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Abstract Numerical computations in viscoelasticity show the failure of many
numerical schemeswhen theWeissenberg number is beyond a critical valueKeunings
(J Non-Newtonian FluidMech 20:209–226, 1986, [6]). The existence of singularities
in the continuum model could be the way to explain instability appearing in numer-
ical simulations. We consider here a 2D Oldroyd-B type model at high Weissenberg
number, and we show the existence of the so-called splash singularities (namely,
points where the free boundary remains smooth but self-intersects). In our case, we
assume physically realistic boundary conditions given by the static equilibrium of
all the force fields acting at the interface. Our strategy is based on local existence
and stability results applied to a family of smooth suitable initial configurations,
we show they will evolve into a self-intersecting configuration, and then necessarily
there exists a positive time t = t∗, where the configuration has a splash singularity.
To prove local existence and stability, we first apply a conformal transformation to
the 2D domain, in order to separate the contact point with splash, and then we pass
into Lagrangian coordinates to fix our domain, inspired by a Thomas Beale’s paper
on the initial value problem for the Navier–Stokes equations with a free surface.
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1 Introduction

In this paper, we study a viscoelastic fluid model of Oldroyd-B type at high Weis-
senberg number. The goal of this paper is to study the existence of splash singularity
for the following system:

⎧
⎨

⎩

∂t F + u · ∇F = ∇uF
∂t u + u · ∇u − Δu + ∇ p = div(FFT )

divu = 0,
(1)

with appropriate boundary conditions, which will be explained later.
Incompressible viscoelastic fluids are described classically by the following

momentum balance equations:

ρ̄(∂t u + (u · ∇)u) + ∇ p = divτ,

where τ = νs(∇u + ∇uT ) + τp denotes the stress, νs is the solvent viscosity, and τp
is the stress related to the elastic part. From now on, we assume ρ̄ = 1.

The stress tensor satisfies the well-known Oldroyd-B model

τ + λ∂uc
t τ = ν0((∇u + ∇uT ) + λs∂

uc
t (∇u + ∇uT )), (2)

where

• ∂uc
t τ = ∂tτ + (u · ∇)τ − ∇uT τ − τ∇u denotes the upper convective time
derivative,

• ν0 = νs + νp denotes the material viscosity, νs the solvent viscosity, and νp the
polymeric viscosity, respectively,

• λ the relaxation time, and
• λs = νs

ν0
λ.

By separating the solvent and the polymeric contributions to the stress, we get that
the stress τp satisfies

λ∂uc
t τp + τp = νp(∇u + ∇uT ).

Moreover, combining the equations for the stress together with the equations for the
mass and the momentum balance, it follows

⎧
⎨

⎩

∂t u + u · ∇u + ∇ p = νsΔu + divτp
∂uc
t τp = − 1

λ
τp + νp

λ
(∇u + ∇uT )

divu = 0.
(3)

In the study of this type of non-Newtonian fluids, an important role is played by the
relaxation time λ, which in our case turns out to be proportional to the Weissenberg
number We, a number which measures the ratio between the viscous and the elastic
forces, see [11]. For very high Weissenberg number (We → ∞), the system (3)
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reduces to the following one:

⎧
⎨

⎩

∂t u + u · ∇u + ∇ p = νsΔu + divτp
∂tτp + (u · ∇)τp − ∇uT τp − τp∇u = 0
divu = 0.

(4)

Let us denote with α ∈ R
2 the Lagrangian coordinate and let X (t, α) be the flux

associated with the velocity u. Then, by applying the chain rule, the deformation
gradient F(t, X) = ∂X

∂α
satisfies the following transport equation:

∂t F + u · ∇F = ∇uF.

If the initial condition τp(0, X) = τ0(X) is positive definite, then τp(t, X) =
Fτ0FT is also positive definite and satisfies the equation

∂tτp + (u · ∇)τp − (∇u)τp − τp(∇u)T = 0.

This allows us to solve the system (1), instead of (4). By imposing that the physical
boundary conditions are given by the static equilibrium of the force fields at the
interface, the free-boundary problem for the system (1) is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t F + u · ∇F = ∇uF in Ω(t)
∂t u + u · ∇u − Δu + ∇ p = div(FFT )

divu = 0,
(−pId + (∇u + ∇uT ) + (FFT − Id))n = 0 on ∂Ω(t)
u(t)|t=0 = u0, F(t)|t=0 = F0 in Ω0.

(5)

We also assume divF0 = 0, therefore divF = 0, for all t . The variable domain
Ω(t) ⊂ R

2 denotes the region occupied by the fluid. Our main result is stated in the
following theorem.

Theorem 1. There exists a time t∗ ∈ [0, T ] such that the interface ∂Ω(t∗) self-
intersects in one point.

Similar results for the Navier–Stokes equations are obtained by Castro, Córdoba,
Fefferman, Gancedo and Gómez-Serrano in [2] and by Coutand and Shkoller in [3].
In our paper, the main problem is the presence of the elastic components, which
could prevent the development of splash singularity. We prove that this is not the
case.

One of the important ingredients in the proof is the use of a conformalmap that has
been introduced for this specific problem in [2]. The map P(z) = z̃, for z ∈ C \ Γ ,
is defined as a branch of

√
z, where Γ is a line, passed through the splash point. We

take z ∈ C \ Γ in order to make
√
z an analytic function. The key idea, to prove our

theorem is to make the analysis into the Lagrangian framework, in order to have a
fixed boundary, as done in the paper of Beale [1] to analyze the free boundary of the
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Fig. 1 Possibilities for P−1(Ω̃(t))

Navier–Stokes equations. The geometric ideas behind the proof are inspired from
the construction in [2]. The main steps are explained below with the help of Fig. 1.

• Let the initial domain Ω0 be a non-regular domain as (b); for this reason, we use
the conformal map P and by projection we get Ω̃0, a non-splash domain.

• If {Ω̃0, ũ(0, ·), p̃(0, ·), F̃(0, ·)} are smooth, we can prove the existence of a local
solution {Ω̃(t), ũ(t, ·), p̃(t, ·), F̃(t, ·)}, t ∈ [0, T ].

• By a suitable choice of the initial velocity, in particular ũ(0, z̃1) · n > 0, ũ(0, z̃2) ·
n > 0 such that there exists t̄ > 0 and P−1(Ω̃(t̄)) is as (c). This solution lives in
the tilde complex plane and cannot be transformed, by P−1, into a solution in the
non-tilde complex plane.

• To solve the problem in the non-tilde domain, we take a one-parameter family
{Ω̃ε(0), ũε(0), F̃ε(0)}, with Ω̃ε(0) = Ω̃0 + εb and |b| = 1, such that P−1(Ω̃ε(0))
is regular, and there exists a local in time smooth solution {Ω̃ε(t), ũε(t, ·), p̃ε(t, ·),
F̃ε(t, ·)}, which can be inverted in the non-tilde complex plane.

• By stability we get
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dist(∂Ω̃ε(t̄), ∂Ω̃(t̄)) ≤ Cε

hence P−1(Ω̃ε(t̄)) ∼ P−1(Ω̃(t̄)) and so P−1(Ω̃ε(t̄)) self-intersects.
• Since P−1(Ω̃ε(0)) is regular of type (a) and P−1(Ω̃ε(t̄)) is self-intersecting domain
of type (c), and then there exists a time t∗ such that P−1(Ω̃ε(t∗)) has a splash
singularity.

2 Conformal and Lagrangian Transformations

The free-boundary incompressible viscoelastic fluid model in Eulerian coordinates
that we intend to study is given in (5). Because of the geometrical singularity induced
by the self-intersection point, to start with an initial domain Ω0 which is a splash
domain, as in Fig. 1b, we use the conformal transformation P(z) = √

z to set our
problem inside a regular domain. The new velocity field is defined as follows

ũ(t, X̃) = u(t, P−1(X̃)) then u(t, X) = ũ(t, P(X)).

The same for the deformation gradient F

F̃(t, X̃) = F(t, P−1(X̃)) then F(t, X) = F̃(t, P(X)).

Remark 1. Defining J P
k j = ∂X j Pk(P

−1(X̃)), we have the following derivation
formulas:

∂X j ui (t, X) = ∂X̃k
ũi (t, P(X))∂X j Pk (X), hence ∂X j ui (t, P

−1(X̃)) = J Pk j ∂X̃k
ũi (t, X̃).

The system in Ω̃ takes the following form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t F̃ + (J P ũ · ∇X̃ )F̃ = J P∇X̃ ũ F̃ in Ω̃(t)
∂t ũ + (J P ũ · ∇X̃ )ũ − Q2Δũ + J P∇X̃ p̃ = (J P F̃ · ∇X̃ )F̃
Tr(∇ũ J P) = 0
(− p̃Id + (∇ũ J P + (∇ũ J P)T ) + (F̃ F̃ T − Id))(J P)−1ñ = 0 on∂Ω̃(t)
ũ(t)|t=0 = ũ0, F̃(t)|t=0 = F̃0 for ∈ Ω̃0.

The next step is to move form Eulerian into Lagrangian coordinates so that we
transforma free-boundary problem into a fixed boundary problem.Then, the equation
for the flux becomes

⎧
⎨

⎩

d

dt
X̃(t, α̃) = J P(X̃(t, α̃))ũ(t, X̃(t, α̃)) in Ω̃(t)

X̃(0, α̃) = α̃ in Ω̃(0).
(6)
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Therefore, the Lagrangian variables are given by

⎧
⎨

⎩

ṽ(t, α̃) = ũ(t, X̃(t, α̃))

q̃(t, α̃) = p̃(t, X̃(t, α̃))

G̃(t, α̃) = F̃(t, X̃(t, α̃)).

The new system in [0, T ] × Ω̃0 that we are going to study becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂t G̃ = J P(X̃)ζ̃∇α̃ ṽG̃
∂t ṽ − Q2(X̃)ζ̃∇α̃(ζ̃∇α̃ ṽ) + (J P(X̃))T ζ̃∇α̃q̃ = J P(X̃)G̃ ζ̃∇α̃G̃
Tr(∇α̃ ṽ(∇α̃ X̃)−1 J P(X̃)) = 0
[ − q̃Id + ((∇α̃ ṽ(∇α̃ X̃)−1 J P(X̃)) + (∇α̃ ṽ(∇α̃ X̃)−1 J P(X̃))T+

+(G̃G̃T − Id)
]
(J P)−1(X̃)∇Λ X̃ ñ0 = 0

ṽ(0, α̃) = ṽ0(α̃) = ũ0(α̃), G̃(0, α̃) = G̃0(α̃) = F̃0(α̃),

(7)

where ζ̃ = (∇ X̃)−1 and ∇Λ X̃ = −Λ∇ X̃Λ, with Λ =
(
0 −1
1 0

)

, since ñ =
−ΛJ P

|∂Ω̃(t)
Λn.

3 Local Existence of Smooth Solutions

The idea to prove the local existence is based on a fixed point argument. The iteration
will separate the equation in ṽ from the equation in G̃. In particular, G̃ satisfies an
ODE, and then it will not interfere in the boundary conditions.

3.1 Iterative Scheme

The iterative scheme is given by the following two steps:

STEP 1 {
∂t G̃

(n+1) = J P(X̃ (n))ζ̃ (n)∇α̃ ṽ
(n)G̃(n)

G̃(0, α̃) = G̃0(α̃).
(8)

STEP 2

⎧
⎪⎪⎨

⎪⎪⎩

∂t ṽ
(n+1) − Q2Δṽ(n+1) + (J P)T∇q̃(n+1) = f̃ (n)

Tr(∇ ṽ(n+1) J P) = g̃(n)

(−q̃(n+1)Id + ((∇ ṽ(n+1) J P) + (∇ ṽ(n+1) J P)T ))(J P)−1ñ0) = h̃(n)

ṽ(0, α̃) = ṽ0(α̃).

(9)
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where

f̃ (n) = − Q2Δṽ(n) + (J P )T∇q̃(n) + Q2(X̃ (n))ζ̃ (n)∇(ζ̃ (n)∇ ṽ(n)) − (J P (X̃ (n)))T ζ̃ (n)∇q̃(n)

+ J P (X̃ (n))G̃(n)ζ̃ (n)∇G̃(n),

g̃(n) = Tr(∇ ṽ(n) J P ) − Tr(∇ ṽ(n)ζ̃ (n) J P (X̃ (n))),

h̃(n) = −q̃(n)(J P )−1ñ0 + q̃(n)(J P (X̃ (n)))−1∇Λ X̃ (n)ñ0

− [∇ ṽ(n)ζ̃ (n) J P (X̃ (n)) + (∇ ṽ(n)ζ̃ (n) J P (X̃ (n)))T ](J P (X̃ (n)))−1∇Λ X̃ (n)ñ0

+ ((∇ ṽ(n) J P ) + (∇ ṽ(n) J P )T )(J P )−1ñ0 − (G̃(n)G̃T (n) − Id)(J P (X̃ (n)))−1∇Λ X̃ (n)ñ0.

The system regarding the flux X̃ is given by

⎧
⎨

⎩

d

dt
X̃ (n+1)(t, α̃) = J P(X̃ (n)(t, α̃))ṽ(n)(t, α̃)

X̃(0, α̃) = α̃ in Ω̃0,

(10)

thus X̃ (n+1) satisfies

X̃ (n+1)(t, α̃) = α̃ +
∫ t

0

(
J P(X̃ (n))ṽ(n)

)
(τ, α̃) dτ (11)

3.2 Analysis of the System (9)

As we mentioned before, we will analyze the linearized system related to STEP 2
by means of the techniques introduced by T. Beale in [1] and their improvements in
[2]. Namely, we study

⎧
⎪⎪⎨

⎪⎪⎩

∂t ṽ − Q2Δṽ + (J P)T∇q̃ = f̃
Tr(∇ ṽ J P) = g̃
(−q̃Id + (∇ ṽ J P) + (∇ ṽ J P)T )(J P)−1ñ = h̃
ṽ(0, α̃) = ṽ0,

(12)

where the compatibility conditions for the initial data are as follows:

{
Tr(∇ ṽ0 J

P) = g̃(0) in Ω̃0

((J P)−1ñ)⊥(∇ ṽ0 J
P + (∇ ṽ0 J

P)T )(J P)−1ñ = h̃(0)((J P)−1ñ)⊥ on ∂Ω̃0.

(13)
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We are going to use the following functional spaces:

X0 := {
(ṽ, q̃) ∈ K s+1 × K s

pr : ṽ(0) = 0, ∂t ṽ(0) = 0, q̃(0) = 0
}
,

Y0 :={( f̃ , g̃, h̃, 0) ∈ K s−1 × ¯K s × K s− 1
2 ([0, T ] × ∂Ω̃) :

f̃ (0) = 0, g̃(0) = 0, ∂t g̃(0) = 0, h̃(0) = 0 and (13) are satisfied}.

Therefore on the linearized problem,we recall the following result obtained byBeale,
used later on in order to prove the local existence.

Theorem 2. Let 2 < s < 5
2 and let L : X0 → Y0 be the operator associated with

the system (12), then L is invertible and the norm of the inverse is uniformly bounded
for any 0 < T < T̄ .

3.3 The Fixed Point Argument

In order to apply Theorem 2 and hence to get bounds independent of T , we need
ṽ|t=0 = 0 and ∂t ṽ|t=0 = 0. For this reason, we replace the initial condition ṽ0 as
follows:

φ = ṽ0 + t exp(−t2)(Q2Δṽ0 − (J P)T∇q̃φ),

where q̃φ is chosen in such a way that for all n, ∂t ṽ
(n)
|t=0 = ∂tφ|t=0 = 0. The velocity

is defined by
w̃(n) = ṽ(n) − φ. (14)

Therefore, we can rewrite the system (9) in the following way:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t w̃
(n+1) − Q2Δw̃(n+1) + (J P)T∇q̃(n+1)

w = f̃ (n) − ∂tφ

+Q2Δφ − (J P)T∇q̃φ

Tr(∇w̃(n+1) J P) = g̃(n) − Tr(∇φ J P)

[−q̃(n+1)
w Id + ((∇w̃(n+1) J P) + (∇w̃(n+1) J P)T )](J P)−1ñ0 =

= h̃(n) + q̃φ(J P)−1ñ0 − ((∇φ J P) + (∇φ J P)T )(J P)−1ñ0
w̃(n+1)

|t=0 = 0.

(15)

Our main local existence result is then equivalent to show the following theorem.

Theorem 3. Let2 < s < 5
2 and1 < γ < s − 1. If (ṽ(0), ∂t ṽ(0)) = (0, 0)and (q̃(0),

f̃ (0), g̃(0), ∂t g̃(0), h̃(0)) = (0, 0, 0, 0, 0), moreover G̃(0) = G̃0 ∈ Hs, then there
exist T (sufficiently small) and a solution {X̃(·), ṽ(·), q̃(·), G̃(·)} ∈ F s+1,γ ×
K s+1 × K s

pr × F s,γ−1 on [0, T ].
In order to prove this theorem, we need the following technical results.
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Proposition 1. 1. Let G̃(n) − G̃0 ∈ F s,γ−1, X̃ (n) − α̃ ∈ F s+1,γ , and w̃(n) ∈ K s+1

and such that

(i) G̃(n) − G̃0 ∈
{
G̃ − G̃0 ∈ F s,γ−1 :

∥
∥
∥
∥G̃ − G̃0 −

∫ t

0
J P∇φG̃0 dτ

∥
∥
∥
∥
F s,γ−1

≤
∥
∥
∥
∥

∫ t

0
J P∇φG̃0 dτ

∥
∥
∥
∥
F s,γ−1

}

≡ B,

(ii)
∥
∥w̃(n)

∥
∥
K s+1 ≤ N .

Then, for T > 0 small enough, depending only on N , ṽ0, G̃0,

G̃(n+1) − G̃0 ∈ B.

2. Let G̃(n) − G̃0, G̃(n−1) − G̃0 ∈ F s,γ−1, with X̃ (n) − α̃, X̃ (n−1) − α̃ ∈ F s+1,γ and
w̃(n), w̃(n−1) ∈ K s+1 and such that

(i)
∥
∥w̃(n)

∥
∥
K s+1 ≤ M,

∥
∥w̃(n−1)

∥
∥
K s+1 ≤ M,

(ii)
∥
∥
∥X̃ (n) − α̃

∥
∥
∥
F s+1,γ

≤ M,
∥
∥
∥X̃ (n−1) − α̃

∥
∥
∥
F s+1,γ

≤ M,

(iii)
∥
∥
∥G̃(n) − G̃0

∥
∥
∥
F s,γ−1

≤ M,
∥
∥
∥G̃(n−1) − G̃0

∥
∥
∥
F s,γ−1

≤ M,

for some M > 0. Then

∥
∥
∥G̃(n+1) − G̃(n)

∥
∥
∥
F s,γ−1

≤ CT δ
(∥
∥
∥G̃(n) − G̃(n−1)

∥
∥
∥
F s,γ−1

+ ∥
∥w̃(n) − w̃(n−1)

∥
∥
K s+1

+
∥
∥
∥X̃ (n) − X̃ (n−1)

∥
∥
∥
F s+1,γ

)
,

for a suitable δ > 0.

Proof. The proof is given in [4].

Proposition 2. 1. Let X̃ (n) − α̃ ∈ F s+1,γ , w̃(n) ∈ K s+1 and such that

(i) X̃ (n) − α̃ ∈
{

X̃ − α̃ ∈ F s+1,γ :
∥
∥
∥
∥X̃ − α̃ −

∫ t

0
J Pφ dτ

∥
∥
∥
∥
F s+1,γ

≤
∥
∥
∥
∥

∫ t

0
J Pφ dτ

∥
∥
∥
∥
F s+1,γ

}

≡ BJ Pφ ,

(ii) ‖w̃(n)‖K s+1 ≤ N .

Then, for T > 0 small enough, depending only on N and ṽ0,

X̃ (n+1) − α̃ ∈ BJ Pφ.

2. Let X̃ (n) − α̃, X̃ (n−1) − α̃ ∈ F s+1,γ , with w̃(n), w̃(n−1) ∈ K s+1 and such that

(i)
∥
∥w̃(n)

∥
∥
K s+1 ≤ M,

∥
∥w̃(n−1)

∥
∥
K s+1 ≤ M,
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(ii)
∥
∥
∥X̃ (n) − α̃

∥
∥
∥
F s+1,γ

≤ M,
∥
∥
∥X̃ (n−1) − α̃

∥
∥
∥
F s+1,γ

≤ M

for some M > 0. Then

∥
∥
∥X̃ (n+1) − X̃ (n)

∥
∥
∥
F s+1,γ

≤ CT δ
(∥
∥
∥X̃ (n) − X̃ (n−1)

∥
∥
∥
F s+1,γ

+ ∥
∥w̃(n) − w̃(n−1)

∥
∥
K s+1

)
,

for a suitable δ > 0.

Proof. The proof of this theorem is given in [2].

Proposition 3. 1. Let X̃ (n) − α̃ ∈ F s+1,γ , q̃(n)
w ∈ K s

pr and w̃
(n) ∈ K s+1, and such

that

(i) ‖X̃ (n) − α̃‖F s+1,γ ≤ N,

(ii) ‖G̃(n) − G̃0‖F s,γ−1 ≤ N,

(iii) (w̃(n), q̃(n)
w ) ∈ {

(w̃, q̃) ∈ K s+1 × K s
pr : w̃|t=0 = 0, ∂t w̃|t=0 = 0,

‖(w̃, q̃) − L−1( f̃ Lφ , g̃Lφ , h̃Lφ )‖K s+1×K s
pr

≤ ‖L−1( f̃ Lφ , g̃Lφ , h̃Lφ )‖K s+1×K s
pr

}

≡ BL−1( f̃ L
φ

,g̃L
φ

,h̃L
φ

)
.

Then
(w̃(n+1), q̃(n+1)

w ) ∈ BL−1( f̃ Lφ ,g̃L
φ ,h̃L

φ ).

2. Let X̃ (n) − α̃, X̃ (n−1) − α̃ ∈ F s+1,γ , G̃(n) − G̃0, G̃(n−1) − G̃0 ∈ F s,γ−1,
w̃(n), w̃(n−1) ∈ K s+1, with w̃(n)

|t=0 = w̃(n−1)
|t=0 = 0, ∂t w̃

(n)
|t=0 = ∂t w̃

(n−1)
|t=0 = 0, q̃(n)

w ,

q̃(n−1)
w ∈ K s

pr , and such that

(i)
∥
∥w̃(n)

∥
∥
K s+1 ≤ M,

∥
∥w̃(n−1)

∥
∥
K s+1 ≤ M,

(ii)
∥
∥
∥X̃ (n) − α̃

∥
∥
∥
F s+1,γ

≤ M,
∥
∥
∥X̃ (n−1) − α̃

∥
∥
∥
F s+1,γ

≤ M,

(iii)
∥
∥
∥G̃(n) − G̃0

∥
∥
∥
F s,γ−1

≤ M,
∥
∥
∥G̃(n−1) − G̃0

∥
∥
∥
F s,γ−1

≤ M,

(iv) ‖q̃(n)
w ‖K s

pr
,≤ M, ‖q̃(n−1)

w ‖K s
pr
,≤ M.

for some M > 0. Then

∥
∥w̃(n+1) − w̃(n)

∥
∥
K s+1 + ∥

∥q̃(n+1)
w − q̃(n)

w

∥
∥
K s

pr
≤ CT δ

(∥
∥
∥X̃ (n) − X̃ (n−1)

∥
∥
∥
F s+1,γ

+ ∥
∥w̃(n) − w̃(n−1)

∥
∥
K s+1 + ∥

∥q̃(n)
w − q̃(n−1)

w

∥
∥
K s

pr
+

∥
∥
∥G̃(n) − G̃(n−1)

∥
∥
∥
F s,γ−1

)
,

for a suitable δ > 0.

Proof. For the proof of this theorem, we will use Theorem 2.
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By putting together the results of Proposition 1, Proposition 2 and Proposition 3 and
by applying the contraction mapping principle we get the proof of Theorem 3.

4 Stability

In this section, we want to prove what we described in the Introduction. So we pick
a one-parameter family Ω̃ε(0) = Ω̃0 + εb, where |b| = 1 and such that P−1(Ω̃ε(0))
is a regular domain as in Fig. 1a. We take the difference between the solution
(w̃, q̃, X̃ , G̃) and the perturbed solution (w̃ε, q̃ε, X̃ε, G̃ε), which is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∂t (w̃ − w̃ε) − Q2Δ(w̃ − w̃ε) + (J P)T∇(q̃w − q̃w,ε) = F̃ε

Tr(∇(w̃ − w̃ε)J
P) = K̃ε[−(q̃w − q̃w,ε)Id + ∇(w̃ − w̃ε)J P + (∇(w̃ − w̃ε)J P)T

]
(J P)−1ñ0 = H̃ε

w̃0 − w̃ε,0 = 0.

(16)

The main estimates we prove, for a suitable δ > 0 and for 2 < s < 5
2 , are

•‖G̃ − G̃ε‖L∞Hs + ‖G̃ − G̃ε‖H2Hγ−1 ≤ Cε + CT δ
(
‖w̃ − w̃ε‖K s+1 + ‖G̃ − G̃ε‖L∞Hs

+‖G̃−G̃ε‖H2Hγ−1+‖X̃ − X̃ε‖L∞Hs+1 + ‖X̃−X̃ε‖H2Hγ

)
,

•‖w̃ − w̃ε‖K s+1 + ‖q̃w − q̃w,ε‖K s
pr

≤ Cε + CT δ(‖w̃ − w̃ε‖K s+1 + ‖q̃w − q̃w,ε‖K s
pr

+‖G̃ − G̃ε‖L∞Hs + ‖G̃ − G̃ε‖H2Hγ−1 + ‖X̃ − X̃ε‖L∞Hs+1 + ‖X̃ − X̃ε‖H2Hγ ),

•‖X̃ − X̃ε‖L∞Hs+1 + ‖X̃ − X̃ε‖H2Hγ ≤ Cε + CT δ
(
‖w̃ − w̃ε‖K s+1 + ‖X̃ − X̃ε‖L∞Hs+1

+‖X̃ − X̃ε‖H2Hγ

)
.

5 Existence of Splash Singularity (Proof of Theorem 1)

From the stability estimates above, we obtain

‖X̃ − X̃ε‖L∞Hs+1 ≤ 3Cε, (17)

by choosing 0 < T < 1

(3C)
1
δ

.

The main arguments to prove the existence of splash singularity are the sta-
bility results and the choice of the initial velocity. As stated in the Introduction,



512 E. Di Iorio et al.

we choose ũ0 · n > 0, and then we get a domain Ω̃(t̄) such that, by the inverse
mapping, P−1(Ω̃(t̄)) is a self-intersecting domain, for t̄ > 0. By using (17), it fol-
lows that P−1(Ω̃ε(t̄)) is also a self-intersecting domain. In conclusion, we have that
P−1(Ω̃ε(0)) is a regular domain of type (a) and P−1(Ω̃ε(t̄)) is a self-intersecting
domain of type (c), for some t̄ ∈ (0, T ], then there exists a time t∗ ∈ (0, t̄) such
that P−1(Ω̃(t∗)) self-intersects in one point, so it forms a splash singularity. Thus,
Theorem 1 holds.

Appendix

The spaces we used in our proof are of the type

Hs,r ([0, T ];Ω) = L2
t H

s
x ∩ Hr

t L
2
x .

For our purposes, we shall always take r = s
2 , and we introduce the following

notations:

K s([0, T ];Ω) = L2
t H

s
x ∩ H

s
2
t L2

x ,

K s
pr ([0, T ];Ω)={q ∈ L∞

t Ḣ 1
x : ∇q ∈ K s−1([0, T];Ω), q ∈ K s− 1

2 ([0, T ]; ∂Ω)},
¯K s([0, T ];Ω) = L2

t H
s
x ∩ H

s+1
2

t H−1
x ,

F s+1,γ ([0, T ];Ω) = L∞
1
4 ,t H

s+1
x ∩ H 2

t H
γ
x ,

for s − 1 − ε < γ < s − 1,

with

‖ f ‖L∞
1
4 ,t

Hs
x

= sup
t∈[0,T ]

t−
1
4 ‖ f (t)‖Hs

x
.
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