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Abstract. Social network analytic approaches have been previously
proposed to identifying key metrics of physician care coordination. Opti-
mizing care coordination is a primary national concern for which yields
significant cuts in medical care costs. However, the proposed metric-
termed ‘care density’ for estimating care coordination is not completely
accurate. Our objective is to compare the accuracy of the previously
proposed ‘care density’, with our proposed ‘weighted care density’, ‘time
varying care density’, and ‘time varying weighted care density’ in terms
of predicting the cost of care. Our proposed metrics are based on the
former care density, however, takes other variables into consideration,
mainly patient hospitalization time frames and number of physician vis-
itations. Our findings suggest that physicians coordinating over short
time spans spike the cost of care above normal.
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1 Introduction

Social networks belonging to a category of complex systems termed ‘scale-
free’ [15], are known to follow a power law distribution for which the probability
p(K) for nodes to have neighbors is of the form p(K) ∼ Kγ . The power law sug-
gests that the evolution of such networks occurs in a sparse [7] manner, but more
importantly, they exhibit “topological patterns”. Similarly with other naturally
occurring topologies, such as networks describing metabolic reactions in the ani-
mal cell, the World Wide Web and gene regulatory networks [4]. Essentially, such
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network interactions exhibit particular behaviors having inner construction that
distinguish there structural properties, and are not to be equaled with randomly
generated networks using the famous Erdös-Rényi model [8] and the small world
properties model of Watts and Strogatz [17].

The concepts of social network analytics have been applied extensively in the
medical field attempting to estimate the level of collaboration among physicians
sharing patients [14] and the factors affecting their influential views of primary
medical practices [10]. Patient sharing increases the chances for interactive com-
munications as well as higher levels of information exchange [5] and increase their
chances of receiving efficient synchronized care. In fact, care coordination has
been identified as one of the nation’s most concerned area of research [1,3,13].
This motivated our work here, for which we try to understand the correlation
between different metrics that can be useful in evaluating the level of care coor-
dination in the medical field.

In doing so, we examine the correlation between the previously proposed
care coordination measure, ‘care density’ [14], and the costs of medical care
for patients admitted for suffering from pneumonia –a disease for which the
estimated deaths combined with influenza was 53,582 for 2009, and for which
care coordination is likely important [2]. We try to enhance the accuracy of the
proposed metric by considering additional variables to the measure, mainly, the
time frames for which the patients have been admitted and the number of distinct
patient-physician visits. We propose, namely: (1) the weighted care density, (2)
the time varying care density, and (3) the time varying weighted care density, in
addition to the former care density and examine their cost of care correlations
as well. Though previously suggested that increased synchronized care yields
significant cuts in costs of care [14], our findings suggest that this might not be
the case when considering hospitalization time frames of the patients.

In order to determine the most accurate care coordination measure, we
extracted additional data per patient as discussed in the Data section, which are
relevant for constructing support vector regression (SVR) models as discussed in
the Methods section. Our SVRs model the effects of the different patient features
(extracted data) when combined with the care coordination metrics to predict-
ing the cost of care. We construct 4 different SVRs, each considering different
care coordination metrics as distinct features per patient and the corresponding
accuracy of the models are recorded in the Results section.

2 Data

Our records for patients suffering from pneumonia were provided by The Medical
Center of Virginia (MCV). The data contains two spread sheets: (1) one contains
33920 records of different patient-physician visitations, (2) the other indexes the
different codes for the type of patient discharge. The data encompasses 2324
pneumonia patients and 1506 providers operating between the dates: the 30th
of September 2007 and the 11th of April 2008. For the time being, we employ
patients feature extractions from the first document and we consider all types
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of patient discharges the same. Computational programs have been constructed
for parsing (and calculating if necessary) the different features pertaining to
each patient, their notations and descriptions are portrayed in Table 1. Other
information including race and gender of the patient, specialty of the provider,
the patient’s source of admission and the payer IDs are available within the
spreadsheet but were not considered.

Table 1. Patient features

Data notation Content description

#Doctors Number of different physicians visited by patient

#Interventions Number of different physician-patient visitations

#RX Number of different medical prescription type visits

#LAB Number of different lab orders type visits

#ADM Number of other types of medical admitted visits

LOS The length of hospitalization in days

Cost The total cost of hospitalization

t The time the patient admitted relative to t0*
∗ t0 is the time when patient was first admitted

3 Methods

3.1 2-Mode Bipartite Social Netwok

Calculating the care density requires forming a social network of patients and
physicians known as the 2-mode bipartite social network- a network formed by
assigning physicians as groups and patients they treat as subscribers to the
groups [11,12,16]. Therefore, our network can be expressed by a set of doctors
D and a set of patients P , together (P ∪ D) = N , were N denotes the set of
nodes of our network. We denote a binary relationship “Visits” as;

Rv = {< p, d > |∃ p visits d or d provides for p}, (1)

wherein p ∈ P and d ∈ D. Hence for < i, j >∈ Rv, the value of the incidence
matrix Gij = 1 for a visit and 0 otherwise. In the weighted version of the 2-mode
bipartite graph, the value of Gij would be the number of times patient i visited
doctor j. Note that G’s number of rows equal to the number of patients and
columns equal to the number of physicians.

3.2 Care Density

The Care Density (CD) [14] calculates an approximated value for the collabora-
tion among doctors that a particular patient has visited during his entire stay
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in the hospital. For a particular patient p who has visited nd doctors, CD can
be computed as follows;

CDp =
∑m

i=1 wp,i

nd(nd − 1)/2
(2)

CD has proven to be correlated to the reduction in the mean charges of hospital-
ization as reported in a study involving patients with Diabetes and Congestive
Heart Diseases [14]. Consider Fig. 1, patient p2 visits d1, d2 and d3 during his/her
entire stay which yields a 3 possible provider combination, therefore the denom-
inator is 3. Between d1 and d2, 2 patients are shared, similarly with d2 and
d3, while d1 and d3 share 1 patient. Therefore the physicians share a total of 5
patients over 3 possible pairs of doctors, CD = 1.67. We hypothesize that CD
is not an accurate measure for physician’s collaboration as it does not consider
the different time windows at which patients were admitted and discharged.

Fig. 1. A representation of a 2-mode bipartite graph between doctors (d1-d3) and
patients (p1-p4).

3.3 Time Varying Care Density

Now, consider introducing two time windows t0−t1 and t1−t2 in Fig. 2, such that
p1 and p2 have been admitted and discharged before t1, and consider p3 and p4
being admitted after t1. Doctors d2 and d3 share p3 after p2 was discharged and
the effects of their collaboration post p2s treatment should not be incorporated
in the CD of p2. Similarly with p3, CD should not account for the effects of
the doctor’s collaboration before p3 got admitted. Moreover, it makes no sense
to try correlating the charges of a particular patient based on his provider’s
activity after a patient has been discharged and billed. Therefore the existing
implementation of CD over estimates the collaboration of the doctors, which
lead us to introducing the Time Varying Care Density (TCD). TCD excludes
doctor’s collaborations that occur outside the patient’s time window. Essentially,
p2 will lose the effect of doctors d2 and d3 sharing patient p3, which brings down
the CD from 1.67 to 1.33, or TCD = 1.33.
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Fig. 2. A representation of the effects of introducing time windows to the social network
of Fig. 1.

3.4 Weighted Care Densities

So far (in the above examples) we have considered the un-weighted incidence
matrix, that is, we have yet to considered the number of visits patients have
committed to doctors. In other words, we have considered CD to be the same
for the following scenarios of 2 doctors sharing a patient: (Scenario 1) p1 visits
d1 9 times and d2 1 time, and (Scenario 2) p1 visits d1 5 times and p1 visits d2
5 times. Both scenarios have a sum of visits equal to 10 but ideally d1 and d2
have a tendency to collaborate more in the second, i.e. CD should be higher in
the first scenario.

To account for the weights (visits), we consider the collaboration between
2 physicians to be a maximum when both doctors have equal visits for all
their common patients, and decreases as the difference between the numbers
of visitations increase. The collaboration between a pair of doctors can be esti-
mated using

wp, i = 1 − 2
∣
∣
∣
∣
1
2

− v1
v1 + v2

∣
∣
∣
∣ (3)

where wp, i is the value of a single operation of the summation of the numerator
of CDp. v1 and v2 constitute the sum of visits for the common patients between
d1 and d2 respectively. From here on we refer to the weighted care density as
WCD and the time varying weighted density as TWCD.
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3.5 Support Vector Regression Modeling

SVR is a multidimensional modeling technique which tries to fit the best fit
curve or hyper plane to recorded experimental data with minimal error difference
between the actual data and the curve’s estimation. Normally, the recorded data
will depend on a set of features (or dimensions) such as in our case, were we try
to model the total charges per patient and their dependence on the patient’s
features listed in Table 1. Note that time windows are not a patient feature used
in the SVR, but are required for calculating the different care densities which
are relevant patient dimensions.

As a useful method of modeling, many tools support SVRs. WEKA [9] is a
user friendly GUI which requires the user to list the data and their corresponding
features in a column format having the actual values (values to be estimated by
the hyper plane) on the last column of the spreadsheet. Other tools come in the
form of programming libraries such as LibSVM [6], which requires the user to
write coding commands in addition to separating the actual values in a separate
vector in the same order of the feature matrix. The feature matrix X should be
of size p × f for p patients and f features such that X11 represents the value of
the 1st feature of the 1st patient; X12 represent the value of the 2nd feature of
the 1st patient and so up to Xpf . The actual data should be stored in the same
order of the patients in a vector y of size 1 × p. Ultimately the SVR gives a best
fit with approximated values;

ya = wX + b (4)

were w is a 1 × f weights vector, which represents the relative influence of each
feature on the SVR, and b is the bias which represents a constant shift to the
curve. The above process is referred to as training, while testing w and b on
foreign data is referred to as prediction.

In order to test the SVR, we use a 10 k-fold cross validation technique. The
data is divided into 10 different chunks of 90 percents and 10 percents. The
training is performed on the 90% portion and the corresponding w and b are
used for prediction of the remaining 10%. The error of the 10% is accumulated
each time using;

e = e +
[ ||y − ya||

y
× 100

]

(5)

then averaged across the 10 folds to give the cross validation error. We compare
the 4 SVR accuracies in terms of predicting the cost of hospitalizations using the
patient features listed in Table 1 (excluding cost and t) plus an additional feature
for each model, that is the different care densities (CD, WCD, TCD, TWCD).

4 Results

Results of the un-weighted and weighted mean care densities, recorded in Table 2,
show that higher care density receivers have lower average costs of hospitaliza-
tions. Because the care densities are skewed, we divide the statistical brackets
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into tertiles of almost equal numbers of data points: lower, middle and upper. In
both (CD and WCD) cases, there is no strong correlation between the average
age of the patients and the average CD values.

Table 2. Features of pneumonia patients, stratified by care densities

Un-weighted Weighted

Mean

(SD) Lower Middle Upper Lower Middle Upper

N 768 765 751 739 755 790

Care 3.32 7.53 20.22 2.68 6.03 13.94

density (1.37) (1.31) (12.86) (1.09) (1.06) (6.05)

Age 48.82 47.52 50.85 49.34 47.58 49.96

(23.26) (24.50) (21.93) (22.89) (24.52) (22.5)

#Doctors 11.77 12.09 6.4 12.81 12.71 6.83

(9.08) (7.94) (4.57) (10.97) (8.30) (4.83)

#inter- 16.74 17.01 8.63 18.47 18.00 9.22

ventions (13.87) (12.39) (7.02) (17.18) (12.97) (7.41)

LOS 15.39 13.01 6.22 20.19 14.09 6.84

(15.03) (12.4) (6.79) (44.14) (13.88) (7.68)

Charges* 102K 96K 39K 141K 107K 44K

(119K) (113K) (64K) (252K) (137K) (72.8K)
∗K: ×1000

On the other hand, considering the time frames reverses every correlation
mentioned above as depicted in Table 3. The mean costs of hospitalizations as
well as mean number of interventions and mean LOS increase with respect to
an increase in the TCD values. The higher the LOS, the higher the TCD simply
based on the way TCD is calculated. Moreover, there is a direct correlation
between the mean age and the mean TCDs, i.e. more care is required for elderly
patients. It is also interesting to notice that the standard deviations of the CDs
for each tile decrease as we add more variables to the metric, meaning SDCD >
SDWCD > SDTCD > SDTWCD.

In order to determine the most suitable metric, we constructed an SVR using
the 6 features: #Doctors, #Interventions, #RX, #LAB, #ADM, and LOS and
compared it with the other 4 SVRs discussed above that have an additional CD as
a 7th feature. As displayed in Table 4, All 4 SVRs show less cross validation error
prediction than that of the SVR which excludes the CD. Though the difference
in cross validation error is not so significant, we can still see a slight decrease in
the cross validation errors as we consider more variables (time and weight) to
affect the CD outcome.
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Table 3. Features of pneumonia patients, stratified by time varying care densities

Un-weighted Weighted

Mean

(SD) Lower Middle Upper Lower Middle Upper

N 754 773 759 756 781 749

Care 1.16 1.81 3.27 0.99 1.55 2.78

density (0.3) (0.21) (1.07) (0.26) (0.18) (0.9)

Age 46.7 48.3 52.1 47.31 48.47 51.42

(24.63) (23.79) (20.99) (24.22) (24.04) (21.28)

#Doctors 8.64 9.45 12.25 8.65 9.67 12.05

(7.21) (6.98) (8.93) (7.25) (7.04) (8.94)

#inter- 11.78 13.13 17.59 11.96 13.43 17.17

ventions (10.91) (10.63) (13.85) (10.97) (10.75) (13.9)

LOS 8.91 10.57 15.26 8.86 10.84 15.1

(10.07) (11.92) (14.4) (10.06) (12.22) (14.24)

Charges* 49.6K 67.5K 120KK 50.1K 68.8K 119K

(75.3K) (90.9K) (130K) (75.7K) (94K) (128K)
∗K: ×1000

Table 4. Prediction errors for the different SVRs

SVR type Cross validation error

Excluding CD 40.1%

Using CD 37.7%

Using WCD 37.7%

Using TCD 36.7%

Using TWCD 36.1%

5 Conclusion and Discussion

The original hypothesis by Pollack et al [14] is true when the care density values
do not consider the time windows, however the time windows flaws the hypoth-
esis. The original hypothesis considered an expanded time window that does
not account for the stress exerted by the physicians, in fact, the effort exerted
by a pair of doctors is always the same. However, collaborating in tight time
spans reveals the urgency of the patient, and increases the stress amongst the
physicians, which should normally bump up the cost of hospitalization.

The weighted time varying care density is the most accurate metric for assess-
ing the physician collaboration. All 4 SVRs that consider one of the CDs as
a 7th feature are more accurate than the 6 feature SVR, however, the SVR
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which considers the TWCD is most accurate. Moreover, TWCD accounts for the
visitations as well as the time windows, which give a more accurate estimation of
the relative efforts exerted by physician pairs. The final costs of hospitalization
should not be accountable for the activities of the physician past the patients
discharge dates. Furthermore, TWCD gives a fair correlation between the age of
the patient and the urgency of the disease.

It is important to note that the weight vector w of the SVRs show that the
relative effect of the LOS feature on the SVR supersedes the rest of the features
by a huge margin (including CD). This explains the slight, but not significant
decrease in errors as we add more variables to the care density metric.

A more accurate SVR modeling approach would account for many other
features which can influence the patient expenses. Firstly, the type of payer or
insurance policy can be grouped to fall under 3 or 4 types of insurance policy,
for which we can add a feature per type of policy, or model the data separately
according to which policy type they fall onto. However for this kind of analysis
we would require 3 to 4 times the amount of patients at hand. Similarly with
the type of discharges, a study can be made to add a feature for discharges
that are similar, such as; (1) discharged to another short term hospital and (2)
transferred to another type of inpatient care institution. Thirdly, a feature can
be added to the SVR which assesses the severity of the Pneumonia, for instance,
a moderate case can take a value of 2.0 and a severe case a 5.0.
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