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Abstract. The aim of the paper is to introduce the concept of fuzzy
power set in a universe of sets and investigate its basic properties. We
focus here on an analysis of Cantor’s theorem for fuzzy sets, which states
in the set theory that the cardinality of a set is strictly smaller then the
cardinality of its power set. For our investigation of Cantor’s theorem
we chose two types of equipollency of fuzzy sets, particularly, the binary
Cantor’s equipollence and its graded version.
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1 Introduction

In the elementary set theory, the cardinality of the power set of a set x is strictly
greater than the cardinality of the original set x. Symbolically, we write |x| <
|P(x)|, where |x| denotes the cardinality of the set x and |P(x)| the cardinality
of the power set of x. This fundamental result is known as Cantor’s theorem and
has been used to demonstrate that there are sets having cardinality greater than
the infinite cardinality of the set of natural numbers. In literature on the set
theory, Cantor’s theorem is sometimes formulated as there is no function from x
onto P(x) or x is not equipollent P(x), which is also referred as a more general
form of Cantor’s theorem. For the purpose of this contribution, we consider the
last formulation of Cantor’s theorem.

In the standard fuzzy set theory, we can distinguish two concepts: the power
set and the fuzzy power set of a fuzzy set A over a universe of discourse x.
The power set of a fuzzy set A : x −→ [0, 1] is the classical set, denoted by
F (A), consisting of all fuzzy subsets of A, where a fuzzy set B : x −→ [0, 1]
is a fuzzy subset of A if B(z) ≤ A(z) holds for any z ∈ x. A generalization of
this concept can be found in the theory of categories under the name of (fuzzy)
powerset operator [10,12]. An extension of the power set of a fuzzy set to the
fuzzy power set has been proposed by Bandler and Kohout in [1]. In this paper,
the fuzzy power set of a fuzzy set A, denoted by P(A), is defined as a fuzzy set
P(A) : F (x) −→ [0, 1], where F (x) is the power set of the fuzzy set x (each
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classical set can be considered as a special fuzzy set), and P(A)(B) expresses
the membership degree in which B belongs to the power set of A, or equivalently,
the truth degree of the statement saying that B is a fuzzy subset of A. Using a
fuzzy implication operator → on [0, 1],1 Bandler and Kohout defined the value
of P(A)(B) as

P(A)(B) =
∧

z∈x

(B(x) → A(x)), (1)

where
∧

denotes the infimum operation in [0, 1]. One can see that B ∈ F (A)
if and only if P(A)(B) = 1. The fuzzy power sets can be extended also for
fuzzy sets whose membership degrees are interpreted in more general algebras
of truth values. As an example, let us mention the development of lattice-valued
set theory provided by Takeuti and Titani in [11] (see also [4]).

In this contribution, we deal with fuzzy sets whose universes of discourse
belong to a given universe of sets (e.g., the class of all sets or finite sets; or
a set known as a Grothendieck universe). Note that the universe of sets has
been introduced in [8] to form a framework for development of fuzzy set theory.
The concept of fuzzy power set, which is sound in each universe of sets, has
been introduced in [7] and admits only classical (crisp) sets in the universe of
discourse of the fuzzy power set. This restriction to crisp sets ensures that each
fuzzy power set becomes a fuzzy set in the given universe of sets, which is not
true in general, if one admits also fuzzy sets as in the case of Bandler-Kohout
definition. A typical example is the fuzzy power set of a fuzzy set over a finite
set with the membership degrees interpreted in an infinite algebraic structure
of truth values, which does not belong to the universe of all finite sets. For our
analysis of Cantor’s theorem within the fuzzy set theory, we introduce two types
of equipollence for fuzzy sets. The first type of equipollence is a binary class
relation on the class of all fuzzy sets in a universe of sets stating that two fuzzy
sets have or have not the same cardinality. The second type of equipollence is
a graded version of the first type (a fuzzy class relation) and its definition has
been proposed in [8] and further developed in [5,6] (see also [7] for finite fuzzy
sets).

The main goal of this contribution is to show that Cantor’s theorem is valid
(valid in a weaker form) for fuzzy sets and proposed fuzzy power sets in each
universe of sets if the first (second) type of equipollence is considered.

The paper is structured as follows. The next section introduces basic concepts
that are used in the main part of the contribution. The third section is devoted to
Cantor’s theorem whose validity is verified for Cantor’s equipollence. The fourth
section provides the proof of Cantor’s theorem for graded Cantor’s equipolence.

1 The fuzzy implication operator on [0, 1] is often modeled in fuzzy logic as a residuum
operation on a complete residuated lattice on [0, 1] (see Subsect. 2.1).
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2 Preliminaries

2.1 Algebraic Structures of Truth Values

A complete linearly ordered residuated lattice is considered as a structure of
membership degrees for fuzzy sets. Recall that a residuated lattice is an algebra
L = 〈L,∧,∨,⊗,→ ⊥,
〉 with four binary operations and two constants, for
which it holds that

(i) 〈L,∧,∨,⊥,
〉 is a bounded lattice, where ⊥ is the least element and 
 is
the greatest element of L, respectively,

(ii) 〈L,⊗,
〉 is a commutative monoid,
(iii) the pair 〈⊗,→〉 forms an adjoint pair, i.e.,

a ≤ b → c if and only if a ⊗ b ≤ c (2)

holds for each a, b, c ∈ L (≤ denotes the corresponding lattice ordering).

A residuated lattice is said to be complete (linearly ordered) if the correspond-
ing lattice 〈L,∧,∨,⊥,
〉 is a complete (linearly ordered) lattice. Details and
examples of residuated lattices can be found in [2,9].

2.2 Fuzzy Sets in a Universe of Sets

A fuzzy set is usually defined as a function from a fixed non-empty universe of
discourse to a set (lattice) of truth values. Nevertheless, the fuzzy set construc-
tions like fuzzy power sets or exponentiation of fuzzy sets requires a system of
universes of discourse rather than one fixed universe (cf., [3]). This motivated
us to introduce a universe of sets over a complete residuated lattice as a basic
framework for our fuzzy set theory [8]. In what follows, we use x ∈ y to denote
that the set x is a member of set y, further, we use P(x), D(f) and R(f) to
denote the power set of a set x, the domain and the range of a function f ,
respectively.

Definition 1. Let L be a complete linearly ordered residuated lattice. A universe
of sets over L is a non-empty class U of sets in the Zermelo–Fraenkel set theory
with the axiom of choice (ZFC) satisfying the following properties:

(U1) x ∈ y and y ∈ U, then x ∈ U,
(U2) x, y ∈ U, then {x, y} ∈ U,
(U3) x ∈ U, then P(x) ∈ U,
(U4) x ∈ U and yi ∈ U for any i ∈ x, then

⋃
i∈x yi ∈ U,

(U5) x ∈ U and f : x −→ L, then R(f) ∈ U,

where L denotes the support of L.

Basic examples of the universes of sets are the classes of all or finite sets. If the
ZFC is extended by the axiom admitting the existence of strongly inaccessible
cardinals, one can introduce a universe of sets over L to be a Grothendieck
universe.
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Definition 2. Let U be a universe of sets over L. A function A : z −→ L (in
ZFC) is called a fuzzy set in U if z ∈ U.

Let A : z −→ L be a fuzzy set in U. The domain z = D(A) is called the
universe of discourse of A, and the set S (A) = {x ∈ z | A(x) > ⊥} the support
of fuzzy set A. Further, for α ∈ L, the sets Aα = {x ∈ z | A(x) ≥ α} and
Aα = {x ∈ z | A(x) = α} are called the α-cut and α-level of A, respectively.
An element x ∈ z is said to be negligible in A whenever x ∈ S (A). A fuzzy
set A is said to be crisp and referred to a crisp set if A(x) ∈ {⊥,
} for any
x ∈ z. The empty function ∅ : ∅ −→ L is called the empty fuzzy set. One can
see that the empty function as a vacuous fuzzy set is crisp, since the assumption
on a crisp set is trivially satisfied. If x ⊆ y are sets in U, we use χx to denote
the characteristic function of x on y, i.e., χx : y −→ L, which is defined by
χx(z) = 
 if z ∈ x, and χx(z) = ⊥, otherwise. A fuzzy set A is a fuzzy subset
of B in U provided that D(A) ⊆ D(B) and A(a) ≤ B(a) for any a ∈ D(A). It is
easy to see that ⊆ is a partial ordering on the class F(U) of all fuzzy sets in U.

We say that two fuzzy sets A and B in U are identical (symbolically, A = B)
if D(A) = D(B) and A(a) = B(a) for any a ∈ D(A). Moreover, A and B are
identical up to negligibility (symbolically, A ≡ B) if S (A) = S (B) and A(a) =
B(a) for any a ∈ S (A). One can observe that the relation “to be identical up to
negligibility” is an equivalence on F(U). We use cls(A) to denote the equivalence
class of all fuzzy sets from U being identical with A up to negligibility.

2.3 Functions Between Fuzzy Sets

Let Fcs and Fcs(x, y) denote the class of all functions in U and the set of all
functions from x to y, respectively. Let x, y, a, b ∈ U such that a ⊆ x and b ⊆ y.
By the definition, a function f : x −→ y is a function from a to b if f(z) ∈ b for
any z ∈ a or

χa(z) ≤ χb(f(z)) (or χa(z) → χb(f(z)) = 
) (3)

for any z ∈ a, if we consider the characteristic functions of the sets a and b.
Replacing the characteristic functions in condition (3) by fuzzy sets, we obtain
a natural definition of a function between fuzzy sets.

Definition 3. Let A,B ∈ F(U), and let f ∈ Fcs. We say that f is a function
from A to B (symbolically f : A −→ B) if f ∈ Fcs(D(A),D(B)) and

A(z) ≤ B(f(z)) (or equivalently A(z) → B(f(z)) = 
) (4)

for any z ∈ D(A).

The set of all functions from A to B is denoted by Fcfs(A,B). Note that
the empty function from the empty fuzzy set to an arbitrary fuzzy set trivially
satisfies condition (4) and thus belongs to Fcfs(A,B). Obviously, the composition
of functions g ◦ f ∈ Fcfs(A,C), whenever f ∈ Fcfs(A,B) and g ∈ Fcfs(B,C).
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A function f : x −→ y in U is a 1-1 correspondence between x and y if there
exists a function f−1 : y −→ x (an inverse function) for which f−1 ◦ f = 1x

and f ◦ f−1 = 1y, where 1x and 1y denote the identity functions on x and y,
respectively. Similarly, we define the 1-1 correspondence between fuzzy sets.

Definition 4. Let A,B ∈ F(U), and let f ∈ Fcfs(A,B). We say that f : A −→
B is a 1-1 correspondence (symbolically f : A 1-1

corr−→ B) if there exists f−1 : B −→
A such that f−1 ◦ f = 1D (A) and f ◦ f−1 = 1D (B).

The set of all 1-1 correspondences between fuzzy sets A and B in U is denoted
by Cfs(A,B). Later, we introduce a graded version of 1-1 correspondences that
play a fundamental role in the definition of graded equipollence. An equivalent
definition in terms of 1-1 and onto functions is the following. Denote Fcs1-1

corr(x, y)
the set of all 1-1 correspondences between x and y.

Theorem 1. Let A,B ∈ F(U). A function f : A −→ B is a 1-1 correspondence
between fuzzy sets if and only if f ∈ Fcs1-1

corr(D(A),D(B)) and A(a) = B(f(a))
for any a ∈ D(A).

Proof. (⇒) Let f : A−→B be a function such that there exists f−1 : B−→A
such that f−1 ◦ f = 1D (A) and f ◦ f−1 = 1D (B). Then, f is a 1-1 function of
A onto B. Since A(a)→ B(f(a)) = 
 for any a ∈ D(A) and simultaneously
B(b) → A(f−1(b)) = 
 for any b ∈ D(B), we find that

(A(a) → B(f(a))) ∧ (B(f(a)) → A(a)) = A(a) ↔ B(f(a)) = 

for any a ∈ D(A); therefore, A(a) = B(f(a)) for any a ∈ D(A).

(⇐) Since f is a 1-1 function of D(A) onto D(B), there exists f−1 : D(B) −→
D(A) such that f−1 ◦ f = 1D (A) and f ◦ f−1 = 1D (B). To finish the proof, we
have to prove that f−1 is a function of B to A, i.e., (4) is satisfied for f−1. Let
b ∈ D(B), and let a ∈ D(A) such that f(a) = b. Then, we find that

B(b) → A(f−1(b)) = B(f(a)) → A(a) = A(a) → A(a) = 
,

where we used A(a) = B(f(a)). ��
Hence, its easy to see that the composition of functions g ◦ f ∈ Cfs(A,C),

whenever f ∈ Cfs(A,B) and g ∈ Cfs(B,C).
Let f : x −→ y be a function between sets, and let z ⊆ x. The image of

z under f is defined by f→(z) := {b ∈ y | ∃a ∈ x & f(a) = b}. The image
of a fuzzy set under a function is a straightforward extension of the previous
definition and is given by Zadeh’s extension principle as follows.

Definition 5. Let x, y ∈ U, and let f : x −→ y be a function. Let A : x −→ L
be a fuzzy set in U. The image of A under f is denoted by f→(A) and defined by

f→(A)(b) :=
∨

a∈x;f(a)=b

A(a) (5)

for any y ∈ y.
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2.4 Functions Between Fuzzy Sets in a Certain Degree

Let ϕ be a formula in fuzzy set theory. Then [ϕ] denotes the truth degree in
which the formula ϕ is true, which is interpreted in the residuated lattice L.
For example, the truth degree [f ∈ Fcs(x, y)] expresses how it is true that the
function f is a member of the set Fcs(x, y). Of course, in this case, the truth
degree becomes ⊥ or 
.

Definition 6. Let A,B ∈ F(U), and let f ∈ Fcs. We say that f is a function of
A to B in the degree α provided that

α = [f ∈ Fcs(D(A),D(B))] ⊗
∧

(a,f(a))∈D (A)×D (B)

(A(a) → B(f(a)). (6)

By our convention, [f : A −→ B] denotes the truth degree in which the
function f can be considered as a function from A to B. Let us emphasize that
if f is not a function from D(A) to D(B), then [f : A −→ B] = ⊥ even if the
infimum value in (6) is greater than ⊥. Similarly we define the truth degree of a
correspondences between fuzzy set.

Definition 7. Let A,B ∈ F(U), and let f ∈ Fcs. We say that f is approximately
a one-to-one correspondence between A and B in the degree α provided that

α = [f ∈ Fcs1-1
corr(D(A),D(B))] ⊗

∧

(a,f(a))∈D (A)×D (B)

(A(a) ↔ B(f(a)). (7)

The value [f : A 1-1
corr−→ B] denotes the truth degree in which the function f can

be considered as a one-to-one correspondence between fuzzy sets A and B.

2.5 Fuzzy Power Sets

As we have mentioned in Introduction, the fuzzy power set for fuzzy sets is
considered to be a fuzzy set over the set of appropriate fuzzy sets. Here, we
propose an alternative definition that straightforwardly generalizes the classical
approach to the power set and it is sound in our fuzzy set theory.

Definition 8. Let A ∈ F(U), and x = P(D(A)). The fuzzy set P(A) : x −→ L
defined by

P(A)(y) =
∧

z∈D (A)

(χy(z) → A(z)) (8)

is called the fuzzy power set of A, where χy is characteristic function of y on
D(A).

One can see that the previous definition copies the Bandler-Kohout definition
(1) with the restriction to crisp sets. As a simple consequence of (8), we obtain
a simple expression of the membership degrees of fuzzy power set

P(A)(y) =
∧

z∈y

A(z). (9)
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The following statement shows that the fuzzy power sets preserve the class equiv-
alence of being identical up to negligibility.

Theorem 2. P(A) ≡ P(B), whenever A ≡ B.

Proof. It can be found in [7]. ��
Example 1. Let L�L be the �Lukasiewicz algebra, and let A = {1/a, 0.4/b}. Then,

P(A) = {1/∅, 1/{a}, 0.4/{b}, 0.4/{a, b}}.

Moreover, P(∅) = {1/∅}, since P(∅)(∅) =
∧ ∅ = 1.

Example 2. Let L be a complete residuated lattice on [0, 1], let the set of all
natural numbers ω belong to U, and let A : ω −→ L be defined by A(n) = 1/n.
Then, curiously, it holds that |S (A)| = |S (P(A))|. Indeed, one can see that
P(A) assigns the zero truth degree to each infinite subset of ω. Hence, we obtain
that x ∈ S (P(A)) if and only if x is a finite subset of ω. It is well-known that
the set of all finite subsets of ω is countable.2 The statement follows from the
fact that the support of A is a countable set.

Theorem 3. Let A,B ∈ F(U), and let f : A −→ B be a function between fuzzy
sets. Then, the following diagram commutes

A
f−−−−→ B

iA

⏐⏐�
⏐⏐�iB

P(A) −−−−→
f→

P(B),

where iA, iB are the inclusion functions, i.e., iA(a) = {a} for any a ∈ D(A) and
similarly iB, and f→ is the image function of sets.

Proof. Obviously, iA : D(A) −→ P(D(A)) given by iA(a) = {a} is a function
from A into P(A), since A(a) = P(A)({a}), and similarly iB is a function from
B into P(B). Obviously, the diagram commutes. To finish the proof, we show
that f→ is a function from P(A) to P(B). If x ⊆ D(A), then

P(A)(x) =
∧

a∈x

A(a) ≤
∧

a∈x

B(f(a)) =
∧

b∈f→(x)

B(b) = P(B)(f→(x)),

and the proof is finished. ��
2 For example, we can put λ(n) := {1, . . . , n}. Then

|S (P(A))| = |
⋃

n∈ω

P(λ(n))| ≤ |
⋃

n∈ω

(P(λ(n)) × {n})| ≤ |ω × ω| = |ω|,

where P(λ(n) is the power set of λ(n) and we used that |P(λ(n))| < |ω| for any
n ∈ ω.
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2.6 Fuzzy Classes

Although the fuzzy sets in U are the major objects in our theory, it is useful,
similarly to the set theory, to introduce the concept of fuzzy class in U.

Definition 9. Let U be a universe of sets over L. A class function A : Z −→ L
(in ZFC) is called a fuzzy class in U if Z ⊆ U.

Note that each fuzzy set is a fuzzy class because of (U1), but not vice versa.
Hence, a fuzzy class A is said to be proper if there is no fuzzy set which is identical
to A up to negligibility (the relation ≡ is extended here to fuzzy classes).

Fuzzy class relations are defined similarly to fuzzy set relations, only fuzzy
sets are replaced by fuzzy classes. For the purpose of this paper, we introduce
the fuzzy class equivalence and fuzzy class partial ordering.

Definition 10. A fuzzy class relation R : Z × Z −→ L is called a fuzzy class
equivalence if for any a, b, c ∈ Z, it satisfies

(FE1) R(a, a) = 
,
(FE2) R(a, b) = R(b, a),
(FE3) R(a, b) ⊗ R(b, c) ≤ R(a, c).

3 Cantor’s Equipollence

In set theory, two sets are equipollent (equipotent, equivalent, bijective, or
have the same cardinality, etc.) if there exists a 1-1 correspondence between
them. This definition was proposed by G. Cantor. Formally, the class relation of
equipollence denoted by ∼ is introduced on the class of all sets as follows:

x ∼ y iff ∃f : x 1-1
corr−→ y. (10)

Obviously, the equipollence of sets is a class relation extending the relation to
be identical sets. One can see that the substitution of fuzzy sets for the sets in
(10) does not reflect the idea that fuzzy sets being identical up to negligibility
should be also equipollent. Furthermore, the restriction to particular fuzzy sets
in (10) the consistency of our theory is broken as the following simple examples
demonstrate.

Example 3. Let x = {a, b} and y = {c, d, e}. Let A = χx and B = χz, where
z = {c, d} ⊂ y. Obviously, the set Fcfs(A,B) is empty because there is no 1-1
correspondence between the domains of A and B; hence, A ∼ B. On the other
hand, there is a function f such that f : x 1-1

corr−→ z; therefore, naturally it should
be A ∼ B.

Example 4. Let ω be the set of natural numbers, and assume that ω ∈ U. Let
L�L be the �Lukasiewicz algebra, and let N,O : ω −→ [0, 1] be fuzzy sets defined
by

N(n) = 1 and O(n) =
{

1, if n is an odd number,
0, otherwise,
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for any n ∈ ω. Obviously, the set Fcfs(N,O) is empty even if there exists a 1-1
correspondence f : ω −→ ω; hence, N ∼ O. On the other hand, the sets of odd
numbers and natural numbers are equipollent; therefore, it should be N ∼ O.

To overcome the aforementioned difficulties and simultaneously to accept
fuzzy sets that differ up to negligible elements to be identical we propose the
following definition of the equipollence of fuzzy sets.

Definition 11. Let A,B ∈ F(U). We say that A and B are Cantor’s equipollent
(symbolically A c∼ B) provided that there exist A′ ∈ cls(A), B′ ∈ cls(B), and
f ∈ Fcs such that f : A′ 1-1

corr−→ B′.

The following theorem states a necessary and sufficient condition reducing the
verification of Cantor’s equipollence to two specific fuzzy sets that are identical
to the original ones up to negligibility.

Theorem 4. Let A,B ∈ F(U), and let C ∈ cls(A) and D ∈ cls(B) such that
S (C) = D(C) and S (D) = D(D). Then A c∼ B if and only if there exists
f : C 1-1

corr−→ D.

Proof. If A c∼ B, then there exist A′ ∈ cls(A), B′cls(B) and f : A′ 1-1
corr−→ B′. A

simple consequence of Cantor’s equipollence, we find that A′(x) = ⊥ if and only
if B′(f(x)) = ⊥. Hence, f restricted to S (A) must be a 1-1 correspondence
between the supports of A and B such that A(x) = B(f(x)) for any x ∈ S (A).
Therefore, f � S (A) : C 1-1

corr−→ D, and the sufficient part is proved. Since the
necessary part follows immediately from the definition of Cantor’s equipollence,
the statement is proved. ��

The equipollence of sets is a class equivalence. The same holds for the Can-
tor’s equipollence of fuzzy sets.

Theorem 5. The class relation c∼ is a class equivalence on U.

The following lemma provides an equivalent definition of Cantor’s equipol-
lence of fuzzy sets based on the classical equipollence of α-levels.

Lemma 1. A c∼ B if and only if |Aα| = |Bα| for any α ∈ L \ {⊥}.
Proof. (⇒) Let A c∼ B. By Theorem 4, we may assume that the domains and the
supports of A and B coincide. If f : A 1-1

corr−→ B is the respective 1-1 correspondence,
then, for any α ∈ L \ {⊥}, we simply find that Aα = ∅ if and only if Bα = ∅;
otherwise, we have f→(Aα) = Bα. Hence, |Aα| = |Bα| for Aα = ∅. If Aα = ∅,
then f � Aα : Aα 1-1

corr−→ Bα, which implies that |Aα| = |Bα|.
(⇐) Let |Aα| = |Bα| for any α ∈ L \ {⊥}. Since

S (A) =
⋃

α∈L\{⊥}
Aα
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and A(x) = α if and only if x ∈ Aα (note that Aα ∩ Aβ = ∅ whenever α = β),
and similarly for B, we find that a 1-1 correspondence f between A and B can
be derived as

f :=
⋃

α∈L\{⊥}
fα,

where fα is an arbitrary 1-1 correspondence of Aα onto Bα for any α ∈ L \ {⊥}.
Note that f(x) = fα(x) if and only if x ∈ Aα; therefore, f : S (A) 1-1

corr−→ S (B)
such that A(x) = B(f(x)); hence, we obtain A c∼ B. ��

The following theorem is Cantor’s theorem for fuzzy sets based on the
equipollence relation c∼.

Theorem 6 (Cantor’s theorem). A  c∼ P(A).

Proof. Let A ∈ F(U). First, we show that P(Aα) ⊆ P(A)α for any α ∈ L \ {⊥}.
From the fuzzy power set definition, if y ⊆ Aα (including y = ∅), then P(A)(y) =∧

x∈y A(x) = α; therefore, y ∈ P(A)α, which means that P(Aα) ⊆ P(A)α.
The statement is a simple consequence of Lemma 1 and the fact that |Aα| <
|P(Aα)| ≤ |P(A)α|. ��

4 Graded Cantor’s Equipollence

We say that fuzzy sets A,B ∈ F(U) have cardinal separable supports if

|S (A)| ≤ |D(B) \ S (B)| and |S (B)| ≤ |D(A) \ S (A)|. (11)

In [8], we have introduced the graded version of Cantor’s equipollence. The
following definition of graded Cantor’s equipollence has been presented in [6].

Definition 12. Let A,B ∈ F(U), and let C ∈ cls(A) and D ∈ cls(B) be fuzzy
sets that have cardinal separable supports and |D(C)| = |D(D)|. We say that A
and B are Cantor’s equipollent in the degree α provided that

α =
∨

f∈Fcs(D (C),D (D))

[f : C 1-1
corr−→ D]. (12)

We use c≈ to denote the fuzzy class relation of being Cantor’s equipollent in
a certain degree and the value [A c≈ B] denotes the truth degree in which the
fuzzy sets A and B are Cantor’s equipollent.

Definition 13. The fuzzy class relation c≈ is called the graded Cantor’s equipol-
lence of fuzzy sets.

It is well known that a ∼ b implies P(a) ∼ P(b) in set theory. The following
theorem is a natural extension of this statement for fuzzy sets.
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Theorem 7. Let A,B ∈ F(U). Then,

[A c≈ B] ≤ [P(A) c≈ P(B)]. (13)

Proof. Let A,B ∈ F(U). Without lost of generality (due to Theorem 2), we
assume that A and B have cardinal separable supports and |D(A)| = |D(B)|.
For A = B = ∅, the statement is a trivial consequence of Theorem 2. Let A = ∅
or B = ∅. Recall that D(P(A)) = P(D(A)). For any f ∈ Fcs1-1

corr(D(A),D(B)),
let us define f→ : D(P(A)) −→ D(P(B)) by

f→(y) = {f(x) | x ∈ y}, y ∈ D(P(A)). (14)

Obviously, f→ ∈ Fcs1-1
corr(D(P(A)),D(P(B))) and

[P(A) c≈ P(B)] ≥
∧

y∈D (P (A))

(
P(A)(y) ↔ P(B)(f→(y))

)

=
∧

y∈D (P (A))

(( ∧

x∈y

A(x)
) ↔ ( ∧

z∈f→(y)

B(z)
)) ≥

∧

y∈D (P (A))

∧

x∈y

(A(x) ↔ B(f(x)))

=
∧

x∈D (A)

(A(x) ↔ B(f(x))) = [f : A 1-1
corr−→ B].

Since the previous inequality holds for any f ∈ Fcs1-1
corr(D(A),D(B)), we obtain

[P(A) c≈ P(B)] ≥
∨

f∈Fcs1-1corr(D (A),D (B))

[f : A 1-1
corr−→ B] = [A c≈ B],

and the proof is finished. ��
One can observe that A  c∼ P(A) does not imply [A c≈ P(A)] < 
. In

other words, if there is no 1-1 correspondence between A and P(A), we cannot
immediately exclude that the fuzzy sets A and P(A) are equipollent in degree

, where 
 is a result of the supremum operation in (12). Nevertheless, this
claim is true and can be considered as a graded version of Cantor’s theorem.

Theorem 8 (Graded version of Cantor’s theorem). [A c≈ P(A)] < 
.

Since the proof is long we left it out in the paper. The following example
demonstrates the graded version of Cantor’s theorem on the fuzzy set from
Example 2.

Example 5. Assume that L is the �Lukasiewicz algebra, and let A : ω −→ [0, 1]
be the fuzzy set defined by A(n) = 1/n . Since P(A)(∅) = 1, the evaluation of
[A c≈ P(A)] is based on one-to-one correspondences f , for which f(1) = ∅ and
f(2) = {1} or f(1) = {1} and f(2) = ∅. Obviously, [f : A 1-1

corr−→ P(A)] = 1/2,
which follows from A(1) ↔ P(A)(∅) = 1 = A(1) ↔ P(A)({1}) and A(2) ↔
P(A)(∅) = 1/2 = A(2) ↔ P(A)({1}). Since there is no one-to-one correspon-
dence in a degree α, which is greater than 1/2, we obtain [A c≈ P(A)] = 1/2.



714 M. Holčapek

5 Conclusion

In this contribution, we proposed a novel concept of fuzzy power sets of a fuzzy
set defined over the set of crisp subsets of the universe of discourse and analyzed
the validity of Cantor’s theorem for it with respect to types of equipollences of
fuzzy sets. We gave preference to this simpler definition over the Bandler-Kohout
concept of fuzzy power set to ensure the soundness of fuzzy set theory, which is
built in the framework of a universe of fuzzy sets. Nevertheless, if the Bandler-
Kohout fuzzy power sets exist in a universe of sets, a similar analysis can be
provided, but this is a subject of our future research.
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