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Abstract. Graphical models (GMs) are powerful statistical tools for
modeling the (in)dependencies among random variables. In this paper,
we focus on two different types of graphical models: R-vines and poly-
trees. Regarding the graphical representation of these models, the for-
mer uses a sequence of undirected trees with edges representing pairwise
dependencies, whereas the latter uses a directed graph without cycles
to encode independence relationships among the variables. The research
problem we deal with is whether it is possible to build an R-vine that
represents the largest number of independencies found in a polytree and
vice versa. Two algorithms are proposed to solve this problem. One algo-
rithm is used to induce an R-vine that represents in each tree the largest
number of graphical independencies existing in a polytree. The other
one builds a polytree that represents all the independencies found in the
R-vine. Through simple examples, both procedures are illustrated.
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1 Introduction

Graphical models (GMs) [7,13] have been widely used for modeling the depen-
dence structure of multivariate probability distributions through two closely
related components: (i) The qualitative component is a graph where nodes corre-
spond to random variables and edges to graphical relationships among them; (ii)
The quantitative component is given by a set of local probability distributions
that quantify the strength and uncertainty of the (in)dependencies encoded in
the graph (or network). According to the type of the graph, directed and undi-
rected, we can distinguish two different GMs: Bayesian networks (BNs) and
Markov networks respectively. The interpretation of graphical (in)dependencies
is different in directed and undirected graphs.
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In this paper, we focus on two GMs representative of undirected and directed
graphs, namely regular vine copulas [4,12] (or simply R-vines) and a subclass of
BNs called polytrees [8] respectively.

A copula is a probability distribution function with uniformly distributed
margins [14,17]. Copulas allow us to model the dependence structure of mul-
tivariate distributions and its margins separately. Despite the generality of the
copula-based framework, it turns out that building high-dimensional joint cop-
ulas is a difficult problem [1].

Pair copula constructions (PCCs) [11] and their graphical model, called reg-
ular vines (R-vines) [3,4], overcome the lack of flexibility of the copula-based
modeling in the high-dimensional case. R-vines build multivariate copulas in
terms of bivariate copulas (pair-copulas) taking advantage of the fact that the
bivariate copulas are more tractable than multidimensional ones. Besides that,
bivariate copulas of different families, can be combined in the same decomposi-
tion allowing the specification of different types of non-linear dependencies. The
qualitative component of R-vines is specified by an R-vine structure (or graph)
– a set of nested trees, where the variables are represented by nodes linked by
edges, each associated with a pair-copula that captures certain types of pair-
wise dependence. It is in this sense that we say that R-vine structures encode
dependence relationships rather than independencies relationships.

Polytrees (also known as singly connected networks) are directed acyclic
graphs (DAGs) where there is no more than one undirected path that connects
any two nodes (without undirected cycles). In these graphs, missing edges can
represent either conditional independencies or conditional dependencies among
random variables.

In general, Bayesian networks, particularly polytrees, have well-studied math-
ematical properties that have been developed throughout decades. In contrast,
R-vines have boomed in the last few years. Previous works have addressed the
question of the relationship between directed GMs and R-vines from different
perspectives. In [9], a new method for learning the structure of a BN based on
PCCs is introduced. In [10], a non-parametric Bayesian belief net as an alterna-
tive to a particular subclass of R-vines is introduced. The paper discusses the
differences between both models and offers some guidelines on when to use one
or the other from a quantitative perspective. In [2], a Bayesian network with
pair-copulas is built using PCCs.

However, the problem of verifying whether the graphical independencies
found in a polytree can be represented in an R-vine and vice versa has not
been answered yet. In this work, we investigate the relationship between the
graphical representations of R-vines and polytrees in both directions: (i) Given
the graph of a polytree, we want to obtain an R-vine tree-structure that rep-
resents the largest number of independencies existing in the starting graph. To
this end, a heuristic is proposed that, from the list of independences found in the
polytree, performs this task locally, tree-by-tree of the R-vine. (ii) Given an R-
vine, we want to build a polytree that represents the largest number of indepen-
dences existing in the R-vine. Similarly, a heuristic is proposed that, based on the
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independence list extracted from the R-vine, builds a polytree that represents
the independencies existing in the R-vine. These results are useful as they make
it clear that properties and algorithms that can be applied to polytrees can be
carried over to R-vines, and vice versa.

The paper is organized as follows: In Sects. 2 and 3, we provide the basic
concepts as well as a short review of R-vines and polytrees respectively. In Sect. 4,
we present the main contribution of this work: two algorithms that induce the
graph of a R-vine from the graph of a polytree and vice versa. Section 5 offers a
short summary and an outline of future work.

2 Regular Vines

Let X = (X1, . . . , Xn) be an n-dimensional random vector with joint density
function f : Rn → [0,∞) and cumulative distribution function F : Rn → [0, 1].
Furthermore, let Fi : R → [0, 1], i = 1, . . . , n be the corresponding marginal
distributions of Xi

1. Capital letters denote variables and lower letters are their
assignments.

A n-dimensional copula C is a multivariate probability distribution function
for which the univariate margins are uniform: C : [0, 1]n → [0, 1] [14]. Copulas
are used to describe the dependence structure among random variables.

The relevance of copulas in probabilistic modeling is given by Sklar’s
theorem [17], which states that an n-dimensional (multivariate) distribution
function F of a random continuous vector X = (X1, . . . , Xn) ∈ R

n can be
expressed in terms of its marginal distributions Fi (xi) and a unique copula C.
Sklar’s theorem for densities is given by

f (x1, . . . , xn) = c (F1 (x1) , . . . , Fn (xn)) ·
n∏

i=1

fi (xi) (1)

where f and c denote the density functions corresponding to F and C respec-
tively.

In (1), the copula c can be approximated by an PCC. This decomposition
is represented graphically by an R-vine – a sequence of trees, of which each
edge corresponds to a pair-copula. An R-vine is a probabilistic graphical model
represented as a pair (G, θ). G is the structural part that is composed of a
sequence of trees T1, T2, . . . , Tn−1, where the nodes of Tj are edges in Tj−1.
Two nodes in Tj (for j ≥ 2) can only be adjacent if the corresponding edges
in the previous tree have a common node (known as proximity condition) [2].
θ contains, for each edge of the trees, a pair-copula and its parameters. The
number of edges in an R-vine is n (n − 1) /2. Figure 1-(right panel) illustrates an
R-vine copula c12345 for n = 5 and its respective factorization.

We define an R-vine formally by following the definition given in [5]: If we
denote Tj = (Nj , Ej), the tree of the decomposition at level j, where Nj and Ej

1 We assume that all multivariate, marginal and conditional distributions are abso-
lutely continuous with corresponding densities.
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denote the node and edge sets of the jth tree, the edge e ∈ Ej joins two vertices
of Nj , Xk(e) and Xl(e), which are determined by the set of indices k (e) and l (e)
respectively. Then, in the pair-copula ck(e),l(e)|D(e), the nodes Xk(e) and Xl(e)

are the conditioned nodes, whereas XD(e), which represents a subvector of X
determined by the indices in D (e), is the conditioning set. Consequently, a reg-
ular vine distribution is the distribution of the random vector X = (X1, . . . , Xn)
with marginal densities fi (xi), i = 1, . . . , n, and where the conditional density of(
Xk(e),Xl(e)

)
given XD(e) is specified as ck(e),l(e)|D(e) for the R-vine copula with

n−1 trees, set of nodes N = {N1, . . . Nn−1} and set of edges E = {E1, . . . En−1}.
If the dependence structure of X is represented by an R-vine copula, then the
n-dimensional density fR−vine (x1, . . . , xn) is given by

n−1∏

j=1

∏

e∈Ej

ck(e),l(e)|D(e)

(
F

(
xk(e) | xD(e)

)
, F

(
xl(e) | xD(e)

))

︸ ︷︷ ︸
R-vine copula

·
n∏

i=1

fi (xi)

︸ ︷︷ ︸
Margins

(2)

In the approximation given in (2), only in the first tree are the pair-copulas
unconditional as their arguments are marginal distributions. In the remaining
trees, the pair-copulas are conditional as their arguments are conditional distri-
butions. The number of variables in the conditioning set increases in one variable
as we go deeper into the R-vine tree-structure: in the second tree, we have first-
order conditional copulas; in the third tree, second-order conditional copulas,
and so on; that is, in the tree j we have conditional copulas of the order j − 1.

Fig. 1. Example of a polytree (left panel) and an R-vine (right panel) where n = 5. The
polytree factorization is given as p (x1)·p (x5)·p (x3 | x1, x5)·p (x2 | x3)·p (x4 | x3). The
R-vine factorization is given as c12 · c23 · c34 · c45

︸ ︷︷ ︸

T1

·c13|2 · c24|3 · c25|3
︸ ︷︷ ︸

T2

·c15|23 · c14|23
︸ ︷︷ ︸

T3

·c45|123.
︸ ︷︷ ︸

T4
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2.1 Graphical (In)Dependence in R-vines

We define two types of edges (or links): dashed edges indicate linked nodes are
independent and continuous edges indicate linked nodes are dependent with each
other.

To provide the R-vine tree-structure with a semantic interpretation in terms
of independencies, we define the vine-graphical independence criterion as follows.

Definition 1 (r-separation). Let Xk(e), Xl(e), XD(e) three disjoint subsets in
and R-vine. We say that XD(e) r-separates Xk(e) from Xl(e) if there is a dashed
edge in some tree that joins two vertices, on of them is associated with the vertices
in Xk(e) the other to the vertices in Xl(e), and XD(e) r-separates nodes Xk(e)

and Xl(e).

When XD(e) v-separates Xk(e) and Xl(e) in G, we write I
(
Xk(e),Xl(e) |

XD(e)

)
G

to indicate that this graphical conditional independence relationship is
represented in the graph G. We write D

(
Xk(e),Xl(e) | XD(e)

)
G

to indicate that
Xk(e) and Xl(e) are conditionally dependent given XD(e) in the graph G.

3 Polytrees

3.1 Directed Graphs

Let G = (X,E) be a directed acyclic graph (DAG), consisting of the node set X
and the edge set E. Directed graphs only contain directed edges. A directed edge
from node X to node Y is represented as X → Y . A path from X = X1 to Y = Xd

is a sequence of nodes X1, . . . , Xd connected by edges in the graph G, where the
edge (Xi,Xi+1) ∈ E, i = 1, . . . , d− 1. A cycle is a path where X = Y . We say that
X is an ancestor of Y if we can find a path that, starting from X, reaches the node
Y , such that X → ... → Y ; correspondingly, Y is a descendant of X. An undirected
path is a path in which the directions of the edges are not considered. The skeleton
of G is the undirected graph obtained by eliminating the directions of edges from
G. A head-to-head (h-h) connection is a subgraph X → Z ← Y in which Z is a h-h
node (i.e., a node with convergent edges). A comprehensive introduction to graph
theory and graphical models is found in [6].

3.2 Graphical (In)Dependence in DAGs

The concept of d-separation [15] is the graphical independence criterion that
provides the DAG a semantic interpretation, allowing it to determine the inde-
pendence relationships encoded by the topology of the network.

Definition 2 (d-separation). If X, Y and Z are three disjoint subsets of nodes
in a DAG G, then Z d-separates X from Y or, similarly, X and Y are graphically
independent given Z if and only if along any undirected path between any node
of X and any node of Y there is an intermediate node A such that (i) eitherA
is a head-to-head node in the path and neither A nor its descendants are in Z,
or (ii) A is not a head-to-head node in the path and it is in Z.
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When Z d-separates X and Y in G, we write I (X,Y | Z)G to indicate that
the independence relationship is given by the graph G. We write D (X,Y | Z)G
to indicate that X and Y are conditionally dependent given Z in the graph G.

3.3 Dependence Models

Necessary definitions on dependence models are taken from [6]. The terms of
the dependence and the independence models refer exclusively to the qualitative
structure of the relationships existing in a set of variables. These models allow us
to check which sets of variables are unconditionally or conditionally dependent
or independent.

Definition 3 (Dependence Model). A model M of the variable set
{X1, . . . , Xn} is called a dependence model if it allows to determine whether
I (X,Y | Z)M is true for all the possible triples of subsets X, Y and Z.

Two possible correspondences between a graphical representation G and a
dependence model M are I-map and D-map.

Definition 4 (I-map). The graph G is an I-map of the dependence model M
if I (X,Y | Z)G ⇒ I (X,Y | Z)M , i.e., if all independence relationships derived
from G are verified in M .

Definition 5 (D-map). The graph G is a D-map of the dependence model M
if D (X,Y | Z)G ⇒ D (X,Y | Z)M , i.e., if all dependence relationships derived
from G are verified in M .

An I-map G of M includes some of the independence relationships of M , but
not necessarily all of them. An I-map guarantees that the d-separated nodes cor-
respond to independent variables in M , but does not guarantee that connected
nodes correspond to dependent variables in M . On the other hand, a D-map G
of M includes some of the dependence relationships of M , but not necessarily
all of them. A D-map guarantees that connected nodes correspond to dependent
variables in M , but does not guarantee that the d-separated nodes correspond
to independent variables in M . Empty graphs (the set of edges is empty) and
complete graphs (there is an edge between each pair of nodes) are called trivial
D-maps and I-maps respectively.

3.4 Polytrees

Bayesian networks (BNs) are GMs based on DAGs. A BN is a pair (G(X,E), P ),
where G is a DAG, X and E are the set of variables (or nodes) and the set of
directed edges in G respectively, and P = {P (X1 | Pa1) , · · · , P (Xn | Pan)} is
a set of n conditional probability distribution functions (one for each variable)
where Pai is the set of parents of Xi in G. The set P defines a probability
function given by

P (X) =
n∏

i=1

P (Xi | Pai) (3)
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A particular subclass of BNs are polytrees (of course, (3) also applies to
polytrees). In these networks, there is no more than one undirected path that
connects any two nodes. Particular types of polytrees include chains: each node
has at most one parent and/or only one child, and trees: each node has only one
parent. The number of edges in a polytree is n − 1. Figure 1-(left panel) shows a
polytree where n = 5 and its respective factorization.

4 The Graphical Relationship Between R-vines
and Polytrees

This section proposes two methods that induce the graph of an R-vine from the
graph of the polytree and vice versa, so that the resulting graph represents the
largest number of independencies existing in the other graph.

4.1 From Polytrees to R-vines

We want to obtain an R-vine GR−vine that represents the largest number of inde-
pendencies found in the polytree GP . For this purpose, we propose Algorithm1.
To simplify the notation used in Definition 1, we use X = Xk(e), Y = Xl(e), and
V = XD(e). Moreover, |V| = j−1 denotes the cardinality of V, and conditioning
sets with cardinality |V| belong to the tree at the level j = |V| + 1.

We consider a dependence model M that contains the list of independencies
and dependencies represented in the polytree GP , LI and LD respectively. These
lists are obtained via the d-separation criterion in Step 1. The elements of these
lists have the form I (X,Y | V) and D (X,Y | V) respectively. Both lists are
arranged in ascending order according to |V|.

In Step 2, we obtain the first tree of GR−vine, which is nothing more than the
skeleton of the polytree. Notice that T1 and the skeleton of the polytree have the
same edge set, so that both structures represents the same set of unconditional
dependencies.

In Steps 3 and 4, the next trees of GR−vine are built inside a for-loop that
runs over the levels j = 2, . . . , n−1. These trees are maximum weighted spanning
trees (MWSTs) [16] that satisfy the R-vine properties. As the edge’s weight we
use zero for continuous edges and one for dashed edges respectively. Afterward,
each relation in LD of order j − 1 suggests an edge, which is inserted in the
graph if the following two conditions are satisfied: (i) the edge to be inserted
does not introduce undirected cycles, which ensures that the resulting R-vine
remains singly connected; (ii) the proximity condition holds. If both conditions
are met, the boolean function ϕ (Tj ,Di (X,Y | V)) is true.

Note that not all independencies found in the polytree can be represented in
the R-vine, but those inserted exist in the polytree. On the other hand, we have
that all the independence relationships represented in the R-vine exist in the
polytree and we denote it as I (GR-vine) ⊆ I (GP), thus the R-vine is an I-map
of the dependence model M obtained from the polytree.
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It is worth noting that if the R-vine is a D-vine – a subclass of R-vines where
the trees have chain structure – we do not need to select MWSTs since the first
tree determines completely the structure of the next trees [1]).

Example 1. Let us illustrate Algorithm 1 based on the polytree of Fig. 2-(left-
panel).

Step 1. Obtain M = {LI , LD} from GP .

LI = {I1 (2, 4 | 3) , I2 (1, 4 | 3) , I3 (1, 3 | 4) , I4 (1, 4 | 2, 3)}
LD = {D1 (1, 3 | 2) , D2 (1, 4 | 2) , D3 (1, 2 | 3, 4) , D4 (1, 3 | 2, 4) , D5 (2, 3 | 1, 4)}

Step 2. From T1 (Fig. 2-(right panel)) we obtain the connected nodes: 1−2, 2−
3, 3 − 4.

Step 3. As T1 is a chain (as in D-vines) we do not need to built an MWST at
each level, but only determine if the edges are dashed or continuous. Next
we pass to T2, and from LI we see that I1 (2, 4 | 3) may be represented with
the dashed edge 23-·-34. However, the dashed edges 13-·-34 and 14-·-34 corre-
sponding to the relationships I2 (1, 4 | 3) and I3 (1, 3 | 4), respectively, cannot
be inserted in T2 since the nodes 13 and 14 do not belong to the node set of
this tree, which are: 12, 23, and 34.

Step 4. D1 (1, 3 | 2) can be represented by the continuous edge 12 − 23 in T2

without violating the graphical constraints that should hold an R-vine, which
implies that ϕ (T2,D1 (1, 3 | 2)) is true.

Step 5. To build T3, only I4 has to be inserted. This can be done by means of
the dashed edge 14 | 2-·-24 | 3.

Notice that the independence relationships represented in this R-vine structure,
namely: [I1 (2, 4 | 3) , I2 (1, 4 | 2, 3)], exist in GP, thus this R-vine is an I-map
of the dependence model obtained from the polytree. This way of building the
structure of R-vines guarantees that only graphical independencies found in the
polytree are inserted in the corresponding R-vine tree. Consequently, all the
independencies represented in the R-vine are true in the polytree.

Fig. 2. Illustration of Example 1: (left panel) polytree GP ; (right panel) the resulting
R-vine GR−vine.
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Algorithm 1. Procedure to build the R-vine tree-structure from the graph of
a polytree.
Input: GP

Output: GR−vine

Step 1 Create the lists LI and LD from GP .
Step 2 Obtain T1 = skeleton of GP .
for j = 2, . . . , n − 1:

Step 3:
if GR−vine = D-vine:

for each i in Ii (X, Y | V ) of order j − 1 in LI

if ϕ (Tj , Ii (X, Y | V)) :
Add a dashed edge X-·-Y in Tj .

else
Build the MWST Tj with dashed edges only.

Step 4:
for i, Di (X, Y | V), in LD:

if ϕ (Tj , Di (X, Y | V)):
Add a continuous edge X − Y in Tj .

4.2 From R-vines to Polytrees

Similarly to previous section, the idea of this section is to build a polytree
GP that represents the largest numbers of independencies found in an R-vine
GR−vine. The heuristic proposed is shown in Algorithm2.

We consider a denpendence model M that contains the list of independencies
and dependencies represented in the R-vine GR−vine, LI and LD respectively.
Step 1 consists of extracting both lists: LI is represented by dashed lines and LD

is represented by continuous lines via the v-separation criterion. In Step 2, we
obtain the skeleton of GP that is no other than tree T1 of GR−vine. To extract
LI and LD, we can use the procedure given in [6]

Steps 3 and 4 are responsible for determining the direction of the edges of
the polytree skeleton. Firstly, the algorithm goes through the list LI in order to
insert the independence relationships. In Step 3, for each I (X,Y | V) the edges
of the corresponding subgraph X −V−Y are oriented preventing any node of V
from being a h-h. In Step 4, the algorithm goes through the list LD in order to
insert those dependencies that do not eliminate any independencies previously
represented. So, for each D (X,Y | V) the algorithm allows a node belonging
to V to be a h-h if the independencies already inserted are still represented;
otherwise, edges are not oriented towards any node of V.

Notice that a complete R-vine structure (all its edges are continuous) is
a trivial I-map of the dependence model obtained from the polytree. In the
opposite case, if all the R-vine’s edges are discontinuous or continuous in the
first tree, it is a trivial D-map of the dependence model obtained from polytree.



The Relationship Between Graphical Representations 687

Example 2. Let us illustrate Algorithm 2 based on the R-vine of Fig. 3-(left
panel).

Step 1. Obtain M = {LI , LD} from GR−vine.
LI = {I1 (1, 3 | 2)}
LD = {D1 (2, 4 | 3) ,D2 (1, 4 | 2, 3)}

Step 2. The skeleton of GP is the tree T1 of GR−vine.
Step 3. By representing the independence I1, the graphs of Fig. 3-

(right panel, top) are obtained.
Step 4. To represent D1 (2, 4 | 3), the node 3 must be considered a head-to-head

node. This is done by adding the directed edge 4 → 3. This can be done with-
out adding or removing independencies. However, the relationship D2 cannot
be represented since it can only be inserted as an independence in the polytree.
Therefore, the final graph remains as shown in Fig. 3-(right panel, middle).

The resulting polytree, in addition to representing the same independence rela-
tionships existing in the R-vine structure, also includes others that are not ver-
ified in M (obtained from a polytree). As the independencies of the R-vine are
a subset of those of the polytree, we can say that the R-vine is an I-map of M
obtained from a polytree, and that the polytree is a D-map of M obtained from
an R-vine as all the dependence relationships of the polytree exist in the R-vine.
Notice that from the same R-vine, more that one polytree can be obtained, which
is illustrated in Fig. 3-(right panel, bottom).

Example 3. Let us illustrate Algorithm 2 based on the R-vine of Fig. 4-(left
panel).

Step 1. Obtain M = {LI , LD} from GR−vine.
LI = {(I1 (2, 5 | 4) , I2 (3, 5 | 2, 4) , I3 (1, 5 | 2, 3, 4))}
LD = {(D1 (1, 3 | 2) ,D2 (3, 4 | 2) ,D3 (1, 4 | 2, 3))}

Step 2. The skeleton of GP is the tree T1 of GR−vine.
Step 3. By representing the independence relationships I1, I2 and I3, the graphs

of Fig. 4-(middle panel) are obtained. If we take a look at the last graph, we
can see that in GP not only independencies found in GR−vine are represented,
but also other independencies that are not visible in LI . In order to preserve
the same independence relationships, in the next step we proceed to insert
the conditional dependencies that are in LD.

Step 4. To represent D1 (1, 3 | 2), 2 must be considered as head-to-head node,
this is done by changing the direction of the edge between the nodes 2 and 3.
This can be performed without affecting independence relationships. Analo-
gously, regarding relation D2, the edge between 2 and 4 is redirected. Never-
theless, D3 cannot be represented since it would change the existing indepen-
dencies in the graph. Therefore, the final graph remains as shown in Fig. 4-
(right panel).
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Algorithm 2. Procedure to build the graph of a polytree from the R-vine tree-
structure.
Input: GR−vine consistent
Output: GP

Step 1 Create the lists LI and LD from GR−vine.
for edge e in GR−vine:
if e is a dashed edge:

Add I (X, Y | V) to LI .
else e is a continuous edge:

Add D (X, Y | V) to LD.
Step 2 Obtain the skeleton of GP as T1 of GR−vine.
for I (X, Y | V) in LI :

if at least one edge between nodes X, Y,V is an undirected edge:
Step 3 Orient the edges of the subgraph X − V − Y without creating a

head-to-head node.
for D (X, Y | V) in LD:

if possible to set some node of V as a head-to-head node:
Step 4 Insert the subgraph X → V ← Y .

Fig. 3. Illustration of Example 2: (left panel) R-vine GR−vine; (right panel) edge ori-
entation to represent the relationships of LI = {I1} (top) and LD = {D1} (middle),
and an example of another polytree that can be obtained from the R-vine on the left.

Fig. 4. Illustration of Example 3: (left panel) starting R-vine GR−vine; (middle panel)
edge orientation to represent the independence relationships of LI = {I1, I2, I3} (from
top to bottom); (right panel) edge orientation to represent the dependence relationships
of LD = {D1, D2, D3}.
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5 Conclusions

In this work, we have studied the connection between the graphical representa-
tions of polytrees and R-vines. We have introduced two algorithms for translat-
ing between the underlying semantics of polytrees and regular vines from the
graphical perspective.

We have shown that we can find an R-vine where all independencies it encodes
exist in the polytree, although not all independencies existing in the polytree can
be represented in an R-vine. Thus, the R-vine is an I-map of the dependence
model obtained from the polytree. On the other hand, given an R-vine, the
resulting polytree includes the same independence relationships existing in the
R-vine and also others that are not true in the R-vine. As all the dependence
relationships inserted in the polytree exist in the R-vine, the polytree is a D-map
of the dependence model obtained from the R-vine. An ongoing topic demanding
future work is the extension of this study to BNs with undirected cycles.

Acknowledgements. The author would like to thank Dr. Aritz Perez, of Basque
Center for Applied Mathematics, BCAM, 48009 Bilbao, Spain, for valuable comments
and suggestions. This work is partially supported by the Basque Government (IT609-
13 and Elkartek), and Spanish Ministry of Science and Innovation (TIN2016-78365-R).
Jose A. Lozano is also supported by BERC 2014–2017 and Elkartek programs (Basque
government) and Severo Ochoa Program SEV-2013-0323 (Spanish Ministry of Economy
and Competitiveness).

References

1. Aas, K., Czado, C., Frigessi, A., Bakken, H.: Pair-copula constructions of multiple
dependence. Insur. Math. Econ. 44(2), 182–198 (2009)

2. Bauer, A., Czado, C.: Pair-copula Bayesian networks. arXiv:1211.5620 [stat.ME]
(2012)

3. Bedford, T., Cooke, R.M.: Probability density decomposition for conditionally
dependent random variables modeled by vines. Ann. Math. Artif. Intell. 32(1),
245–268 (2001)

4. Bedford, T., Cooke, R.M.: Vines - a vew graphical model for dependent random
variables. Ann. Stat. 30(4), 1031–1068 (2002)

5. Brechmann, E.C., Czado, C., Aas, K.: Truncated regular vines in high dimensions
with application to financial data. Can. J. Stat. 40(1), 68–85 (2012)

6. Castillo, E., Gutiérrez, J.M., Hadi, A.S.: Sistemas Expertos y Modelos de Redes
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