k+3/2)

(1) = mm [ f −
k+3/2, b f −

k+1/2] = φ(r−
k+1/b) b f −

k+1/2 (12)

( f −
k+1/2)

(0) = mm [ f −
k+1/2, b f −

k+3/2] = φ(b r−
k+1) f −

k+1/2 (13)

( f −
k−1/2)

(−1) = mm [ f −
k−1/2, b f −

k+1/2, b f −
k+3/2]

= mm [1/br−
k ,φ(r−

k+1)] b f −
k+1/2 = mm [φ(1/b r−

k ), r−
k+1] b f −

k+1/2 (14)

( f +
k+3/2)

(1) = mm [ f +
k+3/2, b f +

k+1/2, b f +
k−1/2]

= mm [φ(1/b r+
k+1), r

+
k ] b f +

k+1/2 = mm [1/b r+
k+1,φ(r+

k )] b f +
k+1/2 (15)

( f +
k+1/2)

(0) = mm [ f +
k+1/2, b f +

k−1/2] = φ(b r+
k ) f +

k+1/2 (16)

( f +
k−1/2)

(−1) = mm [ f +
k−1/2, b f +

k+1/2] = φ(r+
k /b) b f +

k+1/2 (17)

In the above, b is a “compression” parameter chosen in the range

1 < b ≤ 3 + 12β.

We shall assume for the remainder of the paper that the local CFL numbers satisfy
|Δν±

k+1/2| ≤ 1 for all k ∈ Z, f ′′ ≥ 0 and q ′ ≥ 0. Also, we rewrite the schemes (10)–
(11) in an increment form (18)–(20) below, which provides a convenient way of
checking extremum traceability property of the schemes [6]. We recall that, by Yang
[10], an extremum traceable scheme is total variation diminishing (TVD).

uk = H(unk−p, · · · , unk+p;λ) = uk − Ck−1/2Δuk−1/2 + Dk+1/2Δuk+1/2 + τq(uk),
(18)

with Ck−1/2 and Dk+1/2 given, respectively, by

Ck−1/2 = ν+
k−1/2[ −(1/12 − β)b mm [1/r+

k φ(1/r+
k+1), 1] + (1/2 − 2β)b φ(1/b r+

k )

+ (1/12 + β)φ(b/r+
k ) + 1 + (1/12 − β)b mm [1/b r+

k ,φ(r+
k−1)]

− (1/2 − 2β)φ(b r+
k−1) − (1/12 + β)b φ(r+

k−1/b) ], (19)

Dk+1/2 = −ν−
k+1/2[ 1 − (1/12 + β)b φ(r−

k+1/b) − (1/2 − 2β)φ(b r−
k+1)

+ (1/12 − β)b mm [1/b r−
k ,φ(r−

k+1)] + (1/12 + β)φ(b/r−
k )

+ (1/2 − 2β)b φ(1/b r−
k ) − (1/12 − β)bmm [1/r−

k φ(1/b r−
k−1), 1] ].

(20)

For convenience, let Υ be the set of all sequences of numbers in (0, 1) with zero
limit. We use a letter with hat to represent the sequences in Υ and use the same letter
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with subscripts to represent the terms in such a sequence. For ε̂ ∈ Υ , i.e., ε̂ = {εl}∞l=0
and liml→∞ εl = 0, if uk is generated by the scheme

uk = Hε(u
n
k−p, · · · , unk+p; λ) = uk − Ck−1/2Δuk−1/2 + Dk+1/2Δuk+1/2 + εlτq(uk ),

(21)

then we call (21) the ε̂-scaled form of the scheme (18)–(20). The HCP of (18)–(20)
is given by

uk = H̄(unk−p, · · · , unk+p;λ) = uk − Ck−1/2Δuk−1/2 + Dk+1/2Δuk+1/2. (22)

The notions of Yang’s extremum paths [10] are very important concepts, which
were introduced byYang in order to track the extremaof the numerical solutions in the
computational domain. The definitions of extremum paths and extremum traceability
of a scheme are relevant, and they are stated here so that the paper is reasonably self-
contained. Also, we will give sufficient conditions that guarantee an ε̂-scaled form
(21) to be extremum traceable. Throughout the paper, we refer to [4–6, 10] for the
definitions, lemmas, and theorems that we have quoted in the context.

Let a numerical solution u be defined on the set of grid points X := {(x j , tn) :
j ∈ Z, n ∈ Z

+}. A finite set of successive grid points {xq , · · · , xr } with r ≥ q is
said to be the stencil of a spatial maximum or simply an E-stencil of u at the time
tn , provided unq = · · · = unr , u

n
q−1 < unq and unr+1 < unr . Notions of E-stencils for

minima and E-stencils for general extrema are defined similarly.

Definition 1 (Definition 2.13 [10]).Anon-empty subset of X denoted by Etn ,tm , n ≤
m is called a ridge of the numerical solution u from tn to tm if

(i) For all ν, n ≤ ν ≤ m, the set

PE (ν) := {x j : (x j , tν) ∈ Etn ,tm } = {xqν , · · · , xrν }

is not empty and is an E-stencil of u at tν .
(ii) For all ν, n ≤ ν ≤ m − 1,

PE (ν) ∪ PE (ν + 1) = {x j : min(qν, qν+1) ≤ j ≤ max(rν, rν+1)}.

The set PE (ν) is called the x-projection of Etn ,tm at tν . The value of u along the
ridge is denoted by VE (ν) : VE (ν) = uν

j for q
ν ≤ j ≤ rν .

If, for all ν, n ≤ ν ≤ m, the E-stencil in the item (i) of the definition is replaced
by an E-stencil, then the set is called a trough of u from tn to tm and is denoted
by Etn ,tm . The related notions PE (ν) and VE (ν) are defined similarly. Ridges and
troughs are also called extremum paths. When we do not distinguish between ridges
and troughs, we use Etn ,tm , PE (ν), and VE (ν) for either type. We write

E1
tn ,tm < (≤)E2

tn ,tm , if max PE1(ν) < (≤)max PE2(ν) for n ≤ ν ≤ m.
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Definition 2 (Definition 2.14 [10]). A scheme is said to be extremum traceable if
there exists a constant c ≥ 1 such that for each numerical solution u of the scheme
and each integer N > 0, there exists a finite or infinite collection of extremum paths
{El

t0,tN }l2l=l1
with the following properties:

(i) {PEl (N )}l2l=l1
is precisely the set of E-stencils of unj at the time tN arranged in

ascending spatial coordinates.
(ii) If El

t0,tN is a ridge (trough), then VEl (n) is a non-increasing (non-decreasing)
function of n.

(iii) Let PEl (n) = {xql (n), · · · , xrl (n)} for 1 ≤ n ≤ N . If PEl (n) ∩ PEl (n + 1) = ∅,
then

| unql (n+1) − unrl (n)
| ≤ c | VEl (n + 1) − VEl (n) | when ql(n + 1) > rl(n),

| unrl (n+1) − unql (n)
| ≤ c | VEl (n + 1) − VEl (n) | when ql(n) > rl(n + 1).

(iv) If l2 > l1, then El
t0,tN < El+1

t0,tN for l1 ≤ l ≤ l2 − 1.

Following the proof of Theorem 2.3 [5], we can easily obtain the sufficient con-
ditions for the ε̂-scaled form (21) to be extremum traceable.

Theorem 1. The sufficient conditions for the ε̂-scales form (21) to be extremum
traceable are, for sufficiently small ε and εl < ε, the following inequalities:

0 ≤ Ck+1/2, 0 ≤ Dk+1/2, 0 ≤ Ck+1/2 + Dk+1/2 ≤ 1, for all k (23)

hold and there is a positive constant μ such that, if uk is a space extremum, then

max {Ck±1/2,Ck±3/2, Dk±1/2, Dk+3/2} ≤ μ/4 < 1/4, (24)

where Ck+1/2 and Dk+1/2 are given by (19)-(20).

To recast Theorem 1 in terms of the local CFL numbers, we consider a subclass
of E-fluxes:

gE(x, y) =
{
f (x) if s ≤ x ≤ y,
f (y) if x ≤ y ≤ s,

(25)

where s is a sonic point of f (·) ( f ′(s) = 0). It is clear that both Godunov [3] and
Engquist–Osher [1] fluxes:

gGod(u j , u j+1) =
{
minu j≤w≤u j+1 f (w) when u j ≤ u j+1,

maxu j≥w≥u j+1 f (w) when u j ≥ u j+1,
(26)

gEO(u j , u j+1) =
∫ u j

0
max( f ′(w), 0)dw +

∫ u j+1

0
min( f ′(w), 0)dw + f (0),

(27)
are members of the fluxes defined by (25).
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Lemma 1. (See Lemma 2.5 [6] for the result of HCPs). An ε̂-scaled form (21),
with the building block given by the member of (25) and εl < ε for sufficiently small
ε, is extremum traceable provided that for all k: ν+

k+1/2 − ν−
k+1/2 ≤ 1/3 and when uk

is an extremum, λmaxuk−2≤w≤uk+2 | f ′(w) | ≤ 1
10 .

2 The Convergence of β-Schemes with Source Terms

The following separation property is necessary to apply the extended convergence
criterion. Lemma 2 verifies that non-homogeneous β-schemes satisfy this separation
property. The proof of Lemma 2, which does not involve the source terms, is the
same as that of Lemma 3.2 [6] for the HCPs of (10)–(11).

Assumption 2. The numerical fluxes gnk+1/2, −∞ < k < ∞ satisfy

gnk+1/2 ≥ f (unk ) ≥ gnk−1/2 if unk ≥ unk±1; gnk+1/2 ≤ f (unk ) ≤ gnk−1/2 if unk ≤ unk±1.

Lemma 2. The schemes (10)–(11), hence (18)–(20), satisfy Assumption 2.

Let f [w; L , R] be the linear function interpolating f (w) at w = L and w = R.
In reference to (21), we denote ṽ j = Hε(v j−p, · · · , v j+p;λ) and v̄ j = v j+ṽ j

2 for any
collection of data {v j }. Recall the HCPs (22) of the ε̂-scaled form (21) are TVD [8].

Definition 3 (SeeDefinition 2.20 [10] for theHCPs).For an ε̂-scaled form (21), we
call an ordered pair of numbers {L , R} a rarefying pair if L < R and f [w; L , R] >

f (w) when L < w < R. We call a collection of data Γ = {v j }J+p
j=I−p an ε-rarefying

collection of the ε̂-scaled form (21) to the rarefying pair {L , R} if, for ε > 0,

(i) L = vI ≤ vI+1 ≤ · · · ≤ vJ = R;
(ii) ṽI ≤ ṽI+1 ≤ · · · ≤ ṽJ , |L − ṽI | < ε, |R − ṽJ | < ε;
(iii) Either vI−1 ≥ vI or vI = vI+1 and either vJ+1 ≤ vJ or vJ−1 = vJ .

Clearly, the conditions of (i) and (ii) imply that

v̄I ≤ v̄I+1 ≤ · · · ≤ v̄J , |L − v̄I | < ε/2, and |R − v̄J | < ε/2.

We define the piecewise constant function gΓ associated with the ε-rarefying collec-
tion Γ of an ε̂-scaled form (21) as follows:

gΓ (w) = g j+1/2[v] for w ∈ (v̄ j , v̄ j+1), I ≤ j ≤ J − 1. (28)

Definition 4. An ε-rarefying collection Γ = {v j }J+2
j=I−2 of the ε̂-scaled form (21) to

the pair {L , R} is called an ε-normal collection, provided that

L = vI−2 = vI−1 = vI = vI+1 ≤ · · · ≤ vJ−1 = vJ = vJ+1 = vJ+2 = R. (29)
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Theorem 3 (See Theorem 2.21 [10] , Theorem 3.22 [4]). A scheme (10)–(11),
hence (18)–(20), with extremum traceable ε̂-scaled form (21) converges for convex
conservation laws (1) if, for every rarefying pair {L , R} and ε-rarefying collection
of the ε̂-scaled form (21) to the pair, the quadrature inequality

∫ R

L
f [w; L , R] dw −

∫ v̄J

v̄I

gΓ (w) dw > δ (30)

holds for some constant δ > 0, provided that ε is sufficiently small.

For theβ-schemes concerned in this study, the condition of ε-rarefying collections
in Theorem 3 can be weakened by ε-normal collections.

Lemma 3. A scheme (10)–(11), hence (18)–(20), with extremum traceable ε̂-scaled
form (21) converges for convex conservation laws (1) if for each rarefying pair
{L , R} there is a constant δ > 0 such that the inequality (30) holds for all ε-normal
collections of the ε̂-scaled form (21) to the pair {L , R}.
Proof. Let Λ = {κP−2, · · · ,κQ+2} be an arbitrary ε-rarefying collection of the ε̂-
scaled form (21) to the pair {L , R}. Without loss of generality, we assume that
|εlτq| < ε for all l. Let

S′ =
∫ κ̄Q

κ̄P

gΛ(w) dw =
Q−1∑

j=P

(κ̄ j+1 − κ̄ j ) g j+1/2[κ]. (31)

by (i) and (iii) of Definition 3, and either κP or κP+1 is a minimum. In either case,
Assumption 2 and the condition (ii) of Definition 3 imply that

ε > |L − κ̃P | = |κ̃P − κP |
≥ λ|gP+1/2[κ] − gP−1/2[κ]| − |εlτq| ≥ λ|gP±1/2[κ] − f (L)| − |εlτq|,

or
λ|gP±1/2[κ] − f (L)| ≤ ε + |εlτq| < 2ε. (32)

Similarly, we have

ε > |R − κ̃Q | ≥ λ|gQ±1/2[κ] − f (R)| − |εlτq|,

or
λ|gQ±1/2[κ] − f (R)| ≤ ε + |εlτq| < 2ε. (33)
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Next,we construct an ε-normal collectionΓ = {v j }J+2
j=I−2 as follows. First, let I = P −

1 and J = Q + 1 and we also set vI−2 = vI−1 = vI = L , vJ = vJ+1 = vJ+2 = R,
and v j = κ j for I + 1 ≤ j ≤ J − 1. Then, we have

gI±1/2[v] = f (L), gJ±1/2[v] = f (R), ṽI = L + εlτq(L), and ṽJ = R + εlτq(R). (34)

Thus, the ε-normality of Γ = {v j }J+2
j=I−2 is justified by the non-decreasing relation of

ṽI ≤ ṽI+1 ≤ · · · ≤ ṽJ .

Indeed, we notice that the relationship of ṽI+3 ≤ ṽI+4 ≤ · · · ≤ ṽJ−4 ≤ ṽJ−3 is
directly inherited from the condition (ii) of the given ε-rarefying collection of Λ

κ̃P+2 ≤ κ̃P+3 ≤ · · · ≤ κ̃Q−3 ≤ κ̃Q−2.

Also, using the definition of the numerical flux, we can verify that ( f −
P−1/2)

(−1) = 0,
( f +

P+3/2)
(1) = 0, ( f +

P+1/2)
(0) = 0, and ( f +

P−1/2)
(−1) = 0, which imply that gP+1/2 =

gI+3/2.Likewise, ( f
−
Q+1/2)

(1) = 0, ( f −
Q−1/2)

(0) = 0, ( f −
Q−3/2)

(−1) = 0, and ( f +
Q+1/2)

(1)

= 0 imply that gQ−1/2 = gJ−3/2. Thus, we have ṽI+2 = κ̃P+1 and ṽJ−2 = κ̃Q−1 as
well. Therefore, we only need to verify that

ṽI ≤ ṽI+1 ≤ ṽI+2 and ṽJ−2 ≤ ṽJ−1 ≤ ṽJ .

We will show that ṽI ≤ ṽI+1 and ṽI+1 ≤ ṽI+2. The proof of ṽJ−2 ≤ ṽJ−1 ≤ ṽJ is
similar, andwe omit the details. Notice that the following estimate is the consequence
of the definition of Γ and the Assumption 2

ṽI+1 = vI+1 − λ(gI+3/2 − gI+1/2) + εlτq(vI+1) = vI+1 − λ(gI+3/2 − f (L)) + εlτq(vI+1)

≥ vI+1 + εlτq(vI+1) ≥ vI + εlτq(vI ) = ṽI .

Also, ṽI+1 ≤ ṽI+2 follows from the fact that gP+1/2 ≤ fP = f I+1 = f (L), q ′ ≥ 0
and gP+1/2 = gI+3/2. Indeed,

ṽI+2 − ṽI+1 = vI+2 − vI+1 + εlτq
′(vI+2 − vI+1) − λ(gP+1/2 − f (L)) ≥ 0.

Secondly, let G be the Lipschitz constant of the numerical flux g, and K =
max{| f (L)|, | f (R)|} + 2G(R − L). Denote

S =
∫ R

L
gΓ (w) dw =

J−1∑

j=I

(v̄ j+1 − v̄ j )g j+1/2[v], (35)

and then a priori estimate |S − S′| ≤ 4Kε holds. Let δ′ be a constant such that for
all ε-normal collections of the ε̂-scaled form (21) to the pair {L , R} the inequality
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(30) holds for δ = δ′. Thus, for δ = δ′, the inequality (30) also holds for the ε-
normal collection Γ = {v j }J+2

j=I−2. Therefore, for δ = δ′
2 , the inequality (30) holds for

all ε-rarefying collection of the ε̂-scaled form (21) to the pair {L , R} for ε ≤ δ
4K .

It remains to show the a-priori estimate. First, we notice that κ̄ j = v̄ j for P + 1 ≤
j ≤ Q − 2, Therefore, the terms of the difference

S − S′ =
J−1∑

j=I

(v̄ j+1 − v̄ j )g j+1/2[v] −
Q−1∑

j=P

(κ̄ j+1 − κ̄ j ) g j+1/2[κ]

from j = P + 1 to j = Q − 2 are all diminished. For the remaining terms, we use
the relationship of Λ and Γ and (32)–(34) to yield the following estimates.

|v̄I+1 − κ̄I+1| ≤ ε/2 + |εlτq|/2 < ε, |v̄J−1 − κ̄J−1| ≤ ε/2 + |εlτq|/2 < ε,
(36)

|v̄I+1 − v̄I | = λ/2|gI+3/2 − f (L)| = λ/2|gP+1/2 − f (L)| < ε, (37)

|v̄J − v̄J−1| = λ/2| f (R) − gJ−3/2| = λ/2| f (R) − gQ−1/2| < ε. (38)

Finally, using the fact that v̄I+2 = κ̄P+1, v̄J−2 = κ̄Q−1, gI+3/2[v] = gP+1/2[κ],
gJ−3/2[v] = gQ−1/2[κ], and (36)–(38), we have the desired estimate as follows.

|S − S′| = |(v̄I+1 − v̄I )gI+1/2[v] + (v̄J − v̄J−1)gJ−1/2[v] + (v̄I+2 − v̄I+1)gI+3/2[v]
− (κ̄P+1 − κ̄P )gP+1/2[κ] + (v̄J−1 − v̄J−2)gJ−3/2[v] − (κ̄Q − κ̄Q−1)gQ−1/2[κ]|
≤ |v̄I+1 − v̄I ||gI+1/2[v]| + |v̄J − v̄J−1||gJ−1/2[v]|
+ |v̄I+1 − κ̄P ||gI+3/2[v]| + |v̄J−1 − κ̄Q ||gQ−1/2[κ]|
< (ε + ε + ε + ε)K = 4Kε,

and the proof is completed.

For an ε-normal collection Γ = {v j }J+2
j=I−2, we denote the vertex (v j , f (v j )) by Vj

and the area of convex polygon Vj1Vj2 · · · Vjr by Sj1,..., jr . Let σΓ = maxI−2≤ j≤J+2

|ν±
j±1/2|, and let

α j =
{
0.5 ifΔ+v j−2 = Δ+v j+1 = 0,
1 otherwise.

When the building blocks of the schemes (10)–(11), hence (18)–(20), are the
E-schemes with the fluxes defined by (25), we have the following very important
inequality (39), which will enable us to prove themail result of Theorem 4. The proof
of Lemma 4 is similar to the one for the HCPs of (10)–(11) [6] and will be omitted.
The Lemma 5 is Yang’s original result.

Lemma 4. Let Γ = {v j }J+2
j=I−2 be an ε-normal collection of the ε̂-scaled form (21) to

a rarefying pair {L , R}. Then, the numerical solutions of the ε̂-scaled form (21) for
convex conservation laws (1) satisfy, for sufficiently small ε and σΓ , the inequality
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∫ R

L
( f [w; L , R] − gΓ )dw ≥ SI,I+1,...,J −

J−1∑

j=I+1

α j S j−1, j, j+1. (39)

Lemma 5. (Lemma 3.7 [10]) For I < i < J − 1, we have

SI,I+1,...,J −
J−1∑

j=I+1

Sj−1, j, j+1 ≥ SI,i,i+1,J − (SI,i,i+1 + Si,i+1,J ).

Let σ = λmaxw | f ′(w)|. For the non-homogeneous β-schemes when m = 2,
equipped with Lemmas 1, 4, and 5, we have obtained the following entropy con-
vergence result.

Theorem 4. A scheme of the form (10)–(11) converges for convex conservation laws
(1) if, gE (·, ·) is a numerical flux given by (25) and, σ and ε are sufficiently small.

Proof. For sufficiently small σ and ε, by Lemma 1, the ε̂-scaled form (21) is
extremum traceable. Now, for each ε-normal collection Γ = {vi }J+2

i=I−2 of (21) to a
rarefying pair {L , R}, we claim that the following inequality holds

∫ v̄J

v̄I

gΓ (w)dw ≤
∫ R

L
gΓ (w)dw + ε. (40)

Indeed, first of all, we have v̄I = L + (εlτq(L))/2 and v̄J = R + (εlτq(R))/2.Also,
recall that q ′(w) ≥ 0 and gΓ (w) = g j+ 1

2
[v] for w ∈ (v̄ j , v̄ j+1) and I ≤ j ≤ J − 1.

Case1. Ifq(L) ≥ 0, thenq(R) ≥ 0 aswell. Let c be a constant such that |gΓ (w)| ≤
c, for w ∈ (R, v̄J ), and we set gΓ (w) = −c, when w ∈ (L , v̄I ). Then, we have

∫ v̄J

v̄I
gΓ (w)dw = {

∫ L

v̄I
+

∫ R

L
+

∫ v̄J

R
}gΓ (w)dw ≤ cεlτ (q(L) + q(R))/2 +

∫ R

L
gΓ (w)dw.

Case 2. If q(L) ≤ 0, and q(R) ≥ 0, we let c be a constant such that |gΓ (w)| ≤ c,
for w ∈ (R, v̄J ) ∪ (v̄I , L). Now, we have

∫ v̄J

v̄I
gΓ (w)dw = {

∫ L

v̄I
+

∫ R

L
+

∫ v̄J

R
}gΓ (w)dw ≤ cεlτ (−q(L) + q(R))/2 +

∫ R

L
gΓ (w)dw.

Case 3. If q(L) ≤ 0, and q(R) ≤ 0, we let c be a constant such that |gΓ (w)| ≤ c,
for w ∈ (v̄I , L) and set gΓ (w) = −c, when w ∈ (v̄J , R). We obtain

∫ v̄J

v̄I
gΓ (w)dw = {

∫ L

v̄I
+

∫ R

L
+

∫ v̄J

R
}gΓ (w)dw ≤ cεlτ (−q(L) − q(R))/2 +

∫ R

L
gΓ (w)dw.

In all cases, without loss of generality, for the given ε > 0 we let cεlτ (|q(L)| +
|q(R)|)/2 < ε for all l. Thus, as claimed, the inequality (40) holds. Next, we set
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d1(Γ ) = max
I≤i≤J

min(vi − L , R − vi ).

Since J − I is finite, d1(Γ ) = min(v j − L , R − v j ) for some j between I and J .
We then let

d2(Γ ) = max
I≤i≤J,i �= j

min(vi − L , R − vi ).

We also have d2(Γ ) = min(vk − L , R − vk) for some k �= j between I and J .
Clearly, we can choose j and k so that | j − k| = 1.

To complete the proof, we argue by contradiction. Thus, we assume that for certain
convex f , the scheme (10)–(11), hence (18)–(20), does not converge. By Lemma 3
and (40), there is a rarefying pair {L , R} such that for each δ > 0, δ′ = δ/2, and
ε = δ/2, there is a ε-normal collection Γ = {v j }J+2

j=I−2 of the ε̂-scaled form (21) to the
pair that satisfies

∫ R

L
{ f [w; L , R] − gΓ (w)}dw ≤ δ′ + ε = δ.

It follows that there is a sequence of ε-normal collections {Γν}∞
ν=1, where Γν =

{vν
j }Jν+2

j=Iν−2 such that

lim
ν→∞

∫ R

L
{ f [w; L , R] − gΓν (w)} ≤ 0. (41)

The following three cases exhaust all possibilities.
Case 1. lim supν→∞ d2(Γν) > 0. Set ρ = 1/2 lim supν→∞ d2(Γν). Then, there is

a subsequence of the ε-normal collections, still denoted by {Γν}∞ν=1, and a corre-
sponding sequence of integers {i(ν)}∞ν=1 such that

L + ρ ≤ vν
i(ν) ≤ vν

i(ν)+1 ≤ R − ρ,

and supν σΓν ≤ σ. For simplicity, we fix a ν and drop it from the notation. Set γ =
f [ L+R

2 ; L , R] − f ( L+R
2 ). It is a positive constant since {L , R} is a rarefying pair.

Applying Lemmas 4 and 5, we have

∫ R

L
{ f [w; L , R] − gΓν (w)}dw ≥ SI,i,i+1,J − (SI,i,i+1 + Si,i+1,J ) (42)

= 1/2{(vi − vI )( f [vi+1; L , R] − f (vi+1)) + (vJ − vi+1)( f [vi ; L , R] − f (vi ))} > η,

if η = 2ρ2γ/(R − L). This contradicts (41).
Case 2. lim supν→∞ d1(Γν) > lim supν→∞ d2(Γν) = 0. Set ρ = 1/2 lim supν→∞

d1(Γν). Then, there is a subsequence of the ε-normal collections, still denoted by
{Γν}∞

ν=1, and a corresponding sequence of integers {iν}∞
ν=1 such that limν→∞ vν

iν−1 =
L , limν→∞ vν

iν+1 = R, and limν→∞ vν
iν = v ∈ [L + ρ, R − ρ]. We then have
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∫ R

L
( f [w; L , R] − gΓν (w))dw →

∫ R

L
( f [w; L , R] − gΓ (w))dw,

whereΓ is the following ε-normal collection: I = 0, J = 4, v−2 = v−1 = v0 = v1 =
L , v2 = v, and v3 = v4 = v5 = v6 = R. By Lemma 4, we have

∫ R

L
( f [w; L , R] − gΓ (w))dw ≥ S1,2,3 − α2S1,2,3 = 1/2S1,2,3 > 0

for α2 = 1/2 since Δ+v0 = Δ+v3 = 0. This contradicts (41).
Case 3. lim supν→∞ d1(Γν) = 0. Then, there exists a sequence of integers {iν}

with I ν + 1 ≤ iν < J ν − 1 such that limν→∞ vν
iν = L , limν→∞ vν

iν+1 = R. We then
have ∫ R

L
( f [w; L , R] − gΓν (w))dw →

∫ R

L
( f [w; L , R] − gΓ (w))dw,

whereΓ is the following ε-normal collection: I = 0, J = 3, v−2 = v−1 = v0 = v1 =
L , v2 = v3 = v4 = v5 = R. In this case, the numerical flux gΓ (w) becomes E-flux
gE (L , R). Hence, we have

∫ R

L
( f [w; L , R] − gΓ (w))dw ≥

∫ R

L
( f [w; L , R] − f (w))dw.

The right-hand side of the inequality is a positive constant since {L , R} is a rarefying
pair. This contradicts (41) again. We have thus completed the proof of Theorem 4.
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Existence of Undercompressive Shock
Wave Solutions to the Euler Equations

Buğra Kabil

Abstract The sharp-interface dynamics of compressible inviscid liquid–vapor flows
with constant temperature can be described by the isothermal Euler equations using a
non-monotone pressure function. The motion of the discontinuous phase boundaries
is constrained besides mass conservation by the dynamical Young–Laplace law and
the prescribed entropy dissipation rate. We consider the initial value problem for a
two-phase configuration in multiple space dimensions, such that the smooth bulk
state data are separated by a subsonic phase boundary which can be understood
as a non-Laxian, undercompressive shock wave. It is proven that the associated free
boundary problem admits a piecewise classical solution for short times. This strongly
nonlinear problem will be formulated as an abstract combination of a hyperbolic
initial boundary value problem for the hydromechanical unknowns and a parabolic
evolution equation for the front position. By an iteration scheme (local-in-time), the
well-posedness of the nonlinear problem is established.

Keywords Undercompressive shocks · Euler equations
Compressible liquid-vapor dynamics

1 Introduction

Compressible liquid–vapor dynamics is of major interest for the understanding of
many natural processes and technical applications. In this paper, we are interested in
the spatial dynamics of phase fronts as single parts of droplets or bubbles. In spite
of its importance, the analytical treatment of associated mathematical models—in
particular in multiple space dimensions—is still in the beginnings. Here, the focus
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will be on a sharp-interface model where the dynamics in the bulk phases is gov-
erned by an ideal compressible fluid whose temperature is supposed to be constant.
Therefore, as the mathematical model we consider the isothermal Euler equations
with a non-monotone Van derWaals type pressure function. The non-monotone pres-
sure relation allows to define a liquid and a vapor phase in a straightforward way.
The phase boundaries are moving sharp interfaces separating two bulk domains.
The major modeling issue remains to fix the coupling conditions across the phase
boundary. Basic kinematic requirements prescribe the conservation of mass and the
balance of momentum, the latter expressed through the Young–Laplace law, which
brings the interface curvature into the model. Close to equilibrium, it is expected
that the interface moves as a subsonic transition. Mathematical speaking, this corre-
sponds to a nonclassical undercompressive shock wave such that a further condition
should be applied to ensure well-posedness. It has been suggested (see [1, 6, 14])
to prescribe the entropy dissipation across the interface in the form of an additional
algebraic condition, called kinetic relation. The complete model will be presented in
all necessary details in Sect. 2.

The planar case where surface tension can be neglected is by now quite well
understood. The stability of phase boundaries is a consequence of the work in [4],
which in fact covers a much wider situation. There are many results on the existence
and stability of weak solutions, and we refer to, for example, [5, 7, 8] for Riemann
problems and [10] for a general initial value problem. First results on the persistence
of shockwaves in arbitrary space dimension are due to [11] for classical Laxian shock
waves, which are completely constrained by the (homogeneous) Rankine–Hugoniot
conditions (see also [12]). Afterward, undercompressive shock waves have been
analyzed in the general framework of systems of hyperbolic conservation laws in
[4, 11, 16]. For the Euler equations with van der Waals pressure, it was shown that
there are special solutions composed of a single Laxian shock front and one subsonic
phase boundary [15, 17]. Entropy dissipation and curvature effects have been taken
into account in [7] in the sense of energy estimates for the linearized system.

To our knowledge, the multidimensional well-posedness for the evolution that
takes into account surface tension and general kinetic relations has not been estab-
lished. In Sect. 2, the complete free boundary problem is introduced and formu-
lated in a way that allows the analytical treatment. The main result is given with
Theorem 2.1, which gives local-in-time well-posedness of a classical solution of the
free boundary value problem. Moreover, the obtained solution satisfies the second
law of thermodynamics, which accounts for the interfacial energy contributions of
surface tension. The proof relies on the method of successive iterations in an appro-
priate functional setting. The essential ingredient is are uniform energy estimates
and well-posedness statements for non-homogeneous linearized versions of the free
boundary value problem with variable coefficients which was studied in [7, 8]. This
work is based on [9] where more details can be found.
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2 The Mathematical Model and the Main Result

The dynamics of a compressible, isothermal, and inviscid fluid in d ≥ 1 space dimen-
sions is described by the Euler equations

∂tρ + ∇ · (ρu) = 0 , (1)

∂t (ρu) + ∇ · (ρu ⊗ u) + ∇ p(ρ) = 0 , (2)

where u = u(x, t) ∈ R
d , ρ = ρ(x, t) > 0 are the unknown velocity and density

depending on the space variable x = (x1, . . . , xd) ∈ R
d and time t > 0. In this sys-

tem, the function p = p(ρ) denotes a non-monotone pressure function of van der
Waals type such that the fluid occurs in liquid and vapor states.

Definition 1. A pressure function p ∈ C∞ ([0, ρ∗)) for some ρ∗ > 0 is called a van
der Waals pressure function if there are constants l∗ > v∗ > 0 such that

⎧
⎪⎨

⎪⎩

p′(ρ) > 0, if 0 < ρ < v∗ (vapor states),

p′(ρ) < 0, if v∗ < ρ < l∗ (spinodal states),

p′(ρ) > 0, if l∗ < ρ < ρ∗ (liquid states).

(3)

Now, we consider a van der Waals fluid which is separated by a sharp interface
Σ(t) in liquid and vapor domains. Let us denote the vapor domain by V+(t), the
liquid domain by V−(t) and the separating unknown interface by Σ(t). The normal
vector n = n(x, t) to Σ(t) is oriented such that it points into the vapor bulk domain;
see Fig. 1.

The motion of this fluid is given by piecewise smooth functions

ρ : V+(t) ∪ V−(t) ⊂ R
d × R

+ −→ R
+, u : V+(t) ∪ V−(t) ⊂ R

d × R
+ −→ R

d

with
ρ
∣
∣
V±(t) = ρ±, u

∣
∣
V±(t) = u±

Fig. 1 Liquid–vapor
interface Σ(t) and bulk
domains V±(t)
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for smooth functions (ρ+,u+) and (ρ−,u−). These satisfy the Euler equations in
each domain V±(t) in the classical sense, that is

∂tρ
± + ∇ · (ρ±u±) = 0 in V±(t), (E1)

∂t (ρ
±u±) + ∇ · (ρ±u± ⊗ u±) + ∇ p(ρ±) = 0 in V±(t). (E2)

Since the fluid occurs in two different phases, we have jumps along the interface
Σ(t), which is driven as a free boundary by conditions that express conservation of
mass, balance of momentum, and the entropy dissipation at the interface. These are
given by modified Rankine–Hugoniot jump conditions (see (J1)–(J2) below) and a
kinetic relation (see (J3) below). The jump condition describing the conservation of
momentum is a dynamical version of the Young–Laplace law for momentum and
contains a non-homogeneous term. Precisely, we consider the jump conditions

[ρ(u · n − σ)] = 0, (J1)

[ρ(u · n − σ)u + pn] = (d − 1)κsn, (J2)

[

g(ρ) + j2

2ρ2

]

= −B j, (J3)

where the brackets express the jump of some quantity f across the interface, i.e.,

[ f ] = lim
ε↘0

( f (x + εn) − f (x − εn))

for any x ∈ Σ(t), s > 0 is the surface tension, κ the mean curvature, B > 0 the
interfacial mobility constant, n ∈ R

d the unit normal vector to the moving interface,
σ ∈ R the normal speed of propagation of the interface in x . The mass transfer flux
j is defined by

j := lim
ε↘0

(ρ(x − εn)(u(x − εn) · n − σ)) .

The chemical potential g is determined via g′(ρ) = ρ−1 p′(ρ).Multiplying the kinetic
relation (J3) by the mass transfer flux j and using (J1)–(J2) implies

[(u · n − σ)E(ρ,u)] + [(u · n − σ)p(ρ)] − σ j[u · n] = −B j2,

where E(ρ,u) = (ρu2)/2 + ρψ(1/ρ) is the specific energy with the Helmholtz
energy ψ determined via ψ ′(1/ρ) = −p(ρ) and related to the chemical poten-
tial g(ρ) through p(ρ) = ρg(ρ) + ρψ(1/ρ). This implies an exact description of
entropy dissipation Ω at the interface through

Ω := −σ ([E(ρ,u)] + (d − 1)κs) + [(E(ρ,u) + p(ρ))u · n] = −B j2 ≤ 0 , (4)
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e.g, [13] for the derivation of (4). Inequality (4) shows that the kinetic relation (J3)
is compatible with the second law of thermodynamics. Note that smooth solutions
to (J1)–(J3) satisfy the extra balance law

∂t E(ρ,u) + ∇ · (E(ρ,u)u + p(ρ)u) = 0 .

Further, we assume that the interface Σ(t) can be represented as the graph of the
front function X ∈ C2

([0,∞) × R
d−1

)
through

Σ(t) = {
x = (x1, . . . , xd)

∣
∣ xd = X (x1, . . . , xd−1, t)

}
.

Then, the geometrical quantities in (J1)–(J3) in terms of X are written as

n = 1
√

1 + ‖∇̌X‖2
(
−∇̌X, 1

)ᵀ
, σ = ∂t X

√

1 + ‖∇̌X‖2
,

and

κ = 1

d − 1
∇̌ ·

⎛

⎝
∇̌X

√

1 + ‖∇̌X‖2

⎞

⎠ ,

where we used ∇̌ = (∂x1 , . . . , ∂xd−1)
ᵀ
. We collect the first spatial components in

y = (x1, . . . , xd−1)
ᵀ
.

Consider now the hyperplane
{
x ∈ R

d
∣
∣ xd = 0

}
and decompose the velocity u as

u = (v, u), where v denotes the tangential part and u its normal part with respect to
the hyperplane. With these notations, all jump conditions (J1)–(J3) can be expressed
in terms of X . We say that solutions (ρ+,u+) and (ρ−,u−) of the Euler equations
(E1)–(E2) and a solution X satisfy the boundary conditions if

[
ρ (u − ∂t X − v · ∇̌X)

]
= 0, (5)

[
ρ (u − ∂t X − v · ∇̌X)v − p∇̌X

]
= 0, (6)

[
ρ (u − ∂t X − v · ∇̌X)u + p

]
= s∇̌ · ∇̌X, (7)

[(
1 + ‖∇̌X‖2

)
g + 1

2 (u − ∂t X − v · ∇̌X)2
]

= −B j
(
1 + ‖∇̌X‖2

)
. (8)

Altogether, we consider the Euler equations (E1)–(E2) with the boundary conditions
(5)–(8) and the initial data

(ρ±,u±)(x, 0) = (ρ±
0 ,u±

0 ) and X (y, 0) = X0 . (A1)

To state our results in a convenient way, we rewrite the Euler equations (E1)–(E2)
by using U± := (ρ±,u±) in the quasilinear form
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A±
0 (U±)∂tU± +

d∑

j=1

A±
j (U

±) ∂ jU± = 0 in V±(t), (9)

for givenmatricesA0(U±), . . . ,Ad(U±). The boundary conditions defined in (5)–(8)
can be summarized with Δ̌ = ∂2

1 + · · · + ∂2
d−1 in the form

b0(U±, X)∂t X +
d−1∑

j=1

b j (U±, X)∂ j X + bsΔ̌X + M(U±, X)U± = 0 , (10)

for given vectors b0(U±, X), ...,bd−1(U±, X),bs and a given matrixM(U±, X).

2.1 The Initial Boundary Value Problem

We reformulate the initial value problem (9) with the boundary conditions (10) as an
initial boundary value problem by transforming the solution in the last component.
Plugging

U±(t, y, z) := U±(t, y,±z + X (t, y))

in (9), we obtain with ∂0 := ∂t the equivalent equations

d−1∑

j=0

A±
j (U

±) ∂ jU± ± A±
d (U±)∂zU± ∓

d−1∑

j=0

∂ j X A±
j (U

±) ∂zU± = 0 (11)

for (t, y, z) ∈ R
+ × R

d−1 × R
+. We define U := (U−,U+),

A j (U) :=
(
A−

j (U
−) 0

0 A+
j (U

+)

)

and

Az(U) :=
(−A−

d (U−) 0
0 A+

d (U+)

)

+
d−1∑

j=0

∂ j X

(−A−
j (U

−) 0
0 A+

j (U
+)

)

.

Altogether, we consider for t > 0 and y ∈ R
d−1 the nonlinear system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d−1∑

j=0
A j (U)∂ jU + Az(U)∂zU = 0, for z > 0,

d−1∑

j=0
b j (U, X)∂ j X + bsΔ̌X + M(U, X)U = 0, for z = 0,

(NL)
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with initial dataU(t = 0) = U0 and X (t = 0) = X0. Note that the associated vectors
b0(U, X), ...,bd−1(U, X),bs and the matrix M(U, X) are given explicitly.

The initial data should satisfy some conditions to be compatiblewith the jump con-
ditions.Let s > d+3

2 . Then initial dataU0 ∈ Hs(Rd−1 × R
+) and X0 ∈ Hs+3/2(Rd−1)

are said to satisfy the first compatibility condition if some functions (Û, X̂) ∈
Hs+1(Rd × R

+) × (
Hs+1(Rd) ∩ L2(R, Hs+2(Rd−1))

)
with trace on t = 0 exist

such that

b0(U0, X0)X1 = −
d−1∑

j=1

b j (U0, X0)∂ j X0 + bsΔ̌X0 + M(U0, X0)U0 (12)

and

A0(U0)U1 = −
d−1∑

j=1

A j (U0)∂ jU0 − Az(U0)∂zU0 (13)

with X1 := ∂t X̂
∣
∣
t=0 and U1 := ∂t Û

∣
∣
t=0 hold.

Definition 2. Let U0 ∈ Hs(Rd−1 × R
+) and X0 ∈ Hs+3/2(Rd−1) satisfy the first

compatibility condition with some functions Û ∈ Hs+1(Rd × R
+) and X̂ ∈(

Hs+1(Rd) ∩ L2(R, Hs+2(Rd−1))
)
. The initial data (U0, X0) are said to be com-

patible to order s − 1 if the sequence

(Uk, Xk) :=
(
∂k
t Û

∣
∣
t=0, ∂

k
t X̂

∣
∣
t=0

)
,

with
(Uk, Xk) ∈ Hs−k(Rd−1 × R

+) × Hs+3/2−k(Rd−1)

inductively defined as in (12)–(13), exists for k = 1, ..., s − 1.

The compatibility conditions will allow us to construct approximative solutions
which will be used in the analysis of the iteration scheme. The resulting sequence
of solutions of the iteration scheme will be bounded in Hs and will converge in L2.
The solution itself will be given in terms of the space CHs((0, T ) × R

d−1 × R
+)

on a given time interval [0, T ] whose definition is given next.

Definition 3. By CHs((0, T ) × R
d−1 × R

+), we denote the space of functions u
on (0, T ) × R

d−1 × R
+ such that

∀ j = 0, ..., s : ∂
j
t u ∈ C0([0, T ], Hs− j (Rd−1 × R

+)).

In what follows, we consider a given subsonic planar phase boundary as a piece-
wise constant reference solution. Precisely, we choose a piecewise constant function

(ρ+,u+) = (ρr ,ur ) and (ρ−,u−) = (ρl ,ul) (14)
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with constant values (ρr,l ,ur,l) ∈ R
+ × R

d such that the following conditions hold

(J1)−(J3) are satisfied for some σ ∈ R (jump conditions), (15)

0 < ρr < v∗ < l∗ < ρl (liquid–vapor), (16)

0 <
|ur,l · n − σ |

cr,l
< 1 with cr,l := √

p′(ρr,l) (subsonic), (17)

where v∗, l∗ are given by the chosen van der Waals pressure function. Note that the
existence of such a constant function (14) satisfying (15)–(17) for some σ ∈ R is
ensured by [2, Proposition 2]. In particular, we have

0 < ρr < ρm < v∗ < l∗ < ρM < ρl ,

where (ρm, ρM) are the Maxwell states such that p(ρm) = p(ρM) and g(ρm) =
g(ρM), see [2]. We summarize the constant reference solution (14) satisfying
(15)–(17) in

Uref := (ρr ,ur , ρl ,ul) and X ref := 0. (18)

We state in the following the main result about the existence of a solution to the
nonlinear problem (NL).

Theorem 2.1 (Main Result). Let s > d+3
2 and a subsonic reference solution Uref

as in (18) be given.
Then there exists a constant δ > 0 such that for all

(U0 − Uref) ∈ Hs+1/2(Rd−1 × R
+)

and all
X0 ∈ Hs+3/2(Rd−1),

which are compatible to order s − 1 and satisfy

‖U0 − Uref‖L∞(Rd−1×R+) + ‖∇̌X0‖L∞(Rd−1) + ‖Δ̌X0‖L∞(Rd−1) < δ,

there exists a number T > 0 and a classical solution (U − Uref , X) of the nonlinear
system (NL) with

(U − Uref) ∈ CHs
(
(0, T ) × R

d−1 × R
+)

(19)

and
X ∈ (

Hs+1((0, T ) × R
d−1) ∩ L2((0, T ), Hs+2(Rd−1))

)
. (20)

Further, this solution is unique in the set of all solutions which satisfy (19) and (20).
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To close the section, we reformulate Theorem 2.1 in the setting of the original
problem (E1)–(E2) with the jump conditions (J1)–(J3). In particular, we characterize
the solution in terms of the entropy concept.Wemention that the interface is described
by

Σ(t) = {
x = (x1, ..., xd) ∈ R

d
∣
∣ xd = X (x1, ..., xd−1, t)

}

and separates the vapor domain V+(t) and the liquid domain V−(t), i.e.,

R
d = V+(t) ∪ Σ(t) ∪ V−(t)

for all t ≥ 0.

Corollary 2.2. Let s > d+3
2 and the initial data (A1) be given. There exists a constant

δ > 0 such that for all

(ρ±
0 − ρr,l ,u±

0 − ur,l) ∈ Hs+1/2(V±(0))

and all
X0 ∈ Hs+3/2(Rd−1),

which are compatible to order s − 1 and satisfy

‖(ρ−
0 − ρr ,u−

0 − ur , ρ+
0 − ρl,u+

0 −ul)‖L∞(Rd−1×R+)

+ ‖∇̌X0‖L∞(Rd−1) + ‖Δ̌X0‖L∞(Rd−1) < δ,

there exists a number T > 0 and a classical shock wave solution

(ρ± − ρr,l ,u± − ur,l) ∈ C1(V±(t))

and (
X, X (t, ·)) ∈ C1([0, T ],Rd−1) × C2(Rd−1)

for all t ∈ [0, T ] to the original problem (E1)–(E2) satisfying the jump conditions
(J1)–(J3) and

∂t E(ρ,u) + ∇ · (E(ρ,u)u + p(ρ)u) ≤ 0

in the distributional sense.

Note that Theorem 2.1 and Corollary 2.2 are only valid for restricted surface
tension s ∈ (0, s0) and interfacial mobility constant B ∈ (0,B0), where s0 > 0 and
B0 > 0 are given by Theorem 7 from [7].
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3 Proof of the Main Result

We sketch the proof whose details can be found in [9]. The idea in the proof is to use
the results about the well-posedness of the linearized version of the problem which
was studied in [7, 8]. That means we will consider a linear system (see (21) below)
which will be solved in each step of a successive iteration. For coefficients satisfying
some assumptions (see [9] for the explicit formulation), we obtain a sequence of
solutions to the system (21). For small enough initial data, this sequencewill converge
to the solution of the original nonlinear problem (NL). We refer to [3–5, 11] where
this technique has been applied to standard hydrodynamical shock waves while we
here deal with subsonic phase boundaries including a kinetic relation and surface
tension.

In the case of vanishing surface tension, the second-order terms of the front posi-
tion X (resulting from theYoung–Laplace law) are not contained,which simplifies the
statement of the problem. We have the case of positive surface tension. We consider
system (21) for given (Uk, Xk) ∈ W 1,∞(R+ × R

d−1 × R
+) × W 1,∞(R+ × R

d−1)

and unknown (Uk+1, Xk+1). The iteration scheme reads as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d−1∑

j=0
A j (Uk)∂ jUk+1 + Az(Uk)∂zUk+1 = 0,

d−1∑

j=0
b j (Uk)∂ j Xk+1 + bsΔ̌Xk+1 + M(Uk, ∇̌Xk)Uk+1 = 0,

(21)

with initial data (Uk+1(t = 0), Xk+1(t = 0)) = (U0 − Uref , X0).
One can show by induction that the sequence (Uk, Xk)will be bounded uniformly

with respect to k ∈ N0 for small initial data and small enough T in

CHs((0, T ),×R
d−1 × R

+)

× (
Hs+1((0, T ) × R

d−1) ∩ L2((0, T ), Hs+2(Rd−1))
)
,

see [9]. The limit
lim
k→∞(Uk − Uref , X

k) = (U − Uref , X)

satisfies (NL) with initial data (U0 − Uref , X0) according to the construction of the
iterative scheme (21).

The solution (U − Uref , X) of (NL) is unique since the limit of the Cauchy
sequence is unique. �
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Some Numerical Results of Regional
Boundary Controllability with Output
Constraints

Touria Karite, Ali Boutoulout and Fatima Zahrae El Alaoui

Abstract This paper deals with the problem of constrained controllability governed
by parabolic evolution equations. The purpose is to compute the control u which
steers the studied system to a final state which is supposed to be unknown between
two defined bounds, only on a boundary subregionΓ of the system evolution domain
Ω . The main result is proved via Lagrangian multiplier approach, and the numerical
part is given on the basis of the well-known Uzawa algorithm. These results are
illustrated by a numerical example.

Keywords Distributed systems · Parabolic systems · Regional controllability
Lagrangian approach · Semilinear systems · Boundary subregion · Heat equation
Minimum energy · Uzawa algorithm

1 Introduction

Mathematical control theory is the area of application-oriented mathematics that
deals with the basic principles underlying the analysis and design of control systems.
To control an object means to influence its behavior so as to achieve a desired goal.
In order to implement this influence, engineers build devices that incorporate various
mathematical techniques. Control theory is a field that plays a major role in nearly
every modern precision device. It appears in our homes, in cars, in industry, and in
almost every device we use in our life.

T. Karite (B) · A. Boutoulout · F. Z. El Alaoui
TSI Team, MACS Laboratory, Institute of Sciences, Moulay Ismail University,
Meknes, Morocco
e-mail: touria.karite@gmail.com

A. Boutoulout
e-mail: boutouloutali@yahoo.fr

F. El Alaoui
e-mail: fzelalaoui2011@yahoo.fr

© Springer International Publishing AG, part of Springer Nature 2018
C. Klingenberg and M. Westdickenberg (eds.), Theory, Numerics
and Applications of Hyperbolic Problems II, Springer Proceedings
in Mathematics & Statistics 237, https://doi.org/10.1007/978-3-319-91548-7_8

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91548-7_8&domain=pdf


112 T. Karite et al.

The development of automatic control is strongly connected to the industrial
revolution and the development of modern technology. The need to control the new
discovered sources of power arose immediately. When new production techniques
were developed, there were needs to keep them operating smoothly with high quality.
Controlling a system is the fact to find whether or not one trajectory of a dynamical
system can be steered toward another one. Many works dealing with the problem
have been carried out in a wide literature; see Curtain and Pritchard [3], Curtain and
Zwart [4] and references therein.

Later on, the concept of “regional analysis” has been introduced by El Jai et al.
(1995) for parabolic systems and by Zerrik and Larhrissi (2000) for hyperbolic linear
ones. It is commonly used to refer to control problems in which the target of our
interest is not fully specified as a state, but refers only to a smaller internal region ω
of the system domain Ω . After that, Zerrik et al. have extended the work to the case
where ω is a part of the boundary ∂Ω of the domain. Interesting results were proven.
It was particularly shown that the minimum time and the transfer cost of regional
controllability are less than those of the controllability on the whole domain Ω .

Constrained or enlarged controllability is not a new concept. It was introduced by
Lions [10] in 1989. In his book, he was interested in studying the constrained exact
controllability, so-called CEC, for the wave equation on a closed convex set G of
L2(Ω) × H−1(Ω). It is clear that if we choose G = {0, 0}, we retrieve the classic
notion of exact controllability. Zerrik and Ghafrani thought of something closer to
real problems [16]. So theyworkwith an interval [α(·),β(·)] instead of the convexG.
The reason motivating this choice of controllability is that the mathematical models
of a studied phenomenon are obtained from measurements or approximations and
they are often affected by perturbations. Later on, Boutoulout et al. studied the
problem for hyperbolic linear systems in internal case [1] and also in the boundary
[6]. Boutoulout and Karite extended the study to semilinear systems in internal
case [8]. In this paper, we will extend the previous works to the case of boundary
controllability of semilinear systems.

The following paper dealswith the controllability properties of semilinear systems
of parabolic equations where the control is exerted at the boundary.

Thus, let Ω be an open bounded subset of Rn(n ≥ 1) with regular boundary ∂Ω .
And for a given T > 0, let’s consider Q = Ω×]0, T [, Σ = ∂Ω×]0, T [ and let us
consider a parabolic system excited by controls which may be applied via various
types of actuators given by the following system:

⎧
⎪⎨

⎪⎩

∂t y(x, t) − Ay(x, t) = F y(x, t) + Bu(t) Q

y(x, 0) = y0(x) Ω

∂ν y(ξ, t) = 0 Σ,

(1)

where the operator A is linear, second-order, and infinitesimal generator of a C0-
semigroup (S(t))t≥0 on L2(Ω) and F : H 1(Ω) → H 1(Ω) a nonlinear operator
which satisfies a Lipschitz condition in y [12, 14]. ∂ν y(ξ, t) indicates the conor-
mal derivative on the boundary Σ associated with the operator A and the unit out-
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ward normal vector ν. B ∈ L(Rm, L2(Ω)), y0 ∈ L2(Ω) and u ∈ U = L2(0, T ;Rm)

(where m is the number of actuators).
The rest of the paper is organized as follows. In the next section, we give some

definitions and notations. In Sect. 3, we present some results related to the Lagrangian
method. In particular, we give details on the saddle point problem. In Sect. 4, we give
an algorithm and a numerical example with simulations.

2 Preliminaries and Notations

Without loss of generality, we denote by yu (.) the solution of (1) when it is excited
by a control u, we have yu (T ) ∈ H 1(Ω) (see [9]), and we consider:
• Γ a non-empty subregion of ∂Ω .
• γ0 : H 1(Ω) → H 1/2(∂Ω) the trace operator of order zero which is linear, contin-
uous, and surjective.
• The restriction operator

χ
Γ

: H 1/2(∂Ω) −→ H 1/2(Γ )

y �−→ χ
Γ
y = y|

Γ
·

Let’s consider H : U → H 1(Ω) defined by:

∀ u ∈ U , Hu =
∫ T

0
S(T − s)Bu(s)ds,

we define also the following operator:

G
Γ

: L2(0, T ; H 1(Ω)) −→ H 1(Ω)

y(·) �−→
∫ T

0
S(T − τ )F y(τ )dτ · (2)

and b1(·), b2(·) be two given real functions in H 1/2(Γ ) such that b1(·) ≤ b2(·) on Γ ,
and we set:

[b1(·), b2(·)] = {
y ∈ H 1/2(Γ ) | b1(·) ≤ y(·) ≤ b2(·) on Γ

} ·

Then we have the following definition, remark, and proposition:

Definition 1. We say that (1) is [b1(·), b2(·)]-controllable on Γ if:

∃ u ∈ U such that b1(·) ≤ χ
Γ

(
γ0 yu (T )

) ≤ b2(·)·

It is clear that the system (1) is [b1(·), b2(·)]-controllable on Γ if:

[b1(·), b2(·)] − {χ
Γ
γ0 S(T )y0} ∩ (

Im χ
Γ
γ0GΓ

+ Im χ
Γ
γ0H

) 
= ∅·
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Remark 1. 1. The above definition means that we are interested in the transfer of
the system (1) to an unknown state between b1(·) and b2(·) on Γ .

2. If b1 = b2 , we retrieve the regional exact controllability. So, for b1 
= b2 the
[b1(·), b2(·)]-controllability constitutes an extension of regional controllability.

3. A system which is controllable on Γ is [b1(·), b2(·)]-controllable on Γ .

The [b1(·), b2(·)]-controllability on Γ could be characterized by the following
proposition:

Proposition 1. The system (1) is [b1(·), b2(·)]-controllable on Γ if and only if

(
Ker χ

Γ
+ Im γ0GΓ

+ Im γ0H
) ∩ [b1(·), b2(·)] 
= ∅·

Proof. We suppose that the system (1) is [b1(·), b2(·)]-controllable on Γ which is
equivalent to say that

(
Im χ

Γ
γ0GΓ

+ Im χ
Γ
γ0H

) ∩ [b1(·), b2(·)] 
= ∅·

So there exists z ∈ [b1(·), b2(·)], y(·) ∈ L2(0, T ; H 1(Ω)) and u ∈ U such that
χ

Γ
γ0GΓ

y(·) + χ
Γ
γ0Hu = χ

Γ
γ0 z, which gives χ

Γ

(
z − γ0GΓ

y(·) − γ0Hu
) = 0.

Let’s consider z1 = z − γ0GΓ
y(·) − γ0Hu, z2 = γ0GΓ

y(·) and z3 = γ0Hu. Then:
z = z1 + z2 + z3 where z1 ∈ Ker χ

Γ
, z2 ∈ Im γ0GΓ

and z3 ∈ Im γ0H , which prove
that z ∈ (

Ker χ
Γ

+ Im γ0GΓ
+ Im γ0H

)
. Thus,

(
Ker χ

Γ
+ Im γ0GΓ

+ Im γ0H
) ∩ [b1(·), b2(·)] 
= ∅·

Conversely, we suppose that
(
Ker χ

Γ
+ Im γ0GΓ

+ Im γ0H
) ∩ [b1(·), b2(·)] 
= ∅

which means that there exists z ∈ [b1(·), b2(·)] such that z ∈ Ker χ
Γ

+ Im γ0GΓ
+

Im γ0H so z = z1 + z2 + z3 , with χ
Γ
z1 = 0, ∃ y ∈ L2(0, T ; H 1(Ω)) | z2 = γ0GΓ

y(·) and ∃ u ∈ U | z3 = γ0Hu , then by applying the restriction operator to z we
will have χ

Γ
z = χ

Γ
(z1 + z2 + z3) = χ

Γ
γ0GΓ

y(·) + χ
Γ
γ0Hu, which gives χ

Γ
z ∈(

Im γ0GΓ
+ Im γ0H

)
. And, we have

(
Im γ0GΓ

+ Im γ0H
) ∩ [b1(·), b2(·)] 
= ∅·

Thus (1) is [b1(·), b2(·)]-controllable on Γ .

Now, Let us recall that an actuator is conventionally defined by a couple (D, f ),
where D is a non-empty closed part of Ω , and it represents the geometric support
of the actuator. And f ∈ L2(D) defines the spatial distribution of the action on the
support D.
In the case of a pointwise actuator (internal or boundary) D = {b} and f = δ(b − .),
where δ is the Dirac mass concentrated in b, and the actuator is then denoted by
(b, δb). For definitions and properties of strategic actuators, we refer to [5, 15].

Definition 2. The actuator (D, f ) is said to be [b1(·), b2(·)]-strategic on Γ if the
excited system is [b1(·), b2(·)]-controllable on Γ .
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3 Lagrangian Approach

We consider the problem:

⎧
⎨

⎩

inf
1

2
‖u‖2

u ∈ Uad ,
(3)

where Uad = {u ∈ U | χ
Γ
γ0 yu (T ) ∈ [b1(·), b2(·)]}· And the system (1) is excited by

one zonal control.
The following proposition gives a useful characterization of the solution.

Theorem 1. If the system (1) is [b1(·), b2(·)]-controllable on Γ then the solution of
(3) is given by:

u∗ = −(χ
Γ
γ0H)∗λ∗, (4)

where λ∗ ∈ H 1/2(Γ ) satisfies:

{
R

Γ
λ∗ + z∗ = χ

Γ
γ0

[
S(T )y0 + G

Γ
y(·)]

z∗ = P[b1 (·),b2 (·)](ρλ∗ + z∗),
(5)

while P[b1 (·),b2 (·)] : H 1/2(Γ ) → [b1(·), b2(·)] denotes the projection operator, ρ > 0
and R

Γ
= (χ

Γ
γ0H)(χ

Γ
γ0H)∗·

Proof. If the system (1) is [b1(·), b2(·)]-controllable on Γ then Uad 
= ∅, and the
problem (3) has a unique solution.
Problem (3) is equivalent to the saddle point problem:

⎧
⎨

⎩

inf
1

2
‖u‖2

(u, z) ∈ Z ,
(6)

where Z = {
(u, z) ∈ U × [b1(·), b2(·)] | χ

Γ
γ0 yu (T ) − z = 0

} ·
To study this constraints, we will use a Lagrangian functional and steer the problem
(6) to a saddle point problem.
We associate to the problem (6) the Lagrangian functional defined by:

∀(u, z,λ) ∈ U × [b1 (·), b2 (·)] × H1/2(Γ ) L(u, z,λ) = 1

2
‖u‖2 + 〈λ,χΓ γ0 yu (T ) − z〉

H1/2(Γ )
·
(7)

The set U × [b1(·), b2(·)] is non-empty, closed, and convex. The functional L satis-
fies conditions:
• (u, z) �→ L(u, z,λ) is convex and lower semicontinuous for all λ ∈ H 1/2(Γ ).
• λ �→ L(u, z,λ) is concave and upper semicontinuous for all (u, z) ∈ U × [b1(·),
b2(·)].
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Moreover, there exists λ0 ∈ H 1/2(Γ ) such that:

lim
‖(u,z)‖→+∞

L(u, z,λ0) = +∞, (8)

and there exists (u0 , z0) ∈ U × [b1(·), b2(·)] such that

lim
‖λ‖→+∞

L(u0 , z0 ,λ) = −∞· (9)

Then, the functional L admits a saddle point. For more details, we refer to [11].
Let (u∗, z∗,λ∗) be a saddle point of L and prove that u∗ is the solution of (3). We
have:

L(u∗, z∗,λ) ≤ L(u∗, z∗,λ∗) ≤ L(u, z,λ∗) ∀ (u, z,λ) ∈ U × [b1 (·), b2 (·)] × H1/2(Γ )

(10)
From the first inequality of (10), we have:

〈λ,χ
Γ
γ0 yu∗ (T ) − z∗〉

H1/2(Γ )
≤ 〈λ∗,χ

Γ
γ0 yu∗ (T ) − z∗〉

H1/2(Γ )
∀λ ∈ H 1/2(Γ ),

which implies χ
Γ
γ0 yu∗ (T ) = z∗ and hence χ

Γ
γ0 yu∗ (T ) ∈ [b1(·), b2(·)].

The second inequality of (10)means that for all u ∈ U and z ∈ [b1(·), b2(·)], we have:
1

2
‖u∗‖2 + 〈λ∗,χ

Γ
γ0 yu∗ (T ) − z∗〉

H1/2(Γ )
≤ 1

2
‖u‖2 + 〈λ∗,χ

Γ
γ0 yu (T ) − z〉

H1/2(Γ )

for all (u, z) ∈ U × [b1(·), b2(·)]. Since χ
Γ
γ0 yu∗ (T ) = z∗, it follows that:

1

2
‖u∗‖2 ≤ 1

2
‖u‖2 + 〈λ∗,χ

Γ
γ0 yu (T ) − z〉

H1/2(Γ )
∀ (u, z) ∈ U × [b1(·), b2(·)].

Taking z = χ
Γ
γ0 yu (T ) ∈ [b1(·), b2(·)], we obtain:

1

2
‖u∗‖2 ≤ 1

2
‖u‖2

,

which implies that u∗ is of minimum energy.
The following assumptions hold, if (u∗, z∗,λ∗) is a saddle point of L:

〈u∗, u − u∗〉 + 〈λ∗,χ
Γ
γ0H(u − u∗)〉 = 0 ∀ u ∈ U , (11)

− 〈λ∗, z − z∗〉 ≥ 0 ∀ z ∈ [b1(·), b2(·)], (12)

〈λ − λ∗,χ
Γ
γ0 yu∗ (T ) − z∗〉 = 0 ∀ λ ∈ H 1/2(Γ )· (13)

For more details about the saddle point and its theory, we refer to [2, 7, 13].
From (11), we deduce (4).
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The equation (13) is equivalent to:

χ
Γ
γ0 yu∗ (T ) = z∗·

And since yu∗ (T ) = S(T )y0 + G
Γ
y(·) + Hu∗, we have:

χ
Γ
γ0

[
S(T )y0 + G

Γ
y(·) + Hu∗] − z∗ = 0·

Then χ
Γ
γ0

[
S(T )y0 + G

Γ
y(·)] + χ

Γ
γ0Hu∗ = z∗·

With (4), we have:

χ
Γ
γ0

[
S(T )y0 + G

Γ
y(·)] − (

χ
Γ
γ0H

) (
χ

Γ
γ0H

)∗
λ∗ = z∗,

with R
Γ

= (
χ

Γ
γ0H

) (
χ

Γ
γ0H

)∗
, we obtain the first equation of (5).

And from inequality (12), we obtain:

〈(ρλ∗ + z∗) − z∗, z − z∗〉
H1/2(Γ )

≤ 0 ∀ z ∈ [b1(·), b2(·)] , ρ > 0,

which is equivalent to the second equation of (5).

Corollary 1. If the system (1) is exactly controllable on Γ and ρ suitably chosen,
then the system (5) has only one solution (λ∗, z∗).

Proof. The regional exact controllability on Γ implies that (χ
Γ
γ0H)∗ and R

Γ
are

bijective. So if (u∗, z∗,λ∗) is a saddle point of L then the system (5) is equivalent to

{
R

Γ
λ∗ + z∗ = χ

Γ
γ0

[
S(T )y0 + G

Γ
y(·)]

z∗ = P[b1 (·),b2 (·)]

[(
−ρR

−1

Γ
z∗ + ρR

−1

Γ
χ

Γ
γ0

(
S(T )y0 + G

Γ
y(·))

)
+ z∗

]
· (14)

It follows that z∗ is a fixed point of the function

Fρ : [b1 (·), b2 (·)] −→ [b1 (·), b2 (·)]
y �−→ P[b1 (·),b2 (·)]

[(
−ρR

−1

Γ
y + ρR

−1

Γ
χΓ γ0

(
S(T )y0 + GΓ y(·)

)) + y
]
·
(15)

The operator R
Γ
is coercive, i.e.,

∃m > 0 such that 〈R−1

Γ
y, y〉 ≥ m‖y‖2 ∀ y ∈ H 1/2(Γ )·

It follows that
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‖Fρ (y) − Fρ (z)‖2

H1/2(Γ )
≤ ‖ − ρR

−1

Γ
(y − z) + (y − z)‖2

≤ ρ2‖R−1

Γ
‖2‖y − z‖2 + ‖y − z‖2 − 2ρ〈R−1

Γ
(y − z), (y − z)〉

≤ ρ2‖R−1

Γ
‖2‖y − z‖2 + ‖y − z‖2 − 2ρm‖y − z‖2

≤ (1 + ρ2‖R−1

Γ
‖2 − 2ρm)‖y − z‖2 ∀ y, z ∈ [b1 (·), b2 (·)]

andwededuce that if 0 < ρ <
2m

‖R−1

Γ
‖2 , then Fρ

is a contractionmapping. This implies

the uniqueness of z∗ and λ∗.

Remark 2. If b1(·) = b2(·), we obtain the notion of controllability on Γ , and the
solution of (3) is given by:

u∗ = (
χ

Γ
γ0H

)∗
R

−1

Γ

[
b1(·) − χ

Γ
γ0

(
S(T )y0 + R

Γ
y(·))] ·

4 Numerical Approach and Simulations

From the previous proposition (1), it follows that the solution of the problem (3)
arises to compute the saddle points of L which is equivalent to solving the problem

inf
(u,z)∈U×[b1 (·),b2 (·)]

( sup
λ∈H 1/2(Γ )

L(u, z,λ))· (16)

Finally, we develop the following algorithm based on the algorithm of Uzawa type
(see [7]):

Algorithm

Step 1: initialization.

� Fix the two functions b1(·)andb2(·),
� Choose two functions (z0 ,λ1) ∈ [b1(.), b2(.)] × H 1/2(Γ ),
� Choose a region Γ , time T and the position b of the actuator,
� Choose a threshold accuracy ε small enough.

Step 2: Until ‖λn+1 − λn‖ ≤ ε, repeat

� Solve equation un = −(χ
Γ
γ0H)∗λn ,

� Solve equation zn = P[b1 (.),b2 (.)](ρλn + zn−1),
� Calculate λn+1 by the formula λn+1 = λn + (χ

Γ
γ0 yun (T ) − zn ).

Step 3 : Let (u∗, z∗,λ∗) be a saddle point of L , then the sequence (un ) converges
to u∗ solution of the problem (3) and the sequence (zn ) converges to z∗.
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To validate this algorithm, we use the following example:

Example
We consider a two-dimensional system defined on Ω =]0, 1[×]0, 1[, described by
the following parabolic system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂y(x, t)

∂t
− Δy(x, t) − cy2(x, t) = δ(x − b)u(t) Ω×]0, T [

y(x, 0) = 0 Ω

∂y

∂ν
(ξ, t) = 0 ∂Ω×]0, T [ ,

(17)

where x =
(
x1
x2

)

, b =
(
b1
b2

)

=
(
0.10
0.15

)

, ξ =
(

ξ1
ξ2

)

, c = 0.01, T = 2 and Γ =
]0, 1[×{0}·
Let’s considerb1(x1 , x2) = 1

5
(2x1(x1 − 1) + x2(x2 − 1)), b2(x1, x2) = −1

3
(x1(x1 −

1) + x2(x2 − 1)) and ε = 10−4. Applying the previous algorithm, we obtain the fol-
lowing results:

un =
∞∑

i=0

∞∑

k,l=0

(∫ T

0
eγkl (T−t)ψi (t)dt

)

ϕkl (b1, b2)〈λn,ϕkl 〉L2(Γ )ψi , (18)

with (ψi )i is a complete set of eigenfunctions in L2(0, T ;Rm) associated with eigen-
values βi . And (ϕkl )kl is a complete set of eigenfunctions in (L2(Ω))2 associated
with eigenvalues γkl .

Fig. 1 Representation of χΓ γ0 zd
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Fig. 2 Two functions b1 (·) and b2 (·)

Figure1 represents the restriction of the trace of the desired state on the whole
domain Ω and Fig. 2 represents the two chosen functions b1(x) and b2(x) in Ω .

Fig. 3 Projection of the desired state zd on the boundary Γ
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Fig. 4 Transfer cost

In Fig. 3, we represent the projection of the desired state on the boundary Γ =
{0}×]0, 1[. And in the Fig. 4, we see the evolution of the transfer cost function in
time T .

zn (x) =

⎧
⎪⎨

⎪⎩

b1(x) if ρλn(x) + zn−1(x) ≤ b1(x) a.e

ρλn(x) + zn−1(x) if b1(x) ≤ ρλn(x) + zn−1(x) ≤ b2(x) a.e

b2(x) if ρλn(x) + zn−1(x) ≥ b2(x) a.e·
(19)

And finally, we compute λn+1 by the following formula:

λn+1 = λn + (χ
Γ
γ0 yun (T ) − zn ).

We remark that the obtained state with the used algorithm is between the two
given functions b1(·) and b2(·) with the error ε = 4.325 × 10−7 which validate the
used method.

5 Conclusion

We developed an extension of the regional controllability to a situation encountered
in many real situations where the problem is to bring the state of a system between
two prescribed functions on a part of the boundary. Other methods are subject to
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calculate the optimal control such as Hilbert Uniqueness Method, penalty methods,
and variational methods which will be developed in future works.
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Water Hammer Modeling for Water
Networks via Hyperbolic PDEs
and Switched DAEs

Rukhsana Kausar and Stephan Trenn

Abstract In water distribution network, instantaneous changes in valve and pump
settings introduce jumps and sometimes impulses. In particular, a particular impul-
sive phenomenon which occurs due to sudden closing of valve is the so-called water
hammer. It is classically modeled as a system of hyperbolic partial differential equa-
tions (PDEs). We observed that under some suitable assumptions the PDEs usually
used to describe water flows can be simplified to differential algebraic equations
(DAEs). The idea is to model water hammer phenomenon in the switched DAEs
framework due to its special feature of studying such impulsive effects. To compare
these two modeling techniques, a system of hyperbolic PDE model and the switched
DAE model for a simple setup consisting of two reservoirs, six pipes, and three
valves is presented. The aim of this contribution is to present results of both models
as motivation for the claim that a switched DAE modeling framework is suitable for
describing a water hammer.

Keywords Water hammer · Solution theory · Switched system · Dirac impulse

1 Introduction

The occurrence of hydraulic transients in the operation of water distribution net-
work is inevitable. Such transients are planned or accidental changes of the network
configuration. These sudden structural changes can have dramatic effects in flow
regimes, ranging from pump defects to catastrophic pipeline failures. The flow of
water in pipes is usually modeled as system of nonlinear hyperbolic balance laws
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(i.e., partial differential equations—PDEs); see, for example, [4], where the sudden
structural changes lead to large peaks and fast transients in the solution.

We propose tomodel such fast transients in the framework of switched differential
algebraic equation (switched DAE). This framework was originally introduced for
modeling electrical circuits [12] and allows a precise mathematical description of
peaks and fast transients in the form of Dirac impulses and jumps.

Our focus in this paper is on the so-called water hammer, which results from
sudden changes of velocity in pipelines and can cause large pressures magnitudes.
It is usually created by rapidly closing valves, shutting off or restarting pumps. Our
goal is to show that these pressure peaks occurring in the PDE simulations can be
well approximated by a suitable switched DAE model.

The paper is organized as follows. In Sect. 2, the water network and its compo-
nents are defined as a graph and the mathematical models of the pipes and other
components (like reservoir and valves) are introduced. In Sect. 3, we study in detail
a simple water network which exhibits a water hammer; in particular, we derive
the corresponding PDE model as well as a switched DAE model. In Sect. 4, we
describe the solution theory used in solving our sample network problem. In Sect. 5,
a numerical comparison of the PDE and switched DAE model is presented.

2 Mathematical Model

The structure of a water network can be modeled as a graph G = (V,E) where V is
the set of nodes and E ⊆ V × V is the set of edges. Each edge e ∈ E corresponds to
a pipe of the water network, and the nodes v ∈ V are the connections or endpoints of
pipes, including junctions, pumps, valves, or reservoirs. We denote by γ −

v (γ +
v ) the

set of all indices of edges ei ∈ E outgoing (ingoing) from (to) the node v ∈ V; see
Fig. 1 for an illustration of this notation.

In themodel of water network elements, the twomain physical quantities pressure
and flow are involved. Those values at the endpoints of the pipes are related to each

Fig. 1 A node v with three incident edges ei , e j , ek ; here, γ +
v = {i} and γ −

v = { j, k}
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other corresponding to the type of node. Furthermore, the modeling of the flow
in the pipes also involves density of the water. Usually, water is assumed to be
incompressible; i.e., the density is assumed to be constant. However, our focus is on
modeling the water hammer effect and for this it is necessary to take into account
the (slight) compressibility of water.

2.1 Models of Water Flow in Pipe

One can model water flow in a pipe in two different ways depending on whether
the compressibility of water is taken into account or not. In order to study transient
phenomena likewater hammer, it is necessary tomodel compressibility; in particular,
density and mass flow become space-dependent quantities. On the other hand, to
understand the qualitative behavior, in particular, in large networks, it often suffices
to model water as incompressible fluid. We will briefly introduce both models in the
following.

2.1.1 Compressible Flow in a Pipe

Following [1, 13] we use the following pressure law for compressible fluids:

P(ρ) = Pa + K
ρ − ρa

ρa
, (1)

where K > 0 is the so-called bulk modulus, Pa > 0 is the atmospheric pressure, and
ρa > 0 is the density at atmospheric pressure. The bulk modulus is related to the
speed of sound c > 0 as follows:

c2 = ∂P

∂ρ
= K/ρa . (2)

Note that β := 1/K is the so-called compressibility coefficient. We consider a com-
pletely filled pipe of length L > 0 with mass density ρ(x, t) > 0 and mass flux
q(x, t) ∈ R both defined on [0, L] × R+. The compressible flow of water in the pipe
can be modeled by the balance law of the following form [3, Sect. 2]:

∂tρ + ∂xq = 0,

∂t q + ∂x

(
q2

ρ
+ P(ρ)

)
= −c f

q |q|
2Dρ

,
(3)

with the pressure law P : R+ → R+ given by (1) and where c f > 0 is the friction
against the pipe wall and D > 0 is the diameter of the pipe. The initial condition for
(3) is:
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q(x, 0) = q0(x) and P(ρ(x, 0)) = p0(x) x ∈ [0, L], (4)

for some initial flow q0 : [0, L] → R and some initial pressure p0 : [0, L] → R+.
Note that the initial condition is given implicitly in terms of the pressure and not
explicitly in terms of the density. The reason is that the pressure is the more relevant
physical quantity, in particular, when the pipes are coupled with other water network
elements. When the individual pipes are connected with other elements of the overall
water distribution network, additional boundary and so-called coupling conditionwill
be imposed.

2.1.2 Coupling Conditions at Intersection Nodes

The balance law (3) has to be completed by initial, boundary, and coupling con-
ditions across the whole network. Suppose the initial data Pl(ρl(x, 0)) = pl,0 and
ql(x, 0) = ql,0 are given for each pipe l in the network, where ρl, ql , and Pl denote
density, flow, and pressure along each pipe edge el . Admissible boundaries must
be chosen in accordance with the characteristics. Preservation of mass yields the
coupling condition

∑
l∈γ +

v

ql(L , t) =
∑
l∈γ −

v

ql(0, t). (5)

and consistency of pressure yields

pi (L , t) = p j (0, t), ∀i ∈ γ +
v , j ∈ γ −

v , ∀v ∈ V. (6)

Condition (5) is an analogue of Kirchoff’s current law for electrical circuits.

2.1.3 Quasi-Stationary Water Flow Model

After some initial transient behavior, the water flow in the pipe may be assumed
to get stationary; i.e., the flow is location-independent and we write Q(t) = q(x,t)

A
(mass flux is mass flow per unit area), where A = πD2/4 is the area of the pipe.
Furthermore, the density is assumed constant in space and time; i.e., ρ(x, t) = ρ for
(x, t) ∈ [0, L] × R+ and the pressure variable p(x, t) is not coupled to the density
via (1) anymore (in particular, water is considered incompressible). The remaining
dynamical behavior in the variables Q(t), P0(t) = p(0, t) and PL(t) = p(L , t) can
be described by the following ODE [2, 5, 6]:

dQ

dt
+ A

L
(PL − P0) + c f Q |Q|

2DAρa
= 0. (7)
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2.2 Other Network Elements

2.2.1 Reservoir

A reservoir is a node in the water network graph with arbitrary mass flow but with
given pressure. For example, if a node vi is designated as reservoir then pressure at
this node will be set as constant.

2.2.2 Valve

Avalve is a control elementwhich can be opened or closed and is located at one end of
an edge. A closed valve here is modeled as a boundary condition at the corresponding
end of the pipe in the form of a prescribed zero flow (instead of the corresponding
pressure consistency 6). As an example, assume ei , e j ∈ E are connected at junction
node v, and a valve is located at the end of pipe e j , then if the valve is open we just
have the coupling conditions (5) and (6); in case the valve is closed instead of (6),
we have the boundary condition q j (L , t) = 0 and hence, due to (5), also qi (0, t) = 0
(if more than two pipes are incident with v, then there may still be a nonzero flow
through the node even if the valve is closed).

3 Analysis of a Simple Water Network

We want to study the water hammer effect on a simple water network consisting
of two reservoirs located at nodes vR1 and vR2 , with given pressure pvR1 and pvR2 ,
respectively, and six pipes each of length L . Three valves V1, V2 and V3 are located
at the end of pipes 4 and 5 and at the beginning of pipe 6, respectively, as shown in
Fig. 2. We assume here that these three valves are opened and closed synchronously;
the asynchronous case is ongoing research.

3.1 PDE Mode1

Each pipe is modeled by system of balance laws given by (3) with pressure law (1)
and for pipe i and will look as follows,

∂tρi + ∂xqi = 0,

∂t qi + ∂x

(
q2
i

ρi
+ P(ρi )

)
= −c fi

qi |qi |
2Diρi

.
(8)
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Reservoir

vR1 v1 v2

v3 v4 vR2

V1

V2 V3

Pipe−5

Pipe−1

Pipe−3

Pipe−2

Pipe−4

Pipe−6

Fig. 2 Simple water network with two reservoirs at nodes vR1 and vR2 , six pipes, and three syn-
chronous valves at node v4

For the sake of simplicity, we are using identical friction factors and diameters, i.e.,
c fi = c f , Di = D, ∀i ∈ {1, · · · , 6}. Denote with Pi (x, t) = P(ρi (x, t)) the pressure
in the i th pipe.

In contrast to [7], we present here a water hammer on a network with multi-
ple valves so we need to take more coupling conditions into account: The vertices
v1, v2, v3 are coupling vertices and modeled by (6) and (5). At node v4 valves are
present at each incident pipe and it is assumed that they are initially open and simul-
taneously closed at t = tS , resulting in the time-varying boundary condition:

{
(5), (6) at v4 t ∈ (0, tS),

qV1 = qV2 = qV3 = 0, t > tS.
(9)

In the following, the pressure at the valves is denoted by pV1(t) = P4(L , t), pV2(t) =
P5(L , t) and pV3(t) = P6(0, t), respectively; moreover, qV1(t) = q4(L , t), qV2(t) =
q5(L , t), qV3(t) = q6(0, t).

3.2 Switched DAE Framework

The quasi-stationary model (7) together with the corresponding coupling conditions
for a setup as shown in Fig. 2 leads to a switched DAE of the form,

Eσ ẋ = Aσ x + f + gσ (x), (10)
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with x = (Q1, Q2, Q3, Q4, Q5, Q6, P1, P2, P3, P4, PV1 , PV2 , PV3)
� and

σ(t) =
{
1, t ∈ [0, tS), V1, V2, V3 open,

2, t ≥ tS, V1, V2, V3 closed.

The equations of the network when t ∈ [0, tS) are given as follows,

−dQ1

dt
=c1(Pv1 − PR1) + c2Q1 | Q1 |, (11a)

−dQ2

dt
=c1(Pv2 − Pv1) + c2Q2 | Q2 |, (11b)

−dQ3

dt
=c1(Pv3 − Pv1) + c2Q3 | Q3 |, (11c)

−dQ4

dt
=c1(PV1 − Pv2) + c2Q4 | Q4 |, (11d)

−dQ5

dt
=c1(PV2 − Pv3) + c2Q5 | Q5 |, (11e)

−dQ6

dt
=c1(PR2 − PV3) + c2Q6 | Q6 |, (11f)

Q1 − Q2 − Q3 = 0 (11g)

Q3 − Q5 = 0 (11h)

Q2 − Q4 = 0 (11i)

Q5 + Q4 − Q6 = 0, (11j)

PV1 − P4 = 0, (11k)

PV2 − P4 = 0, (11l)

PV3 − P4 = 0, (11m)

where c1 = A
L > 0 and c2 = c f

2DAρa
> 0. For t ≥ tS Eqs. (11k), (11l), (11m) will be

replaced by

Q4 = 0, Q5 = 0, Q6 = 0. (12)

In terms of the nonswitched DAE (10), we have
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Ep=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

-1 0 0 0 0 0 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0 0 0 0 0 0
0 0 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 -1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Ap=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 c1 0 0 0 0 0 0
0 0 0 0 0 0 -c1 c1 0 0 0 0 0
0 0 0 0 0 0 -c1 0 c1 0 0 0 0
0 0 0 0 0 0 0 -c1 0 0 c1 0 0
0 0 0 0 0 0 0 0 -c1 0 0 c1 0
0 0 0 0 0 0 0 0 0 0 0 0 -c1
1 -1 -1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 -1 0 0 0 0 0 0 0 0
0 1 0 -1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 -1 0 0 0 0 0 0 0
0 0 0 1-sp 0 0 0 0 0 -sp sp 0 0
0 0 0 0 1-sp 0 0 0 0 -sp 0 sp 0
0 0 0 0 0 1-sp 0 0 0 -sp 0 0 sp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−PvR1
0
0
0
0

PvR2
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, gp(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c2Q1|Q1|
c2Q2|Q2|
c2Q3|Q3|
c2Q4|Q4|
c2Q5|Q5|
c2Q6|Q6|

0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(13)

where p = 1, 2 and s1 = 1 and s2 = 0.

4 Discussion on Switched DAEs

Note that the switched DAE (10) contains a nonlinear term gσ (x); therefore, the
distributional solution framework [10, 11] cannot be applied directly. Nonlinear
switched DAEs were investigated in [9], but this approach excludes Dirac impulses
in x by definition, because if a Dirac impulse occurs in the solution x of (10) (which
we actually desire to capture the water hammer effect) then it is unclear how gσ (x)
has to be evaluated in general (e.g., what is the sine of a Dirac impulse). Here we
have a special structure which we can write in the following form

g(x) = N g(M x),

M = [
I{6×6} O{6×7}

]
, N = M�.

gi (Qi ) = −c2Qi |Qi | i = 1, · · · , 6.

This special structure allows us to extend the distributional solution theory from the
linear case to thenonlinear case, c.f. [7]. Tokeep it simple here, consider the individual
equation − dQi

dt = c1(Pvi − PvR1 ) + c2Qi | Qi | and let us denote by Qi (t−s ), Qi (t+s )

the flow before and after the switching time ts . When the valves are closed all flows
become zero, in particular, Qi (t+s ) = 0 and since in general Qi (t−s ) �= 0 there will
be Dirac impulse in dQi

dt at the switching time ts . In fact, the impulse part of dQi

dt at
ts is given by

dQi

dt
[ts] = Qi (t

+
s ) − Qi (t

−
s )δts = −Qi (t

−
s )δs
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and for t > ts we have dQi

dt = 0 because Qi is identically zero. Altogether we can
conclude from (11) together with (12) that for t ≥ ts :

Pv1 = 1

c1
Q1(t

−
s )δts + PR1 = 1

c1
Q1(t

−
s )δts + PR1 ,

Pv2 = 1

c1
Q2(t

−
s )δts + Pv1 = 1

c1
(Q2(t

−
s ) + Q1(t

−
s ))δts + PR1 ,

Pv3 = 1

c1
Q3(t

−
s )δts + Pv1 = 1

c1
(Q3(t

−
s ) + Q1(t

−
s ))δts + PR1 ,

PV1 = 1

c1
Q4(t

−
s )δts + Pv2 = 1

c1
(Q4(t

−
s ) + Q3(t

−
s ) + Q1(t

−
s ))δts + PR1 ,

PV2 = 1

c1
Q5(t

−
s )δts + Pv3 = 1

c1
(Q5(t

−
s ) + Q3(t

−
s ) + Q1(t

−
s ))δts + PR1 ,

PV3 = 1

c1
Q6(t

−
s )δts + PR2 = 1

c1
Q6(t

−
s )δts + PR2 .

(14)

The coefficient in front of δts determines the impulse length. For t > ts it is clear that
all pressures will settle down as

pv1 = pv2 = pv3 = pV1 = pV2 = PR1 , pV3 = PR2 .

5 Comparison of both Modeling Approaches

Our focus here is to observe the jump and Dirac impulse in the pressure, due to
the instantaneous closure of valves located at V1, V2. In particular, we assume that
the PDE solution on [0, tS) is stationary; i.e., qi (t, x) i = 1, · · · , 6 is approximately
constant in time and space (or in otherwords,when the valves are closed the dynamics
in all pipe have approximately settled down). For numerical simulations,we use Flux-
Corrected Transport (FCT) scheme and artificial viscosity (<0.25) where solution
is nonsmooth. Figure3 shows the results for the pressure value at V1 (similar plots
result also for the pressure at V2) over the time interval [3s, 8s] with initial values

qi (0, x) ≡ 0, ρi (0, x) ≡ 1 × 103

and pipes parameters:

Pa = 1.01 × 106, β = 1

K
= 4 × 10−9, ρa = 1000,

L = 5, D = 0.5, c f = 0.02.

We have chosen a moderate ratio between length and diameter of pipe, so that the
water hammer effect is better visible. The parameters Pa , ρa and β are physical
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3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0.5

1

1.5
·109

ts ε

P
V
2

valve open: [0, ts)
valve closed transition: [ts, ts + ε)
valve closed settled: [ts + ε, ∞)

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

0.5

1

1.5
·109

ts

t (Time)

P
V
2

valve open: [0, ts)
valve closing at: [ts]
valve closed: (ts, ∞)

Fig. 3 Comparison of pressure profile PDE models (pV2 ) (above) and switched DAE model (PV2 )
(below), profile for pV1 is approximately symmetrical

parameters, and c f is chosen via the so-called moody chart; see, for example, [8].
Figure3 clearly shows a strong pressure spike just after the switching time tS = 4s;

the pressure oscillatoryly settles to a new pressure value say P
1
R . The same behavior

occurs for PV2 which settles to P
1
R . Instead of running the simulation for a very long

time, we just chose a settling time ε > 0 and took the average of the pressures on
the interval (tS + ε, T ] where T > tS + ε is our overall simulation time, i.e., with
x = L

P
1
R := 1

T − (tS + ε)

∫ T

tS+ε

pV1(x, t) dt.

P
2
R := 1

T − (tS + ε)

∫ T

tS+ε

pV2(x, t) dt.

With
ε = 1.5, T = 8

we obtain
P
1
R ≈ P

2
R ≈ 8.23 × 108.
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Table 1 Comparison of pressure at valves V1 and V2 for PDE and switched DAE model

β P
1
R P

2
R

∣∣∣P1
R−PvR1

(t+S )

∣∣∣
PvR1

(t+S )

∣∣∣P2
R−PvR1

(t+S )

∣∣∣
PvR1

t+S )

15.0 · 10−9 8.1613 · 108 8.2494 · 108 8.3 · 10−03 2.4 · 10−03

9.0 · 10−9 8.2644 · 108 8.2419 · 108 4.2 · 10−03 1.4 · 10−03

4.0 · 10−9 8.2401 · 108 8.2408 · 108 1.2 · 10−03 1.3 · 10−03

5.0 · 10−10 8.2329 · 108 8.2352 · 108 3.5 · 10−04 6.3 · 10−04

2.0 · 10−10 8.2317 · 108 8.2348 · 108 2.6 · 10−04 5.8 · 10−04

The value predicted by the switched DAE solution for t > ts from (14) is,

PvR1 (t
+
S ) = PR1 ≈ 8.23 × 108.

In Table1, the relative error between P
i
R , i = {1, 2} and PvR1 (t

+
S ) is presented for

decreasing compressibility coefficients β. In order to compare the peak in PV1 , PV2

just after the valve is closed with the Dirac impulse PV1 [tS] and PV2 [tS] in response to
the switching time, we recall that a Dirac impulse δts at ts > 0 can be approximated
by a sequence of functions t �→ δε

ts (t) such that δε(t) = 0 for t �= [ts, ts + ε] and∫ ts+ε

ts
δε
ts (t) dt = 1. We therefore make the ansatz for pV1 and PV2 ,

pV1 ≈ P
imp1tS δε(t) + P

1
R, pV2 ≈ P

imp2tS δε(t) + P
2
R t ∈ (tS, T ].

Hence, we can approximate the magnitude of the “smoothed-out” Dirac impulse
occurring in the PDE model as follows:

P
imp1tS :=

∫ tS+ε

tS

pV1 − P
1
R dt.

analogously for pV2 ,

P
imp2tS :=

∫ tS+ε

tS

pV2 − P
2
R dt.

The Dirac impulse induced by the switched DAE is defined from (14), i.e.,

PV1 [tS] = 1

c1
(Q4(t

−
s ) + Q3(t

−
s ) + Q1(t

−
s ))δts =: P imp1tS δts ,

PV2 [tS] = 1

c1
(Q5(t

−
s ) + Q3(t

−
s ) + Q1(t

−
s ))δts =: P imp2tS δts .
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Table 2 Impulse length comparison

β P
imp1tS P

imp2tS P
imp1tS P

imp2tS

∣∣∣∣∣P
imp1tS −P

imp1tS

∣∣∣∣∣
P
imp1tS

∣∣∣∣∣P
imp2tS −P

imp2tS

∣∣∣∣∣
P
imp2tS

15.0 · 10−9 5.7821 · 107 5.7831 · 107 5.1137 · 107 5.1137 · 107 0.1307 0.1309

9.0 · 10−9 3.3944 · 107 3.3951 · 107 3.8590 · 107 3.8590 · 107 0.1204 0.1202

4.0 · 10−9 3.0906 · 107 3.0918 · 107 2.8407 · 107 2.8407 · 107 0.0880 0.0884

5.0 · 10−10 2.0299 · 107 2.0292 · 107 2.1096 · 107 2.1096 · 107 0.0378 0.0381

2.0 · 10−10 1.8450 · 107 1.8457 · 107 1.8482 · 107 1.8482 · 107 0.0017 0.0014

A comparison between P
imp1tS with P imp1tS and P

imp2tS with P imp2tS for different values
of the compressibility coefficient β is presented in Table2. For large β the approxi-
mation is not very accurate; however, for decreasing compressibility the accuracy of
the approximation improves.

Similar as for the PDE simulations, we assume that the DAE is stationary before
we switch, i.e., dQi

dt (t−s ) = 0 for i ∈ {1, · · · , 6} before closing of the valve. It should
be noted that although the compressibility coefficientβ does not affect the parameters
of the switched DAE model, it does affect the initial value q0, because this is chosen
to match the stationary solution of the balance law (8) considered on [0, tS) which
depends on β.

6 Conclusion

We have presented a switched DAE model for water hammer on a simple setup,
which we compared with a compressible nonlinear system of balance laws. With
the support of numerical simulations of the PDE model, we justified our conjecture
that a switched DAE model is a good approximation for the PDE model with small
compressibility coefficient. In future, we will focus on a formal proof of convergence
as well as the treatment of larger networks with asynchronously closed valves.

Acknowledgement We are thankful to Jochen Kall for fruitful discussions concerning the PDE
simulations of earlier versions of this work.
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Stability Criteria for Some System
of Delay Differential Equations

Yuya Kiri and Yoshihiro Ueda

Abstract In this paper, we study a system of linear differential equations with inter-
action effects of delay and derive some necessary and sufficient conditions concerned
with the absolutely stable.We had already knownmany results about the scalar equa-
tions. On the other hand, the results of the delay systems are not many because the
corresponding characteristic equation is too complicated. Under this situation, we
introduce the simple and useful method to get the stability criteria and apply to some
general system of delay differential equations.

Keywords System of delay differential equations · Absolute stability
AMS Subject Classifications 34K20 · 34A30

1 Introduction

We analyze the following system of delay differential equations:

u′
1(t) + a1u1(t) + α1u1(t − τ11) + βnun(t − τ1n) = 0,

u′
2(t) + a2u2(t) + α2u2(t − τ22) + β1u1(t − τ21) = 0,

...

u′
n(t) + anun(t) + αnun(t − τnn) + βn−1un−1(t − τnn−1) = 0,
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where a j , α j and β j are complex numbers, and time delays τ jk are nonnegative
numbers for 1 ≤ j, k ≤ n. The system (1) has interaction delay terms, which appears
population models of Lotka–Volterra type, neural network models, and also traffic
models (see [1, 3–5, 10–12, 14, 17] and also references therein).

Our purpose of this paper is to derive the stability condition for the system (1). A
delay system is called absolutely stable if it is asymptotically stable for all values of
the delays and conditionally stable if it is asymptotically stable for all values for the
delays in some intervals. It is well known that the stability profile of the system (1)
is determined completely by the roots of its associated characteristic equation. Our
characteristic function is defined by

G(λ) = det

⎛
⎜⎜⎜⎜⎜⎝

λ + γ1 0 · · · 0 βne−λτ1n

β1e−λτ21 λ + γ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · λ + γn−1 0
0 0 · · · βn−1e−λτnn−1 λ + γn

⎞
⎟⎟⎟⎟⎟⎠

,

where we define γ j := a j + α j e−λτ j j for 1 ≤ j ≤ n. Then G(λ) = 0 is a character-
istic equation of (1) and λ ∈ C is a corresponding characteristic root, which is called
an eigenvalue. Especially, if we suppose that τ1n = τnn and τ j+1 j = τ j j for 1 ≤
j ≤ n − 1, then the function G(λ) is represented as G(λ) = det(λI + A + Be−λT ),
where A, B and T are coefficient matrices defined by

A =

⎛
⎜⎜⎜⎝

a1
a2

. . .

an

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎝

α1 0 · · · 0 βn

β1 α2 · · · 0 0
...

...
. . .

...
...

0 0 · · · βn−1 αn

⎞
⎟⎟⎟⎠ , T =

⎛
⎜⎜⎜⎝

τ11
τ22

. . .

τnn

⎞
⎟⎟⎟⎠ ,

and e−λT denotes the exponential matrix. As mentioned before, it is well known that
the solution of (1) is asymptotically stable if and only if all of our eigenvalues lie
in the left half of the complex plane (see, e.g., [6, 8, 15]). Therefore, our goal is to
construct not only a necessary condition but also some sufficient condition that the
real parts of all eigenvalue are negative.

There are a lot of results concerned with the stability for the delay differential
equations. In 1950, Hayes in [7] studied a scalar delay differential equation and
derived the necessary and sufficient condition for the conditional stability. Bellman
and Cooke in [2] also considered the same problem. For the scalar equation, the
properties of solutions are well known. However, the analysis for systems of delay
differential equations is complicated and there are many open problems. Under this
situation, we treat the general system (1) and try to derive a new criterion for the
absolute stability.

We have several known results for the system (1) in some specific situation. For
example, Liu in [9] and Lu and Wang in [10] studied the system (1) with n = 2
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and α j = 0 and obtained some stability criteria. Especially, the authors would like
to mention the result in Suzuki and Matsunaga [16]. They succeeded to derive the
sharp criteria of the conditionally stable for the system (1) with α j = 0. However,
we can not apply the method introduced in [16] to the system (1). Thus, we need to
find the different approach to get the stability criteria for (1).

On the other hand, Peralta and Ueda in [13] recently introduced the new approach
to the system (1). They considered (1) with n = 2 and derived the criterion of the
absolutely stable by using the energy method. Furthermore, they succeeded to apply
their approach to the following system of partial differential equations with delay
effect.

∂t u1(t, x) + ∂xu3(t, x) + a1u1(t, x) + α1u1(t − τ1, x) + β2u2(t − τ2, x) = 0,

∂t u2(t, x) + ∂xu4(t, x) + a2u2(t, x) + α2u2(t − τ2, x) + β1u1(t − τ1, x) = 0,

∂t u3(t, x) + ∂xu1(t, x) = 0,

∂t u4(t, x) + ∂xu2(t, x) = 0.

Their result tells us that the stability criteria for the system (1) is applicable to some
problems of partial differential equations.

2 Stability Criteria

In this section, we show the new criteria of the absolutely stable for the system (1).
Our first main result is stated as follows.

Theorem 1. If the coefficients of the system (1) satisfy the following condition:

Re(a j ) − |α j | > 0, 1 ≤ j ≤ n, (2)
n∏
j=1

(Re(a j ) − |α j |) >

n∏
j=1

|β j |, (3)

then the system (1) is absolutely stable.

Remark 1. Theorem 1 includes the known results obtained in Liu [9] and Peralta
and Ueda [13].

Proof of Theorem 1. Let λ = x + iy with x, y ∈ R, and assume that x ≥ 0. Then we
derive a contradiction. We can rewrite the characteristic equation G(λ) = 0 that

n∏
j=1

(λ + a j + α j e
−λτ j j ) + βne

−λτ1n

n−1∏
j=1

β j e
−λτ j+1 j = 0,
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and hence, we obtain

n∏
j=1

|λ + a j + α j e
−λτ j j | =

n∏
j=1

|β j e
−λτ |, (4)

where we define τ := τ1n + ∑n−1
j=1 τ j+1 j . Because of x ≥ 0, we have e−xτ jk ≤ 1 for

1 ≤ j, k ≤ n. Thus, this yields

n∏
j=1

|β j e
−λτ | =

n∏
j=1

|β j |e−xτ ≤
n∏
j=1

|β j |. (5)

On the other hand, since x ≥ 0 and (2), we can compute that

|λ + a j + α j e
−λτ j j | ≥ |λ + a j | − |α j e

−λτ j j |
≥ x + Re(a j ) − |α j |e−xτ j j

≥ Re(a j ) − |α j | > 0

for an arbitrary j with 1 ≤ j ≤ n. Therefore, we obtain

n∏
j=1

|λ + a j + α j e
−λτ j j | ≥

n∏
j=1

(Re(a j ) − |α j |). (6)

Finally, substituting (5) and (6) into (4), we arrive at

n∏
j=1

(Re(a j ) − |α j |) ≤
n∏
j=1

|β j |.

However, this inequality is a contradiction under the condition (3). Consequently, we
conclude that the real part of the eigenvalues must be negative under the condition
(2), (3). This completes the proof. ��

We next show some conditions for the coefficients of the system (1), which lead
the instability phenomena.

Theorem 2. If the coefficients of the system (1) satisfy the following condition (i)
or (ii) or (iii):
(i) In the case β j = 0 for some j with 1 ≤ j ≤ n, assume that Im(ak) = 0 and
|ak | < |αk | for some k with 1 ≤ k ≤ n.
(ii) In the case β j �= 0 andα j = 0 for any j with 1 ≤ j ≤ n, assume that Im(a j ) = 0
for any j with 1 ≤ j ≤ n, and

n∏
j=1

|a j | <

n∏
j=1

|β j |. (7)
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(iii) In the case β j �= 0 for any j with 1 ≤ j ≤ n, assume that a j = a for any j with
1 ≤ j ≤ n, where a is an arbitrary fixed real number. Moreover, assume that

n∏
j=1

|a + α j | <

n∏
j=1

|β j |. (8)

Then the system (1) is not absolutely stable.

Proof. Throughout this proof, we suppose τ jk = τ for 1 ≤ j, k ≤ n, where τ is a
nonnegative number. Then, our characteristic equation is rewritten as

n∏
j=1

(λ + a j + α j e
−τλ) + e−nτλ

n∏
j=1

β j = 0. (9)

Our purpose of this proof is to obtain the root λ of (9) such that Reλ > 0.
We first prove in the case of condition (i). In the case that β j = 0 for some j with

1 ≤ j ≤ n, our characteristic equation is reduced to
∏n

j=1(λ + a j + α j e−τλ) = 0.
Then at least one eigenvalue λ satisfies

λ + ak + αke
−τλ = 0. (10)

for some k with 1 ≤ k ≤ n. We consider the solution of (10). We first show that
(10) has a purely imaginary root λ = iω0 with some τ = τ0. Indeed, we put f (λ) :=
λ + ak and then obtain | f (0)| = |ak | and | f (iω)| → ∞ as ω → ∞. Thus, under the
assumption |ak | < |αk |, there is a positive numberω0 such that | f (iω0)| = |αk |. This
tells us that there exists a positive number θ such that f (iω0) = −αke−iθ , and hence,
iω0 + ak + αke−iθ = 0. Therefore, by the choice of τ0 such that ω0τ0 = θ + 2πm
withm ∈ N0, the pair (iω0, τ0) becomes a solution of (10). We note that we can take
τ0 suitably large.

Next, we get the root λ of (10) with Reλ > 0. We define g(λ, τ ) := λ + ak +
αke−τλ. Then gλ(λ, τ ) = 1 − αkτe−τλ and we can take m ∈ N0 such that

gλ(iω0, τ0) = 1 + τ0(iω0 + ak) �= 0.

Thus, by the implicit function theorem, we have a solution λ(τ) of (10) around τ0.
Furthermore, the equality

λ′(τ0) = −gτ (iω0, τ0)

gλ(iω0, τ0)
= − iω0(iω0 + ak)

1 + τ0(iω0 + ak)

gives us that

Reλ′(τ0) = ω0(ω0 + Im(ak))

(1 + τ0Re(ak))2 + τ 2
0 (ω0 + Im(ak))2

.
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Therefore, we can obtain Reλ′(τ0) �= 0 if ω0 satisfies ω0 + Im(ak) �= 0, and then
there is τ1 such that Reλ(τ1) > 0.

We next consider in the case of condition (ii) and (iii). We also show that (9) has a
purely imaginary root λ = iω̃0 with some τ = τ̃0. We put f̃ (λ) := ∏n

j=1(λ + a j +
α j e−τλ), and then we have | f̃ (0)| = ∏n

j=1 |a j + α j | and | f̃ (iω)| → ∞ as ω → ∞.
Therefore, under the assumption (8) and (7), there exists a positive number ω̃0 such
that | f̃ (iω̃0)| = ∏n

j=1 |β j |. This means that there exists a positive number θ̃ such

that f̃ (iω0) = −e−i θ̃
∏n

j=1 β j . This fact gives us that

n∏
j=1

(iω̃0 + a j + α j e
−iτ ω̃0) + e−i θ̃

n∏
j=1

β j = 0.

Hence, we can choose τ̃0 such that nτ̃0ω̃0 = θ̃ + 2πm̃ with m̃ ∈ N0. Then the pair
(iω̃0, τ̃0) satisfies the equation (9). We also remark that we can take τ̃0 suitably large.

Based on the above argument, we try to find the root λ of (9) with Reλ > 0. We
define

g̃(λ, τ ) :=
n∏
j=1

(λ + a j + α j e
−τλ) + e−nτλ

n∏
j=1

β j .

Then we compute that

g̃λ(λ, τ ) =
n∑

k=1

(1 − ταke
−τλ)

∏
j �=k

(λ + a j + α j e
−τλ) − nτe−nτλ

n∏
j=1

β j

=
n∑

k=1

1 − ταke−τλ

λ + ak + αke−τλ
{g̃(λ, τ ) − e−nτλ

n∏
j=1

β j } − nτe−nτλ

n∏
j=1

β j .

Therefore

g̃λ(iω̃0, τ̃0) = −{
n∑

k=1

1 − τ̃0αke−i τ̃0ω̃0

iω̃0 + ak + αke−i τ̃0ω̃0
+ nτ̃0}e−inτ̃0ω̃

n∏
j=1

β j

= −Φne
−inτ̃0ω̃0

n∏
j=1

β j ,

where

Φn :=
n∑

k=1

1 + τ̃0(iω̃0 + ak)

iω̃0 + ak + αke−i τ̃0ω̃0
,
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and we can take m̃ ∈ N0 which satisfies g̃λ(iω̃0, τ̃0) �= 0. Thus, using the implicit
function theorem, we get a solution λ(τ) of (9) around τ̃0. Moreover, we calculate
that

g̃τ (iω̃0, τ̃0) = −Ψne
−inτ̃0ω̃0

n∏
j=1

β j ,

where

Ψn :=
n∑

k=1

iω̃0(iω̃0 + ak)

iω̃0 + ak + αke−i τ̃0ω̃0
,

and then

Reλ′(τ̃0) = −Re
(Ψn

Φn

)
= − 1

|Φn|2 Re(ΦnΨ̄n).

Here we can compute

ΦnΨ̄n =
n∑

j,k=1

−iω̃0(iω̃0 + ak)

(iω̃0 + a j + α j e−i τ̃0ω̃0)(iω̃0 + ak + αke−i τ̃0ω̃0)

− i τ̃0ω̃0

∣∣∣
n∑
j=1

iω̃0 + a j

iω̃0 + a j + α j e−i τ̃0ω̃0

∣∣∣
2
.

(11)

Now we consider in the case of condition (ii). Then we get from (11) that

ΦnΨ̄n =
n∑
j=1

−inω̃0

iω̃0 + a j
− in2τ̃0ω̃0,

and hence, we obtain

Re(ΦnΨ̄n) =
n∑
j=1

−nω̃0(ω̃0 + Im(a j ))

Re(a j )2 + (ω̃0 + Im(a j ))2
.

Consequently, we get Reλ′(τ̃0) �= 0 if Im(a j ) = 0 for 1 ≤ j ≤ n, and then there
exists τ̃1 such that Reλ(τ̃1) > 0.

Finally, we consider in the case of condition (iii). By the assumption a j = a for
1 ≤ j ≤ n, we get

ΦnΨ̄n = −ω̃0(ω̃0 + Im(a) + iRe(a))

|1 + τ̃0(iω̃0 + a)|2 |Φn|2 − i
τ̃0

ω̃0
|Ψn|2.

Thus, we obtain Reλ′(τ̃0) �= 0 if ω̃0 satisfies ω̃0 + Im(a) �= 0, and then there is τ̃1
such that Reλ(τ̃1) > 0. Hence, we complete the proof of Theorem 2.



144 Y. Kiri and Y. Ueda

At last of this article, we make a summary that Theorem 1 is very useful to
check that the concrete model of delay equation is absolutely stable or not. However,
Theorem 2 is not enough to conclude the optimality of the stability condition in
Theorem 1. This situation makes one open problem.

Acknowledgements The second author is partially supported byGrant-in-Aid forYoung Scientists
(B) No.25800078 from Japan Society for the Promotion of Science.
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Bound-Preserving Reconstruction
of Tensor Quantities for Remap in ALE
Fluid Dynamics

Matej Klima, Milan Kucharik, Mikhail Shashkov and Jan Velechovsky

Abstract We analyze several new and existing approaches for limiting tensor quan-
tities in the context of deviatoric stress remapping in an ALE numerical simulation
of elastic flow. Remapping and limiting of the tensor component-by-component are
shown to violate radial symmetry of derived variables such as elastic energy or force.
Therefore, we have extended the symmetry-preserving Vector Image Polygon algo-
rithm, originally designed for limiting vector variables. This limiter constrains the
vector (in our case a vector of independent tensor components) within the convex hull
formed by the vectors from surrounding cells—an equivalent of the discrete maxi-
mum principle in scalar variables. We compare this method with a limiter designed
specifically for deviatoric stress limiting which aims to constrain the J2 invariant
that is proportional to the specific elastic energy and scale the tensor accordingly.
We also propose a method which involves remapping and limiting the J2 invariant
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independently using known scalar techniques. The deviatoric stress tensor is then
scaled to match this remapped invariant, which guarantees conservation in terms of
elastic energy.

Keywords ALE · Remapping · Limiter · Stress tensor · Symmetry preservation

MSC2010: 65D05 · 65M99 · 74B05

1 Introduction

The reconstruction of material quantities from discrete values defined on a com-
putational mesh is a key part of high-order numerical schemes for fluid dynam-
ics. For demanding simulations where both high-pressure gradients and shear flows
occur simultaneously, such as in the field of laser–plasma interactions, the Arbitrary
Lagrangian–Eulerian (ALE) framework [3, 6] is often used. As its name suggests, it
allows for arbitrary movement of the computational mesh. We focus on the indirect
ALE formulation which utilizes pure Lagrangian steps [2] advancing the solution
and mesh in time.

If needed, mesh smoothing and subsequent quantity remapping are performed to
preserve sufficient geometric quality of the mesh. In the remapping step, the mono-
tonicity of the reconstructed fields is often ensured by slope limiters. These have
been formulated originally for scalar and later extended to vector quantities. How-
ever, reconstructing and limiting of tensor variables are still a relatively unexplored
territory with only a few specialized methods that have been proposed recently [11].
The design principles of such methods are objectivity (frame invariance) and preser-
vation of bounds and tensor invariants.

The simplest approach presented in this paper involves piecewise linear recon-
struction of the tensor components using a known limiter scheme for scalar variables
(such as the Barth–Jespersen limiter [1]) applied component-wise. This method is
known to violate the solution symmetry for radially symmetric problems. Our alter-
native scheme is inspired by the Vector Image Polygon limiter [5], constraining the
tensor components within a convex hull constructed in the tensor component space.

Another approach was proposed specifically for stress tensor limiting [11], con-
straining its second invariant, and scaling the tensor in a way that is frame invariant
and preserves local extrema and symmetry. We propose an extension of this method,
based on limiting/remapping the tensor components and the J2 invariant separately.
The remapped tensor is then scaled to match the remapped J2 value—as it is pro-
portional to the elastic energy density, which implies that the conservation of energy
will not be violated.
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Properties of the particular methods are demonstrated on a selected numerical test
of static remapping of a tensor quantity with a radially symmetric distribution.

2 Governing Equations—the Lagrangian Step

We solve the time-dependent Euler equations in Lagrangian form, extended to a
general elastic–plastic continuum [10, 13]:

ρ
dν

dt
− ∇ · u = 0, (1)

ρ
du
dt

− ∇ · σ = 0, (2)

ρ
dE

dt
− ∇ · (σu) = 0, (3)

where ρ represents density, ν = 1
ρ
specific volume, σ the Cauchy stress tensor, u

velocity vector, and E = ε + 1
2u

2 specific total energy with ε being the specific
internal energy. The Cauchy stress tensor is symmetric and can be decomposed as

σ = −p I + S, (4)

where p is hydrodynamic pressure, I the identity matrix, and S the deviatoric stress
tensor. For the closure of the system, theMie–Gruneisen equation of state [8] is used.

The system is solved by a numerical scheme based on [10]. A compatible dis-
cretization [2] is used inwhich themovement of the computationalmesh is calculated
nodal force vectors while the discrete stress tensor is defined in cell centers. The cell-
to-node subzonal forces are calculated first as

Fp,c = l1 σc n1 + l2 σc n2, (5)

and then combined to yield the total nodal force,

Fp =
∑

c∈N (p)

Fp,c, (6)

where N (p) is a set containing all neighboring cells of node p. l1, l2 is equal to the
half of the respective cell edge length, and n1,n2 are the unit normal vectors. See
Fig. 1 for details.
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Fig. 1 Cell c to node p
subzonal elastic force Fp,c
construction with half-edge
lengths l1, l2, normals n1,n2
and the cell-centered stress
tensor σc

3 Remapping of the Deviatoric Stress Tensor

In this section,we propose severalmethods for remapping the deviatoric stress tensor.
In two-dimensional planar geometry, it has the following shape:

S =
⎛

⎝
Sxx Sxy 0
Sxy Syy 0
0 0 −(Sxx + Syy)

⎞

⎠ . (7)

It is necessary to use the full 3 × 3 representation [10], where the third diagonal term
enforces the deviatoric property tr (S) = 0. The characteristic equation of the tensor
defines the three invariants:

λ3 + J1λ
2 + J2λ + J3 = 0, (8)

J1 = tr (S) = 0, J2 = 1

2
(S : S) = 1

2
tr(STS), J3 = det(S). (9)

We are interested especially in the J2 invariant, as it is proportional to the elastic
energy density:

eelast. = 1

2μ
J2, (10)

where μ is the shear modulus, a material constant.
There are several properties, we would like the remapper to have. The first is

preservation of bounds—for a tensor variable this is not readily defined but we can
use one of the derived quantities. In the case of deviatoric stress, our remapper
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should preserve the bounds of elastic energy [11]. The total elastic energy should
also be conserved.We propose an extra criterion of preserving the elastic force radial
symmetry. As a vector quantity, the elastic forces (6) are easier to analyze.

In the following subsections we describe several approaches to deviatoric stress
remapping.

3.1 Component-Wise Remap and Limiting of Tensor S

The simplest way of remapping the deviatoric stress tensor is to treat the individual
components of the tensor as independent scalar variables. The tensor components
are remapped similarly to average pressure, where the pressure–volume work is
remapped:

S̃cṼ c = ScV c +
∑

c′∈N (c)

(
FS
c′∩c̃ − FS

c∩c̃′
)
, FS

c′∩c̃ =
∫∫

c′∩c̃
S(x)dV . (11)

The tensor reconstruction S(x) can be expressed in terms of the independent tensor
components as:

⎛

⎝
Sxx
Sxy
Syy

⎞

⎠ (x) =
⎛

⎝
Sc
xx
Sc
xy

Sc
yy

⎞

⎠ + (x − xc)

⎛

⎝
ψxx∇Sxx
ψxy∇Sxy
ψyy∇Syy

⎞

⎠ , (12)

where ∇S is the tensor gradient and its components can be obtained using the least
squares optimization [4, 7] on all neighboring cells. xc is the geometric centroid
of the computational cell and ψxx is a scalar limiting coefficient. In particular, the
Barth–Jespersen procedure [1, 7] is used here:

ψp
xx =

⎧
⎪⎪⎨

⎪⎪⎩

min
(
Smax
xx −Sc

xx

Sp
xx−Sc

xx
, 1.0

)
if Sp

xx > Sc
xx

min
(
Smin
xx −Sc

xx

Sp
xx−Sc

xx
, 1.0

)
if Sp

xx < Sc
xx

1.0 otherwise

, (13)

ψxx = min
p∈P (c)

(
ψp

xx

)
, Sp

xx = Sc
xx + (xp − xc)∇Sc

xx, (14)

where P(c) is the set of all vertices of the cell c, xp is the position of the vertex p,
and Sp

xx is the unlimited reconstruction in the corresponding point. Smax
xx and Smin

xx are
tensor component maximum and minimum calculated on the same 9-cell stencil as
is used for the gradient computation. The same procedure is also used for the other
independent tensor components Sxy and Syy.



150 M. Klima et al.

3.2 VIP Limiter for Tensors

The component-wise limiting approach is simple to implement but it also has several
disadvantages. For simplicity, let us apply this method on vectors first. Due to the
independent limiting of vector components, vectors can be unnecessarily rotated, dis-
torting the directional symmetry. In the tensor case, this can manifest as deformation
of the tensor principal directions. Component-wise limiting also does not guarantee
the validity of the discrete maximum principle for vector magnitudes. This is more
complex for tensors, but similarly the J2 invariant monotonicity is not preserved [11].

To solve these issues, the Vector Image Polygon limiter was proposed [5] and
adapted for the vector magnitude monotonicity problem [12]. It constrains the recon-
structed vector within the convex hull formed by the values in the neighboring cells.
An example and comparison with the component-wise method is shown in Fig. 2—
an extreme case is displayed, where all values reconstructed in vertices lie outside
the convex hull in the tensor component space, but are considered valid by the
component-wise limiter.

We propose applying this method as a scalar slope limiter using (Sxx, Sxy, Syy) as
the 3D tensor component space:

S(x) = Sc + ψV IP(x − xc)∇Sc, (15)

ψV IP = min
p∈P (c)

(‖SV IP − Sc‖
‖Sp − Sc‖

)
, Sp = Sc + (xp − xc)∇S. (16)

Fig. 2 A simplified 2D schematic of the VIP algorithm for tensors with unlimited reconstructed
values in cell nodes Sp1 . . . Sp4, cell-centered average value Sc and the closest limited value SVIP,
compared with component-wise limiting set (red)
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The construction of the convex hull in three dimensions with few points is rel-
atively simple, but the limiter requires a robust intersection algorithm as the hull
often degenerates to a planar case which needs to be treated separately. In the non-
degenerate 3D case, an iterative line–polyhedron intersection is calculated.

The main disadvantages of this algorithm are complexity and more diffusion
compared to component-wise limiting. It noticeably reduces the overall order of
accuracy below second-order.

3.3 J2 Invariant Scaling Limiter

This limiter was formulated specifically for the deviatoric stress limiting in [11].
It is based on an assumption that the monotonicity of J2 invariant (proportional
to elastic energy) is more important than monotonicity of tensor components. The
monotonicity condition can be described as:

Jmin
2 − J c

2 ≤ J p
2 − J c

2 ≤ Jmax
2 − J c

2 ∀p ∈ P(c), (17)

where Jmin
2 and Jmax

2 are again determined on the set of neighboring cells. Single
scaling factor is then used for the reconstructed tensor:

ψ =
√

ψJ2 + (1 − ψJ2)
J c
2

J p
2

, ψJ2 = Barth-Jespersen [J2(S)] , (18)

S(x) = ψ
(
Sc + (x − xc)∇S

)
. (19)

This approach is relatively fast, simple to implement, and the monotonicity of J2 is
guaranteed by design. However, as it has been developed in a different context, its
effect on elastic forces has not been investigated in literature previously.

3.4 J2 Invariant-Based Scalar Slope Limiter

An alternative to previous approach is also presented in [11]. The design goals are
similar, but it uses the formalism of a slope limiter:

S(x) = Sc + (x − xc)ψ∇S, ψ = Barth-Jespersen
[√

J2(S)
]

(20)

Our test show that its behavior is almost indistinguishable from the previous case
while being slightly more resource intensive.
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3.5 Independent Remap of S and J2

The previously described algorithms were intended mainly to reduce symmetry dis-
tortion by using tensor-specific limiting techniques. Here we propose a different
approach for deviatoric stress remapping—the J2 invariant is remapped indepen-
dently of S:

J̃ c
2 Ṽ

c = J c
2V

c +
∑

c′∈N (c)

FJ2
c′∩c̃ − FJ2

c∩c̃′ . (21)

A scalar limiter is then used in the J2 reconstruction. This is equivalent to remapping
the elastic energy density (10) which is a conservative quantity. Then, S is remapped
component-wise (11) without limiting and the resulting tensor is scaled by multiply-
ing by the ratio of the remapped invariant J̃ c

2 and J2(S̃) calculated from remapped
S:

˜̃S = S̃

√
J̃ c
2

J2(S̃)
. (22)

This formulation guarantees conservation of total elastic energy as well as its mono-
tonicity. The component-wise remap of S primarily determines the principal direc-
tions of the tensor (not its J2 invariant) and according to our observation, low-order
(donor) remapping is sufficient here with negligible impacts on the overall accuracy.

4 Numerical Results—Cyclic Remapping of a Nonlinear
Radial Distribution of the Deviatoric Stress Tensor

Wedemonstrate the performance of different deviatoric stress remappingmethods on
a simple static test case—adistribution of the stress tensor is initialized and repeatedly
remappedwithout any influence of the hydrodynamics. The artificial rezoningmotion
was inspired by the “tensor-product” cyclic rezoning [9] and is defined as follows:

rn = rl +
[
r0 − rl
rr − rl

(1 − dn) +
(
r0 − rl
rr − rl

)3

dn

]
(rr − rl), (23)

ϕn = ϕ0, dn = 1

2
sin

(
πn

nmax

)
, rl = 0.1, rr = 1.0,

where r0, ϕ0 are the initial nodal polar coordinates, n is the current remapping step,
and nmax is the total number of remapping steps. This represents a cyclic movement
of nodes in the radial direction where the initial (n = 0) and final (n = nmax) grids
are identical; see Fig. 3.

On such grid, the deviatoric stress tensor is initialized as follows:
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Si,j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
0 0

0 0

)
for i ≤ ni

2
(

− cos(2ϕi,j) − sin(2ϕi,j)

− sin(2ϕi,j) cos(2ϕi,j)

)
for i > ni

2

, (24)

where i, j are the radial and axial indices, and ni is the number of cells in the radial
direction. This distribution generates a radial discontinuity with a peak in the elastic
force (as shown in Fig. 4) and piecewise constant J2 invariant distribution.

A comparison of the final elastic force distribution after the cyclic remapping is
shown in Fig. 5. If no limiter is used, there are visible undershoots of the remapped
quantity. However, limiting components independently does not solve the problem
and adds asymmetry. The VIP limiter performs well, but is slightly more diffusive
than the other alternatives. Our approach to tensor remap seems to shift the position
of the peak, but preserves monotonicity of forces perfectly in this test.

Fig. 3 Polar grid sequence—different steps of the cyclic rezoning movement, 20 × 20 mesh

Fig. 4 Initial elastic force
distribution shown in the
internal nodes of the 20 × 20
mesh, force vectors are
colored according to
magnitude
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Fig. 5 Radial component of the total nodal elastic force produced by the deviatoric stress tensor
after cyclic remapping, compared by different remapping methods. 40 × 40 mesh, nmax = 80

Figure 6 shows the radial distribution of the J2 invariant. Here, the asymme-
try generated by component-wise limiting is even stronger. The VIP limiter does
not guarantee monotonicity of the elastic energy. All other methods are based on
constraining the J2 invariant directly and therefore are successful in this task. Our
remapping method preserves symmetry, does not violate energy conservation, and
is the only one which limits both J2 and elastic forces correctly in this idealized test.
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Fig. 6 Radial distribution of the J2 invariant of the deviatoric stress tensor after cyclic remapping,
compared by different remapping methods. 40 × 40 mesh, nmax = 80

Table 1 illustrates the computational efficiency of all limiting methods for the
cyclic remapping case. We can see that most high-order methods with limiting per-
form similarly, except for the VIP-based method which is much more expensive.
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Table 1 Simulation times for deviatoric stress tensor cyclic remapping compared by different
remapping methods, 40 × 40 mesh, nmax = 80, run single-thread on an IntelTM Core i5-4300M
processor

Low-order High-order
unlim.

Comp.-wise
lim.

VIP J2 scaling J2 slope
lim.

S + J2
remap

0.3s 1.4s 1.7s 6.6s 1.7s 1.9s 1.7s

5 Conclusion

Several methods of reconstructing a tensor quantity are proposed in this paper, focus-
ing on the flux-form remap of the deviatoric stress in the context of an indirect ALE
simulation. We show that using a scalar reconstruction method for each independent
tensor component does not guarantee the monotonicity preservation of elastic forces
and energy while distorting the symmetry of the solution severely.

We have implemented amodifiedVector Image Polygon limiter for tensors, show-
ing the viability of this approach. It is, however, a resource-intensive and complex
method that produces more diffusive results. Specialized methods constraining the
second invariant of the tensor are much faster and less diffusive but also reduce the
force overshoots less.

Wepropose a newmethod for remapping the deviatoric stress,where the tensor and
its second invariant are remapped independently. The tensor is then scaled to match
the remapped invariant.Withoutmuch overhead, thismethod preservesmonotonicity
and guarantees the conservation of the elastic energy.

Future work includes testing the reconstruction methods in a full elastic–plastic
simulations and possibly developing methods that work for general tensors.
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On Computing Compressible Euler
Equations with Gravity

Christian Klingenberg and Andrea Thomann

Abstract We present a well-balanced finite volume solver for the compressible
Euler equations with gravity. The Riemann solver used in the finite volumemethod is
approximated by a so-called relaxation Riemann solution. Besides the well-balanced
property, the scheme is also positivity preserving regarding the density and internal
energy. The scheme is able to capture not only isothermal and polytropic stationary
solutions of the hydrostatic equilibriumbut also to preservemore general steady states
up to machine precision. The scheme is tested on numerical examples including the
preservation of arbitrary steady states and the evolution of small perturbations of
stationary solutions to demonstrate the properties of the designed scheme.

Keywords Well-balanced scheme · Suliciu relaxation · Euler equations with
gravity

1 Introduction

When solving the two- or three-dimensional Euler equations with gravity via a finite
volume discretization, we are faced with several challenges. Firstly, we need a dis-
cretization which works well at both low and high Mach numbers for the homo-
geneous system. Secondly, we need a discretization which maintains hydrostatic
equilibria to machine precision. Finally, when combining these two methods, we
need to find a scheme that is numerically stable in more than one space dimension.
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Solutions to the first challenge can be found in the literature; see, e.g., in [2]. Solutions
to the second challenge can be found, e.g., in [3, 4].

We found experimentally, when combining these type of approaches, that typ-
ically instabilities arise when computing in more than one spacial dimension. In
our numerical experiments, we found that one well-balanced method in particular
was more stable than others. In this contribution, we shall report on this method. It is
based on a relaxation approach leading to a positivity and entropy preserving scheme
which is therefore especially useful in applications. In addition, it can be extended
to higher order of accuracy and to higher dimensions.

Consider the system of compressible Euler equations with gravity in one space
dimension given by the following set of equations

∂tρ + ∂xρu = 0,

∂tρu + ∂x (ρu
2 + p) = −ρ∂x�,

∂t E + ∂x (E + p)u = −ρu∂x�.

(1)

Here, ρ > 0 denotes the density, u the velocity, p the pressure and E = ρe + 1
2ρu

2

the total energy, where e > 0 is the internal energy. The function � which is a
continuous function from R to R denotes the gravitational potential. The pressure
is described by a general pressure law which depends on the internal energy and
specific volume τ = 1

ρ
. We require for the solution w = (ρ, ρu, E) the density and

the internal energy to be positive. That means the state vector w must belong to the
set

{
w ∈ R

3 | ρ > 0, e > 0
}
.

The paper is organized as follows. In Sect. 2, the relaxation method we use is
described. The approximate Riemann solver which is designed to have the well-
balanced property is presented in Sect. 3. Section4 is devoted to the associated
numerical scheme which is tested in Sect. 5 to verify the well-balancing property.

2 Relaxation

We consider the following relaxation model derived in [4] where a Suliciu-type
relaxation approach is used, see [1],

∂tρ + ∂xρu = 0,

∂tρu + ∂x (ρu
2 + π) = −ρ∂x Z ,

∂t E + ∂x (E + π)u = −ρu∂x Z ,

∂tρπ + ∂x (ρπ + a2)u = ρ

ε
(p(τ, e) − π),

∂tρZ + ∂xρZu = ρ

ε
(� − Z).

(2)
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Here, the gravity � is approximated by a new variable Z , the pressure p by the new
variable π , and a > 0 denotes the relaxation parameter.

Since we also need the density and internal energy to be positive, we require the
state vector of the relaxation system W = (ρ, ρu, E, ρπ, ρZ) to belong to the set{
W ∈ R

5 | ρ > 0, e > 0
}
.

For a given gravity function �, an equilibrium state for the relaxation model is
defined by

Weq = (ρ, ρu, E, ρp(τ, e), ρ�)T . (3)

The eigenvalues of the system are λ± = u ± a
ρ
and λu = u where the eigenvalue λu

has multiplicity three. Following [7] one finds the fields associated to the eigenvalues
are linearly degenerate and the Riemann invariants with respect to λ± are

I±
1 = u ± a

ρ
, I±

2 = π ∓ au, I±
3 = e − π2

2a2
, I±

4 = Z (4)

and with respect to λu are
I u1 = u. (5)

In the following, let us consider a Riemann problem as initial data with two
constant values separated by a discontinuity at x = 0

W0(x) =
{
WL x < 0

WR x > 0.
(6)

The solution, consists of four constant states separated by contact discontinuities and
has the following structure

WR

( x
t
;WL ,WR

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

WL
x
t < λ−

W ∗
L λ− < x

t < λu

W ∗
R λu < x

t < λ+

WR λ+ < x
t

, (7)

whereW ∗
L ,W

∗
R denote the intermediate states. This leads to 10 unknowns in the Rie-

mann problem, five unknowns each for the intermediate states W ∗
L ,R but one obtains

only nine relations from the Riemann invariants (4) and (5), for the computations
see [9]. This leaves us with one degree of freedom to choose the 10th relation such
that the resulting scheme has the well-balanced property.

How to obtain this 10th relation will be described in the following section.
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3 Well-Balanced Property

In the following, we will focus on steady states at rest, which are solutions of

u =0,

∂x p = − ρ∂x�.
(8)

Following [5], we write the hydrostatic solution as ρ̄ = ρcα(x), p̄ = pcβ(x), where
the constants pc, ρc are reference values at some location x = xc and α(x), β(x) are
non-dimensional functions. Since the density and the pressure are strictly positive,
we requireα, β > 0.These functionsmust satisfy the hydrostatic condition (8)which
leads to an expression for the derivative of the potential given by

∂x�(x) = − pc
ρc

∂xβ(x)

α(x)
. (9)

Awell-balanced schememust satisfy the discretized form of the hydrostatic equa-
tion. Since the discretized flux derivative must exactly balance the discretized source
term, we choose the following symmetrical discretization

πR − πL = πc

2ρc
(βR − βL)

(
ρL

αL
+ ρR

αR

)
. (10)

Using this relation in addition to the relations gained from theRiemann invariants, the
intermediate states W ∗

L ,R can be determined; for details see [9]. Thus, the Riemann
problem of the relaxation system completed by relation (10) has a unique solution
which is given by (7).

Using this Riemann solution one obtains an approximate Riemann solver for the
original system (1) by projecting the solution of the relaxation system on its first
three components

weq
( x
t
;wL ,wR

)
= W (ρ,ρu,E)

R

( x
t
;WL ,WR

)
. (11)

The following result shows thewell-balanced property of the approximativeRiemann
solver.

Theorem 1. The approximate Riemann solver stated by (11) is well-balanced in the
sense that the initial condition on each cell i given by

ui = 0,
ρi

αi
= const.,

pi
βi

= const., (12)

is preserved.
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Proof. For the proof, we refer the reader to [9]. ��
We want to conclude this section by mentioning some additional properties of the
above defined Riemann solver; for detailed proof see [4].

• The approximative Riemann solver ensures the positivity of the density ρ and
the pressure p for a sufficiently large relaxation parameter a. That means starting
with data belonging toΩ := {

w = (ρ, ρu, E) ∈ R
3, ρ > 0, e > 0

}
, and then the

solution weq( xt ;wL ,wR) also belongs to Ω .
• If one considers an entropy inequality ∂tρF(η) + ∂x F(η)u ≤ 0 for the Euler equa-
tions with gravity where η(τ, e) denotes a specific entropy, then the approximative
Riemann solver is consistent with the entropy inequality.

4 Numerical Scheme

In this section, we describe the numerical scheme associated with the approximative
Riemann solver developed above.

The computational domain is divided in N cells Ci = (xi−1/2, xi+1/2) with fixed
step-size x . The time discretization on the interval [0, T ] is given by tn+1 = tn +
t where t > 0 denotes the time step restricted by a CFL condition. Define the
approximative solution at time tn as wn(x, tn) = wn

i for x ∈ (
xi−1/2, xi+1/2

)
and the

updated state at time tn+1 as

wn+1
i = 1

x

∫

Ci

wn(x, tn + t). (13)

Thereby wn(x, tn + t) is a sequence of the approximative Riemann solver (11) at
each interface xi+/2 given by

wn(x, tn + t) = weq(
x − xi+1/2

t
,wn

i ,w
n
i+1) (14)

for x ∈ (xi , xi+1) and t ∈ (0,t).
Following the computations in [6, 7, 10], we obtain for the updated state

wn+1
i = wn

i − t

x
(Fi+1/2 − Fi−1/2) + t

2
(Si−1/2 + Si+1/2). (15)

The approximated source term is given by

Si+1/2 =
(
0,

pc
ρc

(βi+1 − βi )

x

1

2

(
ρi

αi
+ ρi+1

αi+1

)
, u∗

i+1/2
pc
ρc

(βi+1 − βi )

x

1

2

(
ρi

αi
+ ρi+1

αi+1

))

(16)
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Defining sLR = pc
ρc

(βR−βL )

x
1
2

(
ρL

αL
+ ρR

αR

)
and using the formulas for the intermedi-

ate states, the numerical flux function reads

fi+1/2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(ρLuL , ρLu
2
L + πL + sLR, (EL + πL )uL + u∗sLR)T uL − a

ρL
> 0,

(ρ∗
Lu

∗, ρ∗
Lu

∗2 + π∗
L + sLR, (E∗

L + π∗
L )u∗ + u∗sLR)T uL − a

ρL
< 0 < u∗,

(ρ∗
Ru

∗, ρ∗
Ru

∗2 + π∗
R − sLR, (E∗

R + π∗
R)u∗ − u∗sLR)T u∗ < 0 < uR − a

ρR
,

(ρRuR, ρRu
2
R + πR − sLR, (ER + πR)uR − u∗sLR)T uR − a

ρR
< 0.

(17)

5 Numerical Results

In the following section, two types of test cases are presented. First a well-balanced
test is performed, to verify that the initial condition, if satisfying the condition (8),
is preserved on machine precision. The second test addresses the evolution of small
perturbations of a hydrostatic atmosphere.

Well-Balanced Tests

For thewell-balanced tests, we consider stationary solutions for three different poten-
tial functions�(x) = x, �(x) = 1

2 x
2 and�(x) = sin(2πx) to demonstrate that the

scheme can deal with more complex gravitational fields.
For all examples, the computational domain is [0, 1] and the initial velocity is

zero. All errors are given in the L1-norm and computations are performed in double
precision.

As a first example, we consider a isothermal hydrostatic atmosphere given by

ρ0(x) = exp(−�(x)), p0(x) = exp(−�(x)). (18)

In Table 1 the error in density, velocity, and pressure with respect to the initial
condition are given. The calculations are performed on a grid with 100 and 1000
cells, respectively, up to a final time T f = 2.0. As can be seen from Table 1, the error
is of the order of machine precision and thus the hydrostatic atmosphere is preserved.

To show that the scheme can also preservemore general steady states, we consider
as a second test the stationary solution from [3]. For the quadratic potential �(x) =
1
2 x

2, a stationary solution is given by

ρ̄(x) = exp(−x), p̄(x) = (1 + x) exp(−x) (19)

which corresponds to a non-uniform temperature profile given by T (x) = 1 + x .
Thus, the steady state is not isothermal. The number of cells used for the calculations
is doubled for each calculation starting with 100 cells. The error in density, velocity,
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Table 1 Error in density, velocity, and pressure for isothermal example using different potentials

�(x) Cells Density Velocity Pressure

x 100 1.88738E-017 3.67483E-017 2.05391E-017

1000 3.47499E-017 8.74191E-017 4.32431E-017
1
2 x

2 100 3.94129E-016 3.19565E-016 6.11732E-016

1000 1.10456E-015 4.84117E-016 1.84618E-015

sin(2πx) 100 8.60422E-017 7.39687E-017 1.73749E-016

1000 1.07663E-015 5.38106E-015 1.11399E-015

Table 2 Error in density, velocity, and pressure for a non-hydrostatic steady state

Cells Density Velocity Pressure

100 7.04991E-017 4.84102E-016 7.54951E-017

200 8.21565E-017 3.17104E-016 8.38218E-017

400 2.28983E-016 6.08430E-016 5.95357E-016

800 3.49997E-016 1.40357E-015 5.23331E-016

1600 6.12600E-016 1.22546E-015 5.05290E-016

Fig. 1 Perturbation in pressure (left) and velocity (right)

and pressure with respect to the initial condition is reported in Table 2. One can see
that the initial steady state is preserved with machine precision.

Evolution of Small Perturbations

As a last example, taken from [8], the evolution of a small perturbation added to an
initial isothermal hydrostatic equilibrium is investigated. The initial condition on the
domain [0, 1] is given by
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�(x) = x,

ρ(x) = exp(−�(x)),

p(x) = exp(−�(x)) + 0.01 exp(−100(x − 0.5)2),

where the pressure is perturbed by a Gauß function centered in x = 0.5. The solution
is computed at time T = 0.2 with 100 cells and a reference solution using 30000
cells. In Fig. 1, the pressure perturbation p(x) − p0(x) and the resulting velocity
perturbation are plotted in comparison with the initial perturbation.

Acknowledgements The authors want to thank Praveen Chandrashekar for pointing out to us the
potential usefulness of reference [5].
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OnWell-Posedness for a Multi-particle
Fluid Model

Christian Klingenberg, Jens Klotzky and Nicolas Seguin

Abstract In this paper, we study a one-dimensional fluid modelled by the Burgers
equation influenced by an arbitrary but finite number of particles N (t)moving inside
the fluid, each one acting as a point-wise drag force with a particle-related friction
constant λ. For given particle paths hi (t), we only assume finite speed of particles,
allowing for crossing, merging and splitting of particles. This model is an extension
of existing models for fluid interactions with a single particle; compare (Andreianov
et al., SIAM JMath Anal 46(2):1030–1052, 2014, [3], Lagoutière et al., J Differ Equ
245(11):3503–3544, 2008, [10]):

∂t u(x, t) + ∂x

(
u2

2

)
=

N∑
i=1

λ(h′
i (t) − u(t, hi (t))δ(x − hi (t))

Well-posedness for the Cauchy problem, as well as an L∞ bound, is proven under
the weak assumption that particle paths are Lipschitz continuous. In this context, an
entropy admissibility criteria are shown, using the theory of L1-dissipative germs,
compare (Andreianov et al., Arch Ration Mech Anal 201:26–86, 2011, [2]), to deal
with the moving interfaces resulting from the point-wise particles and the shock
waves from the fluid equation interacting with them.
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1 Introduction

We consider an inviscid fluid with velocity u(t, x) and a finite number of particles
moving inside. The fluid is modelled by the inviscid Burgers equation, and the parti-
cles act as a point-wise drag force on the fluid, namely λ(h′

i (t) − u(t, hi (t)), where
λ is the friction constant related to the particle and hi (t) the given path of the i th
particle. The Cauchy problem writes

∂t u + ∂x (u
2/2) =

N∑
i=1

λ(h′
i (t) − u(t, hi (t))δ(x − hi (t)),

u(0, x) = u0(x)

(1)

with

u(x, t) velocity of the one-dimensional fluid
hi (t) the given position of the i th particle at time t
λ the friction constant corresponding to a particle
N (t) arbitrary but finite number of particles at time t
u0 ∈ L∞(R) the given L∞initial data for the fluid

Note that this model also bears the difficulty of interpretating the non-conservative
productu(t, hi (t))δ(x − hi (t)). This problemwas tackled in [3] by a regularizationof
the particle, using sequences of non-negative, compactly supported density functions
(see also [7] for a similar approach). However, an analysis of the behaviour of the
fluid at the position of the particle allows for a well-posedness proof considering
the influence of the particle as a condition on the behaviour of the fluid at a moving
interface located at the particle position. The theory extends the analysis of the fluid–
solid interaction of [3, 10], where the original model also includes coupling to an
ordinary differential equation, to the case of multiple particles. Models of this kind
are of increasing interest theoretically, cf. [4], as well as in applications like trajectory
tracking in traffic flow, cf. [5, 6].

We proceed in the followingway. In Sect. 2, we give an admissibility condition for
the selection of physical shock waves and therefore a definition of entropy solutions
to the problem.At the end of Sect. 2,wewill state themain theorem,which is thewell-
posedness result for Problem (1) and an L∞ bound. Sections3 and 4 give the proof
to this theorem, where Sect. 3 contains the existence proof as well as the L∞ bound
and Sect. 4 is devoted to the uniqueness proof using almost classical Kruzkov-type
arguments combinedwith the notion of germs, i.e. sets of admissible states connected
by shock waves, first introduced in [2].
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2 Definition of Entropy Solutions

The behaviour of a solution across one particle is dictated by the drag of the particle.
However, there might also be shock waves originating from the fluid equation. A
travelling wave study with respect to the particle speed was done in [10] regarding
a single particle and acts as a building block for the analysis of the behaviour in the
case of multiple particles. It is proven in [10] that the following definition of sets
describes the admissible jumps across the interface of a single particle.

Definition 1. Let Gλ be the set of possible states left and right of a particle with
friction λ. A case-by-case study with respect to ul , uR, h gives the characterization

(uL , uR) ∈ Gλ

⇔ uR ∈
⎧⎨
⎩

{uL − λ} if uL < h′,
[2h′ − uL − λ, h′] if h′ ≤ uL ≤ h′ + λ,

{uL − λ} ∪ [2h′ − uL − λ, 2h′ − uL + λ] if uL > h′ + λ.

In the case of more that one particle, the behaviour of the fluid at each particle
is governed by an interface admissibility condition Gi = Gλi , meaning that the trace
of the solution at the left and right of each particle lie in Gλ. Thus, we are able to
define entropy admissible solutions to the problem as long as the particle paths do
not intersect using the notion of admissible particle-related jumps and the notion of
Kruzkov entropy η, entropy flux Φ, defined by

η(a, c) = |a − c|
Φ(a, c) = sgn(a − c)( f (a) − f (c)),

which enable comparison to any constant c ∈ R.

Definition 2. Given u0 ∈ L∞, N > 0, hi (t) ∈ W 1,∞([0, T ]), hi (t) �= h j (t)∀t ∈
[0, T ], i �= j . We call u ∈ L∞(R+ × R) weak entropy solution to the Cauchy prob-
lem; if for N ∈ N the finite number of particles, hi (t) the position and h′

i (t) the
velocity of particle i , with i = 1, . . . , N , u satisfies for all c ∈ R and almost every
time t

∫ T

0

∫
R

|u − c|∂tφ + Φ(u, c)∂xφ) dxdt +
∫
R

|u0 − c|φ(0, x)dx ≥ 0 (2)

with φ ∈ C∞([0, T ] × R,R+), φ(t, hi (t)) = 0, and additionally

(γ −
u (t, hi (t)), γ

+
u (t, hi (t))) ∈ Gλ(t), for a.e. t ∈ (0, T )

where we denoted the left and right traces of u(t, x) at the position of the particles by
γ −
u (t, hi (t)), γ +

u (t, hi (t)), respectively. Due to the nature of the Burgers equation,
these traces exist a priori, even for L∞ initial data, cf [11].
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Note that whenever two particles are located at the same position, a careful new
definition of the particle-related germs has to be taken into account. This is not a
problem for crossing, as the condition is enforced only almost everywhere in time;
however, if two or more particles merge, the corresponding germ changes, resulting
in the following definition of time-dependent interface condition

Gλ(t) = Gni (t)×λ(h
′
i (t)), with ni (t) := #{ j ∈ [0, N ], hi (t) = h j (t)}.

This definition makes sure that the interface condition really applies the drag of both
particles and does not impose two (maybe contradictory) conditions at the same
position. The fact that the influence of the particles adds up like that uses the specific
form of the germ Gλ, was proven by the authors and can be found in the upcoming
publication [8].

Remark 1. The definition of entropy solution is done using the notion of germs,
introduced in [2]. Furthermore, the entropy condition cannot be distinguished from
an entropy condition for a discontinuous flux problem with interfaces located at the
particle positions hi (t), emphasizing the point-wise influence of the particles.

At this point, we state our main theorem.

Theorem 1. Given any finite time T , initial data u0(x) ∈ L∞(R) and Lipschitz con-
tinuous in time particles paths hi (t), i ∈ [1, N ], then there exists a unique solution
u(t, x) ∈ L∞([0, T ] × R), entropy admissible in the sense of Definition 2. Addition-
ally, u(t, x) satisfies for all t ∈ [0, T ]

‖u(t, ·)‖L∞ ≤ ‖u0(·)‖L∞ + Nλ. (3)

The proof of this theorem is distributed between the next two sections.

3 Existence

We will prove existence of entropy admissible solutions in the following way. Given
initial data u0 ∈ L∞(R) and any finite time interval [0, T ], we divide the problem
into several local problems and use the following existence result for the problem
with a single particle, which is proven in [3].

Lemma 1. Given h ∈ W 1,∞([0, T ]) and u0 ∈ L∞(R), then there exists a unique
entropy admissible solution u of (1) with N (t) = 1.

Several difficulties arise. Even though the behaviour of the fluid in the presence
of a single particle is known, each particle generates waves interfering with the other
particles, creating domains of unknown behaviour. Additionally, the possibility of
crossing, merging and splitting of particles seems to complicate some of the nice
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properties that were holding as long as only one particle was present, e.g. the global
in time bound on the total variation.

The proof is done using an explicit construction algorithm based on the existence
result in the presence of a single particle, which we will present here for the case of
two particles. Note, however, that this can be easily extended to any finite number
of particles by simply choosing a good time stepping, creating domains where the
following analysis applies locally.

At the same time, we will prove the L∞ bound (3), justifying the existence of
a maximum speed of propagation, denoted L from here on, which, though a very
natural property of hyperbolic equations, needs to be checked in the presence of
source terms. Both the L∞ bound and the existence are constructed using a time
stepping, which ensures that the cones of influence of two particles do not intersect.

Lemma 2. Given any time ti ∈ [0, T ], there exists a time ti+1 > ti , such that
given problem (1) with two particles with particle paths h1, h2 ∈ Lip([ti , ti+1]) with
h1(t) �= h2(t) ∈ [ti , ti+1] and initial data u(ti ) ∈ L∞(R), then there exists a solution
u(t, x) ∈ L∞([ti , ti+1] × R), entropy admissible in the sense of (2).
Additionally, if u(ti , x) satisfies for x ∈ R

cmin(ti , x) ≤ u(ti , x) ≤ cmax(ti , x),

then u(t, x) satisfies for almost every t ∈ [ti , ti+1], x ∈ R

cmin(t, x) ≤ u(t, x) ≤ cmax(t, x), (4)

with piece-wise constant functions

cmin, max(t, x) =

⎧⎪⎨
⎪⎩
c1min, max for x ∈ Ω1(t), t ∈ [ti , ti+1]
c2min, max for x ∈ Ω2(t), t ∈ [ti , ti+1]
c3min, max for x ∈ Ω3(t), t ∈ [ti , ti+1]

with

Ω1(t) := (−∞, h1(t))

Ω2(t) := (h1(t), h2(t))

Ω3(t) := (h2(t),∞)

such that for j = 1, 2

c j
min, max = c j+1

min, max + λ

and ck1min = inf
Ωk1 (ti )

u(ti , x), ck2max(t, x) = sup
Ωk2 (ti )

u(ti , x) with
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Fig. 1 Boundaries
cmin, cmax on the solution in
the regions between the
particles at time ti . As time
passes, the particles will
change their position and the
respective bounds will shift
along the x-axis

k1 = arg min
j=1,2,3

{
ess inf
x∈Ω1

u(ti , x), ess inf
x∈Ω2

(
u(ti , x) − λ

)
, ess inf

x∈Ω3

(
u(ti , x) − 2λ

)}
k2 = arg max

j=1,2,3

{
ess sup
x∈Ω1

u(ti , x), ess sup
x∈Ω2

(
u(ti , x) − λ

)
, ess sup

x∈Ω3

(
u(ti , x) − 2λ

)}
.

The last statement (4) is actually a stronger result than the L∞ bound, as (3)
follows directly from (4) as soon as it is established for all times t ∈ [0, T ]. To see
this, it is very important to note that the time dependence of cmin, cmax is only due
to the position of the particles and does not change the values of the two functions,
cf. Fig. 1.

Proof. To be able to make use of the existing results for the case of a single particle,
i.e. Lemma 1, we choose ti+1 such that the waves propagating from the two particles
cannot intersect in [ti , ti+1] × R. This is achieved by defining

ti+1 = ti + h2(ti ) − h1(ti ) − 2ε

2L
.

where L = L(‖u‖L∞ , h′
1, h

′
2) = max

x∈Ω
(cmax(0, x),−cmin(0, x)) denotes the finite

speed of propagation and ε > 0 can be chosen arbitrarily small. We define the
superposition of [ti , ti+1] × R = B1 ∪ P1 ∪ B2 ∪ P2 ∪ B3 such that P1, P2 contain
the particles and all waves emanating from them.

P1,2(t) := [h1,2(ti+1) − L(ti+1 − t), h1,2(ti+1) + L(ti+1 − t)]
B1(t) := (−∞, h1(ti+1) − L(ti+1 − t)]
B2(t) := [h1(ti+1) + L(ti+1 − t), h2(ti+1) − L(ti+1 − t)]
B3(t) := [h2(ti+1) + L(ti+1 − t),∞).
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From the analysis done for a single particle, we know that given u(ti , ·) ∈ L∞(P1)
and given that the solution u(t, x) with x ∈ R\P1 in the adjacent regions to P1
satisfies cmin(t, x) ≤ u(t, x) ≤ cmax(t, x), the bounds are also true in P1,1 namely

cmin(t, x) ≤ u(t, x) ≤ cmax(t, x) for x ∈ P1

and the same holds equivalently for P2. Also, we know for the regions Bj , j = 1, 2, 3,
given u(ti , ·) ∈ L∞(Bj ), u(t, x) on the boundaries of Bj and given that the solution
u(t, x)with x ∈ R \ Bj in the adjacent region to Bj satisfies cmin(tin, x) ≤ u(t, x) ≤
cmax(tin, x), the bounds are also true in Bj

cmin(t, x) ≤ u(t, x) ≤ cmax(t, x). for x ∈ Bj ,

as the Burgers equation with L∞ boundary data satisfies an L∞ bound for any finite
time. Piecing together the different regions, given cmin(ti , x) ≤ u(ti , x) ≤ cmax(ti , x),
we obtain (4).

Therefore, we define the partition [ti , ti+1] × R = Σ1 ∪ Σ2 with

Σ1(t) = (−∞, h2(ti ) − L(t − ti )]
Σ2(t) = (h1(ti ) + L(t − ti ),∞)

Each of those regions contains only one particle, and therefore, applying Lemma 2
twice, we obtain existence of an entropy solution in [ti , ti+1] × R. �
Iterating this by using ti = ti+1 as new starting time for Lemma 3 until reaching time
T gives the existence result of Theorem 1, and the L∞ bound follows from property
(4) as long as the particle paths do not intersect.

It remains to investigate the case of particles being located at the same position
at some time t ≤ T . We choose to stop the current timestep, whenever two particles
are located at the same position; thus, from the three considered cases of particle
interactions, i.e. crossing, merging and splitting of particles, only the following two
cases need to be dealt with. Again, we restrict us to two particles for simplicity, as
the case of more particles follows using the same mechanism; see Fig. 2.

1. Two particles are located at the same position at the end of a given time interval
[t0, T ] (merging).

2. Two particles are located at the same position at the initial time of a given time
interval [t0, T ] (splitting).

Case 1: h1(T ) = h2(T ). The difficulty of this case lies in the time stepping, as at
first glimpse, it is unclear whether or not the proposed method of construction used
in the proof of Lemma 3 can actually reach time T . The reason is that

1This was a by-product of constructing the L∞ bound in [3] and can be found in the proof of the
corresponding lemma.
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Fig. 2 On the left a random movement of particles, including sections where particles merge,
corresponding to Case 1 (upper right), and split, corresponding to Case 2 (lower right). Whenever
there is one of the two special cases, the method of construction has to be adapted

Fig. 3 On the left a visualization of the convergence for the construction method and ti → T . The
method behaves like a simplified Newton method, where the slope corresponding to the maximal
speed of propagation remains fixed. On the right the construction of the length of a single timestep,
given by the longest possible time, such that waves propagating from the two particles do not
intersect

ti+1 − ti = h2(ti ) − h1(ti ) − 2ε

2L
,

meaning the length of each timestep depends on the distance between the particles
h2(ti ) − h1(ti ) which goes to zero as t goes to T .

However, the method of construction is equivalent to finding the root of the dis-
tance between the particles, denoted d(t), by means of a simplified Newton method,
which can be seen bymeasuring the distance against time and including themethod in
the picture, cf. Fig. 3. Therefore, Lemma 3 holds for all timesteps where ti ∈ [t0, T ),
reaching time T either in a finite number of timesteps or as the limit of n → ∞ if
the particles have zero contact angle.
Case 2: h1(t0) = h2(t0). This case is more delicate, as the method of construction
fails to construct any solution between the two particles because all information about
this region emanates from the two particles. There is no first timestep, as the choice
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of each timestep depends on finding a superposition suitable in the sense that each
domain contains only waves coming from one particle (or none).

We solve this problem by shifting the particles apart, defining the particle paths
of the approximated problem by

hε
1(t) = h1(t),

hε
2(t) = h2(t) + ε.

Therefore, the particle paths do not intersect anymore and we meet the conditions
of Lemma 3. Using the method of construction, we obtain existence and the L∞
bound for uε and any given finite time T . It remains to show convergence of the
approximate solution uε to the solution of the original problem, which is done using
Helly’s theorem. In order to be able to apply the latter, a bound in the total variation
has to be established, which can be proven using a bound on the total variation for
the problem with only a single particle, which was proven in [3] using a wavefront
tracking method and regularized initial data

uδ
0(x) = u0(x) ∗ ρδ

with ρδ being a regularizing kernel such that uδ
0 ∈ L∞ ∩ BVloc(R).

For a more in-depth analysis of the latter cases, which would exceed the purpose
of this article, we refer the reader to the upcoming publication [8].

4 Uniqueness of Entropy Solutions

This section is devoted to proving the uniqueness of solutions to problem (1), when-
ever the admissibility condition (2) is satisfied. Following the ideas of Kruzkov, this
is done by using the method of doubling of variables and the framework of germs,
introduced by Andreianov, Karlsen and Risebro [2]. The key property of an admissi-
bility germ to allow to conclude uniqueness, as proven in their paper, is dissipativity.
We state this property of Gλ in the following lemma.

Lemma 3. The admissibility germ Gλ corresponding to the particle with velocity h′
and friction λ is dissipative in the sense that

(cl , cr ) ∈ Gλ ⇔ [∀(bl , br ) ∈ Gλ : Φ(h′; cl , bl) ≥ Φ(h′; cr , br )
]

(5)

where

Φ(h′; c, b) = Φ(c, b) − h′|c − b|.

Let Ω = [0, T ] × R, φ ∈ C∞
c (Ω) be a classical, compactly supported test func-

tion and
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wε(x) =
{
0, when |x | ≤ ε

2 ,

1, when |x | ≥ ε.

a continuous function with w′
ε(x) = sgn(x) 2

ε
for ε

2 ≤ |x | ≤ ε.
Given two entropy solutions u, v, with the same initial data u0 = v0, we apply the

method of doubling of variables, cf. [9], and choosing as a test function ψ(x, t) =
φ(x, t) × wε(t, x − h1(t)) × ... × wε(t, x − hN (t)), we obtain

∫
Ω

|u − v|∂t
(
φ ×

∏
1≤i≤N

wε(x − hi (t)
) +

∫
R

|u0 − v0|
(
φ(0, x) ×

∏
1≤i≤N

wε(x − hi (0)
)
dx

+
∫
Ω

Φ(u, v)∂x
(
φ ×

∏
1≤i≤N

wε(x − hi (t)
) ≥ 0.

Remark 2. Note that ψ is not C∞ and one should regularize wε using classical
mollifiers to this aim, but this would introduce unnecessary heavy notations that we
skip for the sake of brevity.

Due to the choice of test function, we cannot see the interfaces and the method of
Kruzkov works classically. Using chain rule and recognizing that

∂twε(x − hi (t)) = w′
ε(x − hi (t))(−h′

i (t))

∂xwε(x − hi (t)) = w′
ε(x − hi (t))

give

∫
Ω

|u − v|
⎛
⎝∂tφ

∏
1≤i≤N

wε(x − hi (t)) + φ

N∑
i=1

∏
1≤ j �=i≤N

(−h′
i (t))w

′
ε(x − hi (t))wε(x − h j (t))

⎞
⎠

+
∫

Ω

Φ(u, v)

⎛
⎝∂xφ

∏
1≤i≤N

wε(x − hi (t)) + φ

N∑
i=1

∏
1≤ j �=i≤N

w′
ε(x − hi (t))wε(x − h j (t))

⎞
⎠

+
∫
R

|u0 − v0|
(
φ(0, x) ×

∏
1≤i≤N

wε(x − hi (0)
)
dx ≥ 0.

Using that we know the form of the derivative of wε, namely w′
ε(x − hi (t)) =

− 2
ε
1[hi−ε,hi− ε

2 ] + 2
ε
1[hi+ ε

2 ,hi+ε], we can pass to the limit ε → 0 and recognizing that
in the sense of distributions

lim
ε→0

wε(x − hi (t)) = 1

reincorporates the interfaces created by the particles and the related terms. Making
use of the traces γ ±

i (u), γ ±
i (v), respectively, at the position of the interfaces hi (t),

we obtain



On Well-Posedness for a Multi-particle Fluid Model 177

∫
Ω

|u − v|∂tφ + Φ(u, v)∂xφ dx dt +
∫
R

|u0 − v0|φ(0, x) dx

≥
N∑
i=1

∫ T

0

(
Φ(h′

i , γ
−
i (u), γ −

i (v))φ(hi (s), s) − Φ(h′
i , γ

+
i (u), γ +

i (v))φ(hi (s), s)
)
ds.

Using the dissipativity of the germs for each particle, given by Lemma 3, we get the
good signs of the right-side terms of the last inequality, which we then can drop to
obtain the Kato inequality,

∫
Ω

|u − v|∂tφ + Φ(u, v)∂xφ dx dt +
∫
R

|u0 − v0|φ(0, x) dx ≥ 0,

which classically gives uniqueness of entropy solutions. Furthermore, integrat-
ing along the cone C := {(x, t), |x | = R + L(T − t), t ∈ [0, T ]} gives the L1-
contraction property.
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On Quantifying Uncertainties for the
Linearized BGK Kinetic Equation

Christian Klingenberg, Qin Li and Marlies Pirner

Abstract We consider the linearized BGK equation and want to quantify uncer-
tainties in the case of modeling errors. More specifically, we want to quantify the
error produced if the predetermined equilibrium function is chosen inaccurately. In
this paper, we consider perturbations in the velocity and in the temperature of the
equilibrium function and consider how much the error is amplified in the solution.

Keywords Linearized BGK equation · Uncertainty quantification
Perturbations in equilibrium distribution

1 Introduction

Kinetic equation is a set of integro-differential equations that describe the collec-
tive behavior of many-particle systems. The to-be-solved unknown function is a
probability distribution of particles defined on the phase space, and kinetic equa-
tion characterizes its evolution in time and space. The equation typically has one
transport term representing the movement of particles and one collision operator that
describes the interactions between particles. The specific form of the transport and
the collision operators depends on the system one is looking at. Typically people use
radiative transfer equation for photon particles, the Boltzmann equation for rarified
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gas particles, the Fokker–Planck equation for plasma, and run-and-tumble models
for bacteria. There are many more other examples.

Uncertainty is a nature of kinetic theory. It has various of origins. The forms of
terms in the equation are usually unjustified due to the modeling error, the blurred
measurements are typically not enough to sufficiently determine the coefficients,
and the initial and boundary conditions are never provided as accurate as they are
supposed to be. They all contribute the inaccuracy of the system description. It is not
realistic to look for the most accurate description of systems, nor expect the exact
true solution, and thus, we instead look for possibilities of quantifying the uncertain-
ties, and ask if the error is controllable even if the models and measurements are not
accurate. As presented above, there are many origins of error, and in this paper, we
focus on the modeling error. More specifically, a typical way of simplifying kinetic
equations is to perform linearization around a predetermined equilibrium function
and compute the linearized kinetic equation, and we would like to understand the
error produced if the predetermined equilibrium function is chosen inaccurately. We
plan to answer this question from both analytical point of view and numerical point
of view. In particular, we would like to understand that given certain perturbation on
the predetermined equilibrium where we perform the linearization, by howmuch the
error is amplified in the solution, and how to characterize the perturbation numeri-
cally.

There have been many numerical techniques that were developed to address un-
certainties. One very popular category of methods is termed generalized polynomial
types. These include generalized polynomial chaos method (gPC) [12, 15, 16, 35],
and stochastic collocation method [5, 34]. These methods assume the uncertainties
in the parameters of the equations are reflected as a polynomial type in the solution.
And based on this assumption, one applies either the spectral method, or the pseudo-
spectral method, and expand the solution in the random direction using polynomials.
Another popular or even classical method is the Monte Carlo type method, which
also has many variations [6, 7, 13, 14]. With these methods, one simply samples
the random variable many times, and for each sample, the parameters are fixed and
the equation is considered deterministic, and one computes the equation. In the end,
one ensembles the solutions for the mean and the variance. Sometimes, mathemati-
cians categorize these methods based on if new implementations are needed. Since
the Monte Carlo type method and stochastic collocation method simply call the de-
terministic solver many times, the old algorithms are therefore recycled and they
are categorized as non-intrusive methods, while on the other hand, the traditional
generalized polynomial chaos method is intrusive, wherein a completely new imple-
mentation is needed. In terms of the convergence rate, it is well known that theMonte
Carlo method converges slowly, while the gPC type methods are spectral types along
the random directions, and automatically inherits the so-called spectral convergence:
Depending on the regularity of the solution in the random space, the method could
be either algebraically fast or exponentially fast.

We would like to adopt the gPC framework for its possible fast convergence.
To do that, in our setting, we mainly need to prove that the perturbation in the
solution continuously depends on the perturbation in the equilibrium function where
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we choose to perform linearization.According to the standard spectralmethod theory,
the higher degree of continuity means the faster convergence. Traditionally, this
framework has been successfully applied in treating elliptic type equation [3, 4, 9,
10, 36], and the analysis sometimes even suggests new algorithms that better explore
the solution structure [1, 8, 11, 18, 19, 30–33], butwhen applied onto hyperbolic type
equations, this framework sees limited success due to the intrinsic difficulties [2, 11]:
The solution develops non-smooth structure, breaking the assumptions the spectral
methods rely on.

The standard kinetic equation does not belong to either of the category mentioned
above but could produce both. Depending on the regime one is interested in, kinetic
equation would either converge to a hyperbolic type (such as BGK equation con-
verging to the Euler equation) or a parabolic type (such as radiative transfer equation
converging to the heat equation). On one hand, its transport term represents hyper-
bolic type and shows a traveling wave behavior; in the meantime, the collision term
in kinetic equations is all coercive terms and thus provides some dissipative behav-
ior and represents the parabolic type. This unique feature presents mathematicians
a new world to explore and it indeed triggers many studies recently. Some recent
results on the topic can be found in [17, 20–25]. We have to mention, however, most
of the proofs are accomplished on a case-by-case basis, and not necessarily in their
sharpest estimates, especially in the big space long time regime, except in [25] where
the authors started with an abstract form and were able to employ the hypocoercivity
for a uniform bound across regimes.

Follow the previous work, in this paper we explore the perturbation on the lin-
earization point. We take the BGK equation as a starting point and perturb u, the bulk
velocity, and T , the temperature in the equilibrium function, by z, a random variable.
The domain of z indicates the strength of the perturbation. And we would like to
study how f , the solution to the linearized equation, responds to the variations in z.

We lay out the equation and its basic assumptions in Sect. 2, together with detailed
studies of the convergence rate in time in the deterministic setting. Sections3 and 4
are respectively devoted to the study extended to equations in various of regimes, to
equations involving randomness, and to scenarios when both present.

2 Setup

The BGK equation, known as a simplified model of the Boltzmann equation, writes
as:

∂t F + v · ∇x F = 1

Kn
(M[F] − F) (1)

where F(t, x, v) is the distribution function living on phase space indicating the
distribution of rarified gas. M[F], the so-called Maxwellian function, is a Gaussian
distribution function:

M[F] = ρ

(2πT )d/2
exp− |v−u|2

2T , (2)
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with its macroscopic quantities defined implicitly by F such that the first d + 2
moments are the same: ∫

φ(M[F] − F)dv = 0 , (3)

with φ = [1, v, v2]T . This property is typically called conservation property, since it
immediately leads to density, momentum, and energy conservation:

∂t

∫
φFdv + ∇x

∫
v ⊗ vFdv = 0 . (4)

If we use the definition:

∫
Fdv = ρ(x) ,

∫
vFdv = ρ(x)u(x) , and

∫ |v|2
2

Fdv = E = 1

2
ρu2 + ρT .

(5)
then the first two equations express the conservation law of the density and mo-
mentum. Note that second term in the last equation cannot be presented using any
macroscopic quantities, and thus, the system is not closed.

Kn is termed the Knudsen number. It comes from rescaling the system by setting
t → t

Kn and x → x
Kn . When Kn is small, the system is seen in large domain and

long time scale and falls in the hyperbolic regime. More specifically, as Kn → 0, the
leading term in the equation reads:

1

Kn
(M[F] − F) = 0 ⇒ F = M[F] , (6)

and thus,
∫
v|v|2Fdv could be explicitly expressed and we rewrite equation as:

⎧⎨
⎩

∂tρ + ∇x · (ρu) = 0
∂tρu + ∇x (ρu ⊗ u + ρT ) = 0
∂t E + ∇x ((E + ρT )u) = 0

(7)

For linearization, we typically assume the solution is close enough to a particular
Maxwellian, meaning there exists f and M∗ such that:

F = (1 + f )M∗ , with | f | � 1 . (8)

Plug this ansatz back into the full BGK equation and ignore the higher order
expansion terms, we have:

∂t f + v · ∇x f = 1

Kn
L∗ f = 1

Kn
(m[ f ] − f ) ,
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where m is a quadratic function that shares the same moments with f , meaning:

〈φ ,m − f 〉∗ =
∫ ⎛

⎝ 1
v
v2

⎞
⎠ (m[ f ] − f )M∗dv = 0 . (9)

Here, we used the definition of the inner product:

〈 f, g〉∗ =
∫

f gM∗dv . (10)

This is the counterpart of the conservation law in linearized system since:

∂t

∫
φ f M∗dv + ∇x

∫
v ⊗ φ f M∗dv = 0 . (11)

Once again if Kn is small, then in the leading order f = m which leads to a closed
Euler system, termed acoustic limit:

∂tU + A · ∂xU = 0 . (12)

Here

A =
⎛
⎝ u∗ ρ∗ 0

T∗
ρ∗ u∗ 1
0 2T∗ u∗

⎞
⎠ , and U = [ρ̃, ũ, T̃ ]T , (13)

and the macroscopic quantities are defined by:

∫
f

⎛
⎝ 1

v
v2

⎞
⎠ dv =

⎛
⎝ ρ̃

ρ̃u∗ + ρ∗ũ
ρ̃(u2∗ + T∗) + 2ρ∗u∗ũ + ρ∗T̃

⎞
⎠ . (14)

There are several very well-known properties of the linear operator:

1 Coercive: 〈L∗ f , f 〉∗ ≤ 0,
2 Explicit null space: L∗ f = 0 f ∈ Span{1, v, v2},
3 Self-adjoint: 〈L∗ f , g〉∗ = 〈 f ,L∗g〉∗.

Combining item 2 and 3, it is easy to see 〈L∗ f , φ〉∗ = 0. If we consider f ∈
L2(M∗dv), one could expressL∗ more explicitly. By the definition ofm[ f ], it is easy
to see that it is in fact a projection of f weighted by M∗ on the quadratic function
space:

L∗ f = m − f = Π∗ f − f , with Π∗ f =
d+1∑
i=0

〈χi , f 〉∗χi , (15)

where χi are basis functions satisfying:
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1 Expand the space Span{χm,m = 0, · · · d + 1} = Span{1, v, v2},
2 Orthogonality 〈χm , χn〉∗ = δmn .

With the Maxwellian function M∗ predetermined, they are simply the first d + 2
Hermite polynomials associated with the Maxwellian. Even more if we set χm the
mth Hermite polynomial for all m, then

L∗ f = −
∞∑

m=d+2

〈χm , f 〉∗χm . (16)

This expression also explicitly suggests the coercivity of the operator.
The linearized BGK operator has been studied by many researchers. Serving as

the simplified version of the linearized Boltzmann equation. Its negative spectrum
provides dissipative behavior, which helps us in getting existence and uniqueness of
the solution at ease. In the boundary layer analysis, the nonlinear collision operator is
far frombeing understood, the linearized equation is the stepping stone for connecting
the Dirichlet data for the kinetic and the Dirichlet data for the interior Euler equation.
We mention several recent work on boundary layer analysis for the linearized BGK
equation here [26–29].

However, all these studies are based on the assumption that the Maxwellian M∗,
the function we linearize upon, is given a priori, which is typically not the case.
Taking numerical algorithm provided in [29] for example, we choose to perform
linearization upon the Maxwellian function provided from the previous time step
as an approximation to the true Maxwellian, which is in fact at least O(Δt) away
from the real Maxwellian. A natural question one needs to address there is: Is such
approximation a good approximation, or rather, if the Maxwellian chosen is off from
the accurate one by O(Δt), how much error does f contain.

Since M∗’s dependence on ρ∗ is linear, thus its reflection in f is of less interest.
We in this paper only study the possible deviation of the solution f when M∗ has a
uncertain u∗ and a uncertain T∗.

3 Variation in u

In this section, we study the solution’s response to deviations in u∗. We firstly repeat
the equation in 1D:

{
∂t f + v∂x f = L∗ f , (t, x, v) ∈ [0,∞) × R × R

f (t = 0, x, v) = fi(x, v)
,

with L∗ f = m − f such that 〈φ ,m − f 〉∗ = 0, and fi is the initial data. Assume
the Maxwellian:

M∗ = ρ∗√
2πT∗

exp

(
−|v − u∗|2

2T∗

)
(17)
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and assume that f decays fast enough to zero as x → ∞ such that 〈∂x f, f 〉x = 0.

With u∗(z) depending on a random parameter z.1 We would like to understand
the regularity of the solution f on z direction; namely, we need to find a good bound
for ∂z f in certain norm.

The standard way of pursuing such analysis is simply to take the derivative of
z on the entire equation for an equation for ∂z f , and then study the bound of ∂z f .
The bound could serve as a Lipschitz constant, and if small, numerical solvers that
require certain regularities could be applied. Sometimes, people go beyond the first
derivative and seek for high differentiation, and they are all bounded in a reasonable
way, spectral method could be proved to be a effective method.

If we follow that procedure, however, the difficulty would be immediate: The ran-
dom variable’s dependence is hidden in the operator throughL∗ in a very subtle way.
That means taking z derivative of the whole equation will produce very complicated
formulation on the right-hand side. We thus choose a easy way that overcomes it by
shifting the coordinates. Define

g(t, x, v) = f (t, x, v − u∗) , (18)

then the equation for g will have a trivial collision but a shifted transport term:

{
∂t g + (v + u∗)∂x g = L0g

g(t = 0, x, v) = gi(x, v) = fi(x, v − u∗)
, (19)

withL0 being associated with the Maxwellian with zero velocity. The z dependence
of the two functions could be easily written down:

∂zg = ∂z f − ∂v f ∂zu∗ , or ∂zg + ∂v f ∂zu∗ = ∂z f . (20)

Since ∂v f is more understood, for now we focus on studying ∂zg. We take the
derivative of the entire equation to get:

∂t∂zg + (v + u∗)∂x∂zg + ∂zu∗∂x g = L0∂zg ,

or by defining h = ∂zg and reorganize the equation:

∂t h + (v + u∗)∂xh = L0h − ∂zu∗∂x g . (21)

Immediately, we see that h satisfies also the linearized BGK equation but has one
more negative source term −∂zu∗∂x g compared with (19). To have a certain bound
of h, we mainly need to go through two steps:

1for practical purpose, the range of z is controlled by Δt but we study the general case here
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1 bound the source term: one needs to prove that the source term ∂zu∗∂x g is
bounded;

2 bound h itself: here we need to show that a bounded ∂x g will produce a bounded
h.

These two statements are summarized in the following two theorems.

Theorem 3.1. ‖∂x g‖2 is bounded. More specifically:

‖∂x g‖L2(dxdv)(t) ≤ ‖∂x gi‖L2(dxdv)

.

Proof. To show this, we first write down the equation for ∂x g. Take the derivative of
Eq. (19) with respect to x one gets:

{
∂t∂x g + (v + u∗)∂2

x g = L0∂x g

∂x g(t = 0, x, v) = ∂x gi(x, v)
. (22)

Here, we note that L0 is an operator on dv and commute with ∂x . It immediately
suggests that ∂x g satisfies the same equation as g in (19). Considering that the lin-
earized BGK equation is a dissipative system and the L2 norm decays in time, we
cite the following lemma:

Lemma 3.1. Suppose g satisfies equation (19), then

‖g‖L2(dxdv)(t) ≤ ‖gi‖L2(dxdv) (23)

where gi is the initial condition.

Proof. The proof is based on energy estimate. We multiply the equation by g and
integrate with respect to x and v, then:

〈∂t g , g〉x,v + 〈v∂x g , g〉x,v = 〈L0g , g〉x,v . (24)

Since we are considering the Cauchy problem, we throw the second term away.
The term on the right-hand side is negative considering the coercivity of the collision
operator.We then immediately get ∂t 〈g , g〉x,v ≤ 0, meaning the L2 norm of g decays
in time and thus:

‖g‖L2(dxdv)(t) ≤ ‖gi‖L2(dxdv) . (25)

�

Apply this lemma on (22), and we conclude with Theorem 3.1. �
With the boundedness of the source term ∂zu∗∂x g, we could start analyzing the

bound for h.
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Theorem 3.2. Suppose h = ∂zg satisfies (21), then ‖h‖L2(dxdv) grows at most lin-
early:

‖h‖L2(dxdv) � C‖∂x gi‖L2(dxdv)t . (26)

Here, f � g means f
g is bounded by a constant in large time. We care only about the

long-time behavior of the solution. The reason is that after order one time, the highest
order polynomial in time dominates the lower orders, and thus, one only needs to
specify the highest order coefficient.

Proof. It is once again energy method. We multiply (21) on both sides with h and
take the inner product in (x, v):

〈∂t h , h〉x,v = 〈L0h , h〉x,v − ∂zu∗〈∂x g , h〉x,v . (27)

Considering the coercivity of L0 the first term on the right disappear. And we use
Cauchy–Schwartz inequality to control the second term to get:

1

2

d

dt
‖h‖2L2(dxdv) ≤ ‖∂zu∗∂x g‖L2(dxdv)‖h‖L2(dxdv) . (28)

Assume |∂zu∗| < C , and it is known from Theorem 3.1 that

‖∂x g‖L2(dxdv) ≤ ‖∂x gi‖L2(dxdv),

then
d

dt
‖h‖L2(dxdv) ≤ C‖∂x gi‖L2(dxdv) (29)

which leads to a linear growth of h: ‖h‖L2(dxdv) � C‖∂x gi‖L2(dxdv)t . �

The theorem above states the bounded of the first derivative of g in z. One could
extend it to treat higher order derivatives.

Theorem 3.3. Denote h(n) = ∂n
z g, then ‖h(n)‖L2(dxdv) is bounded by tn:

‖h(n)‖L2(dvdx) � Cnt
n . (30)

Again we are mainly interested in the long-time behavior of the solution so it suffices
to consider only the highest order in time.

Proof. The proof is based on induction. According to the definition, h(0) = g and
Lemma 3.1 guarantees that h(0) is bounded by a constant, and h(1) is the h in Theo-
rem 3.2, and we have seen it is bounded by a linear growth. We thus perform math
induction, assuming h(k−1) is bounded by t k−1 we show that h(k) is bounded by t k .

We first take the kth-order derivative of Eq. (19):
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∂t∂
k
z g +

k∑
n=0

(
k

n

)
∂n
z (v + u∗)∂x∂k−n

z g = L0∂
k
z g ,

or moving the source term to the right:

∂t h
(k) + (v + u∗)∂xh(k) = L0h

(k) −
k∑

n=1

(
k

n

)
∂n
z u∗∂xh(k−n) .

According to our assumption, ∂n
z u∗ is bounded by a constant, one has:

〈∂t h(k) , h(k)〉x,v + 〈(v + u∗)∂xh(k) , h(k)〉x,v = 〈L0h
(k) , h(k)〉x,v

−
k∑

n=1

(
k

n

)
〈∂n

z u∗∂xh(k−n) , h(k)〉x,v .

which means:

1

2

d

dt
‖h(k)‖2L2(dxdv) ≤ Ck‖∂xh(k−n)‖L2(dxdv)‖h(k)‖L2(dxdv) , (31)

where we used the Cauchy boundary condition, the coercivity of L0, and Cauchy–
Schwartz inequality. By our assumption h(k−1) is bounded by t k−1, since ∂xh and h
satisfies the same equation, it can be extrapolated as ∂xh being bounded by the same
order, and then putting it back into (31), we have:

‖h(k)‖L2(dxdv) � t k , (32)

which finishes the math induction loop, and complete the proof. �

4 Variation in T

In this section, we want to study the solution’s response to the deviations in T∗.
Namely, we assume the Maxwellian defined in (17) has its T∗(z) depending on a
random parameter z. Once again, in order to get rid of the complicated dependence
of L∗ on z, we perform change of variable and define

p(t, x, v) = f

(
t, x,

v√
T∗

)
. (33)

Then p satisfies the equation
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{
∂t p + √

T∗v∂x p = L1 p

p(t = 0, x, v) = pi(x, v) = fi
(
x, v√

T∗

) , (34)

whereL1 is the collision operator associated with the Maxwellian with temperature
one, and pi is the initial data. Again we focus on studying ∂z p instead of ∂z f . Denote
q = ∂z p, we obtain its governing equation by taking the derivative in z of Eq. (34).
Rearranging the terms, we have:

∂t q + √
T∗v∂xq = L1q − ∂z(

√
T∗)v∂x p . (35)

This equation has the same structure as equation (21): It is a linearized kinetic
equation with a source term, and for the boundedness of q, we simply need to show
the boundedness of v∂x p. In the previous section, we showed that the source term
∂x g satisfies the same equation as g does and thereby was able to give the bound.
This is no longer the case here. Instead of writing the equation, we write:

v∂x p = L1 p − ∂t p√
T∗

, (36)

and are able to prove the following:

Theorem 4.1. Suppose q = ∂z p satisfies (35), then ||q||L2(dxdv) grows at most lin-
early:

||q||L2(dxdv) � C
(||pi ||L2(dxdv) + ||∂t pi ||L2(dxdv)

)
t

Proof. We once again use the energy method. We insert (36) into (35) and multiply
the obtained equation with q and take the inner product in (x, v):

〈∂t q , q〉x,v = 〈L1q , q〉x,v − ∂z
√
T∗√
T∗

〈(L1 p − ∂t p) , q〉x,v. (37)

Due to the coercivity of L1, the first term on the right disappears. For the second
term on the right, we use Cauchy–Schwarz and the triangle inequality

1

2

d

dt
||q||2L2(dxdv) ≤

∣∣∣∣∂z
√
T∗√
T∗

∣∣∣∣
(||L1 p||L2(dxdv) + ||∂t p||L2(dxdv)

) ||q||L2(dxdv) (38)

We assume

∣∣∣∣ ∂z
√
T∗√
T∗

∣∣∣∣ < C . Similar to Πx f in (15), Π1g can be represented as

Π1 f =
d+1∑
i=0

〈χ0
i , g〉1χ0

i
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with orthonormal basis fuctions χ0
i , where 〈·〉1 denotes integration with respect to

v with the weight M1. Then, ||L1 p||L2(M1dxdv) can be estimated by above using the
explicit expression of L1 and Cauchy–Schwartz inequality by

〈L1 p,L1 p〉x,v,1 = 〈
d+1∑
i=1

〈χi , p〉x,v,1 χi − p,
d+1∑
j=1

〈χ j , p〉x,v,1 χ j − p〉x,v,1

=
d+1∑
i=1

(〈χi , p〉x,v,1)2 − 〈p, p〉x,v,1 ≤ (d + 1)〈p, p〉x,v,1 − 〈p, p〉x,v,1

= d〈p, p〉x,v,1
(39)

Since the norm || · ||L2(M1dxdv) is equivalent to || · ||L2(dxdv), the term ||L1 p||L2(dxdv)

is also bounded by C ||p||L2(dxdv).
Realizing that ∂t p satisfies the same equation as p does, according toLemma (4.1),

their L2 norm decrease in time, meaning:

d

dt
||q||L2(dxdv) ≤ C

(||p||L2(dxdv)(t) + ||∂t p||L2(dxdv)(t)
)

(40)

≤ C
(||pi ||L2(dxdv) + ||∂t pi ||L2(dxdv)

)
, (41)

which leads to a linear growth of q:

||q||L2(dxdv) � C
(||pi ||L2(dxdv) + ||∂t pi ||L2(dxdv)

)
t . (42)

which concludes the proof. �

The lemma used in the theorem is stated in the following:

Lemma 4.1. Suppose p satisfies equation (34), then

‖p‖L2(dxdv)(t) ≤ ‖pi‖L2(dxdv) (43)

where pi is the initial condition.

Proof. The proof is analogous to the proof of Lemma 3.1. �

We can also extend the result of Theorem 4.1 to derivatives of higher orders. This
is done in the following theorem

Theorem 4.2. Suppose q(n) := ∂n
z p satisfies

∂t q
(n) +

n∑
k=0

(
n
k

)
∂(n−k)
z

(√
T∗

)
v∂xq

(k) = L1q
(n) (44)

for all n ∈ N0. Then
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||q(N )||L2(dxdv) � CN t N for all N ≤ n

where CN depends on ||L k
1 ∂ l

t q
(0)||L2(dxdv), k, l ≤ N.

Proof. We proof the statement via induction. For n = 0 and n = 1, we proved it in
Theorem 4.1 and Lemma 4.1. We have shown in Lemma 4.1 that if q(0) satisfies (34),
then ||q(0)||L2(dxdv) is bounded by ||q0

i ||L2(dxdv), and in Theorem 4.1 if q(1) satisfies
(35),we can replace v∂xq(0) by (36).We can show thatL1q(0) is bounded in L2(dxdv)
by ||p||L2(dxdv) and ∂t q(0) also satisfy (34) and can deduce that ||q(1)||L2(dxdv) is
bounded by C(||q(0)

i ||L2(dxdv) + ||∂t q(0)
i ||L2(dxdv))t , see the proof of Theorem 4.1.

Assume now that the statement is true for a fixed n ∈ N. We want to deduce that it
is true for n + 1. If q(n+1) satisfies

∂t q
(n+1) +

n+1∑
k=0

(
n + 1
k

)
∂(n+1−k)
z

(√
T∗

)
v∂xq

(k) = L1q
(n+1) (45)

we can replace v∂xq(n) in terms of ∂t q(n),L1q(n), v∂xq(N ), N < n from the equation
for q(n) given by (44). In the resulting equation, we can replace v∂xq(n−1) in terms of
∂t q(n−1),L1q(n−1), v∂xq(N ), N < n − 1 from the equation for q(n−1). Next, we can
replace v∂xq(n−2) from the equation for q(n−2) and so on until we do not have terms
with v∂xq(k) for some k < n + 1 any more. So all in all, we obtain an equation of
the form

∂t q
(n+1) + A(∂t q

(0),L1q
(0), . . . , ∂t q

(n),L1q
(n), T∗) + v∂xq

(n+1) = L1q
(n+1)

(46)
where A is a linear combination of ∂t q(0),L1q(0), . . . , ∂t q(n),L1q(n) with coeffi-
cients depending on T∗ of the form

(∂a
z (

√
T∗))b√
T∗

c for a, b, c ≤ n + 1 (47)

We can show that ∂t q(N ), N ≤ n satisfy the same equation as q(N ) similar as it
is done in Sect. 3 for ∂x g and g and L1q(N ), N ≤ n is bounded in L2(dxdv) by
||q(N )||L2(dxdv), and that they are bounded in L2(dxdv) by CN t N where CN depends
on ||L k

1 ∂ l
t q

(0)||L2(dxdv), k, l ≤ N due to the induction assumption. Finally, by the
energy method we can deduce from (46) that q(n+1) is bounded in L2(dxdv) by
Cn+1tn+1. �

References

1. G. Albi, L. Pareschi, M. Zanella, Uncertainty quantification in control problems for flocking
models. Math. Probl. Eng. 850124, 14 (2015)



192 C. Klingenberg et al.

2. M. Branicki, A.J. Majda, Fundamental limitations of polynomial chaos for uncertainty quan-
tification in systems with intermittent instabilities. Commun. Math. Sci. 11(1), 55–103 (2013)

3. I. Babuška, F. Nobile, R. Tempone, Galerkin finite element approximations of stochastic elliptic
partial differential equations. SIAM J. Numer. Anal. 42(2), 800–825 (2004)

4. I. Babuška, F. Nobile, R. Tempone, A stochastic collocation method for elliptic partial differ-
ential equation with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

5. I. Babuška, F. Nobile, R. Tempone, A stochastic collocation method for elliptic partial differ-
ential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

6. A. Barth, C. Schwab, N. Zollinger, Multi-level Monte Carlo finite element method for elliptic
PDEs with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011)

7. J. Charrier, R. Scheichl, A.L. Teckentrup, Finite element error analysis of elliptic PDEs with
random coefficients and its application to multilevel Monte Carlo methods. SIAM J. Numer.
Anal. 51(1), 322–352 (2013)

8. A. Chkifa, A. Cohen, C. Schwab, Breaking the curse of dimensionality in sparse polynomial
approximation of parametric PDEs. Journal de Mathématiques Pures et Appliquées (2014)

9. A. Cohen, R. DeVore, C. Schwab, Convergence rates of best N-term Galerkin approximations
for a class of elliptic sPDEs. Found. Comput. Math. 10(6), 615–646 (2010)

10. A. Cohen, R. Devore, C. Schwab, Analytic regularity and polynomial approximation of para-
metric and stochastic elliptic PDE’s. Anal. Appl. 9(01), 11–47 (2011)

11. B. Despres, B. Perthame, Uncertainty propagation; intrusive kinetic formulations of scalar
conservation laws. SIAM/ASA J. Uncertain. Quantif. 4(1), 980–1013 (2016)

12. D. Xiu, G. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equa-
tions. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

13. G. Fishman,Monte Carlo: Concepts, Algorithms, and Applications (Springer, NewYork, 2013)
14. M.B. Giles, Multilevel Monte Carlo path simulation. Op. Res. 56(3), 607–617 (2008)
15. R.G. Ghanem, A. Doostan, On the construction and analysis of stochastic models: character-

ization and propagation of the errors associated with limited data. J. Comput. Phys. 217(1),
63–81 (2006)

16. R.G. Ghanem, R.M. Kruger, Numerical solution of spectral stochastic finite element systems.
Comput. Methods Appl. Mech. Eng. 129(3), 289–303 (1996)

17. J. Hu, S. Jin, A stochastic Galerkin method for the Boltzmann equation with uncertainty. J.
Comput. Phys. 315, 150–168 (2016)

18. Y.T. Hou, Q. Li, P. Zhang, Exploring the locally low dimensional structure in solving random
elliptic PDEs. SIAM Multiscale Model. Simul. (2016)

19. Y.T. Hou, Q. Li, P. Zhang, A sparse decomposition of low rank symmetric positive semi-definite
matrices. SIAM Multiscale Model. Simul. (2016)

20. S. Jin, L. Liu, An asymptotic-preserving stochastic Galerkin method for the semiconductor
Boltzmann equation with random inputs and diffusive scalings. SIAMMultiscaleModel. Simul.
(2016)

21. S. Jin, H. Lu, An Asymptotic-Preserving stochastic Galerkin method for the radiative heat
transfer equations with random inputs and diffusive scalings (2016)

22. S. Jin, Y. Zhu, The Vlasov-Poisson-Fokker-Planck system with uncertainty and a one-
dimensional asymptotic-preserving method (2016)

23. S. Jin, D. Xiu, X. Zhu, Asymptotic-preserving methods for hyperbolic and transport equations
with random input and diffusive scalings. J. Comput. Phys. 289, 35–52 (2015)

24. S. Jin, J.G. Liu, Z. Ma, Uniform spectral convergence of the stochastic galerkin method for the
linear transport equations with random inputs in diffusive regime and a micro-macro decom-
position based asymptotic preserving method (2016)

25. Q. Li, L. Wang, Uniform regularity for linear kinetic equations with random input based on
hypocoercivity (2016). arXiv:1612.01219

26. Q. Li, J. Lu, W. Sun, A convergent method for linear half-space kinetic equation. Math. Model.
Numer. Anal. (in press)

27. Q. Li, J. Lu, W. Sun, Half-space kinetic equations with general boundary conditions. Math.
Comput. (in press)

http://arxiv.org/abs/1612.01219


On Quantifying Uncertainties for the Linearized … 193

28. Q. Li, J. Lu, W. Sun, Validity and regularization of classical half-space equations. J. Stat. Phys.
(in press)

29. Q. Li, J. Lu, W. Sun, Diffusion approximations of linear transport equations: asymptotics and
numerics. J. Comput. Phys. 292, 141–167 (2015)

30. F. Nobile, R. Tempone, C. Webster, A sparse grid stochastic collocation method for partial
differential equations with random input data. SIAM J. Numer. Anal. 46(3), 2309–2345 (2008)

31. F. Nobile, R. Tempone, C.G.Webster, An anisotropic sparse grid stochastic collocation method
for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–
2442 (2008)

32. F. Nobile, R. Tempone, C.G. Webster, A sparse grid stochastic collocation method for partial
differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

33. C. Schwab, R.-A. Todor, Sparse finite elements for elliptic problems with stochastic loading.
Numer. Math. 95(4), 707–734 (2003)

34. D. Xiu, J.S. Hesthaven, High-order collocation methods for differential equations with random
inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

35. D.Xiu,G.E.Karniadakis,Modeling uncertainty in flow simulations via generalized polynomial
chaos. J. Comput. Phys. 187(1), 137–167 (2003)

36. G. Zhang, M. Gunzburger, Error analysis of a stochastic collocation method for parabolic
partial differential equations with random input data. SIAM J. Numer. Anal. 50(4), 1922–1940
(2012)



Kinetic ES-BGKModels
for a Multi-component Gas Mixture

Christian Klingenberg, Marlies Pirner and Gabriella Puppo

Abstract We consider a multi-component mixture of inert gas in the kinetic regime
by assuming that the total number of particles of each species remains constant. In
this article, we shall illustrate our model for the case of two species. To account for
thermal effects, we extend a BGK model based on the presence of a collision term
for each possible interaction (Klingenberg et al., A consistent kinetic model for a
two-component mixture with an application to plasma. Kinet Relat Models 10:444–
465, 2017, [19]) by including ES-BGK effects.We prove consistency of the extended
model like conservation properties, positivity of all temperatures, H-theorem, and
convergence to a global equilibrium in the shape of a global Maxwell distribution.

Keywords Multi-fluid mixture · Kinetic model · ES-BGK equation · H-theorem

Introduction

In this paper, we shall concern ourselves with a kinetic description of gases. This is
traditionally done via the Boltzmann equation for the density distributions f1 and f2.
Under certain assumptions, the complicated interaction terms of theBoltzmann equa-
tion can be simplified by a so-called BGK approximation, consisting of a collision
frequency multiplied by the deviation of the distributions from local Maxwellians.
This approximation should be constructed in a way such that it has the same main
properties of the Boltzmann equation, namely conservation of mass, momentum,
and energy, further it should have an H-theorem with its entropy inequality and the
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equilibrium must still be Maxwellian. BGK models give rise to efficient numerical
computations, which are asymptotic preserving, that is they remain efficient even
approaching the hydrodynamic regime [6, 7, 10–12, 20]. However, the drawback
of the BGK approximation is its incapability of reproducing the correct Boltzmann
hydrodynamic regime in the asymptotic continuum limit. Therefore, a modified ver-
sion called ES-BGK approximation was suggested by Holway in the case of one
species [16]. The H-Theorem of this model then was proven in [3] and existence and
uniqueness of solutions in [21].

Here, we shall focus on gas mixtures modeled via an ES-BGK approach. In
the literature, there is a BGK model for gas mixtures suggested by Andries, Aoki,
and Perthame in [4] which contains only one collision term on the right-hand side.
Extensions of this model to an ES-BGK model for gas mixtures are given by Groppi
in [14] or themodel byBrull [5] with an extension leading to a correct Prandtl number
in the Navier–Stokes equation, adapting the ES-BGK model for mixtures.

In this paper, we are interested in an extension to an ES-BGK model of a BGK
model for gas mixtures [19] which just like the Boltzmann equation for gas mixtures
contains a sum of collision terms on the right-hand side. Other examples of ES-
BGK models for gas mixtures are the models of Gross and Krook [13], Hamel [15],
Asinari [1]. The advantage of this extended model is that we have free parameters
to possibly being able to determine macroscopic physical constants like viscosity or
heat conductivity when taking the limit to the Navier–Stokes equations.

The outline of the paper is as follows: in Sect. 1, we will present the BGK model
for two species developed in [19]. In Sect. 2, we suggest extensions to an ES-BGK
model for mixtures and prove the corresponding H-Theorem.

1 The BGK Approximation

In this section, we will present the BGKmodel for a mixture of two species and men-
tion its fundamental properties like the conservation properties and the H-theorem.

For simplicity in the following, we consider a mixture composed of two differ-
ent species, but the discussion can be generalized to multi-species mixtures. Thus,
our kinetic model has two distribution functions f1(x, v, t) > 0 and f2(x, v, t) > 0
where x ∈ � ⊂ R

3 and v ∈ R
3 are the phase space variables and t ≥ 0 the time.

The distribution functions are determined by two equations to describe their time
evolution. Furthermore, we only consider binary interactions. So the particles of one
species can interact with either themselves or with particles of the other species.
In the model, this is accounted for introducing two interaction terms in both equa-
tions. These considerations allow us to write formally the system of equations for the
evolution of the mixture. The following structure containing a sum of the collision
operator is also given in [8, 9].

Furthermore, for any f1, f2 : � ⊂ R
3 × R

3 × R
+
0 → R with (1 + |v|2) f1, (1 +

|v|2) f2 ∈ L1(R3), f1, f2 ≥ 0 we relate the distribution functions to macroscopic
quantities by mean-values of fk , k = 1, 2



Kinetic ES-BGK Models for a Multi-component Gas Mixture 197

∫
fk(v)

⎛
⎜⎜⎝

1
v

mk |v − uk |2
mk(v − uk(x, t)) ⊗ (v − uk(x, t))

⎞
⎟⎟⎠ dv =:

⎛
⎜⎜⎝

nk
nkuk
3nkTk
Pk

⎞
⎟⎟⎠ , k = 1, 2, (1)

where nk is the number density, uk the mean velocity, and Tk the mean temperature of
species k, k = 1, 2. Note that in this paper, we shall write Tk instead of kBTk , where
kB is Boltzmann’s constant.

We are interested in a BGK approximation of the interaction terms. This leads
us to define equilibrium distributions not only for each species itself but also for the
two interspecies equilibrium distributions. We choose the collision terms as BGK
operators and denote them for future references by Q11, Q12, Q21, and Q22. Then
the model can be written as:

∂t f1 + ∇x · (v f1) = ν11n1(M1 − f1) + ν12n2(M12 − f1),

∂t f2 + ∇x · (v f2) = ν22n2(M2 − f2) + ν21n1(M21 − f2),
(2)

with the Maxwell distributions

Mk(x, v, t) = nk√
2π Tk

mk

3 exp(−
|v − uk |2

2 Tk
mk

), k = 1, 2,

Mkj (x, v, t) = nkj√
2π Tkj

mk

3 exp(−
|v − ukj |2

2 Tkj
mk

), k, j = 1, 2, k �= j,

(3)

where ν11n1 and ν22n2 are the collision frequencies of the particles of each species
with itself, while ν12 and ν21 are related to interspecies collisions. To be flexible
in choosing the relationship between the collision frequencies, we now assume the
relationship

ν12 = εν21, 0 < ε ≤ 1, (4)

ν11 = β1ν12, ν22 = β2ν21, β1, β2 > 0. (5)

The restriction ε ≤ 1 is without loss of generality. If ε > 1, exchange the notation 1
and 2 and choose 1

ε
. In addition, we assume that all collision frequencies are positive.

The structure of the collision terms ensures that if one collision frequency
νkl → ∞, the corresponding distribution function becomes a Maxwell distribution.
In addition at global equilibrium, the distribution functions become Maxwell distri-
butions with the same velocity and temperature (see Sect. 2.8 in [19]). The Maxwell
distributions M1 and M2 in (3) have the same moments as f1 and f2, respectively.
With this choice, we guarantee the conservation of mass, momentum and energy in
interactions of one species with itself (see Sect. 2.2 in [19]). The remaining param-
eters n12, n21, u12, u21, T12, and T21 will be determined using conservation of total
momentum and energy, together with some symmetry considerations.
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If we assume that

n12 = n1 and n21 = n2, (6)

u12 = δu1 + (1 − δ)u2, δ ∈ R, (7)

and

T12 = αT1 + (1 − α)T2 + γ |u1 − u2|2, 0 ≤ α ≤ 1, γ ≥ 0, (8)

we have conservation of the number of particles, total momentum, and total energy
provided that

u21 = u2 − m1

m2
ε(1 − δ)(u2 − u1), (9)

and

T21 =
[
1

3
εm1(1 − δ)

(
m1

m2
ε(δ − 1) + δ + 1

)
− εγ

]
|u1 − u2|2

+ε(1 − α)T1 + (1 − ε(1 − α))T2,

(10)

see Theorems 2.1, 2.2, and 2.3 in [19].
We see that without using an ES-BGK extension, we already have three free

parameters in (7) and (8) in order to match coefficients like the Fick’s constant or the
heat conductivity in the Navier–Stokes equations. But when we derive the Navier–
Stokes equations by a Chapman–Enskog expansion fk = f 0k + ε̃ f 1k + ε̃2 f 2k + · · · ,
one can show that |u1 − u2|2 is of order ε̃2, so γ from (8) does not appear in the first
order Navier–Stokes equations and therefore cannot be used to match parameters
there.

In order to ensure the positivity of all temperatures, we need to impose restrictions
on δ and γ ,

0 ≤ γ ≤ m1

3
(1 − δ)

[
(1 + m1

m2
ε)δ + 1 − m1

m2
ε

]
, (11)

and

m1
m2

ε − 1

1 + m1
m2

ε
≤ δ ≤ 1, (12)

see Theorem 2.5 in [19].
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This summarizes our kinetic model (2) in of two species that contains three free
parameters. More details can be found in [19].

2 Extensions to an ES-BGK Approximation

2.1 Extension of the Single Relaxation Terms

Motivatedby theneed tofinda two species kineticmodel that allowsus tomodel phys-
ical parameters better we extend the above model by generalizing the Maxwellians.
The simplest choice is to only replace the collision operators which represent the
collisions of a species with itself by the ES-BGK collision operator for one species
suggested in [2]. Then the model can be written as:

∂t fk + ∇x · (v fk) = νkknk(Gk − fk) + νk j n j (Mkj − fk), k, j = 1, 2, j �= k,
(13)

with the modified Maxwell distributions

Gk(x, v, t) = nk√
det (2π T k

mk
)

exp(−1

2
(v − uk) · (

Tk

mk
)−1 · (v − uk)), k = 1, 2,

(14)

and M12, M21 the Maxwellians described in the previous section. G1 and G2 have
the same densities, velocities, and pressure tensors as f1 respective f2, so we still
guarantee the conservation of mass, momentum, and energy in interactions of one
species with itself. Since the first term describes the interactions of a species with
itself, it should correspond to the single ES-BGK collision operator suggested in [2].
So we choose T1 and T2 as

Tk = (1 − μk)Tk1 + μk
Pk

nk
, (15)

with μk ∈ R, k = 1, 2 being free parameters which we can choose in a way to fix
physical parameters in the Navier–Stokes equations. So, all in all, together with the
parameters in themixtureMaxwellians (7) and (8), we now have five free parameters.

Since we wrote T −1
k we have to check if Tk is invertible. Otherwise, the model

is not well-posed. For the one species tensor, this is done by the following theorem
proven in [2].

Theorem 1. Assume that fk > 0. Then Pk
nk

has strictly positive eigenvalues. If we

further assume that − 1
2 ≤ μk ≤ 1, then Tk has strictly positive eigenvalues and

therefore Tk is invertible.
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2.1.1 Equilibrium and Entropy Inequality

In global equilibrium when f1 and f2 are independent of x and t , the right- hand side
of (13) has to be zero. In this case, we get

f1 = 1

ν11n1 + ν12n2
(ν11n1G1 + ν12n2M12).

If we compute the velocities of this expression, we can deduce u1 = u2 for δ �= 1. If
we compute the temperatures of this expression using u1 = u2, we get

T1 = 1

ν11n1 + ν12n2
(ν11n1T1 + ν12n2(αT1 + (1 − α)T2)),

which is equivalent to T1 = T2 for α �= 1. So let T := T1 = T2 and use u1 = u2. If
we compute pressure tensors, we get

(ν11n1 + ν12n2)P1 = ν11n1T1 + ν12n2T12
= ν11n1(1 − μ1)T 1 + ν11n1μ1P1 + ν12n2T 1,

which is equivalent to

(ν11n1 + ν12n2 − ν11n1μ1)P1 = (ν11n1 + ν12n2 − ν11n1μ1)T 1,

which is P1 = T 1 for δ, α �= 1, μ1 ≤ 1. This means that the pressure tensor of f1
and f2 is diagonal and f1, f2 are Maxwellian distributions with equal mean velocity
and temperature. δ = 1 or α = 1 are cases in which the mixture Maxwellians do not
contain the velocity or the temperature of the other species, see (7) and (8). In this
case, the two gases do not exchange information and a global equilibrium cannot be
reached.

Theorem 2 (H-theorem for the mixture). Assume that f1, f2 > 0 are solutions to
(2). Assume the relationship between the collision frequencies (5), the conditions
for the interspecies Maxwellians (7), (9), (8), and (10) and the positivity of the
temperatures (11), then

∫
(ln f1) Q11( f1, f1) + (ln f1) Q12( f1, f2)dv +

∫
(ln f2) Q22( f2, f2) + (ln f2) Q21( f2, f1)dv ≤ 0,

with equality if and only if f1 and f2 are Maxwell distributions with equal velocity
and temperature.

Proof. The fact that
∫
ln fk Qkk( fk, fk)dv ≤ 0, k = 1, 2with a criteria for equality

follows from the H-Theorem of the ES-BGKmodel for one species, see [2]. The fact
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that
∫
ln f1Q12( f1, f2)dv + ∫

ln f2Q21( f1, f2)dv ≤ 0 with a corresponding crite-
ria for equality follows from the H-Theorem of the BGK model for mixtures, see
Theorem 2.7 in [19].

2.2 Alternative Extensions to an ES-BGK Model

In this subsection, we also want to replace the scalar temperatures in the mixture
Maxwellians by a tensor. In the first model, the terms (v j − ukj ) fk(vi − uki ) for
i �= j do not appear in the relaxation operator. To obtain a more detailed description
of the viscous effects in the mixture, we take into account these cross terms during
the relaxation process. Then the model can be written as:

∂t fk + ∇x · (v fk) = νkknk(Gk − fk) + νk j n j (Gkj − fk), k = 1, 2, k �= j,
(16)

with the modified Maxwell distributions

Gk(x, v, t) = nk√
det(2π Tk

mk
)

exp(−1

2
(v − uk) · (

Tk

mk
)−1 · (v − uk)) k = 1, 2,

Gkj (x, v, t) = nk√
det(2π

Tk j
mk

)

exp(−1

2
(v − uk j ) · (

Tk j

mk
)−1 · (v − uk j )) k = 1, 2, k �= j.

(17)

Again, the conservation of mass, momentum, and energy in interactions of one
species with itself is ensured by this choice of the modified Maxwell distributions
G1 and G2 which have the same densities, velocities, and pressure tensor as f1 and
f2, respectively. In addition, the choice of the densities in G12 and G21, we also
guarantee conservation of mass in interactions of one species with the other one.

If we extend T12 and T21 in the same fashion to a tensor as in the case of one
species, we obtain

T12 = (1 − μ12)(αT1 + (1 − α)T2)1 + μ12
αP1 + (1 − α)P2

n1
+ γ |u1 − u2|21, (18)

T21 = (1 − μ21)((1 − ε(1 − α))T2 + ε(1 − α)T1)1

+ μ21
(1 − ε(1 − α))P2 + ε(1 − α)P1

n2
+ (

1

3
εm1(1 − δ)(

m1

m2
ε(δ − 1) + δ + 1) − εγ )|u1 − u2|21.

(19)

If we check the equilibrium distributions as in Sect. 2.1.1, we obtain the following
restrictions on μ12 and μ21 given by
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μ12 = 1 + (1 − μ1)
n1
n2

ν11

ν12
, (20)

and

1

n21
[−(α − 1)2μ2

12n
2
2ν

2
12 + n1

n22
((

μ21

ε
− μ21 + αμ21)n1ν12 + (μ2 − 1)n2ν22)

·(n1((α − 1)μ21n1 + 1

ε
(μ21 − 1)n2)ν12 + (μ2 − 1)n22ν22)] = 0,

(21)

An alternative choice to (18), (19), which is less complicated, is given by

T12 = α
P1

n1
+ (1 − α)T21 + γ |u1 − u2|21, (22)

T21 = (1 − ε(1 − α))
P2

n2
+ ε(1 − α)T11

+ (
1

3
εm1(1 − δ)(

m1

m2
ε(δ − 1) + δ + 1) − εγ )|u1 − u2|21. (23)

This choice still contains the temperature of gas 1, since the trace of the pressure
tensor is the temperature.

In (22) compared to (18), we replace only the temperature T1 of species 1 by the
pressure tensor P1 while we keep the temperature T2. This asymmetric choice can be
motivated by the theory of “persistence of velocity” described by Jeans in [17, 18].
He argues that in the post-collisional speed of particle 1 there is a memory of the
pre-collisional speed of particle 1. In the single species, BGK equation this yields to
the choice of

T = (1 − μ)T 1 + μP, −1

2
≤ μ ≤ 1,

the tensor chosen in the well-known ES-BGK model, where μP preserves the mem-
ory of the off-equilibrium content of the pre-collisional velocity. This can be rewritten
as

T = T 1 + μtraceless[P],

where traceless[P] denotes the traceless part of P. So the off-equilibrium part is
contained in μtraceless[P]. Doing this analogously for two species, we arrive at

T12 = T121 + α

n1
traceless[P1].

If we plug in the definition of T12 given by (8), we end up with (22).
With the second choice, the model is well-defined, because T12 and T21 are

invertible as a combination of strictly positive matrices as soon as all coefficients
in front of these matrices are positive, which is the case due to (11) and (12). The
first choice needs additional conditions coming from the restrictions on μ12 and μ21
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given by (20) and (21). The first one leads to

μ1 ≤ n2
n1

ν12

ν11
+ 1,

such that μ12 given by (20) is positive. The requirement of positivity of μ21 leads to
a corresponding restriction on μ2 using (21).

2.2.1 Equilibrium and Entropy Inequality

The aim of this subsection is to discuss the property of equilibrium and the entropy
inequality for the alternative extensions described in Sect. 2.2 with the tensors (18),
(19) respective (22), (23). For the tensors (18), (19), we proved the property of
equilibriumand theH-Theorem inSect. 2.1.1 in the particular case forμ12 = μ21 = 0
for simplicity, but we can also prove it in the general case. In this section, we will
prove an entropy inequality for the alternative model (22), (23). First we will check
that the equilibrium distributions are Maxwellians. In global equilibrium, when f1
and f2 are independent of x and t , the right-hand side of (16) has to be zero. In this
case, we get

f1 = 1

1 + 1
β2
1

n2
n1

(G1 + 1

β2
1

n2
n1

G12).

If we compute the temperatures of this expression, we get

T1 = 1

1 + 1
β2
1

n2
n1

(T1 + 1

β2
1

n2
n1

(αT1 + (1 − α)T2)),

which is equivalent to T1 = T2 for α �= 1. So denote T := T1 = T2. If we compute
pressure tensors, we get

(1 + 1

β2
1

n2
n1

)P1 = T1 + 1

β2
1

n2
n1

T12

= (1 − ν1)T + ν1P1 + 1

β2
1

n2
n1

αP1 + 1

β2
1

n2
n1

(1 − α)T 1

which is equivalent to

((1 − ν1) + 1

β2
1

n2
n1

(1 − α))P1 = ((1 − ν1) + 1

β2
1

n2
n1

(1 − α))T 1,

which is P1 = T 1 for ν1, α �= 1. That means that the pressure tensors of f1 and f2
are diagonal and they are Maxwellian distributions with equal mean velocity and
temperature.
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Next, we want to prove the H-Theorem of the simpler model (22) and (23). For
this proof, we need the following lemmas.

Lemma 1. (Brunn–Minkowski inequality). Let 0 ≤ a ≤ 1 and A, B positive sym-
metric matrices, then

det(aA + (1 − a)B) ≥ (det A)a(det B)1−a .

Proof. The proof is given in [2].

Lemma 2. Assuming (22) and (23) and the positivity of all temperatures and pres-
sure tensors (11), we have the following inequality

S := (detT12)
ε(detT21) ≥ (det

P1

n1
)ε det

P2

n2
.

Proof. Using the definition of T12, we get

detT12 = det(α
P1

n1
+ (1 − α)T21 + γ |u1 − u2|21).

Since γ is non-negative, we can estimate the expression by dropping the positive
term on the diagonal γ |u1 − u2|21

detT12 ≥ det(α
P1

n1
+ (1 − α)T21).

With the Brunn–Minkowski inequality, we obtain

detT12 ≥ (det
P1

n1
)α(det T21)1−α.

In a similar way, we can show it for T21, so all in all we get

S ≥ (det
P1

n1
)αε(det T21)ε(1−α)(det

P2

n2
)1−ε(1−α)(det T11)ε(1−α).

Consider the logarithm of this equation

ln S ≥ εα ln

(
det

(
P1

n1

))
+ ε(1 − α) ln (det (T21))

+(1 − ε(1 − α)) ln

(
det

(
P2

n2

))
+ ε(1 − α) ln (det (T11)) .

We use that ln (det (Ti1)) = Tr(ln (Ti1)), Ti = Tr Pi
3ni

and denote the eigenvalues of
Pi
ni
by λi,1, λi,2 and λi,3. Since the pressure tensors are symmetric, we can diagonalize
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them and use that Ti = Tr P

3ni
= 1/3(λi,1 + λi,2 + λi,3).

ln S ≥ εα(ln λ1,1 + ln λ1,2 + ln λ1,3) + ε(1 − α)3 ln
1

3
(λ1,1 + λ1,2 + λ1,3)

+(1 − ε(1 − α))(ln λ2,1 + ln λ2,2 + ln λ2,3) + ε(1 − α)3 ln
1

3
(λ2,1 + λ2,2 + λ2,3).

Since ln is concave, we can estimate ln 1
3 (λ1,1 + λ1,2 + λ1,3) from below by

1
3 (ln λ1,1 + ln λ1,2 + ln λ1,3) and obtain

ln S ≥ ε ln

(
det

(
P1

n1

))
+ ε(1 − α) ln

(
det

(
P2

n2

))
.

This is equivalent to the required inequality.

Remark 1. From the case of one species ES-BGK model, we know that

∫
Gk lnGkdv ≤

∫
Gk,μk=1 lnGk,μk=1dv ≤

∫
fk ln fkdv,

for k = 1, 2, see [2], where Gk,μk=1 denotes the modified Maxwellian where μk = 1
in the tensor (15).

Theorem 3. (H-theoremformixture).Assumeα, δ �= 1. Assume f1, f2 > 0. Assume
the relationship between the collision frequencies (5), the conditions for the inter-
species Maxwellians (7), (9), (22) and (23) and the positivity of the temperatures
(11), then

∫
(ln f1) Q11( f1, f1) + (ln f1) Q12( f1, f2)dv +

∫
(ln f2) Q22( f2, f2) + (ln f2) Q21( f2, f1)dv ≤ 0,

with equality if and only if f1 and f2 are Maxwell distributions with equal mean
velocity and temperature.

Proof. The fact that
∫
ln fk Qkk( fk, fk)dv ≤ 0, k = 1, 2 is shown in proofs of the

H-theorem of the single ES-BGK-model, for example, in [2]. In both cases, we have
equality if and only if f1 = M1 and f2 = M2.
Let us define

S( f1, f2) := ν12n2

∫
ln f1(G12 − f1)dv + ν21n1

∫
ln f2(G21 − f2)dv.

The task is to prove that S( f1, f2) ≤ 0. Since the function H(x) = x ln x − x is
strictly convex for x > 0, we have H ′( f )(g − f ) ≤ H(g) − H( f ) with equality if
and only if g = f . So
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(g − f ) ln f ≤ g ln g − f ln f + f − g. (24)

Consider now S( f1, f2) and apply the inequality (24) to each of the two terms in S.

S( f1, f2) ≤ ν12n2

[∫
G12 lnG12dv −

∫
f1 ln f1dv −

∫
G12dv +

∫
f1dv

]

+ν21n1

[∫
G21 lnG21dv −

∫
f2 ln f2dv −

∫
G21dv +

∫
f2dv

]
,

with equality if and only if f1 = G12 and f2 = G21. If we compute the velocities of
f1 = G12 and f2 = G21,we can deduceu1 = u12 andu2 = u21 which lead tou1 = u2
using the definitions of u12, u21 given by (7) and (9). Analogously, computing the
temperatures, we get T12 = T21 = T1 = T2 =: T . Finally, computing the pressure
tensors, we obtain P1

n1
= P2

n2
= T 1, which means that we have equality if and only if

f1 and f2 are Maxwellians with equal temperatures and velocities.
Since G12 and f1 have the same density and G21 and f2 have the same density

too, the right-hand side reduces to

ν12n2(
∫

G12 lnG12dv −
∫

f1 ln f1dv) + ν21n1(
∫

G21 lnG21dv −
∫

f2 ln f2dv).

Since
∫
G lnGdv = n ln( n√

det( 2πT
m )

) − 3
2n for G = n√

det( 2πT
m )

3 e−(v−u)·( T
m )−1·(v−u),

we will have that

ν12n2

∫
G12 lnG12dv + ν21n1

∫
G21 lnG21dv

≤ ν21n1

∫
G2,μ2=1 lnM2,μ2=1dv + ν12n2

∫
G1,μ1=1 lnG1,μ1=1dv,

provided that

ν12n2n1 ln
n1√

det(2π T 12
m1

)

+ ν21n2n1 ln
n2√

det(2π T 21)

m2

≤ ν12n2n1 ln
n1√

det(2π P1
m1

)

+ ν21n2n1 ln
n2√

det(2π P2
m2

)

,

which is equivalent to the condition

(detT12)
ε(detT21) ≥ (det

P1

n1
)ε det

P2

n2
,

proven in Lemma 2.



Kinetic ES-BGK Models for a Multi-component Gas Mixture 207

With this inequality, we get

S( f1, f2) ≤ ν12n2[
∫

G1,μ1=1 lnG1,μ1=1dv −
∫

f1 ln f1dv]

+ ν21n1[G2,μ2=1 lnG2,μ2=1dv −
∫

f2 ln f2dv] ≤ 0.

The last inequality follows from Remark 1. Here, we also have equality if and only
if f1 = M1 and f2 = M2, but since we already noticed that equality also implies
f1 = G12 and f2 = G21.

Define the total entropy H( f1, f2) = ∫
( f1 ln f1 + f2 ln f2)dv. We can compute

∂t H( f1, f2) + ∇x ·
∫

( f1 ln f1 + f2 ln f2)vdv = S( f1, f2),

by multiplying the BGK equation for the species 1 by ln f1, the BGK equation for
the species 2 by ln f2 and integrating the sum with respect to v.

Corollary 1. (Entropy inequality for mixtures). Assume f1, f2 > 0. Assume a
fast enough decay of f to zero for v → ∞. Assume relationship (5), the conditions
(7), (9), (22) and (23) and the positivity of the temperatures (11), then we have the
following entropy inequality

∂t

(∫
f1 ln f1dv +

∫
f2 ln f2dv

)
+ ∇x ·

(∫
v f1 ln f1dv +

∫
v f2 ln f2dv

)
≤ 0,

with equality if and only if f1 and f2 are Maxwell distributions with equal bulk
velocity and temperature.

In summary, the ES-BGKmodels (13), (16) have five free parameters. We expect
this will aid in determining macroscopic physical constants, analogously to how it
is done in [14].

References

1. P. Asinari, Asymptotic analysis of multiple-relaxation-time lattice Boltzmann schemes for
mixture modeling. Comput. Math. Appl. 55, 1392–1407 (2008)

2. P. Andries, B. Perthame, The ES-BGK Model Equation With Correct Prandtl Number, AIP
Conference Proceedings, vol. 30 (2001)

3. P. Andries, P. Le Tallec, J. Perlat, B. Perthame, The Gaussian -BGK model of Boltzmann
equation with small Prandtl number. Eur. J. Mech. B - Fluids 19, 813–830 (2000)

4. P. Andries, K. Aoki, B. Perthame, A consistent BGK-type model for gas mixtures. J. Stat. Phys.
106, 993–1018 (2002)

5. S. Brull, An ellipsoidal statistical model for gas mixtures. Commun. Math. Sci. 8, 1–13 (2015)



208 C. Klingenberg et al.

6. M. Bennoune, M. Lemou, L. Mieussens, Uniformly stable numerical schemes for the Boltz-
mann equation preserving the compressible Navier-Stokes asymptotics. J. Comput. Phys. 227,
3781–3803 (2008)

7. F. Bernard, A. Iollo, G. Puppo, Accurate asymptotic preserving boundary conditions for kinetic
equations on Cartesian grids. J. Sci. Comput. 65, 735–766 (2015)

8. C. Cercignani, The Boltzmann Equation and its Applications (Springer, Berlin, 1975)
9. C. Cercignani, Rarefied Gas Dynamics, From Basic Concepts to Actual Calculations (Cam-

bridge University Press, Cambridge, 2000)
10. A. Crestetto, N. Crouseilles, M. Lemou, Kinetic/fluid micro-macro numerical schemes for

Vlasov-Poisson-BGK equation using particles. Kinet. Relat. Models 5, 787–816 (2012)
11. G. Dimarco, L. Pareschi, Numerical methods for kinetic equations. Acta Numer. 23, 369–520

(2014)
12. F. Filbet, S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related

problems with stiff sources. J. Comput. Phys. 20, 7625–7648 (2010)
13. E.P. Gross, M. Krook, Model for collision processes in gases: small-amplitude oscillations of

charged two-component systems. Phys. Rev. 3, 593 (1956)
14. M. Groppi, S. Monica, G. Spiga, A kinetic ellipsoidal BGK model for a binary gas mixture.

EPL: Eur. Lett. 96, 64002 (2011)
15. B. Hamel, Kinetic model for binary gas mixtures. Phys. Fluids 8, 418–425 (1965)
16. L. Holway, New statistical models for kinetic theory: methods of construction. Phys. Fluids 9,

1658–1673 (1966)
17. J.H. Jeans, The persistence of molecular velocities in the kinetic theory of gases. Philos. Mag.

6 8(48), 700–703 (1904)
18. J.H. Jeans, The Dynamical Theory of Gases (Cambridge University Press, Cambridge, 1916)
19. C. Klingenberg, M. Pirner, G. Puppo, A consistent kinetic model for a two-component mixture

with an application to plasma. Kinet. Relat. Models 10, 444–465 (2017)
20. S. Pieraccini, G. Puppo, Implicit-explicit schemes for BGK kinetic equations. J. Sci. Comput.

32, 1–28 (2007)
21. S.-B. Yun, Classical solutions for the ellipsoidal BGK model with fixed collision frequency. J.

Differ. Equ. 259, P6009–6037 (2015)



An Arbitrary Lagrangian–Eulerian
Discontinuous Galerkin Method
for Conservation Laws: Entropy Stability

Christian Klingenberg, Gero Schnücke and Yinhua Xia

Abstract InKlingenberg, Schnücke andXia (Math.Comp.Available via https://doi.
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1 Introduction

The present paper investigates an arbitrary Lagrangian–Eulerian discontinuous
Galerkin (ALE-DG) method to solve one-dimensional conservation laws

∂t u + ∂x f (u) = 0 in Ω × (0, T ) , u (x, 0) = u0 (x) in Ω (1)

with periodic boundary conditions. The function u0 : Ω → R is sufficiently smooth
and compactly supported, and the flux function f : R → R is at least one times con-
tinuously differentiable. This method was introduced and analyzed by Klingenberg
et al. in [9].

TheArbitraryLagrangian–Eulerian (ALE) approachhas been rigorously described
byDonea et al. in [5]. It is a kind of compromise between the Lagrangian andEulerian
approach. These two approaches are the two commonly used descriptions of motions
in computational fluid dynamics. In the Lagrangian approach the mesh points are
moving with the fluid velocity. This approach could produce distortions in the mesh.
The distortions lead to numerical artifacts. This has been discussed by Donea et al.
in [5]. In the Eulerian approach the mesh is static. Hence, numerical artifacts by
geometric distortions are avoided in this approach. Nevertheless, a drawback of the
Eulerian approach is the loss of specific properties of the physical model. Springel
[11] compared the Lagrangian and Eulerian approach in cosmological hydrodynam-
ical simulations using the finite volume method and observed a lack of the Galilean
invariance when the Eulerian approach is used. Furthermore, in the same paper,
Springel showed by numerical simulations with a second-order finite volume mov-
ingmeshmethod that theGalilei invariance is preservedwhen themeshmoves almost
with the fluid.

The main idea of the ALE approach is to described the fluid motion almost as
in the Lagrangian approach, and if distortions with a destabilizing effect occur, the
description of motion moves closer to the Eulerian approach. The implementation
and mathematical description of the ALE approach ensure by a mapping which
connects the physical domain with a suitable reference configuration. The mapping
provides a description of the grid velocity field. In addition, the test function space is
defined by the mapping, in the context of Galerkin methods. In general, the mapping
is globally defined. This is quite unattractive for discontinuous Galerkin methods,
since these methods lose their local structure, when a global defined ALE mapping
is used. Furthermore, if the ALE approach is combined with numerical schemes,
which are derived by the method of lines approach, and the Jacobi matrix of the
mapping depends on spatial variables, a geometric error could appear by an unsuit-
able choice of the time integration method. This geometric error destabilizes the
numerical scheme. The geometric error does not appear, if the ALE method satisfies
the geometric conservation law (GCL). The error and the GCL have been analyzed
by Guillard and Farhat in [7].

The ALE-DG method in [9] is derived by local affine linear ALE mappings.
Hence, the method has a local structure like the DG methods for static grids, and it
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has been proven that the method to solve one-dimensional conservation laws satisfies
the GCL for any first-order time discretization method or high-order single-step
method in which the stage order is equal or higher than first order. Moreover, for the
semi-discrete method, a cell entropy inequality with respect to the square entropy
function and a priori error estimates have been proven. For the time integration, the
total variation diminishing (TVD) Runge–Kutta methods, which were introduced by
Shu in [10], are adopt. Hence, the ALE-DG method degenerates to the Runge–Kutta
discontinuous Galerkin (RK-DG) method on a static non-moving mesh. The RK-
DG method was developed by Cockburn, Shu et al. in a series of papers [2–4] and
is designed for the Eulerian description of fluid motion. Over the last decades, this
method has becomequite popular in computational fluid dynamics. TheTVDRunge–
Kutta methods are convex combinations of the forward Euler step. Hence, a stability
result for the forward Euler step could be extent by an adequate time step regulation.
This feature of the TVD Runge–Kutta methods has been proven by Gottlieb and Shu
in [6]. According to this property of the TVD Runge–Kutta methods, it has been
proven that the full discrete ALE-DG method satisfies a local maximum principle
and the average values of the ALE-DG solution are total variation stable.

The next step is the analysis of the fully discrete ALE-DGmethod with respect to
entropy stability. Unfortunately, Chavent and Cockburn proved in [1] that the P1-DG
method to solve scalar conservation laws with a linear flux function on static grids
is unconditionally L∞ (

0, T ;L2 (0, 1)
)
-unstable for any CFL restriction, when the

forward Euler step is used. Hence, we cannot expect entropy stability for the forward
Euler Pk-ALE-DG method, if k ≥ 1. In particular, the entropy stability for the Pk-
ALE-DG method with a TVD Runge–Kutta cannot be proven by Gottlieb and Shu’s
theorem and needs to be investigated separated from the forward Euler Pk-ALE-DG
method.

Jiang and Shu analyzed in [8] fully discrete DG methods with respect to entropy
stability. They applied the ϑ-method for the time integration of the semi-discrete
DG method and proved for 1

2 ≤ ϑ ≤ 1 and polynomials of arbitrary degree a cell
entropy inequality with respect to the square entropy function. The ϑ-method for the
ordinary differential equation ∂t u = L (u, t) is given by

un+1 = un + ΔtL
(
un+ϑ , tn+ϑ

)
, (2a)

un+ϑ := (1 − ϑ) un + ϑun+1, tn+ϑ := (1 − ϑ) tn + ϑ tn+1. (2b)

In this paper, the ϑ-method is applied for the time integration of the semi-discrete
ALE-DG method and the corresponding ϑ-Pk-ALE-DG method is analyzed with
respect to entropy stability in the sense of the square entropy and theKružkov entropy
functions.

This paper is organized as follows: It starts with a briefly presentation of the
ALE-DGmethod in Sect. 2. Afterward, in the same section, two entropy inequalities
are proven for the fully discrete method. It will be completed with some concluding
remarks in Sect. 3.
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2 The ALE-DG Method

This section is started with a summary of the main ingredients to describe the ALE-
DG method. Let Ω ⊆ R be an open interval. It need to be assumed that it exists for
any time level t = tn a partition of the domain Ω with

Ω =
N⋃

j=1

K n
j , K n

j :=
(

xn
j− 1

2
, xn

j+ 1
2

)
, Δn

j := xn
j+ 1

2
− xn

j− 1
2
.

This assumption enables to define time-dependent straight lines for all j = 1, ..., N

x j− 1
2
(t) := xn

j− 1
2
+ ωn

j− 1
2
(t − tn) , ωn

j− 1
2

:= 1

Δt

(
xn+1

j− 1
2
− xn

j− 1
2

)
,

where Δt is specified by the partition of the time interval (0, T ). The straight lines
provide for any t ∈ [

tn, tn+1
]
and all j = 1, ..., N time-dependent cells

K j (t) :=
(

x j− 1
2
(t) , x j+ 1

2
(t)

)
, Δ j (t) := x j+ 1

2
(t) − x j− 1

2
(t) .

The local grid velocity of the ALE-DGmethod is for all t ∈ [
tn, tn+1) and x ∈ K j (t)

given by

ω (x, t) = 1

Δ j (t)

(
ωn

j+ 1
2
− ωn

j− 1
2

) (
x − x j− 1

2
(t)

)
+ ωn

j− 1
2
. (3)

The time-dependent cells can be connected with a reference cell [0, 1] by an affine
linear mapping

χ j : [0, 1] → K j (t), ξ �→ χ j (ξ, t) := Δ j (t) ξ + x j− 1
2
(t) .

This mapping enables to define the following time-dependent finite-dimensional test
function space

Vh (t) := {
v ∈ L2 (Ω) : (

v ◦ χ j
) ∈ Pk ([0, 1])

}
,

where Pk ([0, 1]) denotes the space of polynomials in [0, 1] of degree at most k. The
test functions v ∈ Vh(t) are discontinuous in the points x j− 1

2
(t). Hence, the limits

in these points are defined by

v±
j− 1

2
:= lim

ε→0
v
(

x j− 1
2
(t) ± ε, t

)
.

Finally, it should be mentioned that in [9] for sufficiently smooth functions u : Ω ×
(0, T ) → R the following ALE transport equation has been proven
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d

dt

∫

K j (t)
uv dx =

∫

K j (t)
(∂t u) v dx +

∫

K j (t)
(∂x (ωu)) v dx, ∀v ∈ Vh(t). (4)

2.1 The Semi-discrete ALE-DG Discretization

At the beginning, the solution u of the problem (1) is approximated by the function

uh (x, t) =
k∑


=0

u j

 (t) φ

j

 (x, t) ∈ Vh (t) , ∀t ∈ [

tn, tn+1) and x ∈ K j (t) ,

where
{
φ

j
0 (x, t) , ..., φ

j
k (x, t)

}
is a basis of the space Vh (t) in the cell K j (t). The

coefficients u j
0 (t) , ..., u j

k (t) are the unknowns of the ALE-DG method. In order to
determine these coefficients, the Eq. (1) is multiplied by a test function v ∈ Vh(t) and
the transport equation (4) as well as the integration by parts formula are applied. In
general, the function uh is discontinuous in the cell interface points x j− 1

2
(t). Hence,

in these points, the following Lax–Friedrichs flux is applied

ĝ
(
ω, u−, u+) := ĝ+

(
ω, u−) − ĝ−

(
ω, u+)

, ĝ± (ω, u) := 1

2

(
λ j (t) u ± g (ω, u)

)

where g (ω, u) := f (u) − ωu and

λ j (t) := max
{|∂u g (ω (x, t) , u)| : u ∈ [m, M] , x ∈ K j (t)

}
(5)

withm := minx∈Ω u0 (x) and M := maxx∈Ω u0 (x). Finally, the semi-discreteALE-
DG method can be summarized as follows:

Problem 1 (Semi-discrete ALE-DG method). Seek a function uh ∈ Vh(t), such
that for all v ∈ Vh(t) and j = 1, ..., N holds

0 = d

dt

∫

K j (t)
uhv dx −

∫

K j (t)
g (ω, uh) (∂x v) dx

+ĝ
(
ωn

j+ 1
2
, u−

h, j+ 1
2
, u+

h, j+ 1
2

)
v−

j+ 1
2
− ĝ

(
ωn

j− 1
2
, u−

h, j− 1
2
, u+

h, j− 1
2

)
v+

j− 1
2
. (6)

The time discretization method for the problem (6) needs to be chosen carefully,
since according to Guillard and Farhat [7] the geometric conservation needs to be
respected. However, in [9], it has been proven that the ALE-DG method satisfies
the geometric conservation law for any single-step method with stage order equal
or higher than first order. Hence, there is a lot of freedom in the choice of a time
discretization method for the ALE-DG method.
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The capability of the ALE-DG method with a third-order TVD Runge–Kutta
method for problems with a compressible flow has been shown by numerical exper-
iments for the inviscid Burgers’ equation and Euler equations in [9]. In particular,
it has been shown numerically that the method is able to reach the optimal rate of
convergence and can handle strong singularities like shock waves.

2.2 Cell Entropy Inequalities

In this section, cell entropy inequalities for the fully discrete ϑ-Pk-ALE-DGmethod
are discussed, where the ϑ-Pk-ALE-DG results from a discretization of the semi-
discrete formulation (6) with the ϑ-method (2). The corresponding method can be
written on the reference cell (0, 1) as follows:

Problem 2 (The ϑ-Pk-ALE-DG method). For a given function ûn
h ∈ Vh(tn) seek

a function ûn+1
h ∈ Vh(tn+1), such that for all v̂ ∈ Pk ([0, 1]) and j = 1, ..., N holds

0 =
∫ 1

0
Δn+1

j ûn+1
h v̂ dξ −

∫ 1

0
Δn

j û
n
hv dξ −

∫ 1

0
g

(
ω̂ (tn+ϑ) , ûn+ϑ

h

) (
∂ξ v̂

)
dξ

+ĝ
(
ωn

j+ 1
2
, ûn+ϑ,−

h, j+ 1
2
, ûn+ϑ,+

h, j+ 1
2

)
v̂−

j+ 1
2
− ĝ

(
ωn

j− 1
2
, ûn+ϑ,+

h, j− 1
2
, ûn+ϑ,+

h, j− 1
2

)
v̂+

j− 1
2
,

where ûh := uh ◦ χ j , v̂ := v ◦ χ j , ω̂ = ω ◦ χ j and tn+ϑ is defined as in (2b).

At first, a cell entropy inequality with respect to the square entropy function
η (u) = 1

2u2 is proven. The proof based on the upcoming discrete variation on the
ALE transport equation (4).

Lemma 1. Let u : [0, 1] × [0, T ] → R be a sufficiently smooth function and
η (u) = 1

2u2. Then holds

∫ 1

0
Δn+1

j un+1un+ϑ dξ −
∫ 1

0
Δn

j u
nun+ϑ dξ

=
∫ 1

0
Δn+1

j η
(
un+1

)
dξ −

∫ 1

0
Δn

jη
(
un

)
dξ

+Δt
∫ 1

0

(
∂ξ ω̂ (tn+ϑ)

)
η

(
un+ϑ

)
dξ

+
∫ 1

0

[
ϑ2Δn

j − (1 − ϑ)2 Δn+1
j

]
η

(
un+1 − un

)
dξ, (7)

where un+ϑ and tn+ϑ are defined as in (2b).
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Proof. First of all, by a simple algebraic manipulation follows

∫ 1

0
Δn+1

j un+1un+ϑ dξ −
∫ 1

0
Δn

j u
nun+ϑ dξ

=
∫ 1

0
Δn+1

j η
(
un+1

)
dξ −

∫ 1

0
Δn

jη
(
un

)
dξ

+
∫ 1

0

(
Δn+1

j − Δn
j

) (
(2ϑ − 1) η

(
un+1

) + (1 − ϑ) un+1un
)

dξ

+ (2ϑ − 1)
∫ 1

0
Δn

jη
(
un+1 − un

)
dξ. (8)

Next, it should be noted that ∂xω (tn+ϑ)Δn+ϑ
j = ∂ξ ω̂ (tn+ϑ). Hence, by formula (3)

follows

Δt∂ξ ω̂ (tn+ϑ) = Δt
(
ωn

j+ 1
2
− ωn

j− 1
2

)
=

(
Δn+1

j − Δn
j

)
. (9)

Moreover, the identity (9) and the integration by substitution formula provide

∫ 1

0

(
Δn+1

j − Δn
j

) (
(2ϑ − 1) η

(
un+1

) + (1 − ϑ) un+1un
)

dξ

− (1 − ϑ)2
∫ 1

0

(
Δn+1

j − Δn
j

)
η

(
un+1 − un

)
dξ

= Δt
∫ 1

0

(
∂ξω (tn+ϑ)

)
η

(
un+ϑ

)
dξ. (10)

Finally, the discrete transport equation (7) follows by combining the equations (8)
and (10). �

The discrete transport equation (7) provides only a cell entropy inequality, if it
can be ensured that

∫ 1

0

[
ϑ2Δn

j − (1 − ϑ)2 Δn+1
j

]
η

(
un+1 − un

)
dξ ≥ 0. (11)

In fact it follows from a simple calculation that ϑ needs to satisfy

0 <

√
Δn+1

j
√

Δn
j +

√
Δn+1

j

≤ ϑ ≤ 1. (12)

It should be noted that on a static mesh the equation Δn
j=Δn+1

j is satisfied. Hence,
in this case, (12) yields the restriction 1

2 ≤ ϑ ≤ 1. This is the same restriction as in
Jiang andShu’s paper [8].However, the restriction (12) ensures the upcoming entropy
inequalitywith respect to the square entropy function for theϑ-Pk -ALE-DGmethod.
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Proposition 1. Suppose ϑ satisfies the restriction (12). Then the solution of the ϑ-
Pk-ALE-DG method satisfies with respect to the square entropy function η (u) = 1

2u2

the cell entropy inequality

0 ≥
∫

K n+1
j

η
(
un+1

h

)
dx −

∫

K n
j

η
(
un

h

)
dx

+Δt
(

H
(
ωn

j+ 1
2
, un+ϑ,−

h, j+ 1
2
, un+ϑ,+

h, j+ 1
2

)
− H

(
ωn

j− 1
2
, un+ϑ,−

h, j− 1
2
, un+ϑ,+

h, j− 1
2

))
,

where H
(
ω, u−, u+) := − ∫ u−

f (u) du + ωη
(
u−) + ĝ

(
ω, u−, u+)

u−. Further-
more, holds

∥∥un
h

∥∥
L2(Ω)

≤ ∥∥u0
h

∥∥
L2(Ω)

.

Proof. The ϑ-Pk-ALE-DG can be written as follows

0 =
∫ 1

0
Δn+1

j η
(
ûn+1

h

)
dξ −

∫ 1

0
Δn

jη
(
ûn

h

)
dξ

+
∫ 1

0

[
ϑ2Δn

j − (1 − ϑ)2 Δn+1
j

]
η

(
ûn+1

h − ûn
h

)
dξ

−Δt
∫ 1

0
f
(
ûn+ϑ

h

) (
∂ξ ûn+ϑ

h

)
dξ + Δt

∫ 1

0
∂ξ

(
ω̂ (tn+ϑ) η

(
ûn+ϑ

h

))
dξ

+Δt
(

ĝ
(
ωn

j+ 1
2
, ûn+ϑ,−

h, j+ 1
2
, ûn+ϑ,+

h, j+ 1
2

)
ûn+ϑ,−

h, j+ 1
2

− ĝ
(
ωn

j− 1
2
, ûn+ϑ,−

h, j− 1
2
, ûn+ϑ,+

h, j− 1
2

)
ûn+ϑ,+

h, j− 1
2

)
,

when the test function v̂ = ûn+ϑ
h and the discrete transport equation (7) are applied.

The next steps ensues similar as in the proof of the entropy inequality for the semi-
discrete ALE-DG method in [9]. First of all, the integration by substitution formula
and the function H

(
ω, u−, u+)

are applied to write the method as

0 ≥
∫ 1

0
Δn+1

j η
(
ûn+1

h

)
dξ −

∫ 1

0
Δn

jη
(
ûn

h

)
dξ + Θn+ϑ

j− 1
2

+Δt
(

H
(
ωn

j+ 1
2
, ûn+ϑ,−

h, j+ 1
2
, ûn+ϑ,+

h, j+ 1
2

)
− H

(
ωn

j− 1
2
, ûn+ϑ,−

h, j− 1
2
, ûn+ϑ,+

h, j− 1
2

))
, (13)

where

Θn+ϑ

j− 1
2

:= Δt
(

g
(
ωn

j− 1
2
, θn+ϑ

j

)
− ĝ

(
ωn

j− 1
2
, ûn+ϑ,−

h, j− 1
2
, ûn+ϑ,+

h, j− 1
2

))
[[̂un+ϑ

h ]] j− 1
2

with a value θn+ϑ
j between ûn+ϑ,−

h, j− 1
2
and ûn+ϑ,+

h, j− 1
2
and [[̂un+1

h ]] j− 1
2

:= ûn+ϑ,+
h, j− 1

2
− ûn+ϑ,−

h, j− 1
2
.

It should be noted that (13) is an inequality, since it has been assumed that ϑ satisfies
the restriction (12) and thus the inequality (11) is satisfied, too. Moreover, the term
Θn+ϑ

j− 1
2
is nonnegative, since the method is considered with a monotone and consistent

numerical flux. Next, the inequality (13) is transformed to the physical domain by the
integration by substitution formula. The inequality on physical domain provides the
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desired cell entropy inequality. Finally, a summation of the cell entropy inequality
over all cells yields the L2-stability, since we consider the problem (1) with periodic
boundary conditions. �

The result in Proposition 1 holds merely for the square entropy function. Never-
theless, for the piecewise constantϑ-P0-ALE-DGmethod an entropy inequalitywith
respect to the Kružkov entropy functions can be proven. Henceforth, the upcoming
notation is used

u j (t) := 1

Δ j (t)

∫

K j (t)
uh (t) dx, Δn+1−ϑ

j := ϑΔn
j + (1 − ϑ) Δn+1

j . (14)

The following identity follows from a simple calculation

Δn+1
j un+1

j − Δn
j u

n
j = Δn+1−ϑ

j

(
un+1

j − un
j

)
+ Δt

(
ωn

j+ 1
2
− ωn

j− 1
2

)
un−ϑ

j , (15)

since Δn+1
j − Δn

j = Δt
(
ωn

j+ 1
2
− ωn

j− 1
2

)
. The Eq. (15) provides the upcoming for-

mulation of the ϑ-P0-ALE-DG method

0 = un+1
j − un

j + Δt

Δn+1−ϑ
j

(
ĝ+

(
ωn

j− 1
2
, un+ϑ

j

)
− ĝ+

(
ωn

j− 1
2
, un+ϑ

j−1

))

− Δt

Δn+1−ϑ
j

(
ĝ−

(
ωn

j+ 1
2
, un+ϑ

j+1

)
− ĝ−

(
ωn

j+ 1
2
, un+ϑ

j

))
. (16)

In the following, an entropy inequality with respect to the Kružkov entropy functions
η
 (u) := |u − 
|, 
 ∈ R, is presented for the method (16).

Proposition 2. Suppose the CFL condition

(

λn+ϑ
j + 1

2
max

t∈[tn ,tn+1]

{∣∣∂xω (x, t) Δ j (t)
∣∣ : x ∈ K j (t)

}
)

Δt

Δn+1−ϑ
j

≤ 1, (17)

where the parameters λn+ϑ
j and Δn+1−ϑ

j are given by (5) and (14), respectively. Then
the solution of the scheme (16) satisfies the cell entropy inequality

η


(
un+1

j

)
− η


(
un

j

)
+ Δt

Δn+1−ϑ
j

(
H


(
ω, un+ϑ

j , un+ϑ
j+1

)
− H


(
ω, un+ϑ

j−1 , un+ϑ
j

))
≤ 0,

where η
 (u) := |u − 
|, 
 ∈ R, are the Kružkov entropy functions and for all a, b ∈
[m, M], H
 (ω, a, b) is given by
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H
 (ω, a, b) := 1

2

∫ a




η′

 (v)

(
λn

j + f ′ (v) − ωn
j− 1

2

)
dv

−1

2

∫ b




η′

 (v)

(
λn

j − f ′ (v) + ωn
j+ 1

2

)
dv.

Proof. The integration by parts formula and the convexity of the functions η
 provide

(
un+1

j − un
j

)
η′




(
un+1

j

)
≥ η


(
un+1

j

)
− η


(
un

j

)

+
∫ un+1

j

un+ϑ
j

(
v − un+ϑ

j

)
η′′


 (v) dv. (18)

Next, the scheme (16) ismultiplied by η


(
un+1

j

)
and the integration by parts formula,

the functions H
 (ω, a, b), (9) and (18) are applied. This results in

0 ≥ η


(
un+1

j

)
− η


(
un

j

) + Θn+ϑ
j

+ Δt

Δn+1
j

(
H


(
ω, un+ϑ

j , un+ϑ
j+1

)
− H


(
ω, un+ϑ

j−1 , un+ϑ
j

))
, (19)

where

Θn+ϑ
j :=

(

1 − Δt

Δn+1−ϑ
j

C
(
λn+ϑ

j , ω (tn+ϑ)
)) ∫ un+1

j

un+ϑ
j

(
v − un+ϑ

j

)
η′′


 (v) dv

+
∫ un+1

j

un+ϑ
j−1

(
ĝ+

(
ωn

j+ 1
2
, v

)
− ĝ+

(
ωn

j+ 1
2
, un+ϑ

j−1

))
η′′


 (v) dv

∫ un+1
j

un+ϑ
j+1

(
ĝ−

(
ωn

j+ 1
2
, v

)
− ĝ−

(
ωn

j+ 1
2
, un+ϑ

j+1

))
η′′


 (v) dv, (20)

C
(
λn+ϑ

j , ω (tn+ϑ)
)

:= λn+ϑ
j + 1

2
∂xω (tn+ϑ)Δ j (tn+ϑ) .

The inequality (19) is almost the desired cell entropy inequality. Nevertheless, it need
to be ensured that the term Θn+ϑ

j is non-negative. In fact, the integrals in equation
(20) are nonnegative, since the functions η
 are convex and the functions ĝ± (ω, u)

are monotone increasing. It should be noted that η′′

 are Dirac delta distributions.

However, the products in all the integrals are well defined, since the delta distri-
butions are multiplied with continuous functions. Furthermore, the term in front of
the first integral in equation (20) is nonnegative by the CFL condition (17). Hence,
the term Θn+ϑ

j is nonnegative and the inequality (19) yields the desired cell entropy
inequality. �
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3 Conclusions

In this paper, an ALE-DGmethod for solving scalar conservation laws has been pre-
sented. A cell entropy inequality with respect to the Kružkov entropy functions has
been proven for the fully discrete ϑ-P0-ALE-DG method. Likewise, a cell entropy
inequality with respect to the square entropy function has been proven for the fully
discrete ϑ-Pk-ALE-DG method, when ϑ satisfies the restriction (12). Cell entropy
inequalities are very useful in the analysis of numerical methods. Besides the conver-
gence to the physical relevant solution, cell entropy inequalities provide certain sta-
bility properties and statements about the qualitative behavior of a numerical method.
For instance, a cell entropy inequality with respect to the square entropy function
provides the L2-stability of the method and is the key to a priori error estimates.
Hence, in future works, it is of particular interest to prove cell entropy inequalities or
at least the L2-stability for the ALE-DGmethodwhen other time integrationmethods
like the explicit third-order TVD-RK methods are adopted.
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Simplified Hyperbolic Moment
Equations

Julian Koellermeier and Manuel Torrilhon

Abstract Hyperbolicity is a necessary property of model equations for the solu-
tion of the BGK equation to achieve stable and physical solutions. However, the
standard approach for velocity space discretization developed by Grad only yields
locally hyperbolic equations. The method has recently been improved, and several
new globally hyperbolic model systems have been derived such as the Hyperbolic
Moment Equations (HME) and the Quadrature-Based Moment Equations (QBME).
We will describe the derivation and properties of a new model system called Simpli-
fied Hyperbolic Moment Equations (SHME) which inherits hyperbolicity from the
other models but is simpler to implement and to solve. First simulation results show
a good accuracy of the new SHME model in comparison with the existing models.

Keywords Moment method · Hyperbolicity · Boltzmann equation

1 Introduction

There are several possible solution methods for the BGK equation with varying
success. Among those are direct solvers like discrete velocity methods [12], particle
methods like DSMC [1], and moment methods as for example [13]. A relatively
old moment approach was developed by Grad in [6], but due to problems regarding
the loss of hyperbolicity of the equations, there has not been much research on this
approach for a long time. Hyperbolicity is an important property because otherwise
there will be imaginary eigenvalues creating instabilities and non-physical solutions.
Grad’s equations have been shown to be only hyperbolic in a small region around
equilibrium so that the solution can break down for strong non-equilibrium; see [4].
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There has been a lot of work regarding different hyperbolic approaches like the
maximum entropy method by Levermore [11], and the method gives very accurate
results, but is also extremely complex because it requires the solution of a nonlinear
optimization problem in every step. Other methods like the Pearson IV model devel-
oped by Torrilhon [14] seem to be difficult to generalize to the multi-dimensional
case.

Recently, several new hyperbolic moment models have been developed that are
based on Grad’s approach but modify the system of equations in different ways
to achieve global hyperbolicity of the equations. Two examples are the Hyperbolic
Moment Equations (HME) by Cai [4] and the Quadrature-Based Moment Equations
(QBME) by Koellermeier [10]. As both new models only approximate the original
system, it is still necessary to investigate these models with respect to accuracy in
various situations. Furthermore, the development of other models is possible, for
example using the operator projection approach as explained in [5].

In this paper,we present a newhyperbolicmomentmodel called SimplifiedHyper-
bolic Moment Equations (SHME) that we derive using a special approximation dur-
ing Grad’s method. The new model equations can be explicitly derived, and we
also show that the model is globally hyperbolic as a special linearization of Grad’s
equations around equilibrium.

The paper is organized as follows:We first recall the BGK equation, the derivation
of the moment method, and some existing hyperbolic models in Sect. 2 before we
derive the new SHME model in the main Sect. 3. We show some shock tube results
in Sect. 4, and the paper ends with a conclusion.

2 Moment Method for the BGK Equation

In one spatial dimension, the BGK equation describing the change of the particle
distribution function f (t, x, c) reads as follows

∂

∂t
f (t, x, c) + c

∂

∂x
f (t, x, c) = S( f ), (1)

where we will consider the BGK collision operator [2] with relaxation time τ on the
right-hand side

S( f ) = −1

τ
( f − fM) (2)

and the equilibrium Maxwellian is given by

fM(t, x, c) = ρ(t, x)√
2πθ(t, x)

exp

(
− (c − u(t, x))2

2θ(t, x)

)
. (3)
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The macroscopic quantities density ρ, velocity u, and temperature θ can be com-
puted via integration of the distribution function over velocity space

ρ(t, x) =
∫
R

f (t, x, c) dc, (4)

ρ(t, x)u(t, x) =
∫
R

c f (t, x, c) dc, (5)

ρ(t, x)θ(t, x) =
∫
R

|c − u|2 f (t, x, c) dc. (6)

The solution of (1) is particularly difficult as it requires an additional discretization
of the velocity space. As an efficient way to perform this, we will use the moment
method. This method requires different steps that have been outlined previously, e.g.,
in [4], and we will recall these steps here to derive a new simplified model later.

1. Expansion of the distribution function
The distribution function f (t, x, c) is first expanded in velocity space in a series
of basis functions φ[u(t,x),θ(t,x)]

α as follows

f (t, x, c) =
∑
α∈N

fα(t, x)φ[u(t,x),θ(t,x)]
α

(
c − u√

θ

)
(7)

=
∑
α∈N

fα(t, x)φ[u,θ]
α (ξ) (8)

with new velocity variable

ξ = c − u√
θ

, (9)

see remark below. Furthermore, the superscripts mean that the basis function will
depend on the macroscopic quantities u(t, x), θ(t, x). From now on, we will omit
the arguments t, x in u and θ to shorten notation. Additionally, we use Einstein’s
summation notation wherever possible to abbreviate the sum in (8).

2. Definition and properties of the basis functions
The basis functions are defined as weighted Hermite polynomials according to

φ[u,θ]
α (ξ) = 1√

2π
θ− α+1

2 Hα (ξ) exp

(
−ξ 2

2

)
, (10)

where Hα is the Hermite polynomial of degree α.

Remark 1. The argument ξ = c−u√
θ
can be seen as a transformed velocity variable

in which the expansion is performed. The microscopic velocity c is shifted by its
mean u and scaled by its variance

√
θ such that the new velocity variable ξ is

normalized with variance 1 and mean 0. This requires less basis functions for the
velocity discretization later but leads to a more complicated PDE to discretize.
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In order to derive the moment equations, we will need to compute derivatives of the
basis functions which in turn need the computation of the Hermite derivatives. We
note that the Hermite polynomials fulfill the following formulas:

• Recursion relation:

Hα+1(x) = xHα(x) − αHα−1(x) (11)

• Derivative:

H ′
α (x) = αHα−1(x), (12)

• Weighted derivative:

[Hα(x) exp (−x2/2)]′ = −αHα+1(x) exp (−x2/2) (13)

With some basic calculations, it is now possible to verify that the basis functions
φ[u,θ]

α (ξ) satisfy

• Recursion relation:

√
θξφ[u,θ]

α (ξ) = θφ
[u,θ]
α+1 (ξ) + αφ

[u,θ]
α−1 (ξ), (14)

• Derivative:

∂

∂ξ
φ[u,θ]

α (ξ) = −√
θφ

[u,θ]
α+1 (ξ), (15)

• θ derivative:

∂

∂θ
φ[u,θ]

α (ξ) = −α + 1

2θ
φ[u,θ]

α (ξ). (16)

3. Compatibility constraints
According to the definition of themacroscopic quantities, the following conditions
can be derived by inserting the ansatz (7) into (4)–(6)

f0 = ρ, f1 = f2 = 0. (17)

This constrains the unknown coefficients fα to the subspace where the macro-
scopic quantities are recovered.

4. Derivation of the moment equations
The derivation of the moment equations in general form now only needs the
computation of the terms in the BGK equation (1). The terms ∂t f and ∂x f are
computed in the following way for s = x, t
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∂

∂s
f (t, x, c) = ∂

∂s

(
fα(t, x)φ[u,θ]

α (ξ)
)

= ∂ fα(t, x)

∂s
φ

[u,θ]
α (ξ) + fα(t, x)

∂φ
[u,θ]
α (ξ)

∂s
(18)

with
∂φ[u,θ]

α (ξ)

∂s
= ∂φ[u,θ]

α (ξ)

∂θ

∂θ

∂s
+ ∂φ[u,θ]

α (ξ)

∂ξ

∂ξ

∂s
, (19)

where the remaining unknown term is given by

∂ξ

∂s
= − 1√

θ

∂u

∂x
− ξ

2θ

∂θ

∂s
. (20)

Using the previously computed formulas, we get

∂

∂s
f (t, x, c) = ∂ fα

∂s
φ[u,θ]

α (ξ) + ∂u

∂s
fαφ

[u,θ]
α+1 (ξ) + 1

2

∂θ

∂s
fαφ

[u,θ]
α+2 (ξ) (21)

or equivalently using an index shift in the Einstein notation of the infinite sum
fαφ[u,θ]

α

∂

∂s
f (t, x, c) =

(
∂ fα
∂s

+ ∂u

∂s
fα−1 + 1

2

∂θ

∂s
fα−2

)
φ[u,θ]

α (ξ). (22)

The convective term c ∂
∂x f (t, x, c) can now be computed using (9), (14), and (22)

c
∂

∂x
f (t, x, c) =

(
u + √

θξ
) ∂

∂x
f (t, x, c)

= φ[u,θ]
α (ξ)

(
θ
∂ fα−1

∂x
+ u

∂ fα
∂x

+ (α + 1)
∂ fα+1

∂x

+ ∂u

∂x
(θ fα−2 + u fα−1 + (α + 1) fα) (23)

+ 1

2

∂θ

∂x
(θ fα−3 + u fα−2 + (α + 1) fα−1)

)

5. Right-hand side collision term
The right-hand side collision term is simply computed by inserting expansion (7)
into (2). Due to the definition of the equilibrium Maxwellian (3), we get

S( f ) = −1 − δ0α

τ
fαφ[u,θ]

α , with δ0α =
{
1, α = 0
0, otherwise.

(24)

6. Matrix form of the moment system
Cutting off the expansion (7) at M ∈ N, we get M + 1 unknowns that we write
as wM = (ρ, u, θ, f3, . . . fM). The moment system for the unknown vector wM

can be directly obtained by matching coefficients of the basis functions in (22),
(23), and (24). We can write the system in the following form
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∂wM

∂t
+ AGrad

∂wM

∂x
= SM , (25)

where the right-hand side reads

SM = −1

τ
PwM (26)

for diagonal matrix P = diag (0, 0, 0, 1, . . . , 1).
The explicit expressions for (25) can be found in [4]. For the famous five-moment
case, the system matrix reads

AGrad =

⎛
⎜⎜⎜⎜⎜⎝

u ρ 0 0 0
θ
ρ

u 1 0 0
0 2θ u 6

ρ
0

0 4 f3
ρθ

2 u 4
− f3θ

ρ
5 f4

3 f3
2 θ u

⎞
⎟⎟⎟⎟⎟⎠

. (27)

Unfortunately, it has been shown that the system (25) loses hyperbolicity for
alreadymoderate non-equilibrium values; see, e.g., [4]. This can lead to non-physical
values and a breakdown of the solution as exemplified in [9]. It is thus of major
importance to derive models with unbounded hyperbolicity regions.

2.1 Existing Hyperbolic Moment Models

Two existing moment models that are globally hyperbolic have been derived in [4,
7]. The Hyperbolic Moment Equations (HME) and the Quadrature-Based Moment
Equations (QBME) will be used as comparison for later computations in Sect. 4. For
the five-moment test case, the system matrices are given by

AHME =

⎛
⎜⎜⎜⎜⎜⎝

u ρ 0 0 0
θ
ρ

u 1 0 0
0 2θ u 6

ρ
0

0 4 f3
ρθ

2 u 4
− f3θ

ρ
0 − f3 θ u

⎞
⎟⎟⎟⎟⎟⎠

, AQBME =

⎛
⎜⎜⎜⎜⎜⎝

v ρ 0 0 0
θ
ρ

v 1 0 0
0 2θ v 6

ρ
0

0 4 f3
ρθ

2 − 10 f4
θ

v 4
− f3θ

ρ
5 f4 − f3 θ + 15 f4

ρθ
v

⎞
⎟⎟⎟⎟⎟⎠

.

(28)
Both models are globally hyperbolic due to the marked changes in the system

matrix with respect to Grad’s model, and they have recently been summarized in a
framework for the derivation of hyperbolic moment models in [5].
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3 A New Simplified Hyperbolic Moment Model SHME

In order to derive efficient but simple moment models to accurately capture flow phe-
nomena beyond the standard fluid dynamics equations, we aim to derive newmodels
that overcome difficulties of the standard Grad model. As a result of the derivation
of Grad’s equations, the problematic loss of hyperbolicity is caused by the effects of
the higher-order coefficients in the equations. These coefficients enter the equation
system because the basis functions depend on the shifted velocity variable ξ and thus
on u and θ . This dependence is reasonable as it yields an efficient approximation,
but it effectively spoils the hyperbolicity of the moment equations.

In order to reduce the nonlinearity introduced by the complicated choice of the
basis functions, we will reduce the model complexity using the following approxi-
mation to Eq. (19), where s = x, t

∂φ[u,θ]
α (ξ)

∂s
= ∂φ[u,θ]

α (ξ)

∂θ

∂θ

∂s
+ ∂φ[u,θ]

α (ξ)

∂ξ

∂ξ

∂s
≈ 0, (29)

meaning that the derivative of the basis function with respect to time and space is set
to zero, which effectively means that the basis functions are treated as if they only
depended on a fixed velocity space. This leads to large simplifications as it will cancel
most terms containing derivatives with respect to the coefficients fα . However, we
must make sure not to change the conservation laws ofmass, momentum, and energy.
This is ensured by applying the approximation only to the lastM − 2 equations,while
keeping the first three equations as before.

From a physical point of view, the model can be seen as a linearization of the full
model (27), which is extremely nonlinear due to the expansion in the transformed
variable (9). By neglecting the respective terms in (29), this nonlinearity is reduced;
see also Sects. 3.1 and 3.2 for further interpretations of the simplification in (29).

The new model is called Simplified Hyperbolic Moment Equations (SHME), due
to the simplification made in (29). The model results in the following system

∂wM

∂t
+ ASHME

∂wM

∂x
= SM , (30)

and in the five-moment case we obtain the system matrix

ASHME =

⎛
⎜⎜⎜⎜⎝

u ρ 0 0 0
θ
ρ

u 1 0 0
0 2θ u 6

ρ
0

0 0 ρθ

2 u 4
0 0 0 θ u

⎞
⎟⎟⎟⎟⎠ (31)

and for M > 4 the matrix is a consistent extension of the tridiagonal matrix in (31).
Note that the system matrix does not depend on the higher-order coefficients any

more and is tridiagonal which leads to a reduction of complexity when it comes to
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implementing numerical schemes. However, it is important to analyze the effect of
this simplification with respect to model accuracy and hyperbolicity as well.

3.1 Discussion of the SHME Model

Comparing the matrix (31) with the original system matrix (27), we see that the
SHME system is exactly the Grad system evaluated at equilibrium; i.e. all higher-
order coefficients in the matrix are set to zero. SHME can therefore be seen as
the linearization of the original Grad system around equilibrium. The characteristic
polynomial of the SHME system matrix (31) can thus be computed analogously to
Grad’s system at equilibrium from which we can directly conclude that the SHME
model is globally hyperbolic, as all eigenvalues of (31) are real.

The linearization ofGrad’s systemaround equilibriummight sound too simple, but
it is actually very similar to the approach by Cai et al. in [4]. In [8], the HME system
was written in convective variables and it was shown that the HME system matrix
in these variables is nothing else than the convective Grad matrix at equilibrium.
In the same way, the QBME model can be written as a linear deviation from the
convective Grad system. In that sense, the SHME model is just another reasonable
approximation of Grad’s system in the original set of variables.

3.2 Relation to Discrete Velocity Model

A different approach to achieve a very simple model for the solution of the BGK
equation (1) is the discrete velocity method (DVM) [12]. It uses point evaluations
of the BGK equation at fixed velocity points ci ∈ R, i = 0, . . . , M to discretize the
equation in velocity space as follows

∂

∂t
fi + ci

∂

∂x
fi = −1

τ
( fi − fM(ci )) (32)

This is computationally highly efficient as there is no velocity transformation that
results in more complicated equations. The system matrix is just a diagonal matrix
ADVM = diag (c0, . . . , cM) with the discrete velocities on the diagonal.

However, far more velocity points are needed to accurately capture the flow,
especially for varying mean velocities in the flow field or over time. As one example,
more than 400 velocities were used to compute the DVM reference solution Sect. 4
in comparison with HME and QBME that used only between five and ten variables.

Without the approximation in (29), the basis functions enable a very efficient
approach for the discretization in velocity space as the basis effect of the transformed
velocity space yields physical adaptivity and also the effect of the derivative is exactly
taken into account by (19).
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The new SHMEmodel on the other hand simplifies the method in that the deriva-
tive of the basis function is neglected; see (29). This reduces the adaptivity of the
method. However, the transformation of the velocity variable (9) is still used in all
other steps of the derivation such as in the expansion (7) and during the computation
of the term c ∂

∂x f (t, x, c), where the velocity c is substituted by the transformation
rule as c = u + √

θξ . SHME is thus still adaptive but simply neglects some of the
nonlinear effects of the adaptivity. We can say that the new SHME method is in the
middle between the standard Grad approach and the DVM method.

4 Simulation Results

We test the accuracy of the new SHME model using a shock tube test case as also
done for the HME and QBME models in previous papers; see, e.g., [4]. The model
equation reads

∂tw + A∂xw = −1

τ
Pw, (33)

where the system matrix varies depending on the model used. Using M ≥ 4, we
solve for variables w = (ρ, u, θ, f3, f4, . . . , fM). The collisions are modeled using
a BGK operator with nonlinear relaxation time τ = Kn

ρ
that leads to the following

form of the matrix P

P = diag (0, 0, 0, 1, 1, . . .) ∈ R
(M+1)×(M+1). (34)

We will consider two Knudsen numbers Kn1 = 0.05 and Kn2 = 0.5.
The initial condition is given by

w(0, x) =
{
wL , if x < 0

wR, if x > 0
(35)

and according to the tests by Cai et al. [4] the left and right states are chosen as

wL = (7, 0, 1, 0, 0, . . . , 0)T , wR = (1, 0, 1, 0, 0, . . . , 0)T , (36)

corresponding to a jump in density at the initial discontinuity at x = 0.
For the spatial discretization, we used 4000 cells in the domain [−2, 2] and the

results show the solution at tEND = 0.3 using a constantΔt = 0.0001. The numerical
scheme to solve the non-conservative PDE system is the PRICE schemeofCanestrelli
[3] that was also used in [9].

The numerical results for the SHMEmethod in comparisonwith the othermoment
models HME, QBME, and a DVM reference solution are shown in Figs. 1 and 2. For
Kn = 0.05, the results are almost identical to the HME and QBME results. There are
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Fig. 1 Moment model comparison for SHME, HME, QBME, and DVM reference solution, Kn =
0.05. The left y-axis is for ρ and p, and the right y-axis is for u

only small differences with respect to the other methods. The approximation quality
is good even for larger M . In the case of Kn = 0.5 in Fig. 1 we see that the SHME
model is between HME and QBME for M = 4. However, the differences are larger
for a larger number of moments M . This is as expected and due to the fact that more
and more coefficients are neglected in the SHME approximation when increasing



Simplified Hyperbolic Moment Equations 231

Fig. 2 Moment model comparison for SHME, HME, QBME, and DVM reference solution, Kn =
0.5. The left y-axis is for ρ and p, and the right y-axis is for u

M . Still, the model yields reasonably good results for small M , especially regarding
the simplicity of the model. The SHME solution is not far from the DVM reference
solution.
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5 Conclusion

In this paper we derived a new hyperbolic moment model for the BGK Equation
based on the approximation of several nonlinear terms during the derivation. The new
model equations calledSimplifiedHyperbolicMomentEquations (SHME)have been
shown to be globally hyperbolic. We compared the model with the discrete velocity
model andmotivated the use of the newequations by linearization ofGrad’s equations
keeping as much of the adaptivity as possible. The results have shown that the model
accuracy is good despite the reduced complexity and the simplified derivation. In
order to characterize the new model in more detail additional investigations are
necessary for example regarding the stability, convergence and more complex multi-
dimensional test cases.
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Weakly Coupled Systems
of Conservation Laws on Moving
Surfaces

Andrea Korsch

Abstract We consider weakly coupled systems of nonlinear hyperbolic conserva-
tion laws on moving surfaces. As in the Euclidean space, see, for example, (Levy,
Commun Partial Differ Equ 17(3–4):657–698, 1992, [9], Rohde, Weakly coupled
systems of hyperbolic conservation laws. PhD thesis, Mathematische Fakultät der
Albert-Ludwigs-Universität Freiburg 1996, [16]), the coupling is realized by a source
term, which only depends on (x, t) and the unknown function u(x, t) but not on its
derivatives. Scalar conservation laws on moving surfaces were considered in Dziuk
et al., Interfaces Free Boundaries 15:202–236, 2013, [4]), Lengeler and Müller (J
Differ Equ 254(4):1705–1727, 2013, [10]). The velocity of the surface is given by a
smooth function, and we assume the surface to be compact. We prove the existence
for an entropy solution. First, we consider the regularized parabolic problem with
viscosity parameter ε and show that there exists a weak solution by decoupling and
linearizing the problem. Then, we prove the boundedness of this solution in L∞(GT ),
use standard regularity results to prove that this solution is a solution in the classical
sense, and show uniform boundedness in L∞(GT ) and W 1,1(GT ) with respect to ε.

Keywords Weakly coupled systems · Time dependent surface · Conservation
laws · Entropy solution

1 Introduction

Weakly coupled systems of conservation laws are studied inmany applications and as
simplified models for more complex systems or are taken for numerical approxima-
tion. This type of hyperbolic differential equation systems is often used to describe
physical problems of continuummechanics, biomathematics, or chemical processes.
For example, Majda’s model for dynamical combustion was studied in [9]. Further
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applications are transport and adsorption in porous media, hyperbolic random walk
systems, and resonant waves [16]. A relevant example for considering moving sur-
faces is transport problems on biomembranes. The coupling term could be interpreted
as a first step to take coupling of partial differential equations on bulk phases and
interfaces into account.

The results we present in this contribution are part of our PhD thesis, which is
submitted [7]. We consider the following problem: On a given space–time surface
GT := ⋃

t∈(0,T ) Γ (t) × {t},whereΓ (t) ⊂ R
n+1 is a smooth timedependent compact

hypersurface (i.e., without boundary), where the dimension n ∈ N is arbitrary and
(0, T ) is a finite time interval, we consider the hyperbolic initial value problem of
weakly coupled systems of conservation laws. Find a vector of unknown functions
u : GT → R

M , u = (u1, ..., uM ), which satisfies

u̇1(x, t) + u1(x, t)∇Γ · ν(x, t) + ∇Γ · ( f 1(x, t, u1)) = r1(x, t,u),

u̇2(x, t) + u2(x, t)∇Γ · ν(x, t) + ∇Γ · ( f 2(x, t, u2)) = r2(x, t,u),

...
...

... (1)

u̇M(x, t) + uM(x, t)∇Γ · ν(x, t) + ∇Γ · ( f M(x, t, uM)) = r M(x, t,u)

for (x, t) ∈ GT and admits the initial values u(x, 0) = u0(x) for x ∈ Γ0. Here,
M ∈ N is the number of the scalar problems, which are coupled to each other.
The velocity of the surface ν, the nonlinear flux functions fk = ( f 1k , ..., f Mk ) with
k = 1, ..., n + 1, the coupling term r = (r1, ..., r M ), and the initial value u0 are
given. Each component of the system corresponds to a conservation law on moving
surfaces. For themodeling and derivation, see, for example, [4].We added a coupling
term which can be considered as a source term. This additional term r depends on
the variables (x, t) and on the unknown function u but not on its derivatives, which
is the reason why we call such systems weakly coupled.

We present a summary of the existing work done in this field to the best of our
knowledge: First, there is the Euclidean case where the weakly coupled systems
are considered as Cauchy problems on R

2 in Levy [9] and Rohde [16] or later in
several space dimensions in Rohde [17]. Here, the authors looked at the model intro-
duced by Majda that can be found in [11]. In the Euclidean case, for example, O. A.
Ladyzenskaja and collaborators dealt with quasi-linear parabolic systems [8]. Fur-
ther work, with interesting applications in radiation hydrodynamics, chemosensitive
movement, and numerics for convection dominated parabolic systems can be found in
[6, 14, 18].

Scalar conservation laws on surfaces without coupling has been studied in [4].
In the paper of Lengeler and Müller [10] as well as in the thesis of Müller [12], the
authors proposed the scalar problem on Riemannian manifolds with time-dependent
metric. This is a different approach to consider time-dependent manifolds. They
proved for the compactness result a T V estimate. In the paper of Dziuk and Elliott
[3], the authors derived a proof for the existence of a weak solution of the parabolic
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scalar problem on moving surfaces, inter alia. More related research is done by
Amorim, Ben-Artzi, LeFloch, and Panov in [1, 2, 15].
Assumptions Let Γ0 be a compact, i.e., without boundary, smooth-oriented hyper-
surface in R

n+1, and let {(Ui , ξi )|i ∈ I )} be a parametrization of this surface. Let
T > 0. We assume that there exists a diffeomorphism φ(·, t) : Γ0 → Γ (t) with
φ ∈ C∞(Γ0 × [0, T ]) and φ(·, 0) = idΓ0 , which describes the movement of the sur-
face. We define the space time area:

GT :=
⋃

t∈(0,T )

Γ (t) × {t}. (2)

Then, the parametrization of GT is given by {(ψi ,Ui ) |i ∈ I }, with smooth functions
ψi (x, t) = (φ(ξi (x), t), t). Let the flux functions f l = ( f 1l , ..., f Ml ) with index l ∈
{1, ..., n + 1} and f il : GT × R → R for i = 1, ..., M be given. We assume that
the functions f il are in C3(GT × R) and f i to be divergence free, which means
∇Γ · f i (·, t, s) = 0 for all fixed t ∈ R

+, s ∈ R and i ∈ {1, ..., M}. Furthermore, let
the coupling term r be given with r = (r1, ..., r M), r i : GT × R

M → R. We assume
that the coupling term r is in C2(GT × R

M), and it satisfies a global Lipschitz
condition with respect to u in the following way: For all i = 1, . . . , M exists a
constant Li

r ≥ 0, such that

|r i (x, t,u) − r i (x, t, v)| ≤ Li
r [|u1 − ν1| + · · · + |uM − νM |] (3)

holds for all (x, t) ∈ GT and for all u, v ∈ R
M . Moreover, the initial value u0 ∈

L∞(GT )M is given.

Geometry Here, we define geometrical quantities on hypersurfaces and state basic
calculation rules for moving surfaces.

Definition 1. Let Γ ⊂ R
n+1 be an oriented C1-hypersurface and f : Γ → R a

C1(Γ )-function. Let f̃ be a C1-extension of f in an open neighborhood of Γ .
On Γ , we define the tangential gradient of f by

∇Γ f (x) = ∇ f̃ (x) − ∇ f̃ (x) · ν(x)ν(x) x ∈ Γ, (4)

where ∇ denotes the gradient inRn+1 and ν the outer unit normal on Γ . The compo-
nents of the tangential gradient are denoted by ∇Γ f = (D1 f, ..., Dn+1 f ). Let Γ be
an oriented C2-hypersurface in R

n+1. For a real-valued function f , which is twice
continuously differentiable in a neighborhood of Γ , we define the Laplace–Beltrami
operator by

ΔΓ f (x) := ∇Γ · ∇Γ f (x) =
n+1∑

i=1

Di Di f (x), x ∈ Γ. (5)
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Theorem 1. Let Γ be an oriented C2-hypersurface with C1-boundary ∂Γ , whose
intrinsic unit outer normal to Γ is denoted by μ and f ∈ C1(Γ ). Then, the formula
of integration by parts on Γ is:

∫

Γ

∇Γ f = −
∫

Γ

f Hν +
∫

∂Γ

f μ. (6)

Here, ν is the continuously differentiable outer unit normal of Γ , and the matrix H
denotes the mean curvature of Γ , which is given by

H = −∇Γ · ν. (7)

Proof. Can be found in [5] for surfaces without boundary.

Definition 2. LetU (t)be an openneighborhoodof the hypersurfaceΓ (t) andUT :=⋃
t∈(0,T ) U (t) × {t}. Thematerial derivative of a continuously differentiable function

f (x, t) defined on UT is given by:

ḟ = ∂ f

∂t
+ υ · ∇ f, (8)

where we note that for all t ∈ [0, T ] we have
∂

∂t
φ(·, t) = υ(φ(·, t), t), (9)

and ν describes the velocity of the surface. Therefore,

ḟ (φ(·, t), t) = d

dt
f (φ(·, t), t). (10)

Lemma 1. Let Γ (t) be a C2-hypersurface and f a function defined on the C2

hypersurface GT , such that the appearing quantities exist, then we have the so-called
Leibniz formula or transport theorem

d

dt

∫

Γt

f =
∫

Γt

( ḟ + f ∇Γ · υ). (11)

Proof. [3], page 291.

Problem formulation Since a classical solution of problem (1) does not exist in
general, we define the class of weak solutions and we introduce the term of an
entropy solution to achieve a unique solution.

Definition 3. A vector of functions u = (u1, ..., uM ) ∈ L∞(GT )M is called weak
solution of the weakly coupled hyperbolic initial value problem (1), if for all com-
ponents of the system i = 1, ..., M
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∫ T

0

∫

Γt

ui ϕ̇ + f i (·, ui ) · ∇Γ ϕ − r i (·,u)ϕ +
∫

Γ0

ui0ϕ(·, 0) = 0 (12)

holds for all test functions ϕ ∈ C1(GT ) with ϕ(·, T ) = 0.

Definition 4. For l ∈ {1, ..., n + 1}, let the flux functions f l = ( f 1l , ..., f Ml ) be given
as above, then the tuple (η,q1, ...,qn+1) is called entropy of f1, ..., fn+1, if the real-
valued function η ∈ C2(R) is convex and the function ql = (q1

l , ..., q
M
l ), with qi =

qi (x, t, s) is defined by

qi
l (·, s) :=

∫ s

s0

η′(τ )∂u f
i
l (·, τ )dτ

with s0 ∈ R for all i = 1, ..., M and l ∈ {1, ..., n + 1}. The function η is called
entropy function, and the functions q1, ...,qn+1 are called entropy fluxes.

Definition 5. A vector of functions u = (u1, ..., uM ) ∈ L∞(GT )M is called entropy
solution of (1), if for all components i = 1, ..., M

∫ T

0

∫

Γt

(
−η(ui )ϕ̇ − qi (·, ui ) · ∇Γ ϕ + ϕ∇Γ · ν

(
uiη′(ui ) − η(ui )

)
− r i (·,u)η′(ui )ϕ

)

−
∫

Γ0

η(ui0)ϕ(·, 0) ≤ 0 (13)

holds for all test functionsϕ ∈ H 1(GT )withϕ ≥ 0 andϕ(·, T ) = 0 and all entropies
(η,q1, ...,qn+1) of f1, ..., fn+1.

2 The Parabolic System

We are using a classical viscosity approach to get a solution of the initial value prob-
lem (1). Therefore, we consider our problem with a viscosity term. In the following,
we need a specific diffusive matrix B = B(x, t), but we like to mention that it is
possible to substitute it with the identity matrix; see [7]. The approach is subdivided
into the following steps: At first, we show that a weak solution of the viscous prob-
lem exists and that it is uniformly bounded in L∞(GT ). Then, we show that it is a
classical solution. At last, we prove that it is uniformly bounded in W 1,1(GT ).

Definition 6. Let the tuple (fk, r,u0ε) with k = 1, ..., n + 1 be given, such that
u0ε → u0 in L1(Γ0). Then,we call the following initial value problem to the viscosity
parameter ε ≥ 0 weakly coupled parabolic problem: Find a function u : GT → R

M ,
u = (u1, .., uM ) with
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u̇1 +u1∇Γ · ν + ∇Γ · ( f 1(·, u1)) = r1(·,u) + ε∇Γ · (B∇Γ u1),

u̇2 +u2∇Γ · ν + ∇Γ · ( f 2(·, u2)) = r2(·,u) + ε∇Γ · (B∇Γ u2), (14)
...

...
...

...

u̇M +uM∇Γ · ν + ∇Γ · ( f M(·, uM)) = r M(·,u) + ε∇Γ · (B∇Γ uM)

on GT and u(x, 0) = u0ε(x) for x ∈ Γ0.

Note that the solution of this problem depends on the parameter ε; however, for the
sake of simplicity, we will write u instead of uε. In contrast to the Euclidean Cauchy
problem, in general, there does not exist an explicit formula for solutions of problem
(14) on surfaces. Therefore, we define a weak solution.

Lemma 2. Let the tuple (fk, r,u0ε), k = 1, ..., n + 1 and the diffusion matrix B be
given. Let the parameter fulfill ε ≥ 0. Under the assumptions of the introduction and f
being global Lipschitz continuous in u, thematrix B is smooth, fulfills Bν = ν∗B = 0
and maps a tangent vector on a tangent vector again and the initial data fulfills u0ε ∈
H 1(Γ0), there exists a weak solution u = (u1, ..., uM ) ∈ H 1(GT )M of the weakly
coupled parabolic initial value problem; i.e., for all components i = 1, ..., M, the
following equality holds true

(u̇i , ϕ) + (ui ,∇Γ (t) · νϕ) + ε(B∇Γ (t)u
i ,∇Γ (t)ϕ) = (r i (u), ϕ) − (∇Γ (t) · f i (ui ), ϕ)

(15)
for all ϕ(·, t) ∈ H 1(Γt ), for almost all t ∈ [0, T ], and we have u(x, 0) = u0ε for
almost all x ∈ Γ0. Here, (·, ·) denotes the scalar product of L2(Γt ).

Proof. At first, we decouple and linearize the problem which means we solve the
following problem successively for i = 1, ..., M :

(u̇i(m)(·, t), ϕ(·, t)) + (ui(m)(·, t),∇Γ (t) · ν(·, t)ϕ(·, t))
+ε(B(·, t)∇Γ (t)u

i(m)(·, t),∇Γ (t)ϕ(·, t))
= (r i (·, t,u(m−1)(·, t)), ϕ(·, t)) − (∇Γ (t) · f i (·, t, ui(m−1)(·, t)), ϕ(·, t)),

with ui(m)(x, 0) = ui0ε on Γ0 and ui(0) = 0. Such a solution exists in H 1(GT ) due
to [3]. They used a Galerkin approximation. Then we show, using energy esti-
mates and the Lipschitz continuity of f and r in u, that the sequence (ui(m))m∈N
converges to the weak solution in H 1(GT ) of the nonlinear and coupled parabolic
problem (14). ��
Lemma 3. Let the tuple (fk, r,u0ε), k = 1, ..., n + 1 and the diffusion matrix B,
which fulfills assumptions as in Lemma 2, be given. Let the parameter fulfill ε ≥ 0.
Under the assumptions from the introduction and the coupling term r(x, t,u) =
(r1(x, t,u), ..., r M (x, t,u)) being quasi-monotone increasing in u, which means
that for every s ∈ 1, .., M

rs(x, t,u) ≤ rs(x, t, ū) for ui ≤ ūi , i = s, us = ūs,
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u0ε ∈ H 1(Γ0) and with ‖u0ε‖L∞(GT ) < K, where K is assumed to be independent
of ε, the parabolic initial value problem (14) has a weak solution uε ∈ H 1(GT )M,
which fulfills

‖uε‖L∞(GT ) ≤ C (16)

with a constant C, which is independent of the viscosity parameter ε.

Proof. We rewrite the weak form such that we can solve the problem in

wi (x, t) = e−λt
(
ui (x, t) − η

λ

)
− η

λ

having two free parameters η, λ, use as the test function the positive part of the new
unknown function wi minus a constant, and apply Gronwall’s inequality.

Note that we were able to omit the global Lipschitz continuity of f in u and that this
proof is also applicable for r i < 0 for all i = 1, ..., M . In [7], we showed that the
quasi-monotonicity condition can be omitted, by first showing ε dependent L∞(GT )

bounds using the Euclidean theory for quasi-linear systems of [8], proving regularity
results and following the Euclidean proof for uniform boundedness, wherewe use the
existence of the regularized solutions and transfer the Euclidean proof of C. Rohde
in [16] to moving surfaces.

Lemma 4. Let the assumptions of Lemma 3 hold true, and additionally, let f i ∈
Ck(GT × R), r i ∈ Ck(GT × R

M), and ui0ε ∈ Hk(Γ0) ∩ L∞(Γ0) for i = 1, ..., M
with k > max{ n2 + 2, 3}. The parametrization ψ of the surface GT is assumed to
be in C∞(Rn × [0, T ]). Then, the weak solution uε of the weakly coupled parabolic
problem (14) is a solution in the classical sense.

Proof. We use a localization function α on a map areaU and follow a classical idea
that can be found in [13], for which it is necessary, that the solution is bounded:

∫

U

(αu)·ϕ + εB∇Γ (t)(uα) · ∇Γ (t)ϕ + αu∇Γ (t) · νϕ =
∫

U

∇Γ (t) · f (u)αϕ + r(u)αϕ

−
∫

U

ε(∇Γ (t) · (B∇Γ (t)α)uϕ + 2ϕB∇Γ (t)u · ∇Γ (t)α).

Due to the regularity of the right hand side, using results of parabolic problems with
time dependent coefficients, we obtain higher regularity in the unknown function.
This leads to higher regularity of the right hand side again. We reuse this argument
until we get with an embedding theorem a classical solution. ��
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Lemma 5. Let the assumptions of Lemma 4 with k > max{ n2 + 2, 3} hold true, and
let the initial data u0ε satisfy

‖u0ε‖L∞(Γ0) + ‖∇Γ u0ε‖L1(Γ0) + ε‖∇2
Γ u0ε‖L1(Γ0) ≤ C. (17)

Let uε be the classical solution of the parabolic initial value problem (14). Then, we
have

M∑

i=1

sup
(0,T )

∫

Γt

|∇Γ u
i
ε| ≤ C, (18)

where the constant C is independent of the parameter ε. Now let the diffusion matrix
B(x, t) satisfy the following initial value problem

Ḃ = BA(ν) + A(ν)∗B + λB, B(·, 0) = B0, (19)

where λ > 0 is a constant, the matrix A(ν) = A(ν)l,r := Dlνr − ν · νl Drν, and B0

is a symmetric, tangentially positive definite (n + 1) × (n + 1) matrix. Then,

M∑

i=1

sup
(0,T )

∫

Γt

|u̇i | ≤ C, (20)

where C is independent of ε.

Proof. According to Lemma 7.1., p. 215 in [4], there exists a symmetric and positive
definite matrix B, which fulfills this initial value problem and which maps the tan-
gential space onto it self, such that Bν = ν∗B = 0 holds. The proof is analog to the
one of the scalar cases in [4] since the coupling term only depends on the unknown
function itself and not on the derivatives. In both estimates, the authors differentiated
the regularized problem with respect to one component of the tangential gradient or
the material derivative, then multiplied the equation with the normalized component
of the tangential gradient or with the signum of the material derivative of the regular-
ized solution, integrated over the space surface, and used some technical estimates.
Finally, they used Gronwall’s estimate. The PDE (19) for the diffusive matrix B is
needed since derivatives on moving surfaces do not commute. In [7], we show with a
compactness argument of Dafermos that this condition is not needed and the matrix
B can be replaced by the identity matrix.

3 Existence of an Entropy Solution

In this section, we put all previous results together to arrive at the existence of
an entropy solution of weakly coupled system of conservation laws on moving
surfaces (1).
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Theorem 2. Let the assumptions of Lemma 4 with k > max{ n2 + 2, 3} be satisfied.
Then, there exists a subsequence uε of classical solutions of the regularized problem
(14) with diffusive matrix B satisfying (19) and initial data u0ε satisfying (17), that
converges in L1(GT ) and almost everywhere to a function u, which is an entropy
solution of the hyperbolic initial value problem of weakly coupled system of conser-
vation laws (1).

Proof. We use the result of Lemma 5 and the Theorem of Kondrakov to get a subse-
quence of solutions uε that converges for ε → 0 in L1(GT ) and a.e. to a function u.
Then, we use the weak form of the parabolic system to show that this limit function
u is a entropy solution of problem (1).

More details on this topics and further results including a different approach to
compactness, studying the Euclidean proof of Dafermos and the uniqueness of the
entropy solution, which can be shown with a localization argument and using the
classical ideas of Kruzkov, can be found in [7].
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A Phase-Field Model for Flows
with Phase Transition

Mirko Kränkel and Dietmar Kröner

Abstract There are many mathematical models for describing compressible or
incompressible flows with phase transition. In this contribution, we will focus on
the Navier–Stokes–Korteweg model [12] (Appl Math Comput 272, part 2, 309–335,
2016) and a phase-fieldmodel: The compressible Navier–Stokes–Allen–Cahnmodel
(NSAC) is able to model compressible two-phase flows including surface tension
effects and phase transitions. In this contribution, we will present a discontinuous
Galerkin scheme for the NSAC model. The scheme is designed to fulfill a discrete
version of the free energy inequality, which is the second law of thermodynamics in
the isothermal case. For situations near the thermodynamic equilibrium, this property
suppresses so-called parasitic currents, which are unphysical velocity fields near the
phase boundary.

Keywords Phase-field model · Phase transition · Two-phase flow · Energy
inequality

1 Introduction

First, let us consider the Navier–Stokes–Korteweg model, which is given by

∂tρ + ∇ · (ρv) = 0

∂t (ρv) + ∇ · (ρv ⊗ v + p(ρ)I ) = εαΔv + γ ε2ρ∇Δρ in Ω × [0, T ] (1)
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with additional boundary and initial conditions and Ω ⊂ R
2. Here, ρ, v, p(ρ) are

the density, the velocity, and the pressure of the fluid, respectively. The magnitude
of ρ(x, t) decides about the current phase state in x at time t . This model is similar
to the compressible Navier–Stokes system with two main differences. The pressure
p(ρ) is not a monotone function of the density ρ, and there is the additional term
γ ε2ρ∇Δρ in the momentum equation (1). There are several theoretical results con-
cerning existence and uniqueness for this problem [7–9, 17]. In order to see the
background for this model, let us consider for a moment the static situation, which
is characterized by v = 0 and ρ, v, p are time independent. In this, case (1) reduces
to

∇ p(ρ) = γ ε2ρ∇Δρ in Ω × [0, T ]. (2)

This equation is related to the Euler–Lagrange equation for the following mini-
mum problem: Minimize the functional

∫
Ω

W (ρ) + ε2|∇ρ|dx (3)

under the constraint
∫

Ω

ρ(x)dx = constant, (4)

where W is a double-well potential and the relation between p(ρ) and W is given
by thermodynamics as p′(ρ) = ρW ′′(ρ).Using this in (2), we obtain ρW ′′(ρ)∇ρ =
γ ε2ρ∇Δρ or after some simple calculations

∇W ′(ρ) = γ ε2∇Δρ or W ′(ρ) = γ ε2Δρ + c0(ε). (5)

For this problem, the following can be proved [13]:

Theorem 1. Let ρεk be a sequence of global minimizer of the variational problem
(3), (4). Then, there is a subsequence ρεk and ρ0 in L1(Ω) such that ρεk converges to
ρ0 in L1(Ω) for k → ∞and the image ofρ0 consists of two valuesα, β.Theboundary
of A := {x ∈ Ω|ρ0(x) = α} is considered as the phase boundary. Let pl , pv denote
the pressure on both sides of the phase boundary. Then, we have

pl − pv = (n − 1)c1kmεk + 0(εk), (6)

where n is the space dimension, c1 a constant and km the constant mean curvature
of the (reduced) boundary of A. In particular in the limit εk → 0 : pl − pv = 0, i.e.,
the pressure is continuous across the phase boundary.
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This is in some sense a contradiction to classical physical results which indicate
that the pressure jump pl − pv across the interface for two different fluids in the
static case is proportional to the mean curvature [21].

Similar results as for (5) can be obtained for (1), but these results are not rigorous;
they are based on the assumptions that there exist formal asymptotic expansions for
ρ, v, p [5]. In [10], Daube could avoid these assumptions but instead of that he has
to impose some other strong, but more general, assumptions on the solution of (1). A
different approach is considered in [16]. In this paper, the authors consider a different
scaling of (1), i.e.,

∂tρ + ∇ · (ρv) = 0

∂t (ρv) + ∇ · (ρv ⊗ v + p(ρ)I ) = Δv + λρ∇Δρ.

Using the assumption that there is an expansion of the pressure of the form p =
p0 + Mp1 + M2 p2 + M3 p3 + ... and λ = M4, where M is the Mach number, they
obtain in the limit for M → 0 in each phase:

∂t (ρv) + ∇ · (ρv ⊗ v + p2 I ) = Δv in Ω × [0, T ], (7)

and across the interface

pl − pv = const kmM
2 and p2l − p2v

= const km . (8)

In this case, the pressure jump p2l − p2v
is consistent with [21]. Notice that the

pressure p2 is the pressure which appears in the remaining equation in the single
phases; see (7).

In the case of Theorem 1, it turns out that across the interface

pl − pv = ckmε and σ = c0
√

γ ε, (9)

where σ is the surface tension. Now, we should notice that ε is proportional to the
thickness of the interface layer. In order to get an acceptable result for the resolution
of the interface in numerical simulation, we need a small ε ( i.e., a small width of
the interface layer) and many cells in this layer.

As the interfacial layer has to be resolved sufficiently enough, e.g., 6–10 grid
points/cells in [22], to guarantee a stable discretization, this poses server limitations
on physical size of the computational domain, even when adaptive mesh refinement
around the interface is used. The length scale which was achievable in [22] was
several magnitudes below the size of physical experiments.

Now, if we want to increase the resolution, i.e., we take a smaller ε, we will
also change physical quantities: the pressure jump and the surface tension due to
(9). But it is not convenient that the physical quantities depend on the numerical
solution. Therefore, we have to consider a different model, e.g., a phase-field model
as described in the following section.
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2 A Phase-Field Model

In this section, we will investigate a phase-field model of the following form (see
also [1, 2, 24, 25])

∂tρ + ∇ · (ρv) = 0

∂t (ρv) + ∇ · (ρv ⊗ v + T) = ρG (10)

ρ(∂tφ + v · ∇φ) = τ

in Ω × [0, T ], where

ρ := density, v := velocity, φ := phasefield function, T := P − D,

P := P(ρ, φ,∇, φ) = pI + ∂F

∂∇φ
⊗ ∇φ,

p := thermodynamic pressure, G := outer force,

F := F(ρ, φ,∇, φ) = h1(ρ)W (φ) + ψ(ρ, φ) + h2(ρ)
|∇φ|2
2

(free energy density, see also [1, 2, 24, 25]),

ψ := ψ(ρ, φ) = ν(φ)F1(φ) + (1 − φ)F2(φ),

F1, F2 are the free energies of the bulk phases,

ν(φ) := monotone interpolation function,

λ(ρ) := small parameter, which may depend on ρ,

D := μ1(ρ, φ)(Dv + (Dv)T ) + μ2(ρ, φ)∇ · vI,

μi := are chosen such that D(Dv) : Dv ≥ 0 for all smooth vector fields v,

e.g., μ1 > 0, μ2 > − 2

d
μ1,

τ := −η
δF

δφ
, η = reaction rate, where δ denotes the variational derivative.

Here, φ is the phase-field function with values in [0, 1], which allows us to dis-
tinguish between the two phases. Values φ = 0 indicate that we are in one phase and
values φ = 1 that we are in the other phase.

This model goes back to [1, 2, 24, 25]. Similar models have been considered in
[6, 14, 22]. In [18], the existence of strong solutions of (10) was shown.

Now, it is important to know that the system (10) satisfies the second law of
thermodynamics. For the isothermal case, which we consider here, this means that
an energy inequality holds. In particular, this property is important for developing
a numerical scheme. Also, the numerical solution should satisfy a discrete energy
inequality. The following theorem is due to [3, 24]; see also [19].
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The total energy E (ρ, φ, v,∇φ) is given by the integral over Ω of the sum of
the Helmholtz free energy F(ρ, φ) = ψ(ρ, φ) + h2(ρ)

|∇φ|2
2 and the kinetic energy

ρ
|v|2
2 :

E (ρ, φ, v,∇φ) =
∫

Ω

E(ρ, φ, v,∇φ) =
∫

Ω

F(ρ, φ) + ρ
|v|2
2

dx

=
∫

Ω

ψ(ρ, φ) + h2(ρ)
|∇φ|2
2

+ ρ
|v|2
2

dx .

The following energy inequality holds [19]:

Theorem 2. Let (ρ, v, p, φ) be a smooth solution of (10). Then, the total energy E
is non-decreasing in time and the following inequality holds:

∂E

∂t
≤ −η

ρ
|| δ f

δφ
||22 − C ||∇v||22 ≤ 0. (11)

3 Non-conservative Mixed Form

Since the exact solution satisfies an energy inequality (11), it turns that it is important
to have a numerical scheme such that the numerical solution (ρh, vh, φh, σh) also
satisfies a discrete energy inequality of the form

E(ρn
, vn

, φ
n
h , σ

n
h ) ≤ E(ρn+1

h , vn+1
h , φn+1

h , σ n+1
h ), (12)

where (ρn
, vn

, φ
n
h , σ

n
h ) denotes the numerical solution at time n. To devise a numerical

scheme fulfilling (12), we use the ideas from [15], where such a scheme for the
Navier–Stokes–Korteweg model was derived. In the proof of the energy inequality
(11), it was necessary to use the mass balance equation multiplied with the quantity
∂F
∂ρ

+ |v|2
2 , the momentum balanced multiplied with v, and the phase-field equa-

tion multiplied with δF
δφ
. As these quantities depend nonlinearly on the variables

(ρ, ρv, φ), we cannot use this quantity as test functions in a numerical formulation
of system (10) directly, and they will not belong to the piecewise polynomial dis-
continuous Galerkin space, used for the test and trial functions. Furthermore, we had
to compute explicitly the divergence of the pressure tensor P , to relate the resulting
terms to ∂F

∂ρ
and δF

δφ
. Therefore, we rewrite the system in a mixed form, so that terms

that will be needed as test functions appear in the formulation and can be discretized
in the discontinuous Galerkin space and the divergence of the pressure tensor appears
in its explicit form. Using

∇ · P = ρ∇(
∂F

∂ρ
) − ∇φ

δ f

δφ
and μ := −F + ∂F

∂ρ
, τ := δF

δφ
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we can rewrite (10) as

∂tρ + ∇ · ρv = 0

ρ∂tv + ∇ · (ρv ⊗ v) − ∇ · (ρv)v + ρ∇μ

−τ∇φ − 1

2
ρ∇|v|2 − ∇ · D(∇v) = 0

∂tφ + ∇φ · v + τ

ρ
= 0 (13)

τ − ∂F

∂φ
+ ∇ · (h2σ) = 0

μ − ∂F

∂ρ
− 1

2
|v|2 = 0

σ − ∇φ = 0.

3.1 Discretization

First, let us fix some notations. Let Ω ⊂ R
d be a polygonal domain, and let T be a

computational grid such that Ω̄ = ∪E∈T E where E are the cells of the triangulation.
The maximal diameter of all cells is h := supE∈T diam(E). Let nE , nE ′ be the outer
normals to the edge e := ∂E ∩ ∂E ′, respectively, and let φ be a function which is
smooth on E and E ′, but might be discontinuous across e. Then, the inner and outer
traces φ+(x) and φ−(x) for x ∈ e are given by

φ+(x) := limε→0φ(x + εnE ), φ−(x) := limε→0φ(x + εnE ′).

If x ∈ ∂Ω , then for Dirichlet data g we define φ−(x) := g(x). The discontinuous
Galerkin space is defined as

Vh := {u ∈ L2(Ω) : u|E ∈ Pk for all E ∈ T },

where Pk is the space of polynomials of degree ≤ k. The mean value {{φ}} of a
piecewise smooth function φ on the edge e := ∂E ∩ ∂E ′ is defined by

{{φ}} := 1

2
(φ+ + φ−) and the jump [[φ]] by [[φ]] := φ+nE + φ−nE ′ .

The set of all intersections of T is denoted as:

Γ :=
⋃
E∈T

⋃
e⊂∂E

e.

To devise a numerical scheme which is energy consistent, in the sense that a discrete
version of the energy inequality is satisfied, we impose the equations of system (13)
on each element by multiplying with test functions from the discontinuous Galerkin
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space and then integrating over the element. Then, we choose appropriate numerical
fluxes to couple the degrees of freedom on each element. Note that for this scheme,
no partial integration is performed and the scheme can be seen as a weighted residual
method and the numerical fluxes are used to impose a weak form of continuity over
the element boundaries.

For the time discrete scheme, we use the following notation. We start by subdi-
viding the time interval [0, T ] by a sequence of time steps t0 = 0 < t1 < t2 < · · · <

tN = T . The backward difference quotient for a time-dependent function u is denoted
by Dtun+1 := u(·,tn+1)−u(·,tn)

Δtn , and for the average of two consecutive time steps, we

write un+ 1
2 := u(·,tn+1)+u(·,tn)

2 .

The fully discrete discontinuous Galerkin scheme for (10) reads:

Problem 1. For initial values ρ0, v0, φ0 and for all n = 1 . . . N find

(ρn
h , v

n
h , φ

n
h , μ

n
h, τ

n
h , σ n

h ) ∈ Vh × V d
h × Vh × Vh × Vh × V d

h

such that:

0 =
∑
E∈T

∫
E
(Dtρ

n+1 + ∇ · (ρn+ 1
2 vn+ 1

2 ))ψdx (14)

+
∫
Γ
G1(ρ

n+ 1
2 , φn+ 1

2 , vn+ 1
2 , μn+ 1

2 , τn+ 1
2 , σ n+ 1

2 ; ψ)ds

0 =
∑
E∈T

∫
Ω

(
ρn+ 1

2 ∂tv + ∇ · (ρn+ 1
2 vn+ 1

2 ⊗ vn+ 1
2 ) − ∇ · (ρn+ 1

2 vn+ 1
2 )vn+ 1

2

+ ρn+ 1
2 ∇μn+ 1

2 − τn+ 1
2 ∇φn+ 1

2 − 1

2
ρn+ 1

2 ∇|vn+ 1
2 |2

)
χdx

+
∫
Γ
G2(ρ

n+ 1
2 , φn+ 1

2 , vn+ 1
2 , μn+ 1

2 , τn+ 1
2 , σ n+ 1

2 ;χ)ds + B(vn+ 1
2 , χn+ 1

2 )

0 =
∑
E∈T

∫
E

(
Dtφ

n+1 + ∇φn+ 1
2 · vn+ 1

2 + τn+ 1
2

ρn+ 1
2

)
θdx

+
∫
Γ
G3.1(ρ

n+ 1
2 , φn+ 1

2 , vn+ 1
2 , μn+ 1

2 , τn+ 1
2 , σ n+ 1

2 ; θ)ds

0 =
∑
E∈T

∫
E

(
τn+ 1

2 − F(ρn+1, φn+1) − F(ρn+1, φn)

φn+1 − φn
+ ∇ · σ n+ 1

2

)
ζdx (15)

+
∫
Γ
G3.2(ρ

n+ 1
2 , φn+ 1

2 , vn+ 1
2 , μn+ 1

2 , τn+ 1
2 , σ n+ 1

2 ; ζ )ds

0 =
∑
E∈T

∫
E

(
μn+ 1

2 − F(ρn+1, φn) − F(ρn, φn)

ρn+1 − ρn
− 1

4
(|vn+1|2 + |vn |2)

)
ηdx

0 =
∑
E∈T

∫
E

(
σ n+1 − ∇φn+1

)
ξdx

+
∫
Γ
G4(ρ

n+1, φn+1, vn+1, μn+1, τn+1, σ n+1; ξ)ds
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for all (ψ, χ, θ, ζ, η, ξ) ∈ Vh × V d
h × Vh × Vh × Vh × V d

h , where the numerical
fluxes are given as

G1(ρ, φ, v, μ, τ, σ ;ψ) = −[[ρv]]{{ψ}} + α[[μ]]{{ψ}},
G2(ρ, φ, v, μ, τ, σ ;χ) = F2.1(ρ, μ;χ) + F2.2(φ, τ ;χ),

G2.1(ρ, μ;χ) = −[[μ]]{{ρχ}},
G2.2(φ, τ ;χ) = [[φ]]{{τχ}},

G3.1(ρ, φ, v, μ, τ, σ ; θ) = −[[φ]]{{θv}},
G3.2(ρ, φ, v, μ, τ, σ ; ζ ) = −h2[[σ ]]{{ζ }},
G4(ρ, φ, v, μ, τ, σ ; ξ) = [[φ]]{{ξ}}

withα > 0.Thediffusion part of themomentumequation is discretized by the interior
penalty bilinear form

B(v, χ) :=
∑
E∈T

∫
E
D(∇v)∇χdx −

∑
e∈Γ

∫
e
{{D(∇v)}}[[χ ]] + {{D(∇χ)}}[[v]]

+
∫

Γ

β

|e| [[v]][[χ ]]ds

with β > 0 sufficiently large; see [4].

Combining the space and time discretization, one can show a discrete version of
the energy inequality (11) [19]:

Theorem 3. The discrete solution (ρn
h , φ

n
h , σ

n
h ) of scheme (1) can be shown to fulfill

the following discrete energy equation

∑
E∈T

∫
E
F(ρn+1

h , φn+1
h ) + h2

|σ n+1
h |2
2

+ ρn+1
h

|vn+1
h |2
2

dx

−
∫
E
F(ρn

h , φ
n
h ) + h2

|σ n
h |2
2

+ ρn
h

|vn
h |2
2

dx = − (τ
n− 1

2
h )2

ρ
n− 1

2
h

− B(∇v
n 1

2
h ,∇v

n− 1
2

h ).

(16)

4 Numerical Examples

For the numerical examples, we set h1 = A
δ
and h2 = Aδ. Thus, we arrive at a free

energy of the form

F(ρ, φ,∇φ) = A

δ
W (φ) + ν(φ)(F1(ρ) + (1 − ν(φ))F2(ρ) + Aδ

|∇φ|2
2

, (17)
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where the double-well potential is chosen asW (φ) = φ2(φ − 1)2 and the free energy
of the bulk phases is of the stiffened gas form Fi = aiρ log(ρ) + (bi − ai )ρ + ci .
The parameters A and δ will be chosen accordingly in the numerical examples.

4.1 Convergence Test

In the first example, we test the convergence properties of our scheme in one space
dimension. Therefore, we use the manufactured solution

φexact (x, t) = 1

2
cos(5π t) cos(2πx) + 0.5,

vexact (x, t) = cos(5π t) cos(4πx), (18)

ρexact (x, t) = 1

2
cos(5π t) cos(2πx) + 1.5

and compute source terms Sφ(x, t), Sv(x, t), Sρ(x, t) for system (10), so that
(φexact , vexact , ρexact )

t is an exact solution. For this,weused theSympypython library
[23] for symbolical calculations computing the partial derivatives und nonlinearities
occurring in (10). The source terms are discretized by using the L2-projection of the
terms on the discontinuous Galerkin space.

The bulk energies are chosen as

F1 = 1.5ρ log(ρ) + (log(2) − 1.5)ρ and F2 := ρ log(ρ) − ρ + 0.5. (19)

For the other parameters, we choose ν = 10−3 for the viscosity, δ = 0.05, A = 5 for
the scaling parameters of the free energy, and η = 1 for the reaction rate. For the
computations, a time step ofΔt = 10−5 and periodic boundary conditionswere used.
We ran the simulation up to T = 0.025 on grids with 16, 32, 64, 128, 256 elements
and studied the experimental order of convergence. The results in Tables 1 and 2
indicate that the scheme converges with order k + 1 in space, where k is the degree
of the polynomials of the discontinuous Galerkin space.

Table 1 Polynomial degree 1

Size ||φh − φ||L2 eoc ||vh − v||L2 eoc ||ρh − ρ||L2 eoc

16 1.60837e − 03 −−− 7.96245e − 02 −−− 5.23601e − 02 −−−
32 2.52897e − 04 2.67 3.70140e − 02 1.11 3.25914e − 02 0.684

64 3.46324e − 05 2.87 1.57573e − 021 1.23 1.50968e − 02 1.11

128 4.11489e − 06 3.07 4.89976e − 03 1.69 5.05711e − 03 1.58

256 1.00037e − 06 2.04 8.95160e − 04 2.45 9.60924e − 04 2.4
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Table 2 Polynomial degree 2

Size ||φh − φ||L2 eoc ||vh − v||L2 eoc ||ρh − ρ||L2 eoc

16 3.03399e − 05 −−− 5.03631e − 03 −−− 4.65518e − 03 −−−
32 2.07955e − 06 3.87 5.72892e − 04 3.14 5.88707e − 04 2.98

64 2.46924e − 07 3.07 5.38299e − 05 3.41 5.99462e − 05 3.3

128 3.09367e − 08 3.0 4.67366e − 06 3.53 5.78404e − 06 3.37

256 3.88461e − 09 2.99 3.97984e − 07 3.55 7.29653e − 07 2.99

4.2 Bubble Ensemble

For the next numerical example, we fitted the free energies of the bulk phases to
the equilibrium values of the van der Waals potential at a given temperature. To
be precise, let ρv and ρl be the densities of the vapor and liquid phase, so that the
equilibrium condition

pvdW (ρl) = pvdW (ρv) (20)

μvdW (ρl) = μvdW (ρv) (21)

is fulfilled; see [11]. Then, we can compute the values for the speed of sound cl , cv

for the liquid and the vapor phase by cl,v = √
∂ρ pl,v .

For the free energy F1, we determine the coefficients a1, b1, c1 by solving the
following system of equations:

p1(ρv) = a1ρv − c1 = pvdW ,

μ1(ρv) = a1 log(ρv) − b1 = μvdW ,

c1 = √
a1 = cv.

The same can be done for F2 using ρl , cl , pvdW , μvdW . Furthermore, we have cho-
sen δ = 0.01, A = 10−4, μ1 = 0.001, and η = 100. The simulation starts with an
ensemble of bubbles where the densities are set to ρv inside of the bubbles and to
ρl in the fluid surrounding the bubbles. There is a small transition layer between the
inside and the outside of a bubble. In this region, the densities are interpolated by
the phase-field variable which was set to φ ≈ 1 in the liquid region and φ ≈ 0 in the
vapor bubbles. To have a steep but smooth transition profile, the constant states of
the phase-field variable are connected with a tanh-profile over a width ≈ δ. We can
see in Fig. 1 where the vapor phase is blue and the liquid phase is red that smaller
bubbles collapse over time and tend to a system with a fewer but larger bubbles. This
is what we expected, as the system tries to minimize the length of the transition layer
and therefore the overall surface energy.
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Fig. 1 Evolution of a bubble ensemble. Blue indicates the vapor phase and red the surrounding
liquid
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Abstract In this work, we introduce a formalism for two-phase geochemical flow.
Here, we admit that the chemical species flow in both phases. Moreover, we consider
chemical interaction and chemical equilibrium laws for which it is possible to obtain
algebraic relationships between the chemical species. In this work, we consider that
we have only one free chemical species, i.e., by using equilibrium laws, we admit
that all chemical species can be written as function of only one, which we denote as
y. We present a formalism for this kind of flow, moreover, we obtain the eigenvalues,
eigenvectors, and bifurcations structures. We also show the structure of integral and
Hugoniot curves in the saturation versus chemical species plane.
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1 Introduction

One-dimensional multicomponent geochemical flow is modeled by system of equa-

tions of form
∂G(V )

∂t
+ ∂uF(V )

∂x
= 0, in which V = V (x, t) : R × R

+ −→ Ω ⊂
R

n , G(V ) = (G1(V ), · · · ,Gn+1(V )) : Ω −→ R
n+1 and F(V ) = (F1(V ), · · · ,

Fn+1(V )) : Ω −→ R
n+1, see [3, 4, 13]. Here, we can decouple the variable V

into two subgroups, the saturation variables si , for i = 1, · · · , p and the chemi-
cal species variables yi , for i = 1, · · · ,m. The compatibility condition implies that
p + m + 1 = n. Moreover, each Gi and Fi , for i = 1, · · · , n + 1, is written as:

Gi =
m∑

j=1

s jCi j (y) + ai (y) and Fi =
m∑

j=1

f jCi j (y), (1)

in which ai (y) are called adsorption functions. We have two different class of prob-
lems. First, f j , for j = 1, · · · , p, depends only on s = (s1, · · · , sp). The other sce-
nario is f j depending on s and y = (y1, · · · , ym), f j is called fractional flux. In [10],
we develop theory dealing with problems for general accumulation and fluxes terms
G and F . In this paper, we consider the two-phase flow problem, i.e., s = (sw, so)
and sw + so = 1, with G and F are given by (1), in which we disregard adsorption
phenomena, i.e., ai (y) = 0 for all i . Here, we admit that the fractional fluxes fw
and fo depend on sw, s0 and y. Under this assumptions, we obtain several impor-
tant general structures appearing in this class of equations, in which we generalize
several results and theory known in literature, such as integral and Hugoniot curves,
coincidences, inflection. Moreover, we give a geometrical interpretation for these
results.

Historically, the first models studied (from mathematical view point) for two-
phase flow admitted that the chemical species flow only in one phase, for which we
call s. Moreover, these models admitted that the chemical species appear as a linear
function in the system of equations and they did not consider any adsorption effects.
Under these hypothesis, one can prove that u is constant and G and F are written as:

G1 = s, F1 = f, Gi+1 = syi and Fi+1 = f yi , for i = 1, 2, · · · , n. (2)

The eigenpairs for states (s, y), y = (y1, · · · , yn) are: one saturation eigenpair of

form λs = ∂ f

∂s
rs = (1, 0, · · · , 0) and n chemical eigenvalues of form λc = f

s
.

Notice that all λc are equals; however, we have n different associated eigenvectors.
We can take these eigenvectors of form ei , for i = 2, · · · , n + 1 for which ei for i =
1, · · · , n + 1 is the canonical basis ofRn . In thismodel, there is a coincidence surface
between eigenvalues of different families, i.e., there is (s, y) for which λs = λc.

This system loses strict hyperbolicity on this coincidence surface. This phenomenon
appeared also in elasticity problems, such as in the famous work [9]. In this work,
authors have introduced an extension of Lax’s and Liu’s entropy conditions. This
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Fig. 1 a–Left. Coincidence between eigenvalues λs and λc for model without adsorption. b–Right.
Coincidence between eigenvalues λs and λc for model with adsorption

coincidence has a interesting geometrical interpretation, see Fig. 1a. The eigenvalue
λc for state (s, y) is the slope of line connecting (0, 0) and (s, f (s, y)) and λc is the
tangent to the graph f (s, y), notice that there is a state (s, y) for which both line
coincide.

Some papers discuss the mathematical theory for this model. For example, [15]
in which the 2 × 2 Riemann and Cauchy problem is solved, and [5] in which the
(n + 1) × (n + 1) Riemann and Cauchy problem is solved.

Posteriorly, models considered the interaction between the porous media and the
chemical species, i.e., such models considered the existence of adsorption functions.
For these, G and F are written as:

G1 = s, F1 = f, Gi+1 = syi + ai (y) and Fi+1 = f yi , for i = 1, 2, · · · , n. (3)

ai = ai (y), for i = 1, · · · , n are the adsorption functions. The eigenvalues are:

one λs and n eigenvalues of form λci = f

s + hi
, in which hi are the eigenvalues of

Jacobian matrix of a = (a1, · · · , an)T . This model exhibits n coincidence surfaces
λs = λci . We also have a geometrical interpretation of this coincidence, see Fig. 1b
for this interpretation. If hi �= h j for all i, j = 1, · · · , n thus λci �= λc j .

Some works were devoted to this problem, for which authors developed a math-
ematical theory. We can cite, for example, [2, 6–8]. In the [2], authors developed a
algorithm to solve n × n system.Moreover, someothermethods have been developed
to obtain analytical solution exploring the possibility of decoupling between vari-
able s (hydrodynamical) and y (thermodynamical); in this sense, a very interesting
method was proposed by [14].

In the present work, we consider that the chemical species can flow in both phases.
Moreover, we use equilibrium laws to obtain, from chemical species y, the so-called
concentration functions. Under equilibrium, we can use Gibbs phase rule (see, e.g.,
[11]) that states that the number of degrees of freedom is given by
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N f = Ns − Nr − Nc + 2 − p, (4)

where Ns is the number of different chemical species, Nr is the number of possible
equilibrium reactions within the phases, Nc is the number of constraints, e.g., the
charge balance. The number 2 represents the temperature and pressure and p the
number of phases. We follow Appelo and Parkhurst [1, 12] to obtain the algebraic
relationships between chemical species. From this modeling, we have, generically,
nonlinear concentration functions. In order to obtain our formalism, we assume that
in this flow there is only one free chemical species, denoted by y.

Thus, we have four unknowns: sw, so, y and u. Moreover, we assume that so =
1 − sw. Thus, disregarding any desorption effects, we have 3 × 3

∂

∂t
(swCi1(y) + soCi2(y)) + ∂

∂x
u( fwCi1(y) + foCi2(y)) = 0, (5)

in which each concentration is given by Ci j , for i = 1, 2, 3. The fractional fluxes of
water, fw, and oil, fo, depending on s, so and y, i.e., fw = fw(s, y). From physical
considerations 0 ≤ s ≤ 1 and 0 ≤ yi ≤ 1 for i = 1, · · · , n − 1, thus we denoteΩ =
{(s, y)} = [0, 1] × [0, 1] as the phase space.

In Sect. 2, we obtain the eigenvalues of the system, we also obtain many important
structures and we prove important results on the topology of integral curves. In
Section rsk, we obtain the structure of Hugoniot locus. These structures are the main
ingredients to obtain the Riemann solutions and to analyze the stability of solution.
The focus of this work is to use this formalism (and to extend to n × n system) to
solve important applied problems. In the Sect. 4, we draw our conclusions.

2 Eigenvalues, Eigenvectors and Bifurcations

The system of eigenvalues is written as Ar = Bλr, where r = (s, y, u)T and B, A
are:

B = ([Ci ] swC ′
i1 + soC ′

i2 0
)
1≤i≤3 , (6)

A =
(
u ∂ fw

∂sw
[Ci ] u

(
fwC ′

i1 + foC ′
i2 + ∂ fw

∂y [Ci ]
)
Fi

)

1≤i≤3
, (7)

in which [Ci ] = Ci1 − Ci2. Notice that the matrix B is singular, because it has a
complete row of zeros, this condition was analyzed in [10].

To obtain the eigenvalues, we solve det (A − λB) = 0, where A − λB is:

((
u ∂ fw

∂sw
− λ

)
[Ci ] (u fw − λsw)C ′

i1 + (u fo − λso)C ′
i2 + u ∂ fw

∂y [Ci ] Fi
)

1≤i≤3
(8)
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Substituting the second row by the sum of the first row multiplied by [C2] with
second row multiplied by [C1]. Similarly, we substitute the third row by the sum of
the first row multiplied by [C3] with second third row multiplied by [C1]. After, we
substitute the second row by the sum of the third row multiplied by −ν1 with the
second row multiplied by ν2, and we obtain:

⎛

⎜⎝

(
u ∂ fw

∂sw
− λ

)
[C1] (u fw − λsw)C ′

11 + (u fo − λso)C ′
12 + u ∂ fw

∂y [Ci ] F1

0 (u fw − λsw)ϑ1 + (u fo − λso)ϑ2 0
0 (u fw − λsw)γ31 + (u fo − λso)γ32 ν2

⎞

⎟⎠ (9)

where ϑi = γ2iν3 − γ3iν1, γi j = C ′
i j [C1] + C ′

1 j [Ci ] and νi = C12Ci1 − C11Ci2.

Thus, we have two eigenpairs. The first one is (λs, rs):

λs = u
∂ fw
∂sw

and rs = (1, 0, 0). (10)

For this eigenpair, only saturation changes and we identify this family wave as sat-
uration wave or Buckley–Leverett type wave.

If ϑ1 − ϑ2 �= 0, we can write the second eigenpair, λΔ, as:

λΔ = u
fw − Δ

sw − Δ
, where Δ = ϑ2

ϑ2 − ϑ1
. (11)

The form (11.a) has an interesting geometrical interpretation. For each s∗
w fixed, λw

corresponds to the slope of line in the (sw, fw)-plane connecting the point (−Δ,−Δ)

to the point (s∗, fw(s∗)). To obtain the corresponding eigenvector, we substitute λΔ

given by (11) into (9) and using that

u fw − λΔsw = u
fw(sw − Δ) − ( fw − Δ)sw

sw − Δ
= uΔ

sw − fw
sw − Δ

. (12)

u fo − λΔso = u(1 − fw) − λΔ(1 − sw) = u
(1 − fw)(sw − Δ) − ( fw − Δ)(1 − sw)

sw − Δ
= u(1 − Δ)

sw − fw
sw − Δ

,

(13)
after some tedious calculations, we obtain:

((
u ∂ fw

∂s − λ
)

[C1] u sw− fw
sw−Δ

(
ΔC ′

11 + (1 − Δ)C ′
12

) + u ∂ fw
∂y [C1] F1

0 u sw− fw
sw−Δ

(Δγ31 + (1 − Δ)γ32) ν2

) ⎛

⎝
r1
r2
r3

⎞

⎠ = 0

(14)
By solving (14) and using that (1 − Δ) = −ϑ1/ϑ2Δ, after some calculations the
eigenvector rΔ can be written as:

rΔ =
(

− sw − fw
(sw − Δ)

r̂1 − ∂ fw
∂y

,
∂ fw
∂sw

−
(

fw − Δ

sw − Δ

)
, u

sw − fw
sw − Δ

(
∂ fw
∂sw

−
(

fw − Δ

sw − Δ

))
r̂3

)
.

(15)
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where

r̂1 = Δ

ϑ2

(
C ′
11ϑ1 − C ′

12ϑ1 + (γ22γ31 − γ21γ32) F1

[C1]
)

, r̂3 = Δ

ϑ2
(γ22γ31 − γ21γ32) .

(16)
From the eigenvectors rΔ, we are able to obtain the integral curves solutions of:

dsw
dξ

= − sw − fw
(sw − Δ)

r̂1 − ∂ fw
∂y

,
dy

dξ
= ∂ fw

∂sw
−

(
fw − Δ

sw − Δ

)
, (17)

du

dξ
= u

sw − fw
sw − Δ

(
∂ fw
∂sw

−
(

fw − Δ

sw − Δ

))
r̂3. (18)

In the next sections, we are able to identify the structure of each integral wave in
the phase plane (sw, y); moreover, we obtain conditions to identify the rarefaction
branches of each integral curve.

Remark 1. In some models, it is possible that ϑ2 − ϑ1 = 0, which leads to disconti-
nuities (at least numerically). To overcome this problem, we rewrite the eigenpair in
a similar form removing this singularity. First of all, we write Δ = ϑ2/Δ1, in which
Δ1 = ϑ2 − ϑ1. From similar calculations, we write the eigenpair (λΔ, rΔ) as

λΔ = fwΔ1 − ϑ2

swΔ1 − ϑ2
. (19)

rΔ =
(

− sw − fw
(swΔ1 − ϑ2)

r1 − ∂ fw
∂y

,
∂ fw
∂sw

− fwΔ1 − ϑ2

swΔ1 − ϑ2
, u

sw − fw
swΔ1 − ϑ2

(
∂ fw
∂sw

−
(

fwΔ1 − ϑ2

swΔ1 − ϑ2

))
r3

)
.

(20)
where

r1 =
(
C ′
11ϑ2 − C ′

21ϑ1 + (γ22γ31 − γ21γ32) F1

[C1]
)

, r3 = (γ22γ31 − γ21γ32) . (21)

Moreover, notice that limΔ1−→0 λΔ = 1.

2.1 Bifurcation Structures in the Model

The are several important structures in the phase space, called bifurcations. These
structures, generically, are used to divide the phase space in subregions in which
the sequence of waves for the Riemann solution is the same. The main bifurcation
structures appearing in this model are: inflections and coincidences.

The inflections are co-dimension-1 structures, in which the increasing of char-
acteristic speed fails, i.e., ∇λ · r = 0. In this model, we have two fields. For the

field λs , it is easy to see that ∇λs · r = ∂2 fw
∂s2w

, thus the inflection states are the
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Fig. 2 left a—States s1, s∗ and s2. left b—Regions Ωi and curves Γ1, Cs , Is and Γ2. In this
regions s∗ < s†, however, it is possible also that s† ≤ s∗

s∗ = s∗(y), satisfying
∂2 fw
∂s2w

(s∗, ·) = 0.We denote the inflection for the field (λs, rs)

as Is =
{
(s∗, y); such that

∂2 fw
∂s2w

(s∗, y) = 0

}
. If fw does not depends on y, thus

Is is a vertical line in the (sw, y) plane.
Before we obtain the inflection of field (λΔ, rΔ), we obtain coincidence structures

that are fundamental to obtain the inflection locus.
The first coincidence is between the eigenvalues λs and λΔ, which we denote as

Γ . From geometrical arguments, see Fig. 2, we state the following result.

Lemma 1. If Δ > 0 or Δ < −1, for each state y, there are saturations s1(y) and
s2(y), satisfying s1(y) < s∗(y) < s2(y), such that

∂ fw(s1, y)

∂sw
= fw(s1, y) − Δ(y)

s1w − Δ(y)
and

∂ fw(s2, y)

∂sw
= fw(s2, y) − Δ(y)

s2w − Δ(y)
. (22)

Remark 2. From geometrical arguments, we also can see that there are one state
s† = s†(y) such that fw(s†, y) = s†, such that, for each y, s1(y) < s(y)† < s2(y).
However we can not identify if s†(y) ≤ s∗(y) or s†(y) ≥ s∗(y). Thus we define
Cs = {

(s†, y); such that fw(s†, y) = s†
}
.

From Lemma 1 and Remark 2, we state the following result:

Proposition 1. We identify four curves partitioning the (sw, y)-plane, which are
Γ1 = {(s1(y), y) ∈ Ω}, Γ2 = {(s2(y), y) ∈ Ω}, Is = {(s∗(y), y) ∈ Ω} and Cs =
{(s†(y), y) ∈ Ω}. In the situation that, fw does not depend on y Is and Cs are
straight lines which are parallels to axis y.

The curve Cs is parametrized as function of y, then differentiating sw(y) =
fw(sw, y) with relationship with y, we obtain:

dsw
dy

= ∂ fw
∂sw

dsw
dy

+ ∂y

∂y
(23)
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thus, rearranging (23), we write the following Lemma:

Lemma 2. Let (sθ
w, yθ ) one point satisfying sθ

w = fw(sθ
w, yθ ), thus curve Cs is

obtained as solution of:

dsw
dy

= −
∂ fw
∂y

1 − ∂ fw
∂sw

and sθ
w = fw(sθ

w, yθ ). (24)

It is also useful to define five regions Ωi , for i = 1, · · · , 3:

Ω1 = {(sw, y) such that 0 ≤ sw < s1(y)},
Ω2 = {(sw, y) such that s1(y) ≤ sw < min(s∗, s†)},
Ω3 = {(sw, y) such that min(s∗, s†) ≤ sw < max(s∗, s†)},
Ω4 = {(sw, y) such that s1 ≤ sw < s2(y)},
Ω5 = {(sw, y) such that s2(y) < sw ≤ 1}.

The curves s = 0, Γ1, Cs , Is , Γ2 and s = 1 are boundaries of Ωi , see Fig. 2b.
Now,we are able to prove some important results about the topology of the integral

curves for the fields (λs, rs) and (λΔ, rΔ). For (λs, rs), the integral curves are straight
lines in the (sw, y) plane which are parallel to sw axis. For the field (λΔ, rΔ), we
use Eqs. (17)–(18), so we can identify the shape of each integral curve. Notice that

from Eq. (17.b) for any state in Ω1 and Ω5, since λs < λΔ, we have that
dy

dξ
< 0;

in Ω2, Ω3 and Ω4, since λs < λΔ, we have that
dy

dξ
> 0. From (17.a) and Lemma

2, one can see that the integral curve has the curve Cs as a asymptotic curve, i.e.,
the integral curve for the field (λΔ, rΔ) does not cross Cs . To prove this, let a state
(sσ

w, yσ ) before Cs . The integral curve from this point satisfy the system (17)–(18),
and we denote them as γ = γ (sσ

w, yσ ). Suppose by absurd that γ reaches Cs , then,
there is a state (s̃σ

w, ỹσ ) in Cs and γ . Then this state satisfy s̃σ
w = fw(s̃σ

w, ỹσ ) and Eqs.
(17.a) and (17.b) reduce to

dsw
dξ

= −∂ fw
∂y

and
dy

dξ
= ∂ fw

∂sw
− 1, (25)

Dividing (25.a) by (25.b), we obtain (24), which is the equation for Cs , i.e., if γ

reached Cs the uniqueness of ODE system fails, which is a contraction. Thus, the
integral curve from any state before (sw, y) does not reach Cs . We can say that Cs is
a barrier for this integral curves.

Moreover, notice that from (17.a) that
ds

dξ
depends on sw − fw, thus for states

on the same horizontal line in the (sw, fw) plane, the sign of
ds

dξ
change when we
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Fig. 3 left a—Integral
curves for eigenpair
(λΔ, rΔ). Notice that the
integral curve change the
behavior when crosses Γi
and that Cs is a barrier for
this curve. We denote the
invariant regions Ψi

take states crossing Cs . From these conditions, we can see that all integral curves for
eingenpair (λΔ, rΔ) has a minimum on Γ1 and Γ2 or a maximum on these curves.

We can summarize these results as:

Proposition 2. The curve Cs is a barrier for the integral curves of (λΔ, rΔ), i.e.,
integral curve of any state taken out fromCs does not crossCs . Moreover, the integral
curves have either a maximum or a minimum on I1 and I2.

The shape of these curves is shown in Fig. 3.
From Proposition 2, we can identify some invariant regions for the integral curves

(thus rarefaction curves) of eigenpair (λΔ, rΔ) and identify the behavior and form of
these integral curves. Using previous regions Ωi , for i = 1, · · · , 5 we define:

Ψ1 = {(s, y) such that 0 ≤ s < s†}, (26)

Ψ2 = {(s, y) such that s† ≤ s < 1}. (27)

Notice that when s∗ < s†, then Ψ1 = Ω1 ∪ Ω2 ∪ Ω3 and Ψ2 = Ω4 ∪ Ω5. In other
hand, if s∗ > s†, then Ψ1 = Ω1 ∪ Ω2 and Ψ2 = Ω3 ∪ Ω4 ∪ Ω5.

Previous results leads to the following result:

Corollary 1. The integral curves with initial states in Ψi remains in Ψi , i.e., Ψi is
invariant for integral curves associated to (rΔ, λΔ) field. Moreover, y modify the
behavior when the integral curve crosses Γi .

Another important results are on the inflection locus associated to λΔ. Several
authors, for example, [10], have noticed that the coincidence states satisfyingλs = λΔ

lies on the inflection locus of (λΔ, rΔ), in somemodelsCs is also in the same inflection
locus. Here, we obtain a general result that clarifies this discussion, moreover, we
decouple this inflection locus in two parts one that depends on sw and y and another
that depends only on y. These results help us to explain the topology of this structure.

Lemma 3. The states satisfying λs = λΔ and fw = sw are in the inflection locus of
eigenpair (λΔ, rΔ) field.

Proof: Let λΔ given by (11), calculating ∇λΔ, we obtain:

∇λΔ =
(

1

sw − Δ
(λs − λΔ) ,

−uΔ′

(sw − Δ)2
(sw − fw) − u

∂ fw
∂y

,
λΔ

u

)
. (28)
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Using rΔ given in (15), we obtain, after some calculations:

∇λΔ · rΔ = sw − fw
(sw − Δ)2

(λs − λΔ)H (s, y), (29)

where H = −r̂1 − Δ′ + r̂3( fw − Δ). Thus the curves Γ1, Γ2 and Cs are in the
inflection locus of (λΔ, rΔ). �.

Lemma 4. The function H = −r̂1 − Δ′ + r̂3( fw − Δ) does not depend on sw.

Proof: Using r̂1 and r̂3 defined in (16), we can write −r̂1 + r̂3 f as:

− Δ

ϑ24

(
C ′
1ϑ24 − C ′

2ϑ13 + (γ2γ3 − γ1γ4) F1
C1 − C2

)
+ fw

Δ

ϑ24
(γ2γ3 − γ1γ4) =

− Δ

ϑ24

(
C ′
1ϑ24 − C ′

2ϑ13 + (γ2γ3 − γ1γ4) ( fw(C1 − C2) + C2)

C1 − C2
− fw (γ2γ3 − γ1γ4)

)
=

− Δ

ϑ24

(
C ′
1ϑ24 − C ′

2ϑ13 + (γ2γ3 − γ1γ4) (C2)

C1 − C2

)
. (30)

Substituting (30) in H and since r̂3 and Δ′ does not depend on s the Lemma is
proved. �

We define the curveJH = {(s, y), such that H (y) = 0}. Notice thatJH are
straight lines parallels to axis s.

From previous results, we can state the following result:

Proposition 3. The inflection locus of field (λΔ, rΔ), denoted asIΔ is the union of
curves Γ1, Γ2, Cs and JH .

Remark 3. We can obtain a similar equation that we obtain in Remark 1 for the
inflection locus IΔ. Writing Δ = ϑ2/Δ1 and differentiating with respect to y:

Δ′ =
(

ϑ2

Δ

)′
= ϑ ′

2Δ1 − ϑ2Δ
′
1

Δ2
1

. (31)

Substituting (31) in H = −r̂1 − Δ′ + r̂3( fw − Δ), using r̄1 and r̄3 given by (21)
and (20), after some tedious calculations, using Eq. (29), ∇λΔ · rΔ becomes:

sw − fw
(Δ1sw − ϑ2)2

(λs − λΔ)
(
Δ1(−r̄1 + r̄3 fw)) − (

ϑ ′
2Δ1 − ϑ2Δ

′
1

) − r̄3ϑ2
)

(32)

Ifwe takeΔ1 −→ 0,weobtain that lim
Δ1−→0

∇λΔ · rΔ = sw − fw
ϑ2

(λs − λΔ)
(
Δ′

1 − r̄3
)
.

Thus, ∇λΔ · rΔ is a continuous function of sw and y.
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3 Rankine–Hugoniot Locus

We want to obtain discontinuous solutions associated to system (5) satisfying the
Rankine–Hugoniot condition, which is written, for i = 1, 2, 3, as:

vs (s+wC+
i1 + s+o C+

i2 − (s−wC−
i1 + s−o C−

i2)) = u+( f +
w C+

i1 + f +
o C+

i2) − u−( f −
w C−

i1 + f −
o C−

i2). (33)

where vs is the speed of discontinuity; C± = C(y±) and f ± = f (s±).
For each fixed state (s−, y−), we obtain a set of states (s+, y+) satisfying (33),

which we call Hugoniot–locus, which we denote asH L (s+, y+). Following [10],
for each fixed (s−, y−), the states satisfying (33) are obtained solving:

det
(
s+A +

123 + B+
123 − (s−A −

123 + B−
123) − f +A +

123 − B+
123 f −A −

123 + B−
123

) = 0,
(34)

for which we substitute s±
o = 1 − s±

w and f ±
o = 1 − f ±

w and we define:

Ai jk = Ai jk(y) = (Ci1 − Ci2,C j1 − C j2,Ck1 − Ck2)
T , (35)

Bi jk = Bi jk(y) = (Ci2,C j2,Ck2)
T and Di jk = Di jk(y) = (Ci1,C j1,Ck1)

T .

(36)
Notice that

Ai jk = Bi jk + Di jk . (37)

We can simplify Eq. (34). To do so, we sum second column the third column multi-
plied by −1 with first column and we obtain:

det
(
(s+ − f +)A +

123 − (s− − f −)A −
123 − f +A +

123 − B+
123 f −A −

123 + B−
123

) = 0,
(38)

Applying determinant property on (38), we can write (38) as:

(s+ − f +)
(
det

(
A +

123 − f +A +
123 − B+

123 f −A −
123 + B−

123

)) +
−(s− − f −)

(
det

(
A −

123 − f +A +
123 − B+

123 f −A −
123 + B−

123

)) = 0, (39)

Now, using (37) and applying some properties of determinant, we can write (39) as:

(s+ − f +)
(
det

(
D−

123 D
+
123 B

+
123

) + (1 − f −) det
(
D+

123 B
+
123 B

−
123

))

=(s− − f −)
(
det

(
D−

123 D
+
123 B

−
123

) + (1 − f +) det
(
D−

123 B
+
123 B

−
123

))
. (40)

For each fixed (s−, y−), from Eq. (40), it is clear that a branch of RH (s−, y−)

is (s, y−) (here, we drop the upper index +), i.e., the saturation Branch, that satisfy
identically (40). In order hand, if we admit that y is not constant, than we obtain the
other branch. Defining F (s, y(s)) as:
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F (s, y(s)) = (s+ − f +)
(
det

(
D−

123 D
+
123 B

+
123

) + (1 − f −) det
(
D+

123 B
+
123 B

−
123

))

− (s− − f −)
(
det

(
D−

123 D
+
123 B

−
123

) + (1 − f +) det
(
D−

123 B
+
123 B

−
123

))
. (41)

Differentiating F with respect to s, we can prove the following result:

Lemma 5. For each fixed (s−, y−), theRH (s−, y−) has two branch: one branch is
associated to saturation variation and y is constant. The other branch where y is not

constant changes this behavior for states satisfying:F (s, y) = 0,
d f

ds
= M

M − N
.

When there is not states satisfying these equalities, then RH (s−, y−) reaches the
boundaries s = 0 and s = 1.

From the form (40), under suitable hypothesis, we can study the behavior of this
other branch of Rankine–Hugoniot locus. One can prove the following result:

Lemma 6. If det
(
D−

123 D
+
123 B

+
123

) + (1 − f −) det
(
D+

123 B
+
123 B

−
123

)
and det(

D−
123 D

+
123 B

−
123

) + (1 − f +) det
(
D−

123 B
+
123 B

−
123

)
have the same sign, then Ψi

are invariant regions for the Rankine–Hugoniot locus, i.e., if (s−, y−) ∈ Ψi , thus
RH (s−, y−) ⊂ Ψi .

Proof: Let (s−, y−) ∈ Ψ1, then s− − f − < 0. Since det
(
D−

123 D
+
123 B

+
123

) + (1 −
f −) det

(
D+

123 B+
123 B−

123

)
anddet

(
D−

123 D+
123 B−

123

) + (1 − f +) det
(
D−

123 B+
123 B−

123

)

have the same sign, then using (40) we have that s+ − f + < 0, i.e., (s+, y+) ∈ Ψ1.
Using the same argument we prove that Ψ2 is invariant for the Rankine–Hugoniot
locus, see Fig. 3b. �.

4 Conclusions

We introduce a formalism for the two-phase geochemical flow for one freedomdegree
of chemical species, denoted as y, flowing in both phases.Moreover,we admit that the
concentrations functions are nonlinear functions of y. We obtain several bifurcation
structures, and we describe the behavior of integral and Hugoniot curves. These
structures can be applied in real models to obtain analytical solutions.
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Localization of Adiabatic Deformations
in Thermoviscoplastic Materials

Min-Gi Lee, Theodoros Katsaounis and Athanasios E. Tzavaras

Abstract Westudy an instability occurring at high strain-rate deformations, induced
by thermal softening properties of metals, and leading to the formation of shear
bands. We consider adiabatic shear deformations of thermoviscoplastic materials
and establish the existence of a family of focusing self-similar solutions that capture
this instability. The self-similar solutions emerge as the net response resulting from
the competition betweenHadamard instability and viscosity. Their existence is turned
into a problemof constructing aheteroclinic orbit for an associated dynamical system,
which is achieved with the help of geometric singular perturbation theory.

Keywords Localization · Shear bands · Self similar solutions · Geometric
singular perturbations

1 Introduction

Shear bands are regions of intensely localized shear deformation appearing when
metals are deforming at high strain rates. This type ofmaterial instability has attracted
attention in the mechanics and mathematical literature [3, 5, 12–15]. In the mechan-
ics literature, such material instability is often called Hadamard instability and is
associated with an ill-posed initial value problem. However, it should be noted
that although Hadamard instability indicates the catastrophic growth of oscillations
around a mean state, coherent localized structures, the shear bands, emerge in an
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orderly fashion. This is a highly nonlinear phenomenon resulting from the competi-
tion between Hadamard instability and viscosity.

Under isothermal conditions, metals, in general, strain harden and exhibit a stable
response. As the deformation speed increases, the heat produced by the plastic work
causes an increase in the temperature. For certain metals, the tendency for thermal
softening may outweigh the tendency for strain hardening and deliver net softening.
A destabilizing feedback mechanism is then induced, which operates as follows (see
[2]): Nonuniformities in the strain rate result in nonuniform heating. If heat diffusion
is too weak to equalize the temperatures, the initial nonuniformities in the strain rate
are, in turn, amplified. This mechanism tends to localize the total deformation into
narrow regions (shear bands). On the other hand, there is opposition to this process by
“viscous effects” induced by strain-rate sensitivity. The outcome of the competition
depends mainly on the relative weights of thermal softening, strain hardening, and
strain-rate sensitivity, as well as the loading circumstances. This qualitative scenario
is widely accepted as the mechanism of shear band formation.

We work with a simple model that captures the mechanism of shear band forma-
tion: We consider the adiabatic shear deformation of a thermoviscoplastic material
that occupies the slab between two parallel plates. The relevant quantities are the
velocity v(t, x), the shear strain γ (t, x), the shear strain rate u(t, x), the shear stress
τ(t, x), and the temperature θ(t, x). The system of equations describing the motion
takes the form

γt = u (kinematic compatibility),

vt = τx (momentum conservation),

θt = τu (energy equation),

τ = τ(θ, γ, u) (constitutive law),

(A)

with (t, x) ∈ R
+ × R. In terms of classification, the model (A) belongs to the frame-

work of one-dimensional thermoviscoelasticity. It is also instructive to interpret (A)4
as a constitutive law for thermoviscoplastic materials viewing γ ≡ γp as the plastic
strain; see the hierarchy of models in [6, 14]. This context suggests the terminol-
ogy: Thematerial exhibits thermal softening at (θ, γ, u)when τθ (θ, γ, u) < 0, strain
hardening if τγ (θ, γ, u) > 0, and strain softening if τγ (θ, γ, u) < 0.

In this study, we focus on a constitutive hypothesis in the form of a power law

τ = ϕ(θ, γ )un = θ−αγ mun, (1)

where n is the strain-rate sensitivity which is assumed to be very small 0 < n � 1,
α measures the degree of thermal softening, while m measures the degree of strain
hardening.We further introduce two subclasses of (A), where ϕ(θ, γ ) is independent
of either θ or γ , respectively. These are the strain-independent model (B) (m = 0)
consisting of

vt = τx , θt = τu, τ = μ(θ)un , (B)

and the temperature-independent model (C) (α = 0) consisting of
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γt = u, vt = τx , τ = ϕ(γ )un. (C)

Model (A) with power law (1) admits a special class of solutions describing uniform
shearing, which can be written explicitly

γs = t + γ0, vs = x, θs =
[
θ1+α
0 + 1 + α

1 + m

[
γ 1+m
s − γ 1+m

0

]] 1
1+α

, τs = θ−α
s γ m

s ,

(2)
where γ0, θ0 denote initial values of shear strain and temperature, respectively.

The linear stability analysis [5] around theuniform shearing solutions (2) indicates
that system (A) becomes unstable in the regime q := −α + m + n < 0, while it
is asymptotically stable in the complementary region q > 0. Using the Chapman–
Enskog expansion and a relaxation theory approach, the authors in [6] obtained an
effective equation for the shear strain rate that changes type from forward parabolic
when q > 0 to backward parabolic when q < 0.

Nonlinear stability of model (B) (m = 0) in the regime q > 0 has been studied in
[3]when n = 1, and in [13] for n �= 1. System (B) has an interpretation that themodel
describes a fluid with temperature-dependent viscosity μ(θ) in the rectlinear shear
motion. Similar result for the problem (C) (α = 0) in the regime q > 0 is obtained in
[14]. For the problem (B) in the regime q < 0, the failure of the asymptotic stability
is treated in [1] when n = 1 and for n �= 1 in [6].

Themain result of this paper is the construction of a family of self-similar solutions
of focusing type to models (B) and (C) that capture the underlying instability. It
provides a survey of several related results concerning the construction of focusing
solutions that have recently appeared in the literature [7, 9, 11]. The exposition is
organized mostly around the general system of three Eqs. (A). The last step of the
construction of focusing self-similar solutions for the general power law (1) is work
in progress [10].

The paper is organized as follows: Sect. 2 contains the main results of this work.
The existence of focusing type self-similar solutions for systems (B) and (C) is stated
precisely in Theorems 1 and 2. Figure1a, b, c, and d depicts the typical behavior of
such focusing solutions. The existence of focusing self-similar solutions is turned into
a problem of constructing a heteroclinic orbit for an associated dynamical system.
The main tool of proving the latter is the theory of geometric singular perturbations
[4], which is discussed briefly in Sect. 3.

2 Main Results

2.1 Self-similar Structure

We investigate the scale invariance property of the system (A), and consequently
that of (B) and (C) too. Suppose (γ, u, v, θ, τ ) is a solution of system (A). Then, a
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rescaled version of it (γρ, uρ, vρ, θρ, τρ) given by

γρ(t, x) = ρaγ (ρ−1t, ρλx), vρ(t, x) = ρbv(ρ−1t, ρλx),

θρ(t, x) = ρcθ(ρ−1t, ρλx), τρ(t, x) = ρdτ(ρ−1t, ρλx),

uρ(t, x) = ρb+λγ (ρ−1t, ρλx),

is also a solution of (A) provided that

a = 2 + 2α − n

D
+ 2 + 2α

D
λ =: a0 + a1λ,

b = 1 + m

D
+ 1 + m + n

D
λ =: b0 + b1λ,

c = 2(1 + m)

D
+ 2(1 + m + n)

D
λ =: c0 + c1λ,

d = −2α + 2m + n

D
+ −2α + 2m + 2n

D
λ =: d0 + d1λ,

for eachλ ∈ R, where D = 1 + 2α − m − n.Motivated by the scale invariance prop-
erty parametrized by λ, we look for the solutions of the form

γ (t, x) = taΓ (tλx), v(t, x) = tbV (tλx), θ(t, x) = t cΘ(tλx),

τ (t, x) = tdΣ(tλx), u(t, x) = tb+λU (tλx),

and set ξ = tλx . In this format, λ > 0 accounts for the focusing behavior as time
increases, whereas λ < 0 accounts for the de-focusing behavior. This family includes
the uniform shearing solution at λ = − 1+m

2(1+α)
. Since we are interested in the focusing

solutions, we consider λ > 0 in the rest of the paper.
Using this ansatz to the system (A), we obtain a system of ordinary differential

and algebraic equations that
(
Γ (ξ), V (ξ),Θ(ξ),Σ(ξ),U (ξ)

)
satisfies

aΓ (ξ) + λξΓ ′(ξ) = U (ξ),

bV (ξ) + λξV ′(ξ) = Σ ′(ξ),

cΘ(ξ) + λξΘ ′(ξ) = Σ(ξ)U (ξ),

Σ(ξ) = Θ(ξ)−αΓ (ξ)mU (ξ)n,

V ′(ξ) = U (ξ).

(3)

2.2 Main Theorem

We first state the existence of two parameters’ family of solutions for (B) where
m = 0. See [10] for the detailed discussion.
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Theorem 1. Let α, n > 0, α �= 2n + 1 be the given material parameters and fix
U0 > 0 and Θ0 > 0. Suppose that

2

1 + 2α − n
<

U 1+n
0

Θ1+α
0

<
2

1 + n
, (4)

−α + n < 0, and n is sufficiently small. Then, there is a focusing self-similar solution
to system (B) of the form

v(t, x) = (t + 1)bV ((t + 1)λx), θ(t, x) = (t + 1)cΘ((t + 1)λx),

τ (t, x) = (t + 1)dΣ((t + 1)λx), u(t, x) = (t + 1)b+λU ((t + 1)λx)

where the focusing rate is

λ = 1 + 2α − n

2 + 2n

U 1+n
0

Θ1+α
0

− 2

2 + 2n
> 0. (5)

Furthermore, the self-similar profile
(
V (ξ),Θ(ξ),Σ(ξ),U (ξ)

)
, ξ = (t + 1)λx, has

the following properties:

(i) Satisfies the boundary condition at ξ = 0,

V (0) = Θξ(0) = Σξ(0) = Uξ (0) = 0, U (0) = U0,Θ(0) = Θ0.

(ii) Its asymptotic behavior as ξ → 0 is given by

Θ(ξ) = Θ(0) + Θ
′′
(0)

ξ 2

2
+ o(ξ 2), Θ

′′
(0) < 0,

Σ(ξ) = Θ(0)−αU (0)n + Σ
′′
(0)

ξ 2

2
+ o(ξ 2), Σ

′′
(0) > 0,

U (ξ) = U (0) +U
′′
(0)

ξ 2

2
+ o(ξ 2), U

′′
(0) < 0,

V (ξ) = U (0)ξ +U
′′
(0)

ξ 3

6
+ o(ξ 3), U

′′
(0) < 0.

(6)

(iii) Its asymptotic behavior as ξ → ∞ is given by

V (ξ) = O(1), Θ(ξ) = O(ξ− 1+n
α−n ),

Σ(ξ) = O(ξ), U (ξ) = O(ξ− 1+α
α−n ).

(7)

In the case of system (C), where α = 0, there exists a two-parameter family of
solutions; see [9, 11] for the detailed discussion.
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Theorem 2. Let −1 ≤ m < 0 and n > 0, m + n �= − 1
2 be the given material

parameters and fix U0 > 0 and Γ0 > 0. Suppose that

2 − n

1 − m − n
<

U0

Γ0
<

2 − n

1 + m + n
,

m + n < 0, and n is sufficiently small. Then, there is a focusing self-similar solution
to system (C) of the form

γ (t, x) = (t + 1)aΓ ((t + 1)λx), v(t, x) = (t + 1)bV ((t + 1)λx),

τ (t, x) = (t + 1)dΣ((t + 1)λx), u(t, x) = (t + 1)b+λU ((t + 1)λx),

where the focusing rate is

λ = 1 − m − n

2

(U0

Γ0
− 2 − n

1 − m − n

)
> 0. (8)

Furthermore, the self-similar profile
(
V (ξ),Θ(ξ),Σ(ξ),U (ξ)

)
, ξ = (t + 1)λx, has

the following properties:

(i) Satisfies the boundary condition at ξ = 0,

V (0) = Γξ (0) = Σξ(0) = Uξ (0) = 0, U (0) = U0, Γ (0) = Γ0.

(ii) Its asymptotic behavior as ξ → 0 is given by

Γ (ξ) = 1

a
U (0) + Γ

′′
(0)

ξ 2

2
+ o(ξ 2), Γ

′′
(0) < 0,

Σ(ξ) = Γ (0)mU (0)n + Σ
′′
(0)

ξ 2

2
+ o(ξ 2), Σ

′′
(0) > 0,

U (ξ) = U (0) +U
′′
(0)

ξ 2

2
+ o(ξ 2), U

′′
(0) < 0,

V (ξ) = U (0)ξ +U
′′
(0)

ξ 3

6
+ o(ξ 3), U

′′
(0) < 0.

(9)

(iii) Its asymptotic behavior as ξ → ∞ is given by

Γ (ξ) = O(ξ
1

m+n ), V (ξ) = O(1),

Σ(ξ) = O(ξ), U (ξ) = O(ξ
1

m+n ).
(10)
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2.3 Emergence of Localization

We describe the emergence of localization of the family of solutions for system (B)
constructed by Theorem 1. The corresponding localized solutions for system (C)
constructed by Theorem 2 are similar, thus omitted.

In both cases, we replace t ← t + 1,

v(t, x) = (t + 1)bV ((t + 1)λx), θ(t, x) = (t + 1)cΘ((t + 1)λx),

τ (t, x) = (t + 1)dΣ((t + 1)λx), u(t, x) = (t + 1)b+λU ((t + 1)λx),

so that we interpret

(
V (ξ),Θ(ξ),Σ(ξ),U (ξ)

) = (
v(0, x), θ(0, x), τ (0, x), u(0, x)

)|x=ξ ,

the initial states of the self-similar solutions.

• Initial nonuniformities : The profile
(
V (ξ),Θ(ξ),Σ(ξ),U (ξ)

)
is the initial profile

of the self-similar solution. Θ(ξ) and U (ξ) have a small bump at the origin from
the asymptotically flat state. The tip sizes at the origin Θ0 and U0 are the two
parameters that fix the solution. The velocity V (ξ) is an odd function of ξ that
connects −V∞ and V∞ as ξ spans from −∞ to ∞, where V∞ � limξ→∞ V (ξ).
The slope near the origin is slightly steeper, which reflects the initial nonuniformity
in the velocity.

• Temperature: The temperature is an increasing function of t for a fixed x . The
growth rate at the origin is faster than any other x , which dictates the localization
near the origin, see Fig. 1a

θ(t, 0) = (1 + t)
2
D + 2+2n

D λΘ(0), θ(t, x) ∼ t
2
D − (1+n)2

D(α−n)
λ|x |− 1+α

α−n , as t → ∞, x �= 0.

• Strain rate: The growth rate at the origin is faster than the rest of the points, which
dictates the localization near the origin, see Fig. 1b

u(t, 0) = (1 + t)
1
D + 2+2α

D λU (0),

u(t, x) ∼ t
1
D − (1+α)(1+n)

D(α−n)
λ|x |− 1+α

α−n , as t → ∞, x �= 0.

• Stress: The stress is a decreasing function of t for fixed x . However, the decay rate
at the origin is faster than the rest of the points, see Fig. 1d

τ(t, 0) = (1 + t)
−2α+n

D + −2α+2n
D λΣ(0),

τ (t, x) ∼ t
−2α+n

D + 1+n
D λ|x |− 1+α

α−n , as t → ∞, x �= 0.

Note that the rate of the latter is always less than − n
1+n in the valid range of λ.
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(a) temperature ( ) (b) strain rate (u)

(c) velocity (v) (d) stress ( )

Fig. 1 Localizing solutions for system (B), for μ(θ) = θ−α , α = 1.4, n = 0.3, and λ = 0.39. All
graphs except v are in logarithmic scale. See [11] for the system (C)

• Velocity: The velocity v(x, t) is an odd function of x . It connects −v∞ to v∞, as
x runs from −∞ to ∞, where v∞ � limx→∞ v(t, x). Because of the scaling law
ξ = (1 + t)λx , the transition from −v∞ to v∞ localizes around the origin as time
increases. The slope becomes steeper and steeper and develops a step function-type
singularity, see Fig. 1c. The far field velocity

v∞(t) = (1 + t)bV∞ = (1 + t)
1
D + 1+n

D λV∞

itself grows at a polynomial rate. This is not in agreementwith the uniform shearing
motion. This deviation is a consequence of our simplifying assumption for the self-
similarity.
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3 Existence via Geometric Singular Perturbation Theory

The main step in proving Theorems 1 and 2 is to show the existence of a heteroclinic
orbit to an associated dynamical system, which, in the case of system (B), reads as
follows:

ṗ

p
=

[1 + α

1 + n

1

λ

(
r1+n − c0

)]
−

[
d1 + q + λpr

]
,

q̇

q
=

[
b1 + bpr

q

]
−

[
d1 + q + λpr

]
,

n
ṙ

r
=

[ α − n

λ(1 + n)

(
r1+n − c0

)]
+

[
d1 + q + λpr

]
.

(P)

The objective is to construct the heteroclinic orbit that connects equilibrium points

M0 =
(
0, 0,

( 2
D

+ 2(1 + n)

D
λ
) 1

1+n

)
, M1 =

(
0, 1,

( 2
D

− (1 + n)2

D(α − n)
λ
) 1

1+n

)
.

First, we describe nowbriefly how system (P) is derived. The techniquewe employ
was mainly developed in [7]. Following [7, 9, 10], we introduce a series of nonlinear
transformations described by (11) and (12), while the definition of (p, q, r)-variables
is given by (13)

γ̄ (ξ) = ξ a1Γ (ξ), v̄(ξ) = ξ b1V (ξ), θ̄ (ξ) = ξ c1Θ(ξ),

τ̄ (ξ) = ξ d1Σ(ξ), ū(ξ) = ξ b1+1U (ξ).
(11)

γ̃ (log ξ) = γ̄ (ξ), ṽ(log ξ) = v̄(ξ), θ̃ (log ξ) = θ̄ (ξ ),

τ̃ (log ξ) = τ̄ (ξ ), ũ(log ξ) = ū(ξ),
(12)

p � θ̃
1+α
1+n

τ̃
, q � b

ṽ

τ̃
, r � ũ

θ̃
1+α
1+n

, (13)

with η � log ξ being the new independent variable
(
d f
dη

= ḟ
)
. The system (P) has

a fast–slow structure due to parameter n in front of ṙ . We conduct a Chapman–
Enskog-type reduction via geometric singular perturbation theory [4, 8]. The reduced
problem becomes a planar dynamical system, and the heteroclinic orbit is obtained
by phase-space analysis [10].

3.1 Critical Manifold

The surface the orbit relaxes is near the zero set of the right-hand side of (P)3. The
zero set, that is away from r = 0 plane, is the surface specified by
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r =
αc0
λ

− d1 − q
α
λ

+ λp
� h(p, q; n = 0), or q + λrp + α

λ

(
r − r0

)
= 0.

We take the triangle T in the first quadrant enclosed by p-axis, q-axis and the contour
line r = h(p, q; n = 0) and a compact set K ⊃⊃ T . We set the critical manifold

G(λ, α, n = 0) �
{

(p, q, r) | (p, q) ∈ K , and r =
αc0
λ

− d1 − q
α
λ

+ λp

}
. (14)

The system in fast scale with the independent variable η̃ = η/n is

p′ = np
([1 + α

1 + n

1

λ

(
r1+n − c0

)]
−

[
d1 + q + λpr

])
,

q ′ = nq
([

b1 + bpr

q

]
−

[
d1 + q + λpr

])
,

r ′ = r
([ α − n

λ(1 + n)

(
r1+n − c0

)]
+

[
d1 + q + λpr

])
,

(P̃)

where we denoted (·)′ = d

dη̃
(·). When n = 0, (P̃)|n=0 reads

p′ = 0, q ′ = 0, r ′ = r
([α

λ

(
r − c0

)]
+

[
d1 + q + λpr

])
.

Lemma 1. G(λ, α, 0) is a normally hyperbolic invariant manifold with respect to
the system (P̃)|n=0.

3.2 Chapman–Enskog-Type Reduction

By the theorem of geometric singular perturbation theory [4, 8], if n is sufficiently
small, there exists the locally invariant manifoldG(λ, α, n)with respect to (P). Then,
on this manifold,

(
p(η), q(η)

)
satisfies the planar system

ṗ = p

{[1 + α

1 + n

1

λ

(
h1+n − c0

)]
−

[
d1 + q + λph

]}
,

q̇ = q
(
1 − q − λph

)
+ bph,

(R)

where h stands for h(p, q; n).



Localization of Adiabatic Deformations in Thermoviscoplastic Materials 279

3.3 Confinement of the Orbit

Lemma 2. The triangle T is positively invariant for the system (R) when n = 0.

We can compute the inward normal component of ( ṗ, q̇) on the boundary of the
triangle T for (R)|n=0:

ṗ = −D

α
p
(
d1 + q + λph

)
,

q̇ = q
(
1 − q − λph

)
+ bph.

Essential calculation is on the hypotenuse, and the fact that it is the contour line r =
h(p, q, n = 0) helps us obtain the estimate. Define p and q to be the p-intercept and
q-intercept of the contour line, respectively: q = λpr = α

λ
(r0 − r). With (−q,−p)

being the inward normal vector, the inward normal component on the hypotenuse is

( ṗ, q̇) · (−q,−p) = D

α
q p

(
d1 + q + λpr

)
− p

{
q
(
1 − q − λpr

)
+ bpr

}

= D

α
q p

(
d1 + q

)
− p

{(
q − λpr

)(
1 − q

)
+ bpr

}

= −pq(1 − q) + q p
(D

α
d1 + D

α
q + (1 − q) − b

λ

)

= −pq(1 − q) + q p
1 + α

λ

( 1

1 + α
− r

)

≥ −pq(1 − q) for r <
1

1 + α

≥ δ0 > 0.

Lemma 3. The triangle T is positively invariant for the system (R) provided n is
sufficiently small.

Now the hypotenuse is not anymore a contour line of the function h(p, q; λ, α, n).
We arrange terms of right-hand sides of (R) in the form

ṗ = p

{[1 + α

λ

(
r − c0

)]
−

[
d1 + q + λpr

]}

+ p

{[1 + α

1 + n

1

λ

(
h1+n − c0

)]
−

[1 + α

λ

(
r − c0

)]
− λp(h − r)

]}
︸ ︷︷ ︸

�g1(p,q,n)

,

q̇ = q
(
1 − q − λpr

)
+ bpr + (−qλp + b)(h − r)︸ ︷︷ ︸

�g2(p,q,n)

.
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Since h is a smooth function of n and D is compact, provided n is sufficiently small,
we have an estimate

|g1(p, q, n)| + |g2(p, q, n)| ≤ C0n, where C0does not depend on p, q, and n.

Therefore

( ṗ, q̇) · (−q,−p) ≥ δ0 + C ′
0n for another uniform constant C ′

0.

For n sufficiently small, the last expression is positive. After having the orbit confined
in the positive invariant set T , we further conduct the phase-space analysis to capture
the heteroclinic orbit; for details, we refer to [9, 10].
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The Global Nonlinear Stability
of Minkowski Spacetime for
Self-gravitating Massive Fields

Philippe G. LeFloch

Abstract We address the global evolution problem for the Einstein equations of
general relativity and investigate the global geometry of matter spacetimes that are
initially close to Minkowski spacetime. First, we provide a review the equations of
Einstein’s gravity and then f(R)-gravity. We present their relationship and, next, the
wave-Klein-Gordon formalism. Finally, we discuss our new statements of nonlinear
stability of massive fields.

Keywords Einstein equations · Massive field · Global existence · Minkowski
spacetime · Modified gravity theory

1 Introduction

This is a short review of the series of papers [18–20] which, in collaboration with
Yue Ma, establish several novel existence results for systems of coupled-wave-
Klein-Gordon equation. Our method—the Hyperbolic Hyperboloidal Method—has
allowed us to address the global evolution problem for the Einstein equations of
general relativity and investigate the global geometry of matter spacetimes that are
initially close to Minkowski spacetime. The Einstein equations (when expressed in
wave gauge) take the form of nonlinear system of partial differential equations of
hyperbolic type and, in presence of self-gravitating massive matter fields, involve
a strong coupling between wave equations (for the geometry) and Klein–Gordon
equations (for the matter fields). Our method also provides a global existence theory
for the field equations of the f (R)-theory of gravity, which is a natural generalization
of Einstein’s gravity theory (see below).

The global nonlinear stability problem for Minkowski spacetime is formulated
from initial data which are prescribed on a spacelike hypersurface and are a small
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perturbation of an asymptotically flat slice in Minkowski space. This problem is
equivalent to a global-in-time existence problem for a system of nonlinear wave
equations with sufficiently small data in a weighted Sobolev space.

There are several major challenges to be overcome. Gravitational waves are per-
turbations propagating in the curved spacetime and may relate to either the Weyl
curvature (in vacuum spacetimes) or the Ricci curvature (in matter spacetimes).
It is required to understand the effect of nonlinear wave interactions on the possible
growth of the energy, in order to be able to exclude dynamical instabilities and self-
gravitating massive modes and, therefore, to avoid gravitational collapse (trapped
surfaces, black holes)—a generic phenomenon in general relativity [5, 23].

The global dynamics is particularly complex in general, but sufficiently small
perturbations in Minkowski spacetime are expected to disperse in timelike direc-
tions and an asymptotic convergence to Minkowski spacetime to be observed. More
precisely, in order to prove its stability, it is necessary to establish that the spacetime
is future timelike geodesically complete.

We will begin by reviewing Einstein’s gravity and the f(R)-gravity theory and
explain their relation. Next, the wave-Klein-Gordon formalism will be presented,
and finally the global nonlinear stability will be stated. For further reading, we refer
to the works by Donninger and Zenginoglu [7], Fajman et al. [8], Wang [24], and
Zenginoglu [25].

2 Self-gravitating Massive Fields

For simplicity in the presentation, the theory is developed for a massive scalar field,
whereas our method should generalize to other massive models and, for instance,
one should be able to also analyze the coupling between the Einstein equations with
massive Yang–Mills fields.

Throughout, we are interested in Lorentzian manifolds (or spacetime) (M, gαβ)

with signature (−,+,+,+) and in local coordinates we write g = gαβdxαdxβ .
For instance, Minkowski spacetime M = R

3+1 is described in standard coordinates
by gM = −(dx0)2 + ∑3

a=1(dxa)2. In a spacetime, the covariant derivative operator
allows towrite schematically∇α X = ∂α X + Γ � X withΓ � ∂g. (The exact expres-
sions in coordinates will be given only later in this text.) The Ricci curvature also
reads schematically Rαβ = ∂2g + ∂g � ∂g, and one also defines the scalar curvature
R := Rα

α = gαβ Rαβ by taking the trace of the Ricci curvature. Here,α,β = 0, 1, 2, 3
and, whenever relevant, Einstein’s summation convention on repeated indices is in
order.

The Einstein equations for self-gravitating matter have the form

Gαβ = 8πTαβ, (1)

in which Gαβ := Rαβ − (R/2)gαβ is the Einstein curvature tensor and Tαβ denotes
the energy-momentum of thematter. A (minimally coupled) massive scalar field with
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potential U (φ), for instance with the quadratic potential U (φ) = c2

2 φ2, is described
by the energy-momentum tensor

Tαβ := ∇αφ∇βφ −
(1

2
gα′β′∇α′φ∇β′φ + U (φ)

)
gαβ . (2)

Consequently, theEinstein–Klein–Gordon system for the unknown (M, gαβ,φ) reads

Rαβ − 8π
(
∇αφ∇βφ + U (φ) gαβ

)
= 0,

�gφ − U ′(φ) = 0,
(3)

where�g = ∇α∇α denotes the wave operator associated with the unknownmetric g.
The above equation is a system of geometric PDE’s, which enjoys a gauge invariance
property.

On the other hand, the field equations for the f (R)-theory of modified gravity are
based on the following generalized Hilbert–Einstein functional:

∫

M

(
f (R) + 16πL[φ, g]

)
dVg, (4)

in which the nonlinear function f (R) = R + κ
2 R2 + κ2O(R3) is prescribed with

κ > 0. The condition κ := f ′′(0) > 0 will be essential for global stability. This
theory has a long history in physics, beginning with Weyl (1918), Pauli (1919),
Eddington (1924), and many others [2, 3]. We emphasize that alternative theories of
gravity are relevant in view of recent observational data, which have demonstrated
the accelerated expansion of the universe and have identified instabilities in galaxies
in our universe. The f (R)-theory allows for the gravitation field to be mediated by
an additional field without explicitly introducing a notion of “dark matter.”

Numerical evidence and physical heuristics have led to the conjecture that asymp-
totically flat, matter spacetimes should be stable [22], even though the existence of
a family of “oscillating soliton stars” had first suggested a possible instability mech-
anism within small perturbations of massive fields. Advanced numerical methods
were necessary to handle the long-time evolution of oscillating soliton stars. Dur-
ing an initial phase, the matter tends to collapse, but during an intermediate phase
(below a certain threshold in the mass density) the collapse slows down, until finally
the dispersion becomes of the main feature of the evolution of the matter field.

Observe that in asymptotically anti-Sitter (AdS) spacetimes, such instabilities are
observed [11] and the effect of gravity is dominant so that generic (even arbitrarily
small) initial data lead to black hole formation. In AdS spacetime, the matter is
confined and cannot disperse: The timelike boundary is reached in finite proper
time.
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3 The Wave-Klein-Gordon Formulation

Unlesswe introduce a specific gauge, thefield equationsGαβ = 8πTαβ in coordinates
take the form of a second-order system with no specific PDE type. By imposing the
wave gauge �gxγ = 0, we find

2 gαβ ∂βgαγ − gαβ ∂γgαβ = 0, γ = 0, . . . , 3, (5)

leading us to an expression of the Ricci curvature Rαβ � �ggαβ (after Einstein,
Choquet-Bruhat, De Turck, etc.). The Einstein-massive field system is then equiv-
alent to a second-order system of 11 nonlinear wave-Klein-Gordon equations, sup-
plemented with the Hamiltonian-momentum Einstein’s constraints. Namely, in wave
gauge, the Einstein equations for a self-gravitating massive field read

�̃ggαβ = Fαβ(g, ∂g) − 8π
(
2∂αφ∂βφ + c2φ2 gαβ

)
,

�̃gφ − c2φ = 0,
(6)

with �̃gψ := gα′β′
∂α′∂β′ψ.

The expression of the quadratic nonlinearities Fαβ(g, ∂g) is given in the following
lemma and involves null terms of the general form gαβ∂αu∂βu or ∂αu∂βv − ∂βu∂αv,
as well as terms that do not satisfy the null condition and require a specific analysis.
Recall first that

Rαβ = ∂λΓ
λ
αβ − ∂αΓ λ

βλ + Γ λ
αβΓ δ

λδ − Γ λ
αδΓ

δ
βλ,

Γ λ
αβ = 1

2
gλλ′(

∂αgβλ′ + ∂βgαλ′ − ∂λ′gαβ

)
.

Following Lindblad and Rodnianski [21] for vacuum Einstein spacetime, we have
the following result.

Lemma 1. With Fαβ = Qαβ + Pαβ , the Ricci curvature in wave gauge reads

2 Rαβ = −�̃ggαβ + Qαβ + Pαβ,

which contains:

1. null terms satisfying Klainerman’s null condition (and enjoying good decay in
time)

Qαβ : = gλλ′
gδδ′

∂δgαλ′∂δ′gβλ

− gλλ′
gδδ′(

∂δgαλ′∂λgβδ′ − ∂δgβδ′∂λgαλ′
)

+ gλλ′
gδδ′(

∂αgλ′δ′∂δgλβ − ∂αgλβ∂δgλ′δ′
) + . . . ,

(7)

2. and quasi-null terms (as they are called by the authors)
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Pαβ := −1

2
gλλ′

gδδ′
∂αgδλ′∂βgλδ′ + 1

4
gδδ′

gλλ′
∂βgδδ′∂αgλλ′ (8)

(which will require a further investigation based on the wave gauge condition).

Asimilar decomposition can bewritten for the conformalmetric of the f(R)-theory
of gravity, which we now introduce. The modified gravity equations read

Nαβ = 8πTαβ (9)

and are based on a choice of a function f (R) = R + κ
2 R2 + . . ., and take the form of

a fourth-order systemwith no specific PDE type.We propose to rely on an augmented
formulation with unknown (g†αβ, ρ) defined as follows, by regarding the spacetime
curvature as an independent unknown and by working with the conformal metric

g†αβ := f ′(Rg)gαβ, (10)

in which ρ := 1
κ
ln f ′(Rg). In view of the standard relation between the Ricci curva-

ture tensors of g and g†, i.e.,

R†
αβ = Rαβ − 2

(∇α∇βρ − ∇αρ∇βρ
) − (

�gρ + 2g(∇ρ,∇ρ)
)
gαβ,

we arrive at a third-order system. In addition, from the trace of the field equation,
we derive an evolution equation for the scalar curvature which is a new degree of
freedom in the theory and must be supplemented with suitable initial data. Finally,
in wave coordinates

�g† xα = 0 (11)

we arrive at a second-order system of 12 nonlinear wave-Klein-Gordon equations.
The structure is analogous to the one of the Einstein-massive field system, but has a
significantly more involved algebraic structure and admits additional constraints.

Proposition 1. The equations of f(R)-gravity for a self-gravitating massive field take
the form

�̃g†g
†
αβ = Fαβ(g†, ∂g†) − 8π

(
2e−κρ∂αφ∂βφ + c2φ2e−2κρ g†αβ

)

− 3κ2∂αρ∂βρ + κO(ρ2)g†αβ,

�̃g†φ − c2φ = c2
(
e−κρ − 1

)
φ + κg†

αβ
∂αφ∂βρ,

3κ �̃g†ρ − ρ = κO(ρ2) − 8π
(
g†

αβ
∂αφ∂βφ + c2

2
e−κρφ2

)
,

(12)

supplemented with:

1. the wave gauge conditions g†
αβ

Γ †λ
αβ = 0,

2. the curvature compatibility condition eκρ = f ′(Re−κρg†),
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3. and the Hamiltonian and momentum constraints.

These three sets of conditions can be propagated from a Cauchy hypersurface.

Proposition 2. In the limit κ → 0 one finds

g† → g and ρ → 8π
(
gαβ∇αφ∇βφ + c2

2
φ2

)
, (13)

and the Einstein system for a self-gravitating massive field is (6).

This completes the formulation of the field equations in a PDE form, and the
geometric problem of interest can be reformulated as a global existence problem
for coupled nonlinear wave equations. Our main challenge is that the system is
not invariant by scaling, and one must rely on fewer symmetries in, for instance,
defining weighted energy-like functionals. The analysis of coupled wave equations
and Klein-Gordon equations is particularly challenging and drastically different time
asymptotic behavior arise for the unknown components of the system: O(t−1) for
wave equations and O(t−3/2) for Klein–Gordon equations.

We also need to investigate the dependence in f and determine the singular limit
f (R) → R which, as we can see, transforms a second-order PDE into an algebraic
equation.

4 The Global Nonlinear Stability

For the global existence theory, we need to establish that there is a sufficient rate
of time decay for all the nonlinearities of interest. The nonlinear coupling between
the geometry and massive matter leads to strong interactions at the PDE level and,
consequently, it is necessary to be able to establish (almost) sharp L2 and L∞ time
decay for the metric and matter field. Understanding the quasi-null structure of the
Einstein equations is fundamental since the standard null condition is violated and
an amplification phenomenon arise for the energy.

We thus consider the initial value problem for the Einstein equations (and its
generalization). An initial data set, by definition, provides us with the geometry
of the initial hypersurface (M0 � R

3, g0, k0) and the initial data for the matter field
φ0,φ1. We assume that these data are sufficiently close to a spacelike, asymptotically
flat slice in Minkowski spacetime. The local existence is standard and goes back to
Choquet-Bruhat [4]: to each initial data set, one can associate a unique maximal,
globally hyperbolic Cauchy development (i.e., intuitively, the maximal part of the
spacetime which is uniquely determined by the prescribed initial data and remains
smooth).

The fundamental work on the stability of Minkowski spacetime for the vacuum
Einstein equations (or massless matter) was done by Christodoulou and Klainerman
[6] (and later generalized in [1]):
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1. They introduced a fully geometric proof, in which the Bianchi identities are
regarded as the main evolution equations,

2. they analyzed the geometry of null cones and defined a double null-maximal
foliation,

3. and they relied on all of the Killing fields of Minkowski spacetime.

The earlier work by Friedrich [9] also addressed the global existence problem for
the vacuum Einstein equations and established the nonlinear stability of De Sitter
spacetime. More recently, Lindblad and Rodnianski [21] obtained the first global
existence result for the vacuum Einstein equations in wave coordinates (despite
an “instability” result by Choquet-Bruhat) and again relied on all of the Killing
fields of Minkowski spacetime. They introduced a foliation by asymptotically flat
hypersurfaces.

In contrast, the recent work [18–20] addresses this stability problem for self-
gravitating massive matter fields:

1. The proposed new method (the Hyperboloidal Foliation Method) does not rely
on Minkowski’s scaling field r∂r + t∂t ,

2. which is the key of be able to tackle massive matter fields,
3. is based on an asymptotically hyperbolic foliation,
4. and leads to a somewhat simpler proof for the case of massless fields.

The positive mass theorem restricts the possible behavior of solutions at spacelike
infinity. No solution can be exactlyMinkowski “at infinity,” but can coincide with the
Schwarzschild metric outside a spatially compact region. More generally, solutions
are assumed to approach the Schwarzschild metric near space infinity (with ADM
mass m � 1). We only provide here informal statements of our results, and we refer
to [18–20] for the precise statements.

Theorem 1 (Nonlinear stability of Minkowski spacetime with self-gravitating
massive fields). Consider the Einstein-massive field system when the initial data
set (M0 � R

3, g0, k0,φ0,φ1) is asymptotically Schwarzschild and sufficiently close
to Minkowski data and satisfies the Einstein constraint equations. Then, the initial
value problem

1. admits a globally hyperbolic Cauchy development,
2. which is foliated by asymptotically hyperbolic hypersurfaces,
3. and is future causally geodesically complete and asymptotically approaches

Minkowski spacetime.

Theorem 2 (Nonlinear stability of Minkowski spacetime in f(R)-gravity). Con-
sider the field equations of f (R)-modified gravity when the initial data set (M0 �
R

3, g0, k0, R0, R1,φ0,φ1) is asymptotically Schwarzschild and sufficiently close to
Minkowski data and satisfies the constraint equations of modified gravity. Then, the
initial value problem

1. admits a globally hyperbolic Cauchy development,
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2. which is foliated by asymptotically hyperbolic hypersurfaces,
3. and is future causally geodesically complete and asymptotically approaches

Minkowski spacetime.

The limit problem κ → 0 can be viewed as a relaxation phenomenon for the
spacetime scalar curvature. We pass from the second-order wave equation

3κ �̃g†ρ − ρ = κO(ρ2) − 8π
(
g†

αβ
∂αφ∂βφ + c2

2
e−κρφ2

)
(14)

to the purely algebraic equation

ρ → 8π
(
gαβ∇αφ∇βφ + c2

2
φ2

)
. (15)

Theorem 3 (f(R)-spacetimes converge toward Einstein spacetimes). In the limit
κ → 0, when the nonlinear function f = f (R) (the integrand in the Hilbert–Einstein
action) approaches the scalar curvature function R, the Cauchy developments of
modified gravity (given in the previous theorem) converge (in every bounded time
interval, in a sense specified quantitatively in Sobolev norms) to Cauchy develop-
ments of Einstein’s gravity theory.

The proofs rely on weighted norms associated with the asymptotically hyper-
boloidal foliation which we construct. Our energy norms are solely based on the
translations ∂α and the Lorentzian boosts La of Minkowski spacetime. These fields
enjoy good commutator properties even in curved space and allow us to decompose
the wave operators, the metric, etc. On each hyperboloidal hypersurfaceHn[s] at any
hyperboloidal time s, in wave coordinates, we use the boosts to define the norm

(‖u‖Hn [s]
)2 := sup

a=1,2,3

∑

|J |≤n

∫

Hs�R3
|L J

a u|2 dx (16)

and, within the spacetime, we use the translations to define the norm

‖u‖HN [s0,s1] := sup
s∈[s0,s1]

∑

|I |+n≤N

∥
∥∂ I u

∥
∥
Hn [s]. (17)

We introduce a suitable bootstrap argument, which shows that the total contribu-
tion of the interaction terms contributes only a finite amount to the growth of the
total energy. We derive global time-integrability properties for the source terms,
which are established from sharp pointwise estimates—required to handle the strong
geometry–matter interactions under consideration. Sobolev inequalities and Hardy
inequalities are adapted to the hyperboloidal foliation, and a hierarchy of energy
bounds distinguishes between various orders of differentiation and growth rates in
the hyperboloidal time s.
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A Particle-Based Multiscale Solver
for Compressible Liquid–Vapor Flow

Jim Magiera and Christian Rohde

Abstract Todescribe complex flow systems accurately, it is inmany cases important
to account for the properties of fluid flows on a microscopic scale. In this work, we
focus on the description of liquid–vapor flow with a sharp interface between the
phases. The local phase dynamics at the interface can be interpreted as a Riemann
problem for which we develop a multiscale solver in the spirit of the heterogeneous
multiscale method (HMM) [7], using a particle-based microscale model to augment
the macroscopic two-phase flow system. The application of a microscale model
makes it possible to use the intrinsic properties of the fluid at the microscale, instead
of formulating (ad hoc) constitutive relations.

Keywords Multiscale modeling · Heterogeneous multiscale method
Conservation laws · Compressible two-phase flow · Liquid–vapor flow
Sharp interface resolution · Riemann problem · Particle chain model
Model reduction · Machine learning

1 Introduction

For many problems in science and engineering, microscopic properties can heavily
influence the macroscopic behavior. Therefore, it is important to consider micro-
scopic effects in the mathematical model development. The obvious possibility to
account for such small-scale effects is to solve the microscopic model everywhere.
However, despite advances in computing power over the last decades, it is usually
still not feasible. This scenario applies to the case of compressible fluid flows with
liquid–vapor phase transition. Most applications require a computational domain on
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a laboratory scale, which is many orders of magnitude apart from a truly microscopic
model that considers effects on the molecular level.

One approach to this problem is to perform multiscale domain-decomposition of
micro- and macroscale models, where in a part of the domain a microscale particle
model is solved instead of the macroscale model, and both models are coupled via
suitable boundary conditions. This coupling approach has been investigated, for
example, in [13] for the incompressible Navier–Stokes equations on the macroscale
and a Lennard–Jones particle model as the microscale model. In [11], multiscale
domain-decomposition is applied for crack propagation in brittle materials, where
a set of conservation laws is used in the continuum domain and near the crack a
microscale particle model is applied. Furthermore, the phase change of a liquid on a
hot plate has been examined in [5].

In this work, however, we propose a multiscale model for the description of single
liquid droplets, based on the heterogeneous multiscale method (HMM) [6, 7], which
is a general framework for developing multiscale models. The main idea behind it is
to compute solutions of amicroscopicmodel for some givenmacroscopic constraints
and propagate hereby obtained parameters to the macroscopic model. Consequently,
instead of performing multiscale domain-decomposition coupling of the scales, a
data-based approach is promoted.

2 The Macroscale Model: Compressible, Isothermal Euler
Equations

On the macroscopic scale, we consider the behavior of a single liquid droplet in
a vapor atmosphere. For such two-phase flows, it is possible to consider either a
diffuse interface approach [2], where the phase boundary has a finite thickness, or a
sharp interface approach, as in [14, 19], where a discontinuous transition between
the phases is present. In this work, we follow the second approach and assume that
the interface between the phases is represented as a discontinuous shock wave.

Furthermore, we assume that the fluid flow is compressible, inviscid, and isother-
mal at reference temperature Tref , such that the dynamics are described by the isother-
mal Euler equations

∂tρ + ∇ · (ρv) = 0, ∂t (ρv) + ∇ · (ρv ⊗ v) + ∇ p(1/ρ) = 0, (1)

for the density ρ and velocity v in the space–time domain Ω × (0, T ), with T > 0
and Ω ⊂ R

d an open set.
Todescribe the two separate phases,wedistinguish at eachpoint of time t ∈ [0, T ],

between the two distinct bulk phases Ωvap(t) and Ωliq(t) with common bound-
ary/interface Γ (t), such thatΩvap(t) ∪ Ωliq(t) ∪ Γ (t) = Ω . Figure1 shows a sketch
of this setting. To close the system (1), the pressure p has to be specified. For describ-
ing a generic two-phase system, we consider the van der Waals pressure function, in
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Fig. 1 Sketch of the
two-phase flow domains

Fig. 2 The van der Waals
pressure function for
Tref < Tc

terms of the specific volume τ = 1
ρ
, as in [14],

p(τ ) = RTref
τ − b

− 1

τ 2
, (2)

with some constants R, b, a > 0. If the temperature Tref is greater than the critical
temperature Tc = 8a

27Rb , the van der Waals pressure function is monotone and the
system (1) is hyperbolic. However, if Tref < Tc, the pressure is non-monotone, and
the system becomes elliptic for τ ∈ (τmax

liq , τmin
vap ) which is called spinodal region.

Thus, we define the admissible set of densities as Avdw := (b,∞) \ (τmax
liq , τmin

vap )

and distinguish between the liquid phase for τ ∈ (b, τmax
liq ) and the vapor phase for

τ ∈ (τmin
vap ,∞) (Fig. 2).

In order to complete the two-phase model, we have to formulate, besides initial
and boundary conditions, some additional coupling conditions at the interface Γ (t).
Therefore, let ξ ∈ Γ (t) and t ∈ [0, T ) be fixed. The speed of the interface Γ (t) in
normal direction n(ξ, t) ∈ S

d−1 (always pointing into the vapor phase) is denoted
by s(ξ, t) ∈ R. Then the mass and momentum balance at the interface, neglecting
surface tension, take the following form
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Fig. 3 Sketch of a wave
pattern for two-phase flow.
The dashed line indicates the
phase transition, which is
sharp as an additional
discontinuous wave

[[ρ(v · n − s)]] = 0,

[[ρ(v · n − s)v · n + p(1/ρ)]] = 0,

[[v · t]] = 0, ∀ t ⊥ n,

(3)

where [[ · ]] denotes the difference between liquid and vapor phase values. The well-
posedness of the free boundary value problem requires still another coupling condi-
tion. For the relevant subsonic case, one assumes that this condition can be written
down as an algebraic equation, called kinetic relation. It describes the entropy dissi-
pation at the interface [16].

For given initial Riemann data uL = (ρ, ρv)L for x ≤ 0, and uR = (ρ, ρv)R for
x > 0, the solution of the initial value problem (1) evolves (in contrast to the one-
phase case) as a 3-wave pattern—a sketch of such a wave pattern is depicted in
Fig. 3.

Two-phase models with kinetic relations have been investigated in detail; see, for
example, [1, 3, 12].

However, it can be seen that for certain settings, the wrong choice of the kinetic
relation can lead to a behavior of the model that is not observed by physical experi-
ments, see, e.g., [19]. For that reason, we want to return to a more elementary notion
of the physical properties and regard the flow at the interface on a molecular level.
This has the advantage that no kinetic relation is needed. Furthermore, most physi-
cal parameters on the molecular level can be determined accurately by experiments.
These advantages become even more apparent if one considers non-isothermal mul-
tiphase flow and mixtures, where the physically correct choice of the kinetic relation
is usually not clear.

3 The Microscale Model: Particle Chain Model

For the description of the liquid–vapor interaction of droplets on a microscopic
scale, we apply an atomistic one-dimensional particle chain model, which has been
investigated for example in [8]. More precisely that means that we consider a one-
dimensional system of N particles with position xi = xi (t), velocity vi = vi (t), and
mass mi , for i = 1, . . . , N . The distance between the i th and (i + 1)th particle is
given by ri,i+1 = |xi+1 − xi |; see Fig. 4. The particles are assumed to interact only
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Fig. 4 Sketch of the particle chain model

with direct neighbors via a potential φ : R+ → R : r �→ φ(r), where r denotes the
distance between the particles. The i th particle is subject to the forces fi−1,i , fi,i+1

originating from the potentials of the neighboring particles, and the resulting force
fi is therefore given by

fi = fi−1,i + fi,i+1 = φ′(|xi−1 − xi |) − φ′(|xi+1 − xi |).

Consequently, the acceleration ai = ai (t) of the i th particle is given by ai = fi/mi .
For the boundary conditions, we assume that f0 and fN are zero. This gives us the
following ordinary initial value problem for the particle motion

d2

dt2 xi (t) = 1
mi

fi (t), xi (0) = x0i , vi (0) = v0i , (4)

with initial positions x0i and velocities v0i for i = 1, . . . , N .

3.1 Micro-/Macroscale Conversion: Irving–Kirkwood
Formulas

To design amultiscale scheme that accounts for microscopic properties, it is essential
to convert the key quantities from the macroscopic to the microscopic scale and vice
versa. In case of a particle model, this can be achieved via the Irving–Kirkwood for-
mulas [9]. The microscopic instantaneous density ρ̂(x, t) and momentum (ρ̂v̂)(x, t)
distributions are realized by

ρ̂(x, t) =
N

∑

i=1

mi δ(x − xi (t)), (ρ̂v̂)(x, t) =
N

∑

i=1

mi vi (t) δ(x − xi (t)), (5)

where mi , xi , vi are the mass, position, and velocity of the i th particle and δ denotes
the Dirac distribution. Employing momentum balance for the integrated quantities,
the instantaneous pressure distribution p̂(x, t) computes as
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p̂(x, t) = 1

d

( N
∑

i=1

(mivi · vi ) δ(x − xi (t)) +
∑

i=1,...,N
j<i

( fi j · ri j ) λi j (x, t)

)

. (6)

Here, vi denotes the relative velocity with respect to a local mean value, ri j (t) :=
(xi (t) − x j (t)). The pressure distribution consists of a local kinetic part and a non-
local contribution originating from the pair-interactions between the particles. Fol-
lowing [9], the interaction term is localized by averaging along the straight path
between the i th and j th particles, i.e., λi j (x, t) is defined by

λi j (x, t) :=
∫ 1

0
δ
(

x − (x j (t) + λ (xi (t) − x j (t)))
)

dλ.

To get averaged quantities that can be passed to the macroscopic model, we have
to average the distributions ρ̂, v̂ and p̂ over a sampling domain. Consequently, we
obtain the spatially averaged, microscopic quantities ρ, v, and p. In the following,
we will only consider these averaged quantities.

For a homogeneous particle chain with constant particle masses m = mi , the
averaged microscopic pressure is given by p(τ ) = −φ′(τ ), as a function of the
specific volume τ = m/ρ, if the local microscopic temperature is zero, which is the
case in our setting, as the particles are initialized without any random fluctuations.
Using this relation, the macroscopic pressure function can be determined directly
from the microscale model. This means that for the consistency of both models we
have to set φ(τ) = ψ(τ), where ψ denotes the specific Helmholtz free energy of the
macroscopic system, satisfying p(τ ) = −ψ ′(τ ). In the following, we consider the
potential

φ(r) = −a

r
− Rθ ln(b − r), φ′(r) = a

r2
+ Rθ

b − r
, (7)

which is consistent with the van der Waals pressure (2). However, we stress that
the choice of the potential is arbitrary and implies the macroscopic pressure, not the
other way round. Here, the explicit choice of φ is done to compare the multiscale
scheme with already existing solvers for van der Waals fluids.

3.2 The Microscopic Riemann Problem

Our main goal is to describe the dynamics of the fluid at the liquid–vapor interface,
which we interpret as a Riemann problem. To incorporate microscopic properties,
we define a Riemann problem on themicroscopic scale and solve it in order to extract
the wave pattern, which will be used to compute the fluxes at the interface on the
macroscopic scale.
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Fig. 5 Schematic representation of Riemann data at the microscopic scale

Therefore, we have to convert the macroscopic quantities to the microscale quan-
tities and vice versa using the Irving–Kirkwood formulas (5). To be more precise,
for macroscopic Riemann problem data uL = (ρ, ρv)L and uR = (ρ, ρv)R we set
the initial particle configuration uniformly, such that for both α = L and α = R

x0i − x0i−1 = miρ
−1
α , v0i = vα, for all i ∈ Iα,

holds, where IL = {i | i = 1, . . . , N with xi ≤ 0}, IR = {i | i = 1, . . . , N with xi >

0} are the index sets for the left-/right-hand particles. A schematic depiction of
such a configuration can be seen in Fig. 5. This gives us the microscopic Riemann
problem for

(ρ, ρv)(x, t = 0) =
{

(ρ, ρv)L : x ≤ 0,

(ρ, ρv)R : x > 0,
(8)

with a left state (ρ, ρv)L and a right state (ρ, ρv)R, defined by local averages of (5),
with the jump at zero.

After running themicroscale simulation, the evolvingwave pattern has to be trans-
ferred to the macroscopic model. For that we perform some local averaging over
the particles states using the Irving–Kirkwood formulas (5). The interface speed is
obtained by tracking the interface position on the microscopic scale.

Remark: Via (6), a macroscopic pressure p = p̂(ρ−1) is defined, which is by p(τ ) =
−φ′(τ ) consistent with the microscopic interaction potential φ and exactly leads to
(2). This function is monotone increasing in the spinodal region Avdw. States in the
spinodal region lead to instabilities in the numerical scheme and must be avoided.
In our numerical examples, we never experienced such problems, but we cannot
prove that the proposed averaging process excludes spinodal states. Neither we can
guarantee in general that the overall numerical method will not lead to spinodal
values, even if the microscale Riemann solver avoids them (except for some special
cases, see [4]).

3.2.1 Extracting Key Quantities

For a given solution to the microscopic Riemann problem, it is still the question how
we extract the key quantities from the microscopic solution.
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Fig. 6 Example of a solution of the microscopic particle model with van der Waals potential (7)
for the initial values (ρ, ρv)L = (1.9, 0) and (ρ, ρv)R = (0.3, 0) for 16000 particles at t = 2500.
The phase boundary is located at the density jump near the origin

In Fig. 6, an example of a solution of the particle model is depicted. It can be seen
that, similar to wave patterns in the continuum case, a 3-wave pattern evolves—see
Fig. 3.We apply this analogy to construct a numerical flux for the interface dynamics.
To this end, similar to the numerical flux in [4], we need to extract the states adjacent
to the interface from the wave pattern, and also the interface propagation speed. To
obtain these values, the interface is tracked by considering the biggest local change
in density and then the neighboring states can be computed easily by local averaging
left and right of the interface.

3.3 Discretization of the Particle System

For the time-discretization of the particle system, we apply the velocity Verlet
algorithm [17]. It is an explicit scheme with microscale time step Δt > 0 of the
following form:

x(t + Δt) = x(t) + Δt v(t) + 1
2Δt2 a(t),

v(t + Δt) = v(t) + 1
2Δt

(

a(t) + a(t + Δt)
)

,
(9)
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where v = dx
dt is the particle velocity, and a = dv

dt the particle acceleration, computed
from the forces between the particles at each time step. It is of second order and has the
advantage that no intermediate values of x , v, or a have to be stored. Furthermore, we
see that all steps can be run in parallel. This enables us to run the particle simulations
on a graphics processing unit (GPU) which gives a major speedup, as opposed to
conventional hardware.

4 The Multiscale Model

To design the multiscale model, we consider the continuum model (1) with the
interface conditions (3) as our macroscopic model. The bulk phases of the continuum
model are solved by a standard finite volume scheme, andwe focus on the description
of the interface dynamics.We refrain from formulating a kinetic relation, and instead
include data from themicroscopic Riemann solutions of the particle model presented
in Sect. 3.2. Hereby, the communication between the macroscale continuum model
andmicroscale particlemodel is solely data-driven.Only themacroscopic constraints
(ρ, ρv)L and (ρ, ρv)R are needed for setting up the microscale Riemann problem,
and in return, for the computation of the macroscale interface flux just the response
values (s, u∗

L, u
∗
R) from the wave pattern are needed; see Sect. 4.2. Consequently, for

the continuummodel only the input-output relation (uL, uR) �→ (s, u∗
L, u

∗
R) from the

microscopic Riemann problem is important.

4.1 Model Reduction Algorithm

The evaluation of the microscale model is computationally relatively expensive, and
if it is evaluated at each interface edge and time step of the continuum model, the
coupled micro-/macroscale model becomes computationally unfeasible—see Sect. 5
for more details. To counter this problem, we exploit the fact that the coupling is
solely data-driven, and apply a reduced, kernel-based surrogatemodel for the particle
model input-response relation fmicro : (uL, uR) �→ (s, u∗

L, u
∗
R), where u := (ρ, ρv).

More abstractly, we apply the microscale model as a black box and put the reduced
model into the framework of machine learning. For that x ∈ R

d1 denotes the d1-
dimensional input data, which is in our case x = (uL, uR), and y ∈ R

d2 is the d2-
dimensional responseof ourmodel, in our case themeasureddata (s, u∗

L, u
∗
R). The aim

is now, to train a regression function from samples Dn = {(xi , yi ) : i = 1, . . . , n},
obtained from observations yi = fmicro(xi ) + εs that describes fmicro in an optimal
sense. Here εs accounts for possible normal distributed measurement noise. To get
the regression function from the sample set Dn , we apply a support vector regression
scheme; see, e.g., [15]. Therefore, we have to train the reduced model function
f (x) = ∑n

i=1 αi kγ (xi , x), on the trainings data set Dn , where kγ is the radial basis
kernel function kγ (xi , x) = exp(−γ ‖x − xi‖2). In this context, that means that we
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Fig. 7 Sketch of the model reduction scheme with dynamic sampling

have to determine the coefficientsαi ∈ R such that f describes fmicro optimally under
the observations in Dn . Consequently, an optimization problem has to be solved each
time the reduced model is trained.

More details on kernel-based surrogate modeling can be found in, e.g., [10, 18].

4.1.1 Dynamic Sampling Scheme

In our case, the input values that are needed cannot be prescribed a priori. Therefore,
we apply a dynamic sampling strategy, which is described in this section.

The sampling set Dn is updated dynamically at each time step of the continuum
model. To this end,we assign each input value x ∈ R

d1 a scoreγ (x; Dn) that describes
the quality of the surrogate model at the point x . This score is computed at each
evaluation of the surrogate model. If the score is below a certain threshold εmodel > 0,
we simply evaluate the point x by the surrogate model. On the other hand, if it is
above the threshold, we draw a new sample by evaluating the microscale model
and add it to the training set Dn+1 = Dn ∪ {(xn+1, yn+1)}. A sketch of the complete
model reduction scheme is shown in Fig. 7.

In the following, we use the distance from an input value x to the nearest point
of the sample data set Dn , i.e., γ (x ; Dn) = mini≤n ‖x − xi‖. One drawback of this
simple choice is that we only consider the input values and ignore the output values,
which could give an indication whether the (local) variance of the underlying model
equation is higher or lower in certain areas of the input space.

4.2 Numerical Discretization of the Multiscale Model

To discretize the macroscale model, we apply the time-explicit front tracking finite
volume scheme for systems from [4]. It has the advantage that the sharp interface
is resolved within the mesh, i.e., the discretized phase boundary always coincides
with a (moving) mesh edge. At the interface, we have to solve a special Riemann
problem including the phase dynamics. From its solution, we have to extract the
interface propagation speed s and the adjacent fluid states u∗

R and u∗
L; see Fig. 3.
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However, instead of solving the microscale Riemann problem each time, we insert
the model reduction scheme from Sect. 4.1. The wave pattern values are inserted in
the numerical flux at the interface g(uL, uR) = 1

2

(

f (u∗
L) + f (u∗

R) − s(u∗
L + u∗

R)
)

.
In the bulk phases, we apply a standard Lax–Friedrichs flux scheme.

5 Numerical Simulations

In this section, we present some numerical simulation results to show that the mul-
tiscale scheme is viable and applicable to (two-dimensional) droplet dynamics.

A Multiscale Simulation of the Riemann Problem: The first simulation results
show the consistency between the particle model and the multiscale model in one
spatial dimension. Therefore, we run both the particle model and the multiscale
model for the same set of Riemann data and compare the averaged particle solution
with the multiscale solution. For the initial conditions, we have ρL = 2.0, vL = 0 for
x < 0 in the liquid phase, and on the right side the vapor-phase Maxwell equilibrium
state ρR ≈ 0.317, vR = 0. In Fig. 8, both solutions are superimposed and we can see
that they fit well, and in particular the wave speeds of the phase boundary coincide.

Multiscale Simulations of a Droplet in 2D: Next, we solve the multiscale model
on the continuum scale in two spatial dimensions.

Fig. 8 One-dimensional solution of the multiscale model and the particle model for the Riemann
problem, where the phase boundary is located at the density jump near x/t = 0.2
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Fig. 9 Multiscale simulation of a moving droplet at t = 0, t = 1.25 and t = 2.5 (from left to right)

Fig. 10 Multiscale simulation of an oscillating droplet at t = 0, 0.25, 0.5, 0.75 (from left to right)

Droplet transport: In the first simulation, we present the performance of the front
tracking scheme in two spatial dimensions. The initial conditions for the density
are the Maxwell equilibrium states, which are ρliq ≈ 1.804 for the liquid phase and
ρvap ≈ 0.317 for the vapor phase. The initial velocity in the domain and on the
boundary is set to v = (0.2, 0)�. In Fig. 9, we see that the droplet is transported
through the domain and mostly keeps its shape. Furthermore, it remains in equi-
librium, and the increased density at the interface in the vapor on the left side and
the small oscillations are due to the local averaging if the triangulation is restructured.

Oscillating droplet: In the next simulation, we consider a droplet that is perturbed
from the liquid phase equilibrium, i.e., ρliq = 1.85, and measure the effect of the
model tolerance εmodel on the computational time. The simulation results for εmodel =
0.5 are presented in Fig. 10.We consider reflecting boundary conditions and thus, the
droplet oscillates slightly. The computational time1 for this simulation is depicted in
Fig. 11. It can be seen that the time for computing new samples is of the same order
of the finite volume computations, which underlines the performance of the model
reduction scheme. If we would not apply model reduction, we would have to run
microscale simulation (around 20 s per sample) for all 8000 time steps at each of
the ∼160 interface edges. This would lead to a computational time that amounts to
roughly one year. Comparing to that the runtime with the model reduction scheme
adds up to only several minutes. This gives us huge speedups (with/without model
reduction) as shown in Table1.

1All simulations were performed on a single workstation equipped with an Intel® i7-6700 CPU at
3.4 GHz, 16GB RAM, and a Nvidia® GTX980 Ti GPU.
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Fig. 11 Computational time
in seconds with respect to the
model tolerance εmodel. The
dashed line indicates the
number of samples that are
drawn from the microscale
model

Table 1 Speedup,
with/without model reduction

εmodel Speedup

1.0 222112

0.5 47000

0.25 10836

6 Conclusions

We have presented a multiscale model for the description of two-phase flows with
a sharp interface that incorporates microscale features originating from an atom-
istic particle model. We have exploited the fact that the coupling of the micro- and
macroscale model is solely data-based and developed a model reduction scheme that
dynamically samples new data from the microscale model and makes the whole mul-
tiscale scheme computationally feasible. Numerical simulation results are presented,
that not only show the consistency of the scheme, but also that the applicability in
more complex situations without prescribing some (ad hoc) kinetic relations.

Acknowledgements Thework was supported by the German Research Foundation (DFG) through
SFB TRR 75 “Droplet dynamics under extreme ambient conditions.”
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L p-Lq Decay Estimates for Dissipative
Linear Hyperbolic Systems in 1D

Corrado Mascia and Thinh Tien Nguyen

Abstract Given A, B ∈ R
n×n , we consider the Cauchy problem for partially dissi-

pative hyperbolic systems having the form

∂t u + A∂xu + Bu = 0,

with the aim of providing a detailed description of the large-time behavior. Sharp L p-
Lq estimates are established for the distance between the solution to the system and
a time-asymptotic profile, where the profile includes a solution to a parabolic system
and a solution of a hyperbolic system. The key tools for the proof are the Fourier
transform together with the Young inequality and the interpolation inequality.

Keywords Large-time behavior · Dissipative linear hyperbolic systems
Asymptotic expansions

1 Introduction

In this framework, we consider the Cauchy problem for partially dissipative linear
hyperbolic systems in one-dimensional space, namely

∂t u + A∂xu + Bu = 0, u(x, 0) = u0(x), (1)

where A, B ∈ R
n×n , and u ∈ R

n under general and reasonable assumptions on the
coefficients. Decay estimates for (1) have been established for years as in [1, 5].
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Consider as an example the Goldstein–Kac model for chemotaxis

{
∂t u1 − ∂xu1 = − 1

2u1 + 1
2u2,

∂t u2 + ∂xu2 = 1
2u1 − 1

2u2.
(2)

It can be easily checked that w := u1 + u2 solves the linear damped wave equation

∂t tw + ∂tw − ∂xxw = 0. (3)

A detailed description of the asymptotic behavior of (3) was explored in [3] via
L p-Lq estimates. More precisely, for any initial datum (w, ∂tw)|t=0 = (w0, w1),
there are associated time-dependent functions φ solution to a heat equation and
ψ(x, t) := e−t/2[w0(x + t) + w0(x − t)]/2 such that for any 1 ≤ q ≤ p ≤ ∞, the
error estimate

‖w − φ − ψ‖L p ≤ C t−
1
2 ( 1

q − 1
p )−1‖(w0, w1)‖Lq ∀t ≥ 1

holds. This result is remarkable in that the asymptotic profile is more descriptive
(compared to [1, 5]), the decay rate is sharp, and p, q are arbitrary in [1,∞].

Our aim in this paper is to establish this L p-Lq -type estimate for the general system
(1). Applications include, for example, linearized systems arising in the Broadwell
model for the Boltzmann equation, the Goldstein–Kac system (2), and its generaliza-
tion considered in [4]. Having in mind these applications, we impose the following
structural assumptions on (1):

A. [Hyperbolicity] A is diagonalizable with real eigenvalues;
B. [Partial dissipativity] The spectrum of B is σ(B) = {0} ∪ σ0, where 0 is semi-

simple with algebraic multiplicity m ≥ 1 and σ0 ⊂ {λ ∈ C : Re (λ) > 0}.
Let P (0)

0 be the eigenprojection associated with 0 ∈ σ(B). Let C := P (0)
0 AP (0)

0 ,
the dynamics on the equilibrium manifold is then approximately described by the
reduced system ∂tω + C∂xω ≈ 0, where ω := P (0)

0 u. Thus, C describes the large-
time transport mechanism. We assume

C. [Reduced hyperbolicity] C has m real semi-simple eigenvalues in ker(B).
In addition, we assume the presence of the dissipativity described in terms of

spectral properties of the Fourier symbol

E(κ) := B + κA, κ ∈ C. (4)

D. [Uniform dissipativity] There is a positive constant θ ∈ R such that

Re (λ)(κ) ≥ θ |κ|2/(1 + |κ|2), κ ∈ C\{0},

where λ are the eigenvalues of E .
Consider the kernel Gt (x) := G(x, t) ∈ R

n×n associated with the system (1) sat-
isfying
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∂tG + A∂xG + BG = 0, G(x, 0) = δ(x)I, (5)

where δ is the delta distribution and I is the n × n identity matrix. In order to
study the large-time behavior of the solution u to (1), one studies the kernel Gt

since u = Gt ∗ u0, and in this paper, by studying Gt in the frequency domain under
assumptions A, B, C, and D, one can decompose Gt into

Gt (x) = Kt (x) + Wt (x) + Rt (x), (6)

where Kt (x) := K (x, t) arising in the low frequency includes kernels of diffusion
waves propagating along the characteristics governed by the matrix C in ker(B),
Wt (x) := W (x, t) arising in the high frequency contains delta distributions decay-
ing exponentially and it describes the propagation of signals along the hyperbolic
characteristics governed by A, and Rt (x) := R(x, t) is the remainder decaying faster
than Kt (x). It follows that

u(x, t) = U (x, t) + V (x, t) + L(x, t), (7)

where U (x, t) := Kt ∗ u0(x), V (x, t) := Wt ∗ u0(x) and L(x, t) := Rt ∗ u0(x).
Let s ≤ m be the cardinality of the spectrum of C in ker(B). By the derivation

of Kt , U = ∑s
j=1Uj where Uj := P (0)

j U and P (0)
j is the eigenprojection of the

eigenvalue c j of C in ker(B) for j ∈ {1, . . . , s}. Furthermore, let Γ0 be an oriented
closed curve in the resolvent set ρ(B) of B such that it encloses 0 except for the
other eigenvalues of B, one sets

D := −[P (1)
0 BP (1)

0 + P (0)
0 AP (1)

0 + P (1)
0 AP (0)

0 ],

where S(0)
0 := 1

2π i

∫
Γ0
z−1(B − z I )−1 dz and P (1)

0 := −[P (0)
0 AS(0)

0 + S(0)
0 AP (0)

0 ].
Then, Uj satisfies the system

∂t Ũ + c j∂xŨ − Dj∂xxŨ = 0, Ũ (x, 0) = Ũ0(x), (8)

where Ũ ∈ R
n , Dj := P (0)

j DP (0)
j is positive definite and Ũ0 will be chosen later.

Let r ≤ n be the cardinality of the spectrum σ(A) := {α1, . . . , αr } of A, where
α j ∈ R. By the derivation of Wt , V = Q

∑r
j=1 Vj , where Q is the invertible matrix

diagonalizing A and QVj is the image of V in the range of the eigenprojection of α j

for j ∈ {1, . . . , r}. Moreover, let Λ := Q−1AQ = diag (a1, . . . , an) where a j ∈ R,
then the system (1) in the diagonal coordinate v := Q−1u becomes

∂t v + Λ∂xv + Q−1BQv = 0, v(x, 0) = Q−1u0(x). (9)

For j ∈ {1, . . . , r}, one sets S j := {i ∈ {1, . . . , n} : ai = α j } and the projection
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(
Π

(0)
j

)
hk

:=
{
1 if h = k ∈ S j ,

0 if otherwise.
(10)

Then, Vj satisfies the following system, with respect to Ṽ ∈ R
n , obtained by pro-

jecting the system (9) onto ran(Π(0)
j ); i.e., Vj satisfies the equation

∂t Ṽ + α j∂x Ṽ + Π
(0)
j Q−1BQṼ = 0, Ṽ (x, 0) = Π

(0)
j Q−1u0(x). (11)

Theorem 1 (L p-Lq decay estimates). Let u be the solution to (1), if A, B, C, and
D hold, then for 1 ≤ q ≤ p ≤ ∞, there are C := C(p, q) > 0 and δ > 0 such that

‖u −U − V ‖L p ≤ C t−
1
2 ( 1

q − 1
p )− 1

2 ‖u0‖Lq , (12)

where ‖U‖L p ≤ Ct−
1
2 ( 1

q − 1
p )‖u0‖Lq and ‖V ‖L2 ≤ Ce−δt‖u0‖L2 , for t ≥ 1.

Furthermore, the Goldstein–Kac system (2) possesses a symmetry property that
allows us to increase the decay rate in the estimate (12). Thus, we are also interested
in the following assumptions on the system (1).

C’. [Reduced strictly hyperbolicity] C has m real distinct eigenvalues in ker(B).
S. [Symmetry] There is an invertible symmetric matrix S such that AS = −SA

and BS = SB.

Theorem 2 (Increased decay rates).With the same hypotheses in Theorem 1, ifC’
and S hold in addition, then for 1 ≤ q ≤ p ≤ ∞, there is C := C(p, q) > 0 and

‖u −U − V ‖L p ≤ C t−
1
2 ( 1

q − 1
p )−1‖u0‖Lq fort ≥ 1. (13)

2 Proofs of Main Results

The aim of this section is to give proofs of Theorems 1 and 2 by studying the Fourier
transform Ĝ of the solution G to (5), which satisfies

∂t Ĝ + E(iξ)Ĝ = 0, Ĝ(ξ, 0) = I, (14)

where E is given by (4) with κ := iξ for ξ ∈ R and I is the n × n identity matrix.

2.1 Spectral Analysis

Following [2], since E in (4) can be expanded asymptotically near some specific
points in the frequency domain, Ĝ(ξ, t) = e−E(iξ)t satisfying (14) can be expanded
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based on expansions of E . Thus, G(x, t) = F−1(Ĝ(ξ, t))(x) satisfying (5) can be
expanded and a time-asymptotic profile of G arises in the expansions of G. Hence,
this subsection is dealt with a study of asymptotic expansions of E . Precisely, we
consider the eigenvalue problem for E with low frequency as |ξ | → 0, high frequency
as |ξ | → +∞, and intermediate frequency as |ξ | far from 0,+∞.

As |ξ | → 0, since the eigenvalues of E(iξ) = B + iξ A converge to the eigenval-
ues of B, they are divided into distinct groups represented by the distinct eigenvalues
of B to which they converge. Without loss of generality, one considers the 0-group
of E , where the 0-group contains the eigenvalues converging to 0 as |ξ | → 0. Recall
Γ0 the oriented closed curve in the resolvent set ρ(B) of B such that it encloses 0
except for the other eigenvalues of B, then following [2], P0 := − 1

2π i

∫
Γ0

R(z, ·) dz
is the total projection of the 0-group of E ; i.e., P0 is the sum of the eigenprojections
of the elements of the group, where R(z, iξ) := (E(iξ) − z I )−1 is the resolvent of
E . Moreover, following [2], on the compact set Γ0, R is expanded as

R(z, iξ) = R(0)(z) + iξ R(1)(z) + (iξ)2R(2)(z) + O(|ξ |3), |ξ | → 0, (15)

where R(0)(z) := (B − z I )−1, R(1) := −R(0)AR(0) and R(2) := R(0)AR(0)AR(0).
Thus,

P0(iξ) = P (0)
0 + iξ P (1)

0 + (iξ)2P (2)
0 + O(|ξ |3), |ξ | → 0, (16)

where P ( j)
0 := − 1

2π i

∫
Γ0

R( j)(z) dz for j = 0, 1, 2. Noting that P (0)
0 is the eigenpro-

jection of the eigenvalue 0 of B. Moreover, one has E = EP0 + E(I − P0) corre-
sponding toCn = ran(P0) ⊕ ran(I − P0). Thus, the eigenvalues in the 0-group of E
are the eigenvalues of EP0 in ran(P0). Furthermore, if 0 is a semi-simple eigenvalue
of B, then one obtains from (4) and (16) that

E(iξ)P0(iξ) = (iξ)[C − iξD + (iξ)2H + O(|ξ |3)], |ξ | → 0, (17)

where C := P (0)
0 AP (0)

0 , D := −(P (1)
0 BP (1)

0 + P (0)
0 AP (1)

0 + P (1)
0 AP (0)

0 ) and

H := P (1)
0 BP (2)

0 + P (2)
0 BP (1)

0 + P (0)
0 AP (2)

0 + P (2)
0 AP (0)

0 + P (1)
0 AP (1)

0 . (18)

Hence, λ is an eigenvalue of EP0 in ran(P0) if and only if λ̃ := (iξ)−1λ is an eigen-
value of E0(iξ) := (iξ)−1E(iξ)P0(iξ) = C − iξD + O(|ξ |2) in ran(P0). There-
fore, the study of the 0-group of E is reduced to the study of the eigenvalue problem
for E0 in ran(P0), i.e., the reduction process introduced in [2].

Based on the formula of E0 and by the same argument as before, let c j ∈ σ(C),
where σ(C) is the spectrum of C , the total projection of the c j -group of E0 satisfies

Pj (iξ) = P (0)
j + iξ P (1)

j + O(|ξ |2), |ξ | → 0, (19)

where P (0)
j is the eigenprojection of c j for j ∈ {1, . . . , s} and s the cardinality of

σ(C). Nonetheless, since we reduced Cn to ran(P0), we consider only the c j -groups
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of E0 whose total projections are subprojections of P0, namely Pj Pj ′ = δ j j ′ Pj , P0 =∑s
j=1 Pj and ran(P0) = ⊕s

j=1 ran(Pj ), where δ j j ′ is the Kronecker delta. It follows
from [2] that we consider the c j belonging to the set

σ [C, ker(B)] := {the eigenvalues of C in ker(B)}. (20)

Moreover, one has E0 = ∑s
j=1 E0Pj corresponding to ran(P0) = ⊕s

j ran(Pj ). Thus,
if the semi-simplicity of the eigenvalues of C considered in ker(B) is given, then the
process can be continued by considering, in ran(Pj ), the operator

E j (iξ) := (iξ)−1(E0(iξ) − c j I )Pj (iξ) = −Dj + (iξ)Hj + O(|ξ |2), |ξ | → 0,
(21)

where Dj := P (0)
j DP (0)

j and

Hj := P (1)
j (C − c j I )P

(1)
j + P (0)

j DP (1)
j + P (1)

j DP (0)
j + P (0)

j H P (0)
j , (22)

where D and H are in (17), for j ∈ {1, . . . , s}. Thus, for each j ∈ {1, . . . , s}, let

σ [Dj , ker(C − c j I )|ker(B)] := {the eigenvalues of Dj in

ker(C − c j I )restricted to ker(B)}. (23)

If d jk ∈ σ [Dj , ker(C − c j I )|ker(B)] for k ∈ {1, . . . , s j } and s j the cardinality of
σ [Dj , ker(C − c j I )|ker(B)], the total projection of the d jk-group of E j satisfies

Pjk(iξ) = P (0)
jk + iξ P (1)

jk + O(|ξ |2), |ξ | → 0, (24)

where P (0)
jk is the eigenprojection of d jk . Moreover, Pjk are subprojections of Pj .

Recall E in (4), σ [C, ker(B)] in (20), and σ [Dj , ker(C − c j I )|ker(B)] in (23).

Proposition 1 (Low frequency). If B and C hold, then for small |ξ |, we have

E(iξ) =
s,s j∑
j,k=1

[
(ic jξ + d jkξ

2)I + ξ 2N (0)
jk + O(|ξ |3)][P (0)

jk + iξ P (1)
jk + O(|ξ |2)]

+
h∑
j=1

[
b j I + M (0)

j + O(|ξ |)][F (0)
j + O(|ξ |)], (25)

where c j ∈ σ [C, ker(B)], d jk ∈ σ [Dj , ker(C − c j I )|ker(B)], P (�)
jk for � = 0, 1 are

in (24) and N (0)
jk is the nilpotent matrix associated with d jk for j ∈ {1, . . . , s} and

k ∈ {1, . . . , s j }; b j ∈ σ(B)\{0}, where σ(B) is the spectrum of B, F (0)
j and M (0)

j
are the eigenprojection and the nilpotent matrix associated with b j , respectively, for
j ∈ {1, . . . , h} and h is the cardinality of σ(B)\{0}. If D holds, Re (d jk) > 0 for all
j and k. Additionally, if C’ and S hold, O(|ξ |3) is increased to O(|ξ |4).
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Proof. The expansion of E is obtained by the reduction process introduced as before
under assumptions B and C.

We prove Re (d jk) > 0 if D holds for j ∈ {1, . . . , s} and k ∈ {1, . . . , s j }. From
(25), the representation of E in ran(Pjk) is E jk(iξ) := ic jξ I + ξ 2[d jk I + N (0)

jk +
O(|ξ |)], where c j ∈ σ [C, ker(B)], d jk ∈ σ [Dj , ker(C − c j I )|ker(B)], N (0)

jk is the
nilpotent matrix associated with d jk and Pjk is in (24). Thus, the eigenvalues of E in
ran(Pjk) are λ = ic jξ + ξ 2λ̃ where λ̃ are the eigenvalues of d jk I + N (0)

jk + O(|ξ |).
Moreover, since N (0)

jk is nilpotent, λ̃ → d jk as |ξ | → 0; i.e., λ̃ = d jk + O (1). Further-
more, by the construction of Pjk , the total projection P0 in (16) of the 0-group of E
satisfies P0 = ∑s,s j

j,k=1 Pjk . Thus, the 0-group of E includes the eigenvalues of E jk in
ran(Pjk) for all j and k, namely the eigenvalues λ jk(iξ) = ic jξ + ξ 2[d jk + O (1)].
Thus, since c j ∈ R under assumption C, if D holds, for 0 < |ξ | < ε, there is θ > 0
such that

θ |ξ |2/(1 + |ξ |2) ≤ Re [λ jk(iξ)] = Re [ic j ξ + d jkξ
2 + O(|ξ |2)] ≤ Re (d jk)|ξ |2 + ε|ξ |2.

Dividing by |ξ |2 in both sides and letting ε → 0, one has Re (d jk) ≥ θ > 0.
Moreover, if C’ holds, c j ∈ σ [C, ker(B)] is simple for all j ∈ {1, . . . , s}. Hence,

d jk ∈ σ [Dj , ker(C − c j I )|ker(B)] is simple for all k ∈ {1, . . . , s j } since they are con-
sidered in ran(P (0)

j ), where P (0)
j is the eigenprojection of c j for j ∈ {1, . . . , s}. Thus,

the reduction process is continued, and following [2], the eigenvalues in the 0-group
of E are approximated analytically by

λ jk�(iξ) := ic jξ − d jk(iξ)2 + e jk�(iξ)3 + O(|ξ |4), |ξ | → 0,

where c j ∈ σ [C, ker(B)], d jk ∈ σ [Dj , ker(C − c j I )|ker(B)] and e jk� are the �th
eigenvalue of K := P (0)

jk Hj P
(0)
jk in ran(P (0)

jk ) where Hj is given by (22) and P (0)
jk

in (24) is the eigenprojection of d jk . On the other hand, S implies that the spectra
of E(κ) and E∗(κ) := E(−κ) are the same for κ ∈ C. Moreover, it follows from
the reduction process for E∗ that e jk� are also the eigenvalues of −K in ran(P (0)

jk ).

Hence, since d jk are simple, dim ran(P (0)
jk ) = 1 and thus � = 1 and e jk� = 0. It also

implies that the leading coefficients K + N (0)
jk P (1)

jk + P (1)
jk N (0)

jk associated with (iξ)3

in O(|ξ |3) are the null matrices, where P (1)
jk is in the expansion (24) and N (0)

jk is the
nilpotent matrix associated with d jk . Hence, O(|ξ |3) is increased to O(|ξ |4). The
proof is done.

For high frequency, recall Λ = Q−1AQ where Q is the matrix diagonalizing A.
E in (4) is written as E(ζ ) = ζ−1QT (ζ )Q−1 where T (ζ ) := Λ + ζQ−1BQ and
ζ = (iξ)−1. Moreover, |ζ | → 0 as |ξ | → +∞ and the eigenvalue problem for E can
be treated as before.

Proposition 2 (High frequency). If A holds, then for large |ξ |, we have
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E(iξ) = Q
r,r j∑
j,k=1

[
(iα jξ + β jk)I + Θ

(0)
jk + O(|ξ |−1)

][
Π

(0)
jk + O(|ξ |−1)

]
Q−1, (26)

where α j ∈ σ(Λ), where σ(Λ) is the spectrum of Λ, and Π
(0)
j is in (10), β jk is

the kth eigenvalue of Π
(0)
j Q−1BQΠ

(0)
j in ker(Λ − α j I ), Π

(0)
jk and Θ

(0)
jk are the

eigenprojection and the nilpotent matrix associated with β jk , respectively, for k ∈
{1, . . . , r j } with r j the cardinality of the set of β jk and j ∈ {1, . . . , r} with r the
cardinality of the spectrum of A. Additionally, if D holds, then Re(β jk) > 0 for all j
and k.

Proof. Similarly to before, one considers the reduction process for T and one deduces
the expansion of E by substituting ζ = (iξ)−1 into E(ζ ) = ζ−1Q−1T (ζ )Q. On the
other hand, the eigenvalues of E are λ jk(iξ) = iα jξ + β jk + O (1) as |ξ | → +∞.
Thus, since α j ∈ R under A, if D holds, for |ξ |−1 < ε, there is θ > 0 such that
θ |ξ |2/(1 + |ξ |2) ≤ Re (β jk) + ε. As ε → 0, Re (β jk) ≥ θ > 0. The proof is done.

Remark 1. (Intermediate frequency). For ε ≤ |ξ | ≤ R, except a finite number of
exceptional points, the operator E in (4) has p (independent from ξ ) distinct holomor-
phic eigenvalues together with p holomorphic eigenprojections and p holomorphic
eigennilpotents associated with them. A more detailed discussion is in [2].

Let P (0)
jk and P (1)

jk be in the expansion (24). The initial data for (8) are chosen as

Ũ (x, 0) := P (0)
jk u0(x), (27)

Ũ (x, 0) := P (0)
jk u0(x) + P (1)

jk ∂xu0(x). (28)

The choice (27) is for Theorem 1, and the choice (28) is for Theorem 2.

2.2 Fundamental Solution

We primarily introduce a useful lemma for which a proof can be found in [1].

Lemma 1. If N is a constant complex nilpotent matrix, then for ε′ > 0, there is C :=
C(ε′) > 0 such that |eαN+M − eαN | ≤ Ceε′ |α|+C |M ||M | for every complex constant
α := α(t) and matrix M := M(t) for t > 0.

Considering the coefficients introduced in Propositions 1 and 2, let

K̂ (ξ, t) :=
s,s j∑
j,k=1

e−(ic j ξ+d jkξ
2)t e−ξ 2t N (0)

jk P (0)
jk ,
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K̂ ∗(ξ, t) :=
s,s j∑
j,k=1

e−(ic j ξ+d jkξ
2)t e−ξ 2t N (0)

jk
(
P (0)
jk + iξ P (1)

jk

)

and one also sets Ŵ (ξ, t) := Q
∑r,r j

j,k=1 e
−(iα j ξ+β jk )t e−Θ

(0)
jk tΠ

(0)
jk Q−1.

Recall the solution Ĝ to the system (14), we have the following estimates.

Proposition 3 (Fundamental solution estimates). Let 0 < ε < R, r ∈ [1,∞] and
t ≥ 1, if A, B, C, and D hold, there are C := C(r) > 0 and δ > 0 such that
1. For |ξ | < ε, we have

‖Ĝ − K̂‖Lr ≤ Ct−
1
2
1
r − 1

2 and ‖Ŵ‖Lr ≤ Ce−δt . (29)

In addition, if C’ and S hold, then

‖Ĝ − K̂ ∗‖Lr ≤ Ct−
1
2
1
r −1. (30)

2. For ε ≤ |ξ | ≤ R, we have

‖Ĝ‖Lr , ‖K̂‖Lr , ‖K̂ ∗‖Lr , ‖Ŵ‖Lr ≤ Ce−δt . (31)

3. For |ξ | > R, we have

‖Ĝ − Ŵ‖Lr ≤ Ce−δt for r > 1 and ‖K̂‖Lr , ‖K̂ ∗‖Lr ≤ Ce−δt . (32)

In particular, one has
‖F−1(Ĝ − Ŵ )‖L∞ ≤ Ce−δt . (33)

Proof. Noting that if {Φ jk} is a sequence of projections satisfying that Φ jkΦ j ′k ′ =
δ j j ′δkk ′Φ jk for j, j ′ ∈ {1, . . . ,m} and k, k ′ ∈ {1, . . . , n} for some integers m, n ≥ 1,
where δ j j ′ is the Kronecker delta, and

∑m,n
j,k=1 Φ jk = I the identity matrix, then

if X = ∑m,n
j,k=1 X jkΦ jk , where X jk commutes with Φ jk , one can prove that eX =∑m,n

j,k=1 e
X jkΦ jk since eX = ∑+∞

�=0(X)�/�! and (X)� = ∑m,n
j,k=1(X jk)

�Φ jk for any � ≥
0.

For |ξ | < ε, if B and C hold, then from Proposition 1, the expansion (25) of
E(iξ) = B + iξ A and the sequence including Pjk in (24) for j ∈ {1, . . . , s} and
k ∈ {1, . . . , s j } and Fj for j ∈ {1, . . . , h}, where Fj (iξ) := F (0)

j + O(|ξ |), satisfy
the above properties of X and Φ jk respectively. Hence, since the solution to (14) is
Ĝ(ξ, t) = e−E(iξ)t , one obtains from (25) that Ĝ(ξ, t) = Ĝ1 + Ĝ2, where
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Ĝ1(ξ, t) :=
s,s j∑
j,k=1

e−(ic j ξ+d jkξ
2)t e−ξ 2t N (0)

jk +O (|ξ |3)t[P (0)
jk + O(|ξ |)], (34)

Ĝ2(ξ, t) :=
h∑
j=1

e−b j t e−M (0)
j t+O (|ξ |)t[F (0)

j + O(|ξ |)]. (35)

Furthermore, if, in addition,C’ andS hold, fromProposition 1, for j ∈ {1, . . . , s} and
k ∈ {1, . . . , s j }, the representation of E in ran(Pjk) is (ic jξ + d jkξ

2)I + ξ 2N (0)
jk +

O(|ξ |4). Thus, if, in addition, C’ and S hold, we have

Ĝ1(ξ, t) :=
s,s j∑
j,k=1

e−(ic j ξ+d jkξ
2)t e−ξ 2t N (0)

jk +O (|ξ |4)t[P (0)
jk + iξ P (1)

jk + O(|ξ |2)]. (36)

Noting that if X is an n × n nilpotent matrix, there is an integer m ≤ n such that
eX = ∑m

�=1[(� − 1)!]−1X �−1. In particular, if X is a nilpotent matrix associated with
an eigenvalue, then m is exactly the algebraic multiplicity of this eigenvalue. Thus,
from here, we always have such a sum of X if X is a nilpotent matrix.

Then, by Proposition 1, ifD holds, since Re (d jk) > 0 and N (0)
jk is nilpotent for all

j and k, by applying Lemma 1, if m jk ≥ 1 is the algebraic multiplicity of d jk then

|Ĝ1 − K̂ | ≤ C
s,s j∑
j,k=1

e− 1
2 Re(d jk )|ξ |2t |ξ |3t + C

s,s j ,m jk∑
j,k,�=1

e− 1
2 Re(d jk )|ξ |2t (|ξ |2t)�−1|ξ |.

Similarly, if C’, S, and D hold, one has

|Ĝ1 − K̂ ∗| ≤ C
s,s j∑
j,k=1

e− 1
2 Re(d jk )|ξ |2t |ξ |4t + C

s,s j ,m jk∑
j,k,�=1

e− 1
2 Re(d jk )|ξ |2t (|ξ |2t)�−1|ξ |2.

Moreover, by Proposition 1, since Re (b j ) > 0 and M (0)
j is nilpotent for all j , by

Lemma 1, there is C > 0 such that |Ĝ2| ≤ C
∑h

j=1 e
− 1

2 Re (b j )t (|ξ | + ∑m j

�=1 t
�−1),

where m j ≥ 1 is the algebraic multiplicity associated with b j for all j .
On the other hand, by changing of variables, for c, γ > 0, and δ ≥ 0, one has

∥∥|ξ |γ t δe−c|ξ |2t∥∥
Lr ≤ C(r)t−

1
2
1
r − γ

2 +δ for r ∈ [1,∞] and t ≥ 1.

Thus, ifB,C, andD hold, ‖Ĝ − K̂‖Lr ≤ ‖Ĝ1 − K̂‖Lr + ‖Ĝ2‖Lr ≤ Ct−1/2r−1/2; and
similarly ifB,C’, S, andD hold, ‖Ĝ − K̂ ∗‖Lr ≤ Ct−1/2r−1 for r ∈ [1,∞] and t ≥ 1.

Moreover, by Proposition 2, if A and D hold, Re (β jk) > 0 and Θ
(0)
jk is nilpotent

for all j and k. Thus, there are C > 0 and δ > 0 such that we have
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|Ŵ | ≤ C
r,r j ,n jk∑
j,k,�=1

e−Re (β jk )t t�−1 ≤ Ce−δt , (37)

where n jk ≥ 1 is the algebraic multiplicity associated with β jk for all j and k, and
thus, ‖Ŵ‖Lr ≤ Ce−δt for |ξ | < ε, r ∈ [1,∞] and t ≥ 1.

For ε ≤ |ξ | ≤ R, by Remark 1, if D holds, there are C > 0 and δ > 0 such that

‖Ĝ‖Lr ≤ ∥∥e−θ |ξ |2t/(1+|ξ |2)∥∥
Lr ≤ Ce−δt for r ∈ [1,∞] and t ≥ 1.

Moreover, for ε ≤ |ξ | ≤ R, the following hold

‖K̂‖Lr , ‖K̂ ∗‖Lr ≤ C
s,s j ,m jk∑
j,k,�=1

e−Re(d jk )ε
2t t�−1 ≤ Ce−δt for r ∈ [1,∞] and t ≥ 1.

Furthermore, (37) implies ‖Ŵ‖Lr ≤ Ce−δt for ε ≤ |ξ | ≤ R, r ∈ [1,∞] and t ≥ 1.
Following Proposition 2, for |ξ | > R large, from (26), the solution to (14) is

Ĝ(ξ, t) := Q
r,r j∑
j,k=1

e−(iα j ξ+β jk )t e−Θ
(0)
jk t+O (|ξ |−1)t[Π(0)

jk + O(|ξ |−1)
]
Q−1. (38)

Thus, since Re (β jk) > 0 and Θ
(0)
jk is nilpotent for all j and k due to Proposition 2,

by applying Lemma 1, one has |Ĝ − Ŵ | ≤ C
∑r,r j

j,k=1 e
− 1

2 Re(β jk )t |ξ |−1t . Hence, for

r > 1 and t ≥ 1, we have ‖Ĝ − Ŵ‖Lr ≤ Ce−δt for a δ > 0. We are also interested
in the behavior of K̂ and K̂ ∗ for |ξ | large. In fact, since |ξ | > R for R large, there is
δ > 0 such that for r ∈ [1,∞] and t ≥ 1, one has

‖K̂‖Lr , ‖K̂ ∗‖Lr ≤ C
s,s j ,m jk∑
j,k,�=1

e− 1
2 Re(d jk )R2t

∥∥e− 1
2 Re(d jk )|ξ |2t (|ξ |2t)�−1

∥∥
Lr ≤ Ce−δt .

Finally, by applying the Taylor expansion for X �→ eX , we can decompose

Ĝ − Ŵ = Q

r,r j ,n jk∑
j,k,�=1

e−iα j ξ t

iξ

e−β jk t

(� − 1)!
(−Θ

(0)
jk t

)�−1MΠ
(0)
jk Q−1 + e−(iα j ξ+β jk )t H(|ξ |−2),

where M is the leading coefficient matrix with respect to the term (iξ)−1 inO(|ξ |−1)

and by Lemma 1, for ε′ > 0, H(|ξ |−2) satisfies |H(|ξ |−2)| ≤ C(ε′)eε′t+C(ε′)|ξ |−1t (1 +
t)|ξ |−2. Taking the inverse Fourier transform, one obtains
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‖F−1(Ĝ − Ŵ )‖L∞ ≤ C
r,r j ,n jk∑
j,k,�=1

e−Re(β jk )t t�−1‖F−1[e−iα j xi t (iξ)−1]‖L∞

+ ‖F−1[e−iα j ξ t−β jk t H(|ξ |−2)]‖L∞ .

On the other hand, since ω(x, t) := F−1[e−iα j ξ t (iξ)−1] is a solution to the wave
equation ∂2

t tω − ∂2
xxω = 0, it implies ‖F−1[e−iα j ξ t (iξ)−1]‖L∞ is bounded. Further-

more, by choosing ε′ = Re (β jk)/4, since |ξ |−1 < ε, we have

‖F−1[e−iα j ξ t−β jk t H(|ξ |−2)]‖L∞ ≤ C
r,r j∑
j,k=1

e−Re(β jk )t‖H(|ξ |−2)‖L1 .

Hence, there is δ > 0 such that ‖F−1(Ĝ − Ŵ )‖L∞ ≤ Ce−δt for all t ≥ 1.

2.3 Multiplier Estimates

One has the following estimates.

Proposition 4. If A, B, C, and D hold, then for t ≥ 1, one has

‖F−1(Ĝ − K̂ − Ŵ )‖L1 ≤ Ct−
1
2 . (39)

If, in addition, C’ and S hold, one has

‖F−1(Ĝ − K̂ ∗ − Ŵ )‖L1 ≤ Ct−1. (40)

Proof. Let χ1,3 be cut-off functions defined on |ξ | ≤ ε and |ξ | ≥ R, respectively,
one sets χ2 := 1 − χ1 − χ3. We begin with the case |x | ≤ Ct for a C > 0.

For |ξ | ≤ ε, one has Ĝ − K̂ = Ĝ1 − K̂ + Ĝ2, where Ĝ1 and Ĝ2 are given by (34)
and (35), respectively. On the other hand, Ĝ1 − K̂ = I1 + I2, where

I1 :=
s,s j∑
j,k=1

e(−ic j ξ−d jkξ
2)t

[
e−N (0)

jk ξ 2t+O (|ξ |3)t − e−N (0)
jk ξ 2t]P (0)

jk ,

I2 :=
s,s j∑
j,k=1

e(−ic j ξ−d jkξ
2)t e−N (0)

jk ξ 2t+O (|ξ |3)tO(|ξ |).

We primarily estimate F−1(χ1 I1). For each j and each k, let z = eiφ/2ξ where
φ = arg (d jk) ∈ (−π/2, π/2) since Re (d jk) > 0, one obtains
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F−1(χ1 I1)(x, t) =
s,s j∑
j,k=1

∫
γ

χ1(e
−iφ/2z)ei(x−c j t)e−iφ/2z−|d jk |z2t

· (
e−N (0)

jk e
−iφ z2t+O (|e−iφ/2z|3)t − e−N (0)

jk e
−iφ z2t)P (0)

jk e
−iφ/2dz,

where γ := {z ∈ C : z = eiφ/2ξ, ξ ∈ [−ε, ε]}.
Then, we estimate each summand by letting η := min

{|x − c j t |/2|d jk |t, ε/2
}
.

Since the integrand is holomorphic, we can change γ to γ̃ := γ1 ∪ γ2 ∪ γ3, where

γ1 := {−εeiφ/2 + isgn(x − c j t)ηe
−iφ/2s : s ∈ [0, 1]},

γ2 := {ζeiφ/2 + isgn(x − c j t)ηe
−iφ/2 : ζ ∈ [−ε, ε]}

and γ3 := {εeiφ/2 + isgn(x − c j t)ηe−iφ/2(1 − s) : s ∈ [0, 1]}. Then, there is δ > 0
such that for t ≥ 1 and ε′ = |d jk | cos(φ)/8, by Lemma 1, we have

∣∣∣∫
γ1

∣∣∣ ≤ C
∫ 1

0
e−|x−c j t |η cos(φ)se−|d jk | cos(φ)(ε2−η2s2)t e2ε

′ε2tε4tds ≤ Ce−δt .

Similarly,
∣∣∫

γ3

∣∣ ≤ Ce−δt and if η = |x − c j t |/(2|d jk |t), there is c > 0 such that

∣∣∣∫
γ2

∣∣∣ ≤ C
3∑

�=0

e−|x−c j t |2 cos(φ)/8|d jk |t (|x − c j t |/
√
t)�

∫ ε

−ε

e− 1
2 |d jk | cos(φ)ζ 2t |ζ |3−�t1−

�
2 dζ

≤ Ct−1e−|x−c j t |2/c|d jk |t ,

and if η = ε/2, then for t ≥ 1 and ε′ = |d jk | cos(φ)/16, there is δ > 0 such that

∣∣∣∫
γ2

∣∣∣ ≤ C
∫ ε

−ε

e−|x−c j t |η cos(φ)e−|d jk | cos(φ)(ζ 2−η2)t e2ε
′ε2tε3tdζ ≤ Ce−δt .

On the other hand, since |x | ≤ Ct , e−δt is absorbed by t−1e−|x−c j t |2/c|d jk |t and it fol-
lows that ‖F−1(χ1 I1)‖L1 ≤ Ct−1/2 for t ≥ 1. Similarly, ‖F−1(χ1 I2)‖L1 ≤ Ct−1/2.
Thus ‖F−1[χ1(Ĝ − K̂ )]‖L1 ≤ Ct−1/2.

Moreover, since F−1 : L1 → L∞, all remaining terms are bounded by e−δt by
Proposition 3 and thus are absorbed by t−1e−|x−c j t |2/c|d jk |t except for F−1[χ3(Ĝ −
Ŵ )]. Hence, we estimateF−1

[
χ3(Ĝ − Ŵ )

]
. For |ξ | ≥ R, Ĝ − Ŵ = J1 + J2, where

J1 := Q
r,r j ,n jk∑
j,k,�=1

e−iα j ξ t

iξ

e−β jk t

(� − 1)!
(−Θ

(0)
jk t

)�−1
MΠ

(0)
jk Q−1,
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where M is the leading coefficient matrix with respect to the term (iξ)−1 inO(|ξ |−1)

and for all ε′ > 0, one has J2 := ∑r,r j
j,k=1 e

−(iα j ξ+β jk )t H(|ξ |−2), where H(|ξ |−2) sat-

isfies |H(|ξ |−2)| ≤ C(ε′)eε′t+C(ε′)|ξ |−1t (1 + t)|ξ |−2.
For t ≥ 1, since |F−1[e−iα j ξ t (iξ)−1]| ≤ C |x − α j t | for all j , we have

|F−1(χ3 J1)(x, t)| ≤ C
r∑
j=1

te−δt |x − α j t | + Ce−δt ≤ Ct−1e−|x−c j t |2/c|d jk |t .

Moreover, one has |F−1(χ3 J2)(x, t)| ≤ ‖J2‖L1 ≤ Ce−δt ≤ Ct−1e−|x−c j t |2/c|d jk |t .
Thus,

‖F−1[χ3(Ĝ − Ŵ )]‖L1 ≤ ‖F−1(χ3 J1)‖L1 + ‖F−1(χ3 J2)‖L1 ≤ Ct−
1
2 .

The proof is done for (39), where |x | ≤ Ct for aC > 0. By similar computations,
we can also prove (40), where |x | ≤ Ct for a C > 0 if C’ and S hold in addition,
where t−1e−|x−c j t |2/c|d jk |t is substituted by t−3/2e−|x−c j t |2/c|d jk |t .

We consider the case |x | > Ct for C > 0. We estimate the L1-norm ofF−1(Ĝ −
Ŵ ) if A and D hold. The other estimates are similar. We have

F−1(Ĝ − Ŵ )(x, t) = lim
R→+∞

∫ R

−R
eixξ

(
Ĝ(ξ, t) − Ŵ (ξ, t)

)
dξ. (41)

On the other hand, since E(iξ) = B + iξ A, Ĝ(ξ, t) = e−E(iξ)t is an entire
function. Moreover, Ŵ is also holomorphic; by considering ξ = ζ + iη ∈ C,
one changes the path of the integral in (41) from {(ζ, 0) : ζ from − R to R} to
γ := γ1 ∪ γ2 ∪ γ3, where γ1 := {(ζ, η) : ζ = −R, η from 0 to x/t} , γ2 :=
{(ζ, η) : ζ from − R to R, η = x/t} and γ3 := {(ζ, η) : ζ = R, η from x/t to 0}.
Then, since R and |x |/t are large, along γ , Ĝ has the representation of the high
frequency case (38), and thus, one has the estimate

|F−1(Ĝ − Ŵ )(x, t)| ≤ Ce−|x |2/ct ≤ Ct−1e−|x |2/2ct ,

for some c,C > 0 since e−|x |2/2ct ≤ e−C2/2ct ≤ t−1 due to the fact that |x | > Ct for
C large enough. Hence, we obtain ‖F−1(Ĝ − Ŵ )‖L1 ≤ Ct−1, and the proof is done.

2.4 Proofs of Theorems 1 and 2

IfA,B,C, andD hold, we have u −U − V = F−1(Ĝ − K̂ − Ŵ ) ∗ u0. On the other
hand, let χ be the characteristic function, we have
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F−1(Ĝ − K̂ − Ŵ ) = F−1[(Ĝ − K̂ − Ŵ )(χ[0,ε) + χ[ε,R])(|ξ |)]
+ F−1[(Ĝ − Ŵ )χ(R,∞)(|ξ |)] − F−1[K̂χ(R,∞)(|ξ |)].

Thus, since F−1 : L1 → L∞, we have

‖F−1(Ĝ − K̂ − Ŵ )‖L∞ ≤ ‖(Ĝ − K̂ − Ŵ )(χ[0,ε) + χ[ε,R])‖L1

+ ‖K̂χ(R,∞)‖L1 + ‖F−1[(Ĝ − Ŵ )χ(R,∞)(|ξ |)]‖L∞ .

By (29), (31), (32), and (33) in Proposition 3 and the Young inequality, we obtain

‖u −U − V ‖L∞ ≤ ‖F−1(Ĝ − K̂ − Ŵ )‖L∞‖u0‖L1 ≤ Ct−1‖u0‖L1 , t ≥ 1.

Furthermore, by (39) in Proposition 4 and the Young inequality, one has

‖u −U − V ‖Lr ≤ ‖F−1(Ĝ − K̂ − Ŵ )‖L1‖u0‖Lr ≤ Ct− 1
2 ‖u0‖Lr , r ∈ [1, ∞], t ≥ 1.

Therefore, by interpolation, we obtain (12) in Theorem 1.
Similarly, if C’ and S hold in addition, then substituting K̂ by K̂ ∗ and using (30),

(31), (32), and (33) in Proposition 3 and (40) in Proposition 4, we obtain (13) in
Theorem 2. We finish the proofs.
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A Numerical Approach of Friedrichs’
Systems Under Constraints in Bounded
Domains

Clément Mifsud and Bruno Després

Abstract We present here an explicit finite volume scheme on unstructured meshes
adapted to first-order hyperbolic systems under constraints in bounded domains. This
scheme is based on the work (Coudière, Vila, Villedieu in C R Acad Sci Paris Sér I
Math 331:95–100, 2000, [3]) in the unconstrained case and the splitting strategy of
Després, Lagoutière, Seguin (Nonlinearity 24:3055–3081, 2011, [4]). We show that
this scheme is stable under a Courant–Friedrichs–Lewy condition (and convergent
for problems posed in the whole space), and we illustrate the solution constructed
by this scheme on the example of the simplified model of perfect plasticity. From
the theoretical point of view, the interaction between the constraint and the boundary
of the domain in the model of perfect plasticity is encoded by a nonlinear boundary
condition. With this numerical approach, we will show that, even if this scheme uses
the underlying linear boundary condition, the results are consistent with the nonlinear
model (and in particular with the nonlinear boundary condition).

Keywords Finite volume schemes · Friedrichs’ systems · Constrained problems
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1 Introduction

The aim of this article is to examine the numerical approximation of Friedrichs’
equations under constraints (posed in the whole space or in bounded domains).
To do so, we use a popular method for hyperbolic problems: the method of finite
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volumes (for a detailed presentation of this method, we refer to [5, 6]). Although
there is an important number of schemes that have been developed, the analysis of the
convergence and its rate of schemes on unstructured meshes for multidimensional
problems (i.e., the domain is a subset of Rn with n > 1, and the solution belongs to
R

m with m > 1) are still in its infancy.
However, the article [9] has established a rate of convergence for the RKDG

scheme (see [2]), using P0 finite elements in space and the RK1 scheme in time, on
unstructured meshes for generic Friedrichs’ systems of the following form

{
∂tU +∑n

j=1 ∂ j (AiU ) + BU = f, in (0, T ) × R
n,

U (0, x) = U0(x), in Rn,
(1)

where U : (t, x) ∈ (0, T ) × R
n → R

m , Ai : (t, x) ∈ (0, T ) × R
n → M

m×m
sym , B :

(t, x) ∈ (0, T ) × R
n → M

m×m , f : (t, x) ∈ (0, T ) × R
n → R

m and M
m×m (resp.

M
m×m
sym ) is the space of m × m (resp. symmetric) matrices with real coefficients. A

similar analysis has been performed in the note [3] on bounded domains.
In addition, the study of the convergence of a scheme based on the Rusanov

scheme on Cartesian meshes has been performed in [4] for constrained Friedrichs’
systems. In fact, to show the existence of aweak solution (in the sense ofDefinition 1)
to the constrained Friedrichs’ system

{
∂tU +∑n

j=1 A j∂ jU = 0 in (0, T ] × R
n; U (0, x) = U 0(x) if x ∈ R

n,

U (t, x) ∈ C if (t, x) ∈ [0, T ] × R
n,

(2)

whereC is a fixed closed and convex subset ofRm (with 0 ∈ ◦
C ), the authors construct

a numerical solution with a two-step scheme such that a subsequence converges to
a weak solution of (2). In this paper, we extend the strategy of [4] to schemes on
unstructured meshes and to problems posed in bounded domains.

In Sect. 2, we recall some notations and define our finite volume scheme on
unstructured meshes for constrained Friedrichs’ systems in bounded domains.

In Sect. 3, we recall some results of [4] on constrained Friedrichs’ systems in the
whole space and state a convergence result in the whole space on a similar scheme (to
the one presented in Sect. 2 on bounded domains). This result tells us that the finite
volume scheme on unstructured meshes, based on the work [9], associated with a
projection step has the same rate of convergence (in the space L2((0, T ) × R

n;Rm))
as in the unconstrained case (obtained in [9]).

In Sect. 4, we show that the scheme presented in Sect. 2 is stable (under a Courant–
Friedrichs–Lewy condition) in the space L∞(0, T ; L2(Ω,Rm)).

Then in Sect. 5, we briefly recall the equations of the simplified model of the
dynamical perfect plasticity problem (described in [1]) and how this problem is
related to the constrained Friedrichs’ systems.

Finally, in Sect. 6, we illustrate the solution constructed by this scheme on the
example of the simplified model of the dynamical perfect plasticity problem and
show that the interaction between the constraint and the boundary condition that



A Numerical Approach of Friedrichs’ Systems … 323

Fig. 1 An unstructured
meshes of the square
[0, 1] × [0, 1]. Here the
polytopes are triangles

has been underlined theoretically by the nonlinear boundary condition can also be
observed numerically.

2 Description of the Scheme

In this section, we present the general framework of this work and the scheme we are
interested in. Let Th be a triangulation of Ω ⊂ R

n (a n-dimensional polytope); i.e.,
Th = (Ki )i∈I , withI ⊂ N, is a family of open nonempty convex polytope such that
∪i∈I Ki = Ω , for all i �= j , Ki ∩ K j = ∅ and h = supi∈I (diamKi ) < +∞. The set
of edges of a polytope K is denoted EK . We introduce the following notations (see
also Fig. 1),

mK ,m∂K : L n-measure of K ,H n−1-measure ∂K ,

e ∈ EK : an edge ((n − 1)-dimensional polytope) of K with H n−1-measure me,

EK i,EK b : the set of interior edges e of K , the set of boundary edges e of K ,

νKe : the unit exterior normal of K on the edge e with νKe=(ν1Ke
, ν2Ke

, . . . , νnKe
),

Ke : neighboring cell of K with K ∩ Ke = e.

We also suppose that the triangulation is regular in the sense that there exists a
constant C1 > 0 (independent of the triangulation Th) such that

∀K ∈ Th, C1h
n ≤ mK , and ∀K ∈ Th, ∀e ∈ EK C1h

n−1 ≤ me.

We want to investigate the numerical approximation (using finite volume schemes)
of the following constrained Friedrichs system

{
∂tU +∑n

i=1 Ai∂iU = f, on (0, T ) × Ω; U (0, x) = U0(x), on Ω,

(Aν − Mν)U = 0, on (0, T ) × ∂Ω; U (t, x) ∈ C , a.e in (0, T ) × Ω
(3)
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where C ⊂ R
m is a closed convex (independent of t and x) with 0 ∈ ◦

C , Aν =∑n
i=1 Aiν

i with ν = (ν1, . . . , νn
)
is the unit exterior normal to Ω , and Mν is a non-

negative symmetric matrix that encodes the boundary condition and has to satisfy
some algebraic conditions (see [8, Sect. 2.1]).

Remark 1. In particular, due to the hypotheses on Aν and Mν , we have

1. For all k ∈ R
m , there exists a unique triple (k0, k−, k+) such that k = k0 + k− +

k+ and k0 ∈ ker Aν , k− ∈ (ker(Aν − Mν)) ∩ ImAν , and k+ ∈ (ker(Aν + Mν)) ∩
ImAν .

2. For all k, κ ∈ R
m , 〈k|Aνκ〉 = 〈k−|Aνκ−〉 + 〈k+|Aνκ+〉.

The equations of (3) have to be understood in a weak sense (see Definition 1 for
the case Ω = R

n and Sect. 5 for the general case). To approximate the solutions
of this kind of problem, we first forget about the constraint and use a finite volume
scheme (explicit in time) based on the note [3]. More precisely, we use a piecewise
constant approximation of U , denoted by Vh , such that

∀(t, x) ∈ [t p, t p+1) × K , Vh(t, x) = v
p
K , with v0

K = 1

mK

∫
K
U0(x) dx,

where 0 = t0 < t1 < · · · < t N+1 = T (t p+1 − t p = Δt), and in a first step, we con-
struct

mK

Δt

(
v
p+1,∗
K − v

p
K

)
+
∑
e∈EK

gKeme = f p
K := 1

mKΔt

∫ t p+1

t p

∫
K
f (t, x) dx dt,

where AKe =∑n
i=1 Aiν

i
Ke

and we define the interior fluxes (e ∩ ∂Ω = ∅),

gKe = (AKe)
+v

p
K︸ ︷︷ ︸

Outcoming flow from K to Ke

+ (AKe)
−v

p
Ke

,︸ ︷︷ ︸
Incoming flow in K from Ke

(4)

where we denote (AKe)
− (resp. (AKe)

+) the negative (resp. positive) part of AKe , and
the (centered) boundary fluxes,

gKe = AKe + MKe

2
v
p
K , (5)

with MKe = MνKe
a matrix satisfying the conditions of [8, Sect. 2.1] (see also

Remark 1). In order to take account of the constraint, we simplify project on each
cell K the value v

p+1,∗
K onto the set C . Hence, the second step is

v
p+1
K = PC

(
v
p+1,∗
K

)
.
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where PC is the projection onto C . It leads us to the following scheme for U0 ∈
L2(Rn;C ),

⎧⎪⎨
⎪⎩

∀K ∈ Th, v0
K = 1

mK

∫
K U0(x) dx,

∀K ∈ Th,∀0 ≤ p ≤ N , v
p+1,∗
K = v

p
K − Δt

mK

∑
e∈EK

gKeme + Δt f p
K ,

∀K ∈ Th,∀0 ≤ p ≤ N , v
p+1
K = PC

(
v
p+1,∗
K

)
.

(6)

Thanks to the following discrete Green formula

∑
e∈EK

AKeme = 0 ⇔
∑
e∈EK b

AKeme +
∑
e∈EK i

(AKe)
+me =

∑
e∈EK i

−(AKe)
−me, (7)

one can rewrite the first step of the scheme (6) in a nonconservative form

v
p+1,∗
K − v

p
K

Δt
=
∑
e∈EK i

me

mK
(AKe)

−(v
p
K − v

p
Ke

) −
∑
e∈EK b

me

mK

MKe − AKe

2
v
p
K + f p

K .

(8)

Remark 2. Wedenote by 〈;〉 the canonical scalar product ofRm and |.| the associated
norm. By abuse of notation, we also use the notation |.| for the (matrix) operator norm
associated with the canonical norm of Rm .

Remark 3. When Ω = R
n , one can use the scheme (6) to approximate the solution

of the problem (2). In that case, all the sums over EK b are empty sums.

3 Previous Results on Constrained Friedrichs’ Systems
in the Whole Space

The aim of this section is to recall the definition of weak solutions to Friedrichs’
systems under convex constraints in the whole space and to state some numerical
results about these systems. We consider the following Cauchy problem: find U :
[0, T ] × R

n → R
m such that

{
∂tU +∑n

j=1 A j∂ jU = 0 in (0, T ] × R
n; U (0, x) = U 0(x) if x ∈ R

n,

U (t, x) ∈ C if (t, x) ∈ [0, T ] × R
n,

(9)

where C is a fixed (i.e., independent of the time and space variables) nonempty
closed and convex subset of Rm containing 0 in its interior, the matrices A j are
m × m symmetric matrices independent of time and space, and T > 0. This type of
nonlinear hyperbolic problems has been introduced in [4] where a notion of weak
solutions to problem (9) has been defined.
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Definition 1. LetU 0 ∈ L2(Rn,C ) and T > 0. A functionU ∈ L2([0, T ] × R
n,C )

is aweak constrained solutionof (9) ifwehave for allκ ∈ C andφ ∈ C∞
c ([0, T [×R

n)

with φ ≥ 0,

∫ T

0

∫
Rn

(
|U − κ|2∂tφ +

n∑
j=1

〈
U − κ; A j (U − κ)

〉
∂ jφ
)
dx dt

+
∫
Rn

|U 0(x) − κ|2φ(0, x) dx ≥ 0.

(10)

We recall here the existence and uniqueness result of [4].

Theorem 1. Assume that U 0 ∈ L2(Rn,C ). There exists a unique weak constrained
solution U ∈ L2([0, T ] × R

n,C ) to (9) in the sense of Definition 1.

The existence of a solution has been obtained in [4] thanks to a finite volume
scheme on Cartesian grids. At each time step, the scheme first let the solution evolve
according to the Rusanov scheme without taking care about the constraint. Then, on
each mesh they project the solution onto the set of constraints.

Thanks to this splitting strategy and to a compactness argument (which relies on
the fact that the mesh is Cartesian), they show that the numerical solution admits a
convergent subsequence and they prove that the limit of this subsequence has to be
a solution of (9) in the sense of Definition 1.

In this paper, we use this splitting strategy for schemes defined on unstructured
meshes. One can show that the scheme (6) (see Remark 3) enjoys the same rate of
convergence as in the unconstrained case (for the complete proof, see [7]).

Theorem 2. Let U ∈ H 1((0, T ) × R
n;C ) be a dissipative solution associated with

the initial condition U0 ∈ H 1(Rn;C ). Let Vh be the solution constructed from U0

thanks to the scheme (6) (see Remark 3). Then we have,

‖U − Vh‖L2((0,T )×Rn;Rm ) ≤ C
√
h,

for some constant C depending on ε, n, T , U0 and the matrices Ai .

4 Stability in Time of Schemes

Once we know that the strategy of [4] combined with the scheme, analyzed in [9],
leads to a convergent scheme (on unstructured meshes) for constrained Friedrichs’
systems in (0, T ) × R

n , one can analyze this splitting strategy on bounded domains
(i.e., for Problem (3)). In this section, we prove that the scheme (6) enjoys a stability
property under a Courant–Friedrichs–Lewy condition. For simplicity, we decide to
derive this stability property in the case where the source term is null. In that case,
the L2(Rn)-norm of the solution does not increase in time.
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Proposition 1. Suppose that the following CFL condition holds:

max

(
sup

K ,e∈EK

Δtm∂K

mK

∣∣(AKe)
−∣∣ , sup

K ,e∈EK b

Δtm∂K

mK

∣∣(MKe − AKe)/2
∣∣
)

≤ 1, (11)

the scheme (6) is stable; i.e., the approximate solution Vh satisfies (here f ≡ 0)

∀t ∈ [0, T ], ‖Vh(t, ·)‖L2(Rn;Rm ) ≤ ‖U0‖L2(Rn;Rm ) .

Proof. From the nonconservative form (8), we have

v
p+1,∗
K =

∑
e∈EK

me

m∂K
v
p+1,∗
K (e),

where we set

v
p+1,∗
K (e) =

{
v
p
K + Δtm∂K

mK
(AKe)

−(v
p
K − v

p
Ke

), if e ∈ EK i,

v
p
K − Δtm∂K

mK

MKe−AKe
2 v

p
K , if e ∈ EK b.

Observe that we have for all e ∈ EK i, since (AKe)
− ∈ M

m×m
sym ,

|v p,∗
K (e)|2 = |v p

K |2 − Δtm∂K
mK

(− 〈v p
K ; (AKe)

−v
p
K

〉+ 〈v p
Ke

; (AKe)
−v

p
Ke

〉)
+Δtm∂K

mK

〈
v
p
K − v

p
Ke

;
(
Id + Δtm∂K

mK
(AKe)

−
)

(AKe)
−(v

p
K − v

p
Ke

)
〉

Using the CFL condition, we obtain that

∀y ∈ R
m,

〈(
Id + Δtm∂K

mK
(AKe)

−
)
y; y
〉

≥ 0. (12)

In particular, if we apply (12) to y = (−(AKe)
−)1/2 (v

p
K − v

p
Ke

), it yields

|v p,∗
K (e)|2 ≤ |v p

K |2 − Δtm∂K

mK

(− 〈v p
K ; (AKe)

−v
p
K

〉+ 〈v p
Ke

; (AKe)
−v

p
Ke

〉)
. (13)

Now, if e ∈ EK b, we have, again since AKe and MKe belong toMm×m
sym ,

|v p+1,∗
K (e)|2 = |v p

K |2 − Δtm∂K

mK

〈
v
p
K ; MKe − AKe

2
v
p
K

〉

−Δtm∂K

mK

〈
MKe − AKe

2

(
Id − Δtm∂K

mK

(
MKe − AKe

2

))
v
p
K ; v

p
K

〉
. (14)
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Similarly, the CFL condition (11) implies that for all y ∈ R
m , we have

〈
Id − Δtm∂K

mK

(
MKe − AKe

2

)
y; y
〉

≥ 0,

and algebraic manipulations (see Remark 1) tell us that

〈
MKe − AKe

2

(
Id − Δtm∂K

mK

(
MKe − AKe

2

))
v
p
K ; v

p
K

〉

=
〈(

Id − Δtm∂K

mK

(
MKe − AKe

2

))
M1/2

Ke
(v

p
K )+; M1/2

Ke
(v

p
K )+
〉

≥ 0,

which implies that (14) becomes

|v p+1,∗
K (e)|2 ≤ |v p

K |2 − Δtm∂K

mK

〈
v
p
K ; MKe − AKe

2
v
p
K

〉
.

Using convexity, it yields

|v p+1,∗
K |2 ≤ |v p

K |2 − Δt

mK

∑
e∈EK i

(− 〈v p
K ; (AKe)

−v
p
K

〉+ 〈v p
Ke

; (AKe)
−v

p
Ke

〉 )
me

− Δt

mK

∑
e∈EK b

〈
v
p
K ; MKe − AKe

2
v
p
K

〉
me.

Furthermore, if we use the relation (7), we obtain

|v p+1,∗
K |2 ≤ |v p

K |2 − Δt

mK

∑
e∈EK i

(〉
v
p
K ; (AKe)

+v
p
K

〉+ 〈v p
Ke

; (AKe)
−v

p
Ke

〉 )
me

− Δt

mK

∑
e∈EK b

〈
v
p
K ; AKe + MKe

2
v
p
K

〉
me.

(15)

Remark that, thanks to Remark 1, we have for all e ∈ EK b

〈
v
p
K ; AKe + MKe

2
v
p
K

〉
= 〈(v p

K )−; MKe(v
p
K )−
〉 ≥ 0.

Consequently, from (15) and since for all y ∈ R
m , |PC (y)| ≤ |y|, we obtain

|v p+1
K |2 ≤ |v p

K |2 − Δt

mK

∑
e∈EK i

(〈
v
p
K ; (AKe)

+v
p
K

〉+ 〈v p
Ke

; (AKe)
−v

p
Ke

〉)
me. (16)
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Then, we remark

∑
K∈T h

∑
e∈EK i

(〈
v
p
K ; (AKe)

+v
p
K

〉+ 〈v p
Ke

; (AKe)
−v

p
Ke

〉)
me = 0.

Consequently, summing the inequality (16) over K ∈ Th and from p = 0 to q − 1,
where t ∈ [0, T ] and q an integer such that t ∈ [tq , tq+1) (or q = N + 1 if t = T ),
leads to the stability property.

5 The Simplified Model of the Dynamical Perfect Plasticity

Let us briefly recall the equations of this model and the two points of view that one
can use to describe its (theoretical) solution. First, the equations, derived from the
physics of solids (see [1, Sects. 3.1 and 3.2]), of this simplified model of dynamical
perfect plasticity are

{
∂tv − divσ = f, ∇v = ∂tσ + ∂t p,
|σ | ≤ 1, and 〈σ ; ∂t p〉 = |∂t p|. (17)

where v : Ω × [0, T ] → R is the velocity of the material, σ : Ω × [0, T ] → R
2 the

Cauchy stress tensor, and p : Ω × [0, T ] → R
2 the plastic deformation tensor andΩ

is a open bounded subset ofR2. The tensor σ is constrained to stay in the unit closed
Euclidean ball of R2, denoted B. To these equations, we add initial and boundary
conditions. The boundary condition, that comes from the hyperbolic point of view,
is the following nonlinear one

〈σ ; ν〉 + T (v) = 0, on (0, T ) × ∂Ω, (18)

where T (z) = min(−1,max(z, 1)). It shows a threshold on the velocity (due to the
constraint) in the boundary condition. We also need an initial condition

(v, σ )(t = 0) = (v0, σ0) (19)

that has to satisfy two hypotheses

〈σ0; ν〉 + v0 = 0 H 1 on ∂Ω, (20)

|σ0| ≤ 1 a.e. in Ω. (21)

The first condition asserts that the initial condition has to satisfy the hyperbolic
boundary condition that one could use in the unconstrained case, and the second
condition states that the initial condition satisfies the constraint. In fact, one can
show (see [1, Proposition 7.1]) that the solution of this simplified model satisfies the
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following inequality for all (k, τ ) ∈ R × B and all ϕ ∈ W 1,∞(R × R
2) (with ϕ ≥ 0

and compactly supported in R × R
2)

∫ T

0

∫
Ω

(
(v − k)2 + |σ − τ |2) ∂tϕ dx dt +

∫
Ω

(
(v0 − k)2 + |σ0 − τ |2)ϕ(0) dx

− 2
∫ T

0

∫
Ω

(σ − τ) · ∇ϕ(v − k) dx dt + 2
∫ T

0

∫
Ω

f (v − k)ϕ dx dt

+ 2
∫ T

0

∫
∂Ω

(σ · ν − τ · ν)(T (v) − k)ϕ dH n−1 dt ≥ 0. (22)

Thanks to (18) and algebraic manipulations, one has

(σ · ν−τ · ν)(T (v) − k)

= 1

4

(
(k + τ · ν)2 − (T (v) − k − (σ · ν − τ · ν))2

) ≥ 1

4
(k + τ · ν)2 ,

(23)

Equation (23) allows us to rewrite (22), using the hyperbolic variableU =t (v, σ ) as∫ T

0

∫
Ω

|U − κ|2 ∂tϕ +
2∑

i=1

〈U − κ; Ai (U − κ)〉 ∂iϕ + 2 〈F;U − κ〉ϕ dx dt

+
∫

Ω

|U0 − κ|2 ϕ(t = 0) dx +
∫ T

0

∫
∂Ω

〈κ+; Mνκ+〉 ϕ dH n−1(x) dt ≥ 0,

(24)

where F =t ( f, 0, 0), U0 =t (v0, σ0), κ =t (k, τ )

A1 =
⎛
⎝ 0 −1 0

−1 0 0
0 0 0

⎞
⎠ , A2 =

⎛
⎝ 0 0 −1

0 0 0
−1 0 0

⎞
⎠ and Mν =

⎛
⎝1 0 0
0 (ν1)2 ν1ν2

0 ν1ν2 (ν2)2

⎞
⎠ , (25)

and κ+ stands for the projection onto (ker(Aν + Mν)) ∩ ImAν . The fact that Eq. (24)
is satisfied for all κ and allϕ is the definition of a solution to Problem (3) (see also [8]).
In addition, when the solutionU is inW 1,∞([0, T ]; L2(Ω;C ), one can show (see [1,
Sect. 7]) that Eqs. (17)–(19) are equivalent to this definition of a weak constrained
solution to Problem (3).

6 A Numerical Test on the Simplified Model
of the Dynamical Perfect Plasticity

Now that this mechanical problem has been put into the hyperbolic framework (3),
the simplified model of dynamical perfect plasticity can be approached thanks to the
scheme described in Sect. 2. One important point to notice first is that this scheme
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does not include a special treatment at the boundary to model the nonlinear boundary
condition (18). Indeed, we only take into account the constraint thanks to a projection
step on everymesh and the first step of this scheme uses the linear boundary condition

(Aν − Mν)U = 0 ⇔ 〈σ ; ν〉 + v = 0. (26)

Our goal now is to test numerically the interactions between the boundary condition
and the constraint for this particular hyperbolic system under constraint and to see
if the nonlinear boundary condition is obtained with this scheme. The major point
that allows us to bring to light these facts is the velocity threshold overrun in the
boundary condition (18). To observe this overrun, we present here one test case (for
more test cases, see [7, Sect. 4.4]).

The test is based on the following formal motivation: We want to observe large
velocities near the boundary. But if we look at the equation of motion

∂tv − divσ = f,

we see that if f is positive (for example) near the boundary (for each time), then the
velocity is going to increase over time near the boundary. Hence, we present a test
case when the source term f varies from −50 to 50 near the boundary and is equal
to zero elsewhere.

This test allows us to obtain large velocity near the boundary (i.e., |v| � 1 near
∂Ω) and to bring to light that the nonlinear boundary is taken into account by our
scheme. For this test case, we use the following data

• Spatial domain : Ω = [0, 1] × [0, 1]. Our mesh is regular and contains 80000
triangles.

• Final time : T = 1. We use 800 time steps, and consequently, the CFL condi-
tion (11) is approximately equal to 0.71.

• Initial data : In this test, we use data that touch the boundary x = 1. The initial
velocity v0 is null outside the open ball B1 of radius 0.3 and center (1, 0.5), and
v0 is equal to−1 on the open ball B2 of radius 0.25 and center (1, 0.5). In the strip
between these two balls, we join these two constants using a C 1 connection. It
is important to notice that −1 ≤ v0 ≤ 0. In order to satisfy the (linear) boundary
condition at x = 1, the first component ofσ is equal to−v0. The second component
of σ is null on Ω . Consequently, we have v0 + 〈σ ; ν〉 = 0 on ∂Ω . Remark also
that the initial data belong to the convex set of constraints.

• The term source f is equal to 100y − 50 for all t ∈ [0, T ], for all y ∈ [0, 1] and
x > 0.8 and to 0 elsewhere.

We decide to highlight the interaction between the constraint and the boundary at
time t = 0.5 in Fig. 2. In this figure, we display the velocity (top left of the figure), the
first component, denoted σ1 in the following, of σ (top right), the second component
(bottom left), denoted σ2, and the term σ1 + T (v) (which is involved in the boundary
condition at x = 1: σ1 + T (v) = 0).
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Fig. 2 Test case at time t = 0.5

We observe that the introduction of our term source in the strip [0.8, 1] × [0, 1]
allows us to get a large velocity (i.e., |v| � 1) near the boundary x = 1 (see Fig. 2a).
The theoretical boundary condition implies that in this situation we should see that
σ1 = −1 at the upper end of the boundary x = 1 (and, consequently, σ2 = 0 due
to the constraint) and σ1 = 1 at the lower end of the boundary x = 1 (and σ2 = 0
due to the constraint). Numerically, the scheme produces a solution that matches the
mathematical model (see Fig. 2b, c). Consequently, the nonlinear boundary condition
is satisfied by the numerical approximation (see Fig. 2d) despite the fact that we
have not implemented any particular treatment at the boundary to get this nonlinear
boundary condition. This fact may be seen as a first validation of our scheme.
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Lagrangian Representation for Systems
of Conservation Laws: An Overview

Stefano Modena

Abstract We present an overview on some recent works in collaboration with S.
Bianchini (see Bianchini and Modena in Lagrangian representation for solution to
general systems of conservation laws [9] and the Ph.D. thesis Modena in Interaction
functionals, Glimm approximations and Lagrangian structure of BV solutions for
hyperbolic systems of conservation laws [15]), inwhichwe propose away to describe
BV solutions to hyperbolic systems of conservation laws in one space dimension
from a Lagrangian point of view.

Keywords Conservation laws · Hyperbolic systems · Interaction functional
Lagrangian representation

1 Introduction

One of the key observations in fluid dynamics is that the fluid flow can be described
from twodifferent (and in some sense complementary) points of view: theLagrangian
points of view (in which the trajectory in space–time of each single fluid particle is
tracked) and the Eulerian point of view (in which one looks at fluid motion focusing
on fixed locations in the space through which the fluid flows as time passes).

From a mathematical perspective, such duality between the Lagrangian and the
Eulerian approach can be seen, for instance, in the framework of the continuity
equation: {

∂t v(t, x) + divx
(
v(t, x)b(t, x)

) = 0,

v(0, x) = v̄(x),
(1)

where v : [0,∞) × R
d → R is the unknown and b : [0,∞) × R

d → R
d is a given

vector field. It is well known that, under suitable regularity assumptions, the solution
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to (1) can be written, for any time t ∈ [0,∞), as

v(t, ·)L 1 = X(t)�
(
v̄L 1

)
, (2)

where X : [0,∞) × R
d → R

d is the flow generated by the ODE

⎧⎨
⎩

∂X

∂t
(t, y) = b(t,X(t, y)),

X(0, y) = y,
(3)

L d is the Lebesgue measure on R
d and � denotes the push-forward in the sense of

measures.1

In the framework of the continuity equation, the Lagrangian and the Eulerian
approach help each other: For instance, in the smooth setting, one can use the ODE
(3) (Lagrangian approach) to solve the PDE (1) (Eulerian approach), while in the non-
smooth setting one can use the PDE to solve the ODE (see [13]). The duality between
the two approaches can be used not only to prove the existence of solutions, but also
to prove their uniqueness and their stability and to investigate further properties of
them, like their fine structure, their regularity, and so on. In few words, we could
say that two is better than one: what cannot be done using the Lagrangian approach
could be hopefully done using the Eulerian one, and vice versa.

For these reasons, it is an interesting question whether systems of conservation
laws {

∂t u + ∂x F(u) = 0,

u(0, x) = ū(x),
u = u(t, x) ∈ R

n, t ≥ 0, x ∈ R, (4)

can be analyzed from a Lagrangian point of view. Here, F : R
n → R

n is a generic
smooth function, which is only assumed to be strictly hyperbolic; i.e. its differential
DF(u) has n distinct real eigenvalues in each point of its domain. We restrict our
analysis to one space dimension, since this is the setting where a satisfying well-
posedness theory for entropic solutions is available.2

For a scalar conservation law with a smooth initial datum, the method of char-
acteristics provides a reasonable Lagrangian approach to the problem. Such method
was extended by C. Dafermos (through the notion of generalized characteristics in
[12]) to systems whose characteristic fields are either genuinely nonlinear or linearly
degenerate,3 and to initial data which are just BV . However, Dafermos’ approach can
not be further generalized to systems where the flux F has no convexity properties.

1If A, B are sets, A ,B are σ -algebras on A, B, respectively, and f : A → B is a measurable
function, then for any measure μ on (A,A ), the push-forward f�μ is the measure on (B,B),
defined by f�μ(E) = μ( f −1(E)) for any E ∈ B.
2By entropic solution, we mean a solution obtained as limit of vanishing viscosity approximations;
see [3].
3See [11] for the definition of genuinely nonlinear or linearly degenerate characteristic fields.
Roughly speaking, it amounts to say that the flux F has some strong convexity property.
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Another Lagrangian approach in the analysis of conservation laws was proposed
by T.-P. Liu in [14], where he introduced the notion of wave tracing for the waves
present in an approximate solution to the system (4), constructed by means of the
Glimm scheme. However, in [14], only approximate solutions (which in some sense
are just piecewise constant functions) are considered.

Recently, some papers appeared in which a Lagrangian analysis is developed for
the exact (and not approximate) entropic solution to conservation laws with a flux F
which does not satisfy any convexity assumption. In particular,

• in [4, 5] (see also for a previous, slightly different approach [10]) S. Bianchini and
E.Marconi develop a Lagrangian approach for the solution to the Cauchy problem
associated to a scalar conservation law (n = 1), whose flux F : R → R is any
smooth function and whose initial datum ū ∈ L∞(R) is any bounded function;

• in [9, 15] S. Bianchini and the author develop a Lagrangian approach for the
solution to the Cauchy problem associated to a system of conservation laws (n ≥
1), whose flux is any smooth strictly hyperbolic function and whose initial datum
ū ∈ BV (R) is a function of bounded variation.

In both cases, the starting point is the analysis of BV entropic solutions to scalar
conservation laws. The extension to L∞ initial data (for the scalar equation) [4, 5]
or to systems [9, 15] requires, however, several new ideas. The goal of this notes
is to present the notion of Lagrangian representation for BV entropic solutions to
systems of conservation laws (4), proposed in [9, 15], and to present the main ideas
behind the construction of such Lagrangian representation, focusing in particular on
the difficulties in extending the scalar BV analysis to the system case.

As a final remark, we would like to stress that both in the scalar case and in the
system one, the Lagrangian analysis is done in the same setting in which the well-
posedness of the Cauchy problem is already know.We do not want to use Lagrangian
methods to prove such well-posedness again. Rather, the aim of our new Lagrangian
tools is to analyze in a more precise way the solution u to the Cauchy problem
(4), in order to prove further properties of it. As an example, in the scalar case, the
Lagrangian approach can be used to prove the concentration of entropies (see the
papers by Bianchini and Marconi [4, 5]); in the system case, the Lagrangian tools
can be used to study the fine structure of the solution (see the paper by Bianchini and
the author [9] and the Ph.D. thesis of the author [15]).

2 Analysis of BV Solutions to Scalar Conservation Laws

The starting point of our analysis is the study of entropic BV solutions to scalar
conservation laws{

∂t u + ∂x F(u) = 0,

u(0, x) = ū(x),
ū ∈ BV (R) with compact support, F : R → R smooth.

(5)
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The first question we have to answer is: What is a good notion of Lagrangian rep-
resentation of the solution to (5)? A hint in this direction is given by the following
observation: ByVol’pert’s rule4 the distributional derivative ∂xu (which is ameasure,
being u ∈ BV ) satisfies the 1D continuity equation

∂t (∂xu) + ∂x (λ̂(t, x)∂xu) = 0 in a distributional sense, (6)

where

λ̂(t̄, x̄) :=
{
F ′(u(t̄, x̄)) if x �→ u(t̄, x) is continuous at x̄,
F(u(t̄,x̄+))−F(u(t̄,x̄−))

u(t̄,x̄+)−u(t̄,x̄−)
if x �→ u(t̄, x) has a jump at x̄ .

(7)

Mimicking (1)–(2)–(3), we give the following definition.

Definition 1. A Lagrangian representation for the entropic solution u to (5) is a
triple (W,X, ρ), where

1. W ⊆ R is a bounded interval; its elements are denoted byw and are calledwaves;
2. X : [0,∞) × W → R is ‖F ′‖L∞ -Lipschitz in t for fixed w and increasing in w

for fixed t , and it is called flow or position function;
3. ρ : W → [−1, 1] is called density function,

such that for a.e. time t ∈ [0,∞)

∂xu(t, ·) = X(t, ·)�
(
ρL 1|W ) in the sense of measures (8)

and
∂X

∂t
(t,w) = λ̂(t,X(t,w)) for |ρ|L 1 − a.e.w ∈ W. (9)

Remark 1. Notice that (8) is the analog of (2) and (9) is the analog of (3); only two
differences must be observed:

• In (8), the term which is transported is an absolute continuous measure w.r.t.L 1,
even if the initial datum ∂x ū has a jump part or a Cantor part;

• In (9), in general X(0,w) 
= w; i.e., w is just the label of a particle with no rela-
tionship with its starting point.

Definition 1 provides a (hopefully) good notion of Lagrangian representation. How
can we now explicitly construct the objects W,X, ρ satisfying the properties above?

As usual in the theory of conservation laws, the idea is to consider a sequence of
approximate solutions (uq)q∈N solving the approximate Cauchy problem

{
∂t uq + ∂x Fq(uq) = 0,

uq(0, x) = ūq(x),
(10)

4The Vol’pert’s rule (see, for instance, [1, Theorem 3.96]) is the chain rule for the derivative of the
composition F(u(x)) of a Lipschitz function F with a BV function u.
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where Fq is the piecewise affine interpolation of F with grid size 2−q and ūq is
a piecewise constant function taking values in 2−q

Z such that ‖ūq − ū‖L1 → 0 as
q → ∞. The solution uq to (10) can be constructed by means of the wavefront
tracking algorithm (see [11, Chap.4]), and it is a piecewise constant function with
values in 2−q

Z for any time t which converges strongly in L1 to the entropic solution
of (5), as q → ∞.

Since uq(t, ·) is piecewise constant, it is not difficult to construct by hand a
Lagrangian representation of it.5 Now, the family {Xq}q is pre-compact in L1([0,∞)

× R), since, by Definition 1, eachXq is ‖F ′‖-Lipschitz in t for fixedw and increasing
in w for fixed t ; the family {ρq} is weakly∗ pre-compact in L∞(W ). Therefore, up to
subsequences, Xq → X strongly in L1 and ρq → ρ weakly∗ in L∞.

Equation (8) is then easily obtained passing to the limit in the corresponding
equation for approximations

∂xu
q(t) = Xq(t)�

(
ρqL 1|W ) (11)

and using that uq → u in L1.
On the contrary, Eq. (9) cannot be deduced directly from the corresponding equa-

tion for the approximations

∂tX
q(t,w) = λ̂q(t,Xq(t,w)), (12)

since, in general, for fixed t , λ̂q(t) ◦ Xq(t) � λ̂(t) ◦ X(t), as the following example
shows.

Example 1. Assume that u is a solution of the scalar conservation law ∂t u +
∂x F(u) = 0, taking values in the finite set {uL , uM , uR}, with uL , uM , uR ∈ R and
uL < uM < uR , as described in Fig. 1.

Assume that the sequence of approximations (uq)q is given by uq(t, x) := u(t −
1/q, x). Notice now that at time t̄ , uq(t̄, ·) is made by two consecutive jumps, while

5This can be done, for instance, in the following way. Assume for simplicity uq (t, ·) is right
continuous. Set Ūq (x) := Tot.Var.(ūq ; (−∞, x]). Set Wq := (0, Tot.Var.(ūq )],

Xq (0,w) := (Ūq )−1(w), ρq (w) :=
{
1 if uq has a positive jump at Xq (0,w),

−1 if uq has a negative jump at Xq (0,w).

Set also for simplicity uq (w) := ´ w
0 ρq (w′)dw′. Denote by {(t j , x j )} j the points in the (t, x)-plane

where two wavefronts in uq collide (the discontinuity points at t = 0 are treated as collision points).
By recursion, assume Xq (t, ·) is defined on [0, t j ] and let us define it on (t j , t j+1]. Assume that at
(t j , x j ) the outgoing Riemann problem is (uL , uR) with uL < uR (the case uR < uL is completely
similar). Set A(w) := min{max{uq (w′) | w′ ≤ w}, uR} for any w ∈ Xq (t j )−1(x j ) and then

Xq (t,w) := x j +
[ dconv[uL ,uR ]F

q

du
(A(w))

]
(t − t j ) for any w ∈ Xq (t j )

−1(x j ) and any t ∈ (t j , t j+1].



340 S. Modena

Fig. 1 The solution u(t, x) to the scalar conservation law ∂t u + ∂x F(u) = 0 and the function F(u)

u(t̄, ·) ismadebya single jump,which is given, roughly speaking, by the juxtaposition
of the two jumps in the approximations.

By (9), all the waves w located in xq1 have speed

σ1 := ∂tX
q(t̄,w) = λ̂q(t̄, xq1 ) = F(uM) − F(uL)

uM − uL
,

all the waves w located in xq2 have speed

σ2 := ∂tX
q(t̄,w) = λ̂q(t̄, xq2 ) = F(uR) − F(uM)

uR − uM
,

while in the exact solution all the waves w should have speed

σ := ∂tX(t̄,w) = λ̂(t̄, x̄) = F(uR) − F(uL)

uR − uL
.

Unfortunately, in general σ1, σ2 
= σ and thus λ̂q(t̄) ◦ Xq(t̄) � λ̂(t̄) ◦ X(t̄) as q →
∞.

To overcome this problem and recover (9), we can proceed as follows (the argu-
ment is taken from [4]). From (6) and (8), we get for every ϕ ∈ C∞

c ((0,∞) × R)

¨
u∂t∂xϕdxdt =

¨
∂xϕ(t, x)λ̂(t, x)∂x u(t, dx)dt =

¨
∂xϕ(t,X(t,w))λ̂(t,X(t,w))ρ(w)dwdt.

On the other side, testing (8) against ∂tϕ, we get

¨
u∂t∂xϕdxdt = −

¨
∂tϕ(t,X(t,w))ρ(w)dwdt =

¨
∂xϕ(t,X(t,w))∂tX(t,w)ρ(w)dwdt.

Therefore,

∂x

[
X(t)�

(
ρ(λ̂(t,X(t, ·)) − ∂tX(t, ·))L 1|W

)]
= 0.



Lagrangian Representation for Systems of Conservation Laws: An Overview 341

Equation (9) follows, just observing that X(t, ·) takes values in a compact set and
that ∂tX(t,w) is constant on waves having the same position (since w �→ X(t,w) is
increasing).

3 Analysis of Linear Systems of Conservation Laws

We wish now to extend the scalar analysis done in the previous section to the system
case. As a first step in this direction, let us study the linear system of conservation
laws

∂t u + A∂xu = 0, where A is a n × n strictly hyperbolic matrix, (13)

together with an initial datum u(0, ·) = ū ∈ BV (R).
Let λ1, . . . , λn be the n distinct real eigenvalues of A, r1, . . . , rn be the right

eigenvectors (i.e., Ark = λkrk) normalized such that |rk | = 1, l1, . . . , ln be the left
eigenvectors (i.e., lk A = λklk), normalized such that lk · rh = δkh .

Our aim is to find a good definition of Lagrangian representation for the solution
to the linear system (13) and to explicitly construct such Lagrangian representation.
This is easily done, observing that the scalar product of (13) with lk gives the n scalar
equations ∂t (lk · u) + λk∂x (lk · u) = 0, with constant field λk .

Therefore, by the analysis in Sect. 2, for each k we can find a set Wk (called the
set of k-waves), a flow Xk : [0,∞) × Wk → R and a density ρk : Wk → [−1, 1], as
in Definition 1, such that

∂x (lk · u) = Xk(t)�
(
ρkL

1|Wk

)
and

∂tXk(t,w) ≡ λk . (14)

Definition 2. A Lagrangian representation of the solution to the linear system (13)
is thus defined as a family of n triples (Wk,Xk, ρk), k = 1, . . . , n, (with the same
regularity properties as the ones described in Definition 1) such that

∂xu(t) =
n∑

k=1

∂x (lk · u)rk =
n∑

k=1

Xk(t)�
(
ρkL

1|Wk )rk (15)

and the ODE (14) holds for every k = 1, . . . , n.

The existence of such a Lagrangian representation for the solution to the linear
system (13) is then an immediate consequence of the scalar analysis done in Sect. 2.
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4 The Riemann Problem

Before moving to the analysis of the nonlinear system (4), we need to recall some
basic facts about the entropic solution to the Riemann problem, i.e., the Cauchy
problem (4) with a piecewise constant initial datum

u(0, x) = ū(x) =
{
uL if x < 0,

uR if x ≥ 0,
with uL , uR ∈ R

n close enough to 0. (16)

It is shown in [3] that for any k = 1, . . . , n it is possible to define a neighborhood
Dk ⊆ R

n+2 of the point (0, 0, λk(0)) ∈ R
n × R × R and two functions r̃k : Dk →

R
n , λ̃k : Dk → R; rk(uk, vk, σk) (resp. λk(uk, vk, σk)) is called the kth generalized

eigenvector (resp. the kth generalized eigenvalue) at (uk, vk, σk) ∈ R
n × R × R.

It is also shown in [3] that, given uL , uR ∈ R
n close enough to 0, one can find n

curves γk : Ik → Dk ⊆ R
n+2, k = 1, . . . , n, defined on the intervals

Ik :=
{

[0, sk] if sk ≥ 0,

[sk, 0] if sk ≤ 0,

satisfying the fixed point problem (if sk > 06)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
uk(τ ) = uL

k + ´ τ

0 r̃k(uk(ς), vk(ς), σk(ς))dς, uL
k =

{
uL if k = 1,

uk−1(sk−1) if k > 1,

vk(τ ) = fk(τ ) − conv[0,sk ] fk(τ ),

σk(τ ) = d
dτ

conv[0,σk ] fk(τ ),

(17)
with fk defined by fk(τ ) := ´ τ

0 λ̃k(uk(ς), vk(ς), σk(ς))dς and the conv[a.b] g
denotes the convex envelope of a function g on the interval [a, b], i.e., the biggest
convex function which stays below g.

The right-continuous solution to the Riemann problem (4), (16) is now given by
the BV function

u(t, x) =

⎧⎪⎨
⎪⎩
uL if x/t ≤ σ1(0),

uk(τ ) if x/t = σk(τ ),

uR if x/t ≥ σn(τ ).

6If sk < 0 the convex envelope conv[0,sk ] fk(τ ) must be substituted by the concave envelope
conv[sk ,0] fk(τ ).
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5 Definition of Lagrangian Representation for Systems

We can now finally move to the analysis of the nonlinear system (4). As in the linear
case, let λ1(u), . . . , λn(u) be the n distinct real eigenvalues of A(u) := DF(u),
r1(u), . . . , rn(u) (resp. l1(u), . . . , ln(u)) be the right (resp. left) eigenvectors.

Trying to extend Definition 2 (and, in particular, Eqs. (14), (15)) from the linear to
the nonlinear case, the first problem we have to face is that λk and rk are not constant
anymore, but they depend on u. As in the scalar case (see (7)), we have thus to find
a good definition of kth eigenvalue λ̂k(t̄, x̄) and kth eigenvector r̂k(t̄, x̄) at a given
point (t̄, x̄).

If x �→ u(t̄, x) is continuous at x̄ , the natural choice is to set r̂k(t̄, x̄) := rk(u(t̄, x̄))
and λ̂k(t̄, x̄) := λk(u(t̄, x̄)).

If x �→ u(t̄, x) has a jump at x̄ between uL := u(t̄, x−) and uR := u(t̄, x+), we
solve the Riemann problem (uL , uR), defining the curves (uk(·), vk(·), σk(·)) as in
(17), and we set

r̂k(t̄, x̄) :=
 

r̃k(uk(ς), vk(ς), σk(ς))dς, λ̂k(t̄, x̄) :=
 

λ̃k(uk(ς), vk(ς), σk(ς))dς.

Notice that, in the case of a scalar equation, the definition of λ̂(t̄, x̄) given above
coincides with (7).

After this preparation, we can now propose the following definition of Lagrangian
representation for the solution to the nonlinear system (4). Compare it with Defini-
tions 1 and 2.

Definition 3. A Lagrangian representation for the entropic solution u to (4) is a
family of n triples (Wk,Xk, ρk), k = 1, . . . , n, where

1. Wk ⊆ R is a bounded interval, whose elements are calledwaves of the kth family;
we also assume for simplicity that Wk ∩ Wh = ∅ for k 
= h;

2. Xk : [0,∞) × Wk → R is ‖DF‖L∞ -Lipschitz in t for fixed w and increasing in
w for fixed t , and it is called kth flow or kth position function;

3. ρk : [0,∞) × Wk → [−1, 1] is uniformly BV in time for a.e. w, and it is called
kth density function;

such that for a.e. t ∈ [0,∞)

∂xu(t) =
n∑

k=1

Xk(t)�
(
ρk(t)L

1|Wk )r̂k(t) in the sense of measures (18)

and
∂Xk

∂t
(t,w) = λ̂k(t,Xk(t,w)) for |ρk(t)|L 1-a.e.w ∈ Wk . (19)

Remark 2. The main difference between Definition 3 and Definitions 1 and 2 is
that the density function ρ = ρ(t,w) is now allowed to be a function of time. This
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seems strange in comparison with Formula (2) for the continuity equation. However,
this dependence on time cannot be avoided: It comes from the well-known fact that
nonlinear interactions between wavefronts, taking place at times t > 0, can create
new wavefronts.

Nevertheless, the total amount of created waves can be bounded a priori (see
[2]): This implies that the length of the set of waves Wk can be bounded by
C(F) Tot.Var.(ū) and that ρ can be chosen uniformly BV in time for a.e. wave.
Here, C(F) is a constant which depends only on F .

6 Construction of a Lagrangian Representation

In Sect. 5, we proposed a possible definition of Lagrangian representation for the
entropic solution u to the system (4). In this section, we state the main theorem of
these notes, i.e., the existence of such a Lagrangian representation, and we present a
sketch of its proof.

Theorem 1. There exists a Lagrangian representation for the entropic solution to
the system (4), in the sense of Definition 3.

Sketch of the proof.The proof follows a path similar to the onewe used in the scalar
case.We start by taking a sequence of piecewise constant approximate solutions (uq )q
(constructed through the wavefront tracking algorithm or the Glimm scheme) which
converges in L1 to the exact entropic solution u to (4).

For each uq , it is not difficult to construct by hand a Lagrangian representation
(as we did for the scalar conservation law in Sect. 2), i.e., for each k = 1, . . . , n, a
set of k-waves Wk (which we assume to be independent of q, without restriction), a
flow Xq

k : [0,∞) × Wk → R and a density ρ
q
k : [0,∞) × Wk → [−1, 1] such that:

• for a.e. time t ∂xuq(t)=∑n
k=1 X

q
k (t)�

(
ρ
q
k (t)L 1|Wk

)
r̂ qk (t, ·) i.e. for anyϕ ∈ C∞

c (R),

−
ˆ

ϕ′(x)uq(t, x)dx =
n∑

k=1

ˆ

Wk

ϕ(Xq
k (t,w))ρ

q
k (t,w)r̂ qk (t,Xq

k (t,w))dw; (20)

• for a.e. time t and for |ρq
k |L 1 almost every w ∈ Wk

∂tX
q
k (t,w) = λ

q
k (t,X

q
k (t,w)). (21)

Exactly as in the scalar case, the regularity properties of Xq
k , ρ

q
k imply that there

exist Xk : [0,∞) × Wk → R, ρk : [0,∞) × Wk → [−1, 1] such that, up to subse-
quences,Xq

k (t) → Xk(t) strongly in L1(Wk) and ρ
q
k (t) → ρk(t)weakly∗ in L∞(Wk),

for a.e. time t . To complete the proof of Theorem 1, we have thus to pass to the limit
in Formulae (20), (21) to get (18), (19), respectively.

In the scalar case, first we passed to the limit in (11) (corresponding here to
(20)) to obtain (8) (corresponding here to (18)); then, we used (8) to prove (9)
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(corresponding here to Eq. (19)). Example 1 showed that it is not possible to obtain
(9) directly passing to the limit in its approximate version (12), because in general
λ̂q(t) ◦ Xq(t) � λ̂(t) ◦ X(t).

In the system case, we cannot repeat the same argument (i.e., first passing to
the limit in (20) to get (18) and then use (18) to prove (19)), because in (20) there
is already a term r̂ qk (t) ◦ Xq

k (t) which most likely does not converge in general to
r̂k(t) ◦ Xk(t), exactly as λ̂q(t) ◦ Xq(t) did not converge in general to λ̂(t) ◦ X(t) in
the scalar case. We thus need some new ideas to pass to the limit in (20), (21).

Example 1 shows that the are times (as time t̄ in that example) for which there is no
hope for r̂ qk (t) ◦ Xq

k (t) (resp. λ̂
q
k (t) ◦ Xq

k (t)) to converge to r̂k(t) ◦ Xk(t) (resp. λ̂k(t) ◦
Xk(t)). However, the same example suggests that these times are strong interaction
times, i.e., roughly speaking, times when many waves undergo a major change of
their speed. For instance, in Example 1, λ̂q(t) ◦ Xq(t) → λ̂(t) ◦ X(t) for every time,
except the time t̄ where a strong interaction between wavefronts takes place.

The strategy is thus to find a way to identify a priori those times of strong interac-
tion in the solution u, to show that the set of such times has zero Lebesgue measure
(or even that it is countable), and to prove that, up to those times, we can pass to the
limit in (20), (21).

To identify such bad times, we introduce, for each approximate solution uq , the
Radonmeasureμq := ∑n

k=1 |∂t (ρq∂tX
q
k )|, which measure the change of the speed of

the waves. Being uq a piecewise constant function with a finite number of disconti-
nuity lines,μq is just a finite sum of Dirac’s deltas. For instance, for the configuration
described in Example 1, μq is just a single Dirac’s delta, located in the point (t̄, x̄),
with size |σ1 − σ ||uM − uL | + |σ2 − σ ||uR − uM |.

Notice that, by construction of the Lagrangian representation in the approxima-
tions, for each uq the times where waves can change their speed, i.e., times of strong
interaction, are exactly those times t for which μq({t} × R) > 0.

Next, we prove that there is a Radon measure μ such that μq → μ weakly∗ in the
sense of measures (see Remark 3 below for a comment about the existence of μ).

To conclude the proof, it is now enough to prove that if t is not a time of strong
interaction; i.e., by definition, if t is a time such that

μ
({t} × R

) = 0 (22)

(and this happens for all but a countable number of times), then we can pass to the
limit in (20), (21) to get (18), (19), respectively. This would conclude the proof of
Theorem 1.

Proving this last fact (i.e., passing to the limit in (20), (21)) is a major part of
the proof of Theorem 1, which, however, requires the introduction of several ad hoc
notations and contains rather technical steps. Therefore, in these notes, it is omitted.
We just spend some words about the general strategy.
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For each approximate solution uq at each time t , through a fixed point procedure
similar to the one described in Sect. 4 for solving the Riemann problem, we associate
to each wave w ∈ Wk , a point

(ûqk (t,w), v̂qk (t,w), σ̂
q
k (t,w)) ∈ R

n × R × R,

such that for each time t and each point x ∈ R for which Xq
k (t)

−1(x) 
= ∅,

r̂ qk (t, x) ≈
 

X(t)−1(x)
r̃k(û

q
k (t,w

′), v̂qk (t,w
′), σ̂ q

k (t,w′))ρ(t,w′)dw′

and, similarly, for the exact solution u at each time t , we associate to each w ∈ Wk

a point
(ûk(t,w), v̂k(t,w), σ̂k(t,w)) ∈ R

n × R × R,

such that for each time t and each point x ∈ R for which Xk(t)−1(x) 
= ∅,
r̂k(t, x) ≈{
r̃k(ûk(t,w), v̂k(t,w), σ̂k(t,w)) if u(t, ·) is continuous at x = X(t,w),
ffl
X(t)−1(x) r̃k(ûk(t,w

′), v̂k(t,w′), σ̂k(t,w′))ρ(t,w′)dw′ if u(t, ·) has a jump at x .

Similar expressions hold for λ
q
k (t, x), λk(t, x). We then prove that if t is not a time

of strong interaction, i.e. if (22) holds, then ûqk → ûk , v̂
q
k → v̂k , σ̂

q
k → σ̂k in some

appropriate topologies. Using this fact, we finally show that r̂ qk (t) ◦ Xq(t) → r̂k(t) ◦
X(t) and λ̂

q
k (t) ◦ Xq(t) → λ̂k(t) ◦ X(t), thus concluding the proof of Theorem 1. ��

Remark 3. Proving that the sequence (μq)q is weakly∗ pre-compact in the sense of
measure, i.e., proving that |μq | ≤ C( f, ū), where C is a constant which depends on
f and the initial datum ū, but not on q, is not trivial at all. It amounts to prove that the
total amount of change of speed of the waves present in an approximate solution uq

μq
([0,∞) × R

) =
n∑

k=1

ˆ

Wk

Tot.Var.
(
ρq(·,w)∂tX

q
k (·,w); [0,∞)

)
dw

is uniformly bounded byC( f, ū). Such estimate is proved in [6–8], using a quadratic
interaction potential.
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Kinematical Conservation Laws
in Inhomogeneous Media

S. Baskar, R. Murti and P. Prasad

Abstract The system of kinematical conservation laws (KCLs) in two dimensions
involves a pair of first-order partial differential equations in a ray coordinate sys-
tem written in the conservation form. The KCL system governs the evolution of a
propagating front (a wavefront or a shock front) in 2D media, which involves four
unknown variables, and therefore, we need additional equations to close the sys-
tem. Such additional relation(s) can be obtained by a weakly nonlinear ray theory
(WNLRT) for wavefront propagation and a shock ray theory (SRT) in the case of
shock front propagation. The WNLRT and the SRT are well-studied for front prop-
agation in homogeneous media and are successfully applied for an uniform medium
filled with a polytropic gas. As these theories are shown to be applicable in the study
of sonic boom propagation, it is important to develop these theories in the case of
inhomogeneous media. This article summarizes the derivation and a basic numeri-
cal test of these two theories in an inhomogeneous medium. We also show that the
derived systems are hyperbolic under the condition that the wave speed is greater
than the sound speed in the unperturbed medium ahead of these waves.
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1 Introduction

Kinematical conservation laws (KCLs) are equations of evolution of curves and
surfaces derived purely from geometrical consideration and since they are in con-
servation form, they can be used to study formation and evolution of special type of
singularities, called kinks, on the curves and surfaces. KCL has been used success-
fully to study the propagation of wavefronts and shock fronts in two and three space
dimensions ([1, 2]). As the system of KCL is written in a ray coordinate system, the
KCL theory is more efficient in terms of computational cost. For instance, propaga-
tion of a weakly nonlinear shortwave in two space dimensions can be studied using
the 2D system of Euler equations, whereas the propagation of a wavefront or a shock
front in a 2D medium can also be studied using KCL which is a 1D problem. Since
the KCL together with the closer relation(s) can be used to obtain the geometry of
the propagating front along with the amplitude, the KCL-based theories can be used
very efficiently in certain applications like propagation of sonic booms generated by
a supersonic aircraft.

In this article, we shall like to develop KCL-based weakly nonlinear ray theory
(WNLRT) and shock ray theory (SRT) for an inhomogeneous polytropic gas in
2D steady motion. General theory of WNLRT in an arbitrary hyperbolic system is
available in Chap.4 of [12] and the corresponding SRT in Sect. 9.2 of the same book.
However, we need explicit expressions for the terms in WNLRT and SRT (which
are quite involved and not easy to derive) for any application. As a future work, we
wish to use these results to study the propagation of sonic boom in stratified media.
Baskar and Prasad [3] successfully developed a KCL- based WNLRT and SRT in an
uniform medium at rest to study sonic boom problem, and it is important to develop
the method for an inhomogeneous medium for which the theory developed in this
article will serve as a base.

Finding the geometry of the successive positions of a nonlinear wavefront and
a shock front is a challenging problem because geometry of the fronts and their
amplitude interact non-trivially (see Prasad 2001, Chap.6 for more details). Linear
ray theory (also called the geometric optics theory) is a subject of the study of
geometry of a propagating front in a high-frequency approximation. This theory
comprises a system of phase equation for geometry and a transport equation for
the amplitude. In linear ray theory, the phase equation, called the eikonal equation,
decouples from the transport equation, and therefore, the geometry of the wavefront
can be found independent of the amplitude of the wave. The geometry is then used
in the transport equation to get the amplitude. A notable feature of the linear ray
theory is the focusing of a concave wavefront and the formation of caustic. Since the
amplitude in linear ray theory is inversely proportional to the (square root of) ray
tube area, the focusing of the wavefront leads to the blow-up of the amplitude, which
makes the linear ray theory to be invalid in a vicinity of caustic.

In the case of nonlinear ray theory, the system of phase equations include the
amplitude and therefore is coupled with the amplitude equation. The interaction of
the amplitude and the geometry of a nonlinear front was first incorporated in the

http://dx.doi.org/10.1007/978-3-319-91548-7_6
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pioneering work of [19]. This theory is widely used in many applications (see, for
instance, [4, 11, 18]) to study the propagation of curved shock fronts.

The KCL in 2D was first derived by [9], whereas the 3D KCL was derived by
[5] and further analyzed by [1]. Prasad [13] derived the KCL in space of arbitrary
dimensions. Prasad and Sangeeta [14] derived KCL-based WNLRT in a 2D uniform
medium with one closure relation and did extensive calculations. Monica and Prasad
[8] used the new theory of shock dynamics (NTSD) to derive closure relations for
the propagation of weak shock fronts in a 2D homogeneous medium with polytropic
gas at rest. These closure relations can be put into a pair of conservation laws that
includes another new variable which takes into account the gradient of flow behind
the shock front. These two conservation laws together with the pair of KCLs, form a
system of four conservation laws, which is the basic governing system for the KCL-
based shock ray theory (SRT). The introduction of the new variable in the SRT, in
fact, makes this theory more accurate than Whitham’s GSD. Baskar and Prasad [2]
validated the SRT by comparing the numerical results with the numerical simulation
of Euler equations and also compared the SRT results with GSD. Their numerical
study shows that SRT is more accurate than the GSD, especially for the cases where
the flow behind the shock front plays an important role, for instance, the propagation
of N-waves as in the case of sonic booms. Kevlahan [7] extended the NTSD to non-
uniform flows and validated the theory. However, Kevlahan did not have the KCL
and therefore used the differential form of the equations.

In Sect. 2, we recall the ray coordinate system and the suitable transformations
between the ray coordinate system and the physical system. Further in this section,we
also provide a brief discussion on the system of KCL in order to make the discussion
self-content. In Sect. 3, we summarize the derivation of the transport equation in the
ray coordinate system. This equation gives a closure relation in a conservation form,
whichwhen combinedwith KCL forms a closed system of equations for theWNLRT
that governs the propagation of weakly nonlinear wavefronts in an inhomogeneous
medium. In Sect. 4, we outline the derivation of the SRT equations, which involves
the derivation of two compatibility conditions from transport equation in the ray
coordinate system. These two relations with KCL also forms a closed system of
equations which governs the propagation of a shock front in an inhomogeneous
medium. Finally, in Sect. 5, we give numerical results, obtained from WNLRT and
SRT.

2 Ray Coordinate System and Kinematical Conservation
Laws

Let Ω0 : φ(x, 0) = 0, for x = (x, y) ∈ R
2 be an initial curve subject to a dynamics

andΩt : φ(x, t) = 0 be the position of the propagating curve at any time t > 0 inR2.
The curve Ωt can be interpreted as a curved wavefront or a shock front propagating
in a medium. For a given initial front Ω0 and a medium of propagation, our interest
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is to obtain the frontΩt at any time t > 0 as the locus of the tips of the rays emerging
from different points on Ω0 till the time t .

Let us denote the ray velocity by χ = χ(x, t,n), where n = ∇φ/|∇φ| is the unit
normal to the front. Since we work only in two-dimensions, we take χ = (χ1, χ2)

and n = (cos θ, sin θ), where θ denotes the angle between the normal and the x-
axis. Then the normal and the tangential components of the ray velocity are given,
respectively, by

C = χ1 cos θ + χ2 sin θ,

T = −χ1 sin θ + χ2 cos θ,
(1)

which gives
χ1 = C cos θ − T sin θ,

χ2 = C sin θ + T cos θ
(2)

Let us consider a ray coordinate system (ξ, t) in such a way that ξ = ξ0 (constant)
gives a ray as t varies and t = t0 (constant) gives a wavefront Ωt0 as ξ varies. Thus,
for each fixed time t > 0, the wavefront in the ray coordinate system can be written
as

Ωt : x = x(ξ, t), y = y(ξ, t), ξ ∈ R. (3)

Let
g =

√
x2ξ + y2ξ (4)

be a metric associated with ξ in the ray coordinate system such that gdξ gives an
element of length along the front Ωt . The differential relation between an element
of length in the physical coordinate system and that in the ray coordinate system can
be obtained as

xξ = −g sin θ,

yξ = g cos θ
(5)

along a front and
xt = χ1 = C cos θ − T sin θ,

yt = χ2 = C sin θ + T cos θ.
(6)

along a ray. The transformation of derivatives between the physical and the ray
coordinate systems is given by (see Prasad [12])

∂

∂ξ
= g

(
cos θ

∂

∂y
− sin θ

∂

∂x

)

∂

∂t
= χ1

∂

∂x
+ χ2

∂

∂y
.

(7)

Assuming that the curve Ωt given by (3) is smooth and using the differential
relations (5) and (6), we can obtain the pair of kinematical conservation laws (KCL)



Kinematical Conservation Laws in Inhomogeneous Media 353

in the (ξ, t)-coordinate system as (see [12])

(g sin θ)t + (C cos θ − T sin θ)ξ = 0
(g cos θ)t − (C sin θ + T cos θ)ξ = 0,

}
(8)

Note that in the case of propagation of shock fronts, we use the notation G and Θ

instead of g and θ .
The KCL (8) is a system of two equations in four unknown variables, namely C ,

T , θ , and g, which is therefore an under-determined system. To make this system
closed, we need at least two more relations. If the external velocity in the medium of
propagation is negligible, then the tangential component T of the ray velocity may
be taken to be zero. Therefore, we have only three unknowns, and we need at least
one more relation in order to close the KCL system. This relation can be obtained
from the transport equation derived from a system of hyperbolic equations governing
motion of the gas under the weakly nonlinear and shortwave assumptions.

3 Weakly Nonlinear Ray Theory (WNLRT)

Consider a small perturbation in an inhomogeneous medium filled with a polytropic
gas. Let the state variables of the undisturbedmediumbe denoted by (ρ0,q0 ≈ 0, p0),
where ρ0 and p0 may depend on the position (x, y) of the medium. We assume that
the wave belongs to the characteristic field corresponding to the forward eigenvalue
〈n,q〉 + a (a similar derivation can be given for the backward characteristic field).
Then, the perturbed state variables under high-frequency approximation are given
by

ρ − ρ0 = ρ0

a0
w; (9)

qα − qα0 = nαw, α = 1, 2; (10)

p − p0 = ρ0a0w, (11)

where w is the wave amplitude, which is assumed to be of small order, say ε > 0,
and a20 = γ p0/ρ0 is the sound speed of the unperturbed medium.

Using the bicharacteristic lemma (see [12]) for the system of Euler equations of
the polytropic gases and for the forward facing wave, we get

dx
dt

= q + na := χ,

dn
dt

= −(La + nαLqα),

(12)

where L = ∇ − n〈n,∇〉 and a summation convention is used on the right-hand side
of the second equation over the repeated index α. Using the relations (9)–(11), these
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equations can be written as

dx
dt

= na0 + γ + 1

2
nw, (13)

dn
dt

= −La0 − (γ + 1)

2
Lw. (14)

The transport equation corresponding to the forward characteristic field, which after
using (9)–(11) gives

dw

dt
=

(
k + a0Ω

)
w, (15)

where

k = −
2∑

α=1

1

2

nα

ρ0

∂(ρ0a0)

∂xα

(16)

and

Ω = −1

2
〈∇,n〉 (17)

is the mean curvature of the propagating wavefront Ωt .

3.1 Transport Equation in the Ray Coordinate System

Using the transformation (7), the mean curvature of the wavefront in the ray coordi-
nate system can be obtained as

Ω = − 1

2g
θξ .

Also differentiating g in (4) with respect to t and using the ray velocity (13), we
arrive at

gt =
{
a0 +

(
γ + 1

2

)
w

}
θξ .

Substituting the above expression for themean curvature in (15) and then eliminating
θξ from gt , we get (after a suitable re-arrangement of the terms) the transport equation
in the ray coordinate system as

[
ln

{
ge2

(m−a0)

a0 (m − a0)
2

}]

t

= A (ξ, t,m, θ), (18)

where
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A = −2
(m − a0)

a20
a0t + 2k

a0
m (19)

and

m = a0 +
(

γ + 1

2

)
w. (20)

TheKCL (8) alongwith the closure relation (18)–(20) forms a closed system of equa-
tions, called theWNLRT system, which governs the propagation of aweakly nonlinear
wavefront in the ray coordinate system (ξ, t). The eigenvalues of theWNLRT system
are given by

λ1 = −
√
a0(m − a0)

2g2
, λ2 = 0, and λ3 =

√
a0(m − a0)

2g2
,

which is hyperbolic provided m > a0.

4 Shock Ray Theory (SRT)

In this section, we derive the closure relations for KCL in the case when the prop-
agating curve is a shock front. As in the previous section, we assume the medium
in which the shock propagates is inhomogeneous and is filled with a polytropic gas,
where the external velocity is negligible.

As in the case of wavefronts, we denote a shock front in the ray coordinate system
by

Ωt : X = X (ξ, t), Y = Y (ξ, t), ξ ∈ R,

and use the notationX = (X,Y ) ∈ R
2. In order to distinguish the normal to thewave-

front and the normal to the shock front, we denote the later by N = (cosΘ, sinΘ),

where Θ is the angle between the normal to the shock front and the x-axis. Also, we
use the notation w = εw̃ for the wave amplitude so that w̃ = O(1) and take

μ = w̃
∣∣∣
shock front

= w

ε

∣∣∣
shock front

.

A shock front is followed by a 1-parameter family of nonlinear wavefronts in
the same mode. A wavefront instantaneously behind the shock front interacts with
the shock and disappears. Due to the shortwave assumption, the wavefront instanta-
neously behind the shock front coincides with the shock front, and therefore, the ray
equations (13)–(14) of the WNLRTmay be used for the flow behind the shock front.
Whereas, for the flow ahead of the shock front, linear rays can be used. Since the
shock ray velocity and the shock front rate of rotation is the mean of the ray velocity
just behind and ahead of the shock front, the shock ray equations in our case can be
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written as (see [6, 12])

dX
dτ

= 1

2

{
a0N + N

(
a0 + ε

γ + 1

2
μ

)}

= N
(
a0 + ε

γ + 1

4
μ

)
(21)

and

dN
dτ

= 1

2

{
− Lsa0 +

(
− Lsa0 − ε

(γ + 1)

2
Lsμ

)}

= −
(
Lsa0 + ε

(γ + 1)

4
Lsμ

)
, (22)

where τ is the timemeasured while moving along a shock ray andLs is the tangential
operator ∇ − N〈N,∇〉 on the shock front Ωt .

We write the transport equation on a shock front Ωt in terms of the mean ray
velocity as

dμ

dτ
≡

{
∂

∂t
+

(
a0 + ε

γ + 1

4
μ

)
〈N,∇〉

}
μ

= (k + a0Ω)μ − ε
γ + 1

4
μ〈N,∇〉w̃, (23)

where

Ω = −1

2
〈∇,N〉 (24)

is the mean curvature of the shock front. The derivative 〈N,∇〉w̃ does not make sense
on the shock front and so we introduce the new variables defined on the shock front
as

μ1 = ε

{
〈N,∇〉w̃

}∣∣∣
shock front

and μ2 = ε2
{
〈N,∇〉2w̃

}∣∣∣
shock front

, (25)

where the power of ε appears to make both μ1 and μ2 of O(1) since, in shortwave
approximation, variation of w̃ with respect to the fast variable φ/ε is of O(1). For
obtaining second compatibility condition, we differentiate (23) (with μ replaced by
w, for more details see [8]) in the ray direction 〈N,∇〉 to get

dμ1

dt
=

(
k + a0Ω

)
μ1 −

(
γ + 1

2

)
μ2
1, (26)

where we have omitted those terms which contains μ2 using the proposal made for
the new theory of shock dynamics (see [12] formore details). In terms of the primitive
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variables (M,Θ,G) in the ray coordinate system (ξ, t), the Eqs. (23) and (26) can
be written as

[
ln

{
G(M − a0)

2 exp

(
2
(M − a0)

a0

)}]

t

=
(
2M

a0

)
(k − V ) − 2

(
M − a0

a20

)
a0t

(27)

and

[
ln

{
GV 2 exp

(
2
(M − a0)

a0

)}]

t

=

2

(
M − a0

a0

) (
k − V − a0t

a0

)
+ 2(k − 2V ), (28)

where

M =
(
a0 + ε

γ + 1

4
μ

)
, V =

(
γ + 1

4

)
μ1.

Eqs. (27) and (28) are first and second compatibility conditions defined on a shock
front Ωt in the ray coordinate system. These two compatibility conditions with KCL
(8) (by replacing) form a closed system of equations in the ray coordinate system,
called the SRT system, which governs the propagation of a shock front Ωt . The
eigenvalues of the SRT system are given by

λ1 = −
√
a0(M − a0)

2G2
, λ2 = λ3 = 0, λ4 =

√
a0(M − a0)

2G2
.

Clearly, this system is hyperbolic provided M > a0.

5 Numerical Results

We have derived the closure relations for the KCL in the case of WNLRT for wave-
front propagation and SRT for the shock front propagation. Using these theories, we
can study the geometry and the amplitude of the propagating fronts (wavefront or
shock front). To this end, we first solve the KCL system with appropriate closure
relations in the ray coordinate system and obtain the primitive variables (m, θ, g) in
the case of wavefront propagation and (M,Θ,G, V ) for shock front propagation.
Then, we transform these variables into the physical coordinate system to obtain the
geometry of the propagating front by solving the system of ODEs (5) or equivalently,
the system of ODEs (6), with appropriate initial conditions. Note that the WNLRT
and the SRT systems may not be solvable exactly to get a closed form solution. So,
we use the MUSCL scheme with local Lax–Friedrichs flux (see [17]) in order to get
the primitive variables in the ray coordinate system and use the trapezoidal rule to
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Fig. 1 Propagating wavefront and shock front at different times are obtained as solutions of the
WNLRT and SRT systems, which are represented by solid and dashed curves, respectively, in the
physical coordinate system (x, y)

integrate the ODEs (6) and get the propagating front as the locus of the tip of the
rays emerging from different points on the initial front up to a given time t .

Since the KCL along with the closer relation of bothWNLRT and SRT are hyper-
bolic (under a restricted condition, which we always assume), the weak (entropy)
solution of the governing system involves elementary waves in the ray coordinate
system, which when transformed into the physical coordinate system, gives rise to
the elementary shapes. These elementary shapes are the base for the geometry of
propagating fronts in the physical coordinate system.

To illustrate the geometry of a propagating front, let us consider an inhomogeneous
medium with the sound speed

a0(x, y) = 2 − 0.8e−10(x−0.7)2e−10(y−0.5)2 , (29)

where the external velocity is neglected.
Note that the sound speed has a circular region where the speed decreases as we

approach the center radially. Let us take an initially planar front, for instance, we
take the initial conditions for WLNRT and SRT, respectively, as

(
m, θ, g

)
(ξ, 0) =

(
m0(ξ), θ0(ξ), g0(ξ)

)
= (a0 + 0.2, 0, 1)

and
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(
M, V,Θ,G

)
(ξ, 0) =

(
M0(ξ), V0(ξ),Θ0(ξ),G0(ξ)

)
= (a0 + 0.1, 0, 0, 1),

(30)
which when transformed to the physical coordinate system, gives a planar front par-
allel to the y-axis. As this front passes through the circular region, it bends and
becomes concave as seen in Fig. 1. As a result, rays emerging from different points
tend to converge and make the front to focus. In the case of the linear ray theory, two
converging rays intersect each other and forms a caustic region in which the propa-
gating front folds and becomes multi-valued. Consequently, the amplitude blows-up,
whereas the nonlinear diffraction effect plays a crucial role in preventing the rays
to intersect and hence the amplitude remains finite. However, the amplitude under-
goes a sudden change due to the presence of shocks in the primitive variables in
the ray coordinate system as depicted in Figs. 2, 3, and 4. These shocks when trans-
formed into the physical coordinate system gives rise to a pair of kinks (also called
shock–shock byWhitham [20]) as seen on the fronts at t = 1.1 and t = 2.1 in Fig. 1.
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Fig. 2 Wavefront speed m (left figure) and the shock front speed M (right figure) in the ray
coordinate system (ξ, t) at different times
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times
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Fig. 4 Metric functions g (left figure) and G (right figure) in the ray coordinate system (ξ, t) at
different times
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Artificial Viscosity for Correction
Procedure via Reconstruction Using
Summation-by-Parts Operators

Jan Glaubitz, Philipp Öffner, Hendrik Ranocha and Thomas Sonar

Abstract We focus on spectral viscosity in the framework of correction procedure
via reconstruction (CPR, also known as flux reconstruction) using summation-by-
parts (SBP) operators. In Ranocha et al. (J Comput Phys 342:13–28, 2017), [10],
Ranocha et al. (J Comput Phys 311:299–328, 2016), [9], the authors used SBP oper-
ators in the CPR framework and were able to recover and extend some results of
Gassner (SIAM J Sci Comput 35(3):A1233–A1253, 2013), [1] and Vincent et al.
(Comput Methods Appl Mech Eng 296:248–272, 2015), [12]. In this contribution,
we introduce a viscosity term for a scalar conservation law and analyse this new
setting in the context of CPR methods using SBP operators. We derive conditions on
the viscosity term and the basis, which allow us to prove conservation and stability
in the semidiscrete setting. Next, we extend semidiscrete stability results to fully
discrete stability by an explicit Euler method. Numerical tests are presented, which
verify our results (Ranocha, Enhancing stability of correction procedure via recon-
struction using summation-by-parts operators I: artificial dissipation, 2016, [8]). This
is an extension of the contribution Correction Procedure via Reconstruction Using
Summation-by-parts Operators by Hendrik Ranocha (J Comput Phys 342:13–28,
2017), [10], Ranocha et al. (J Comput Phys 311:299–328, 2016), [9].
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1 Introduction

We continue the consideration of the last contribution by Ranocha, and we examine
the correction procedure via reconstruction (CPR), but we focus on the application
of artificial dissipation / spectral viscosity in the context of CPR methods.

The CPR method is a high-order numerical scheme for conservation laws intro-
duced by Huynh [3], unifying some discontinuous Galerkin, spectral difference and
spectral volume in a common framework. In [9], summation-by-parts (SBP) opera-
tors and simultaneous approximation terms (SATs) have been used to create provably
stable semidiscretisations. However, by using a simple explicit Euler method as time
discretisation, we get stability problems in the fully discrete scheme, as described
inter alia in Sect. 3.9 of [9].

Artificial dissipation/spectral viscosity has already been used in the early works
of von Neumann and Richtmyer [13] to improve the stability properties of numerical
schemes for conservation laws. In [6], the authors used artificial dissipation in the
finite different (FD) framework of SBP operators and SATs. There are plenty of
further developments, investigations and results about artificial dissipation/spectral
viscosity, see inter alia [4, 5, 7, 11] and references therein.

In this contribution, we investigate the application of artificial dissipation/spectral
viscosity in the CPR framework using SBP operators. We present a new approach to
obtain stable fully discrete schemes.

Therefore, we repeat shortly the discretisation of CPR methods. Here, we only
consider the linear advection and the Burgers’ equation in this framework. For a
more general introduction to the CPR methods using SBP operators, we strongly
recommend the prior contribution of Ranocha or the papers [9, 10]. In the next
section, we focus on the viscosity operator in the continuous setting andwe show, that
adding a viscosity term to the equation improves stability. Afterwards, we investigate
the dissipation term in the semidiscrete setting and by using an explicit Euler method
we get fully discrete schemes. We suggest a new algorithm to adapt the strength of
the viscosity term, yielding stable fully discrete schemes, if the time step is small
enough.Thenumerical experiments inSect. 4 augment our theoretical results. Finally,
a conclusion is presented in Sect. 5, togetherwith additional topics of further research.
Here, we strongly recommend the connection to modal filters, described in [2].

2 CPR Methods Using SBP Operators

As it was already explained in the introduction Sect. 1, we only present the semidis-
cretisations of the linear advection and Burgers’ equation in the CPR framework in
details. We apply the same notation as in the prior contribution by Ranocha and in
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the papers [9, 10]. The CPR method is a semidiscretisation applying a polynomial
approximation on elements. The domain Ω ⊂ R is split into disjoint open inter-
vals Ωi ⊂ Ω such that

⋃
i Ω i = Ω . Each element Ωi is transferred onto a standard

element, which is in our case simply [−1, 1]. All calculations are conducted within
this standard element. Let Pp be the space of polynomials of degree ≤ p and the
solution u is approximated by a polynomial U ∈ P

p and in the basic formulation a
nodal Lagrange basis is employed. The coefficients of u are given by the nodal values
ui = u(ζi ), i ∈ {

0, . . . , p
}
, where −1 ≤ ζi ≤ 1 are interpolation points in [−1, 1].

It can be written inU (ξ) =
p∑

i=0
ui li (ξ), where li (ξ) is the i th Lagrange interpolation

polynomial that satisfies l j (ξ j ) = δi j . The flux f (u) is also approximated by a poly-
nomial, where the coefficients are given by f

i
= f

(
ui

) = f
(
u(ζi )

)
. The divergence

of f is D f , where we apply a discrete derivative matrix D. Since the solutions will
probably have discontinuities across elements, we will have this in the discrete flux,
too. To avoid this problem, we introduce a numerical flux f num and also a correction
term C at the boundary nodes [9]. The restriction matrix R performs interpolation
to the boundary. With respect to a chosen basis the scalar product approximating the
L2 scalar product is represented by a matrix M and integration with respect to the
outer normal by B. Finally, all operators are introduced and they have to fulfil the
SBP property

M D + DT M = RT B R, (1)

in order to mimic integration by parts on a discrete level

uT M D v + uT DT M v ≈
∫

Ω

u (∂xv) +
∫

Ω

(∂xu) v = u v
∣
∣
∂Ω

≈ uT RT B R v. (2)

Linear Advection

The linear advection equation with constant velocity is a scalar conservation law
with linear flux f (u) = u, i.e.

∂t u + ∂xu = 0. (3)

The semidiscretisation of this Eq. (3) is given by

∂t u = −D u − C
(
f num − R u

)
. (4)

The canonical choice of the correction matrix C = M−1RT B yields the semidis-
cretisation

∂t u = −D u − M−1 RT B
(
f num − R u

)
(5)

in the standard element [−1, 1], which is conservative across elements and stable
with respect to the discrete norm ‖·‖M induced by M , if an adequate numerical flux
is chosen, see inter alia Theorem 5 of [9].
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Burgers’ Equation

Burgers’ equation

∂t u + ∂x
u2

2
= 0 (6)

is nonlinear and since the product of two polynomials of degree ≤ p is in general a
polynomial of degree ≤ 2p, it has to be projected onto the lower dimensional space
of polynomials of degree ≤ p. For a nodal Gauß–Legendre or Lobatto–Legendre
basis, the collocation approach is used, whereas for a modal Legendre basis, an
exact multiplication of polynomials followed by an exact L2 projection is applied
(see for details [10]).

Using the M-adjoint u∗ = M−1uT M , Ranocha et al. [10] presented the semidis-
cretisation

∂t u = −1

3
D u u − 1

3
u∗ D u + M−1RT B

(

f num − 1

3
R u u − 1

6

(
R u

)2
)

, (7)

which is conservative across elements and stable in the discrete norm induced by M ,
if an appropriate numerical flux is chosen, see Theorem 2 of [10] or Theorem 3 of
the prior contribution.

3 Artificial Dissipation/Spectral Viscosity

We consider a scalar conservation law in one space dimension

∂t u(t, x) + ∂x f
(
u(t, x)

) = 0, (8)

equipped with appropriate initial and boundary conditions. Adding a viscosity term
on the right-hand side yields

∂t u(t, x) + ∂x f
(
u(t, x)

) = (−1)s+1ε
(
∂xa(x)∂x

)s
u(t, x), (9)

where s ∈ N is the order, ε ≥ 0 is the strength and a : R → R is a suitable func-
tion.

3.1 Continuous Setting

In the continuous setting, we analyse conservation and stability after the introduction
of a viscosity term on the right-hand side.

In order to study conservation, we integrate equation (9) over some interval Ω

and use integration by parts. We get
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d
dt

∫

Ω

u =
∫

Ω

∂t u = −
∫

Ω

∂x f (u) + (−1)s+1ε

∫

Ω

(∂xa∂x )
s u

⇐⇒ d
dt

∫

Ω

u = − f (u)
∣
∣
∂Ω

+ (−1)s+1ε a ∂x (∂xa∂x )
s−1 u

∣
∣
∂Ω

.

Thus, if a vanishes at the boundary ∂Ω , this guarantees conservation.
Investigating L2 stability, (9) is multiplied with u and integrated overΩ . With the

entropy flux F(u) = u f ′(u) and integration by parts, we obtain

1

2
d
dt ‖u‖2L2(Ω) =1

2
d
dt

∫

Ω
u2 =

∫

Ω
u ∂t u = −

∫

Ω
u ∂x f (u) + (−1)s+1ε

∫

Ω
u (∂xa∂x )

s u

= − F(u)
∣
∣
∂Ω

+ (−1)s+1ε u a ∂x (∂xa∂x )
s−1 u

∣
∣
∂Ω

+ (−1)sε
∫

Ω
(a∂xu) ∂x (∂xa∂x )

s−1 u.

Assuming again that a vanishes at the boundary ∂Ω and using induction, this
becomes

1

2
d
dt ‖u‖2L2(Ω) = −F(u)

∣
∣
∂Ω

+ (−1)sε
∫

Ω

(a∂xu) ∂x (∂xa∂x )
s−1 u

= −F(u)
∣
∣
∂Ω

+ (−1)s+1ε

∫

Ω

[
(∂xa∂x ) u

] [
(∂xa∂x )

s−1 u
]

= −F(u)
∣
∣
∂Ω

+

⎧
⎪⎨

⎪⎩

(−1)s+1ε
∫
Ω

[
(∂xa∂x )

s/2 u
]2

, s even,

(−1)sε
∫
Ω
a

[
∂x (∂xa∂x )

s−1
2 u

]2
, s odd.

So, if a vanishes at the boundary ∂Ω , the rate of change of the integral of the L2

entropy u → U (u) = 1
2u

2 is given by the entropy flux F(u) through the surface of
∂Ω and an additional term, which is non-positive if a ≥ 0 inΩ . Thus, the right-hand
side in Eq. (9) has a stabilising effect. Under these conditions on a, we can ensure
conservation and L2 stability in the continuous setting.

If we discretise now this term, we have to be careful. We need some kind of
projection, because the product of au is not in general a polynomial of degree ≤ p
and the approximation of (au) might not be zero on ∂Ω , even if a vanishes there,
see for details [8].

3.2 Semidscrete setting

In the following, we assume that we have a conservative and stable scheme for
the conservation law (8) and we augment this with an additional term, a discrete
equivalent of the dissipative term (9). We have only to study the discretisation of the
viscosity term concerning conservation and stability. In the context of CPR methods
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using SBP operators, a direct discretisation of the dissipative term can be written as

(−1)s+1ε
(
D a D

)s
u, (10)

where a represents the multiplication with a.
Analysing (10), conservation across elements and stability for s = 1 yields further

conditions. Focussing on conservation results in

1T M D a D u = 1T RT B R a D u − 1T DT M a D u = 1T RT B R a D u,

where the SBP property (1) has been used. So, the resulting scheme is conservative
if and only if the projection used preserves boundary values. This is the case for
a nodal Lobatto–Legendre basis including the boundary points, but not for a nodal
Gauß–Legendre or a modal Legendre basis.

Considering now stability for s = 1, we multiply the term (10) with uT M and
divide by ε, yielding with the SBP property (1)

uT M D a D u = uT RT B R a D u − uT DT M a D u.

As before, the boundary term does not vanish in general and also the matrix a has
to be self-adjoint and positive semidefinite with respect to M to ensure that the last
term is not positive.

We can avoid these problems by using the SPB property (1) directly in the dissi-
pative term (10) for s = 1. This yields

ε D a D u = ε M−1 M D a D u = ε M−1
(
RT B R a D u − DT M a D u

)
. (11)

Enforcing the boundary term to vanish yields for arbitrary s the discrete form

(−1)s+1ε
(
−M−1 DT M a D

)s
u = −ε

(
M−1 DT M a D

)s
u (12)

of the viscosity term. Now we study conservation and stability for this dissipative
term (12). Multiplying (12) with 1T M results in

− ε 1T DT M a D
(
M−1 DT M a D

)s−1
u = 0, (13)

since the derivative is exact for constants and so the resulting scheme is conservative
across elements.

To analyse the L2 stability, we get by simple calculation
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− ε uT DT M a D
(
M−1 DT M a D
︸ ︷︷ ︸

:=A

)s−1
u

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ε

[(
A

)s/2
u

]T

M

[(
A

)s/2
u

]

, s even,

−ε

[
(
A

) s−1
2
u

]T

DT M a D

[
(
A

) s−1
2
u

]

, s odd,

with a self-adjoint. To ensure that these terms are always negative, we have to focus
on the different bases and the projections, see for details [8]. Finally, this results in
the following lemma.

Lemma 1 (Lemma 1 in [8]). Augmenting a conservative and stable SBP CPR
method for the scalar conservation law (8)

∂t u + ∂x f (u) = 0 (14)

with the right-hand side (12)

− ε
(
M−1 DT M a D

)s
u, (15)

where a|Ω ≥ 0 is a polynomial fulfilling a|∂Ω = 0 results in a conservative and stable
semidiscrete scheme if

• a nodal basis with diagonal norm matrix M
• or a modal basis with exact L2 norm and multiplication using exact L2 projection

is used. Bases fulfilling these conditions are nodal bases using Gauß–Legendre or
Lobatto–Legendre nodes (with lumped mass matrix) and a modal Legendre basis.

3.3 Discrete setting

In order to get a working numerical scheme, a time discretisation has to be used
to solve the ordinary differential equation. We apply in this work an explicit Euler
method. The development in the standard element during one time step Δt is given
by

u → u+ := u + Δt ∂t u. (16)

Using nowanSBPCPR semidiscretisation to compute the time derivative ∂t uwithout
artificial viscosity term, the norm after one Euler step is given by
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∥
∥u+

∥
∥2
M = uT

+ M u+ = uT M u + 2Δt uT M∂t u + (Δt)2∂t u
T M ∂t u

= ∥
∥u

∥
∥2
M + 2Δt

〈
u, ∂t u

〉
M + (Δt)2

∥
∥∂t u

∥
∥2
M .

(17)

The term 2Δt
〈
u, ∂t u

〉
M can be estimated in terms of boundary values and can be

controlled by the numerical flux. However, the last term (Δt)2
∥
∥∂t u

∥
∥2
M causes prob-

lems. It is always non-negative and increases the norm. This may trigger instabilities.
The main idea is now to introduce artificial dissipation and choose the parameters
adequately in order to damp the energy growth. Adding the artificial viscosity term
(12) with strength ε yields

∂t u
ε = ∂t u − ε

(
M−1 DT M a D

)s
u = ∂t u − εAsu.

The norm after one explicit Euler step with artificial dissipation is

∥
∥uε

+
∥
∥2
M = ∥

∥u
∥
∥2
M + 2Δt

〈
u, ∂t u

ε
〉
M + (Δt)2

∥
∥∂t u

ε
∥
∥2
M

= ∥
∥u

∥
∥2
M + 2Δt

〈
u, ∂t u

〉
M − 2εΔt

〈
u, As u

〉

M
+ (Δt)2

∥
∥∂t u

ε
∥
∥2
M .

(18)

Here again, the term
〈
u, ∂t u

〉
M does not cause any problems. We have to focus now

on the last two terms and these terms shall cancel out. Then, we get a similar estimate
to the semidiscrete case, i.e.

∥
∥uε

+
∥
∥2
M = ∥

∥u
∥
∥2
M + 2Δt

〈
u, ∂t u

〉
M . (19)

Thus, we get a conservative and stable fully discrete scheme. To cancel these two

terms −2εΔt
〈
u, Asu

〉

M
+ (Δt)2

∥
∥∂t uε

∥
∥2
M , we have to solve this quadratic equation

0 = − 2ε
〈
u, As u

〉

M
+ Δt

∥
∥∂t u

ε
∥
∥2
M

= − 2ε
〈
u, As u

〉

M
+ Δt

(
∥
∥∂t u

∥
∥2
M − 2ε

〈
∂t u,

〉
Asu

M
+ ε2

∥
∥
∥As u

∥
∥
∥
2

M

)

,

(20)

which is equivalent to

ε2
(

Δt
∥
∥
∥Asu

∥
∥
∥
2

M

)

︸ ︷︷ ︸
=:A

+ε

(

−2
〈
u, Asu

〉

M
− 2Δt

〈
∂t u, Asu

〉

M

)

︸ ︷︷ ︸
=:B

+
(
Δt

∥
∥∂t u

∥
∥2
M

)

︸ ︷︷ ︸
=:C

= 0. (21)

The roots of this equation for A �= 0 are given by

ε1/2 = 1

2A

(
−B ±

√
B2 − 4AC

)
.
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and for sufficiently small time step Δt the discriminant B2 − 4AC is non-negative
as well as −B and AC . We may estimate the strength in the following way

ε1 ≥ ε2 = 1

2A

(
−B −

√
B2 − 4AC

)
≥ 1

2A

(
−B +

√
B2

)
= 0.

Finally, this results in the following lemma.

Lemma 2 (Lemma 3 of [8]). If a conservative and stable SBP CPR method for a
scalar conservation law (8)

∂t u + ∂x f (u) = 0 (22)

is augmented with the artificial dissipation (12)

− ε
(
M−1 DT M a D

)s
u (23)

on the right-hand side, the fully discrete scheme using an explicit Euler method as
time discretisation is both conservative and stable if

• a nodal Gauß–Legendre/Lobatto–Legendre or a modal Legendre basis is used,

•
〈
u As u,>

〉
0, which will be fulfilled for the choice of a described below if the

solution u is not constant,
• the time step Δt is small enough such that

B2 − 4AC > 0, −B > 0, if Δt is small enough and Asu �= 0. (24)

is fulfilled,
• and the strength ε > 0 is big enough.

If the other conditions are fulfilled, ε has to obey

ε ≥ ε2 = 1

2A

(
−B −

√
B2 − 4AC

)
, (25)

where A, B, and C from Eq. (21) are used.

This result gives us the approach to calculate the strength of the viscosity operator
in an adaptive way to ensure stability for the fully discrete schemes.

4 Numerical results

In this section, we verify our results by two numerical test cases. We consider the
linear advection (3) and Burgers’ equation (6) with smooth initial conditions. Further
experiments can be found in [8].
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Fig. 1 The numerical solutions (left) and the energies (right) are plotted

We start with the linear advection with constant velocity

∂t u + ∂xu = 0, u(0, x) = u0(x) = exp
(
−20(x − 1)2

)
.

We calculate the numerical solution in the domain x ∈ [0, 2], equipped with periodic
boundary conditions.We choose N = 8 elements using aGauß–Legendre nodal basis
of degree ≤ p = 7, a central numerical flux f num(u−, u+) = (u− + u+)/2 and for
the dissipative term a(x) = 1 − x2. For the time integration, we use 12 · 104 steps in
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the time interval [0, 10]. In Fig. 1 on the left side the numerical solution and on the
right side the energy of these solutions are given.

In the first row, the computation is without additional artificial dissipation. In
the second row, the calculation is done with various strengths ε and in the last row,
new adaptive strategy for the strength is applied. As can be seen in the first row, the
energy of the solutions using 12 · 104 time steps is increasing, as expected, whereas
a simple artificial dissipation of fixed strength has a stabilising effect, see the plots in
the second row. However, using the new adaptive technique (Lemma 2) to estimate
the strength ε, the energy remains constant and the solutions look as expected. This
confirms our results.

In the second test case, we consider the Burgers’ equation (6) with smooth initial
conditions

∂t u + ∂x
u2

2
= 0, u(0, x) = u0(x) = sin πx + 0.01 (26)

in the periodic domain [0, 2]. This Eq. (6) is used as a prototypical example of a
nonlinear conservation law yielding a discontinuous solution in finite time t ∈ [0, 3].
The stable semidiscretisation (7) with N = 16 elements representing polynomials of
degree≤ p = 16 in nodalGauß–Legendre bases is usedwith the local Lax-Friedrichs

Fig. 2 First row: t = 0.31. Second row: t = 3
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flux f num(u−, u+) = u2−+u2+
4 − max

{|u−|,|u+|}
2 (u+ − u−). The explicit Eulermethod as

time integrator uses 15 · 103 steps for the interval [0, 3].
At time= 0.31, the solutions computed with only 500 time steps are still smooth,

but the energy increases if no artificial dissipation is employed. The application of
adaptive spectral viscosity results in a constant energy, see first row in Fig. 2.

At time t = 3, the solutions have developed discontinuities andwe see oscillations
around x ≈ 1 for the different spectral viscosity, whichwe use.Here, the schemewith
the spectral viscosity of fixed strength ε = 5 · 10−3 demonstrates the best result. It
adds enoughdissipation to remove these oscillations nearly completely.Nevertheless,
all three choices of spectral viscosity yield nearly visually indistinguishable results
for the energy.

5 Conclusion and outlook

In this contribution, we considered artificial dissipation/spectral viscosity in the gen-
eral framework of CPR methods using SBP operators. Stability and conservation
results are presented and also a new adaptive strategy to get a conservative and sta-
ble fully discrete scheme by an explicit Euler method. Numerical test cases show
the advantage of the chosen approach as well some limitations. The authors of [2]
present an approach to overcome some of these limitations.

Further research topics are the extensions to different time integration methods
and other hyperbolic conservation laws.
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On a Relation Between Shock Profiles
and Stabilization Mechanisms
in a Radiating Gas Model

Masashi Ohnawa

Abstract In the present article, the author deals with the asymptotic stability issue
of traveling wave solutions or shock waves to a simplified model of radiating gas
called the Hamer model. If the shock strength, defined by the difference of the two
asymptotic values, exceeds a certain threshold, the shock profiles have discontinu-
ities of the first kind. We prove that all subcritical shock waves are stable to small
perturbations due to smoothing effect of radiation, while in the critical case, arbitrary
small perturbations could cause blowup in a finite time. In the supercritical cases,
however, convection contributes to the recovery of stability under the presence of
discontinuity in the asymptotic state. This article basically reviews the author’s two
papers (Ohnawa, SIAMJMathAnal 46:2136–2159, 2014, [15]) and (Ohnawa, SIAM
J Math Anal 48:3820–3839, 2016, [16]).

Keywords Asymptotic stability · Discontinuous shock wave · Radiation gas
system

1 Introduction

The present paper deals with a hyperbolic–elliptic coupled systemwhichwas derived
in Hamer [4] from a system of equations describing gas dynamics with radiation.
The system reads

ut + uux + qx = 0, (1)

−m2qxx + q + ux = 0, (2)

where u(t, x) and q(t, x) are real-valued functions for t ≥ 0 and x ∈ R

which satisfies
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u(0, x) = u0(x) with lim
x→±∞ u0(x) = u±, (3)

lim
x→±∞ q(t, x) = 0 for an arbitrary t ≥ 0, (4)

and m is a positive constant whose reciprocal m−1 corresponding to the absorption
coefficient.

For this system with m = 1, Kawashima and Nishibata [7] showed (1)–(2) admits
traveling wave solutions, i.e., solutions in the form of (u, q)(t, x) = (U, Q)(x −
st) for a certain constant s, supplemented by limx→±∞ U (x) = u±. (By suitably
changing variables if necessary, we may assume without loss of generality that u− +
u+ = 0 and s = 0.) Moreover, defining the shock strength δS by

δS := |u− − u+|, (5)

they revealed that U is smooth only when δS ≤ √
2, and discontinuities appear at

one point in the profiles of U if δS >
√
2. Here, discontinuous solutions are defined

in the sense of Kružkov [9]. Their results are easily extended to the case of general
m > 0. To see the effects of m and δS , let us put

δ̃S := mδS. (6)

Proposition 1. For δ̃S > 0, there exists a traveling wave solution to (1)–(2) uniquely
up to a shift. The function U is monotonically decreasing and in a suitable coordinate
U is an odd function. Moreover, it holds that

|U (x) − uS(x)| ≤ 1

2
δSe−c|x |, with uS(x) := u± for ± x > 0, (7)

where c is a positive constant depending only on δS and m.
(i) In the cases δ̃S ∈ (0,

√
2) (subcritical) or δ̃S = √

2 (critical), the solution satisfies
(U, Q) ∈ C1(R) × C2(R), and

0 > U ′(x) ≥ U ′(0) =
(

−1 +
√
1 − δ̃2S/2

)
/2m2 for x ∈ R. (8)

(ii) In the case δ̃S >
√
2 (supercritical), the solution is discontinuous at only x = 0

and
0 > U ′(x) > U ′(±0) = −1/m2 for x ∈ R0 := R \ {0}. (9)

These features are not intrinsic to simplified models. For the original system from
which Hamer’s model was derived, the appearance of discontinuities when δS or m
are sufficiently large was known since the early works by physicists [5, 19] and is
still being actively studied [11, 12]. Some of these properties of shock waves are
recently mathematically validated in [2, 13].
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Alongwith these studies, the stability of shockwaves has been extensively studied.
The L1-stability was proved in a comprehensive manner by Serre [17, 18]; arbitrary
strong shock waves are shown to be L1-stable to arbitrary large L1 perturbations.
However, physically important feature of the appearance of discontinuities in the
supercritical shock profiles seems to be more closely related to L∞-stability issue.
The earliest result in this direction was obtained in [7] for shock waves with δS <√
6/2(<

√
2) in the case ofm = 1. Improvements have beenmade in various aspects

since then [3, 10, 14], but all of the results were applicable only to a portion of
subcritical cases.

The objective of this paper is to review facts on L∞-stability of traveling waves
for subcritical, critical, and supercritical cases obtained by the author in [15, 16],
and to give an insight into the appearance of discontinuity in the supercritical shock
profiles from the view point of stability, which was revealed in [7] by phase plane
analysis of the underlying system of ordinary differential equations.

More precisely, the author clarified that all subcritical shock waves are L∞-stable
to small perturbations, while the critical shock wave, if added certain types of per-
turbations, blows up in a finite time whatever small they may be. In the supercritical
cases, however, convection contributes to the recovery of stability under the presence
of discontinuity in the asymptotic state.

Notations: For a constant p ∈ [1,∞], | f |p denotes the canonical L p norm of a
function f . The kth-order Sobolev space in the L2 sense is denoted by H k and is
equippedwith the norm ‖ · ‖H k .We often simplify it as ‖ · ‖k . For nonnegative integer
n, we denote by Cn

b (R) a subspace of Cn(R) with derivatives being bounded up to
nth order, which is equipped with the norm of ‖ f ‖Cn(R) := ∑n

k=0 supx∈R | f (k)(x)|.
Finally, c and C denote generic positive constants.

Here we formulate the stability problems depending on the magnitude of δ̃S rel-
ative to the threshold value of

√
2.

• Subcritical case (δ̃S <
√
2)

We consider an initial value which satisfies

u0 − uS ∈ L1, where uS(x) := u± (±x > 0). (10)

Then we may assume ∫ ∞

−∞
(u0(x) − U (x)) dx = 0, (11)

and U (0) = 0 by suitably changing variables. The initial perturbation and its anti-
derivative are defined by

φ0(x) := u0(x) − U (x), �0(x) :=
∫ x

−∞
φ0(y) dy for an arbitrary x ∈ R,

respectively. Conditions (7) and (10) assure the well-definedness of �0(x).
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Theorem 1. In the case δ̃S ∈ (0,
√
2), assume (10)–(11),

�0, φ0 ∈ L2(R), (12)

and

u0 ∈ C1
b(R), inf

x∈R
u′
0(x) >

(
−1 −

√
1 − δ̃2S/2

)
/2m2. (13)

If ‖�0‖1 is sufficiently small, the initial value problem (1)–(4) has a unique global
solution (u, q) ∈ C1

b × C2
b . The solution converges uniformly to the shock wave:

sup
x∈R

|u(t, x) − U (x), q(t, x) − Q(x)| → 0 as t → ∞. (14)

• Critical case (δ̃S = √
2)

In contrast to the theorems above, the critical shock wave, which is still contin-
uous, blows up the first-order derivative in a finite time if added certain types of
perturbations whatever small they may be.

Theorem 2. Let (U, Q) be a traveling wave solution in the case δ̃S = √
2. For an

arbitrary φ0( 
≡0) ∈ C1
b(R) which satisfies

φ0(−x) = −φ0(x) and φ0(x) ≤ 0 for x ≥ 0, (15)

the solution to (1)–(4) with u0(x) = U (x) + φ0(x) blows up in a finite time, i.e.,

inf
x∈R

ux (t, x) → −∞ as t → T∗ − 0 (16)

for a certain finite value T∗(> 0).

Next theorem presents another kind of blowup set. It shows passing δ̃S formally
to

√
2 in Theorem 1 is not valid. See [15] for the proof.

Theorem 3. Consider the case δ̃S = √
2. For an arbitrary positive constant ε,

there exists an initial data u0 ∈ C1
b(R) satisfying (10)–(12), ‖�0‖1 < ε as well as

inf
x∈R

u′
0(x) > −1/2m2 such that the solution to (1)–(4) blows up the first order deriva-

tive in a finite time.

• Supercritical case (δ̃S >
√
2)

Weconsider a piecewise smooth initial datau0(x)whichhas exactly onediscontinuity
of the first kind. Assuming (10), there uniquely exists a traveling wave U such that
U (±∞) = u± and (11) hold. We redefine the origin to be the location of the jump
in U and fix the shift of U so that (11) holds. In view of Proposition 1, the origin
may be regarded as the center of mass of the initial data. Denoting the location of the
discontinuity of u0 by x = d0, we define the initial perturbation and its anti-derivative
by
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φ0(x) := u0(d0 + x) − U (x), �0(x) :=
∫ x

±∞
φ0(y) dy for ± x > 0.

Theorem 4. In the case δ̃S >
√
2, assume conditions stated above and

�0 ∈ H 3(R0), where R0 := R \ {0}. (17)

If δ̃S is sufficiently larger than
√
2, and ‖�0‖3 is sufficiently small, the initial value

problem (1)–(4) has a unique global solution which satisfies

φ(t, x) ∈
2⋂

k=0

Ck([0,∞); H 2−k(R0)), and ψ(t, x) ∈
2⋂

k=0

Ck([0,∞); H 3−k(R0)),

(18)
where

(φ,ψ)(t, x) := (u, q)(t, d(t) + x) − (U, Q)(x). (19)

Here d(t) is a C1-function representing the location of the sole discontinuity in
u(t, ·), which converges to the center of mass of the initial data:

d(t) → 0 as t → ∞. (20)

Furthermore, the solution converges uniformly to the shock wave:

sup
x∈R0

(φ,ψ)(t, x) → 0 as t → ∞. (21)

The condition δ̃S  √
2 in Theorem 4 is imposed in order to handle terms arising

from the mobility of the discontinuity. In the case u0(x) is odd, so is u(t, ·) for an
arbitrary t > 0 and d(t) is identically zero. Thus the ‘largeness’ of δ̃S can be removed.

Theorem 5. If u0(x) is an odd function, all conclusions of Theorem 4 hold for an
arbitrary δ̃S >

√
2.

In what follows, we give sketches for the proofs of Theorem 1 in Sect. 2, of Theorem
2 in Sect. 3, and of Theorem 5 in Sect. 4. Since the essence of the stability mechanism
of supercritical shock waves is manifested in the proof of Theorem 5, Theorem 4 is
not proved here. Interested readers are referred to [16].

2 Subcritical case (Proof of Theorem 1)

By standard arguments (e.g., [1] Sect. 3), a local solution (u, q) ∈ C1(R) × C2(R)

to (1)–(4) is obtained over a life span [0, T ], where T is determined by the norm
‖u0‖C1 . Following [8], we have a maximum principle-type estimate
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inf
x∈R

u0(x) ≤ u(t, x) ≤ sup
x∈R

u0(x), ux (t, x) ≤ sup
x∈R

u′
0(x). (22)

Variables for the perturbation defined by

(φ,ψ)(t, x) := (u, q)(t, x) − (U, Q)(x)

satisfy

φt + (U + φ)φx + U ′φ + ψx = 0, (23)

−m2ψxx + ψ + φx = 0, (24)

with the initial value given by

φ(0, x) = φ0(x) = u0(x) − U (x). (25)

Lemma 1. Assuming (10), the perturbation φ(t, ·) belongs to L1(R) and satisfies

|φ(t)|1 ≤ |φ0|1, t ∈ [0, T ]. (26)

The anti-derivative of φ defined by �(t, x) :=
∫ x

−∞
φ(t, y)dy satisfies

�t + U�x + 1

2
�2

x + ψ = 0. (27)

Furthermore, assuming (10)–(12), �(t, ·), φ(t, ·), ψ(t, ·), ψx (t, ·) ∈ L2(R) holds at
each time t ∈ [0, T ].
Proof. L1-boundedness (26) is obtained in [7]. L2-boundedness is proved using
Reynolds’ transport theorem.

Lemma 2. Assume (10)–(12). If ‖�0‖1 is sufficiently small, it holds

‖�(t)‖21 +
∫ t

0

(|φ(s, ·)|22 + ‖ψ(s, ·)‖21
)

ds ≤ C‖�0‖21 (28)

for an arbitrary t ∈ [0, T ], where C is a positive constant independent of T .

Proof. Multiply (23) by 2φ and (27) by 2� respectively to get

∂t�
2 + ∂x

{
U�2 + 2(� + m2ψ)(m2ψx − φ)

}

−U ′�2 + (2 + �)φ2 − 2m2(ψ2 + m2ψ2
x ) = 0, (29)

∂tφ
2 + ∂x

{
Uφ2 + 2

3
φ3 − 2ψ(m2ψx − φ)

}
+ U ′φ2 + 2(ψ2 + m2ψ2

x ) = 0. (30)
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From these, we first see that ‖�(t, ·)‖1 grows at most exponentially fast so that
sup0≤t≤T |�(t, ·)|∞ can be arbitrary small by letting ‖�0‖1 be small accordingly.
Under this condition, multiplication of (30) by 3m2/2 and addition to (29) yield the
desired estimate recalling (8).

Lemma 3. Assume the same conditions as in Theorem 1. If ‖�0‖1 is sufficiently
small, then

inf
x∈R

ux (t, x) ≥ min

{
inf
x∈R

u′
0(x),

−1/2m2 + U ′(0)
2

}
, (31)

where U ′(0) is given in (8).

Proof. For arbitrary t ∈ [0, T ] and x ∈ R, there exists a unique characteristic curve
{(s, X (s))|s ∈ [0, t]} which reaches (t, x). Along this trajectory, it holds

d

dt
ux (t, X (t)) = −u2

x − m−2ux + m−2Km ∗ U ′ + m−2K ′
m ∗ φ, (32)

where Km is defined by Km(x) = exp(−|x |/m)/2m. Since

|K ′
m ∗ φ|∞(t) ≤ |K ′

m |2|φ|2(t) ≤ C |K ′
m |2|(�0, φ0)|2 ≤ C |(�0, φ0)|2 (33)

follows from Young’s inequality and Lemma 2 provided |(�0, φ0)|2 is sufficiently
small, and

Km ∗ U ′(x) = −Q(x) = U (x)2

2
− (δS/2)2

2
≥ −δ2S

8
, (34)

substitution of (33) and (34) into (32) results in

d

dt
ux (t, X (t)) ≥ −u2

x − m−2ux − 1

8
δ2S − |K ′ ∗ φ|∞(t)

= −(ux − a−)(ux − a+) − |K ′ ∗ φ|∞(t), (35)

where a± :=
(

−1 ±
√
1 − δ̃2S/2

)
/2m2. Note a+ = U ′(0) holds. If in addition (13),

that is inf
x∈R

u′
0(x) > a− holds and ‖�0‖1 is further small if necessary, we have (31).

Proof of Theorem 1 The local existence theorem and the uniform C1 bounds (22)
and (31) assure the global solution (u, q) ∈ C1

b × C2
b . TheseC1 bounds together with

lim
t→∞ |φ|2(t) = 0 deduced from (28) conclude (21).

3 Critical Case (Proof of Theorem 2)

Suppose the conclusion is false, and we have a global solution ofC1 class. It is appar-
ent that u(t, ·) is an odd function for an arbitrary t for odd u0. Then a characteristic
curve initially within x ≥ 0 remains always x ≥ 0. By (32) and (34), we have
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d

dt
ux (t, 0) = −(ux (t, 0) + 1/2m2)2 + m−2K ′

m ∗ φ(t, 0). (36)

Lemma 4.
φ(t, x) ≤ 0 for arbitrary t ≥ 0 and x ≥ 0. (37)

Proof. Consider an arbitrary characteristic curve {(t, X (t)) | t ≥ 0} departing from
(0, X0) with X0 ≥ 0. Substitute ψx = m−2(φ − Km ∗ φ) into (23) and integrate the
result along that characteristic curve to have

φ(t, X (t)) = φ0(X0) exp

(
−

∫ t

0
(m−2 + U ′(X (s)))ds

)

+ m−2
∫ t

0
(Km ∗ φ)(τ, X (τ )) exp

(
−

∫ t

τ
(m−2 + U ′(X (s)))ds

)
dτ. (38)

Since φ(t, ·) is odd while Km(·) is even and Km(a) ≥ Km(b) if |a| ≤ |b|, it holds
for x ≥ 0 that

Km ∗φ(τ, x) =
∫ ∞

0
φ(τ, y)(Km(x − y) − Km(x + y))dy

≤ sup
y≥0

φ(τ, y)

∫ ∞

0
(Km(x − y) − Km(x + y))dy = sup

y≥0
φ(τ, y) (1 − e−x/m).

Noting φ0(X0) ≤ 0, U ′(·) ∈ [−1/2m2, 0) and supy≥0 φ(τ, y) ≥ φ(τ, 0) = 0, we

have from (38) that φ(t, X (t)) ≤ C
∫ t

0
sup
y≥0

φ(τ, y)dτ for a certain positive con-

stant C . Taking the supremum among all characteristic curves departing from the
right half line, we readily obtain (37) by the Gronwall inequality.

Proof of Theorem 2 Since both K ′
m and φ(t, ·) are odd functions,

K ′
m ∗ φ (t, 0) =

∫ ∞

−∞
K ′

m(−x)φ(t, x)dx = m−1
∫ ∞

0
e−x/mφ(t, x)dx . (39)

The conditionsφ0 ∈ C1
b(R) andφ0 
≡ 0 implyφ(t, ·) ∈ C1

b(R) andφ(t, ·) 
≡ 0. Thus,
(37) and (39) imply

K ′
m ∗ φ (t, 0) < 0 for an arbitrary t ≥ 0. (40)

Substituting (40) into (36) and noting ux (0, 0) ≤ U ′(0) = −1/2m2, we conclude

ux (t, 0) → −∞ as t → T∗ − 0

for a certain finite value T∗, which contradicts the initial assumption.
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4 Supercritical Case (Proof of Theorem 5)

As already mentioned, if u0(x) is odd, then discontinuity of u(t, ·) always remain
at x = 0. In that case, (φ,ψ) is governed by (23) and (24). The local solution to
them is constructed in the class of (18) by Kato’s method [6] provided the initial
perturbation is sufficiently small so that the entropy condition u0(0 − 0) > u0(0 +
0) holds. Defining �(t, x) :=

∫ x

±∞
φ(t, y) dy for ±x > 0, analogous results to

Lemma 1 follow. In this section, we give a priori estimates for the local solution. Set

N (T ) := sup
t∈[0,T ]

‖�(t, ·)‖3, L0 := |(U ′)−1(−1/3m2)|, 	0 := {x ∈ R0 | |x | > L0}.

4.1 Energy Estimates Away from the Discontinuity

Lemma 5. If N (T ) is sufficiently small, it holds for an arbitrary t ∈ [0, T ] that

|(�, φ)|22(t) +
∫

	0

(
φ2

x + φ2
xx

)
(t, x)dx

+
∫ t

0

(
|(φ, ψ, ψx )|22(s) +

∫
	0

(φ2
x + φ2

xx )(s, x)dx

)
ds ≤ C‖�0‖23, (41)

where C is a positive constant independent of T .

Proof. First we note (28) is still valid if N (T ) is sufficiently small. Differentiate (23)
in x and multiply the result by φx and use (24) to obtain

∂t

(
1

2
φ2

x

)
+ ∂x

(
1

2
(φ + U )φ2

x

)
+

(
m−2 + 3

2
U ′ + 1

2
φx

)
φ2

x + m−2φx ψ + U ′′φφx = 0. (42)

Now we integrate (42) over 	0. Since U ′′ ∈ L∞, the integrals of the last two terms
are estimated as

∣∣∣∣
∫

	0

(
m−2φxψ + U ′′φφx

)
dx

∣∣∣∣ ≤ εm−2
∫

	0

φ2
x dx + Cε−1|(φ,ψ)|22, (43)

where ε is an arbitrary positive constant. Noting m−2 + 3U ′(x)/2 > 1/2m2 for
x ∈ 	0, if N (T ) � 1 so that |φ|∞ � |U (±0)| (≤ |U (±L0)|) and |φx |∞ � 1 hold,
letting ε in (43) suitably small and integrating in time yield

∫
	0

φx (t, x)2dx +
∫ t

0

∫
	0

φx (s, x)2dxds ≤ C
∫
	0

φ′
0(x)2dx + C

∫ t

0
|(φ,ψ)|22(s)ds.

(44)
In the similar way, the second-order derivative is estimated as
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∫
	0

φxx (t, x)2dx +
∫ t

0

∫
	0

φxx (s, x)2dxds

≤ C
∫
	0

φ′′
0 (x)2dx + C

∫ t

0

(
|(φ, ψx )|22(s) +

∫
	0

φx (s, x)2dx

)
ds. (45)

Combination of (28), (44), and (45) yields the desired estimate.

4.2 Energy Estimates over the Entire Domain

In this subsection,we assume that ‖�0‖3 is sufficiently small so that the local solution
has a life span T long enough for characteristic curves starting from x = ±L0 at t = 0
to reach x = ±0 by t = T/2.

For an arbitrary s ≥ 0, we solve an ordinary differential equation

d X (t)/dt = U (X (t)) + φ(t, X (t)) for t > s with X (s) = −L0, (46)

and define T1(y; s) for an arbitrary y ∈ [−L0, 0) so that X (T1(y; s)) = y holds. The
solvability of (46) is assured by the boundedness of U ′ and φx . The smallness of
‖�0‖3 implies the existence of a limit limy→−0 T1(y; 0), which we denote by T0.

For an arbitrary t > 0, consider a characteristic curve subject to (46) arriving at
x = 0 from left at time t and denote its location at an arbitrary time τ ∈ [0, t) by
a−(τ ; t). For an arbitrary t (≥ T0), we define s0(t) (≥ 0) such thata−(s0(t); t) = −L0

holds, and we set s0(t) = 0 for t ∈ [0, T0). Letting T be the existence time of the
solution, for an arbitrary s ≤ s0(T ) define t1(s) by limy→−0 T1(y; s).

Lemma 6. If N (T ) is sufficiently small, there exists a positive constant Tc indepen-
dent of T such that t − s0(t) < Tc for an arbitrary t ∈ (0, T ], and t1(s) − s < Tc for
an arbitrary s ∈ [0, s0(T )] hold. Moreover, the function t1(s) is differentiable almost
everywhere in s ∈ [0, s0(T )/2] and its derivative is bounded by a constant which is
independent of T .

Proof. First two statements are obvious provided N (T ) is small enough. By defini-

tion, it holds for y ∈ [−L0, 0) that T1(y; s) = s +
∫ y

−L0

(U (z) + φ(T1(z; s), z))−1dz.

Taking the difference quotient of this equality with respect to s, standard arguments
lead us to the conclusions.

Lemma 7. If N (T ) is sufficiently small, it holds that

‖�‖3(t) ≤ C‖�0‖3 for an arbitrary t ∈ [0, T ],

where C is a positive constant independent of T .
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Proof. For arbitrary t ∈ (0, T ] and τ ∈ [0, t), define a time-dependent domain
	(τ ; t) by 	(τ ; t) := {x < a−(τ ; t)|x ∈ R}. Applying Reynolds’ transport theo-
rem to (42), we have

d

dτ

∫
	(τ ;t)

1

2
φ2

x dx = 1

2
φ2

x (τ, a−(τ ; t))∂τ a−(τ ; t) −
∫
	(τ ;t)

∂x

(
1

2
(φ + U )φ2

x

)
dx

−
∫
	(τ ;t)

(
m−2φxψ + U ′′φφx

)
dx −

∫
	(τ ;t)

(
m−2 + 3

2
U ′ + 1

2
φx

)
φ2

x dx . (47)

Since ∂τ a−(τ ; t) = U (a−(τ ; t)) + φ(τ, a−(τ ; t)), the first two terms in the right-
hand side cancel. Integrating (47) in τ over [s0(t), t] and using Lemma 6, we have

∫ 0

−∞
φ2

x (t, x)dx ≤ eC(t−s0(t))
∫
	(s0(t),t)

φx (s0(t), x)2dx + C
∫ t

s0(t)
eC(t−τ)|(φ,ψ)|2(τ )2dτ

≤ C
∫
	(s0(t),t)

φx (s0(t), x)2dx + C
∫ t

s0(t)
|(φ,ψ)|2(τ )2dτ (48)

for an arbitrary t ∈ [0, T ], where C is independent of T . In the same way, we have

∫ 0

−∞
(φ2

x + φ2
xx )(t, x)dx ≤ C

∫
	(s0(t),t)

(
φ2

x + φ2
xx

)
(s0(t), x)dx + C

∫ t

s0(t)
|(φ, ψ, ψx )|2(s)2ds. (49)

ByLemma5, the last term in the right-hand side of (49) is bounded above byC‖�0‖23.
In the case of t ≤ T0, then s0(t) = 0 and 	0 ⊂ 	(s0(t), t) ⊂ (−∞, 0). Therefore,
the first term in the right-hand side of (49) is not greater than C‖�0‖23. In the case of
t > T0, this term appears in the left-hand side of (41) because a−(s0(t), t) = −L0

for t > T0 and hence 	(s0(t), t) = 	0. In any case,
∫ 0
−∞(φ2

x (t, x) + φ2
xx (t, x))dx ≤

C‖�0‖23 holds for an arbitrary t ∈ [0, T ], where C is independent of T . By this
estimate and Lemma 5, we have the desired estimate.

Lemma 8. If N (T ) is sufficiently small, it holds for an arbitrary t ∈ [0, T ] that

‖�‖23(t) +
∫ t

0
‖(φ,ψ)‖22(s)ds ≤ C‖�0‖23, where C is independent of T .

Proof. Choose an arbitrary interval [0, t] ⊂ [0, T ] and integrate (49) with t replaced
by τ over [0, t] to get

∫ t

0

∫ 0

−∞
(φ2

x (τ, x) + φ2
xx (τ, x))dxdτ

≤ C
∫ t

0

∫
	(s0(τ ),τ )

(
φ2

x + φ2
xx

)
(s0(τ ), x)dxdτ + C

∫ t

0

∫ τ

s0(τ )
|(φ, ψ, ψx )|2(s)2dsdτ. (50)

The first term in the right-hand side of (50) is estimated as
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∫ t

0

∫
	(s0(τ ),τ )

(
φ2

x + φ2
xx

)
(s0(τ ), x)dxdτ

=
∫ T0

0

∫
	(s0(τ ),τ )

(
φ2

x + φ2
xx

)
(s0(τ ), x)dxdτ +

∫ t

T0

∫
	(s0(τ ),τ )

(
φ2

x + φ2
xx

)
(s0(τ ), x)dxdτ

≤T0

∫ 0

−∞

(
(φ′

0)
2 + (φ′′

0 )2
)

(x)dx +
∫ s0(t)

0

∫
	0

(
φ2

x + φ2
xx

)
(s, x)dx

dt1(s)

ds
ds ≤ C‖�0‖23, (51)

where we used s0(τ ) = 0 for τ ≤ T0, 	(s0(τ ), τ ) = 	0 for τ > T0, s−1
0 (s) = t1(s)

for s > 0, and Lemma 5 and 6. The second term in the right-hand side of (50) is
estimated by using Lemma 5 and 6 as

∫ t

0

∫ τ

s0(τ )

|(φ,ψ,ψx )|2(s)2dsdτ

=
∫ T0

0

∫ τ

0
|(φ,ψ,ψx )|2(s)2dsdτ +

∫ t

T0

∫ τ

s0(τ )

|(φ,ψ,ψx )|2(s)2dsdτ

≤ T0

∫ T0

0
|(φ,ψ,ψx )|2(s)2ds + sup

s≤s0(t)
(t1(s) − s)

∫ t

T0

|(φ,ψ,ψx )|2(s)2ds

≤ (T0 + TC)

∫ t

0
|(φ,ψ,ψx )|2(s)2ds ≤ C‖�0‖23. (52)

Substituting (51) and (52) into (50), we obtain

∫ t

0

∫ 0

−∞
(φ2

x (τ, x) + φ2
xx (τ, x))dxdτ ≤ C‖�0‖23 for an arbitrary t ∈ [0, T ], (53)

where C is independent of T . Lemma 5, 7, (53) and (24) complete the proof.

Proof of Theorem 5 Local existence theorem and Lemma 7 conclude the unique
existence of the global solution. Standard arguments deduce (21) from Lemma 8.
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On the Longtime Behavior of Almost
Periodic Entropy Solutions to Scalar
Conservation Laws

Evgeny Yu. Panov

Abstract We found the precise condition for the decay as t → ∞ of
Besicovitch almost periodic entropy solutions of multidimensional scalar conser-
vation laws. Moreover, in the case of one space variable we establish asymptotic
convergence of the entropy solution to a traveling wave (in the Besicovitch norm).
Besides, the flux function turns out to be affine on the minimal segment containing
the essential range of the limit profile while the speed of the traveling wave coincides
with the slope of the flux function on this segment.

Keywords Almost periodic entropy solutions · Decay property
Scalar conservation laws · Spectrum · Traveling waves

1 Introduction

In the half-space Π = R+ × R
n , whereR+ = (0,+∞), we consider a conservation

law
ut + divxϕ(u) = 0, u = u(t, x), (t, x) ∈ Π. (1)

The flux vector ϕ(u) = (ϕ1(u), . . . , ϕn(u)) is supposed to be merely continuous:
ϕ(u) ∈ C(R,Rn). Recall the notion of Kruzhkov entropy solution of the Cauchy
problem for Eq. (1) with initial condition

u(0, x) = u0(x) ∈ L∞(Rn). (2)

Definition 1 ([6]). A bounded measurable function u = u(t, x) ∈ L∞(Π) is called
an entropy solution (e.s.) of (1), (2) if for all k ∈ R
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∂

∂t
|u − k| + divx [sign (u − k)(ϕ(u) − ϕ(k))] ≤ 0 (3)

in the sense of distributions on Π (in D ′(Π)), and

ess lim
t→0+ u(t, ·) = u0 in L1

loc(R
n). (4)

Here sign u =
{

1, u > 0,
−1, u ≤ 0

and relation (3) means that for each test function

h = h(t, x) ∈ C1
0(Π), h ≥ 0,

∫
Π

[|u − k|ht + sign (u − k)(ϕ(u) − ϕ(k)) · ∇xh]dtdx ≥ 0,

where · denotes the inner product in R
n .

Taking in (3) k = ±R, where R ≥ ‖u‖∞, we obtain that ut + divxϕ(u) = 0 in
D ′(Π); that is, an e.s. u = u(t, x) is a weak solution of this equation as well.

The existence of e.s. of (1), (2) follows from the general result of [12, Theorem 3].
In the case under consideration when the flux vector is only continuous the effect
of infinite speed of propagation appears, which may even lead to the nonuniqueness
of e.s. if n > 1, and see examples in [7, 8, 12], where exact sufficient conditions of
the uniqueness were also found. Nevertheless, if an initial function u0 is periodic in
R

n (at least in n − 1 independent directions), then the e.s. of (1), (2) is unique and
x-periodic; see [11], as well as the more general result [12, Theorem 11].

We will study problem (1), (2) in the class of Besicovitch almost periodic func-
tions. Let CR be the cube

{ x = (x1, . . . , xn) ∈ R
n | |x |∞ = max

i=1,...,n
|xi | ≤ R/2 }, R > 0.

We define the seminorm

N1(u) = lim sup
R→+∞

R−n
∫
CR

|u(x)|dx, u(x) ∈ L1
loc(R

n).

Recall (see [1, 9]) that the Besicovitch spaceB1(Rn) is the closure of trigonometric
polynomials, i.e., finite sums

∑
aλe2π iλ·x with i2 = −1,λ ∈ R

n , in the quotient space
B1(Rn)/B1

0 (R
n), where

B1(Rn) = {u ∈ L1
loc(R

n) | N1(u) < +∞}, B1
0 (R

n) = {u ∈ L1
loc(R

n) | N1(u) = 0}.

The spaceB1(Rn) is equipped with the norm ‖u‖1 = N1(u) (we identify classes in
the quotient space B1(Rn)/B1

0 (R
n) and their representatives). The space B1(Rn) is

a Banach space, and it is isomorphic to the completeness of the space AP(Rn) of
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Bohr almost periodic functions with respect to the norm N1. It is known (see, for
instance, [1]) that for each function u ∈ B1(Rn) there exists the mean value

ū = −
∫
Rn

u(x)dx
.= lim

R→+∞ R−n
∫
CR

u(x)dx

and, more generally, the Bohr–Fourier coefficients

aλ = −
∫
Rn

u(x)e−2π iλ·xdx, λ ∈ R
n.

The set
Sp(u) = { λ ∈ R

n | aλ 
= 0 }

is called the spectrum of an almost periodic function u(x). It is known [1] that the
spectrum Sp(u) is at most countable.

Now we assume that the initial function u0(x) ∈ B1(Rn) ∩ L∞(Rn). Let I =
−
∫
Rn u0(x)dx , and M0 be the smallest additive subgroup of Rn containing Sp(u0).
It was shown in [17] that an e.s. u(t, x) of (1), (2) is almost periodic with respect to

spatial variables. Moreover, u(t, x) ∈ C([0,+∞),B1(Rn)) (after possible correc-
tion on a set of null measure) and Sp(u(t, ·)) ⊂ M0, −

∫
Rn u(t, x)dx = I for all t ≥ 0.

The uniqueness of e.s. u(t, x) in the spaceC([0,+∞),B1(Rn)) is a consequence of
the following general result [17, Proposition 1.3], which holds for arbitrary bounded
and measurable initial functions.

Theorem 1. Let u(t, x), v(t, x) ∈ L∞(Π) be e.s. of (1), (2) with initial functions
u0(x), v0(x) ∈ L∞(Rn), respectively. Then for a.e. t > 0

N1(u(t, ·) − v(t, ·)) ≤ N1(u0 − v0). (5)

For completeness, we reproduce the proof.

Proof. Applying Kruzhkov doubling of variables method, we obtain the relation (see
[6, 12])

|u − v|t + divx [sign (u − v)(ϕ(u) − ϕ(v))] ≤ 0 in D ′(Π). (6)

We choose a function g(y) ∈ C1
0(R

n) such that 0 ≤ g(y) ≤ 1, and g(y) ≡ 1 in the
cube C1, g(y) ≡ 0 in the complement of the cube Ck , k > 1, and a function h =
h(t) ∈ C1

0(R+), h ≥ 0. Applying (6) to the test function f = R−nh(t)g(x/R) with
R > 0, we obtain

∫ ∞

0

(
R−n

∫
Rn

|u(t, x) − v(t, x)|g(x/R)dx

)
h′(t)dt +

R−n−1
∫

Π

sign (u − v)(ϕ(u) − ϕ(v)) · ∇yg(x/R)h(t)dtdx ≥ 0. (7)
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Making the change y = x/R in the last integral in (7), we derive the estimate

R−n−1

∣∣∣∣
∫

Π

sign (u − v)(ϕ(u) − ϕ(v)) · ∇yg(x/R)h(t)dtdx

∣∣∣∣ ≤

R−1‖ϕ(u) − ϕ(v)‖∞
∫

Π

|∇yg|(y)h(t)dtdy ≤ A

R

∫ +∞

0
h(t)dt, (8)

where A = ‖ϕ(u) − ϕ(v)‖∞
∫
Rn |∇yg|(y)dy. Here and below we use the notation

|z| for the Euclidean norm of a finite-dimensional vector z. Let

IR(t) = R−n
∫
Rn

|u(t, x) − v(t, x)|g(x/R)dx .

From (7) and (8), it follows that

∫ +∞

0
(IR(t) − At/R)h′(t)dt =

∫ +∞

0
IR(t)h′(t)dt + A

R

∫ +∞

0
h(t)dt ≥ 0

for all h(t) ∈ C1
0((0,+∞)), h(t) ≥ 0. This means that the generalized derivative

d
dt (IR(t) − At/R) ≤ 0, which readily implies that there exists a set F ⊂ (0,+∞) of
full Lebesgue measure (which can be defined as the set of common Lebesgue points
of functions IR(t), R ∈ Q) such that ∀t2, t1 ∈ F , t2 > t1, ∀R ∈ Q IR(t2) − At2/R ≤
IR(t1) − At1/R, that is IR(t2) ≤ IR(t1) + A(t2 − t1)/R. By the evident continuity of
IR(t) with respect to R, the latter relation remains valid for all R > 0. In the limit
as F � t1 → 0 we obtain, taking into account the initial conditions for e.s. u, v, that
∀t2 = t ∈ F for all R > 0

IR(t) ≤ IR(0) + At/R, (9)

where IR(0) = R−n
∫
Rn |u0(x) − v0(x)|g(x/R)dx . By the properties of g(y), we

find the inequalities

R−n
∫
CR

|u(t, x) − v(t, x)|dx ≤ IR(t) ≤

R−n
∫
CkR

|u(t, x) − v(t, x)|dx = kn(kR)−n
∫
CkR

|u(t, x) − v(t, x)|dx,

which imply that

N1(u(t, ·) − v(t, ·)) ≤ lim sup
R→+∞

IR(t) ≤ knN1(u(t, ·) − v(t, ·)). (10)

In view of (10), we derive from (9) in the limit as R → +∞ that N1(u(t, ·) −
v(t, ·)) ≤ knN1(u0 − v0) for all t ∈ F . To complete the proof, it only remains to
notice that k > 1 is arbitrary.
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Remark 1. As was established in [13, Corollary 7.1], after possible correction on a
set of null measure any e.s. u(t, x) ∈ C(R+, L1

loc(R
n)). In particular, without loss

of generality, we may claim that relation (9) holds for all t > 0. This implies in the
limit as R → +∞ that the statement of Theorem 1 holds for all t > 0 as well. The
continuity property allows also to replace the essential limit in initial condition (4)
by the usual one.

Our main results are contained in Theorems 2, 4, indicated below.

Theorem 2. Assume that the following non-degeneracy condition holds for the flux
components in “resonant” directions ξ ∈ M0:

∀ξ ∈ M0, ξ 
= 0 the functions u → ξ · ϕ(u)

are not affine in any vicinity of I = u0. (11)

Then, an e.s. u(t, x) ∈ C([0,+∞),B1(Rn)) satisfies the decay property

lim
t→+∞ u(t, ·) = I inB1(Rn). (12)

Condition (11) is precise: if it fails, then there exists an initial data u0 ∈ B1(Rn) ∩
L∞(Rn) with the properties Sp(u0) ⊂ M0, u0 = I , such that the corresponding e.s.
u(t, x) of (1), (2) does not satisfy (12).

Remark 2. The decay of almost periodic e.s. was firstly studied by H. Frid [5] in
the class of Stepanov almost periodic function. This class is natural for the case of
smooth flux vector ϕ(u), when an e.s. u(t, x) of (1), (2) exhibits the property of finite
speed of propagation. The decay of such solutions was established in the stronger
Stepanov norm but under rather restrictive assumptions on the dependence of the
length of inclusion intervals for ε-almost periods of u0 on the parameter ε.

Notice that in the case of a periodic function u0 the group M0 coincides with the
dual latticeL ′ to the latticeL of periods of u0, and in this case, Theorem 2 reduces
to the following result [15] (see also the earlier paper [14]):

Theorem 3. Under the condition

∀ξ ∈ L ′, ξ 
= 0 the functions u → ξ · ϕ(u)

are not affine in any vicinity of I =
∫
Tn

u0(x)dx (13)

an e.s. u(t, x) ∈ C([0,+∞), L1(Tn)) satisfies the decay property

lim
t→+∞

∫
Tn

|u(t, x) − I |dx = 0. (14)

Here T
n = R

n/L is the n-dimensional torus, and dx is the normalized Lebesgue
measure on T

n.
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Remark that in the caseϕ(u) ∈ C2(R,Rn) the assertion ofTheorem3was established
in [3]. Now we consider the case of one space variable n = 1 when (1) has the form

ut + ϕ(u)x = 0, (15)

where ϕ(u) ∈ C(R). As above, we assume that u0 ∈ B1(R) ∩ L∞(R) and that M0

is the additive subgroup of R generated by Sp(u0). For an almost periodic function
v(x) ∈ B1(R), we denote by S(v) the minimal segment [a, b] containing essential
values of v(x). This segment can be defined by the relations

b = min{ k ∈ R | (v − k)+ = max(v − k, 0) = 0 inB1(R) },
a = max{ k ∈ R | (k − v)+ = 0 inB1(R) }.

As is easy to verify, the above minimal and maximal values exist and a ≤ b.
Our second result is the following unconditional asymptotic property of conver-

gence of an e.s. u(t, x) to a traveling wave:

Theorem 4. There is a constant c ∈ R (speed) and a function v(y) ∈ B1(R) ∩
L∞(R) (profile) such that

lim
t→+∞(u(t, x) − v(x − ct)) = 0 inB1(R). (16)

Moreover, Sp(v) ⊂ M0, v̄ = I = u0, and ϕ(u) − cu = const on the segment S(v).

We remark, in addition to Theorem 4, that the profile v(y) of the traveling wave
and, if v 
≡ const, its speed c are uniquely defined. Indeed, if (16) holds with v =
v1, v2, c = c1, c2, respectively, then v1(x − c1t) − v2(x − c2t) → 0 inB1(R) as t →
+∞, which implies the relation

lim
t→+∞(v1(y) − v2(y + (c1 − c2)t)) = 0 inB1(R). (17)

By the known property of almost periodic functions (see, for example, [1]), there
exists a sequence tr → +∞ such that v2(y + (c1 − c2)tr ) →

r→∞ v2(y) inB1(R) (this is

evident if c1 = c2). On the other hand, in view of (17) v2(y + (c1 − c2)tr ) →
r→∞ v1(y)

inB1(R) and hence v1 = v2 inB1(R). Further, ifΔc = c1 − c2 
= 0, then it follows
from (17) in the limit as t = tr + h/Δc → +∞ that v2(y) = v2(y + h) in B1(R)

for each h ∈ R. Therefore,

v2(y) = −
∫
R

v2(y + h)dh = −
∫
R

v2(h)dh = v2 = const.

Thus, for the nonconstant profile v = v2 the speed c1 = c2 = c is uniquely deter-
mined. We also remark that ‖v‖∞ ≤ ‖u0‖∞ because by the maximum principle
|u(t, x)| ≤ ‖u0‖∞ a.e. in Π .
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Theorem4defines the nonlinear operator T onB1(R) ∩ L∞(R), which associates
an initial function u0 with the profile v(y) = T (u0)(y) of the limit traveling wave
for the corresponding e.s. of problem (15), (2). In Theorem 5 below, we establish
that T does not increase the distance inB1(R).

Remark 3. In the case n = 1, the statement of Theorem 2 follows from Theorem 4.
Indeed, under the assumptions of Theorem 2, v(y) = I in B1(R). Otherwise, a <

I < b, where [a, b] = S(v) and, by Theorem 4, ϕ(u) = cu + const in the vicinity
(a, b) of I . But the latter contradicts to assumption (11) of Theorem 2.

Note that in the periodic case Theorems 4, 5 were proved in [16].

2 Proof of Theorem 2

We assume firstly that the initial function is a trigonometric polynomial u0(x) =∑
λ∈Λ aλe2π iλ·x . Here Λ = Sp(u0) ⊂ R

n is a finite set. The minimal additive sub-
group M0

.= M(u0) of Rn containing Λ is a finite generated torsion-free abelian
group, and therefore, it is a free abelian group of finite rank (see [10]). There-
fore, there is a basis λ j ∈ M0, j = 1, . . . ,m, so that every element λ ∈ M0 can be
uniquely represented as λ = λ(k̄) = ∑m

j=1 k jλ j , k̄ = (k1, . . . , km) ∈ Z
m . In partic-

ular, the vectors λ j , j = 1, . . . ,m, are linearly independent over the field of rational
numbers Q. We introduce the finite set J = { k̄ ∈ Z

m | λ(k̄) ∈ Λ } and represent the
initial function as

u0(x) =
∑
k̄∈J

ak̄e
2π i

∑m
j=1 k jλ j ·x , ak̄

.= aλ(k̄).

By this representation u0(x) = v0(y(x)), where

v0(y) =
∑
k̄∈J

ak̄e
2π i k̄·y

is a periodic function on R
m with the standard lattice of periods Zm while y(x) is a

linear map from R
n to R

m defined by the equalities y j = λ j · x = ∑n
i=1 λ j i xi , λ j i ,

i = 1, . . . , n, being coordinates of the vectors λ j , j = 1, . . . ,m. We consider the
conservation law

vt + divy ϕ̃(v) = 0, v = v(t, y), t > 0, y ∈ R
m, (18)

ϕ̃(v) = (ϕ̃1(v), . . . , ϕ̃m(v)), where

ϕ̃ j (v) = λ j · ϕ(u) =
n∑

i=1

λ j iϕi (v) ∈ C(R), j = 1, . . . ,m.
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As was shown in [11, 12], there exists a unique e.s. v(t, y) ∈ L∞(R+ × R
m) of

the Cauchy problem for Eq. (18) with initial function v0(y) and this e.s. is y-
periodic, i.e., v(t, y + e) = v(t, y) a.e. inR+ × R

m for all e ∈ Z
m . Besides, in viewof

[13, Corollary 7.1], we may suppose that v(t, ·) ∈ C([0,+∞), L1(Tm)), where
T
m = R

m/Zm is an m-dimensional torus (which may be identified with the fun-
damental cube [0, 1)m). Formally, for u(t, x) = v(t, y(x))

ut + divxϕ(u) = vt +
n∑

i=1

m∑
j=1

(ϕi (v))y j
∂y j (x)

∂xi
=

vt +
n∑

i=1

m∑
j=1

(ϕi (v))y j λ j i = vt +
m∑
j=1

(ϕ̃ j (v))y j = 0.

However, these reasons are correct only for classical solutions. In the general case
v(t, y) ∈ L∞(R+ × R

m), the range of y(x) may be a proper subspace of Rm (for
example, this is always true if m > n), and the composition v(t, y(x)) is not even
defined. The situation is saved by introduction of additional variables z ∈ R

m .
Namely, the linear change (z, x) → (z + y(x), x) is not degenerated; i.e., it is a
linear automorphism of Rm × R

n . Since v(t, y) is an e.s. of Eq. (18) considered
in the extended half-space t > 0, (y, x) ∈ R

m+n , then the function u(t, z, x) =
v(t, z + y(x)) satisfies the relations

|u − k|t + divx [sign (u − k)(ϕ(u) − ϕ(k))] =
|v − k|t +

n∑
i=1

m∑
j=1

[sign (v − k)(ϕi (v) − ϕi (k))]y j
∂y j (x)

∂xi
=

|v − k|t +
m∑
j=1

n∑
i=1

[sign (v − k)(ϕi (v) − ϕi (k))]y j λ j i =

|v − k|t +
m∑
j=1

[sign (v − k)(ϕ̃ j (u) − ϕ̃ j (k))]y j ≤ 0 in D ′(R+ × R
m+n).

Evidently, the initial condition

lim
t→0+ u(t, z, x) = u0(z, x)

.= v0(z + y(x)) in L1
loc(R

m+n)

is also satisfied; therefore, u(t, z, x) is an e.s. of (1), (2) in the extended domain
R+ × R

m+n . Since Eq. (1) does not contain the auxiliary variables z ∈ R
m , then (cf.

[17, Theorem 2.1]) for all z ∈ E ⊂ R
m , where E is a set of full measure, the func-

tion v(t, z + y(x)) is an e.s. of (1), (2) with initial data v0(z + y(x)) ∈ B1(Rn).
Therefore, v(t, z + y(x)) = uz(t, x) a.e. in Π , where, in accordance with [17, The-
orem 1.6], uz(t, x) ∈ C([0,+∞),B1(Rn)) is a unique almost periodic e.s. of (1),
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(2). Therefore, we may find a countable dense set S ⊂ R+ and a subset E1 ⊂ E of
full measure such that uz(t, x) = v(t, z + y(x)) inB1(R) for all t ∈ S, z ∈ E1.

Further, as follows from independence of the vectorsλ j , j = 1, . . . ,m, overQ, the
action of the additive group Rn on the torus Tm defined by the shift transformations
Tx z = z + y(x), x ∈ R

n is ergodic; see [17] for details. By the variant of Birkhoff
individual ergodic theorem [4, Chap. VIII] for every w(y) ∈ L1(Tm) for a.e. z ∈ T

m

there exists the mean value

−
∫
Rn

w(z + y(x))dx =
∫
Tm

w(y)dy. (19)

In view of (19), there exists a set E2 ⊂ E1 of full measure such that for z ∈ E2

and all t ∈ S

−
∫
Rn

|uz(t, x) − I |dx = −
∫
Rn

|v(t, z + y(x)) − I |dx =
∫
Tm

|v(t, y) − I |dy.

Since uz(t, x) ∈ C([0,+∞),B1(Rn)), v(t, ·) ∈ C([0,+∞), L1(Tm)), while the set
S is dense in [0,+∞), we find that property

−
∫
Rn

|uz(t, x) − I |dx =
∫
Tm

|v(t, y) − I |dy (20)

remains valid for all t ≥ 0.Observe that v0(z + y(x)) → v0(y(x)) = u0(x) as z → 0
in B1(Rn) (and even in AP(Rn)). Hence, by Theorem 1 in the limit as E2 � z →
0 uz(t, x) → u(t, x) in C([0,+∞),B1(Rn)), where u(t, x) is the e.s. of original
problem (1), (2). Therefore, relation (20) in the limit as z → 0 implies the equality

−
∫
Rn

|u(t, x) − I |dx =
∫
Tm

|v(t, y) − I |dy. (21)

Further, for every k̄ = (k1, . . . , km) ∈ Z
m

k̄ · ϕ̃(u) =
m∑
j=1

n∑
i=1

k jλ j iϕi (u) = λ(k̄) · ϕ(u),

where λ(k̄) = ∑m
j=1 k jλ j ∈ M0. By condition (11), the functions u → k̄ · ϕ̃(u) are

not affine in any vicinity of I = u0 = ∫
Tm v0(y)dy. We see that non-degeneracy

requirement (13) is satisfied, and by [15, Theorem 1.3]

lim
t→+∞

∫
Tm

|v(t, y) − I |dy = 0.

Now it follows from (21) that
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lim
t→+∞ −

∫
Rn

|u(t, x) − I |dx = 0,

i.e., (12) holds.
In the general case u0 ∈ B1(Rn) ∩ L∞(Rn), we choose a sequence u0m ,m ∈ N, of

trigonometric polynomials converging to u0 inB1(Rn) and such that Sp(u0m) ⊂ M0,
u0m = I (for instance,wemay choose theBochner–Fejér trigonometric polynomials;
see [1]). Let um(t, x) be the corresponding sequence of e.s. of (1), (2) with initial data
u0m(x), m ∈ N. By Theorem 1 and Remark 1, this sequence converges as m → ∞
to the e.s. u(t, x) of the original problem in C([0,+∞),B1(Rn)). We have already
established that under condition (11) e.s. um(t, x) satisfy the decay property

lim
t→+∞ um(t, ·) = I inB1(Rn).

Passing to the limit as m → ∞ in this relation and taking into account the uniform
convergence um(t, ·) →

m→∞ u(t, ·) inB1(Rn), we obtain (12).

In conclusion, we demonstrate that condition (11) is precise. Indeed, if this condi-
tion is violated, then there is a nonzero vector ξ ∈ M0 such that ξ · ϕ(u) = τu + c on
some segment [I − δ, I + δ], where τ, c, δ ∈ R, and δ > 0. Obviously, the function

u(t, x) = I + δ sin(2π(ξ · x − τ t))

is an e.s. of (1), (2) with the periodic initial function u0(x) = I + δ sin(2π(ξ · x)).
We see that u0 = I , Sp(u0) ⊂ {−ξ, 0, ξ} ⊂ M0 but the e.s. u(t, x) does not converge
to a constant inB1(Rn) as t → +∞.

The proof of Theorem 2 is complete.

3 Proof of Theorem 4

If the flux function ϕ(u) is not affine in any vicinity of I , then by Theorem 2 the
function v(y) ≡ I , and the segment S(v) = [I, I ] = {I }. Otherwise, suppose that
the function ϕ(u) is affine in a certain maximal interval (a, b), where −∞ ≤ a <

I < b ≤ +∞: ϕ(u) − cu = const in (a, b).
Assuming that b < +∞, we define u+ = u+(t, x) as the e.s. of (15), (2) with

initial function u0(x) + b − I > u0. By the comparison principle [7, 8, 11, 12]
u+ ≥ u a.e. in Π . We note that −

∫
R
(u0(x) + b − I )dx = b while ϕ(u) is not affine in

any vicinity of b (otherwise, ϕ(u) is affine on a larger interval (a, b′), b′ > b, which
contradicts the maximality of (a, b)). By Theorem 2 u+(t, ·) → b inB1(R) as t →
+∞, and it follows from the inequality u ≤ u+ that (u(t, ·) − b)+ → 0 as t → +∞
in B1(R). Similarly, if a > −∞, then u ≥ u−, where u− = u−(t, x) is an e.s. of
(15), (2) with initial function u0(x) + a − I < u0. By Theorem 2 again the function
u−(t, ·) → a as t → +∞ in B1(R) because −

∫
R
(u0(x) + a − I )dx = a while the
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function ϕ(u) is not affine in any vicinity of a. Therefore, (a − u(t, ·))+ →
t→+∞ 0 in

B1(R). The obtained limit relations can be represented in the form

u(t, ·) − sa,b(u(t, ·)) →
t→+∞ 0 inB1(R), (22)

where sa,b(u) = min(b,max(a, u)) is the cut-off function at the levels a, b (it is
possible that a = −∞ or b = +∞).

We set w(t, x) = sa,b(u(t, x)) and choose a strictly increasing sequence tk > 0
such that tk → +∞ and N1(u(tk, ·) − w(tk, ·)) ≤ 2−k . Since a ≤ w(t, x) ≤ b while
ϕ(u) = cu + const on (a, b), then the e.s. of (15) with initial data w(tk, x) at t = tk
has the form u = w(tk, x − c(t − tk)). By Theorem 1 (with the initial time tk) for all
t > tk

−
∫
R

|w(t, x) − w(tk , x − c(t − tk))|dx = −
∫
R

|sa,b(u(t, x)) − sa,b(w(tk , x − c(t − tk)))|dx

≤ −
∫
R

|u(t, x) − w(tk , x − c(t − tk))|dx ≤ −
∫
R

|u(tk , x) − w(tk , x)|dx ≤ 2−k .

Substituting t = tl , where l > k, into this inequality, we obtain

−
∫
R

|w(tl , x + ctl ) − w(tk , x + ctk)|dx = −
∫
R

|w(t, x) − w(tk , x − c(tl − tk))]dx ≤ 2−k .

Thus, w(tk, x + ctk), k ∈ N, is a Cauchy sequence in B1(R). Therefore, this
sequence converges as k → ∞ to some function v(x) ∈ B1(R) ∩ L∞(R) inB1(R).
It is clear that the segment S(v) ⊂ [a, b] and therefore ϕ(u) − cu = const on S(v).
Since Sp(w(tk, x + ctk)) = Sp(w(tk, ·)) ⊂ Sp(u(tk, ·)) ⊂ M0, the same inclusion
holds for the limit function: Sp(v) ⊂ M0. Finally, as follows from Theorem 1, for
t > tk

−
∫
R

|u(t, x) − v(x − ct)|dx ≤ −
∫
R

|u(tk , x) − w(tk , x)|dx + −
∫
R

|w(tk , x) − v(x − ctk)|dx =

−
∫
R

|u(tk , x) − w(tk , x)|dx + −
∫
R

|w(tk , x + ctk) − v(x)|dx ≤

2−k + N1(w(tk , · + ctk) − v) → 0

as t → +∞ (then also k = max{ l | t > tl } → +∞). We see that relation (16) is
satisfied. To complete the proof of Theorem 4, it only remains to notice that

∀t > 0 u(t, ·) = −
∫
R

u(t, x)dx = I, v = −
∫
R

v(x − ct)dx

and (16) implies that v = I .
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In conclusion, we show that the operator u0 → v = T (u0), defined in the Intro-
duction, does not increase the distance inB1(R).

Theorem 5. Let u01(x), u02(x) ∈ B1(R) ∩ L∞(R) and v1 = T (u01)(x), v2 =
T (u02)(x). Then

−
∫
R

|v1(x) − v2(x)|dx ≤ −
∫
R

|u01(x) − u02(x)|dx . (23)

Proof. Let u1(t, x), u2(t, x) ∈ C([0,+∞),B1(R)) ∩ L∞(Π) be e.s. of (15), (2)
with initial data u01, u02, respectively. By Theorem 4

δ(t) = −
∫
R

|u1(t, x) − v1(x − c1t)|dx + −
∫
R

|u2(t, x) − v2(x − c2t)|dx →
t→+∞ 0,

where c1, c2 are constants. We can choose a sequence tk > 0 such that tk → +∞ as
k → ∞, and N1(v2(x + (c1 − c2)tk) − v2(x)) ≤ 1/k. Then, with property (5) taken
into account,

−
∫
R

|v1(x) − v2(x)|dx = −
∫
R

|v1(x − c1tk) − v2(x − c1tk)|dx ≤

−
∫
R

|v1(x − c1tk) − v2(x − c2tk)|dx + −
∫
R

|v2(x − c2tk) − v2(x − c1tk)|dx =

−
∫
R

|v1(x − c1tk) − v2(x − c2tk)|dx + −
∫
R

|v2(x + (c1 − c2)tk) − v2(x)|dx ≤

−
∫
R

|u1(tk, x) − u2(tk, x)|dx + δ(tk) + 1/k ≤ −
∫
R

|u01(x) − u02(x)|dx + δ(tk) + 1/k.

In the limit as k → ∞, this inequality implies (23).

Remark 4. In view of Theorem 1 the map F , which associates an initial data u0 ∈
B1(Rn) ∩ L∞(Rn)with the e.s. u(t, x) ∈ C([0,+∞),B1(Rn)) of problem (1), (2),
is a uniformly continuous map from B1(Rn) to C([0,+∞),B1(Rn)). Therefore,
it admits the unique continuous extension on the whole space B1(Rn). By analogy
with [2], the corresponding function F(u0) = u(t, x) ∈ C([0,+∞),B1(Rn)) may
be called a renormalized solution of (1), (2) with possibly unbounded almost periodic
initial data u0. By the approximation techniques, all our results can be extended to
the case of renormalized almost periodic solutions.
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Structure Preserving Schemes
for Mean-Field Equations of Collective
Behavior

Lorenzo Pareschi and Mattia Zanella

Abstract In this paper, we consider the development of numerical schemes for
mean-field equations describing the collective behavior of a large group of interact-
ing agents. The schemes are based on a generalization of the classical Chang–Cooper
approach and are capable to preserve the main structural properties of the systems,
namely nonnegativity of the solution, physical conservation laws, entropy dissipa-
tion, and stationary solutions. In particular, themethods here derived are second order
accurate in transient regimes, whereas they can reach arbitrary accuracy asymptot-
ically for large times. Several examples are reported to show the generality of the
approach.

Keywords Collective behavior · Fokker-Planck equations
Mean-field equations · Structure preserving methods

1 Introduction

The description of social dynamics characterized by emerging collective behaviors
has gained increasing popularity in the recent years [1, 5, 9, 13, 14, 20]. Typical
examples are groups of animals/humans with a tendency to flock or herd but also
interacting agents in a financial market, potential voters during political elections,
and connected members of a social network.

In the mathematical description, classical particles are replaced by more com-
plex structures (agents, active particles, etc.) which take into account additional
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aspects related to the various specific fields of application, like behavioral character-
istics, visual perception, experience/knowledge. Various microscopic models have
been introduced in different communities with the aim to reproduce qualitatively the
dynamics and to capture some essential stylized facts (clusters, power laws, consen-
sus, flocking, etc.).

In spite of many differences between classical particle dynamics and systems of
interacting agents (equation are not a consequence of fundamental physical laws
derived from first principles), one can apply similar methodological approaches. In
particular, to analyze the formation of stylized facts and reduce the computational
complexity of the agents’ dynamics, it is of utmost importance to derive the corre-
sponding mesoscopic/kinetic description [1, 2, 6, 8, 9, 15, 20, 21].

These kinetic equations are derived in the limit of a large number of interacting
agents and describe the evolution of a nonnegative distribution function f (x, w, t),
t ≥ 0, x ∈ R

dx , w ∈ R
dw , dx , dw ≥ 1, which satisfies a mean-field-type equation of

the general form

∂t f + L [ f ] = ∇w ·
[
B[ f ] f + ∇w(D f )

]
, (1)

where L [·](x, w, t) is an operator describing the agents’ dynamics with respect to
the x-variable, B[·](x, w, t) is an alignment operator in the w-variable, and D =
D(x, w) ≥ 0 is a diffusion function.

The most celebrated example is given by the mean-field Cucker–Smale model [8,
9, 13, 20] which, in the absence of diffusion, corresponds to the choices

L [ f ] = w · ∇x f, B[ f ] =
∫

Rdv ×Rdx

H(x, y)(w − v) f (y, v, t) dy dv, (2)

where

H(x, y) = 1

(1 + (x − y)2)γ
, γ ≥ 0. (3)

The model describes the alignment process in a multidimensional group of agents
(birds, insects, etc.), when all agents are aligned with equal speed a flocking state is
reached. For the above choice of H , it has been proved that if γ ≤ 1/2, independently
on their initial state, all agents tend tomove exponentially fast with the same velocity,
while their relative distances tend to remain constant. The addition of a diffusion term
weighted by D ∈ R

+ has been studied in [3, 4] among others.
Another example is the nonhomogeneous mean-field Cordier–Pareschi–Toscani

model [12, 21] which describes the evolution of the distribution f (x, w, t) of wealth
w ∈ R

+ in a set of agentswith a given propensity to invest x ∈ [0, 1]. In our notations,
it corresponds to

L [ f ] = φ(x, w)∂x f, B[ f ] =
∫

R+
(w − v) f (y, v, t) dv, D = σ 2

2
w2. (4)



Structure Preserving Schemes for Mean-Field Equations of Collective Behavior 407

The equilibrium solutions in the homogeneous case, f = f (w, t) independent of x ,
present the formation of power laws and read

f∞(w) = (μ − 1)μ

Γ (μ)w1+μ
exp

(
−μ − 1

w

)
, (5)

with μ = 1 + 2/σ 2 > 1 the Pareto exponent and
∫
R+ f∞(w)w dw = 1.

Finally, a third example is represented by the mean-field Albi–Pareschi–Zanella
model [1, 2] describing the opinion dynamics of a group of interacting agents
over a social network. The evolution of the distribution f (x, w, t) of agents with
a given opinion w ∈ [−1, 1] and a certain amount of discrete connections x ∈
{0, 1, . . . , cmax } is characterized by

L [ f ] = − 2Vr ( f ; w)

γ + β
[(x + 1 + β) f (x + 1, w, t) − (x + β) f (x, w, t)]

− 2Va( f ; w)

γ + α
[(x − 1 + α) f (x − 1, w, t) − (x + α) f (x, w, t)] ,

B[ f ] =
cmax∑
y=0

∫

[−1,1]
P(w, v; x, y)(w − v) f (v, y, t) dv,

(6)

where P(·, ·; ·, ·) ∈ [0, 1] is a compromise function, γ = γ (t) is the mean density
of connectivity γ (t) = ∑cmax

x=0 x
∫
[−1,1] f (x, w, t) dw, α, β > 0 are attraction coeffi-

cients, and Vr ( f ; w) ≥ 0, Va( f ; w) ≥ 0 are characteristic rates of the connections
removal and adding processes, respectively.

Different equilibrium solutions in the case f = f (w, t) independent of x are
possible depending on the choices of P and D. For example, if P ≡ 1 and D =
σ 2(1 − w2)2/2, the steady state reads

f∞(w) = C0(1 + w)−2+m̄/σ 2
(1 − w)−2−m̄/σ 2

exp
{

− (1 − m̄w)

σ 2(1 − w2)

}
, (7)

where m̄ = ∫
[−1,1] w f∞(w) dw and C0 is such that

∫
[−1,1] f∞(w) dw = 1.

The development of numerical methods for the above class of equations is chal-
lenging due to the intrinsic structural properties of the solution [6, 7, 10, 11, 16, 19,
22]. Nonnegativity of the distribution function, conservation of invariant quantities
(like moments in w of the distribution function), entropy dissipation, and homoge-
neous steady states are essential in order to compute qualitatively correct solutions
of the mean-field equation.

In this paper, we focus on the construction of numerical methods which preserves
such structural properties and, in particular, which is able to capture the correct
steady state of the mean-field problem with arbitrary order of accuracy. The schemes
are based on a suitable generalization of the Chang–Cooper approach to nonlinear
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problems of Fokker–Planck type and are derived in the next section. Their properties
are then discussed in Sect. 3. Finally, numerical results are presented in Sect. 4.

2 Derivation of the Schemes

Since most of the structural properties are related to the right-hand side in (1) in the
following, we will focus on the homogeneous case f = f (w, t). Connections with
the full problem are then recovered using splitting methods or other partitioned time
discretization schemes, like additive Runge–Kutta methods [18].

Under this assumption, we can rewrite the mean-field Eq. (1) as

∂t f (w, t) = ∇w · [(B[ f ](w, t) + ∇w D(w)) f (w, t) + D(w)∇w f (w, t)]. (8)

We define the d−dimensional flux function

F [ f ](w, t) = (B[ f ](w, t) + ∇w D(w)) f (w, t) + D(w)∇w f (w, t), (9)

so that the equation may be written in conservative form as

∂t f (w, t) = ∇w · F (w, t). (10)

2.1 One-dimensional Case

Let us consider for notation simplicity the one-dimensional case

∂t f (w, t) = ∂wF [ f ](w, t), (11)

where

F [ f ](w, t) = (B[ f ](w, t) + D′(w)) f (w, t) + D(w)∂w f (w, t) (12)

and we used the notation D′(w) = ∂w D(w) and assume D(w) strictly positive in the
internal points of the computational domain. We introduce a uniform spatial grid wi ,
i = 0, . . . , N such that wi+1 − wi = Δw. We denote as usual wi±1/2 = wi ± Δ/2
and consider the conservative discretization of Eq. (11)

d

dt
fi (t) = Fi+1/2[ f ](t) − Fi−1/2[ f ](t)

Δw
, (13)

where for each t ≥ 0, fi (t) is an approximation of f (wi , t) and Fi±1/2[ f ](t) is the
flux function characterizing the discretization.
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Let us set C [ f ](w, t) = B[ f ](w, t) + D′(w) and adopt the notations Bi+1/2 =
B[ f ](wi+1/2, t), Di+1/2 = D(wi+1/2), D′

i+1/2 = D′(wi+1/2). We will consider a
general flux function which is combination of the grid points i + 1 and i as in
[11, 22]

Fi+1/2[ f ] = C̃i+1/2 f̃i+1/2 + Di+1/2
fi+1 − fi

Δw
, (14)

where
f̃i+1/2 = (1 − δi+1/2) fi+1 + δi+1/2 fi . (15)

Here, we aim at deriving suitable expressions for δi+1/2 and C̃i+1/2 in such a way that
the method yields nonnegative solutions, without restrictions on Δw, and preserves
the steady state of the system with arbitrary accuracy.

For example, the standard approach based on central difference is obtained tak-
ing δi+1/2 = 1/2 and C̃i+1/2 = Bi+1/2, ∀ i . It is well known, however, that such a
discretization method is subject to restrictive conditions over the mesh size Δw in
order to keep nonnegativity of the solution.

First, observe that at the steady state the numerical flux equal should vanish. From
(14), we get

fi+1

fi
=

−δi+1/2C̃i+1/2 + Di+1/2

Δw

(1 − δi+1/2)C̃i+1/2 + Di+1/2

Δw

. (16)

Similarly, if we consider the analytical flux at the steady state, we have

D(w)∂w f (w, t) = −(B[ f ] + D′(w)) f (w, t), (17)

which is in general not solvable, except in some special cases due to the nonlinearity
on the right-hand side. We may overcome this difficulty in the quasi-steady-state
approximation integrating equation (17) on the cell [wi , wi+1]

∫ wi+1

wi

1

f (w, t)
∂w f (w, t)dw = −

∫ wi+1

wi

1

D(w)
(B[ f ](w, t) + D′(w))dw, (18)

which gives

fi+1

fi
= exp

{
−

∫ wi+1

wi

1

D(w)
(B[ f ](w, t) + D′(w))dw

}
, (19)

for all i = 1, . . . , N − 1.
Now, by equating the ratio fi+1/ fi of the numerical and the exact flux and setting

C̃i+1/2 = Di+1/2

Δw

∫ wi+1

wi

B[ f ](w, t) + D′(w)

D(w)
dw (20)
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we recover

δi+1/2 = 1

λi+1/2
+ 1

1 − exp(λi+1/2)
, (21)

where

λi+1/2 =
∫ wi+1

wi

B[ f ](w, t) + D′(w)

D(w)
dw. (22)

Remark 1. A second-order method is obtained by discretizing (22) through the mid-
point rule

∫ wi+1

wi

B[ f ](w, t) + D′(w)

D(w)
dw ≈ Δw(Bi+1/2 + D′

i+1/2)

Di+1/2
, (23)

therefore

λmid
i+1/2 = Δw(Bi+1/2 + D′

i+1/2)

Di+1/2
(24)

and

δmid
i+1/2 = Di+1/2

Δw(Bi+1/2 + D′
i+1/2)

+ + 1

1 − exp(λmid
i+1/2)

. (25)

Higher order accuracy of the steady-state solution may be obtained by higher order
approximations of the integral (20).

2.2 The Multidimensional Case

In order to extend the previous approach to multidimensional situations, we con-
sider here the case of two-dimensional problems. We introduce a mesh consisting
of the cells Ci j = [wi−1/2, wi+1/2] × [v j−1/2, v j+1/2] assumed to be of uniform size
ΔwΔv, where as usual Δw := wi+1/2 − wi−1/2 and Δv := v j+1/2 − v j−1/2 for all
i = 0, . . . , N1 and j = 0, . . . , N2. Integration of the general mean-field equation in
dimension d ≥ 1 introduced in (10) yields

d

dt
fi, j = Fi+1/2, j [ f ] − Fi−1/2, j [ f ]

Δw
+ Fi, j+1/2[ f ] − Fi, j−1/2[ f ]

Δv
, (26)

being Fi±1/2, j [ f ], Fi, j±1/2[ f ] flux functions characterizing the numerical dis-
cretization. The quasi-stationary approximations over the cell [wi , wi+1] × [vi , vi+1]
of the two-dimensional problem read
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∫ wi+1

wi

1

f (w, v j , t)
∂w f (w, v j , t)dw = −

∫ wi+1

wi

B[ f ](w, v j , t) + ∂w D(w, v j )

D(w, v j )
dw,

∫ v j+1

v j

1

f (wi , v, t)
∂v f (wi , v, t)dv = −

∫ v j+1

v j

B[ f ](wi , v, t) + ∂v D(wi , v)

D(wi , v)
dv.

(27)
Therefore, setting

C̃i+1/2, j = Di+1/2, j

Δw

∫ wi+1

wi

B[ f ](w, v j , t) + ∂w D(w, v j )

D(w, v j )
dw

C̃i, j+1/2 = Di, j+1/2

Δv

∫ v j+1

v j

B[ f ](wi , v, t) + ∂v D(wi , v)

D(wi , v)
dv

(28)

and by considering an analogous flux components by components as in the one-
dimensional case

Fi+1/2, j [ f ] = C̃i+1/2, j f̃i+1/2, j + Di+1/2, j
fi+1, j − fi, j

Δw
f̃i+1/2, j = (1 − δi+1/2, j ) fi+1, j + δi+1/2, j fi, j

Fi, j+1/2[ f ] = C̃i, j+1/2 f̃i, j+1/2 + Di, j+1/2
fi, j+1 − fi, j

Δv
f̃i, j+1/2 = (1 − δi, j+1/2) fi, j+1 + δi, j+1/2 fi, j ,

(29)

we define δi+1/2, j and δi, j+1/2 in such a way that we preserve the steady-state solution
for each dimension, i.e.,

δi+1/2, j = 1

λi+1/2, j
+ 1

1 − exp(λi+1/2, j )
,

δi, j+1/2 = 1

λi, j+1/2
+ 1

1 − exp(λi, j+1/2)

λi+1/2, j = ΔwC̃i+1/2, j

Di+1/2, j
, λi, j+1/2 = ΔvC̃i, j+1/2

Di, j+1/2
.

(30)

The cases of higher dimension d ≥ 3 may be derived in a similar way.

3 Main Properties

In order to study the structural properties of the numerical scheme, like nonnegativity
and entropy property, we restrict to the one-dimensional case.
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3.1 Nonnegativity

We introduce a time discretization tn = nΔt with Δt > 0 and n = 0, . . . , T and
consider the simple forward Euler method

f n+1
i = f n

i + Δt
F n

i+1/2 − F n
i−1/2

Δw
, (31)

with no-flux boundary conditions Fn
N+1/2 = F n

−1/2 = 0.

Lemma 1. Let us consider the scheme (31) with no-flux boundary conditions. We
have for all n ∈ N

N∑
i=0

f n+1
i =

N∑
i=0

f n
i . (32)

Proof. From Eq. (31), we have

N∑
i=0

f n+1
i =

N∑
i=0

f n
i + Δt

Δw

N∑
i=0

(F n
i+1/2 − F n

i−1/2). (33)

Now since
N∑

i=0

(F n
i+1/2 − F n

i−1/2) = F n
N+1/2 − F n

−1/2, (34)

by imposing no-flux boundary conditions, we conclude.

Note that mass conservation holds true also in the backward Euler case by imposing
F n+1

N+1/2 = F n+1
−1/2 = 0.

Concerning nonnegativity, we can prove [22]

Proposition 1. Under the time-step restriction

Δt ≤ Δw2

2(MΔw + D)
, M = max

0≤i≤N
|C̃ n

i+1/2|, D = max
0≤i≤N

Di+1/2, (35)

the explicit scheme (31) preserves nonnegativity, i.e f n+1
i ≥ 0 if f n

i ≥ 0,
i = 0, . . . , N.

Proof. The scheme reads
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f n+1
i = f n

i + Δt

Δw

[(
(1 − δn

i+1/2)C̃
n
i+1/2 + Di+1/2

Δw

)
f n
i+1

+
(
C̃ n

i+1/2δ
n
i+1/2 − C̃ n

i−1/2(1 − δn
i−1/2) − 1

Δw
(Di+1/2 + Di−1/2)

)
f n
i

−
(
C̃ n

i−1/2δ
n
i−1/2 − Di−1/2

Δw

)
f n
i−1

]
.

(36)

From (36), the coefficients of f n
i+1 and f n

i−1 should satisfy

(1 − δi+1/2)C̃
n
i+1/2 + Di+1/2

Δw
≥ 0, −δi−1/2C̃

n
i−1/2 + Di−1/2

Δw
≥ 0, (37)

that is equivalent to show that

λi+1/2

(
1 − 1

1 − exp λi+1/2

)
≥ 0,

λi−1/2

exp λi−1/2 − 1
≥ 0, (38)

which holds true thanks to the properties of the exponential function. In order to
ensure the nonnegativity of the scheme the, time step should satisfy the restriction
Δt ≤ Δw/ν, with

ν = max
0≤i≤N

{
C̃ n

i+1/2δ
n
i+1/2 − C̃ n

i−1/2(1 − δn
i−1/2) − Di+1/2 + Di−1/2

Δw

}
. (39)

Being M defined in (35), and 0 ≤ δi±1/2 ≤ 1, we obtain the prescribed bound.

Remark 2. Higher order SSP methods [17] are obtained by considering a convex
combination of forward Euler methods. Therefore, the non negativity result can be
extended to general SSP methods.

In practical applications, it is desirable to avoid the parabolic restriction Δt =
O((Δw)2) of explicit schemes. Unfortunately, fully implicit methods originate a
nonlinear system of equations. However, we can prove that nonnegativity of the
solution holds true also for the semi-implicit case

f n+1
i = f n

i + Δt
F̂ n+1

i+1/2 − F̂ n+1
i−1/2

Δw
, (40)

where

F̂ n+1
i+1/2 = C̃ n

i+1/2

[
(1 − δn

i+1/2) f n+1
i+1 + δi+1/2 f n+1

i

] + Di+1/2
f n+1
i+1 − f n+1

i

Δw
. (41)

We have [22]
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Proposition 2. Under the time-step restriction

Δt <
Δw

2M
, M = max

0≤i≤N
|B̃n

i+1/2| (42)

the semi-implicit scheme (40) preserves nonnegativity, i.e f n+1
i ≥ 0 if f n

i ≥ 0, i =
0, . . . , N.

Proof. Setting αn
i+1/2 = λn

i+1/2

exp(λn
i+1/2) − 1

and

Rn
i = 1 + Δt

Δw2

[
Di+1/2α

n
i+1/2 + Di−1/2α

n
i−1/2 exp(λ

n
i−1/2)

]

Qn
i = Δt

Δw2
Di+1/2α

n
i+1/2 exp(λ

n
i+1/2)

Pn
i = Δt

Δw2
Di−1/2α

n
i−1/2,

(43)

Equation (40) corresponds to

Rn
i f n+1

i − Qn
i f n+1

i+1 − Pn
i f n+1

i−1 = f n
i . (44)

If we introduce the matrix

(A [ f n])i j =

⎧⎪⎨
⎪⎩

Rn
i , j = i

−Qn
i , j = i + 1, 1 ≤ i ≤ N

−Pn
i , j = i − 1, 0 ≤ i ≤ N − 1,

(45)

with Rn
i > 0, Qn

i > 0, Pn
i > 0 defined in (43), the semi-implicit scheme may be

expressed in matrix form as follows

A [fn]fn+1 = fn, (46)

with fn = (
f n
0 , . . . , f n

N

)
. Now, the matrix A is strictly diagonally dominant if and

only if
|Rn

i | > |Qn
i | + |Pn

i |, i = 0, 1 . . . , N , (47)

condition which holds true if

1 >
Δt

Δw2

[
Di+1/2α

n
i+1/2

(
exp(λn

i+1/2) − 1
) − Di−1/2α

n
i−1/2

(
exp(λn

i−1/2) − 1
)]

= Δt

Δw2

[
Di+1/2λ

n
i+1/2 − Di−1/2λ

n
i−1/2

] = Δt

Δw

[
B̃n

i+1/2 − B̃n
i−1/2

]
.

(48)
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3.2 Entropy Property

In order to discuss the entropy property, we consider the prototype equation [15, 22]

∂t f (w, t) = ∂w [(w − u) f (w, t) + ∂w(D(w) f (w, t))] , w ∈ I = [−1, 1],
(49)

with −1 < u < 1 a given constant and boundary conditions

∂w(D(w) f (w, t)) + (w − u) f (w, t) = 0, w = ±1. (50)

If the stationary state f ∞ exists, Eq. (49) may be written in the form

∂t f (w, t) = ∂w

[
D(w) f ∞(w)∂w

(
f (w, t)

f ∞(w)

)]
. (51)

We define the relative entropy for all positive functions f (w, t), g(w, t) as follows

H ( f, g) =
∫

I
f (w, t) log

(
f (w, t)

g(w, t)

)
, (52)

and we have [15]
d

dt
H ( f, f ∞) = −ID( f, f ∞), (53)

where the dissipation functional ID(·, ·) is defined as

ID( f, f ∞) =
∫

I
D(w) f (w, t)

(
∂w log

(
f (w, t)

f ∞(w)

))2

dw,

=
∫

I
D(w) f ∞(w, t)∂w log

(
f (w, t)

f ∞(w)

)
∂w

(
f

f ∞

)
dw.

(54)

Lemma 2. In the case B[ f ](w, t) = B(w), the numerical flux function (14)–(15)
with B̃i+1/2 and δi+1/2 given by (20)–(21) can be written in the form (51) and reads

Fi+1/2 = Di+1/2

Δw
f̂ ∞
i+1/2

(
fi+1

f ∞
i+1

− fi

f ∞
i

)
, (55)

with

f̂ ∞
i+1/2 = f ∞

i+1 f ∞
i

f ∞
i+1 − f ∞

i

log

(
f ∞
i+1

f ∞
i

)
. (56)

Proof. In the hypothesis B[ f ](w, t) = B(w), the definition of λi+1/2 does not
depend on time, i.e., λi+1/2 = λ∞

i+1/2, and if a steady state exists, we may write
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log f ∞
i − log f ∞

i+1 = λi+1/2. (57)

Furthermore, the flux function Fi+1/2 assumes the following form

Fi+1/2 = Di+1/2

Δw

[
λi+1/2 f̃i+1/2 + ( fi+1 − fi )

]

= Di+1/2

Δw

[
λi+1/2( fi+1 + δi+1/2( fi − fi+1)) + ( fi+1 − fi )

]
,

(58)

where

δi+1/2 = 1

log f ∞
i − log f ∞

i+1

+ f ∞
i+1

f ∞
i+1 − f ∞

i

. (59)

Hence, we have

F n
i+1/2 = Di+1/2

Δw
log

(
f ∞
i

f ∞
i+1

)[
fi+1 +

(
fi − fi+1

log f ∞
i − log f ∞

i+1

+ f ∞
i+1( fi − fi+1)

f ∞
i+1 − f ∞

i

)

+ fi+1 − fi

log f ∞
i − log f ∞

i+1

]
,

= Di+1/2

Δw
log

(
f ∞
i

f ∞
i+1

)(
f ∞
i+1 fi − f ∞

i fi+1

f ∞
i+1 − f ∞

i

)

(60)
which gives (55).

Theorem 1. Let us consider B[ f ](w, t) = w − u as in Eq. (49). The numerical flux
(14)–(15) with B̃i+1/2 and δi+1/2 given by (20)–(21) satisfies the discrete entropy
dissipation

d

dt
HΔ( f, f ∞) = −IΔ( f, f ∞), (61)

where

HΔw( f, f ∞) = Δw
N∑

i=0

fi log

(
fi

f ∞
i

)
(62)

and IΔ is the positive discrete dissipation function

IΔ( f, f ∞) =
N∑

i=0

[
log

(
fi+1

f ∞
i+1

)
− log

(
fi

f ∞
i

)]
·
(

fi+1

f ∞
i+1

− fi

f ∞
i

)
f̂ ∞
i+1/2Di+1/2 ≥ 0.

(63)

Proof. From the definition of relative entropy, we have
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d

dt
H ( f, f ∞) = Δw

N∑
i=0

d fi

dt

(
log

(
fi

f ∞
i

)
+ 1

)

= Δw
N∑

i=0

(
log

(
fi

f ∞
i

)
+ 1

)
(Fi+1/2 − Fi−1/2),

(64)

and after summation by parts we get

d

dt
H ( f, f ∞) = −Δw

N∑
i=0

[
log

(
fi+1

f ∞
i+1

)
− log

(
fi

f ∞
i

)]
Fi+1/2. (65)

Thanks to the identity of Lemma 2, we may conclude since the function (x −
y) log(x/y) is nonnegative for all x, y ≥ 0.

4 Numerics

In this section, we present several numerical tests for the proposed structure-
preserving schemes. In particular, we show that the schemes accurately describe
the steady-state solution of mean-field equations.

Test 1: Accuracy and Steady States
Let us consider the evolution of a distribution described by Eq. (49) with

u =
∫

I
v f (v, t)dv, D(w) = σ 2

2
(1 − w2)2. (66)

We consider as initial distribution

f (w, 0) = β
[
exp{−c(w + 1/2)} + exp{−c(w − 1/2)}] , c = 30, (67)

and β > 0 a normalization constant. The stationary solution in this case can be
explicitly computed and is given by (7).

We compute the relative L1 error of the solutionwith respect to the stationary state
using N = 41 points. In Fig. 1, we show the evolution of the mean-field equation
and the relative L1 error in approximating the steady state solution. We used open
Newton–Cotes formulas of various orders andGaussian quadrature to evaluate (22). It
is possible to observe how the different integration methods capture the steady state
with different accuracies. In particular using Gaussian quadrature, we essentially
reached machine precision.

In Table 1, we estimate the overall order of convergence of the scheme for various
integrationmethods.Here,we used N = 41, 81, 161grid points. The time integration
has been performed with an explicit RK4method, and the time step is chosen in such
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Fig. 1 Test 1. a Time evolution of the density f (w, t) for problem (49) with initial datum (67)
over the time interval [0, 5] for σ 2/2 = 0.1, Δw = 0.05. b Evolution of the relative L1 error with
respect to the stationary solution (7) for various quadrature methods

Table 1 Test 1. Estimation of the order of convergence toward the reference stationary state for
each integration method at different times

Second Fourth Sixth Gauss

T = 1 1.8676 1.9972 1.9958 1.9958

1.9840 1.9991 1.9987 1.9987

T = 5 1.9348 3.2518 2.3578 2.3344

2.0043 2.6218 2.0948 2.0930

T = 10 1.9289 3.9178 6.4645 7.3482

2.0034 3.9185 6.3630 7.9217

T = 15 1.9289 3.9178 6.4701 7.3512

2.0034 3.9786 6.6021 7.9954

a way that the CFL condition for the positivity of the scheme is satisfied; therefore,
Δt = O((Δw)2). As expected, the methods are second order accurate in transient
regimes and, as they approach the steady state, they reach the order of the quadrature
method. Clearly, the order of Gaussian quadrature is bounded by the maximum
observable order which is eight due to the choice of the time discretization method.

Test 2: Flocking Dynamics
We consider a mean-field Cucker–Smale flocking model as introduced in (2). The
space variable is discretized using a third-orderWENO scheme, and the transport and
interaction process are combined using a second-order Strang splitting scheme. For
themean-field term, we considered a semi-implicit schemewithGaussian quadrature
of the weights. This choice guarantees spectral accuracy for the description of the
steady-state solution of the equation.

In Fig. 2, we report the evolution of the solution f (x, w, t) in the phase space
(x, w) ∈ [−3, 3] × [−5, 5] with Δx = 6 · 10−2 and Δw = 5 · 10−2. The time step
has been chosen in order to satisfy the CFL condition Δt/Δx = 0.25/max(w).
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Fig. 2 Test 2.Mean-field Cucker–Smalemodel for (x, w) ∈ [−3, 3] × [−5, 5]withΔx = 6 · 10−2

andΔw = 5 · 10−2,Δt/Δx = 0.25/max(w).We consideredγ = 0.1 in (3) and a constant diffusion
function D = 0.1

We considered γ = 0.1 < 1/2 in the Cucker–Smale interaction function (3) and
a constant diffusion D(x, w) = 0.1. The initial datum is here given by a multivariate
population which shares the same average space location x = 0 and is strongly clus-
tered around opposite velocities v = ±1.5. As expected, the whole system converges
to the same velocity; i.e., the distribution tends to concentrate in the velocity space
and to be distributed uniformly along the spatial dimension.

Test 3: Opinion on Networks
Finally, we consider the model of opinion on networks (6). We focus on the case of
a connection-dependent bounded confidence model, where the agents interact only
within a certain range of confidence. Hence, we define the compromise function [2]

P(w, v; x, y) = χ{|w−v|≤Δ(x)}(v), (68)

where Δ(x) = d0
x

cmax
and D(w, x) = (1 − w2)2. This choice reflects a behavior

where agents with higher number of connections are prone to larger level of confi-
dence. We report in Fig. 3 the evolution of the solution (where in order to better show
its evolution we plotted log( f (w, x, t) + ε), with ε = 0.001). We can observe how
the introduction of the function Δ(c) creates a heterogeneous emergence of clusters
with respect to the connectivity level: For higher level of connectivity, consensus
is reached, since the bounded confidence level is larger; instead for lower levels of
connectivity, multiple clusters appear. In the limiting case c = 0, the opinions are
not influenced by the consensus dynamics.



420 L. Pareschi and M. Zanella

(a) t = 0 (b) t = 10

(c) t = 50 (d) t=100

Fig. 3 Test 3. Evolution of the solution of the mean-fieldmodel (6) with uniform initial opinion and
power-law-type connection distribution. The interaction is described by (68) with d0 = 1.01, in the
time interval [0, 100]. The other parameters are σ 2 = 10−3, cmax = 250, Vr = Va = 1, γ (0) = 30,
α = 10−1, β = 0
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Abstract We are interested in three-phase flows involving the liquid and vapor
phases of one species and a third inert gaseous phase. We describe these flows by a
single-velocity multiphase flowmodel composed of the phasic mass and total energy
equations, the volume fraction equations, and the mixture momentum equation. The
model includes stiffmechanical and thermal relaxation source terms for all the phases
and chemical relaxation terms to describe mass transfer between the liquid and vapor
phases of the species that may undergo transition. The homogeneous hyperbolic por-
tion of the equations is solved numerically via a finite volume wave propagation
scheme. Relaxation terms are treated by routines that exploit algebraic equilibrium
conditions for the relaxed states. We present numerical results for a three-phase
cavitation tube test, showing that the predicted wave speed for different levels of
activation of instantaneous relaxation processes agrees with the theoretical findings
on the sub-characteristic interlacing of the wave speeds of the corresponding hierar-
chy of relaxed models. A two-dimensional simulation of an underwater explosion is
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1 Introduction

Weare interested in the simulation of three-phase flows involving the liquid and vapor
phases of one species and a third non-condensable gaseous phase. Applications are,
for instance, the simulation of flows around high speed cavitating underwater devices
[13] and themodeling of underwater explosions [2, 15].Wedescribe thesemultiphase
flows by a hyperbolic single-velocity compressible flow model with stiff pressure
relaxation, which extends the two-phase formulation that we have considered in
previous work [11]. The model includes thermal relaxation terms to account for heat
transfer processes between all the phases and chemical relaxation terms to describe
mass transfer between the liquid and vapor phases of the species that may undergo
transition. Similar multiphase models have been, for instance, presented in [7, 13].
The formulation that we adopt here with phasic total energy equations is particularly
convenient to develop a mixture-energy-consistent numerical model, in the sense
defined in [11] for the two-phase case (see also Sect. 3). The homogeneous hyperbolic
portion of the equations is solved numerically via a finite volume wave propagation
scheme that uses a simple HLLC-type Riemann solver. Stiff relaxation source terms
are handled by efficient numerical procedures that exploit algebraic equilibrium
conditions for the relaxed states. One special focus of this work is the study of
the effects of heat and mass transfer on the speed of wave propagation. We first
derive analytical expressions of the speed of sound of the relaxed multiphase models
associatedwith the different levels of activation of infinitely fast relaxation processes,
and we demonstrate that sub-characteristic conditions hold. We then show through a
one-dimensional three-phase cavitation tube experiment that the behavior of thewave
speed predicted numerically is consistent with our theoretical findings. This paper is
organized as follows. In Sect. 2, we present the multiphase flow model under study.
Here we also analyze the characteristic speeds of the relaxed models associated
with the parent relaxation model. In Sect. 3, we illustrate the numerical method
that we have developed to solve the three-phase flow equations. Some numerical
experiments are finally presented in Sect. 4, including a two-dimensional simulation
of an underwater explosion.

2 Single-Velocity Multiphase Compressible Flow Model

We consider an inviscid compressible flow composed of N phases that we assume in
kinematic equilibrium with velocity u. In this work, we are specifically interested in
three-phase flows, N = 3; nonetheless, we shall present here a general multiphase
flow formulation. The volume fraction, density, internal energy per unit volume,
and pressure of each phase will be denoted by αk , ρk , Ek , pk , k = 1, . . .N , respec-
tively. We will denote the total energy for the kth phase with Ek = Ek + ρk

|u|2
2 .

The saturation condition is
∑N

k=1 αk = 1. The mixture density is ρ = ∑N
k=1 αkρk ,

the mixture internal energy is E = ∑N
k=1 αkEk , and the mixture total energy is
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E = ∑N
k=1 αkEk = E + ρ

|u|2
2 . Mechanical and thermal transfer processes are con-

sidered in general for all the phases. We assume that one species in the mixture can
undergo phase transition, so that it can exist as a vapor or a liquid phase, and mass
transfer terms are accounted for this species only. We will use the subscripts 1 and
2 to denote the liquid and vapor phases of this species. We describe the N -phase
flow under consideration by a compressible flowmodel that extends the six-equation
two-phase flow system that we studied in [11]. The model system is composed of the
volume fraction equations for N − 1 phases, the mass and total energy equations for
all the N phases, and d mixture momentum equations, where d denotes the spatial
dimension:

∂tαk + u · ∇αk = ∑N
j=1 Pkj , k = 1, 3, . . . ,N , (1a)

∂t(α1ρ1) + ∇ · (α1ρ1u) = M , (1b)

∂t(α2ρ2) + ∇ · (α2ρ2u) = −M (1c)

∂t(αkρk ) + ∇ · (αkρku) = 0 , k = 3, . . . ,N , (1d)

∂t(ρu) + ∇ ·
(
ρu ⊗ u +

(∑N
k=1 αkpk

)
I

)
= 0 , (1e)

∂t(α1E1) + ∇ · (α1(E1 + p1)u) + Υ1 = − ∑N
j=1 pI1jP1j + ∑N

j=1 Q1j +
(
gI + |u|2

2

)
M ,

(1f)

∂t(α2E2) + ∇ · (α2(E2 + p2)u) + Υ2 = − ∑N
j=1 pI2jP2j + ∑N

j=1 Q2j −
(
gI + |u|2

2

)
M ,

(1g)

∂t(αkEk ) + ∇ · (αk (Ek + pk )u) + Υk = − ∑N
j=1 pIkjPkj + ∑N

j=1 Qkj , k = 3, . . . ,N .

(1h)

The non-conservative terms Υk appearing in the phasic total energy Eqs. (1f)–(1h) are given
by

Υk = u ·
(
Yk∇

(∑N
j=1 αjpj

)
− ∇(αkpk )

)
, k = 1, . . . ,N , (1i)

where Yk = αkρk

ρ
denotes the mass fraction of phase k. In the system above, Pkj

and Qkj represent the volume transfer and the heat transfer, respectively, between
the phases k and j, k, j = 1, . . .N . The termM indicates the mass transfer between
the liquid and vapor phases indexed with 1 and 2. The transfer terms are defined as
relaxation terms:

Pkj = μkj(pk − pj) , Qkj = ϑkj(Tj − Tk) , M = ν(g2 − g1) , (2)

where Tk denotes the phasic temperature, gk the phasic chemical potential, and
where we have introduced the mechanical, thermal, and chemical relaxation param-
eters μkj = μjk ≥ 0, ϑkj = ϑjk ≥ 0, and ν = ν12 = ν21 ≥ 0, respectively. Note that
Pkj = −Pjk andQkj = −Qjk . The quantities pIkj = pIjk are interface pressures and gI
is an interface chemical potential. We shall assume that mechanical equilibrium is
reached instantaneously for all the phases, μkj = μjk ≡ μ → +∞; that is, mechan-
ical relaxation processes are infinitely fast. Following [14], we then consider that
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thermal and chemical relaxation processes are either inactive, ϑkj = 0, ν = 0, or
they act infinitely fast, ϑkj → +∞, ν → +∞. Heat and mass transfer may be acti-
vated at selected locations, for instance, at interfaces for a phase pair (k, j), identified
by min(αk , αj) > ε, where ε is a tolerance.

The closure of the system (1) is obtained through the specification of an equation
of state (EOS) for each phase pk = pk(Ek , ρk), Tk = Tk(pk , ρk). Here in particular
we will adopt the widely used stiffened gas (SG) equation of state:

pk (Ek , ρk ) = (γk − 1)Ek − γk
k − (γk − 1)ηkρk and Tk (pk , ρk ) = pk + 
k

κvkρk (γk − 1)
,

(3)
where γk , 
k , ηk , and κvk are constant material-dependent parameters. The corre-
sponding expression for the phasic entropy is sk = κvk log(T

γk
k (pk + 
k)

−(γk−1)) +
η′
k , where η′

k = constant, and gk = hk − Tksk . The parameters for the SG EOS for the
liquid and vapor phases of the species that may undergo transition are determined
by imposing that the theoretical saturation curve defined by g1 = g2 matches the
experimental one for the considered material [6]. The mixture pressure law is deter-
mined by the mixture energy relation E = ∑N

k=1 αkEk(p, ρk), where we have used
the mechanical equilibrium conditions pk = p, ∀k = 1, . . . ,N in the phasic energy
laws Ek(pk , ρk).

Since here wewill consider relaxation parameters either= 0 or→ ∞, a specifica-
tion of the expression for the interface quantities pIkj, gI is not needed. Nevertheless,
let us remark that the definition of these interface quantities must be consistent with
the second law of thermodynamics, which requires a nonnegative entropy production
for the mixture. By writing the equation for the mixture entropy and by following
the arguments in [3], one can infer the following sufficient consistency conditions:
pIkj ∈ [min(pk , pj),max(pk , pj)], and gI ∈ [min(g1, g2),max(g1, g2)].

Themodel (1) is hyperbolic, and the associated speed of sound cf (non-equilibrium
or frozen sound speed) is

cf =
√
√
√
√

N∑

k=1

Ykc2k , (4)

where ck is the speed of sound of phase k, which can be expressed as
ck = √

Γkhk + χk , where hk = (Ek + pk)/ρk is the specific enthalpy of phase k,
Γk = (∂pk/∂Ek)ρk , and χk = (∂pk/∂ρk)Ek .

2.1 Hierarchy of Multiphase Relaxed Models and Speed
of Sound

In the considered limit of instantaneous mechanical relaxation μkj ≡ μ → ∞, the
model system (1) reduces to a hyperbolic single-velocity single-pressure model
which is a generalization of the five-equation two-phase flow model of Kapila et
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al. [5]. The reduced pressure equilibrium model can be derived by means of asymp-
totic techniques. Denoting with p the equilibrium pressure, we obtain the following
relaxed system, composed of 2N + d equations:

∂tα1 + u · ∇α1 = K1∇ · u + Γ1

ρ1c21

∑N
j=2 Q1j − α1

ρc2p
ρ1c21

∑N
j,i=1
i>j

Qji

(
Γj

ρjc2j
− Γi

ρic2i

)

+ ρc2p
ρ1c21

(

(Γ1(gI − h1) + c21)
∑N

j=1
j �=k

αj

ρjc2j
+ (Γ2(gI − h2) + c22)

α1

ρ2c22

)

M , (5a)

∂tαk + u · ∇αk = Kk∇ · u + Γk

ρk c2k

∑N
j=1
j �=k

Qkj − αk
ρc2p
ρk c2k

∑N
j,i=1
i>j

Qji

(
Γj

ρjc2j
− Γi

ρic2i

)

+ ρc2p
αk

ρk c2k

(
Γ2(gI−h2)+c22

ρ2c22
− Γ1(gI−h1)+c21

ρ1c21

)
M , k = 3, . . . ,N , (5b)

∂t(α1ρ1) + ∇ · (α1ρ1u) = M , (5c)

∂t(α2ρ2) + ∇ · (α2ρ2u) = −M , (5d)

∂t(αkρk) + ∇ · (αkρku) = 0 , k = 3, . . . ,N , (5e)

∂t(ρu) + ∇ · (ρu ⊗ u + pI) = 0 , (5f)

∂tE + ∇ · ((E + p)u) = 0 , (5g)

where
Kk = ρc2pαk

∑N
j=1
j �=k

αj

(
1

ρk c2k
− 1

ρjc2j

)
= αk

(
ρc2p
ρk c2k

− 1
)

. (6)

In the relations above, we have introduced the pressure equilibrium speed of sound
cp (a generalization of Wood’s sound speed), defined by

cp =
(

ρ

N∑

k=1

αk

ρkc2k

)− 1
2

. (7)

Let us note that the source terms in the volume fraction Eqs. (5a), (5b) result from
the asymptotic limit of instantaneous pressure relaxation.

More generally, a hierarchy of hyperbolic multiphase flow models can be estab-
lished based on the assumptions on equilibria attained by different combinations of
instantaneous relaxation processes. In particular, we study here the expression of the
speed of sound for the relaxedmodels in the hierarchy, similar to [3, 4].We can derive
the following results, valid for any equation of state, whose full demonstrationwill be
detailed elsewhere, together with the derivation of (5). First, assuming instantaneous
mechanical equilibrium μjk ≡ μ → +∞ for all the phases and thermal equilibrium
ϑkj ≡ ϑ → +∞ forM phases, 2 ≤ M ≤ N , we obtain a hyperbolic relaxed system
of 2N − M + 1 + d equations characterized by the speed of sound cpT ,M , defined
by

1

cpT ,M
2

= 1

cp2
+ ρT

∑M
k=1 Cpk

M−1∑

k=1

Cpk

M∑

j=k+1

Cpj

(
Γj

ρjc2j
− Γk

ρkc2k

)2

, (8)
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where T denotes the equilibrium temperature, Cpk = αkρkκpk , κpk = (∂hk/∂Tk)pk
(specific heat at constant pressure), and we recall Γk = (∂pk/∂Ek)ρk . If additionally
we assume instantaneous chemical relaxation between the liquid and vapor phases
1 and 2, ν → +∞, we obtain a hyperbolic relaxed system of 2(N − M + 1) + d
equations characterized by a speed of sound cpTg,M , defined by

1

cpTg,M 2
= 1

cpT ,M
2

+ ρT
∑M

k=1 Cpk

(
M∑

k=1

ΓkCpk

ρkc2k
− 1

T

(
dT

dp

)

sat

M∑

k=1

Cpk

)2

, (9)

where we have introduced the derivatives (dT/dp)sat evaluated on the liquid–vapor
saturation curve. Analogously to the two-phase case [3], it is easy to observe that sub-
characteristic conditions hold; namely, the speed of sound of the N -phase mixture
is reduced whenever an additional equilibrium assumption is introduced: cpTg ≡
cpTg,N ≤ cpTg,M , cpT ≡ cpT ,N ≤ cpT ,M , and cpTg < cpT < cp < cf .

Remark. In [11], an additional term of the form M/ρI was written in the volume
fraction equation of the six-equation two-phase model, with ρI representing an inter-
face density. Similar to [3], this term is not included in the present multiphase model
(1). The purpose of the term M/ρI in [11] was to indicate the influence of the mass
transfer process on the evolution of the volume fraction. Nonetheless, the rigorous
derivation of the pressure-relaxed model (5) from the system (1) reveals that indeed
mass transfer terms affect αk via the pressure relaxation process, as we observe from
the contribution ofM appearing in (5a), (5b). Note that neglecting the termM/ρI in
the six-equation model of [11] does not affect the numerical model and the numeri-
cal results presented there, since ν = 0 or ν → ∞, and the numerical procedure for
treating instantaneous chemical relaxation consists in imposing directly algebraic
thermodynamic equilibrium conditions.

3 Numerical Method

We focus now on the numerical approximation of the multiphase system (1), which
we can write in compact vectorial form as

∂tq + ∇ · F (q) + ς(q,∇q) = ψμ(q) + ψϑ(q) + ψν(q) , (10)

where q = [α1, α3, . . . , αN , α1ρ1, . . . , αNρN , ρu, α1E1, . . . , αNEN ]T ∈ R
3N−1+d is

the vector of the unknowns, F (q) represents the conservative portion of the sys-
tem, and ς(q,∇q) is the non-conservative term. The source terms ψμ, ψϑ , and ψν

in the system above contain mechanical, thermal, and chemical relaxation terms,
respectively. To numerically solve the system (10), we use the same techniques that
we have developed for the two-phase model in [11]. A fractional step method is
employed, where we alternate between the solution of the homogeneous system
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∂tq + ∇ · F (q) + ς(q,∇q) = 0 and the solution of a sequence of systems of ordi-
nary differential equations (ODEs) that take into account the relaxation source terms
ψμ, ψϑ , and ψν . As in [11], the resulting method is mixture-energy-consistent, in
the sense that (i) it guarantees conservation at the discrete level of the mixture total
energy; (ii) it guarantees consistency by construction of the values of the relaxed
states with the mixture pressure law. The method has been implemented by using the
libraries of the clawpack software [10].

3.1 Solution of the Homogeneous System

To solve the hyperbolic homogeneous portion of (10), we employ the wave propaga-
tion algorithms of [8, 9], which are a class of Godunov-type finite volume methods
to approximate hyperbolic systems of partial differential equations. We shall con-
sider here for simplicity the one-dimensional case in the x direction, and we refer
the reader to [9] for a comprehensive presentation of these numerical schemes. We
assume a grid with cells of uniform size Δx, and we denote withQn

i the approximate
solution of the system at the ith cell and at time tn, i ∈ Z, n ∈ N. The second-order
wave propagation algorithm has the form

Qn+1
i = Qn

i − Δt

Δx
(A+ΔQi−1/2 + A−ΔQi+1/2) − Δt

Δx
(F̃i+1/2 − F̃i−1/2) . (11)

Here A∓ΔQi+1/2 are the so-called fluctuations arising from Riemann problems at
cell interfaces (i + 1/2) between cells i and (i + 1), and F̃i+1/2 are correction terms
for (formal) second-order accuracy. To define the fluctuations, a Riemann solver
must be provided. For the present work, we have developed a numerical scheme
in one and two spatial dimensions for the three-phase case, N = 3, by adopting a
HLLC-type Riemann solver analogous to the one that we have presented in [11]
for the two-phase case. This solver guarantees conservation of the partial densities
αkρk , the mixture momentum ρu, and themixture total energyE = ∑N

k=1 αkEk . This
simple HLLC-type solver omits the discretization of the non-conservative terms Υk

in the phasic energy equations. We refer to [11] for a discussion on this point and
the rationale for this approach. We just remark here that for the two-phase case we
have done comparisons of this HLLC-type solver with Riemann solvers that take
into account the non-conservative terms Υk , including a Roe-type solver [11, 12]
and a new Suliciu-type solver [1], and no relevant differences were observed in the
results. Details on the Suliciu-type solver will be reported elsewhere.
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3.2 Relaxation Steps

Similar to [7, 11], the numerical relaxation procedures to handle infinitely fast trans-
fer processes are based on the idea of imposing directly equilibrium conditions to
obtain a simple systemof algebraic equations to be solved in each relaxation sub-step.

3.2.1 Mechanical Relaxation

We consider the solution of the system ∂tq = ψμ(q) in the limit μkj ≡ μ → ∞.
We denote with superscript 0 the quantities at initial time, which come from the
solution of the homogeneous system, and with superscript ∗ the quantities at final
time, which are the quantities at mechanical equilibrium. First, we easily see that
the exact solution of the system of ODEs gives (αkρk)

∗ = (αkρk)
0, k = 1, . . . ,N ,

and (ρu)∗ = (ρu)0, E∗ = E0, hence u∗ = u0 and E∗ = E0. We then integrate the
equations for the phasic total energies by approximating the interface pressures pIkj
with their values at equilibrium p∗

Ikj = p∗. This gives N equations of the form

(αkEk)
∗ − (αkEk)

0 = (αkEk)
∗ − (αkEk)

0 = −p∗(α∗
k − α0

k ), k = 1, 2, . . . ,N .

(12)
Imposing the pressure equilibrium conditions pk = p∗, ∀k = 1, . . . ,N , at final time
the phasic internal energies are then expressed as E∗

k = Ek(p∗, (αkρk)
0/α∗

k ). With
these relations, system (12) and the constraint

∑N
k=1 αk = 1 give N + 1 equations

for the unknowns α∗
k , k = 1, . . . ,N , and p∗. For the particular case of the SG EOS,

the problem can be reduced to the solution of a polynomial equation of degree N for
the equilibrium pressure p∗. Furthermore, for the case studied here with three phases,
N = 3, and two gaseous phases governed by a SG EOS with 
k = 0 (see Eq. (3)),
the polynomial equation of degree 3 for p∗ reduces to a quadratic equation, whose
physically admissible solution is easily found.

3.2.2 Thermal Relaxation

If thermal relaxation terms are also activated, then we consider the solution of a sys-
tem of the form ∂tq = ψμ(q) + ψϑ(q), with μkj ≡ μ → ∞ for all phase pairs, and
ϑkj ≡ ϑ → ∞ for some desired pairs (k, j). Let us assume instantaneous thermal
equilibrium for M phases, 2 ≤ M ≤ N , in addition to mechanical equilibrium for
all phases. We will denote equilibrium values with the superscript ∗∗. Then, similar
to the case of pressure relaxation, we can write (αkρk)

∗∗ = (αkρk)
0, k = 1, . . . ,N ,

(ρu)∗∗ = (ρu)0, E∗∗ = E0, and E∗∗ = E0. Moreover, we write N − M equations
of the form (12) with (·)0 replaced by (·)∗ and (·)∗ replaced by (·)∗∗, the mechan-
ical equilibrium conditions p∗∗

k = p∗∗, ∀k = 1, . . . ,N , and the thermal equilibrium
conditions T ∗∗

k = T ∗∗ for M phases. All these relations give a system of algebraic
equations to be solved for the equilibrium values α∗∗

k , p∗∗. As for the mechanical
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relaxation step, the solution of this system of algebraic equations can be reduced to
the solution of a polynomial equation of degree N for the pressure p∗∗ when the SG
EOS is adopted. The problem reduces further to the solution of a quadratic equation
for the case N = 3 with two gaseous phases governed by SG pressure laws with

k = 0.

3.2.3 Thermo-Chemical Relaxation

If thermo-chemical relaxation is activated for the species that may undergo liquid–
vapor transition, then we need to solve a system of ODEs of the form ∂tq =
ψμ(q) + ψϑ(q) + ψν(q), with μkj ≡ μ → ∞ for all phase pairs, ϑkj ≡ ϑ → ∞ for
some phase pairs (k, j), and ν → +∞ for the phase pair (1, 2). Let us assume instan-
taneous thermal equilibrium forM phases, including at least the phases 1 and 2. We
denote the quantities at thermodynamic equilibrium with the superscript⊕. First, we
can write ρ⊕ = ρ0, (ρu)⊕ = (ρu)0, E⊕ = E0, and E⊕ = E0. Moreover, we write
N − M equations of the form (12) with (·)0 replaced by (·)∗∗ and (·)∗ replaced by
(·)⊕, the mechanical equilibrium conditions p⊕

k = p⊕, ∀k = 1, . . . ,N , the thermal
equilibrium conditions T⊕

k = T⊕ for M phases, and the chemical equilibrium con-
dition g⊕

1 = g⊕
2 . This set of algebraic equations can be solved for the values of the

equilibrium pressure p⊕, the equilibrium volume fractions α⊕
k , and the equilibrium

densitiesρ⊕
k . For the case of the SGEOSconsidered here,we use a solution procedure

similar to the two-phase case [11]. First, we reduce the set of algebraic conditions
excluding the chemical equilibrium relation to the solution of a quadratic equation
for the temperature as a function of the equilibrium pressure, T⊕ = T⊕(p⊕). Then,
the expression of T⊕(p⊕) is introduced into the equilibrium condition g⊕

1 = g⊕
2 . This

gives an equation for p⊕, which is solved by Newton’s iterative method.

4 Numerical Experiments

We now present some numerical experiments for three-phase flows involving the
liquid and vapor phases of water and a third non-condensable phase. The parameters
of the SG EOS for water are those used in [11] (we use hereafter the subscripts
l and v for liquid and vapor, respectively): γl = 2.35, γv = 1.43, ηl = −1167 ×
103 J/kg, ηv = 2030 × 103 J/kg, 
l = 109 Pa, 
v = 0 Pa, κvl = 1816 J/(Kg · K),
κvv = 1040 J/(Kg · K), η′

l = 0 J/(Kg · K), η′
v = −23.4 × 103 J/(Kg · K).

4.1 Three-Phase Water Cavitation Tube

We perform a test that is similar to the two-phase cavitation tube experiment pre-
sented in [11, 14]. We consider a tube filled initially with liquid water with a uni-
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formly distributed small amount of water vapor αwv = 10−2 and a small amount of
air (non-condensable gas) αg = 10−1. Air is modeled as an ideal gas with γg = 1.4
(ηg = 0 J/kg, 
g = 0 Pa). The initial pressure is p0 = 105 Pa, and the initial densi-
ties correspond to the temperature T0 = 354 K. A velocity discontinuity is set at the
initial time at the middle of the tube, with u0 = −20 m/s on the left and u0 = 20 m/s
on the right. We use 3000 grid cells over the interval [0, 1], and CFL = 0.5. We
perform the simulation with different levels of activation of instantaneous relaxation
processes: (i) only mechanical relaxation (p-relaxation); (ii) mechanical relaxation
for all the three phases and thermal relaxation for the liquid–vapor pair only (pT (lv)-
relaxation); (iii)mechanical and thermal relaxation for all the phases (pT -relaxation);
(iv) mechanical relaxation for all the phases and thermal and chemical relaxation for
the liquid-vapor pair (pT (lv)g-relaxation); (v) mechanical and thermal relaxation
for all the phases and chemical relaxation for the liquid-vapor pair (pTg-relaxation).
Second-order results are displayed in Fig. 1 for the pressure, the velocity, the total
gaseous volume fraction αwv + αg, and the vapor mass fraction. In all the cases, we
observe two rarefactions propagating in opposite directions that produce a pressure
decrease in the middle region of the tube, and, correspondingly, an increase of the
total gaseous component. For the cases with activation ofmass transfer, i.e., pT (lv)g-
and pTg-relaxation, two evaporation waves develop, causing an increase of the vapor
mass fraction in the middle region. Note that in these cases the pressure decreases in
the cavitation zone until the saturation value is reached, whereas the pressure reaches
much lower values here if mass transfer is not activated. By inspecting the results,
we observe that the speed of the leading edges of the two rarefactions decreases
for any additional instantaneous thermal equilibrium process that we activate in the
computation, consistently with the sub-characteristic property demonstrated theo-
retically for the hierarchy of relaxed models in Sect. 2.1. Let us note that chemical
relaxation is not active here around the rarefaction fronts since mass transfer in this
test is activated under the metastability condition Tliquid > Tsat(p).

4.2 Underwater Explosion Close to a Rigid Surface

In this test, we simulate a cylindrical underwater explosion (UNDEX) close to a
rigid surface. Following [15], we consider an initial bubble of highly pressurized gas
(combustion products) surrounded by liquidwater and located near an upper flat wall.
Three fluid components are involved in this problem: liquid water, water vapor, and
combustion gases. The domain is [−0.6, 0.6] × [−0.7, 0]m2, and the bubble initially
is located at (xb, yb) = (0,−0.22)m, and it has radius rb = 0.05 m. Inside the bubble,
we set initially a pressure p = 8290 × 105 Pa, a gas density ρg = 1400 kg/m3, and
volume fractions αwl = αwv = 10−8 for the water phases. Outside the bubble, we
set p = 105 Pa, T = 303 K, and the volume fractions αwv = 10−4 and αg = 10−7,
for water vapor and gas, respectively. An ideal gas law is used for the combustion
gases, with γg = 2. In this test, thermal and chemical relaxation are activated for the
liquid–vapor water pair only. This explosion problem is characterized by a complex
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Fig. 1 Numerical results for the pressure, velocity, total gas volume fraction, and vapor mass
fraction for the water cavitation tube test

pattern of shocks and rarefaction waves [15], and the likely occurrence of creation
and collapse of vapor cavities in the liquid region close to the wall, due to the strong
rarefactions and subsequent recompression. We show in Fig. 2 pseudo-color plots of
the pressure at two different times. At t = 0.2 ms (upper left plot), the circular shock
created by the explosion has reflected from the wall; at time t = 0.35 ms (lower
left plot), a low-pressure cavitation region has developed close to the surface. The
pressure and water vapor mass fraction histories in time at the point (0, 0) at the
center of the wall are also displayed in the two plots on the right of Fig. 2. We clearly
observe the pressure peak corresponding to the instant at which the circular shock
hits the wall, the drop of the pressure and consequent growth of a vapor region in
this zone, which eventually disappears due to the recompression at later times. In
the literature, these type of UNDEX problems are typically simulated by simpler
single-fluid models [15], or by two-phase flow models [2] that are only able to
describe mechanical cavitation processes, that is growth/collapse of gas cavities due
to pressure variations, with no liquid-vapor transition. In contrast, our three-phase
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Fig. 2 Numerical results for the UNDEX experiment. Left: pressure field at time t = 0.2ms (top)
and t = 0.35ms (bottom). The thick solid circle line indicates the water/bubble interface. Right:
pressure history (top) and vapor mass fraction history (bottom) at the point (0, 0) at the center of
the wall

flow model allows a more accurate description of the thermodynamics of cavitation
processes, which involve liquid–vapor phase change.

5 Conclusions

We have presented a numerical model for multiphase compressible flows involving
the liquid and vapor phases of one species and a third inert gaseous phase. The model
includes mechanical, thermal, and chemical relaxation processes. The multiphase
equations are solved by a mixture-energy-consistent finite volume wave propagation
method combined with simple and robust procedures for the stiff relaxation terms.
Numerical results show the efficiency of the presented method in modeling complex
wave patterns with thermal and mass transfer processes. An analytical study of the
characteristic speeds of the hierarchy of relaxed models associated with the parent
relaxation model has been also presented. The presented model is an extension of the
two-phase flow model that we have introduced in [11]. This novel extension allows
us the simulation of problems where the dynamical appearance of vapor cavities and
evaporation fronts in a liquid is coupled to the dynamics of a third non-condensable
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gaseous component governed by its own equation of state. An example of application
illustrated in the present work is the simulation of an underwater explosion close to
a rigid wall, where highly pressurized combustion gases (non-condensable phase)
trigger cavitation processes in a liquid. Another application example can be found
in [13].
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Feedback Stabilization of a Linear
Fluid–Membrane System with Time
Delay

Gilbert Peralta

Abstract A coupled parabolic–hyperbolic system of partial differential equations
modelling the interaction of a fluid and a membrane is considered. The model is
reformulated as an abstract Cauchy problem and thereby constructing a semigroup
for the evolution. This is done by eliminating the pressure. The system is stabilized
through a feedback force applied to the membrane incorporating a time delay. The
spectral properties and stability are considered under suitable conditions on the fluid
viscosity, damping coefficient and delay coefficient.

Keywords Fluid-Membrane system · Stability · Feedback law · Delay
1 Introduction

Let us consider a sufficiently smooth bounded domainΩ in two- or three-dimensional
space. Denote by Γ the boundary of the fluid domain Ω and Γ = Γ 0 ∪ Γ 1 where
Γ0 and Γ1 are nonempty open subsets of Γ , both with positive surface measure. On
the boundary Γ1 we have a solid wall while on Γ0 we have a membrane. Let Σ0 be
the boundary of Γ0. A linear model describing the above situation is given by the
following coupled Navier–Stokes-wave system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − μΔu + ∇ p = 0, in (0,∞) × Ω,

div u = 0, in (0,∞) × Ω,

u = 0, on (0,∞) × Γ1,

u = wtν, on (0,∞) × Γ0,

wtt − Δw = p − μν · ∂νu + F, in (0,∞) × Γ0,

w = 0, in (0,∞) × Σ0,
∫

Γs
w dx = 0, in (0,∞),

(1)
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supplied with the initial conditions u(0, x) = u0(x) in Ω and w(0, x) = w0(x),
wt (0, x) = w1(x) in Γ0. In (1), u and p are the velocity field and pressure for the
fluid, w is the transversal displacement of the membrane, and F is the feedback
force. Moreover, μ is the fluid viscosity and ν is the unit normal outward to Ω . In
this paper, we consider small but rapid oscillations, under which we can assume that
the domain occupied by themembrane is fixed. Unlike in the Navier–Stokes equation
with no-slip boundary condition where the pressure is determined up to a constant,
the pressure in (1) is unique due to the Neumann-type boundary condition on Γ0.
In fact, for sufficiently smooth solutions, p satisfies an elliptic problem with mixed
Neumann–Robin boundary conditions.

Without the feedback force F , the above system is stable due to the diffusion
of the fluid component. This dissipative mechanism, through the interface boundary
condition, produces a dissipation for themembrane component. On the other hand, to
stabilize the system faster one could add a dissipative mechanism for the membrane
by introducing a feedback force. One of the common interior feedback force for the
wave equation is using the velocity. This feedback may not be felt instantaneously by
the evolution; that is, delay may take place. This consideration gives us the following
form of the linear feedback law

F(t, x) = −αwt (t, x) − βwt (t − τ, x),

for t > 0 and x ∈ Γ0, where α, β ≥ 0. The constant τ > 0 represents the extent of
delay, while the constants α and β represent the strengths of damping and delay,
respectively. To have a well-posed system, one must incorporate an initial history

w(θ, x) = z0(x) in (−τ, 0) × Γ0.

It is well known that delay induces a transport phenomenon in the system creating
oscillations that may lead into instability; see [10] and the references therein. In the
absence of delay, models similar to (1) where the membrane is replaced by a plate
has been studied in [4, 5, 9]. Typically, if the damping factor dominates the delay
factor, then the system will be stable, i.e. as if delay is not present, however, with a
possible slower decay rate. If such terms are equal then the systemmay not be stable;
see [10]. If there are other dissipative mechanisms in the system then we may obtain
stability under appropriate conditions, for instance, viscoelasticity in wave equations
in [7] and fluid viscosity in a fluid–structure system in [11]. In this paper, we shall
also see that viscosity plays a role in deriving sufficient conditions for exponential
stability.

The plan of this paper is as follows. In Sect. 2, we introduce generalized trace
results that are needed in the elimination of the pressure in the semigroup formulation.
In Sect. 3, we write (1) as an abstract Cauchy problem in a suitable state space and
prove that it generates a contraction semigroup under a suitable assumption on α, β
and μ. The spectral properties and uniform exponential stability of the semigroup
will be discussed in Sects. 4 and 5, respectively.
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2 Generalized Traces for Some Graph Spaces

Let Σ ⊂ Γ be sufficiently smooth. For s = m + σ wherem is a nonnegative integer
and σ ∈ (0, 1), let Hs

00(Σ) = {w ∈ Hs(Σ) : ‖w‖s,Σ < ∞} where

‖w‖2s,Σ = ‖u‖2Hs (Σ) +
∑

|α|=m

∫

Σ

|Dαu(x)|2
d(x, ∂Σ)2σ

dx

and d(x, ∂Σ) denotes the distance of x from ∂Σ . For each nonnegative integer m,
C∞
0 (Σ) is dense in Hm+1/2

00 (Σ) and we have (Hm+1/2
00 (Σ))′ = H−m−1/2(Σ), see [8]

for more details.
Consider the Hilbert space L2

div(Ω) = {u ∈ L2(Ω) : div u ∈ L2(Ω)} with the
graph norm. Recall that elements of L2

div(Ω) admit generalized normal traces u · ν|Σ
and the corresponding mapping is a continuous linear operator from L2

div(Ω) into
H−1/2(Σ). Moreover, for every ϕ ∈ H 1(Ω) with trace in H 1/2

00 (Σ) we have

〈u · ν|Σ, ϕ〉 =
∫

Ω

(div u)ϕ dx +
∫

Ω

u · ∇ϕ dx .

For the fluid component we shall use the function spaces

H = {u ∈ L2(Ω) : div u = 0 in Ω, u · ν|Γ1 = 0},
V = {u ∈ H 1(Ω) : div u = 0 in Ω, u|Γ1 = 0}.

Recall that the trace maps γ0 : H 1(Ω) → H 1/2(Γ ) and γ1 : H 2(Ω) → H 3/2

(Γ ) × H 1/2(Γ )definedbyγ0u = u|Γ andγ1u = (u|Γ , ∂νu|Γ ) are surjective bounded
linear operators. It follows that the operators γ0γ

∗
0 and γ1γ

∗
1 are strictly positive def-

inite and thus invertible. Given ϕ ∈ H 1/2
00 (Σ), we extend it by zero to the whole

boundary Σ to obtain an element in H 1/2(Γ ), which we shall still denote by
ϕ. We do a similar construction for ψ ∈ H 3/2

00 (Σ). Consider the lifting operators
� : H 3/2

00 (Σ) × H 1/2
00 (Σ) → H 2(Ω) and κ : H 1/2

00 (Σ) → H 1(Ω) given by

�(ψ, ϕ) = γ ∗
1 (γ1γ

∗
1 )−1(ψ, ϕ), κϕ = γ ∗

0 (γ0γ
∗
0 )−1ϕ.

Let �1 and �2 be the coordinate functions of �, that is, �1ψ = �(ψ, 0) and �2ϕ =
�(0, ϕ). It follows that �1, �2 and κ are bounded linear operators.

LetD = {p ∈ H 1(Ω) : Δp ∈ L2(Ω)} andW = {π ∈ L2(Ω) : Δπ ∈ H−1(Ω)}
be equipped with the corresponding graph norms. Given π ∈ W and p ∈ D , we
define π |Σ and ∂ν p|Σ by
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〈π |Σ, ϕ〉 =
∫

Ω

πΔ(�2ϕ) dx − 〈Δπ, �2ϕ〉H−1(Ω)×H 1
0 (Ω)

〈∂ν p|Σ,ψ〉 =
∫

Ω

(Δp)�1ψ dx +
∫

Ω

(∇ p) · ∇(�1ψ) dx (2)

for every ϕ ∈ H 1/2
00 (Σ) and ψ ∈ H 3/2

00 (Σ). From the definition and the proper-
ties of the above extension operators, one can immediately see that π �→ π |Σ ∈
L (W , H−1/2(Σ)) and p �→ ∂ν p|Σ ∈ L (D, H−3/2(Σ)). If π ∈ H 1(Ω) and p ∈
H 2(Ω) then these traces coincide with the usual traces. This remark follows imme-
diately from the above definitions and Green’s identities.

Now consider the subspace Y = {π ∈ L2(Ω) : Δπ ∈ L2(Ω)} of W with the
associated graph norm. Given π ∈ Y , define π |Σ and ∂νπ |Σ as follows

〈π |Σ, ϕ〉 =
∫

Ω

πΔ(�2ϕ) dx −
∫

Ω

(Δπ)�2ϕ dx

〈∂νπ |Σ,ψ〉 =
∫

Ω

(Δπ)�1ψ dx −
∫

Ω

πΔ(�1ψ) dx

for every ϕ ∈ H 1/2
00 (Σ) and ψ ∈ H 3/2

00 (Σ). Again these traces are bounded, more
precisely, π �→ π |Σ ∈ L (Y , H−1/2(Σ)) and π �→ ∂νπ |Σ ∈ L (Y , H−3/2(Σ)).
Notice that the definition of π |Σ is the same whether it is viewed as an element
of W or Y . Likewise, if p ∈ H 1(Ω) ∩ Y ⊂ D then the definition of ∂ν p|Σ coin-
cides with the earlier formulation (2).

Let us consider the graph space G = {(u, p) ∈ V × L2(Ω) : −μΔu + ∇ p ∈
L2
div(Ω)} endowed with the graph norm. Notice that Δp = div(∇ p − μΔu) ∈

L2(Ω) so that p ∈ Y and hence it admits traces such that

‖p‖H−1/2(Σ) + ‖∂ν p‖H−3/2(Σ) ≤ C(‖p‖L2(Ω) + ‖ div(∇ p − μΔu)‖L2(Ω)).

For (u, p) ∈ G, we define the following

〈μ∂νu|Σ, ϕ〉 = 〈pν|Σ, ϕ〉 − μ

∫

Ω

∇u · ∇(κϕ) dx +
∫

Ω

p div(κϕ) dx

+
∫

Ω

(−μΔu + ∇ p) · κϕ dx

〈μΔu · ν|Σ,ψ〉 = 〈∂ν p|Σ,ψ〉 +
∫

Ω

(−μΔu + ∇ p) · ∇(�1ψ) dx

for every ϕ ∈ H 1/2
00 (Σ) and ψ ∈ H 3/2

00 (Σ). Again, one can see immediately that
these generalized traces are bounded; that is, (u, p) �→ ∂νu|Σ ∈ L (G, H−1/2(Σ))

and (u, p) �→ Δu · ν ∈ L (G, H−3/2(Σ)). In fact, we have
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‖∂νu‖H−1/2(Σ) ≤ C(‖p‖H−1/2(Σ) + ‖u‖V + ‖p‖L2(Ω) + ‖μΔu − ∇ p‖L2(Ω))

‖Δu · ν‖H−3/2(Σ) ≤ C(‖μΔu − ∇ p‖H + ‖∂ν p‖H−3/2(Σ) ).

From the above discussion note that−μΔu + ∇ p admits a generalized normal trace
on Σ . In the case div(−μΔu + ∇ p) = 0, it follows from the divergence theorem
that

(−μΔu + ∇ p) · ν|Σ = μΔu · ν|Σ − ∂ν p|Σ.

In particular, we have the following generalized integration by parts formula

∫

Ω

(μΔu − ∇ p) f dx = 〈μ∂νu − pν|Σ, f 〉 − μ

∫

Ω

∇u · ∇ f dx

for every (u, p) ∈ G and f ∈ V . We refer to [2, 13] for similar discussions.

3 Abstract Formulation and Well-Posedness of the System

The coupled system (1) will be expressed as an evolution equation in a suitable
state space. Using the divergence theorem, it can be seen that we need to factor the
constants in the space for the states associated with the membrane. Let

X = {(u,w, v, z) ∈ H × Ĥ1
0 (Γ0) × L̂2(Γ0) × L2(−τ, 0; L̂2(Γ0)) : u · ν = v in Γ0},

where L̂2(Γ0) = {w ∈ L2(Γ0) : ∫

Γ0
w dx = 0} and Ĥ 1

0 (Γ0) = H 1(Γ0) ∩ L̂2(Γ0), be
equipped with the norm

‖(u,w, v, z)‖2X =
∫

Ω

|u|2 dx +
∫

Γ0

|∇w|2 + |v|2 dx + β

∫ 0

−τ

∫

Γ0

|z|2 dx dθ.

Following [1], we eliminate p in the system by rewriting it as an elliptic prob-
lem with boundary data involving the fluid velocity and the displacement of the
membrane.Define themixedNeumann–RobinmapM : H−3/2(Γ1) × H−3/2(Γ0) →
L2(Ω) according to

π = M(ϕ, ψ) ⇐⇒

⎧
⎪⎨

⎪⎩

Δπ = 0 in Ω,

∂νπ = ϕ on Γ1,

∂νπ + π = ψ on Γ0.

For smooth solutions we can see that p satisfies the boundary value problem
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⎧
⎪⎨

⎪⎩

Δp = 0 in Ω,

∂ν p = μΔu · ν on Γ1,

∂ν p + p = −Δw + αv + βz(−τ) + μν · ∂νu + μΔu · ν on Γ0.

Hence, we can represent p in terms of the map M as follows

p = L(u,w, v, z) := M(μΔu · ν,−Δw + αv + βz(−τ) + μν · ∂νu + μΔu · ν).

To keep track of the retarded term in (1), let us introduce the delay variable
z(t, θ, x) = wt (t + θ, x), which satisfies the following transport equation in (−τ, 0)
with parameter x ∈ Γ0

⎧
⎪⎨

⎪⎩

zt (t, θ, x) − zθ (t, θ, x) = 0, in (0,∞) × (−τ, 0) × Γ0,

z(t, 0, x) = wt (t, x), in (0,∞) × Γ0,

z(0, θ, x) = z0(θ, x), in (−τ, 0) × Γ0.

(3)

The fluid–membrane system (1) can now be rewritten as an evolution equation in X

d

dt
(u,w, v, z) = A(u,w, v, z)

where A : D(A) → X is the linear operator defined by

A(u,w, v, z) := (μΔu − ∇ p, v,Δw − αv − βz(−τ) + p − μν · ∂νu, ∂θ z)

with domain D(A) consisting of all elements (u,w, v, z) ∈ X such that u ∈ V ,
v ∈ Ĥ 1

0 (Γ0), z ∈ H 1(−τ, 0; L̂2(Γ0)), u = vν on Γ0, z|θ=0 = v on Γ0, μΔu − ∇ p ∈
H and Δw − αv − βz(−τ) + p − μν · ∂νu ∈ L̂2(Γ0), where p = L(u,w, v, z) ∈
L2(Ω).

Let CP be the constant in the following inequality obtained from trace theory and
the Poincaré inequality

∫

Γ0

|u · ν|2 dx ≤ CP

∫

Ω

|∇u|2 dx, ∀ u ∈ V . (4)

Theorem 1. If α + μ

CP
≥ β, where CP is the constant in (4), then A is the generator

of a strongly continuous semigroup of contractions on X.

Proof. We apply the Lumer–Phillips Theorem and hence we must show that A is
m-dissipative. Given X0 = (u,w, v, z) ∈ D(A), by applying generalized Green’s
identity for the membrane component, divergence theorem to the fluid component
and Cauchy–Schwarz inequality we have



Feedback Stabilization of a Linear Fluid–Membrane System with Time Delay 443

Re(AX0, X0)X = −μ

∫

Ω

|∇u|2 dx −
(

α − |β|
2

) ∫

Γ0

|v|2 dx − |β|
∫

Γ0

z(−τ)v dx

−|β|
2

∫

Γ0

|z(−τ)|2 dx ≤ −
(

α − |β| + μ

CP

) ∫

Γ0

|v|2 dx, (5)

establishing the dissipativity of A.
To prove maximality, it is enough to prove that 0 ∈ ρ(A), where ρ(A) denotes the

resolvent set of A. In order to show this, we need to find (u,w, v, z) ∈ D(A) such
that A(u,w, v, z) = ( f, g, h, ζ ) for a given ( f, g, h, ζ ) ∈ X and ‖(u,w, v, z)‖X ≤
C‖( f, g, h, ζ )‖X for some constant C > 0 independent of (u,w, v, z) and ( f, g,
h, ζ ). The equation to solve is equivalent to v = g, zθ = ζ , z|θ=0 = v, the Stokes
problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−μΔu + ∇ p = − f, in Ω,

div u = 0, in Ω,

u = 0, on Γ1,

u = gν, on Γ0,

(6)

and the elliptic equation with homogeneous Dirichlet condition

{
−Δw = −αg − βz(−τ) + p − μν · ∂νu − h, in Γ0,

w = 0, on Σ0.
(7)

We can see immediately that the delay variable is given by z(θ) = v − ∫ 0
θ

ζ(ϑ) dϑ
from which we have z ∈ H 1(−τ, 0; L̂2(Γ0)) and

‖z‖L2(−τ,0;L2(Γ0)) + ‖z(−τ)‖L2(Γ0) ≤ Cτ (‖g‖L2(Γ0) + ‖ζ‖L2(−τ,0;L2(Γ0))). (8)

The Stokes equation (6) admits a solution pair (u, p̃) ∈ V × L2(Ω); see, for instance
[12]. Given a constant p∗, the pair (u, p) where p = p̃ + p∗ is also a solution pair
and we have

‖u‖V + ‖p‖L2(Ω) ≤ C(‖ f ‖H + ‖g‖H 1
0 (Γ0)

),

and consequently we have the following trace estimate

‖p‖H−1/2(Γ0) + ‖∂νu‖H−1/2(Γ0) ≤ C(‖ f ‖H + ‖g‖H 1
0 (Γ0)

). (9)

Since the right-hand side for the elliptic equation (7) lies in H−1(Γ0), by standard
elliptic theory we have a solution w ∈ H 1(Γ0) and from (8) and (9) it is not hard to
see that ‖w‖H 1

0 (Γ0)
≤ C‖( f, g, h, ζ )‖X for some constant C > 0.

Thefinal step is to choose the constant p∗ in such away thatw has average zero. Let
ψ ∈ H 1

0 (Γ0) be the solution of the Poisson equation−Δψ = 1 on Γ0 with boundary
condition ψ = 0 on Σ0. A straightforward calculation yields that w ∈ L̂2(Γ0) if and
only if
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p∗ = ‖∇ψ‖−2
L2(Γ0)

(

(α + β)

∫

Γ0

vψ dx − β

∫ 0

−τ

∫

Γ0

ζ(ϑ)ψ dx dϑ − 〈 p̃ − μν · ∂νu, ψ〉
)

.

Finally one can check that p = L(u,w, v, z) and‖(u,w, v, z)‖X ≤ C‖( f, g, h, ζ )‖X .

4 Spectral Properties

First, let us present the adjoint of the generator A. To describe the said operator, we
consider the isomorphism J : X → X

J ( f, g, h, ζ(θ)) = (− f, g,−h, z(−θ − τ)).

Theorem 2. The X-adjoint A∗ : D(A∗) → X of the closed operator A is given by

A∗( f, g, h, ζ ) = (μΔ f − ∇π,−h,−Δg − αh + βζ(0) + π − μν · ∂ν f,−∂θ ζ )

with domain D(A∗) comprising of all elements ( f, g, h, ζ ) ∈ X such that f ∈ V , h ∈
Ĥ 1

0 (Γ0), ζ ∈ H 1(−τ, 0; L̂2(Γ0)), f = hν on Γ0, ζ(−τ) = −h on Γ0,μΔ f − ∇π ∈
H and−Δg − αh + βζ(0) + π − μν · ∂ν f ∈ L̂2(Γ0)where π = −L J ( f, g, h, ζ ).

Proof. The proof is similar to [11, Theorem 2.7] and therefore we omit it here.

In the following, we shall show that the spectrum of A consists of eigenval-
ues only, except possibly on the negative real axis. This will be done by rewriting
the resolvent equation in variational form on a suitable space and then applying
the Fredholm alternative and Lax–Milgram Lemma. For this direction, we introduce
the following function spaces

W0 = H × L̂2(Γ0), W1 = {(u, v) ∈ V × Ĥ 1
0 (Γ0) : u = vν on Γ0}.

The embedding W1 ⊂ W0 is compact, dense and continuous.
Given a nonzero complex number λ and Y = ( f, g, h, ϕ) ∈ X we define the

sesquilinear form aλ : W1 × W1 → C

aλ((u, v), (φ, ψ))=λ

∫

Ω

u · φ dx + μ

∫

Ω

∇u · ∇φ dx + q(λ)

∫

Γ0

vψ dx

+ 1

λ

∫

Γ0

∇v · ∇ψ dx

where q(λ) = λ + α + βe−λτ and the antilinear form FY,λ : W1 → C by
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FY,λ(φ, ψ)=
∫

Ω

f · φ dx − 1

λ

∫

Γ0

∇g · ∇ψ dx +
∫

Γ0

hψ dx

−β

∫ 0

−τ

∫

Γ0

e−λ(θ+τ)ϕ(θ)ψ dx dθ.

Theorem 3. Let σ(A) and σp(A) be the spectrum and point spectrum of A,
respectively. If α + μ

CP
≥ |β| then σ(A) ∩ (C \ (−∞, 0]) = σp(A) and σ(A∗) ∩

(C \ (−∞, 0]) = σp(A∗).

Proof. Let λ ∈ C \ (−∞, 0]. For a given Y = ( f, g, h, ϕ) ∈ X , suppose that there
exists (u,w, v, z) ∈ D(A) such that

(λI − A)(u,w, v, z) = ( f, g, h, ζ ). (10)

This equation is equivalent to the condition that λw − v = g, λz − ∂θ z = h,
z(0) = v, u satisfies the Stokes equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λu − μΔu + ∇ p = f, in Ω,

div u = 0, in Ω,

u = 0, on Γ1,

u = vν, on Γ0,

(11)

and (v,w) satisfies the boundary value problem

{
(λ + α)v − Δw = −βz(−τ) − p + μν · ∂νu + h, in Γ0,

w = 0, on Σ0.
(12)

Applying the variation of parameters formula to the equation for z, we obtain

z(θ) = eλθv +
∫ 0

θ

eλ(θ−ϑ)ϕ(ϑ) dϑ. (13)

Using this and the fact that w = 1
λ
(v + g) we can see that the variational form of the

elliptic equation (12) is given by

q(λ)

∫

Γ0

vψ dx +1

λ

∫

Γ0

∇v · ∇ψ dx = −1

λ

∫

Γ0

∇g · ∇ψ dx +
∫

Γ0

hψ dx

−β

∫ 0

−τ

∫

Γ0

e−λ(θ+τ)ϕ(θ)ψ dx dθ − 〈μ∂νu − pν, ψν〉 (14)

for every ψ ∈ H 1
0 (Γ0). Also, the weak form of the Stokes equation (11) is given by
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λ

∫

Ω

u · φ dx + μ

∫

Ω

∇u · ∇φ dx = 〈μ∂νu − pν, φ〉 +
∫

Ω

f · φ dx (15)

for every φ ∈ V . Therefore if (φ,ψ) ∈ W1, taking the sum of (14) and (15) so that
the duality pairing vanishes, we obtain the variational equation

aλ((u, v), (φ, ψ)) = FY,λ(φ, ψ), ∀ (φ,ψ) ∈ W1. (16)

Conversely suppose that the variational Eq. (16) is satisfied. Define z and w as
above. Choosing ψ = 0 we can see that u satisfies the Stokes equation (11) in the
sense of distributions. Using Green’s identity the elliptic equation (12) holds in the
distributional sense as well. We choose p = p̃ + p∗ where

p∗ = 〈μν∂νu − p̃ − βz(−τ) − (λ + α)v, ψ0〉

and {ψ0} is a basis of {ψ ∈ H 1
0 (Γ0) : Δu is constant}, which has dimension 1, and is

the orthogonal complement of Ĥ 1
0 (Γ0) in H 1

0 (Γ0). Split the sesquilinear form aλ as
aλ = a0,λ + a1,λ where the sesquilinear forms ai,λ : Wi × Wi → C for i = 0, 1 are
given by

a1,λ((u, v), (φ, ψ)) = μ

∫

Ω

∇u · ∇φ dx + 1

λ

∫

Γ0

∇v · ∇ψ dx

a0,λ((u, v), (φ, ψ)) = λ

∫

Ω

u · φ dx + q(λ)

∫

Γ0

vψ dx .

The form a1,λ is W1-coercive provided that Im λ �= 0 and a0,λ is bounded. From the
Lax–Milgram–Fredholm Lemma (see [6]) we obtain the desired result. The corre-
sponding result for the adjoint can be done in a similar way.

5 Uniform Exponential Stability

In this section we prove that the energy of the solutions for the fluid–membrane
interaction model decays to zero exponentially under the condition α + μ

CP
> β.

The result will be shown using the Lyapunov method. The success of this method to
the system (1) relies on the following theorem in [5].

Theorem 4. Let S be the Stokes map defined in the following way

u = Sv ⇐⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−μΔu + ∇ p = 0, in Ω,

div u = 0, in Ω,

u = 0, on Γ1,

u = vν, on Γ0.
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Then it holds that S ∈ L (L̂2(Γ0), H 1/2(Ω) ∩ H) ∩ L (Ĥ 1
0 (Γ0), H 3/2(Ω) ∩ H).

Theorem 5. Suppose that α + μ

CP
> β. The semigroup generated by A is uniformly

exponentially stable; that is, there exist σ > 0 and M ≥ 1 such that ‖et AX0‖X ≤
Me−σ t‖X0‖X for every X0 ∈ X and t ≥ 0.

Proof. By a standard density argument it is enough to consider initial data in
the domain of A. For this purpose, let Y (t) = (u(t), v(t),w(t), z(t)) = et A(u0,w0,

v0, z0) where (u0,w0, v0, z0) ∈ D(A). We define the Lyapunov functional L as fol-
lows

L(t) = 1

2
‖(u(t), v(t),w(t), z(t))‖2X + ε1

∫ 0

−τ

∫

Γ0

eaθ |z(t, θ)|2 dx dθ

+ ε2

∫

Ω

u(t) · Sw(t) dx + ε2

∫

Γ0

w(t)v(t) dx .

The positive constants a, ε1 and ε2 will be chosen below. Note that for sufficiently
small ε1 and ε2, the functional L(t) and the energy E(t) := 1

2‖(u(t), v(t),w(t),
z(t))‖2X are equivalent, that is, there exist constants c1, c2 > 0 independent of t such
that c1E(t) ≤ L(t) ≤ c2E(t) for every t ≥ 0.

Revising the dissipativity estimate (5) we have

d

dt
E(t) ≤ − ε

∫

Ω

|∇u(t)|2 dx −
(

α − β + μ − ε

CP

) ∫

Γ0

|v(t)|2 dx (17)

where ε > 0 is small enough so that k := α − β + μ−ε

CP
> 0. On the other hand,

taking the derivative of the second term of L and then using the transport equation
for z we have

d

dt

∫ 0

−τ

∫

Γ0

eaθ |z(t, θ)|2 dx dθ =
∫ 0

−τ

∫

Γ0

eaθ ∂θ (|z(t, θ)|2) dx dθ

=
∫

Γ0

(|v(t)|2 − e−aτ |z(t,−τ)|2) dx − a
∫ 0

−τ

∫

Γ0

eaθ |z(t, θ)|2 dx dθ. (18)

Taking the derivative of the third termof L and using the fact that div Sw = 0, Sw = 0
on Γ1 and Sw = wν on Γ0 we have

d

dt

∫

Ω

u(t) · Sw(t) dx (19)

=
∫

Ω

(μΔu(t) − ∇ p(t)) · Sw(t) dx +
∫

Ω

u(t) · Sv(t) dx

= −μ

∫

Ω

∇u(t) · ∇Sw(t) dx + 〈μν · ∂νu(t) − p(t),w(t)〉 +
∫

Ω

u(t) · Sv(t) dx .

From Theorem 4 and the Poincaré inequality, we have the estimates
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∣
∣
∣
∣μ

∫

Ω
∇u(t) · ∇Sw(t) dx

∣
∣
∣
∣ ≤ Cμ,ε3

∫

Ω
|∇u(t)|2 dx + ε3

∫

Γ0

|∇w(t)|2 dx (20)
∣
∣
∣
∣

∫

Ω
u(t) · Sv(t) dx

∣
∣
∣
∣ ≤ Cμ

∫

Ω
|∇u(t)|2 dx + C

∫

Γ0

|v(t)|2 dx . (21)

Let CΓ0 be the Poincaré constant corresponding to the domain Γ0. Then we have

〈μν · ∂νu(t) − p(t),w(t)〉 + d

dt

∫

Γ0

v(t)w(t) dx −
∫

Γ0

|v(t)|2 dx

= −
∫

Γ0

|∇w(t)|2 dx −
∫

Γ0

(αv(t) − βz(t,−τ))w(t) dx

≤ −(1 − ε3CΓ0)

∫

Γ0

|∇w(t)|2 dx − Cα,β,ε3

∫

Γ0

(|v(t)|2 + |z(t,−τ)|2) dx . (22)

Therefore, if we choose the positive constants εi for i = 1, 2, 3 in such a way that
ε − ε2(Cμ + Cμ,ε3) > 0, k − ε1 − (1 + C + Cα,β,ε3)ε2 > 0, ε1e−aτ − Cα,β,ε3ε2 > 0
and 1 − ε3(1 + CΓ0) > 0, then from (17) to (22)we can see that there exists a positive
constant C > 0 such that L ′(t) ≤ −CL(t). Using the equivalence of L and E , we
obtain the desired result.
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A Unified Hyperbolic Formulation
for Viscous Fluids and Elastoplastic
Solids

Michael Dumbser, Ilya Peshkov and Evgeniy Romenski

Abstract We discuss a unified flow theory which in a single system of hyperbolic
partial differential equations (PDEs) can describe the two main branches of con-
tinuum mechanics, fluid dynamics and solid dynamics. The fundamental difference
from the classical continuum models, such as the Navier–Stokes, for example, is
that the finite length scale of the continuum particles is not ignored but kept in the
model in order to semi-explicitly describe the essence of any flows, that is the process
of continuum particles rearrangements. To allow the continuum particle rearrange-
ments, we admit the deformability of particle which is described by the distortion
field. The ability of media to flow is characterized by the strain dissipation time
which is a characteristic time necessary for a continuum particle to rearrange with
one of its neighboring particles. It is shown that the continuum particle length scale
is intimately connected with the dissipation time. The governing equations are rep-
resented by a system of first-order hyperbolic PDEs with source terms modeling
the dissipation due to particle rearrangements. Numerical examples justifying the
reliability of the proposed approach are demonstrated.
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1 Introduction

This paper contains an extended abstract of the talk given at the XVI International
Conference on Hyperbolic Problems Theory, Numerics, Applications (HYP2016),
Aachen (Germany), August 1–5, 2016. The talk was dedicated to the unified hyper-
bolic formulation of fluid and solid dynamics recently proposed in [1, 2]. In particular,
the emphasis was done on the discussion of the physical model underlying the math-
ematical formulation. To emphasize how important such a physical interpretation of
the mathematical model is, we recall that the equations which constitute the model
were proposed many years ago, back to 1970th, by Godunov and Romenski in [3, 4]
for modeling of large elastoplastic deformations in metals, and the equations were
used until recently only in the solid dynamics context by several authors, e.g., [5–16]
to cite just a few.Moreover, similar equations and even an idea to apply them tomod-
eling of fluids were proposed by Besseling in [17], but unfortunately it has never been
appreciated in the fluid dynamics context nor by Besseling itself neither by the oth-
ers. Perhaps, one of the reason for that the hyperbolic Godunov–Romenski equations
was not even thought to be used in the fluid dynamics context is an exceptional role
of the parabolic Navier–Stokes–Fourier (NSF) equations in the fluid dynamics. For
example, it is believed that any mathematical model aiming to describe viscous flows
has to literally coincide with the NSF equations in the diffusion regime. This should
be understood as that the second-order parabolic terms should appear explicitly in
the PDEs, and they are a fundamental hallmark of the diffusion in the mathematical
description. For instance, the well-known first-order hyperbolic extension of the NSF
equations, the Maxwell–Cattaneo equations

Ẋ = −1

λ

(
X − XNSF

)
, (1)

relax to theNSF equations as the relaxation parameterλ → 0.Here, X is a dissipative
quantity in the Maxwell–Cattaneo approach, while XNSF is the value of X obtained
in the framework of the NSF theory, the upper dot denotes a time derivative. This,
in particular, results in that some characteristic speeds of the Maxwell–Cattaneo
equations unphysically tend to infinity as λ → 0. From the other side, as it is shown
in [1, 2], there are no physical reasons saying that the diffusion processes should
be exclusively modeled by the second-order parabolic equations, and a radically
different first-order hyperbolic description which is not based on the steady-state
laws such as Newton’s law of viscosity or Fourier law of heat conduction is possible.

Perhaps, the right question in this context is that after more than one hundred year
history of successful use of the NSF theory, do we need at all another transport theory
different from the classical parabolic approach? From a practical point of view, the
answer is not clear yet, but fromaphysical viewpoint the answer is obviously positive.
Indeed, the heart of the NSF equations, Newton’s law of viscosity and Fourier’s law
of heat conduction, are the phenomenological laws and thus should be substituted by
more physically meaningful laws.We thus would like to emphasize an important role
of the physical model in that it helped us to dare to propose an alternative physically
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based description of viscous dissipation. Eventually, it is necessary to note that our
hyperbolic unified approach is now well established after an extensive comparison
with the NSF theory in [2]. Moreover, the model was recently extended in [18] in
order to include the interaction of matter with the electromagnetic field where we
also provided an extensive comparison of the extended model with the ideal MHD
and parabolic viscous resistive MHD equations.

2 Physical Model

Despite we oppose our model to the classical continuum models such as the NSF
equations, we underline that the proposed approach entirely relies on the conven-
tional postulates of continuummechanics and thermodynamics. The main difference
though is that we do not assume some simplifications which are implied in the classi-
cal theories. Namely, the key difference is that the continuum particles are not treated
as scaleless mathematical points but are considered as the finite volumes of a small
but finite scale �. Recall that the notion of the continuum particle is central in any
continuum theory. This notion relies on the longtime observations suggesting that for
the macroscopic description of the dynamics of matter (gas, liquid, or solid), the very
detailed information about the molecular motion is irrelevant but the dynamics of
ensembles of molecules instead should be considered as a dynamics of new entities of
a particle nature. Of course, such particles have not to exist forever but only during a
finite time which shall be considered later as an important measure of fluidity. Thus,
in our approach, the continuum is represented by a system of finite scale particles
(finite volumes) covering the space occupied by the media without gaps; see Fig. 1.

Once one admits or, rather to say, does not ignore that the continuum particles
have a finite scale �, the description of the flow becomes straightforward because the
essence of any flow phenomena in any system of finite scale particles is the process of
rearrangements of these particles.1 Thus, the central task of our approach is to find a
mathematical framework to express the dynamics of the continuum particles. Further,
as depicted in Fig. 1, there is no free volume between the continuum particles, and
hence to allow the particle rearrangements, we have to admit the deformability of
the particles; otherwise (if they would be rigid volumes), they cannot rearrange and
the flow is impossible. Thus, in our approximation, the continuum particles are the
structureless (homogeneous) “soft” deformable particles. The ability of the particles
to deformcanbe characterized by the ability to transmit the transversal perturbations,
which in turn can be characterized by the shear sound speed, denoted here by cs . As

1From the other hand, in the context of the scaleless particles of classical continuum mechanics it
is impossible to define the rearrangements because the notion of a neighboring continuum particle
becomes indefinite, and thus what remains is not to describe the flow itself but rather tomimic some
indirect flow indicators, such as stress–strain-rate relations, etc. Such a mimic strategy is of course
admissible in the engineering problems, but it is unable to give a meaningful explanation to the
physical phenomena.
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Fig. 1 Sketch of the continuum particles (honeycomb-like cells). If the scale of the continuum
particles is not ignored, then the continuum representation of all three states of matter is identical.
The circles represent the real molecules

Fig. 2 Sketch for the
distortion field A. It maps a
particle from a current
deformed state to the
undeformed stress free state

for the measure of the deformation of particles, we use the distortion field A = [Ai j ]
which maps a particle from the current deformed state to the undeformed state; see
Fig. 2.

Furthermore, the ability of the particles to rearrange, or to change their neighbors,
can be characterized by a time τ which is the characteristic time necessary for a
given particle to rearrange with one of its neighboring particles. Because we keep
the finite scale of the continuum particles in the physical model, it is then obvious that
such particles cannot rearrange instantaneously because of the causality principle,
and hence the time τ is also finite. The time τ is a continuum interpretation of the
seminal idea of the so-called particle settled life time of Frenkel [19], who applied it
to describe the ability of liquids to flow, see also recent promising experimental and
theoretical advances [20–24] confirming and further developing Frenkel’s ideas.

Another non-trivial, and probably the most important, consequence of the finite-
ness of the particle length scale is that because the particles cannot rearrange instan-
taneously, there is a relative motion between the neighboring particles; see Fig. 3.
Such a relative motion assumes the existence of a slip between neighboring particles.
In turn, the transversal perturbations that carry the information about the deforma-
tion of the continuum particles cannot propagate across such slip planes without a
loss of information. This results in that the distortion field is incompatible,2 or not
integrable [1, 4, 25]. Such a loss of information is represented by a dissipation term
in the time evolution for the distortion field which “dissipates” shear deformation
stored in A. This term is proportional to 1/τ , and thus time τ is also referred to as
the characteristic strain dissipation time in our papers [1, 2, 18].

2The incompatibility condition for A is B := curl(A) �= 0, where B is a so-called Burgers tensor
which is interpreted as the number density of the slips (defects) between continuum particles. The
term curl(A) also emerges in the time evolution for A.
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Fig. 3 Sketch for the particle rearrangements. Because the continuum particles are finite, there is
a relative velocity w = v′′ − v′ between neighboring particles. While the longitudinal (pressure)
perturbations can propagate across the slip plane, the transversal perturbations can not propagate
without a loss of information, and thus the distortions A′ and A′′ are incompatible

At this point, it is necessary to emphasize that the representation of the con-
tinuum by a system of finite volumes is what actually unifies all the three states
of mater, gaseous, liquid, and solid, because now, the problem of the contin-
uum particle dynamics (finite volumes) is essentially a geometrical problem
(deformation problem). Such a geometrical reformulation is insensible to the
content of the continuum particles.

It is also clear from the above discussion that the main approximation of our phys-
ical model is the treatment of the continuum particles as structureless homogeneous
elastic volumes. However, as it is shown in [1, 2] such an approach is a very precise
approximation as long as the characteristic wave length λ of the mechanical pertur-
bations is larger than the particle length scale �. Moreover, as it is proven in [2], the
knowledge of only the continuum particle dynamics is sufficient to build a unified
flow theory for gases and liquids which incorporates the Newtonian behavior of vis-
cous fluids as a particular case. On the contrary, the exceptionally different molecular
dynamics of gases and liquids suggests that not the molecular dynamics is respon-
sible for the mathematical form of the transport laws (identical in both cases) but a
dynamics at a larger scale, which we believe is the scale of the continuum particles.
Thus, the knowledge of the length scale � is extremely important for understanding
of the limits of applicability of our physical model, and as will be shown later with
the dispersion analysis, the continuum particle length scale is of the order of τ cs , i.e.

� ∼ τ cs . (2)

If one needs to deal with a problem solution to which strongly depends on the
dynamics at a scale for which λ ∼ � or even λ < �, then it is necessary to enlarge
the model by providing a more accurate description of the perturbation propagation
inside of the continuum particles.
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3 Mathematical Model

The governing PDEs are formulated for the following volume average quantities

(m, A, ρ, σ ), (3)

wherem = [mi ] = ρv is the momentum density, ρ is the mass density, v = [vi ] is the
velocity vector, A = [Ai j ] is the distortion field, and σ = ρs is the entropy density,
while s is the specific entropy. Also, an exceptional role is played by the total energy
density potential

E = E (m, A, ρ, σ ) (4)

which plays the role of a generating potential as discussed in details in [2].
The system of governing PDEs can be written as

∂mi

∂t
+ ∂

(
mivk + [mlEml + ρEρ + σEσ − E ]δik + AliEAlk

)

∂xk
= 0, (5a)

∂Aik

∂t
+ ∂(Ailvl)

∂xk
+ v j

(
∂Aik

∂x j
− ∂Ai j

∂xk

)
= −EAik

θ
, (5b)

∂ρ

∂t
+ ∂(ρvk)

∂xk
= 0, (5c)

∂σ

∂t
+ ∂(σvk)

∂xk
= 1

Eσ θ
EAi jEAi j ≥ 0, (5d)

while the energy conservation law reads as

∂E

∂t
+ ∂

∂xk

(
E vk + vn

([mlEml + ρEρ + σEσ − E ]δnk + AlnEAlk

)) = 0. (6)

As in all our previous papers [1, 2, 18], the notations such as Eρ , Emi , EAi j , Eσ are
used to denote the partial derivatives ∂E /∂ρ, ∂E /∂mi . Thus, to specify all the terms
in the equations, that is to close the system, one needs to specify the total energy E .
Also, θ ∼ τ is a relaxation parameter which will be specified later. These two scalar
functions, E and θ , are the only degrees of freedom in the model formulation. For
example, the non-dissipative part of the PDEs, i.e., all the differential terms which
are collected on the left-hand side, is complete in the sense that no differential terms
can be added or removed and the only possibility to modify something is to change
the potential E . The dissipative part of the equations is the only algebraic source
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terms on the right-hand side which depend on the specification of the energy and the
dissipation parameter θ .

The non-advective momentum flux

Σik = −[mlEml + ρEρ + σEσ − E ]δik − AliEAlk (7)

is the stress tensor. Its form is completely defined by the structure of the time evolution
equations while its further specification depends solely on the choice of the energy
E . Here, the scalar p = mlEml + ρEρ + σEσ − E can be refereed to as the pressure
which coincides with the classical hydrodynamic pressure for equilibrium flows.
Indeed, if one introduces the specific total energy density E as E = ρE , for which
the following decomposition is usually assumed

E = E1(ρ, s, A) + 1

2
vi vi (8)

then p = mlEml + ρEρ + σEσ − E = ρ2E1
ρ , exactly as in our previous paper [1].

The last term in (7) represents the viscous stresses or elastic stresses in the case of
solid dynamics.

For the further specification of the total energy potential E , we note that there are
three scales involved in the physical model formulation described in Introduction.
Namely, the molecular scale, called here microscale; the scale of the continuum
particles, called here mesoscale; and the flow scale, or observable macroscale. We
thus assume that E is a sum of three terms each of which represents the amount of
energy stored on the corresponding scale

E = Emi(ρ, s) + Eme(ρ, s, A) + Ema(v). (9)

The terms Emi and Ema are conventional. They are the kinetic energy Ema(v) = 1
2vi vi ,

which represents the part of the total energy stored in the macroscale, and an internal
energy Emi(ρ, s) represents the kinetic energy of the molecular motion. In [2, 18],
we used an ideal gas equation or stiffened gas equation of state for Emi to model
gases or liquids and solids, respectively

For the mesoscopic, or non-equilibrium, part of the total energy, we shall use a
quadratic form

Eme = c2s
4
GTF

i j G
TF
i j , (10)

where GTF
i j = Gi j − Gii/3 is the deviator of the tensor Gi j = Aki Akj , cs is the char-

acteristic velocity of propagation of transversal perturbations, we call it here shear
sound velocity. In general, cs is a function of ρ and s.

With such a specification of the term Eme, the explicit form of the viscous/elastic
stress (the last term in (7)) which we denote by σik is

σik = ρc2s GilG
TF
lk . (11)
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The mesoscopic energy Eme also defines [2] the dissipation terms as

EA

θ
= 3

τ
|A| 5

3 AGTF, (12)

wherewe use θ = τc2s /3|A| 5
3 for θ and |A| to denote the determinant of A. In general,

τ is a function of the state variables τ = τ(ρ, s, A) while for Newtonian fluids, it
can be taken to be constant as shown in [2] through a formal asymptotic analysis. In
particular, the dependence of τ on A defines the non-Newtonian properties of fluids
or controls the transition from elastic to plastic regime in solids [4, 9, 10, 25]; see
also numerical examples in the following Sect. 4.

4 Numerical Results

In this section, we demonstrate that the proposed model can be applied to modeling
of non-equilibirum effects in gases as well as to modeling of viscous fluid flows and
elastoplastic deformation in metals.

4.1 Non-equilibrium Sound Wave Propagation in a Viscous
Gas

We first study the propagation of plane acoustic waves of an angular frequency ω

in a viscous gas. As it is well known, the presence of the dissipative process gives
rise to the phenomena called dispersion when the wave phase speed V depends on
the frequency of the wave, V = V (ω). This dependency is defined by the dispersion
relation for a givenmodel. The dispersion relation for the proposed hyperbolic model
can be found in [1] in Sect. 2.2.2. The phase velocity V (ω) and the attenuation factor
for Eqs. (5), (9), and (10) are presented in Fig. 4 for Helium.

As can be seen in Fig. 4 (left), at a frequency ω∗ = 2π/τ the dispersion almost

disappears and the phase velocity V (ω) tends to a constant value c∞ =
√
c20 + 4c2s /3

(see also [1]) called a high-frequency limit for the sound speed. This experimentally
defined value can be used to estimate the shear sound speed cs , and subsequently to
estimate the dissipation time τ from the relation η = ρ

6 c
2
s τ for the shear viscosity η.

The dispersion disappearance of V (ω) is fully conditioned by the physical model
underlying the mathematical formulation. Indeed, because the continuum particles
have the finite scale �, the behavior of V (ω) should change when the wavelength λ

becomes comparable with the particle size, λ = λ∗ ∼ �. We thus can use this fact to
estimate the particle length scale � as � ∼ τcs . Indeed,
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Fig. 4 Sound wave dispersion in Helium. Comparison with the experimental data (red dots)
from [28]. The blue solid lines correspond to the hyperbolic model, and the green solid lines
correspond to the Navier–Stokes–Fourier model. The vertical black dashed line in the left figure
corresponds to the frequency ω∗ = 2π/τ ≈ 2 · 1010 2π s−1 and to the wavelength λ ≈ 10−7 m

λ∗ = V (ω∗)
ω∗ ≈ c∞

ω∗ ∼ cs
2π/τ

∼ τcs . (13)

Thus, for the experimental data presented in Fig. 4, the continuum particle length
scale can be estimated as � ≈ 4.6 · 10−7 m. For this, we took c∞ = 2 052m/s, shear
viscosity η = 2 · 10−5 Pa·s, and mass density ρ = 0.16kg/m3 which gives us cs =√

(c2∞ − c20)3/4 ≈ 1 543m/s and τ = 6η/(ρc2s ) ≈ 3 · 10−10 s.
Eventually, we note that there is a certain discrepancy in the attenuation factor

visible in Fig. 4(right) if compared with the experimental data, while the Navier–
Stokes–Fourier model (see Chap.11 of [26] for the dispersion relation for the NSF
equations) shows an excellent agreement. First of all, one should note that, at high
values of ω, there may be a contribution to the absorption arising from diffusion
in the piezoelectric receiver, as pointed out by Woods and Troughton [27] (see also
discussion inChap.11 of book [26]), so that the experimental result for the absorption
factor should be considered as an upper limit to the actual value. Secondly, so far,
we ignore such important processes as heat transfer and volume relaxation which of
course should increase the dissipation. This will be studied elsewhere.

4.2 Viscous Fluids and Elastoplastic Solids

In order to demonstrate the ability of the proposed unified hyperbolic model to
deal with radically different behaviors of matter such as flows of viscous gases and
elastoplastic deformation in solids, we consider two 2D problems. These examples
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merely serve to demonstrate the diversity of regimes allowed to be captured by the
model while the numerical schemes we use in this paper are not very accurate such
as those used in our recent papers [2, 16, 18] where much more accurate results
were obtained with the use of advanced high-order arbitrary high-order derivatives
(ADER) [29], discontinuous Galerkin and finite-volume schemes, movingmesh, and
adaptive mesh refinement techniques. An extensive comparison against the parabolic
theories like the Navier–Stokes–Fourier equations and resistive MHD model is also
provided in [2, 18].

The key parameter controlling the transition between the fluid-like and solid-like
behavior is the dissipation time τ . As discussed in the introduction section and in
[1, 2], for the elastic solids, the continuum particles do not rearrange and hence time
τ is infinite, while for viscous fluids 0 < τ < ∞. For elastoplastic solids, time τ

depends on the yield strength and rapidly but continuously changes from an infinite
value (in fact from a sufficiently large value) to a finite value in the plastic regime,
in which the continuum particles do rearrange.

In the first example, a gravity-driven Rayleigh–Taylor instability in a viscous gas
confined in a rectangular domain with no-slip boundary conditions is simulated. The
domain is a box (x, y) ∈ [0, 1/3] × [0, 1] which was discretized with a Cartesian
mesh consisting of 200 × 600 cells, gravitational field is directed vertically down-
ward and has a magnitude g = 0.1, the initial conditions are: v = 0, the density
is taken 2 if y > 0.5 + 0.01 cos(6πx) and 1 otherwise, the ideal gas equation of
state is used for the internal energy Emi (see (9)) with the ratio of specific heats
γ = 1.4, the pressure is set to 1/γ everywhere, and the shear sound speed cs was set
to cs = c0 = 1. For the whole domain, we set the shear viscosity to 10−5 Pa·s and the
dissipation time to τ = 6η/c2s ≈ 6 · 10−5 s. Figure 5 depicts several time instants of
the simulation. The fluid-like motion (formation of the vortexes) is clearly identified.

Fig. 5 Rayleigh–Taylor instability in a viscous gas modeled with the proposed hyperbolic model
with the equation of state (9)–(10) and τ = const > 0. The heavier gas is colored in red while the
lighter gas is colored in blue. A Cartesian mesh of 200 × 600 cells and no-slip boundary conditions
were used
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Fig. 6 An oblique
high-velocity impact of two
solid plates. Three instants of
time are shown. The colors
represent the norm of the
stress tensor deviator. The
dark red corresponds to
0.04GPa and indicates the
zones of plastic deformation,
while all other colors
correspond to elastic
deformation, the blue
corresponds to 0GPa

We also note that the gas sticks to the walls as no-slip boundary conditions is used.
For this simulation, we use CLAWPACK software [30] designed specifically for
hyperbolic PDEs. The numerical fluxes are obtained via the solution of an approx-
imate Riemann problem which was solved using the eigenvalue decomposition of
the Jacobi matrix for the fluxes. The second-order wave propagation algorithm of
CLAWPACK with the “minmod” limiter was used.

In the second numerical example, we consider an oblique high-velocity collision
of two solid plates presented in Fig. 6. This example is motivated by the explosion
welding process [31]. The initial angle between the plates is 13◦, and the lower plate
is at rest while the upper plate has the velocity 1500m/s normal to the bottom face. It
is assumed that there is no slip on the contact interface between the bodies. The upper
plate has dimensions 1 × 0.1cm and is discretized with a 600 × 60 Cartesian mesh
while the lower plate has dimensions 1 × 0.3 and is discretized with a 600 × 180
Cartesianmesh. The both plates have the samematerial parameters which were taken
as follows. The mass density is 7.9kg/m3, the longitudinal sound speed is 6700m/s,
the shear sound speed is 3 150 m/s, the dissipation time was taken as τ = τ0(σ0/σ)n

where τ0 = 0.1 s, σY is a parameter which controls the transition from elastic to
plastic regime and was set to 0.0056 GPa, while σ is the second norm of the deviator
of the stress tensor. The power law index n was set to n = 10. For such parameters,
the effective yield strength appears to be ≈0.04 GPa. The sound speeds were taken
as 6700 and 3150 m/s for longitudinal and transversal sound speed, respectively. The
equation of state is given in [10]. This numerical example was performed several
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years ago, and model (5) was written in the Lagrangian coordinates which are well
suited for the solid dynamics problems; see details in [10]. However, recently, the
Eulerian equations (5) were also implemented in an arbitrary Lagrangian Eulerian
(ALE) code [16] which also opens new possibilities for more efficient simulation
of elastoplastic solids experiencing large deformations. Two independent Cartesian
meshes were used in this simulation, and the equations were solved with a standard
first-order Godunov scheme with an acoustic Riemann solver; see [10]. The contact
boundary requires a specific treatment. For this purpose, the contact cells have to be
detected and the numerical flux on the contact interface is obtained with the same
Riemann solver that used for the internal cells.
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On the Transverse Diffusion of Beams
of Photons in Radiation Therapy

S. Brull, B. Dubroca, M. Frank and T. Pichard

Abstract Typical external radiotherapy treatments consist in emitting beams of
energetic photons targeting the tumor cells. Those photons are transported through
themedium and interact with it. Such interactions affect themotion of the photons but
they are typically weakly deflected which is not well modeled by standard numer-
ical methods. The present work deals with the transport of photons in water. The
motion of those particles is modeled by an entropy-based moment model, i.e., the
M1 model. The main difficulty when constructing numerical approaches for photon
beam modeling emerges from the significant difference of magnitude between the
diffusion effects in the forward and transverse directions. A numerical method for
the M1 equations is proposed with a special focus on the numerical diffusion effects.

Keywords Entropy-based moment model · Photon beam modeling
Transverse diffusion

1 Introduction

Radiotherapy treatments consist in emitting radiations to target cancer cells. Such
radiations deposit energy in the medium, so-called dose, which is responsible for
biological effects (see, e.g., [18]). Radiations can be seen as beams of energetic
particles traveling through amedium.Here, themotionof photonsmodeled by a linear
Boltzmann equation is focused on. Solving directly such kinetic equations requires
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high computational powers.As an alternative, themethodofmoments is used, leading
to the so-calledM1 model.At the numerical level, such amodel is cheaper than kinetic
ones. However, moment equations require particular considerations because they
are nonlinear and their solution is constrained by a realizability condition (specified
below).

The present work is a follow-up to [5, 15, 16] which is devoted to adapt the numer-
ical scheme presented in [15] to accurately model beams of photons. Such beams
travel almost straight in a human-sized medium. The main difficulty emerges from
the difference of magnitude of the diffusion effects in the forward direction and in the
direction normal to the beam. Standard numerical methods typically overestimate
the transverse diffusion which affects the accuracy of the results.

In the next section, the motion of photons is modeled, through kinetic and M1

models. A standard numerical method is presented in Sect. 3 and tested in Sect. 4.
The problem of the transverse diffusion is presented and solved in Sect. 5. The last
section is devoted to conclusion.

2 Photon Transport Models

For the sake of simplicity, only the motion of the photon is studied. The photons are
assumed to collide only with atoms of the background medium.

2.1 A Kinetic Model

At the kinetic level, themotion of the photons ismodeled by the fluenceψ of photons,
which satisfies the following linear Boltzmann equation

Ω.∇xψ(ε, x, Ω) =
∫ εmax

ε

∫
S2

σ(ε′, ε, Ω ′.Ω)ψ(ε′, x, Ω ′)dΩ ′dε′ − σT (ε)ψ(ε, x,Ω),

(1)

where ψ depends on energy ε ∈ [εmin, εmax], position x ∈ Z ⊂ R
3, and direction of

flight Ω ∈ S2. The physical parameters σ and σT are called respectively differential
and total cross sections, and they are chosen to model Compton collisions [4] as this
effect is predominant in the considered energy range.Other effectsmay be considered
for further applications.

In this equation, the ε variable is considered similarly as a numerical time, and
due to the energy integral in (1), such equation is solved backward in energy, from
a maximum energy εmax to a minimum one εmin.

Discretizing directly this equation is computationally too expensive for applica-
tion in medical centers. For this purpose, the method of moments is applied.
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2.2 The M1 Model

The method of moments consists in studying angular moments, i.e., weighted inte-
grals of ψ according to the variable Ω , instead of the fluence itself. Those moments
depend on less variables and are therefore typically cheaper at the computational
level. The moments of ψ of order up to two are defined by

ψ0 =
∫
S2

ψ(Ω)dΩ, ψ1 =
∫
S2

Ωψ(Ω)dΩ, ψ2 =
∫
S2

Ω ⊗ Ωψ(Ω)dΩ. (2)

According to (1), the moments of ψ satisfy the following equations

∇x .ψ
1(ε, x) =

∫ εmax

ε

σ 0(ε′, ε)ψ0(ε′, x)dε′ − σT (ε)ψ0(ε, x), (3a)

∇x .ψ
2(ε, x) =

∫ εmax

ε

σ 1(ε′, ε)ψ1(ε′, x)dε′ − σT (ε)ψ1(ε, x),

(3b)

σ 0(ε′, ε) = 2π
∫ +1

−1
σ(ε′, ε, μ)dμ, σ 1(ε′, ε) = 2π

∫ +1

−1
μσ(ε′, ε, μ)dμ.

The system (3) has more unknowns than equations. In order to solve such an undert-
ermined system, one typically closes it by expressing the momentψ2 as a function of
ψ0 andψ1. For the present application, the entropy-based closure [13] was preferred
as it provides desirable properties (hyperbolicity, entropy decay, correct modeling of
beams). This closure, leading to the so-called M1 closure, consists in defining ψ2 as
the second-order moment of the ansatz ψM1 minimizing Boltzmann entropy under
the following constraints

ψ2 =
∫
S2

Ω ⊗ ΩψM1(Ω)dΩ, (4)

ψM1 = argmin
f ∈C (ψ0,ψ1)

f log f − f, (5)

C (ψ0, ψ1) =
{
f ∈ L1(S2), f ≥ 0,

∫
S2

f (Ω)dΩ = ψ0,

∫
S2

Ω f (Ω)dΩ = ψ1
}

.

The ansatz ψM1 can be proved to have the form [3, 9, 12, 17]

ψM1 = exp (Λ.m(Ω)) , (6)

wherem(Ω) = (1, Ω1, Ω2, Ω3)
T andΛ ∈ R

4. However, theminimization problem
(5) has a solution if and only if the set C (ψ0, ψ1) is non-empty.

Proposition 1. ([10]) The problem (5) has a solution if and only if the moments
(ψ0, ψ1) are in the realizability domain Rm characterized by
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Rm = {(ψ0, ψ1) ∈ R × R
3, s.t. ψ0 > |ψ1|} . (7)

For writing purposes, one rewrites (3) under the form

∇x .F(�)(ε, x) =
∫ εmax

ε

�(ε)�(ε, x)dε − σT (ε)�(ε, x), (8)

� = (ψ0, ψ1)T ≡
∫
S2
m(Ω)ψM1(Ω)dΩ, � =

(
σ 0 0T

R3

0R3 σ 1 I d

)
,

F = (ψ1, ψ2)T ≡
∫
S2

Ω ⊗ m(Ω)ψM1(Ω)dΩ.

Writing the ansatz ψM1 under the form (6), one proves that the fluxes F are those of
a symmetric hyberbolic equation [7, 12].

3 Numerical Approach

In order to handle the nonlinearity in (8), the relaxation approach proposed in [16]
and based on the previous work of [1, 14] is used.

3.1 Relaxation Method

The relaxation approximation leads to studying linear equations instead of (8). Let
us chose J directions of relaxation λi ∈ R

N and equilibrium functionsMi (�) com-
monly called Maxwellians. With those relaxation parameters, define the relaxed
equations for (8)

λi .∇x fτ
i (ε, x) −

(∫ εmax

ε

�(ε)fτ
i (ε, x)dε − σT (ε)fτ

i (ε, x)

)
=

Mi

(
J∑

i=1
fτ
i

)
− fτ

i

τ
.(9)

In [1, 14] , the authors showed for similar equations that

lim
τ→0

J∑
i=1

fτ
i = �,

where the fτ
j solve (9), and under the conditions



On the Transverse Diffusion of Beams of Photons in Radiation Therapy 469

∀n ∈ S2, Sp(∂�Fn(�)) ⊂
[

min
i=1,...,J

λ j .n, max
i=1,...,J

λ j .n

]
, (10a)

J∑
i=1

Mi (�) = �,

J∑
i=1

λi ⊗ Mi (�) = F(�), (10b)

where Fn = (ψ1.n, ψ2n). For the present applications, we also require that the
Maxwellians Mi : Rm → Rm are realizable.

As afirst approach, onemayuse the following twopropositions to define relaxation
parameters.

Proposition 2. ([2]) The eigenvalues of the Jacobian of the fluxes are bounded by 1

∀n ∈ S2, Sp(∂�Fn(�)) ⊂ [−1, 1].

Proposition 3. ([16]) The following vector is realizable

∀n ∈ S2, ∀� ∈ Rm, � + Fn(�) ∈ Rm.

As a first approach, we propose to chose 2N directions (N being the number of
space dimensions) of relaxations and to define

λi = Nei , λi+N = −Nei , Mi = � + Fei (�)

N
, Mi+N = � − Fei (�)

N
. (11)

One verifies using the last two propositions that those parameters verify (10).

3.2 A Numerical Scheme for 2D Equations

In the following, we focus on a 2D problem (N = 2) and the notations are adapted
to 2D equations. However, the method can straightforwardly be extended to 3D
problems. The superscript n refers to the energy step εn , and the subscripts l and m
refer to the position xl,m , respectively, according to the first and second Cartesian
axes e1 and e2. A numerical scheme for (8) is obtained using a splitting method on
(9).

1. At the entry εn of each energy cell, the values of fni are initialized at the values
of the associated Maxwellians Mi (�

n).
2. Then one solves the homogeneous relaxed equation

λi .∇x fi (ε, x) −
(∫ εmax

ε

�(ε)fi (ε, x)dε − σT (ε)fi (ε, x)
)

= 0 (12)

on the interval [εn+1, εn], i.e. one computes fn+1
i .



470 S. Brull et al.

3. Finally, the influence of the relaxation term is added, which corresponds, when
τ → 0, to fixing the new value

�n+1 =
J∑

i=1

fn+1
i . (13)

One only needs to construct a numerical scheme for (12). Using a simple upwind
discretization for the spatial flux and a quadrature for the integral term together with
(13) leads to define the following scheme for �

F1
n
l+ 1

2 ,m
− F1

n
l− 1

2 ,m

�x
+

F2
n
l,m+ 1

2
− F2

n
l,m− 1

2

�y
−
(

n∑
n′=1

�n′,n�n′
l,m�εn

′ − σ n
T�n

l,m

)
= 0,

(14)

where the fluxes are of HLL [8] type

F1
n
l+ 1

2 ,m
= 1

2

[
F1(�

n
l+1,m) + F1(�

n
l,m) + (�n

l+1,m − �n
l,m)
]
,

F2
n
l,m+ 1

2
= 1

2

[
F2(�

n
l,m+1) + F2(�

n
l,m) + (�n

l,m+1 − �n
l,m)
]
.

Recall that Eq. (12) is solved backwardly in energy. An iterative solver was proposed
in [15] to compute �n

l,m at each iteration, and a complete analysis of this scheme is
postponed to a future paper.

4 A Numerical Experiment

This test case corresponds to injecting a beam of photons in a 2D medium. The size
of the medium is 2 cm × 10 cm, and the beam is 0.5cm large and composed of
500keV photons. This is modeled by the following kinetic boundary condition

ψ(x, ε,Ω) = 1010 exp
(−αε (ε − ε0)

2
)
exp
(−αμ (Ω1 − 1)2

)
1B(x), for n.Ω < 0,

B =
{
x = (x1, x2), x1 = 0, x2 ∈ [0.75 cm, 1.25 cm]

}
.

where1B is the indicator function in the set B,n is the outgoing normal,with ε0 = 500
keV, and the constants αε = 20000 and αμ = 10000 are chosen arbitrarily large to
model a beam. At the discrete level for the moment models, we fix

�n
0,m = 1010 exp

(
−αε

(
εn − ε0

)2) ∫
S2
m(Ω) exp

(−αμ (Ω1 − 1)2
)
dΩ1B(xl,m),

�n
l,0 = �n

lmax,m = �n
l,mmax

= 0R4 .
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Fig. 1 Density ρ obtained with the Monte Carlo solver (top) and the M1 model (below)

The density of particles ρ is given by the formula

ρ(x) =
∫ εmax

εmin

ψ0(x, ε)dε.

It is represented in Fig. 1 normalized by the maximum density ρmax, computed using
the scheme (14) on the M1 equation and compared to a reference Monte Carlo result.

One observes on the Monte Carlo results in Fig. 1 that the photons travel through
the medium almost in straightline. They are only rarely scattered and the beam
remains sharp deep in the medium. However, the M1 results with the scheme (14)
are significantly different. Onemay observe a beam shape; however, this beam is very
diffused especially in the direction transverse to the beam. This effect is actually a
numerical artifact due to the relaxation parameters chosen (11), and the next section
is devoted to correcting it.

5 A Correction to Accurately Model Transverse Diffusion

In practice, the relaxation method can be used under the stability condition (10) on
the relaxation speeds. However, the relaxation method is known to be overdiffusive
when the relaxation speeds λ j are too large. In practice, the larger is the λi the more
stable is the resulting scheme, but the more diffusive it is. This can be verified by
reproducing the computations of [1, 14]. The present correction uses similar ideas
as the ones proposed in [2, 6].
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5.1 Bounds on the Eigenvalues of the Jacobian of the Flux

The relaxation speeds were chosen to be of norm |λ j | = N which was enough to
satisfy (10) according to Proposition 2. However, those bounds are too large when
� is the moment vector of a beam. Consider a beam of direction e1 modeled by

� =
∫
S2
m(Ω) exp(−αμ(Ω1 − 1))dΩ.

The spectral radius of the Jacobian of the flux F2 transverse to the direction of the
beam is zero. Indeed, using the even and odd character of the following functions,
one finds that for all V ∈ R

4

V T ∂ΛF2(�)V =
∫
S2

Ω2(V .m(Ω))2 exp(−α2(Ω1 − 1))dΩ = 0,

V T ∂Λ�V =
∫
S2

(V .m(Ω))2 exp(−αμ(Ω1 − 1))dΩ > 0.

This means that the eigenvalues of ∂ΛF2(�) are all zeros while ∂Λ� is strictly
positive. Therefore, the eigenvalues of the Jacobian ∂�F2 = ∂ΛF2(�)(∂Λ�)−1 of
the transverse flux are all zero.

Those eigenvalues can actually be computed analytically (as the Jacobian of the
flux is a 4×4 matrix, those are the roots of a quartic). For the present numerical
purpose, we only compute bounds on those eigenvalues that are easily computable
and implementable. For writing consideration, those computations are gathered in
Appendix. In the rest of this paper, the minimum and maximum of Sp(∂�Fn) are
called b− and b+ and are given functions of the direction n of the flux Fn and of the
normalized first-order moment

N 1 = ψ1

ψ0
.

5.2 The Modified Relaxation Parameters

Based on those bounds, we propose to modify the relaxation parameters (11) into

λ1 = (b1, 0) , λ2 = (b2, 0) , λ3 = (0, b3) , λ4 = (0, b4) , (15a)

M1 = |b1|
|b1| + |b2|

(
�

2
+ F1

|b1|
)

, M2 = |b2|
|b1| + |b2|

(
�

2
+ F1

|b2|
)

, (15b)

M3 = |b3|
|b3| + |b4|

(
�

2
+ F2

|b3|
)

, M4 = |b4|
|b3| + |b4|

(
�

2
+ F2

|b4|
)

.
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The coefficients bi can still be chosen such that the parameters (15) satisfy (10) and
such that they are smaller than those in (11).

Recall that we also required the MaxwelliansMi ∈ Rm to be realizable. In prac-
tice, this leads to an additional requirement on the bounds b1, b2, b3, and b4. For the
M1 model, those requirements can easily be computed using (7), for M1 it reads

(
1

2
+ N 1

1

|b1|
)2

>

∣∣∣∣12N
1 + N 2.e1

|b1|
∣∣∣∣
2

.

Solving this quadratic inequality leads to chose b1 such that

|b1| > max
(
0, bmin

(
N 1, e1

))
, bmin(N

1, n) := −βn −√β2
n − αγn

α
,

α = 1 − |N 1|2
4

, βn = 1

2

(
N 1.n − N 1.(N 2n)

)
, γn = (N 1.n)2 − |N 2n|2.

Similar computations hold for b2, b3, and b4 which lead to fixing the bounds

b1(�) = max
(
10−8, b+(N 1, e1), bmin(N

1, e1)
)
,

b2(�) = min
(−10−8, b−(N 1, e1), −bmin(N

1,−e1)
)
,

b3(�) = max
(
10−8, b+(N 1, e2), bmin(N

1, e2)
)
,

b4(�) = min
(−10−8, b−(N 1, e2), −bmin(N

1,−e2)
)
,

where the constants ±10−8 are chosen arbitrarily low to avoid divisions by zero and
e1 and e2 are the Cartesian axes.

5.3 The New Numerical Scheme

Using the relaxation parameters (15) to construct a scheme for (3) leads to rewrite
the fluxes of the form ([6])

Fn+1
l+ 1

2 ,m
= 1

|bn+1
1,l+ 1

2 ,m
| + |bn+1

2,l+ 1
2 ,m

|
[
|bn+1

2,l+ 1
2 ,m

|F1(�
n+1
l+1,m) + |bn+1

1,l+ 1
2 ,m

|F1(�
n+1
l,m )(16a)

+|bn+1
1,l+ 1

2 ,m
bn+1
2,l+ 1

2 ,m
|(�n+1

l+1,m − �n+1
l,m )

]
,
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Fn+1
l,m+ 1

2
= 1

|bn+1
3,l,m+ 1

2
| + |bn+1

4,l,m+ 1
2
|
[
|bn+1

4,l,m+ 1
2
|F2(�

n+1
l,m+1) + |bn+1

3,l,m+ 1
2
|F2(�

n+1
l,m )

+|bn+1
3,l,m+ 1

2
bn+1
4,l,m+ 1

2
|(�n+1

l,m+1 − �n+1
l,m )

]
, (16b)

bn+1
1,l+ 1

2 ,m
= max

(
b1(�

n+1
l,m ), b1(�

n+1
l+1,m)

)
, bn+1

2,l+ 1
2 ,m

= min
(
b2(�

n+1
l,m ), b2(�

n+1
l+1,m)

)
,

bn+1
3,l,m+ 1

2
= max

(
b3(�

n+1
l,m ), b3(�

n+1
l+1,m)

)
, bn+1

4,l,m+ 1
2

= min
(
b4(�

n+1
l,m ), b4(�

n+1
l+1,m)

)

in the scheme (14). The numerical fluxes are now defined locally as a function of the
unknowns and the fluxes which allows to better capture the diffusion effects. One
may verify that the coefficients |bn+1

1,l+ 1
2 ,m

bn+1
2,l+ 1

2 ,m
| before the terms (�n+1

l+1,m − �n+1
l,m ),

responsible for the numerical diffusion, in the definition of the numerical fluxes (16)
are lower than the one in the scheme (14).

5.4 Results with the Modified Scheme

Using this modified scheme on the test case of Sect. 4 provides the dose result in
Fig. 2 with the computational times in Table 1.

The results with the modified relaxation parameters are much closer to the ref-
erence Monte Carlo results. The diffusion in the transverse direction is much lower
than the one in Fig. 1, and the beam stays sharp through the medium.

Fig. 2 Density ρ obtained with the Monte Carlo solver (top) and the M1 model (below) with the
modified relaxation parameters



On the Transverse Diffusion of Beams of Photons in Radiation Therapy 475

Table 1 Computational times with the different numerical methods

Solver Monte Carlo M1 solver Modified M1 solver

Computation times 14h 49.78699s 204.1239s

The computational cost is considerably lower with the present numerical method
compared to the reference Monte Carlo code. The computational time is although
higher when using the new relaxation parameters (15) than when using the one in
(11). This is actually due to the method used to compute �n

l,m from (14) or (16). The
conditioning of problem (14) is simply better than the one of (16) which explains
the difference of computational times.

6 Conclusion

A numerical method for the transport of photons in a human-sized medium was pro-
posed. This method aims to solve M1 equations. When modeling a beam of photons
in such a medium, the main difficulties of those simulations are due to the fact that
the diffusion phenomena in the direction of the beam and the ones normal to the
beam have considerably different magnitude. Standard methods present a numeri-
cal diffusion which is considerably overestimated in the transverse direction. This
effect affects the accuracy of the simulation. First a numerical scheme was proposed
for solving the transport equation, then it was improved to accurately capture the
diffusion effect in the transverse direction.

Acknowledgements The author would like to acknowledge K. Küpper and G. Birindelli for per-
forming the Monte Carlo simulations used as reference results in this paper.

Appendix : Computation of Bounds on the Eigenvalues of
the Jacobian of the Flux

Using rotational invariance and a normalization (see [11] for details), the closure (4)
can also be rewritten under the form

ψ2 = ψ0

[
1 − χ

2
I d + 3χ − 1

2

ψ1 ⊗ ψ1

|ψ1|2
]

, (17)

where the Eddington factor χ is a scalar function of the scalar |ψ1|/ψ0.
Consider that ψ1 is colinear to e1 (otherwise just use a rotation to work in such a

reference frame). Using the form (17) of the closure, the fluxes Fn in the direction
n ∈ S2 read
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� = (ψ0, ψ1
)
,

∀n ∈ S2, Fn(�) =
(

ψ1.n,
ψ0

2

[
(1 − χ)n + (3χ − 1)

(ψ1.n)ψ1

|ψ1|2
])

,

Chose a reference frame such that ψ1 = ψ1
1 e1 with ψ1

1 ≥ 0. In this reference frame,
the spectrum of the Jacobian of the flux F1 along the direction n = e1 (direction of
the beam) and along n = e2 (direction normal to the beam) read

Sp (∂� (F1(�))) =
⎛
⎝3χ − 1

2N 1
1

,
χ ′ ±

√
χ ′2 + 4(χ − N 1

1χ
′)

2

⎞
⎠ ,

Sp (∂� (F2(�))) =
⎛
⎜⎝0, ±

√
1 − χ + N 1

1χ
′ − 3χ−1

2N 1
1

χ ′

2

⎞
⎟⎠ .

Now, in order to come back to the computations in any reference frame, one can
simply use a rotation R such that Rψ1 = ψ1

1 e1. One has

∀n ∈ S2, ∂� (Fn(�)) = ∂(ψ0,Rψ1
1 e1)

(
Fn(ψ

0, Rψ1
1 e1)

)
= R2∂�FRTn

(
ψ0, |ψ1|e1

)
RT
2 ,

R2 =
(

1 0R3

0R3 R

)
.

The spectrum of such a matrix can be bounded using the previous computations

∀n ∈ S2, Sp (∂� (Fn(�))) ⊂ [b−, b+], (18a)

b−(N 1, n) = (1 − θ)min St (|N 1|) + θ min Sn(|N 1|), (18b)

b+(N 1, n) = (1 − θ)max St (|N 1|) + θ max Sn(|N 1|), θ = N 1.n

|N 1| .

The exact bounds b− and b+ of Sp (∂�Fn(�)) could be computed analytically as the
eigenvalues of the 4 × 4matrix ∂� (Fn(�)). However, using such analytical formulae
may introduce errors at the numerical level that may be non-negligible. Computing
the bounds in (18) is easier, and they are sufficient for the present applications.
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Numerical Viscosity in Large Time Step
HLL-Type Schemes

Marin Prebeg

Abstract We consider Large Time Step (LTS) methods, i.e., the explicit finite
volume methods not limited by the Courant–Friedrichs–Lewy (CFL) condition.
The original LTS method (LeVeque in SIAM J Numer Anal 22, 1985) was con-
structed as an extension of the Godunov scheme, and successive versions have
been developed in the framework of Roe’s approximate Riemann solver. Recently,
Prebeg et al. (in ESAIM: M2AN, in press, 2017) developed the LTS extension of the
HLL and HLLC schemes. We perform the modified equation analysis and demon-
strate that for the appropriate choice of the wave velocity estimates, the LTS-HLL
scheme yields entropy-satisfying solutions. We apply the LTS-HLL(C) schemes to
the one-dimensional Euler equations and consider the Sod shock tube, double rar-
efaction, and Woodward–Colella blast-wave problem.

Keywords Large Time Step · HLL · Entropy violation · The Euler equations
Hyperbolic conservation laws

1 Introduction

We consider the hyperbolic system of conservation laws:

Ut + F(U)x = 0, (1a)

U(x, 0) = U0(x), (1b)

where U ∈ R
m , F : Rm → R

m , x ∈ R, and t ∈ R
+. We are interested in solving (1)

with an explicit finite volume method not limited by the Courant–Friedrichs–Lewy
(CFL) condition.
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A class of such methods has been proposed by LeVeque [1–3]. Therein, the
Godunov scheme was extended to the LTS-Godunov and LTS-Roe schemes and
applied to the one-dimensional Euler equations. Most recent applications of these
ideas include shallow water equations (Murillo, Morales-Hernández and co-workers
[4–8] and Xu et al. [9]), three-dimensional Euler equations (Qian and Lee [10]),
high-speed combustion waves (Tang et al. [11]), Maxwell’s equations (Makwana
and Chatterjee [12]), and two-phase flows (Lindqvist and Lund [13] and Prebeg
et al. [14]). All the methods discussed above share the feature of starting from a
Godunov- or Roe-type Riemann solver and extending it to the LTS framework. In
addition to these applications, Lindqvist et al. [15] studied the TVD properties of
LTS methods and introduced the LTS-Lax-Friedrichs scheme. Several authors [1, 3,
5, 9, 10, 13, 15] reported that the LTS-Roe scheme yields entropy-violating solu-
tions even more often than the standard Roe scheme. Therein, this issue is solved
by splitting the rarefaction wave into several expansion shocks [1, 3, 5, 9, 10] or by
varying the time step [13, 15].

Prebeg et al. [16] developed the LTS extension of the Harten–Lax–van Leer
(HLL) [17–19] and HLL–Contact (HLLC) [20] schemes and applied them to a one-
dimensional Euler equations. They observed that the LTS-HLL(C) schemes with
the wave velocity estimates according to Einfeldt [18] yield entropy-satisfying solu-
tions. This observation motivates the present paper, which is structured as follows:
In Sect. 2 we outline the problem and the numerical methods we will consider, most
importantly the LTS-HLL(C) schemes; in Sect. 3, we discuss the entropy violation
associated with the LTS methods and use the modified equation analysis to demon-
strate that the LTS-HLL scheme with the choice of the wave velocities estimates
according to Einfeldt [18] yields entropy-satisfying solutions; in Sect. 4, we perform
numerical investigations, while in Sect. 5, we end with conclusions.

2 Preliminaries

We specify the particular hyperbolic conservation lawwewill investigate and outline
the framework of the numerical methods we will use.

2.1 Problem Outline

As an example of (1), we consider the one-dimensional Euler equations, where

U = (ρ, ρu, E)T , (2a)

F(U) = (
ρu, ρu2 + p, u(E + p)

)T
, (2b)
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where ρ, u, E, p denote the density, velocity, total energy density, and pressure,
respectively. The system is closed by the definition of the total energy density,
E = ρe + ρu2/2, where e is the internal energy given by the equation of state as
e = p/(ρ(γ − 1)). We use γ = 1.4 for air. We can also write (1) in a quasilinear
form as

Ut + A(U)Ux = 0, A(U) = ∂F(U)

∂U
. (3)

We assume that the system of Eq. (3) is hyperbolic; i.e., the Jacobian matrix A has
real eigenvalues and linearly independent eigenvectors.

2.2 Numerical Methods

We discretize (1) by the explicit Euler method in time and the finite volume method
in space:

Un+1
j = Un

j − �t

�x

(
Fn

j+1/2 − Fn
j−1/2

)
, (4)

where Un
j is an approximation of the average of U in the cell j at time level n and

Fn
j+1/2 is a numerical approximation of the flux function at the cell interface x j+1/2

at time level n. In standard (3-point) methods, the numerical flux depends only on
the neighboring cell values and we may write the numerical fluxes in the numerical
viscosity form:

Fn
j+1/2 = 1

2

(
Fn

j + Fn
j+1

) − 1

2
Qn

j+1/2

(
Un

j+1 − Un
j

)
, (5)

where Fn
j = F(Un

j ) and Qn
j+1/2 is the numerical viscosity matrix. To simplify the

notation, the time level n will be implicitly assumed in the absence of a temporal
index. In the numerical viscosity framework (5), the HLL scheme is obtained by
setting:

QHLL = S+
R + S−

L

S+
R − S−

L

Â − 2
S−
L S

+
R

S+
R − S−

L

I (6)

where Â is the Roe matrix [21], SR and SL are the wave velocity estimates, and the
superscripts denote S+

R = max(0, SR) and S−
L = min(0, SL). The choice of the wave

velocity estimates will be addressed in Sect. 2.3. We note thatQ can be diagonalized
as

Q = R̂ΩR̂−1, (7)

where R̂ is the matrix of the right eigenvectors of the Roe matrix, and Ω =
diag

(
ω1, . . . , ωm

)
is thematrix of the eigenvalues ofQ,where the superscript denotes
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the particular characteristic field. Then, we may define the HLL scheme through the
diagonal entries of Ω as

ωHLL = S+
R (λ̂ − S−

L ) − S−
L (S+

R − λ̂)

S+
R − S−

L

, (8)

where λ̂ are the eigenvalues of the Roe matrix Â. For more details on the derivation
of the HLL scheme, we refer to [17–19, 22].

For the 3-point method (5), the time step �t is limited by the CFL condition:

C = max
p, j

|λp
j |

�t

�x
≤ 1, (9)

where λ
p
j are the eigenvalues of the Jacobian matrix A(U j ) in (3), and the super-

script p denotes the particular characteristic field, p = 1, . . . ,m. We are interested
in explicit methods not limited by the condition (9).

2.2.1 Large Time Step HLL Scheme

The natural LTS extension of the numerical viscosity formulation (5) is [15]

F j+1/2 = 1

2

(
F j + F j+1

) − 1

2

∞∑

i=−∞
Qi

j+1/2+i

(
U j+1+i − U j+i

)
. (10)

We note that (10) differs from [15] in the sense that we scale Qi with �x/�t . By
using the results from [16], we write the LTS-HLL scheme in the numerical viscosity
form (10) by defining:

Qi
j+1/2 =

(
R̂Ω i R̂−1

)

j+1/2
, (11)

where the diagonal entries of Ω are defined as

ω0
HLL = S+

R (λ̂ − S−
L ) − S−

L (S+
R − λ̂)

S+
R − S−

L

, (12a)

ω∓i
HLL = 2

λ̂ − SL
SR − SL

max

(
0,±SR − i

�x

�t

)

+ 2
SR − λ̂

SR − SL
max

(
0,±SL − i

�x

�t

)
for i > 0. (12b)

We refer to [16] for the derivation of these formulae.
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2.2.2 Large Time Step HLLC Scheme

The HLL scheme assumes a two-wave structure of the solution and leads to poor
resolution of the contact discontinuity in the one-dimensional Euler equations (2).
Toro et al. [20] introduced the HLLC solver where the missing contact wave is
restored. Following [22], the main idea consists of assuming a three-wave structure
of the solution, thus splitting the Riemann fan into two intermediate states:

Ũ(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

U j if x < SLt,
UHLLC

L if SLt < x < SCt,
UHLLC

R if SCt < x < SRt,
U j+1 if x > SRt,

(13)

where the intermediate states are

UHLLC
K = ρK

(
SK − uK
SK − SC

)
⎡

⎢
⎣

1
SC

EK
ρK

+ (SC − uK)
(
SC + pK

ρK(SK−uK)

)

⎤

⎥
⎦ , (14)

where index K denotes left (L) or right (R) state in (13). The contact discontinuity
velocity is given by

SC = pR − pL + ρLuL(SL − uL) − ρRuR(SR − uR)

ρL(SL − uL) − ρR(SR − uR)
. (15)

For details on the derivation of these formulae, we refer to the book by Toro [22].
Herein,wepresent theLTS-HLLCscheme in the conservation formas derived in [16].
The numerical flux to be used in (4) is

FLTS-HLLC
j+1/2 = F0

j+1/2 +
∞∑

i=1

F−i
j+1/2−i +

∞∑

i=1

F+i
j+1/2+i , (16)

where F0
j+1/2 is defined as

F0
j+1/2 =

⎧
⎪⎪⎨

⎪⎪⎩

F j if 0 < SL,
FHLLC
L, j+1/2 if SL < 0 < SC,

FHLLC
R, j+1/2 if SC < 0 < SR,

F j+1 if 0 > SR.

(17)

In the interesting case, SL < 0 < SR, the numerical flux function has the form:

FHLLC
L, j+1/2 = F j + SL

(
UHLLC

L, j+1/2 − U j
)
, (18)

FHLLC
R, j+1/2 = F j+1 + SR

(
UHLLC

R, j+1/2 − U j+1
)
. (19)
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The remaining terms in (16) are

F−i
j+1/2−i = S−i

R, j+1/2−i

(
UHLLC

R, j+1/2−i − U j+1−i
)

+ S−i
C, j+1/2−i

(
UHLLC

L, j+1/2−i − UHLLC
R, j+1/2−i

)

+ S−i
L, j+1/2−i

(
U j−i − UHLLC

L, j+1/2−i

)
, (20)

F+i
j+1/2+i = S+i

L, j+1/2+i

(
UHLLC

L, j+1/2+i − U j+i
)

+ S+i
C, j+1/2+i

(
UHLLC

R, j+1/2+i − UHLLC
L, j+1/2+i

)

+ S+i
R, j+1/2+i

(
U j+1+i − UHLLC

R, j+1/2+i

)
. (21)

Herein, the modified velocities are

S−i
[L,C,R], j+1/2−i = max

(
S[L,C,R], j+1/2−i − i

�x

�t
, 0

)
, (22)

S+i
[L,C,R], j+1/2+i = min

(
S[L,C,R], j+1/2+i + i

�x

�t
, 0

)
. (23)

We refer to [16] for the derivation of these formulae.

2.3 Estimates for Wave Velocities SL and SR

In the present paper, the choice of the wave velocity estimates is made according to
Einfeldt [18]:

SL, j+1/2 = min
(
λ1(U j ), λ̂

1(Û j+1/2)
)

, (24a)

SR, j+1/2 = max
(
λ̂3(Û j+1/2), λ

3(U j+1)
)

, (24b)

where Û denotes the Roe average of conserved variables. The HLL scheme with
(24) is usually denoted as the HLLE scheme. Einfeldt et al. [23] showed that the
standard (3-point) HLLE scheme yields entropy-satisfying solutions and preserves
positivity. Batten et al. [24] showed that the HLLC scheme [20] with (24) also
preserves positivity. In the following section, we demonstrate that the LTS-HLLE
scheme yields entropy-satisfying solutions.

3 Entropy Violation

A weak solution to a conservation law is not necessary unique [25, p. 217]. For
the numerical scheme to select the physically relevant solution, we need to impose
so-called entropy conditions. Entropy violation is most commonly associated and
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discussed as it appears in the Roe scheme [21]. We start by following the same
approach and consider the numerical viscosity interpretation of the entropy viola-
tion [25].

Consider a standard (3-point) Roe scheme written in the numerical viscosity
formulation (5). The eigenvalues of the numerical viscosity matrixQRoe are given by

ωRoe = |λ̂|. (25)

In the transonic case, a particular eigenvalue ω
p
Roe (p = 1, . . . ,m) may be close to

zero, corresponding to no viscosity in the field p associated with the eigenvalue ωp.
We define the interface Courant number C p

j+1/2 = ω
p
j+1/2�t/�x and observe that if

C p
j+1/2 = 0, (26)

we may expect an entropy violation in the particular field p. For the standard (3-
point)method, these situations arewell understood andwe refer to [25] and references
therein for a detailed discussion.

Lindqvist et al. [15] showed that for the LTS-Roe scheme, the entropy violation
may also appear when

C p
j+1/2 = −i, ∀i ∈ Z. (27)

To clarify this phenomenon and to show how it is avoided in the LTS-HLL scheme,
we employ the modified equation analysis.

3.1 Modified Equation Analysis

For scalar conservation laws, Lindqvist et al. [15] showed that the LTS method (10)
gives a second-order accurate approximation to the equation:

ut + f (u)x = 1

2
�x

[
�x

�t

(
k−1∑

i=1−k

Q̄i �t

�x
− c2

)

ux

]

x

, (28)

where Q̄i = Qi (u, . . . , u) is the numerical viscosity coefficient of the (2k + 1)-point
method, and c = f ′(u)�t/�x . Therein, the expression:

D(u) =
k−1∑

i=1−k

Q̄i �t

�x
− c2, (29)
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is interpreted as the amount of numerical diffusion inherent to the scheme. In [15],
D(u) for the LTS-Roe scheme is determined as

DLTS-Roe = (	|c|
 − |c|) (1 + |c| − 	|c|
) , (30)

where 	c
 = min {n ∈ Z | n ≥ c} is the ceiling function. We may observe that D
vanishes when (27) is satisfied. If the solution is supposed to be a rarefaction wave,
this will lead to an entropy-violating expansion shock. We note that in [15], the
modified equation (28) is defined for scalar conservation laws. Herein, we use it for
systems of conservation laws by treating each characteristic field p separately.

Proposition 1. The numerical diffusion Dp in the p-th characteristic field for the
LTS-HLL scheme (11)–(12) is

Dp
LTS-HLL = c − cL

cR − cL
(	|cR|
 − |cR|) (1 + |cR| − 	|cR|
)

+ cR − c

cR − cL
(	|cL|
 − |cL|) (1 + |cL| − 	|cL|
)

+ (c − cL) (cR − c) , (31)

where cL = SL�t/�x, cR = SR�t/�x, and c = λ̂p�t/�x.

Proof. Use (12) in (29). �

Proposition 2. If the exact solution in the p-th field is a rarefaction wave, i.e.,

λ
p
j < λ̂

p
j+1/2 < λ

p
j+1, (32)

the numerical diffusion Dp for the LTS-HLLE scheme satisfies

Dp
LTS-HLLE > 0. (33)

Proof. If (32) holds, Eq. (24) yields

SL, j+1/2 < λ̂
p
j+1/2 < SR, j+1/2. (34)

By using this in (31), we observe that

Dp
LTS-HLLE ≥ (c − cL) (cR − c) > 0. (35)

�

Numerical investigations in the following section suggest that the above also
applies to the LTS-HLLC schemewith the wave velocity estimates according to [18].
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4 Results

In this section, we compare the LTS-HLL(C) schemes with their non-LTS counter-
parts and the LTS-Roe scheme.We note that all the results presented for LTS-HLL(C)
schemes are obtained with the wave velocity estimates (24). Further, the input dis-
cretization parameters are the Courant number C and �x . Then, the time step �t is
evaluated at each time step according to

�t = C�x

max
p, j

|λp
j |

. (36)

4.1 Sod Shock Tube

We consider the Sod shock tube problem [26] with initial data:

U(x, 0) =
{

(1, 0, 2.5)T if x < 0,
(0.125, 0, 0.25)T if x > 0,

(37)

with the solution evaluated at t = 0.4 on a grid with 200 cells. Figure1 shows the
comparison between LTS methods. We observe that the LTS-HLL(C) schemes yield
entropy-satisfying solutions, while the LTS-Roe scheme leads to an entropy violation
at x ≈ −0.25.

4.2 Double Rarefaction Problem

Next, we consider the double rarefaction test case which is often used as a benchmark
test case for the positivity preserving. The initial data is

Fig. 1 Comparison between different LTS methods at C = 3.5 for problem (37)
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Fig. 2 Comparison between the standard HLL(C) and LTS-HLL(C) schemes for problem (38)

U(x, 0) =
{

(1,−2, 1)T if x < 0,
(1, 2, 1)T if x > 0,

(38)

with the solution evaluated at t = 0.05 on a grid with 200 cells. Figure2 shows
that the LTS-HLL(C) schemes successfully handle the near-vacuum conditions. In
addition, the accuracy is very close to that of the non-LTS methods.

4.3 Woodward–Colella Blast-Wave Problem

As the last test case, we consider the Woodward–Colella blast-wave problem [27].
The initial data is givenbyuniformdensityρ(x, 0) = 1, uniformvelocityu(x, 0) = 0,
and two discontinuities in the pressure:

p(x, 0) =
⎧
⎨

⎩

1000 if 0 < x < 0.1,
0.01 if 0.1 < x < 0.9,
100 if 0.9 < x < 1,

(39)

with the solution evaluated at t = 0.038 on a grid with 1000 cells. The reference
solution was obtained by the Roe scheme with the superbee wave limiter on the grid
with 16000 cells. The boundary walls at x = 0 and x = 1 are treated as reflective
boundary conditions. In Fig. 3, we can see that all LTS methods correctly capture
positions of shocks and contact discontinuities. In the density plot, we observe that
both the LTS-Roe and the LTS-HLLC are much more accurate than the standard
HLLC scheme.

However, the LTS-Roe scheme produces an entropy violation at x ≈ 0.69, while
LTS-HLL(C) schemes do not. This can be seen in Fig. 4 where we zoomed in the
area of interest in the plot for the velocity.
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Fig. 3 Comparison between the standard HLLC and different LTS methods for problem (39)

Fig. 4 Entropy violation
with the LTS-Roe scheme
for problem (39)

5 Conclusions

We used the modified equation analysis to demonstrate that the LTS-HLL scheme
proposed by Prebeg et al. [16] with the choice of the wave velocity estimates accord-
ing to Einfeldt [18] yields entropy-satisfying solutions. We applied the scheme to
the one-dimensional Euler equations and numerically demonstrated that the LTS-
HLL(C) schemes with the same wave velocity choice also yield entropy-satisfying
solutions. In addition, we applied both schemes to the double rarefaction test case
and showed that both schemes successfully handle near-vacuum conditions.
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Correction Procedure via Reconstruction
Using Summation-by-Parts Operators

Philipp Öffner, Hendrik Ranocha and Thomas Sonar

Abstract The correction procedure via reconstruction (CPR, also known as flux
reconstruction), is a high-order numerical scheme for conservation laws introduced
by Huynh (2007), unifying some discontinuous Galerkin, spectral difference and
spectral volume methods. A general framework of summation-by-parts (SBP) oper-
ators with simultaneous approximation terms (SATs) is presented, allowing semidis-
crete stability for Burgers’ equation using nodal bases without boundary nodes or
modal bases. The linearly stable schemes of Vincent et al. (2011, 2015) are embed-
ded within this general kind of semidiscretisation. The contributed talk Artificial
Viscosity for Correction Procedure via Reconstruction Using Summation-by-Parts
Operators given by Philipp Öffner extends these results.
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1 Introduction

This contribution is concerned with numerical methods for scalar conservation laws
in one space dimension

∂t u + ∂x f (u) = 0, (1)
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equipped with appropriate initial and boundary conditions. For simplicity, periodic
boundaries or compactly supported initial data are assumed.

In 2007, Huynh [13] introduced the flux reconstruction (FR) method, also known
as correction procedure via reconstruction (CPR) [14]. This framework unifies some
high-order semidiscretisations such as discontinuous Galerkin (DG), spectral differ-
ence (SD) and spectral volume (SV) with appropriate choice of parameters, at least
for linear equations. Several results about linear stability in a semidiscrete setting
are available [15, 30–32], and the method has been implemented in the open-source
codes PyFR [34] and Nektar++ [1]. However, much less is known about nonlinear
stability [16].

On the other hand, summation-by-parts (SBP) operators have their origins in
another class of numerical schemes, namely finite difference (FD) methods, as
described inter alia in the review articles [3, 17, 26] and references cited therein.
Mimicking integration by parts, they have been used classically to get L2 stability
for linear equations in bounded domains [9]. Recently, the idea of SBP operators
has been applied to nodal DG methods [6] and general nodal bases with appropriate
quadrature strength [2].

In this contribution, the concept of SBP operators is applied to CPR meth-
ods. Using a certain reformulation of these nodal polynomial collocation schemes,
semidiscrete stability results are obtained for norms adapted to the correction pro-
cedure, recovering the energy stable schemes of Vincent et al. [31, 32]. Using a
skew-symmetric formulation, nonlinear stability for Burgers’ equation is obtained
[24]. Moreover, a generalised concept of nodal SBP bases not including boundary
nodes and modal bases is presented [21].

2 Correction Procedure via Reconstruction

Traditionally, finite element (FE)methods approximate the solution of a conservation
law in a given finite-dimensional space. Using the method of lines, a semidiscretisa-
tion is obtained by projecting the Eq. (1) onto this Hilbert space. For DG methods,
these finite-dimensional approximations are commonly piecewise polynomials. Bor-
rowing ideas from finite volume (FV) methods, numerical fluxes are used to couple
neighbouring elements.

Approximating the integrals appearing in the projection of (1) by discrete quadra-
ture rules with p + 1 nodes— if polynomials of degree≤ p are considered— results
in a polynomial collocation framework. If Gauß nodes are used, the integrals are eval-
uated exactly, if the flux is linear with constant coefficients, i.e. f (u) = u. Otherwise,
the idea of L2 projection is only approximated.

As a polynomial collocation framework, the correction procedure via reconstruc-
tion resembles strong form nodal DG methods. For a scalar conservation law (1), it
can be described as follows.

At first, the computational domain is partitioned into non-overlapping intervals.
On each of these elements, the numerical solution u is given as a polynomial of
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degree ≤ p ∈ N0, represented in a Lagrangian basis using the values u0, . . . , u p at
certain nodes. As usual in collocation frameworks, the flux is computed pointwise at
these nodes, resulting in a polynomial representation with coefficients f

i
= f (ui ).

For all computations, each cell is mapped to the standard element [−1, 1].
Since the flux is approximated as a polynomial on each element, its derivative

can be computed as the exact derivative D f of this polynomial. However, similarly
to DG methods, the information of neighbouring elements has to be used as well.
Therefore, the numerical solution u and its flux f are interpolated to the boundaries
of the interval, yielding the point values uL , uR and fL , fR , respectively. At each
boundary, a common numerical flux f num(u−, u+) is computed using the solution
values from the cells to the left and right, respectively. Enforcing the point values of
this numerical flux at the boundaries is done using left and right correction functions
gL , gR , where gL(−1) = 1, gL(1) = 1, gL(x) = gR(−x), and gL , gR approximate
zero in the standard interval [−1, 1] in some sense. These correction functions are
polynomials of degree ≤ p + 1, and the semidiscrete approximation can finally be
written as

∂t u + D f + ( f numL − fL)g
′
L

+ ( f numR − fR)g′
R

= 0, (2)

where g′
L/R is the derivative of the correction function gL/R . These correction func-

tions are parameters enabling the recovery of somewell-known schemes as described
in Sect. 1.

3 Summation-by-Parts Operators

Contrary to finite element methods, where the solution is approximated in some
finite-dimensional Hilbert space, finite difference (FD) methods are based on the
idea to approximate the derivative operator. Classically, a finite set of point values
f
i
is used, and the linear differential operator can be represented by some matrix D.
However, SBP operators havemany ideas in commonwith finite elementmatrices.

In order to mimic integration by parts, a discrete scalar product with associated norm
is introduced, represented by a matrix M , corresponding to the mass matrix of FE
methods and being linked to some quadrature rule [11]. Approximating the L2 scalar
product, integration by parts

∫
Ω

u (∂xv) +
∫

Ω

(∂xu) v = u v
∣∣
∂Ω

(3)

is mimicked on a discrete level as

uT M
(
D v

)
+

(
D u

)T
M v = u pvp − u0v0 = uT diag (−1, 0, . . . , 0, 1) v, (4)
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if the endpoints of the intervalΩ are included in the finite-dimensional representation
of functions u, v.

Merging ideas of FE and FD methods, the following analytical setting of SBP
operators given in [21] will be used. A finite-dimensional (real) Hilbert space XV of
functions on the volume (interval) is equipped with a basisBV . With respect to this
basis, the mass matrix M (symmetric, positive definite) represents the scalar product,
approximating the L2 scalar product

uT M v = 〈
u, v

〉
M ≈

∫
Ω

u v = 〈u, v〉L2 . (5)

Additionally, the derivative (divergence) operator is represented as D.
Besides, there is a finite-dimensional (real) Hilbert space XB of functions on the

boundary. In one space dimension, it is two-dimensional and the basis BB is given
by the point values at the boundary nodes −1, 1 of the reference element. On XB ,
there is a bilinear form represented by B, mimicking integration with respect to the
outer normal as in the divergence theorem. In one space dimension, it reads

uT
B B vB = uB vB

∣∣∣1−1
. (6)

Furthermore, a restriction operator R couples both Hilbert spaces by performing
restriction / interpolation of functions on the volume to the boundary. Finally, the
SBP property

M D + DT M = RT B R, (7)

mimics integration by parts (3). If a nodal basis including boundary points is used,
the familiar boundary operator RT BR = diag (−1, 0, . . . , 0, 1) is recovered.

This framework can also be extended to multiple dimensions, not relying on, but
including tensor product formulations [19], similarly to the numerical setting of [12].

4 Correction Procedure via Reconstruction Using
Summation-by-Parts Operators

Reformulating the semidiscrete CPR method (2) as

∂t u + D f + C
(
f num − R f

)
= 0, (8)

the framework of SBP operators can be introduced. Here, the correction matrix

C =
(
g′
L , g

′
R

)
contains the derivatives of the correction functions as columns, and
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f num =
(
f numL , f numR

)T
, R f =

(
fL , fR

)T
. Then, due to the SBP property (7), one

gets

Lemma 1 (Lemma 1 in [24]). If 1T M C = 1T RT B, then the semidiscretisation (8)
is conservative across elements.

Proof. Using the representation 1 of the constant function x �→ 1, in each element

d
dt t

∫
u =1T M∂t u = −1T M D f − 1T M C

(
f num − R f

)

= − 1T RT B R f + 1T DT M f − 1T RT B
(
f num − R f

)
= −1T RT B f num,

(9)
where the SBP property (7), the assumption and exact differentiation of constant
functions D 1 = 0 have been used. Hence, summing the contributions of all ele-
ments and using periodic boundary conditions, all terms sum up to zero and the
semidiscretisation is conservative. �

Since explicit Runge–Kutta methods preserve linear invariants
[10, TheoremIV.1.5], using these in a fully discrete scheme results in a conservative
method.

5 Linear Stability

Studying the linear advection equation with constant velocity

∂t u + ∂xu = 0, (10)

L2 stability can be translated to a discrete setting using the norm induced by the mass
matrix M . By the SBP property (7), proofs relying on integration by parts can be
transferred to the semidiscretisation.

Jameson [15] proposed to obtain stability in some norm not necessarily approx-
imating the L2 norm, since all norms are equivalent in finite-dimensional spaces.
Exploiting this, Vincent et al. discovered a whole family of linearly stable CPR
schemes [31, 32]. Transferring their results to the reformulation of CPR methods
results in

Lemma 2 (Lemma 2 of [24], see also Theorem 1 of [32]). If the semidiscretisation

∂t u + D u + C
(
f num − R u

)
= 0 (11)

of (10) is used with C =
(
M + K

)−1
RT B, where M + K is positive definite and

M K is antisymmetric, then the SBP CPR method is linearly stably in the discrete
norm ‖·‖M+K induced by M + K, if an adequate numerical flux f num is chosen.
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As for Lemma1, the proof relies on the SBP property (7). The one-parameter
family of [31] can be directly translated to this setting and themulti-parameter family
of [32] can also be obtained as described in [24].

The weak coupling of adjacent elements (or boundary conditions) via surface

terms C
(
f num − R u

)
consisting of a numerical flux and interpolated flux values

resembles simultaneous approximation terms (SATs) used in FD methods with SBP
operators.

The discrete norm ‖·‖M+K in Lemma2 approximates some kind of Sobolev norm.
Thus, this equivalence of norms has to be used very carefully. First, stability and con-
vergence results under mesh refinement have to handled warily, since the dimension
of the approximation space increases and the constants for the equivalence of norms
may blowup. Secondly, discrete stability results shouldmimicwell-posedness results
of the continuous PDE. For linear advection, the initial data are simply transported
without change of shape. Thus, if the initial data are regular enough, correspond-
ing Sobolev norms remain constant and this kind of stability may be acceptable.
However, if the initial data are rough, the norm ‖·‖M+K approximates the Sobolev
norm and can blow up. For nonlinear conservation laws, the matter is even worse,
since discontinuities can develop even if smooth data are given. Hence, it may be
recommended to use the canonical correctionmatrixC = M−1RT B with norm ‖·‖M .

Numerical experiments for the constant coefficient linear advection Eq. (10) with
N = 3 elements using polynomials of degree ≤ p = 9 have been conducted to
evolve the initial condition u0(x) = exp

(−20x2
)
in the domain [−1, 1] from t = 0

to t = 20. The classical fourth-order Runge–Kuttamethod using four stages has been
applied with 5, 000 steps.

The numerical solutions at t = 20 forGauß andLobatto nodeswith corresponding
diagonal normmatrices given by their quadrature rules and associated canonical cor-
rection matrices C = M−1RT B (corresponding to parameters c = c0 = 0 for Gauß
nodes and c = cHu for Lobatto nodes [24, 31]) are shown in Fig. 1. As can be seen
there, the choice of Gauß nodes may be slightly better, but there is not much dif-
ference at this resolution. Here, a central numerical flux f num(u−, u+) = u−+u+

2 has
been used, resulting in the semidiscrete estimate d

dt t ‖u‖2M = 0.
The corresponding energy is plotted in Fig. 2. For Gauß nodes, the energy com-

puted via Gauß quadrature remains nearly constant, whereas the energy computed
via Lobatto quadrature is bounded (due to equivalence of norms) but oscillatory,
and vice versa for Lobatto nodes. The same phenomenon can be observed if an
upwind numerical flux f (u−, u+) = u− is applied, as can be seen in Fig. 3. Here,
the time scale is reduced, since the additional dissipation of the upwind flux reduces
the oscillations considerably.

The slightly visible loss of energy for the central flux with semidiscrete estimate
d
dt t ‖u‖2M = 0 in Fig. 2 can be explained by the dissipative nature of the explicit
Runge–Kutta method, at least if two consecutive steps are considered [23, 25].



Correction Procedure via Reconstruction Using Summation-by-Parts Operators 497

−1.0 −0.5 0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
u

u(20.0)
u0

(a) c= c0, Gauß nodes.

−1.0 −0.5 0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

u(20.0)
u0
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Fig. 1 The numerical solutions of constant velocity linear advection at t = 20
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Fig. 2 Energies of the numerical solutions with central flux
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6 Nonlinear Stability for Burgers’ Equation

Extending the L2 stability theory of linear equations to nonlinear ones, general convex
entropies U (u) can be considered. Using U (u) = 1

2u
2, the familiar L2 stability is

recovered. Even for the general case, skew-symmetric forms have long been known
to be linked to stability [18, 27]. Recently, Fisher et al. [5] provided a justification
to use split operator forms in combination with diagonal norm nodal SBP bases
regarding the Lax–Wendroff theorem. This theory leads further to flux-differencing
forms [4], transferring results from FV methods to SBP schemes.

As classical example of a nonlinear conservation law (1), Burgers’ equation

∂t u + ∂x
u2

2
= 0 (12)

will be considered. The nonlinear flux f (u) = u2

2 does not allow the same cancel-
lation of boundary terms used in the proof of linear stability in Lemma2. However,
the split operator form

∂t u + 1

3
∂xu

2 + 1

3
u∂xu = 0 (13)

allows to gain L2 stability d
dt t ‖u‖2 ≤ 0 using integration by parts. Applying SBP

operators with nodal bases including boundary points, the corresponding semidis-
cretisation

∂t u + 1

3
D u2 + 1

3
u D u + M−1RT B

(
f num − 1

2
R u2

)
(14)

results in a conservative (across elements) and stable (in the discrete norm ‖·‖M )
method, if an adequate numerical flux f num and appropriate boundary conditions are
chosen, see inter alia [5, 6, 24].

This kind of split form has often been described as a correction of the product rule
∂x (uv) = (∂xu)v + u(∂xv), that is invalid both for weak solutions and in the discrete
setting. However, it should be emphasised that it ismultiplication which is invalid in
the discrete setting, not only the product rule. Using this idea, the split form can be
extended by introducing new boundary terms and by a more general splitting of the
volume terms, resulting in

Theorem 3 (Theorem 2 of [21]). For a general SBP operator as in Sect.3, the
semidiscretisation

∂t u + 1

3
D u2 + 1

3
u∗D u + M−1RT B

(
f num − 1

3
R u u − 1

6

(
R u

)2
)

= 0 (15)

is conservative. Additionally, it is stable in the discrete norm ‖·‖M induced by M, if
an appropriate numerical flux fulfilling the entropy stability condition of Tadmor [28,
29]



Correction Procedure via Reconstruction Using Summation-by-Parts Operators 499

(u+ − u−) f num(u−, u+) − 1

6

(
u3+ − u3−

)
≤ 0 (16)

is chosen, e.g. an entropy conservative flux, a local Lax–Friedrichs flux or Osher’s
flux.

Here, the M-adjoint u∗ = M−1uT M has been introduced, motivated by the fact
that multiplication operators should be self-adjoint — at least, if an appropriate
domain in infinite dimensions is chosen. In the finite-dimensional case, this condition
can simply be omitted.

Using the generalisation provided by Theorem 3, non-diagonal nodal bases using,
e.g., Chebyshev points as well as modal bases can be applied. For a diagonal norm
modal Legendre basis using exact multiplication followed by exact L2 projection,
the multiplication operators are indeed self-adjoint, since the Legendre polynomials
are orthogonal, and for polynomials u, v, w of degree ≤ p,

∫
proj(uv)w =

∫
(uv)w =

∫
v(uw) =

∫
v proj(uw). (17)

Another hint not to use equivalence of norms and non-canonical correction matri-
cesC �= M−1RT B (c.f. Sect. 5) may be the inability of the authors to prove nonlinear
stability results for Burgers’ equation (12) using norms different from ‖·‖M .

As can be seen here, the idea of numerical fluxes borrowed from finite volume
schemes greatly simplifies the generation of stable coupling between elements. It
would be much more tedious to get an idea of the boundary terms using only inspi-
ration from SATs in the FD community.

7 Further Research

Since only semidiscrete schemes have been investigated, fully discrete stability
appears to be a natural next question. Artificial dissipation [22] and modal filter-
ing [8] have been investigated in the setting presented here and are described in the
contribution Artificial Viscosity for Correction Procedure via Reconstruction Using
Summation-by-Parts Operators in this volume. These results have been extended in
[23], where also new stability results for linear equations have been obtained.

Additionally, nonlinear stability results for systems of conservation (or balance)
laws are available, e.g. for the shallowwater equations, using techniques comparable
to those presented here [7, 20, 33].
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A Third-Order Entropy Stable Scheme
for the Compressible Euler Equations

Deep Ray

Abstract A third-order WENO reconstruction has been recently proposed (Fjord-
holmandRay, J SciComput, 68(1):42–63, 2016, [5]) in the context of finite difference
schemes for conservation laws and tested for scalar conservation laws. The method,
which is called SP-WENO, satisfies the sign property required for constructing high-
order finite difference schemes for conservation laws that are provably entropy stable.
In the present work, we extend the reconstruction procedure to systems of conser-
vation laws in multiple space dimensions, with a focus on the compressible Euler
equations. SP-WENO in its original form can lead to large overshoots near dis-
continuities when tested with the Euler equations. We show that SP-WENO can be
modified to control oscillations near discontinuities, without compromising on the
accuracy for smooth solutions.

Keywords Euler equations · Finite difference · Entropy stability · WENO
Sign property
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1 Introduction

Conservation is one of the most basic and important principles of physics, forming
the basis for several scientific models. Consider the following Cauchy problem for
a generic two-dimensional hyperbolic system of conservation laws,

∂tU + ∂x f(U) + ∂yg(U) = 0 ∀ (x, t) ∈ R
2 × R

+,

U(x, y, 0) = U0(x, y) ∀ x ∈ R
2,

(1)
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where x = (x, y), U : R2 × R
+ �→ R

m is the vector of conserved variables, f, g
are the Cartesian components of the flux vector, and U0 is the initial condition. In
particular, for the two-dimensional Euler equations

U =

⎛
⎜⎜⎝

ρ

ρu
ρv
E

⎞
⎟⎟⎠ , f(U) =

⎛
⎜⎜⎝

ρu
ρu2 + p

ρuv
(E + p)u

⎞
⎟⎟⎠ , g(U) =

⎛
⎜⎜⎝

ρv
ρuv

ρv2 + p
(E + p)v

⎞
⎟⎟⎠ ,

where ρ, u = (u, v)� and p denote the fluid density, velocity, and pressure, respec-
tively. The quantity E is the total energy per unit volume given by E = ρe + ρ|u|2/2,
where e is the specific internal energy given by a caloric equation of state, e =
e(ρ, p). For an ideal gas, e = p/(γ − 1)ρ with γ = cp/cv denoting the ratio of
specific heats.

Solutions to conservation laws can develop discontinuities in finite time even for
a smooth initial data [4]. Thus, the solutions are interpreted in a weak (distributional)
sense. However, these weak solutions are not necessarily unique and must be sup-
plemented with additional conditions, known as the entropy conditions, in order to
single out a physically relevant solution. Assume that (1) is equipped with a con-
vex entropy function η(U) and entropy flux q(U) = (qx (U), qy(U)) satisfying the
compatibility conditions ∂Uqx (U) = V�∂Uf(U) and ∂Uqy(U) = V�∂Ug(U). Here,
V = ∂Uη(U) is the vector of entropy variables. Taking the scalar product of (1) with
V leads to an auxiliary conservation law

∂tη(U) + ∂xq
x (U) + ∂yq

y(U) = 0, (2)

which is valid when the solution of (1) is smooth. However, for discontinuous solu-
tions, entropy should be dissipated at shocks, and hence, one imposes the entropy
condition

∂tη(U) + ∂xq
x (U) + ∂yq

y(U) � 0, (3)

which is understood in the sense of distributions. A weak solution of (1) is called an
entropy solution if (3) holds.

Harten [9] has shown that the Euler equations are equipped with a family of
entropy–entropy flux pairs. We choose the following specific pair

η(U) = − ρs

γ − 1
, qx (U) = − ρus

γ − 1
, qy(U) = − ρvs

γ − 1
, (4)

where s = ln (p) − γ ln (ρ). The corresponding vector of entropy variables is given
by

V =
(

γ−s
γ−1 − β|u|2, 2βu�, −2β

)�
, β = ρ/(2p).
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Although no global existence and uniqueness results are available for entropy
solutions of the generic multi-dimensional system of conservation laws, the entropy
conditions play an important role in providing global stability estimates. Formally
integrating (3) in space and ignoring the boundary terms by assuming periodic or
no-inflow boundary conditions, we get

d

dt

∫

R2

η(U)dx � 0 =⇒
∫

R2

η(U(x, t))dx �
∫

R2

η(U0(x))dx ∀ t > 0.

As η is convex, the above entropy bound gives rise to an a priori estimate on the
solution of (1) in suitable L p spaces [4].

Unlike scalar conservation laws, rigorous convergence results for schemes approx-
imating multi-dimensional systems of conservation laws are currently unavailable.
Thus, the construction of schemes satisfying a discrete version of the entropy inequal-
ity (3) is a reasonable goal. Such schemes are termed as entropy stable schemes.
Tadmor [20] proposed a novel approach for constructing entropy stable schemes for
hyperbolic systems, which consists of two steps: (i) constructing an entropy conser-
vative scheme satisfying a discrete version of (2), (ii) adding artificial dissipation to
satisfy a discrete entropy inequality. This idea has been used to construct entropy
stable schemes for several conservative systems [1, 2, 10, 15, 21, 22]. High-order
entropy stable finite difference schemes on Cartesian grids can be constructed using
a combination of high-order entropy conservative finite difference fluxes [12] and
high-order numerical dissipation. Fjordholm et al. [6] proposed a sufficient condition
to construct such high-order numerical dissipation operators leading to entropy sta-
bility, which involved the reconstruction of (scaled) entropy variables such that a sign
property is satisfied at each interface. This means that the jump in the reconstructed
values at every cell face must have the same sign as the jump in the corresponding
cell values. These high-order entropy stable schemes have been termed as TeCNO
schemes.

Only a small class of reconstructions is known to satisfy the sign property. A
second-order limited reconstruction with the minmod limiter satisfies the sign prop-
erty [6]. A third-order sign-preserving reconstruction based on appropriate limiting
of quadratic polynomials was proposed [3]. It was shown in [7] that essentially non-
oscillatory (ENO) interpolation satisfies the sign property and has been tested numer-
ically in [6] to give accurate results. However, ENO schemes can show deterioration
in accuracy due to the selection of unstable stencils [16]. Weighted ENO (WENO)
schemes [11, 14], which take a weighted combination of lower-order ENO polyno-
mials to give a higher-order approximation, do not suffer from accuracy deterioration
faced by ENO schemes [17]. Recently, a third-order sign-preserving WENO recon-
struction, called SP-WENO [5], was proposed and tested with scalar conservation
laws.



506 D. Ray

The primary aim of the present work is to test the performance of SP-WENO
in the TeCNO setup for the compressible Euler equations. To control oscillations
observed near discontinuities in the solution, a suitable modification to SP-WENO is
proposed while ensuring the salient features of the original SP-WENO are retained.

2 Mesh and Finite Difference Scheme

Consider a uniform Cartesian mesh in R
2 with mesh point xi, j = (xi , x j ) = (iΔx,

jΔy) forming the cell centers of cells Ii, j = [xi−1/2, xi+1/2) × [y j−1/2, y j+1/2) for
(i, j) ∈ Z

2. The cell interfaces are denoted by xi+1/2, j = (xi+1/2, y j ), xi, j+1/2 =
(xi , y j+1/2). A generic semi-discrete finite difference scheme for the system (1) is
given by

dUi, j

dt
+ 1

Δx

(
Fi+1/2, j − Fi−1/2, j

) + 1

Δy

(
Gi, j+1/2 − Gi, j−1/2

) = 0. (5)

Here, Ui, j (t) = U(xi , y j , t) is the point value of the solution at the cell centre xi, j ,
while Fi+1/2, j , Gi, j+1/2 are conservative numerical fluxes at the cell interfaces, con-
sistent with f , g respectively.

We are interested in constructing entropy stable schemes for (1) which satisfy
a discrete version of the entropy condition (3). Following the approach of Tadmor
[20], we first construct an entropy conservative scheme which satisfies the following
discrete relation analogous to (2)

dη(Ui )

dt
+ 1

Δx
(q̃ x

i+1/2, j − q̃ x
i−1/2, j ) + 1

Δy
(q̃ y

i, j+1/2 − q̃ y
i, j−1/2) = 0, (6)

where q̃ x
i+1/2, j , q̃

y
i, j+1/2 are consistentwith q

x , qy respectively. Furthermore, we denote
the undivided jump and average across the interface xi+1/2, j by

Δφi+1/2, j = φi+1, j − φi, j , φi+1/2, j = φi+1, j + φi, j

2
,

with similar expressions for Δφi, j+1/2, φi, j+1/2 across xi, j+1/2. Tadmor [19] has shown

that the scheme (5) satisfies (6) if the numerical fluxes F̃i+1/2, j = F̃(Ui, j ,Ui+1, j ) and
G̃i, j+1/2 = G̃(Ui, j ,Ui, j+1) satisfy the algebraic relations

ΔV�
i+1/2, j F̃i+1/2, j = ΔΨ x

i+1/2, j , ΔV�
i, j+1/2G̃i, j+1/2 = ΔΨ

y
i, j+1/2, (7)

where Ψ x (U) := V�f(U) − qx (U), Ψ y(U) := V�g(U) − qy(U) are the entropy
potentials. For the Euler equations with the entropy–entropy flux pair (4), the entropy
potentials are Ψ x = ρu, Ψ y = ρv.
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The relations in (7) are generally used to construct two-point second-order accu-
rate entropy conservative fluxes [20]. The approach of LeFloch, Mercier, and Rhode
[12] can be used to construct higher-order entropy conservative fluxes, using the
second-order fluxes as building blocks. The fourth-order entropy conservative fluxes
have the expression

F̃
4
i+1/2, j = 4

3
F̃(Ui, j ,Ui+1, j ) − 1

6

(
F̃(Ui−1, j ,Ui+1, j ) + F̃(Ui, j ,Ui+2, j )

)
,

G̃
4
i, j+1/2 = 4

3
G̃(Ui, j ,Ui, j+1) − 1

6

(
G̃(Ui, j−1,Ui, j+1) + G̃(Ui, j ,Ui, j+2)

)
.

(8)

While entropy is conserved for smooth solutions, it must be dissipated near dis-
continuities in accordance to (3). Thus, the entropy conservative flux is augmented
with an entropy variable-based artificial dissipation term as follows

Fi+1/2, j = F̃
4
i+1/2, j − 1

2
Di+1/2, jΔVi+1/2, j , Gi, j+1/2 = G̃

4
i, j+1/2 − 1

2
Di, j+1/2ΔVi, j+1/2,

(9)
where Di+1/2, j ,Di, j+1/2 are symmetric positive semi-definite matrices evaluated at
some suitable averaged states. It has been shown in [19] that the scheme with numer-
ical flux given by (9) is entropy stable; i.e., it satisfies

dη(Ui )

dt
+ 1

Δx
(qx

i+1/2, j − qx
i−1/2, j ) + 1

Δy
(qy

i, j+1/2 − qy
i, j−1/2) � 0,

where qx
i+1/2, j , q

y
i, j+1/2 are consistent with q

x , qy respectively.
Although any positive semi-definite matrix leads to entropy stability, we choose

the diffusion matrix of the form D = RΛR�, where R is matrix of right eigenvec-
tors of the flux Jacobian, and Λ is a nonnegative diagonal matrix that depends on
the eigenvalues of the flux Jacobian. In particular, we choose the Roe-type diffu-
sion matrix with Λ = diag(|λ1|, . . . , |λm |). Other suitable choices for the diffusion
matrices are discussed in [6, 20].

Note that the terms ΔVi+1/2, j , ΔVi, j+1/2 in (9) are O(Δx), O(Δy), respectively.
Thus, the flux (9) leads to a first-order accurate scheme, irrespective of the order
of accuracy of the entropy conservative flux used. To obtain a higher-order scheme,
we follow the procedure outlined below. For the remainder of this paper, we restrict
our discussions to the reconstruction methodology along the x-direction. The recon-
struction in y-direction can be done in a similar manner. We omit the subscript j
whenever it is clear that it is fixed.

Consider the cell interface at xi+1/2 between control volumes Ii and Ii+1. Define
the vector of scaled entropy variables Z = R�

i+1/2V corresponding to this particular
interface. Thus, the flux in (9) can be rewritten as

Fi+1/2 = F̃
4
i+1/2 − 1

2
Ri+1/2Λi+1/2ΔZi+1/2. (10)
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Let Zi (x) and Zi+1(x) be suitable polynomial reconstructions of Z in Ii and Ii+1,
respectively. We denote the reconstructed values at the cell interface, and the differ-
ence in the reconstructed states, by

Z−
i+1/2 = Zi (xi+1/2), Z+

i+1/2 = Zi+1(xi+1/2), �Z�i+1/2 = Z+
i+1/2 − Z−

i+1/2.

Replacing the original jump ΔZi+1/2 in (10) by the reconstructed jump �Z�i+1/2 leads
to the higher-order accurate flux

Fi+1/2 = F̃
4
i+1/2 − 1

2
Ri+1/2Λi+1/2�Z�i+1/2. (11)

Fjordholm et al. [6] have shown that the scheme (5) with the numerical flux (11)
is entropy stable if the reconstruction at each interface satisfies the following sign
property component-wise

sign(�Z�i+1/2) = sign(ΔZi+1/2).

These high-order entropy stable schemes are termed as TeCNO schemes. In the
next section, we briefly discuss the SP-WENO reconstruction that satisfies the sign
property.

3 SP-WENO

The idea of WENO reconstruction is to use a suitable convex combination of all
2k − 1 polynomials used in the kth-order ENO reconstruction at a given interface
and obtain a (2k − 1)th-order accurate reconstruction. For third-order WENO, the
left and right states at the interface xi+1/2 are evaluated as

Z−
i+1/2 = w0,i+1/2

(
Zi

2
+ Zi+1

2

)
+ w1,i+1/2

(
− Zi−1

2
+ 3Zi

2

)
,

Z+
i+1/2 = w̃0,i+1/2

(
− Zi+2

2
+ 3Zi+1

2

)
+ w̃1,i+1/2

(
Zi

2
+ Zi+1

2

)
,

(12)

with the weights given as w0 = (3/4 − 2C1), w1 = (1 − w0), w̃0 = (1/4 − 2C2) and
w̃1 = (1 − w̃0). The functions C1,C2 have two important roles to play: (i) ensure
third-order accuracy of the reconstructed states Z±

i+1/2 when the solution is smooth
and (ii) give least weight to the stencils containing discontinuities.

We now present the choice of C1 and C2 corresponding to the SP-WENO
reconstruction proposed in [5]. Define the jump ratio at the interface xi+1/2 as
θ−
i := Δvi+1/2/Δvi−1/2, θ

+
i := 1/θ−

i and the functionsψ+
i+1/2 := (1 − θ−

i+1)/(1 − θ+
i ),

ψ−
i+1/2 := 1/ψ+

i+1/2. Then, C1, C2 are chosen as
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C1(θ
+
i , θ−

i+1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
8

(
f +

( f +)2+( f −)2

)
if θ+

i �= 1, ψ+ < 0, ψ+ �= −1

0 if θ+
i �= 1, ψ+ = −1

− 3
8 if θ+

i = 1 or ψ+ � 0, |θ+
i | � 1

1
8 if ψ+ � 0, |θ+

i | > 1

,

and C2(θ
+
i , θ−

i+1) := C1(θ
−
i+1, θ

+
i ) where

f +(θ+
i , θ−

i+1) :=
{

1
1+ψ+ if θ+

i �= 1, ψ+ �= −1

1 otherwise,
, f −(θ+

i , θ−
i+1) := f +(θ−

i+1, θ
+
i ).

The SP-WENO reconstruction enjoys the following properties.

1. Consistency: The weights must be nonnegative. This is equivalent to the condi-
tion −3/8 � C1,C2 � 1/8.

2. Sign property: The reconstructed jump using the reconstructed values (12) can
be written as

�Z�i+1/2 = 1

2

[
w̃0(1 − θ−

i+1) + w1(1 − θ+
i )

]
ΔZi+1/2. (13)

Thus, the sign property holds if
[
w̃0(1 − θ−

i+1) + w1(1 − θ+
i )

]
� 0.

3. Negation symmetry: The weights should not be biased toward positive or nega-
tive solution values; i.e., they should remain unchanged under the transformation
Z �→ −Z . A sufficient condition to ensure this is that C1,C2 are chosen to be
functions of quantities that are invariant under this transformation. For instance,

Ck := Ck
(
θ+
i , θ−

i+1, |ΔZi+1/2|, (|Zi | + |Zi+1|)
)
, k = 1, 2. (14)

4. Mirror property: If the solution is mirrored about the interface xi+1/2, the
weights must also get mirrored about xi+1/2. Assuming that C1,C2 have the
form (14) ensuring negation symmetry, the mirror property holds if

C1(a, b, c, d) = C2(b, a, c, d) ∀ a, b, c, d ∈ R. (15)

5. Bound on jumps: It was shown in [5] that the the reconstructed jump with
SP-WENO has the bound

|�Z�i+1/2| � 2|ΔZi+1/2|. (16)

Note that for SP-WENO, the functions C1,C2 only depend on θ+
i , θ−

i+1 with
C1(θ

+
i , θ−

i+1) = C2(θ
−
i+1, θ

+
i ), while the conditions (14) and (15) are much more

general. The reconstructed values at the cell interfaces with SP-WENO have been
shown to be third-order accurate in [5].
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4 Numerical Results with SP-WENO

We test the performance of SP-WENO with the Euler equations. The entropy stable
numerical flux is taken to be of the form (11) with a fourth-order entropy conser-
vative flux of the form (8), which is referred to as TeCNO4. We choose the kinetic
energy and entropy conservative flux proposed in [1] as the base second-order flux.
The matrices in the dissipation term are evaluated using a specific set of averaged
states, which ensures that the (first-order) scheme is able to resolve stationary con-
tact discontinuities exactly (see [1] for details). The scaled entropy variables are
reconstructed using SP-WENO and ENO-3, both of which have the sign property.
The semi-discrete is integrated in time using a Strong Stability Preserving 3-stage
Runge–Kutta scheme (SSP-RK3) [8]. For all test cases, we choose γ = 1.4 except
when indicated otherwise.

1D advecting density wave: The domain is chosen as [0, 2]with the initial condition
given by ρ = 1 + 0.5 sin4 (x), u = 0.5, and p = 1. The solution is simulated till time
T = 0.5 with CFL = 0.5 and periodic boundary conditions. This test case is in the
same spirit as that of the test described in [16] for the linear advection equation, where
ENO-3 is shown to perform poorly due to selection of linearly unstable stencils. The
discrete L1

h errors for the density obtained on different meshes are shown in Table1.
The solutionwith ENO-3 loses its expected order of accuracywhich dropswell below
second order. SP-WENO on the other hand gives more than third-order accuracy.

Shu–Osher test: This test case proposed by Shu and Osher [18] involves the interac-
tion of shocks of different strengths and highly oscillatory smoothwaves. The domain
is chosen as [−5, 5]with final time T = 1.8 and CFL= 0.4. The initial condition has
a discontinuity at x = −4 with (ρL , uL , pL) = (3.857143, 2.629369, 10.33333)
and (ρR, uR, pR) = (1.0 + 0.2 sin (5x), 0, 1) as the left and right states respec-
tively. The solutions with SP-WENO and ENO-3 are shown in Fig. 1 on a mesh with
N = 400 cells. As the expression for an exact solution is not available, a solution
with ENO-3 on a mesh with 2000 cells is used for reference. The TeCNO4 with

Table 1 L1
h error of the

density for the advecting
sine-wave test case. ENO-3
loses accuracy while
SP-WENO gives third-order
accuracy

N SP-WENO ENO-3

Error Rate Error Rate

100 2.61e-06 – 3.43e-06 –

200 2.91e-07 3.17 4.46e-07 2.94

400 3.21e-08 3.18 6.66e-08 2.74

600 8.91e-09 3.16 2.88e-08 2.05

800 3.56e-09 3.19 1.79e-08 1.66

1000 1.75e-09 3.18 1.25e-08 1.59
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(a) (b)

Fig. 1 Shu–Osher test: Solution with TeCNO4 at time T = 1.8. SP-WENO gives large overshoots

ENO-3 reconstruction does well in approximating the solution, as compared to the
reference solution. However, SP-WENO gives a fairly large overshoot close to the
strong shock.

5 SP-WENOc: A Fix for Systems of Conservation Laws

In order to understand why SP-WENO gives unsatisfactory results while approxi-
mating discontinuous solutions, we need to take a closer look at the scheme being
used. In most scenarios, the reconstructed jump �Z�i+1/2 with SP-WENO is zero (see
[5] for details). In other words, there is no numerical dissipation in these regions and
the scheme is governed only by the fourth-order entropy conservative flux. Among
these, two important scenarios are when the solution has a convex or concave profile
about the interface xi+1/2. In terms of the jump ratios, these are characterized by either
θ+
i < 1, θ−

i+1 > 1 or θ+
i > 1, θ−

i+1 < 1. Let us collectively call these scenarios as the
C-region. While such scenarios need not occur at an interface corresponding to a
discontinuity in the solution, it may describe an interface in the close proximity of a
shock (or a contact). This could lead to large Gibbs oscillations, as was observed in
Fig. 1.

A possible fix would be to perturb the reconstruction procedure described by
SP-WENO so that the reconstructed jump is nonzero in the C-region. Consider the
reconstructed jump written in the form (13). In the C-region, we introduce a small
perturbation in terms of a function G (whose explicit form is defined later) such that

�Z�i+1/2 = 1

2

[
w̃0(1 − θ−

i+1) + w1(1 − θ+
i ) + G

]
ΔZi+1/2.

In order to ensure that the perturbation is a consequence of the appropriate choice of
the WENO weights, we propose the following modifications



512 D. Ray

C1 = C1 − 1

4

G

(1 − θ+
i )

, C2 = C2 − 1

4

G

(1 − θ−
i+1)

, (17)

which is well defined in the C-region since θ+
i �= 1 and θ−

i+1 �= 1. We consider the
additional modification

C#
1 = min

(
max

(
C1,−3

8

)
,
1

8

)
, C#

2 = min

(
max

(
C2,−3

8

)
,
1

8

)
, (18)

to ensure the weights are consistent.
Finally, we chose the perturbation function G as

G =
(
min

( |ΔZi+1/2|
0.5(|Zi | + |Zi+1|) , |ΔZi+1/2|

))3

, (19)

Note that with this choice, C#
1 ,C

#
2 have the form given by (14) and (15) and

thus satisfy negation symmetry and the mirror property. Furthermore, using the fact
that G � 0 along with the consistency modification (18), the reconstruction can be
shown to satisfy the sign property. The bound (16) no longer holds for SP-WENOc.
However, a careful analysis leads to an alternate bound of the form

∣∣�Z�i+1/2

∣∣ � 4
(∣∣ΔZi−1/2

∣∣ + ∣∣ΔZi+1/2

∣∣ + ∣∣ΔZi+3/2

∣∣) . (20)

We refer to the SP-WENO reconstruction with the correction given by (17), (18) and
(19) in the C-region as SP-WENOc.

Remark 1. The bounds (16) or (20) are useful in proving Lipschitz continuity of
the numerical flux. However, these bounds do not effect the sign property of the
reconstructions, thus have no influence on the entropy stability of the scheme.

We make two additional remarks on the choice of G . Firstly, the perturbation to
the initial SP-WENO jump isO(|Δvi+1/2|4) for smooth solutions (assumingC#

1 = C1

and C#
2 = C2). This ensures that the superior order of convergence observed with

the TeCNO4 scheme is retained. Secondly, the quantity |ΔZi+1/2|/(|Zi | + |Zi+1|)
can have very bad scaling if |Zi |, |Zi+1| are very small. Thus, by taking a minimum
with |ΔZi+1/2| we are able to bound the value of G .

Before we proceed to test SP-WENOc with the Euler equations, we first check
whether SP-WENOc truly leads to a third-order reconstruction at the cell interfaces.
We consider the smooth function u(x) = sin (10πx) + x and reconstruct the inter-
face values using the function value at the cell centers. The discrete L1

h norm of
interface errors are shown in Table2. We clearly see that SP-WENOc retains the
superior accuracy of SP-WENO despite the perturbation introduced in the C-region.
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Table 2 L1
h reconstruction

errors with SP-WENO and
SP-WENOc

N SP-WENO SP-WENOc

Error Rate Error Rate

40 8.59e-02 – 8.79e-02 –

80 6.73e-03 3.67 7.35e-03 3.58

160 5.01e-04 3.75 5.27e-04 3.80

320 3.64e-05 3.78 3.78e-05 3.80

640 2.59e-06 3.81 2.68e-06 3.82

6 Numerical Results with SP-WENOc

1Dadvecting densitywave: The L1
h solution errorswith SP-WENOc in the TeCNO4

setup are given in Table3. Clearly, SP-WENOc performs at par with the original SP-
WENO. In fact, the errors are almost identical.

Shu–Osher test: Large overshoots were observed with SP-WENOwhile solving the
discontinuous Shu–Osher test. Although the new SP-WENOc reconstruction does
not completely remove the overshoot, it definitely gives much better control over the
magnitude of oscillation as can be seen in Fig. 2. This indicates that the numerical
dissipation does not vanish in key regions under the proposed modification.

Vortex advection: This is a two-dimensional problem describing the advection of
an isentropic vortex. The initial conditions are taken from [13]. The domain is taken
as [−5, 5] × [−5, 5]with the initial vortex centered at the origin. The vortex advects
in the horizontal direction with velocity 0.5 till T = 20, at the end of which the
vortex completes one full cycle. The L1

h errors for density, pressure, and x-velocity
component are shown in Table4. Once again, both SP-WENO and SP-WENOc give
very similar results, with more than third-order accuracy.

Shock–vortex interaction: This test consists of the interaction of a left-moving
shock wave with a right-moving isentropic vortex. The domain is chosen as [0, 1] ×
[0, 1] while the initial conditions are identical to those prescribed in [6]. The domain
is discretized with 200 × 200 cells, and the final time is chosen as T = 0.35. The

Table 3 L1
h error of density

with SP-WENO
reconstructions, for the
advecting sine-wave test case

N SP-WENO SP-WENOc

Error Rate Error Rate

100 2.61e-06 – 2.60e-06 –

200 2.91e-07 3.17 2.91e-07 3.16

400 3.21e-08 3.18 3.21e-08 3.18

600 8.91e-09 3.16 8.91e-09 3.16

800 3.56e-09 3.19 3.55e-09 3.19

1000 1.75e-09 3.18 1.74e-09 3.18
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(a) (b)

Fig. 2 Shu–Osher test: Solution with TeCNO4 at time T = 1.8. Overshoots are controlled by the
new SP-WENOc

Table 4 L1
h error for advecting isentropic vortex

Density Pressure x-Velocity

N SP-WENO SP-WENOc SP-WENO SP-WENOc SP-WENO SP-WENOc

Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

40 1.43e-
02

– 1.46e-
02

– 2.01e-
02

– 2.09e-
02

– 3.68e-
02

– 3.66e-
02

–

80 1.82e-
03

2.97 1.79e-
03

3.03 2.54e-
03

2.98 2.53e-
03

3.05 6.89e-
03

2.41 6.74e-
03

2.44

160 1.33e-
04

3.77 1.35e-
04

3.72 1.90e-
04

3.74 1.95e-
04

3.70 5.73e-
04

3.58 5.78e-
04

3.54

320 1.04e-
05

3.67 1.06e-
05

3.67 1.46e-
05

3.70 1.50e-
05

3.70 4.57e-
05

3.65 4.60e-
05

3.65

(a) TeCNO4 + ENO-3 (b) TeCNO4 + SP-WENOc

Fig. 3 Density profiles for shock–vortex interaction at time T = 0.35

numerical solutions with ENO-3 and SP-WENOc are comparable with well resolved
shock lines, as shown in Fig. 3.
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7 Conclusions

The sign-preserving SP-WENO reconstruction used in conjunction with TeCNO
schemes performs well in approximating solutions of scalar conservation laws [5].
However, it leads to undesirably large oscillations close to discontinuities when
tested with the Euler equations, which can be attributed to the absence of numerical
dissipation in the proximity of a shock or contact discontinuity. A modification to
the reconstruction is proposed to ensure the dissipation does not vanish in key areas,
while maintaining high order of accuracy in smooth regions. The newmethod termed
as SP-WENOc preserves most of the crucial properties of the original method and
gives better control of overshoots near discontinuities.

Future work would test the performance of SP-WENOc for other important sys-
tems of conservation laws such as the shallow water equations and the magnetohy-
drodynamics equations.
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Did Numerical Methods for Hyperbolic
Problems Take a Wrong Turning?

Philip Roe

Abstract Methods for the numerical solution of hyperbolic conservation laws have
been dominated for several decades by discontinuous data representations and one-
dimensional physical arguments. Although these ideas bestow useful properties,
it will be argued that they are unrealistic and ultimately restrictive. A strategy is
described that avoids one-dimensional concepts in favour of discriminating between
advective (one-dimensional) and acoustic-type (multidimensional) behaviour. It is
successfully applied to the Euler equations.

Keywords Conservation laws · Godunov-type methods · Hyperbolic problems
Discontinuous reconstruction

1 Introduction

The first time that I presented a CFD paper to an international audience was at
Stanford in 1980. On the evening of the conference banquet, Bram van Leer proposed
to fill a table with believers in upwinding and Riemann solvers, but I remember that
we came up short, and had to invite two believers in flux-corrected transport to make
up the number. I cannot imagine having such a difficulty today; upwinding and its
associated paraphernalia have become indispensable clichés in numerical treatments
of hyperbolic problems.

The benefits of introducing physical reasoning into the computational method are
felt in numerous ways, even when the reasoning is based only on one-dimensional
analysis. Clean shock profiles are easier to produce, boundary conditions fit natu-
rally into the method, negative densities and pressures can be avoided, fewer tuning
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parameters are required, and dissipation is often reduced. These are so valuable that
any limitations are usually forgiven. But the limitations are serious enough to pre-
clude some applications. Dissipation is sometimes increased considerably. This is
the case especially if shocks or contacts lie obliquely across the mesh, and for this
reason it is found that unstructured grids cannot be used within boundary layers.
Dissipation is also greatly increased in regions of low-speed flow, so that stagnation
points generate substantial entropy layers, both locally and downstream. To reduce
these effects, meshes have to be expensively refined in the problematic regions.
There have been many papers published that recognise these issues, proposing a
variety of “multidimensional upwind schemes”. Often, these are qualified as “truly”,
“genuinely” or “fully” multidimensional, which to me betrays a certain insecurity
among these authors as to whether their objectives were achieved. Many seem to
assume that a large number of one-dimensional events must somehow constitute a
multidimensional event.

One-dimensional physics is almost inevitably introduced when the data is repre-
sented discontinuously, as is the case with finite-volumemethods and with discontin-
uous Galerkin methods. If there appears to be a discontinuity along some path in the
data, then waves will propagate away from that path and will do so at right angles to
it. The solution may then display behaviour that depends more on the computational
grid than on any aspect of the data.

I believe that methods can be found that have all of the virtues but none of the
vices of traditional upwind schemes. However, the ideas that express the physics
need to be quite different from those currently in use, and so do the numerical
techniques that express the ideas. In this paper, I want to return to the origin of our
current methods, and then to stress a distinction that has been almost ignored. This
is the great difference between the advective and acoustic modes of propagating
information, in any number of dimensions except one. For ease of presentation,
almost all of the discussion will actually be of the two-dimensional case, although
the method is first derived in three dimensions. The greatest attention will be paid to
third-order schemes, which are probably best for many applications, and for which
a number of simplifications are permissible.

2 Godunov’s Question

The prototype of all upwind schemes is the method proposed by Sergei Godunov [8].
Initial data is projected into the space of cellwise constant functions, thereby creating
in the data one-dimensional discontinuities along the faces of the cells. The flux on
every edge is then evaluated by solving the Riemann problem for the states separated
by that face. There was some initial resistance to this method from researchers more
accustomed to conventional finite-difference or finite-volume methods, to whom
this proposal seemed both unnatural and expensive. Their anxiety was somewhat
relieved by explaining to them that Godunov’s method did not so much seek to
approximate an evolution operator as to project the data into a form to which the
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exact evolution operator could easily be applied, at least for a small timestep. In fact
that had been Godunov’s original idea, although he put it rather more exactly. He
posed the question:

If the initial data were to be replaced by its cellwise constant projection, how would it
evolve?

He has provided a fascinating account [9] of the origins of the scheme that bears
his name. After developing in one dimension the method inspired by the question
above, and finding it to be brilliantly successful [8], he and his colleagues were eager
to try it in two dimensions, and it was then that they hit a snag, described in this
excerpt.

The first question we faced in our attempts to generalise our method for two dimensions
was how to find a solution of the two-dimensional Riemann problem with arbitrary initial
conditions. ......... In order for a two-dimensional method to be absolutely similar to the one-
dimensional onewe needed an analytical solution of the gas-dynamic equations with four
initial discontinuities coming together in a single point. Naturally, we did not have these
solutions at that time and they are still unknown (for general initial conditions). At this point,
a roguish suggestion was made which was to use only the solutions of a classical Riemann
problem involving only planar waves. Thus, the interaction of the four cells with a common
vertex was neglected altogether. This removed a nice physical interpretation underlying
the construction of the one-dimensional scheme. Quite naturally, there weremany arguments
during the discussion of this hardly justifiable suggestion. L. V. Brushlinkii........... carried
out the analytical solution for an acoustic wave propagating in stationary media, which
took into account the interaction of the cells sharing a common vertex. His solution was
implemented in a scheme completely analogous to the one-dimensional one.To our surprise
and pleasure there were no significant differences. Afterwards, only the simpler model
was used.

Quite clearly, the original intention was that once the cellwise constant represen-
tation had been obtained, its exact evolution over a small period of time should be
determined, including the effects of four-way interactions at the call corners. There
is a precision to this proposal that makes it attractive to a theoretician, who might
hope eventually for a proof of convergence. However, it proved to be both difficult
and ineffective, so that resort had to made to an easier but less fundamental question.
In fact, now that we have a clear idea of what “corner Riemann problems” actually
look like [15, 34], it seems rather obvious that incorporating such information is
very unlikely to improve the accuracy, because we would be working with a subgrid
model of the flow that would look like Fig. 1.1

1Confusingly, however, several researchers [4, 16, 27] discovered that including the corner flux
did improve things for the scalar problem ∂t u + a∂x u + b∂yu = 0. I propose that it is important to
make the distinction between situationswhere information follows the fluid path (a one-dimensional
domain of dependence) and information that spreads through the fluid by an acoustic (or similar)
mechanism. Purely convective disturbances can never, of course, give rise to patterns such as those
in Fig. 1, so that “corner terms”makemore sense for scalar problems, since no acoustic disturbances
are present.
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Fig. 1 If Godunovs original
concept had been carried
through consistently, it
would have implied that
during each timestep the
flow would be behaving like
this. Note that, for
illustrative purposes, the four
corner flows are chosen
independently and do not
connect with each other

3 Limitations of One-Dimensional Treatments

The part of Godunov’s concept that has survived is of course the discontinuous
reconstruction. Just as first-order Godunov methods treat the solution as piecewise
constant within each cell andMUSCL schemes as piecewise linear. so discontinuous
Galerkinmethods can use higher-order polynomials. In all of these cases, the solution
on the cell boundary is normallymultivalued andmust be resolved, usually by solving
a Riemann problem to some approximation.

Most early applications of the Godunovmethod [5, 32] attempted to build directly
on the satisfactory treatment of one-dimensional problems. They used operator split-
ting to reduce the multidimensional problems to a sequence of one-dimensional
problems. To solve, for example, the Euler equations in the form

∂tu + A∂xu + B∂yu = 0 (1)

the Strang splitting method [28] would be employed, of solving for half a timestep
the equation ∂tu + A∂xu = 0, then for a full timestep ∂tu + B∂yu = 0, and then
for another halfstep ∂tu + A∂xu = 0. For smooth solutions, this is second-order
accurate even in the casewhereA, B do not commute, but for discontinuous solutions
there is an O(1) error even if the split equations are solved exactly. This was noted
qualitatively by Collela [5], and more quantitatively by Roe [25].

Waves that move in the x-direction are eigenvectors of A and their speeds are the
eigenvalues of A. When the propagation direction changes to y, these waves are pro-
jected onto the eigenvectors ofB and nowmovewith different speeds. Figure2 shows
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Fig. 2 Exact solution [25] to the operator-split acoustic equations, starting from an oblique shock
inclined at 60◦

the exact solution to the dimensionally split acoustic equations, ten split timesteps
after starting with an oblique acoustic discontinuity. Of course, we do not see any-
thing like this in practical calculations because the small wavelength of the exact
solution is too small to be resolved on the mesh. In fact, we are using a subgrid
model whose frequency is too short to be resolved on our grid. We are saved from
the consequences of our bad physics by the dissipation in our bad numerics.

I think that the use of splittingmethods arose from a feeling that multidimensional
problems were being reduced to one-dimensional problems that we knew how to do.
The analysis above demonstrates that this was in general an illusion and also that
the physics could not be represented any better by the use of “unsplit” methods
that effectively applied the one-dimensional operators simultaneously [3, 4] rather
than sequentially. Technically, these are not operator-splitting methods, but there is
a conceptual splitting involved that only sees the physics through a one-dimensional
lens. The prolonged popularity of these methods, still the basis of almost all codes
in current use, reflects the fact that they are a great improvement over the methods
that came before, mostly of the Lax–Wendroff or Jameson–Schmidt–Turkel type,
stabilised by artificial viscosity. Apparently, for solving hyperbolic problems, bad
physics is an improvement on no physics at all.

However, the exclusive use of one-dimensional physics encourages somemiscon-
ceptions. To most finite-volume practitioners, a flux is the flow rate of a conserved
quantity through a surface, including any contributions from surface forces such as
pressure; it is a vector, and it seems appropriate to define it on a face. However, the
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flux in that sense is just one component of a “vector of vectors”, and if such an object
is to be stored anywhere it must be at the location that gives it most meaning. Placing
it at a vertex will affect the flow through all of the adjacent faces. It is then possible to
give guarantees about multidimensional aspects of the algorithm having to do with
the divergence or curl of a vector field. For example, magnetohydrodynamic flows
should enforce the condition ∇ · B = 0. If this condition is true in some discrete
sense of the initial conditions, it should remain true after any number of timesteps.
Because this invariance of ∇ · B is a direct consequence of the governing equations,
it will indeed be observed to some approximation in any consistent numerical solu-
tion for short times, but there may be secular errors such that it ceases to hold after
longer times. This produces unrealistic solutions or causes the code to fail.

Morton and Roe [19] considered the equivalent problem2 for vorticity in the
acoustic equations on various grids, but most simply on a square grid. They showed
that a natural measure of vorticity would be preserved invariant in time if, and only if,
the fluxes through each cell facewere derived by averaging fluxes from the vertices of
that face (see also [20]). For a finite-volume method in two dimensions, this implies
that the flux through a face must depend on at least six cells, and on 18 in three
dimensions, even for a first- or second-order scheme. When fluxes are obtained from
Riemann solvers they depend on only two cells. It seems self-evident that methods
designed exclusively around one-dimensional processes cannot be expected to have
any special properties with regard tomultidimensional behaviour. Lung and Roe [17]
showed that methods for solving the acoustic system on a nine-point stencil can have
isotropic errors only if vertex fluxes are employed.

Another shortcoming of the dimension-by-dimension approach is an incorrect
view of the flows close to stagnation points (which are to be found in many otherwise
high-speed flows). For a two-dimensional stagnation point at the origin, the local
solution is u = kr cos θ, v = kr sin θ, p = p0 + O(k2r2). Riemann solvers will find
acousticwaveswhose strength isO(r) (and believe that theymust be stabilised)when
in fact this flow is incompressible and contains no acoustic behaviour that needs
stabilising. This accounts for the spurious entropy production commonly found in
these regions.

3.1 Does Discontinuous Reconstruction Help?

Despite the arguments above, the practical success of Godunov-type methods has
given rise to a belief that it is natural and advantageous to look for solutions to
hyperbolic problems in a function space that allows discontinuities. These spaces
form the foundation of the discontinuous Galerkin method, and this is widely held
to be responsible for the remarkable accuracy (superconvergence) that this method
displays in some circumstances. I have recently been able to understand some simple

2Actually not completely equivalent. In MHD, we must enforce ∇ · B = 0, whereas in acoustics
the requirement is that ∂t∇ × v = 0, even if ∇ × v is not initially zero.
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Fig. 3 Trial functions u(ξ)

for (left) the DG1 method,
and (right) Scheme V

-1        0         1                 -1         0        1

2

1

0

-1

examples of this, in the prototypical example of linear advection ∂t u + ∂xu = 0. It
is instructive to compare two advection schemes that seem quite unlike [26].

Figure3 shows at left the two linear trial functions φ1,2(x) employed by the DG1
method to form a reconstruction u(x, t) = ∑

j ω j (t)φ j (x) in each cell. To derive the
method, the time derivatives of the amplitudes d/dt (ω j ) are found that will minimise
each cell residual, given some choice of the flux entering the cell. This does not of
course determine what the order of the schemewill be, but it will be the best possible.
For sensible choices of the flux, the local truncation error is found, both analytically
and experimentally, to be of order h3, which appears surprising given that we only
have a linear reconstruction. Note that this is a semi-discrete method that must be
coupled with some timestepping method.

At the right of Fig. 3 are shown the three quadratic trial functions φ1,2,3(x) used
by van Leer in Scheme V of his 1977 paper [29] on “A new approach to linear
advection”. These enable a quadratic reconstruction of u(x) in each cell, and the
reconstructed problem is solved exactly as u(x, t + Δt) = u(x − Δt, t). The flux
through an interface j + 1

2 can be calculated from the data in the upwind cell as

f j+ 1
2

=
∫ Δt

0
u j (x j+ 1

2
− t) dt (2)

and then the cell averages are updated in the usual finite-volume manner.

un+1
j = unj − Δt

Δx ( f j+ 1
2
− f j− 1

2
) (3)

Note that this is a fully discrete method with no need for separate timestepping.
Subsequent rediscoveries of this or closely similar methods can be found in [1, 14,
24, 33]

It is rather surprising, in view of their very different derivations, that these
two schemes are intimately related. Their structure is closer than appears. In both
schemes, each cell needs to store just two degrees of freedom, but can make use of
three. In the reconstruction stage, Scheme V makes use of its own cell average and
both of the point values that it shares with neighbours. In the DG1 method, cell j
can be thought of as “borrowing” a degree of freedom from the upwind cell j − 1 to
use for calculating f j− 1

2
. It can be shown that the DG1 scheme is the small Courant

number limit of Scheme V, merely expressed in a different basis [26]. The solution
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from a DG scheme of any order can be made superconvergent in all norms by defin-
ing the solution in each cell to be the polynomial defined by the degrees of freedom
in that cell, plus the degrees of freedom borrowed from the upwind cell. This gives
rise to a continuous discrete solution, identical to that of Scheme V. Paradoxically,
the discontinuous representation of the solution in DG methods for linear advec-
tion produces superconvergent solutions only because there is also a continuous
interpretation.

However, Scheme V has a number of advantages if its fully discrete form is used,
as shown in Fig. 4. It is stable up to aCourant number of 1.0 rather than 0.409. It needs
no iterations to advance in time, rather than at least three in DG1. It can obtain similar
accuracy with half the mesh points and half the timesteps. These multiply out to give
Scheme V an overall advantage of a factor of about 30, and this would become 60 or
120 in two or three dimensions. Although each step of Scheme V is more expensive
than each substep of DG1, this is not nearly enough to counterbalance the other
considerations. The upwinding in Scheme V does not derive from the solution to any
Riemann problem. It derives instead from the use of exclusively “upwind” data to
evaluate the flux in (2). The upwinding occurs within cells rather than at interfaces. In
combination with the symmetrical update (3), this produces a stencil that is optimally
upwinded in the sense of Iserles and Strang [13].

4 A Multidimensional Method

The remainder of this paperwill describe amethod for solving theEuler equations that
is free from discontinuous reconstructions or one-dimensional mechanisms. Hence,
it is not subject to the criticisms put forward above. No claim ismade that this method
is unique or that it is the best, but it is displayed as a demonstration that a coherent
set of ideas can be put together, and that some remarkable improvements may ensue.
To begin with, a list of properties is given that are required if the method is to be a

Fig. 4 Amplification factors
for Scheme V at various
Courant numbers. Solid line
ν = 0 (DG1), dash-dot
ν = 0.25, short dash
ν = 0.5, long dash ν = 0.75
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credible improvement on current methods. This is followed by a set of observations
that are useful in achieving the requirements.

4.1 Objectives and Tools

4.1.1 Required Properties

1. Conservative in the usual sense.
2. Third-order accuracy (better than second,3 but still fairly inexpensive [30])
3. Fully discrete, allowing for much larger timesteps.
4. Low storage and computationally intensive (for GPUs and exascale computers)
5. Works on poor-quality unstructured grids.
6. Not based on one-dimensional thinking but should recover regular upwinding

in regions of one-dimensional flow.
7. Does not employ discontinuous representation, but captures narrow transitions

of any kind.
8. Does not use Riemann solvers, but distinguishes correctly between advective

and non-advective behaviour.
9. Applicable over the full range of Mach number.
10. Extendable to the Navier–Stokes equations.
11. Need not be applicable to all conservation laws, but may exploit specific prop-

erties of Euler and Navier–Stokes equations (at least to begin with).

Although several details still need to be ironed out, this list of objectives now
seems to be well within reach.

4.1.2 Some Useful Observations

The following observations have proved useful in constructing the method

1. fluxes The evaluation of interface fluxes need not have any conservation property
of its own. As in SchemeV, the flux through the boundaries of the control volumes
should be evaluated in accordance with the local information flow, but we may
use whichever variables are simplest.

2. order The flux evaluation can be done to one order of accuracy less than the
accuracy of the conserved variables. (Because the leading error in the fluxes will
integrate to zero around a closed control volume.).

3A personal preference, but strongly held. Schemes with odd order of accuracy have dispersion and
dissipation error of the same order, bur for even error dispersion dominates [12], leading to very
oscillatory representations of discontinuities, and hence to a need for strong limiting.
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3. splitting For the linearised Euler equations, the convective and acoustic operators
commute, so that operator splitting is a sound strategy. There is a corresponding
splitting in the nonlinear case.

4. no upwinding If splitting is used, upwinding is only needed for the convective
part of the problem.

5. Poisson The linear acoustic problem has an exact solution (Poisson’s) that is
simple enough to replicate van Leer’s “new approach to advection” [29].

4.1.3 Representing the Solution

The representation of the data combines finite-difference, finite-element and finite-
volume aspects. The initial data at t = nΔt is represented by point values at the
vertices and the mid-points of element sides, as in quadratic Lagrange elements
(Fig. 5). Because the three edge values are shared with another element and the three
vertex values are typically shared with six other elements, this calls for two degrees
of freedom per element. Because these independent degrees of freedom are used to
compute the interface fluxes, the scheme is called the active flux scheme. The cell
averages of the conserved variables are also held.

The unknown point values are represented in terms of primitive variables (ρ, v, p)
because they describe the physics very simply. It is explained below how to update
these point values, and theywill be updated to (n + 1

2 )Δt aswell as to (n + 1)Δt . (The
two updates, which are only required to second order (4.1.2, 2) could be combined
into one because they use the same data.) The point values can be converted to
flux variables and then the flux integral round each element can be evaluated by
Simpson’s Rule and used to update the cell averages of the conserved variables.
Since these averageswould not in general coincidewith those obtained by integrating
the interpolant of the boundary points, the Lagrange elements are enriched with a
cubic “bubble function” that vanishes on the element boundary but makes a finite
contribution to the integral.

Fig. 5 The solution is
represented by point values
of the primitive variables at
the vertices and edge
mid-points of a simplicial
element. The mean values of
the conserved variables are
also stored for each element

n Δt

(n+½) Δt

(n+1) Δt

t
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4.2 Techniques

4.2.1 Operator Splitting

Whenever a system of partial differential equations involves the sum of two or more
operators, so that ∂tu + Au + Bu . . . = 0, we can consider applying the operators
successively

un+1 = (I − AΔt)(I − BΔt) . . . un

This is attractive if the individual operators A and B are simple, and it introduces
no error at the p.d.e. level if they commute. This requires that A and B share the
same eigenvalues, implying that information propagates along the same paths in the
split and unsplit systems. Dimensional splitting, where each operator involves only
the derivatives in one direction, was discussed in Sect. 3 and found not to meet this
condition.

Intuitively, a nice splitting would be between advective and acoustic behaviour,
but unfortunately this is not possible in conservation form. The problem lies in the
energy equation

∂t E = −∇ · ((E + p)v) = −(∇ · (Ev) + (v · ∇)p + p∇ · v) (4)

The conservative term ∇ · (pv) splits into two terms, (v · ∇)p that relates to the
advection of molecular kinetic energy, and p∇ · v that relates to the increase of
internal energy by acoustic waves doing pressure work. To achieve a physically
correct splitting, this term must be split into components that are not in conservation
form. A correct advective/acoustic splitting cannot be a flux splitting. Nevertheless,
the suggestion has often been made to include the term pv in the “acoustic part of
the flux” [11, 34], sometimes with apparent success, but see the results in [18].

However, the fluxes do not have to be in any sense conservative, and in order to
calculate them a very simple nonconservative splitting can be applied to the Euler
equations written as ∂tu + Cu + Du = 0 with u = (ρ, u, v, p)T and with

C = (u∂x + v∂y)I, D =

⎛

⎜
⎜
⎝

0 ρ∂x ρ∂y 0
0 0 0 ρ−1∂x
0 0 0 ρ−1∂y
0 γ p∂x γ p∂y 0

⎞

⎟
⎟
⎠ (5)

It is clear that these matrices do commute because C is a multiple of the identity. We
can therefore write the second-order expansion

un+1 = (I − Δt (C + D) + 1
2Δt2(C + D)2)un (6)

= (I + ΔtC + 1
2Δt2C2)(I + ΔtD + 1

2Δt2D2)un + O(Δt3) (7)
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or reverse the order of the operators. These solutions correspond to the data evolving
acoustically and then translating or vice versa. The split operators C and D have
precisely the correct eigenstructure (4.1.2, 3) to describe the two kinds of evolution.4

A benefit of splitting in this way is that the acoustic operator D does not need to be
upwinded because it has no directional bias (4.1.2, 4). The advection operator C,
of course, should be upwinded along the flow direction. After the fluxes have been
updated by this nonconservative splitting, they can be integrated to give an update
of the cell-average quantities that is conservative in the usual finite-volume sense.

The update of the points on the boundary of the element has two almost inde-
pendent stages, advective and acoustic. In the nonlinear case, these do not commute,
but operator splitting turns out to be still valid if carried out in the alternating man-
ner discovered by Strang [28]. The advective stage is fairly straightforward. It is a
form of semi-Lagrangian interpolation that incorporates streamline curvature, but
the acoustic stage is more novel and will now be described.

4.2.2 The Acoustic Update

The initial-value problem for the scalar wave equation in three dimensions

∂t tφ − c2∇2φ = 0 (8)

has a well-known solution [31] in terms of spherical means, published by Poisson in
1818 [23], and put to numerical use in [2, 6, 10]. This is not, however, the form in
which acoustic disturbances present themselves in the Euler equations. Instead we
see the first-order system form of (8):

∂t p + c∇ · u = 0

∂tu + c∇ p = 0
(9)

The distinction is essential, in that (8) only applies to flows without vorticity. Nev-
ertheless, the Poisson formula can be modified so that it applies to (9), thus

p(x, s) =p(x, 0) − ctMct∇ · u +
∫ ct

0
sMcs∇2 p(x, 0) ds (10)

u(x, s) =u(x, 0) − ctMct∇ p +
∫ ct

0
sMcs∇(∇ · u(x, 0)) ds (11)

4For a splitting to be physically meaningful, it should not introduce any behaviour that does not
exactly match something found in the unsplit problem. This means that there should be no new
eigenvectors unless their eigenvalues vanish. ThematrixD has rank two and has two left nullvectors,
(a2, 0, 0,−1) and (0,−∂y , ∂x , 0). These signify that the linearised acoustic operator correctlymakes
no response to changes of entropy or to vorticity.
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where Mrφ(x, t) denotes the mean value of the function φ(x, t) over a sphere of
radius r with centre x. The formula (10) is in fact equivalent to the classical Poisson
solution of the scalar wave equation, but (11) is a little different, since ∇(∇ · u) =
∇2u + ∇ × (∇ × u). These formulas can be applied to two-dimensional flows by
the method of descent. The integrals reduce to very simple expressions for low-
order polynomial data [7]. If descent is taken further to one dimension, then regular
characteristic solutions are recovered, as they must be. There can be no argument
about this being a genuinely/truly/fully multidimensional approach.

A nice property of (10), (11) is that they contain only those precise quantities,
the pressure gradient and the velocity divergence, that are responsible for change
in either linear or nonlinear problems. These two quantities are, as they should be,
rotationally invariant. There is some resemblance to a Lax–Wendroff expansion. The
second term contains all of the solution depending on odd powers of t and the third
contains all of the even powers. The spherical means can be expanded in powers of
the Laplacian operator, and then truncated to produce Lax–Wendroff schemes of any
order. However, if the true spherical means are used, as is easily done for polynomial
reconstructions, then the resulting numerical method is exact in the linear case for
globally polynomial data (of the appropriate order, here quadratic) on any grid.

The acoustic update is carried out [6, 7] by integrating (10), (11) over the disc
shown in Fig. 6. This is efficiently coded as a loop over elements, calculating the
integrals for all of the six segments that fall within each element. These integrals
have very simple closed forms. When the loop is finished the complete discs will
have been taken into account. To deal with nonlinear problems it has proved sufficient
to use a local sound speed for each segment of the disc. The physical limit of stability
would be if an arc of some disc, for example, the one centred on a point P, were to
leave one of the elements to which P belongs. The solution at P would then depend on
data to which it has no access. In practice, we have found that this condition defines
very precisely the maximum timestep that can be taken, and we use this to define a
Courant number of 1.0.

Fig. 6 Each point value
receives its acoustic update
by integrating (10), (11) over
the Mach disc that surrounds
it
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Fig. 7 A nonlinear expanding wave computed on an unstructured triangular grid. Solutions near
the peak of the wave (left) density, and (right) velocity magnitude, from the present method in blue,
and from DG1 in red

In Fig. 7 some results are shown for a nonlinear wave system,

∂tρ + c∇ · v = 0, ∂tv + c∇(ργ ) = 0, (12)

with the initial data consisting of a narrow Gaussian hill. The solution is, of course,
a circular wave that expands and decays. The figure shows plots, of density and
velocity magnitude against radius, in close-up around the expanding wave. Results
are shown for this method, compared with DG1. For this problem, both methods
are third-order accurate, but the amplitude of the wave is much better resolved by
the present method, which moreover displays only about one quarter of the scatter.
Just as for Scheme V in one dimension, the maximum Courant number is 1.0 rather
than 0.4, and moreover only 25% of the elements are needed. Other things being
assumed equal, the active flux method is 60 times more effective. These results are
on unstructured grids and are very slightly better than results on triangular grids
obtained by drawing diagonals through square cells. Those display slight directional
bias.

5 The Full Euler Equations

Results are shown for the well-known “travelling vortex” test problem. The initial
data in this case is that ρ = 1 − 0.09046 exp (1 − r2), p = ργ , u = 1 − 0.79577 y
exp 1

2 (1 − r2), v = 0.79577 x exp 1
2 (1 − r2) with r2 = x2 + y2. The vortex travels

to the right, at aMach number of 0.845 inside a square domain [−10, 10] × [−10, 10]



Did Numerical Methods for Hyperbolic Problems Take a Wrong Turning? 531

x

y

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1
0.97
0.94
0.91
0.88
0.85
0.82
0.79
0.76
0.73
0.7
0.67
0.64
0.61
0.58
0.55

(a) Density contours superposed on the
mesh

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

3

DOF−1/2

|ε
| 2

 

 

ρ
ρ u
ρ v
ρ E

(b) Convergence of conserved variables

Fig. 8 Results for an inviscid travelling vortex

under periodic boundary conditions until it returns to its initial position, a distance
equal to 20 times its core radius. The density contours plotted in Fig. 8a show that
excellent radial symmetry has beenmaintained on an unstructuredmesh having about
8 elements across the core. This grid is themiddle one of five plotted in Fig. 8b, which
demonstrates consistent third-order convergence. On this problem, the DG1 scheme
displayed only second-order accuracy. The results from the active flux method were
more similar to those from DG2. A more detailed account of this test is provided in
Table1.

Finally, we remark that the extension to the Navier–Stokes equations and other
dissipative systems should be possible provided the equations are expressed in hyper-
bolic form [21, 22]. No new ideas will be required.

6 Summary

The almost universal reliance onupwindmethods andRiemannproblems comes from
trying to insist that discrete information should propagate, so far as possible, along
the same paths and in the same combinations as information in the continuum. In one
dimension, the Riemann problem separates left-going information from right-going
information in a satisfactory way. In higher dimensions, there is another important
distinction to make, that between information that travels with the medium (advec-
tion) and that which travels though the medium (wavelike, in this context acoustic).
The two modes have different domains of dependence, and stencils appropriate to
one are not suitable for the other. One method has been sketched out that does make
this distinction, with considerable gains in efficiency.
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Table 1 Summary of convergence rates for the translating vortex

Level h = √
(DOF) |ε|1 Order |ε|2 Order

ρ

1 3.766218e-02 6.130045e-03 1.640785e-02

2 1.997206e-02 1.115998e-03 2.6855 2.760080e-03 2.8101

3 1.017604e-02 8.542078e-05 3.8112 3.097935e-04 3.2435

4 5.098392e-03 1.013181e-05 3.0848 3.769987e-05 3.0476

5 2.531159e-03 1.266074e-06 2.9700 4.348971e-06 3.0842

ρu

1 3.766218e-02 1.111388e-02 2.012856e-02

2 1.997206e-02 3.150319e-03 1.9875 8.509234e-03 1.3573

3 1.017604e-02 1.291610e-04 4.7371 3.671614e-04 4.6613

4 5.098392e-03 1.774744e-05 2.8719 5.051998e-05 2.8699

5 2.531159e-03 2.050113e-06 3.0823 6.069465e-06 3.0262

ρv

1 3.766218e-02 1.236316e-02 2.233989e-02

2 1.997206e-02 3.743640e-03 1.8834 1.272513e-02 0.8872

3 1.017604e-02 1.433839e-04 4.8381 4.185226e-04 5.0639

4 5.098392e-03 1.744371e-05 3.0481 4.832258e-05 3.1237

5 2.531159e-03 2.124504e-06 3.0067 6.244666e-06 2.9221

ρE

1 3.766218e-02 1.898995e-02 5.308827e-02

2 1.997206e-02 3.608992e-03 2.6177 8.351326e-03 2.9158

3 1.017604e-02 2.811710e-04 3.7850 9.040065e-04 3.2973

4 5.098392e-03 3.526191e-05 3.0041 1.085951e-04 3.0664

5 2.531159e-03 4.335015e-06 2.9933 1.240334e-05 3.0984

s

1 4.559608e-02 3.458372e-03 1.112317e-02

2 2.430365e-02 7.044419e-04 2.5289 2.844254e-03 2.1674

3 1.242164e-02 7.203506e-05 3.3973 3.233087e-04 3.2397

4 6.233828e-03 8.489049e-06 3.1016 3.939339e-05 3.0532

5 3.097460e-03 1.092373e-06 2.9317 4.992295e-06 2.9535
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Astrophysical Fluid Dynamics
and Applications to Stellar Modeling

Friedrich K. Röpke

Abstract The modeling of astrophysical objects poses a challenging multiscale
multiphysics problem. Because of their large spatial extent, the description of phys-
ical processes dominating the formation, structure, and evolution of such objects is
typically based on effective theories such as fluid dynamics or thermodynamics. The
modeling ansatz resulting from this approach is the Euler equations in combination
with appropriate source terms. In contrast to terrestrial systems, the astrophysical
equations of state are usually more complex and the ranges of relevant scales in
space, time, density, velocity etc., in the considered objects are orders of magni-
tude wider. Simulations therefore require an efficient description of physical effects,
elaborate numerical techniques, andmodels of unresolved phenomena.We exemplify
this by focusing on processes in stars. This multiphysics problem is characterized
by coupling the compressible Euler equations to the simultaneous effects of gravity,
nuclear reactions, hydrodynamic instabilities, and mixing processes in the stellar
fluid. It implies a multis because the processes act on scales in space and time that
can easily be separated by ten orders of magnitude. The traditional astrophysical
approach to this challenge—one-dimensional models parametrizing the description
of unresolved effects—lacks predictive power. The dramatic increase in computa-
tional power, however, enables multidimensional dynamical simulations. They pave
the way to the next generation of stellar models and promise new insights into the
physical processes in stars. We discuss to which degree the currently applied tech-
niques are able to cope with the scale problems. Among other techniques, we point
out the importance of finding algorithms that allow for efficient parallelization and
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the use of problem-adapted geometries of the discretization grids. Further progress
critically depends on continuous improvement of themethods, and input fromapplied
mathematics will play a key role in this development.

Keywords Stellar fluid dynamics · Supernovae · Low-Mach number methods
Numerical simulations

1 Introduction

The theory of fluid dynamics is suitable to describe many processes in astrophysics.
In this contribution, we discuss its use in astrophysical simulations starting out from
an overview of the challenges in astrophysical modeling in Sect. 2. In Sect. 3, we
focus on the application of fluid dynamical concepts to the modeling of stars.While
conventional approaches to describing stellar structure and evolution deal with the
tremendous scale problems by reducing the dimensionality of hydrostatic setups,
predictive models require a hydrodynamical description in three spatial dimensions.
First steps toward such a newgeneration of stellarmodels are discussed, and examples
are given in Sect. 4. Conclusions are drawn in Sect. 5.

2 The Challenges of Astrophysical Fluid Dynamics

From the largest structures in the universe, over galaxy clusters, galaxies, globular
clusters, stars, planets down to protoplanetary dust, the spatial scales of astrophys-
ical objects span more than 25 orders of magnitude. Inside these objects, physical
processes on “microscopic” scales may dominate their evolution and have to be
accounted for in astrophysical modeling. Densities encountered in the objects of
interest span an even wider range of values. The intergalactic medium is very dilute
(typical densities are ρ ∼ 10−28 g cm−3). Sun-like stars have ρ ∼ 1 g cm−3 and neu-
tron stars reach densities above 1014 g cm−3, so that the astrophysically relevant range
covers more than 40 orders of magnitude. Temporal scales in stellar processes range
from fractions of a millisecond to gigayears. Of course, this overstates the problem
somewhat as not all these extreme scales are relevant in a single setup. Nonetheless,
even for individual astrophysical objects the range of physically relevant scales is
huge.

A variety of physical processes and phenomena governs the structure and evolu-
tion of astrophysical objects. These include nuclear reactions, quantum mechanical
effects, particle physics phenomena, magnetic fields, gravity, energy transport by
various mechanisms, and plasma physics effects.

It is thus clear that the description of astrophysical phenomena poses a great
multiscale multiphysics challenge to theoretical modeling. Various strategies are
taken to meet this challenge. One of them is the divide-and-conquer approach. In
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this spirit, only certain small regions in astrophysical objects or isolated astrophysical
processes are simulated, or the dimensionality of the problem at hand is reduced by
assuming symmetries. This approach has limited applicability, because

• often several (counteracting) effects act at the same order of magnitude, and it is
impossible to separate a single physical process that dominates the astrophysical
evolution,

• small-scale processes often depend on large-scale physics (e.g., in the cases of star
and galaxy formation),

• an artificial reduction of dimensionality by assumed, but in reality not precisely
existing symmetries introduces free tunable parameters that deteriorate the pre-
dictive power of models (although these are often used to fit the models to obser-
vations),

• the complex interplay of physical processes has to be simulated in full detail
because in astrophysics (in contrast to other fields of physics) there are virtu-
ally no experiments and validation of theoretical models requires comparison to
astronomical observations that result from a variety of physical effects.

Despite these shortcomings, divide-and-conquer approaches arewidely used in astro-
physical research. Often they are the only realistic way to tackle the complex multi-
scalemultiphysics problems. It is, however, important to be aware of their limitations,
and the current work aims at removing free parameters by multidimensional simu-
lations that take into account as many of the relevant physical processes as possible
(examples are given in Sect. 4 below).

Another useful approach is to base the physical description of processes on large
spatial scales on effective theories. In particular, the concepts of thermodynamics are
suitable to deal with the scale problem in densities by specifying equations of state for
astrophysical matter and fluid dynamics helps to deal with the spatial scale problem.

3 Application to Stars

In the following, the theoretical description of stars will be discussed with a partic-
ular emphasis on fluid dynamical models. As will be detailed below, conventional
approaches to stellar structure and evolution theory are based on simplifying assump-
tions that avoid the solution of multidimensional fluid dynamical problems. These
have been instrumental for the understanding of stars over the past decades. New
observations and the importance of stellar theory for other branches of astrophysics,
however, call for improved modeling approaches.

The fundamental questions in stellar astrophysics include

1. What happens in stellar interiors (hidden to direct astronomical observations)?
2. How do stars evolve in time?
3. How do stars end their lives?
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A fourth question, namely that of how stars form, can be addressed with similar
approaches, but has its particular challenges. It is beyond the scopeof this presentation
and will not be discussed here further.

3.1 Why Stars?

Stellar objects are the fundamental building blocks of the visible universe. They
form the smallest entities which are dynamically relevant to the evolution of larger
cosmological structures. At the same time, stars make the universe accessible to
astronomical observations. The largest part of knowledge we have about astrophys-
ical and cosmological processes results from classical optical astronomy, to which
stars are the primary targets.

Another important consequence of stellar evolution is the formation of heavy
elements and the enrichment of the universe with them. In Big Bang nucleosynthesis,
hydrogen and helium were generated almost exclusively. With very few exceptions,
all heavier chemical species our world is made of were produced in stars, stellar
explosions, or other processes involving stellar objects.

Stars form from the gravitational collapse of overdense regions in the interstellar
medium and process stellar material under conditions of high densities and temper-
atures in nuclear reactions. Explosive nucleosynthesis in supernovae further con-
tributes and expels the newly formed chemical elements back into the interstellar
medium out of which the next generation of stars forms. This closes the “cosmic
cycle of matter” that continuously enriches the chemical composition of material in
galaxies.

Last, but not least, stars are by themselves fascinating physical objects. They
feature matter under various thermodynamic conditions. In neutron stars, densities
above that of nuclear matter are reached making them laboratories for fundamental
physics. Physical processes in them have been and are a primary subject of astro-
physical research.

3.2 Stellar Fluid Dynamics

Away to describe the structure and the evolution of stars is to augment the equations
of fluid dynamics with suitable source terms:
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∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂(ρXi )

∂t
+ ∇ · (ρXiv) = −ρωXi , i = 1, . . . , N , (2)

∂(ρv)
∂t

+ ∇ · ρv ⊗ v + ∇ p = −ρ∇Φ, (3)

∂(ρE)

∂t
+ ∇ · (ρEv) + ∇(pv) = −ρv · ∇Φ + ρS. (4)

Here, the symbols for the fluid dynamical quantities bear their usual meanings. The
large separation between the astrophysical scales of interest and the viscosity scale
justifies the use of the Euler equations instead ofmodeling viscosity effects explicitly.

The system accounts for the multiphysics nature of the problem. Equation (2)
describes the change of the mass fraction of one of the N species i due to reactions.
In the case of stellar processes, these are usuallynuclear reactions. The source termon
the r.h.s. ofEq. (2) and the second termon the r.h.s. ofEq. (4) correspond to the implied
change in composition and energy release/consumption, respectively. To determine
them, an extended nuclear reaction network has to be calculated concurrently with
the fluid dynamics. The source term on the r.h.s. of Eq. (3) and the first term on the
r.h.s. of Eq. (4) are due to gravity. For these, the Poisson equation has to be solved. In
principle, a variety of additional terms could be introduced to account for diffusion,
conduction, magnetic fields, etc.

The set of Eqs. (1)–(4) is closed by an appropriate equation of state. For stellar
matter under the moderate conditions as found in stellar interiors, it should include
contributions from an ideal gas of nuclei, arbitrarily degenerate and relativistic elec-
trons, radiation, Coulomb interactions, electron–positron pairs, and ionization. Usu-
ally, the resulting expressions are complicated and in practice not available in closed
analytic form but rather as tabled values. The equation of state for neutron stars is
not completely understood and an active field of research. Ionization effects further
complicate the equation of state. They play a role in the least densest regions close
to the surface of normal stars.

The set of Eqs. (1)–(4) gives rise to several distinct timescales. One of them
is associated with hydrostatic equilibrium. Writing the momentum equation (3) in
Lagrangian form,

Dv
Dt

= − 1

ρ
∇ p − ∇Φ; D

Dt
≡ ∂

∂t
+ v∇, (5)

shows that stellar material is not accelerated if the force due to gravity is balanced
by the force due to the pressure gradient,

1

ρ
∇ p = −∇Φ, (6)



540 F. K. Röpke

and hence an equilibrium configuration is assumed. The timescale on which the
system reacts to perturbations of this hydrostatic equilibrium can be derived from
assuming pressure support to vanish instantaneously. This gives

τh =
√

R3

GM
. (7)

The hydrostatic timescale τh for the Sun is about 20 minutes. Another timescale
is introduced into the system by the nuclear reaction source terms in Eqs. (2) and
(4). The nuclear burning timescale of species i , which is set by the corresponding
reaction rates, is given as the rate of change of its mass fraction,

τ nuc
i = Xi

Ẋi
. (8)

In many situations, one finds τnuc � τh; i.e., the star reacts to any changes in its
structure induced by nuclear burning on the very short hydrostatic timescale and
restores equilibrium. Burning is then said to proceed in hydrostatic equilibrium. An
example is hydrogen burning in main sequence stars, where

τH−burning ∼ 1

10

0.007Mc2

L
≈ 1010

(
M

M�

) (
L�
L

)
yr. (9)

Thus, for the Sun τnuc is on the order of 10Gyr. In explosive events such as super-
novae, in contrast, τnuc � τh and burning proceeds as a dynamical process.

The velocities encountered in stellar objects are no less diverse. For meridional
circulation, for instance, Mach numbers M = c/|v| of about 10−11 are typical (c
denotes the speed of sound). Convective motions in stars feature M ∼ 10−4, and
stellar explosions proceed in the transonic regime.

4 Toward a New Generation of Stellar Models

Vastly different spatial, temporal, and velocity scales are sometimes equally relevant
for the evolution of a single stellar object. Approaches to solve the full multidimen-
sional problem therefore challenge modeling concepts, numerical techniques, and
supercomputational resources.

A basic approach, however, is to use a finite-volume discretization of Eqs. (1)–(4)
on various grid geometries. The usual problems of appropriate boundary conditions
and suitable initial conditions are particularly severe in the astrophysical context,
because in open space no physical boundaries exist outside the stellar objects and
initial conditions cannot be directly determined but have to be inferred (usually
indirectly) from astronomical observations. For solving the fluid dynamics equations,
standardRiemann solvers are employed and the source terms are treated in anoperator



Astrophysical Fluid Dynamics and Applications to Stellar Modeling 541

splitting approach. For the choice of the Riemann solver, it has to be accounted for
the fact that astrophysical equation of state is usually not available in closed analytic
from but given as tabulated values.

In the following, examples from stellar astrophysical research are given. Each of
them illustrates an approach to deal with one (or more) of the challenges discussed
above. Of course, many other applications and approaches exist, but a comprehensive
review is beyond the scope of this contribution.

4.1 Example: Type Ia Supernova Simulations

Stellar explosions occurring as supernovae are a prominent example of a severe
spatial scale problem (in combination with a pronounced multiphysics challenge).
This is caused by the fact that the physical processes driving the explosions are
microphysical and the largest scales of interest are given by the exploding stars
themselves. Moreover, supernova explosion modeling is hampered by the fact that
the exact physical conditions at the onset of the explosions are poorly known and
therefore the initial conditions of the hydrodynamical explosion models are uncer-
tain. Because stellar explosions take place in the transonic regime, the temporal and
velocity-scale problems are modest compared to other astrophysical problems (see
Sect. 4.2).

Core collapse supernovae mark the end stages of the evolution of massive stars
(M � 8 . . . 10M�). For these astrophysical explosions, the multiphysics problem is
particularly challenging because of the large number of physical processes that are
only partially understood and act simultaneously (see [1] for a recent review).

Here, we focus however on another class of supernovae, the so-called thermonu-
clear supernovae. These are associated with the astronomical class of Type Ia super-
novae. These events are in the focus of astrophysical interest because of their appli-
cation as distance indicators in the universe which led to the conclusion of its acceler-
ated expansion [2, 3]. This is interpreted as being caused by an unidentified form of
“dark” energy that dominates the energy content of today’s universe. Moreover, they
significantly contribute to the cosmic cycle of matter and the chemical enrichment
of galaxies being responsible for producing the majority of iron in the universe.

The main problem with simulating the explosions of Type Ia supernovae is that
there is no direct observation of the progenitor systemavailable. These events are only
detected while brightening in the explosion. It is therefore clear that the progenitor
must be a relatively faint astronomical source. A number of arguments, however,
indicate that Type Ia supernovae are caused by thermonuclear explosions of white
dwarf stars consisting primarily of carbon and oxygen (see [4] for a review). Such
white dwarf stars, however, are eternally stabilized by a quantummechanical effect—
the degeneracy of electrons in theirmatter—and itmust be explained how they reach a
critical state for the explosion. It is suspected that interactionwith a binary companion
triggers the explosion. Unfortunately, the state of the white dwarf at the onset of the
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supernova and the nature of the companion and the interaction remain unclear and
no astronomical effort could thus far identify them beyond doubt.

Therefore, hydrodynamical simulations of thermonuclear supernova explosions
have to start out fromguesses of the initial conditions. Over the recent years, pipelines
of models were established (see, e.g., [5]) that aim at removing free parameters from
the description of the involved physical processes by performing simulations in mul-
tiple spatial dimensions. Earlier one-dimensional approaches, in contrast, assumed
spherical symmetry and introduced free tunable parameters in describing physical
processes. The consistent multidimensional treatment allows the faithful prediction
of observables from the models that can be compared directly to astronomical data.
Thisway it is possible to assess the validity ofmodeling assumptions and in particular
the guess of the initial conditions.

The modeling of the thermonuclear species conversion and energy release (usu-
ally called “thermonuclear burning”) is challenged by the wide range of physically
relevant length scales. The initializing nuclear reaction, the fusion of 12C nuclei,
is extremely sensitive to temperature. Under the relevant conditions, its rate scales
with ∼T 20. This implies that burning is only significant in the thin layer where tem-
perature peaks. Therefore, it advances as a thin combustion wave. The width of this
wave is very small (millimeters to centimeters) compared to the overall scale of
interest for the explosion simulations (the radius of a white dwarf is several thousand
kilometers).

This justifies to model combustion waves as discontinuities separating the fuel
material from the nuclear “ashes.” The jump conditions corresponding to these weak
solutions imply that there are two distinct modes for flame propagation: subsonic
deflagrations and supersonic detonations. These are also distinct in themicrophysical
mechanisms of flame advancement. While deflagrations are mediated by the thermal
conduction of the electrons that heat up material in front of the reaction zone and
give rise to a subsonic flame speed, detonations are driven by shock waves (see [6]
for details of combustion in thermonuclear supernovae). Both processes cannot be
resolved in numerical simulations covering the entire exploding star.

One way to model the propagation of deflagrations [7] is based on the level-set
technique [8]. It allows to propagate the discontinuity representing the unresolved
deflagration front with a given speed. This speed on the smallest scales is set by
microphysical transport. On larger, but still unresolved scales, however, the mecha-
nism that determines the flame velocity is turbulent acceleration. This is because the
flame propagates from the center of the white dwarf star outwards and leaves behind
light and hot ashes creating an inverse density stratification in the gravitational field
of the star. This setup is buoyancy-unstable, andRayleigh–Taylor instabilitywith sec-
ondary Kelvin–Helmholtz instabilities at the flame front generates turbulent eddies.
These decay in an energy cascade down to unresolved scales. On a wide range of
scales, the flame is dragged around by turbulent eddies of various sizes (“flamelet
regime of turbulent combustion,” see [6, 9]). This increases the flame surface and
leads to strong acceleration. The efficiency of the nuclear burning is set by this effect,
and a valid model must take it into account correctly. The resulting scale problem can
be addressed in a large-eddy simulation (LES) approach. A turbulent subgrid-scale
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model is employed to determine the effective flame speed near the grid scale, and this
serves as an input for the level-set-based deflagration flame model (e.g., [10–13]).

While in many astrophysical simulations the spatial scale problem is tackled in
adaptive mesh refinement (AMR) approaches, for the case of thermonuclear super-
novae a combination of level-set andLES techniques has proven particularly efficient.

4.2 Example: Multidimensional Models of Stellar Interiors

Themain challenge ofmultidimensionalmodels for astrophysical processes in stellar
interiors is the wide range of temporal scales involved. Additionally, the associated
motions of stellar material often proceed at low velocities. Therefore, a standard
approach in stellar evolution theory is to simplify matters by assuming spherical
symmetry (see [14] for a standard treatment). It is usually assumed that stellar
evolution can be approximated by a sequence of hydrostatic equilibrium solutions.
These change slowly due to contraction and nuclear reactions releasing gravitational
binding energy and nuclear energy that replenish the loss from the stellar surface by
radiation.

The resulting one-dimensional hydrostatic model, however, leads to a coarse
description and parametrization of inherently multidimensional and dynamical
effects such as energy transport by convection and mixing by instabilities. It lacks
predictive power as parameters can be tuned to fit the observations. Nonetheless, the
limits of parametrization seem to be reached with modern observations of stars (in
particular the detailed data on stellar abundances and asteroseismology) that are in
tension with theoretical expectations.

Full multidimensional simulations of the evolution of stars from their formation
to the end of their life cycle (for some stars explosions as supernovae) are out of
reach for current theoretical modeling and computational resources. Well-chosen
evolutionary phases, or isolated processes inside stars, however, become accessible
to multidimensional simulations owing to progress in modeling techniques and the
ever-increasing power of supercomputers. Such simulations can help to make one-
dimensional stellar evolution calculations more reliable by fixing free parameters.

Multidimensional hydrodynamical modeling of stellar processes is based on the
set ofEqs. (1)–(4)with suitable source terms.A timescale problemarises from the dis-
crepancy between the dynamical timescale and the much longer nuclear timescales.
Moreover, flows in stellar interiors are characterized by extremely low Mach num-
bers and they act over long time spans. This requires special numerical approaches
that are able to deal with low-Mach number fluid dynamics and can cover long peri-
ods of time with reasonable computational effort. Formal requirements for suitable
schemes are stated and discussed in detail in [15].

For an approach to the low-Mach number problem, consider the homogeneous
Euler equations for simplicity. Non-dimensionalization introduces a reference Mach
number Mr (see [15–17]). In the zero Mach number limit, two decoupled solution
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spaces are found [15, 18–20]: For incompressible solutions, the velocity fluctuations
scale with M2

r , whereas for sound waves they scale linearly with Mr.
At low Mach numbers, standard Riemann solvers show excessive dissipation.

This can be interpreted as a result of unresolved artificial sound waves caused by the
Riemann problems constructed at the cell interfaces. An example for this is shown
in Fig. 4 of [16] where the Gresho vortex [21] is followed with a standard Roe flux
discretization. For a maximum Mach number in the setup of 10−1, the vortex is
preserved; for 10−2, it becomes blurred; and below 10−3, it is not recognizable after
one revolution of the vortex. The kinetic energy of the Gresho vortex is dissipated at
a higher rate for lower Mach numbers (see Fig. 6 of [16]).

A way to avoid excessive dissipation at lowMach numbers is flux preconditioning
[22], where the upwinding (numerical dissipation) term is modified with a suitable
preconditioningmatrix (an alternative approach is tomodify the underlying equations
as implemented in the astrophysical simulation code MAESTRO [23]). Several such
matrices are possible, but not all correct the low-Mach number scaling of the dissipa-
tion term fully. These are not suitable for astrophysical flows where source terms due
to gravity are important (see the discussion in [15–17]). Therefore, [16] suggested a
new low-Mach number preconditioning matrix that ensures correct scaling:

PV =

⎛
⎜⎜⎜⎜⎜⎝

1 nx
ρδMr

c ny
ρδMr

c nz
ρδMr

c 0
0 1 0 0 −nx

δ
ρcMr

0 0 1 0 −ny
δ

ρcMr

0 0 0 1 −nz
δ

ρcMr

0 nxρcδMr nyρcδMr nzρcδMr 1

⎞
⎟⎟⎟⎟⎟⎠

(10)

where δ = 1
μ

− 1 and μ = min[1,max(Mlocal, Mcut)]. Here Mlocal is the local Mach
number at the cell interface, which is limited to a lower value of Mcut to avoid
singularity of PV. Tests down to Mach numbers of 10−10 [15] demonstrate that with
this preconditioning the numerical dissipation is low and independent of the Mach
number.

The application to stellar models requires to consider reactive fluid dynamics
with gravity as in Eqs. (1)–(4). This is implemented in the Seven-League Hydro
(SLH) code that solves the compressible Euler equations with source terms in one,
two, and three spatial dimensions. In addition to flux preconditioning, it features
other techniques to deal with low-Mach number flows [24]. It allows for explicit
and implicit time discretization (for an alternative approach to multidimensional
modeling of stellar interiors with time-implicit methods see [25, 26]). The physics
modules of the SLH code include radiation in the diffusion limit, a general equation
of state for stellar matter, and a general nuclear reaction network solver. The code
features flexible grid geometries based on arbitrary curvilinear meshes [27]. These
allow for computational grids adapted to overall spherical stellar objects avoiding
grid singularities at the center, as would be the case for spherical coordinates.
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Implicit time discretization is essential for practical simulations of low-Mach
number flows, because otherwise the CFL stability criterion would restrict the time
step to prohibitively short intervals. For accuracy reasons, however, it should be set
according to the fluid flow timescale, which still results in a gain in time step dura-
tion of 1/M . Tests imply that implicit time stepping becomes more efficient already
at moderately low Mach numbers of M 0.1 . . . 0.2. The implicit time stepping in
SLH uses “Explicit first stage, Singly Diagonally Implicit Runge–Kutta” (ESDIRK)
schemes [28] of second to fifth order. The nonlinear solver is based on Newton–
Raphson iteration with the last Runge–Kutta stage as initial guess. The computation
of the Jacobian uses automatic differentiation: Each quantity carries its derivatives
with respect to every independent variable. The linear solver is based on iterative
techniques (multigrid and/or Krylov methods). The implementation has been suc-
cessfully tested for scaling to large numbers of processors (up to half a million cores
[29]), which is a prerequisite for its applicability to astrophysical problems.

Particular care is required when setting up stellar profiles resulting from one-
dimensional stellar evolution calculations as initial conditions for multidimensional
hydrodynamical simulations. The mapping from the one-dimensional model to a
three-dimensional setup is non-trivial, because multidimensional and dynamical
effects have been parametrized in an inconsistent way. Moreover, the models are
usually very close to hydrostatic equilibrium. Hydrodynamical models do not auto-
matically guarantee this delicate balance between gravity and pressure gradient, and
maintaining it over many dynamical timescales is challenging. An approach to deal
with this problem is to use well-balancing techniques (e.g., [30, 31]).

An example application of the SLH code to stellar modeling is the simulation
of convective mixing in Population-III stars. These are supposed to be the first stars
formed in the universe. Therefore, they aremade of pristineBigBangnucleosynthesis
(BBN)material, i.e., amixture consisting almost exclusively of hydrogen and helium.
At some stage of their evolution, the fusion of hydrogen to helium runs out of fuel
in the stellar core and the next nuclear burning phase—the fusion of helium forming
carbon—commences, while in a shell surrounding the core hydrogen is burned. Both
burning regions produce energy at a high rate. This causes convection in them.

For stellar hydrogen burning, two modes exist: a direct fusion between hydrogen
nuclei (protons)—called “pp-chain”—and a cyclic reaction sequence involving car-
bon, nitrogen, and oxygen nuclei as catalysts—called “CNO-cycle.” At high enough
temperatures, as found in the hydrogen-burning shell of the considered Population-
III star model, burning in the CNO-cycle is muchmore efficient in energy production
than the pp-chain. For it to become active, the catalyst carbon nuclei must be in place
in sufficient abundances. These are not contained in the pristine BBN material the
star is made of. Carbon is produced, however, in convective helium burning in the
core, and the question is whether this material can reach the hydrogen-burning shell.
In-between this shell and the core, there is a non-convective layer. One-dimensional
stellar evolution models are unable to predict whether convective motions in the core
and the hydrogen-burning shell are able to mix carbon-rich material through this
non-convective layer, because convection and convective overshooting is treated in a
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highly parametrized way. Three-dimensional hydrodynamical simulations that treat
this process consistently are work in progress with the SLH code.

In such simulations, the velocity-scale problem is addressed with low-Mach num-
ber techniques, for which flux preconditioning is one possible approach, and the
timescale problem is accounted for by implicit time discretization.

4.3 Example: Common Envelope Phases in Binary Stellar
Evolution

As a third example of fluid dynamical simulations in stellar astrophysics, a particular
phase in binary stellar evolution is discussed. More than half of the stars in the uni-
verse are found in multiples, and some are close enough that binary interaction takes
place. Usually, the more massive star evolves faster than its less massive companion
and enters the giant phase earlier. In this phase, a very dense stellar core is formed
inside a dilute and very extended envelope. This envelope may reach and even swal-
low the companion star, resulting in an object, in which two stellar cores revolve
inside a common envelope. The outcome of this interaction is transfer of energy from
the two orbiting cores to the envelope that is eventually ejected leaving behind a close
binary system of compact stars. The common envelope phase has important conse-
quences for progenitor systems of supernova explosions and for compact binaries
that are sources of gravitational waves.

Obviously, there is no inherent symmetry in this problem and conventional
one-dimensional binary stellar evolution codes use parametrized descriptions that
severely reduce their predictive power. Past attempts to simulate this common enve-
lope phase were based on smooth particle hydrodynamics (SPH) or employed static
grids (someapproaches used adaptivemesh refinement)—see [32] for a recent review.

Generally, the common envelope phase challenges numerical simulations by the
wide ranges of involved time and space scales, but in addition it is a problem that
requires Galilean invariance of the employed scheme.

Static mesh approaches do not comply with the “Lagrangian nature” of the prob-
lem. They are not Galilean invariant. Following several stable orbits of the stellar
cores is difficult with such schemes. SPH has problems resolving fluid dynamical
instabilities. Moreover, due to its mass-adaptive nature, it does not allow for high
resolution in the dilute envelope, which, however, is of primary interest to solve the
problem.

A technique that avoids the disadvantages of both approaches while it nearly
retains the Lagrangian nature of SPH and allows for the high resolution of grid-based
methods is that of moving meshes. In astrophysics, this technique was pioneered by
the cosmological code Arepo [33]. This code was modified and applied to the prob-
lem of common envelope evolution [34]. A version of the Arepo code that follows
the evolution of magnetic fields [35] was recently also employed to simulations of
the common envelope phase in binary stellar evolution [36].
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5 Conclusions

Astrophysical simulations are often based on hydrodynamics and complicated by the
various source terms that represent the numerous physical processes at work in com-
plex astrophysical objects. Apart from this multiphysics problem, the wide ranges of
relevant scales in time, space, and velocity render astrophysical simulations a chal-
lenge (and at the same time an ideal test bed) for numerical schemes. A combination
of new numerical techniques and efficient parallelization allowed to use some of the
world’s fastest supercomputers to study questions of stellar astrophysics. Examples
were given in this chapter. They illustrate the challenges of fluid dynamical modeling
in astrophysics, the design of new methods, and the application to the simulation of
processes in stellar astrophysics.

Progress of theoretical (stellar) astrophysics cannot solely rely on the ever-
increasing power of supercomputers. The challenging nature of these problems will
always require to go to the limits of numerical methods and computational resources.
It is essential to develop new mathematical approaches and numerical schemes that
account for the specific needs of astrophysical simulations. General-purpose hydro-
dynamics codes have only restricted applicability to routine simulations,while break-
throughs require innovative approaches. Close collaboration between applied math-
ematics and computational astrophysics has proven fruitful and paves the way to
future developments.
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Nonlinear Stability of Localized
and Non-localized Vortices in Rotating
Compressible Media

Olga S. Rozanova and Marko K. Turzynsky

Abstract Westudynonlinear stability of steady isolated vortices in two-dimensional
compressible media in an uniformly rotating reference frame. First, we consider
a vortex with linear profile of velocity. Its behavior can be completely described
by a quadratically nonlinear system of ODEs. We find that the stability property
depends only on one parameter, the ratio of relative vorticity of vortex to the Coriolis
constant. We find the domain of this parameter ensuring nonlinear stability. Further,
we consider more general class of isolated steady vortices, containing decaying at
infinity and compactly supported vortices as particular cases. At every point of the
plane, this isolated steady vortex can be approximated by a solution with linear
profile of velocity. Thus, at every point of the plane, there arises a nonlinear system
of ODEs with initial data generated by derivatives of the steady vortex state. It is
hypothesized that if at every point the solution to this ODEs system falls in the
domain of attraction of an equilibrium, then the steady vortex is nonlinearly stable.
We compare this nonlinear stability hypothesis with Rayleigh criterium of linearized
stability with respect to radial perturbation. In particular, we find that the rotation
has a stabilizing effect.

Keywords Compressible media · Rotation · Vortex motion · Stability · Blow up

1 Introduction

The vortex motion in rotating fluid is important due to application in geophysical
models, and a review of the state of art can be found in [8, 11]. In the middle
scale approximation, the geophysical motion can be considered on a l-plane (i.e.,
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on a plane tangent to the Earth surface at a fixed point). In this approximation,
the Coriolis parameter l is constant and the coordinate frame is uniformly rotating.
Most important example of middle scale atmospherical vortex motion is a hurricane.
Since the vortex dynamics can be complicated, it is natural to begin with the study
of certain elementary processes. One example is the isolated circular free vortex.
Its stability/instability properties are of fundamental interest due to the presence of
strain and shear in the ambient flow. A huge literature, both theoretical and experi-
mental, is devoted to stability of vortices in incompressible media [15]. Despite their
importance, the compressible vortices are studied to a lesser extent [1, 21]. There
exist numerical works concerning stability of isolated compressible vortices [10, 16,
17]; however from the theoretical point of view, only linear analysis of stability is
performed [6, 7].

This paper is a step to analysis of nonlinear stability of compressible 2D vortices
in a uniformly rotating frame. A very particular case of this vortex is the motion with
a linear profile of velocity. This class of vortices can be considered in dynamical
setting, since the problem is reduced to studying of a nonlinear system of ODEs.
The equilibrium (stable or unstable) of this system corresponds to steady vortex.
Further, there exists a large class of steady compressible vortices [20]. Any other
steady vortex, localized or not, can be approximated at every point of plane by a
vortex with linear profile of velocity. We study the solution to the Cauchy problem
for the respective ODEs systems and notice that if all their solutions are periodic (fall
in the basin of attraction of some stable equilibrium), then the steady state satisfies
known necessary stability conditions. This allows us to make a guess that the above
property of solutions of approximating ODEs systems can be a criterion of nonlinear
stability for the steady-state vortex.

2 Bidimensional Models of Rotating Compressible Medium

The two-dimensional system of motion of inviscous compressible barothropic
medium on a rotating plane consists of three equations for density ρ(t, x), velocity
U(t, x) = (u1, u2) and pressure p(t, x):

ρ(∂tU + (U · ∇)U + LU) + ∇ p = 0, (1)

∂tρ + div(ρU) = 0, (2)

where p = C ργ , C = const.Here,L = l L , L =
(
0 −1
1 0

)
, γ ∈ (1, 2] is the heat

ratio, l > 0 is the Coriolis parameter. In geophysical applications, the centrifugal
force is included in geopotential and disappears under averaging over the height due
to hydrostatic balance [9, 18].

Let us introduce a new variable Π = p
γ−1
γ and reduce (1), (2) to
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∂tU + (U · ∇)U + L U + c0 ∇Π = 0, (3)

∂tΠ + (∇Π · U) + (γ − 1)Π divU = 0, (4)

c0 = γ

γ−1C
1
γ . This system was used in [18, 19] in geophysical context.

3 Non-localized Vortex

We look for the solution of (3), (4) in the form

U(t, x) = Qx, Q =
(
a(t) b(t)
c(t) d(t)

)
, (5)

Π(t, x) = A(t)x21 + B(t)x1x2 + C(t)x22 + K (t). (6)

In fact, the solution is the first term of the Taylor series expansion at the point of
minimum or maximum of pressure. In this way, we can keep a maximum possible
members in this expansion to obtain an exact solution of (3) and (4).

Thus, we get a closed ODE system for the components of the matrices Q and

R =
(

A(t) 1
2 B(t)

1
2 B(t) C(t),

)
:

Ṙ + RQ + QT R + (γ − 1) R trQ = 0, (7)

Q̇ + Q2 + l LQ + 2c0R = 0, (8)

K̇ + 2(γ − 1) K trQ = 0.

The last equation is linear with respect to K , whereas the system of matrix equations
(7), (8) consists of seven nonlinear ODEs and has a very complicated behavior.

As one can check, the point

a = d = 0, b = −c = b∗, A = C = A∗ = b∗(b∗ − l)

2c0
, B = 0 (9)

is the only equilibrium of system (7), (8). The degenerate case A∗ = 0 of constant
pressure corresponds to the case b∗ = 0 or b∗ = l.

Direct computations show that the following properties hold.

Theorem 1. System (7) has three first integrals:

(b − c − l)D− 1
2γ = I1, (10)
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((d − a)B + 2bA − 2cC − l(A + C))D− γ+1
2γ = I2, (11)

((a2 + c2)C + (b2 + d2)A + (ac + bd)B − 4c0
γ − 1

D)D− γ+1
2γ = I3, (12)

where D = AC − B2/4.

3.1 Axisymmetric case

System (7), (8) has a closed submanifold of solutions with additional properties
a = d, c = −b, A = C , B = 0. These solutions correspond to the axisymmetric
motion. Here, we get a system of three ODEs:

Ȧ + 2γ aA = 0, ȧ + a2 − b2 + lb + 2c0A = 0, ḃ + 2ab − la = 0. (13)

If A �= 0, then (10) implies b(t) = l
2 + C |A(t)| 1

γ , C = const, and (13) can be
reduced to the following system:

Ȧ(t) = −2γ aA, ȧ(t) = −a2 − l2

4
+ C 2A

2
γ − 2c0A.

On the phase plane (A, a), there always exists a unique equilibrium (A∗, a∗) =
(A0, 0), stable in the Lyapunov sense (a center), where A0 is a root of equation
l2

4 + 2c0A = C 2A
2
γ . This case is considered in [18].

If C = 0, we have a particular case of motion with a constant vorticity 2b = l.
If A = 0, then (13) can be reduced to one Riccati equation ż = −z2 + ilz for the

function z(t) = a(t) + ib(t) : C �→ C. It has an explicit solution z = lz(0)
(l+i z(0))e−ilt−I z(0) ,

a = �z, b = 	z. In the last case, the pressure is constant; nevertheless, the motion
is vortical.

3.2 Range of Instability

Theorem 2. If b∗
l < 1−√

2
2 or b∗

l > 1+√
2

2 , then the equilibrium of system (7), (8)
is unstable.

Proof. Integral (10) is sufficiently simple and can be used to reduce (7), (8) to the
system of six equations, and the equation for b(t) will be excluded. The eigenvalues
of matrix corresponding to the linearization at the equilibrium point of this system
are the following:

λ1,2 = ±
√

−(2(2 − γ )b∗(b∗ − l) + l2),



Nonlinear Stability of Localized and Non-localized Vortices… 553

λ3,4,5,6 = ±√
2

√√√√−l

(
b∗ + l

4

)
±

√(
b∗ + l

2

)2 (
l2

4
+ b∗l − (b∗)2

)
.

Since (2 − γ )b∗(b∗ − l) + l2 > 0 for γ ∈ (1, 2], then �(λ1,2) = 0. Eigenvalues
λi , i = 3, 4, 5, 6, have zero real part if and only if b∗ satisfies the following
inequalities simultaneously: l(b∗ + l

4 ) ≥ 0, l2

4 + b∗l − (b∗)2 > 0, l2
(
b∗ + l

4

)2
>(

b∗ + l
2

)2 (
l2

4 + b∗l − (b∗)2
)

, that is b∗ ∈ [
1−√

2
2 l, 1+√

2
2 l

]
. For other b∗, the eigen-

values λ3,4,5,6 = ±α ± iβ, α �= 0, β �= 0; therefore, there exists an eigenvalue with
a positive real part. Thus, the Lyapunov theorem implies instability of the equilibrium
for b∗ < 1−√

2
2 l and b∗ > 1+√

2
2 l.

Remark 1. If the coordinate system is not rotating (l = 0), then the vortex is always
cyclonic (the anticyclonic domain shrinks as l → 0). The equilibrium point is unsta-
ble in the Lyapunov sense both in axisymmetric and general case. Nevertheless,
in the axisymmetric case the equilibrium has a type of stable/unstable node and is
quasi-asymptotically stable, whereas in general case the matrix of linearization has
eigenvalues with nonzero real parts [5]. Thus, we can see that the rotation has a
stabilizing effect.

3.3 Range of Stability

Theorem 3. For b∗
l ∈ (0, 1), the equilibrium (9) is stable in the Lyapunov sense.

Proof. Let us consider the functionΛ(a, b, c, d, A, B,C) = b∗ I2 − I3 − Λ0, where
I2 and I3 are given by equalities (11) and (12), and the constantΛ0 is the value ofΛ at
the equilibrium point (9). Straightforward computation shows thatΛ is the Lyapunov
function. Indeed, at the equilibrium point Λ = 0 the first derivatives of Λ vanish,
the matrix of the second derivatives is positive definite. Namely, the eigenvalues if

this matrix (divided by
∂2Λ

∂a2
) are the following: {1, 1, 1, 1,− c0

2A∗ ,− c0
A∗ ,− c0

2γ A∗ }. This
implies that there exists a neighborhood V of the equilibrium point such that Λ > 0
in V everywhere except of the equilibrium point. Moreover, the total derivative of Λ

by virtue of system (7), (8) is zero. According to the Lyapunov theorem, this implies
stability of the equilibrium point (9).

3.4 Range of Possible Stability

If b∗
l ∈ Σ =

(
1−√

2
2 , 0

]
∪

[
1, 1+√

2
2

)
, then we have only necessary condition for the

stability of equilibrium, since the matrix, corresponding to the system, linearized at
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the equilibrium, has three pairs of purely imaginary complex conjugate roots (see
proof of Theorem 2). They can be written as ±i ω j , j = 1, 2, 3, ω j ∈ R.

We are going to prove that in the case of rationally independent frequencies almost
all trajectories in ε-neighborhood of the equilibrium are quasi-periodic. This means
that the equilibrium is “practically” stable in the Lyapunov sense. We apply a semi-
analytical method based on the Bibikov theorem [3] (Theorem 15.5).

3.4.1 Semi-analytical Method to Prove Stability: Non-resonant
Frequencies

Let us consider system

Ẋ = A X + P(X), X ∈ R
n, (14)

where a constant matrix A has purely imaginary eigenvalues ±iωk , k = 1, . . . ,m,
n = 2m, the frequencies ω j are rationally independent, the vector-valued function
P(X) does not contain free and linear terms. The system can be written in diago-
nalized form

ẏk = iωk yk + Yk(y, ȳ), ˙̄yk = −iωk ȳk + Ȳk(y, ȳ). (15)

Further, (15) is formally equivalent to its normal form

ẏk = yk(iωk + Pk(y, ȳ)), ˙̄yk = ȳk(−iωk + P̄k(y, ȳ)), (16)

where Pk(y ȳ)denotes a (formal) series in powers of products y1 ȳ1, . . . , ym ȳm without
constant terms [4]. The normalizing transform has the form

xk = yk + hk(yk, ȳk), x̄k = ȳk + h̄k(yk, ȳk), (17)

where the series hk(yk, ȳk) are also formal.
Further, let us assume that the neutrality condition holds:

Pk(y1 ȳ1, . . . , ym ȳm) = i Hk(y1 ȳ1, . . . , ym ȳm), (18)

where Hk are series with real coefficients, moreover,

det|∂H/∂ρ|ρ=0 �= 0, ρ = (ρ1, . . . , ρm), ρk = yk ȳk, k = 1, . . . ,m. (19)

Then system (16) has as integral surfaces invariant m-dimensional tori yk ȳk = ck >

0, k = 1, ...,m, and possesses quasi-periodic solutions. If the equivalence of systems
(14) and (16) was not only formal, but analytical, then the invariant tori to system
(16) would correspond to invariant tori to system (14).
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Theorem 15.1 [3] implies that despite divergence of normalizing transform (17),
in some sense “most” of invariant tori to the system (16) correspond to invariant
tori to system (14). Namely, there exists ε > 0 and series hk(y, ȳ, ρ), ρ = y ȳ, k =
l, ..., n, convergent in an ε-neighborhood of the origin Vε for every ρ belonging
to a measurable set Mε ∈ Vε, where lim

ε→0

mesM ε

mesV ε
= 1, such that change of variables

(17) reduces system (14)–(16), where Hk are convergent for y ∈ mesVε, for every
ρ ∈ mesMε and have real coefficients.

To apply the Bibikov theorem, we have to reduce the system (7), (8), (10) to
normal form.

The algorithm is the following.

• The system (7), (8), (10) has to be written in the form (15) at the equilibrium point
a = d = 0, b = −c = b∗, A = C = A∗ = b∗(b∗−l)

2c0
, B = 0:

dxν

dt
= λνxν +

∑
aν
jh x j xh +

∑
bν
jhk x j xhxk + ..., (20)

where indices ν take values ±1,±2,±3; λ̄ν = λ−ν and x̄ν = x−ν . Here, xν

are new variables, λν and λ−ν correspond to the complex conjugate eigenval-
ues, coefficients aν

jh and bν
jhk are complex-valued and symmetrized, j, h, k, ν =

∓1,∓2,∓3.
• According to the Bruno theorem [3, 4, 22], there exists a formal change of vari-
ables x j = y j + ∑

α
j
lm yl ym + ∑

β
j
lmn yl ym yn + ..., where α

j
lm = α

j
ml , β

j
lmn = id,

j, l,m, n = ∓1,∓2,∓3, reducing the system (20) to normal form:

dyν

dt
= λν yν + yνS( y, ȳ ) = λν yν + yν

∑
(Λ,Q)=0

gνQ y
q1
1 yq−1

−1 y
q2
2 yq−2

−2 y
q3
3 yq−3

−3 , (21)

where ν = ∓1,∓2,∓3,q j ∈ Z,qν ≥ −1,q j > 0, j �= ν,
∑

qn ≥ 1. For our case,
condition (Λ, Q) = 0 means

ω1(q1 − q−1) + ω2(q2 − q−2) + ω3(q3 − q−3) = 0, ων = 	λν.

If we restrict ourselves by the non-resonant case, where ων are rationally indepen-
dent, we obtain qν = q−ν, ν = 1, 2, 3. Thus, the series S( y, ȳ) contains infinitely
many terms.

• To prove that almost all trajectories in a ε-neighborhood of the equilibrium a =
d = 0, b = −c = b∗, A = C = A∗ = b∗(b∗−l)

2c0
, B = 0 are quasi-periodic, we have

to show that S( y ) = i H(y1y−1, y2y−2, y3y−3), where H is a real-valued vector-
function. Thus, we have to check that the coefficients gνQ are purely imaginary.
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3.4.2 Method of Computing gνQ, Truncated Case

In [22], Chap.VIII, Sect. 4, the author analyzes resonances and normal forms of
analytic autonomous (not necessarily conservative) sixth-order systems with three
pairs of distinct pure imaginary eigenvalues of the matrix of the linear part, as in our
case. Provided the normal form (21) is truncated up to terms of power not higher
than three, there exist explicit formulae for calculation of coefficients of normalizing
transformation and normal forms.

Namely, the truncated normal form (21) is

dyν

dt
= λν yν + yνS3( y, ȳ ) = λν yν + yν(g

ν
1 y1y−1 + gν

2 y2y−2 + gν
3 y3y−3). (22)

Method of computing g j
i is the following [22].

1. We denote the vector of solutions (A, B,C, a, c, d)T as Z and rewrite system
(7), (8), (10) as

Z ′ = GZ + F(Z), (23)

where G is a matrix of linearization at the equlibrium, and F(Z) is the nonlinear
part.

2. We reduce G to its diagonalized form D by means of the non-degenerate matrix
C , such that G = C−1DC . The change of variables Y = CZ reduces (23) to
Y ′ = DY + CF(C−1Y ).

3. We expand the matrix CF(C−1Y ) of nonlinear part to the Taylor series in the
new variables at the equilibrium and find the coefficients of second order, aν

jh ,
and third order, bν

jhk .
4. We find coefficients αν

lm, gν
h by the following formulae:

αν
lm = alm

λl + λm − λν

; gν
|ν| = 3bν

νν−ν + 2
∑
j

(2aν
ν jα

j
ν−ν + aν

−ν jα
j
νν); (24)

ghν = 6bν
νh−h + 4

∑
j

(aν
ν jα

j
h−h + aν

h jα
j
−hν + aν

−h jα
j
νh),

where h �= |ν|; ν = ±1,±2,±3.

To check condition (18), we have to prove that the real parts of ghν are zero. We
performed computations according to formula (24), taking values of γ ∈ (1, 2] and
b∗/ l ∈ Σ with the step 0.001. They confirm that (18) holds with a good reliability.
The real parts of ghν do not vanish in a very small neighborhood of boundary points
1−√

2
2 ≈ −0.2071and 1+√

2
2 ≈ 1.2071andpoints 0 and1.Thus,we checknumerically

that except of small neighborhood of these points the neutrality condition (18) holds
for the truncated up to third terms normal form (22).
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Further, as follows from the Bibikov–Pliss criterium [2], for the case of two pairs
of pure imaginary eigenvalues, the terms of the third order can help to prove the
stability of equilibrium for non-resonant frequencies. Namely, if

ẏ1 = iy1 + i(
g1
i
y1|y1|2 + h1

i
y1|y2|2) + . . . , ẏ2 = iλy2 + i(

g2
i
y2|y1|2 + h2

i
y2|y2|2) + . . . ,

λ is irrational, gi ,hi , i = 1, 2, are real and h1h2 − g1g2 �= 0, then “almost all” of an
ε-neighborhood of equilibrium is filled by almost-periodic motions; i.e., the equilib-
rium is “practically” stable.

Nevertheless, the first integrals (11) and (12) reduce system (7), (8) to four equa-
tions such that the matrix if linearization has two pairs of purely imaginary eigenval-
ues. The only problem is that the eigenvalues and coefficients of the respective normal
form hardly can be found explicitly. Nevertheless, in general situation h1h2 − g1g2
does not vanish, and therefore, one can conclude that the equilibrium is basically
stable.

Remark 2. If (18) does not hold in somepointb∗/ l ∈ Σ , this suggests that the system
has a resonance in this point, which can be stable or unstable. As mentioned earlier,
in our case such points are close to the boundaries of Σ with unstable domain. For
case of two pairs of purely imaginary eigenvalues, there exist many known results
about resonances (e.g. [12]). In particular, it is known that the resonances 1:2 are
basically unstable [14].

4 Localized Vortex

In [20], we constructed a class of steady vortices of the form U = ∇⊥Φ =
(Φx2 ,−Φx1),Π = − 1

c0

[
lΦ + ∫

(Φx2Φx1x2 − Φx1Φx2x2) dx1 + ∫
(−Φx2Φx1x1 + Φx1

Φx1x2) dx2
]
, where Φ = Φ(x21 + x22 ) is a sufficiently smooth function. This is an

axisymmetric vortex, and it can be localized or not in dependence on Φ. In partic-
ular, if Φ = b∗

2 (x21 + x22 ), we obtain the solution, corresponding to the equilibrium
of ODE system considered in Sect. 3.1. If Φ has a compact support, the vortex is
localized within a bounded domain. Let us consider closer the case of decaying at
infinity Φ = −B0 e− σ

2 (x12+x22). Then

u1 = B0 σ x2 e
− σ

2 (x12+x22), u2 = −B0 σ x1 e
− σ

2 (x12+x22), (25)

Π = − 1

2c0

(
B2
0 σ e−σ (x21+x22 ) − 2 l B0 e

− σ
2 (x21+x22 )

)
+ R0, R0 = const. (26)

It is easy to see that in a neighborhood of the origin, the structure of solution is
similar to the solution with a linear profile of velocity, considered in Sect. 3 where
Φ = b∗

2 (x21 + x22 ), b
∗ = B0σ .
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4.1 Linear Analysis, Radial Perturbations

The following extension of the Rayleigh stability criterium (e.g., [11]) to the case of
compressible rotating fluid is known.

Theorem 4. Let Vθ (r) be the tangential component of velocity, r =
√
x21 + x22 . Con-

dition

R(r) = 1

r3
d

dr
r2ρ(r)(Vθ + l

2
r)2 ≥ 0, (27)

is a necessary and sufficient condition of stability of an axisymmertic steady flow to
the system (1), (2) with respect to radial perturbations in the linearized setting.

To prove, it is enough to take into account the change of density in the momentum
equation in the derivation of the criterium for the incompressible fluid in [13], (see
also [21]).

However, it is known that (27) does not ensure stability with respect to asymmetric
perturbation even in the incompressible case (see references in [21]).

It is easy to check that for non-localized steady-state solution from Sect. 3, the
condition (27) holds. It is natural, since the assumption on the radial symmetry of
density means that we are in the frame of Sect. 3.1, where the equilibrium is stable.

Nevertheless, for sufficiently fast-rotating localized vortices (with sufficiently
large |B0|)R(r) becomes negative for some values of r , see Fig. 1.

Fig. 1 Typical graphs of
R(r) for the case of the
steady state (25), (26) with
c0 = 1, l = 1, σ = 1,
R0 = 10, γ = 9

7 . For
relatively fast vortices, the
instability zone is close to
the maximum of vorticity. As
|B0| further increases, there
arises an instability zone at
the center
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Fig. 2 Points, where
solution to system (7), (8)
blows up. Initial data
correspond to the steady state
(25), (26) with γ , c0, l, σ , R0
as in Pic.1, B0 = −0.4 (this
case is stable with respect to
radial perturbations)

4.2 “Linear Profile Velocity” Approximation

Let us assume that we know a steady-state solution U0 = (u01, u
0
2),Π

0 to the system
(3), (4). Then in a neighborhood of every point (x1, x2), we can construct an approx-
imate solution taking in the Taylor series the zero- and first-order terms in U0 and
the zero-, first-, and second-order terms in Π0:

u1 = u10(t) + a(t)x1 + b(t)x2, u2 = u20(t) + c(t)x1 + d(t)x2,

Π = K (t) + M(t)x1 + N (t)x2 + 1

2
A(t)x21 + B(t)x1x2 + 1

2
C(t)x22 ,

with the initial conditions computed from U0,Π0 at the point (0, 0). Namely,
u10(0) = u01, u20(0) = u02, K (0) = Π0, M(0) = ∂x1Π

0, N (0) = ∂x2Π
0,

a(0) = ∂x1u
0
1, b(0) = ∂x2u

0
1, c(0) = ∂x1u

0
2, d(0) = ∂x2u

0
2, (28)

A(0) = ∂x21Π
0, B(0) = ∂x1x2Π

0, C(0) = ∂x22Π
0. (29)

Coefficients a, b, c, d, A, B,C are subject to nonlinear system of ODE (7), (8).
Coefficients u10, u20, K , M, N can be found from linear equations (see the details
in [18, 19]).

We solve (7), (8) numerically using the Fehlberg fourth–fifth-order Runge–Kutta
method.The solution either blowsupquicklyor demonstrates anoscillating character.
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In the latter case, we conclude that the solution is in the domain of attraction of an
equilibrium. We are going to propose the following hypothesis:

Hypothesis 1 If a steady stateU0,Π0 is such that at every point (x1, x2) the solution
to the system (7), (8) with the data (28), (29) falls in the domain of attraction of an
equilibrium, then this steady state is nonlinearly stable in the Lyapunov sense.

Numerical experiments with the ODEs system show that the domain of stability
based on our hypothesis is much more restricted than the domains of stability based
on the Rayleigh criterium, see Fig. 2. For example, if we consider the steady state
(25), (26) with c0 = 1, l = 1, σ = 1, R0 = 10, γ = 9

7 , then the Rayleigh criterium
implies that the solution is unstable for B0 � −0.5 and B0 � 3. Nevertheless, the
domain of nonlinear instability based on Hypothesis 1 is B0 � −0.2 and B0 � 0.5.
The equilibrium corresponding to the linear approximation of velocity at the origin
is unstable for B0 < (1 − √

2)/2 ≈ −0.21 and B0 > (1 + √
2)/2 ≈ 1.21.

Let us notice that from the point of view of Hypothesis 1, any steady localized
vortex in irrotational coordinate frame is unstable. In this sense, the rotation has a
stabilizing effect.

Computations made directly from the 2D system of compressible media for the
case of fixed coordinate frame show that the stability depends both on intensity and
steepness of vortex [17] (in our notation, they are B0 and σ , respectively). Analysis
based on Hypothesis 1 confirms this effect as well.

5 Conclusion

We study nonlinear stability of steady vortex in a compressible media. We begin
with vortex with linear profile of velocity. In this case, the problem can be reduced
to analysis of stability of equilibrium of related ODEs system. This analysis turns
out to be very nontrivial. For some range of parameters, it requires to construct a
Lyapunov function in the absence of standard algorithms. For other range, the study
of stability requires application of theory of normal forms and invariant tori. Any
other steady vortex, localized or not, can be approximated at every point of plane
by a vortex with linear profile of velocity. We hypothesize that if at every point the
solution to this ODEs system falls in the domain of attraction of an equilibrium, then
the steady vortex is nonlinearly stable. Then, we give arguments in support of this
hypothesis.
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Coupled Scheme for Hamilton–Jacobi
Equations

Smita Sahu

Abstract In this paper, we will present some coupled numerical schemes for
Hamilton–Jacobi equation by using the scheme proposed in Falcone and Sahu (Cou-
pled scheme for linear and Hamilton-Jacobi-Bellman equations, 2016 [11]). The
approach is general and in principle can be applied to couplemany different schemes,
for example one can couple an accurate method well adepted where the solution is
smoothwith anothermethod designed to treat discontinuities and/or jumps in the gra-
dients. Clearly, one has to decide where to apply the first or the second method, and
this is done bymeans of a switching parameter which must be computed in every cell
at every time step. In this paper, we investigate, in particular, the coupling between an
anti-dissipative scheme by Bokanowski and Zidani (J Sci Comput 30(1):1–33 2007,
[4]) which has been proposed in order to deal with discontinuous solutions and a
semi-Lagrangian scheme by Falcone and Ferretti (Semi-Lagrangian approximation
schemes for linear and Hamilton-Jacobi equations. SIAM-Society for Industrial and
Applied Mathematics, Philadelphia, 2014 [10]) which is more adept to deal with
Lipschitz continuous solutions and is more accurate for regular solutions provided a
high-order local interpolation operator is used for the space reconstruction. We will
show that how the coupling can be done for two schemes which typically use two
different grid reconstructions.

Keywords Hamilton-Jacobi-Bellman equations · Semi-Lagrangian schemes ·
Anti-dessipative schemes · Viscosity solutions

1 Introduction

Our aim is to propose a new method to build schemes for first-order time-dependent
Hamilton–Jacobi (HJ) equations coupling two schemes for viscosity solution which
have different properties. We will consider the following model problem
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∂tv + H(x,∇v) = 0, (t, x) ∈ [0, T ] × R (1)

v(0, x) = v0(x), x ∈ R. (2)

equation,where theHamiltonianH is convex in the secondargument.A typical exam-
ple comes from optimal control theory, where H(x,∇v) = max

a∈A
{ f (x, a)vx (t, x)}

and a represents the control, and it is well known that in this framework, the solution
v of the equation (1) corresponds to the value function of the problem [1, 2]. Typ-
ically, the solution is Lipschitz continuous if the data are Lipschitz continuous but
also discontinuous solutions can be considered and they actually appear in several
applications to control problems with state constraints, games and image processing.
This is our main motivation to deal here with discontinuous initial conditions, and
in general, the coupled scheme will be designed in order to be able to track discon-
tinuous solutions. However, since the typical situation is to have a piecewise regular
solution which only has discontinuities or jumps of the derivatives at isolated points,
it is natural to try to diversify the method in the subdomains where the solution is
regular and in the cells where the solution exhibits this kind of singularities. To this
end, we will couple two schemes which have been already proposed in the literature
and for which we know a number of properties which will turn to be useful for the
construction of the coupled scheme. Let us also mention that hybrid schemes for
hyperbolic conservation laws have been proposed in the literature to capture shocks
for hyperbolic conservation laws and contact discontinuities for the compressible
Euler system (see Chap.22 in the book by Laney [13] for more information and
references). The coupled scheme proposed here follows the same ideas although our
goal is to solve HJ equations and the schemes chosen for the coupling are different.

It is well known that, in the one-dimensional case, there is a strong link between
HJ equations and hyperbolic conservation laws. Namely, the viscosity solution of the
evolutive HJ equation is the primitive of the entropy solution of the corresponding
hyperbolic conservation lawwith the correspondingHamiltonian.Most of the numer-
ical ideas to solve hyperbolic conservation law can be extended to HJ equations. In
the last decades,many numerical schemes have been proposed forHJ equations using
different techniques, for example finite differences, Markov chain, semi-Lagrangian
(SL) [10], high-order filtered scheme [7, 12, 15, 16]; these schemes have been shown
to be stable and convergent under mild regularity assumptions on the solution and to
be the first order accurate for the approximation of Lipschitz continuous solutions.
However, it can be interesting to deal with discontinuous viscosity solutions so these
schemes have to be adepted in order to obtain reasonable approximations which do
not diffuse too much around the discontinuities of Dv and/or v and do not oscillate.

For discontinuous solutions, an anti-dissipative (AD) scheme has been pro-
posed [4] and a convergence result has been proved in one dimension [5, 6]. That
scheme has been initially proposed for hyperbolic conservation laws [9, 14] and then
extended to Hamilton–Jacobi equations in one dimension. Another class of schemes
which have been shown to be rather effective is that of SL scheme (see Falcone and
Ferretti book [10] for a comprehensive presentation of this approach). SL schemes
give good results and are naturally multidimensional, and they can be very accurate
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in the regions of regularity for the solution provided a high-order local reconstruc-
tion in space is used. Despite these interesting features, SL schemes are not efficient
for discontinuous initial data since they use a local interpolation operator for the
computation at the foot of the characteristics.

In this paper, we present a new coupling of semi-Lagrangian scheme and Ultra-
Bee scheme (a particular anti-dissipative scheme) for (1). We intend to take the
advantage of the properties of the two methods introducing an indicator parameter.

Organization of the paper. In Sect. 2, we will recall the basic results about the
semi-Lagrangian (SL) method [10] and the Ultra-Bee (UB) scheme [4] which we
will use in the coupling. In Sect. 3, we present the general form of the coupled scheme
and we will describe how it will be applied to solve the linear advection equation
and how it has been extended to Hamilton–Jacobi equation. Finally, Sect. 4 will be
devoted to the numerical tests in one dimension.

2 Semi-lagrangian Schemes [10]

A semi-Lagrangian (SL) method is based on two basic steps: the reconstruction of
the solution on a fixed grid and numerical integration along the lines of the same
characteristics The idea of using the aspect numerical method of characteristics was
proposed for the first time by Courant, Isaacson and Rees in the [8]. In dimension
one, the CIR scheme precisely gives the first-order upwind scheme when applied
to the advection equation imposing the CFL condition cmaxΔt/Δx ≤ 1 where cmax

is the upper bound for the modulus of the velocity. However, the main advantage
of these methods is that they are still stable for large time steps so they do not
need the typical CFL condition required by finite difference methods. This helps
particularly to run simulations to investigate the long-time behaviour of the solution.
In the framework of HJ, SL schemes have been developed initially for the solution
of Bellman’s equations associated with optimal control problems. This schemes can
be interpreted as a discretization of the dynamic programming principle.
The typical assumptions on H are as follows:

1. H(·, ·, ·) is uniformly continuous in all the variables.
2. H(x, v, ·) is convex and coercive.
3. H(x, ·, Dv) is monotone.

Under these assumptions, we have the representation Hopf–Lax formula for the
solution of equation (1)

v(x, t + Δt) = min
a∈R

{v(x − aΔt, t) + Δt H∗(a)},

where
H∗(a) = sup{a · p − H(p)}
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is the Legendre transform ofHamiltonian H . Note that the formula is the extension of
the classical representation formula for the linear advection equation. For simplicity,
we set up everything in dimension one. Let I1[u] denote the P1-interpolation of a
function u in dimension one on the mesh G = {x j }, i.e.

I1[u](x) = x j+1 − x

Δx
u j + x − x j

Δx
u j+1 for x ∈ [x j , x j+1]. (3)

Hence, the SL scheme for (1) is

un+1
j = min

a∈R
{I1[un](x j − aΔt) + Δt H∗(a)}. (4)

SL scheme is monotone stable and works for large the Courant number. Convergence
and error estimate have been proved (see [10] for precise results).

2.1 Ultra-Bee Scheme for HJ Equations [4]

In this section, we recall “Ultra-Bee” (UB) scheme of Roe [14]. The Ultra-Bee
scheme is nonmonotone, but it has the interesting property to transport exactly a
particular space of step functions in the case of linear advection when the speed is
constant. In [4], Bokanowski andZidani have presented amodifiedUltra-Bee scheme
for the model problem (5) and anti-dissipative properties of the scheme have been
shown in [3, 5, 6]. A first-order convergence result has been proved for the modified
Ultra-Bee scheme, in L1-norm, towards the viscosity solution for the model problem
(5) (for more details and proof, we refer reader to see [3, 5]). Here, we will recall
the scheme for the model problem:

∂tv + max
a∈A

( f (x, a)vx (t, x)) = 0, (t, x) ∈ [0, T ] × R, (5)

v(0, x) = v0(x), x ∈ R. (6)

In optimal control theory, the solution of above equation corresponds to the value
function of an optimization problem [2]. It is usual that this function, as well as the
final cost v0, is discontinuous (for instance for target or rendezvous problems). Let
Δt be a constant time step and tn = nΔt for n ≥ 0. Given two velocity functions
f g : R → R, g = m, M , we set the following notation for the corresponding CFL
numbers at a node x j :

νm
j := Δt

Δx
fm(x j ) and νM

j := Δt

Δx
fM(x j ), j ∈ Z. (7)
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Then, we can define the vectors, νm = {νm
j , j ∈ Z}, νM = {νM

j , j ∈ Z}. Let us define
the exact average values of the approximate solution at time tn:

unj = 1

Δx

∫ j+1/2

j−1/2
u(tn, x)dx , j ∈ Z, n ∈ N. (8)

Denoting by ‖ f ‖∞ the L∞ norm of a bounded function defined on R, we define the
CFL condition

max (‖ fm‖∞, ‖ fM‖∞)
Δt

Δx
≤ 1. (9)

Here, we recall the steps of the algorithm for the UB scheme.

Algorithm for the UB scheme
Initialization. Compute the initial averages {u0j } j∈Z as above.
For n ≥ 0.
Main cycle:
Step 1. Compute un+1 = {un+1

j } j∈Z by:
Step 2. For every j ∈ Z, we define the “fluxes” unj±1/2(ν j ) for ν j ∈ {νm

j , νM
j } as

follows:
if ν j ≥ 0, we set

unj+1/2(ν) :=

⎧⎪⎨
⎪⎩
min

(
max

(
unj+1, b

+
j (ν j )

)
, B+

j

)
if ν j > 0

unj+1 if ν j = 0 and unj 
= unj−1

unj if ν j = 0 and unj = unj−1,

(10)

where {
b+
j (ν) := max

(
unj , u

n
j−1

) + 1
ν j

(
unj − max

(
unj , u

n
j−1

))
,

B+
j (ν) := min

(
unj , u

n
j−1

) + 1
ν j

(
unj − min

(
unj , u

n
j−1

))
,

(11)

if ν j ≤ 0, we set

unj−1/2(ν) :=

⎧⎪⎨
⎪⎩
min

(
max

(
unj−1, b

−
j (ν j )

)
, B−

j

)
if ν j < 0

unj−1 if ν j = 0 and unj 
= unj+1

unj if ν j = 0 and unj = unj+1,

(12)

where {
b−
j (ν) := max

(
unj , u

n
j+1

) + 1
ν j

(
unj − max

(
unj , u

n
j+1

))
,

B−
j (ν) := min

(
unj , u

n
j+1

) + 1
ν j

(
unj − min

(
unj , u

n
j+1

))
,

(13)
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Step 3. For ν j ∈
{
νm
j , νM

j

}
, we define

un+1
j = unj − ν j

(
unj+1/2(ν) − unj−1/2(ν)

)
. (14)

Step 4. Finally, we set un+1
j := min

(
un+1
j (νm

j ), un+1
j (νM

j )
)
, j ∈ Z.

For simplicity and considering all the cases, we will use the following short
notation for the Ultra-Bee scheme

un+1
j = SUB

j (un) :=
(
min

(
un+1
j (νm), un+1

j (νM)
))

j∈Z
. (15)

For the advection equation in [9], it has been proved that under the CFL condition
0 ≤ ν j ≤ 1, for all j , UB scheme is consistent, L∞ stable and TVD. Let us also
mention the form of flux which is used in [9], i.e.

unj+1/2 := unj + 1 − ν j

φ j
(unj+1 − unj ), (16)

where φ j is defined as

φ j =
{
max

(
0,min

(
2r j
ν j

, 2
1−ν j

))
, if unj+1 = unj and ν j 
= 1

0, otherwise,
(17)

where r j = unj−unj−1

unj+1−unj
and by replacing j = j − 1 we can compute unj−1/2.

3 Construction of the Coupled Scheme (CS)

As we said, Ultra-Bee schemes are based on previous results for conservation laws
and they typically require a projection onto a discontinuous reconstruction at every
step. This choice seems to be clever for the regions where the solution is nonregular
but rather unfortunate where the solution is regular. Then, a natural idea is to cou-
ple the features of two schemes: a scheme (SL) well adepted for regular (at least
Lipschitz continuous) solutions with an Ultra-Bee scheme (UB) which provides a
better solution profile at the jumps. Thus, we expect to get advantages coupling the
two schemes; to this end, we should be able to detect the regularity regions and the
singular regions.

SL scheme uses a local interpolation operator to recover the value of the numerical
solution at the foot of characteristics which are not grid points themselves. In their
standard version, SL schemes do not use cell averages. On the contrary, AD schemes
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are based on cell average values. For the coupling, we need values on two different
grids GSL and GAD with space step Δx which are defined below:

GSL = {x j = jΔx : j = Z}, GAD = {x j : x j = x j + Δx

2
, j ∈ Z}

For simplicity, we will often use the shorthand notation for the nodes of the two
grids which are shifted by Δx/2, denoting as •-nodesthe nodes of GSL and ×-
nodesthe nodes of GAD . In the sequel, unj denotes an approximation of u(x j , tn),
and unj denotes an approximation of u(x j , tn), where tn = nΔt , Δt > 0. Moreover,
we will drop the time index n and denote for simplicity u j = unj whenever the time
dependence is not necessary. At every step, we divide our domain into two regions,
one where our approximate solution is “regular” and the other where we detect
discontinuities.

To construct the coupled scheme, we need to introduce some indicators. Let us
start defining the approximate derivatives as left and right derivatives for every node
x j ∈ GSL

D−u j := u j − u j−1

Δx
and D+u j := u j+1 − u j

Δx
. (18)

Definition 1. Let δ be a positive threshold parameter. A cell C j = [x j , x j+1) is
said to be a regular cell if we have |D−u j | < δ, D−u j D−u j−1 > 0 and D−u j

D−u j+1 > 0.

This means that a derivative below a given threshold as well as a constant sign in the
derivatives just before and after the node x j is considered to be a regularity indicator.
For the choice of the threshold δ, we can use a previous knowledge of the bounds for
the exact solution. For example, in the case of transport equation with the constant
velocity, we know the solution which is u(x, t) = uo(x − ct), so we can set our
threshold with the help of the initial condition δ = ||D−u0j ||∞ − ε, ε > 0.

Definition 2. A cell C j is said to be a singular cell if it is not a regular cell. We
denote the set of singular cells by Cs .

Definition 3. The singular region Ωsin is defined by the union of all the singular
cells.

Definition 4. The set Ωreg = R \ Ωsin is called the regular region.

Definition 5. The set Ωreg = R \ Ωsin is called the regular region.
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We need to distinguish between the nodes x j ∈ GSL belonging to one of the above
regions in order to apply the more adept scheme there. To this end, we define the
regularity indicator, which will govern the switching between the two schemes:
σ j ≡ 0 for x j ∈ Ωsin and σ j ≡ 1 for x j ∈ Ωreg . It is important to note that the
quantities used in the definition of the singular cells rely on the pointwise values
u j and not on the averaged values u j so we will always need the pointwise values
everywhere on the GSL grid (see Step 6 of the coupled algorithm below). Another
important point is that we are not applying the two schemes everywhere at every
time step but we apply only one scheme in every cell, simply switching from one
to the other whenever the regularity indicator σ n

j switches from 0 to 1 or vice versa.
Note that the schemes are working on different grids and that during the evolution
the singularity can move from cell to cell, so when the indicator says that we have to
switch from SLto UB(or vice versa) we will need to define the necessary values on
the ×-nodes(or •-nodes) which are neighbours of the node x j . The coupled scheme
will construct them by means of two local projection operators defined below.

Definition 6 (Local Projection Operator for SL). We define the local projection
operator PSL : R

2 → R by a map which defines the new value u j at x j starting
from the values (u j−1/2, u j+1/2),

PSL(u j−1/2, u j+1/2) := u j−1/2 + u j+1/2

2
= u j (19)

The PSL operator constructs the point value at x j as the average of the averaged
values at x j−1 and x j .

Definition 7 (Local Projection Operator for AD). We define the local projection
operator PAD : R

2 → R by a map which defines the new value u j at x j+1/2 starting
from the values (u j , u j+1),

PAD(u j , u j+1) := u j + u j+1

2
= u j+1/2. (20)

The PAD operator constructs the averaged value at x j as the average of the point
values at x j and x j+1.
As we said, the projection operators will be used locally whenever in a cell we switch
fromone scheme to the other andweneednewvalueswhichwere not available before.
The PSL operator will also be used at Step 6 to allow the update of the regularity
indicator which is computed on the •-nodes. In the sequel, we will consider an initial
condition w0 with compact support Q and define the subset J := [ jmin, jmax ] ⊂ Z

containing the node indices of an interval containing Q.

Algorithm for the Coupled Scheme SL+UB
Step 1 (Initialization).
We compute the initial data w0

j = u0j on every x j , j ∈ J .
We compute D−w0

j−1, D
−w0

j and D−w0
j+1 and check the condition
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|D−w0
j | < δ and D−w0

j−1D
−w0

j > 0, D−w0
j D

−w0
j+1 > 0 . (21)

if this condition is true then we set σ 0
j = 1 else we set σ 0

j = 0.
For n > 0.
Main cycle on j ∈ J

Step 2. We compute D−wn
j−1, D

−wn
j and D−wn

j+1 and check the condition

|D−wn
j | < δ and D−wn

j−1D
−wn

j > 0, D−wn
j D

−wn
j+1 > 0 . (22)

go to Step 3.
Step 3. If condition (22) is true then go to Step 4 else we go to Step 5.

Step 4. We want to apply the SL-scheme at x j , so we set σ n
j = 1 at the node x j .

If σ n
j = σ n−1

j we directly compute the new value according to the SL-scheme

wn+1
j = σ n

j S
SL
j [wn] + (1 − σ n

j )S
AD
j [wn] = SSL

j [wn]. (23)

If σ n
j 
= σ n−1

j , we have to switch from the AD-scheme to the SL-scheme and we
need the projection PSL . Then, we set for k = j, j + 1

wn
k = PSL(unk−1/2, u

n
k+1/2) := unk−1/2 + unk+1/2

2
= unk ,

and we compute

wn+1
j = σ n

j S
SL
j [wn] + (1 − σ n

j )S
AD
j [wn] = SSL

j [wn]. (24)

Step 5. The condition (22) is not satisfied, then we set σ n
j = 0.

If σ n
j = σ n−1

j we directly compute the new value according to the AD-scheme

wn+1
j = σ n

j S
SL
j [wn] + (1 − σ n

j )S
AD
j [wn] = SAD

j [wn]. (25)

If σ n
j 
= σ n−1

j , we have to switch from the SL-scheme to the AD-scheme and we
need the projection PAD . Then, we set for k = j − 1, j, j + 1

wn
k = PAD(unk , u

n
k+1) := unk + unk+1

2
= unk+1/2

and we compute

wn+1
j = σ n

j S
SL
j [wn] + (1 − σ n

j )S
AD
j [wn] = SAD

j [wn]. (26)

End of the j cycle.
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Step 6 (Filling the holes procedure).
At the •-nodeswhere σ n

j = 0 we need to project by PSL defined in (19) using the

intermediate values at wn+1
j−1 and wn+1

j , i.e.

wn+1
j = PSL(wn+1

j−1, w
n+1
j ), for σ j = 0.

(the values wn+1
j for the •-nodeswhere σ j = 1 are already available by Step 4). This

will finally produce the new approximate solution wn+1
j .

Step 7.
Set n = n + 1, j = jmin and go back to the main cycle. �

Note that at the •-nodeswhere σ n
j = 1, we always have a value which is computed

by the SLscheme and that the switching indicator is chosen on the basis of the values
at the •-nodes. Several properties of the coupled scheme have been proved in [11].

4 Numerical Tests

In this section, we present two numerical tests (advection equation and HJ equation)
in dimension one to check the efficiency of the method and to verify that the use of
the switching indicator σ n

j actually allows to improve the accuracy with respect to
the two original methods used in the coupled scheme in many interesting cases. We
will always compare the proposed coupled scheme with the two schemes used as
building blocks. To this end, we will consider several initial conditions with various
regularity properties and we follow their evolutions in time over an interval Ω . It
is important to note that in coupled scheme, we have additional computational cost
to calculate the indicator function. However, we are not projecting whole grid every
time. When our indicator function detects that we are switching from one scheme
to another, then we use projection operator only in that cell not everywhere so this
computational cost is minimal.

Example 1. Advection equation with constant velocity.

vt + cvx = 0, (t, x) ∈ [0, T ] × Ω, (27)

v(0, x) = v0(x) =
{
1 − |x | if |x | ≤ 1
0 otherwise,

, (28)

where c ≡ 1 is the velocity and v0(x) is the initial condition with bounded support.
We defineΩ := [−2, 2], T = 1 and the Courant number ν = Δt/Δx equal to 0.321.
In Fig. 1, it is clear that UB scheme has the typical behaviour in regularity reason but
keeps the support correctly. For this example, SL scheme is workingmore accurately.
We expect from the couple scheme to switch to the SL scheme. In Fig. 2, σ = 1which
means coupled scheme switches to SL scheme; hence, the SL scheme and coupled
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Fig. 1 (Example 1), on the left is the plot of initial data (28) and on the middle SL-P1 or SL-P1

+UBcoupled scheme on the right UB scheme at t = 20Δt where Δt = 0.010
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Fig. 2 (Example 1), the plot of the indicator function σ for (28) initial data at t =
10Δt, 20Δt, 30Δt where Δt = 0.010

Table 1 (Example 1), errors for the Ultra-Bee scheme with initial condition (28)

Δt Δx L1 Error L2 Error L∞ Error

0.0400 0.1250 0.031855 0.028728 0.071408

0.0200 0.0625 0.017081 0.015496 0.040000

0.0100 0.0312 0.008840 0.008120 0.025000

0.0050 0.0156 0.004631 0.004691 0.020000

0.0025 0.0078 0.003663 0.003197 0.011250

scheme have exactly same error table i.e. Table2 and errors of Ultra-Bee are given
in Table1.

Example 2. In the example below, we solve the HJ equation

vt + | f (x)vx |, (t, x) ∈ [0, T ] × Ω, (29)

v(0, x) = v0(x) =
{
1 if |x | ≤ 1
0 otherwise

, (30)

where f (x) ≡ 1. We solve the above HJ equation for the initial data (30). We fix the
CFL number to 0.321 and the domainΩ = [−2, 2] and T = 1. All error calculations
are global as before. However, we also added one column of local L∞-errors in
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Table 2 (Example 1), errors for the SL-P1 or SL-P1 +UBcoupled schemewith initial condition (28)

Δt Δx L1 Error L2 Error L∞ Error

0.0400 0.1250 0.026628 0.018858 0.027079

0.0200 0.0625 0.013588 0.009813 0.018690

0.0100 0.0312 0.007032 0.005338 0.015603

0.0050 0.0156 0.003597 0.002924 0.012181

0.0025 0.0078 0.001827 0.001616 0.009171
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Fig. 3 (Example 2), on the left is the plot of initial data (30) and on the middle SL-P1 and coupled
scheme or SL-P1 +UBor UB on the right SL-P1 +UB at t = 20Δt , where Δt = 0.010
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Fig. 4 (Example 2), the plot of the indicator function σ for (30) initial data at t =
10Δt, 20Δt, 30Δt , where Δt = 0.010

Tables3 and 4. Local error in the L∞ norms is computed in some subdomain D,
which, at a given time tn , corresponds to

eL∞
loc

:= max{i, xi∈D} |v(tn, xi ) − uni |

For this example, D = [−2,−0.96] ∪ [−0.84, 0.86] ∪ [0.9, 2]. Here, SL scheme is
diffusive (see Figs. 3 and 4); on the other hand, UB scheme is nondiffusive and has
very nice behaviour. We can see in Table3 that coupled scheme switches to UB
scheme as expected. Hence, our indicator is able to use the right scheme.
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Table 3 (Example 2), errors for the SL-P1+ UB coupled scheme or UB scheme with initial con-
dition (30)

Δt Δx L1 Error L2 Error L∞ Error L∞
Loc-Error

0.0400 0.1250 0.136882 0.187075 0.480895 0.088388

0.0200 0.0625 0.101730 0.163648 0.486520 0.062500

0.0100 0.0312 0.074883 0.142337 0.490479 0.044194

0.0050 0.0156 0.055000 0.123685 0.493272 0.031250

0.0025 0.0078 0.039634 0.105689 0.495244 0.022097

Table 4 (Example 2), errors for the SL-P1 scheme with initial condition (30)

Δt Δx L1 Error L2 Error L∞ Error L∞
Loc-Error

0.0400 0.1250 0.025000 0.088388 0.312500 0.187075

0.0200 0.0625 0.012500 0.062500 0.312500 0.163648

0.0100 0.0312 0.006250 0.044194 0.312500 0.142337

0.0050 0.0156 0.003125 0.031250 0.312500 0.123685

0.0025 0.0078 0.001563 0.022097 0.312500 0.105689

5 Conclusion and Future Work

We have presented a coupling between SL scheme and UB scheme for advection
and HJ equations. The construction of the coupling is based on the computation of
a switching indicator which allows to choose one of the two schemes in every cell
according to the regularity properties of the solution and to some stability consider-
ations. The technique behind the coupling can be applied also to other schemes and
can be simplified when the two original schemes work on the same grid and have the
same type of approximate values because in this situation we will not need to project
the values on two different grids. The analysis for the advection problem shows that
the coupled has some good properties which hopefully can be extended also to non-
linear Hamilton–Jacobi-type equations as the last example seems to suggest. This
analysis as well as the extension to 2D problems will be the focus of a future work.

Acknowledgements I would like to thank Prof. Maurizio Falcone for the useful suggestions and
discussion.
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Compressible Heterogeneous Two-Phase
Flows

Nicolas Seguin

Abstract The modeling and the numerical simulation of two-phase flows are inves-
tigated for several decades. When dealing with very heterogeneous problems, for
instance a water flow with many bubbles, one has to make use of averaged models
since the description of each phase and interface is out of reach.Whatever the average
is, the resulting models often suffer from severe mathematical pathologies: lack of
hyperbolicity, non-conservative products, non-preservation of admissible states…In
1986, Baer and Nunziato proposed an original model which possesses interesting
features from the mathematical point of view. Our goal is to provide a (partial) state
of art on this model and its derivatives, but also to list some open questions.

Keywords Two-phase flows · Hyperbolicity · Nonconservative products
Well-posedness

1 General Problems for the Modeling of Two-Phase Flows

Weare interested in a flowof a fluidwhich is composed of two different phases. These
phases are considered immiscible; i.e., with a perfect description, at a given point x ,
and for a given time t , only one phase is present. In other words, the spatial domain
Ω ⊂ R

d , d � 1, can be divided in two disjoint regions Ω1(t) and Ω2(t) where 1
and 2 denote the label of the phase: Ω = Ω̄1(t) ∪ Ω̄2(t) and Ω1(t) ∩ Ω2(t) = ∅.
Within each of these regions, the phase is governed by some classical equations of
fluid dynamics, for instance the compressible Navier–Stokes equations. Moreover,
the evolution of the interfaces Σ(t) = Ω̄1(t) ∩ Ω̄2(t) is deduced from some inter-
facial laws, such that the continuity of the velocity, the pressure…When the flow
is more or less still, such a description is satisfactory and is relevant for numerical
simulations. However, in many industrial contexts, the flow is very heterogeneous so
that its numerical approximation is unfeasible. An example, alreadymentioned in the
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abstract, is a water flow with numerous bubbles of gas. For a complete description,
the mesh size must be smaller that the size of the smallest bubble and the interfaces
must be accurately discretized. This is clearly out of reach from a practical point
of view. Moreover, a detailed knowledge of the structure of the flow is unnecessary
since only the global behavior is interesting.

1.1 Averaged Models

In order to avoid the use of a full description of the two-phase flows, averagedmodels
have been proposed. The average is done with respect to the separation of the two
phases: at a given point x and for a given time t , the two phases may be simultane-
ously present.Whereas in the complete description the characteristic functions of the
domains Ω1(t) and Ω2(t), say 1Ω1(t)(x) and 1Ω2(t)(x), are the unknowns which rep-
resent the repartition of the two phases, averagedmodels are based on new unknowns
α1(t, x) and α2(t, x) which lie in [0, 1] (and not in {0, 1} as 1Ω1(t)(x) and 1Ω2(t)(x)).
They satisfy the relation

α1(t, x) + α2(t, x) = 1 (1)

for all t � 0 and x ∈ R
d which corresponds to the immiscibility of the two phases.

According to the average, αk(t, x) may represent the probability of presence or the
volume fraction of phase k and time t and at point x for example. Some processes
of averaging of two-phase flows can be found in [24] or in [14].

After these averages, the quantities which characterize each phase also become
averaged quantities: density, velocity, pressure, temperature…In order to keep the
most accurate description, onemayassume that these averagedquantities are different
between the phases. For example, ifu1 andu2 denote the averaged velocities of phases
1 and 2, respectively, then u1(t, x) and u2(t, x) are a priori different. One may hope
to obtain some closed averaged model, which should differ according to the average:

• Time or space average. These are based on the existence of a small scale (typically
the size of a bubble) and one performs some homogeneization process. See for
instance [24, 25].

• Space dimension reduction. This case occurs when considering particular config-
uration. A classical example is a flow inside a pipe. If its length is very large with
respect to the section, one may only consider the effects in the direction of the
axis of the pipe. Therefore, the average is done by integration in the orthogonal
direction, corresponding to the cross section. See for instance [35, 36, 41].

• Ensemble or statistical average. This is this kind of average which leads to the
notion of probability of presence. A random variable is introduced, representing
the uncertainty of the description of the actual flow. Therefore, a statistical average
is done according to this randomvariable (this can be related to the notion ofYoung
measures). See for instance [14] or [7] (the latter reference deals with moderately
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heterogeneous flows). One can also refer to [1] where this approach is used to
design numerical schemes.

Let us emphasize that this presentation is very incomplete and arbitrary…
Up to our knowledge, the paper [7] (with related works done by these authors) is

the only onewhere amathematically rigorous derivation of the averagedmodel is pro-
posed. Unfortunately, it does not cover heterogeneous flows, where averaged veloci-
ties, pressures…are kept different. With the present knowledge in homogeneization
of PDE’s or on space dimension reduction, in particular for shallow water models,
one may hope to derive properly averaged models.

1.2 The Baer–Nunziato Model

Here, we are interested in compressible inviscid phases, which may be described
separately by the compressible Euler equations (or Navier–Stokes equations, if the
viscosity of both phases tends to zero during the process of averaging). After aver-
aging, each phase possesses its own (averaged) density ρk , velocity uk , pressure
pk , specific total energy Ek , in addition to the fraction αk . Surprisingly, the general
structure of the averaged models is very similar whatever the averaging process is
considered (see the references above). They all may be written as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tαk + VI (u)∂xαk = Rk
α(u),

∂t αk

⎡

⎢
⎣

ρk

ρkuk
ρk Ek

⎤

⎥
⎦ + ∂x αk

⎡

⎢
⎣

ρkuk
ρku2k + pk

(ρk Ek + pk)uk

⎤

⎥
⎦ −

⎡

⎢
⎣

0

PI (u)

PI VI (u)

⎤

⎥
⎦ ∂xαk =

⎡

⎢
⎣

Rk
ρ(u)

Rk
m(u)

Rk
E (u)

⎤

⎥
⎦ ,

(2)

where u = (α1, α1ρ1, α1ρ1u1, α1ρ1E1, α2ρ2, α2ρ2u2, α2ρ2E2) is the vector of the
unknowns (α2 can be expressed in function of α1 thanks to (1)). Therefore, this
model is composed by seven equations in one space dimension (note that we only
present the one-dimensional version of this model but one can easily write it in the
multidimensional setting).

The difficulty on this type of models lies in the definition of the terms which
describe the interaction between the phases. The so-called interfacial velocity VI

and interfacial pressure PI have no unique form, and many definitions can be found
in the literature [5, 9, 17, 37]…The same remark holds for the source terms Rk

α(u),
Rk

ρ(u), Rk
m(u), and Rk

E (u). As mentioned above, even for given type of flows, there
exists no rigorous derivation of averagedmodels (2) which should enable us to define
these quantities without ambiguity. Nonetheless, in order to recover the conservation
of the global mass, momentum, and energy, we have

for ζ = ρ,m, E,
∑

k=1,2

Rk
ζ = 0.
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We also have, as a consequence of (1), R1
α + R2

α = 0.
The model (2) involves a (mean) specific internal energy ek , such that

Ek = ek + 1

2
|u|2

together with an equation of state which writes, Tk denoting the temperature of phase
k,

Tkdsk = dek + pKd(1/ρk).

Note that one assumes in general that these equations of state belong to the class of
classical equations of state of fluids. However, they arewritten for averaged quantities
and should a priori differ from the original equations of state of pure phases, since
the averaging processes have a little chance to commute with the nonlinearity of the
equations of state.

Let us now focus on the structure of this model and on its properties.

2 Analysis of Baer–Nunziato Type Models

In order to provide a complete overview, we should compare the properties of the
solutions of models of the form (2) with other two-phase flows models. However,
this would be a very hard task due to the wide variety of such models but, up to our
knowledge, Baer–Nunziato type models possess the most rational properties.

2.1 Basic Properties

Let us first present the properties which are independent of the definition of the
interfacial quantities VI and PI and of the source terms.

Proposition 1. 1. If α1 is constant and if the source terms are set to zero, then
system (2) becomes two independent systems composed by the Euler equations
for each phase.

2. If the source term R1
α vanishes when α = 0 and 1, then α1(t, x) ∈ [0, 1] (idem

for α2) for all x ∈ R and t > 0 as soon as α1(0, x) ∈ [0, 1].
3. The differential part of system (2) (i.e., without source term) possesses the fol-

lowing structure:

• the eigenvalues are VI , uk , and uk ± ck for k = 1, 2 (ck being the classical
sound speed computed from the equation of state of phase k),

• the eigenvectors form a basis ofR7 except if VI = uk ± ck (this is the so-called
resonance),
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• the characteristic fields associated with the waves uk ± ck are genuinely non-
linear and the characteristic fields associated with the waves uk are linearly
degenerate.

These properties have been shown in several works; see for instance [15, 17]. One
can remark the robustness and the relative simplicity of the structure of the model.

Moreover, let us consider the Riemann problem, that is to say system (2) without
source term, which may be written shortly (with obvious notations)

∂tu + ∂x f (u) + c(u)∂xα1 = 0, (3)

with initial condition

u(0, x) =
{
uL if x < 0

uR if x > 0
(4)

where uL and uR belong to the set of admissible states A = {u ∈ R
7, α1 ∈ (0, 1), ρk >

0, Tk > 0}. Once again, even without the knowledge of VI and PI , one can obtain the
following properties of self-similar solutions (see for instance [15] or [17]).

Proposition 2. Consider self-similar solutions of the Riemann problem (3–4). The
void fractions αk are constant on each part away from the wave VI . Moreover, all
the waves which are not superposed with the wave VI are defined by the classical
relations from the Euler equations (using Rankine–Hugoniot jump relations and
Riemann invariants).

As a consequence, up to an appropriate definition of the wave VI , one can expect
that the solution(s) of the Riemann problem (3–4) lies in A . Let us emphasize that
this kind of property is rather difficult to prove in general with other two-phase flows
models (and actually, it is not verified for many models).

2.2 Entropy and Symmetric Form

Let us continue to present the properties of (2) which are independent of the defini-
tions of VI and PI . The classical mathematical entropy for such models of two-phase
flows is

η(u) = −α1ρ1s1 − α2ρ2s2. (5)

One can check that

Proposition 3 ([13]).The entropy η defined by (5) is non-strictly convex, in the sense
that the hessian matrix D2η is positive semi-definite on A .

This property is difficult to use in practice, due to the lack of strict convexity of η.
Indeed, as far as VI and PI are not given, one cannot derive the PDE satisfied by η.
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Even forgetting the singularity of D2η, since system (2) is not in a conservative
form, one cannot apply the Godunov–Mock results to deduce a symmetric form of
(3), that would be

P(y)∂ty + Q(y)∂xy = 0 (6)

where P is a symmetric positive-definite matrix and Q is a symmetricmatrix, while y
is obtained fromu by aC 1-diffeomorphism.Nonetheless, this can be done separately:

Lemma 1 ([13]). System (3) admits a symmetric form (6) if and only of u is not
resonant, i.e., VI �= uk ± ck, k = 1, 2.

This property is crucial to obtain the local well-posedness of small smooth solutions
(assuming smooth pressure laws interfacial velocity and pressure, and source terms)
of the Cauchy problem. Following Kato [28], we have:

Theorem 1. Assume that the initial data u0 are continuously differentiable on R,
take values in some compact subset ofA far from the set of resonant states and such
thatu′

0(·) ∈ H	(R)with 	 � 1. Then there exists T � +∞ and a unique continuously
differentiable function u on [0, T ) × R taking values in A , which is a classical
solution of the Cauchy problem for (2) on [0, T ). Furthermore,

∂xu(t, ·) ∈
	⋂

k=0

C k([0, T ),H	−k(R)).

Since we are dealing with nonlinear hyperbolic equations, one cannot expect a global
well-posedness theorem, i.e., that T = +∞, at least without more assumptions.

Remark 1. Let usmake some comments on the resonance case. Even if the interfacial
velocity is not defined, in general it is a combination of the phase velocities u1
and u2. As a consequence, the interfacial velocity is more likely to be very small
in comparison to the acoustic velocities uk ± ck , k = 1, 2. As a consequence, this
theorem is relevant for most realistic configurations since the fluid velocities are
about 10 m/s while the the sound speeds are about several hundreds of m/s. Besides,
the source terms Rk

m include drag forces which make the relative velocity |u1 − u2|
tend to zero. This should prevent even more the appearance of resonant states.

3 Mathematical Closure of Baer–Nunziato Type Models

As we mentioned before, many different propositions of the terms which remain to
define exist in the literature. In [10, 17], a mathematical point of view is adopted,
which means that the definitions of VI and PI are deduced from mathematical prop-
erties of solutions.
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3.1 Interfacial Velocity

Let us first investigate the definition of VI . In order to consider it, one may assume
for the moment that the source terms are null. In this case, this velocity corresponds
to the speed of transport of the composition of the two-phase mixture since it appears
in the propagation of the void fraction α1, which describes the repartition of the two
phases.

Proposition 4 ([10, 17]). Assume that the interfacial velocity writes, with βV (u) ∈
[0, 1],

VI (u) = βV (u)u1(u) + (1 − βV (u))u2(u). (7)

The following assertions are equivalent:

1. An discontinuity of α1 in the initial data remains a discontinuity for all t > 0.
2. The characteristic field associated with VI is linearly degenerate.
3. The weight βV is given by

βV (u) = 1, either βV (u) = 0, or βV (u) = α1ρ1

α1ρ1 + α2ρ2
.

As a consequence, the interfacial velocities

VI (u) = u1, VI (u) = u2, and VI (u) = α1ρ1u1 + α2ρ2u2
α1ρ1 + α2ρ2

play very particular roles. Actually, these closures are very common in the literature,
but in general, they are motivated only by heuristic arguments.

Remark 2. Actually, the statement of this proposition is not fully exact, some addi-
tional assumptions on β have to be added, such as restricting to definitions which
preserve the Galilean invariance.

Remark 3. Assume that we are in the case of the two first choices, say VI (u) = u1.
This wave corresponds to an eigenvalue ofmultiplicity 2 in 1D, decreases the number
of possible resonant cases decreases: VI may only interact with u2 ± c2 and no longer
with u1 ± c1. Moreover, the system (3) has a particular structure which may be used
for operator splitting and numerical approximation [12].

3.2 Interfacial Pressure

We already have introduce the Lax mixture entropy η in Eq. (5). The natural entropy
flux F associated with η is

F(u) = −α1ρ1s1u1 − α2ρ2s2u2. (8)
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Even if the entropy η is not strictly convex, it is natural to assume that it satisfies a
balance law (or a conservation law for zero source terms) for smooth solutions.

Proposition 5 ([10, 17]). Assume that the interfacial pressure writes, with βP(u) ∈
[0, 1],

PI (u) = βP(u)p1(u) + (1 − βP(u))p2(u). (9)

Then, smooth solutions of Baer–Nunziato type models (2) with interfacial velocities
of the form (7) satisfy the balance law

∂tη(u) + ∂x F(u) = ∇uη(u) · r(u) (10)

if and only if

βP(u) = (1 − βV )T2
βV T1 + (1 − βV )T2

.

It is worth noting the two couples (VI , PI ) = (u1, P2) and (VI , PI ) = (u2, P1)
which often appear in the literature, in particular in the original paper by Baer and
Nunziato [5], while the last couple appeared for the first time in [10, 17].

3.3 The Interfacial Wave and the Riemann Problem

We assume now that VI and PI are defined by one of the three couples provided
by the last two propositions. As a consequence, the wave associated with the eigen-
value VI (the interfacial wave) is linearly degenerate. This may be defined using
Riemann invariants and Rankine–Hugoniot jump relations. In the case of resonance,
the situation becomes more complicated since the relations of the acoustic wave
which interacts with the interfacial wave are incompatible with the relations of the
interfacial wave. In order to define this interaction, a blowup in α1 is usually used.
In other words, a single interfacial wave interacting with an acoustic shock wave is
defined as the limit traveling waves, provided by a regularized void fraction. This
regularization is chosen smooth and monotone. Such an approach is widely used for
scalar conservation laws with singularities in space [4, 39].

The homogeneous system (3) has a very particular structure, first described in the
scalar case by Issacson and Temple [23] and extended to systems in [19]. Basically,
the vector c(u) does not vanish when the resonance occurs. Therefore, one has the
following negative result:

Proposition 6. The Riemann problem (3–4) may have up to three self-similar solu-
tions.

As a consequence, the Cauchy problem may admit an infinite number of solutions.
Nonetheless, one can check that, as soon as we are interested in solutions with
moderateMach numbers, onemay recover uniqueness, but finding explicit conditions
on initial data to fulfill this requirement seems difficult.
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4 Dissipative Source Terms

In the previous section, we havemainly addressed homogeneous Baer–Nunziato type
models, and we now focus on the source terms. We do not plan to provide explicit
formulas but only their general structure and the impact of such choices. We are only
concerned with internal effects due to exchanges between the two phases.

4.1 Derivation and Basic Properties

Let us comment their origin. For instance, it is natural to assume that, before aver-
aging, the pressure is continuous through the interfaces between phases. When the
average is applied, the averaged pressures are not equal in general and the notion of
interface disappear. Then, the impact of the continuity of the pressure through inter-
faces appears in relaxation source terms which, in absence of other effects, make the
the relative pressure tend to zero, |p1 − p2| → 0 when t → +∞. This source term
appears at least in the equation of α1 since a difference of pressure leads to variations
of volume (e.g., α1 increases in time if p1 is greater than p2).

Actually, this process of occurrence of source terms may be obtained in heuristic
ways, see [14] for instance, or in some cases by rigorous derivation [7]. Let us list
all the possible source terms which may appear in Baer–Nunziato type models:

• Mechanical exchanges. This provides a relaxation of the relative pressure p1 − p2
with equilibrium p1 = p2.

• Drag force. It comes from the friction between the two phases at the interfaces.
It leads to a relaxation of the relative velocity u1 − u2, with equilibrium u1 − u2.
The term appears in the momentum equations and is quadratic, i.e., of the form
|u1 − u2|(u1 − u2).

• Temperature exchanges. This term appears in the equations of energies and corre-
sponds to the relaxation in temperature such the the equilibrium is T1 = T2.

• Mass transfer. This effect only appears when two phases of the same fluid are
considered, such as liquid water and steam. It corresponds to the phase transition
and the associated equilibrium is the equality of chemical potentials, μ1 = μ2,
which are defined by

μk = ek + pk/ρk − Tksk .

The source terms, Rk
ζ , ζ = α, ρ,m, E , are combination of these effects, with

nonlinear factors. Let us recall the notation r(u) = (R1
α, R1

ρ, R
1
m, R1

E , R2
ρ, R2

m, R2
E )�.

Since they lead to some equilibria, they have to be entropy dissipative, that is to say

∇uη(u) · r(u) � 0.

The equality
∇uη(u) · r(u) = 0
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holds if and only if u is an equilibrium state; i.e., it belongs to the equilibrium
manifold

E = {u ∈ A | p1 = p2, T1 = T2, u1 = u2}

if there is no mass transfer, or to

Emt = {u ∈ A | p1 = p2, T1 = T2, u1 = u2, μ1 = μ2}

with mass transfer. In the space homogeneous case, i.e.,

∂tu = r(u), (11)

the entropy is not a Lyapunov function due to the lack of strict convexity. Moreover,
the equilibrium sets E and Emt only correspond to the case when the two phases are
present. Actually, appearance or disappearance of phases should be also taken into
account, but in this case the solution leaves the set A and the phasic variables are
no longer defined. Some tentatives with a simpler PDE model are done for instance
in [2, 21]; see also [26]. But, up to our knowledge, this problem is far from being
understood.

Remark 4. In general, in order to ensure that the set of admissible states A is an
invariant domain for the differential system (11), one includes the factor α1(1 − α1)

in the definition of the source terms. Together with smoothness assumptions, this
ensures that the void fractions remain in [0, 1]. However, this can create new stable
equilibrium states.

4.2 Relaxation and Hierarchy of Models

Since the source terms are entropy stable, one can hope a deeper impact on the
solutions of the Cauchy problem.

Following the pioneer work by Chen, Levermore, and Liu [8], one can study
the structure of the relaxation of model (2). One of the main difference is due to
the non-conservative form of the equations. Nevertheless, some properties such as
the sub-characteristic condition and the parabolic behavior after Chapman–Enskog
expansion can be investigated (see for instance [6, 33] for discussions in the con-
servative case). This approach has been followed by several authors, for instance in
[27], and has deserved a detailed attention by a Norwegian group (see in particular
[16, 29, 32]).

An important question, studied in several works mentioned here, is the form
of reduced equations, when characteristic times of some relaxation effects become
infinitely fast. An important step has been done by Kapila et al. in [27]. They obtain
a limit model which has many interesting properties. However, it is written in a non-
conservative form, and up to now, the definition of the non-conservative products
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remains unclear. An important assumption in the derivation provided in [27] is that
the characteristic times of all relaxation terms are of the same order. In some config-
urations, this assumption is no longer true and other limit models can be obtained,
the so-called drift models; see [3, 20] for instance. This kind of asymptotics involves
parabolic term and is far from being understood in this context (see [34] for first
results in the classical setting).

4.3 Nonlinear Stability

Indeed, when studying system of balance laws with entropy dissipative source terms,
the global existence of small and smooth solutions holds. In other terms, T = +∞ in
Theorem 1 for small data (i.e., initial data close to a constant state of the equilibrium
manifold). This result is valid under some assumptions, which we recall here in an
approximate way:

• The source term is entropy dissipative.
• The system of balance laws admits a symmetric form.
• The Jacobian of the source term is non-singular in the equilibrium manifold.
• The source term does not vanish in the eigenspaces of the convection matrix.

As mentioned above, the first assumption is satisfied by construction of the source
terms. The second one holds if resonant states are not considered [13]. As we dis-
cussed before, starting with initial data in the vicinity of the equilibrium manifold E
or Emt should prevent the occurrence of resonant states. The third assumption ensures
a linear local behavior of the relaxation terms in the equilibrium manifold. This is
the case of all the source terms described above, except for the drag force. Up to our
knowledge, quadratic relaxation terms have not been studied yet in a general setting.

The last assumption is called theKawashima condition. It has been introduced first
in [40], for parabolic perturbations of systems of conservation laws. It ensures that all
the waves of the system are impacted by the relaxation. Unfortunately, this is not the
case for Baer–Nunziato type models, where non-trivial equilibrium solutions exists
(traveling contact discontinuities with constant and equal velocities, pressures and
temperatures). In [30],Mascia andNatalini investigate systemswhere theKawashima
condition is violated, and one may hope to apply their analysis to (2) (but some work
remains…).

5 Some Additional Remarks

Let us recall that this note is only a partial review of the works on Baer–Nunziato type
models. The bibliographical list is far from being exhaustive. Moreover, the question
of extensions of this type of models is important and is not addressed here (see
for examples [18, 22]). Concerning the numerical approximation, since this models
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correspond to hyperbolic systems of PDEs, finite volume scheme is generally used.
Actually, very few preserve the set of admissible states and satisfy a discrete version
of the entropy inequality (10) (see [11, 12, 38], and also [1]). We did not insist on
the different models which are involved in the hierarchy obtained in the cascade of
asymptotics. Most of them should also deserve attention, as well as the measure of
the actual difference between each model of the hierarchy. Such a study would be
of great importance from a practical point of view, since the complete model (2)
could be locally replaced by simpler ones without altering the global accuracy (see
for instance [31] for a first attempt).
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Bound-Preserving High-Order Schemes
for Hyperbolic Equations: Survey
and Recent Developments

Chi-Wang Shu

Abstract Solutions to many hyperbolic equations have convex invariant regions,
for example, solutions to scalar conservation laws satisfy the maximum principle,
solutions to compressible Euler equations satisfy the positivity-preserving property
for density and internal energy. It is, however, a challenge to design schemes whose
solutions also honor such invariant regions. This is especially the case for high-order
accurate schemes. In this contribution, we survey strategies in the recent literature
to design high-order bound-preserving schemes, including a general framework in
constructing high-order bound-preserving finite volume and discontinuous Galerkin
schemes for scalar and systems of hyperbolic equations through a simple scaling
limiter and a convex combination argument based on first-order bound-preserving
buildingblocks, andvariousflux limiters to designhigh-order bound-preservingfinite
difference schemes.We also discuss a few recent developments, including high-order
bound-preserving schemes for relativistic hydrodynamics, high-order discontinuous
Galerkin Lagrangian schemes, and high-order discontinuous Galerkin methods for
radiative transfer equations.

Keywords Bound-preserving · High order schemes · Hyperbolic equations

1 Introduction

We are interested in numerically solving hyperbolic conservation laws

ut + � · F(u) = 0, u(x, 0) = u0(x) (1)

in a bounded domain with periodic or other types of boundary conditions. We are
also interested in other related hyperbolic or convection dominated equations. In par-
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ticular, we are interested in the bound-preserving properties of high-order numerical
schemes solving such equations.

We assume the exact solution of the PDE (1) has a convex invariant region G:

• If u(·, 0) ∈ G, then u(·, t) ∈ G for all t > 0.

For a convex region G, if u1, · · · , um ∈ G, αi ≥ 0,
∑m

i=1 αi = 1, then u =∑m
i=1 αi ui ∈ G. We will heavily use this property when building our high-order

bound-preserving schemes.
We now give several examples of invariant regions:

1. If Eq. (1) is a scalar conservation law, an important property of its entropy
solution (which may be discontinuous) is that it satisfies a strict maximum
principle:

m = min
x

u0(x), M = max
x

u0(x), (2)

If, then u(x, t) ∈ [m, M] for any x and t . Therefore, G = [m, M] is an invariant
region. It is clearly convex.

2. Consider the Eq. (1) as the compressible Euler system:

ut + f (u)x = 0

with

u =
⎛

⎝
ρ

ρv
E

⎞

⎠ , f (u) =
⎛

⎝
ρv

ρv2 + p
v(E + p)

⎞

⎠ ,

where E = e + 1
2ρv

2, and the internal energy e is related to density and pressure
through an equation of states (EOS). For the ideal gas, we have e = p

γ−1 with
γ = 1.4 for air. In this case, we can verify that the set

G = {u : ρ ≥ 0, e ≥ 0} (3)

is invariant. It is also easy to check that G is convex (for this we need to check
that the internal energy e is a concave function of the conservative variable u,
then Jensen’s inequality implies the convexity of G).
For many EOS’s, e.g., that for the ideal gas, the region G defined in (3) is equiv-
alent to

G = {u : ρ ≥ 0, p ≥ 0}.

In such cases, we can talk about the positivity of density and pressure, instead of
the positivity of density and internal energy.
Even though we discuss the one-dimensional case here for simplicity, G defined
in (3) is also a convex invariant region in the multi-dimensional case.

3. Consider the relativistic hydrodynamics

ut + f (u)x = 0
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with

u =
⎛

⎝
D
m
E

⎞

⎠ , f (u) =
⎛

⎝
Dv

mv + p
m

⎞

⎠

where p, D, m, and E are the thermal pressure, mass density, momentum, and
energy, respectively. v is the velocity. Moreover, units are normalized such that
the speed of light is c = 1. If we denote ρ to be the proper rest-mass density, then
the conservative variable u can be written as

D = γρ,

m = Dhγ v,

E = Dhγ − p,

where γ = (1 − v2)−1/2 is the Lorentz factor and h is the specific enthalpy. To
close the system, we specify an equation of state h = h(p, ρ). For ideal gas

ρh = ρ + pΓ/(Γ − 1)

with Γ being the specific heat ratio, such that 1 < Γ ≤ 2.
It can be shown that the density D and pressure p are positive, and the velocity
satisfies v2 ≤ 1, if they are initially in these cases. Therefore,

G = {u : D > 0, E > 0, p > 0, v2 ≤ 1} (4)

is an invariant region. It is convex and can be represented as

G = {u : D > 0, E >
√
D2 + m2}.

See [12, 21] for more details.

2 Bound-Preserving First-Order Schemes

It is of course desirable to have the invariant region G also to be an invariant region
for the numerical solution. That is, we wish that, if the initial condition u(·, 0) ∈ G
then u(·, t) ∈ G for later time t > 0. This time u stands for the numerical solution.

We first consider fulfilling this task for first-order schemes.
For scalar conservation laws, first-order monotone schemes can easily maintain

the maximum principle. For example, for the one-dimensional scalar conservation
law

ut + f (u)x = 0,
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the first-order monotone scheme

un+1
j = Hλ(u

n
j−1, u

n
j , u

n
j+1)

= unj − λ[h(unj , u
n
j+1) − h(unj−1, u

n
j )]

where λ = Δt
Δx and h(u−, u+) is a monotone flux (h is non-decreasing in its first

argument and non-increasing in its second argument, symbolically h(↑,↓)), satisfies
the monotonically non-decreasing property in all its arguments

Hλ(↑,↑,↑)

under a suitable CFL condition
λ ≤ λ0. (5)

Also, for any constant c, we have

Hλ(c, c, c) = c − λ[h(c, c) − h(c, c)] = c.

Therefore, if
m ≤ unj−1, u

n
j , u

n
j+1 ≤ M

, then
un+1
j = Hλ(u

n
j−1, u

n
j , u

n
j+1) ≥ Hλ(m,m,m) = m,

and
un+1
j = Hλ(u

n
j−1, u

n
j , u

n
j+1) ≤ Hλ(M, M, M) = M.

Thus, the scheme satisfies the maximum principle under the CFL condition (5).
For compressible Euler equations, there are several first-order schemes, including

theGodunov scheme, Lax–Friedrichs scheme, kinetic scheme,HLLC scheme,which
satisfy the bound-preserving property for positive density and internal energy (or
positive density and pressure for certain EOS), under suitable CFL condition (5).

For relativistic hydrodynamics, the first-order Lax–Friedrichs scheme is bound-
preserving for the invariant region G defined in (4), under suitable CFL condition
(5). See [12, 21] for more details.

We emphasize that it is often already non-trivial to find first-order schemes
which are bound-preserving, e.g., for MHD equations. Since our high-order bound-
preserving schemes discussed later are built upon first-order bound-preserving
schemes, the very first task when one would like to solve a new PDE is to find a
first-order bound-preserving scheme.
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3 Bound-Preserving High-Order Schemes

For higher-order linear schemes, i.e., schemes which are linear for a linear PDE

ut + aux = 0, (6)

for example, the second-order accurate Lax–Wendroff scheme

un+1
j = aλ

2
(1 + aλ)unj−1 + (1 − a2λ2)unj − aλ

2
(1 − aλ)unj+1

where λ = Δt
Δx and |a|λ ≤ 1, the maximum principle is not satisfied. In fact, no linear

schemes with order of accuracy higher than one can satisfy the maximum principle
(the Godunov Theorem).

Therefore, nonlinear schemes, namely schemes which are nonlinear even for the
linear PDE (6), have been designed to overcome this difficulty. These include roughly
two classes of schemes:

• TVD schemes. Most TVD (total variation diminishing) schemes also satisfy strict
maximum principle, even in multi-dimensions. TVD schemes can be designed for
any formal order of accuracy for solutions in smooth, monotone regions. However,
all TVD schemes will degenerate to first-order accuracy at smooth extrema.

• TVB schemes, ENO schemes, WENO schemes. The TVB (total variation bounded),
ENO (essentially non-oscillatory), and WENO (weighted ENO) schemes do not
insist on strict TVD properties; therefore, they do not satisfy strict maximum
principles, although they can be designed to be arbitrarily high-order accurate for
smooth solutions.

A high-order finite volume scheme has the following algorithm flowchart:

(1) Given the cell averages {ūnj }
(2) reconstruct un(x) (piecewise polynomial with cell average ūnj )

(3) evolve by, e.g., Runge–Kutta time discretization to get {ūn+1
j }

(4) return to (1)

A high-order discontinuous Galerkin scheme has a similar algorithm flowchart:

(1) Given un(x) (piecewise polynomial with the cell average ūnj )

(2) evolve by, e.g., Runge–Kutta time discretization to get un+1(x)

(with the cell average {ūn+1
j })

(3) return to (1)

Take scalar one-dimensional conservation law as an example. We will call a finite
volume or DG scheme bound-preserving, if we have
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m ≤ un+1(x) ≤ M, ∀x

provided
m ≤ un(x) ≤ M, ∀x .

A suitable modification to evaluate the bounds only at certain quadrature points
will be given later to facilitate easy implementation.

The flowchart for designing a high-order finite volume orDG schemewhich obeys
a strict maximum principle is as follows:

1. Start with un(x) which is high-order accurate

|u(x, tn) − un(x)| ≤ CΔx p

and satisfies
m ≤ un(x) ≤ M, ∀x

therefore of course we also have

m ≤ ūnj ≤ M, ∀ j.

2. Evolve for one time step to get

m ≤ ūn+1
j ≤ M, ∀ j. (7)

3. Given (7) above, obtain un+1(x) (reconstruction or evolution) which

• satisfies the maximum principle

m ≤ un+1(x) ≤ M, ∀x;

• is high-order accurate

|u(x, tn+1) − un+1(x)| ≤ CΔx p.

There are three major difficulties.
The first difficulty is how to evolve in time for one time step to guarantee the

bound for the new cell averages at the next time level (7). This must be achieved by
the original high-order DG or finite volume evolution, before using any nonlinear
limiters, in order to assure that these new cell averages are both high-order accurate
and satisfy the boundedness (7). This is very difficult to achieve! Previous works use
one of the following two approaches:

• Use exact time evolution. This can guarantee the bound for the new cell averages
at the next time level (7). However, it can only be implemented with reasonable
cost for linear PDEs, or for scalar nonlinear PDEs in one dimension. This approach
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was used in, e.g., Jiang and Tadmor [7], Liu and Osher [10], Sanders [16], Qiu
and Shu [13], and Zhang and Shu [28], to obtain TVD schemes or maximum-
principle-preserving schemes for linear and nonlinear PDEs in one dimension or
for linear PDEs in multi-dimensions, for second-, third-, or higher-order accurate
schemes.

• Use simple time evolution such as SSP Runge–Kutta or multi-step methods
[5, 17]. However, additional limiting will be needed on un(x) which may destroy
accuracy near smooth extrema.

In Zhang and Shu [29], a procedure is designed to prove the bound for the new cell
averages at the next time level (7), with simple Euler forward or SSP Runge–Kutta
or multi-step methods without losing accuracy on the limited un(x), as described
below.

The evolution of the cell average for a higher-order finite volume or DG scheme
satisfies

ūn+1
j = G(ūnj , u

−
j− 1

2
, u+

j− 1
2
, u−

j+ 1
2
, u+

j+ 1
2
)

= ūnj − λ[h(u−
j+ 1

2
, u+

j+ 1
2
) − h(u−

j− 1
2
, u+

j− 1
2
)],

where we can easily verify
G(↑,↑,↓,↓, ↑)

therefore there is no maximum principle. That is, even if we insist that all five
arguments of the function G are in the range [m, M], the cell average at the next
time level ūn+1

j may still be outside this range, regardless of how small one takes the
CFL number λ > 0. The problem is with the two arguments u+

j− 1
2
and u−

j+ 1
2
which

are values at points inside the cell I j .
The polynomial p j (x) (either reconstructed in a finite volume method or evolved

in a DG method) is of degree k, defined on I j such that ūnj is its cell average on I j ,
u+
j− 1

2
= p j (x j− 1

2
) and u−

j+ 1
2

= p j (x j+ 1
2
).

We take a Legendre–Gauss–Lobatto quadrature rule which is exact for polyno-
mials of degree k, then

ūnj =
m∑

�=0

ω� p j (y�)

with y0 = x j− 1
2
, ym = x j+ 1

2
. The scheme for the cell average is then rewritten as
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ūn+1
j = ωm

[

u−
j+ 1

2
− λ

ωm

(

h(u−
j+ 1

2
, u+

j+ 1
2
) − h(u+

j− 1
2
, u−

j+ 1
2
)

)]

+ω0

[

u+
j− 1

2
− λ

ω0

(

h(u+
j− 1

2
, u−

j+ 1
2
) − h(u−

j− 1
2
, u+

j− 1
2
)

)]

+
m−1∑

�=1

ω� p j (y�)

= ωmHλ/ωm (u+
j− 1

2
, u−

j+ 1
2
, u+

j+ 1
2
) + ω0Hλ/ω0 (u

−
j− 1

2
, u+

j− 1
2
, u−

j+ 1
2
) +

m−1∑

�=1

ω� p j (y�).

Therefore, if
m ≤ p j (y�) ≤ M

at all Legendre–Gauss–Lobatto quadrature points and a reduced CFL condition

λ/ωm = λ/ω0 ≤ λ0,

where λ0 is the bound for the CFL condition of the first-order monotone scheme in
(5), is satisfied, then

m ≤ ūn+1
j ≤ M.

The second difficulty is: given

m ≤ ūn+1
j ≤ M, ∀ j

how to obtain an accurate un+1(x) (reconstruction or limited DG evolution) which
satisfies

m ≤ un+1(x) ≤ M, ∀x .

Previous work was mainly for relatively lower-order schemes (second or third-
order accurate), and would typically require an evaluation of the extrema of the
polynomial solution un+1(x) before limiting, which, for a piecewise polynomial of
higher degree, especially in high-dimension, could be quite costly.

Again in Zhang and Shu [29], a procedure is designed to obtain such un+1(x)with
a very simple scaling limiter, which only requires the evaluation of the unlimited
un+1(x) at certain predetermined quadrature points and does not destroy accuracy.
The procedure involves replacing p j (x) by the limited polynomial p̃ j (x) defined by

p̃ j (x) = θ j (p j (x) − ūnj ) + ūnj

where

θ j = min

{∣
∣
∣
∣
∣

M − ūnj
M j − ūnj

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

m − ūnj
m j − ūnj

∣
∣
∣
∣
∣
, 1

}

, (8)

with
Mj = max

x∈Sj

p j (x), m j = min
x∈Sj

p j (x) (9)
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where Sj is the set of Legendre–Gauss–Lobatto quadrature points of cell I j .
Clearly, this limiter is just a simple scaling of the original polynomial around its

average. The computational cost is minimal, since it involves only the computation
of θ j by (8), which in turn only involves the computation of the local bounds m j and
Mj by (9), via evaluating the unlimited polynomial at the predetermined Legendre–
Gauss–Lobatto quadrature points of cell I j .

The following lemma, guaranteeing the maintenance of accuracy of this simple
limiter, is proved in Zhang and Shu [29].
Lemma: Assume ūnj ∈ [m, M] and p j (x) is an O(Δx p) approximation, then p̃ j (x)
is also an O(Δx p) approximation.

We have thus obtained a high-order accurate scheme satisfying the following
maximum principle: If

m ≤ un(x) ≤ M, ∀x ∈ Sj ,

then
m ≤ un+1(x) ≤ M, ∀x ∈ Sj .

Recall that Sj is the set of Legendre–Gauss–Lobatto quadrature points of cell I j .
The third difficulty is how to generalize the algorithm and result to 2D (or higher

dimensions). Algorithms which would require an evaluation of the extrema of the
reconstructed polynomials un+1(x, y) would not be easy to generalize at all. On
the other hand, our algorithm uses only explicit Euler forward or SSP (also called
TVD) Runge–Kutta or multi-step time discretizations, and a simple scaling limiter
involving just evaluation of the polynomial at certain quadrature points, hence it
easily generalizes to 2D or higher dimensions on structured or unstructured meshes,
with strictmaximum-principle-satisfying property and provable high-order accuracy.

The technique has been generalized to the following situations maintaining uni-
formly high-order accuracy:

• 2D scalar conservation laws on rectangular or triangular meshes with strict maxi-
mum principle, [29, 35].

• 2D incompressible equations in the vorticity-streamfunction formulation (with
strict maximum principle for the vorticity), and 2D passive convections in a
divergence-free velocity field, i.e.,

ωt + (uω)x + (vω)y = 0,

with a given divergence-free velocity field (u, v), again with strict maximum prin-
ciple, [29, 35].

• One- and multi-dimensional compressible Euler equations maintaining positivity
of density and pressure, [30, 35].

• One- and two-dimensional shallow water equations maintaining non-negativity of
water height and well-balancedness for problems with dry areas, [22, 23].
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• One- andmulti-dimensional compressible Euler equations with source terms (geo-
metric, gravity, chemical reaction, radiative cooling)maintaining positivity of den-
sity and pressure, [31].

• One- and multi-dimensional compressible Euler equations with gaseous detona-
tions maintaining positivity of density, pressure, and reactant mass fraction, with
a new and simplified implementation of the pressure limiter. DG computations are
stable without using the TVB limiter, [20].

• A minimum entropy principle satisfying high-order scheme for gas dynamics
equations, [32].

• Cosmological hydrodynamical simulation of turbulence in the intergalactic
medium (IGM) involving kinetic energy dominated flows, [36].

• Ideal special relativistic hydrodynamics (RHD), [12].
• Positivity-preserving high-order finite difference WENO schemes for compress-
ible Euler equations, [33].

• Simplified version for WENO finite volume schemes without the need to evaluate
solutions at quadrature points inside the cell, [34].

• Positivity-preserving for PDEs involving global integral terms including a hierar-
chical size-structured population model [27], Vlasov–Boltzmann transport equa-
tions [2], and correlated random walk with density-dependent turning rates [11].

• Positivity-preserving semi-Lagrangian schemes, [14, 15].
• Positivity-preserving first-order and higher-order Lagrangian schemes for multi-
material flows, [1, 18, 19].

• Positivity-preserving DG methods for radiative transfer equations, with iterative
procedure for steady states or implicit time discretization for time-dependent equa-
tions, [26].

4 Another Approach: Flux Correction

Another approach to achieve bound-preserving schemes is through the traditional
flux-correction method, namely modify the numerical flux by

f̂ = θ f̂ h + (1 − θ) f̂ l

where f̂ h is the high-order numerical flux and f̂ l is the first-order numerical flux
(which does lead to a bound-preserving first-order scheme).

Many traditional TVD or bound-preserving schemes follow this approach. It is
relatively easy to design θ to guarantee bound-preserving, but it is relatively more
difficult to guarantee accuracy (and often accuracy is lost, especially near smooth
extrema).

Recently, this approach has been revived. The limiter in [6] belongs to this class.
We mention in particular the work of Xu [25]. This is one of the rare cases that
such flux-correction method has been proved to maintain the original high-order
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accuracy even near smooth extrema. However, the proof is via explicit and com-
plicated algebraic verifications, thus limiting the scope that it can be applied. See
Liang and Xu [9] for scalar conservation law, Xiong et al. [24] for incompressible
flows, Christlieb et al. [3] for unstructured mesh, Christlieb et al. [4] for MHD, Jiang
et al. [8] for correlated random walk, and Wu and Tang [21] for special relativistic
hydrodynamics.

5 Conclusions and Future Work

We have surveyed a general framework to obtain uniformly high-order bound-
preserving schemes for multi-dimensional nonlinear conservation laws and other
hyperbolic equations including the radiative transfer equations, as well as another
approach via flux correction to achieve the same purpose.

It would be interesting to carry out research in the future to design higher-order
bound-preserving DG schemes for other types of PDEs and other types of time
discretizations.
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Comparison of Shallow Water Models
for Rapid Channel Flows

Stefanie Elgeti, Markus Frings, Anne Küsters, Sebastian Noelle
and Aleksey Sikstel

Abstract To model shallow free surface flows, the Saint-Venant Equations (SVE)
are a convenient simplification of the incompressible Navier–Stokes Equations
(NSE). In the present study, we compare the twomodels for one-dimensional channel
flow over a hump (cf. Behr (XNS simulation program, 2016 [5]), Küsters (Compar-
ison of a Navier–Stokes and a shallow water model using the example of flow over
a semi-circular bump, 2013 [8]), Noelle et al. (J Comput Phys 226(1):29–58, 2007
[10]), Sikstel (Comparison of hydrostatic and non-hydrostatic shallow water mod-
els, 2016 [13])). Our numerical experiments show that the SVE fail for some rather
standard transcritical flows, where the two models compute different water heights
ahead of and different shock speeds behind the hump. Using numerical computations
as well as a formal Cauchy–Kowalevski argument, we give a qualitative explanation
of the shortcoming of the SVE. In addition, we examine a recently developed non-
hydrostatic shallowwater model Sainte-Marie et al. (Discrete and Cont Dyn Syst Ser
B 20(4):361–388, 2014 [12]) which proposes to produce physically more realistic
results.

S. Elgeti · M. Frings
CATS, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany
e-mail: elgeti@cats.rwth-aachen.de

M. Frings
e-mail: frings@cats.rwth-aachen.de

A. Küsters
JSC, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
e-mail: a.kuesters@fz-juelich.de

S. Noelle (B) · A. Sikstel
IGPM, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
e-mail: noelle@igpm.rwth-aachen.de

A. Sikstel
e-mail: sikstel@igpm.rwth-aachen.de

© Springer International Publishing AG, part of Springer Nature 2018
C. Klingenberg and M. Westdickenberg (eds.), Theory, Numerics
and Applications of Hyperbolic Problems II, Springer Proceedings
in Mathematics & Statistics 237, https://doi.org/10.1007/978-3-319-91548-7_45

605

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91548-7_45&domain=pdf


606 S. Elgeti et al.

Keywords Navier–Stokes equations · Shallow Water Equations
Flow over a Weir · Non-hydrostatic pressure · Inflow–Outflow boundary conditions

AMS Subject Classification: 76B15 · 35L65

1 Shallow Water Models

Themodeling of shallowwater flows plays an important role in geophysical research.
The basic equations of motion are the incompressible NSE [6]

ρ(∂tu + u · ∇u + g) + ∇ p − μ�u = 0 in Ω(t), (1)

∇ · u = 0 in Ω(t) (2)

where x = (x, z), u = (u, w)T , and p are the space variables, velocities, and ther-
modynamic pressure, respectively. Furthermore, μ denotes the viscosity coefficient,
g := (0, g)T the gravitational acceleration and ρ the constant density. The solution of
the NSE is defined in a domainΩ(t) := {(x, z) : b(x) ≤ z ≤ η(x, t), xA ≤ x ≤ xB}
with a free surface η(x, t) and a solid, time-independent bottom b (cf. Fig. 1). More-
over, we introduce the water depth H(x, t) := η(x, t) − b(x). The formulation of
the boundary conditions (BC) is postponed to the following section.

In case of shallow flows, the NSE are often simplified under certain conditions to
a nonlinear system of hyperbolic equations. For this, we start with the NSE in their
dimensionless form,

Fig. 1 Notation for the
numerical experiments
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Table 1 Dimensionless parameters. xre f—reference length, zre f—reference height, tre f—
reference time, and ure f = xre f

tre f
—reference velocity

1 ure f
tre f
xre f

flow speed
grid speed

δ
zre f
xre f

vertical length scale
horizontal length scale shallowness

G
gtre f
ure f

gravitational acceleration
grid acceleration

Fr
ure f√
gzre f

speed√
length

reference Froude Number

Re
ure f xre f ρre f

μ
inertial forces
viscous forces reference Reynolds Number

0 = ρ(∂t ui + ∇ · (u ui ) + G

δ
[i = 2])

+ 1

Fr2

{
1, for i = 1
1/δ2 for i = 2

}
∇ p

− 1

Re

2∑
j=1

∂2
j ui

{
1, for j = 1
1/δ for j = 2

}
for i ∈ {1, 2}, x in Ω(t) (3)

0 = ∇ · u in Ω(t). (4)

where [i = 2] denotes the Kronecker’s delta symbol to avoid confusion with the
dimensionless parameter δ. The definitions of the dimensionless parameters in
Eqs. (3)–(4) are listed in Table1. For the sake of simplicity, we omit any units when
explicitly defining values of parameters, constants, or material properties in the next
sections. Rewriting the vertical component of the Momentum Equation (3) yields an
equation for the change of the pressure in the vertical direction

∂

∂z
p = −δ2Fr2ρ

(
G

δ
+ ∂

∂t
w + ∇ · (u w) − 1

ρRe

(
∂2

∂x2
w + 1

δ2

∂2

∂z2
w

))
. (5)

Formany shallowflows, the vertical acceleration is small, while theReynolds number
is large, so

R := ∂

∂t
w + ∇ · (u w) − 1

ρRe

(
∂2

∂x2
w + 1

δ2

∂2

∂z2
w

)
� G

δ
(6)

This motivates the assumption that R vanishes and leads to.

Assumption 1 (Hydrostatic Pressure)

∂

∂z
p = −δ2Fr2Gρ. (7)

Since the dimensionless formulation was only used to motivate the hydrostatic pres-
sure assumption, we now return to physical variables. Integrating (7) from b(x) to
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η(x) along the vertical axis and assuming zero atmospheric pressure, we obtain

ph := ρg(η − b), (8)

so the hydrostatic pressure ph is due to the weight of the fluid on top of it.

Definition 1. We define the depth integral, the depth average, and the deviation of
an integrable function ϕ(x, z, t) by

ϕ̄(x, t) :=
∫ η

b
ϕ(x, z, t) dz, (9)

〈ϕ〉(x, t) := 1

H

∫ η

b
ϕ(x, z, t) dz, (10)

ϕ̃(x, z, t) := ϕ(x, z, t) − 〈ϕ〉(x, t). (11)

It is crucial to note that
〈ϕ2〉 = 〈ϕ〉2 + 〈ϕ̃2〉, (12)

and hence depth averaging the advective flux in the momentum equation yields the
term ∂

∂x

(
H(〈u〉2 + 〈ũ2〉)). To avoid introducing 〈ũ2〉 as an unknown in a depth-

averaged shallow water equation, it is common to refer to the following assumption,
which has been used by Levermore [9] in the context of kinetic equations:

Assumption 2 (Zero Moment) The horizontal velocity u is independent of the ver-
tical direction z, i.e.

ũ ≡ 0. (13)

In channel flows, this assumption is only valid approximately, if at all, andwe attempt
to assess its influence in Sect. 3.1 below.

Depth-averagingEqs. (3)–(4), neglecting theviscous forces and applyingAssump-
tions 1 and 2 yields the one-dimensional Saint-Venant Equations (or Shallow Water
Equations) [4]

∂

∂t
H + ∂

∂x
(H〈u〉) = 0, (14)

∂

∂t
(H〈u〉) + ∂

∂x

(
H〈u〉2 + 1

2
gH 2

)
= −gH

∂

∂x
b. (15)

We would like to mention two generalizations of the SVE: the multilayer model of
Audusse [2] does not use Assumption 2 on the velocity profile. The non-hydrostatic
depth average Euler equations (AVE) of Sainte-Marie et al. [12] does not assume
hydrostatic pressure (Assumption 1), but introduces a vertical velocity component:
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∂

∂t
H + ∂

∂x
(H〈u〉) = 0, (16)

∂

∂t
(H〈u〉) + ∂

∂x
(H〈u〉2 + 1

2
gH 2 + H〈pnh〉),= −(gH + 2〈pnh〉) ∂

∂x
b, (17)

∂

∂t
(H〈w〉) + ∂

∂x
(H〈w〉〈u〉) = 2〈pnh〉, (18)

∂

∂x
(H〈u〉) − 〈u〉 ∂

∂x
(H + 2b) + 2〈w〉 = 0. (19)

We include the AVE in the numerical comparison below.

2 Numerical Experiments

In this section, we describe a numerical experiment comparing hydrostatic and non-
hydrostatic models for a one-dimensional channel flow. For notation refer to Fig. 1.

2.1 Initial and Boundary Conditions

We consider one-dimensional channel flow over a bump. The inflow boundary is
positioned at xL := −7.0 and an outflow boundary at xR := 15.0. We set g = 1,
ρ = 1, and μ = 5 · 10−7 (almost inviscid flow). The bump is a semi-circle

b(x) =
{
0 if |x | < 0.45 + δ√
0.452 − x2 if |x | < 0.45 − δ

(20)

whose corners are connected twice continuously differentiable by a fifth-degree poly-
nomial. The intention—alas not proved so far—is that this yields continuous depen-
dence of the solution on the data.

The initial conditions for the NSE are constructed as a solution of the correspond-
ing steady-state equations, which is defined by an inflow discharge Hu = 0.5 to the
left, and and water height H = 1 to the right. The initial datum for the water level is
set to η = 1.0 everywhere, the horizontal velocity u = 0.5 and the vertical velocity
w = 0.0 except for the surroundings of the bump. These data are depth-averaged in
order to obtain the initial conditions for the SVE and AVE.

To define boundary conditions for the NSE, we divide Γ := ∂Ω into four parts,
Γ = Γin ∪ Γsur f ∪ Γout ∪ Γbot which stand for inflow boundary, the free surface,
outflow boundary, and the bottom topography, respectively. We impose a Dirichlet
condition u = (0.5, 0)tr on the inflow boundary Γin . At the outflow boundary, we
define a free boundary condition in terms of the unknown pressure p and velocity
field u following [11]. In a discrete setting, this gives a well-posed problem with
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a Neumann BC for the highest derivative (cf. [7]). We apply kinematic boundary
conditions at the free surface and the bottom and neglect wind forces and atmospheric
pressure. Finally, we set the total tension tensor to zero at the surface and assume
perfect slip at the bottom.

For the SVE, we have only two boundary points, xL and xR . At xL , we impose
Hu(xL , t) := (Hu)0(t) (see Sect. 2.2). At the outflow, we consider two types of BCs.
Either we prescribe a Neumann BC (H, Hu)x (xR) = 0 or a far-field BC by setting
H(xR) to a constant value.

The AVE include additional unknowns, namely the vertical momentum Hv and
the non-hydrostatic pressure pnh . For the non-hydrostatic pressure, we refer to [1].
The vertical momentum at the inflow is set to zero, in accordance with the NSE. The
other variables are treated exactly in the same way as for the SVE.

2.2 Numerical Solvers

For theNSE,weuse thexnsfinite element solver designed anddeveloped at theCATS
institute, [5]. The SVE are solved using the first-order hydrostatic reconstruction
scheme [3] with an HLL numerical flux. For the AVE, this scheme is augmented by
a projection–correction step for the non-hydrostatic pressure pnh , see [1].

We turn to the numerical boundary conditions. For the NSE, a convenient way to
realize the Neumann boundary at the outflow is to keep the values p and u from the
previous time step (cf. [8]). Now, we discuss the inflow BC for the SVE. We denote
the ghost cell to the left of xL , the values therein by subscript 0 and the interior
values by subscript 1. We assign (Hu)0 as the depth-averaged horizontal velocity
times the water height of the NSE solution at the beginning of each time step. To
filter out small oscillations in the Navier–Stokes data near the inlet, we average the
momentum of the NSE solution in the interval x ∈ [−6.5, 5] at the left end of the
domain. The interior values H1 and (Hu)1 are given by the numerical solution. It
remains to calculate H0. We require that it lies on an outgoing characteristic starting
at (H1, (HU )1), so

H0 = (Hu)0 + H1
√
H1

u1 + √
H1

. (21)

At the outflow (with ghost cell (N + 1) and interior cell N ), we have two boundary
conditions for the SVE. First, we have the Neumann BC extrapolated to the ghost
cell, i.e., HN+1 = HN and (Hu)N+1 = (Hu)N . Alternatively, the far-field BC sets
the water height in the SVE to be equal to the average value of the water height of
the NSE solution. Using the characteristic conditions again, one obtains

(Hu)N+1 = HN+1

(
(Hu)N

HN
−

√
0.5

(
HN

HN+1
− HN+1

HN

)
(HN − HN+1)

)
. (22)
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The boundary conditions for the AVE are implemented exactly in the same way
as for the SVE. For the term pnh , we again refer to [1].

2.3 Numerical Results

Running the simulations described above for 190 s gives the results shown in Fig. 2.
For the rest of this note, red circles in the graphics will denote the NSE solution, blue
crosses the SVE solution, and green squares the AVE solutions.

3 Discussion

In this section, we discuss two major differences between the NSE computations on
one hand, and the depth-averaged SVE and AVE computations on the other hand:

1. The water level of the SVE and AVE computations is about 17% higher than for
the NSE computations ahead of the bump (see Fig. 2 upper left).

2. The AVE and in particular the SVE shocks move considerably faster than the
NSE shock (see Fig. 2 upper right and lower left).

Fig. 2 Differences ofNSE,SVE, andAVEregarding free surface (upper left), horizontalmomentum
(upper right), vertical momentum (lower left), and non-hydrostatic pressure (lower right)
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We would like to relate these errors to the modeling Assumptions 1 and 2 as well as
to the numerical boundary coditions.

3.1 Water Level

The water levels produced by the SVE and the AVE to the left of the bump are almost
indistinguishable and are both about 17% larger than that of the NSE. In Fig. 3, we
show the rise of the water height (left) and the slow down of the depth-averaged
velocity (right) at the beginning of the experiment.

We begin by showing that this is due to a left-going wave which is reflected
from the bump. For this, we linearize the SVE around the inflow state Ĥ = 1.0
and û = 0.5 (with eigenvalues λ̂1 = −0.5 and λ̂2 = 1.5) and decouple the system
by projecting the variables onto the left eigenvectors. Thus, the projected variables
are v1 := H(0.5 − uS) and v2 = H(1.5 + uS). Figure4 clearly shows that there is a
left-going wave starting at the foot of the bump.

Now, the z-independent profile of the horizontal velocity postulated in
Assumption 2 initiates the unphysical reflection for the SVE. For this argument, we
compare the evolution of the SVE solution (HS, 〈uS〉) and the solution (HN , 〈uN 〉)
of the depth-averaged NSE using a Cauchy–Kowalevski type argument. Neglecting
the viscous forces, the depth-averaged NSE read

∂

∂t
H + ∂

∂x
(H〈u〉) = 0, (23)

∂

∂t
(H〈u〉) + ∂

∂x

(
H

(〈u〉2 + 〈ũ2〉) + 1

2
gH 2 + H〈 p̃nh〉

)
= −gH

∂

∂x
b. (24)

Fig. 3 Water height in the SVE rises at the beginning of the experiment—η (left) and 〈u〉 (right)
at times t = (2.5, 5, 7.5, 10) (from top to bottom)
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Fig. 4 v1 (dashed line) and
v2 (solid line) for the SVE at
times t = (2.5, 5, 7.5, 10)
from top to bottom

Due to the assignment of the SVE initial data, 〈uS〉 = 〈uN 〉 at time zero. Substracting
(23)–(24) from (14)–(15), we obtain

∂

∂t

(
HS − HN

) = 0 (25)

∂

∂t
(HS〈uS〉 − HN 〈uN 〉 = − ∂

∂x

(
H〈ũ2〉 + H〈pnh〉) . (26)

For the amplitude of the left-going wave, we get

∂

∂t

(
vS1 − vN1

) = ∂

∂x

(
H〈ũ2〉 + H〈pnh〉) . (27)

In Fig. 5, we display τ := H〈ũ2〉. Clearly, ∂
∂x τ is positive ahead of the bump,

which corresponds to the onset of the left-going wave in Fig. 4. Similarly, the non-
hydrostatic pressure in the NSE (see lower-right plot in Fig. 2) also increases to the
left of the bump. This indicates that both simplifications made in Assumptions 1 and
2 contribute to the onset of the reflected wave to the left of the bump. As can be seen
from Fig. 6, the change of the BC does not have an influence on the water height to
the left of the bump.

Note also that in our implementation, the solutions of non-hydrostatic depth-
averaged AVE model are closer to the SVE than the NSE.

3.2 Shock Position

Let us now discuss the flow at the rear side and behind the bump. At the top of
the bump, the flow changes from sub-critical to supercritical, and subsequently
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Fig. 5 Second spatial derivative of τ is almost constant in time; at times t = (2.5, 5, 7.5, 10) from
top to bottom

Fig. 6 Water height and horizontal momentum after applying the far-field BC H(xN+1) = 1.0

accelerates as a waterfall, which ends in a hydraulic jump. This is shown at time
t = 190 in the upper left plot in Fig. 2. For the NSE, the hydraulic jump is a station-
ary viscous profile, while the SVE and AVE yield shocks traveling to the right. All
three models give distinctly different solutions with different wave speeds.

In [8, 13], it was argued that the pressure difference between the models due to
Assumption 1 changes the left momentum flux in the Rankine–Hugoniot condition,
and hence, the shock speeds. Here, we argue that also the boundary condition at
the outflow plays an important role. For this, we replace the Neumann BC by the
farfield BC H(xN+1) = 1.0. This corresponds closely to an implementation detail of
the moving grid NSE-solver, which fixes the top grid point at the outflow to height
z = 1. The results are presented in Fig. 6. The SVE and AVE shocks now coincide,
are stationary, and are located at the right corner of the bump. In particular, note that
the non-hydrostatic pressure, which is different in the three models, does not seem
to play a role in the shock position.
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4 Conclusion

We have studied a supercritical channel flow over a bump where the incompressible,
free-surface Navier–Stokes equations give distinctly different solutions from two
depth-averaged shallow water models. An unphysical reflection off the bump for the
depth-averaged models is caused equally by the simplified velocity profile, which is
constant in vertical direction, and by the lack of non-hydrostatic pressure. Contrary
to this, a wrong shock speed is mainly due to the outflow boundary conditions.

It would be interesting to see if a variant of the non-hydrostatic depth-averaged
model of Sainte-Marie et al. [12], or another implementation of the model, would
produce results which are closer to the NSE. It would also be interesting to see if
Audusse multi-layer model [2] reduces the reflection at the bump.

Overall, our example shows that depth-averaged models, which are very common
in the hyperbolic community, should be used with some caution.

Acknowledgements The authors would like to thank Emmanuel Audusse, Jacques Sainte-Marie
and Marek Behr for sharing their insights, and Henning Sauerland for help with the NSE solver.
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On Stability and Conservation Properties
of (s)EPIRK Integrators in the Context
of Discretized PDEs

Philipp Birken, Andreas Meister, Sigrun Ortleb and Veronika Straub

Abstract Exponential integrators are becoming increasingly popular for stiff prob-
lems of high dimension due to their attractive property of solving the linear part of
the system exactly and hence being A-stable. In practice, however, exponential inte-
grators are implemented using approximation techniques to matrix-vector products
involving functions of the matrix exponential (the so-called ϕ-functions) to make
them efficient and competitive to other state-of-the-art schemes. We will examine
linear stability and provide a Courant–Friedrichs–Lewy (CFL) condition of special
classes of exponential integrator schemes called EPIRK and sEPIRK and demon-
strate their dependence on the parameters of the embedded approximation technique.
Furthermore, a conservation property of the EPIRK schemes is proven.
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1 Introduction

Many simulations require efficient time integration schemes for large and stiff sys-
tems of ODEs resulting from the method of lines for PDEs such as the compressible
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Navier–Stokes equations on complex grids. In this field, implicit methods often
appear to be more efficient than explicit schemes due to the bounded stability region
of explicit schemes. Exponential integrators also provide good stability properties
like A-stability and recently gained increasing interest due to efficient approximation
techniques for the evaluation of the matrix exponential and functions of it.

We will focus on the classes of exponential integrators called EPIRK [1] and
sEPIRK [2]. They were shown to be efficient for sufficiently stiff problems through
the application of ϕ-functions to vectors by sophisticated approximation strategies
utilizing Krylov projections [3]. Furthermore, they offer high precision and good
stability properties like A- and L-stability in theory, i.e., evaluating the ϕ-functions
analytically. In practice, however, wewill show in Sect. 2.1 that the chosen dimension
m of theKrylov subspace aswell as other parameters influence the size of the stability
region and A-stability is not given anymore.

Given the framework of discretized PDEs, the Courant–Friedrichs–Lewy (CFL)
condition has to be satisfied. We will see that this is always the case for exact ϕ-
evaluations but not guaranteed in combination with the approximation techniques
anymore.ACFLcondition including the dependence on the parameters of the scheme
and the approximation strategy will be presented and verified by a numerical exper-
iment in Sect. 2.2.

Conservativity of the numerical method is another desirable property when deal-
ing with conservation and balance laws such as the Navier–Stokes equations. It
guarantees that the scheme does not produce or lose mass, momentum, and energy
in agreement with the exact solution. The finite volume or discontinuous Galerkin
approach typically apply conservative numerical flux functions for this purpose. This
qualitative property should also be maintained by the time discretization method. In
Sect. 2.3, we prove that the EPIRK schemes are conservative.

All in all, we will see that (s)EPIRK schemes are well suited for application
to discretized PDEs, since the stability properties can be adaptively improved by
adjusting the parameters within the approximation strategy. In [4], the interested
readermay find the application of an EPIRK scheme to a discretized viscous Burgers’
equation resulting in a geometry-induced stiff problem in an implicit–explicit time
integration setting.

2 (s)EPIRK Schemes

For numerically solving an initial value problem

d

dt
U(t) = F(U(t)), U(0) = U0, U : IR+

0 → IRN , F : IRN → IRN , (1)

an explicit EPIRK scheme with s stages and a set of scheme parameters bi , gi j , akm
for i, j ∈ {1, 2, . . . , s}, k,m ∈ {1, 2, . . . , s − 1} can be written as
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Un+1 = Un + b1ψs1(gs1hAn)hFn + h
s∑

k=2

bkψsk(gskhAn)Δ
(k−1)Rn(Un)

Yi = yn + ai1ψi1(gi1hAn)hFn + h
i∑

j=2

ai jψi j (gi j hAn)Δ
( j−1)Rn(Un),

i = 1, . . . , s − 1, see [1]. The time step size is denoted by h, Un ≈ U(tn), Fn =
F(Un), An = F′(Un), Δ jRn(Un) is the j th forward difference through the nodes
Un,Y1, . . . ,Y j and

Rn(Un) = F(U(t)) − Fn − An(U(t) − Un)

denotes the nonlinear remainder. The ψ-functions are defined by

ψik(z) =
s∑

j=1

pik jϕ j (z), i, k = 1, . . . , s, with ϕ j (z) =
∞∑

�=0

1

(� + j)! z
�, j ∈ IN0,

(2)
using the additional parameters pik j , i, j, k = 1, . . . , s. For the special case of a
split right-hand side F

F(U) = LU(t) + N(U(t))

with a matrix L ∈ IRN×N and the nonlinear part N(U(t)), the sEPIRK schemes
were proposed by [2]. They exploit the observation that the stiffness of a system is
typically restricted to the linear part LU(t). They are defined analogously to EPIRK
schemes with the difference that An is replaced by L and the remainder term Rn by
the nonlinear term N. Thus, it is not necessary to computate the complete Jacobian
of F. However, for a linear problem

d

dt
U(t) = F(U(t)), F(U) = AU, U(0) = U0, U : IR+

0 → IRN ,A ∈ IRN×N , (3)

it follows that L = F′(U) = A and N(U(t)) = 0. Hence, an sEPIRK scheme reduces
to

Un+1 = Un + b1ψs1(gs1hA) hF(Un),

which corresponds to an EPIRK scheme applied to a linear problem (3). Conse-
quently, the properties analyzed in Sects. 2.1 and 2.2 likewise hold true for the
sEPIRK schemes.

The evaluation of the exponential-like ϕ-functions for a matrix A of high dimen-
sion N and linear combinations of them in form of theψ-functions applied to a vector
v is a computationally expensive process and therefore has to be approximated in an
efficient way. This is done by an algorithm well documented by Niesen and Wright
[5] and is summarized as follows:
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Algorithm 1 (Adaptive algorithm documented by Niesen and Wright [5]) The
task is to approximate the evaluation of

ψ(ghA)v =
s∑

j=1

p jϕ j (ghA)v (4)

for arbitrary g, h, p1, . . . , ps ∈ IR, A ∈ IRN×N , v ∈ IRN .

• ψ(ghA)v is the solution at τ = 1 of the special IVP

y′(τ ) = ghAy(τ ) +
s∑

j=1

τ j−1

( j − 1)! p jv, y(0) = y0 = 0,

for which the exact solution can be expressed using just one ϕ-evaluation as

y(τk + ηk) = ηs
kϕs(ghηkA)ws +

s−1∑

j=0

η
j
k

j !wj for k = 0, 1, . . .

with

w0 = y(τk) and w� = ghAw�−1 +
s−�∑

j=0

τ
j
k

j ! p(�+ j)v f or � = 1, . . . , s. (5)

• Start at τ0 = 0 and reach τK = τK−1 + ηK−1 = 1 after K interior steps with step
sizes ηk , k = 0, . . . , K − 1.

• In each step perform a Krylov projection of

ϕs(ghηkA)ws =
∞∑

i=0

(ghηk)
i

(i + s)!A
iws

into a Krylov subspace Km(A,ws) = span{textws,Aws,A2ws, . . . ,Am−1ws}:

ϕs(ghηkA)ws ≈ Pm(ϕs(ghηkA)ws) := ||ws ||Vmϕs(ghηkHm)e1 + corr.

with matrices Vm,Hm ∈ IRm×m provided by the Arnoldi algorithm, m ≤ N and a
correction term corr., which will be neglected in the following.



On Stability and Conservation Properties of (s)EPIRK Integrators … 621

• The resulting interior time stepping scheme is of the form

yk+1 = ηs
k Pm(ϕs(ghηkA)ws) +

s−1∑

j=0

η
j
k

j !wj

for k = 0, 1, . . . , K − 1 with w0 = yk and w1, . . . ,ws as in (5). The last iterated
yK is the desired approximation to the expression (4).

• An adaptivity strategy for m and ηk minimizing the computational cost at a pre-
scribed tolerance is provided.

In the following, we will examine the stability properties as well as the CFL con-
dition in the case of applying the Algorithm1. In the last Sect. 2.3, we will investigate
a conservation property of the EPIRK schemes.

2.1 A-Stability

Let us consider a linear problem (3).

Theorem 2. Each (s)EPIRK scheme satisfying

b1 ps11 = 1, gs1 = 1, ps1i = 0 for i = 2, 3 . . . , s. (6)

solves a linear problem (3) exactly if ϕ1 is computed exactly.

Proof. The exact solution of (3) assuming Un = U(tn) is given by

U(tn+1) = ehAUn = Un + h(ehA − I)(hA)−1AUn = Un + hϕ1(hA)F(Un).

Due to Rn(Un) = F(U(t)) − Fn − A(U(t) − Un) = AU(t) − AUn − A(U(t) − Un)

= 0 and consequently, Δ( j)Rn(Un) = 0, j = 1, 2, . . . , s − 1, an EPIRK scheme
reduces to

Un+1 = Un + b1 h
s∑

i=1

ps1iϕi (gs1hA)Fn.

Postulating Un+1
!= U(tn+1) and thus,

Un + b1 h
s∑

i=1

ps1iϕi (gs1hA)Fn
!= Un + hϕ1(hA)Fn,

we arrive at the conditions (6).
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Since a linear system is solved exactly byEPIRKschemes satisfying the parameter
conditions (6), we trivially obtain the following corollary:

Corollary 1. EPIRK schemes satisfying conditions (6) are A- and L-stable if ϕ1 is
evaluated exactly.

The large benefit of an exponential integrator in general is the property shown
in Theorem2, i.e., supposing the conditions (6) yields the exact solution to linear
problems. All EPIRK methods proposed by Tokman and co-authors [1, 3] satisfy
those conditions. Hence, wewill consider only the practically useful EPIRK schemes
which fulfill these parameter conditions and therefore the consideredEPIRKschemes
have the form

Un+1 = Un + hϕ1(hA)F(Un) + h
s∑

k=2

bkψsk(gskhAn)Δ
(k−1)Rn(Un). (7)

Now, let’s have a look at the stability properties of EPIRK schemes when using
the approximated ϕ-evaluations.

Theorem 3. Let deg(v) denote the degree of theminimal polynomial of vwith respect
toA. EPIRK schemes are not A- and L-stable if the Algorithm1 is applied for Krylov
subspace dimensions m with m < deg(v) ≤ N and m > 1.

Proof. The projection within Algorithm1 can be written as

Pm(ϕ j (A)v) =
m∑

i=1

β̃
( j)
i vi with β̃

( j)
i = ||v|| (ϕ j (Hm)e1

)
i
.

using theArnoldi basis vectors vi . After a basis transformation to the standardKrylov
basis vectors Ai−1v, i = 1, . . . ,m, the projection can be expressed as

Pm(ϕ j (A)v) =
m∑

i=1

β
( j)
i Ai−1v (8)

with some implicit coefficients β
( j)
i determined by the basis transformation matrix

operating on the coefficients β̃
( j)
i .

For the linear problem (3), it is Rn(Y) = 0, Y ∈ IRN , and therefore,Δ(k)Rn(Un) =
0, k = 0, 1 . . . , s. Consequently, an EPIRK scheme reduces to

Un+1 = Un + hϕ1(hA)F(Un).

ApplyingAlgorithm1 for evaluatingϕ1(hA)F(Un)means having p1 = 1, p2 = p3 =
. . . = ps = 0, g = 1, and v = F(Un) in the expression (4), leading to

w0 = yk, w j = (hA) jyk + (hA) j−1F(Un), j = 1, . . . , s.
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The interior step yk+1, k ∈ {0, 1, . . . , K } is then given by

yk+1 = ηs
k Pm(ϕs(hηkA)ws) +

s−1∑

j=0

η
j
k

j !w j

= ηs
k Pm(ϕs(hηkA)ws) + yk +

s−1∑

j=1

η
j
k

j !
(
(hA) jyk + (hA) j−1F(Un)

)

(8)= ηs
k

m∑

i=1

β
(1)
i (hηkA)i

(
(hA)syk + (hA)s−1F(Un)

)

+ yk +
s−1∑

j=1

η
j
k

j !
(
(hA) jyk + (hA) j−1F(Un)

)

=
m∑

i=1

β
(1)
i ηs+i

k

(
(hA)s+iyk + (hA)s−1+iF(Un)

)

+ yk +
s−1∑

j=1

η
j
k

j !
(
(hA) jyk + (hA) j−1F(Un)

)
.

In case of one inner step (K = 1), we have y0 = 0 and

yK=1 = y1 =
m∑

i=1

β
(1)
i ηs+i

0 (hA)s−1+iF(Un) +
s−1∑

j=1

η
j
0

j ! (hA) j−1F(Un) (9)

with step size η0 = 1, leading to the EPIRK scheme accounting the approximation:

Un+1 = Un + hyK

= Un + h
( m∑

i=1

β
(1)
i ηs+i

0 (hA)s−1+iAUn +
s−1∑

j=1

η
j
0

j ! (hA) j−1AUn

)

= Un +
m∑

i=1

β
(1)
i ηs+i

0 (hA)s+iUn +
s−1∑

j=1

η
j
0

j ! (hA) jUn

=
(
I +

m∑

i=1

β
(1)
i ηs+i

0 (hA)s+i +
s−1∑

j=1

η
j
0

j ! (hA) j
)

︸ ︷︷ ︸
:=S(hA)

Un.

The stability function S turns out to be a polynomial of degree s + m, since
β(1)
m �= 0 due to the natural assumption m < deg(v) resulting from dim Km(A, v) =

min{m, deg(v)} and the typical case m 	 N , deg(v)≤̃N .
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In case of two inner steps (K = 2), notice that y1 is of the form y1 = S̃(hA)F(Un)

with S̃ being a polynomial of degree m + s − 1 (see (9)). This form is inserted into
y2

yK=2 = y2 =
m∑

i=1

β
(1)
i ηs+i

1

(
(hA)i+s S̃(hA)F(Un) + (hA)s−1+iF(Un)

)

+S̃(hA)F(Un) +
s−1∑

j=1

η
j
1

j !
(
(hA) j S̃(hA)F(Un) + (hA) j−1F(Un)

)

providing Un+1 = Un + hy2 and hence leading to a stability polynomial of degree
2(s + m).

In an analogue manner, it can be shown for an arbitrary number of inner steps
K ≥ 1 that the stability function is a polynomial of degree K (s + m). Consequently,
linear stability depends on the Krylov dimension m, the number of stages s, the
number of interior steps K as well as the inner steps ηk , and, naturally, on the time
step size h. Hence, the stability region is bounded and A- and L-stability are not
guaranteed anymore.

2.2 CFL Condition

In the context of discretized PDE’s, theCFL condition has to be accounted for to guar-
antee stability and thus, convergence of the numerical method. The CFL condition
can be viewed as a condition on the chosen time step. In its original form, it demands
that the numerical domain of dependence given by the numerical stencil includes the
physical domain of dependence given by characteristic speedwithwhich information
travels through the computational grid. Since we are using explicit EPIRK schemes,
the computational stencil might not cover the whole physical domain of dependence
for arbitrarily large time step sizes (see Fig. 1 for illustration).

Let us consider the linear advection equation

∂t u(t, x) + a ∂xu(t, x) = 0, a > 0, x ∈ [x0, xend ] ⊂ IR (10)

with the characteristic speed a and appropriate initial and boundary conditions. A
first order backward difference discretization on the nodes x0, x1, . . . , xN+1 = xend
with mesh width Δx leads to the system of ODE’s

d

dt
U(t) = F(U(t)) with F(U(t)) = AU(t), U : IR+

0 → IRN , (11)
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Fig. 1 Illustration of the CFL condition: The physical domain of dependence (light gray) given by
the characteristics of the linear advection equation must be included in the numerical one given by
the computational stencil (dark gray)

whereby A shows the structure

A = − a

Δx

⎛

⎜⎜⎜⎝

1
−1 1

. . .
. . .

−1 1

⎞

⎟⎟⎟⎠ ∈ IRN×N .

The following result concerning a CFL condition for EPIRK schemes will be shown:

Theorem 4. An EPIRKmethod with s stages applied to the discretization (11) using
mesh width Δx of the linear advection equation (10) with characteristic speed a

• satisfies the CFL condition for any time step size h if the ϕ-functions are evaluated
exactly, i.e. the time step size is not restricted by the CFL condition

• has to satisfy the CFL condition

h ≤ K (s + m)Δx

|a|
when the Algorithm1 is utilized for the approximation of the ϕ-evaluations in a
Krylov subspace of dimension m with K interior steps.

Proof. Thephysical domainof dependenceof a component (Un+1)p ≈ u(tn + h︸ ︷︷ ︸
=tn+1

, xp),

p ∈ {0, . . . , N }, is given by

Dphys((Un+1)p) = {(Un)q}

with q ∈ {1, . . . , p} such that xp − |a|h ∈ [xq , xq+1].
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First, let’s consider the case of exactϕ-evaluations.We notice that the kth power of
A has lower bandwidth k and consequently,AN−1 is a lower triangularmatrixwithout
zeros beneath the diagonal. Due to the series definition (2) of ϕ j , ϕ j (A) has the same
structure asAN−1 and accordingly, is a lower triangular matrix without zeros beneath
or on the diagonal. According to the form (7) of EPIRK schemes, the computation
of Un+1 contains the expression ϕ1(A)Fn leading to a lower triangular matrix operat-
ing on Fn . Therefore, the component (Un+1)p depends on (Fn)q , q ∈ {1, . . . , p} and
accordingly, on (Un)q , q ∈ {1, . . . , p} providing the numerical domain of depen-
dence

Dnum,*((Un+1)p) = {(Un)1, (Un)2, . . . , (Un)p}.

Therefore, the CFL condition Dphys((Un+1)p) ⊂ Dnum,∗((Un+1)p) is always satisfied
and the first statement of the theorem is shown.

Now let’s consider approximate ϕ-evaluations. As we have seen in the proof of
Theorem3, an EPIRK scheme in combination with Algorithm1 applied to a linear
system can be expressed in the form

Un+1 = S(hA)Un

with a stability polynomial S of degree K (s + m). In the monomial expansion of S,
the matrix AK (s+m) thus contributes to the largest number of nonzero entries leading
to the numerical domain of dependence

Dnum((Un+1)p) = {(Un)p−K (s+m), . . . , (Un)p}.

Having a more precise look at the stability function, we notice that (Un)p−K (s+m)

is always contained in the numerical domain of dependence since β(1)
m �= 0 and

ηk �= 0, k = 0, 1, . . . , K − 1. Unfortunately, we cannot exclude that other compo-
nents may disappear for specific combinations of the projection coefficients β

(1)
i ,

i = 1, 2, . . . ,m.
In case of the full numerical domain of dependence, the CFL condition for advec-

tion is thereby given by Dphys ⊂ Dnum for any q ∈ {1, . . . , p} and accordingly,

xp−K (s+m) ≤ xq ⇔ xp − K (s + m)Δx ≤ xp − |a|h ⇔ h ≤ K (s + m)Δx

|a| .

In the other case, that condition is an upper bound, so that in fact even smaller time
step sizes may be required to guarantee stability.

To computationally verify the CFL condition, we numerically determined the
maximal stable time step sizes hnum for some values ofm and K and compared them
to the upper bound hCFL given by the CFL condition.
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Table 1 Comparison of the theoretical and numerical maximal stable time step size for a linear
advection discretization
K 1 1 1 1 1 1 1 1 2 4 8 16

m 1 2 3 4 5 10 50 100 5 5 5 5

hCFL 4.0e-3 6.0e-3 8.0e-3 1.0e-2 1.2e-2 2.2e-2 1.02e-1 2.02e-1 2.4e-2 4.8e-2 9.6e-2 1.92e-1

hnum 4.0e-3 6.0e-3 8.0e-3 0.9e-2 1.1e-2 2.0e-2 1.01e-1 2.02e-1 2.2e-2 4.5e-2 9.0e-2 1.81e-1

Diffα 0 0 0 0.1e-2 0.1e-2 0.2e-2 0.01e-1 0 0.2e-2 0.3e-2 0.6e-2 0.11e-1

αDiff denotes the difference hCFL − hnum

The setupof the test case is the sameas inEq. (11)with x ∈ [0, 2],Δx =1e-3, N =
1999, a = 0.5, s = 1. The initial condition is given by the exact solution u(t, x) =
cos(π(x − at)) and we computed until tend = 4.

The results in Table1 approve that the proposed CFL condition is a necessary
condition for stability but not a sufficient one. Nevertheless, it gives a reasonable
guide and in combination with a safety factor< 1 it appears well suited for time step
size adaption within an implementation.

2.3 Conservation

For conservation laws as well as for balance laws such as the Navier–Stokes equa-
tions, it is natural to apply conservative numerical flux functions in the spatial dis-
cretization, meaning that the flow between two cells is the same for both normal
directions. Since the right-hand side F of an ODE system (1) resulting from the spa-
tial discretizationwith conservative numerical flux functions is a spatial discretization
operator, it follows for a computational domain with periodic boundary conditions
that

N∑

j=1

(F(U)) j = 0 ∀ U ∈ IRN . (12)

We call such a right-hand side F globally conservative. With this property of F, the
sum of the components of the solution U does not change in time:

d

dt

N∑

j=1

(
U

)
j
=

N∑

j=1

( d

dt
U

)

j

(1)=
N∑

j=1

(
F
)

j

(12)= 0.

Hence, the time discretization should alsomaintain this global conservation property,
defined as follows:
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Definition 1. Given an initial value problem (1) with a globally conservative right-
hand side F, see (12), a time stepping method is called globally conservative, if

N∑

j=1

(Un+1) j =
N∑

j=1

(Un) j .

We will prove the following statement.

Theorem 5. The EPIRK schemes are globally conservative.

Proof. Let 1N ∈ IRN denote the vector consisting of ones and 0N ∈ IRN the zero
vector. Due to the conservation property (12) of F, we have

d

dU

N∑

j=1

(
F(U)

)
j = 0 ⇔

N∑

j=1

d

dU

(
F(U)

)
j = 0 ∀ U ∈ IRN

and accordingly,

1TNF
′(U) =

( N∑

j=1

∂

∂U1

(
F(U)

)
j ,

N∑

j=1

∂

∂U2

(
F(U)

)
j , . . . ,

N∑

j=1

∂

∂UN

(
F(U)

)
j

)
= 0TN . (13)

It follows with the series definition (2) of ϕ that

1TNψsk(cF
′(U))

(2)=
s∑

�=1

psk�1TN

⎛

⎝ 1

�! I + cF′(U)
( 1

(� + 1)! I +
∞∑

j=2

1

(� + j)! (cF
′(U)) j−1

)
⎞

⎠

(13)=
s∑

�=1

psk�
1

�!1
T
N (14)

holds for arbitrary c ∈ IR and all U ∈ IRN . Furthermore, we get

1TNRn(U(t)) =
N∑

j=1

(
F(U(t))

)

j
−

N∑

j=1

(
F(Un)

)

j
− 1TNF

′(Un)(U(t) − Un)
(12),(13)= 0

and accordingly,

1TNΔkRn(Un) =
k−1∑

i=0

(−1)i
(
k

i

)
1TNRn(Yk−i ) = 0 (15)

for all k = 1, 2, . . . , s. In conclusion, we arrive at
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N∑

j=1

(Un+1) j =
N∑

j=1

(Un) j + b11TNψs1(gs1Anh)hFn

+h
s∑

k=2

bk1TNψsk(gskAnh)Δ(k−1)Rn(Yk−1)

(14)=
N∑

j=1

(Un) j + b1

s∑

�=1

ps1�
1

�!1
T
NhFn

+h
s∑

k=2

bk

s∑

�=1

psk�
1

�!1
T
NΔ(k−1)Rn(Yk−1)

(12),(15)=
N∑

j=1

(Un) j .

The conservation property of the sEPIRK schemes depends on the specific split-
ting of the right-hand side F into L and N. In our current work, we adopt the sEPRIK
schemes into a domain-based implicit–explicit setting, which is also done for exam-
ple in [6]. We are even able to show a conservation property of these schemes in that
framework, which will be published next.
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Compactness on Multidimensional
Steady Euler Equations

Tian-Yi Wang

Abstract Recently, the new compactness frameworks on the multidimensional
steady Euler equations are established. At the beginning, we will start from amotiva-
tive example on the steady Euler equation. Then, the formal compactness framework
for approximate solutions to subsonic-sonic flows governed by the steady compress-
ible Euler equations in arbitrary dimension is introduced. Later, we will present
the compactness framework of incompressible limit to the steady compressible
Euler flow. At the end, as the direct applications of the compactness framework are
mentioned.

Keywords Multidimensional · Steady Euler flow · Compactness framework
Subsonic-Sonic limit · Incompressible limit

1 Introduction

The full Euler equations for steady compressible flows in Rd read

⎧
⎨

⎩

div (ρu) = 0,
div (ρu ⊗ u) + ∇ p = 0,
div (ρuE + up) = 0,

(1)

where x = (x1, · · · , xd) ∈ Rd , d ≥ 2, u = (u1, · · · , ud) ∈ Rd is the fluid velocity,
and

q := |u| =
( d∑

i=1

u2
i

)1/2
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is the speed, while ρ, p, and E represent the density, pressure, and total energy,
respectively. The non-negative quantities ρ, q, p, and E are not independent. For
ideal polytropic gas,

E = q2

2
+ p

(γ − 1)ρ

with adiabatic exponent γ > 1. In this case, the Bernoulli law is written as

q2

2
+ h(ρ, p) = B, (2)

where h(ρ, p) = γ p
(γ−1)ρ is the enthalpy, and B is a Bernoulli function determined by

appropriate additional conditions (such as boundary conditions and/or asymptotic
conditions at infinity). The sound speed of the flow is

c =
√

γ p

ρ
, (3)

and the Mach number is defined as

M = q

c
. (4)

Then, for a fixed Bernoulli function B, there is a critical speed qcr =
√
2 γ−1

γ+1 B such

that,whenq ≤ qcr, theflow is subsonic-sonic (i.e., M ≤ 1); otherwise, it is supersonic
(i.e., M > 1) [1, 2].

It is well known that the steady Euler equations for compressible fluids are of
composite-mixed type, which is determined by theMach number M . That is, the sys-
tem can be reduced to a system such that two of the equations are elliptic-hyperbolic
mixed: ellipticwhen M < 1 and hyperbolicwhen M > 1,while the other n equations
are hyperbolic.

Also, the entropy is a typical quantity:

S = γ p

(γ − 1)ργ
, (5)

which is conserved along the streamline. When the S be a positive constant in the
field, the flow is called as homentropic, in which the pressure becomes p = ργ by
picking the proper constant.

During the 1950s, the effort on steady Euler equations was focused mainly on
the irrotational case, namely when u is constrained to satisfy the additional equation
curl u = 0, when the flow is homentropic. Since the equations of uniform subsonic
flow possess ellipticity, solutions have better regularity than those corresponding to
transonic or supersonic flow. The airfoil problem for two-dimensional subsonic flow
was solved; cf. Shiffman [3], Bers [4], and Finn-Gilbarg [5]. The first result for three-
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dimensional subsonic flow past an obstacle was given by Finn and Gilbarg [6] under
some restrictions on the Mach number. Dong [7] and Dong-Ou [8] extended the
results to the maximum Mach number M < 1 for the arbitrarily dimensional case.
And, Du-Xin-Yan [9] constructed the smooth uniform subsonic flow in an infinitely
long nozzle inRd , d ≥ 2, while the largely open nozzle case was solved by Liu-Yuan
[10]. Recently, the existence and uniqueness of the subsonic flows with conservative
forces were considered in [11, 12] for the airfoil problem and infinitely long nozzle
problem, respectively.

For the rotational case, the global existence of homentropic subsonic flow through
two-dimensional infinitely long nozzles was proved in Xie-Xin [13]. The result
was also extended to the two-dimensional periodic nozzles in Chen-Xie [14] and
to axisymmetric nozzles in Du-Duan [15]. For the full Euler flow, the first result was
given by Chen-Deng-Xiang [16] for two-dimensional infinitely long nozzles. Bae
[17] showed the stability of contact discontinuities for subsonic full Euler flow in
the two-dimensional, infinitely long nozzles. Duan-Luo [18] considered the axisym-
metric nozzle problem for the smooth subsonic flow. The compressible flow in the
infinitely long nozzle with the stagnation points was considered by Du-Xie [19]. For
the recent series of works on large vorticity with the increasing condition, please see
[20–23]. The progress on the airfoil problem of the rotational flow is still restricted in
the symmetric body case, which is also called as half plane problem[1], the existence
and uniqueness of the subsonic flow are shown in [24, 25].

On the other hand, few results are currently known for the cases of subsonic-
sonic flow and transonic flow, since the uniform ellipticity is lost and shocks may be
present. That is, smooth solutions may not exist. Instead, one must consider weak
solutions. Morawetz [26, 27] introduced an approach via compensated compactness
to analyze irrotational steady flow of the Euler equations. Indeed, Morawetz estab-
lished a compactness framework under the assumption that the solutions are free of
stagnation points and cavitation points with the finite flow angle. Morawetz’s result
has been improved by Chen-Slemrod-Wang [28] in which the approximate solutions
away from cavitation are constructed by a viscous perturbation.

The compactness framework for subsonic-sonic irrotational flow allowing for
stagnation in two dimensions was due to Chen-Dafermos-Slemrod-Wang [29] by
combining the mass conservation, momentum, and irrotational equations. The key
observation in [29] is that the two-dimensional steady flow can be regarded as a
one-dimensional unsteady system of conservation laws, that is, one of the spatial
variables can be regarded as the time variable, so that the div-curl lemma can be
applied to the two momentum equations. In fact, the momentum equations are first
employed in [29] to reduce the support of the corresponding Young measure to two
points, and then the irrotational equation and the mass equation are used to reduce
the Young measure to a Dirac measure. Using a similar idea, Xie-Xin [30] inves-
tigated the subsonic-sonic limit of the two-dimensional irrotational, infinitely long
nozzle problem. Later, in [31], they extended the result to the three-dimensional
axisymmetric flow through an axisymmetric nozzle. The compactness framework in
the multidimensional irrotational case was established in Huang-Wang-Wang [32].
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Recently, the compactness framework on the steady Euler equation without irrota-
tional condition was completed in Chen-Huang-Wang [33].

The compactness framework established for irrotational flow no longer applies
directly to the steady full Euler equations in Rd with d ≥ 2. When d ≥ 3, the equa-
tions cannot be reduced to a one-dimensional system of conservation laws. More
importantly, the div-curl lemma is no longer valid for the momentum equations, due
to the presence of linear characteristics. In [33], the main observations are that it is
still possible to achieve the same compactness result, i.e., to reduce the Young mea-
sure to a Dirac measure, by using only natural weak estimates for the mass balance
and the vorticity, along with the Bernoulli law and entropy relation, through a more
delicate analysis on the phase space.

On the other hand, the incompressible limit is one of the fundamental fluid
dynamic limits in fluidmechanics. Formally, the steady compressible full Euler equa-
tions (1) converge to the steady inhomogeneous incompressible Euler equations:

⎧
⎨

⎩

div u = 0,
div (ρu) = 0,
div (ρu ⊗ u) + ∇ p = 0.

(6)

However, the rigorous justification of this limit for weak solutions has been a chal-
lenging mathematical problem, since it is a singular limit for which singular phe-
nomena usually occur in the limit process. In particular, both the uniform estimates
and the convergence of the nonlinear terms in the incompressible models are usually
difficult to obtain.

Generally speaking, there are two processes for the incompressible limit: the
adiabatic exponent γ tending to infinity, and the compressible parameter tending to
zero. The latter is also called the low Mach number limit, and the previous research
please check [34, 35] and references within. For the limit γ → ∞, it was shown
in [36] that the compressible homentropic Navier–Stokes flow would converge to
the homogeneous incompressible Navier–Stokes flow. Later, the similar limit from
the Korteweg barotropic Navier–Stokes model to the homogeneous incompressible
Navier–Stokes model was also considered in [37].

For the steady flow, the uniqueness of weak solutions of the steady incompress-
ible Euler equations is still an open issue. Thus, the incompressible limit of the
steady Euler equations becomes more fundamental mathematically; it may serve
as a selection principle of physical relevant solutions for the steady incompressible
Euler equations since a weak solution should not be regarded as the compressible
perturbation of the steady incompressible Euler flow in general. Furthermore, for the
general domain, it is quite challenging to obtain directly a uniform estimate for the
Leray projection of the velocity in the compressible fluids.

In [38], we formulate a suitable compactness framework for weak solutions with
weak uniform bounds with respect to the adiabatic exponent γ by employing the
weak convergence argument. One of the main observations is that the compactness
can be achieved by using only natural weak estimates for the mass conservation
and the vorticity, which was introduced in [32, 33]. Another observation is that the
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incompressibility of the limit for the full Euler flow is from a combination of all the
Euler equations.

The proofs of both subsonic-sonic limit and incompressible limit are based on the
compensated compactness method and relative method. The suggested references
are [39–44].

The rest of this paper is organized as follows. In Sect. 2, we give a heuristic
analysis to show the idea on the compactness of velocity for both subsonic-sonic
limit and incompressible limit. In Sect. 3, we present the compactness framework
for subsonic-sonic approximate solutions to subsonic-sonic flows governed by the
steady full Euler equations for compressible fluids in Rd with d ≥ 2, In Sects. 4,
the compactness framework on the incompressible limit to the multidimensional
steady Euler equation is stated. At last, Sect. 5 shows the applications on the above
frameworks.

2 A Heuristic Example

In this section, we will consider a simplified model to show the general idea of the
coming compactness frameworks. For taking the limits of the steady Euler equations,
one of the major difficulties is on the convention term, which needs the strong con-
vergence of the flow speed u. To present the motivation this part, we could propose
the homentropic irrotional conditions on the full Euler equations. And the equations
come to be:

{
curlu = 0,
div(ρu) = 0,

(7)

with the Bernoulli law:
q2

2
+ h(ρ) = B̄, (8)

while B̄ is a positive constant. In this case, the critical speed qcr (B̄) is a fixed positive
constant qcr . Then, the density ρ can be regarded as the function of speed q, which
will be written as ρ(q). On the other hand, by the irrotation condition (7)1, one
can introduce the potential ϕ, which satisfies u = ∇ϕ. From the above transfer, (7)2
becomes:

div(ρ(|∇ϕ|)∇ϕ) = 0. (9)

Here, for v ∈ Rd , we introduce the operator E(v) : Rd → Rd as E(v) := ρ(|v|)v.
Due to the existence of the maximum density, it is easy to see |E(v)| ≤ C(1 + |v|),
[7]. Next, we will show that for the subsonic-sonic flow, E(v) is monotone, which
means for v(1), v(2) ∈ Rd , and |v(1)|, |v(2)| ≤ qcr,

(
E(v(1)) − E(v(2))

) · (v(1) − v(2)) ≥ 0. (10)
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Notice that

(
E(v(1)) − E(v(2))

) · (v(1) − v(2))

=
d∑

i=1

(
ρ(|v(1)|)v(1)

i − ρ(|v(2)|)v(2)
i

)(
v(1)

i − v(2)
i

)

=
d∑

i=1

(
ρ(|v(1)|)|v(1)

i |2 − ρ(|v(1)|)v(1)
i v(2)

i − ρ(|v(2)|)v(2)
i v(1)

i + ρ(|v(2)|)|v(2)
i |2

)

= ρ(|v(1)|)(|v(1)|2 −
d∑

i=1

v(1)
i v(2)

i

) + ρ(|v(2)|)(|v(2)|2 −
d∑

i=1

v(1)
i v(2)

i

)
.

The Cauchy inequality implies

(
E(v(1)) − E(v(2))

) · (v(1) − v(2))

≥ ρ(|v(1)|)(|v(1)|2 − |v(1)||v(2)|) + ρ(|v(2)|)(|v(2)|2 − |v(1)||v(2)|)

= (|v(1)| − |v(2)|)(ρ(|v(1)|)|v(1)| − ρ(|v(2)|)|v(2)|)

= (|v(1)| − |v(2)|)2 d(ρq)

dq
(q̃),

where q̃ lies between |v(1)| and |v(2)| by the mean value theorem. Taking derivative
with respect to q on (8), we obtain

dρ

dq
= −ρq

c2
.

Then
d(ρq)

dq
= ρ(1 − M2).

For subsonic-sonic flows, i.e., |v(1)|, |v(2)| ≤ qcr, we have

M2(q̃) ≤ 1.

Then

(
E(v(1)) − E(v(2))

) · (v(1) − v(2)) ≥ (|v(1)| − |v(2)|)2 ρ(q̃)
(
1 − M2(q̃)

) ≥ 0.
(11)

Generally speaking, the monotonicity of E(v) implies the strong compactness
of u = ∇ϕ. Please see Chap.5 of [45], Chap. 2 of [46], and [47] for the further
details on the monotonicity method. In the Sect. 3, the general compactness frame-
work of the subsonic-sonic limits will be presented. Furthermore, the idea has been
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developed to consider the limit γ → ∞, which comes out to be the incompressible
limit compactness framework, in which case the operator is E(v) = v.

3 Subsonic-Sonic Limits

In this section, we present the compensated compactness framework for approximate
solutions of the steady full Euler equations in Rd with d ≥ 2 with the form:

⎧
⎨

⎩

div(ρεuε) = e1(ε),
div(ρεuε ⊗ uε) + ∇ pε = e2(ε),

div(ρεuε Eε + uε pε) = e3(ε),
(12)

where e1(ε), e2(ε) = (e21(ε), · · · , e2d(ε))
	, and e3(ε) are sequences of functions

depending on the parameter ε.
Let a sequence of functionsρε(x), uε(x) = (uε

1, · · · , uε
d)(x), and pε(x) be defined

on an open subset Ω ⊂ Rn such that the following qualities:

qε := |uε| =
√
√
√
√

n∑

i=1

(uε
i )

2, cε :=
√

γ pε

ρε
, Mε := qε

cε
, (13)

Bε := (qε)2

2
+ γ pε

(γ − 1)ρε
, Sε := γ pε

(γ − 1)(ρε)γ

can be well defined and satisfy the following conditions:
(A.1). Mε ≤ 1 a.e. in Ω;
(A.2). Sε and Bε are uniformly bounded and, for any compact set K , there exists

a uniform constant c(K ) such that inf
x∈K

Sε(x) ≥ c(K ) > 0. Moreover, (Sε, Bε) →
(S, B) a.e. in Ω;

(A.3). curl uε and e1(ε) are in a compact set in W −1,p
loc for some 1 < p ≤ 2. Then

we have

Theorem 1 (Compensated compactness framework for the full Euler case [33]).
Let a sequence of functions ρε(x), uε(x) = (uε

1, · · · , uε
d)(x), and pε(x) satisfy con-

ditions (A.1)–(A.3). Then there exists a subsequence (still labeled) (ρε, uε, pε)(x)
such that

ρε(x) → ρ(x), uε(x) → (u1, · · · , ud )(x), pε(x) → p(x) a.e. in x ∈ Ω as ε → 0,

and

M(x) := q(x)

c(x)
≤ 1 a.e. x ∈ Ω.
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Remark 1. Consider any function Q(ρ, u, p) = (Q1, · · · , Qd)(ρ, u, p) satisfying

div (Q(ρε, uε, pε)) = oQ(ε), (14)

where oQ(ε) → 0 in the distributional sense as ε → 0. We can see from the strong
convergence of (ρε, uε, pε) ensured by Theorem3 that div(Q(ρ, u, p)) = 0 holds
in the distributional sense. Thus, if

div (ρεuε ⊗ uε + pε I ) = e2(ε) → 0 in the sense of distributions, (15)

the weak solution also satisfies the momentum equations in (1)2 and the energy
equation (1)3 in the distributional sense.

Then, as corollaries, we conclude the following theorems.

Theorem 2 (Convergence of approximate solutions for the full Euler flow [33]).
Let ρε(x), uε(x) = (uε

1, · · · , uε
d)(x), and pε(x) be a sequence of approximate solu-

tions satisfying (A.1)–(A.3) and e j (ε) → 0, j = 1, 2, 3, in the distributional sense
as ε → 0. Then there exists a subsequence (still labeled) (ρε, uε, pε)(x) that con-
verges a.e. as ε → 0 to a weak solution (ρ, u, p) to the Euler equations of (1), which
satisfies M(x) ≤ 1, a.e. x ∈ Ω .

For the homentropic case, [33] also consider the general pressure–density case,
and condition (A.2) and (A.3) are modified.

4 Incompressible Limits

In this section, compensated compactness framework for approximate solutions of
the steady Euler equations is presented in Rd with d ≥ 2.

Here, we assume that the approximate solutions (ρ(γ ), u(γ ), p(γ )) satisfy

⎧
⎪⎨

⎪⎩

div
(
ρ(γ )u(γ )

) = e1(γ ),

div
(
ρ(γ )u(γ ) ⊗ u(γ )

) + ∇ p(γ ) = e2(γ ),

div
(
ρ(γ )u(γ )E (γ ) + u(γ ) p(γ )

) = e3(γ ),

(16)

where e1(γ ), e2(γ ) = (e21(γ ), · · · , e2d(γ ))	, and e3(γ ) are sequences of distribu-
tional functions depending on the parameter γ .

Let the sequences of functions u(γ )(x) := (u(γ )

1 , · · · , u(γ )

d )(x) and p(γ )(x) be
defined on an open bounded subset Ω ⊂ Rn such that the following qualities:
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ρ(γ ) := (p(γ ))
1
γ , |u(γ )| :=

√
√
√
√

d∑

i=1

(u(γ )

i )2, c(γ ) := √
γ
(

p(γ )
) γ−1

2γ , (17)

M (γ ) := |u(γ )|
c(γ )

, E (γ ) := |u(γ )|2
2

+ p(γ )

(γ − 1)ρ(γ )
, G(γ ) := ρ(γ )

(p(γ ))
1
γ

≥ 0,

can be well defined. Moreover, the following conditions hold:
(B.1). M (γ ) are uniformly bounded by M̄ ;
(B.2). |u(γ )|2 and p(γ ) ≥ 0 are uniformly bounded in L1

loc(Ω);
(B.3). e1(γ ) and curl u(γ ) are in a compact set in H−1

loc (Ω);
(B.4). As γ → ∞,

∫

Ω

ln(p(γ ))dx = o(γ ) as γ → ∞;

(B.5). G(γ ) converges to a bounded function G a.e. in Ω as γ → ∞.

Remark 2. For the Euler equations, G is streamline conservative quantity, which is

equivalent to entropy S with the relation: S = γ

γ−1G− 1
γ .

Theorem 3 (Compensated compactness framework for the full Euler case [38]).
Let a sequence of functions ρ(γ )(x), u(γ )(x) = (u(γ )

1 , · · · , u(γ )

d )(x), and p(γ )(x)

satisfy conditions (B.1)–(B.5). Then there exists a subsequence (still denoted by)
(ρ(γ ), u(γ ), p(γ ))(x) such that, as γ → ∞,

p(γ )(x) ⇀ p̄ in bounded measure,
ρ(γ )(x) → ρ̄(x) a.e. in x ∈ Ω,

u(γ )(x) → (ū1, · · · , ūd)(x) a.e. in x ∈ {x : ρ̄(x) > 0, x ∈ Ω}.
(18)

Remark 3. Similar toRemark1, consider any function Q(ρ, u, p) := (Q1, · · · , Qd)

(ρ, u, p) satisfying
div (Q(ρ(γ ), u(γ ), p(γ ))) = eQ(γ ), (19)

where eQ(γ ) → 0 in the distributional sense as γ → ∞.

Then, we come to:

Theorem 4 (Convergence of approximate solutions for the full Euler flow[38]).
Let ρ(γ )(x), u(γ )(x) = (u(γ )

1 , · · · , u(γ )

d )(x), and p(γ )(x) be a sequence of approxi-
mate solutions satisfying conditions (B.1)–(B.5), and

ei (γ ) → 0 for i = 1, 2,

(p(γ ))−1
(

e3(γ ) − u(γ ) · e2(γ ) + |u(γ )|2
2

e1(γ )
)

→ 0
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in the distributional sense as γ → ∞. Then there exists a subsequence (still denoted
by) (ρ(γ ), u(γ ), p(γ ))(x) that converges a.e. to a weak solution (ρ̄, ū, p̄) of the inho-
mogeneous incompressible Euler equations (6) as γ → ∞.

For the homentropic case, [38] also consider the γ -law pressure–density case, and
condition (B.4) turns to the condition on the total energy, while (B.5) is released.

5 Application

The conditions (A.1)–(A.3) and (B.1)–(B.3) are naturally satisfied by the solutions
constructed in [9, 11–16, 19–24, 30, 31]. By Theorems2 and 4, the subsonic-sonic
limits and the incompressible limits can be proven from the above results on the sub-
sonic flow. Formore detail, please check [33, 38]. There are some further applications
on the both limits are included in the coming paper [48, 49].
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A Constraint-Preserving Finite
Difference Method for the Damped Wave
Map Equation to the Sphere

Franziska Weber

Abstract We present and analyze a constraint-preserving finite difference method
for approximating the damped wave map equation

εutt + αut − Δu = γ u, |u| = 1, in (0,∞) × Ω,

into the sphere. The numerical method preserves a discrete version of the energy
balance associated with the equation and the unit length constraint of the solution
at every grid point. We show that the approximations converge to a weak solution
as the discretization parameters go to zero and present some numerical experiments
investigating the limit ε → 0 for α = 1.

Keywords Wave map equation · Finite difference method · Convergence
Constraint preserving

1 Introduction

The Ericksen–Leslie equations

div v = 0, (1a)

∂t v + (v · ∇)v = F + div σ, (1b)

ρ1 (∂tω + (v · ∇)ω) = ρ1G + g + divπ, (1c)

σ = −p1 − ∂W

∂∇u
∇u + σ̂ , (1d)

π = β ⊗ u + ∂W

∂∇u
, (1e)

g = γ u − ∇uβ − ∂W

∂u
+ ĝ, (1f)
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where 1 is the identity matrix, v is the fluid velocity, and ω = ∂t u + (v · ∇)u is the
material derivative of the director field u with |u| = 1, are a well-known model for
simulating the dynamics of nematic liquid crystals [1]. Here, β, γ, ρ1 are physical
constants, p the pressure, F an external body force, G an external director body
force, g the intrinsic force associated with the director, ĝ the kinematic transport of
the director, and W the Oseen–Frank energy functional. From [1, 2], we have the
following expressions for ĝ, σ̂ and W :

ĝ = λ1N + λ2Au,

σ̂ = μ1(u
�Au)u ⊗ u + μ2N ⊗ u + μ3u ⊗ N + μ4A + μ5Au ⊗ u + μ6u ⊗ Au,

W (u,∇u) = k1
2

(div u)2 + k2
2

|u · curlu|2 + k3
2

|u × curlu|2

+ k2 + k4
2

div ((∇u)u − (div u)u),

A = ∇v + (∇v)�

2
, N = ω − ∇v − (∇v)�

2
u.

μ1, . . . , μ6 are called the Leslie coefficients and satisfy certain relations [1, 2]. k1, k2,
and k3 in the Oseen–Frank energy correspond to different orientations of the liquid
crystal director u [1].

In many applications, the inertial constant ρ1 is rather small in comparison with
the other parameters, and therefore, the terms involving it are neglected for practical
applications. In this short note, we would like to investigate the effect of this inertial
term, as ρ1 → 0 for the simplified model of the damped wave map equation

εutt + αut − Δu = γ u, |u| = 1, in (0,∞) × Ω. (2)

Here, γ is the Lagrange multiplier enforcing the constraint |u| = 1 and the fluid
velocity v and external force terms have been set to zero. Moreover, we have set k1 =
k2 = k3, the so-called one constant approximation. Ω ⊂ R

n , n = 2, 3 will either be
the unit box [0, 1]n or the torus Tn . In the first case, we use Neumann boundary
conditions and in the second case periodic boundary conditions. We reformulate this
equation in terms of the angular momentum w = ut × u,

ut = u × w, (3a)

εwt = Δu × u − αw. (3b)

and then construct afinite differencemethod that is stable for any choice of parameters
ε ≥ 0 and α > 0 for this system. The numerical method is based on ideas from [3],
and the approximations satisfy a discrete version of the energy balance

d

dt

∫

Ω

ε|ut |2 + |∇u|2 dx = −α

∫

Ω

|ut |2 dx,
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of the system (2) and can be shown to converge for any ε ≥ 0 and α > 0. We then
do some numerical tests for some choices of initial data and various values of ε to
investigate the limit ε → 0. We find that for the smooth data, the approximations uε

h
to the damped wave map equation converge at a rate of about 4 to the approximation
of the solution of the heat map flow. For example, with initial data that exhibits
blowup for the wave map equation, the convergence seems very low and is only
observable for very small ε. This indicates that there might not be a convergence rate
for convergence in the L2- or energy norm.

2 The Numerical Method

The numerical method we present here is based on the reformulation (3a)–(3b) of
(2) which can be derived as follows: To obtain the first equation, we take the cross
product of u with w, insert the definition of w, and use vector identities:

u × w = u × (ut × u) = (u · u)ut − (ut · u)u = ut ,

using the constraint |u| = 1 and that ut is orthogonal to u. To derive the w-equation,
take the time derivative of w and insert the definition of w and then the equation for
u:

εwt = ε(utt × u + ut × ut ) = εutt × u = Δu × u − αut × u + γ u × u = Δu × u − αw.

2.1 Discretization of the Domain and the Differential
Operators

Let M ∈ N be the number of grid points in each dimension and N := Mn the total
number of grid cells,wheren = 2, 3 is the spatial dimension.Weoutline the definition
of the numerical method for n = 3, and the modifications needed for n = 2 are
straightforward. Then, we set h = 1/M the mesh width and Δt > 0 the time step
size. The conditions on Δt that are needed to obtain convergence of the method will
be determined later.

We define grid points and grid cells

Ci1,i2,...,in := ((i1 − 1)h, i1h] × · · · × ((in − 1)h, inh],
xi1,...,in := ((i1 − 1/2)h, . . . , (in − 1/2)h),
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and time steps tm := mΔt,m = 0, . . . , Nt . To simplify notation, we introduce the
multi-index i ∈ IN := {0, . . . , M}n , such that i = (i1, . . . , in), and we can write

Ci = Ci1,...,in , xi = xi1,...,in .

We will approximate u and w at the cell midpoints xi . Specifically,

umi ≈ u(mΔt, xi ), wm
i ≈ w(mΔt, xi ).

Next, let e1 := (1, 0, 0), e2 := (0, 1, 0), and e3 := (0, 0, 1). Using these vectors, we
then define the forward and backward difference operators

D+
j ui = ui+e j − ui

h
, D−

j ui = D+
j ui−e j ,

respectively, for j = 1, 2, 3, and i ∈ IN . The discrete Laplacian Δh is then defined
as

Δhui =
3

∑

j=1

D+
j D

−
j ui .

If we furthermore introduce the backward gradient ∇h = [D−
1 , D−

2 , D−
3 ]T and for-

ward divergence div hv = D+
1 v

(1) + D+
2 v

(2) + D+
3 v

(3), we have the identity

div h∇h = Δh,

which will be convenient in the upcoming analysis.
For the time discretization, we will use the notation

um+1/2 := um + um+1

2
, D+

t u
m = um+1 − um

Δt
, D−

t u
m = um − um−1

Δt
.

We approximate the initial conditions u0 and w0 as follows:

(u0i , w0
i ) =

(

Π [u0]i ,Π [u0t ]i × u0i
)

, ∀i,

where the projection operator Π is defined by

Π [ f ]i = 1

hn

∫ (i1+1/2)h

(i1−1/2)h
· · ·

∫ (in+1/2)h

(in−1/2)h
f (y) dy.
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2.2 Definition of the Finite Difference Scheme

We are now ready to state the new method.

Definition 1. Given initial data u0 ∈ H 1(Ω), u0t ∈ L2(Ω), let

(u0i , w0
i ) =

(

Π [u0]i ,Π [u0t ]i × u0i
)

, ∀i .

Determine (umi ,wm
i ), ∀i ∈ IN , m = 1, . . . , sequentially, by solving the non-

linear system

D+
t u

m
i = um+1/2

i × wm+1/2

i , (4a)

εD+
t w

m
i = Δhu

m+1/2

i × um+1/2

i − αwm+1/2

i . (4b)

In the following, we will prove that the approximations computed using this
method inherit discrete versions of some fundamental properties that the continuous
system (3a)–(3b) satisfies. To this end, it will be convenient to extend the numerical
solution to all ofΩ . For this purpose, we shall use the piecewise constant extensions:

umh (x) = umi , x ∈ Ci ; uh(t, x) = umh (x), t ∈ (tm−1, tm];
wm
h (x) = wm

i , x ∈ Ci ; wh(t, x) = wm
h (x), t ∈ (tm−1, tm];

uh(t, x) = um−1/2

h (x); wh(t, x) = wm−1/2

h (x), t ∈ (tm−1, tm].
(5)

Observe that the numerical method can then be written

D+
t u

m
h = um+1/2

h × wm+1/2

h , (6a)

εD+
t w

m
h = Δhu

m+1/2

h × um+1/2

h − αwm+1/2

h , (6b)

where Δh is derived in the obvious way.

Lemma 1. There exists a unique numerical solution to the method posed in Defini-
tion 1. Moreover, the length is preserved

|umi | = |u0i | = 1, ∀i, m = 0, . . . , (7)

and we have the discrete energy law for all m = 0, 1, . . . :

∫

Ω
ε|wm+1

h |2 + |∇hu
m+1
h |2 dx + 2Δtα

∫

Ω
|wm+1/2

h |2 dx =
∫

Ω
ε|wm

h |2 + |∇hu
m
h |2 dx . (8)

Proof. The existence of a unique solution is proved using a convergent fixed point
iteration. In particular, one shows that the following iterative scheme
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Definition 2. Given h > 0, Δt > 0 satisfying

Δt√
2ε + αΔt

≤ κh, (9)

and functions (umh ,wm
h ) satisfying (4a)–(4b), we approximate the next time

step (um+1
h ,wm+1

h ) to a given tolerance τ > 0 by the following procedure: Set

(um,0
h ,wm,0

h ) = (umh ,wm
h ),

and iteratively define (um,s+1
h ,wm,s+1

h ), s = 0, 1, . . . by

um,s+1
h − umh

Δt
= 1

2

(

umh + um,s+1
h

)

× 1

2

(

wm
h + wm,s

h

)

,

ε
wm,s+1
h − wm

h

Δt
= 1

2

(

Δhu
m
h + Δhu

m,s+1
h

)

× 1

2

(

umh + um,s+1
h

)

− α

2

(

wm
h + wm,s+1

h

)

,

until the following stopping criteria are met:

√
αΔt + 2ε

∥

∥

∥wm,s+1
h − wm,s

h

∥

∥

∥

L2(Ω)
+

∥

∥

∥∇um,s+1
h − ∇um,s

h

∥

∥

∥

L2(Ω)
< τ.

terminates in O(N (| log(τ )| + | log(N )|)) operations for arbitrary tolerances τ > 0.
A fixed point of this scheme is a solution of (6a)–(6b). The proof uses ideas from [3,
Theorem 4.2] and might be detailed in a future work.

That the length is conserved, (7), follows immediately from (4a). Indeed, taking
the dot product of the first Eq. (6a) with um+1/2

h yields

D+
t u

m
h · um+1/2

h = 0,

thanks to the orthogonality properties of the cross product. To prove (8), we denote
the energy

Em := 1

2

∫

Ω

|∇hu
m
h |2 + ε|wm

h |2 dx .

and calculate

D+
t Em =

∫

Ω

εwm+1/2
h · D+

t w
m
h − Δhd

m+1/2
h · D+

t d
m
h dx

=
∫

Ω

(

Δhu
m+1/2
h × um+1/2

h

)

· wm+1/2
h dx − α

∫

Ω

|wm+1/2
h |2 dx

−
∫

Ω

(

um+1/2
h × wm+1/2

h

)

· Δhu
m+1/2
h dx

= −α

∫

Ω

|wm+1/2
h |2 dx .
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This concludes the proof. �

Remark 1. The condition (9) is only needed to obtain convergence of the fixed point
iteration. The numerical scheme (4a)–(4b) is stable and converges for any choice
ε ≥ 0, α > 0 as h,Δt → 0, independently of the relation between h and Δt as we
will see in Sect. 3.

3 Convergence

Next, we prove that the numerical approximations computed by the scheme (4a)–
(4b) converge to a weak solution of (2) as the discretization parameters go to zero.
But first, we need to define a suitable notion of weak solution. Due to the presence of
the Lagrange multiplier γ , weak solutions are defined using the angular momentum
w. Specifically, since γ = |∇u|2 − ε|ut |2, the energy only provides an L1 bound on
γ . For this reason, the weak formulation of (2) is often posed using (3b) and the
following integration by parts formula:

Lemma 2. For all sufficiently smooth functions (u, φ), there holds

∫

Ω

(u × Δu)φ dx =
∫

Ω

(∇u × u) : ∇φ dx . (10)

This simple lemma has been proved in [3, Lemma 3.1].

Remark 2. One can readily derive a discrete version of (10) for the operatorsΔh ,∇h ,
and div h since the proof only relies on the identity div (∇a b) = bΔa + ∇a · ∇b,
which is satisfied by the numerical operators.

The weak formulation of (2) is given by the following definition. We refer to [4] for
more on this formulation and the corresponding existence theory.

Definition 3. Given initial data u0 ∈ H 1(Ω), u0t ∈ L2(Ω), with finite energy

E(u0) := 1

2

(

ε‖u0t ‖2L2(Ω) + ‖∇u0‖2L2(Ω)

)

≤ C,

and |u0| = 1 a.e., we call u a weak solution of (2) provided:

1. The energy satisfies

E(u(t)) + α

∫ t

0
‖us(s)‖2L2(Ω) ds ≤ E(u0). (11)

2. The following weak formulation holds for all φ ∈ C∞
c ([0,∞) × Ω),
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∫ ∞

0

∫

Ω

−ε(ut × u)φt + (∇u × u) : ∇φ + α(ut × u)φ dxdt = ε

∫

Ω

(u0t × u0)φ(0, ·) dx .
(12)

3. The initial condition is satisfied, i.e., as t → 0,

u(t) → u0 in H 1(Ω), ut (t) ⇀ u0t in L2(Ω)

Having defined a notion of weak solution, we proceed to prove that our scheme (4a)–
(4b) converges to one. Our main result in this section is the following convergence
result:

Theorem 1. Let α > 0 and ε ≥ 0, and let {(uh,wh)}h>0 be a sequence of numerical
approximations obtained using Definition 1 and (5). Then, as h → 0, uh → u a.e.

and in L p((0,∞) × Ω) for any p < ∞,
√

εwh
�

⇀
√

εw in L∞(0, T ; L2(Ω)) and
moreover wh ⇀ w in L2([0, T ] × Ω) for any ε ≥ 0 and α > 0, where

|u| = 1, a.e. in [0,∞) × Ω,

w = ut × u, a.e. in [0,∞) × Ω,

Furthermore, u is a weak solution of the damped wave map equation (2) in the sense
of Definition 3.

Proof. To prove this theorem, our starting point is Lemma 1 yielding the h-uniform
bounds for any T > 0:

D+
t uh ⊂ L2(0, T ; L2(Ω)),

∇huh ⊂ L∞(0, T ; L2(Ω)),√
εwh ⊂ L∞(0, T ; L2(Ω)),

wh ⊂ L2((0, T ) × Ω).

From these bounds, we can assert the existence of functions u and w, and a subse-
quence h j , such that

√
εwh j

�
⇀

√
εw in L∞(0, T ; L2(Ω)),

wh j ⇀ w in L2(0, T ; L2(Ω)),

D+
t uh j ⇀ ut in L2(0, T ; L2(Ω)),

∇h j uh j

�
⇀ ∇u in L∞(0, T ; L2(Ω)),

uh j → u a.e. and in L p((0, T ) × Ω) for p < ∞,

(13)

where the limit u also satisfies the constraint |u(t, x)| = 1 a.e. in [0, T ) × Ω, thanks
to the strong convergence. The energy inequality (11) follows from the discrete
energy balance (8) when passing to the limit h → 0 and using the weak lower semi-
continuity of the L2-norm.
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Next, we show that the limit (u,w) satisfies the weak formulation (12). For
test functions ϕ,ψ ∈ C1

0([0, T ) × Ω;Rn), we denote ϕm(x) := ϕ(tm, x),ψm(x) :=
ψ(tm, x). Then, we take the dot product of (6a) and (6b) with ϕm, ψm , integrate over
Ω , and sum over m, to discover

Δt
∞

∑

m=0

∫

Ω

(

D+
t u

m
h − um+1/2

h × wm+1/2

h

)

· ϕm dx = 0,

Δt
∞

∑

m=0

∫

Ω

(

εD+
t w

m
h + um+1/2

h × Δhu
m+1/2

h + αwm+1/2

h

)

· ψm dx = 0.

Using Lemma 2 (see Remark 2) and summation by parts, we deduce that

Δt
∞

∑

m=0

∫

Ω

(

−um+1
h · D+

t ϕm −
(

um+1/2

h × wm+1/2

h

)

· ϕm
)

dx =
∫

Ω

u0h · ϕ0 dx,

Δt
∞

∑

m=0

∫

Ω

(

−εwm+1
h · D+

t ψm −
(

∇hu
m+1/2

h × um+1/2

h

)

: ∇hψ
m

+ αwm+1/2

h · ψm

)

dx = ε

∫

Ω

w0
h · ψ0 dx .

Using the notation (5), this becomes

−
∫ ∞

0

∫

Ω

(

uh · D+
t ϕ + (uh × wh) · ϕ

)

dx dt −
∫

Ω

u0h · ϕ(0, ·) dx = 0,

−
∫ ∞

0

∫

Ω

(

εwh · D+
t ψ + (∇huh × uh) : ∇hψ − αwh · ψ

)

dx − ε

∫

Ω

w0
h · ψ(0, ·) dx = 0.

Now, since ∇hψ → ∇ψ a.e. and (D+
t ϕ, D+

t ψ) → (ϕt , ψt ) a.e., one may apply the
convergence statements (13) to discover that the limit (u,w) satisfies

−
∫ ∞
0

∫

Ω
(u · ϕt + (u × w) · ϕ) dx dt −

∫

Ω
u0 · ϕ(0, ·) dx = 0,

−
∫ ∞
0

∫

Ω
(εw · ψt + (∇u × u) : ∇ψ − αw · ψ) dx −

∫

Ω
(u0t × u0) · ψ(0, ·) dx = 0.

(14)
It only remains to prove that this formulation is equivalent to (12) in Definition 3.
In practice, this means proving that w = ut × u since then the second equation in
(14) becomes (12). We first note that by approximation, the weak formulation (14)
also holds for test functions ϕ,ψ ∈ H 1((0, T ) × Ω)with compact support in [0, T ).
Moreover, since ut ∈ L2(0, T ; L2(Ω)) by the energy balance, we can move the time
derivative in the first equation in (14) back onto u. Then, testing with ϕ = wη and
ψ = uη for some scalar smooth function η ∈ C1

c ([0, T ) × Ω), we obtain after some
algebra
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∫ ∞
0

∫

Ω
(ut · wη − (u × w) · wη) dx dt −

∫

Ω
u0 · w0η(0, ·) dx

=
∫ ∞
0

∫

Ω
(ut · wη) dx dt = 0,

−
∫ ∞
0

∫

Ω
(εw · (uη)t + (∇u × u) : ∇(uη) − αw · uη) dx −

∫

Ω
(u0t × u0) · u0η(0, ·) dx

= −
∫ ∞
0

∫

Ω
(εw · (uη)t − αw · uη) dx = 0.

since u0 · w0 = 0 by definition of w0 and using some vector algebra identities. If
ε = 0, the second equation yields u · w = 0 almost everywhere. If ε �= 0, we divide
the second equation by ε and add the two:

∫ ∞

0

∫

Ω

(

ut · wη − w · (uη)t + α

ε
w · uη

)

dx dt

=
∫ ∞

0

∫

Ω

(

−w · uηt + α

ε
w · uη

)

dx dt

= 0.

Since (u · w) ∈ L∞(0, T ; X) ⊂ L1(0, T ; X) for the Banach space X = L2(Ω), we
can apply Lemma1.1 in [5, p. 250] to obtain that (u · w)(t) is absolutely continuous in
L2(Ω) and (u · w)(t) = ξ − α/ε

∫ t
0 (u · w)(s)ds for some ξ ∈ L2(Ω). Moreover, we

obtain from the energy inequality (11) and the weak lower semi-continuity of the L2-
norm that

√
εw(t) → √

εw0 in L2(Ω). Hence, ξ = (u0 · w0) = 0. Now, Grönwall
inequality for (u · w) and −(u · w) allows us to conclude that (u · w)(t) = 0 almost
everywhere.

By the definition of weak derivatives, the first equation in (14) tells us that

ut = u × w a.e in (0, T ) × Ω.

Since |u| = 1, this means that

w = ut × u + (u · w)u = ut × u,

using the just established identity. Hence, the weak formulation (12) holds. The
strong continuity of u(t) in H 1(Ω) at zero (Point 3 in Definition 3) follows from the
weak lower semi-continuity of the L2-norm and the energy inequality. �

4 Numerical Examples

One can show that as ε → 0, the sequence of solutions (uε,wε) of the damped wave
map equation (3a)–(3b) convergesweakly to a solution of the heatmap flow. It seems,
however, hard to prove a convergence rate in ε. Moreover, if Ω is a domain in R

2,
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Fig. 1 Left: Convergence of uε
h and wε

h toward the solution of the heat map flow for smooth data.
Right: Maximum of gradient ∇huε

h over time

there is evidence that solutions of the wave map equation may blow up [6] whereas
solutions of the heat map flow are locally H 2 [7]. We investigate this convergence
rate numerically in two examples, one with smooth data and one with initial data
that develops singularities for the wave map equation.

Smooth data We compute approximations to the damped heat map flow for the
initial data

φ(x, y, t) = sin(2π(
√
2)t + (x + y)),

u0(x, y) = (cos(φ(x, y, 0)), sin(φ(x, y, 0)), 0),

w0(x, y) = (0, 0,−φt (x, y, 0)),

onΩ = [−1/2, 1/2]2 for h = 2−7 for ε = 1, 2−1, . . . , 2−5 and α = 1 at time T = 1. In
Fig. 1, left-hand side, the convergence rates of uε

h ,∇huε
h , andw

ε
h in L

2(Ω) are shown.
We observe that the variables uε

h and ∇huε
h converge at a rate of approximately 4

whereas the variable wε
h does not converge, which is expected since the bounds on

the L∞(0, T ; L2(Ω))-norm of wε are not uniform in ε. In the same figure on the
right-hand side, the evolution of ‖∇huε

h(t)‖∞ over time is shown and we see that
as ε → 0, the maximum of the gradient decreases which could be attributed to the
damping term −αw in the equation.

Singular data Next, we compute approximations for the initial data

r(x, y) =
√

x2 + y2,

a(r) = (1 − 2r)4,

u0(x, y) =
{

(0, 0,−1), r ≥ 1/2,

(2xa, 2ya, a2 − r2)/(a2 + r2), r < 1/2,

w0(x, y) = (0, 0, 0),

which has been used in [3, 8] to show blowup of solutions of the wave map equation.
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Again, Ω = [−1/2, 1/2]2 and we use h = 2−7 for ε = 1, 2−1, . . . , 2−5 and α = 1.
In this example, the distance between uε and the heat map reference solution does

not seem to decrease except when ε is getting quite small. So, the convergence rate
is either very small or there is no convergence in the L2-norm (see Fig. 2). On the
right-hand side of Fig. 2, we see that the gradient of uε

h appears to blow up for larger
ε, while for smaller ε it does not. This might be the reason why the convergence is
so bad. At smaller ε, the damping term appears to prevent the blowup of ∇uε.
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6. P. Bizoń, T. Chmaj, Z. Tabor, Formation of singularities for equivariant (2 + 1)-dimensional
wave maps into the 2-sphere. Nonlinearity 14(5), 1041–1053 (2001)

7. Michael Struwe, On the evolution of harmonic mappings of Riemannian surfaces. Comment.
Math. Helv. 60(4), 558–581 (1985)

8. S. Bartels, X. Feng, A. Prohl, Finite element approximations of wave maps into spheres. SIAM
J. Numer. Anal. 46(1), 61–87 (2007/2008)



Integral Transform Approach to Solving
Klein–Gordon Equation with Variable
Coefficients

Karen Yagdjian

Abstract In this review, we present an integral transform that maps solutions of
some class of the partial differential equations with time-independent coefficients to
solutions of more complicated equations, which have time-dependent coefficients.
We illustrate this transform by applications to model equations. In particular, we give
applications to the Klein–Gordon and wave equations in the curved spacetimes such
as the de Sitter universe.

Keywords Klein-Gordon equation · Curved spacetime · Black holes

1 Introduction

In this review, we present an integral transform that maps solutions of some class of
the partial differential equations with time independent coefficients to solutions of
more complicated equations, which have coefficients depending on time in some spe-
cific way. Consider for the smooth function f = f (x, t) the solution w = w(x, t; b)
to the problem

wtt − A(x, ∂x )w = 0, w(x, 0; b) = f (x, b), wt (x, 0; b) = 0, t ∈ [0, T1] ⊆ R, x ∈ Ω ⊆ R
n,

(1)
with the parameter b ∈ I = [t0, T ] ⊆ R, t0 < T ≤ ∞, and with 0 < T1 ≤ ∞. Here
Ω is a domain in R

n , while A(x, ∂x ) is the partial differential operator A(x, ∂x ) =∑
|α|≤m aα(x)Dα

x . For M ∈ C, we are going to present the integral operator

K [w](x, t) = 2
∫ t

t0

db
∫ |φ(t)−φ(b)|

0
K (t; r, b; M)w(x, r; b)dr, x ∈ Ω, t ∈ I,

(2)
which maps the function w = w(x, r; b) into solution u = u(x, t) of the equation

K. Yagdjian (B)
School of Mathematical and Statistical Sciences, University of Texas RGV,
1201 W. University Drive, Edinburg, TX 78539, USA
e-mail: karen.yagdjian@utrgv.edu

© Springer International Publishing AG, part of Springer Nature 2018
C. Klingenberg and M. Westdickenberg (eds.), Theory, Numerics
and Applications of Hyperbolic Problems II, Springer Proceedings
in Mathematics & Statistics 237, https://doi.org/10.1007/978-3-319-91548-7_49

655

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91548-7_49&domain=pdf


656 K. Yagdjian

utt − a2(t)A(x, ∂x )u − M2u = f, x ∈ Ω , t ∈ I. (3)

In fact, the function u = u(x, t) takes initial values as follows

u(x, t0) = 0, ut (x, t0) = 0, x ∈ Ω .

Hereφ = φ(t) is a distance functionproducedbya = a(t), that is φ(t) = ∫ t
t0
a(τ ) dτ ,

while M ∈ C is a constant. Moreover, we also give the corresponding operators,
which generate solutions of the source-free equation and takes non-vanishing initial
values. In the present review, we restrict ourselves to the smooth functions, but it is
evident that similar formulas, with the corresponding interpretations, are applicable
to the distributions as well. (For details see, e.g., [21].) In order to motivate our
approach, we consider the solution w = w(x, t; b) to the Cauchy problem

wtt − Δw = 0, (t, x) ∈ R
1+n, w(x, 0; b) = ϕ(x, b), wt (x, 0; b) = 0, x ∈ R

n,

(4)
with the parameter b ∈ I ⊆ R. We denote that solution by wϕ = wϕ(x, t; b); if ϕ is
independent of the second time variable b, then we write simply wϕ(x, t). There are
well-known explicit representation formulas for the solution of the problem (4).

The starting point of the integral transform approach suggested in [20] is the
Duhamel’s principle (see, e.g., [18]), which has been revised in order to prepare the
ground for generalization. Our first observation is that the function

u(x, t) =
∫ t

t0

db
∫ t−b

0
w f (x, r; b) dr , (5)

is the solution of the Cauchy problem utt − Δu = f (x, t) inRn+1, and u(x, t0) = 0,
ut (x, t0) = 0 in R

n , if the function w f = w f (x; t; b) is a solution of the problem
(4), where ϕ = f . The second observation is that in (5) the upper limit t − b of
the inner integral is generated by the propagation phenomena with the speed which
equals to one. In fact, that is a distance function. Our third observation is that the
solution operator G : f �−→ u can be regarded as a composition of two operators.
The first one

W E : f �−→ w

is a Fourier Integral Operator, which is a solution operator of the Cauchy problem
for wave equation. The second operator

K : w �−→ u

is the integral operator given by (5). We regard the variable b in (5) as a “sub-
sidiary time.” Thus, G = K ◦ W E . If we take into account the propagation cone
by introducing the distance function φ(t), and if we provide the integral operator (5)
with the kernel K (t; r, b; M), as in (2), then we actually generate new representa-
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tions for the solutions of different well-known equations with x-independent coeffi-
cients. Our fourth observation is that if we plug into (5) the solution w = w(x; t; b)
of the Dirichlet problem for the elliptic equation wtt + Δw = 0, (t, x) ∈ R

1+n ,
w(x, 0; b) = f (x, b), x ∈ R

n , then the integral (5) defines the solution u of the equa-
tion utt + Δu = f (x, t) + ∫ t

tin
wt (x; 0; b) db, such that u(x, tin) = 0, ut (x, tin) = 0.

In [26, 27], we extended the class of the equations for which we can obtain
explicit representation formulas for the solutions, by varying the first mapping. More
precisely, consider a solutionw = wA,ϕ(x, t; b) to the problem (1)with the parameter
b ∈ I ⊆ R. If we have a resolving operator of the problem (1), then by applying (2),
we can generate solutions of another equation. Thus, GA = K ◦ E EA. The new class
of equations contains operators with x-depending coefficients, and those equations
are not necessarily hyperbolic.

That transform was used in a series of papers [6, 7, 9, 10, 20–27] to investigate in
a unified way several equations such as the linear and semilinear Tricomi equations,
Gellerstedt equation, the wave equation in Einstein-de Sitter spacetime, the wave
and the Klein–Gordon equations in the de Sitter and anti-de Sitter spacetimes.

2 Linear Equations in the De Sitter Spacetime

Consider the Klein–Gordon equation in the de Sitter spacetime, that is a(t) = e−t in
(3). Recently, the equations in the de Sitter and anti-de Sitter spacetimes became the
focus of interest for an increasing number of authors (see, e.g., [1–4, 8, 14, 16, 17,
19, 25] and the bibliography therein).

We need the following notations. We define a chronological future D+(x0, t0)
and a chronological past D−(x0, t0) of the point (x0, t0), x0 ∈ R

n , t0 ∈ R, as fol-
lows: D±(x0, t0) := {(x, t) ∈ R

n+1 ; |x − x0| ≤±(e−t0 − e−t ) }. Then, for (x0, t0) ∈
R

n × R, M ∈ C, we define the function

E(x, t; x0, t0; M) := 4−MeM(t0+t)
(
(e−t0 + e−t )2 − (x − x0)

2
)M− 1

2

×F
(1

2
− M,

1

2
− M; 1; (e−t0 − e−t )2 − (x − x0)2

(e−t0 + e−t )2 − (x − x0)2

)
, (6)

where (x, t) ∈ D+(x0, t0) ∪ D−(x0, t0) and F
(
a, b; c; ζ

)
is the hypergeometric func-

tion.We use the notation x2 := |x |2 for x ∈ R
n; the function E depends on r2 = (x −

x0)2, that is E(x, t; x0, t0; M) = E(r, t; 0, t0; M). According to
Theorem 2.12 [26], the function E(r, t; 0, t0; M) solves the Klein–Gordon equa-
tion in the de Sitter spacetime:

Ett (r, t; 0, t0; M) − e−2t Err (r, t; 0, t0; M) − M2E(r, t; 0, t0; M) = 0.

The kernels K0(z, t; M) and K1(z, t; M) are defined by
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K0(z, t; M) := −
[

∂

∂b
E(z, t; 0, b; M)

]

b=0

, (7)

K1(z, t; M) := E(z, t; 0, 0, M) . (8)

Here M ∈ C. From now on, we assume that aα ∈ C∞(Ω).

Theorem 1. [26] For f ∈ C(Ω × I ), I = [0, T ], 0 < T ≤ ∞, and ϕ0, ϕ1 ∈
C(Ω), let the function v f (x, t; b) ∈ Cm,2,0

x,t,b (Ω × [0, 1 − e−T ] × I ) be a solution
to the problem

{
vt t − A(x, ∂x )v = 0 , x ∈ Ω , t ∈ [0, 1 − e−T ] ,

v(x, 0; b) = f (x, b) , vt (x, 0; b) = 0 , b ∈ I, x ∈ Ω ,
(9)

and the function vϕ(x, t) ∈ Cm,2
x,t (Ω × [0, 1 − e−T ]) be a solution of the problem

{
vt t − A(x, ∂x )v = 0, x ∈ Ω , t ∈ [0, 1 − e−T ] ,

v(x, 0) = ϕ(x), vt (x, 0) = 0 , x ∈ Ω .
(10)

Then the function u = u(x, t) defined by

u(x, t) = 2
∫ t

0
db

∫ φ(t)−φ(b)

0
v f (x, r; b)E(r, t; 0, b; M) dr + e

t
2 vϕ0(x, φ(t))

+ 2
∫ φ(t)

0
vϕ0(x, s)K0(s, t; M)ds + 2

∫ φ(t)

0
vϕ1(x, s)K1(s, t; M)ds,

where x ∈ Ω , t ∈ I , and φ(t) := 1 − e−t , solves the problem

{
utt − e−2t A(x, ∂x )u − M2u = f, x ∈ Ω , t ∈ I,

u(x, 0) = ϕ0(x) , ut (x, 0) = ϕ1(x), x ∈ Ω .
(11)

Here the kernels E, K0 and K1 have been defined in (6), (7) and (8), respectively.

Wenote that the operator A(x, ∂x ) is of arbitrary order; that is, the equation of (11)
can be an evolution equation, not necessarily hyperbolic. Then, the problems in (9)
and (11) can be a mixed initial-boundary value problem. The interval [0, 1 − e−T ] ⊆
[0, 1] reflects the fact that de Sitter model possesses the horizon [11].

Among possible applications of the integral transform method are the L p − Lq

estimates, Strichartz estimates, Huygens’ principle, global and local existence theo-
rem for semilinear and quasilinear equations.

Example 1. The metric g in the de Sitter-type spacetime, that is, g00 = g00 = −1,
g0 j = g0 j = 0, gi j (x, t) = e2tσi j (x), |g(x, t)| = e2nt | det σ(x)|, gi j (x, t) = e−2t

σ i j (x), i, j = 1, 2, . . . , n, where
∑n

j=1 σ i j (x)σ jk(x) = δik , and δi j is Kronecker’s
delta. The linear covariant Klein–Gordon equation in the coordinates is
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ψt t − e−2t

√| det σ(x)|
n∑

i, j=1

∂

∂xi

(√| det σ(x)|σ i j (x)
∂

∂x j
ψ

)

+ nψt + m2ψ = f .

Here m is a physical mass of the particle. If we introduce the new unknown function
u = ent/2ψ , then the equation takes the form of theKlein–Gordon equation (3) where
M2 = n2

4 − m2 and

A(x, ∂x )u = 1√| det σ(x)|
n∑

i, j=1

∂

∂xi

(√| det σ(x)|σ i j (x)
∂

∂x j
u

)

.

If Ω is a non-Euclidean space of constant negative curvature and the equation of
the problems (9) and (10) is a non-Euclidean wave equation, then the explicit rep-
resentation formulas are known (see, e.g., [12, 15]) and the Huygens’ principle is
a consequence of those formulas. Thus, for a non-Euclidean wave equation, due
to Theorem 1, the functions v f (x, t; b) and vϕ(x, t) have explicit representations,
and the arguments of [21, 24] allow us to derive for the solution u(x, t) of the
problem (11) in the de Sitter-typemetricwith hyperbolic spatial geometry the explicit
representation, the L p − Lq estimates, and to examine the Huygens’ principle.

Example 2. We introduce a toy model that helps to understand the properties of
the black hole formally embedded in the de Sitter universe. The metric tensor gμν is
generated by line element

ds2 = −
(
1 − 2GMbh

c2r

)
c2dt2 + e

2ct
R

(
1 − 2GMbh

c2r

)−1
dr2 + e

2ct
R r2(dθ2 + sin2 θ dφ2).

The metric g is an asymptotically Einstein metric, in the sense that for the Ricci
tensor Rμν = (k + O(r−1))gμν + O(r−2) . At the same time, the metric g is an
asymptotically hyperbolic (de Sitter) metric, in the sense that Rμν = k(r)gμν +
O(r−2) , as r → ∞ . The stress energy tensor T is of Type II (see, [11, p.89]). It
is easy to see that the weak energy condition, that is Tμνuμuν ≥ 0 for all time-like
vectors u, is not satisfied unless u0u1 ≤ 0. But it can be proved that it is satisfied on
some conic set consisting of the time-like vectors with u0u1 ≥ 0. The weak energy
condition (see, e.g., [11, p.89]) also can be addressed. The covariant wave equation
in the black hole embedded in de Sitter universe background is

−
(

1 − 2GMbh

c2r

)−1 1

c2
∂2ψ

∂t2
− 3

cR

(

1 − 2GMbh

c2r

)−1
∂ψ

∂t

+e− 2ct
R

{(

1 − 2GMbh

c2r

)
∂2ψ

∂r2
+ 2

r

(

1 − GMbh

c2r

)
∂ψ

∂r

+ 1

r2 sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+ 1

r2 sin2 θ

∂

∂φ

(
∂ψ

∂φ

) }

= 0 .
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For the large r (the far field) the equation is the wave equation in FLRW spacetime,
while the near field limit for small time is Schwarzschild.Wemake change u = e

3c
2R tψ

( ψ = e− 3c
2R t u) in the wave equation, then it became non-covariant Klein–Gordon

equation utt − e− 2ct
R A(x, ∂x )u − M2u = 0 , were M = 3c

2R and

A(x, ∂x )u := c2
{(

1 − 2GMbh

c2r

)2
∂2u

∂r2
+ 2

r

(

1 − GMbh

c2r

) (

1 − 2GMbh

c2r

)
∂u

∂r

+
(

1 − 2GMbh

c2r

)
1

r2
ΔS2u

}

.

Theorem1allowsus to reveal the properties of thewaves propagating in the spacetime
of black hole embedded in the de Sitter background.

3 The Semilinear Equations in the De Sitter Spacetime

In this section, we present some results obtained in [10] on the existence of a global
in time solutions of the semilinear Klein–Gordon equation in the de Sitter space-
time with the time slices being Riemannian manifolds. In the spatially flat de Sitter
model, this can be R

3 and in the spatially closed and spatially open cases it can
be the three-sphere S

3 and the three-hyperboloid H
3, respectively. The metric g

in the de Sitter spacetime is defined as follows: g00 = g00 = −1, g0 j = g0 j = 0,
gi j (x, t) = e2tσi j (x), i, j = 1, 2, . . . , n, where

∑n
j=1 σ i j (x)σ jk(x) = δik , and δi j is

Kronecker’s delta.
In quantum field theory, the matter fields are described by a function ψ that

must satisfy equations of motion. In the case of a massive scalar field, the equation
of motion is the semilinear Klein–Gordon equation generated by the metric g. In
physical terms, this equation describes a local self-interaction for a scalar particle.
The covariant Klein–Gordon equation in the de Sitter spacetime in the coordinates
is

ψt t − e−2t

√| det σ(x)|
n∑

i, j=1

∂

∂xi

(√| det σ(x)|σ i j (x)
∂

∂x j
ψ

)

+ nψt + m2ψ = F(ψ) .

Here m is a physical mass of the particle. This is a special case of the equation
ψt t + nψt − e−2t A(x, ∂x )ψ + m2ψ = F(ψ), where A(x, ∂x ) = ∑

|α|≤2 aα(x)∂α
x is

a second order partial differential operator.We assume that aα(x), |α| = 2, is positive
definite. To formulate the theorem,we need the following description of the nonlinear
term.

Condition (L ). The function F is said to be Lipschitz continuous with exponent
α ≥ 0 in the Sobolev space H(s)(R

n) if there is a constant C ≥ 0 such that
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‖F(x, ψ1) − F(x, ψ2)‖H(s)(Rn) ≤ C‖ψ1 − ψ2‖H(s)(Rn)

(
‖ψ1‖α

H(s)(Rn) + ‖ψ2‖α
H(s)(Rn)

)

for all ψ1, ψ2 ∈ H(s)(R
n).

Next, we define the complete metric space

X (R, s, γ ) := {ψ ∈ C([0,∞); H(s)(R
n)) | ‖ψ‖X := sup

t∈[0,∞)

eγ t‖ψ(x, t)‖H(s)(R
n) ≤ R}

with the metric

d(ψ1, ψ2) := sup
t∈[0,∞)

eγ t‖ψ1(x, t) − ψ2(x, t)‖H(s)(Rn).

Let B∞ be the space of all C∞(Rn) functions with uniformly bounded derivatives
of all orders.

Theorem 2. [10]Let A(x, ∂x ) = ∑
|α|≤2 aα(x)∂α

x be a second-order negative ellip-
tic differential operator with real coefficients aα ∈ B∞. Assume that the nonlinear
term F(u) is a Lipschitz continuous with exponent α > 0 in the space H(s)(R

n),
s > n/2 ≥ 1, and F(0) = 0. Assume also that m ∈ (0,

√
n2 − 1/2] ∪ [n/2,∞).

Then, there exists ε0 > 0 such that, for every given functions ψ0, ψ1 ∈ H(s)(R
n),

such that
‖ψ0‖H(s)(Rn) + ‖ψ1‖H(s)(Rn) ≤ ε, ε < ε0 ,

there exists a global solution ψ ∈ C1([0,∞); H(s)(R
n)) of the Cauchy problem

ψt t + nψt − e−2t A(x, ∂x )ψ + m2ψ = F(ψ) , (12)

ψ(x, 0) = ψ0(x) , ψt (x, 0) = ψ1(x) . (13)

That solution ψ(x, t) belongs to the space X (2ε, s, γ ); that is,

sup
t∈[0,∞)

eγ t‖ψ(·, t)‖H(s)(Rn) < 2ε ,

with γ such that either 0 < γ ≤ 1
α+1

(
n
2 −

√
n2
4 − m2

)

if
√
n2 − 1/2 ≥ m > 0,

or we choose 0 ≤ γ0 < n−1
2 if m = n/2 and 0 ≤ γ0 ≤ n−1

2 if m > n/2, then γ ≤
min

{
γ0 , n

2(α+1)

}
.

If m ∈ (
√
n2 − 1/2, n/2), then for the problem with ψ0 = 0 the global solution

exists and belongs to X (2ε, s, γ ), where γ ∈ (0, 1
α+1 (

n
2 −

√
n2
4 − m2)).

For n = 3, the mass m interval (0,
√
2) is called the Higuchi bound in quantum

field theory [13]. The proof of the global existence [10] is based on the integral
transform and L p − Lq estimates. The range m ∈ (

√
n2 − 1/2, n/2), which seems

to be a forbidden mass interval for the problem with general initial data, can be
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allowed if we change the setting of the problem (see, also, [14]). Indeed, we have
the following result for all m > 0.

Theorem 3. [10]Let A(x, ∂x ) = ∑
|α|≤2 aα(x)∂α

x be a second-order negative ellip-
tic differential operator with real coefficients aα ∈ B∞. Assume that the nonlinear
term F(u) is a Lipschitz continuous with exponent α > 0 in the space H(s)(R

n),
s > n/2 ≥ 1, and F(0) = 0. Assume also that m > 0. Then, there exists ε0 > 0 such
that for every given function f ∈ X (ε, s, γrhs), such that

sup
t∈[0,∞)

eγrhs t‖ f (x, t)‖H(s)(Rn) ≤ ε < ε0 ,

there exists a global solution ψ ∈ C1([0,∞); H(s)(R
n)) of the Cauchy problem

ψt t + nψt − e−2t A(x, ∂x )ψ + m2ψ − F(ψ) = f ,

ψ(x, 0) = 0 , ψt (x, 0) = 0 .

That solution ψ(x, t) belongs to the space X (2ε, s, γ ), with γ such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ <
1

α + 1
γrhs i f m <

n

2
and γrhs ≤ n

2
−

√
n2

4
− m2 ,

γ <
1

α + 1

(
n

2
−

√
n2

4
− m2

)

i f m <
n

2
and γrhs >

n

2
−

√
n2

4
− m2 ,

γ ≤ min

{

γrhs,
n

2(α + 1)

}

i f m ≥ n

2
and

n

2
> γrhs ,

γ ≤ min

{

γ0,
n

2(α + 1)

}

where γ0 < γrhs i f m = n

2
and

n

2
= γrhs ,

γ ≤ n

2(α + 1)
i f m >

n

2
and

n

2
≤ γrhs ,

γ <
n

2(α + 1)
i f m = n

2
and

n

2
< γrhs .

The mass m = √
n2 − 1/2 represents the only field that obeys the Huygens prin-

ciple [24].
The Klein–Gordon quantum fields on the de Sitter manifold with imaginary mass,

which take an infinite set of discrete values as follows

m2 = −k(k + n) , k = 0, 1, 2, . . . , (14)

present a family of scalar tachyonic quantum fields. Epstein and Moschella [5] give
a complete study of a family of scalar tachyonic quantum fields which are linear
Klein–Gordon quantum fields on the de Sitter manifold whose squared masses are
negative and take an infinite set of discrete values (14). The corresponding linear
equation is
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ψt t + nψt − e−2tΔψ + m2ψ = 0 ,

for which the kernel is E(x, t; x0, t0; M), where M =
√

n2
4 + k(k + n) = k + n

2 ,
k = 0, 1, 2, . . . . If n is an odd number, then m takes value at knot points set. The
nonexistence of a global in time solution of the semilinear Klein–Gordon tachyonic
quantum field equation in the de Sitter spacetime is proved in [22]. The conclusion
is that the self-interacting tachyonic quantum fields in the de Sitter spacetime have
finite lifespan. More precisely, consider the semilinear equation

ψt t + nψt − e−2tΔψ − m2ψ = c|ψ |1+α ,

which is commonly used model for general nonlinear problems. Then, according to
Theorem 1.1 [22], if c = 0, α > 0, andm = 0, then for every positive numbers ε and
s there exist functions ψ0, ψ1 ∈ C∞

0 (Rn) such that ‖ψ0‖H(s)(Rn) + ‖ψ1‖H(s)(Rn) ≤ ε

but the solution ψ = ψ(x, t) to (12) with the initial values (13) blows up in finite
time.
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Asymptotic Consistency of the RS-IMEX
Scheme for the Low-Froude Shallow
Water Equations: Analysis and Numerics

Hamed Zakerzadeh

Abstract In the present work, we formally prove the asymptotic consistency of the
recently presented Reference Solution IMplicit–EXplicit (RS-IMEX) scheme for the
two-dimensional shallowwater equations. The schemehas been analyzed extensively
for the low-Froude one-dimensional shallow water equations in (Zakerzadeh IGPM
report 455 (2016) [18]), and the present paper is going to discuss the asymptotic
consistency analysis for the two-dimensional case, with the aid of some numerical
experiments.

Keywords IMEX scheme · Asymptotic preserving · Shallow water equations

1 RS-IMEX Schemes: An Introduction

In the singular limits of conservation laws, characterized by the singular parameter
ε ∈ (0, 1] approaching zero, the type of the equations changes, e.g., when the Mach
number, denoted by ε, approaches zero for the Euler equations (the incompressible
limit), the sound speed goes to the infinity and the system changes to be hyperbolic-
elliptic. Such a singularity not only hinders the analysis (see [16]), but also gives rise
to lots of issues for numerical schemes, e.g., schemes may lose their accuracy for
under-resolved mesh sizes (see [6]) for weakly compressible flows or the time step
gets very restrictive for explicit schemes, in virtue of the Courant–Friedrichs–Lewy
(CFL) condition, i.e., Δt � ε Δx , which leads to a huge computational cost.

Assuming that the “solution” of the singularly perturbed problem converges to the
“solution” of the limit problem, we aim to discuss the counterpart of such a conver-
gence in the discrete level. This is the idea of Asymptotic Preserving (AP) schemes
[13] for an ε-dependent system converging to a limit for ε → 0. The numerical
scheme is AP if it provides a stable, consistent, and efficient scheme for the contin-
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uous limit system. For the sake of simplicity, we only consider well-prepared initial
data to eliminate spurious initial layers.

The AP property has been studied extensively for conservation laws (as well
as kinetic equations, cf. [14]), and several AP schemes have been developed and
analyzed; see [2, 5, 12, 17] among others. Although most of these works present a
formal analysis, there are few results regarding the rigorous asymptotic consistency
or stability, e.g., [1, 7, 8, 10, 19] for hyperbolic balance laws.

The bottom line of these AP schemes is a mixed implicit–explicit (IMEX)
approach to split the flux (or its Jacobian) into stiff and non-stiff parts and treat them
explicitly and implicitly in time. Such an approach is necessary for an ε-uniform
CFL condition, but is not sufficient for asymptotic stability; see [17] for instance,
where a CFL-stable IMEX scheme requires an ε-dependent time step for stability.
This, in fact, gave the motivation for the RS-IMEX scheme, as we will review here.
The penalization method [9] for the kinetic equations, as well as [2] for the shallow
water equations are close to the RS-IMEX scheme, in essence.

The goal of this section is to provide a very brief introduction to the RS-IMEX
scheme; see also [15, 18]. Then in the next section, we prove the asymptotic consis-
tency of the scheme followed by some numerical experiments in Sect. 4. The reader
is referred to [18] for a rigorous asymptotic analysis for the one-dimensional shallow
water system, which is the backbone of the analysis in the present work.

Consider the general hyperbolic system of balance laws in Ω ⊂ R
d

∂tU(x, t; ε) + divx F(U, x, t; ε) = S(U, x, t; ε), (1)

where Ω := T
d is a d-dimensional torus, U ∈ R

q is the vector of unknowns, F ∈
R

q×d is the flux matrix (in d space dimensions), ε ∈ (0, 1] is the singular parameter,
and S ∈ R

q is the source term. Note that we often suppress the dependence of U ,
F and S on ε. To have a hyperbolic system, we also assume that F has a real
diagonalizable Jacobian F′ := ∂U F.

The main idea of the RS-IMEX scheme is to split the solution U of the balance
laws (1) into the (given) reference solution U and a perturbation U pert , i.e., U =
U + U pert . The reference solution can be a steady-state solution of (1), or the solution
of the asymptotic limit of (1) as ε → 0. Then, as in [18], we use a Taylor expansion
around U to split the flux and source terms into reference (F, S), linear stiff (˜F,˜S)
and nonlinear non-stiff parts (̂F,̂S):

F(U) = F(U) + F′(U)U pert + (

F(U) − F(U) − F′(U)U pert
) =: F + ˜F + ̂F,

S(U) = S(U) + S′(U)U pert + (

S(U) − S(U) − S′(U)U pert
) =: S +˜S +̂S.

We, then, scale the components of the perturbation (see [18] for a discussion) by
the scaling matrix D := diag(εd1 , . . . , εdq ) and define the scaled perturbation as
V := D−1 U pert to obtain the corresponding scaled splitting:

G = G + ˜G + ̂G, Z = Z + ˜Z + ̂Z,
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with similar definitions as for the splittings of F and S. Defining R := −divxG + Z
(with analogous definitions for R,˜R and̂R), and also T as the (a priori-known) scaled
residual of the reference solution

T := D−1∂tU − R, (2)

one can reformulate the balance laws (1) as

∂tV = −T + ˜R + ̂R, (3)

which is a system for the scaled perturbation V := (v1, . . . , vq)
T .

Solving this reformulatedproblem (3), numerically, defines theRS-IMEXscheme.
We solve stiff ˜R implicitly in time to avoid restrictive time steps in the limit (by using
the implicit Euler method) while the (expected to be) non-stiff part̂R is treated by the
explicit Euler method. Moreover, T is computed independently, e.g., by an incom-
pressible solver if U is the solution of the incompressible Euler equations. We use a
Rusanov-type numerical flux, with numerical diffusion coefficients α̃ and α̂ and an
appropriate spatial discretization for the source term (to avoidwell-balancing issues).
Note that α̃ and α̂ originally should be chosen as the maximum over the domain and
all characteristic fields (of stiff or non-stiff parts). But here, not to add an excessive
diffusion to the implicit step, we pick α̃ = 0.

Definition 1. Given the reference solution U , the RS-IMEX scheme for (3) is
given by

DtV n
Δ = −T

n+1
Δ + ˜R

n+1
Δ + ̂R

n
Δ, (4)

with the Euler time integration Dt when Δ stands for spatial discretization.

The advantages of the scheme are twofold. Firstly, the implicit part of the scheme
is linear by construction, which is very advantageous in terms of computational cost.1

Secondly, as we will see in Remark 1, it makes the asymptotic consistency analysis
easier as the scheme deals with the perturbations V directly.

To summarize, in the RS-IMEX algorithm two coupled systems should be solved
separately: With a given reference state at step n, one finds the scaled perturba-
tion V n+1

Δ , while the reference state may evolve over time and should be computed
independently. This procedure is repeated in each step.

1The idea of such a linearization goes back to the so-called linearly implicit methods for ODEs and
has been used later in [2, 11].
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2 RS-IMEX Scheme for the Shallow Water Equations

In this section, we apply the RS-IMEX scheme to the two-dimensional shallowwater
equations with bottom topography. Rather than the classical form of this system, we
consider its reformulation as [2] in the periodic domain Ω = T

2:

⎧

⎨

⎩

∂t z + divx m = 0,

∂tm + divx

(

m ⊗ m
z − b

+ z2 − 2bz

2ε2
I2

)

= − z

ε2
∇xb,

(5)

where z is the surface elevation from the mean surface level Hmean, m := (z − b)u
is the momentum with the velocity u = (u1, u2), b is the water depth measured from
Hmean with a negative sign, and the singular parameter ε ∈ (0, 1] is called the Froude
number, cf. [18]. Using (5), one can identify U , F, and S as

U =
⎡

⎣

z
m1
m2

⎤

⎦ , F =

⎡

⎢

⎢

⎢

⎣

m1 m2

m2
1

z − b
+ z2 − 2zb

2ε2
m1m2

z − b
m1m2

z − b

m2
2

z − b
+ z2 − 2zb

2ε2

⎤

⎥

⎥

⎥

⎦

, S =
⎡

⎣

0
−z bx/ε2

−z by/ε2

⎤

⎦ . (6)

Given the scaling matrix D = diag(ε2, 1, 1), U = (z,m1,m2)
T , and the scaled per-

turbation V := D−1(U − U), the RS-IMEX splitting for (5) gives the reference and
stiff parts as

G =

⎡

⎢

⎢

⎢

⎢

⎣

m1/ε
2 m2/ε

2

m1
2

z − b
+ z2 − 2zb

2ε2
m1m2

z − b
m1m2

z − b

m2
2

z − b
+ z2 − 2zb

2ε2

⎤

⎥

⎥

⎥

⎥

⎦

, (7a)

˜G =

⎡

⎢

⎢

⎢

⎢

⎣

v2/ε
2 v3/ε

2

−m1
2v1ε

2

(z − b)2
+ 2m1v2

z − b
+ (z − b)v1 −m1m2v1ε

2

(z − b)2
+ m1v3

z − b
+ m2v2

z − b

−m1m2v1ε
2

(z − b)2
+ m1v3

z − b
+ m2v2

z − b
−m2

2v1ε
2

(z − b)2
+ 2m2v3

z − b
+ (z − b)v1

⎤

⎥

⎥

⎥

⎥

⎦

,

(7b)

Z =
⎡

⎣

0
−z bx/ε2

−z by/ε2

⎤

⎦ , ˜Z =
⎡

⎣

0
−v1bx
−v1by

⎤

⎦ . (7c)
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while ̂Z = 0 and ̂G(U, V ) = G(U + V ) − G(U) − ˜G(U, V ). One can verify that
the Jacobian matrices ̂G

′
and ˜G

′
have complete sets of eigenvectors and that the

eigenvalues of ̂G
′
are non-stiff. This can be readily seen from the expression of the

non-stiff flux ̂G1 (and similarly ̂G2)

̂G1 =

⎡

⎢

⎢

⎢

⎢

⎣

0
m2
1

z − b
+ z2 − 2zb

2ε2
− m1

2

z − b
− z2 − 2zb

2ε2
+ m1

2v1ε
2

(z − b)2
− 2m1v2

z − b
− (z − b)v1

m1m2

z − b
− m1m2

z − b
+ m1m2v1ε

2

(z − b)2
− m1v3

z − b
− m2v2

z − b

⎤

⎥

⎥

⎥

⎥

⎦

,

(7d)

as, after simplification, it does not contain any O(1/ε) term.
Denoting the central discretization of the first and second derivatives in the x-

direction by ∇h,x and Δh,x respectively, the RS-IMEX scheme can be written as

V
n+ 1

2
i j = V n

i j − Δt
(

∇h,x̂G
n
1,i j + ∇h,ŷG

n
2,i j

)

+ Δt
α̂Δx

2
Δh,xV n

i j , (8a)

V n+1
i j = V

n+ 1
2

i j − Δt
(

∇h,x˜G
n+1
1,i j + ∇h,y˜G

n+1
2,i j

)

+ Δt˜Z
n+1
i j − ΔtT

n+1
i j , (8b)

for each cell (i, j) ∈ {1, 2, . . . , N }2 in the square computational domainΩN with
spatial steps Δx = Δy and the time step Δt , where˜Z

n+1
i j is the central discretization

of the source term (7c), and T
n+1
i j is the central discretization of the scaled residual

(2) computed as

T
n+1
i j = D−1

U
n+1
i j − U

n
i j

Δt
+ ∇h,xG

n+1
1,i j + ∇h,yG

n+1
2,i j − Z

n+1
i j . (9)

The reference solution is chosen as the zero-Froude limit, which is the solution
of the so-called lake equations (cf. [3] for a formal derivation):

⎧

⎨

⎩

∂tm − divx

(

m ⊗ m
b

)

− b∇xπ = 0,

divxm = 0.
(10)

So, considering the solution of (10) as U with a constant (in time and space) z and

a solenoidal m, one can write T block-wise as T
n+1
Δ := [T n+1

1,Δ , T
n+1
2,Δ , T

n+1
3,Δ ]T with
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T
n+1
1,i j =

(

∇h,xm1
n+1
i j + ∇h,xm2

n+1
i j

)

/ε2,

T
n+1
2,i j = Dtm1

n
i j + ∇h,x

(

m1
n+1,2
i j

z − bi j

)

+ ∇h,y

(

m1
n+1
i j m2

n+1
i j

z − bi j

)

, (11)

T
n+1
3,i j = Dtm2

n
i j + ∇h,x

(

m1
n+1
i j m2

n+1
i j

z − bi j

)

+ ∇h,y

(

m1
n+1,2
i j

z − bi j

)

.

So far, the scheme for computing the scaled perturbation has been introduced. The
remaining point to be clarified is how to solve the equations for the reference solution
(10), which is needed to compute T . In fact, there exist several numerical methods
for the lake equations. Here, we employ the so-called Chorin’s projection method [4]
because of its simplicity and applicability to collocated grids. We wish to mention
that the Poisson problem (in the projectionmethod) for a doubly-periodic domain has
an infinite number of solutions differed by a constant. To solve it numerically, we use
the Discrete Fourier Transform (DFT) for the flat bottom case, while for the non-flat
bottom case, we regularize the problem by a time derivative in the pseudo-time τ

and seek the stationary solution.

3 Main Result: Asymptotic Analysis of the Scheme

Theorem 1. Consider the shallow water equations (5) with topography in a
periodic domain and with well-prepared initial data (z0,ε,m0,ε) such that

z(0, ·) = z0,ε = z0(0) + ε2z0(2),ε, m(0, ·) = m0,ε = m0
(0) + εm0

(1),ε,

where z0(0) is a constant and m0
(0) satisfies the lake equations (10). Then, the

RS-IMEX scheme (8a)–(8b) is solvable, i.e., it has a unique solution for all
ε > 0, if α̃ is constant. Also, the scheme is consistent with the asymptotic limit
in the fully-discrete settings, i.e., it is asymptotically consistent.

3.1 Solvability

Assuming Δx = Δy and α̃ = 0 for simplicity, the linear system of the implicit step
(8b) with the companion matrix Jε can be written as Jε := I3N 2 + β
ε, where β :=
Δt
2Δx and 
ε is a matrix not depending on β. It is plausible to conclude that for a
suitable choice of β, none of the eigenvalues of β
ε are equal to −1; so Jε is non-
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singular, and the implicit step (so the whole scheme) is solvable. The proof for α̃ �= 0
is likewise.

3.2 Asymptotic Consistency

The asymptotic consistency analysis is often done formally in the literature, namely
by putting the Poincaré expansion ansatz into the scheme and by balancing the equal
powers of ε. For the present work, we adopt the same approach.

Firstly, we show that the explicit step is “ε-stable”, i.e., ‖V n+ 1
2

Δ ‖ = O(1). Given
‖V n

Δ‖ = O(1), which is compatible with the well-prepared initial data, and since
̂G1,1 = ̂G2,1 = 0, one can immediately conclude that ‖V n+ 1

2
1,Δ ‖ = O(1). For V2,Δ

(and similarly V3,Δ), one can simply confirm that

lim
ε→0

(

∇h,x̂G
n
1,2,i j + ∇h,ŷG

n
2,2,i j

)

= O(1), (12)

since

lim
ε→0

[

∇h,x

(

m2
1

z − b
+ z2 − 2zb

2ε2
− m1

2

z − b
− z2 − 2zb

2ε2
+ m1

2v1ε
2

(z − b)2
− 2m1v2

z − b
− (z − b)v1

)

+ ∇h,y

(

m1m2

z − b
− m1m2

z − b
+ m1m2v1ε

2

(z − b)2
− m1v3

z − b
− m2v2

z − b

)]

= O(1).

So, the explicit step does not change the leading order of V n
2,Δ (and V n

3,Δ). This
concludes the ε-stability proof of the explicit step.

Completing the asymptotic consistency analysis, we show that the implicit step
is consistent with the limit. We assume that ‖V n+1

Δ ‖ = O(1) to justify the use of
Poincaré expansion and will discuss this assumption somewhere else. From the v1-
update, (11) and (7a)–(7d), the momentum field (up to O(ε2)) is solenoidal, i.e.,

∇h,x (m1 + v2)
n+1
i j + ∇h,y (m2 + v3)

n+1
i j = O(ε2). (13)

Since the consistency of the evolution of the leading order of the momentum is
clear, the asymptotic consistency of the scheme is concluded, but only up to possible
oscillations for the momentum field in the null space of central difference operators
∇h,x and ∇h,y which may lead to checker-board oscillations.

Remark 1. TheEq. (13), combinedwith the v1-update, immediately implies that pos-
sible checker-board oscillations for the surface perturbation z are small, i.e., O(ε2).
This seems to solve the problem in [15] regarding the checker-board oscillations in
a periodic domain and suggests that it may not be necessary to add a large diffusion
in order to preclude oscillations.
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Table 1 Experimental order of convergence with CFL = 0.45 and for different ε. Error e is defined
with the exact solution in �∞-norm
N ε = 0.8 N ε = 10−6

ez,�∞ EOCz,�∞ eu1 ,�∞ EOCu1 ,�∞ ez,�∞ EOCz,�∞ eu1 ,�∞ EOCu1 ,�∞

20 2.61e-2 – 1.04e-1 – 20 4.08e-14 – 1.04e-1 –

40 2.00e-2 0.38 6.80e-2 0.61 40 3.13e-14 0.38 6.80e-2 0.61

80 1.23e-2 0.70 3.63e-2 0.91 80 1.92e-14 0.71 3.63e-2 0.91

160 6.20e-3 0.99 1.65e-3 1.14 160 9.69e-15 0.99 1.65e-3 1.14

4 Numerical Results

We discuss the traveling vortex example [2] to verify the quality of the solutions
computed by the RS-IMEX scheme. We consider a well-prepared initial condition
in the periodic domain Ω = [0, 1)2:

z(x, y, 0) = 1[r≤ π
ω
]
(

Γ ε

ω

)2

(g(ωr) − g(π)) ,

u1(x, y, 0) = u0 + 1[r≤ π
ω
]Γ (1 + cos(ωr)) (yc − y),

u2(x, y, 0) = 1[r≤ π
ω
]Γ (1 + cos(ωr)) (x − xc),

with Hmean = 110, u0 = 0.6, xc = (0.5, 0.5)T , Γ = 1.4, ω = 4π , r := ‖x − xc‖
and

g(r) := 2 cos r + 2r sin r + 1

8
cos 2r + r

4
sin 2r + 3

4
r2.

We choose the time step as Δt := CFLΔx/α̂. The exact solution is the ini-
tial condition advected by u0 with time-periodicity Tπ = 5

3 such that w(x, y, t) =
w(x − u0 t, y, 0) for w ∈ {z, u1, u2}. Using this exact solution, Table1 shows the
experimental order of convergence (EOC) for the final time T f = 1 and for different
ε; it is clear that the EOC is close to one uniformly in ε and the scheme is accurate
for all ε > 0. We also illustrate this fact in Fig. 1, where both exact and numerical
solutions are plotted on centerlines of the domain.

Figure2a illustrates the computed solution for an small ε, in particular ε = 10−6.
There is a very good agreement between the result of the RS-IMEX scheme and
the exact solution. It is also clear that there is no checker-board oscillation for the
momentum and surface perturbation. These suggest that the scheme is asymptotically
consistent and stable.Moreover, Fig. 2b shows that the scaled perturbation is bounded
in terms of ε; so, the formal asymptotic consistency analysis is justified.

Acknowledgements The research was supported by RWTH Aachen University through
Graduiertenförderung nach Richtlinien zur Förderung des wissenschaftlichen Nachwuchses
(RFwN).
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(a) = 0.8.

(b) = 0.01.

Fig. 1 Error of the RS-IMEX scheme for different ε on the 80 × 80 grid, with CFL = 0.45 and
T f = 1
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(a) Solution of the RS-IMEX scheme for = 10−6.

(b) Time evolution of the norm of the perturbation from the incompressible solution for = 10−6.
The figure is almost the same for ε = 10−4 and = 10−2.

Fig. 2 Behavior of the scheme on the 100 × 100 grid with CFL = 0.45 and T f = Tπ
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Class of Space-Time Entropy Stable DG
Schemes for Systems
of Convection–Diffusion

Georg May and Mohammad Zakerzadeh

Abstract In this work, we present a family of entropy stable discontinuous Galerkin
methods for systems of convection–diffusion with nonlinear convective and viscous
fluxes. The discretization presented here is based on a mixed formulation and is
designed to preserve entropy stability of an already existing entropy stable discretiza-
tion for a hyperbolic system of conservation laws. The fully discrete version of the
entropy stability is proven in the framework of space–time formulation with variants
of several known schemes, including the method of Bassi–Rebay and symmetric
interior penalty method.

Keywords Discontinuous Galerkin · Entropy stable · Convection–diffusion

1 Introduction

In analyzing the stability of numerical schemes for nonlinear systems of hyperbolic
conservation laws, entropy stability is often the framework of choice [2, 5, 9, 12,
13, 16]. This is typically done by realization of the numerical scheme in terms of the
so-called entropy variables.

Compared to entropy stability analysis of hyperbolic conservation laws, much
less work has been done in extending entropy stability of discontinuous Galerkin
(DG) schemes to nonlinear convection–diffusion systems. To the best knowledge
of the authors, the only available results in this direction are [5, 8, 14, 15]. More
specifically, in [5], the symmetric/non-symmetric interior penalty DG (SIPG/NIPG)
formulation has been presented for the one-dimensional Navier–Stokes equations
realized in terms of entropy variables, and the entropy stability has been proved
in the semi-discrete form. In [14, 15], a formulation of SIPG/NIPG as well as a
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variant of LDG method [7] have been proposed for the one-dimensional systems of
convection–diffusion and in space–time framework. Moreover, the proof of entropy
stability in space–time fully discrete settings is provided. The authors of [8] present an
entropy stable space–time formulation for turbulent computations using the entropy
variables; nevertheless, they did not provide a rigorous proof of the entropy stability.

In this work, we consider a general class of DG formulations for multidimen-
sional systems of convection–diffusion. This is done by using a mixed method for
discretizing the viscous flux, combined with an entropy stable formulation for the
convective flux which already proposed in [11, 17]. Moreover, we have already pub-
lished a similar formulation in [19] without specifying the time marching technique
andwith a proof of semi-discrete entropy stability. Here, and by the reformulation in a
space-time framework, we extend the stability result of [17] to convection–diffusion
systems and of [19] to fully discrete form. The current work is also similar to [14, 15]
in using space-time framework; however, unlike them, the different viscous formula-
tions in this work are obtained from a canonical framework. Here, we only consider
a version of SIPG and BR2 [4] methods and refer to [19] for more formulations.

We consider general systems of convection–diffusion as the following form

du

dt
+ ∇ · ( fc(u) − fv(u,∇u)

) = 0, in Ω, (1)

where Ω ⊂ R
d , d = 1, 2, 3 is bounded. Here, u ∈ R

m is the vector of conservative
variables, and by fc and fv , we denote the convective and viscous fluxes. Also, we
consider that fv is linear with respect to its second argument. Hence, one can write
(1) as

ut + Ai (u)∇i u − ∇ · (Ki, j (u)∇ j u) = 0, i, j = 1, · · · , d, (2)

where Ai (u) = ∂u f ic (u) and Ki, j ∈ R
m×m and the repeated indices denote the sum-

mation.
In general, the matrices Ai (u) and K (u) = [

Ki, j (u)
]
are not symmetric which

makes the energy analysis somewhat cumbersome. An idea to detour this issue is the
transform to the entropy variables; i.e., using the change of variables v(u) = Uu(u),
whereU is a strictly convex entropy function of the corresponding hyperbolic system,
i.e., when fv ≡ 0.

This symmetrization is a well-known approach for hyperbolic systems of conser-
vation laws (see [16]), and here, we assume that it also symmetrizes the diffusion
matrix K (u). Consequently, and by abusing the notation A and K to denote the
transformed matrices of (2), the symmetric representation of (2) realized in terms of
entropy variables reads

uvvt + Ai (v)∇iv − ∇ · (Ki, j (v)∇ jv) = 0, i, j = 1, · · · , d, (3)

such that Ai (v) is symmetric and K (v) is symmetric positive semi-definite. Note that
uv is symmetric positive definite by the properties of the convex entropy function.
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The system of compressible Navier–Stokes equations is an example of systems
that accepts such a nice symmetric form as (3). We are going to discuss it briefly
later in Sect. 4, and we refer for more details to [12].

Henceforth, we realize the functions in terms of entropy variables v which are the
basic unknowns, and the dependent conservative variables are derived via mapping
u(v). This mapping is sometimes omitted in notation, e.g., f (v) rather than f (u(v)).

The outline of this paper is as follows: The DG discretization is introduced in
Sect. 2. This section includes the explicit form of the convective and different viscous
discretizations. The stability analysis is presented in Sects. 3, and 4 is reserved for
numerical examples.

2 Space–Time Discontinuous Galerkin Scheme

In this section, we present the space–time DG discretization of (1). Let us define the
space–time coordinates x = (x0, x1, . . . , xd) with x0 ≡ t . Now, with the notation of
∇ as the space–time gradient, one might reformulate the symmetrized problem (3)
in the space–time conservative form as

∇ · (
f̄c(v) − f̄v(v,∇v)

) = 0, in Ω × [0,∞), (4)

where the space–time convective and viscous fluxes are

f̄c(v) =
[

u(v)

f (u(v))

]
, f̄v(v,∇v) =

[
0 0
0 K

]
∇v = K̄ (v)∇v. (5)

For arbitrary final time T > 0, consider a sequence of time instances 0 ≡ t0 <

t1 < · · · < tN ≡ T , with corresponding time intervals In = (tn, tn+1). Let us consider
∂Ω be a polygon andT n

h = {κ} be a shape-regular subdivision of the space–time slab
In × Ω into disjoint (d + 1)-simplices. In order to avoid technicalities of boundary
conditions, we consider periodic boundary conditions on ∂Ω × [0, T ]. The treat-
ment of the temporal boundaries of the space–time slab, i.e., {tn, tn+1} × Ω , will be
discussed later.

Define Th := ⋃N−1
n=0 T n

h , and let h := supκ∈T h
hκ , where hκ := diam(κ). Also,

we denote nκ to be the outward normal to ∂κ , and d ′ = d + 1 the dimension of
space–time.

We assume that Th is of bounded variation; that is, there exists a constant l > 1
such that l−1 ≤ hκ

hκ′ ≤ l, where κ, κ ′ ∈ Th share an edge. This property means that
there is an upper bound for the number of neighboring elements, denoted by Nl .

We denote the skeleton of the triangulation, i.e., the set of all d-dimensional faces
of κ ∈ Th , by Eh = {e} and the diameter of e by he. Also, we denote the set of
temporal faces as Eh,t and Eh,i = Eh \ Eh,t , respectively.
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Let us fix the definition of the jump and average of discontinuous functions on the
skeleton Eh . For any e ∈ Eh,i , where e is the common face of κ, κ ′, withwκ,e = wκ |e,
we set

{w} = 1

2
(wκ,e + wκ ′,e), [[w]] = wκ,e ⊗ nκ + wκ ′,e ⊗ nκ ′ (6)

for all w ∈ ∏
κ∈T h

[
L2(∂κ)

]m
. Similarly for all τ ∈ ∏

κ∈T h

[
L2(∂κ)

]m×d ′
we set

{τ } = 1

2
(τκ,e + τκ ′,e), [[τ ]] = τκ,e · nκ + τκ ′,e · nκ ′ . (7)

Moreover, for any boundary edge e ∈ Eh,t , we define

[[w]] = wκ,e ⊗ nκ , {τ } = τκ,e. (8)

We will use several different notations for inner product; 〈w, v〉 denotes the inner
product between w, v ∈ R

m , while a · b defines the inner product for a, b ∈ R
d ′
.

Moreover, for the Frobenius inner product, we use the notation τ : ζ = ∑
i, j τi, jζi, j

for τ, ζ ∈ R
m×d . Forw ∈ R

m anda ∈ R
d , we define the outer productw ⊗ a ∈ R

m×d

as [w ⊗ a]i, j = wi a j .
Furthermore, the finite dimensional space for the approximate solution is

Vh,q(Th) := {wh ∈ [L2(Ω)]m : wh|κ ∈ [Pq(κ)]m, ∀κ ∈ Th}, (9)

where Pq(κ) is the space of polynomials of at most degree q on a domain κ .
The proposed DG method has the following semi-linear variational form: Find

vh ∈ Vh,q such that

B(vh, wh) := Bc(vh, wh) + Bv(vh, wh) = 0, ∀wh ∈ Vh,q . (10)

Here, Bc and Bv correspond to the convective and viscous discretization of (4),
respectively. We are going to present the details of these discretizations later in this
section.

In some related works like [11, 15, 17], one or two stabilization terms, in form of
shock capturing and streamline diffusion, were added to the DG discretization (10).
Despite their beneficial role in alleviating the oscillations, here, we only focus on
smooth solutions and neglect these terms.

2.1 Convective Discretization

Introducing the shorthand notation
∑

n,κ := ∑N−1
n=0

∑
κ∈T n

h
, we define the convective

semi-linear form as

Bc(vh, wh) :=
∑

n,κ

{∫

κ

〈∇ · f̄c(v
h), wh〉 dx +

∫

∂κ

〈 f̂c(vh) − f̄ (vhκ,e) · nκ , wh〉 ds
}

, (11)
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for wh ∈ Vh,q . The numerical flux function f̂c(vh) ≡ f̂c(vh
κ,e, v

h
κ ′,e; nκ) is set to be

Lipschitz continuous, conservative, and consistent with f̄c. On faces where nκ =
(±1, 0, . . . , 0)t , this numerical flux should reduce to pure upwinding (i.e. in time).
This upwinding leads to decoupling the time slabs from each other.

In general, f̂c is required to be entropy stable; i.e., it has the following viscosity
form, for any e ∈ Eh

f̂c(v
h
κ,e, v

h
κ ′,e; nκ) = f ∗(vh

κ,e, v
h
κ ′,e; nκ) − 1

2
D(vh)[[vh]], (12)

where f ∗ denotes the entropy conservative flux, and D is an entropy dissipation
matrix required to be symmetric and uniformly positive definite.

We refer to the literature for more details on the entropy stable fluxes, as well as
explicit forms of such fluxes for the Euler and shallow water equations [9, 13, 16].

2.2 Viscous Discretization

For the discretization of the viscous flux in (4), we follow the approach presented in
[6] and consider a first-order mixed formulation of (4) for three unknown variables;
v, θ = ∇v, and σ = K̄ θ as

− ∇ · σ = R, σ = K̄ θ, θ = ∇v, x ∈ Ω × [0, T ], (13)

where R := −∇ · f̄c(v) is the remainder of (4). In this section, we present a primal
formulation of (13)which can easily fit into (10).We approximate the solution of (13)
by discrete functions (σ h, θh, uh) in the finite element space (	h,p × 	h,p × Vh,q),
where Vh,q is defined by (9) and 	h,p is

	h,p(Th) := {θh ∈ [L2(Ω)]m×d ′ : θh |κ ∈ [P p(κ)]m×d ′
, ∀κ ∈ Th}, (14)

with q ≥ 1 and p = q or p = q − 1, in order to satisfy the property ∇Vh,q ⊂ 	h,p

(cf. [1]). In the computational code, we use p = q.
Let us consider the following weak formulation of (13)

∑

n,κ

∫

κ

K̄ θh : ζ h dx =
∑

κ∈T h

∫

κ

σ h : ζ h dx, (15)

∑

n,κ

∫

κ

θh : τ h dx +
∑

κ∈T h

∫

κ

〈vh,∇ · τ h〉 dx =
∑

κ∈T h

∫

∂κ

〈v̂, τ h · nκ〉 ds, (16)

∑

n,κ

∫

κ

σ h : ∇wh dx −
∑

κ∈T h

∫

∂κ

〈σ̂ · nκ , w
h〉 ds = (R, wh), (17)



682 G. May and M. Zakerzadeh

for any (ζ h, τ h, wh) in 	h,p × 	h,p × Vh,q and by noting that (R, wh) = −Bc(vh,

wh). We present the explicit form of the numerical fluxes v̂ and σ̂ later.
From [1], we have the following identity; for any v ∈ ∏

κ∈T h

[
L2(∂κ)

]m
and

ξ ∈ ∏
κ∈T h

[L2(∂κ)]m×d ′
, the following holds

∑

n,κ

∫

∂κ

〈v, ξ · nκ〉 ds =
∑

e∈Eh,i

∫

e
〈{v}, [[ξ ]]〉 ds +

∑

e∈Eh

∫

e
[[v]] : {ξ} ds. (18)

Applying (18) in (16) and (17), one can write

∑

n,κ

∫

κ

θh : τ h dx =
∑

n,κ

∫

κ

∇vh : τ h dx (19)

−
∑

e∈Eh,i

∫

e
〈{vh − v̂}, [[τ h]]〉 ds −

∑

e∈Eh

∫

e
[[vh − v̂]] : {τ h} ds,

∑

n,κ

∫

κ

σ h : ∇wh dx −
∑

e∈Eh

∫

e
{σ̂ } : [[wh]] ds −

∑

e∈Eh,i

∫

e
〈[[σ̂ ]], {wh}〉 ds = (R, wh).

(20)

Let us define the following Galerkin projection Gh : [L2(Ω)]m×d ′ → 	h,p; for all
ξ ∈ [L2(Ω)]m×d ′

∑

n,κ

∫

κ

ξ : τ dx =
∑

n,κ

∫

κ

Gh(ξ) : τ dx, ∀τ ∈ 	h,p. (21)

Moreover, we need a global and an edge-wise lifting operator, r : [L2(Eh,i )]m×d ′

→ 	h,p and re : [L2(e)]m×d ′ → 	h,p as,

∑

n,κ

∫

κ

r(ϕ) : τ dx = −
∑

e∈Eh,i

∫

e
ϕ : {τ } ds,

∑

n,κ

∫

κ

re(ϕ) : τ dx = −
∫

e
ϕ : {τ } ds,

(22)
for any τ ∈ 	h,p and e ∈ Eh,i . The difference of the definition (22) with the more
standard definition in [19] is in excluding the temporal boundary terms which do
not add any viscous contributions; see the structure of K̄ in (5). Note that r(ϕ) =∑

e∈Eh,i
r e(ϕ).

Here, we consider two different options for the numerical fluxes v̂ and σ̂ . Other
choices such as BR1 [3] and LDG can be done similarly (cf. [19]).

(i) BR2: Here, v̂ and σ̂ are set as [4], for e ∈ Eh

v̂ =
{

{vh} e ∈ Eh,i

vh
κ,e e ∈ Eh,t

, σ̂ =
{

{Gh
(
K̄ (vh)(∇vh + ηer e([[vh]])))} e ∈ Eh,i

0 e ∈ Eh,t
.
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The parameter ηe depends only on the properties of the triangulation. The appro-
priate choice for this parameter will be presented later in Sect. 3.

(ii) SIPG: In this formulation, we set for e ∈ Eh

v̂ =
{

{vh} e ∈ Eh,i

vh
κ,e e ∈ Eh,t

, σ̂ =
⎧
⎨

⎩
{Gh(K̄ (vh)∇vh)} − μe

he
[[vh]] e ∈ Eh,i

0 e ∈ Eh,t

with some μe > 0 dependent on the type of the triangulation, polynomial order,
and the diffusion matrix. We state the criterion for μe in Sect. 3.

Remark 1. The choice of the boundary flux on Eh,t stems from the fact that there is
no diffusion in the time direction. Hence, no coupling should be enforced.

Using the definition of the numerical fluxes (of both BR2 and SIPG) in (19) and
(20), one might simplify the weak formulation as

∑

n,κ

∫

κ

θh : τ h dx =
∑

n,κ

∫

κ

∇vh : τ h dx +
∑

e∈Eh,i

∫

e
[[vh]] : {τ h} ds = 0, (23)

∑

n,κ

∫

κ

σ h : ∇wh dx −
∑

e∈Eh

∫

e
σ̂ : [[wh]] ds = (R, wh). (24)

In order to obtain the primal formulation, using (15) and (21), one can solve σ h

as
σ h = Gh

(
K̄ (vh)θh

)
, (25)

and consequently, using (22), (23) and (25) give

θh = ∇vh + r([[vh]]), σ h = Gh

(
K̄ (vh)

(∇vh + r([[vh]])
)
. (26)

Now (θh, σ h) can be solved locally in terms of vh by inserting (26) in (24), and the
corresponding primal formulations are obtained as the following, for BR2

Bv(vh, wh) =
∑

n,κ

∫

κ

K̄ (vh)∇vh : ∇wh dx +
∑

e∈E h,i

ηe
∑

n,κ

∫

κ

K̄ (vh)re([[vh]]) : re([[wh]]) dx

+
∑

n,κ

∫

κ

(
K̄ (vh)r([[vh]]) : ∇wh + K̄ (vh)∇vh : r([[wh]])

)
dx, (27)

and for SIPG
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Bv(vh, wh) =
∑

n,κ

∫

κ

K̄ (vh)∇vh : ∇wh dx +
∑

e∈Eh,i

μe

he

∫

e
[[vh]] : [[wh]] ds.

+
∑

n,κ

∫

κ

(
K̄ (vh)r([[vh]]) : ∇wh + K̄ (vh)∇vh : r([[wh]])

)
dx . (28)

Let us remark that due to the discrete nature of the projection (21) and lifting
operators (22), the viscous formulations presented here are inconsistent with the
exact solution of (1) and consequently adjoint inconsistent. However, in the asymp-
totic limit of the mesh refinement, the consistency and adjoint consistency can be
recovered, provided that the exact solution is sufficiently smooth [18].

3 Entropy Stability

Similar to [19], and by taking inner product of (1) with respect to the entropy vari-
ables, the following global entropy inequality can be formally obtained using the
positive semi-definiteness of K̄ (v),

d

dt

∫

Ω

U (u) dx ≤ 0, (29)

on a periodic domain Ω .
This property can be seen as the most generic stability notion for systems of con-

servation laws. It is also desirable to retain this stability for the approximate solution.
In [19], this was proved in the semi-discrete form. The space–time framework we
adopted here provides us with a stronger fully discrete version:

Theorem 1. Let us consider vh as the approximate solution of (1) produced by
scheme (10). Also, assume that the following holds for the symmetric positive semi-
definite diffusion matrix K̄ (v); there exists Λ > 0 such that for any w �= 0

0 ≤ 〈w, K̄w〉 ≤ Λ〈w,w〉. (30)

Also, let us set the stabilization parameters in the viscous discretization as the fol-
lowing

BR2 : ηe ≥ Nl(Th), SI PG : μe ≥ Cp(Th)Λq2, (31)

where Cp is only dependent on the type of triangulation. Then, the following holds

∑

κ∈T h

∫

κ

U (vh(x, T )) dx ≤
∑

κ∈T h

∫

κ

U (vh(x, 0)) dx, (32)

i.e., the method (10) is entropy stable in the fully discrete form.
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The proof of this theorem follows the arguments already provided in [17, 19]. The
relation (32) comes directly from the convective part as discussed in [17]. Showing
the positiveness of the viscous discretization,Bv(vh, vh) ≥ 0, in a very similar way
to [19], concludes the proof.

4 Numerical Results

In this section, we provide some numerical results, for both BR2 and SIPG for-
mulations, to test and validate the methods and their convergence behavior. First
in Sect. 4.1, we look into the advection–diffusion problem in the scalar settings. In
Sect. 4.2, we apply our formulation to the compressible Navier–Stokes equations.

4.1 Scalar Advection-Diffusion

For scalar cases, the entropy variables coincide with the conservative ones, by choos-
ing the entropy function asU (u) = u2

2 . We consider the following linear advection–
nonlinear diffusion problem on a periodic domain Ω = [0, 1], by setting

fc(u) = cu, fv(u,∇u) = ε(1 + u)∇u

in (1). Here, ε > 0 is some constant, and c = (1, 1)t is the velocity field. Also, a
source term is added to the right-hand side of (1) such that the exact solution of the
problem is

u(x, t) = 1

2
sin(2πx) sin(2π t). (33)

The numerical flux f̂c is set to Lax–Friedrichs flux,which is entropy stable, combined
with either BR2 or SIPG for discretizing the viscous flux.Moreover, we choose ε = 1
and the corresponding stabilization parameters for SIPG and BR2 as μe = 10q2 and
ηe = 4, respectively. The final time of computation is set to T = 1.

The convergence results for different DG polynomial degree are provided in
Table1. The results show that the scheme (approximately) achieves the optimal q + 1
order of accuracy in the asymptotic mesh refinement limit for both methods.

4.2 Navier–Stokes Equations

Let us consider the compressible Navier–Stokes equations in one dimension in the
form of (1)
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Table 1 Convergence table for advection–diffusion problem with BR2 and SIPG, ε = 1a

BR2

q = 1 q = 2 q = 3 q = 4

#Elements ‖e‖L2 order ‖e‖L2 order ‖e‖L2 order ‖e‖L2 order

6 2.37e-01 1.13e-01 4.56e-02 6.79e-03

24 5.25e-02 2.172 3.25e-02 1.806 1.22e-03 5.22 8.48e-04 3.001

96 3.67e-02 0.5168 3.21e-03 3.338 2.19e-04 2.479 2.20e-05 5.268

384 1.23e-02 1.577 3.60e-04 3.156 1.24e-05 4.136 7.52e-07 4.870

1536 3.64e-03 1.756 4.34e-05 3.051 7.27e-07 4.103 2.46e-08 4.936

6144 1.02e-03 1.838 5.39e-06 3.008 4.34e-08 4.067 7.86e-10 4.968

SIPG

q = 1 q = 2 q = 3 q = 4

#Elements ‖e‖L2 order ‖e‖L2 order ‖e‖L2 order ‖e‖L2 order

6 2.49e-01 1.31e-01 4.82e-02 8.27e-03

24 5.37 e-02 2.213 4.20e-02 1.636 1.49e-03 5.014 1.09e-03 2.929

96 3.55e-02 0.5691 3.88e-03 3.436 2.72e-04 2.455 2.69e-05 5.331

384 1.20e-02 1.563 3.87e-04 3.328 1.53e-05 4.155 8.05e-07 5.067

1536 3.62e-03 1.733 4.43e-05 3.124 9.17e-07 4.058 2.51e-08 5.007

6144 1.02e-03 1.831 5.43e-06 3.029 5.68e-08 4.013 9.43e-10 4.73
a ‖e‖L2 is calculated at the final time T

u =
⎡

⎣
ρ

ρV
E

⎤

⎦ , fc = Vu + p

⎡

⎣
0
1
V

⎤

⎦ , fv =
⎡

⎣
0
τ

τV + q

⎤

⎦ (34)

when V is the x-velocity, and ρ and E are the density and the internal energy,
respectively. Also, p denotes the static pressure defined as p = (γ − 1)(E − 1

2ρV
2)

where γ is the heat capacity ratio. For air, we have γ = 1.4.
Moreover, τ is the viscous shear stress tensor and for Newtonian fluid in one

dimension is τ = 4
3μ∂x V . The heat flux q is defined by the Fourier’s law as q =

κ∂x T , where κ is the heat conductivity and is equal to κ = μcp
Pr . Here, Pr is the

Prandtl number, which for air at moderate conditions has a constant value of about
Pr = 0.72. Also, the temperature T is defined by the ideal gas law.

According to [12], in order to arrive at the symmetric form (3) in case of nonzero
heat flux, one should choose an affine function of the specific entropy s = log( p

ργ ),
e.g., U = − ρs

γ−1 . For explicit form of v and K (v), we refer to [12].
First, in order to see the accuracy of the method, we consider the following man-

ufactured solution similar to [10], as

(ρ, ρV, E) = (4 + sin(kx − wt),
4 + 0.2 sin(kx − wt)

3
,
(
4 + sin(kx − wt)

)2
)
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Table 2 Convergence table for the Navier–Stokes problems with BR2 and SIPG, μ = 0.1a

BR2

q = 1 q = 2 q = 3 q = 4

#Elements ‖e‖L2 order ‖e‖L2 order ‖e‖L2 order ‖e‖L2 order

6 3.87e0 7.47e-01 2.91e-01 1.35e-01

24 8.97e-01 2.11 9.51e-02 2.974 2.79e-02 3.38 3.85e-03 5.135

96 1.94e-01 2.21 1.32e-02 2.847 1.26e-03 4.471 1.13e-04 5.095

384 4.74e-02 2.033 1.66e-03 2.988 7.96e-05 3.987 4.56e-06 4.629

1536 1.20e-02 1.976 2.18e-04 2.929 5.08e-06 3.969 1.72e-07 4.731

SIPG

q = 1 q = 2 q = 3 q = 4

#Elements ‖e‖L2 order ‖e‖L2 order ‖e‖L2 order ‖e‖L2 order

6 5.04e0 9.70e-01 3.32e-01 1.52e-01

24 8.84e-01 2.511 1.09e-01 3.154 3.16e-02 3.396 4.31e-03 5.136

96 1.87e-01 2.238 1.64e-02 2.733 1.37e-03 4.528 1.26e-04 5.088

384 5.03e-02 1.897 2.07e-03 2.991 8.17e-05 4.067 5.66e-06 4.486

1536 1.33e-02 1.919 2.73e-04 2.922 4.96e-06 4.042 2.37e-08 4.581
a ‖e‖L2 is calculated at the final time T

Table 3 Convergence table for the Functional J , with BR2 and SIPG scheme, μ = 0.1

BR2

q = 1 q = 2 q = 3

#Elements ΔJ order ΔJ order ΔJ order

6 7.31e-03 8.55e-03 −3.84e-04

24 −3.99e-02 −2.451 1.86e-03 2.201 −2.77e-04 0.4695

96 −5.65e-03 2.824 −1.33e-04 3.805 5.79e-06 5.581

384 −1.42e-03 1.996 −3.78e-06 5.136 2.36e-08 7.938

1536 −3.45e-04 2.039 −2.22e-07 4.089 3.66e-10 6.013

SIPG

q = 1 q = 2 q = 3

#Elements ΔJ order ΔJ order ΔJ order

6 −2.58e-02 1.17e-02 3.725e-04

24 −4.85e-02 −0.9093 1.74e-03 2.751 −2.34e-04 0.667

96 −7.00e-03 2.792 −1.04e-04 4.06 6.17e-06 5.246

384 −1.71e-03 2.034 −3.87e-06 4.752 2.31e-08 8.058

1536 −4.01e-04 2.092 −2.63e-07 3.879 3.51e-10 6.044

where k = 2π,w = 0.5 on a periodic domainΩ = [0, 1], with the final time T = 1.
Also, we set the viscosity μ = 0.1.

The numerical convective flux is Lax–Friedrichs, and the method is tested with
ηe = 4 for BR2 and with μe = 20q2 for SIPG.
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The results presented in Tables2 show almost the optimal order of convergence
q + 1 in the asymptotic mesh refinement limit. However, for q = 4, the rate looks
somehow sub-optimal.

We are also interested in measuring the error in terms of a given target functional
J (·). We consider a weighted mean value of the density as

J (u) =
∫ T

0

∫

Ω

ρ(x, t) sin(2πx) dx dt. (35)

This functional is calculated for the same settings as for the results in Table2, and
the convergence rates of the error ΔJ = J (uh) − J (u) are reported in Table3. The
convergence rates are similar for both SIPG and BR2 and show (approximately) the
convergence order of 2q for q = 1, 2, 3 in the mesh refinement limit, which is the
expected value (see [10]). Before reaching the asymptotic regime, one might observe
irregularities in the convergence behavior, like the increase of the error at the first
refinement for BR2 and SIPG with q = 1.

Acknowledgements The research of the authors was supported by the Deutsche Forschungsge-
meinschaft (German Research Association) through grant GSC 111.
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Invariant Manifolds for a Class
of Degenerate Evolution Equations
and Structure of Kinetic Shock Layers

Kevin Zumbrun

Abstract We describe recent results with A. Pogan developing dynamical systems
tools for a class of degenerate evolution equations arising in kinetic theory, including
the steady Boltzmann and BGK equations. These yield information on structure of
large- and small-amplitude kinetic shocks, the first steps in a larger program toward
time-evolutionary stability and asymptotic behavior.

Keywords Invariant manifolds · Steady Boltzmann equation · Kinetic shock
profile

1 Introduction

In these notes, we describe recent results [39, 40] with Alin Pogan developing a set of
dynamical systems tools suitable for the study of existence and structure of shock and
boundary layer solutions arising in Boltzmann’s equation and related kinetic models.
These represent the first steps in a larger program to develop dynamical systemsmeth-
ods like those used in the study of finite-dimensional viscous and relaxation shocks
in [13, 29, 46–49, 51, 52], suitable for treatment of one- and multi-dimensional
stability of large-amplitude kinetic shock and boundary layers.

1.1 Equations and Assumptions

Our goal is the study of shock or boundary layer solutions

u(x, t) = ǔ(x), lim
x→±∞ ǔ(x) = u±, (1.1)
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of kinetic-type relaxation systems

A0ut + Aux = Q(u) (1.2)

on a Hilbert spaceH, where A0 and A are constant bounded linear operators, and Q,
the collision operator, is a bounded bilinear map. This leads us to the study of the
associated steady equation

Au′ = Q(u). (1.3)

Following [31, 39, 40], we make the following structural assumptions.

Hypothesis (H1) (i) The linear operator A is bounded, self-adjoint, and one-to-one on
the Hilbert spaceH, but not boundedly invertible. (ii) There existsV a proper, closed
subspace of H with dimV

⊥ < ∞ and B : H × H → V is a bilinear, symmetric,
continuous map such that Q(u) = B(u,u).

Hypothesis (H2) There exists an equilibrium u ∈ ker Q satisfying

(i) Q′(u) is self-adjoint and ker Q′(u) = V
⊥;

(ii) There exists δ > 0 such that Q′(u)|V ≤ −δ IV;

The class of system so described includes in particular our main example, of
Boltzmann’s equation with hard-sphere potential, written in appropriate coordinates
[31]; see Sect. 2. As regards (1.3), the main novelty is that A by (H1)(i) has an
essential singularity, i.e., essential spectrum at the origin, hence (1.3) is a degenerate
evolution equation towhich invariantmanifold results of standard dynamical systems
theory do not immediately apply. Our purpose here is precisely the construction of
invariant manifolds for the class of degenerate Eq. (1.3) satisfying (H1)-(H2), and
the application of these tools toward existence and structure of kinetic shock and
boundary layers.

Remark 1.1. We do not assume as in [31] the “genuine coupling” or “Kawashima”
condition that no eigenvector of A lies in the kernel of Q′(u). The assumption A
one-to-one implies (trivially) the weaker condition, sufficient for our analysis, that
no zero eigenvector of A lies in the kernel of Q′(u).

1.2 Chapman–Enskog Expansion and Canonical Form

Our starting point is the formal Chapman–Enskog expansion designed to approxi-
mate near-equilibrium flow [23]. Near u, (H1)-(H2) yields by the Implicit Function
Theorem existence of a (Fréchet) C∞ manifold of equilibria

E = ker Q, dim E = dimV
⊥ =: r, (1.4)
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tangent to V⊥ at u, expressible in coordinates w := u − u as a C∞ graph

v∗ : V⊥ → V. (1.5)

Denote u = PV⊥u, v = PVu, where PV⊥ and PV are the orthogonal projections
onto V

⊥ and V associated with the decomposition H = V
⊥ ⊕ V. The second-

order Chapman–Enskog approximation, or “hydrodynamic limit,” of (1.2) is then
h∗(u)t + f∗(u)x = D∗uxx , with associated steady equation

f∗(u)x = D∗uxx , (CE)

where h∗(u) := PV⊥ A0(uT , v∗(u)T )T and

f∗(u) := PV⊥ A(uT , v∗(u)T )T , D∗ := A12E−1AT
12, (1.6)

with A12 := PV⊥ APV and E := Q′(u)|V. See [23, 31, 40] for further details.
From (H1)(ii), PV⊥(Au)′ = PV⊥ Q ≡ 0. Integrating, we find that (1.3) admits a

conservation law
PV⊥ Au ≡ q = constant. (1.7)

By the definition of f∗, v∗, equilibria u± = (uT , v∗(u)T )T± satisfy the Rankine–
Hugoniot condition

f∗(u+) = f∗(u−) = q (RH)

associated with viscous shock profiles of the Chapman–Enskog system (CE), giving
a rigorous connection at the inviscid level between shock or boundary layer profiles
of the two systems (1.2) and (CE). A further connection, between the types of the
equilibria u = (ūT , v∗(ū)T )T and ū with respect to their associated flows, is given
by the following key observation proved in Sect. 2.

Lemma 1.2. System (1.3) may, by an invertible change of coordinates, be put in
canonical form

w′
c = Jwc + Q̃c(wc, wh)

�0w
′
h = −wh + Q̃h(wc, wh),

(1.8)

wc and wh parametrizing center and hyperbolic (i.e., stable/unstable) subspaces,

dimwc = m + r , m = dim ker f ′∗(ū), r = dimV
⊥, where J =

⎛
⎝
0 Im 0
0 0 0
0 0 0

⎞
⎠ is a nilpo-

tent block-Jordan form, �0 is a constant, bounded symmetric operator, and
Q̃ j (wc, wh) = O(|wc, wh |2). In case m = 0, J, Q̃c ≡ 0.

One may compute that the perturbation equations for (CE) about ū have the
same canonical form (noting f ′∗(ū) = PV⊥ APV⊥ , D∗ symmetric) with �0 finite-
dimensional, invertible [28, 32].



694 K. Zumbrun

1.3 Dichotomies Versus Direct L p Estimate

Lemma 1.2 effectively reduces the study of near-equilibrium flow of (1.3) to under-
standing the hyperbolic operator (�0∂x + Id), specifically, obtaining bounds on solu-
tions of the degenerate inhomogeneous linear evolution system

(�0∂x + Id)wc = g, (1.9)

where�0 is bounded, symmetric, and one-to-one, but (by (H1)) not boundedly invert-
ible: formally,

(∂x + �−1
0 )wc = g̃, (1.10)

where �−1
0 is an unbounded self-adjoint operator and g̃ := �−1

0 g. As �0 is indefinite,
(1.10) is ill-posed with respect to the Cauchy problem, featuring unbounded growth
in both directions.

Ill-posed equations, and the derivation of associated resolvent bounds, have been
treated in a variety of contexts via generalized exponential dichotomies: for exam-
ple, modulated waves on cylindrical domains [33, 36, 37], Morse theory [1, 2, 34],
PDE Hamiltonian systems [35], and the functional-differential equations of mixed
type [27]. It is not difficult to see, either by spectral decomposition of �0, or by
Galerkin approximation, that (∂x + �−1

0 ) generates a stable bi-semigroup [5, 19], the
infinite-dimensional analog of an exponential dichotomy, that is, there exist bounded
projections on whose range the homogeneous flow is exponentially decaying in for-
ward/backward direction, in this case with rate |�0|−1

H
, where | · |H denotes operator

norm; see [39] for details.
This, however, yields only ‖u‖ ≤ C‖g̃‖ = ‖�−1

0 g‖, the intervention of the
unbounded operator �−1

0 making these bounds useless for our analysis. Thus,
the present problem differs from the above-mentioned ones in that exponential
dichotomies are inadequate to bound the resolvent (�0∂x + Id)−1. Indeed, we have
the following striking result obtained by direct estimate in Sect. 3, showing that our
situation is one of maximal regularity. In this sense, our analysis is related in flavor to
construction of center manifolds for quasilinear systems; see [16, 30] and references
therein.

Lemma 1.3. Assuming (H1)-(H2), |(�0∂x + Id)−1|L p(R) < ∞ for 1 < p < ∞, but
not for p = 1,∞.

An important consequence is that usual weighted L∞ constructions of invariant
manifolds are unavailable. We work instead in weighted H 1 spaces, with accompa-
nying new technical issues.
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1.4 Results

We are now ready to state our main results. Assuming (H1)-(H2), from (1.8) and
symmetry of �0 we readily obtain a decomposition H = Hs ⊕ Hc ⊕ Hu of H into
stable, center, and unstable subpaces invariant under the homogeneous linearized
flow of (1.3) about the equilibrium u. Let H 1

η (R,H) denote the space of functions
bounded in the exponentially weighted H 1 norm

‖ f ‖H 1
η (R,H) := ‖eη〈·〉 f (·)‖L2(R,H) + ‖eη〈·〉 f ′(·)‖L2(R,H), (1.11)

where 〈x〉 := (1 + |x |2)1/2 and η ∈ R may be positive or negative according to our
needs. Following [19], we define solutions of (1.3) usingLemma1.3 as H 1

loc solutions
of the fixed-point equation wh = (�0∂x + Id)−1gc(w) and the finite-dimensional
ODE (∂x − J )wc = gc(w) in wc; see [39, 40].

1.4.1 H1 Stable Manifold and Exponential Decay of Large-Amplitude
Shock and Boundary Layers

Our first observation is that for singular�0 the H 1 stable subspace of (1.8), defined as
the trace at x = 0 of solutionswh bounded in H 1(R+,H), is a dense proper subspace
of Hs, related to the domain of the generator �−1

0 of the bi-semigroup associated with
homogeneous linearized flow.

Lemma 1.4. Assuming (H1)-(H2), the H 1 stable subspace of the linearized equa-
tions of (1.3) about u (equivalently, the linearization of (1.8) about 0) is
dom(|�0|−1/2) ∩ Hs ⊂ Hs.

Proof. The H 1 stable subspace consists of f ∈ Hs such that
∫ ∞
0 〈∂x e�−1

0 x f, ∂x e�−1
0 x f 〉

dx < ∞, or, equivalently, −(1/2)
∫ ∞
0 ∂x 〈e�−1

0 x |�0|−1/2 f, e�−1
0 x |�0|−1/2 f 〉dx < ∞.

Integrating, and observing that the boundary term at infinity vanishes, gives con-
dition 〈|�0|−1/2 f, |�0|−1/2 f 〉 < ∞. Alternatively, this may be deduced by spectral
decomposition of �0 and direct computation [39]. �

We have accordingly the following modification of the usual stable manifold
theorem.

Theorem 1.5. Assuming (H1)-(H2), for any 0 < α < ν̃ < ν := |�0|−1
H

, there exists
a local stable manifold Ms near u, expressible in coordinates w = u − u as a C1

embedding tangent to Hs of dom(�
−1/2
0 ) ∩ Hs with (graph) norm induced by �

−1/2
0

into H, locally invariant under the forward flow of (1.3), containing the orbits of all
solutions w with H 1

α (R+,H) norm sufficiently small, with solutions w initiating in
Ms at x = 0 lying in H 1

ν̃
(R+,H). In case det f ′∗(u+) �= 0, α may be taken to be zero.

We obtain as a consequence exponential decay of noncharacteristic shock or
boundary layers.
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Corollary 1.6. Assuming (H1)-(H2), let u be a noncharacteristic equilibrium in the
sense of (CE), det f ′∗(ū) �= 0, and ν̃ < ν = 1/|�0|H. Then, for any solution ǔ of
(1.3) converging to u as x → +∞ in the sense that ǔ − u is eventually bounded in
H 1([x,∞),H), we have exponential decay:

|ǔ − u|H(x) � e−ν̃x as x → +∞. (1.12)

1.4.2 Center Manifold and Structure of Small-Amplitude Shock Layers

We have, similarly, the following modification of the usual center manifold theorem
(cf. [7, 16, 44, 45]).

Theorem 1.7. Let u be an equilibrium satisfying (H1)-(H2). Then, for any inte-
ger k ≥ 2 there exists local to u a Ck center manifold Mc, tangent at u to Hc,
expressible in coordinates w := u − u as a Ck graph Jc : Hc → Hs ⊕ Hu, that
is locally invariant under the flow of (1.3) and contains all solutions that remain
sufficiently close to u in forward and backward x. Moreover, Mc has the H 1 expo-
nential approximation property: For any 0 < ν̃ < ν = 1/|�0|H, a solution u of (1.3)
with ‖u − u‖H 1−α∩L∞([M,∞),H) and α > 0 sufficiently small approaches a solution z
with orbit lying in Mc as x → +∞ at exponential rate ‖u − z‖H � e−ν̃x , with also
‖u − z‖H 1

ν̃
([M,∞),H) < ∞.

Here, the only difference from the standard center manifold theorem [7] is
the weakened, H 1, version of the exponential approximation property. For appli-
cations involving normal form reduction, they are essentially equivalent; in par-
ticular, the formal Taylor expansion for center graph wh = �(wc) may be com-
puted to arbitrary order in coordinates (1.8) by successively matching terms of
increasing order in the defining relation�0�(wc)

′ = −�(wh) + Q̃h , or equivalently
�(wc) = −�0�

′(wc)(Jwc + Q̃c) + Q̃h , exactly as in the usual (nonsingular A, �0)
case [10, 16].

Remark 1.8. In the noncharacteristic case, the centermanifold, by dimensional count
and the fact that itmust contain all local equilibria, is uniquely determined as theman-
ifold of equilibria E . In this case, the exponential approximation property improves
slightly the result of Corollary 1.6, yielding that solutions ǔ of (1.3) lying suffi-
ciently close to u in L∞(R+,H) and sufficiently slowly exponentially growing in
H 1 converge to an equilibrium at exponential rate e−ν̃x , 0 < ν̃ < 1/|�0|H.

Denote the characteristics of Chapman–Enskog system (CE), or eigenvalues of
f ′∗(u), by

λ1(u) ≤ · · · ≤ λr (u).

The noncharacteristic case f ′∗(ū) �= 0 is the case that no characteristic velocity λ j (ū)

vanishes, in which case, by the Inverse Function Theorem, the Rankine–Hugoniot
equations (RH) admit a single nearby solution for each value of q, hence no local
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shock connections occur. To study small-amplitude shock profiles,we focus therefore
on the characteristic case f ′∗(ū) = 0, specifically on the generic case that λ j (ū) = 0
for a single characteristic velocity λp, with associated unit eigenvector r, that is
genuinely nonlinear in the sense of Lax [21, 41]:


 := r · f ′′
∗ (ū)(r, r) �= 0. (GNL)

In this case, it is well known [21, 28, 41] that there exists a family of small-
amplitude shock profiles ˇ̄u of (CE) connecting endstates ū± → ū, with (ū+ − ū−)

lying in approximate direction r, with λ := λp( ˇ̄u) satisfying an approximate Burgers
equation

δλ′ = −ε2 + λ2/2 + O(|ε, λ|3), (1.13)


 as in (GNL), ε > 0 parametrizing amplitude, provided there holds the stable
viscosity criterion δ := r · D∗r > 0, as may be readily seen to hold for D∗ using
(1.6) and (H1) (cf. Remark 1.1).

Our final result gives a corresponding characterization of small-amplitude kinetic
shocks of (1.3) bifurcating from a simple genuinely nonlinear eigenvalue of f ′∗(ū).
The complementary case of bifurcation from a multiple, linearly degenerate eigen-
value of f ′∗(ū) [21, 41] is treated also in [40, Theorem 1.5] (not stated here); in that
case, no nontrivial shock or boundary layer connections exist.

Corollary 1.9. Let u be an equilibrium satisfying (H1)-(H2) in the characteristic
case (GNL), λp(ū) = 0 a simple eigenvalue, and k an integer ≥ 2. Then, local to
u, ū, each pair of points u± satisfying the Rankine–Hugoniot condition (RH) has
a corresponding viscous shock solution uC E of (CE) and relaxation shock solution
uRE L = (u RE L , vRE L) of (1.3), satisfying for all j ≤ k − 2:

∣∣∂ j
x (u RE L − uC E )

∣∣ ≤ Cε j+2e−με|x |,∣∣∂ j
x

(
vRE L − v∗(uC E )

)∣∣ ≤ Cε j+2e−με|x |,

|∂ j
x (u RE L − u±)| ≤ Cε j+1e−με|x |, x ≷ 0,

(1.14)

μ > 0, C > 0, ε := |u+ − u−|, unique up to translation, with λp(u RE L) and λp(uC E )

both satisfying approximate Burgers equations (1.13): in particular, both monotone
decreasing in x.

1.5 Discussion and Open Problems

Corollary 1.9 recovers under slightlyweakened assumptions, the result of [31, Propo-
sition 5.4], which, applied to Boltzmann’s equation, in turn recovers and sharpens
the fundamental result [8] of existence of small-amplitude Boltzmann shocks with
standard, square-root Maxwellian-weighted L2 norm in velocity [15]. With further



698 K. Zumbrun

effort, one may show [40, Proposition 1.8] (not stated here) that the center manifold
of Theorem 1.7, hence also the small-amplitude shock profiles obtained in Corol-
lary 1.9, are contained in a stronger space of near-Maxwellian-weighted L2 norm
in velocity, recovering the strongest current existence result for Boltzmann shocks
[31, Theorem 1.1], plus the additional dynamical information of (1.13) and mono-
tonicity of λp(u RE L(x))- neither of the latter of which appears to be available by the
Sobolev-based fixed-point iteration arguments of [8, 31].

To our knowledge, Theorems 1.5 and 1.7 are the first results on existence of invari-
ant manifolds for any system of form 1.2, (H1)-(H2) in either Hilbert or Banach
space setting, in particular for the steady Boltzmann equation with hard-sphere
potential. Liu and Yu [25] have studied existence of invariant manifolds for Boltz-
mann’s equation in a weighted L∞ (in both velocity and x) Banach space setting,
using rather different methods of time-regularization and detailed pointwise bounds,
pointing out that monotonicity of λp(ū) follows from center manifold reduction and
describing physical applications of center manifold theory to condensation and sub-
sonic/supersonic transition in Milne’s problem. However, their claimed linearized
bounds, based on exponential dichotomies, hence also their arguments for existence
of invariant manifolds, were incorrect [50]; see Remark 3.3. Our results among other
things repair this gap, validating their larger program/physical conclusions.

A longer-term program is to develop further dynamical systems tools for kinetic
systems (1.2) with structure (H1)-(H2), sufficient to treat time-evolutionary stability
of shock and boundary layers by the methods used for viscous/relaxation shocks
in [13, 29, 46–49, 51, 52]. Besides unification/simplification, this approach has
the advantage of applying in principle to multi-dimensional and/or large-amplitude
waves, each of these long-standing open problems in the area.

These techniques have the further advantages of separating the issues of existence,
spectral stability, and linearized/nonlinear stability, with the first two often treated
by a combination of analytical and numerical methods, up to and including (see,
e.g., [3, 4]) interval arithmetic-based rigorous numerical proof. The development of
numerical and or analytical methods for the treatment of existence of large-amplitude
kinetic shocks we regard as a further, very interesting open problem.

Indeed, the structure problem discussed byTruesdell, Ruggeri, Boillat, and others,
of existence and description of large-amplitude Boltzmann shocks, is perhaps the
fundamental open problems in the theory, and one of the main motivations for their
study. As discussed, e.g., in [6], Navier–Stokes theory well describes the behavior of
shocks of Mach number M � 2, but inaccurately predicts shock width/structure at
largeMach numbers; by contrast, Boltzmann’s equation (numerically and via various
formal approximations) appears to match experiment in the large-M regime.

2 Reductions and Main Example

We begin by carrying out various reductions, first from Boltzmann’s equation to the
abstract form (1.3), (H1)-(H2), then the abstract equation to the canonical form (1.8).
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2.1 Boltzmann’s Equation

(Following [31]) Our main interest is Boltzmann’s equation with hard-sphere poten-
tial (or Grad hard cutoff potential as in [8]):

ft + ξ1∂x f = Q( f, f ), (2.1)

where f (x, t, ξ) ∈ R is the distribution of velocities ξ ∈ R
3 at x , t ∈ R, and

Q(g, h) :=
∫ (

g(ξ ′)h(ξ ′
∗) − g(ξ)h(ξ∗)

)
C(, ξ − ξ∗)ddξ∗ (2.2)

is the collision operator, with collision kernel C(, ξ) = ∣∣ · ξ
∣∣ for hard-sphere

case.
The space of collision invariants 〈ψ〉, ∫

R3 ψ(ξ)Q(g, g)(ξ)dξ ≡ 0, of (2.1) is
spanned by

R f :=
∫

�(ξ) f (ξ)dξ ∈ R
5, �(ξ) = (1, ξ1, ξ2, ξ3,

1

2
|ξ |2)T . (2.3)

(Here, we are assuming that distributions f (x, t, ·) are confined to a space H to be
specified later such that the integral converges.) The associated macroscopic (fluid-
dynamical) variables are

u := R f =: (ρ, ρv1, ρv2, ρv3, ρE)T , (2.4)

where ρ denotes density, v = (v1, v2, v3) velocity, E = e + 1
2 |v|2 total energy den-

sity, and e internal energy density. The set of equilibria (kerQ) consists of the
Maxwellian distributions:

Mu(ξ) = ρ√
(4πe/3)3

e− |ξ−v|2
4e/3 . (2.5)

2.1.1 Symmetry, Boundedness, and Spectral Gap

Boltzmann’s H -theorem [11, 14, 15] (equivalent to existence of a thermodynamical
entropy in the sense of [12]) asserts the variational principle

∫
log f Q( f, f )dξ ≤ 0,

with equality on the set ofMaxwellians M . Taylor expanding about a localmaximum
M , we obtain symmetry and nonnegativity of the Hessian

∫
M−1(∂Q|M h)hdξ ≤ 0,
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giving symmetry and nonnegativity of ∂Q|M on the space H defined by the square-
root Maxwellian-weighted norm

‖ f ‖H := ‖ f M−1/2‖L2(R3). (2.6)

Making the coordinate change

u = 〈ξ 〉1/2 f, Q(u) := 〈ξ−1/2〉−1Q(〈ξ 〉−1/2u), 〈ξ 〉 :=
√
1 + |ξ |2, (2.7)

and defining multiplication operators A0 = 〈ξ 〉−1 and A = ξ1/〈ξ 〉, we find that (2.1)
may be put in form (1.2), for u ∈ H, with A0, A evidently symmetric and bounded,
A0 > 0, and Q′(u) symmetric nonpositive at any equilibrium u = 〈ξ 〉1/2M . By [31,
Corollary 2.4], Q is bounded as a bilinear map onH. Moreover, by [31, Proposition
3.5], Q′(u) is negative definite with respect to H on its range, this last being a
straightforward consequence of Carleman’s theorem [9] that ∂Q|M acting on H

may be decomposed as the sum of a multiplication operator ν(ξ) ∼ 〈−ξ 〉 and a
compact operator K , whence Q′(u) is the sumof amultiplication operator ν̃(ξ) ∼ −1
and the compact operator K̃ = 〈ξ 〉−1/2K 〈ξ 〉−1/2, Weyl’s Theorem thereby implying
existence of a spectral gap.

Collecting information, we find that we have reduced to a system of form (1.2)
satisfying (H1)-(H2), with V := 〈ξ 〉1/2(RangeR)⊥, R as in (2.3), dimV

⊥ = 5, and
u = 〈ξ 〉1/2M for any Maxwellian M . Note that A has no kernel on H, but essential
spectra ξ1/〈ξ 〉 → 0 as ξ1 → 0: an essential singularity. A consequence is that small
velocities ξ1 → 0 constitute the main difficulties in our analysis, large-velocities
issues having been subsumed in the reduction [31] to form (1.2).

2.1.2 Hydrodynamic Limit

The formal Chapman–Enskog expansion (CE), or hydrodynamic limit, being inde-
pendent of coordinate representation, is the same in our variables u, Q as in the
standard Boltzmann variables f , Q. As computed, e.g., in [11, 25], this appears in
fluid variables (2.4) as the compressible Navier–Stokes equations with temperature-
dependent viscosity and heat conduction:

ρt + (ρv1)x = 0,

(ρv1)t + (ρv2
1 + p)x = ((4/3)μv1,x )x ,

(ρ2)t + (ρv1v2)x = (μv2,x )x ,

(ρ3)t + (ρv1v3)x = (μv3,x )x ,

(ρE)t + (ρv1ρE + v1 p)x = (κTx + (4/3)μv1v1,x )x ,

(cNS)
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where T denotes temperature,withmonatomic equation of state p = �ρe, T = c−1
v e,

with

� = 2/3, cv = 3/4, μ = μ(T ) = (5/16)
√

T/π, κ = κ(T ) = (75/16)
√

T/π.

(2.8)
As computed in, e.g., [41], the hyperbolic (i.e., left-hand side) part of (cNS) has

characteristics

λ1 = v1 − c, λ2 = λ3 = λ4 = v1, λ5 = v1 + c, (2.9)

where c := √
�(1 + �)e > 0 denotes sound speed, with “acoustic modes” v1 ± c

simple and satisfying (GNL), and “entropic/vorticity modes” v1 multiplicity three
and linearly degenerate in the sense of Lax [21, 41] (not addressed here; see [40] for
discussion of the linearly degenerate case).

2.2 Macro–Micro Decomposition

Next, starting with form (1.3), (H1)-(H2), coordinatize as in Sect. 1.2 u as (u, v),
u = PV⊥u, v = PVu, where PV⊥ and PV are the orthogonal projections associated
with orthogonal decomposition H = V

⊥ ⊕ V, to obtain the block decomposition

(
A11 A12

A21 A22

) (
u
v

)′
=

(
0 0
0 E

) (
u
v

)
+

(
0
f

)
, (2.10)

into “macro” and “micro” variables u and v similarly as in [25, 31], with forcing term
f = B(u,u), where B is a bounded bilinear map and E < 0 is symmetric negative
definite on H. The following further reduction greatly simplifies computations later
on; hereafter we take E = −Id.

Observation 2.1. By the change of variables v → (−E)1/2 combined with left-
multiplication of the v-equation by (−E)−1, we may take without loss of generality
E = Id.

2.3 Reduction to Canonical Form

Since A and P|V⊥ are self-adjoint onH, A11 = PV⊥ A|V⊥ is self-adjoint onV⊥, hence
V

⊥ = ker A11 ⊕ imA11. Denote by Pker A11 and PimA11 the associated orthogonal pro-
jections onto ker A11 and imA11, and Ã12 : V → imA11 and T12 : V → ker A11 the
operators defined by Ã12 = PimA11 A12 and T12 = Pker A11 A12. From the assumption
that A is one-to-one, we readily obtain the following; see [40, Lemma 2.1] for details.
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Lemma 2.2. Assuming (H1)-(H2), (i) ker T ∗
12 = {0}, imT12 = ker A11, ker T12 �=

{0}, and (ii) The linear operator Ã11 = (A11)|imA11 is self-adjoint and invertible on
imA11.

Introduce now orthogonal subspaces V1 = imT ∗
12 and Ṽ = ker T12 decomposing

V, with associated projectors PV1 and P
Ṽ
. Denoting

u1 = Pker A11u, ũ = PimA11u, v1 = PV1v, and ṽ = P
Ṽ
v, (2.11)

and applying Pker A11 and PimA11 to the first equation of (2.10) we obtain

T12v
′ = 0, Ã11ũ′ + Ã12ṽ

′ = 0. (2.12)

Moreover, by (A21)| ker A11 = T ∗
12, (A21)|imA11 = Ã∗

12 the second equation of (2.10) is
equivalent to

T ∗
12u′

1 + Ã∗
12ũ′ + A22v

′ = Ev + f. (2.13)

Since v1 ∈ V1 = imT ∗
12, from (2.12) we conclude v′

1 = 0. In addition, since Ã11 is
invertible on imA11 by Lemma 2.2(ii), we have ũ′ = − Ã−1

11 Ã12ṽ
′. Summarizing,

(2.12) is equivalent to
v′
1 = 0, (̃u + Ã−1

11 Ã12ṽ)′ = 0. (2.14)

Next, taking without loss of generality E = Id, we obtain from (2.13) evidently

T ∗
12u′

1 + PV1(A22 − Ã∗
12 Ã−1

11 Ã12)̃v
′ = −v1 + PV1 f (2.15)

and
P
Ṽ
(A22 − Ã∗

12 Ã−1
11 Ã12)̃v

′ = −ṽ + P
Ṽ

Ev1 + P
Ṽ1

f. (2.16)

From Lemma 2.2(i), (T ∗
12)

−1 is well-defined and bounded, hence we obtain from
(2.15)

(u1 − �1ṽ)′ = −(T ∗
12)

−1v1 + (T ∗
12)

−1PV1 f, �0ṽ
′ = ṽ + P

Ṽ
f, (2.17)

where �1 = (T ∗
12)

−1( Ã∗
12 Ã−1

11 Ã12 − A22) ∈ B(V, ker A11) and

�0 = P
Ṽ
(A22 − Ã∗

12 Ã−1
11 Ã12)|Ṽ ∈ B(Ṽ) issymmetric. (2.18)

Summarizing, we have that (2.10) is equivalent to the system

(u1 − �1ṽ)′ = (T ∗
12)

−1v1 + (T ∗
12)

−1PV1 f, (̃u + Ã−1
11 Ã12ṽ)′ = 0, v′

1 = 0, �0ṽ
′ = ṽ + P

Ṽ
f.

(2.19)
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By the invertible change of coordinates

wc =
(
(u1 − �1ṽ)T , (−(T ∗

12)
−1v1)

T , (ũ + Ã−1
11 Ã12ṽ)T

)T
, wh = ṽ, (2.20)

we reduce (2.10) finally to the canonical form of Lemma 1.2:

w′
c = Jwc + gc, �0w

′
h = wh + gh, (2.21)

where J =
⎛
⎝
0 Im 0
0 0 0
0 0 0

⎞
⎠ and gc = Q̃c(w,w) and gh = Q̃h(w,w) are bounded bilinear

maps.

Observation 2.3. We record for later that the tangent subspace (u, v) = (ζ, 0) to
equilibrium manifold E = {(u, v) ∈ V

⊥ ⊕ V : Q(u, v) = 0} is given in coordinates
(2.20) by wc = (ζ1, 0, ζ̃ ), wh = 0, as can also be seen by computing the subspace of
equilibria of (1.8) with g = (gc, gh) = 0.

3 Linear Resolvent Estimates

The starting point for construction of invariant manifolds is the study of the solution
operator for the decoupled linear inhomogeneous Eq. (2.21) with arbitrary forcing
terms gc, gh . The “center,” wc equation is of standard finite-dimensional type, so
may be treated by usual methods. Evidently, then, the key issue is treatment of the
degenerate “hyperbolic,” wh equation.

3.1 Symmetric Degenerate Evolution Equations

Consider a degenerate inhomogeneous evolution equation (�0∂x + Id)wc = g, with
�0 (recalling (2.18) and (H1)-(H2)) symmetric and one-to-one but not boundedly
invertible, with the goal to obtain bounds on the resolvent operator

R := (�0∂x − Id)−1. (3.1)

As discussed in the introduction, the inhomogeneous flow u′ + �−1
0 u = 0 possesses

generalized exponential dichotomies, but the resulting bounds on (∂x − �−1
0 )−1 are

insufficient to bound the inhomogeneous solution operator (�0∂x − Id)−1 = (∂x −
�−1
0 )−1�−1

0 .
That is, (1.9) represents an interesting new class of symmetric degenerate evo-

lution equations for which construction of dichotomies is inadequate to bound the
resolvent (3.1).
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A key observation of [39] is that L2 bounds may be obtained directly, using
symmetry. In [39],weuse for technical reasons a frequencydomain/Fourier transform
formulation following [19, 20]; however, this can be seen at formal level through an
a priori energy estimate

|〈u, g〉| = |〈u, �0u′〉 − 〈u, u〉| = |〈u, u〉| = ‖u‖2 ⇒ ‖u‖ ≤ C‖g‖, (3.2)

reminiscent of Friedrichs estimates for symmetric hyperbolic PDE, where ‖ · ‖ and
〈·, ·〉 denote L2 norm and inner product; indeed, one could view (1.9) as a “symmetric
hyperbolic” analog for ODE. As in the PDE setting, the crucial property of symmetry
of�0 is guaranteed by existence of a convex entropy for (1.2) [12], e.g., theBoltzmann
H-Theorem as discussed in Sect. 2.1.1.

3.2 Details/Counter Examples

Viewing the constant-coefficient operatorR, (3.1), as a Fourier multiplier with sym-
bol R̂(ω) = (iω�0 − Id)−1, and computing the uniform estimates

|R̂(ω)| ≤ C, |R̂ ′(ω)| = | − R̂i�0R̂| ≤ C2(1 + |ω|)−1, (3.3)

we find by the Mikhlin–Hormander multiplier theorem that R is bounded on L p,
1 < p < ∞.

Further detail may be obtained by spectral decomposition of �0, converting
(�0∂x + Id)wc = g into a family of scalar equations (αλ∂x − 1)uλ = gλ, with uλ

the coordinate associated with spectrum αλ and ‖u‖2
H

= ∫ |uλ|2dμλ. The associated
(scalar) resolvent operators Rλ = (αλ∂x + 1)−1 have explicit kernels

Rλ(θ) = α−1
λ e(θ)/α−1

λ , θαλ < 0; (Rλh)(x) =
∫
R

Rλ(x − y)h(y)dy, (3.4)

that are evidently integrable with respect to x , so bounded coordinate-wise on any
L p(R+). However, explicit example [39, Example 4.7, p. 23] shows that the full
operator R is not bounded on L∞(R,H) (resp. L1(R,H)); that is, it is not an L∞
(resp. L1) multiplier. This has the important consequence that our dynamical theory
must be carried out in H 1 (bounding L∞) rather than the usual C0(R) setting costing
a surprising amount of technical difficulty.

The above shows also that the full resolvent kernel R(θ) determined by (3.4),
considered as an operator-valued function from H → H, is not integrable, since
otherwise R by standard convolution bounds would be a bounded multiplier on all
L p. Likewise, the computation

|R(θ)|H = sup
αλ(θ<0

|α−1
λ e−θ/α−1

λ | ∼ C/|θ | as θ → 0 (3.5)
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shows that |R(θ)|H is not bounded. This indicates the delicacy of, and cancellation
involved in, the bounds onR obtained above through energy estimate (3.2)/resolvent
bounds (3.3).

Remark 3.1. Weemphasize that L p multiplier theory/spectral decomposition is used
here only to construct counterexamples, our construction of invariant manifolds rely-
ing simply on Parseval’s identity.

3.3 The Banach Space Setting

(Following [50])Weighted L∞ spaces L∞
r,ξ in velocity ξ , defined by norms ‖ f ‖L∞

r,ξ
:=

supξ∈R3(1 + |ξ |)r M(ξ)−1/2| f (ξ)|, r ≥ 0,where M(ξ) = e−c0|ξ−v|2 is theMaxwellian
corresponding to equilibrium u, have been used in the study of Boltzmann’s equa-
tion in, e.g., [25, 26]. Though resolvent bounds appear more difficult to obtain in this
context, we can establish that |R(θ)|L∞

r,ξ
is not bounded, similarly as in the Hilbert

case.
Recall [15] that the linearized collision operator L appearing in the linearized

inhomogeneous steady Boltzmann equation ξ1 f ′ − L f = g̃ may be decomposed
as L̃ = ν̃(ξ) + K̃ , where ν̃(ξ) is a multiplication operator with ν̃(ξ) ∼ 〈ξ 〉 and K̃
has kernel |k̃(ξ, ξ∗)| ≤ C |ξ − ξ∗|−1e−c|ξ−ξ∗|2 , (K̃ h)(ξ) = ∫

R3 k̃(ξ, ξ∗)h(ξ∗)dξ∗. By
‖|ξ |−1e−c|ξ |2‖L1 < ∞ and standard convolution bounds, K̃ is bounded on L∞(ξ),
hence, by 〈ξ 〉/〈ξ − ξ∗〉 ≤ C〈ξ∗〉, on L∞

r,ξ . In our coordinates (2.7), A f ′ − Q′ f = g,

A = ξ1
〈ξ〉 , Q′ = −ν(ξ) + K , where ν(ξ) ∼ 1 and K = 〈ξ 〉−1/2 K̂ 〈ξ 〉−1/2 is bounded

from L∞
r,ξ → L∞

r,ξ . The reduced equation �0u′ − Eu = g of (1.9) corresponds to the
restriction of g to a finite-codimension subspace � of “hyperbolic modes,” where
E := Q′|� < 0 [39]. That

|R(·)|L∞
r,ξ

= ∞ (3.6)

thus follows (by contradiction, using standard convolution bounds) from the follow-
ing slightly stronger statement.

Lemma 3.2 (adapted from [50]). The solution of Au′ − Q′(u)u = g with data g
valued in a finite-codimension subspace � of L∞

r,ξ does not satisfy a uniform bound
|u|L∞(x,L∞

r,ξ )
≤ C |g|L1(x,L∞

r,ξ )
.

Proof Defining S = (
(ξ1/〈ξ 〉)∂x − ν(ξ)

)−1
, we have the explicit solution formula

(S g)(x, ξ) =
∫
R

Sξ (x − y)g(y, ξ)dy; Sξ (θ) = (ξ1/〈ξ 〉)−1e−ν(ξ)/(ξ1/〈ξ〉)−1
,

(3.7)
where scalar kernels Sξ (·) are integrable, hence S is bounded on L∞(x, L∞

r,ξ ) =
L∞

r (ξ, (L∞(x). Writing Au′ − Q′(u)u = g as
(
(ξ1/〈ξ 〉)∂x − ν(ξ)

)
u = K u + g,

applying S , and rearranging, we obtain S g = u − S K u, hence |S g|L∞(x,L∞
r,ξ )

≤
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C |u|L∞(x,L∞
r,ξ )

by boundedness of |K |L∞
r,ξ
, |S |L∞(x,L∞

r,ξ )
. Thus, |u|L∞(x,L∞

r,ξ )
≤ C

|g|L1(x,L∞
r,ξ )

would imply |S g|L∞(x,L∞
r,ξ )

≤ C |g|L1(x,L∞
r,ξ )
, or, taking g → δ(x)h(ξ),

|S(θ)|L∞
r,ξ

≤ C for the full kernel S of S . But, direct calculation as in (3.5) shows
|S(θ)|L∞

r,ξ
∼ |θ |−1 as θ → 0, a contradiction. �

Remark 3.3. In our notation, the bound asserted in [25] is |R(θ)|L∞
5/2,ξ

≤ Ce−β|θ |, in
contradiction with (3.6). We conjecture that |R(θ)|L∞

r,ξ
� |θ |−1 as θ → 0 similarly

as for its principal part S(θ), and similarly as in the Hilbert space setting (3.5), so
that |R(·)|L∞

r,ξ
/∈ L p(R) for any 1 ≤ p ≤ ∞.

4 H1 Stable Manifold Theorem

We now outline the argument for construction of the stable manifold; for details,
see [39].

Proof of Theorem 1.5. For clarity, we first treat the noncharacteristic case m = 0,
dimwc = dim E = r , for which (1.8) becomes wc ≡ constant, (�0∂x + Id)wh =
Q̃c(w), and the equation for the stable manifold reduces to wc ≡ 0 and (�0∂x +
Id)wh = B(wh, wh), B(wh, wh) := Q̃c((0, wh) a bounded bilinear map. Inverting,
we deduce (see [39]) the fixed-point formulation

u(τ ) = TS(τ )�Su0 + (�0∂x − Id)−1B(u, u)(τ ), (4.1)

where �S , TS denote projection and semigroup associated with the stable subspace
of homogeneous flow �0u′ = −u, so that TS(τ )�Su0 is a homogeneous solution
with data �Su0 lying in the stable subspace at τ = 0, and �Su(0) = �Su0. This
can be recognized as a concise, frequency-domain version of the usual variation of
constants formula for finite-dimensional ODE.

However, significant new difficulties arise from the fact that, due to the properties
of (�0∂x + Id)−1 described in Sect. 3, we must carry out the analysis in weighted
H 1 rather than standard L∞ spaces. For example, for the unbounded formal gen-
erator −�−1

0 , the H 1-stable subspace is strictly contained in the L2-stable one, so
that we must seek a graph not over the entire stable subspace but only the H 1

part, conveniently characterized as dom(�S(−�0)
−1/2). Moreover, differentiating

the equation gives u′(τ ) = T ′
S(τ )�S(u0 − B(u(0), u(0)))(�0∂x − Id)−1B(u, u)′(τ )

(noting u′(0) = −�−1
0

(
u(0) − B(u(0), u(0))

)
) by the equation) so that the “homo-

geneous term” involving T ′
S lies in L2 when v0 := u0 − B(u(0), u(0)), not u0, lies

in the H 1-stable subspace.
Our solution is to introduce the modified fixed-point equation

u(τ ) = TS(τ )�S
(
v0 − B(u(0), u(0))

) + (�0∂x − Id)−1B(u, u)(τ ) (4.2)
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parametrized by elements v0 in the H 1-stable subspace, for which the derivative
equation is the harmless u′(τ ) = T ′

S(τ )�Sv0 + (�0∂x − Id)−1B(u, u)′(τ ). Observ-
ing that the trace u → u(0) is bounded on H 1 by 1D Sobolev embedding, as is
(�0∂x + Id)−1 by L2-boundedness plus commutation of constant coefficient opera-
tors with derivatives, we find that (4.2) is contractive, yielding existence/uniqueness
in H 1 (and exponentially weighted H 1) norm, and thereby existence of an (exponen-
tially decaying) stable manifold expressed as a graph over the H 1 stable subspace,
Fréchet-differentiable fromdom(−(�S�0)

−1/2)with norm induced by (−�S�0)
−1/2

to the full spaceH with its original norm. A novel aspect is that the graph lies above
the H 1-stable subspace not only in unstable directions, but also in stable directions
lying in the stable but not H 1-stable subspace.

In the characteristic case, there is a nontrivial center equation w′
c = Jwc +

Bc(w,w), coupled to the hyperbolic equation �0w
′
h = −wh + Bh(w,w). This may

be treated, setting w = (z, u), by the larger fixed-point equation appending to (4.2)
a standard finite-dimensional z equation:

z(τ ) = −
∫ +∞

τ

eJ (τ−θ) Bc(w,w)(θ)dθ,

u(τ ) = TS(τ )�S
(
v0 − Bh(u(0), u(0))

) + (�0∂x − Id)−1Bh(w,w)(τ).

(4.3)

�

Proof of Corollary 1.6. Because the stable manifold contains the forward orbits of
all solutions with H 1(R+,H)) norm sufficiently small, it contains the orbit onR+ of
ǔM := ǔ(· + M) for M sufficiently large, whence ǔM ∈ H 1

ν̃
(R+,H) byTheorem1.5.

It follows that eν̃|·|uM ∈ H 1(R+,H), hence, by Sobolev embedding, |eν̃|x |u(x)| ≤ C ,
or |u(x)| ≤ C |eν̃|x |, for x ≥ M . �

Remark 4.1 The key technical points in the above construction are the use of
H 1 rather than sup norms to bound the resolvent, and the “integration by parts”
parametrization by v0 in (4.2).

5 Existence of a Center Manifold

Next,weoutline the argument for existence of a an H 1 centermanifold; for details, see
[40]. The translation from standard C0 to H 1 framework again introduces interesting
new difficulties: surprisingly, different from those encountered in the stable manifold
case.

Proof of Theorem 1.7. Following the standard approach to construction of center
manifolds [7, 42, 44], we first replace Q̃ by a truncated nonlinearity Nε(w) :=
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ρ(w/ε)Q̃(w), where ρ is a smooth cutoff function equal to 1 for |w| ≤ 1 and 0 for
|w| ≥ 2. The truncated nonlinearity satisfies bounds

|Nε| ≤ cε2, |N ′
ε| ≤ cε, |N ′′

ε | ≤ c (| · | = | · |H), (5.1)

and agrees with the original one locally to u.
Translating the usual sup-norm approach to the H 1 setting, we seek solutions to

the modified (truncated) equation in a negatively weighted space H 1−α , for α > 0
sufficiently small. Similarly as in (4.1), this yields the fixed-point formulation

w(τ) = Tc(τ )�cw0 +
∫ τ

0
Tc(τ − θ)�cNε(w(θ))dθ + (�0∂x + Id)−1�hNε(w)(τ )

(5.2)
for solution w = (wT

c , wT
h )T , where �c denotes projection onto the wc component,

Tc(·) = eJ (·) the associated (nondegenerate) flow, and �h denotes projection onto
the wh component.

The difficulty in this case is not with the “homogeneous” term Tc(τ )�cw0 as
in the stable manifold case (since derivatives on �c are bounded) nor

∫ τ

0 Tc(τ −
θ)�cNε(w(y))dy, but the formerly harmless (A∂x − Id)−1�H Nε(w,w)(τ), specif-
ically, the “substitution operator”Nε : w → Nε(w). Bounds (5.1) yield readily that
(5.2) is contractive in L2−α and bounded in H 1−α , ‖ f ‖H s−α

:= ‖e−α〈·〉 f (·)‖H s , giving
existence and uniqueness of a C0+1/2 center manifold �cw0 → w(0) via the trace
map w → w(0) and the 1-d Sobolev estimate | f (0)| ≤ ‖ f ‖1/2

L2−α

‖∂x f ‖L2−α
.

However, higher (even Lipschitz) regularity seems to require contraction in ‖ ·
‖H 1−α

, the difficulty lying in term

‖∂x (Nε(v1) − Nε(v2))‖L2−α
∼ ‖max

j
(|N ′′

ε (v j )||∂xv j |)|v2 − v1|‖L2−α
∼

∑
j

‖|∂xv j ||v2 − v1|‖L2−α
,

for which the obvious Sobolev embedding estimate gives ‖v1 − v2‖H 1−α

∑
j (

∫
R

|
∂xv j |2)1/2 = +∞.

A key observation is that, for 0 < α1 � α � α2 � 1, (5.2) is contractive in the
mixed norm

‖ f ‖ := ‖ f ‖L2−α
+ ‖∂x f ‖L2−α2

(5.3)

and bounded in H 1−α1
for ‖w‖H 1−α1

� 1. For, the Sobolev bound

e−2α2〈x〉| f (x)|2 ≤ ‖ f ‖L2−α2
(x,∞)‖∂x f ‖L2−α2

(x,∞) ≤ e−(α2−α)〈x〉‖ f ‖L2−α(x,∞)‖∂x f ‖L2−α2
(x,∞)

gives
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‖∂x (Nε(v1) − Nε(v2))‖2L2−α2
�

∫
R

e−2α2〈x〉|v1(x) − v2(x)|2|∂xv1(x)|2dx

�
( ∫

R

e−(α2−α)〈x〉|∂xv1(x)|2dx
)
‖v1 − v2‖2 � ‖∂xv1(x)‖2H 1−α1

‖v1 − v2‖2.
(5.4)

With this observation, working in norm ‖ · ‖, we obtain essentially immediately
existence and uniqueness of a global center manifold for the truncated equation/ local
center manifold for the exact equation that is Lipschitz continuous, as a graph over
the center subspace�c.Cr (Fréchet) regularity, r ≥ 1may then be obtained similarly
as in the finite-dimensional case [7, 16, 42, 44], by a bootstrap argument, using a
nested sequence of mixed-weight norms together with a general result on smooth
dependence with respect to parameters of a fixed-point mapping y = T (x, y) that is
Fréchet differentiable in y from a stronger to aweaker Banach space, with differential
Ty extending to a bounded, contractive map on the weaker space [44, Lemma 2.5,
p. 53] ([46, Lemma 3, p. 132]). See [40, Appendix A], for further details. The H 1

exponential approximation property (not discussed in [40]) follows by transcription
to the H 1 setting of the finite-dimensional argument given in [7, Step 7, p. 9]. �

Remark 5.1. The estimate (5.4), and introduction of norm (5.3), we view as the
crucial technical points in our construction of center manifolds, and the main novelty
in this part of the analysis.

6 Structure of Small-Amplitude Kinetic Shocks

Given existence of a center manifold, one may in principle obtain an arbitrarily accu-
rate description of near-equilibrium dynamics via formal Taylor expansion/reduction
to normal form.We give here a particularly simple normal form argument describing
bifurcation of stationary shock profiles from a simple genuinely nonlinear character-
istic equilibrium, adapting more general center manifold arguments of [28, 29] in the
finite-dimensional case. Similarly as in [28, 29], the main idea is to use the fact that
equilibria are predicted by the Rankine–Hugoniot shock conditions (RH) to deduce
normal form information from the structure of the Chapman–Enskog approximation
(CE).

Lemma 6.1. Let u ∈ ker Q be an equilibrium satisfying (H1)-(H2). In the simple
genuinely nonlinear characteristic case (GNL), m = 1, the center manifolds of (1.3)
and (CE) both consist of the union of one-dimensional fibers parametrized by q ∈ R

r

as in (RH) and coordinatized by u1 as in (2.11), satisfying an approximate Burgers
flow: without loss of generality

q̃ = 0, u′
1 = δ−1

( − q1 + 
u2
1/2

) + O(|u1|3 + |q1||u1| + |q1|2), (6.1)
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where δ := rT D∗r > 0 with r, D∗ as in (GNL), (CE). In particular, under the nor-
malization q̃ = 0, there exist local heteroclinic (Lax shock) connections for q1
 < 0
between endstates u±

1 ≈ √−2q1/
.

Proof. First, note that T12v1 in the original coordinates of (2.19) is exactly the first
component q1 of q in (RH), or v1 = T −1

12 q1. By Observation 2.3 and the Implicit
Function Theorem, we may take without loss of generality q̃ = 0 by a shift along
equilibrium manifold E of the background equilibrium u. By (1.8), therefore, the
flow on the (r + 1)-dimensional center manifold has an r -dimensional constant of
motion

(
wc,2, wc,3

) ≡ (ζ, γ ) = ( − (T ∗
12)

−1v1, q̃
) = (

(−T ∗
12)

−1T −1
12 q1, 0

)
, (6.2)

w as in (2.20), with flow along one-dimensional fibers coordinatized by wc,1 =
u1 − �1ṽ = u1 − �1wh given by the wc,1 equation of (1.8):

w′
c,1 = ζ + φ(wc,1, ζ ), φ(wc,1, ζ ) := gc,1

(
(wc,1, ζ, 0),�(wc,1, ζ, 0)

) = O(‖wc,1‖2, ‖ζ‖2).
(6.3)

The factor (T ∗
12)

−1T −1
12 > 0 in term ζ = −(T ∗

12)
−1T −1

12 q1 is easily recognized as
δ−1, where δ := T12T ∗

12 > 0, or, using r = e1, δ = r · D∗r with D∗ as in (CE). Using
the fact that wh = J (wc) = O(|wc|2) along the center manifold to trade wc,1 for
u1 by an invertible coordinate change preserving the order of error terms, we may
thus rewrite (6.3) as

u′
1 = δ−1(−q1 + δχu2

1) + O(|u1|3 + |u1||q1| + |q1|2), (6.4)

where χ , hence the product δχ , is yet to be determined. On the other hand, perform-
ing Lyapunov–Schmidt reduction for the equilibrium problem (RH), we obtain the
normal form

0 = (−q1 + 1

2

u2

1) + O(|u1|3 + |u1||q1| + |q1|2),

where 
 is as in (GNL). Using the fact that equilibria for (1.3) and (RH) agree,
we find that δχ must be equal to 1

2
, yielding a final normal form consisting of
the approximate Burgers flow (1.13). A similar computation yields the same normal
form for fibers of the center manifold of the formal viscous problem (CE); see also
the more detailed computations of [28] yielding the same result.

For q1
 > 0, the scalar Eq. (1.13) evidently possesses equilibria ∼ ∓√
2q1/
,

connected (since the equation is scalar) by a heteroclinic profile. Since sgnu′
1 =

− sgn
 for u1 between the equilibria, so that
(
λ(u)

)′ ∼ 
u′
1 has sign of −
2 < 0,

the connection is in the direction of decreasing characteristic λ(u), corresponding to
a Lax-type solution of (RH) (cf. [28, 29]). �
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Remark 6.2. Using λ(u1) ∼ 
u1, we may rewrite (6.1) as (1.13) as in the introdi-
uction, eliminating the q̃-dependent term 
. However, the “effective viscosity” δ

remains dependent on q̃ .

Having determined the normal form (1.13), we establish closeness of profiles of
(1.3) and (CE) by comparing their u1 coordinates, separately, to an exact Burgers
shock, then showing that differences in remaining, slaved, coordinates, since vanish-
ing at both endstates, are negligibly small.

Lemma 6.3 ([22, 38]). Let η ∈ R
1 be a heteroclinic connection of an approximate

Burgers equation

δη′ = 1

2

(−ε2 + η2) + S(ε, η), S = O(|η|3 + |ε|3) ∈ Ck+1(R2), k ≥ 0,

(6.5)
and η̄ := −ε tanh(
εx/2δ) a connection of the exact Burgers equation δη̄′ =
1
2
(−ε2 + η̄2). Then,

|η± − η̄±| ≤ Cε2,

|∂k
x

(
η̄ − η̄±)(x)| ∼ εk+1e−δε|x |, x ≷ 0, δ > 0,∣∣∂k

x

(
(η − η±) − (η̄ − η̄±)

)
(x)

∣∣ ≤ Cεk+2e−δε|x |, x ≷ 0,

(6.6)

uniformly in ε > 0, where η± := η(±∞), η̄± := η̄(±∞) = ∓ε denote endstates of
the connections.

Proof. (From [40], following [22]) Rescaling η → η/ε, x → 
εx̃/β, we obtain the
blowup equations

η′ = 1

2
(η2 − 1) + ε S̃(η, ε) S̃ ∈ Ck+1(R2)

and η̄′ = 1
2 (η̄

2 − 1), for which estimates (6.5) translate to

|η± − η̄±| ≤ Cε,

|∂k
x (η̄ − η̄±)(x)| ∼ Cεke−θ |x |, x ≷ 0, θ > 0,

|∂k
x

(
(η − η±) − (η̄ − η̄±)

)
(x)| ≤ Cεk+1e−θ |x |, x ≷ 0.

(6.7)

The estimates (6.7) follow readily from the implicit function theorem and stable
manifold theorems together with smooth dependence on parameters of solutions of
ODE, giving the result. �

Setting q1 = 
ε2/2, and either η = u RE L ,1 or η = uC E,1, we obtain approximate
Burgers equation (6.5), and thereby estimates (6.6) relating η = u RE L ,1, uC E,1 to an
exact Burgers shock η̄.
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Corollary 6.4 ([40]). Let u ∈ ker Q be an equilibrium satisfying (H1)-(H2), in
the characteristic case (GNL), and k and integer ≥ 2. Then, local to u (ū), each
pair of points u± corresponding to a standing Lax-type shock of (RH) has a
corresponding viscous shock solution uC E of (CE) and relaxation shock solution
uRE L = (u RE L , vRE L) of (1.3), satisfying for all j ≤ k − 2:

|∂ j
x (u RE L ,1 − u±

RE L ,1)(x)| ∼ Cε j e−θ |x |, x ≷ 0, θ > 0,

|∂ j
x (u RE L ,1 − uC E,1)(x)| ≤ Cε j+1e−θ |x |, x ≷ 0.

(6.8)

Proof. Immediate, by (6.7), Lemma 6.3 and the triangle inequality, together with the
observation that, as equilibria of (CE) and (1.3), hence solutions of (RH), endstates
u±

RE L ,1 = u±
C E,1 agree. �

Proof of Corollary 1.9. ([40]) Noting that the imA11 and V components of uRE L

are the C2 functions �(u RE L ,1), �(u RE L ,1) of u RE L ,1 along the fiber (1.13), we
obtain (1.14)(iii) immediately from (6.8)(i). Denote by �C E the map describing the
dependence of imA11 component of uC E on uC E,1 on the corresponding fiber of
(CE). Since � − �C E and � − v∗ both vanish at the endstates u±

RE L ,1, we have by
smoothness of �, �C E , �, v∗ that

|� − �C E |, |� − v∗| = O(|u RE L ,1 − u+
RE L ,1|, |u RE L ,1 − u−

RE L ,1|),

giving (1.14)(i)–(ii) by (6.8)(i)–(ii). �

Remark 6.5. Applied to Boltzmann’s equation, Corollary 1.9 yields existence/
convergence tohydrodynamic shockprofiles in the square-rootMaxwellian-weighted
norm (2.6). Using a bootstrap argument analogous to that of [31, Proposition
3.1], one can show [40, Proposition 1.8] that the center manifold of Theorem
1.7 lies in the stronger spaces determined by near-Maxwellian-weighted norms
‖ f ‖Hs := ‖ f M−s‖L2(R3), 1/2 ≤ s < 1, yielding further information on localization
of velocity in small-amplitude shock profiles. This and the streamlined proof of exis-
tence above are the main novelties in our treatment by center manifold techniques
of existence and structure of kinetic shocks.
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