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Abstract. Continuous time Bayesian networks offer a compact repre-
sentation for modeling structured stochastic processes that evolve over
continuous time. In these models, the time duration that a variable stays
in a state until a transition occurs is assumed to be exponentially dis-
tributed. In real-world scenarios, however, this assumption is rarely sat-
isfied, in particular when describing more complex temporal processes.
To relax this assumption, we propose an extension to support the model-
ing of the transitioning time as a hypoexponential distribution by intro-
ducing an additional hidden variable. Using such an approach, we also
allow CTBNs to obtain memory, which is lacking in standard CTBNs.
The parameter estimation in the proposed models is transformed into a
learning task in their equivalent Markovian models.
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1 Introduction

Continuous time Bayesian networks, or CTBNs for short, firstly introduced by
Nodelman et al. [1], offer a compact representation for modeling structured
stochastic processes that evolve over continuous time. By providing an explicit
representation of time, i.e., time acts as a continuous parameter, these models
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have the advantage of representing a probability distribution over observations
that are made at irregularly spaced points in time. The powerful expressiveness
of CTBNs to model data in such a form has been demonstrated by numerous
early work (see e.g. reliability modeling [2], network intrusion detection [3,4],
heart failure modeling [5,6], and gene network construction [7]).

In spite of supporting time irregularity, CTBNs suffer from an important
limitation in their expressiveness: the time that a variable stays in a state until
transition follows an exponential distribution. This distribution occurs naturally
when describing a process where events occur continuously and independently at
a constant average rate. In real-world scenarios, however, the assumption is rarely
satisfied. In particular, it is inappropriate to describe more complex temporal
processes, such as business processes that model interpurchase times [8]. The
limitation was firstly described by Nodelman and Horvitz [9]; subsequent work
by Gopalratman et al. [10] focuses on Erlang-Coxian distributions to handle
time duration. To overcome the limitation, two approaches were proposed by
Nodelman et al. [11] to extend CTBNs to phase-type duration distributions,
yielding a richer and more flexible distribution. The first approach is to add
hidden states to the random variables of a CTBN, which is called the direct
approach. Alternatively, a second and more elegant approach is to add hidden
variables to a CTBN. From a practical point of view, this approach is attractive,
because existing CTBN inference algorithms can be directly applied. For the
direct representation, states have to be interpreted as a disjunction of hidden
states, which is cumbersome and computationally expensive when using existing
software packages. However, the question of how to add the hidden variables to
the network structure and what constraints should be imposed on the structure
of their parameters was left unresolved [11].

In this paper, we show that the hidden variable approach can be used to
represent a large class of duration distributions described by hypoexponential
distributions. These distributions significantly generalize the existing exponen-
tial distributions. As a second contribution of this paper, we give precise con-
ditions on the CTBN graph and discuss the exact constraints on the parameter
structure for representing these distributions. We also show how these models
are formally related to the direct representation, which we use for learning the
parameters of the model.

The rest of the paper is organized as follows. We start with a motivating
example in Sect. 2, followed by a brief summary of CTBNs and hypoexponen-
tial distribution in Sect. 3. Then, in Sect. 4, we define hidden continuous time
Bayesian networks (HCTBNs). In Sect. 5, we show the relationships between the
hidden variable model and the direct models. Subsequently, in Sect. 6, we demon-
strate the usefulness of our proposed models by describing non-exponential dis-
tribution using HCTBNs and CTBNs, and by modeling dynamics of a medical
problem. Finally, the paper is concluded with a brief discussion of possible future
work for HCTBNs.
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2 Motivating Example

To illustrate the proposed theory, we consider a medical example, viz. factors
that influence the cardiac output, i.e., the blood flow to and from the heart.
According to the literature, the heart rate, defined in terms of the number of
heart beats per minute, has a positive influence on the cardiac output. However,
a reduced blood supply, thus oxygen supply, as the result of coronary artery
disease, may give rise to a heart attack (myocardial infarction). Consequently,
some of the heart muscle fibers will die and the heart may fail to comply with
respect to its function as a pump, thus cardiac output will be negatively affected.
With regard to the prognosis, (increased) heart rate may be considered a risk
factor for myocardial infarction (this is the rationale behind treatment of coro-
nary artery disease patients with beta-blocking drugs, such as propranolol, that
decrease heart rate). This causal knowledge is formalized as a directed graph in
Fig. 1. Diagnosis of a myocardial infarction is done by examining the shape of the
ECG and by determining the levels of troponin (a protein that is released from
the dying heart cells) in the blood. In the model we take into account that lab
facilities (to determine an ECG and troponin levels in the blood) are not avail-
able, as is common in some developing countries. Thus, diagnosing a myocardial
infarction in the common way is not an option. As a result, the observations
solely consist of the heart rate. With respect to modeling, this also implies hid-
den causes, such as myocardial infarction, must be taken into consideration when
assessing potential causes for reduced cardiac output. More importantly, remem-
bering having a myocardial infarction in the past, which is called memory, can
alter the evolution of cardiac output in the future. In the remainder of this paper,
we propose a method to deal with modeling such hidden causes, in particular
to describe the memory behavior of temporal processes that evolve continuously
over time.

MI HR

CO

Fig. 1. Causal model for cardiac output: MI= Myocardial infarction; CO = cardiac
output, HR = heart rate. The dashed node indicates a hidden cause.

3 Preliminaries

In this section, we will introduce the technical background of continuous time
Bayesian networks as originally presented by Nodelman et al. [12] and phase-type
distributions. The domain for an n-valued variable X is denoted as Val(X) =
{1, 2, . . . , n} with the notation X = i indicating that variable X has the value i.
We also use the notation π(X) for the parents of variable X in a given graph.
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3.1 Continuous Time Bayesian Networks

A continuous-time Bayesian network represents a stochastic process over a struc-
tured state space consisting of assignments to a set of local variables. The dynam-
ics of the temporal evolution of the structured state space is described in terms
of the evolution of the local variables. Let X be such a local variable with finite
domain Val(X) = {1, 2, . . . , n}, where i ∈ Val(X) is called a state, and state
changes over continuous time. The dynamics of X can be described as a homo-
geneous Markov process via its intensity matrix :

QX =

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

q11 q12 · · · q1n

q21 q22 · · · q2n
...

...
. . .

...

qn1 qn2 · · · qnn

where qii = −∑
j �=i qij . The time that variable X stays in state i is exponentially

distributed with rate −qii and the expected time is given by −1/qii, and once it
transitions from state i, it shifts to state j with probability −qij/qii.

CTBNs are based on homogeneous continuous time Markov processes, which
has the Markov property, also known as a stronger assumption of memoryless-
ness. The Markov property states that given the state of the process X at any
set of times prior to time t, the distribution of X at time t depends only on X
at the most recent time prior to time t. It is equivalent to say that given the
state of the process X at time s, the distribution of X at any time after s is
independent of the entire past of X prior to time s. More formally:

P (Xt = j | Xt1 = k1,Xt2 = k2, . . . , Xtn = kn,Xs = i) = P (Xt = j | Xs = i)

where 0 < t1 < t2 < · · · < tn < s < t.
However, this property has to be interpreted more carefully in CTBNs as

these models also express the local dependence of one variable on the others.
It is true that the Markov property still holds for CTBNs when conditioned on
all the local variables in a model; it is not the case when only conditioning on
a proper subset of the variables. This is due to the temporal entanglement in
CTBNs where time is also considered. Let X be the variables in a CTBN and
Z be a proper subset of X, i.e., Z � X. When querying the distribution over
variables Z at time t, the distribution over variables Z at time t is no longer
independent from its states at time prior to s given the states of variables Z at
time s. More formally:

P (Zt = j, | Zt1 = k1,Zt2 = k2, . . . ,Ztn = kn,Zs = i) �= P (Zt = j | Zs = i)

This is because the information at time prior to s is propagated to the time t
through variables X \ Z. In this paper, we refer such behavior of variables Z as
memory. Without loss of generality, we introduce memory to all variables in a
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given CTBN by adding an additional hidden variable. The states of non-hidden
variables are dependent on the their states in the past as the hidden variable
is always unobservable. In this paper, we restrict ourselves to studying such
memory behavior in CTBNs.

3.2 Hypoexponential Distribution

A phase-type distribution is a distribution which describes the time until reach-
ing the absorbing state of a continuous time Markov chain with n transient
states and one absorbing state. A phase-type distribution represented by n tran-
sient states is said to have order n. This continuous time Markov chain can be
described as a state transition diagram. The diagram is a convenient graphical
representation in terms of the initial probabilities, i.e., the distribution over the
transient states at t = 0, the transition rates between the transient states, and
the exit rates, i.e., the probability of entering the absorbing state.

Exponential distributions are a special case of phase-type distributions, where
the continuous time Markov process has one transient state. The distribution can
thus be graphically represented by a state transition diagram with only one state
as shown in Fig. 2a. The diagram asserts that the chain enters the first and only
transient state 1 with probability one and enters the absorbing state with rate λ.
The hypoexponential distribution, also known as generalized Erlang distribution,
is the distribution of the sum of n independent and identically exponentially
distributed random variables. The state transition diagram of the Markov chain
of n-order hypoexponential distribution is shown in Fig. 2. More details about
phase-type distribution can be found in [13].

11
λ

(a)

1 · · · n1
λ1 λn−1 λn

(b)

Fig. 2. State transition diagram for exponential distribution as shown in (a) and an n-
order hypoexponential distribution as shown in (b). A solid node indicates a transient
state and a dashed node indicates an absorbing state.

4 Hidden Continuous Time Bayesian Networks

In this section, we define a new extension of CTBNs, which we call hidden contin-
uous time Bayesian networks, abbreviated to HCTBNs, where there is only one
variable whose time staying in a state until a transition occurs, given a particular
configuration of its parents, is described by a hypoexponential distribution. For
other variables, the transition times are exponentially distributed.
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4.1 Structure

First, we define the structure associated to an HCTBN, which contains a labeled
node X which will correspond to a binary hypoexponential variable, a labeled
node H corresponding to a hidden variable that is used to represent the hypo-
exponential distribution for X, and labeled Y to exponential variables.

Definition 1 (HCTBN Graph). An HCTBN graph is a labeled graph defined
by a triple G = (V,E, l), where V = {X,H} ∪ Y denotes a set of vertices, E ⊆
V×V a set of arcs on V, and l a label function such that l(X) = hypoexponential,
l(H) = hidden and l(Y) = exponential. The following conditions apply to G:

1. H → X ∈ E and X → H ∈ E;
2. For any vertex Y ∈ Y, Y → X ∈ E iff Y → H ∈ E;
3. For any vertex Y ∈ Y, H → Y �∈ E.

Condition 1 asserts that there is a bidirected edge between vertices X and H.
Second, Condition 2 asserts as a parent of vertex X, vertex Y is also a parent
of the hidden variable H. Together with Condition 1, it is clear that vertices
X and H have the same number of parents. Thus, the number of parameters
for H grows exponentially with the number of the parents of vertex X. Third,
Condition 1 and 3 state that vertex X is the only child for vertex H.

Example 1. Consider the two simplest HCTBN graphs where we have two ver-
tices X and H. In the first case, we have no other vertices, i.e., Y = ∅. In
the second case, we have another vertex Y and it is a parent of vertex X, i.e.,
Y = {Y }. The HCTBNs graphs are given in Fig. 3.

X H

S

(a)

Y X

H

S

(b)

Fig. 3. Two simplest HCTBNs graphs where vertex X has no children: (a) Y = ∅ and
π(X) = {H}; (b) Y = {Y } and π(X) = {H, Y }.

4.2 Model Definition

Now we give a formal definition of HCTBNs.

Definition 2 (Hidden Continuous Time Bayesian Networks
(HCTBNs)). An n-order hidden continuous time Bayesian network (HCTBN)
is a triple N = (G,Λ, P0) with the graph G as defined in Definition 1. In addition,
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Λ is a set of conditional intensity matrices and P0 is the initial distribution for the
variables associated to the nodes in the graph G with P0(X = 1,H = 1) = 1, and
for each configuration u of the parents U for variable X, U = π(X) \ {H}, the
intensity matrices for variable X and H have the following form:

QH|X=1,u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−λu
1 λu

1 . . . 0 0

0 −λu
2 λu

2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 −λu
n−1 λu

n−1

0 0 0 0 0

QH|X=2,u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

0 0 0 0 0
γu
n−1 −γu

n−1 . . . 0 0

0 γu
n−2 −γu

n−2

.

.

. 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 0 0 γu

1 −γu
1

QX|H=1,u =
(

0 0
γu
n −γu

n

)
QX|H=n,u =

(
−λu

n λu
n

0 0

)
If n ≥ 3, QX|H=2:n,u =

(
0 0
0 0

)

The intensity matrices defined in such a form make sure that the time duration
distribution for variable X staying in a state is represented by a Markov chain
with n transient states.

Example 2. Given the graph where U = ∅ as shown in Fig. 3a, and λ1 = 1, λ2 =
2, λ3 = 3, γ1 = 4, γ2 = 5, γ3 = 6, we can define a 3-order HCTBN by giving the
intensity matrices for variable X and H as below:

QH|X=1 =
(−1 1 0

0 −2 2
0 0 0

)

QH|X=2 =
(

0 0 0
5 −5 0
0 4 −4

)

QX|H=1 =
(
0 0
6 −6

)
QX|H=2 =

(
0 0
0 0

)
QX|H=3 =

(
−3 3
0 0

)

Alternatively, we can view the hypoexponential variable X and the hidden
variable H as a whole by amalgamating them into a single variable S, whose state
space is the joint state space over X and H. Each state of X now corresponds
to a set of instantiations to S. When we amalgamate over the hypoexponential
variable X and the hidden variable H, their joint intensity matrix follows a
particular structure. The states in the intensity matrix are given by iterating
over all the values of X in the ordering before iterating to the next values of H.
In this particular case, this gives:

QXH =

11 21 12 22 13 23 · · · 1n − 2 2n − 2 1n − 1 2n − 1 1n 2n
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−λ1 0 λ1 0 0 0 0 0 0 0 0 0 0 11

γn −γn 0 0 0 0 0 0 0 0 0 0 0 21

0 0 −λ2 0 λ2 0 0 0 0 0 0 0 0 12

0 γn−1 0 −γn−1 0 0 0 0 0 0 0 0 0 22

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0 0 0 0 −λn−1 0 λn−1 0 1n − 1

0 0 0 0 0 0 0 0 γ2 0 −γ2 0 0 2n − 1

0 0 0 0 0 0 0 0 0 0 0 −λn λn 1n

0 0 0 0 0 0 0 0 0 0 γ1 0 −γ1 2n
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Example 3. Consider the HCTBN as given in Example 2. The joint intensity
matrix for variable X and H is given as below:

QXH =

11 21 12 22 13 23
⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

−1 0 1 0 0 0 11
6 −6 0 0 0 0 21
0 0 −2 0 2 0 12
0 5 0 −5 0 0 22
0 0 0 0 −3 3 13
0 0 0 4 0 −4 23

Proposition 1. Let X be the hypoexponential variable in an n-order HCTBN.
The time that variable X stays in each of its states follows an n-order hypoex-
ponential distribution.

Given the joint intensity matrix of the hypoexponential variable X and the hid-
den variable H in an n-order HCTBN, now we can reinterpret the time duration
of variable X in terms of the joint state over variables X and H. More specif-
ically, the time of variable X staying in a state is then reinterpreted as the
absorbing time of a Markov chain with a sequence of joint states over variable
H and X where variable X in the joint states remains in the given state. For
example, the time of variable X stays in state 1 is thus viewed as the absorbing
time of a Markov chain with a sequence of joint states 11, 12, . . . , 1n, where X
always stays in state 1 and the final transition in such a chain is the transition
from state 1n to 2n. As noted, there is a no explicit absorbing state. It is clear
that such a Markov chain describes an n-order hypoexponential distribution.
Analogously, we can construct another Markov chain corresponding to state 2
for variable X. Together, we can obtain a single Markov chain that could be
graphically represented by a cyclic state transition diagram as shown in Fig. 4a.

11 12 · · · 1n

2n· · ·2221

1

2

λ1 λ2 λn−1

λn

γ1γn−2γn−1

γn

(a)

1 2 · · · n

n+1· · ·2n−12n

1

2

λ1 λ2 λn−1

λn

γ1γn−2γn−1

γn

(b)

Fig. 4. State transition diagram for joint states over the hypoexponential variable X
and hidden variable H in an n-order HCTBN (a) and for states of its extended variable
X ′ in its equivalent Markovian model (b).

5 Equivalent Markovian Models

An important task for any probabilistic graphical models is to estimate param-
eters from data. In this paper, we transform parameter estimation in HCTBNs
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into a learning task in their equivalent Markovian models in terms of the same
time distribution for the hypoexponential variable. In this section, we devote
ourselves to defining such equivalent Markovian models. The introduction of
these models only serves as a tool to estimate parameters in HCTBNs.

Definition 3 (Equivalent Markovian Graph). Let G = (V,E, l), V =
{X,H}∪Y be an HCTBN graph. An equivalent Markovian graph G′ = (V′,E′)
is obtained with vertices V′ = {X} ∪ Y and arcs E′ = E ∩ (V′ × V′).

Hence, the graph structure is restricted by excluding the hidden variable H in
the graph G′ while all other variables remain. However, a different distribution is
associated to vertex X in G′, in particular the state-space has grown. For exam-
ple, the equivalent Markovian model graphs associated to HCTBNs introduced
in Fig. 3 are shown in Fig. 5.

X

(a)

Y X

(b)

Fig. 5. Equivalent Markovian graphs associated to HCTBNs as introduced in Fig. 3:
(a) Y = π(X) = ∅; (b) Y = π(X) = {Y }.

Definition 4 (Equivalent Markovian Models). Let N be an n-order
HCTBN with intensity matrices Λ. An equivalent Markovian model M is defined
as a triple M = (G′, Λ′, P ′

0) where graph G′ = ({X} ∪ Y, E) as in Definition 3,
Λ′ a set of intensity matrices over the vertices of G′, and P ′

0 the initial distri-
bution with P ′

0(X = 1) = 1. For any Y ∈ Y, if X �∈ π(Y ), QM
Y |π(Y ) = QN

Y |π(Y );
otherwise, QM

Y |K,X=1:n = QN
Y |K,X=1 and QM

Y |K,X=n+1:2n = QN
Y |K,X=2, where

K = π(Y )\{X}. Given each configuration u of parents π(X) from M and joint
intensity matrix QN

XH, intensity matrices QM
X|π(X)=u are defined by re-ordering

the states of QN
XH from current indices [1, . . . , 2n] to [1, 3, . . . , 2n−1, 2n, . . . , 4, 2].

Definition 4 implies that HCTBNs have the same number of parameters in their
equivalent Markovian models.

Example 4. An equivalent Markov model for the HCTBN, as defined in Exam-
ple 2, with the intensity matrix for variable X is given as below:

QX =

1 2 3 4 5 6
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−1 1 0 0 0 0 1

0 −2 2 0 0 0 2

0 0 −3 3 0 0 3

0 0 0 −4 4 0 4

0 0 0 0 −5 5 5

6 0 0 0 0 −6 6
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Proposition 2. Let X be the hypoexponential variable in an n-order HCTBN
and X ′ be the extended variable of X in its associated equivalent Markov model.
The absorbing time in a Markov chain described by a sequence of states 1, 2, . . . , n
of variable X ′ follows the same distribution as the time distribution of X staying
in state 1, and the absorbing time in a Markov chain described by a sequence
of states n + 1, n + 2, . . . , 2n of variable X ′ follows the same distribution as the
time distribution of X staying in state 2.

Similar to an HCTBN, we can also construct a state transition diagram for
its equivalent Markovian model, as shown in Fig. 4b. The time that X staying
in state 1 has an n-order hypoexponential distribution with rates λ1, λ2, . . . , λn.
The same distribution can also be represented by a Markov chain of a sequence
of states of variable X ′, 1, 2, . . . , n. The same applies to X staying in state 2.

6 Experiments

In the experiments, we investigate two aspects. First, we investigate whether
HCTBNs provide a better approximation than CTBNs when the true temporal
processes are governed by a hypoexponential time distribution. Second, we show
the usefulness of HCTBNs by modeling a number of factors that influence cardiac
output in the medical setting, which was previously introduced in Sect. 2. In
this model, an interesting question is how the dynamics of cardiac output are
affected by other factors, in particular when a hidden cause is present, i.e., when
myocardial infraction is not observed.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Time

P
ro
ba

bi
lit
y

True model CTBNs HCTBNs(n=2)
HCTBNs(n=3) HCTBNs(n=10)

(a)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Time

P
ro
ba

bi
lit
y

True model CTBNs HCTBNs(n=3) HCTBNs(n=5)

(b)

Fig. 6. Probability of X staying at state 1, given evidence X = 2 and Y = 2 at time
8, 10 and 12. (a): the true process has 10-order hypoexponential distribution and no
parents. (b): the true process has 5-order hypoexponential distribution and one parent.
The rates in the distribution follow a Gamma distribution with rate = 1 and shape = 2.
The number of hidden states for the learned HCTBNs is indicated by the number n.

In the experiments, two software packages were mainly used to learn param-
eters for HCTBNs. The transformation between a given HCTBN and its
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equivalent Markovian model was implemented by CTBN-RLE 1. We reformu-
lated the parameter estimation task in HTCBNs as one in their equivalent
Markovian models, where the EM algorithm is used to approximate a phase-type
distribution from data by employing EMpht2. The EMpht also supports learning
parameters from right censored data, i.e., a variable staying in a state for at least
a given amount of time. A more detailed discussion can be found in [10].

For the first purpose, we generated a number of datasets from temporal
processes where the time distribution follows a more complex distribution, rather
than simple exponential distribution. In the experiments, a hypoexponential
distribution was chosen. With respect to learning parameters for HCTBNs, we
also considered the impact of the number of hidden states on the quality of the
approximation in learned HCTBNs. The number of hidden states was set to 2, 3
and 10 when the underlying hypoexponential distribution has an order 10, and
to 3 and 5 when the distribution has order 5.

For illustrative purpose, we considered learning parameters for a variable with
complex time distribution without parents as shown in Fig. 5a and in the pres-
ence of one single parent as shown in Fig. 5b. The underlying time distribution
was approximated by using the proposed HCTBNs and CTBNs. The dynamics
of the hypoexponential variable X in the time interval [0, 20] in learned CTBNs
and HCTBNs, as shown in Fig. 6, suggest that HCTBNs have a better approxi-
mation of the underlying generalized hypoexponential distribution than CTBNs.
It also indicates that other complex distributions may be better approximated
using HCTBNs. In addition, we obtained a better approximation using HCTBNs
with more hidden states. More importantly, the memory in a given temporal pro-
cess can be easily captured by HCTBNs, whereas it can not be captured using
CTBNs.
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Fig. 7. Probability of having a low cardiac output given the evidence of high heart rate
at time 8, 10 and 12.

For the second part of the experiments, we show the usefulness of HCTBNs
for the medical example by modeling the dynamics of a patient’s cardiac output
over time. We computed the probability distribution of cardiac distribution for
1 http://rlair.cs.ucr.edu/ctbnrle/.
2 http://home.math.au.dk/asmus/pspapers.html.

http://rlair.cs.ucr.edu/ctbnrle/
http://home.math.au.dk/asmus/pspapers.html
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a period of 20 weeks. At time 0, the patient has a myocardial infarction and
evidence of the patient having high heart rate is given at time 8, 10, 12. Results
of this experiment are plotted in Fig. 7. The plot shows that it is less likely for the
patient to have a low cardiac output given a high heart rate (see drops at time
8, 10 and 12). The plot also suggests that factors that influence cardiac output
cannot be solely explained by heart rate as we have different probabilities of
having a low cardiac output at time 8, 10 and 12, even given the same evidence.

7 Conclusions

In this paper, we show that time duration in CTBNs governed by hypoexpo-
nential distributions can be modeled by using hidden variables. In addition, we
show that the hidden variable also introduces memory, which is lacking in stan-
dard CTBNs. This memory will make CTBNs better-suited as a modeling tool
for more general real-world problems in many domains, such as biology where
memory plays a central role. In this paper, we provide a complete formalization
of the approach. In addition, experimental results show that HCTBNs indeed
can learn this more complex distributions, which was also illustrated by a small
medical example.

A limitation of HCTBNs so far is that the observable variables are restricted
to two states, as the focus of this paper has been on the introducing a richer
time distribution and memory. In future work, we aim to overcome this limitation
by supporting multinomial variables. At first glance, the proposed procedure for
transforming to equivalent Markovian models can also be applied for multinomial
variables but a further careful examination is necessary.
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