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Abstract The lid-driven cavity is an important fluid mechanical system serving as
a benchmark for testing numerical methods and for studying fundamental aspects
of incompressible flows in confined volumes which are driven by the tangential
motion of a bounding wall. A comprehensive review is provided of lid-driven cavity
flows focusing on the evolution of the flow as the Reynolds number is increased.
Understanding the flow physics requires to consider pure two-dimensional flows,
flows which are periodic in one space direction as well as the full three-dimensional
flow. The topics treated range from the characteristic singularities resulting from
the discontinuous boundary conditions over flow instabilities and their numerical
treatment to the transition to chaos in a fully confined cubical cavity. In addition,
the streamline topology of two-dimensional time-dependent and of steady three-
dimensional flows are covered, as well as turbulent flow in a square and in a fully
confined lid-driven cube. Finally, an overview on various extensions of the lid-driven
cavity is given.
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1 Introduction

A rectangular or a cubic container are among the most elementary confined geome-
tries withinwhich fluidmotion can be studied. The simplest mechanical driving force
acting on a viscous fluid with constant density and leaving the simple domain intact
is the tangential in-plane motion of a bounding wall. A cuboid of which one of the
solid walls moves tangentially to itself is called a lid-driven cavity.
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Owing to the simplicity of its setup the lid-driven cavity has been investigated
quite extensively. It has been employed as a numerical benchmark problem and as
a test bed for studying particular physical effects. Searching the Web of Science
for the topic lid-driven yields more than 1800 hits. For these reasons, and because
of the rapid evolution of this field of research, a review on lid-driven cavity flows
seems justified, given that nearly 20 years have passed since the overview provided
by Shankar and Deshpande [293].

After the first numerical investigations of Burggraf [58] and Kawaguti [177] the
quest for efficiency and accuracy began with the work of Ghia et al. [122] and
Schreiber and Keller [284] who computed the steady two-dimensional flow for
Reynolds number up to 104 in a square cavity bounded by three rigid walls and
a lid moving with constant velocity. Koseff and Street carried out a series of exper-
iments on the flow in three-dimensional cavities with different lengths in the third
dimension, many of them being summarized in [195]. Stimulated by these experi-
mental results and the remaining open questions, dedicated three-dimensional test
cases have been defined and investigated numerically by different research groups
with results collected in [95]. After this joint effort, which did not yield very con-
clusive results for the targeted Reynolds number of Re = 3200, a new level of accu-
racy has been reached for two-dimensional flows by Botella and Peyret [47] who
employed spectral methods combined with a dedicated treatment of the singular cor-
ners/edges where the moving wall meets with a stationary wall. Their method yields
highly accurate numerical solution for the two-dimensional problem up to Re = 103

(see also [24]). With the progress in computing power and the routine computa-
tion of three-dimensional flows, benchmarks for three-dimensional flows became of
interest. Applying the method of Botella and Peyret [47] to three-dimensions Alben-
soeder and Kuhlmann [11] provided highly accurate three-dimensional flow fields
for Re = 103 for different cavity lengths in the spanwise direction and for rigid and
periodic boundary conditions at the end walls.

Apart from serving as a numerical benchmark, many fundamental fluid mechan-
ical phenomena arise in the lid-driven cavity problem. An important aspect for an
analytical and numerical treatment of the problem are the discontinuous boundary
conditions along the edges at which moving and stationary walls meet. This problem
is a special case of Taylor’s scraping problem for which he has provided similarity
solutions [308, 309]. Along such an edge with discontinuous boundary conditions
for the velocity perpendicular to the edge, the vorticity and the pressure diverge at
the apex. For two-dimensional flow, closed-form solutions have been obtained (see,
e.g., [139]) in terms of a series expansion of the steady flow for small distances from
the discontinuous corner. Even a truncated series expansion will capture the leading-
order terms of the singular velocity and pressure fields and can be employed to ease
convergence of the full numerical problem of solving the Navier–Stokes equations
[47]. An artifice to eliminate the singularity is a regularization/smoothing of the
discontinuity (see, e.g., [208]). The existence of a singularity in the mathematical
problem also indicates the difficulties which arise in experimental realizations of the
lid-driven cavity: mathematically the pressure diverges as the singular corners are
approached. The decrease of the pressure in the edge at which the wall moves away
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from the edge will necessarily lead to cavitation in the corner. Furthermore, a gap
between a stationary and the moving wall is hard to prevent, leading to pumping
and leakage effects [273]. Another peculiarity concerns the viscous flow near the
sharp corners made by two stationary walls. Depending on the enclosed angle the
flow exhibits a particular asymptotic behavior in form of an infinite sequence of self-
similar vortices [231] whose size and intensity decay in geometric progression as
the edge is approached. In addition to these local effects, the global vortex structures
depend on the motion of the boundaries and the height-to-width ratio of the cavity
[254], even in two-dimensional Stokes flow. Solutions to these types of problems can
be obtained, apart from numerical methods, by the bi-orthogonal series method [174,
175] or by the use of Greens functions [183]. The theoretical asymptotic treatment
of the three-dimensional problem of the local flow near a corner where three plane
rigid walls meet is considerably more complicated [128].

Another fundamental aspect of the lid-driven cavity flow concerns the evolution of
the two-dimensional flow as the wall velocity increases. According to the Prandtl–
Batchelor theorem [29, 267] the steady, two-dimensional flow, in the absence of
instabilities, should evolve for large Reynolds numbers to a vortex with an inviscid
core of uniform vorticity surrounded by viscous boundary layers which relate the
vortex core to the boundary conditions. This tendency was confirmed experimentally
[254] and numerically (see, e.g., [104]). However, the two-dimensional steady flow
is not stable at high Reynolds numbers [132], and smaller-scale vortices are shed into
the cavity from the downstream end of the moving wall when the Reynolds number
increases beyond a critical value.

If the two-dimensional cavity problem is extruded in the third dimension, insta-
bilities arise which break the translational symmetry in this third direction, leading
to periodic patterns [13]. The spatial and temporal structure of the unstable modes of
the linear stability problem depends on the height-to-width ratio (aspect ratio) with
the so-called Taylor–Görtler type of mode for unit aspect ratio being the precursor
of the three-dimensional unsteady vortices discovered by Koseff and Street [193]
for higher Reynolds numbers. Generalizing the single-lid-driven cavity to a cavity
with two facing walls which move parallel or antiparallel to each other, the basic
two-dimensional flow can loose its uniqueness [14, 201]. Moreover, a rich zoo of
three-dimensional flow instabilities can be observed which define the stability bal-
loon [10] of the two-dimensional flow in the parameter space spanned by the aspect
ratio and the two wall velocities. In the limit of a shallow two-sided lid-driven cavity,
the flow in the bulk of the cavity approximates a class of parallel shear flows (with
zero mean).

In cavities with a large span flow patterns can arise in the bulk which are based
on the periodic instability of a cavity infinitely extended in the third dimension.
The periodic flow patterns in the bulk, however, will be perturbed by the presence
of end walls on which no-slip boundary conditions must be satisfied. The end-wall
effect associated with the finite span is another topic of interest and related to the
Bödewadt boundary layer flow [43]. In very short lid-driven cavities, such as a cube,
the end-wall effects become dominant. The flow in these short systems requires a
full three-dimensional numerical treatment from the outset. Feldman and Gelfgat
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[109] discovered the lid-driven flow in a cube to become time-dependent through a
subcritical (backward) bifurcation at a Reynolds number of the order of 2000. The
intermittency of the chaotic flow immediately above the threshold [200, 220] has
only been explained recently by Lopez et al. [221]. Accordingly, different, time-
dependent solutions bifurcate subcritically from the steady three-dimensional flow
with their upper branches being unstable, except for a very small range of subcritical
Reynolds numbers. For still higher Reynolds numbers the flow undergoes a tran-
sition to turbulence [209]. Of interest are the particular properties of the turbulent
flow which originate from the specific type of driving and the three-dimensional
confinement.

Time-dependent, two-dimensional as well as steady, three-dimensional cavity
flows have also been employed to study fundamentals of chaotic mixing [81, 169]
and to investigate the transport of suspended particles [321]. The advection of fluid
and the transport of particles crucially depends on the underlying flow topology. An
interesting property of the flow topology at intermediate Reynolds numbers, which
affects the mixing, is the coexistence of chaotic and regular streamlines [164, 277].

Many extensions are possible of the problem of rectangular lid-driven cavity
flow. A natural extension concerns the variation of the cavity shape. Among those,
cavities with triangular cross section have been considered [1, 129, 212], cavities
with circular [32] and semi-circular shapes [123, 229], and cavities with geometric
inserts making the geometry more complex. Another important extension, is the heat
transport when the cavity walls are kept at different temperatures or in the presence
of other heat sources (see, e.g., [82, 237, 269]). Finally, combinations of these effects
have been considered, including magnetic forces, compressibility effects, and cases
in which the cavity is filled with a porous medium or with a non-Newtonian fluid.

2 Governing Equations

We consider the incompressible flow of a Newtonian fluid with constant density ρ
and kinematic viscosity ν in a cuboid with dimensions Lx × Ly × Lz as shown in
Fig. 1. The Cartesian coordinate system is centered in the cavity. The fluid motion is
governed by the incompressible Navier–Stokes equations

∂u
∂t

+ u · ∇u = −∇ p + ∇2u, (1a)

∇ · u = 0, (1b)

where u = (u, v, w) is the velocity vector in Cartesian coordinates and p the pres-
sure. Length, velocity, time and pressure have been made non-dimensional using the
viscous scales L , ν/L , L2/ν and ρν2/L2, respectively, where L is the length of the
sliding lid(s).

Two drivingmodes are considered: single-lidmotion and double-lidmotion. In the
latter case two facingwallsmove in parallel or antiparallel direction. Using the length



The Lid-Driven Cavity 237

(a) single-lid motion
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Fig. 1 Geometry of the cavities considered with dimensions Lx , Ly and Lz in x , y and z direction,
respectively. The coordinate origin c (•) is located in the center of each cavity. For one-sided driving
(a) the lid at y = Ly/2 moves with velocity U ex in x direction. For two-sided driving (b) the lids
at x = ±Lx/2 move with velocities −U1ey and U2ey in y direction, as indicated by the bold grey
arrows. The circles (◦) indicate the intersection of the axes with the walls. The lateral boundaries
are shown in brighter grey. Non-dimensional lengths are given in parentheses

of the moving lid L = Lx for the single-lid cavity, and L = Ly for the double-lid
cavity, the velocity boundary conditions on the moving wall(s), Reynolds numbers
and cross sectional aspect ratios are defined to conform with the usual conventions

single-lid motion:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x, y = Γ/2, z) = (Re, 0, 0),

Re = UL/ν,

Γ = Ly/L ,

(2a)

double-lid motion:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x = ±Γ/2, y, z) = (0,∓Re1,2, 0),

Re1,2 = U1,2L/ν,

Γ = Lx/L ,

(2b)

where U , U1, and U2 are the velocity magnitudes of the moving lids as indicated
in Fig. 1. On all other walls no-slip conditions u = 0 are imposed. In addition, it
is useful to define the span aspect ratio Λ = Lz/L . All data reported hereinafter
have been converted to the present scaling and coordinate systems, depending on the
driving mode.

3 Corner Singularities

Among the reasons which made the lid-driven cavity one of the most (if not the
most) common benchmark in computational fluid dynamics is the combination of its
simple geometry and the presence of various corner singularities. The system does
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Fig. 2 Sketch of the typical
streamline structure in the
lid-driven cavity. The zooms
show the asymptotic corner
regions in which Taylor’s
scraper solution applies
(top-right panel) and where
the Moffatt sequence of
eddies forms (bottom-right
panel)

not require complicated meshing operations and it allows all kinds of discretization
methods to be tested; in addition, only Dirichlet boundary conditions are required
to define the mathematical problem. Therefore, all codes can easily be prepared to
create a solver for the lid-driven cavity. On the other hand, the singularities which
arise at the corners and edges where different walls meet at a sharp angle make the
exact solution difficult to approximate and create numerical challenges, in particular,
where the geometry changes abruptly and the boundaries move with multi-valued
velocities [233].

Several different singularities are encountered in the various lid-driven cavity
setups, which can be referred to classical problems of theoretical fluid dynamics.
In case of a two-dimensional one-sided cavity the local flow in the edges can be
represented by two singular flows (see Fig. 2): Taylor’s scraper problem [308] (top-
right zoom-in panel) and viscous corner eddies [231] (bottom-right zoom-in panel).
Note the local flows in the singular corners up- and downstream of the moving wall
depend on Re, but become equivalent for Re → 0. Owing to their significance for
two-dimensional and spatially-periodic three-dimensional cavity flows these singu-
larities will be discussed in Sect. 3.1. Other singularities arise when the flow is driven
by more than one lid and when the sliding walls share a common edge (see, e.g., [59,
327]), or when only part of a flat wall is moving while the remainder is at rest [232].
Far more complicated than the two-dimensional edge flow is the flow in a corner
near the point at which three walls (which may move) meet. This problem has only
been investigated in the recent years (see, e.g., [287, 291]). A brief overview of the
main achievements is presented in Sect. 3.2.

3.1 Two-dimensional Singularities

The analysis of two-dimensional flows is greatly simplified by the introduction of
a stream function ψ defined such that u = ∇ × (ψez). In this representation, the
incompressibility constraint is identically satisfied and the Navier–Stokes equation
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Fig. 3 Wedge geometry and
notation for the local flow θ2

θ1
U1

U2

φ

reduces to1

∇4ψ = Re

[
∂∇2ψ

∂t
+ ∇ × (ψez) · ∇ (∇2ψ

)
]

. (3)

Seeking solutions to the singular corner flows in terms of planar polar coordinates
(r, θ) centered at the singular corner enables to treat arbitrary wedge angles. The
geometry and notation is sketched in Fig. 3. In the typical asymptotic approach the
stream function is represented in form of a power series in r

ψ =
∞∑

k=1

rαk fk(θ, t), (4)

k ∈ N, subject to the normal and tangential velocity boundary conditions

∂rψ|θ=θi = 0, and r−1∂θψ
∣
∣
θ=θi

= Ui (t), (5)

at the two walls (i = 1, 2) and the angles θ = θi , whereUi (t) refers to the tangential
velocity of the i-th wall of the wedge. The smooth functions fk(θ, t) take care of
the azimuthal and time dependence of the flow. The coefficients αk ∈ C are complex
and ordered with respect to their real parts 1 ≤ 	(α1) < 	(α2) < . . . such that the
higher k the less singular the k-th term is in (4).

In creeping-flow approximation (Re → 0) (3) becomes the biharmonic equation
∇4ψ = 0.Thefirst solutions of the corner flowproblemhave been obtained for Stokes
flow [93, 231, 308] with the understanding that the creeping flow approximation
holds true for r |U |/ν 
 1.

WhenU1 = U andU2 = 0, one of the solid plates is at rest and it is scraped along
by the other plate with constant velocity U and at a constant angle φ = θ2 − θ1 (see
Fig. 3 and top-right of Fig. 2). The creeping-flow solutionwas given byGoodier [131]
and Taylor [308, 309]

ψ = Ur f (θ), f = [θ sin(φ) sin(φ − θ) − φ(φ − θ) sin(θ)] /(φ2 − sin2(φ)). (6)

1Here the convective scaling with characteristic velocity U is used to facilitate the mathematical
analysis.
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5.1× 10−8
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Fig. 4 Sketch of theMoffatt eddies between two stationary walls enclosing a wedge angle φ = 20◦
(adapted from [231]). The numbers indicate relative intensities

Further improvements havebeenobtainedbyKondratiev [192], Inouye [157],Moffatt
and Duffy [234], Gupta et al. [139], and Hancock et al.[147] who included the effect
of the inertial term in (3) on the Taylor’s scraper flow by means of a boundary-layer
approach, by corrective terms, or by an expansion of ψ in powers of Re. More recent
advancements are concerned with a generalization of the problem to include non-
Newtonian effects [178] or unsteady flows due to a time dependence of the scraping
velocities Ui [48].

The second singular problem to consider is the stationary corner for which
U1 = U2 = 0. This class of singularity was first pointed out by Rayleigh [272] who
considered creeping flows and showed that the homogenous boundary conditions in
(5) cannot be satisfied by the ansatz (4) with real exponents. Successively, Dean and
Montagnon [93] contributed to the solution of the Stokes-flow problem, which has
been completely clarified and explained by Moffatt [231]. Moffatt introduced the
notion of an infinite progression of steady viscous eddies located in corners which
include at least one solid boundary. The type of eddies which form in the wedge
between stationary walls is sketched in Fig. 4. For the important case of a wedge
angle φ = π/2 the radial location rn+1 from the origin of the center of an eddy
shrinks by a factor of ≈16 compared to the distance rn of the neighboring eddy.
Moreover, the intensity measured by the velocity of the eddies falls off by a factor
of ≈2000 between neighboring eddies. This explains the rapid shrinkage and dimin-
ishing of succeeding eddies for φ = π/2 as the apex is approached. In the limit of
vanishing wedge angle the eddies all have the same radial width of ≈1.39 times
the gap width, while the relative strength between neighboring eddies decays by a
factor of about ≈350 (see also Sect. 5.1). Moffatt [231] also determined the con-
dition φ < 146◦ under which this singular vortical pattern is resistant, even though
viscosity dampens the strength of the corner eddies.

For the previous case of inhomogeneous boundary conditions with at least one
wall moving, a local analysis was sufficient to provide the leading order terms of the
expansion (4). For the homogeneous case of stationarywalls the situation is different,
because the strength of the singular flow must be determined in a global sense by
matching the local flow field with the one in the bulk of the cavity. A matching
technique and an extension of the series expansion including inertial terms has been
proposed by Botella and Peyret [48] and Botella et al. [49].
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Asymptotic solutions of this type of wedge-flow problems are of interest also
for other configurations. Extensions of Moffatt eddies to non-planar geometries have
been investigated byWakiya [328] and Liu and Joseph [215]who considered axisym-
metric conical flows, and byMalhotra et al. [223] who investigated a two-cone geom-
etry. Davis et al. [89] and Davis and O’Neill [87] found viscous eddies also between
two spherical surfaces and between a cylinder and a plane, respectively.

3.2 Three-Dimensional Singularities

For three-dimensional flows the stream function formulation cannot always be
employed and the full set of equations in primitive variables has to be considered.
This complicates the problem which has remained, so far, unresolved.

Several attempts have been made to solve three-dimensional problems which are,
in some sense, similar to the corner flow near a moving boundary. The first attempt
was made by Hills and Moffatt [150], who considered the honing problem. In the
rotary honing problem a blade is held in place at a certain angle α with respect
to a plate rotating with angular velocity Ω . The center of rotation can either be
on the line of contact between both plates or displaced from it. In creeping flow
approximation, Hills and Moffatt [150] derived a solution valid near the center of
rotation and found the three-dimensional streamlines to be closed curves whose
projections normal to the line of contact correspond to the streamlines of the two-
dimensional scraper problem of Taylor. They also extend the analysis to the case in
which two stationary intersecting planes are honed by a rotating cone which rotates
about the axis defined by the intersection of both stationary planes. For the conical
honing, similarity solutionswere obtainedwhich are related to the similarity solutions
for the two-dimensional wedge problem treated by Moffatt [231].

Motivated by Hills and Moffatt [150] Gomilko et al. [128] investigated the flow
near a trihedral corner formed by three mutually orthogonal planes, one of which is
sliding or rotating tangentially. Solutions to theStokes flowproblemwere represented
as a series over spherical harmonics. To find the dominant asymptotic terms a Mellin
transformation technique [319] was used. Asymptotic streamline structures near the
corner have been obtained for the different modes of wall motion.

Further analyses have been conducted by Shankar [290, 292], who considered
the three-dimensional Stokes flow in a semi-infinite wedge. They concluded that,
provided the set of eigenfunctions found to be complete and the series representation
convergent for the given boundary conditions, there exists and infinite sequence of
corner eddies in the neighbourhood of the edge made by the stationary walls for the
antisymmetric class of solutions, but not for the symmetric class they found (see also
[235, 281]).

Further advancements are due to Leriche and Labrosse [211], who numerically
computed the eigenmodes of the Stokes flow in a cubic cavity made by stationary
walls using a spectral collocation method.Within the numerical accuracy the authors
could not find indications of the existence in a trihedral corner of a three-dimensional
analogue of the two-dimensional Moffatt eddies. For the Stokes flow in a trihedral
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x

y z

Fig. 5 Example for a typical asymptotic streamline in a trihedral cone, initiated from the bisector
plane containing the x axis, under themeridional angle θ = 1 (from the x axis) and with the distance
r = 1 from the apex. The streamline approaches the trihedral corner along the dotted line and returns
along the solid line. The radial coordinate is compressed by scaling with r1/6. The figure is taken
from [287]

cone, however, Scott [287] numerically found Moffatt-type of modes in form of a
two-parameter family of asymptotically dominating flowsmade by a superposition of
symmetric and antisymmetric modes. Antisymmetric modes lead to closed stream-
lines in the trihedral cone, while in the general case (including symmetric modes) the
streamlines are aperiodic. Typically, fluid elements approach the apex of the corner
in a spiraling fashion before they turn radially and spiral out. This is illustrated in
Fig. 5. A comparison with the results of Leriche and Labrosse [211] is pending. The
results of Scott [287] were confirmed by the theoretical analysis of Davis and Smith
[88] using three sets of spherical coordinate systems, as in [128].

The asymptotic solution obtained by [128] for a trihedral corner is singular along
the edge along which the velocity is discontinuous. Therefore, to eliminate one of the
edge singularities of the Navier–Stokes problem in a cuboidal cavity flow, it is not
possible to simply subtract the leading-order terms of the two asymptotic solutions
which belong to the two corners having a line of discontinuity in common (see also
[11]). In principle, an asymptotic matching operation would be required. Moreover,
a local asymptotic solution of the trihedral corner flow taking into account inertial
effects is still missing.

3.3 Treatment of the Singularities

The singularities inherent to the definition of the lid-driven cavity problem negatively
affect the convergence and the accuracy of any approximate numerical solution of the
Navier–Stokes equations. To circumvent this problem, leading-order local asymp-
totic solutions valid near singular corners and edges may be utilized to reduce the
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singularity of the problem to be solved numerically. Several analytic and numerical
strategies have been developed in this direction.

3.3.1 Singularity Annihilation

The method of singularity annihilation relies on an integral-equation formulation of
the problem based on a suitably chosen Green’s function. The domain of integration
is the whole cavity, except for the singular corners. These can be excluded from
the integral if the zeroth- and first-order derivative of the selected Green’s function
tends to zero at the moving lid. This method has been successfully applied to Stokes
flow involving biharmonic functions [183, 184]. The method involves only little
computational load, but the existence of a suitable Green’s function requires that all
the singularities are located on a straight or a circular line [52].

3.3.2 Singularity Incorporation

The singularity-incorporationmethod is a local approachwhich embodies the asymp-
totic series defined for the singular corners only in a neighborhood of the singularity.
This method has been introduced by Kelmanson [182] and extended in [148] to treat
singular creeping flows in channels and corners. The method finds a natural exten-
sion and application in combination with the finite-element method, where special
functional bases have been adopted near the singularities in order to well approxi-
mate the asymptotic expansion [111, 120]. Themethod also inspired other numerical
techniques aimed at matching the local asymptotic with the global numeric solution
[112, 222]. The singularity incorporation relies on the knowledge of the singularity,
whose leading-order term of the asymptotic expansion for two-dimensional flow is
valid within a distance r ∝ Re−1. This condition represents a strong limitation for
such methods, restricting them to small Reynolds numbers.

3.3.3 Singularity Subtraction

The singularity subtraction method builds on asymptotic expansions about the sin-
gular corners. The technique has been introduced by Symm [306] and was extended
in [180, 181] to deal with Stokes flows. In the subtraction method the leading-order
terms of the singular flow field, denoted uc, is subtracted from the full solution which
is represented as u = u∗ + uc. Therefore, uc globally affects the remaining problem
of solving for the less singular part of the solution u∗. As a main achievement of
the method only a less singular problem for u∗ is left to be computed numerically,
instead of the fully singular solution u. This is a crucial advantage for high-order
methods for Stokes flows [285, 286] and for Navier–Stokes flows [45–49], since
the singularity subtraction leads to a significant improvement of the grid conver-
gence (see Fig. 6). The improved convergence is due to the suppression of spurious
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Fig. 6 Convergence of the global error of the L2-norm of the velocity (a) and the pressure (b)
in a one-sided lid-driven square cavity for Re = 1000. NS0 indicates results of the direct Navier–
Stokes solver. NS1 and NS2 denote the errors for the Navier–Stokes solvers supplied by a first- and
a second-order singularity-subtraction method, respectively. The figure is taken from [48]
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Fig. 7 Streamlines (streamfunction ψ, left half) and isolines of the vorticity ω (right half) of
the creeping flow in a two-dimensional square cavity computed using a pseudospectral Chebyshev
method employing 11 modes. A comparison is shown between results using a Stokes solver without
(a) andwith (b) subtraction of the corner singularity. Spurious eddies of numerical origin are evident
in (a), but largely suppressed in (b). The figure is taken from [285]

modes which would otherwise appear all over the domain and, in particular, on the
boundaries (Fig. 7) [285]. Even though these spurious modes are not very evident
for local, low-order methods, e.g. classical finite difference or finite volumes, they
still condition the accuracy of the numerical solution. An evident demonstration of
this problem has been provided by Bruneau and Saad [57], using the finite-volume
method on a staggered grid, who addressed the severe singularity in the vorticity
(ω ∼ r−1) as the main cause of the not fully satisfactory grid convergence (see the
enstrophy and palinstrophy in Table 7 of [57]).
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3.3.4 Numerical Approaches

Despite the additional computational overhead, the singularity-subtraction method
is widely used. All other techniques mentioned above require the knowledge of
the full singular asymptotic expansion which, however, is unknown for fully three-
dimensional Newtonian cavity-flow problems and also for two-dimensional non-
Newtonian cavity flows. It is useful, therefore, to mention other strategies which do
not require the a-priori knowledge of the asymptotic edge and corner flows. Among
these numerical techniques is the multi-grid approach [53, 122, 145, 330]. It is based
on a series of grids on which the solution is alternatingly computed using restriction
and prolongation operators. This allows a high resolution near the singularity, while
preventing solution blowup on the coarse mesh far from it. Another widely used
technique is the application of a-posteriori filtering operators (see, e.g., [47, 323]),
which are proven to provide convergence for lid-driven-cavity problems even in
terms of the vorticity field [47].

3.3.5 Regularization

Finally, a widely used method to circumvent the singularity problem consists of
a suppression or attenuation of the singular component of the corner flow by a
modification of the boundary conditions on the moving lid. When the numerical
solution to the lid-driven cavity-flow problem is analysed in its spectral components,
the multi-valued velocity data at the singular edge lead to the Gibbs phenomenon
which spoils the numerical solution by falsely increasing the amplitude of high-
wave-number modes (cf. Fig. 7a). The resulting numerically-induced oscillations
pose a problem, in particular, for high-order methods. The Gibbs oscillations can
be prevented by regularizing the boundary conditions by letting the wall velocity
smoothly tend to zero in the vicinity of the singular edge. The regularization function
can be polynomial [119, 209, 296], trigonometric [201], or exponential [221]. In any
case, the regularized problem is intended to mimic the original singular problem.
However, rigorous studies which assess the influence of the regularization on the
prediction of flow properties such as, e.g. stability boundaries, are still lacking (see,
however, [119]). To illustrate the problemweconsider theHopf bifurcation in the one-
sided, lid-driven square cavity: Employing a 4th-order polynomial as regularization,
Shen [296] predicts a two-dimensional flow instability for a Reynolds number in
the range Re ∈ [10000, 10500], whereas for the non-regularized cavity Auteri et al.
[24], employing a singularity subtraction method, find the bifurcation to occur at
Re ∈ [8017.6, 8018.8].

4 Numerical Methods

A general discussion of numerical methods for the lid-driven cavity is beyond the
scope of this chapter. However, many results presented in the following sections are
derived by use of a global linear stability analysis. In the classical approach [61, 99],
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two computational steps are required: (i) the computation of a basic (reference) state
whose stability is to be probed and (ii) the analysis of the dynamics of infinitesimally
small perturbations of the basic state. Hereinafter, we are concerned with the stability
of stationary basic states. For the stability analysis of time-periodic states, e.g. cavity
flows due to an oscillating lid, by use of a Floquet analysis [27, 158] we refer to [39].

4.1 Basic State

The flow at very small Reynolds numbers is unique and reflects the symmetries of
the system [207]. Moreover, the flow is stable [289] in the sense that any perturbation
of the initial conditions, required for the solution of the governing equations, will
decay in time such that the flow always returns to the same basic state. Owing to
the growing importance of the nonlinear terms of the Navier–Stokes equations for
larger Reynolds numbers the flowmay no longer be unique. At the Reynolds number
at which new flow states come into existence a bifurcation of solutions occurs. If
multiple solutions exist small initial perturbations of a given flow, the basic flow,
may be amplified and lead to another flow state. Typically, the basic flow will still
exist, but be unstable. The significance of stable and unstable basic flows derives
from the fact that stable flows can be observed in experiments, while it may not be
possible to observe unstable flows, at least not for an arbitrary long time.

Two methodologies are successfully employed to compute the steady basic state,
Newton–Raphson iteration and selective frequency damping. These two methods
are, in some, sense complementary regarding their strengths and weaknesses.

4.1.1 Newton–Raphson Iteration

The Newton–Raphson method is usually adopted for the computation of stationary
two-dimensional basic states. Due to the local convergence, the Newton–Raphson
iteration requires a good initial guess. Therefore, some precursor iterations are often
performed by a Picard iteration or by a fixed-point iteration. However, when the
initial guess belongs to the basin of attraction of the steady basic-state solution, the
Newton–Raphson iteration converges quadratically.

To obtain the steady basic flow, the solution vector y = (u, v, w, p)T is iterated
yk → yk+1 = yk + δ y froman initial guess y0,where k is the iteration step. Inserting
yk+1 in (1) and linearizing the convective terms with respect to the correction δ y
yields

(
δu · ∇uk + uk · ∇δu

)

+∇δ p − ∇2δu = − (
uk · ∇uk

) − ∇ pk + ∇2uk, (7a)

∇ · δu = −∇ · uk, (7b)
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from which the correction δ y is obtained. The (k + 1)st Newton-iteration step can
be written in compact form

J
(
yk

) · δ y = − f
(
yk

)
, (8a)

yk+1 = yk + δ y, (8b)

where the Jacobian J is evaluated at the current iteration step k and f
(
yk

)
is the

non-linear residual of the Navier–Stokes and continuity equations (r.h.s. of (7)).
Besides the advantage of rapid convergence and the drawback of local conver-

gence, it is evident from (8) that the Newton–Raphson method requires the computa-
tion and storage of the Jacobian matrix. Hence, this technique does not represent
a suitable option for the accurate stability analyses of three-dimensional steady
basic states, for which the number of degrees of freedom makes the storage of
the Jacobian matrix prohibitively expensive. To overcome this weakness, Jacobian-
free approaches have been proposed with the aim of computing J

(
yk

) · δ y without
storing J

(
yk

)
. The most successful among these methods is the class of so-called

Jacobian-free Newton–Krylov (JFNK) methods, which have been reviewed in [191].

4.1.2 Selective Frequency Damping

The selective frequency damping (SFD, [3]) is a technique inspired by control theory,
which adds a forcing term to theNavier–Stokes equation inorder to drive the system to
a certain steady state bymeans of a low-pass filterwhich damps unsteady oscillations.
In

∂u
∂t

+ u · ∇u = −∇ p + ∇2u − χ (u − ū) , (9a)

∇ · u = 0, (9b)

∂ū
∂t

= ωc (u − ū) , (9c)

the forced Navier–Stokes equation (9a) and continuity equation (9b) are augmented
with an equation (9c) which rules the damping through the filtered state ū. When the
filtered state ū coincides with u, the forcing termχ (u − ū) as well as ∂t ū vanish, and
u and p becomea stationary solutionof (1). Two real parameters havebeen introduced
to control the flow: the gain χ > 0 and the cut-off circular frequency ωc of the
filter. Suitable parameters for these variables are related to the physically meaningful
growth rate σ and oscillation frequency ω of the most dangerous perturbation of the
basic state which the filter is supposed to damp. For being successful, the method
requires χ > σ and ωc < ω. If ω is known one typically sets ωc = ω/2.

Among the main issues of the selective-frequency-damping method is the growth
rate and oscillation frequency of the instability to suppress are often unknown a-
priori. This makes difficult the choice of χ and ωc. Too conservative values for ωc
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and χ results in a very slow rate of convergence, leading to enormous computational
costs [219]. To overcome this difficulty,more advancedmethods have been proposed,
which combine the basic state computed by selective frequency damping with the
evaluation of its dominant eigenvalue: Based on the current estimates for σ and
ω the optimal choice for the control parameters χ and ωc is made [173]. Despite
the computational overhead in estimating σ and ω, the advantage in retrieving an
optimal convergence rate can be significant. The main advantage of the SFD over the
classical Newtonmethod is the selective frequency dampingmethod does not require
additional matrices to be allocated and (9) can be solved with a standard projection
method.

4.2 Linear Stability Analysis

Once the steady basic state has been computed as described in Sect. 4.1, its stability
with respect to infinitesimal perturbations can be investigated by means of a linear
stability analysis. To that end the total flow is decomposed

u(x, t) = u0(x) + u′(x, t), (10a)

p(x, t) = p0(x) + p′(x, t), (10b)

into a steady basic flow (indicated here by the subscript 0) and perturbation quantities
(indicated by a prime) which are assumed to be small. Inserting the full flow fields u
and p into the Navier–Stokes equations (1), taking into account that (1) is satisfied by
(u0, p0) alone, and linearizing the resulting equationswith respect to the perturbation
quantities yields the linearized Navier–Stokes equations for the perturbations

∂u′

∂t
+ u′ · ∇u0 + u0 · ∇u′ = −∇ p′ + ∇2u′, (11a)

∇ · u′ = 0. (11b)

The perturbation flow is driven by the basic flow through the two advective coupling
terms. In short (11) can be written as

∂u′

∂t
= C · y′, (12a)

∇ · u′ = 0, (12b)

where C is the linearized operator which includes convective, viscous and pressure
terms of the momentum equation with (12b) enforcing the solenoidal constraint on
the perturbation y′ = (u′, p′)T . Two classes of methods are employed for solving
(12a).
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Matrix-based methods exploit the steadiness of the basic state. Owing to the
linearity in y′ and the homogeneity in t of the perturbation equations, solutions to
(12) can be sought in form of so-called normal modes

[
u′(x, t), p′(x, t)

] = [
ũ(x), p̃(x)

]
eγt + c.c., (13)

where c.c. is the complex conjugate and γ = σ + iω is a complex growth rate with
real growth rate σ and real oscillation frequencyω. Therefore, a normal-mode type of
perturbation (13) will decay or grow exponentially if σ < 0 or if σ > 0, respectively.
AtReynolds numbers Ren atwhichσ changes its sign the basic flow is neutrally stable
with respect to the particular normalmode and a pair of new solutions bifurcates from
the basic state. If, at neutral stability (σ = 0), ω = 0 vanishes, the neutral normal
mode is stationary. On the other hand, ifω �= 0 the neutral normalmode is oscillatory,
leading to aHopf bifurcation [151].Among the different possible values Ren can take,
its minimum value is called the critical Reynolds number Rec. The exponential time
dependence holds true only for infinitesimal perturbations. Once a perturbation has
grown to a considerable amplitude the nonlinear terms u′ · ∇u′, which are neglected
in (11), have to be taken into account, which typically limits the exponential grow,
often leading to a nonlinear saturation of the amplitude of the perturbation flow.

Inserting the ansatz (13) into (12) the problem is reduced to the generalized
eigenvalue problem

γA · ỹ = B · ỹ, (14)

where ỹ = (ũ, p̃)T , A is the mass matrix and B includes the operator C and the
incompressibility constraint. Since a general perturbation can be represented as a
superposition of all possible normal modes, equation (14) must be solved in order
to find the eigenpair (γ, ỹ) with the maximum possible growth rate σ, belonging
to most dangerous mode ỹ. A basic flow is linearly stable, if max σ < 0, and it is
linearly unstable if at least one eigenvalue γ exists for which σ > 0.

Once thematrices A and B are assembled and stored, the corresponding eigenvalue
problem can be solved by means of different techniques, such as Jacobi’s diagonal-
ization method [255], the power method [125], Lanczos’ method [203], Arnoldi’s
method [22] or Davidson’s method [84–86, 302, 322].

Matrix-freemethods intend to solve (12a) directly, without assembling and storing
matrices. The very large size of the matrix representation of the linear operator C for
three-dimensional meshes and the corresponding prohibitively expensive memory
requirements for allocating A and B explain the increasing importance of matrix-
free methods for the stability analysis of three-dimensional basic states as compared
to matrix-based methods (see, e.g., [25, 219, 260, 261]).

The most popular matrix-free method in fluid dynamics is the time-stepper
approach. It was initially proposed by Marcus and Tuckerman [224], then elabo-
rated by Edwards et al. [101], and recently employed by Bagheri et al. [25] for
performing the first stability analysis of a three-dimensional basic state. The time-
stepping method is based on a projection of (12a) onto a solenoidal velocity-vector
space which analytically satisfies (12b). In such a functional space, the system of
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equations (12) formally reduces to (12a), which admits the solution

y′ (Δt) = eCΔt · y′
0, (15)

where y′
0 is the initial guess of an iteration of (15) and the matrix exponential

M(Δt) = eCΔt is called time propagator or exponential propagator. The advan-
tage of this method is there is no need of ever assembling the matrix M(Δt). The
effect of M(Δt) on y0 can be obtained by time-marching (11), projected on the
divergence-free vector space of u′. The set of n iterated vectors

Kn
(
M, y′

0

) = {
y′
0, M y′

0, M
2 y′

0, . . . , M
n−1 y′

0

}
(16)

spans a Krylov space Kn . The set of Krylov vectors can then be orthogonalized, e.g.
within the Arnoldi method. The orthogonal vectors provide good approximations to
a subset of the eigenvectors of (14), namely the ones with the maximum absolute
eigenvalues |γ|. Among these eigenvalues the one with the largest real part has to
be found by suitable mappings. Typically, only a relatively small dimension n =
O(100) of the Krylov subspace is required to yield sufficiently accurate results for
the largest eigenvalues, their number being limited by the dimension of Kn . Modal
and non-modal approaches to global stability analysis have recently been reviewed
by Theofilis [312] in a more general context.

5 Two-Dimensional Cavity Flows

The two-dimensional flow in the (x, y) plane can be thought of being embedded in the
three-dimensional problemby extruding the two-dimensional flowfield u = (u, v, 0)
in z direction and by letting Lz → ∞. The numerical calculation of two-dimensional
cavity flows requires little resources. The system thus provides an efficient test bed
for numerical codes and for studying pure two-dimensional flow physics.

5.1 Single-Lid-Driven Cavity

The first numerical investigation of the flow in a single-lid-driven cavity is due to
Kawaguti [177], who performed simulations for creeping as well as for nonlinear
flows for Reynolds numbers up to Re = 128, investigating three aspect ratios Γ =
0.5, 1 and2.Only after themore extensive theoretical andnumerical studyofBurggraf
[58] the lid-driven cavity became a benchmark problem for Navier–Stokes solvers
[11, 47, 122, 284], as well as a paradigm for investigating vortex dynamics in closed
systems. Figure8 shows a typical plot of the velocity components along the two
cavity centerlines for different Reynolds numbers.
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Fig. 8 Characteristic velocity profiles u(0, y) and v(x, 0) on the two orthogonal centerlines of a
square cavity (Γ = 1) for Re = 102 (×, full line), 103 (+, dashed line) and 104 (�, dash-dotted
line). Adapted from Albensoeder [6]. Data shown as symbols are from Ghia et al. [122]

Typical streamline patterns of the two-dimensional global recirculating vortex
driven by the moving wall for Re = 1 and Re = 8 × 103 are shown in Fig. 9. For
Re = 1 the streamlines are nearly symmetrical, due to the symmetries of (1) in the
Stokes-flow limit Re → 0. The streamlines are slightly crowed near the moving lid,
where the largest velocities arise, and two separated eddies in the bottom corners
are signaled by the two separating streamlines. When the Reynolds number is large
(Re = 8 × 103), inertia terms in (1) destroy the reflectional symmetry with respect
to x = 0 of the flow. The separated vortices at the bottom become stronger, even
a second separated vortex is visible in the bottom right corner of Fig. 9b, and a
third separated region is created, for Re � 1000, close to the upstream corner of the
moving lid near (x, y) = (−0.5, 0.5). For even higher Reynolds numbers the core
of the vortex approaches a solid-body rotation with circular streamlines and constant
vorticity [29]. This can be seen in Fig. 8 where the velocity profiles become linear in
the bulk for high Reynolds numbers.

For shallow cavities (Γ 
 1) and small Reynolds numbers the streamlines
become nearly parallel, except for the turning zones near x = ±0.5. For deep cavities
(Γ � 1), on the other hand, the flow separates repeatedly.An examplewith three vor-
tices is shown in Fig. 10. The main vortex, whose core develops circular streamlines
for high Reynolds numbers, drives another weaker separated and counter-rotating
vortex, and so on. When the strength of the vortices has decayed from the moving
wall such that the flow becomes creeping and for Γ → ∞ the vortices take a self-
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Fig. 9 Isolines of the Stokes streamfunction in a square cavity (Γ = 1) with Re = 1 (a) and
Re = 8 × 103 (b). The lid at the top moves to the right. The streamlines are not equidistant to
visualize the flow in the separated regions in (b)
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Fig. 10 Streamlines for Re = 1000 and Γ = 3. Near the bottom right the isolines become wavy
due to the resolution limit. The lid on the left side moves upward

similar shape, similar to that of themiddle eddy in Fig. 10, but symmetricwith respect
to x = 0 (see also Fig. 2 of [254] and [74, 214, 303]). Note the strong asymmetric
shape of the streamlines and the curved lines of separation. The asymptotic depth of
the eddies far away from the moving wall (in creeping flow) is Δy = 1.39 [231].

While the two-dimensional flow for small and moderate Reynolds numbers is
steady, it undergoes a Hopf bifurcation and becomes time-dependent for higher
Reynolds numberswhen inertia effects become larger. The breaking of the time trans-
lation symmetry has been initially overlooked for square cavities (see, e.g., [122]).
However, Gustafson and Halasi [143] found flow oscillations in time for Re = 104

andΓ = 2, and Goodrich et al. [132] bracketed the Reynolds number for the onset of
time-dependence for Γ = 2 to Rec ∈ [2000, 5000]. Shen [296] further investigated
the lid-driven square cavity discovering a Hopf bifurcation for Γ = 1 with a criti-
cal Reynolds number Rec ∈ [10000, 10500]. The study of Shen [296] has revealed
the existence of a complex, time-dependent dynamics in the lid-driven square cav-
ity. However, the results were obtained using a strong regularization of the driving
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force (see Sect. 3.3.5) by assuming the lid to have a symmetric parabolic veloc-
ity profileU (x) = Re(1 − 4x2) which vanishes at the corners x = ±1/2. The much
more accurate result Rec(Γ = 1) = 8018.2 ± 0.6 was obtained by Auteri et al. [23].
They used a Galerkin spectral method based on Legendre polynomials to discretize
the Navier–Stokes equations, a singularity subtraction method to treat the corner
singularities, and bisection to pinpoint the critical threshold. The critical Reynolds
number obtained by Auteri et al. [23] is consistent with the results of Nobile [240]
(Rec ∈ [7500, 10000]) and of Bruneau and Saad [57] (Rec ∈ [8000, 8050]) who, in
addition, provide extensive benchmark data. For long times the amplitude of oscil-
lation saturates above the threshold. Several authors have accurately reconstructed
the corresponding limit cycle in phase space [23, 57, 259]. All these studies have
been conducted integrating the time-dependent Navier–Stokes equations. The exis-
tence of a Hopf bifurcation for the square cavity has also been confirmed by means
of linear stability analyses. These were performed by Poliashenko and Aidun [263]
(Rec = 7763 ± 2%), followed by Fortin et al. [113] (Rec = 8000) and Sahin and
Owens [280] (Rec = 8069.76). Even though the critical Reynolds number varies
somewhat among the different investigations, a good agreement has been obtained
for the critical oscillation frequency ωc/Re = (2.85 ± 0.02). Quite different (and
likely less accurate) results for the critical frequency are due to Cazemier et al. [60]
who tried to identify the Hopf bifurcation bymeans of proper orthogonal decomposi-
tion (Rec = 7819 and ωc/Re = 3.85). The transition to more complicated dynamics
is discussed in Sect. 9.1.

5.2 Double-Lid-Driven Cavity

For the double-lid-driven cavity flow themovingwalls, the length scale and the aspect
ratioΓ are defined differently from the one-sided driving, see (2) and Fig. 1. The flow
is driven by two facing walls at x = ±Γ/2 which move with constant velocitiesU1,2

in parallel or anti-parallel y direction. The problem is characterized by two Reynolds
numbers Rei = Ui L y/ν and the aspect ratio Γ = Lx/Ly .

The two-sided lid-driven cavitywas introduced byKelmanson andLonsdale [183]
to study the evolution of the eddy structure in this system as a function of the aspect
ratio and the relative motion of the walls. They considered the limit of creeping
flow and solved the biharmonic equation for the stream function using and integral-
equation technique treating the corner singularities by the singularity annihilation
method (Sect. 3.3.1).

Independent of this investigation, Kuhlmann et al. [201] considered the nonlinear
Navier–Stokes flow in the two-sided lid-driven cavity for Γ = 1.96 and found the
two-dimensional flow not to be unique. In case of deep cavities Γ � 2 each mov-
ing wall can drive its own (nearly square) vortex. Consider one of these vortices:
Downstream from the downstream corner of the respective moving wall, a wall jet is
created. The wall jet separates from the downstream stationary wall and re-attaches
to the opposite (upstream) stationary wall of the same moving lid due to the suc-
tion (strong underpressure) the upstream corner of the moving wall provides. This is
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Fig. 11 Flow multiplicity for Γ = 2. a Three out of the seven different flow states for Re1 =
Re2 = 700 and anti-parallel wall motion (left up, right down). From top to bottom: point-symmetric
two-vortex flow, strongly merged vortex flow and strongly asymmetric vortex flow. b Bifurcation
diagramwith order parameter ξ(Re1) = ψ(0, 0; Re1) for a constantmeanReynolds number (Re1 +
Re2)/2 = 700 [14]

similar as for one-sided driving shown in Fig. 10. However, if the Reynolds numbers
Re1 = Re2 are sufficiently large and the walls move in opposite directions (antipar-
allel wall motion) another flows state exists, in addition. In this new state (Fig. 11a,
middle) the wall jet (from each of the two downstream corners) does not separate and
can reach to the opposite moving wall, where it gets entrained by the upstream corner
flow of the opposite moving wall which is now providing the suction on the wall
jet.2 Additional flow states for antiparallel wall motion can arise due to breaking of
the point reflection symmetry with respect to the center (x, y) = (0, 0). For parallel
wall motion with Re1 = Re2 flow multiplicity can also be caused by spontaneous
breaking of the reflection symmetry of the flow with respect to x = 0.

The non-uniqueness of the two-dimensional double-lid-driven cavity flow was
studied more systematically by Albensoeder et al. [14]. They found up to seven
different two-dimensional steady flow states for the same boundary conditions. Mul-
tiplicity is observed for condition near Re1 = Re2 when both walls move either in

2The deep penetration of the wall jet observed experimentally by Pan and Acrivos [254], which is
in contradiction with the results for pure two-dimensional single-lid-driven flows (Sect. 5.1), might
have been caused by the strong geometric confinement in z of the flow in their experiments with
Lz = Ly .
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parallel or anti-parallel direction. An example is shown in Fig. 11. If the different
flow states are characterized by the order parameter ξ = ψ(0, 0), whereψ(0, 0) is the
stream function in the center of the cavity, one finds the bifurcation diagram shown
in Fig. 11b.

The results of Albensoeder et al. [14] have been extended to higher Reynolds
number for parallel and anti-parallel driving by Chen et al. [69, 70], respectively,
using an arclength continuation method [179] combined with a stability analysis.

6 Spatially Periodic Lid-Driven Cavity

The incompressible flow in lid-driven cavities is determined by theReynolds number,
the initial, and the boundary conditions. To remove the effects on theflowof the lateral
confinement by solid end walls it is useful to letΛ → ∞ and investigate flows which
are periodic in z. Such periodic flows arise due to three-dimensional instabilities of
the two-dimensional basic flow and they help understanding the flow in cavities with
finite span.

6.1 Single-Lid-Driven Cavity

In a series of publications Koseff et al. [193, 195, 196] experimentally and numer-
ically investigated the lid-driven cavity flow (Fig. 1a) for Γ = 1 and Λ = 3. For
Re = 2000 and 3000 they found three-dimensional vortices aligned with the stream-
lines of main basic-flow circulation (primary vortex). The streamwise vortices
were most pronounced near the separating streamline of the basic flow between
the primary vortex and the separated downstream secondary eddy in the corner
(x, y) = (0.5,−0.5) (lower right corner in Fig. 9a). The diameter of these stream-
wise vortices was relatively small compared to the scale L of the flow such that for
Re = 3000 eight pairs of vortices fit in the span ofΛ = 3, fairly equally spaced. The
streamwise vortices were termed Taylor–Görtler-like vortices, because they resem-
ble Görtler vortices [133, 134] and the mean velocity profile in the (x, y) plane is
similar to that above a curved concave wall. An example is shown in Fig. 12.

The explanation of the Taylor–Görtler-like vortices does not rely on the finite span.
The vortices are, however, affected by the presence of the lateral side walls [194]
at z = ±Λ/2. To distinguish between the effects on the flow which are introduced
by the boundary conditions on the lateral end walls at z = ±Λ/2 and those which
are due to the flow in the bulk, i.e. far from the end walls, it is useful to consider
the mathematical idealization of an infinitely extended cavity with Λ → ∞. In this
limit the problem becomes homogeneous in z and the side-wall effects are absent. It
is expected that the properties of the flow for Λ → ∞ can be recovered in the bulk
of an experimental system, provided the span aspect ratio Λ is sufficiently large.
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Fig. 12 Snapshot of Taylor–Görtler vortices for Re = 3300 in a cavity with Γ = 1 and Λ = 3,
reproduced from Freitas et al. [115]. The flow is illuminated and shown in the plane x = 0.26̄.
The lid moves on the upper boundary of the image and perpendicular to the plane shown. The left
boundary is made by one end wall, whereas part of the cavity to the right is clipped

6.1.1 Flow Stability

For Λ → ∞ the two-dimensional flow becomes three-dimensional when the
Reynolds number is increased beyond a critical threshold. To determine the criti-
cal Reynolds number at which the translational symmetry in z is broken we consider
infinitesimally small perturbations of the steady two-dimensional basic flow, as in
Sect. 4.2. Therefore, the equations governing the deviations (u′, p′) from the basic
flow can be linearized to obtain the linear stability equations (11). Since the basic
flow and the coefficients of (11) neither depend on t nor on z, the perturbation flow
can be expressed as a normal mode in t and z

[
u′(x, t), p′(x, t)

] = [û(x, y), p̂(x, y)]eikzeγt + c.c. (17)

Note that (17) differs from the more general form (13), because the homogeneity
in z of the problem could be exploited. The linear stability problem reduces to the
generalized eigenvalue problem (14) in which the matrix B depends on u0(x, y) and
on the wavenumber k, which results from the explicit differentiations with respect
to z in (11). Hypersurfaces Ren(Γ, k) in parameter space along which the growth
rate of a particular eigenfunction of the linear stability problem (14) vanishes, i.e.
σ(Ren, Γ, k) = 0, are called neutral Reynolds numbers (subscript n). Apart from
the continuous dependence of the spectrum on k, there also exists a discrete part
of the spectrum γm(Re, Γ, k) enumerated by the modal index m ∈ N. Therefore,
Ren(Γ, k,m) must be minimized with respect to the continuous wave number k and
the discrete index m in order to find the critical Reynolds number for given aspect
ratio: Rec(Γ ) = mink,m Ren(Γ, k,m). The critical Reynolds number Rec(Γ ) is the
lower envelope of all neutral Reynolds numbers. Note, the condition Re > Rec is
sufficient for the flow to be three-dimensional.

The first linear stability analyses have been carried out for Γ = 1 by Ding and
Kawahara [96, 97] and Ramanan and Homsy [270]. A more complete analysis was
presented by Albensoeder et al. [13] who computed the linear stability boundary
Rec(Γ ), the critical wavenumber kc(Γ ) and the critical frequencyωc(Γ ) as functions



The Lid-Driven Cavity 257

Ce
1 Ce

2

Ce
3

Ce
4

kn

1600

1200

800

400

0
0

0
1 2 3 4

5

10

15

20

Ren
ωn

Γ

Fig. 13 Neutral Reynolds numbers Ren (full lines), neutral wave numbers kn (dotted lines), and
neutral oscillation frequenciesωn (dashed lines) as functions of the aspect ratioΓ . Symbols indicate
results of Ding and Kawahara [97] (+) and Kuhlmann et al. [201] (∗) (from Albensoeder et al.
[13])

of the aspect ratio Γ . Their results are reproduced in Fig. 13. The critical curve is
the envelope of the neutral curves Ren(Γ ) (full lines) which is made from different
segments. The four segments represent different perturbation flows (modes) which
are denoted Cα

i [7], where C stands for centrifugal, the superscript α = e for one-
sided driving (einseitig in German) and the subscript enumerates different modes.
Also Theofilis et al. [314] considered the linear stability of the periodic cavity flow.
The critical Reynolds numbers computed agree with those of [13] for Γ = 1, but
they deviate qualitatively from each other for Γ �= 1, with experiments (see, e.g.,
[300], and Fig. 24b below) being in favor of the results of Albensoeder et al. [13].

In the important reference case Γ = 1 the bulk flow instability arises at Rec =
786.3 ± 6 and the critical mode is steady (ωc = 0) with kc = 15.43 ± 0.06 which is
very short wave. This compares well with the experiments of Siegmann-Hegerfeld
et al. [300] who find a supercritical bifurcation to Taylor–Görtler vortices at Re =
791 ± 15 for Γ = 1 andΛ = 10.88. The relative perturbation velocity— the ampli-
tude of the unstable mode remains undetermined in the linear analysis — is highest
near the wall at x = −0.5 upstream of the moving wall. The velocity vectors of
the critical mode Ce

2 in the plane y = 0, parallel to the moving wall, are shown in
Fig. 14. The experimental visualization of the flow resulting from the instability is
shown in Fig. 15. The short wavelength and the spatial structure of the critical mode
Ce
2 are consistent with the early observations of Koseff et al. [196] for much higher

Reynolds numbers. The reason for the particularly short spanwise wavelength is the
Taylor–Görtler vortices scale with the thickness of the curved boundary layer on the
solid walls which is much smaller than the length scale Ly .
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Fig. 14 Velocity field of the critical mode Ce
2 (without the basic flow) for Γ = 1 in the plane

y = 0. The lid moves from right to left. The grey scale indicates the local energy production rate
−u′‖ · (u′⊥ · ∇u0)/D (from Albensoeder et al. [13])

Fig. 15 Experimental
visualization of the
Taylor–Görtler vortices for
Γ = 1 and Re = 850 in a
plane x ≈ −0.4 using
aluminum flakes. Shown is
the central fraction of a
finite-length cavity with
Λ = 6.55 (from Albensoeder
et al. [13]). The lid at the
bottom moves into the plane
shown

The dominant destabilizing interactionmechanism between the basic flow and the
critical mode Ce

2 is due to the term u′
⊥ · ∇u0 in (11), where u′

⊥ is the component of
the critical velocity field perpendicular to the basic flow u0. In plane shear flows the
process associated with this term is called lift-up mechanism [204]. In using a local
decomposition of the critical mode u′ = u′

‖ + u′
⊥ parallel and normal to the direction

of the basic flow, one can show that the lift-up mechanism acts over most parts of the
outer streamlines of the basic flow, except near the moving wall. A frequently used
scalarmeasure of this process is the local transfer rate of kinetic energy from the basic
state to the three-dimensional perturbation mode (energy per time and volume) given
by I2(x) = −u′

‖ · (u′
⊥ · ∇u0)/D which is shown as grey scale in Fig. 14 and where

D is the total rate of dissipation per period of the flow. Additional considerations [13]
confirm the centrifugal nature of the instability and justify the name Taylor–Görtler
vortices.
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For other aspect ratios the instability is also centrifugal in nature, but can have
different flow structures, wave numbers and time dependence. In total, four different
critical modes are destabilized with the other modes (Ce

1,C
e
3,C

e
4) typically having

smaller critical wave numbers than the Taylor–Görtler vortices Ce
2 for Γ = 1 (see

Fig. 13). In deep cavities with Γ > 1.207 the basic vortex flow becomes unstable to
a stationary centrifugal mode Ce

4 which makes the vortex wavy along the z direction
[13]. Corresponding experiments have been carried out by Siegmann-Hegerfeld et
al. [301] for Γ = 1.6.

In the other limit, for shallow cavities with Γ 
 1, the basic flow in the bulk near
x = 0 approaches a Couette–Poiseuille flow with zero mean. This shear flow would
be linearly stable if the turning zones at x = ±0.5 are disregarded. However, near
the downstream end of the moving lid a vortex forms, while the flow at the upstream
end is of entry-flow type. In such shallow cavities the instability arises as a wave on
the downstream located vortex (mode Ce

1), traveling in z direction with a wavelength
that approximately scales with the depth Γ of the layer, a length scale which is
more appropriate for shallow cavities than the length scale L = Lx employed for
the single-lid cavity (Fig. 1a). Similarly, the critical Reynolds number approximately
scales like Rec ∼ Γ −1 [13], visible by the divergence of Rec in Fig. 13 for Γ → 0.

6.1.2 Nonlinear Three-Dimensional Flow

As the Reynolds number is increased beyond the threshold finite-amplitude flows
exist. Since it is computationally quite expensive, there are not many systematic
studies on three-dimensional periodic finite-amplitude flows. Another complication
is the spatial period λ = 2π/k of the flow is no longer uniquely determined for
Re > Rec, because Taylor–Görtler vortices out of a whole band of wave numbers
are linearly unstable and may saturate, for long times, or vary slowly in z. In an
experimental realization the nearly periodic flow in the bulk is also affected by the
finite length Lz of the system.

Albensoeder and Kuhlmann [12] numerically simulated the supercritical three-
dimensional flow with saturated amplitude and spanwise periodicity λ = Λ in cav-
ities with a square cross section (Γ = 1). For the wavelength λ = 2π/k = 0.407,
corresponding to the period of the critical mode Ce

2 of the linear stability analysis,
the amplitude of steady periodic Taylor–Görtler vortices was found to depend on the
normalized distance ε = (Re − Rec)/Rec from the critical point like ∼ ε0.345. This
paradoxical result (the generic exponent is 0.5) can be explained by the range of ε
considered for the fit to determine the exponent and by the bifurcation being super-
critical for k > kc and subcritical for k < kc. This peculiar property of the transition
is demonstrated by the existence range of Taylor–Görtler vortices shown in Fig. 16.
The squares mark the existence boundary of a pair of Taylor–Görtler vortices within
a periodic domain of length Λ for given Reynolds number. To find the existence
ranges in the (Re,Λ) plane both parameters were changed in small steps and the
flow was simulated keeping the parameters constant until a steady state was reached
[12]. Upon an increase of the spatial period Λ and for Re ≥ 900 the single pair of
Taylor–Görtler vortices smoothly transforms into a flow with two pairs of Taylor–
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Fig. 16 Neutral stability boundary (solid line) and existence boundary of a finite amplitude Taylor–
Görtler vortex pair (�) as functions of the spanwise period Λ (or the wave number k = 2π/Λ) for
Γ = 1 (square cross section). The length of the error bars indicate the step size and direction of the
quasi-static parameter variations of Γ or Re. The dashed and dashed-dotted lines marks the neutral
curves for two and three Taylor–Görtler-vortex pairs, respectively. The resolution of the simulations
using a spectral method is Nx × Ny × Nz = 34 × 34 × 25 (fromAlbensoeder and Kuhlmann [12])

Görtler vortices. The three rightmost squares in Fig. 16 indicate the vanishing of the
fundamental Fourier mode characterizing a single pair of Taylor–Görtler vortices.

Increasing the spatial period Λ flow states with one, two, three, etc. pairs of
Taylor–Görtler vortices can arise in the system. The numbers of vortex pairs nTG
are given as roman numbers in Fig. 17. The spectrum of the periodic flow contains
spatial harmonicsm withwavelengthsλm = Λ/m. The number of vortex pairs nTG is
signaled in the simulations by the lowest harmonicm = nTG present in the spectrum.
The symbols in Fig. 17 indicate at which point the amplitude of the fundamental
spatial harmonicm vanishes upon a variation of Re (for lower Reynolds numbers) or
Λ (for larger Reynolds numbers). As Λ is varied the flow either returns to the steady
two-dimensional flow (low Reynolds numbers) or it changes smoothly to a flow state
with a different number nTG of Taylor–Görtler vortices. Along line a the amplitude
of the Fourier mode m = 2 vanishes as Λ is decreased. Along line b the amplitude
of the Fourier modem = 1 vanishes asΛ is increased. Between the existence ranges
dominated by two and three pairs of Taylor–Görtler vortices the flow for Re ≥ 850
is found to be oscillatory (cross-hatched stripes), while between the ranges at which
three and four pairs of Taylor–Görtler vortices dominate and Re ≥ 850 the flow
becomes spatially modulated upon a variation ofΛ, indicated by the hatched stripes.
Along line c the amplitude of mode m = 4 vanishes as Λ is decreased.

Further details on the properties of nonlinear Taylor–Görtler vortices in periodic
domains with Γ = 1 can be found in Albensoeder and Kuhlmann [12]. Numerical
simulations for Re = 1000 and periodic boundary conditions with Λ = 1 [80] are
consistent with the nonlinear results of Albensoeder and Kuhlmann [12].
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Fig. 17 Nonlinear stability boundaries for one (�), two (♦), three (�) and four (©) pairs of Taylor–
Görtler vortices (also indicated by roman numbers) in the (Λ, Re) plane. The neutral-stability curves
for nTG = 1, ..., 4 pairs of Taylor–Görtler vortices are shown as full red lines. See text for further
explanation (adapted from Albensoeder and Kuhlmann [12])

6.1.3 Obliquely-Driven Cavity of Infinite Span

A problem related to periodic cavity flow is the lid-driven flow in a duct (Λ → ∞)

in which the lid moves in the same plane as before, but at an angle φ with respect to
the x axis. This case has been considered by Theofilis et al. [314] for Γ = 1. Owing
to the angle φ �= 0 being non-zero and the vanishing pressure gradient in z a net
flow exists in direction of the spanwise component of the wall motion. As a result
the eigenmodes are typically traveling waves. Theofilis et al. [314] find that for a
small deviation of the direction of motion of the lid (φ = π/8) from the classical
lid-driven cavity (φ = 0) similar unstable modes exist as for φ = 0. As φ increases
the eigenmodes become damped substantially with maximum amplification rates at
Re = 900 and Re = 1000 being about a factor of two smaller for φ = π/4 than for
φ = π/8. Moreover, the eigenvalues of the most dangerous modes become crowded
and are not so well separated as for φ = 0. On a further increase of the angle to
φ = 3π/8 the growth rates recover, but the range of wavenumbers k for which the
growth rate is positive for the above Reynolds numbers is shrinking to a narrow band
around k ≈ 4 for a whole set of unstable modes. Naturally, the phase velocity ω/k
of the unstable modes increases as φ increases from 0 to 3π/8.
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6.2 Two-Sided Lid-Driven Cavity

The interest in double-lid-driven cavities not only derives from the non-uniqueness
of the two-dimensional flow (Sect. 5.2). The system also provides insight into flow
instabilities due to the interaction of two vortices confined to a rectangular domain.
The perhaps most interesting case is the elliptic instability. The instability can arise
when a vortex is strained which, for bipolar strain, makes the streamlines in the
vortex core elliptic (similar as in Fig. 11a, middle). Note the scaling and definitions
in (2b) and Fig. 1b are used for two-sided driving. The strain can be due to the
induced flow caused by the vorticity of other vortices, or by confinement effects due
to the boundaries. The mechanism of the instability can be explained in terms of a
resonance among two different three-dimensional Kelvin waves traveling about the
vortex, where the resonant amplification is communicated by the strain field as part
of the two-dimensional basic flow [102, 185, 238]. For the elliptic instability of a
single strained vortex in an unbounded domain, see Refs. [31, 102, 153, 262, 329].

The elliptic instability can arise in the two-sided lid-driven cavity when the lids
move in opposite directions, generating two co-rotating vortices. In a certain range
of aspect ratios Γ the co-rotating vortices either fully merge to a vortex with elliptic
streamlines in the center (Fig. 11a, middle), or they partially merge, creating a free
hyperbolic stagnation point in the center (x, y) = (0, 0) of the cavity, surrounded
by closed streamlines outside of the separatrix (Fig. 18). Both types of flow are
characterized by a bipolar strain field with the strain rate being smaller (elliptic point)
or larger (hyperbolic point) than the rotation rate of the flow at (x, y) = (0, 0).

The elliptic instability (of type E2, see Fig. 20 below) in two-sided lid-driven
cavities was first reported by Kuhlmann et al. [201] for Γ = 1.96 at which the strain
in the center of the cavity is so strong that a free hyperbolic stagnation point arises
(Fig. 18). Note the flow is still a strained vortex, resulting from a merging of the two
vortices driven by each of the moving walls, since closed streamlines arise outside
of the separatrix. For periodic boundary conditions in z and anti-parallel wall motion
with Re := Re1 = Re2 the instability arises at a relatively small Reynolds number
Rec = 257 [8, 201], which is consistent with the experimental value of Rec = 275
which was obtained for a the 4-cell flow in a cavity with (Γ,Λ) = (1.96, 6.55) [41].

Fig. 18 Streamlines of the
two-dimensional steady flow
in an antiparallel lid-driven
cavity for Γ = 1.96 and
Re1 = Re2 = 257 (critical
conditions). The dashed line
indicates the main strain
direction in (x, y) = (0, 0)
(from Kuhlmann et al. [201])
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Fig. 19 Streak lines in the steady cellular flow with four (a) and five (b) convection cells for
Γ = 1.96, Λ = 6.55 and anti-parallel wall motion with Re1 = Re2 = 700 [41]. Top and bottom
boundaries of each figure represent the lids moving in and out, respectively, of the plane. The cavity
end walls (z = ±Λ/2) are located at the left and the right sides of the figure. The two bright spots
in the center and to the right are hot film probes flush mounted to the wall. Equivalent flows which
are phase shifted by π (Δz = π/k, width of one cell) are not shown

Streaklines of the steady nonlinear four-cell flow which originates from the elliptic
instability are shown in Fig. 19a for Re = Re1 = Re2 = 700. The steady cuboidal
cellular flow is very robust and not much affected by the lateral walls. The cells
become time-dependent only at Re ≈ 850, the exact value depending on the aspect
ratio Γ and the number of cells [41].

6.2.1 Linear Stability Boundaries

The linear stability of the two-dimensional double-lid-driven cavity flow as function
of Γ for anti-parallel wall motion with equal speed (Re = Re1 = Re2) was inves-
tigated by Albensoeder and Kuhlmann [8]. The critical curve shown in Fig. 20 (full
line) exhibits a rich behavior. All instabilities are stationary. The aspect ratio ranges
for which the elliptic instability mechanism (E1,E2), a centrifugal mechanism (C),
and a quadripolar (Q) instability mechanism3 dominates are indicated on top of the
figure. In addition to the critical wave numbers (dotted lines) experimental results of
Blohm et al. [42] are shown as symbols. The stability analysis is complicated by the

3Like the elliptic instability, the quadripolar instability is due to a Kelvin-wave resonance, commu-
nicated by a quadripolar strain field [8, 102]. Since the resonance condition in the ideal case of a
columnar vortex (see e.g. Chandrasekhar [61]) can only be satisfied for asymptotically large wave
number k, the critical wave number in the lid-driven cavity flow is quite large: kc ≈ 15 (see Fig. 20).
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Fig. 20 Critical Reynolds numbers Rec (envelope of the full lines) and wave numbers kc (dotted
lines) as functions of the aspect ratio Γ . The dashed line indicates the existence range of multiple
(three) two-dimensional solutions (see Sect. 5.2). Experimental critical data for Rec (♦) and kc (�)

have been taken from Blohm et al. [42]. The figure is reproduced from Albensoeder and Kuhlmann
[8]

existence of multiple basic states (Sect. 5.2). Their range of existence is indicated by
dashed lines in Fig. 20.

For small aspect ratios the co-rotating vortices due to each moving lid merge
to form a single strained vortex. This vortex is unstable to the elliptic instability
(type E1). In the extreme case of shallow cavities with Γ 
 1 and Re1 = Re2 the
flow far from the moving walls approaches plane Couette flow with zero mass flux
through any plane y = const. The three-dimensional instability is excited near both
symmetrically located turning zones and midway between the two moving walls in
the region where the streamline curvature is the highest. As a result of the instability
long streaks in y direction are formed. Figure21a shows the basic flow, the critical
mode and the total local energy production rate (color) for Γ = 0.2.

The critical curve (full line) and the critical wave number (dashed line) for par-
allel wall motion (Re = Re1 = −Re2) are shown in Fig. 22. The critical curve is
continuous for all aspect ratios and the critical mode was denoted C p (centrifugal,
parallel wall motion) [9]. Plane Poiseuille flow with zero mass flux is approached
in the bulk for shallow cavities (Γ → 0). In this situation the instability is triggered
at the downstream end of the moving walls where the basic flow turns inward and
returns to the bulk in direction opposite to wall motion. An example is shown in
Fig. 21b.

In addition to the three-dimensional instability boundary, also the two-dimensional
stability boundary (k = 0) is shown in Fig. 22 as a dotted line. It corresponds to
the reflection-symmetry breaking instability of the two-dimensional flow (Sect. 5.2).
The two-dimensional finite-amplitude flow with broken reflection symmetry is not
unique within the regions confined by the dotted lines in Fig. 22. Finite-amplitude
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Fig. 21 Basic-state streamlines (full lines), critical mode (arrows) and local energy production rate
(color) at the critical Reynolds number for (a) antiparallel wall motion and Γ = 0.2 (Rec = 577.8,
kc = 7.578, mode E1/Ea

1 ) [8] and (b) for parallel wall motion and Γ = 0.3 (Rec = 547.6 ± 3.7,
kc = 9.018 ± 0.005, mode C p) [9]. The fields are shown in a plane z = const. in which the total
local production rate takes its absolute maximum. In (a) the local production rate−D−1v′u′∂v0/∂x
is shown. In (b) the total local production rate −D−1u′ · [u′ · ∇u0] is shown (w′ = 0 in this plane)

Fig. 22 Critical Reynolds
number Rec (solid line) and
wave number kc (dashed
line) as functions of the
aspect ratio Γ for parallel
wall motion. The dotted
curve indicates the
two-dimensional stability
boundary (k = 0), see text
(from Albensoeder and
Kuhlmann [9])
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Fig. 23 Critical surface
(stability balloon) of the
double-lid-driven cavity
shown in the range
0.3 ≤ Γ ≤ 3. The colors
indicate the most prominent
different critical eigenmodes,
but not all of them. White
lines show Reynolds
numbers for which
Re1 = Re2 (anti-parallel
wall motion, Fig. 20),
Re1 = −Re2 (parallel wall
motion, Fig. 22), and
Re2 = 0 (one-sided wall
motion, Fig. 13). From
Albensoeder and Kuhlmann
[10]

Γ
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Re2 Re2 = 0

Re1 = Re2

Re1 = Re2

Re1 = −Re2

two-dimensional flows with broken mirror symmetry exist only within a band of Γ

(see also Fig. 6 of [14]).
The linear stability analysis was extended by Albensoeder and Kuhlmann [10] to

arbitrary Reynolds numbers Re1 and Re2 to find the linear stability balloon in the
three-dimensional parameter space spanned by Re1, Re2 andΓ . It is shown in Fig. 23.
Since the linear stability problem is invariant under (Re1, Re2) → (Re2, Re1) and
(Re1, Re2) → (−Re1,−Re2) the stability balloon is reflectionally symmetric with
respect to the planes Re1 = Re2 and Re1 = −Re2. In the limit Γ → ∞ the vortex
structures driven by the two walls become independent of each other, because the
strength of the flow decays from themovingwalls towards x = 0. Therefore, the flow
becomes linearly unstable whenever one of the two Reynolds numbers exceeds the
critical Reynolds number for an infinitely deep single-lid-driven cavity. For shallow
cavities (Γ → 0) the situation ismore complicated, because the instabilities typically
involve the turning zones near x = ±Γ/2. Stability boundaries for various fixed
values of Γ and arbitrary Reynolds numbers are provided in [7, 10].

The two volumes in the parameter space in which the basic two-dimensional flow
is not unique (Sect. 5.2) are not shown in Fig. 23. These regions arise symmetrically
about the planes Re1 = Re2 (antiparallel driving) and about Re1 = −Re2 (parallel
driving). Only the region of non-uniqueness for antiparallel driving (dashed line
in Fig. 20) collides with the stability balloon. Finally, owing to the large (three-
dimensional) parameter space only little is known about nonlinear three-dimensional
flows for two-sided lid-driven cavities (see, however [41, 277]).
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Fig. 24 Experimental critical Reynolds numbers Re2c(Re1) (symbols) for Γ = 1 and Λ = 10.88
(a) and for Γ = 0.76 and Λ = 10.43 (b) according to Siegmann-Hegerfeld et al. [300] in com-
parison with numerical neutral curves for Λ → ∞. The labels denote different modes (notation of
Albensoeder [7]):C p (�, continuous line in (a)),Ce

1 (�),Ce
2 and Qa (�, dash-dotted line in (a)),Ce

3
(◦, double-dash-dotted line in (a)) and Ea

1 (	). Open symbols denote Hopf bifurcations. The open
squares (�) are critical data for Re1 = 0 of Theofilis et al. [314] with Re2c(Γ = 1) = 783 and
Re2c(Γ = 0.76) = 825 ± 10 (from their fig. 14). The neutral curves in (a) have been calculated for
Γ = 1, whereas in (b) numerical neutral curves are shown for Γ = 0.725 (dashed lines), Γ = 0.75
(continuous lines) and Γ = 0.787 (dotted lines). The open diamond in (a) indicates the Reynolds
numbers of Fig. 25. Straight dotted lines indicate the limits of parallel and antiparallel wall motion
with equal velocity magnitude

6.2.2 Experimental Stability Results

Someexperimental results on theflowstability for large span aspect ratiosΛ are avail-
able. These are due to Kuhlmann et al. [201], Blohm [40], Blohm andKuhlmann [41]
(see Fig. 19), Siegmann-Hegerfeld [299], and Siegmann-Hegerfeld et al. [300, 301]
Experimental critical data of Siegmann-Hegerfeld et al. [300] are shown in Fig. 24 in
comparison with numerical linear stability data in the (Re1, Re2) plane. According
to Albensoeder and Kuhlmann [10] the instabilities arise due to centrifugal (modes
C), elliptical (modes E) and quadripolar (modes Q) instability mechanisms. The
superscripts p and a stand for parallel and anti-parallel wall motion, respectively.
Most experimental data agree with the numerical stability analysis which is based on
a finite-volume code with a resolution of 141 × 141 grid points in the (x, y) plane
[10, 13]. However, for certain modes (Ce

3, Q
a) the experimental instability bound-

aries are lower than the numerical ones. The reason could be related to a subcritical
bifurcation which was also found numerically for the quadripolar instability mode
Qa [7]. Moreover, some neutral curves may depend sensitively on aspect ratioΓ (see
the different curves in Fig. 24b). Also, the curvature of the moving walls which were
experimentally realized by rotating cylinders with large radius may have affected the
experimental results.

Apart from thewell-knownTaylor–Görtler instability for one-sided driving (mode
Ce
2 in Fig. 24a) and the elliptic instability Ea

1 the two counter-rotating vortices for
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Fig. 25 Supercritical flowevolving from theC p mode for parallelwallmotionwith Re2 = −Re1 =
250, Γ = 1 and Λ = 10.88 (from [300]). The walls, located at the top and bottom, move into the
plane shown. The flow is visualized by seeding with aluminum flitter and illumination from the
right in the plane y = 0

symmetrical and parallel driving can become unstable to the C p mode. This mode is
illustrated in Fig. 25which shows streaklines of the steady three-dimensional flow for
Re2 = −Re1 = 250. The two stationary vortices in the cavity alternatingly extend
and shrink in z direction.

7 Cuboidal Lid-Driven Cavity Flow

Any experimental realization of a closed cavity flow must have a finite length Lz

in spanwise direction. The most natural boundary conditions at z = ±Λ are no slip
boundary conditions (u = 0). These conditions strictly prevent the existence of a two-
dimensional flow. Therefore, the flow in cuboidal cavitiesmust be three-dimensional,
even for very small Reynolds numbers. Here we only consider the single-wall motion
such that the scaling (2a) and Fig. 1a apply.

7.1 End-Wall Effects

The presence of end walls suppresses the main swirling motion in their vicinity and a
velocity componentw in spanwise direction is createdwhose strength decays towards
the bulk. This is similar as in the case of an unbounded vortex with constant vorticity
perpendicular to a wall for which Bödewadt [43] has provided similarity solutions
for the structure of the boundary layer near the wall. The secondary flow, involving a
non-zero wall-normal velocity componentw, decays exponentially with the distance
from thewall. For the Bödewadt as well as for the cavity flow, the primary vortex flow
in the (x, y) plane induces a secondary flow due to an imbalance between pressure
forces and centrifugal forces. As a result the wall-induced secondary flow is directed
’inwards’ toward the apparent center of the primary vortex in the vicinity of the end
walls. The reduction of the circulation and the secondary flow effect, which leads to
a spanwise motion, have experimentally been investigated for different small span
aspect ratios Λ ∈ [0.25, 1] by Prasad and Koseff [268], albeit for relatively high
Reynolds numbers larger than Re = 3200.

Since the secondary three-dimensional flow in a cuboidal cavity decays away from
the end walls, the three-dimensionality of the flow may be neglected in the bulk if
the span lengthΛ is sufficiently large. In that case the three-dimensional instabilities
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considered in Sect. 6 for an infinitely extended system may be realized in good
approximation. However, for short systems with Λ = O(1) the end-wall-induced
secondary flow has a profound influence and makes the flow three-dimensional for
any Reynolds number.

As the strength of the circulation of the main (primary) flow is significantly
reduced by the no-slip end-wall conditions, the circulation in the symmetry plane
z = 0 of a cubic cavity (Γ = Λ = 1) is less than the one in a cavity with Γ = 1 and
Λ = 3 [194]. The vortices generated near the end walls and the global transport due
to the secondary flow have been investigated by Chiang and Sheu [75] and Chiang
et al. [77]. According to Albensoeder et al. [13] the reduced strength of circulation
prevents Taylor–Görtler vortices within a certain distance Δz from the end walls
for Reynolds numbers slightly larger than the critical Reynolds number Re∞

c for
an infinitely extended system. This is evident from Fig. 26 showing Taylor–Görtler
vortices in cavities with Γ = 1 and Λ = 6.55 (a) and Λ = 10.88 (b). At Re = 850
the vortices are steady for Λ = 6.55, while the vortices drift towards the end walls
for Λ = 10.88. As the Reynolds number is increased the Taylor–Görtler vortices
also invade the previously nearly structureless regions near the end walls (in Fig. 26)
and the vortices start to drift also for Λ = 6.55. Obviously, the inhomogeneity in z
of the basic flow and the end-wall-induced secondary flow make the Taylor–Görtler
vortices travel towards the end walls, with the speed of propagation increasing as
the end walls are approached. Such motion of Taylor–Görtler vortices has also been
found numerically by Chiang et al. [76] for Re = 1500 and Λ = 3.

Figure27 shows a velocity profile of v in the final state of a three-dimensional
numerical simulation [12] for Λ = 6.55 and Re = 850 (full line) corresponding to
the flow shown in Fig. 26a. The simulation confirms the localization of the steady

(a) Λ = 6.55

(b) Λ = 10.88

Fig. 26 Taylor–Görtler vortices for Γ = 1 and Re = 850 > Re∞
c = 786. a For Λ = 6.55 the

vortices are steady (from Albensoeder et al. [13]). b For Λ = 10.88 the vortices drift towards both
end walls (from Siegmann-Hegerfeld et al. [300]). The moving lid is located at the bottom of each
image and it moves into the plane. The flow is visualized using aluminum flakes and illumination
in a layer close to the wall at x = −0.5 (upstream of the moving lid). Note the regions adjacent to
the end walls are free from Taylor–Görtler vortices
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Fig. 27 Velocity profile −u(−0.337,−0.263, z) for Re = 850 and Γ = 1. Shown are numerical
results of Albensoeder and Kuhlmann [12] for a finite-length cavity and no-slip end walls for
Λ = 6.55 (full line) and for periodic boundary conditions and Λ = 0.407 (dotted line)

Taylor–Görtler vortices in mid-cavity. For comparison, the velocity profile from
a nonlinear simulation using periodic boundary condition is shown for the same
Reynolds number and a wavelength Λ = 0.407 corresponding to the critical wave
number kc = 15.4 of the linear theory (see Sect. 6.1.1). The wavelength and the peak
amplitude of the localized flow pattern agree very well with those for the periodic
Taylor–Görtler flow.

The onset of Taylor–Görtler vortices in cuboidal cavities with Γ = 1 and moder-
ately largeΛ depends both on theReynolds number and the aspect ratio. Numerically,
Albensoeder andKuhlmann [12] found:When theReynolds number is reducedquasi-
statically for Λ = 6.55 the Taylor–Görtler vortices break down at Re = 835 ± 5,
in rough agreement with the experimental value Re = 810 ± 15 found by Alben-
soeder et al. [13]. The value Re = 835 is only ≈6% larger than the critical Reynolds
number Re∞

c for periodic boundary conditions. Similarly, if the span aspect ratio
Λ is reduced quasi-statically for Re = 850 the Taylor–Görler vortices vanish at
Λc(Re = 850) = 6.1 ± 0.1.

For the larger aspect ratio Λ = 10.88 and for a square cross section (Γ = 1)
Siegmann-Hegerfeld [299] finds Taylor–Görtler vortices drifting from the center
z = 0 towards the end walls of the cavity immediately from the onset of Taylor–
Görtler vortices. This is different form the result for Λ = 6.55 for which steady
localized Taylor–Görtler cells were found numerically and experimentally for Re =
850. For Λ = 10.88 new cells are continuously created at z = 0 and annihilated
before reaching the end walls at z = ±Λ/2 (see the empty regions in Fig. 26). The
drift velocity of the Taylor–Görtler vortices for Λ = 10.88 depends on the Reynolds
number, but it is of the order of O(1) [299].At Re ≈ 103, just before time dependence
sets in, Taylor–Görtler vortices fill the whole span of the cavity.

The complicated behavior of the system at moderate span aspect ratios is also
underlined by the investigation of Aidun et al. [2] for Γ = 1 and Λ = 3. Upon a
quasi-steady increase of Re they have observed the basic flow to remain stationary
up to Re ≈ 875 ± 50, beyond which the flow became oscillatory and increasingly
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complex. They also found multiple steady states in form of cellular patterns at Re <

500 which seem to be accessible only by finite-amplitude perturbations of the basic
flow. The qualitative nature of the reported behavior indicates there is still much
room for precision experiments to clarify the properties of the system under a strong
lateral confinement. Moreover, as discussed by Albensoeder et al. [13], the through
flow due to the unavoidable gaps between the stationary walls and the moving lid
can change the bifurcation scenario.

7.2 Cubic Lid-Driven Cavity

As the aspect ratioΛ is further reduced, the end-wall induced three-dimensional flow
is important in thewhole cavity, and forΛ = 1 the periodic Taylor–Görtler instability
is absent. Owing to its simple geometry the cubic cavity Γ = Λ = 1 is of particular
interest as a benchmark for three-dimensional flows [11], but also regarding the flow
physics. Due to the symmetry of the geometry and boundary conditions the flow at
lower Reynolds numbers is reflection symmetric with respect to the midplane z = 0
(Z2 symmetry), satisfying

(u, v, w)(x, y, z) = (u, v,−w)(x, y,−z). (18)

The full three-dimensional nature of the flow is illustrated in Fig. 28 which depicts
wall streamlines for Re = 400 on all stationary walls. The spiralling-in motion on
the end walls DCGH and EFBA and the spanwise dependence of the separation
lines marking the corner vortices are clearly seen.

As the Reynolds number is increased, it is expected that the reflection symmetry
will be lost, the flow become time-dependent, or both. This problem was first tackled
byFeldman andGelfgat [109]who, usingfinite-volumenumerical simulations, found
a subcritical oscillatory instability. The critical Reynolds number and oscillation
frequency were determined by extrapolation to zero of the subcritical decay rate
of the characteristic oscillations. Furthermore, the supercritical oscillatory flow was
found to break the reflection symmetrywith respect to themidplane z = 0.Using a the
same subcritical extrapolation, but a more accurate spectral method, Kuhlmann and
Albensoeder [200] could pinpoint the critical data to Rec = 1919.51 and ωc/Re =
0.58611.

For slightly sub- and supercritical conditions, |Re − Rec|/Rec 
 1, the ampli-
tude of oscillation saturates and remains constant for a very long time. This allows to
construct a bifurcation diagram Aw(Re) by fitting a fourth-order polynomial to the
dependence Re(Aw), where Aw is the saturated amplitude of the fundamental tem-
poral harmonic oscillation of the spanwise velocity component w(x0) evaluated at
(x0, y0, z0) = (−0.32139,−0.35355, 0.086824). The fit, shown in Fig. 29, indicates
the narrow range of hysteresis in Re.

Let us call LC1 (limit cycle 1) the solution of the Navier–Stokes equations (1)
which bifurcates backwards at Re = 1919.51 (Fig. 29). LC1 is symmetric with
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Fig. 28 Wall streamlines for cubical cavity flow and Re = 400 according to Sheu and Tsai [297].
Shown are the stationary walls which result when removing the lid EFGH and looking down on
the bottom wall ABCD with the side walls being unfolded. The lid motion (not shown) is from left
to right

respect to the mid plane. Thus it cannot explain the broken symmetry observed
by Feldman and Gelfgat [109] in their simulations. The reason is the dynamics is
more complex. As an example, the time dependence of the total kinetic energy per
mass Ekin = (1/2)

∫

V u2dV is shown in Fig. 30 for Reynolds number Re = 1921.
Starting with the basic flow for Re = 1918 the Reynolds number is increased to
Re = 1921 > Rec at t = 0. Only at t ≈ 12 the symmetric oscillations of LC1 are
fully developed. After a long period of constant-amplitude oscillation, however, a
burst occurs at t ≈ 18.5 which involves breaking of the reflection symmetry of LC1.
Therefore, LC1 is unstable to symmetry-breaking perturbations. But the asymmetric
burst does not lead to an asymmetric flow state with saturated amplitude. Instead, the
flow returns close to the unstable steady basic state from which the symmetric oscil-
lations eventually grow again. This scenario repeats itself in an intermittent fashion
leading to a chaotic dynamics [200, 220].
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Fig. 29 Bifurcation diagram showing the amplitude Aw (diamonds) of the fundamental-frequency
oscillation of w(−0.32139,−0.35355, 0.086824) as a function of the Reynolds number. The line
is a fit to Re(Aw) − Rec = aA2

w + bA4
w (a = −0.0189977, b = 6.64421 × 10−6). The circle is

the linear stability boundary and the asterisk indicates the cyclic-fold bifurcation point (Re, Aw) =
(1906.0, 37.81). Adapted from Kuhlmann and Albensoeder [200]
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Fig. 30 Total kinetic energy Ekin = (1/2)
∫

V u2dV for Re = 1921 as a function of time [200].
Note the varying durations of the time periods the system stays close to the basic state (Ekin/Re2 ≈
0.01913), stays close to moderate-amplitude symmetric oscillations (they appear as wide black
horizontal bars on the long time scale shown), and of the bursts at the end of the oscillatory period
(large-amplitude excursions)
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Fig. 31 Unstable limit
cycles in the intermittent
cavity flow for Re = 1930
adapted from Loiseau et al.
[220]: Basic state BS (small
dot at (0, 0)), LC1 (blue),
and LC2 (red)

By imposing a symmetry boundary condition on the midplane z = 0 Loiseau
et al. [220] have been able to identify three different periodic solutions for Re
above the onset of time-dependence. The corresponding phase portraits in the
plane spanned by the dissipation D = ∫

V (∇ × u′)2dV and the production P =
− ∫

V u′ · [(u′ · ∇)u0]dV are shown in Fig. 31, where u0 denotes the unstable basic
flow and u′ the small but finite amplitude fluctuations. The periodic solutions shown
are: (a) the (unstable) steady basic state (BS, dot at D = P = 0), (b) a limit cycle
LC1 with low production and dissipation (blue) which bifurcates from the linear
instability of the basic state (Fig. 29), and (c) a limit cycle LC2 associated with large
production and dissipation (red) which is stabilized by the symmetry constraint.
Loiseau et al. [220] explain the intermittent behavior as a wondering of the system in
phase space between these invariant objects, which are all unstable. Figure32 shows
snapshots illustrating the oscillatory flow in a state near LC1 (a,b), near LC2 (c), and
during the asymmetric breakdown of LC2 (d) after which the flow returns close to
the steady basic state.

As suggested by Loiseau et al. [220] the intermittent behavior can be better under-
stood by identifying the different unstable solutions of the Navier–Stokes equations.
Lopez et al. [221] solved the Navier–Stokes equations in the full three-dimensional
space and in the subspace of functions with reflection symmetry about the midplane
z = 0. The unstable basic state was computed using selective frequency damping
(Sect. 4.1.2), while unstable oscillations, corresponding to saddle limit cycles, were
accurately located and tracked as function of Re by either restricting the solution to
a symmetric subspace (LC2) or by using an edge state technique [283] (LC1). The
resulting bifurcation diagram is shown in Fig. 33.

According to Lopez et al. [221] the steady basic flow (BS) becomes unstable to
a symmetric limit cycle LC1 (frequency ω1) through a backward bifurcation at the
Hopf bifurcation point H1 (see also Fig. 29). After turning forward at the cyclic-
fold bifucation point CF1 the solution branch becomes stable but rapidly changes
to unstable due to a Neimark–Sacker bifurcation at NS1. The bifurcating solution
QPs is quasi-periodic, symmetric and involves a frequency which is about four
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(a) LC1 (b) LC1

(c) LC2 (d) breakdown of LC2

Fig. 32 Vortex structures in a lid-driven cube for Re = 1921, visualized by the Q criterion [171].
Shown are isosurfaces of Q = 0. The moving lid is located on the rear side of the cube shown,
and it moves downward. a, b Snapshots during different instants of the symmetric oscillations
corresponding to LC1. c Snapshot of the stronger symmetric oscillations near LC2. d Snapshot of
an asymmetric vortex structure during the breakdown of LC2. All figures are taken fromKuhlmann
and Albensoeder [200]

times smaller than ω1. On the other hand, the quasi-periodic solution branch QPs is
connected at NS2 with the lower-branch of another subcritical limit cycle LC2which
bifurcates from the basic flow at a higher Reynolds number at the Hopf bifurcation
point H2 and with frequency ω2. The upper-branch of the limit cycle LC2 is stable in
the symmetric subspace and can thus be computed easily [221], but it is unstable to
symmetry breaking perturbations. Therefore, for Re > Re(NS1), small reflection-
symmetric perturbations of the flow corresponding to LC1 grow slowly (the growth
rates are quite small) in a quasi-periodic fashion to approach the upper branch of LC2.
However, since LC2 is unstable to perturbationswhich break the reflection symmetry,
the flow state is repelled from LC2 involving large-amplitude symmetry-breaking
flow structures (burst). Since no stable states seem to exist for Re > Re(NS1) the
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Fig. 33 Bifurcation diagram in terms of the standard deviation σ of the kinetic energy (upper
panel) and oscillation frequency (lower panel) as functions of the Reynolds number Re (adapted
from Lopez et al. [221]). The small numbers shown indicate the number of unstable direction from
the solution in the symmetric phase space. See text for further explanations

flow remains chaotic in the fashion illustrated in Fig. 30. However, the period of time
which the system stays close to LC1 or LC2 shrinks as Re increases rendering the
system fully chaotic.

The critical Reynolds numbers Rec = 1929 for the bifurcation point H1 obtained
by Lopez et al. [221], using a spectral truncation N = 48 and a smoothing of the
corner singularity (Sect. 3.3.5), and the value Rec = 1927 (Richardson extrapolated
1914) obtained by Feldman and Gelfgat [109], using a multi-grid finite-volume tech-
nique, differ only slightly from Rec = 1919.51 obtained by Kuhlmann and Alben-
soeder [200] for a spectral truncation order N = 128 and a singularity subtraction
method (Sect. 3.3.3).

The subcritical transition to oscillatory flowhas been confirmed experimentally by
Liberzon et al. [213]. They find the lowest Reynolds number at which oscillations are
sustained and the corresponding frequency in rough agreement with the numerical
results for LC1. The largest fluctuations of the oscillatory flow in the cavity midplane
z = 0 were detected in the region between the main vortex and the stationary walls,
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a behavior also found numerically. But experimental imperfections seem to have
prevented uncovering the intermittent scenario found numerically.

7.3 Diagonal Lid Motion

The lid-driven flow in a cuboid whose lid moves diagonally has received some atten-
tion. The flow is conceptually very similar to the classical lid-driven cuboidal cavity
flow (Sect. 7.2). In view of the complex dynamics in the classical configuration it is
of interest to identify similarities and differences. The spanwise periodic version of
this problem has been considered by Theofilis et al. [314] (Sect. 6.1.3).

The diagonally-driven cuboidal cavity was introduced by Povitsky [265] as a
separated flow in which the flow transverse to the lid motion is particularly strong
(see also Povitsky [264]). The steady flow is characterized by a large-scale vortex
motion in the diagonal plane. The flow exhibits a reflection symmetry with respect to
the diagonal plane, as in the classical case. To illustrate the strong three-dimensional
character of the flow in a cube (Γ = Λ = 1) the velocity vector field is shown
in Fig. 34. In the diagonal (symmetry) plane the flow at Re = 700 (Fig. 34a) turns
downward in the 90-degree wedge. Due to the stronger viscous effect the downward
motion experiences the flow in the wedge separates earlier than in the classical
configuration, and the separated flow readily turns backward. For the larger Reynolds
number Re = 2000 (Fig. 34b), close to the onset of time dependence, the flow has
developed much more fine structure. In the midplane y = 0 parallel to the moving
wall the separated flow from the downstream wedge (between vortices labelled 3)

(a) Re = 700, diagonal plane x = z (b) Re = 2000, midplane y = 0

Fig. 34 Projected velocity vector field of the steady basic flow in a cube for diagonal lid motion
shown a in the diagonal (symmetry) plane for Re = 700 and b in the midplane y = 0 parallel to the
moving lid for Re = 2000 (from Povitsky [265]). The lid in (a) is located at the top and it moves
from left to right. In (b) the lid moves diagonally from the bottom right to the top left (long arrow).
The labels enumerate the vortices
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is opposing the flow driven by the moving wall which has become part of two large
scale vortices (indicated by labels 2) due to the strong three-dimensional effect.

Feldman [108] investigated this flow with regard to the onset of time dependence
(see also Feldman and Gelfgat [110]). As for the classical case, in which the lid
moves parallel to the edges, the first bifurcation is found to be subcritical with a Hopf
bifurcation point at Rec = 2329 and a cyclic fold bifurcation point at Re = 2302.
A more accurate critical Reynolds number Rec = 2320 with ωc/Re = 0.249 was
obtained by Richardson extrapolation. According to Feldman [108] the perturbation
flowhas a complicated structure reflecting the complex structure of the basicflow.The
essential feature of the oscillatory perturbation flow seems to be a streamwise vortex
centered in the midplane whose sense of rotation is alternating with time. Different
from the classical case, the upper-branch oscillatory flow violates the reflectional
symmetry with respect to the diagonal plane, but satisfies the H symmetry

(ǔ, v̌, w̌)(x̌, y̌, ž, t) = (ǔ, v̌,−w̌)(x̌, y̌,−ž, t + T/2), (19)

where x̌ and y̌ = y are the two orthogonal coordinates in the diagonal plane, ž the
coordinate perpendicular to the (x̌, y̌) plane and T = 2π/ω is the period of the flow.
The velocities (ǔ, v̌, w̌) denote the fluctuating velocity components in the respec-
tive (x̌, y̌, ž) directions. According to Feldman [108] the supercritical H -symmetric
oscillatory flow is stable, different from the Z2-symmetric flowof LC1 in the classical
case.

In yet another variant of cavity flows two facing sidewalls move tangentially and
parallel to the edges, but in mutually orthogonal directions. According to Povitsky
[266] the two primary vortices, which are essentially oriented orthogonal to each
other, lead to a particularly large helicity in the flowwhich is expected to be beneficial
for mixing configurations.

8 Streamline Topology and Mixing

The ease by which the lid-motion can be controlled in experiments, also for time-
dependent driving by prescribing any lid-velocity protocolU (t), makes the lid-driven
cavity a good test bed for Lagrangian transport. The motion of a fluid element is
governed by the advection equation

Ẋ = u(X, t), (20)

where X = (X,Y, Z) is the position vector of the fluid element, u = (u, v, w) the
velocity-vector field of the flow, and the dot denotes the material time derivative.

For a two-dimensional flow a stream function ψ can be defined such that (20)
results in

u = Ẋ = ∂ψ

∂Y
, v = Ẏ = − ∂ψ

∂X
. (21)
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If, moreover, the flow field [u(X,Y ), v(X,Y )] is steady the stream function ψ(X,Y )

takes the role of the Hamiltonian of a dynamical system with one degree of freedom;
the streamlines represent trajectories in a two-dimensional phase space spanned by
X and Y . The integrable motion in the two-sided lid-driven cavity in the Stokes flow
limit has been investigated by Kelmanson and Lonsdale [183] who focused on the
eddy genesis when changing the aspect ratio. Further studies of the Stokes flow for
two-sided driving are due to Gürcan [141].

The transport is more interesting when the driving becomes time-dependent. In
this case the phase space is three-dimensional and the system is non-integrable even
in the Stokes-flow limit. As a characteristic property, regular (quasi-periodic) trajec-
tories can co-exists with chaotic ones. Ottino et al. [81, 114, 216, 217, 244, 245]
were among the first to investigate the mixing properties in closed boundary-driven
systems, focusing on creeping flow conditions. The experimental setup of Leong and
Ottino [206] consisted of a double-lid-driven cavity with Γ = 1/1.67 (see Fig. 1b),
open in spanwise (z) direction and Λ large so as to render the flow essentially
two-dimensional. The moving boundaries were realized by belts that slide parallel
or antiparallel to each other. Marking fluid elements along a line parallel to the x
axis initially, the tracers are advected by the flow. After a certain period of time
they form patterns, examples of which are shown in Figs. 35a–c for constant wall
velocities. The line of marked tracers roles up in a regular fashion. When the wall
velocitiesU1,2(t) become time-dependent a memoryless sequence of creeping flows
is realized, due to the instantaneous character of the Stokes flow. The sequence can
range among all possible combinations of the two independent belt velocities: single
lid motion (Fig. 35a), double anti-parallel motion (Fig. 35b) and double parallel lid
motion (Fig. 35c). Even if the flow is a sequence of instantaneous Stokes flows with
regular streamlines, assigning a time-dependent protocol to the two lids may result
in chaotic advection of fluid elements. The resulting chaotic mixing is quite striking
if one considers that the streamlines are defined instantaneously for each time-step
and cannot be chaotic since their phase space is two-dimensional.

For a continuous chaotic dynamics the phase spacemust have at least three dimen-
sions. It is well understood that the trajectory of a fluid element can be chaotic when
it is governed by (20) [20]. For the Stokes flow in the two-sided cavity the non-linear
equation (20) reduces to a two-dimensional time-dependent dynamical system (three
dimensions in phase space) which allows for chaotic mixing, an example of which
is shown in Fig. 35d.

The classic kinematic scenario deals with hyperbolic systems4 dominated by the
presence of a chaotic saddle, whose chaotic advection stretches and folds the flow
at an exponential rate down to the Batchelor scale [30], at which stretching and
molecular diffusion balance. However, this picture is typically complicated by the
presence of walls, which destroy the hyperbolicity of the system leading to a decrease
of the mixing rate from the ideal exponential to a much slower power-law rate.
This reduction is caused by the entrainment of unmixed material from the near-wall

4A dynamical system is called hyperbolic in a linear sense when the Jacobian determining the local
linearization of the flow admits non-imaginary eigenvalues.
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(a) (b)

(c) (d)

Fig. 35 Mixing in a two-dimensional lid-driven cavity. Shown is the evolution of a line of tracers
initially located along the x axis (vertical line) for a steady single lid motion, b steady parallel lid
motion, c steady opposing lid motion, and d discontinuous opposing lid motion. Images are taken
from [206]

regions [315]. Hence, apart from the relevance of Ottino’s results in the context of
laminar mixing and microfluidics, where chaotic mixing is the only efficient way
to achieve a certain large-scale homogeneity of the transported quantity, studying
chaotic advection in closed systems is also intended to provide further insight into
the mixing properties of non-hyperbolic systems.

Further efforts in studyingmixing in periodically-driven two-dimensional cavities
were made by Anderson et al. [18] who characterized the mixing properties of the
flow by means of numerical simulations including inertial effects. They focused on
the role of Kolmogorov–Arnold–Moser (KAM) tori, which constitute non-chaotic
mixing regions in the flow, and discovered that an antiparallel motion of the walls
is the only motion which enhances mixing. Other investigations employing the two-
sided cavity are concerned with particulate flows (e.g. [331]), where the kinematic
template of the flow, i.e. the geometry made by all paths of all fluid elements [20],
is coupled with the motion of particles. Surprisingly, when the effective viscosity of
the mixture depends on the concentration of the particulate phase an increase of the
chaotic advection due to the flow kinematics only (neglecting the particulate phase)
does not necessarily enhance the overall mixing of the particle-laden flow. The reason
is the mixing can be strongly counteracted by shear migration of particles.
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The time-periodic double-lid-driven cavity has been extended numerically and
experimentally by Anderson et al. [17, 19]. In their experimental study, Anderson
et al. [19] allow the two sliding lids to move tangentially in both, the x- and the
z-direction. They confirmed their previous findings about periodic points and the
associated poor mixing in their vicinity also for three-dimensional time-periodic
flows. It is, however, very challenging to conduct a thorough study of mixing in
time-dependent three-dimensional cavities. Even stationary flows can represent an
intriguing dynamical systems.

As shown by Bajer [26] incompressible steady three-dimensional flows repre-
sent piecewise Hamiltonian systems of 1.5 degrees of freedom. Their kinematics
requires a three-dimensional phase space. Therefore, incompressible steady three-
dimensional flows typically exhibit chaotic transport. Since pathlines and streamlines
coincide for three-dimensional steady flows, we discuss the streamline topology in
the following.

Chiang et al. [76, 78, 79] and Sheu and Tsai [297] were among the first to compute
streamlines in genuinely three-dimensional cavity flows. They characterized themain
vortex, computed streamtubes of the flow, and related these to the critical topological
objects along the cavity walls and in the (mirror-symmetry) midplane of the cavity
(z = 0).Attentionwas focusedon the separation and reattachment streamlines aswell
as on the saddle foci on the walls and on the mirror-symmetry plane. Specifically,
Sheu and Tsai [297] computed the distribution of degenerate streamlines on the five
steady walls in a cubic single-lid-driven cavity for Re = 400 (see Fig. 28). They
further characterized the degenerate nodes and saddles on the stationary walls by
means of second-order terms of the local Taylor expansion of the velocity field.
Additional topological analyses of the streamlines in the corner eddies were carried
out by Chiang et al. [79] and Shankar and Deshpande [293].

The investigations of Iwatsu et al. [167], Ishii and Iwatsu [163], Ishii and Adachi
[160–162] and Ishii et al. [164] had a different focus. They characterized the
Lagrangian flow topology bymeans of Poincaré sections of streamlines and identified
regular (KAM tori) and chaotic regions of the flow. By means of compact high-order
finite differences they simulated the steady three-dimensional flow in cavities with
Λ = 6.55 (the span aspect ratio in the experiments of Kuhlmann et al. [201]) and
Γ = {0.5, 1, 1.5}. For Re ∈ [100, 500] they identified a 3:1 resonance phenomenon
of themainKAM torus. Ishii andAdachi [162] characterized the resonance bymeans
of a normal-form Hamiltonian as proposed by Arnold et al. [21]. Similar topological
studies were carried out for Λ = 1, Γ = {0.4, 0.6, 1, 1.4}, and for Re ∈ [100, 400]
[164], for which quite complex flow kinematics were found. Figure36 shows an
example for the coexistence of regular and chaotic streamlines in the cubical single-
lid-driven cavity for Re = 200. The steady flow has been computed, for reasons of
demonstration, using the spectral element code NEK5000 with 203 7th-order spec-
tral elements. The streamlines were integrated by a Runge–Kutta Dormand–Prince
method with relative and absolute error tolerances of 10−7. For further mathematical
details on chaotic and regular motion and on the resonance phenomenon the reader
is referred to the KAM and Poincaré–Birkhoff theorems [55, 72, 73, 227].
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Fig. 36 Regular and chaotic
streamlines of the steady
flow in a single-lid-driven
cube (Γ = Λ = 1) for
Re = 200. a Poincaré
section on the plane x = 0
displaying chaotic (gray
dots) and regular (black
markers) streamlines.
Diamonds indicate the closed
elliptic point in the Poincaré
plane, corresponding to
closed streamlines. b
Three-dimensional
reconstruction of the
outermost surfaces of the
main KAM torus T1 (dark
grey) and the 7-periodic
KAM torus T7 (light grey),
as well as the 4-periodic
closed streamline L4 (line).
Since the flow is mirror
symmetric with respect to
z = 0, only half of the cavity
is depicted in (a) and (b)
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The topology of the flow in a periodic double-lid-driven cavity with Γ = 1.7 (an
example is shown in Fig. 37) has recently been investigated by Romanò et al. [277].
For this aspect ratio, spanwise wavelength Λ = λc = 2.73 and for Re1 = Re2 =
Re ∈ [Rec, 700], where Rec = 211.53 is the critical Reynolds number, the three-
dimensional flow is steady in form of periodic cuboidal cells (mode E2 of Fig. 20, see
also Fig. 19). The three-dimensional cellular flow is robustly point-symmetric with
respect to the center of the cell andmirror-symmetricwith respect to the periodic cell-
boundaries at z = ±λc/4. In this flow Lagrangian chaos sets in globally immediately
above the linear stability threshold at which the translation symmetry in z is broken.
The sudden appearance of global chaos can be traced back to the breakup of the



The Lid-Driven Cavity 283

Fig. 37 Chaotic (gray) and regular streamlines (purple) in a periodic double-lid-driven cavity with
period λ = 2.73 for Γ = 1.7 and Re = 400. a Poincaré section on the plane at x = 0. Diamonds
denote elliptic points corresponding to closed streamlines. b Three-dimensional reconstruction of
the outermost surfaces of the two point-symmetric period-1 KAM tori (from Romanò et al. [277])
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heteroclinic connection between a spiralling-in and a spiralling-out saddle focus in
the supercritical flow and to the abundance of saddle foci with chaotic dynamics right
above the critical onset. Increasing the Reynolds number, some of the saddle foci
vanish and KAM tori are born and expand until Re ≈ 400, beyond which increasing
inertial effects smoothly drive the system towards kinematically more chaotic flows.
Figure37a shows a Poincaré section of the streamlines at x = 0 for Re = 400. Gray
dots indicate chaotic streamlines, whereas purple dots refer to regular streamlines.
The point-symmetric couple of KAM tori, shown in Fig. 37b for Re = 400, shrinks
for larger Reynolds numbers until, for Re ∈ (500, 700), a 2:1 resonance occurs,
splitting each of the two KAM tori into a period-1 and a period-2 torus, with the
period-2 torus winding about the period-1 torus.

9 Turbulent Flow

Motivated by the early experiments of Koseff et al. (see, e.g., Koseff and Street
[193]) benchmark computations using different numerical methods and techniques
have been carried out for Γ = 3 and Re = 3200 [95] for which the flow is time-
dependent and likely chaotic. At that time the editors of Deville et al. [95] stated:

No definite conclusions about the benchmark solutions can be drawn. Indeed, because of the
intricate nature of the time and space behaviours, more work remains to be done ...

This clearly rises the question for the flow properties at higher Reynolds numbers
at which the three-dimensional flow becomes chaotic and, eventually, turbulent. The
transition scenario for three-dimensional flows is quite different from the scenario
in flows restricted to two dimensions.

9.1 Two-Dimensional Flow

It is well established that the flow in a cavity restricted to two dimensions becomes
time dependent via a Hopf bifurcation near Re ≈ 8000 (Sect. 5.1). Owing to the
relatively high Reynolds number and the thin boundary layers associated with it, the
correct determination of the onset of oscillations requires a very accurate numeri-
cal modeling. Therefore, results on the critical data are scattered. If not mentioned
otherwise the following results have been obtained for Γ = 1.

The two-dimensional time-dependent critical mode and the slightly supercritical
flow arises in form of a vortex street traveling in streamwise direction within a thin
layer between the main vortex and the three separated vortices which are character-
istic for the basic flow at high Re. A snapshot of the filtered vorticity field [23] is
shown in Fig. 38. The vorticity oscillations are relatively weak on the downstream
stationary wall and grow to appreciable amplitude only near the bottom wall, being
further enhanced along the wall upstream of the moving lid. Along the moving lid
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Fig. 38 Snapshot of the
vorticity field (color) of the
oscillatory flow at
Re = 8125 > 1818 = Rec,
bandpass filtered in the range
ω/Re ∈ [2.6, 3.0]. The lid
at the top moves to the left
and the vortex street travels
counter-clockwise (courtesy
F. Auteri, see Auteri et al.
[23])

Fig. 39 Qualitative
bifurcation diagram (adapted
from Tiesinga et al. [316])
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unstable stationary
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83.75 86 88 90 91.5 100

the vortices are stretched and damped before being again injected as perturbations
in the boundary layer on the downstream wall. This structure of the slightly super-
critical flow has been confirmed by other authors and it was also found in a proper
orthogonal decomposition of the flow by Cazemier et al. [60]. Recently, Nuriev et
al. [242] computed the linear stability boundary Rec of the steady basic flow with a
resolution of 5122. The extrapolated critical Reynolds number Rec = 8051 and the
oscillation frequency on the finest mesh ω/Re = 2.79 are in good agreement with
results of Fortin et al. [113] and Sahin and Owens [280]. Hopf bifurcations of the
two-dimensional flow have also been found for deep single-lid-driven cavities with
Γ = 1.5 and 2 [44].

After the first Hopf bifurcation at Rec, a second Hopf bifurcation was reported by
Auteri et al. [23], Bruneau and Saad [57] and Peng et al. [259] to bifurcate from the
basic flow at higher Reynolds numbers for Γ = 1. The second bifurcation was found
to arise near Re ≈ 104, a Reynolds number at which additional incommensurate fre-
quencies appear in nonlinear flow simulations. However, the frequencies found by the
above authors scatter, so that no definitive conclusion can be drawn to date. Tiesinga
et al. [316] carried out a bifurcation analysis by computing themost dangerous eigen-
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values. They find a succession of Hopf bifurcations within a relatively narrow range
of Reynolds numbers and calculated the bifurcations by numerical simulations as
shown in Fig. 39. Further Hopf bifurcations arise for Reynolds numbers less than
Re = 11000, at which Verstappen et al. [324], however, found the flow still to be
periodic.

The results of Tiesinga et al. [316] (Fig. 39) suggest that, in a certain range of
Re, different oscillatory flows are stable. Cazemier et al. [60] also found multiple
Hopf bifurcations and investigated their stability using Floquet theory. Transitions
between flows with one and two frequencies were found as well as indications for
subharmonic response. This is qualitatively similar to the results of Peng et al. [259]
who simulated the two-dimensional flow for Reynolds numbers around Re = 104

using the marker-and-cell method [149] on a uniform grid with resolution 1002.
Varying the Reynolds number Re in small steps, the authors find a supercritical
Hof bifurcation at Re ≈ 7400. The very low value is due to the moderate resolution
used. At criticality, the bifurcating flow has a fundamental frequency ω1/Re ≈ 3.7,
roughly consistent with results from other investigations of the first instability. Near
Re = 10300 Peng et al. [259] found a succession of flows which are quasi-periodic,
subharmonic with a fundamental frequency ω2 clearly different from ω1, harmonic
response, and again subharmonic flow, before the flow turns chaotic. The authors con-
clude that two oscillatory solution branches exist, belonging to the two fundamental
frequencies, because hysteresis was observed upon varying Re. The subharmonic
flow may seem to suggest the existence of a Feigenbaum sequence [100], however,
no further indications of this scenario were provided.

In his simulation for Re = 104 Bruneau [56] found two other frequencies ω2,3

which are commensurate to the main frequency ω1/Re = 3.8 of the first bifurcation.
Similar indications were also detected by Auteri et al. [23] and Peng et al. [259], but
owing to the delicacy of the results no definitive conclusion can be drawn, presently.
Apart from the oscillatory solution bifurcating from the basic flow at the first critical
point, Nuriev et al. [242] also computed other nonlinear flows and detected several
new steady solutions of the two-dimensional lid-driven cavity flow. All these latter
solution are created by fold bifurcations at Re ≈ 5800, 6360, 14190 and 15270,
and all bifurcating solutions were found to be unstable. Nevertheless, it is expected
that these unstable solutions play an important role in the dynamical behavior of the
system.

When the Reynolds number is increased to Re = 22000 the flow is chaotic. Ver-
stappen et al. [324] found the correlation dimension of the chaotic attractor to be
approximately 2.8 and a Kolmogorov entropy K ≈ 3. The underlying coherent flow
structures have been investigated by Cazemier et al. [60] using POD. For an even
larger Reynolds number of Re = 105 Bruneau [56] also finds evidence for the exis-
tence of a chaotic attractor. This conclusion was drawn based on different initial
conditions evolving to the same statistical state for long times, a conclusion also sup-
ported byGarcia [117]. Figure40 shows snapshots of the vorticity field for Re = 105.
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(a) (b)

Fig. 40 Vorticity isolines in a square cavity for Re = 105 (the lid is on top and moves to the left).
Shown are snapshots at t = 10/Re (a) and at t = 200/Re (b) after initialization from rest. Results
were obtained on 1024 × 1024 grid points by Bruneau [56]

9.2 Three-Dimensional Flow

A detailed view of the first steps towards transition to chaos and turbulence in three
dimensions has only recently emerged for the one-sided lid-driven flow in a cube
(Λ = Γ = 1) (Sect. 7.2). Two subcritical instabilities near Re ≈ 2000 lead to a com-
plicated dynamics characterized by intermittency caused by the unstable basic state
and two unstable limit cycles.

Observing the lateral dispersion of dye streaks, Koseff and Street [193] experi-
mentally found the flow in a cavity with Λ = 3 to become turbulent at Re = 6000
to 8000. They also observed intermittent turbulent burst which become frequent at
Re = 104. Nevertheless, the Taylor–Görtler vortices were found to exist in the mean
even at Re = 104. From several investigations, the flow at Re = 104 may be called
turbulent, because multiple scales are involved in the flow dynamics.

A significant step forward in the simulation of turbulent cavity flows was made
by Leriche and Gavrilakis [209]. By direct numerical simulation (DNS) they com-
puted the flow in the cube (Γ = Λ = 1) using a spectral Chebychev-collocation
method combined with a projection–diffusion method for the time advancement
[210]. The corner singularities along all singular edges of the lid were regularized
with a polynomial smoothing. This reduces the mean driving velocity to ≈85% of
the original singular problem. Therefore, a Reynolds number Re = UL/ν = 12000
corresponds to a mean Reynolds number Rem = UmL/ν = 10200, where Um is the
mean lid velocity.

The turbulence was found to be strongly inhomogeneous.With the decomposition
u = u + u′, where the over-bar denotes time averaging, the Reynolds stresses u′

i u
′
j

were found to be very small below the moving lid. Furthermore, the volume integral



288 H. C. Kuhlmann and F. Romanò

(a)

0

0

0.5

0.5

−0.5
−0.5

y

x

(b)

0

0 0.5

0.5

−0.5
−0.5

x

z

(c)

0

0

0.5

0.5
−0.5−0.5

x

z

(d)

−0.5

y

z
0.1 0.2 0.3

−0.3

−0.4

Fig. 41 a Isolines of (u2 + v2)1/2 in the plane z = 0.2135. b Isolines of the mean streamwise
velocity u slightly below the moving wall at y = 0.4785. c Isolines of the energy production term
−2v′u′ · ∇v in a plane y = −0.462 near the bottomof the cavity; full (dashed) lines indicate positive
(negative) values. The plus (+) indicates the monitoring point used for conditional averaging. d
Conditional averaged flow field in the plane x = 0.3865 close to the downstream wall). The mean
Reynolds number is Rem = 10200. All figures are adapted from Leriche and Gavrilakis [209]

of the total kinetic energy (Ekin/Re2 in our scaling) fluctuates with a few percent
about its mean value of≈0.055 with the mean of the fluctuating kinetic energy being
≈0.0045.

At theReynolds number Re = 12000 considered the flow is turbulent in part of the
cavity with the mean amplitudes of the velocity fluctuations and the mean fluctuating
kinetic energy being of the order of a few percent of the respective mean values of
the total quantities. The mean flow is symmetric with respect to the midplane z = 0
and has a three-dimensional structure in the mean, similar as the one found for steady
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laminar flowat lowerReynolds numbers. Themain global circulation is characterized
by a sequence of wall jets as illustrated in Fig. 41a. The mean streamwise velocity u
immediately below themovingwall has a clearmaximum in themidplanewith slower
regions in both cavity halves (Fig. 41b). Therefore, the wall jet on the downstream
wall is thicker away from the midplane z = 0 resulting in two elliptical wall jets
[51, 144]. The impingement on y = −0.5 of the wall jet along the downstream wall
at x = 0.5 generates fluctuations v′. The dominant term of the energy production,

contributing the most to −2v′u′ · ∇v (Fig. 41c), was found to be −2v′2(∂v̄/∂y).
This term has a well defined maximum close to the bottom wall at y = −0.5. The
time history of this production term measured in the point marked with a plus in
Fig. 41c shows very sharp peaks (not shown) which are associated with important
turbulence-generating events. This point is exactly located at the border between
the mean main circulation and the mean separated downstream corner vortex [51].

Setting a threshold −v′2(∂v̄/∂y) = 0.4Re3 (in our scaling), which is about 50% of
the average peak height of this production term, and conditionally averaging the flow
only when this threshold is exceeded, reveals a particular mean flow during these
events which is shown in Fig. 41d. Apparently, the turbulence generating events are
associated with a pair of vortices in each cavity half which are located close to the
bottomwall (y = −0.5)near the impingement point of thewall jet on the downstream
wall. Leriche and Gavrilakis [209] noted that these pairs of vortices are very similar
to vortices caused by the instability of the stagnation point flow on a bluff body [135,
186].

The distribution of the root-mean-square values of the fluctuating velocity fields
u′ and v′ in the midplane z = 0 are shown in Fig. 42. It is clearly seen that the
fluctuations are strong in the vicinity of the two separated vortices in both bottom
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Fig. 42 Isolines of the r.m.s. values of fluctuating velocity components for Re = 12000 in the

midplane z = 0 obtained by a spectral-element DNS. a (u′2)1/2 and b (v′2)1/2. The arrow indicates
the lid motion. Adapted from Bouffanais et al. [51]
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Fig. 43 Isosurface of δ̄ = 2∂2
(
u′
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)
/∂xi∂x j for Re = 12000 corresponding to 1% of its maxi-

mumvalue. The arrow indicates the lidmotion. Adapted from a spectral-element LES of Bouffanais
et al. [51] using a dynamic mixed model (LES-DMM)

corners. The fluctuations are due to the impingement of the sequence of wall jets on
the respective downstream walls. This is also confirmed in Fig. 43 which shows, for
Re = 12000, an isosurface of δ̄ := 2∂2(u′

i u
′
j )/∂xi∂x j which is a measure for the

inhomogeneity of the turbulent flow [51]. Figure43 also shows the inhomogeneity
being largest where the wall jets impinge on the walls near the separated corner
vortices and even on the upstream side of the moving wall. The average turbulent
energy dissipation rate ε̄ exhibits a similar distribution [51, not shown].

The relatively low Reynolds number for which simulations have been carried out
make a deduction of scaling laws for spectra of energy and other quantities difficult.
This difficulty is exacerbated by the non-homogeneous nature of the turbulent flow in
which the core of the vortex remains laminar at Re = 12000 and by the limited record
length of the signals. Nevertheless, aK41 scaling seems to emerge [94, 172] as shown
in Fig. 44 for the power spectral density of the velocity measured in the impingement
region of the downstream wall jets, where the mean turbulence production attains its
maximum value.

The results for Re = 12000 have been extended by Patel et al. [257, 258] to the
case when two facing walls move in opposite directions (as in Fig. 1b). They carried
out a large-eddy simulation (LES) using the dynamic Smagorinsky model (for LES
using the dynamic mixed model, see Zang et al. [333]). Furthermore, Leriche [208]
extended the Reynolds number range to Re = 22000 using a Chebyshev Gauss–
Lobatto collocation method for the cubic cavity. Other simulations are due to Ver-
stappen et al. [325] for Re = 104 andHossain et al. [152]who simulated the lid-driven
flow in a cube for Re = 104 by a lattice Boltzmann method and by LES with focus
on the large scale vortical structures and their representation by POD.
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10 Extensions

The lid-driven cavity problem has been specialized, by numerous authors, to take
into account additional physical effects which modify the recirculating vortex flow
or which are affected by it. Since all these studies cannot be treated comprehensively,
this section is intended to give a brief overview of the various topics which have been
treated. For an in-depth consideration the reader is referred to the original work.

Since the lid-driven cavity problem is a test bed for numerical methods, it has been
used to test a whole range of different numerical procedures. Extending the classi-
cal global stability approach, Alizard et al. [15] applied a matrix-free method for
the global linear stability analysis to cavity flows in multiple-connected subdomains.
Several investigations have also been devoted to the application of lattice-Boltzmann
methods to the lid-driven-cavity problem [310], also including the motion of sus-
pended particles [279]. Since the lattice-Boltzmann method seems to overpredict the
critical Reynolds number for the onset of two-dimensional flow oscillations [214],
particular attention should be paid to the implementation of the boundary condi-
tions. Furthermore, Monte Carlo methods have been applied to micro-cavity flows
[105] and molecular dynamics [176] as well as smoothed particle hydrodynamics
simulations [189] have been employed to compute lid-driven cavity flows.

Among the obvious parameters affecting the flow is the shape of the cavity. Except
for cuboidal shapes and variants thereof [124, 197, 335], including stability analyses
[90], also triangular cavities have been investigated [103, 212, 256] and global linear
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Fig. 44 At Re = 12000 the logarithm of the power spectral density (PSD) of the velocity field
recorded at (x, y, z) = (0.3937,−0.4694,−0.16855) tends to develop a scaling ∼ f −5/3, where
f is the frequency. Shown are DNS (black) and LES results (grey) [83]
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stability analyses have been carried out for periodic flowperturbations in cavitieswith
a triangular cross section [1, 129]. Other cavity shapes investigated range from polar
or sectorial cavities [116, 121, 142, 334], trapezoidal cavities [36], flow and stability
in circular cavities with part of the bounding circlemoving [130], and cavities with an
arc-shaped moving wall [165]. Furthermore, toroidal cavity flows and their stability
have found consideration [154, 155, 304] as well as cylindrical cavities [336]. To
the class of geometry effects also belongs the effect of through flow between moving
and stationary walls [273]. The through flow affects the structure and multiplicity
of three-dimensional flows and the transition to chaotic dynamics [2, 33]. Apart
from the two-sided cavity introduced by Chien et al. [81] for mixing studies and by
Kuhlmann et al. [201] to study flow stability, also other wall-motion configuration
with up to four adjacent walls moving independently have been investigated [35,
59, 327], even though such cavity flows might be difficult to realize experimentally.
With relation to short-dwell coating Gürcan [140] considered two-sided cavities
in which the stationary walls are replaced by stress-free surfaces (for Stokes flow
see also Gaskell et al. [118]). Yet other geometric complications can be introduced
by cavities housing interior bodies and/or partitioners [37, 249, 250]. Such baffled
cavity geometries are of interest in mixing [170] (see Sect. 8). Stremler and Chen
[305] considered Stokes-flow mixing in a cavity whose lid was sectioned into three
parts on each of which the tangential velocity was piecewise constant, but time-
dependent (see also McIlhany et al. [226]), while Rao et al. [271] investigated the
two-dimensionalmixing inStokesflowdue to a time-dependent and spatially periodic
wall motion in cavities which are infinitely extended in direction of the wall motion.

Another fundamental extension to the classical lid-driven cavity concerns the
effect of thermal convection and heat transfer in addition to the mechanical driving.
Experiments have been carried out by Koseff and Street [198] for stratified lid-driven
cavity flow, where the moving lid on top is heated and the bottom wall is cooled,
for Reynolds numbers ranging from 103 to 104 and bulk Richardson numbers in
the range of 0.08 to 6.5. Their investigation was extended by Cohen et al. [82]
who experimentally studied the turbulent flow under a stable thermal stratification
in a nearly cubical lid-driven cavity. For strong stratification the turbulence remaind
confined to themoving lid and large-scale internal gravitywaveswere observed in the
regions outside of the large-scale vortex. Two-dimensional numerical investigations
of mixed buoyancy-lid-driven flow in rectangular cavities are due to Torrance et
al. [318], Iwatsu et al. [168] Mohamad and Viskanta [237] and, for slow mixed
convection, by Shankar and Nikiforovich [294]. Isaev et al. [159] investigated the
transient behavior of the two-dimensional chaotic flow for Re = 5 × 104 in a stably
stratified square cavity using unsteady Reynolds-averaged Navier–Stokes equations
(URANS) which were closed by the shear stress transport model (SST). Mixed
buoyancy convection was also studied byMohamad and Viskanta [236, 237], Prasad
and Koseff [269], Oztop and Dagtekin [247] Khanafer et al. [188] and Barletta and
Nield [28] and, in three dimensions, by Iwatsu and Hyun [166]. Tiwari and Das
[317] put the focus on nanofluids and other authors [62, 64, 65, 68, 71] studied
the combined effect of mixed-convection heat transfer and cavity shape, including a
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wavy bottom contour [187]. The combined effect of heat and mass transfer has been
considered by Alleborn et al. [16] in the context of a continuous drying process.

The transient evolution of the cavity flow from rest (start-up) has been studied
by Tang et al. [307], Guermond et al. [138], Migeon [228], Migeon et al. [230] and
Akyuzlu [4]. Their work focused on the temporal evolution of the flow, depending
on the terminal Reynolds number. Cavities with an oscillating floor have been inves-
tigated by Vogel et al. [326], who considered flow stability and supercritical flow
regimes, among which a time-periodic three-dimensional cellular flow was found to
exist. Blackburn and Lopez [38] studied the flow stability in a cavity with an oscil-
lating lid by numerical simulation and Floquet theory. For an aspect ratio of Γ = 0.5
they found three-dimensional short- and longwave synchronous modes as well as a
non-synchronous mode which arises through a Neimark–Sacker bifurcation. They
continued their investigations with focus on symmetry breaking and the relation of
time-dependent cavity flows to periodic laminar vortex shedding in two-dimensional
wakes of symmetric bodies [39]. The effect of lid oscillations was also considered
in combination with heat transfer in rectangular [66] and triangular cavities [67].
The two-dimensional time-dependent flow due to harmonic anti-phase oscillations
of two facing lids of a square cavity was treated by Noor et al. [241].

The lid-driven cavity flow is closely related to shear-driven flow in an open cavity.
If, in particular, the lid is replaced by a liquid–gas interface with high surface tension,
tangential temperature gradients can create significant shear stresses on the interface
by the thermocapillary effect [288]. Thus, keeping the walls at both ends of the
interface at constant temperatures the shear stress becomes constant in the limit
of low Prandtl numbers. Schimmel et al. [282] has shown there exists a one-to-
one relation between the four three-dimensional flow instabilities in the one-sided
lid-driven cavity (see Fig. 13) and the ones in a cavity driven by a constant shear
stress. The two-dimensional variant of a shear-driven cavity was used by Romanó
and Kuhlmann [276] to study the motion of finite-size particles in the vicinity of the
shear stress boundary. The situation becomes more complicated when the surface
tension is relaxed (weak) or when an interface is absent. Such open cavities have been
considered by many different authors, among which Maull and East [225], Rossiter
[278] and Rockwell and Naudascher [274] may be mentioned, to name only a few.
Experimentally Neary and Stephanoff [239] found three different flow regimes as a
result of the interaction of the shear layer, created by the oncoming flow, with the
vortex structures in the open cavity. Faure et al. [106, 107] visualized the flow in
open cavities and detected small scale (Görtler) vortices which were traced back
to a centrifugal flow instability. In compressible open cavities Brés and Colonius
[54] found acoustic (Rossiter) as well as hydrodynamic modes of three-dimensional
instability by numerical simulation and stability analysis. The flow stability in shear-
driven (as opposed to lid-driven) cavities was also considered by Theofilis [311],
Theofilis and Colonius [313], de Vicente et al. [91, 92], and by Liu et al. [218].
Further investigations into the nonlinear regime by large eddy simulations (LES)
have been carried out by Larchevêque et al. [205].

Another topic of interest is the motion of finite-size particles in driven cavities.
While the motion of suspensions of very small particles has received some attention
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in the context of mixing (see, e.g., Xu and Gilchrist [331]), the motion of a few large
particles has not received much attention. This is certainly related to the difficulty of
keeping larger particles suspended for a sufficiently long time and the associated strict
conditions on the density matching between particles and the liquid. Nevertheless,
Tsorng et al. [320, 321] found a curious particle motion in preferred regions of a
lid-driven cavity which they attributed to shear migration. Kuhlmann et al. [202],
however, found large density-matched particles can be attracted on a very fast time
scale to periodic attractors in a steady three-dimensional cavity flow due to a particle–
boundary repulsion effect in conjunction with the topological properties of the flow.
Theparticle attraction in their system is too fast to havebeen causedbyparticle inertia.
Other investigations of particle motion in cavities are due to Sidik and Attarzadeh
[298] and Kosinski et al. [199]. Hafizi et al. [146] considered the particle motion in
a semi-elliptical cavity, and Idris et al. [156] studied the particle motion in triangular
cavities. Since long-time particle trajectories are difficult to compute due to the
possibility of error accumulation, it appears that more work is required to arrive at
a reliable prediction of the long-term motion of finite-size particles and to better
understand the mixing and segregation of those particles.

Among the many other directions to which the lid-driven cavity-flow problem
can be extended is the effect of compressibility, in particular, for shear-driven open
cavities. Bergamo et al. [34] have shown that compressibility has a stabilizing effect
on the two-dimensional instability of lid-driven cavity flow. This was confirmed by
Ohmichi and Suzuki [243] who offered an explanation for the stabilization in terms
of baroclinic torque and vorticity dilatation. Magnetohydrodynamic convection in
lid-driven cavities including heating has been considered by Chatterjee [63], where
the magnetic field was oriented normal to the moving wall. Shatrov et al. [295] inves-
tigated the three-dimensional instability of the lid-driven cavity flow in a cavity with
a square cross section when the magnetic field is aligned parallel to the moving lid.
Typically, the magnetic field suppresses the flow instability, but several instability
modes were found at Reynolds numbers of the order of Re = O(3 × 103). Further-
more, different material laws are of interest. Non-Newtonian cavity flows have been
considered [136], and elastic instabilities in cavity flows were investigated [137,
251–253]. Other investigations were devoted to viscoplastic flow [98] and nematic
polymers [332], the latter of which exhibit a sea of defects in the orientation field.
Also cavity flows of granular media have been subjects of investigation. For instance,
Kneib et al. [190] used a discrete-element method (DEM) to study force fluctuations
on the walls. Finally, lid-driven cavity flows have been studied in saturated porous
media [5, 248], also including a heated insert [246].

Due to the multitude of publications the coverage of the above specialized fields
is far from comprehensive. The reader should also be aware of the large body of
literature on cavity flows of nanofluids and on cavity flows which combine various
forces such as mixed convection, inserts, internal heat sources, non-Newtonian fluids
and/or magnetohydrodynamic effects.
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11 Conclusions and Perspectives

The lid-driven cavity problem provides a very rich multitude of fundamental fluid
mechanics. Owing to its popularity, also for numerical benchmarking, a wealth of
results has been obtained. Nevertheless, quite a number of questions are left open
and present challenges for future investigations.

The stability and transition scenario in confined systems is still a huge challenge.
In particular, the dependence of the flow on the spanwise confinement, given by
the span aspect ratio Λ, is largely unexplored. Promising approaches to the global
stability analysis of three-dimensional flows in confined geometries are due toGómez
et al. [126, 127], who demonstrated the applicability of matrix-free methods to this
class of problems.

Another aspect which has recently received increasing attention is the Lagrangian
topology and the characterization of the flow kinematics. These flow properties,
along with chaotic and regular regions of the flow, determine the mixing properties.
Owing to the high accuracy required, corresponding numerical computations are
quite expensive for three-dimensional flows. Only in recent years it has become
possible to tackle the problem of streamline topology in steady three-dimensional
flows [164, 277].

Related to Lagrangian flow structures, the dynamics of finite-size particles is
still an open problem. In confined geometries the particle–wall and particle–particle
interaction calls for an accurate treatment which can be extremely expensive com-
putationally if fully resolving methods are employed [275, 276].

For both, to unravel the physics and to test computational techniques, benchmarks
are indispensable. As computing power grows and numerical techniques develop,
classical benchmarks such as the two-dimensional steady cavity flow can only be a
first step. Even if two-dimensional Hopf bifurcations cannot be observed experimen-
tally, because three-dimensional instabilities arise at much lower Reynolds numbers,
the sequence ofHopf bifurcations in the two-dimensional lid-driven cavity (Sect. 9.1)
provides an interesting scenario of transition to turbulence. Therefore, an accurate
prediction of two-dimensional cavity flows at Re = O(104), multiple solutions and
bifurcation points remain challenging tasks.

Another demanding test case for advanced numerical methods is the three-
dimensional flow in a lid-driven cube. It can be expected that many more dis-
tinguished solutions of the Navier–Stokes equations exists for Re > 2000 which
can be expected to be unstable, but affect the flow dynamics. Moreover, for three-
dimensional turbulent cavity flow at Re = 104 and higher, it would be useful to
define a general test case and observables of interest to be monitored. Thus far, the
few available investigations for Re = 12000 have yielded an acceptable agreement
between spectral and LES results [50].

Yet another candidate for benchmarking is the streamline topology in three-
dimensional flows. A well-suited test case seems be the steady flow in a cube at
an intermediate Reynolds number, say Re = 300, for which the locations and peri-
ods of closed streamlines could be compared among different numerical approaches.
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Finally, previous investigations have shown that the accuracy of numerical cal-
culations of the lid-driven cavity flow clearly benefits from a dedicated treatment
of the inherent singularities, e.g. by use of the singularity subtraction method [47].
Therefore, it can be recommended for future investigations to make use of one of the
approaches described to handle the discontinuities of the boundary conditions. Based
on the above considerations, it can be expected that the lid-driven cavity problem
will remain an important paradigmatic system for fluid mechanics research and for
numerical fluid mechanics, in particular, in the foreseeable future.
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