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To Lotfi A. Zadeh



Preface

These are the proceedings of the 17th International Conference on Information Pro-
cessing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2018.
The conference was held during June 11–15, in Cádiz, Spain.

The IPMU conference is organized every two years with the aim of bringing
together scientists working on methods for the management of uncertainty and
aggregation of information in intelligent systems. Since 1986, the IPMU conference
has been providing a forum for the exchange of ideas between theoreticians and
practitioners working in these areas and related fields.

This IPMU edition held special meaning since one of its co-founders,
Lotfi A. Zadeh, passed away on September 6, 2017. To pay him a well-deserved
tribute, and in memory of his long relationship with IPMU participants, a special
plenary panel was organized to discuss the scientific legacy of his ideas. Renowned
researchers and Lotfi’s good friends made up the panel: it was chaired by
Ronald Yager, while Bernadette Bouchon-Meunier, Didier Dubois, Janusz Kacprzyk,
Rudolf Kruse, Rudolf Seising, and Enric Trillas acted as panelists. Besides this, a
booklet of pictures with Lotfi Zadeh and friends was compiled and distributed at the
conference.

Following the IPMU tradition, the Kampé de Fériet Award for outstanding contri-
butions to the field of uncertainty and management of uncertainty was presented. Past
winners of this prestigious award were Lotfi A. Zadeh (1992), Ilya Prigogine (1994),
Toshiro Terano (1996), Kenneth Arrow (1998), Richard Jeffrey (2000),
Arthur Dempster (2002), Janos Aczel (2004), Daniel Kahneman (2006), Enric Trillas
(2008), James Bezdek (2010), Michio Sugeno (2012), Vladimir N. Vapnik (2014), and
Joseph Y. Halpern (2016). In this 2018 edition, the award was given to Glenn Shafer
(Rutgers University, Newark, USA) for his seminal contributions to the mathematical
theory of evidence and belief functions as well as to the field of reasoning under
uncertainty. The so-called Dempster–Shafer theory, an alternative to the theory of
probability, has been widely applied in engineering and artificial intelligence.

The program consisted of the keynote talk of Glenn Shafer, as recipient of the
Kampé de Feriet Award, five invited plenary talks, two round tables, and 30 special
sessions plus a general track for the presentation of the 190 contributed papers that
were authored by researchers from more than 40 different countries. The plenary
presentations were given by the following distinguished researchers: Gloria Bordogna
(IREA CNR – Institute for the Electromagnetic Sensing of the Environment of the
Italian National Research Council), Lluis Godo (Artificial Intelligence Research
Institute of the Spanish National Research Council, Barcelona, Spain), Enrique
Herrera-Viedma (Department of Computer Science and Artificial Intelligence,
University of Granada, Spain), Natalio Krasnogor (School of Computing Science at
Newcastle University, UK), and Yiyu Yao (Department of Computer Science,
University of Regina, Canada).



The conference followed a single-blind review process, respecting the usual
conflict-of-interest standards. The contributions were reviewed by at least three
reviewers. Moreover, the conference chairs further checked the contributions in those
cases were conflicting reviews were obtained. Finally, the accepted papers are pub-
lished in three volumes: Volumes I and II focus on “Theory and Foundations,” while
Volume III is devoted to “Applications.”

The organization of the IPMU 2018 conference was possible thanks to the assis-
tance, dedication, and support of many people and institutions. In particular, this
renowned international conference owes its recognition to the great quality of the
contributions. Thank you very much to all the participants for their contributions to the
conference and all the authors for the high quality of their submitted papers. We are
also indebted to our colleagues, members of the Program Committee, and the orga-
nizers of special sessions on hot topics, since the successful organization of this
international conference would not have been possible without their work. They and
the additional reviewers were fundamental in maintaining the excellent scientific
quality of the conference. We gratefully acknowledge the local organization for the
efforts in the successful development of the multiple tasks that a great event like IPMU
involves.

We also acknowledge the support received from different areas of the University of
Cádiz, including the Department of Mathematics, the PhD Program in Mathematics, the
Vice-Rectorate of Infrastructures and Patrimony, and the Vice-Rectorate for Research;
the International Global Campus of Excellence of the Sea (CEI�Mar) led by the
University of Cádiz and composed of institutions of three different countries; the
European Society for Fuzzy Logic and Technology (EUSFLAT); and the Springer team
who managed the publication of these proceedings. Finally, J. Medina,
M. Ojeda-Aciego, J. L. Verdegay, I. Cabrera, and D. Pelta acknowledge the support
of the following research projects: TIN2016-76653-P, TIN2015-70266-C2-P-1,
TIN2014-55024-P, TIN2017-86647-P, and TIN2017-89023-P (Spanish Ministery of
Economy and Competitiveness, including FEDER funds).

June 2018 Jesús Medina
Manuel Ojeda-Aciego

Irina Perfilieva
José Luis Verdegay

Bernadette Bouchon-Meunier
Ronald R. Yager
Inma P. Cabrera
David A. Pelta
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real-valued bivariate maps that satisfy suitable functional equations, in
a way that their associated binary relation is acyclic. On the other hand,
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1 Introduction
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only an example, binary relations that model preferences of agents are often
asked to be compulsorily acyclic, in order to avoid incoherences. By this rea-
son, theoretical studies on the structure, main properties and scope in possible
applications of acyclic binary relations should be welcome as the grounds that
support many aspects of Decision Making.

The origin of the study addressed in the present paper comes from an anal-
ysis of those binary relations R on a nonempty set X that appear through a
bivariate real-valued function F : X × X → R such that xRy ⇔ F (x, y) > 0. In
some appealing particular cases, the special kind of binary relation considered is
characterized by the fact of the function F being the solution of some functional
equation (e.g. the Sincov’s one F (x, y) + F (y, z) + F (z, x) = 0 (x, y, z ∈ X),
see [10], closely related to representable total preorders). Surprisingly as it may
appear at first glance, the types of binary relations that have already been char-
acterized this way correspond either to very simple situations (namely, reflexiv-
ity, irreflexivity and asymmetry) or to sophisticated ones as representable total
preorders, interval orders and semiorders. Intermediate situations as transitivity
or acyclicity among others remain as open problems. At that stage, we did not
have at hand yet any characterization of acyclicity by means of suitable func-
tional equations. Nor we had characterized binary relations that give rise to an
acyclic graph, or to a tree –that is also a directed graph– or to a finite union of
trees among others. Nevertheless, in some particular situations (e.g., on count-
able sets) a few characterizations of acyclicity can actually be encountered in the
literature (see [3,9]). Also, there are techniques that detect if a binary relation
on a finite set is actually an arborescence, as the well-known Kruskal’s algorithm
(see [8]). However, they have not been built in terms of functional equations but
using other techniques (see e.g. [1,3]).
The structure of the manuscript goes as follows: We analyze the relationship
between functional equations and acyclicity in Sect. 3. Next we study particular
situations where the set on which the binary relations are defined is finite. In
that case, alternative mathematical tools to deal with binary relations are graph
theory and incidence matrices (see Sect. 4).

2 Preliminaries

Definition 1. A binary relation R on a nonempty set X is a subset of the
Cartesian product X2 = X × X. Given two elements x, y ∈ X, we will use the
standard notation xRy to express that the pair (x, y) belongs to R.

Naturally associated to a binary relation R on a set X, we will also deal with
the binary relations Rc and R−1 on X, respectively given by Rc = X2 \ R, and
by xR−1y ⇐⇒ yRx, (x, y ∈ X).

A binary relation R defined on a set X is said to be

(i) reflexive if Δ ⊆ R, with Δ = {(x, x) : x ∈ X} (here Δ stands for the
diagonal of X2),

(ii) irreflexive if R ∩ Δ = ∅,
(iii) symmetric if R and R−1 coincide,
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(iv) antisymmetric if R ∩ R−1 ⊆ Δ,
(v) asymmetric if R ∩ R−1 = ∅,
(vi) total (or complete) if R ∪ R−1 = X2,
(vii) transitive if xRy ∧ yRz ⇒ xRz for every x, y, z ∈ X,
(viii) negatively transitive if Rc is transitive.

Given two binary relations R, S on X, its composition R◦S is a new binary
relation on X, defined as follows: For any pair (x, y) ∈ X2, we declare that
x (R ◦ S) y holds true –equivalently, we say that the pair (x, y) belongs to
R ◦ S ⊆ X × X– whenever there exists z ∈ X such that (x, z) belongs to
R ⊆ X × X, whereas (z, y) belongs to S ⊆ X × X. The composition of binary
relations is associative. Given a natural number n, we will use the standard
notation Rn to denote the composition R ◦ . . . (n-times) . . . ◦ R.

The binary relation R is said to be acyclic if Rn ∩Δ = ∅ holds true for every
natural number n. The transitive closure R̄ of a binary relation R is defined as
R̄ =

⋃∞
n=1 Rn. It is plain that R̄ is transitive.

In the particular case of dealing with orderings on X, the standard notation
is different. We include it here for sake of completeness.

Definition 2. A preorder � on a nonempty set X is a binary relation on X
which is reflexive and transitive. An antisymmetric preorder is said to be a
partial order. A total preorder � on a set X is a preorder such that if x, y ∈ X
then x � y or y � x holds. An antisymmetric total preorder is said to be a total
order. A total order is also called a linear order.

If � is a preorder on X, then as usual we denote the associated asymmetric
relation by ≺ and the associated equivalence relation by ∼ and these are defined,
respectively, by x ≺ y ⇐⇒ (x � y)∧¬(y � x) and by x ∼ y ⇐⇒ (x � y)∧(y �
x). The asymmetric part of a linear order (respectively, of a partial order, of a
total preorder) is said to be a strict linear order (respectively, a strict partial
order, a strict total preorder).

A total preorder � on a set X is said to be representable if there exists a
real-valued map u : X → R such that, for any x, y ∈ X, we have x � y ⇔ u(x) ≤
u(y). The map u is said to be a utility function or an order-isomorphism.

Definition 3. Let X be a nonempty set. Let F : X × X → R be a real-valued
bivariate function defined on X. The function F satisfies the Sincov functional
equation if F (x, y) + F (y, z) = F (x, z) holds for every x, y, z ∈ X (see [4,10]).

The following easy result arises (see e.g. [10]).

Proposition 1. A bivariate function F : X × X → R satisfies the Sincov func-
tional equation if and only if there exists a real-valued function G : X → R such
that F (x, y) = G(y) − G(x) holds for all x, y ∈ X.

Given a binary relation R on a nonempty set X, we may immediately inter-
pret R through a bivariate real-valued function F : X × X → R. To do so, it is
enough to consider the characteristic function of the binary relation R ⊆ X ×X,
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namely F (x, y) = 1 ⇔ (x, y) ∈ R and F (x, y) = 0 otherwise. However, this F
may fail to satisfy suitable additional properties, as, for instance, to be the
solution of some classical functional equation. Paying attention to the converse
situation, we begin with a bivariate map F : X × X → R, and we define its
associated binary relation RF by declaring that (x, y) ∈ RF holds true if and
only if F (x, y) > 0. It is clear that if F satisfies certain additional properties, its
associated binary relation RF will a fortiori feature some related special char-
acteristics. To put an obvious example, we may notice that if F vanishes on the
diagonal Δ, then RF is irreflexive. In this direction, the following result arises.
Its proof is straightforward and follows from the corresponding definitions.

Proposition 2. Let X denote a nonempty set and F : X × X → R a bivari-
ate map. Let RF the binary relation defined on X by means of F , as follows:
xRF y ⇔ F (x, y) > 0 (x, y ∈ X). The following statements hold true:

(i) If F (x, x) > 0 holds for every x ∈ X then RF is reflexive.
(ii) If F (x, x) ≤ 0 holds for every x ∈ X then RF is irreflexive.
(iii) If F (x, y) + F (y, x) = 0 holds for every x, y ∈ X then RF is asymmetric.
(iv) If F satisfies the Sincov functional equation, then RF is asymmetric and

negatively transitive. It is actually a strict total preorder.

For the particular case of representable total preorders, the following well-
know result stated in Proposition 3 above plays a crucial role (see e.g. [4]).

Proposition 3. Let X be a nonempty set. Let � be a total preorder on X. Then
the following statements are equivalent:

(i) The total preorder � is representable by means of a utility function u : X →
R such that x � y ⇔ u(x) ≤ u(y) (x, y ∈ X).

(ii) There exists a real-valued bivariate map F : X × X → R that satisfies the
Sincov functional equation and, in addition, x ≺ y ⇔ F (x, y) > 0 holds true
for every x, y ∈ X.

3 Acyclic Binary Relations vs. Functional Equations

Definition 4. Given a nonempty set X endowed with a binary relation R, we
say that another binary relation Q is an extension of R if xRy ⇒ xQy holds
true for every x, y ∈ X. In other words, as subsets of the Cartesian product
X × X, this means that R ⊆ Q ⊆ X × X.

In this direction, a classical extension theorem was obtained by E. Szpilrajn
in 1930. That theorem will be an important key in this Sect. 3.

Lemma 1 (Szpilrajn extension theorem, 1930). Let X be a nonempty set. Let
≺ stand for an irreflexive and transitive binary relation defined on X. Then ≺
can be extended to a strict linear order.

Proof. See [12]. For some related results, see also [11]. ��
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Using Szpilrajn extension theorem as a tool, we may prove now, as a direct
consequence of it, the following result on extension of acyclic binary relations.

Theorem 1. Let X be a nonempty set. Let R be an acyclic binary relation
defined on X. Then R can be extended to a strict linear order.

Proof. Let R̄ be the transitive closure of the given relation R. It is plain that R̄
is transitive, by its own definition, and it is also irreflexive because R is acyclic.
Moreover, R̄ is an extension of R. Since R̄ is irreflexive and transitive, by Lemma
1 (Szpilrajn extension theorem), it can actually be extended to a linear order
defined on X. Obviously, such linear order is also an extension of the former
acyclic binary relation R. ��

Parallel to Szpilrajn extension theorem, the following result is also classical.

Theorem 2 (Hansson extension theorem, 1968). Let X be a nonempty set. Let
� be a preorder defined on X. Then � can be extended to a total preorder defined
on X, so that the asymmetric part of that total preorder is also an extension of
≺, the asymmetric part of �.

Proof. See [5]. For generalizations, see [11]. ��

Remark 1. Matching Hansson extension theorem and Lemma 1 (Szpilrajn exten-
sion theorem) we can prove again Theorem 1. To do so, we may observe that
given an acyclic binary relation R, and R̄ its transitive closure, the binary rela-
tion Q = Δ ∪ R̄ is a preorder whose asymmetric part is R̄. By Theorem 2, Q
can be extended to a total preorder � whose asymmetric part ≺ extends R̄ and
consequently R. Finally, by Lemma 1, ≺ can be extended to a linear order.

Definition 5. Let X be a nonempty set. Let S be a binary relation defined
on X. Associated to S, let T be the binary relation defined as xT y ⇔ xSy ∧
yScx (x, y ∈ X). Given a natural number n ≥ 2, a n-tuple (x1, x2, . . . , xn) ∈ Xn

is called a T S-cycle of order n if we have x1T x2S . . . SxnSx1. Then we say that
S is consistent if no T S-cycle of order n appears, for any natural number n ≥ 2.

Theorem 3 (Suzumura extension theorem, 1976). Let X be a nonempty set.
Let S be a binary relation defined on X. Associated to S, let T be the binary
relation defined as xT y ⇔ xSy ∧ yScx (x, y ∈ X). Then, there exists a total
preorder � on X that extends S, and with its asymmetric part ≺ extending T
too, if and only if the binary relation S is consistent.

Proof. See Theorem 3 in [11]. ��

Remark 2. A weaker version of Theorem 1 appears now as a corollary of
Suzumura extension theorem. As a matter of fact, if P is an acyclic binary
relation on X, the associated binary relation T defined as xT y ⇔ xPy ∧
yPcx (x, y ∈ X) coincides with P since P is acyclic, hence asymmetric. There-
fore, for the relation P, the condition of being consistent directly follows from
acyclicity. So P can be extended to the asymmetric part of a total preorder.
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Moreover, if we use now Szpilrajn extension theorem (Lemma 1) again, it fol-
lows that from this weaker version of Theorem 1 we may retrieve the whole
version, since every asymmetric part of a total preorder is indeed irreflexive and
transitive.

Definition 6. An acyclic binary relation R defined on a nonempty set X is said
to be representable if it is extendable to the asymmetric part of a representable
total preorder.

Definition 7. Given a binary relation R defined on a nonempty set X, a real-
valued function u : X → R is said to be a pseudoutility for R if xRy ⇒ u(x) <
u(y) holds true for every x, y ∈ X.

Representable acyclic binary relations can be characterized in terms of a
suitable modification of Sincov functional equation, as follows.

Theorem 4. Let X be a nonempty set. Let R be an acyclic binary relation
defined on X. The following statements are equivalent:

(i) R is representable,
(ii) there exist bivariate functions F : X × X → R and G : X × X → {0, 1}

such that F satisfies the Sincov functional equation and xRy ⇔ F (x, y) ·
G(x, y) > 0 holds true for every x, y ∈ X,

(iii) there exists a pseudoutility function u for the given binary relation R.

Proof. To prove that (i) ⇒ (ii) we take a representable total preorder � on
X, whose asymmetric part ≺ extends R. By Proposition 3, there is a function
F : X × X → R that satisfies the Sincov functional equation and x ≺ y ⇔
F (x, y) > 0 (x, y ∈ X). Define now G : X × X → {0, 1} as G(x, y) = 1 ⇔ xRy
and G(x, y) = 0 otherwise (x, y ∈ X). We have that xRy =⇒ x ≺ y =⇒
F (x, y) > 0. Also xRy =⇒ G(x, y) = 1. Therefore xRy ⇒ F (x, y) · G(x, y) > 0
holds true for every x, y ∈ X. Conversely, given x, y ∈ X, if F (x, y) · G(x, y) > 0
it follows that G(x, y) = 1 by definition of G, so that xRy holds true. Hence
xRy ⇔ F (x, y) · G(x, y) > 0 (x, y ∈ X).

To prove that (ii) ⇒ (iii), let F : X×X → R and G : X×X → {0, 1} be such
that F satisfies the Sincov functional equation and xRy ⇔ F (x, y) · G(x, y) >
0 (x, y ∈ X). Consider the binary relation � defined on X by declaring that
x � y ⇔ F (x, y) ≥ 0. Since F satisfies the Sincov functional equation, we have
that F (x, x) = 0 = F (x, y) + F (y, x) holds true for every x, y ∈ X. Thus � is
reflexive and total. Moreover, the fact F (x, y) + F (y, z) = F (x, z) (x, y, z ∈ X)
immediately implies that � is transitive, hence it is indeed a total preorder.
By definition, its asymmetric part ≺ satisfies that for any x, y ∈ X, x ≺ y
holds if and only if y � x does not hold. Equivalently, x ≺ y if and only if
F (y, x) < 0. This last fact, jointly with F (x, y) + F (y, x) = 0, is equivalent to
say that F (x, y) > 0. By Proposition 3, the total preorder � is representable
by a utility function u : X → R. Therefore, for any x, y ∈ X we have that
xRy =⇒ x ≺ y =⇒ u(x) < u(y).
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Finally, to prove that (iii) ⇒ (i), we consider a pseudoutility u for R. Observe
now that the binary relation � on X given by x � y ⇔ u(x) ≤ u(y) (x, y ∈ X)
is a total preorder, whose asymmetric part ≺ satisfies that x ≺ y ⇔ u(x) <
u(y) (x, y ∈ X). Hence ≺ is actually an extension of the given binary relation
R. Thus R is representable. ��

Remark 3. An acyclic binary relation R defined on a nonempty set X may fail to
be representable. A clear example is the asymmetric part of a non-representable
linear order. By the way, the structure of non-representable linear orders has
been analyzed in depth in [2]. Whenever X is finite or countable, any acyclic
binary relation defined on X is representable because any total preorder on a
finite or countable set is actually representable (see e.g. Theorem 1.4.8 in [3], or
else [2] for further details).

Consider now a nonempty finite set X.

Definition 8. Let R be a binary relation on X. We say that R is an arborescence
if the following conditions hold:

(i) R is irreflexive,
(ii) there exists a unique element x0 ∈ X, called root, such that xRx0 does not

hold for any x ∈ X,
(iii) for any x ∈ X with x �= x0, there exists a unique (k + 1)-tuple

(x0, x1, . . . , xk = x) ∈ Xk+1, for some suitable k ∈ N, such that
x0Rx1R. . . Rxk holds true.

Remark 4. Notice that the uniqueness restriction arising in condition (iii), with
respect to the (k + 1)-tuple (x0, x1, . . . , xk = x) ∈ Xk+1, avoids that a given
point x could be reached from x0 by two different “sequences of branches”.

Proposition 4. Any arborescence is acyclic.

Proof. Let R be an arborescence on X. Suppose that there is a n-cycle
y1Ry2R . . . RynRy1 in X as regards R. Then, the condition iii) for x0 and
x = y1 is no longer true, since for any (k + 1)-tuple (x0, x1, . . . , xk = y1)
with x0Rx1R . . . Rxk = y1 we have, repeating now the cycle, that the (k +
n + 1)-tuple (x0, x1, . . . , xk = y1, y2, . . . , yn, y1) also satisfies x0Rx1R . . . Rxk =
y1Ry2R . . . RynRy1, in contradiction with the hypothesis of uniqueness. ��

We introduce another equivalent way to define the notion of arborescence.

Proposition 5. Let R be a binary relation on a nonempty finite set X with
at least two elements. Then R is an arborescence if and only if the following
conditions hold:

(i) R is irreflexive,
(ii) there exists a unique element x0 ∈ X such that xRx0 does not hold for any

x ∈ X (in particular, the relation R is nonvoid),
(iii) for any x, y, z ∈ X, it holds true that (yRx ∧ zRx) ⇒ y = z.
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Proof. Assume that R is an arborescence. If there exist x, y, z ∈ X such that
yRx∧zRx holds true with y �= z, then taking a (k+1)-tuple (x0, x1, . . . , xk = y)
with x0Rx1R . . . Rxk = y and another l + 1-tuple (x0, y1, . . . , yl = z) with
x0Ry1R . . . Ryl = z, we may construct two different tuples from x0 to x, namely
the (k + 2)-tuple (x0, x1, . . . , xk = y, x) for which we have x0Rx1R . . . Rxk =
yRx and the (l+2)-tuple (x0, y1, . . . , yl = z, x) satisfying that x0Ry1R . . . Ryl =
zRx. But this contradicts condition (iii) in Definition 8.

Conversely, suppose now that R satisfies the conditions in the statement of
Proposition 5. Given x ∈ X with x �= x0, by conditions (ii) and (iii) there exists
a unique element y ∈ X such that yRx holds true. If y = x0 we are done. And if
y �= x0, then with the same argument, there exists a unique element z ∈ X for
which zRy holds true. Again if z = x0 we are done. Also, if z �= x0, there exists
a unique element t ∈ X for which tRz holds true. This process goes on until we
arrive at x0. This must compulsorily happen by condition (ii) and the fact of X
being finite. So it is clear that condition (iii) in Definition 8 must hold true, too.
This concludes the proof. ��

Definition 9. Let X be a finite set and R a binary relation on X. Then R is
said to be a forest if X can be split as a union of pairwise disjoint subsets, say
X =

⋃n
i=1 Xn, accomplishing the following conditions:

(i) The restriction of R to Xi is an arborescence, por any i ∈ {1, . . . , n},
(ii) If i �= j then xiRxj does not hold, for any xi ∈ Xi, xj ∈ Xj .

Proposition 6. Any forest –and, in particular, any arborescence– is a repre-
sentable acyclic binary relation.

Proof. The fact of being acyclic is a direct consequence of Proposition 4 and
Definition 9 (of the concept of a forest). Since the support set X is finite, the
results follows now from Remark 3. In addition, a different alternative argument
to prove the representability follows from Theorem 1, since R can be extended
to the asymmetric part of a linear order on X. That linear order is a fortiori
representable because X is finite (see e.g. Theorem 1.2.1 in [3]). Therefore R is
also representable, by Definition 6. ��

Now we analyze which conditions should be added to those in the statement
of Theorem 4 in order to characterize arborescences and forests among acyclic
binary relations, by using some functional equation.

Theorem 5. Let X be a nonempty finite set. Let R be an acyclic binary relation
defined on X. The following statements are equivalent:

(i) R is an arborescence,
(ii) there exist bivariate functions F : X × X → R and G : X × X → {0, 1}

such that the following conditions are met:
– (a) F satisfies the Sincov functional equation and xRy ⇔ F (x, y) ·

G(x, y) > 0 holds true for every x, y ∈ X,
– (b) there exists a unique x0 ∈ X such that F (x, x0) · G(x, x0) ≤ 0 for

every x ∈ X,
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– (c) for every x, y, z ∈ X we have that F (y, x) ·F (z, x) ·G(y, x) ·G(z, x) =
[F (y, x) · G(y, x)]2 · δ(y, z), where δ stands here for the Kronecker delta
function, that is, given (a, b) ∈ X2, we have that δ(a, b) = 1 if a = b,
whereas δ(a, b) = 0 otherwise.

Proof. To prove that (i) =⇒ (ii) we argue as in Theorem 4, so that again
we consider a representable total preorder � on X, whose asymmetric part ≺
extends R. Once more, by Proposition 3, there is a function F : X ×X → R that
satisfies the Sincov functional equation and x ≺ y ⇔ F (x, y) > 0 (x, y ∈ X).
Let now G : X × X → {0, 1} be given as G(x, y) = 1 ⇔ xRy and G(x, y) = 0
otherwise (x, y ∈ X). Since R is acyclic, condition (ii)-(a) directly follows from
the proof of Theorem 4. In addition, since R is an arborescence, there exists x0 ∈
X such that xRx0 never holds, for any x ∈ X. In other words, by definition of G,
we have G(x, x0) = 0 for every x ∈ X, so that condition (ii)-(b) is also satisfied.
Finally, given x, y, z ∈ X, if y = z the condition (ii)-(c) trivially follows. If y �= z,
we have that δ(y, z) = 0. By condition (iii) in the statement of Proposition 5 we
have that yRx or zRx fails to be true, so that G(y, x).G(z, x) = 0. Therefore
the condition (ii)-(c) is always met.

Let us prove now that (ii) =⇒ (i): The binary relation R is obviously
irreflexive, since it is acyclic. By condition (ii)-(b) we have that there exists a
unique x0 such that F (x, x0) · G(x, x0) ≤ 0 holds for every x ∈ X. Equivalently,
there exists a unique element x0 ∈ X, for which xRx0 does not hold for any
x ∈ X.

Finally, given any x, y, z ∈ X such that both yRx and zRx hold true, we have
that F (y, x) ·G(y, x) > 0 and also F (z, x) ·G(z, x) > 0. Hence, by condition (ii)-
(c) it follows that F (y, x)·F (z, x)·G(y, x)·G(z, x) = [F (y, x)·G(y, x)]2 ·δ(y, z), so
that by simplifying we arrive at F (z, x) · G(z, x) = F (y, x) · G(y, x)δ(y, z). Thus
δ(y, z) = 1 a fortiori, since F (z, x) · G(z, x) > 0. So we conclude that y = z.
Therefore R is an arborescence by Proposition 5. ��

4 Directed Acyclic Graphs and Incidence Matrices

Each result on binary relations of a finite set can immediately be interpreted in
terms of Graph Theory, a branch of Discrete Mathematics. Basically, a graph
consists of a finite set of vertices or points –also known as nodes– that are
connected by arcs or lines –also known as edges–. In fact, some of the nodes
can be pairwise related (or not), and we say that each pair of related nodes
constitutes an edge of the graph. In addition, the edges may be directed or
undirected, giving rise to the so-called directed graphs, where the edges have
an orientation and are also said to be directed edges or arrows, as well as to
undirected graphs, in which edges have no orientation at all.

Now we may observe that if X is a nonempty finite set and R is a binary
relation on X, we can schematically represent R as a graph in which each node
corresponds to each element in X, and an arrow is drawn from the node that
represents the element x ∈ X to the node that corresponds to y ∈ X if and only



12 J. C. R. Alcantud et al.

if xRy holds true. Conversely, if we are given a directed graph, we immediately
can interpret it as a binary relation on a finite set.

Definition 10. A cycle in a directed graph is an ordered tuple of nodes (x1, . . . ,
xk) such that there is an arrow from xi to xi+1 for every i < k and there is also
one arrow from xk to x1. In the particular case in which k = 1 a 1-cycle is said
to be a loop. A directed acyclic graph is a directed graph with no cycles.

(Notice that every directed acyclic graph can be interpreted as an acyclic
binary relation on a nonempty finite set, and viceversa).

Definition 11. We say that a directed graph admits a topological ordering (also
known as a topological sorting in this literature) if there exists a suitable linear
order ≺ on the nodes of the graph such that it preserves the existing arrows.
That is, if there is in the graph an arrow from the node xi to the node xj , then
xi ≺ xj must hold true.

The following classical theorem is just a rephrasal of Theorem 1. It is a
classical in Graph Theory, where several sorting algorithms have been introduced
to get a topological sorting on a directed acyclic graph (see e.g. [6,7]). We should
notice that the topological sorting on a directed acyclic graph is not unique, in
general.

Theorem 6. Any directed acyclic graph admits a topological sorting.

It is a classical in Graph Theory, where sorting algorithms have been introduced
to get a topological sorting on a directed acyclic graph (see e.g. [6,7]).

Another alternative way to deal with binary relations on nonempty finite
sets comes from Matrix Theory. Thus, given a binary relation R on a set
X = {x1, . . . , xn}, we can visualize R by means of a suitable square matrix
n × n, called its incidence matrix. Needless to say, from such a matrix we can
retrieve the binary relation R as well as its corresponding directed graph, already
considered above. Conversely, from the graph we can easily get the corresponding
matrix.

Definition 12. A n × n square matrix each of whose entries is either 0 or 1
is said to be an incidence matrix. Given a nonempty finite set X and a binary
relation R on X, the incidence matrix relative to the binary relation R is the
n × n matrix MR = (mij) with mij = χR(xi, xj) (i, j ∈ {1, . . . , n}). (Here
χR(xi, xj) = 1 ⇔ xiRxj . Otherwise χR(xi, xj) = 0.)

Let us analyze now how some properties of a binary relation R defined on a
nonempty set can directly be observed by looking at its corresponding incidence
matrix MR.

Proposition 7. Let R be a binary relation defined on a nonempty finite set X.
Let MR be incidence matrix relative to R. The following properties hold true.
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(i) R is reflexive if and only if mii = 1 for every 1 ≤ i ≤ n.
(ii) R is irreflexive if and only if mii = 0 for every 1 ≤ i ≤ n.
(iii) R is asymmetric if and only if all the entries in the main diagonal of M2

R
are zeroes.

(iv) If the cardinality of X (henceforward denoted #X) is n, R is acyclic if and
only if for any natural number k with 1 ≤ k ≤ n, all the entries in the main
diagonal of Mk

R are zeroes.
(v) If #X = n, and R is acyclic, then Mn

R is the null matrix.
(vi) If #X = n and R is acyclic, then I − MR is a regular matrix such that

(I − MR)−1 = I + MR + . . . + Mn−1
R .

Proof. Parts (i) and (ii) directly follow from the corresponding definitions.
Let us prove part (iii). Assume first that R is asymmetric. Then for every

i, j ∈ {1, . . . , n} we have that χR(xi, xj) · χR(xj , xi) = mijmji = 0. Hence the
sum Σn

j=1mijmji = 0. But this sum is the i-th element in the main diagonal of
M2

R. Conversely, if Σn
j=1mijmji = 0 then it is plain that χR(xi, xj)·χR(xj , xi) =

0 for every i, j ∈ {1, . . . , n} so that xiRxj forces the negation of xjRxi. Hence
R is asymmetric.

To prove part (iv), first we assume that R is acyclic. Let k ∈ be such that
1 ≤ k ≤ n. Observe now that the i−th term in the main diagonal of Mk

R consists
of sums of products of the kind mi1i2 · mi2i3 · . . . · mikik+1 with i = i1 and also
ik+1 = i. But, being R is acyclic, it is clear that all these products are null.
Conversely, we may notice that the existence of a cycle on k elements, where
1 ≤ k ≤ n, {xi1, . . . , xik} ⊆ Xk such that xi1Rxi2R . . . RxikRxi1 forces the
i1-th element in the main diagonal of Mk

R to be different from zero, in contra-
diction with the hypothesis of the statement.

To prove (v), notice that any entry in Mn
R consists of sums of products of

the type mi1i2 ·mi2i3 · . . . ·minin+1 . Since #X = n in the tuple (i1, i2, . . . , in+1) a
repetition occurs, so giving rise to a part of that tuple of the kind (j1, j2, . . . , jk)
with k ≤ n and j1 = jk. Therefore the product mj1j2 ·mj2j3 · . . . ·mjk−1jk is zero,
and so is mi1i2 · mi2i3 · . . . · minin+1 .

Let us conclude by proving part (vi). Since Mn
R is the null matrix by part

(v), it follows that (I −MR) · (I +MR + . . .+Mn−1
R ) = (I +MR + . . .+Mn−1

R )−
(MR + . . . + Mn−1

R + Mn
R) = I − Mn

R = I. So I − MR is a regular matrix whose
inverse equals I + MR + . . . + Mn−1

R . ��

Theorem 7. Let R be an acyclic binary relation defined on a nonempty finite
set X. Then R is an arborescence if an only if there is a unique i ∈ {1, . . . , n}
such that all the entries in the i-th column of MR are zeroes, while all the entries
in the i-th row of (I − MR)−1 equal 1.

Proof. Assume first that R is an arborescence. Let X = {x1, . . . , xn}. By
Definition 8, there exists an element xi ∈ X such that xjRxi does not hold
for any xj ∈ X. Therefore mji = 0 for every 1 ≤ j ≤ n, so that the i-th
column of MR is null. Moreover, given j �= i, there is a unique k + 1-tuple
(xi = xi0, xi1, . . . , xik = xj) ∈ Xk+1, for some suitable k ∈ N, such that
xi = xi0Rxi1R . . . Rxik = xj holds true. Therefore the entry in the row i and
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column j of Mk
R must be 1 by the uniqueness hypothesis. Since that k is also

unique, we have that all the entries in the i-th row of (I + MR + . . . + Mn−1
R )

are 1, so that by parts (v) and (vi) of Proposition 7 we conclude that the all the
terms in the i-th row of (I − MR)−1 equal 1.

To prove the converse, first we notice that condition (i) in Definition 8 is
trivially met because R is acyclic and, in particular, irreflexive. In addition, since
all the entries in the i-th column of MR are zeroes for a unique i ∈ {1, . . . , n},
the condition (ii) in Definition 8 is accomplished by taking x0 = xi. Moreover,
because all the entries in the in the i-th row of (I − MR)−1 equal 1, and taking
into account that, by part vi) in Proposition 7, the equality (I − MR)−1 =
I + MR + . . . + Mn−1

R holds true, we observe that being x0 = xi and xj = x,
there exists a unique 1 ≤ k ≤ n such that the entry in the i-th row and j-th
column of Mk

R equals 1, whereas for any other l �= k the entry in the i-th row
and j-th column of Mk

R equals 0. Hence, there exists a unique (k + 1)-tuple
(xi = xi0, xi1, . . . , xik = xj) ∈ Xk+1, with xi0Rxi1R. . . Rxik holding true. So
the condition iii) in Definition 8 is also accomplished. ��

5 Concluding Remarks

Acyclic binary relations have been considered under different points of view,
paying an special attention to the use of some suitable functional equation.
When the set on the relations are considered is finite, the parallelism between
binary relations, graphs and incidence matrix has been shown. Here, any result
arising in one of those approaches –namely: abstract binary relations, directed
acyclic graphs, and incidence matrices– immediately has a translation into any
other one of those settings.

Among open problems within this theory, we point out that, as far as we
know, the question of characterizing all those acyclic binary relations on a set
that fail to admit a pseudoutility representation has not been solved yet.
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Abstract. Energy efficiency in public buildings has become a major
research field, due to the impacts of the energy consumption in terms
of pollution and economic aspects. For this reason, governments know
that it is necessary to adopt measures in order to minimize the envi-
ronmental impact and saving energy. Technology advances of the last
few years allow us to monitor and control the energy consumption in
buildings, and become of great importance to extract hidden knowledge
from raw data and give support to the experts in decision-making pro-
cesses to achieve real energy saving or pollution reduction among others.
Prediction techniques are classical tools in machine learning, used in the
energy efficiency paradigm to reduce and optimize the energy using. In
this work we have used two prediction techniques, symbolic regression
and neural networks, with the aim of predict the energy consumption
in public buildings at the University of Granada. This paper concludes
that symbolic regression is a promising and more interpretable results,
whereas neural networks lack of interpretability take more computational
time to be trained. In our results, we conclude that there are no signifi-
cant differences in accuracy considering both techniques in the problems
addressed.

Keywords: Energy efficiency · Symbolic regression
Neural networks · Genetic programming

1 Introduction

Growth in population and the necessity of saving the energy consumption in
the building sector have become a major concern in different governments. The
increase of energy consumption is related not only with the economy of each
country, but also with the environmental impact. Thus, the literature gathers
plenty of works that discuss about the high number of studies that show the
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large energy consumption registered in public buildings. For example, in USA
[24] the HVAC (heating, ventilation, and air conditioning) is the 20% of the total
consumption. Besides, other countries such as China [9] or Iran [30] show that
their energy consumption has been increased in more than 10% from China and
in 1.54 times from Iran in the past 20 years. On the other hand, Diakiki et al.
[12] argue that the building sector in the European Union (EU) has increased it
consumption until a 56%. As a consequence, European energy policy focuses its
interests in the preservation and efficient usage of energy in public buildings, to
optimize energy consumption or minimize the environmental impact.

In this way, there are different works that relate the energy consumption with
global warming. Jenkins et al. [18] use a model in order to investigate how the
climate change will affect the energy demand for heating and cooling in 2030
in different locations of UK, concluding that the heating consumption is domi-
nant regarding energy demand. Besides, Braun et al. [8] summarize that global
warming will be directly related with the consumption in offices, buildings and
home. More specifically, in future years global warming will imply a reduction
in the energy used for colder climates and an electricity consumption increase
in warmer climates. Researchers from different countries have been aware that
having energy consumption data and external information could be used in order
to minimize environmental impacts or saving energy.

Nowadays, the use of different technologies to monitor and control the energy
consumption in buildings is widely spread. Despite of the existence of several
types of sensors, the selection of the most appropriate has become in a hard
task [12]. The objective of the study should motivate the technology selection
considering environmental, energy, financial or social factors. For this reason,
the installation of suitable technologies in buildings to monitor the energy con-
sumption has provided useful and descriptive information [1]. This data can
furnish knowledge about: consumed energy, temperature, humidity, wind speed,
etc. Nevertheless, the diversity of these data implies a previous application of
machine learning techniques in order to preprocess and extract hidden knowledge
of the data. Once the data are stored and available to be used, a big amount of
applications could be applied, such as: creation of consumption profiles to esti-
mate the hourly and seasonal energy needed in the building sector [17], methods
for identifying anomalies in energy consumption [15] or making recommendation
systems to save household electricity [2].

The computational advance together with the development of diverse
algorithms in the machine learning paradigm provide us an optimal exploitation
of the energy data, in terms of knowledge extraction and data behaviour under-
standing. In the literature there are several techniques that make to achieve this
purpose easily. Ruiz et al. [29] use neural networks and evolutionary algorithms
to predict the energy consumption in public buildings, Zhao et al. [34] show sta-
tistical and artificial intelligence methods such as regression analysis to predict
energy consumption. Ekici and Aksoy [13] describe the use of artificial neural net-
work to predict the heating energy consumption in different buildings using dif-
ferent data sources such as orientation, building transparency ratio and insulation
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thickness. Besides, Kumar et al. [20] apply three kind of time series models to fore-
cast the energy consumption in India, and many other works [4,10,19,33]. In this
work, we focus on the use of prediction techniques such as neural networks and
symbolic regression to infer, model and predict the energy consumption in public
buildings of the University of Granada, combining information from energy con-
sumption together with exogenous variables such as ambient temperature. We are
interested in the estimation of the energy consumption from the weekdays using
the own information of the consumption registered in a specific building and also
considering the temperature, with the goal of verify whether the energy consump-
tion registered in a specific building is related with external variables. On the other
hand, a comparison between both neural networks and symbolic regression tech-
niques will be carried out.

This paper is organized as follows: Sect. 2 describes the methodologies used
in this work: symbolic regression and neural networks. Section 3 introduces the
experiments carried out in order validate each technique and discusses the advan-
tages of each one. Finally, Sect. 4 concludes with a discussion and future works.

2 Prediction Paradigm

Prediction techniques are classical tools used in data science since several years ago
in different areas, such as:medicine –using hemodynamic prediction try to predict
and reduce abdominal aortic aneurysm diseases [23] or to predict drug responses in
cancer research using regressions or support vector machine techniques [6]–, econ-
omy – whereas Lam et al. [21] use neural networks techniques in order to predict
the financial performance of different companies, White [32] uses neural network
techniques and learning techniques so as to search non-linear regularities in asset
price movements– or environmental sciences –Holger and Graeme [22] use neural
networks models to predict water resources variables –.

As it has been mentioned before, we can verify that in the literature exists
several applications of prediction tools and there are two basic pillars in order
to solve prediction problems: neural networks techniques and regression.

2.1 NARX and NARX-GA Neural Networks

Artificial neural networks (ANN) are a kind of methodology inspired by the
biological neural networks that simulate animal brains. An ANN is based on a
set of connected artificial neurons where each connection sends signals to other
neuron. The connection developed between all of these neurons take different
weights during the learning process and will determine the quality of the solu-
tion found. Besides, there are different types of neural networks techniques that
include hidden layers or back-propagation.

In the real world, there are several kind of problems, which can involve dif-
ferent static or dynamic parameters that model a certain pattern of behaviour;
so the selection of the more affordable method will be fundamental in the search
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solution. Particularly as the problem addressed in this work make use of his-
torical data of energy consumption and external data, such as temperature, to
predict energy consumption in public buildings. Motivated by this fact, a NARX
neural network is used in this work due to its nonlinear model is able to work
with dynamic inputs represented by time series, using the p past values of the
time series and another external series, that can be single or multidimensional.
The whole structure of NARX neural network and the interactions between the
neurons in the hidden layer is explained in detail in [29]. As first approxima-
tion we have used the Levenberg-Marquardt backpropagation (LMBP) method in
order to estimate the weights of the models. Despite being a faster approxima-
tion, the results achieved are not promising. For this reason, a genetic algorithm
is used such as alternative in order to optimize the weights of the models, instead
of LMBP, which is explained with detail in [28].

The evolutionary process used in the NARX model using a genetic algorithm,
is based on the CHC algorithm [14] and consists of a hybrid algorithm, using
a genetic algorithm and local search in order to create a kind of evolutionary
algorithm commonly known as memetic algorithm. As it is known, in a genetic
algorithm it is necessary to find out a representation of the individual; in our
case, an individual represents the structure of a neural network, encoded by a
vector which stores the inputs, outputs and the hidden layer neuron weights.
Once the individual representation is created, the algorithm begins creating a
random set of individuals. After that, a local search take place in order to improve
the individual characteristics based on LM method. After that, each individual
in the population are evaluated by a MSE measure –see formula 2– as fitness
function. Once the value of the solution found is calculated, a quality criterium
is carried out to determine if it is necessary to apply an incest prevention –
like is used in the CHC algorithm (see [14] for more detail)– in order to delay
convergence. Finally, the memetic algorithm will return the best neural network
configuration ready to predict the energy consumption.

2.2 Symbolic Regression

There are different methods in the literature that solve modelling [11] or predic-
tion [25,31] problems, but the most used is known as regression analysis. Regres-
sion analysis is a mathematical methodology used by researchers in order to fit
a functional model between the dependent and independent variables. An exam-
ple of a regression problem can be seen in formula 1, where we can identify the
following elements: a set of input data x̄ = (x1, x2, ..., xn), a set of output data
ȳ = (y1, y2, ..., ym) and a set of parameters that depend of the model hypothesis
f w̄ = (w1, w2, ..., wn). In order to find out the best combination between the
dependent and independent variables of the problem, regression analysis uses an
error that try to minimize; usually this error is the Mean Square Error (MSE).
Once regression coefficients are obtained, a prediction equation can be used in
order to predict the value of a continuous target as a function.

ȳ = f(x̄, w̄) (1)
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Furthermore, the literature shows different kind of regression problems:
Whereas in some issues all the parameters are known in advance and the prob-
lem consists of combining the set of variables until find out the optimal solution
[5,8], other works [3,16] argue that singularities could appear in the problem
definition, such as the unawareness of some variables of the problem.

On the other hand, Symbolic Regression is a kind of regression that general-
ize the process of regression analysis, assuming that the parameters w̄ and f are
unknown in advance, and try to find these parameters using a set of atomic oper-
ators as for example (+,−, ∗, /, cos, sin, tan), and the goal consist of combining
the input data x̄ with the mathematical operators in order to approximate a
function f̃ that minimize an error measure such as ||ȳ − f̃(x̄, w̄)||. Despite being
a suitable method to find the algebraic expression that better models the output
data ȳ from input data x̄, it is a NP-hard problem that needs the use of meta-
heuristics to be solved. The classic algorithm used in the literature is genetic
programming [3]. Genetic programming is a supervised learning method based
on biological evolution that try to imitate the behaviour of the natural selection,
using a population of individuals –traditionally encoded by tree structures– that
should interact between them in order to combine the best genes of each can-
didate and obtain an individual that represent the best characteristics of all of
them. In our case, each individual represents an algebraic expression encoded by
a Straight Line Program and the goal is to combine the population using a set
of operators.

Straight Line Programs (SLP) are a kind of grammar based on Straight Line
Grammars [7] –which are a type of non-recursive grammar that allow to generate
a unique expression– that are able to encode algebraic expressions in a linear
representation. This linear representation can be seen as a table where each row
of the table is a production rule where the antecedent is a non-terminal symbol
and the consequent is a concatenation of mathematical operators, terminal sym-
bols (such as constants or variables) or non-terminal symbols (references to other
row of the table). In this way, a SLP structure is able to encode a set of grammar
rules that can generate an algebraic expression and will be the representation
used to encode algebraic expression in the genetic procedure.

Thereupon, the main components of a genetic algorithm are presented below
(the paper [26] explains in detail each operator, for each tree and SLP represen-
tation scheme):

– The process start out selecting a set of individuals, that will behave as parents.
A tournament selection is used as operator that select the best individuals
of the population.

– Once the best individuals have been selected, a crossover operator is applied
over each pair of individuals. This operator tries to combine the genetic mate-
rial of the two parents in order to obtain a new individual that encode the
best characteristics of each parents.

– After that, in order to imitate the behaviour of the nature and establish
a balance between the convergence and the exploration of our algorithm, a
mutation operator is carried out with a low probability.
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– Finally, the new population replaces the previous individuals. Whereas in a
stationary scheme, the individual with better fitness value is included in the
previous population, in a generational scheme all the new population will
replace the previous population. We emphasize that the fitness value in the
genetic procedure is the Mean Square Error (see formula 2).

MSE =
1
m

m∑

i=1

(ŷi − yi)2 (2)

In addition, it is necessary to notice that usually the algebraic expressions
are encoded by trees in genetic algorithms, but in [26,27] we show that there are
other promising alternatives to encode algebraic expression like Straight Line
Programs. The main potential of SLP is its linear structure, that allows our
genetic algorithm to avoid a premature convergence and explore efficiently the
search space.

3 Experiments

In this section we describe the experiments carried out in order to compare the
results obtained with Symbolic Regression and a NARX Neural Network with or
without use a genetic algorithm as training method. The main goal of this exper-
imentation consists on predicting the energy consumption of a specific day of the
week using the energy used in the past 4 days and the temperature registered for
the last day. Combining all of this information we are interested on estimating
the energy consumption from the following days and, on the other hand, com-
paring and establishing differences considering accuracy, interpretability in the
solutions found and training computational time.

In order to compare these algorithms, we have used a set of real consumption
datasets of different buildings of the University of Granada. These data come
from an automated system installed in the University of Granada that regis-
ters the energy consumption from different buildings measured hourly. In this
work we have used the data of 8 different buildings. For confidentiality reasons
we will name these buildings as b1 to b8. Despite having consumption data of
these buildings, we cannot apply our algorithm over these datasets because the
database saves raw data which could contains noise or incomplete data. For this
reason, as a previous step of the experimentation, we need to preprocess the
data as follows:

– On one hand, we need to remove breaks or irregular patterns in the data,
using a linear interpolation.

– After that, we are interested in the aggregation of the energy consumption
daily, in order to apply the methods explained in this work.

– Finally, we have normalized the data between [0, 1] –using the formula
3– because we want to guarantee that there are no variables which may shrink
the search.

ynormalized =
y − ymin

ymax − ymin
(3)
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After the previous preprocessing, we have available around 1000 instances
from each building. After that, we use a 70% of the data as train data and the
remaining 30% is used as test data. In this way, our model is trained with 700
instances and is able to predict the energy consumption from 300 days.

An example of the data available to use in this experimentation for each
building, once the data has been preprocessed, is shown in Fig. 1. Thereupon,
the application of both Symbolic Regression and Neural Networks algorithms
are carried out with the experimental configuration shown in Tables 1 and 2:

Fig. 1. Example of the energy consumption registered from 100 days from 3 buildings.

In order to verify the models robustness, we have divided each dataset into
two subsets: training (70%) in order to build the model and test (30%) for
validation, running each experimentation 5 times. Table 3 gathers the results
achieved by NARX Neural Network with LMBP and using the genetic algorithm,
and Symbolic Regression using the generational genetic algorithm. The first
column of the table shows the building id and the following columns show the
average of mean square error for each algorithm –represented as AF (Average
Fitness)– the computational time measured in seconds –shown as AT (Average
Time)– and the number of neurons and delay used in both neural networks:
NARX with LMBP and NARX using GA. Finally, the expression size –contains
the number of mathematical operators used in the expression– found by the
symbolic regression algorithm is shown in the last column in order to present
the interpretability of the model.

Considering the results shown in Table 3 we can verify that, although NARX
neural networks need a small amount of time to find a solution, it shows a worse
performance than Symbolic Regression using SLP in all cases. On the other
hand, attending to NARX using genetic algorithms, these results are better in
terms of precision. Nevertheless, the MSE found by symbolic regression is near
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Table 1. Experimental configuration for NARX and NARX-GA.

NARX NARX-GA

Hidden neurons [2, 20] [2, 20]

Memory/Delay [1,21] 5

Function LM backpropagation LM backpropagation

Minimum gradient 10−7 10−7

Learning rate [10−3, 1010] [10−3, 1010]

ν decrease 0.1 0.1

ν increase 10 10

Crossover rate – 90%

Mutation rate – 10%

N. evaluations – 100

Population size – 25

Table 2. Experimental configuration for genetic algorithm using SLP - Symbolic
Regression

Symbolic regression - GGASLP

Population size 180

SLP size 15

Crossover rate 90%

Mutation rate 10%

Function set F {+, −, ∗, /, sqrt, pow, exp, sin, cos, tan, log, min, max}
Constants {k1, k2, k3, k4, k5}
Variables {x1, x2, x3, x4, t4}
Number of evaluation 40000

Table 3. Results of 8 buildings using NARX, NARX-GA and SLP.

NARX NARX-GA Delay Neurons SLP

AF AT AF AT AF AT Size

1 1.33 88.29 0.011 1206.54 7 4 0.028 554.01 14

2 1.31 91.26 0.008 1582.4 7 2 0.037 491.44 14

3 1.24 84.68 0.01 1095.07 7 2 0.025 477.24 15

4 1.4 85.77 0.01 1523.57 5 14 0.026 511.56 13

5 0.71 87.83 0.005 1040.45 5 2 0.008 489.66 11

6 0.79 88.28 0.003 1556.36 5 2 0.023 389.03 10

7 1.17 91.45 0.007 1582.33 7 2 0.024 467.68 12

8 0.88 82.69 0.007 1128.63 8 2 0.024 549.43 12
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to 0 and the execution time in all cases is 2 times less in symbolic regression than
with neural networks. Indeed, neural networks have a better performance than
regression techniques in prediction problems, but is necessary to emphasize that
in some cases the precision goes to the background, overall when the aim of the
solution found should have the purpose of helping to the expert in the decision-
making paradigm. In this way, the black-box model of neural networks, implies a
low interpretability of the results. On the other hand, symbolic regression is able
to find good approaches in a considerably less time than using neural networks,
and also the algebraic expressions found, in contrast with the black-box model of
the neural networks, are more interpretable; as is shown in formulas 4 to 6. We
emphasize that the maximum size of an algebraic expression equals 15 operators,
so that these SLP solutions involve a high interpretability in the decision-making
problem to assess the expert.

y = max(x4,max(x4, (x1/1.35)))a

where a = (x3 + 0.63) ∗ exp(x3) ∗ (x1/0.91)(max(x4,(x1/1.35))max(x4,1.67))
(4)

y =
((max(x5, x4)((((x

0.21
4 )(((x

0.21
4 )/0.18)x2 ))/0.18)x2 ))(x

x2
3 ))((x

x2
3 )x2 )

0.95
(5)

y =
tan(max(sqrt((x4 ∗ 0.38)), sin(x4)))/min((x3 ∗ (1.35/x2)), 1.01)

(1.06 + x1)x2
(6)

4 Conclusions

In this paper we have studied the use of different alternatives to predict the
energy consumption of the working days in different public buildings of the
University of Granada: symbolic regression and NARX neural networks trained
with LMBP and with genetic algorithms. In order to achieve this prediction
we have been interested in the use of both internal (energy consumption) and
exogenous (temperature) information.

Our experimentation shows that the use of the NARX model with LMBP
is not as promising as the other alternatives. On the other hand, NARX-GA
and SLP methods seem to be able to reach good performance. Indeed, NARX
neural networks, using the genetic algorithm, work better than SLP in terms of
precision, but SLP has achieved similar solutions in 2 times less than neural net-
works. Nevertheless, the main advantage of symbolic regression over NARX Neu-
ral Networks is the interpretability of the solutions found. In this way, whereas it
is difficult to understand the solution of a neural network –due to its black-box
model performance–, symbolic regression brings us the solution in terms of an
algebraic expression, which will be of assistance to the expert in the decision-
making problem.
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Abstract. Fuzzy relational compositions is an important topic in fuzzy
mathematics and many researchers have applied that in various fields
which the classification problem was more and less accounted for the
significant part. Related to this problem, in this paper, we will show that
fuzzy relational compositions assist in evaluating customers creditability
(credit scoring) which is one of the most important problems in the
financial industry. The purpose is to classify a given customer into two
classes of accepted or rejected and to help loan officers to make a better
decision. We will illustrate an experimental example with initial values
provided by an bank expert and use LFL R-package as the practical
tool to calculate the compositions for our application. The concept of
so-called generalized quantifiers and excluding features incorporating in
the compositions will be employed as well.

Keywords: Fuzzy relational compositions
Bandler-Kohout products · Excluding features
Generalized quantifiers · Credit assessment · Credit scoring
Credit evaluation

1 Introduction

The credit scoring is a risk evaluation task considered as a critical decision for
financial institutions in order to avoid wrong decision that may result in huge
amount of losses [1]. This process includes collecting, analysing and classifying
different credit elements and variables to assess the credit decisions. The quality
of bank loans is the key determinant of competition, survival and profitability [2].

Evaluation of banking system customers risk in Iranian banks relies on
experts judgement and fingertip rule. This type of evaluation resulted in high
rate of postponed claims, therefore, designing new intelligent model for credit
risk evaluation can be helpful [3]. Hence, in this paper, we consider credit scor-
ing process based on one of the private banks in Iran which we had access to its
data. This bank has a lot of branches around the country quite far from each
c© Springer International Publishing AG, part of Springer Nature 2018
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other, therefore, it is important for the bank to assist young loan officers who
are far from experts with their decision making process. For this purpose, first,
we need to collect the knowledge of experienced loan experts along with ana-
lyzed information of previous customers and second, to apply fuzzy relational
compositions based on LFL R-package [4] to support young loan officers making
the decision.

Fuzzy relational compositions have been firstly introduced by Bandler and
Kohout in the late 70s and the early 80s [5]. Since then, they have become an
important topic in fuzzy mathematics. This can be substantiated by numerous
studies deeply elaborating the topic on various aspects, see e.g. [6–8]. Its appli-
cation has been presented in many areas, including the formal constructions of
fuzzy inference systems [9,10], related systems of fuzzy relational equations, see
e.g. [11–13] and recently [14], medical diagnosis [5], architectures of information
processing [15] or in flexible queries to relational databases [16].

Apart from the numerous recent works such as flexible query answering sys-
tems [17], inference systems [18] or modeling monotone fuzzy rule bases [19],
there are two other interesting directions extending the topic: the incorporation
of excluding features in the compositions [20] and the compositions based on
generalized quantifiers [21,22]. It is worth mentioning that both approaches may
be combined together in order to obtain a more flexible and effective tool, see
[23]. The real potential of the approaches was demonstrated on the classification
problem of Odonata (dragonflies) [20,24].

In this paper, we will apply the approach of the compositions based on gener-
alized quantifiers combining the concept of excluding features to the customers
credit scoring as this application is close to the classification one. As we show,
the final result is positive and illustrate that this method would help to classify
a customer to the suitable category.

2 Background of the Approach

This section recalls some basic facts about fuzzy relational compositions combin-
ing together with two their recently extensions on the concept of excluding fea-
tures [20] and the employment of intermediate generalized quantifiers [21]. From
now, let us fix a residuated lattice L = 〈[0, 1],∧,∨,⊗,→, 0, 1〉 as the underlying
algebraic structure and define two more additional operations: the biresiduation
(bi-implication) ↔ given by a ↔ b = (a → b) ∧ (b → a) and the negation ¬
defined by ¬a = a → 0, for all a; b ∈ L. Furthermore, by F(U) we denote the
set of all fuzzy sets on a given universe U .

2.1 Fuzzy Relational Compositions

Definition 1 [21]. Let X,Y,Z be non-empty finite universes, and let R ∈
F(X × Y ), S ∈ F(Y × Z) then the basic composition ◦, BK (Bandler-Kohout)-
subproduct �, BK-superproduct � and BK-square product � of R and S are fuzzy
relations on X × Z defined as follows:
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(R ◦ S)(x, z) =
∨

y∈Y

(R(x, y) ⊗ S(y, z)) ,

(R � S)(x, z) =
∧

y∈Y

(R(x, y) → S(y, z)) ,

(R � S)(x, z) =
∧

y∈Y

(S(y, z) → R(x, y)) ,

(R � S)(x, z) =
∧

y∈Y

(R(x, y) ↔ S(y, z)) ,

for all x ∈ X and z ∈ Z.

Let us illustrate the meaning of these compositions on the following example
in the financial problem. Assume that X is a finite set of customers, Y is a
finite set of attributes, and Z is a finite set of classes of credit decisions. Then
(R ◦ S)(x, z) means that the customer x has at least one attribute belonging to
the class z. The two other BK products and the square product provide a sort
of strengthening of the initial suspicion. The subproduct (R � S)(x, z) means
that all the attributes of the customer x belong to the class z, and (R �S)(x, z)
expresses that the customer x has all attributes of the class z. The meaning
of (R � S)(x, z) is that the customer x has all attributes of the class z and all
attributes of the customer belong to this class.

2.2 Excluding Features in Fuzzy Relational Compositions

Now we follow [20] and recall the concept of excluding features incorporated
in the fuzzy relational compositions for our problem which is motivated by the
existence of excluding symptoms for some particular diseases in the medical
diagnosis problem.

Definition 2 [20]. Let X,Y,Z be non-empty finite universes, and let R ∈ F(X×
Y ), S,E ∈ F(Y × Z). Then the composition of R and S incorporating E is a
fuzzy relation R ◦ S�E ∈ F(X × Z) defined by:

(R ◦ S�E)(x, z) =
∨

y∈Y

(R(x, y) ⊗ S(y, z)) ⊗ ¬
∨

y∈Y

(R(x, y) ⊗ E(y, z)) . (1)

The semantics of E(y, z) is that y is an excluding feature for the class z, and
the semantics of the composition (R ◦ S�E)(x, z) is that customer x has at least
one feature belonging to the class z and at the same time there is no excluding
feature related to the class and carried by the customer.

Formula (1) can be rewritten into a more comprehensible form as the product
of the two basic compositions:

(R ◦ S�E)(x, z) = (R ◦ S)(x, z) ⊗ ¬(R ◦ E)(x, z).



Fuzzy Relational Compositions Can Be Useful for Customers Credit Scoring 31

2.3 Compositions Based on Generalized Quantifiers

Another extension of the fuzzy relational compositions are the compositions based
on generalized quantifiers [21]. The usual quantifiers are e.g. “Many”, “A few”,
or “Majority”. Before giving the main definition of the extension, let us recall
the concept of fuzzy measures [25].

Definition 3 [21]. Let U = {u1, . . . , un} be a finite universe, let P(U) be the
power set of U . A mapping μ : P(U) → [0, 1] is called a fuzzy measure on U if
μ(∅) = 0 and μ(U) = 1 and, if for all C,D ∈ P(U), C ⊆ D then μ(C) ≤ μ(D).

Fuzzy measure μ is called symmetric if for all C,D ∈ P(U) : |C| = |D| ⇒
μ(C) = μ(D) where | · | denotes the cardinality of a set.

Example 1. The fuzzy measure μf given by μf (C) = f( |C|
|U | ) is symmetric, where

f : [0, 1] → [0, 1] is a non-decreasing mapping with f(0) = 0 and f(1) = 1.
Note that fuzzy sets modeling the evaluative linguistic expressions of the type
Big (and modified by any linguistic hedges, e.g. Roughly, Very, Significantly
etc.) [26,27] are satisfy the conditions of the function f .

Definition 4 [21,22]. A mapping Q : F(U) → [0, 1] defined by

Q(C) =
∨

D∈P(U)\{∅}

((
∧

u∈D

C(u)

)
⊗ μ(D)

)
, C ∈ F(U)

is called generalized (fuzzy) quantifier determined by a fuzzy measure μ on U .

If μ is a symmetric fuzzy measure then the quantifier can be reduced to a
computational form:

Q(C) =
n∨

i=1

(
C(uπ(i)) ⊗ μ({u1, . . . , ui})

)
, C ∈ F(U) (2)

where π is a permutation on {1, . . . , n} such that C(uπ(1)) ≥ C(uπ(2)) ≥ · · · ≥
C(uπ(n)).

Definition 5 [21]. Let X,Y,Z be non-empty finite universes, let R ∈ F(X×Y ),
S ∈ F(Y × Z). Let Q be a quantifier on Y determined by a fuzzy measure μ.
Then, the compositions R@QS where @ ∈ {◦,�,�, �} are defined as follows:

(R@QS)(x, z) =
∨

D∈P(Y )\{∅}

⎛

⎝

⎛

⎝
∧

y∈D

R(x, y) � S(y, z)

⎞

⎠ ⊗ μ(D)

⎞

⎠ (3)

for all x ∈ X, z ∈ Z and for � ∈ {⊗,→,←,↔} respectively where R(x, y) ←
S(y, z) is the same as S(y, z) → R(x, y).

Note that if the used fuzzy measure is symmetric then formula (3) can be
rewritten into a form similar to formula (2).

It is worth mentioning that incorporation of excluding features in fuzzy rela-
tional compositions and the compositions based on generalized quantifiers may
be combined together, see [23].
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3 Customer Credit Scoring Problem

3.1 Overview of the Problem

In the financial industry, the consolidation of using classification models occurred
in the 90s. Changes in the world scene, such as deregulation of interest rates and
exchange rates, leads to an increase in bank competition and made financial insti-
tutions more and more worried about credit risk, i.e., the risk they were running
when accepting someone as their customer. The granting of credit started to be
more important in the profitability of companies in the financial sector, becoming
one of the main sources of revenue for banks and financial institutions in general.
Due to this fact, the sector of the economy realized that it was highly recom-
mended to increase the number of allocated resources without losing the agility
and quality [28]. The overall idea of credit scoring is to compare the features
or characters of a customer with other earlier period customers, whose loans
they have already paid back. If a customer’s characters are adequately similar
to those, who have been granted credit, and have consequently defaulted, the
application will normally be rejected. If the customer’s features are satisfactorily
like those, who have not defaulted, the application will normally be granted [29].
In many researches the goal of credit scoring models is defined as to classify loan
customers to either good credit or bad credit [30,31].

Many methods have been used to solve this problem such as discriminant
analysis, regression analysis, probity analysis, neural networks, logistic regres-
sion and case-based reasoning [2,32]. Despite different methods we mentioned
before, it seems that fuzzy logic modelling methods have been neglected in this
area, although various researchers tried to bring fuzzy techniques into the credit
scoring problem [27,33–36]. Moreover, one should keep in mind that the credit
scoring models are not standardized, they differ from one market to another [2].
They can differ on the basis of the country situation, policies of the banks,
culture and, of course, availability of data.

In this research we use the concept called Five C’s of credit (Character,
Capacity, Capital, Conditions, and Collateral). “the five C’s of credit” is a peda-
gogical concept used in lending training. Loan officers use the five C’s of credit to
classify loan information and consider relationships among “categories of infor-
mation” or one can say knowledge structure [37]. Decision making for credit
scoring based on this knowledge structure enable loan officers to recall more
judgemental and consistent information because loan officers frequently perform
follow-up work on loans they originated, and they must recall loan information
during conversations with borrowers and loan committee meetings.

The following section describes the five C’s of credit as being the foundation
of loan officers decision making.

3.2 Loan Officers’ Decision Making Process

As mentioned before, loan officers are generally taught to seek and organize
information using a framework called the five C’s of credit. This provides a
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common structure to their judgements of loan applications and help them to
make the final decision to accept or reject the borrowers request [37]. In Iran,
this model is very common and experts are using it very frequently.

The following brief description of the five C’s is based on [32,37].

– Character: The credit history of the borrower. It is about the borrower’s rep-
utation for repaying debts and appears on the credit reports which contain
detailed information about how much the customer has borrowed from bank-
ing systems in the past and whether he or she has repaid loans on time or had
some problems (delay, default). They also contain information of bankrupt-
cies, etc. Also variables like length of living in the current address, occupation,
length of current employment, payment status of previous credit, and further
running credits, can show integrity, stability, and honesty of the customer.

– Capacity: Ability to operate a business or having a job capable of repaying
debt. Loan officer compares income(s) against recurring debts of the customer
and assess his or her debt-to-income (DTI) ratio.

– Capital: The funds available to operate a business or task. Loan officer con-
siders any capital the customer puts toward a potential investment and it can
be found in financial statements. Usually, large contribution by the borrower
decreases the chance of default.

– Condition: The economic conditions (e.g., recession, growth) and also the
condition of the loan, such as its interest rate and amount of principal, affect
the loan officer’s desire to finance the customer. It refers to how a borrower is
going to pay back the loan and how he or she intends to use the money. For
example, if a customer applies for a car loan or a home improvement loan,
the lender may be more likely to approve those loans because of their specific
purpose, rather than a signature loan that could be used for anything.

– Collateral: An alternative source of repayment of the loan. Collateral can
help loan officer to secure the loan. Usually, an explicit pledge is required when
there are some weaknesses in other C’s although, collateral alone should not
be used to make the decision. In other words, it assures the loan officer if
the borrower defaults on the loan, the bank can repossess the collateral. For
example, car loans are secured by cars and mortgages are secured by homes.

Instruction of the five C’s serves four functions. First, it ensures that loan offi-
cers acquire data in categories that are critical to the success or failure of loans.
Second, it helps them develop internal standards or reference points for cus-
tomers information in those categories. Third, it forces loan officers to consider
relationships among these categories. However, this information is influenced
by borrowers character; borrowers of poor character may provide non-credible
accounting information, such as unrealistically high valuations of their property.
Since borrowers character influences their presentation of financial information,
their responses to economic conditions, and even the security of their pledges of
collateral, loan officers combine social judgement of character with judgments
regarding the other C’s of credit to obtain overall judgments of loan applications
[37]. And the last one is that this model enable them to develop shared language
with upper managers, different loan committee and even with the customer [32].
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4 Experiment on the Credit Scoring and Discussion

In the previous section, we explained how the decision to accept or reject the
loan is made by loan officers. In this section, we will show how the approach of
fuzzy relational compositions based generalized quantifiers together combining
with the excluding features can be useful for the problem of credit scoring in
banks which are using the 5C’s model. For the influence of the approach, an
experimental example will be demonstrated while the membership degrees in
fuzzy relations are determined by an bank expert. For the sake of simplicity, let us
change the name of these 5C’s to make them more clear and understandable. We
need to determine the relationship between customers and features and similarly,
features and outputs therefore, We should divide some of the features into more
specific ones. Following, we specify how to extract the features:

– First C is Character and we will call it positive reputation.
– Second C is Capacity, we use the same name but we divide it into three

categories, low capacity, medium capacity and high capacity.
– Third C is Capital and we will keep the name.
– Fourth C is Condition and again we divide this feature into three categories,

easy condition, challenging condition and difficult condition.
– Fifth C is Collateral and we will rename it as security of the loan and divide

it into three categories, low secured, medium secured and high secured.

Therefore totally out of these 5C’s we extract 11 features which we will use
in the next step. Let Y = {y1, y2, . . . , y11} be a set of features, Z = {z1, z2} be
a set of classes (categories), and let X = {x1, x2, . . . , x12} be a set of particular
customers chosen randomly by a bank expert, where z1 – accepted, z2 – rejected;
y1 – positive reputation, y2 – low capacity, y3 – medium capacity, y4 – high
capacity, y5 – sufficient capital, y6 – low secured loan, y7 – medium secured
loan, y8 – high secured loan, y9 – easy condition, y10 – challenging condition,
y11 – difficult condition.

The task is to classify a particular customer into a suitable category of the set
Z to see that up to a certain degree, a given customer will be eligible to receive
a loan. Although some of features might have low-degree connection with a
given class, they should not be excluded from the possibility of having the class.
The reason is that there might be particular customers who have this kind of
connection and in this situation, the excluding features can be applied as well.
For example, the “sufficient capital” feature has low degree 0.5 for accepted class,
but it should not be excluded from this class since there might be a customer
who has that feature in medium (or high) degree and he could be considered as
accepted. On the other hand, there exist features directly excluded from having
class no matter how many other features of that class linking to given customer.
For example, if a customer has a high degree on low secured loan feature, since
this feature is excluded from the accepted class therefore, the customer does not
have to be in the consideration of accepted any more, no matter how many other
features carried by him linking to the accepted class. Thus, the fuzzy relations
S,E ∈ F(Y × Z) and R ∈ F(X × Y ) can be given as follows:
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R y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11
x1 0.9 0.2 0.8 0.0 0.7 0.0 0.2 0.8 0.4 0.6 0.0
x2 0.3 0.0 0.6 0.4 0.8 0.0 0.7 0.3 0.0 0.5 0.5
x3 0.8 0.8 0.2 0.0 0.5 0.0 0.4 0.6 0.0 0.3 0.7
x4 0.7 0.1 0.9 0.0 0.9 0.0 0.8 0.2 0.6 0.4 0.0
x5 0.8 0.8 0.2 0.0 0.7 0.6 0.4 0.0 0.0 0.6 0.4
x6 0.9 0.2 0.8 0.0 0.9 0.0 0.1 0.9 0.4 0.6 0.0
x7 0.6 0.6 0.4 0.0 0.8 0.3 0.7 0.0 0.0 0.6 0.4
x8 0.3 0.6 0.4 0.0 0.9 0.2 0.8 0.0 0.0 0.5 0.5
x9 0.9 0.0 0.3 0.7 0.8 0.3 0.7 0.0 0.3 0.7 0.0
x10 0.9 0.0 0.3 0.7 0.9 0.0 0.2 0.8 0.1 0.9 0.0
x11 0.8 0.3 0.7 0.0 0.5 0.0 0.1 0.9 0.6 0.4 0.0
x12 0.9 0.2 0.8 0.0 0.9 0.0 0.2 0.8 0.8 0.2 0.0

,

S z1 z2
y1 0.7 0.3
y2 0.2 0.8
y3 0.5 0.5
y4 0.7 0.3
y5 0.5 0.5
y6 0.2 0.8
y7 0.5 0.5
y8 0.7 0.3
y9 0.7 0.3

y10 0.5 0.5
y11 0.3 0.7

,

E z1 z2
y1 0 0.5
y2 0.8 0
y3 0.2 0.2
y4 0 0.6
y5 0.1 0.3
y6 0.8 0
y7 0.2 0.2
y8 0.1 0.2
y9 0 0.6

y10 0.5 0.4
y11 0.6 0

.

The semantics of the membership degrees in the fuzzy relations R,S,E can be
expressed as follows: R(x, y) means that how much it is true, that the customer
x has the feature y; S(y, z) stands for the truth degree of the prediction, that y
is a feature of the class z; and E(y, z) means how much the truth degree should
be, that y is an excluding feature of the class z. For example, R(x1, y1) = 0.9
means that the customer x1 is evaluated to have positive reputation at 90%.
This value is obtained on the basis of the fact that the customer x1 delayed
repaying her/his borrowed loans one or two times. As we have mentioned in the
preliminaries section, that the role of the basic composition R ◦ S is to give the
initial guess of the relationship between a given customer and a given class, and
it is strengthened by the other products i.e., R � S, R � S and R � S, we make
a computation on all these compositions to compare the results. If we fix the
standard �Lukasiweicz MV-algebra as the underlying algebraic structure then we
obtain:

R ◦ S z1 z2
x1 0.6 0.3
x2 0.3 0.3
x3 0.5 0.6
x4 0.4 0.4
x5 0.5 0.6
x6 0.6 0.4
x7 0.3 0.4
x8 0.4 0.4
x9 0.6 0.3

x10 0.6 0.4
x11 0.6 0.2
x12 0.6 0.4

,

R � S z1 z2
x1 0.7 0.4
x2 0.7 0.7
x3 0.4 0.5
x4 0.6 0.6
x5 0.4 0.5
x6 0.6 0.4
x7 0.6 0.7
x8 0.6 0.6
x9 0.7 0.4

x10 0.6 0.4
x11 0.8 0.4
x12 0.6 0.4

,

R � S z1 z2
x1 0.3 0.2
x2 0.3 0.2
x3 0.3 0.2
x4 0.3 0.2
x5 0.3 0.7
x6 0.3 0.2
x7 0.3 0.5
x8 0.3 0.4
x9 0.3 0.2

x10 0.4 0.2
x11 0.3 0.2
x12 0.3 0.2

,

R � S z1 z2
x1 0.3 0.2
x2 0.3 0.2
x3 0.3 0.2
x4 0.3 0.2
x5 0.3 0.5
x6 0.3 0.2
x7 0.3 0.5
x8 0.3 0.4
x9 0.3 0.2

x10 0.4 0.2
x11 0.3 0.2
x12 0.3 0.2

.

As we can see, the basic composition gives us the initial suspicion which is a nice
information where the difference between the acceptance and rejection member-
ship degree is adequate to distinguish the class of customers. However, it has some
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weaknesses itself because it may have high membership degrees for both classes.
On the other hand, the membership degree in two classes may be equal. In this
situation, the second obstacle occurs as one may see for customer 2, customer 4
and customer 8. This does not provide enough information to solve the classifica-
tion problem. In this case, one might suggest that the strengthening products may
help however, because of the use of the universal quantifier, they often drop the
membership degrees too much, for example, customer 1, 2, 3, 4. Consequently, the
square product should give a similar problem with too much dropping the mem-
bership degrees. Nevertheless, based on our experience in most cases, the use of the
square composition based on generalized quantifier can help. In this context, let
us consider fuzzy set modelling the meaning of the linguistic expression Roughly
Big (abbr. RoBi) (cf. [27]) which enables us to construct a generalized quantifier
Q = “Majority”. In a standard context (cf. Chap. 5 in [27]), this fuzzy set takes
values RoBi(1/11) = RoBi(2/11) = · · · = RoBi(7/11) = 0, RoBi(8/11) = 0.113,
and RoBi(9/11) = RoBi(10/11) = RoBi(1) = 1. Thus, based on the computational
form of the compositions based on generalized quantifiers, one may easily compute
the composition R �Q S. The result, as we may see in the following table, elimi-
nates the equality of the membership degrees related the acceptance and rejection
classes. In details, the chance of “rejection” for the customer x2 is more likely than
getting “acceptance”, the customer x4 is vice-versa as the percentage of having
the acceptance is greater than the other one, and finally, the customer x8 has more
risk of rejection. Furthermore, the differentiation of the acceptance degree and the
rejection degree is more distinguished for the rest of the customers which undoubt-
edly proceeds the classification problem easier. As we have raised reason for com-
bining the approach of excluding features in the compositions, we have applied
the product R �Q S�E which serves as a better tool. Indeed, it eliminates the false
assigned membership degrees without losing the possibility of having the correct
ones. We describe the results in the following tables:

R �Q S z1 z2
x1 0.7 0.4
x2 0.6 0.7
x3 0.4 0.7
x4 0.6 0.3
x5 0.3 0.7
x6 0.6 0.4
x7 0.3 0.7
x8 0.3 0.7
x9 0.7 0.4

x10 0.6 0.3
x11 0.7 0.4
x12 0.7 0.4

,

R �Q S�E z1 z2
x1 0.6 0.0
x2 0.5 0.6
x3 0.0 0.4
x4 0.5 0.1
x5 0.0 0.4
x6 0.5 0.0
x7 0.0 0.6
x8 0.0 0.5
x9 0.5 0.0

x10 0.2 0.0
x11 0.6 0.1
x12 0.7 0.0

.
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Let us mention two points regarding our final results:

– First, we should point out in our research, we had access to small but real
data sample from one of the private Iranian banks, and the outcome matched
with the expected outputs.

– Furthermore, we found an interesting point during our research which we will
explain by an example. As we mentioned before, z1 shows the membership
degree of the accepted class. In the table above, it is clear that even among
the customers who already categorized as accepted, some of them have higher
accepted membership degree compare to other ones. For instance, customer
x12’s membership degree is 0.7 and it is greater than membership degree of
customer x10. This is exactly based on our expert’s expectation. In another
word, even though two customers might be accepted, the creditability of one
might be different than the other. It inspires us to consider later research
and instead of measuring the acceptance or rejection of customers, we will
measure the risk of giving a loan to each customer. For example, the output
can be categorized into low-risk, medium-risk, and high-risk classes.

One of the common problems regarding working in the area of credit scoring
is the sample data. Usually, researchers in this field are using the German credit
assessment dataset (donated by Professor Dr. Hans Hofmann) but we did not
have access to experts to evaluate the five C’s based on this dataset therefore, we
have performed our experiment on a small amount of data based on one of the
private Iranian banks. We are aware that though it gives us an idealistic result
for the classification, it might not seem enough convincing for readers regarding
its real potential. However, we noticed that the approach behaves similarly and
keep the performance while we increased the number of samples.

Another issue should be kept in mind is the dependency among features
which may affect the credit scoring.

5 Conclusion and Further Work

We have proposed that fuzzy relational compositions can be used as a useful tool
to apply for customers creditability assessment. Its real potential was demon-
strated on a simple yet real example determining from the expert knowledge. The
application has contributed for the extension of the applied files of fuzzy rela-
tional compositions, especially the compositions combining together with recent
its extensions on the excluding features and the employment of intermediate
generalized quantifiers such as “Most”, “Many” or “Majority” which somehow
provide us with a wider choice of models that may better fit for particular prob-
lems consistent with human reasoning using natural language. For the further
work, a system of fuzzy rule base using linguistic expressions seems to be another
appropriate direction toward solving the assessment of customer creditability as
well.
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19. Štěpnička, M., Jayaram, B.: Interpolativity of at-least and at-most models of mono-
tone fuzzy rule bases with multiple antecedent variables. Fuzzy Sets Syst. 297,
26–45 (2016)
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21. Cao, N., Štěpnička, M., Holčapek, M.: Extensions of fuzzy relational compositions
based on generalized quantifer. Fuzzy Sets Syst. (in Press)
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Abstract. The two-sample dispersion testing problem is considered.
Two generalizations of the Sukhatme test for interval-valued data are
proposed. These two versions correspond to different possible views on
the interval outcomes of the experiment: the epistemic or the ontic one.
Each view yields its own approach to data analysis which results in a
different test construction and the way of carrying on the statistical
inference.
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1 Introduction

Two-sample tests for dispersion belong to a basic toolbox of statistical proce-
dures. Having two random samples one may be interested in detecting a differ-
ence in variability of distributions corresponding to these samples. In this paper
we consider the two-sample dispersion testing problem for interval-valued data.

Analysts sometimes do not realize that interval-valued data which appear in
applications may deliver two different types of information: the imprecise descrip-
tion of a point-valued quantity or the precise description of a set-valued entity
(see [4]). Firstly, quite often the results of an experiment cannot be observed pre-
cisely or are so uncertain that they are recorded just as intervals containing the
precise outcomes. Sometimes even having precise data the exact value of some
variables are hidden deliberately for confidentiality reasons. These are examples
of the epistemic view on intervals, where an epistemic interval A contains an
ill-known actual value of a point-valued quantity x, so we can write x ∈ A.
However, since it represents only the epistemic state of an agent, it does not
exist per se. Secondly, there are situations when the outcomes of an experiment
appear as essentially interval-valued data describing a precise information. Typ-
ical example are ranges of fluctuations of some physical measurements or time
intervals spanned by some activity. Here we face the ontic view on intervals.
Thus an ontic interval is the precise representation of an objective entity, i.e. A
is an actual value of a set-valued variable X, so we can write X = A.
c© Springer International Publishing AG, part of Springer Nature 2018
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Our goal is to generalize a suitable test for interval-valued data perceived
both from the epistemic and ontic perspective. Usually to verify whether the
dispersion of two populations differ one compares their sample variances. Unfor-
tunately, a generalization of such statistical procedures into the interval-valued
framework may cause considerable computational problems, especially if a sam-
ple is large enough. Indeed, a sample variance computation for the epistemic
intervals is NP-hard task (see [7]). Moreover, a classical F-test for comparing
variances assumes that populations are normally distributed. Therefore, to avoid
problems in verifying assumptions on the underlying distributions we consider
nonparametric tests which are not based on variances (see [5]). Thus the first
advantage of our tests is their distribution-free nature. The second advantage of
the proposed procedures is their low computational costs.

The paper is organized as follows. In Sect. 2 we discuss the two-sample disper-
sion problem and recall some facts on the Sukhatme test. In Sect. 3 we introduce
basic notation and concepts related to the interval-valued data. Next, we pro-
pose two generalizations of the Sukhatme test adequate to each type of data: for
the epistemic sets in Sect. 4 and for the ontic sets (random intervals) in Sect. 5.

2 Two-Sample Dispersion Problem

2.1 Detecting a Difference in Variability

Suppose X1, . . . ,Xn and Y1, . . . ,Ym denote two independent samples of inde-
pendent and identically distributed real random variables. We are interested in
detecting whether there is a difference in variability (dispersion) between these
two underlying distributions. The classical test applied in this context is the test
for equality of variances, H0 : σ2

x = σ2
y, against the one- or two-sided alterna-

tive. Assuming that both populations are normally distributed we can use the
so-called F-test with a test statistic

TF =
1

n−1

∑n
i=1(Xi − X )2

1
m−1

∑m
i=1(Yi − Y)2

,

which has the F-Snedecor distribution with n− 1 and m − 1 degrees of freedom.
The aforementioned test is not particularly robust with respect to the normality
assumption. Therefore, we are interested in nonparametric tests that could be
used if the population distributions are not normal or unknown.

Thus, let us assume that X1, . . . ,Xn are i.i.d. random variables with c.d.f.
F (x) = H

(
x−ξx

ηx

)
and Y1, . . . ,Ym are i.i.d. random variables with c.d.f. G(x) =

H
(x−ξy

ηy

)
, where H is a continuous c.d.f., ξx and ξy are population medians, while

ηx and ηy denote scale parameters of the X ’s and Y’s, distributions, respectively.
Moreover, we assume that X ’s and Y’s are mutually independent.

Please, note that the F-test does not require any assumption regarding the
locations of the distributions. Indeed, variances are directly comparable, because
they are each computed as measures of deviations around the respective sam-
ple means. In general, before comparing variability one should ascertain that
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both distributions under study do not differ in location since possible location
differences may mask dispersion differences. Otherwise, if ξx �= ξy, the sam-
ple observations should be adjusted by X ′

i := Xi − ξx and Y ′
j := Yj − ξy, for

i = 1, . . . , n and j = 1, . . . , m. Then the X ′ and Y ′ populations both have
zero medians and the arrangement of X ′ and Y ′ random variables in the com-
bined sample indicates dispersion differences as unaffected by location differ-
ences. Hence, further on, we assume either that the medians of the two popu-
lations are equal or that the sample observations can be adjusted to have equal
locations, by subtracting the respective location parameters.

If we denote the ratio of the scale parameters by β := ηx

ηy
then the null

hypothesis corresponding to the assertion of no difference in dispersion is given by

H0 : β = 1, (1)

and might be considered against one- or two-sided alternatives.
Several nonparametric tests for the two-sample dispersion problem have been

proposed in the literature. The Siegel-Tukey test is the most frequently used
procedure because it has the same null hypothesis distribution as the Wilcoxon
rank-sum test and therefore it does not require a new set of critical values. Other
popular tests are the Freund test, the Ansari-Bradley test and the David-Barton
test, which are statistically equivalent although described by different formulas.
One can also apply here the Mood test, the Klotz normal-scores test or the
Sukhatme test. For more details on the nonparametric test for scale we refer the
reader to [5]. Further on we focus our attention on the Sukhatme test because
it seems to be the most suitable one for adopting to interval-valued data. Let us
briefly recall how it works.

2.2 The Sukhatme Test

As it was stated above, we assume that both X and Y observations have or can
be adjusted to have equal medians. Moreover, without loss of generality we can
assume that this common median is zero, i.e. ξx = ξy = 0. Then, obviously, if
the X ’s have a larger spread than Y’s those X observations which are positive
should be larger than most of the positive Y observations, while the negative X
observations should be arranged so that most of the Y observations are larger
than the X ’s. In other words, most of the negative X ’s should precede negative
Y’s, and most of the positive X ’s should follow positive Y’s. Hence, we may
define the Sukhatme test statistic [12] as follows

T =
n∑

i=1

m∑

j=1

Dij , (2)

where

Dij =

{
1 if Xi < Yj < 0 or 0 < Yj < Xi,

0 otherwise.
(3)
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We reject the null hypothesis (1) and conclude that the distribution of X
population is more dispersed than Y’s if the p-value p = PH0(T � t) is small
enough (say p < α, where α is the given significance level) and t stands for the
actual value of the test statistic (2).

One may notice that the indicator variable (3) resembles that which is applied
for the Mann-Whitney test statistic. The exact null distribution of (2) can be also
found by a method similar to that for the Mann-Whitney test. If the null hypoth-
esis holds than the mean and the variance of the test statistic are EH0(T ) = 1

4mn
and VarH0(T ) = 1

48 (mn(m + n + 7)), respectively. Thus, for sample sizes large
enough, the distribution of the statistic

T ∗ =
T − EH0(T )
√

VarH0(T )
=

4
√

3(T − 1
4mn)

√
mn(m + n + 7)

(4)

is asymptotically normal under H0, i.e. T ∗ H0∼N(0, 1) as n −→ ∞.
If the medians of the X and Y populations are unknown, we can firstly

estimate the sample medians ξ̂x = Me(X1, . . . ,Xn) and ξ̂y = Me(Y1, . . . ,Ym),
and then define the adjusted observations X ′

i := Xi−ξ̂x for i = 1, . . . , n and Y ′
j :=

Yj − ξ̂y for j = 1, . . . , m. Next, we calculate a value of the test statistic T ′ for
these adjusted X ′ and Y ′ observations and apply the large-sample approximation
to the modified statistic T ′.

3 Interval-Valued Data

Let Kc(R) denote a family of all non-empty closed and bounded intervals in
the real line R. Each interval A ∈ Kc(R) can be expressed by means of a two-
dimensional value, defined in terms of its endpoints, (inf A, sup A) ∈ R

2 with
inf A ≤ supA. Other way for describing interval, which is in some situations more
operative, is based on the point (midA, spr A) ∈ R×R

+, where mid A = (supA+
inf A)/2 is the mid-point (center) of the interval A, and sprA = (sup A−inf A)/2
denotes the spread (radius). Thus, A can be represented as A = [inf A, sup A] =
[mid A ± spr A].

When dealing with intervals, a natural arithmetic is defined on Kc(R) based
on the Minkowski addition and the product by scalars. These operations are
settled as A + B = {a + b : a ∈ A, b ∈ B} and λA = {λa : a ∈ A}, for all A,B ∈
Kc(R) and λ ∈ R, respectively. Using the mid/spr notation the above operations
can be jointly expressed as follows A + λB = [(mid A + λmid B) ± (spr A +
|λ|spr B)].

It should be noted that the space (Kc(R),+, ·) is not linear but semilinear,
due to the lack of the inverse element with respect to the Minkowski addition:
in general, A + (−1)A �= {0}, unless A = {a} is a singleton. To overcome this
problem, sometimes it is possible to consider the so-called Hukuhara difference
A−HB between the intervals A and B, defined by such interval C ∈ Kc(R) that
B + C = A. Unfortunately, the Hukuhara difference does not exist for any two
intervals A,B ∈ Kc(R) but only for such A,B ∈ Kc(R) that sprA � spr B.
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Although we use the same notation and basic operations on intervals both
for the epistemic and ontic approach, there are significant differences in statistics
of interval-valued data perceived from those two perspectives.

4 Two-Sample Dispersion Tests for Epistemic Data

4.1 General Remarks on Statistical Reasoning with Epistemic Data

Let us consider a sequence of intervals X1, . . . , Xn, where Xi = [xi, xi], which
are interval-valued perceptions of the unknown true outcomes of the experiment
x1, . . . , xn, where xi ∈ Xi, for i = 1, . . . , n. These true, but not observed out-
comes xi are realizations of some real-valued random variables Xi : Ω −→ R

defined on a probability space (Ω,A, P ), i.e. Xi(ω) = xi.
Usually to make any statistical inference we have to determine a value of some

statistic T = T (X1, . . . ,Xn), e.g. an estimator or a test statistic. However, having
interval data only we may consider different possible values of that statistic, i.e.
we obtain

TI =
{
T (x1, . . . , xn) : x1 ∈ X1, . . . , xn ∈ Xn

}
.

It is worth noting that in general it is not always possible to find the actual
range of TI . Thus we try to compute its enclosure, i.e. an interval T̃I such
that T̃I ⊇ TI . If T̃I = TI we say that the enclosure is exact. When a statis-
tic under study is in some sense regular (e.g., continuous or monotonic), it is
usually enough to identify the smallest and largest value of T denoted by Tmin

and Tmax, respectively, to determine T̃I . However, finding the exact (or even
satisfactory) enclosure is not easy in general. Moreover, in some cases, it is even
impossible in a reasonable time. For instance, computing the largest value of the
sample variance S2 for arbitrary interval-valued data perceived from the epis-
temic perspective is the NP-hard problem (see [7]). Keeping this in mind it is
clear that a generalization of the F-test for arbitrary epistemic intervals may
have no practical sense.

4.2 The Sukhatme Test for Epistemic Interval-Valued Data

Suppose we observe two sequences of intervals X1, . . . , Xn and Y1, . . . , Ym, where
Xi = [xi, xi] and Yj = [y

j
, yj ], are perceptions of the unknown true outcomes

x1, . . . , xn and y1, . . . , ym of the experiment, respectively, where xi ∈ Xi and
yj ∈ Yj for i = 1, . . . , n and j = 1, . . . , m. We assume that the samples and
all observations are independent. Actually, we deal with the interval perceptions
of the real-valued random samples X1, . . . ,Xn and Y1, . . . ,Ym. We assume that
these samples satisfy all the assumptions discussed in Sect. 2.1. In particular, we
assume that the medians of both distributions are equal, i.e. ξx = ξy. Without
loss of generality we can assume that ξx = ξy = 0. Moreover, let us assume
that 0 /∈ Xi for i = 1, . . . , n and 0 /∈ Yj for j = 1, . . . , m (otherwise, interval
observations containing zero are thrown out).
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We verify H0 : β = 1 vs. H1 : β > 1. Keeping in mind formulae (2)–(3) and
the considerations given in Sect. 4.1, it can be shown that the upper and the
lower bound of TI are given as follows

Tmax = max
{
T (x1, . . . , xn, y1, . . . , ym) : xi ∈ Xi, yj ∈ Yj

}
=

n∑

i=1

m∑

j=1

D∗
ij ,

where

D∗
ij =

{
1 if xi < yj < 0 or 0 < y

j
< xi,

0 otherwise;

Tmin = min
{
T (x1, . . . , xn, y1, . . . , ym) : xi ∈ Xi, yj ∈ Yj

}
=

n∑

i=1

m∑

j=1

D∗∗
ij ,

where

D∗∗
ij =

{
1 if xi < y

j
< 0 or 0 < yj < xi,

0 otherwise.

Thus we conclude immediately that TI ⊆ {
Tmin, Tmin +1, . . . , Tmax

}
. The afore-

mentioned set implies that instead of a real-valued p-value, typical for the classi-
cal test, we obtain a set of possible p-values corresponding to our interval-valued
testing problem, i.e. pI = {PH0(T � t) : t ∈ TI}, which is a subset of the interval
[p, p], where

p = min{PH0(T � t) : t ∈ TI} = PH0(T � Tmax),
p = max{PH0(T � t) : t ∈ TI} = PH0(T � Tmin).

If sample sizes are large enough then substituting Tmin and Tmax into (4) we
obtain T ∗

min and T ∗
max, respectively and we can utilize the normal approximation

to determine p-values.
Now, having a set of possible p-values we need a new decision making criteria.

In particular, we may behave as follows:

– if p < α then reject H0,
– if α < p then do not reject (accept) H0,
– otherwise (i.e. if p � α � p) we abstain.

The last option might be interpreted as a demand for more observations to make
a well-based decision or the abstention because of too imprecise measurements
that do not allow to make a final binary decision. However, if one requires just
a binary decisions – either reject or accept H0 – we may apply an appropriate
randomization (see [6]).

5 Two-Sample Dispersion Tests for Ontic Data

5.1 Random Interval

In the ontic approach, contrary to the classical statistical analysis, we deal no
longer with usual real-valued random variables but with random intervals defined
as follows.
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Definition 5.1. Given a probability space (Ω,A, P ), a mapping X : Ω −→
Kc(R) is said to be a random interval (interval-valued random set) if it is Borel-
measurable with the Borel σ-field generated by the topology associated with by the
Hausdorff metric on Kc(R).

Equivalently, a mapping X : Ω −→ Kc(R) is a random interval if midX :
Ω → R and sprX : Ω → R

+ are (real-valued) random variables defined as the
mid-point and the spread of the interval X(ω), respectively, for each ω ∈ Ω.
The mid/spr characterization of random intervals has appeared very valuable
for different statistical purposes (see, e.g., [2,11]).

If X is a random interval and midX, spr X ∈ L1(Ω,A, P ), then the Aumann
mean of X [1] is given by the set E[X] =

{∫
Ω

fdP : f ∈ X a.s.[P ]
}
, which leads

to the following interval E[X] = [E(mid X) ± E(spr X)]. It has been shown that
the expected value of a random interval is linear and it is coherent with the
arithmetic considered for finite populations in the sense of the Strong Law of
Large Numbers.

The dispersion of a random interval can be measured by means of a distance
between X and E[X]. Consider a generalized family of L2-type metric between
intervals, introduced by Trutschnig et al. [13] for any A,B ∈ Kc(R) as

dθ =
√

(mid A − mid B)2 + θ(sprA − spr B)2, (5)

were θ > 0 determines the relative weight of the distance between the spreads
against the distance between the mids. It should be noted that a value of θ closer
to 0 gives more importance to the midpoint, while a high value of θ gives more
importance to the spread of the interval.

Such metric appears useful for defining the Fréchet-variance of a random
interval X as σ2

X = E
(
d2θ

(
X,E[X]

))
. As it is detailed in [3] this variance can be

also expressed in terms of the classical variances of the mid and spr variables,
namely, σ2

X = σ2
midX + θσ2

sprX .
Procedures to test hypotheses for equality of variances of random intervals

using the distance-based methodology can be deduced from tests for equality of
variances of random fuzzy sets proposed in [8,10]. The crucial difficulty here is
to find the distribution of the test statistic, so the advised way-out is to use a
bootstrap or an asymptotic approach, provided a sample is large enough.

It seems that a reasonable remedy for problems with sampling distributions is
to develop nonparametric techniques. Below we suggest a simple generalization
of the Sukhatme test that avoids the above mentioned problem. We make use
of the idea utilized in metrics (5) and connected with the aforementioned prior
settlement on the relative importance of the difference in location and impreci-
sion. We’ll achieve it by a suitable projection, so the proposed approach may be
called the projection-based methodology.
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5.2 The Sukhatme Test for Random Intervals

Let us now consider the null hypothesis H0 that both samples of random intervals
X1, . . . , Xn and Y1, . . . , Ym, where Xi = [mid Xi ± spr Xi] and Yi = [mid Yi ±
sprYi], have the same distributions against the alternative hypothesis that the
population of X’s is more dispersed than the population of Y ’s.

Each interval-valued observation Xi = [mid Xi ± sprXi] can be perceived as
a point (mid Xi, spr Xi) ∈ R × R

+. Let us consider the following line:

lx : γ(spr X − spr MX) = (1 − γ)(mid X − mid MX),

where γ ∈ [0, 1] and MX = [Me(mid X) ± Me(spr X)] is a median of X. Now,
by representing a mid-point and spread of each interval-valued observation as a
point of the two-dimensional Euclidean half-space we may find a projection of
this point onto the line lx as follows

1. if γ = 0, then
lx : mid X = mid MX ,

and the projection of (midXi, spr Xi) onto the line lx is given by

XP
i = Plx(mid Xi, spr Xi) = (mid MX , spr Xi).

2. if γ �= 0, then

lx : sprX = θ(mid X − mid MX) + sprMX ,

where θ = 1−γ
γ ∈ [0,∞), and the projection of (midXi, spr Xi) onto the

line lx can be written as

XP
i = Plx(mid Xi, spr Xi) = (UX

i , V X
i ),

where

UX
i =

θ2mid MX + mid Xi + θ(spr Xi − spr MX)
θ2 + 1

, (6)

V X
i =

θ(mid Xi − mid MX) + θ2spr Xi + sprMX

θ2 + 1
. (7)

Obviously, the projection of (midMX , spr MX) is Pl(mid MX , spr MX) =
(mid MX , spr MX). Further on, to simplify notation, the situation γ = 0 will
be denoted by θ = ∞. As we see soon such convention would have a natural
interpretation which also corresponds nicely with that applied in the distance-
based methodology.

Some examples of this projection for different θ are given in Fig. 1. By choos-
ing θ we specify the relative importance of the difference in location and impreci-
sion of the interval data. In particular, by taking θ = 0 we restrict our attention
to the location of intervals. For any θ > 0 we take into account both the difference
in location and in imprecision of our interval-valued observations. By increasing
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Fig. 1. The scatter plot of the points (midXi, sprXi) and their projection on the
line lx.

θ we also increase the relative importance of the interval imprecision. Finally, for
θ = ∞ our whole attention is restricted to the difference between imprecision of
the considered intervals. Note, that this interpretation agrees with that related
to the Trutschnig distance (5).

Besides projecting observations, we have to perform two more transforma-
tions so that the testing problem originally expressed for the two-dimensional
objects (described by the mid-points and spreads) could be treated as a one-
dimensional case. Firstly, we shift coordinates by a translation vector wx, where

wx =

{
[0,−sprMX ] if θ ∈ [0,∞),
[−midMX , 0] if θ = ∞.

We will denote this transformation by Twx
. Secondly, we rotate coordinates so

that the abscissae coincides with the line lx. Here we use the rotation matrix Rφ

such that

Rφ =
[

cos φ sin φ
− sin φ cos φ

]

,

where φ stands for the desired angle. In our case φ = arctan θ.
As a result we obtain a new real-valued sample Ψ1, . . . , Ψn, where

Ψi = Ψ(mid Xi, spr Xi) = Rφ ◦ Twx
◦ Plx(mid Xi, spr Xi),
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for i = 1, . . . , n. More precisely, Ψ : R × R
+ → R, i.e. the composition of the

projection on the line lx, translation by the vector wx and rotation through an
angle φ, results in

Ψi = Ψ(mid Xi, spr Xi) =

{
cos φ · UX

i + sinφ · (V X
i − spr MX) if θ ∈ [0,∞),

spr Xi if θ = ∞,

where UX
i and V X

i are defined by (6) and (7), respectively.
Applying the same reasoning to the second sample of interval-valued obser-

vations, i.e. Y1, . . . , Ym, where Yj = [mid Yj ± spr Yj ], and performing similar
transformations (i.e. a composition of the projection onto the line ly, translation
Twy

and rotation Rφ), we finally obtain a second real-valued sample Υ1, . . . , Υm,
where

Υj = Υ (mid Yj , spr Yj) = Rφ ◦ Twy
◦ Ply (mid Yj , spr Yj),

for j = 1, . . . , m. More precisely,

Υj = Υ (mid Yj , spr Yj) =

{
cos φ · UY

j + sinφ · (V Y
j − sprMY ) if θ ∈ [0,∞),

spr Yj if θ = ∞,

where UY
j and V Y

j are defined by

UY
j =

θ2mid MY + mid Yj + θ(sprYj − spr MY )
θ2 + 1

,

V Y
j =

θ(mid Yj − mid MY ) + θ2spr Yj + spr MY

θ2 + 1
.

The last thing to do before testing our hypothesis is to adjust samples
Ψ1, . . . Ψn and Υ1, . . . , Υm so they both have medians equal zero. Therefore, we
define the adjusted observations Ψ̃i := Ψi − Me(Ψ1, . . . Ψn) for i = 1, . . . , n and
Υ̃j := Υj − Me(Υ1, . . . , Υm) for j = 1, . . . , m.

Now we are able to define the generalized Sukhatme test statistic for interval-
valued observations

T̃ =
n∑

i=1

m∑

j=1

D̃ij , (8)

where

D̃ij =

{
1 if Ψ̃i < Υ̃j < 0 or 0 < Υ̃j < Ψ̃i,

0 otherwise.

Thus, by the appropriate transformation of the original interval-valued obser-
vations into the one-dimensional problem, the rejection criteria remain as it is
described in Sect. 2.2: we state that the distribution of X population is more dis-
persed than the distribution of Y population if p = PH0(T̃ � t̃) is small enough,
where t stands for the actual value of the test statistic (8). If sample sizes are
large enough we may substitute T in (4) by T̃ and compute the p-value applying
the normal approximation.
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Remark 5.1. If is worth noting that we may project both samples onto the same
straight line l instead of using lx and ly. Indeed, both lx and ly have the same
slope determined by θ, while their intercepts are negligible. However, using lx
and ly for X1, . . . , Xn and Y1, . . . , Ym, respectively, might be convenient for a
graphical illustration or an interpretation.

Remark 5.2. Transformations Ψ and Υ are the compositions of the projection
onto the straight line, translation and rotation. Although rotation depends on θ,
the only operation influencing the final result is the projection. Actually, neither
translation nor rotation change the relative position of the projected data.

5.3 Illustrative Example

Data in Table 1 correspond to the observed ranges over a day of the systolic and
diastolic blood pressures of two independent samples of hospitalized patients,
supplied by the Nephrology Unit of the Hospital Valle del Naln in Asturias, Spain
(see [9,11]). We verify the null hypothesis that the dispersions of the ranges of
the systolic and diastolic blood pressures do not differ significantly against the
alternative hypothesis that the dispersion of the ranges of the systolic blood
pressure exceeds the dispersion of the and diastolic blood pressure.

Table 1. Data on the ranges of systolic (X) and diastolic (Y ) blood pressure.

X Y

118–173 111–192 109–174 101–194 56–121 47–93 55–97 64–121

104–161 116–201 128–210 112–162 50–94 73–105 59–101 53–109

131–186 102–167 94–145 116–168 52–95 74–125 59–101 37–94

105–157 104–161 136–201 148–201 63–118 52–112 60–98 55–85

120–179 106–167 90–177 57–113 69–133 55–121

Let us assume the equal importance of the location and the interval spreads,
i.e. γ = 1

2 , which leads to θ = 1. As a result of all calculations we obtain T̃ = 100.
In our case n = m = 19, so EH0(T ) = 95, VarH0(T ) = 16245. Since both sample
sizes are large enough to use the normal approximation, then by (4) we obtain
T̃ ∗ = 0.5399. Finally, the desired p-value equals p = PH0(T̃

∗ � 0.5399) = 0.2981.
Its value is large enough to state that there is no reason to reject the null
hypothesis. In other words, we may conclude that there is no significant difference
between the dispersions of the ranges of the systolic and diastolic blood pressures.

6 Conclusions

We have proposed two generalizations of the Sukhatme nonparametric two-
sample test for dispersion designed for two different views on interval-valued
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data. Both ontic and epistemic view yield different approach to data analysis
and statistical inference and generates its own problems. In particular, epistemic
data may lead to situations when no definite decision can be made, especially if
the intervals are too broad. This problem does not concern the ontic data mod-
eled by random intervals. Their analysis yields a desired binary decision with
respect to the null hypothesis. However, it requires a coefficient of the relative
importance of the difference in location and imprecision in the considered data
set, which leaves some place for subjectivity.

The common advantage of both generalizations is their computational
simplicity. Moreover, general ideas presented in this contribution could be
also applied for adopting other nonparametric two-sample dispersion tests for
interval-valued data.
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Abstract. In this paper, using data from the pre-electoral and post-
electoral Spanish surveys conducted by the Centro de Investigaciones
Sociológicas (CIS) in the 2015 and 2016 general elections and assum-
ing that parties maximize votes, we use an iterative algorithm to derive
the optimal party positions (as predicted by spatial competition models
based on proximity and directional models of voting). These optimal pol-
icy positions constitute a Nash equilibria, in which no party can increase
its vote share by changing unilaterally its policy position. Then we com-
pare the actual ideological positions of Spanish parties (as perceived by
all voters) to their ideological party positions. Our aims are to exam-
ine the predictive power of proximity and directional models in the two
Spanish electoral processes, to explore the degree to which parties deviate
from their ideal positions and to examine the evolution of party positions
from December 2015 to June 2016.

Keywords: Spatial models of voting · Directional, proximity models
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1 Introduction

This work deals with an application of decision making modeling in Political
Science. We compare the actual ideological positions of Spanish parties (as per-
ceived by all voters) to their ideal ideological party positions (as predicted by
spatial competition models based on proximity and directional models of voting).
We do that by analyzing the pre-electoral and post-electoral surveys conducted
by the Centro de Investigaciones Sociológicas (CIS) in the 2015 and 2016 general
elections (Survey numbers 3117, 3126, 3141 and 3145). Our analysis restricts the
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sample to the respondents who voted for the main Spanish-wide parties: Par-
tido Popular (PP), Partido Socialista Obrero Español (PSOE), Podemos (Ps),
Ciudadanos (Cs) and Izquierda Unida (IU) in 2015, and PP, PSOE, Unidos
Podemos (coalition of Podemos and Izquierda Unida, UPs) and Ciudadanos in
2016. Our work has several goals. In the first place, we examine the predictive
power of proximity and directional models in these two Spanish electoral pro-
cesses. In the second place, we intend to examine the degree to which parties
deviate from their ideal positions. This analysis can pave the way for future work
on the ideological, organizational and strategic factors conditioning theoreti-
cally non-vote maximizing positions. Finally, our work allows us to examine the
evolution of party positions from December 2015 to June 2016.

For this analysis we follow the unified model of party competition in [1]
to predict ideal party positions in the sense of Nash equilibrium. We use their
unified model of voting, but we consider both spatial proximity and directional
voting [11]. In Nash equilibrium, parties adopt ideological positions from which
none of the vote-maximizing parties has incentives to deviate [1] if the others
remain at their positions. That is, in such situations, no party would improve its
electoral share by unilaterally modifying its position. We consider in our analysis
both ideology and non-policy characteristics and attitudes (including here party
identification). We first estimate conditional logit models for each survey using
proximity and directional models, and then, following [1], we calculate the Nash
equilibrium for party positions using the estimated parameters. We derive Nash
equilibrium by using the iterative algorithm developed by [8], as implemented
in the nopp R package (Nash Optimal Party Positions) that has been developed
by [6]. The original package only deals with the proximity model, therefore we
have developed a new R-project to implement the directional model.

The results of our analysis can be compared to those obtained on other
cases by [1,5,9]. [10] has contributed a spatial analysis of voting in Spain that
includes both proximity and directional models. However, whereas [10] focused
on the receptivity of Spanish voters to positions that are distant from the status
quo, a goal for which both proximity and directional models are used and tested
in his work, our paper uses the unified proximity model of party competition in
order to predict optimal policy positions. For that reason, although our interests
and findings partially overlap with those of [10], our analytical approach and
focus diverge from the ones he developed.

Our findings confirm the importance of ideological voting and the stabil-
ity of party ideological positions. They also reveal the well-established cen-
tripetal bias of spatial models. This bias is particularly intense in the cases of
Podemos, Ciudadanos, and, to a much larger extent, the PP, a fact that is
entirely consistent with the findings in [10] about the importance of directional
considerations among the PP voters. This result suggests the need to refine our
analytical tools, test new models of party competition, and deepen our under-
standing of the organizational, strategic, and ideological factors conditioning the
ideological positions of political parties.
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The paper is organised as follows. In Sect. 2 we analyse the real positions of
the Spanish political parties (as perceived by all the voters) and predict their
optimal ideological positions in the sense of Nash equilibrium. We finish with
some concluding remarks in Sect. 3.

2 Real and Optimal Ideological Positions

The first step in our analysis consists in the prediction of vote-choices through a
conditional logit model. We use the Survey numbers 3117, 3126, 3141 and 31451

conducted by Centro de Investigaciones Sociológicas (CIS) in the 2015 and 2016
general elections. We have restricted our analysis to Spanish-wide parties, and
have left out of the analysis voters for subnational parties, on the grounds that
just voters from specific territories had the possibility to vote for them2.

The conditional logit model of vote choice assumes that voter is probability
of voting for party j is given by

Pi(j) =
exp(Ui(j))∑n
l=1 exp(Ui(l))

(1)

where n stands for the number of political parties.
The conditional logit model can not determine absolute utility. The utility

for an individual must be specified with respect to a base value. We have chosen
PP, the government party, as the reference value.

The normalized utility is given by Ui(j) − Ui(1), where 1 stands for the
reference level, and j = 2, . . . , n.

Our conditional logit model is the unified model of voting of party competi-
tion (see [1]).

The utility of voter i for voting party j, Ui(j), is given by

Ui(j) = αVij + βpij +
4∑

k=1

γjkZik + εij (2)

where εij have standard Type 1 extreme value distributions.
We conduct models using both ideological proximity (quadratic proximity

utility given by the negative of the squared distance between the voters and
the partys location in the left-right dimension, scale 1 to 10) and directional
(product of the difference between the respondent’s position and the status quo
by the difference between the mean party position and the status quo).

The variables in model (2) can be grouped into two types:

– Alternative specific variables, which vary with alternative, Vij and pij , where
pij equals to 1 if i identifies with party j and 0 elsewhere and Vij has different
expressions depending on the model we are working with.

1 Survey numbers 3117 and 3141 are included in a two stage panel data study (panel
7715).

2 We have considered as voters of Podemos respondents who voted for the alliances in
which Podemos participated in Cataluña, Galicia and Valencia.
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Proximity model:
Vij = −(xi − sj)2 (3)

Directional model:
Vij = (xi − sq)(sj − sq) (4)

(xi stands for i’s location, sj for j’s location (mean party positions) and sq
for the neutral point –status quo–.

– Individual specific variables which do not vary with alternative, Zik. Table 1
reports these variables in our analysis (k from 1 to 4).

Table 1. Individual specific variables in the model.

Variable Description

Zi1 Sex of voter i

Zi2 Age of voter i

Zi3 Education of voter i

Zi4 Evaluation of government performance of voter i

We follow the existing literature and use individually perceived party posi-
tions in both models. As status quo, we take the center of the policy space. Both
directional and proximity models include non-ideological variables as predictors
of vote choices. Our dependent variable is vote intention for the pre-electoral
surveys and vote choices as reported by the respondents for the post-electoral
surveys. As [1] have shown, parties have incentives to present policies distant
from the center in the direction of voters leaning towards them for non-policy
reasons. Party identification is a critical variable in this respect. In addition to
party identification we use cultural and territorial identifications as measured by
the Linz-Moreno question3, evaluations of the current economic situation, and
controls for education, gender, and age. Full statistical results for these models
are available on demand. As expected, ideological variables (based on proximity
or direction) and partisanship carry the bulk of the models explanatory power.
We report in Table 2 the number of voters selected and in Table 3 ideological
and party identification impact coefficients in these models. The vote shares for
the surveys are given in Table 4.

Our analyses show that the coefficients for ideology are larger in the post-
electoral than in pre-electoral surveys (very considerably so in the case of direc-
tional models). They also show, interestingly, that directional and proximity
3 Based on the Linz-Moreno question, the standard CIS question on the balance of

Spanish and regional identities, which asks people if they feel only Spanish; more
Spanish than from their autonomous community; both Spanish and from their
autonomous community; more from their autonomous community than Spanish;
only from their autonomous community.
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Table 2. Number of voters selected.

Pre-electoral Post-electoral Pre-electoral Post-electoral

2015 2015 2016 2016

Survey number 3117 3126 3141 3145

Number of selected voters 8479 2241 8562 1870

Table 3. Ideological and party identification coefficients in conditional logistic models
(all coefficients are significant at the 0.001 level).

Pre-electoral Post-electoral Pre-electoral Post-electoral

2015 2015 2016 2016

Survey number 3117 3126 3141 3145

Number of selected voters 8479 2241 8562 1870

Ideology

Proximity model 0.08 0.10 0.08 0.12

Directional model 0.10 0.20 0.15 0.23

Party Id

Proximity model 3.19 4.47 3.49 4.44

Directional model 3.36 4.5 3.46 4.46

coefficients have become larger in 2016 (if we compare pairwise pre-electoral
and post-electoral surveys of 2015 and 2016 elections). The only coefficient
that remains identical is the proximity indicator in the 2015 and 2016 pre-
electoral models. Party id coefficients are also larger in post-electoral surveys.
They have become larger from 2015 to 2016 in the proximity models, but they
have remained almost identical in directional models. In general, our data reveal
that from 2015 to 2016 a trend towards the intensification of the effects of ide-
ological orientations took place, and that party identifications either increased
their effects (in proximity models) or remained stable (in directional models).

Table 4. Vote shares.

Pre-electoral Post-electoral Pre-electoral Post-electoral

2015 2015 2016 2016

PP 31.2% 31.1% 32.6% 30%

Cs 20.1% 10.3% 14.6% 7.6%

PSOE 27.3% 29.5% 26.5% 31.8%

Ps 16.5% 22.9% - -

IU 4.9% 6.2% - -

UPs - - 26.3% 30.6%
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Based on the coefficients estimated by our conditional logit model we have
inferred the Nash equilibria of party ideological positions. This equilibrium leads
a system involving different participants to a stable state, in which none of them
can gain by a unilateral change of strategy (position), if the strategies of the
others do not change. We refer to the positions given by the Nash equilibrium
(NE) as ideal –or optimal– positions. To compute it, we implement the itera-
tive algorithm developed by [8]. Assuming that parties maximize vote-shares, in
each step of the algorithm each partys position is shifted to its vote-maximizing
position holding the other parties positions constant. This leads to a new vector
of party positions and eventually converges to a unique NE.

We compare then those ideal positions to the actual positions of political
parties as perceived by all voters in the sample. But before showing the results of
this analysis it must be taken into consideration that the perceptions of voters on
party positions have remained extremely stable. As Table 5 shows, the Pearson
correlation coefficients between the average perceptions of party positions are
never lower than +0.99.

Table 5. Ideological and party id coefficients in conditional logistic models (all coeffi-
cients are significant at the 0.001 level).

Pre-electoral Post-electoral Pre-electoral Post-electoral

2015 2015 2016 2016

Pre-electoral 2015 1

Post-electoral 2015 0.999 1

Pre-electoral 2016 0.999 0.998 1

Post-electoral 2016 0.998 0.992 0.999 1

Figures 1, 2, 3 and 4 display the real and ideal positions (as estimated by both
proximity and directional models) for each of these surveys. As it is the case in sim-
ilar analyses [5,9], ideal positions have a strong centripetal bias. The magnitude
of this centripetal bias can be better grasped by examining the spread between
extreme parties in actual and ideal positions. Whereas actual distances are never
lower than 6 points, distances between ideal positions are always lower than 2
points. Directional models perform better in this respect in the 2015 surveys. They
are also always better at predicting the positions of the PP. However, in terms
of general spread, in 2016 there is almost no difference between the predictions
derived from directional and proximity models. Also interestingly, although the
number of players moved from 5 in 2015 to 4 in 2016, the spread of actual ideolog-
ical did not diminish but in fact slightly increased. Also in this case, parties (at
least in the perception of citizens) chose to intensify their ideological messages in
the face of second general electoral contest in a short time span.

Table 6 below reports the ideological spread given by the respondents and
estimated by both models.
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Fig. 1. Ideal and actual party positions (2015 pre-electoral survey).

Fig. 2. Ideal and actual party positions (2015 post-electoral survey).

Fig. 3. Ideal and actual party positions (2016 pre-electoral survey).
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Fig. 4. Ideal and actual party positions (2016 post-electoral survey).

Table 6. Actual and predicted ideological spread.

Pre-electoral Post-electoral Pre-electoral Post-electoral

2015 2015 2016 2016

Ideological spread

Actual 6.08 6.41 6.25 6.48

Proximity model 1.25 1.54 1.21 1.39

Directional model 1.71 1.98 1.2 1.34

Figures 1, 2, 3 and 4 show that the highest deviations from ideal positions are
to be found, quite consistently, in the PP. But they tend to be high also in the
case of Ciudadanos, and they are particularly high in the case of Unidos Pode-
mos in 2016. Table 7 reports the average values for actual and ideal positions in
the directional model4, which is the one that tends to do better at predicting the

Table 7. Average actual (as perceived by all voters) and ideal party positions (direc-
tional model).

Actual Ideal Average distance

PP 8.33 5.04 3.29

Cs 6.37 4.42 1.95

PSOE 4.32 4.02 0.30

Ps 2.02 3.73 1.71

IU 2.17 3.07 0.9

4 IU averages are based on just the 2015 values. Podemos values are based on its values
in 2015 and the values of Unidos Podemos in 2016. This decision was based on the
relative electoral size of Podemos and IU in the 2016 Unidos Podemos coalition.
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positions of the PP and also ideological spread. This table provides us thus with
a more systematic information on party deviations from ideal positions. It shows
that average deviations are strikingly high for the PP and also important in the
cases of Ciudadanos and Podemos. The graphs show as well some instances of
ideological leapfrogging in the ideal positions predicted for Ciudadanos and IU.
In general, as [1], ideological leapfrogging makes more sense for small parties.
As shown by adopting more extreme positions than their competitors, IU and
Ciudadanos can avoid being squeezed by Podemos and the PP respectively. In
the case of IU that shift is more realist, given the fact that its actual position
was already very close to that of Podemos. That is, these three parties, and in
particular the PP, should adopt much more centrist positions according to these
models. The distinctive, extreme actual position of the PP is clearly consistent
with the findings in [10] about the prevalence of directional over proximity com-
ponents in the voting for the PP5.

3 Concluding Remarks

We can draw several main inferences from our analysis. The first one refers to
the powerful explanatory role of ideological voting in the Spanish party system.
Ideological coefficients (in proximity or directional models) carry the bulk of
explanatory power in vote-choice models in Spain. The second one concerns
the stability of actual ideological positions in the 2015–2016 period in Spain,
despite the complexity of the institutional scenario from 2015 to 2016 and in
spite of the presence of significant differences in the party offer in this period
(from 5 to 4 national parties due to the electoral coalition between IU and
Podemos). Our contrast of ideal and actual ideological positions reveals also the
strong centripetal bias of the ideal positions estimated through both proximity
and directional models. This bias is strong in the cases of Ciudadanos, Unidos
Podemos and, in particular, the PP. The extreme position of the PP is consistent
with the strength of directional components for PP voters in the analysis in
[10]. At least part of this bias could be accounted for by the role played by
discount factors in party system competition and voting decisions. Now, this
explanation leaves us with new unanswered questions. In the first place, since
the PP government enjoyed an absolute majority in the Spanish parliament from
2011 to 2015, we can only assume that the status quo will be much closer to
the preferences of this party than to those of left and center-left parties. And
in the second place, even if discount factors are generally strong and PP voters
are strongly directional, the question remains as to why the PP does not shift
to more centrist positions in order to improve its electoral results.

Different tentative answers can be advanced as to the reasons of the PP
positions. Following [9] we could speculate on the interdependence of valence
considerations and ideological positions: by moving to the center the PP party

5 The prevalence of directional voting among rightist voters has been also identified
by [3] in several Latin American party systems.
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could lose general credibility among voters (and not only among its conserva-
tive sympathizers). Still, the association of strongly conservative positions and
credibility already depends on a continuous reassertion of very rightist positions.
In contrast to policy switches, slow-paced and incremental ideological changes
are not incompatible with maintaining general credibility, even if such moves
displease very extreme or very ideologically committed voters.

Perhaps more importantly, the adoption of extreme positions may result from
the preferences of intensive policy-demanders [4] among both core party con-
stituents and social groups and civil actors endorsing the party. Internally, the
fact that the PP is a strongly hierarchical and centralized organization should
favor strategic maneuverability. However, this does not preclude the possibility
that ideological shifts are penalized by core constituents and social actors with
strong conservative leanings. Furthermore, to the extent that party leaders fear
new party entries in the right side of the political spectrum (a realistic develop-
ment that has already taken place in many other European countries), they may
feel strongly compelled to adopt staunch conservative platforms, even if they
risk leading the party, at least in the short term, to suboptimal electoral results.

Future developments of this work will demand testing the unified discount
model of party competition. As it has been shown by previous analyses [1,9],
this model can render more realistic predictions than proximity and directional
models. Given data availability, our analyses will also have to assess the influence
of new dimensions of political competition not mapped by the CIS survey we
used for this work. This is particularly the case of populist attitudes, whose
influence on voting decisions in Spain has already been established, from different
perspectives, by [2] and by [7].
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Abstract. We propose a double normalization-based multi-aggregation method
to deal with the multi-criteria decision making problems considering the benefit,
cost and target criterion values. To do so, we introduce an enhanced target-based
linear normalization formula and a target-based vector normalization formula.
Given that different normalization techniques maintain special advantages and
disadvantages, we combine them with three aggregation models to describe the
alternatives’ performance from different aspects. Then, a new integration
approach is developed to integrate three types of subordinate utility values and
ranks to derive the final ranking. The selected alternative not only has a com-
prehensive performance but does not perform badly under each criterion.
Finally, the proposed method is highlighted by a case study of selecting an
optimal innovation enterprise.

Keywords: Multi-criteria decision making
Double Normalization-Based Multi-Aggregation Method
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1 Introduction

Multi-Criteria Decision Making (MCDM) is a process of ranking a finite set of alter-
natives based on multiple criteria. There are basically two types of techniques to handle
the MCDM problems: the outranking methods and the multi-criterion value methods
[1]. The former is based on pairwise comparisons of alternatives under each criterion,
which is limited in dealing with massive alternatives due to the complicated calcula-
tion. The latter composes a simple process of aggregating the criterion values to rank
alternatives, which includes the normalization process and the aggregation process.
There are mainly three kinds of normalization techniques: the linear normalization
model, the vector normalization model and the non-normalization model. Jahan and
Edwards [2] illustrated that different results can be derived by different normalization
models. The multi-criterion value methods are various from different normalization and
aggregation tools. Simple Multi-Attribute Rating Technique (SMART) is a rather
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simple MCDM method which uses the linear normalization model to eliminate the
different dimensions among criteria and employs the weighted arithmetic aggregation
operator to integrate the normalized criterion values [3]. Considering that the weighted
arithmetic aggregation operator, the geometric weighted aggregation operator and the
weighted maximum operator have different effects in representing the performance of
objects, the MULTIplicative Multi-Objective Optimization by Ratio Analysis (MUL-
TIMOORA) method [4], based on the vector normalization, applies these operators
respectively to derive three kinds of utility values and then to yield the subordinate
rankings of alternatives. Based on the vector normalization and the weighted arithmetic
aggregation, the Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS) method [5] determines the compromise solution which is nearest to the
positive ideal solution by calculating the distance of each alternative from the reference
point. Opricovic and Tzeng [6] claimed that the solution selected by TOPSIS may not
be closest to the ideal one since it ignores the relative importance between the distance
from the ideal point and that from the negative-ideal point, and then proposed the
VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method [7] to
further compute the “individual regret value” by the weighted maximum formula after
deriving the “group utility” based on linear normalization and weighted arithmetic
aggregation. However, the subordinate ranks are not taken into consideration in the
VIKOR method when integrating two types of utility values, which makes the result
with low robustness. Given that the criteria include benefit, cost, and target values in
practice, Jahan et al. [8, 9] extended the linear normalization to the target-based linear
normalization. On this basis, the target-based TOPSIS method [8], the target-based
VIKOR method [9] and the target-based MULTIMOORA method [10] were proposed.

In conclusion, the common defect of the existing methods is that they eliminate the
criterion dimensions only based on one normalization method, which may bias the
results since all the normalization methods loss the original information more or less
from different aspects. Furthermore, calculating the utility values by different aggre-
gation operators is useful, but there still is a challenge to integrate the subordinate
utility values and the ranks of alternatives at the same time to derive the final ranking.

This paper aims to propose a new MCDM method, named Double
Normalization-Based Multi-Aggregation (DNBMA), to solve these problems. The
paper is highlighted by the following innovative work:

(1) We introduce an improved target-based linear normalization formula and a
target-based vector normalization formula.

(2) After analyzing the advantages and disadvantages of the target-based linear and
vector normalization techniques, respectively, we make a suitable combination on
two kinds of normalized values and three types of aggregation models to derive
the subordinate utility values and ranks. It can reduce the information loss caused
by one normalization technique.

(3) We propose a new aggregation formula to derive the final ranking of alternatives.
It considers the subordinate utility values and the ranks of alternative simulta-
neously, and their relative importance is also taken into consideration. In this way,
the result is more robustness than the ranking which is only integrated by sub-
ordinate utility values or subordinate ranks.

64 H. Liao et al.



The paper is organized as follows: Sect. 2 presents the target-based linear and
vector normalization formulas. The DNBMA method is proposed in Sect. 3. Section 4
illustrates the method by an example. Final concluding remarks are pointed out in
Sect. 5.

2 The Target-Based Normalization Techniques

A general MCDM problem contains a set of alternatives A ¼ a1; a2; . . .; amf g and a set
of criteria C ¼ c1; c2; . . .; cnf g with the weight vector W ¼ ðx1;x2; . . .;xnÞT . The
decision matrix is composed as X ¼ ðxijÞm�n where xij is the value of alternative ai with
respect to criterion cj. Given that the non-normalization tool can only be applied to
special problems, in the following, we start our investigation by introducing two
commonly used linear and vector normalization formulas. Afterwards, we illustrate
their advantages and disadvantages based on some examples.

2.1 The Target-Based Linear Normalization

Considering cost, benefit, and target-based criteria at the same time for a MCDM
problem, based on the distance of each judgment to target value, Jahan et al. [9]
proposed a linear normalization formula as:

y01ij ¼ 1� xij � rj
�� ��

max max
i

xij; rj

� �
�min min

i
xij; rj

� � ð1Þ

where rj is the target value on criterion cj, especially, rj ¼ max
i

xij if cj is in benefit type,

rj ¼ min
i

xij if cj is in cost type.

Motivated by the simplified form of linear normalization [10], we improve the
target-based linear normalization formula as:

y1ij ¼ 1� xij � rj
�� ��

max
i

xij � rj
�� �� ð2Þ

The linear normalization given as Eq. (2) can reflect the closeness between each
alternative and the target solution under each criterion. The normalization values are
the same for different convertible units ð/ij ¼ axij þ b; a[ 0Þ with the same criterion
function given that

/1
ij ¼ 1� /ij � /j

�� ��
max

i
/ij � /j

�� �� ¼
ðaxij þ bÞ � ðarj þ bÞ
��� ���

max
i

ðaxij þ bÞ � ðarj þ bÞ
��� ��� ¼ y1ij

where /j is the target value on criterion cj and /1
ij is the linear normalized value of /ij.
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Thus, it is reasonable to aggregate the values of all criteria of an alternative directly
because the normalized values only represent the normalized distances between the
judgments of alternatives and the ideal solution. However, it loses the size of value
itself, which would bias the result. This defect can be illustrated by Example 1.

Example 1. Suppose that there are three projects a1, a2 and a3 against the internal rate
of return c1 (in %) and the payback period c2 (in years), and the decision matrix is
given as:

D1 ¼
1 5
6 5:5
11 6

2
4

3
5

By Eq. (2), we get y111 ¼ 0; y121 ¼ 0:5; y131 ¼ 1; y112 ¼ 1; y122 ¼ 0:5 and y132 ¼ 0. If
the weight vector of criteria is w ¼ ð0:5; 0:5ÞT , based on the weighted arithmetic
aggregation operator, we obtain y1 ¼ 0:5, y2 ¼ 0:5 and y3 ¼ 0:5, then a1 � a2 � a3.
However, we could not accept this result. There are great differences on the values of c1
and x11 is so inferior that we cannot select a1, while there are small differences on the
values of c2 and x32 is not so bad. Thus, the linear normalization is unable to describe
the real differences between different data.

2.2 The Target-Based Vector Normalization

The vector normalization, employed in the MULTIMOORA method [4] and the
TOPSIS method [5], is shown as

y02ij ¼
xij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

xij
� �2s

if cj is a benefit criterion

1� xij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

xij
� �2s

if cj is a cost criterion

8>>>><
>>>>:

ð3Þ

The vector normalization aims to normalize the values of all alternatives with
respect to criteria to the interval ½0; 1�. The dimensionless number y02ij can maintain the
size of the original value xij compared with the linear normalization formulas. Brauers
et al. [11] proved that the vector normalization formula is a robust option. But it fails to
eliminate the evaluation units of criteria essentially in two aspects: (1) On the one hand,
it cannot eliminate the influences of different convertible units of the same criterion
function on the result of a MCDM method, such as the length xij ½m� or /ij ½km�, and the
temperature xij ½C0� or /ij ½F0�. These “convertible” units are related as /ij ¼ axij þ b,
a[ 0. The normalized value y02Nij is different with respect to different evaluation units

of a criterion function [6]. That is to say, y02ij ¼ xij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

xij
� �2s

but

/2
ij ¼ /ij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

/ij

� �2s
¼ axij þ b

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

axij þ b
� �2s

, and if b 6¼ 0, then y02ij 6¼ /2
ij.
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(2) On the other hand, it is unable to eliminate the influence of different units of
different criteria on the result of a MCDM method which integrates the information
based on the fully compensated aggregation operator. This defect can be verified by
Example 2.

Example 2. Suppose that there are three production lines a1, a2 and a3 against the cost
c1 (million) and the production c2 (number of packages), and the decision matrix is
given as:

D2 ¼
43 1100
42 1050
41 900

2
4

3
5

By Eq. (3), we get y0211 ¼ 0:41, y0221 ¼ 0:42, y0231 ¼ 0:44, y0212 ¼ 0:62, y0222 ¼ 0:59 and
y0232 ¼ 0:51. If the weight vector of criteria is w ¼ ð0:5; 0:5ÞT , based on the weighted
arithmetic aggregation function, we obtain y1 ¼ 0:515, y2 ¼ 0:505 and y3 ¼ 0:475.
Then a1 � a2 � a3. However, the fact is that the performance of a2 is the best and a1 is
as bad as a3. The result is misleading since the differences of alternatives on cost are
decreased by the vector normalization which is only able to measure the differences
between numbers but ignores the unit differences. In fact, there is a big separation
between 42 million and 41 million of cost but a small division between 1100 and 1050
of production packages. Thus, a2 is superior to a1. In conclusion, the vector normal-
ization is not suitable to aggregate the values of an alternative under all criteria based
on the completely compensated arithmetic aggregation operator.

To fill the gap of normalizing all the benefit, cost and target-based criterion values
by the vector normalization, we introduce a target-based vector normalization formula
based on the distance of each judgment to the target value, shown as:

y2ij ¼ 1� xij � rj
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1
xij
� �2 þ rj

� �2s ð4Þ

3 The Double Normalization-Based Multi-aggregation
Method

The MULTIMOORA method employs three different aggregation methods to calculate
the utility values respectively based on the vector normalization. However, it does not
take into account the matching of normalization and aggregation methods. Conse-
quently, the selected alternative is not always nearest to the ideal one. Given that both
the target-based linear and vector normalization methods have their advantages and
disadvantages, we combine them with different aggregation operators to obtain the
different utility values of alternatives. This section aims to propose a DNBMA method
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to deal with the defects of the existing multi-criterion value methods and obtain a
decision result with high reliability and robustness.

3.1 The Subordinate Aggregation Models

In the following, we develop three kinds of aggregation operators based on the two
target-based normalization techniques.

3.1.1 The Complete Compensatory Model (CCM)
To measure the closeness to the ideal solution, Zeleny [12] proposed a measurement
rðx; pÞ, used as an aggregation function, to measure the regret from alternative ai to the
ideal solution a�.

Ri;p ¼
Xn
j¼1

xj xij � rj

��� ���� 	p
( )1=p

; 1	 p	1 ð5Þ

where xj is the weight of cj.

As we know, with the increase of p, the weight of the larger value xj xij � rj

��� ���
becomes greater and greater. The measurements rðx; pÞ of p ¼ 1 and p ¼ 1 are used
in the VIKOR method, and the measurement rðx; pÞ of p ¼ 2 is used in the classical
TOPSIS method as well. Since each criterion has a weight, there is no reason to add a
weight to a bigger one. Thus, we employ the measurement rðx; pÞ of p ¼ 1 as the first
aggregation function of the proposed method. From Sect. 2, we can find that the
target-based linear normalization is superior to the target-based vector normalization to
combine with the linear aggregation operator to aggregate the values of an alternative
under all criteria. Thus, we define the CCM based on the arithmetic weighted aggre-
gation operator as:

u1ðaiÞ ¼
Xn
j¼1

xjy
1
ij ð6Þ

The alternatives are ranked by u1ðaiÞ ði ¼ 1; 2; . . .;mÞ in descending order and we
get the first type of ranks r1ðaiÞ ði ¼ 1; 2; . . .;mÞ.

Here we let the ranks obtained in this paper be the Besson’s mean ranks [13]: If an
object ai ranks the u th position, then rðaiÞ ¼ u; if both ai and at rank the u th position,
then rðaiÞ ¼ rðatÞ ¼ ðuþ uþ 1Þ=2 ¼ uþ 0:5: For example, if a1 prefers to a2, and a2
is indifferent to a3, then rða1Þ ¼ 1 and rða2Þ ¼ rða3Þ ¼ 2:5.

3.1.2 The Un-Compensatory Model (UCM)
To avoid the selected solution having an extremely poor performance under a criterion,
we employ the measurement rðx; pÞ with p ¼ 1 and the linear normalized values to
compose the second aggregation function, shown as Eq. (7).
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u2ðaiÞ ¼ max
j

xjð1� y1ijÞ ð7Þ

The alternatives are ranked by u2ðaiÞ ði ¼ 1; 2; . . .;mÞ in ascending order and we
get the second type of ranks r2ðaiÞ ði ¼ 1; 2; . . .;mÞ.

3.1.3 The Incomplete Compensatory Model (ICM)
Since the linear normalization is unable to reflect the quality of original values, the
results would be misleading by the above two aggregation functions in some cases as
illustrated by Example 3.

Example 3. Suppose that there are two decision matrices of two MCDM problems with
three types of products a1, a2 and a3 against the reliability c1 and the price c2 given as:

D3 ¼
90% 100
94% 105
98% 110

2
4

3
5; D4 ¼

75% 100
85% 105
95% 110

2
4

3
5

By Eqs. (6) and (7), we obtain the same results regarding to D3 and D4 that a2 is the
optimal solution and a1 � a3. It is easy to accept the result of D3 but hard to accept the
result of D4 since the alternatives associated to D4 have a big gap in quality, but a small
gap in price. There is a fact that the alternative a1 is of extremely poor quality but not
good price, the alternative a2 is of medium quality and slightly bad price, and the
alternative a3 is of extremely good quality and not so bad price. According to our
intuition, we may select a3 and deem a1 as the worst.

The above two aggregation functions fail to consider the size of the value itself. To
solve this defect and make the result more reliable, we employ the vector normalized
values combined with the multiplicative form to propose the third aggregation function
as Eq. (8).

u3ðaiÞ ¼ P
j
ðy2ijÞxj ð8Þ

The multiplicative formula can reflect people’s preferences that the former case is
superior to the latter case. That is, the good performance of an alternative cannot fully
compensate for poor performance. The alternatives are ranked by u2ðaiÞ ði ¼
1; 2; . . .;mÞ in ascending order and we obtain the third type of ranks r3ðaiÞ
ði ¼ 1; 2; . . .;mÞ.

3.2 The Subordinate Utilities and Ranks Integration

In the final phase, we need to obtain a comprehensive ranking of the alternatives by
integrating the results of the above threemodels. The three models can be deemed as three
criteria: CCM (denoted by C1), UCM (denoted by C2) and ICM (denoted by C3). Each
alternative ai have two kinds of evaluation values: the utility value uyðaiÞ and the rank
ryðaiÞwith respect to each criterion Cyðy ¼ 1; 2; 3Þ. Obviously, this is a MCDM problem
composed by two decisionmatrixes: the utility value decisionmatrixDðuÞ ¼ uyðaiÞ


 �
m�3
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and the ranking decision matrix DðrÞ ¼ ryðaiÞ

 �

m�3 . uyðaiÞ can be normalized by the
vector normalization formula:

uNy ðaiÞ ¼
uyðaiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1
uyðaiÞ
� �2s ; y ¼ 1; 2; 3 ð9Þ

We then define the integrated score by a weighted Euclidean distance formula as
Eq. (10).

Si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u uN1 ðaiÞ
� �2 þð1� uÞ m� r1ðaiÞþ 1

mðmþ 1Þ=2
� 2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u uN2 ðaiÞ
� �2þð1� uÞ r2ðaiÞ

mðmþ 1Þ=2
� 2

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u uN3 ðaiÞ
� �2 þð1� uÞ m� r3ðaiÞþ 1

mðmþ 1Þ=2
� 2

s
ð10Þ

where u is the coefficient to highlight the importance between the subordinate utility
value and the subordinate rank. The final rank set R ¼ rða1Þ; rða2Þ; . . .; rðamÞf g is
determined in descending order of Si ði ¼ 1; 2; . . .;mÞ.

The DNBMA method is summarized as follows:

Step 1. Calculate the target-based linear normalization values by Eq. (2) and the
target-based vector normalization values by Eq. (4). Go to next step.
Step 2. Compute the utility values u1ðaiÞ, u2ðaiÞ and u3ðaiÞ ði ¼ 1; 2; . . .;mÞ based
on the CCM (as Eq. (6)), the UCM (as Eq. (7)) and the ICM (as Eq. (8)),
respectively, and then determine the three types of subordinate ranks ryðaiÞ
ðy ¼ 1; 2; 3; i ¼ 1; 2; . . .;mÞ. Go to next step.
Step 3. Normalize the utility values uyðaiÞ ðy ¼ 1; 2; 3; i ¼ 1; 2; . . .;mÞ by Eq. (9).
Go to next step.
Step 4. Integrate the subordinate normalized utility values and the subordinate ranks
by Eq. (10). Determine the final ranking and ends the algorithm.

4 A Case Study and Some Comparative Analyses

To promote the innovation of small and medium iron and steel enterprises, one city
decides to choose an optimal green enterprise to reward. There are four candidates
a1; a2; a3; a4. The evaluation criteria are R & D investment accounting for the pro-
portion of total investment (c1, target criterion in %), the number of developers (c2,
benefit criterion in number), sales revenue of new products (c3, benefit criterion in 106

million), and comprehensive energy consumption (c4, cost criterion in number). Sup-
pose that the target value of criterion c1 is 6%. The decision matrix D is determined as:
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D ¼
15:4 10 0:8 1
10:9 25 16:5 1:1
1:8 14 5:7 0:9
4:5 8 10:3 0:95

2
664

3
775

We solve the case by the DNBMA method. The target-based linear normalized
values are computed by Eq. (2), shown in Table 1 and the target-based vector nor-
malized values are calculated by Eq. (4), shown in Table 2.

Suppose that the criterion weights are the same as xj ¼ 0:25, j ¼ 1; 2; 3; 4. By
Eq. (6), we obtain u1ða1Þ ¼ 0:16, u1ða2Þ ¼ 0:62, u1ða3Þ ¼ 0:55 and u1ða4Þ ¼ 0:55.
Then R1 ¼ f4; 1; 2:5; 2:5g. By Eq. (7), we obtain u2ða1Þ ¼ 0:25, u2ða2Þ ¼ 0:25,
u2ða3Þ ¼ 0:17 and u2ða4Þ ¼ 0:25. Then R2 ¼ f3; 3; 1; 3g. By Eq. (8), we obtain
u3ða1Þ ¼ 0:6, u3ða2Þ ¼ 0:92, u3ða3Þ ¼ 0:76 and u3ða4Þ ¼ 0:8. Then R3 ¼ f4; 1; 3; 2g.
Let u ¼ 0:5. According to Eqs. (9) and (10), we obtain the values S1 ¼ �0:02,
S2 ¼ 0:59, S3 ¼ 0:53 and S4 ¼ 0:41. Thus we get the ranking relation
a2 � a3 � a4 � a1, which shows that a2 is an optimal innovation enterprise. a2 have
good performances on all criteria except criterion c4. The government can encourage a2
to reduce the comprehensive energy consumption. The enterprise a1 invests much
money for innovation, but the sales revenue of new products is low. It can introduce
more developers to obtain the advanced technology.

To make comparison, we also solve the case by other MCDM methods. The results
are shown in Table 3.

Comparative Analysis: We obtain different results derived by the target-based
VIKOR method. From calculation process, we find that the “individual regret value”
has a huge impact on the utility values. When using the linear normalization formula,
the “individual regret value” of a3 is significantly superior to a1, which leads to the

Table 1. The target-based linear normalized values

c1 c2 c3 c4
a1 0 0.12 0 0.5
a2 0.48 1 1 0
a3 0.55 0.35 0.31 1
a4 0.84 0 0.61 0.75

Table 2. The target-based vector normalized values

c1 c2 c3 c4
a1 0.54 0.63 0.4 0.95
a2 0.76 1 1 0.91
a3 0.79 0.73 0.59 1
a4 0.93 0.58 0.76 0.98
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final result a3 � a1. Besides, the result of the target-based VIKOR is sensitive to the
threshold depicting the relative importance between the “group utility” and “individual
regret value”, and it is hard for decision maker to select a suitable threshold. Despite
that the same ranks are derived by the target-based TOPSIS method, the target-based
MULTIMOORA method and the proposed DNBMA method, but there are different
utility values since different normalization and aggregation techniques are employed.
The target-based TOPSIS method only calculates the “group utility” by the arithmetic
weighted aggregation operator based on the linear normalization but ignores the “in-
dividual regret value”. There is a fact that the same results are obtained by the ratio
system model and the full multiple form model of the target-based MULTIMOORA
method due to the same normalization values are utilized. In DNBMA method, we
obtain different normalized valued from the linear and the vector normalization for-
mula. Besides, the different subordinate utility values are calculated by three aggre-
gation models. After integrating these utility values and subordinate ranks, we obtain a
robust ranking result.

5 Conclusions

We proposed a new MCDM method named DNBMA, which can handle the benefit,
cost and target-based criteria at the same time. The proposed method is based on two
normalization tools: the target-based linear and the target-based vector normalization
formulas, and consists three aggregation models: the CCM with arithmetic weighted
aggregation, the UCM with weighted maximization formula and ICM with the geo-
metric weighted aggregation. These subordinate methods depict the performance of
alternatives from different aspects, which make the DNBMA method robust. After
making comparative analysis with other MCDM methods based on a case study, the
advantages of the proposed method were highlighted. As future studies, the DNBMA
method can be combined with different fuzzy information, such as the hesitant fuzzy
linguistic term set to deal with the subjective MCDM problems.

Table 3. The results derived by different Target-based MCDM methods

Methods Utility values Rankings

c1 c2 c3 c4
Target-based
TOPSIS [8]

0.25 0.58 0.55 0.51 a2 � a3 � a4 � a1

Target-based
VIKOR [9]

0 0.5 0.87 0.36 a3 � a2 � a4 � a1

Target-based
MULTIMOORA
[10]

0.47,0.16,0.46 0.77,0.16,0.71 0.69,0.13,0.66 0.68,0.16,0.65 a2 � a3 � a4 � a1

The proposed
DNBMA method

–0.02 0.59 0.53 0.41 a2 � a3 � a4 � a1
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Abstract. Maintaining the level of integrity of pipeline networks to
guarantee at least a reliable and safe service is a challenge operators
of such networks are facing everyday. TIGF is one of the French oper-
ator which manages 5000 km of pipelines in the south-west quarter of
France. This paper presents a decision-making tool which automatically
ranks the pipeline sections regarding the risk of deterioration (damages
and corrosion) and the gravity of the consequences, indicating which
pipeline sections should be excavated. The tool relies on a fuzzy expert
system which gathers 26 input variables, processes more than 300 rules,
classifies the risk of deterioration into 7 classes and estimates the gravity.
The rules are a formalization of human expertise: the fuzzy logic helps to
tackle the vagueness of their knowledge and the measurement inaccuracy
of some of the 26 input variables. The method has been tested on past
excavations to assess its performances.

Keywords: Corrosion · Pipeline networks · Risk assessment
Decision-making · Fuzzy expert system

1 Introduction

Everywhere in the world, high-pressure pipelines are used to transport gaz from
the production and storage sites to the customers. The major challenge with such
networks of pipelines is to maintain their level of integrity to guarantee at least
a reliable and safe service. Regarding the conditions of the pipelines (ground,
buried, subsea, etc.), their environment (soil, etc.) and their features (coating,
etc.), different kinds of corrosion may damage them [6,8,14]. The phenomenon
is too complex and too little understood to be modeled analytically, or only in
specific context (coating material, soil type and features, pipe age, ...).

However, different measures can help to identify which pipeline sections are
affected by a certain type of corrosion. We can distinguish several approaches
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 855, pp. 74–85, 2018.
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to exploit these measures. Bayesian techniques have been used to incorporate
uncertainty and measurement errors [4,5,14] and to either compute the prob-
abilities of corrosion occurrence and consequences or to assess the size of the
corrosion. Other papers introduce a probabilization of physical models like [9]
which predicts the corrosion remaining life. All those methods are also related
to Monte-Carlo simulation to overcome the lack of data and suffer from the diffi-
culty to choose the most proper distributions. Another way of taking the uncer-
tainty and inaccuracy into account is performed by fuzzy logic [10,11,15]: various
qualitative and quantitative factors are considered in assessing the security of
pipeline network. The authors fuzzify classical models used in risk assessment.
We can also cite [1] in which the authors introduce an expert system to suggest
the adequate coating regarding several quantitative and qualitative parameters.
It ranks all the available materials and the most suitable one is chosen. In a more
anecdotal way, other papers apply Multi-Attribute Utility Theory (MAUT) [3]
and machine learning [7] to risk assessment.

In this article, we present an application of fuzzy expert system to tackle
both the recognition of the type of deterioration and the risk assessment. Fuzzy
expert systems can handle a cold start, i.e. the lack of data at the start of
the project, knowledge vagueness and measurement uncertainty. Moreover, as
corrosion depends on environmental conditions, the decision making tool can be
easily adapted from a region to another.

We focus on the network managed by our partner, TIGF, responsible of
the pipeline network in the south-west quarter of France. The whole network
is buried and TIGF is facing corrosion of different natures. Ground inspection
must help them to ensure a section of the network is affected by corrosion. The
difficulty resides in the fact that several criteria have to be merged to make the
decision. Our approach is based on knowledge modeling and testing on data.

The paper is structured as follows. The next section introduces the context
of corrosion of non-piggable pipelines. Then, Sect. 3 motivates the choices made
for the decision support system (DSS) which has been built for TIGF in order
to assess risk and corrosion types. Section 4 describes the knowledge modeling of
human experts with fuzzy logic and introduces the user interface of the system.
The results of the application of the tool are presented in Sect. 5. Finally, we
draw a conclusion and some perspectives to this work.

2 The Case-Study

Pipeline pigging is an effective way to accurately locate steel defects and metal
loss. Unfortunately, this method is inappropriate for some pipe configurations,
such as small diameter or multi-diameter pipes. Therefore, above ground inspec-
tion surveys are conducted to gather information about the whole network condi-
tion. TIGF mainly uses the Direct Current Voltage Gradient (DCVG) technique.

We explain in this paragraph the principle of the DCVG technique. If the
pipe is exposed at holidays in its protective coating, the current impressed by the
cathodic protection system will flow from the soil into the bare steel. It results in
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voltage gradients in the soil surrounding the defect. The DCVG method consists
in pulsing the input current signal and detecting associated voltage gradients in
the soil above the pipeline, that betray the presence of a soil-metal interface. To
this end, an operator performs regular measures with a milli-voltmeter of the
voltage drop between two electrodes placed on the soil surface at a distance that
remains constant (about 1.5 m). As the operator approaches a coating defect, he
observes an increasing pulsing signal. This signal finally stabilizes then decreases
as the defect is passed.

Each defect severity is characterized by its value of %IR, which is computed
from DCVG measures. Then, thanks to calibrated references, the size of the steel
surface exposed can be estimated.

DCVG surveys return alerts on the pipeline protective coating. However, it
does not inform about the cathodic protection state, nor does it imply a real
metal deterioration. To better assess the risk of a pipeline defect, TIGF gathers
additional data:

– the pipeline specific features (age, type of coating, . . . );
– the pipeline environment (presence of stray currents, soil resistivity, soil bac-

teria, . . . );
– the history of the pipeline cathodic protection.

All of this information is carefully examined with multiple risks in mind.
In addition to mechanical attacks and high-voltage damages, a typology of 5
different types of corrosion is considered (see Fig. 1): stray current corrosion,
corrosion caused by alternating current (AC corrosion), corrosion under a dis-
bonded shielding coating, bacterial corrosion and insufficient cathodic protec-
tion. Finally, the gravity of the consequences that a severe metal defect would
have is a crucial parameter that is also carefully taken into consideration. A piv-
otal factor is the pipeline proximity from any public location or infrastructure.

Conducting a systematic analysis of the thousands of coating defects that
are detected each year by DCVG surveys is a real challenge. Indeed, since the
excavation of a pipeline section is very expensive, only few anticipated defects
can be checked. Thus, it requires to apply a wide expertise in a consistent fashion
to a large variety of configurations. In this context, a decision support tool offers
clear benefits.

3 Decision Support System Design

In this section, we first motivate the choices made for the DSS according to
the context and the constraints. Then, we explain the different phases of its life
cycle.
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Fig. 1. Example of different corrosion shapes and surfaces.

3.1 Technology Choice

The proposed DSS assists human experts in identifying the most critical coating
defects for excavation. There are quite a lot of available measurements or infor-
mation (26 variables per coating defect): some of them are qualitative, others
are quantitative. There are a lot of individuals (several thousands of defects)
in the first data set but very few of them were labeled at the beginning of the
study (around 50 for one DCVG survey). There are 7 risks of metal deterio-
ration. This data set is unbalanced since one deterioration type represents two
thirds of actual defects and some are missing. Moreover, each defect should not
be considered independent from the others because a set of defects (even a lot
of them sometimes) can be detected at different locations of the same pipeline.
Their features are then correlated. Thus, it was not possible to learn the features
of the defects because of the small number of labeled individuals available at the
beginning of the study nor to apply clustering techniques because of the diffi-
culty to find a distance dealing with both quantitative and qualitative features
and separating pipeline sections with or without deterioration.

Despite these observations, the DSS should be usable immediately because
it is not conceivable to wait a series of yearly acquisition campaigns. Thus, it
has to exploit the expert background and experience at TIGF. It will allow to
formalize and to structure this knowledge on the one hand, and to treat all
the coating defects in an homogeneous and systematic way on the other hand.
Unfortunately, underground corrosion phenomena comprehension is much more
a matter of vague and uncertain knowledge and understanding than a precise
and definitive knowledge. Indeed, there are multiple factors implied in corrosion
formation and it is a local phenomenon because it depends on soil features.
Moreover, coating used for pipes as well as the type of protections changed over
the last 70 years because of acquired experience on coating ageing and corrosion
and improvements of materials.

Obviously, the DSS should improve the effectiveness of realized excavations
compared to the ones decided without it. Moreover, a higher success rate will
allow TIGF to reduce the number of excavations following DCVG surveys.

Taking into account these different points, we proposed to use a fuzzy expert
system to model expert knowledge. It may be designed from expert interviews
before the availability of a data set. Fuzziness is helpful to deal with vague-
ness and uncertainty. Two other features pleaded for a fuzzy expert system.
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Firstly, the DSS is not a black box: its suggestions are justified thank to acti-
vated rules and can be understood by the user. Secondly, if we found out that
modeled knowledge is imprecise or incorrect, it can be updated by only changing
associated fuzzy rules. These ones are saved in external files and automatically
loaded at the next start of the DSS. Thus, expert knowledge can be refined with
new experiences and the virtuous circle of knowledge improvement is possible.

3.2 DSS Life Cycle

There are five steps in the design and exploitation of the DSS:

1. System design: the DSS is designed with human experts at TIGF. Knowl-
edge is gathered and modeled with fuzzy rules. A dedicated graphic user
interface (GUI) is specified and implemented. During this phase, we decided
to use some features that were available in the databases but not extracted
for this purpose yet. Then, the first annual DCVG survey with actual values
was formatted more or less automatically to be used by the DSS.

2. Manual corrections: The DSS results are evaluated and analyzed with the
first data set. Some rule improvements are identified by comparing the actual
values of the defects to what was modeled by knowledge elicitation. Then,
more data are collected and formatted during this step. Several annual DCVG
surveys are automatically extracted. There are 330 labeled metal defects in
this second data set (including the first one). Knowledge update is natural
when using fuzzy rules, and is very easy by using the GUI [12] of our fuzzy
expert system. We followed two ways to discover corrections to apply. Firstly,
parameters used for defining fuzzy sets of some variables are refined by a
statistical analysis when sufficient data are available. Secondly, this data set
enables to question about the influence of some parameters on some risks.

3. First exploitation: The DSS is used to evaluate the excavations to select
for the next yearly DCVG survey. The software is used to navigate between
coating defects, visualize, analyze and understand possible risks. Moreover,
reports are automatically generated on most possible risks.

4. Automatic improvements: Data registered in case of swabbing of pipelines
at accessible location (in particular, at manholes) are automatically extracted
with their actual values. The latter are much more numerous than the labeled
ones obtained by DCVG survey (several thousands). Optimization of fuzzy
rules is then possible with the second and the third data sets for the most
frequent observed risks. After validation by human experts at TIGF, correc-
tion of fuzzy sets are made with the dedicated GUI [12]. This step is not
introduced in this article.

5. Full exploitation: After fine tuning of fuzzy rules by optimization, the DSS
is used to choose the defects to excavate for the next year. Efficiency and
usefulness of the DSS can be assessed by different considerations: success
rate of realized excavations, spent time to select defects to be excavated,
justification of decisions and evolution of repair costs. The latter depend on
the number of defects selected for excavation which will decrease in several
years if the success rate raises.
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4 Knowledge Modeling and Visual Tool

This section introduces the approach used to gather and model human expertise
in this domain and shows the user interface created for this application.

4.1 Human Expert Knowledge Modeling

The DSS evaluates the criticity of each coating defect in a large variety of con-
figurations in a structured and systematic way. The work conducted to make the
knowledge of human experts fully explicit. First of all, we identified nine indi-
cators including seven risks of deterioration which must be distinguished. Some
works close to the pipe may simply damage it if there is no mechanical protection.
Another pipe damage may arise because of a close high-voltage line. Moreover,
five corrosion types are considered: stray current corrosion, corrosion caused by
alternating current, corrosion under a disbonded shielding coating, bacterial cor-
rosion and insufficient cathodic protection. The development of each corrosion
type is multi-factorial: it depends on intrinsic factors of the pipe (age, type of
coating, ...) and extrinsic factors given by environmental features (presence of
stray currents, soil resistivity, soil bacteria, ...). The %IR based on DCVG mea-
sures gives an information about the estimated surface of the coating defect of
the pipe. The estimated risks are considered with a factor that indicates a higher
risk of deterioration based on background (history of the pipeline) and a factor
that assesses the severity of a potential metal defect (its proximity from any
public location or infrastructure). All this information is available in knowledge
management systems at TIGF in different forms: either quantitative, categorical
or boolean. Only one part of this information was already used to assess the risk
of each coating defect. In some cases, only the simplest raw information was used
such as the presence of bacteria in the soil while a concentration was known.

After having identified the different inputs and outputs of the DSS, we have
to understand the influence of each input on the outputs. During the interviews,
a lot of expressed knowledge was in the form “the higher the value of X, the
higher the risk of A” like in the rule “the higher the age of the pipe, the higher
the risk of the corrosion of type A”, or at the contrary the form “the lesser the
resistivity, the higher the risk of the corrosion of type A”. We could have used
powerful and synthetic fuzzy rules like fuzzy gradual rules or those based on “all
the more” clauses [2] for instance. However, there were generally several factors
that influence each risk and we did not know which relation between the inputs
and the outputs should be chosen. Thus, we decided to adopt a grid structure
for modeling the input - output relations for each module of fuzzy rules. Indeed,
it is very easy to understand for the corrosion domain experts who were not used
to fuzzy logic. Moreover, it is simple to update a conclusion according to one (or
several) influencing parameter(s). However, we did not follow a strict flat grid
structure approach. When possible, intermediate variables were introduced in
order to synthesize pieces of information at intermediate level. The latter ones
are used into other modules of fuzzy rules thanks to chaining. This provides a
hierarchical structure of the fuzzy system [13] that makes it more concise and
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understandable. It is used for instance for establishing a bacterial risk due to the
soil characteristics. This risk depends on 4 input variables of pipe environment.
Then, the bacterial risk is considered with the coating material to determine the
bacterial corrosion risk of the pipe.

Thus, we modeled each variable (either input or output) by a linguistic vari-
able and built fuzzy rules to make the expert knowledge more explicit. We chose
to model each risk of pipe deterioration with the same set of fuzzy sets (see
Fig. 2): the risks come from null to very high with 4 intermediate levels. The
risk suggested by the pipeline history is rated with the same levels. With the
Mamdani inference system, the numerical defuzzified value of each risk belongs
to [0, 100]. A boolean alert about the history is given by coupling the potential
corrosion risk with the one implied in the history of the pipe close to the coat-
ing defect when known. Indeed, an old mechanical attack does not tell anything
on a possible corrosion due a bacteria for instance. Finally, the severity of the
consequences is evaluated with four fuzzy terms from low to critical.

Fig. 2. Fuzzy sets for risk level, in this case for alternating current corrosion

The Table 1 shows the risk level of one type of corrosion according to four
input variables for one specific coating. There are 24 rules for this example. It
represents a gradual influence of each parameter on the risk level. The worst
case occurs when the diameter of the pipe is large, the pipe is old (more than
50 years old), the resistivity is low and the estimated defect surface is large.

On the one hand, the number of possible items of qualitative variables is given
by the specifications of the database system. They are often described by two or
four terms, but sometimes by many more like in the case of the coating type. We
often had to use the same granularity to build the fuzzy rules. Sometimes, we
were able to group some items to build fuzzy sets, like the one shown in Fig. 3
telling which coating type is sensitive to stray currents.

On the other hand, quantitative variables description is more flexible because
of their continuous domain. We often restrict their description to two or three
fuzzy sets due to the number of combinations to consider, like in the case of the
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Table 1. Example of risk level determination of corrosion under a disbanded shielding
coating for pipeline with bituminous coating according to four input variables. For
Diameter: S = small, L = large; for Resistivity: L = low, H = high; for surface: S =
small, M = medium, L = large

Level of risk Diameter is S
& age is low

Diameter is S
& age is high

Diameter is L
& age is low

Diameter is L
& age is high

Resistivity is H
& surface is S

Null Null Very low Low

Resistivity is L
& surface is S

Null Very low Low Medium

Resistivity is H
& surface is M

Very low Low Low Medium

Resistivity is L
& surface is M

Very low Low Medium High

Resistivity is H
& surface is L

Low Medium Medium High

Resistivity is L
& surface is L

Low Medium High Very high

estimated defect surface (see Fig. 4). Indeed, the number of fuzzy rules grows
exponentially according to the number of inputs, and it becomes difficult to tell
if a parameter is more important than another for each corrosion risk. We ended
the modeling with a little more than 300 rules for assessing 9 indicators.

Fig. 3. Coating types that are sensitive to stray currents
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Fig. 4. Fuzzy sets defined for the estimated defect surface

4.2 Visual Tool for Case Assessment

A GUI (Fig. 5) has been designed for the end-users according to their speci-
fications. It is dedicated to the analysis and prioritization of DCVG defects.
It embeds the inference engine that applies fuzzy rules onto all DCVG defects
loaded for analysis. It offers a synthetic view of them with 9 visual indicators.
Seven of them stand for an assessed deterioration risk. The two last ones consider
an alert about the history of the pipe and its surroundings and the severity level
of the consequences of a potential pipeline failure. The list of DCVG defects can
be sorted by these scores so that the most critical cases stand out in a straight-
forward manner. When a particular defect is selected, its parameter values, the
defuzzified values of each indicator and associated activated rules are displayed in
specific areas. It is worth mentioning that this feature greatly simplifies feedback
integration. Moreover, it improves DSS comprehension and adoption.

5 Results

The DSS helps human experts at TIGF to identify and sort the most critical
coating defects obtained by a DCVG survey. Before having a field experience
return, the evaluation of the DSS results is based on the previous DCVG surveys.
Assuming that a threshold decision rule is applied on the higher risk of each
coating defect, DSS performance can be assessed like a boolean classification
method: either the decision of excavation is correct – that is to say that there is
a real metal deterioration of the pipe or its cathodic protection is insufficient –,
or the decision is incorrect. The different metrics are then the sensibility (or
recall) and the precision defined by the Eqs. 1 and 2 using the notation of the
well known confusion matrix (see Table 2):

Sensibility = TP/(TP + FP ) (1)
Precision = TP/(TP + FN). (2)
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Fig. 5. Dedicated user interface with a synthetic view of all the DCVG defects (left
part), and a detailed view of a particular defect with its parameter values and the
inferred corrosion risks (right part).

Table 2. Confusion matrix

System decision

Positive Negative

Actual value Real defect True Positive (TP) False Negative (FN)

No defect False Positive (FP) True Negative (TN)

Table 3. Results according to a threshold T

Metrics Threshold

T = 0 T = 70 T = 89

Precision 20% 35% 73%

Sensibility 100% 55% 34%

Applying a null threshold on the highest risk of each defect is the situation
of reference, before having the DSS. In that case, only 20% of excavations are
correctly realized (65 cases on 330 excavations). When we use a high thresh-
old (T = 70) on the risks estimated by the DSS, 35% of the excavated pipes
would have really been damaged. A little bit more than half of actual defects
are retrieved (36 on 65). With a higher threshold (T = 89%), the selection is
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even more severe. The precision raises up to 73%, that is to say nearly three
excavations out of four would have been decided correctly. However, the rate of
actual defects retrieved is only of 34% (24 cases on 65). The goal of the DSS is
to help the end-user to better decide which pipe should be excavated. Thus, the
goal is to improve the precision of the realized excavations (more actual defects
for pipes that are excavated) (Table 3).

6 Conclusion

In this paper, we have presented a decision-making tool which has been designed
for TIGF, an operator of pipeline network. The goal is to help experts to decide
which pipeline section to excavate. The proposed solution relies on a fuzzy expert
system which takes the decision regarding 26 criteria and processes more than
300 rules to assess the risk of 7 deterioration types, and two factors indicating
if there was an historical damage of the same type and the gravity of the conse-
quences of such a deterioration. The software gives the clues of the decision with
charts and the activated rule list, which allow human experts to make the final
decision from this explanation of the ranking. Moreover, the software is able to
automatically generate reports.

Fuzzy logic is used here to take into account the vagueness of the knowledge
of human experts, gathered by iterative interviews: the rules are close to nat-
ural language thanks to the linguistic variables and the fuzzy sets avoid crisp
thresholds which have low sense for an experience-based knowledge. Moreover,
the ground measures are performed by different workers with different tools and
thus come with measurement uncertainty which are easily handled with fuzzy
logic.

The results show an improvement of the decision thanks to the tool while it
is only a formalization of the knowledge of experts at TIGF: up to 73% of the
decisions are accurate and reveal a real defect.

Contrary to other methods, this approach is adaptable to other pipeline
network operators: since it relies on a fuzzy expert system, the rule base can be
easily adapted to another region of the world if human experts are available to
share their knowledge.

The perspectives of this work consist in improving the tool to make it capable
of taking advantage of past results to parameterize the rule base and learn new
rules.
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Abstract. In a Bipolar Leveled Framework (BLF) [7], the comparison
of two candidates is done on the basis of the decision principles and
inhibitions which are validated given the available knowledge-bases asso-
ciated with each candidate. This article defines a refinement of the rules
for comparing candidates by using the potential-BLFs which can be built
according to what could additionally be learned about the candidates.
We also propose a strategy for selecting the knowledge to acquire in order
to better discriminate between candidates.

Keywords: Qualitative decision making · Bipolarity · Arguments
Incomplete knowledge

1 Introduction

Making decision is both one of the most current task and one of the most difficult
problem that human beings should face. Hence designing an intelligent system
able to help people to make decisions is a very important challenge. Tchangani
et al. [13] recall that decision analysis is a process requiring first to formulate
the decision goals, then to identify the attributes that characterize the poten-
tial alternatives and then decide. In classical approaches about decision making
(see e.g. the introductory book of [9]), the standard way is to use a utility func-
tion that evaluates the quality of each decision hence that helps to select the
one that has the best utility. This utility function should be designed in order to
take into account the uncertainty and the multi-criteria aspects of the problem.

Studies in Psychology (see e.g. [12]) have shown that decision making is often
guided by affect. Even more, Slovic et al. [11] argue that “affect is essential to
rational action” where affect is defined as “the specific quality of “goodness” and
“badness”, as felt consciously or not by the decision maker, and demarcating a
positive or negative quality of a stimulus”. Then it is natural to use a scale going
from negative (bad) to positive (good) values, including a central neutral value,
to encode the bipolarity of the affect. And even use a bipolar scale, indeed, it is
often the case that human people evaluate the possible alternatives considering
positive and negative aspects separately [5].
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In Artificial Intelligence literature some models have already been proposed
based on a bipolar view of alternatives (see [8] for an aggregation function app-
roach and [3] for a pairwise comparison approach). In this paper we further
explore the Bipolar Leveled Framework (BLF), which is a new representation
framework for decision making, first introduced in [2] and extended in [6,7]. The
BLF is a bipolar structure that enables the human decision maker to visualize the
attributes and goals that are involved in the decision problem, together with their
links and their importance levels. The structure is bipolar in the sense that the
goals are either positive (i.e. wished to be achieved, a decision that achieves that
goal is good) or negative (i.e. dreaded to be achieved, a decision that achieves
that goal, is bad). Information in a BLF is encoded under the form of “decision
principles” (DP). A DP is a kind of argument linking a description of a factual
situation (here the situation is a candidate, described by some attributes) to the
achievement of a goal. Informally a BLF may be viewed as a kind of qualitative
utility function with some extra features: (1) the links between attributes and
goals are made explicit into the decision principles, (2) the fact that a decision
principle can be inhibited in the presence of some attribute is represented by
an arrow from the attribute to the DP, (3) the importance levels of decision
principles are represented by the height of their position in the structure. For
more details on the link between BLF and qualitative decision Theory see [6].
When an alternative is known, the attributes of this alternative define what is
called a “Valid BLF” which is an instance of a generic BLF.

The problem addressed is the pairwise comparison of alternatives given a
bipolar utility representation. More precisely, the aim of this paper is to study
how the BLF can take into account the awareness of the user about the complete-
ness of her knowledge. We propose a measure called “sensibility” that evaluates
this awareness in terms of what is known about the alternative versus what could
be known (given the generic BLF). Then we propose two different ways to deal
with this sensibility. The first one aims at refining the comparison that could be
done with the valid BLFs associated to the alternatives, by taking into account
the potential BLFs that could be obtained if we had more available information
on each alternative. The second one aims at helping the decision maker to choose
which information is relevant in order to make the more reliable choice between
two decisions, hence what information should be obtained before deciding.

In the next section we recall the BLF definitions introduced in [6,7]. The third
section describes how to take into account the actual knowledge with regard to
information that could be learned given the generic BLF, leading to define a
potential BLF. The last section proposes two ways to take into account the
potential BLF either for refining the ordering of candidates or to select which
information has to be acquired in order to be more accurate in the comparison.
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2 BLF: A Structure Encoding Decision Criteria

We consider a set C of candidates1 about which some information is available.
We propose two distinct languages in order to clearly differentiate beliefs (com-
ing from observations) from desires (goals to be achieved when selecting a can-
didate): LF (a propositional language based on a vocabulary VF ) represents
information about some features that are believed to hold for a candidate and
LG (another propositional language based on a distinct vocabulary VG) rep-
resents information about the achievement of some goals when a candidate is
selected. In the propositional languages used here, the logical connectors “or”,
“and”, “not” are denoted respectively by ∨, ∧, and ¬. A literal is a propositional
symbol x or its negation ¬x, the set of literals of LG are denoted by LITG. Clas-
sical inference, logical equivalence and contradiction are denoted respectively by
|=, ≡, ⊥.

In the following we denote by K a set of formulas representing the beliefs of an
agent about the features that hold: hence K ⊆ LF is the available information.
Using the inference operator |=, the fact that a formula ϕ ∈ LF holds2 in K is
written K |= ϕ.

2.1 BLF: Definitions [7]

The BLF is a structure that contains two kinds of information: decision principles
and inhibitors. A decision principle can be viewed as a defeasible reason enabling
to reach a conclusion about the achievement of a goal. More precisely, a decision
principle is a pair (ϕ, g), it represents the default rule meaning that “if the
formula ϕ is believed to hold for a candidate then the goal g is a priori believed
to be achieved by selecting this candidate”:

Definition 1 (decision principle (DP)). A decision principle p is a pair
(ϕ, g) ∈ LF × LITG, where ϕ is the reason of p, denoted reas(p) and g the
conclusion of p, denoted concl(p). P denotes the set of decision principles.

Depending on whether the achievement of its goal is wished or dreaded, a
decision principle may have either a positive or a negative polarity. Moreover
some decision principles are more important than others because their goal is
more important.

Definition 2 (polarity and importance). A function pol : VG → {⊕,
}
gives the polarity of a goal g ∈ VG, this function is extended to goal literals by
pol(¬g) = −pol(g) with −⊕ = 
 and −
 = ⊕. A decision principle p is polarized
accordingly to its goal: pol(p) = pol(concl(p)). The set of positive and negative
goals are abbreviated ⊕ and 
 respectively: ⊕ = {g ∈ LITG : pol(g) = ⊕} and

 = {g ∈ LITG : pol(g) = 
}.
1 Candidates are also called alternatives in the literature.
2 The agent’s knowledge K being considered to be certain, we write “ϕ holds” instead

of “ϕ is believed to hold”.
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LITG is totally ordered by the relation � (“less or equally important than”).
Decision principles are ordered accordingly: (ϕ, g) � (ψ, g′) iff g � g′.

The polarities and the relative importances of the goals in VG are supposed to
be given by the decision maker, e.g., he may want to avoid to select an expensive
hotel (hence “expensive hotel” can be a negative goal), while selecting a hotel
where it is possible to swim can be a positive goal, moreover he may give more
importance to swim than to pay less.

A decision principle (ϕ, g) is a defeasible piece of information because some-
times there may exist some reason ϕ′ to believe that it does not apply in the
situation, this reason is called an inhibitor.

The fact that ψ inhibits a decision principle (ϕ, g) is interpreted as follows:
“when the decision maker only knows ϕ ∧ ψ then he is no longer certain that g
is achieved”. In that case, the inhibition is represented with an arc towards the
decision principle. The decision principles and their inhibitors are supposed to
be given by the decision maker. An interpretation of decision principles in terms
of possibility theory is described in [6].

We are now in position to define the BLF structure.

Definition 3 (BLF). Given a set of goals VG, a BLF is a triplet (P,R, pol,�)
where P is a set of decision principles ordered3 accordingly to their goals by �
and with a polarity built on pol as defined in Definition 2, R ⊆ (LF × P) is an
inhibition relation.

The four elements of the BLF are supposed to be available prior to the
decision and to be settled for future decisions as if it was a kind of utility function.
A graphical representation of a BLF is given below, it is a tripartite graph
represented in three columns, the DPs with a positive level are situated on the
left column, the inhibitors are in the middle, and the DPs with a negative polarity
are situated on the right. The more important (positive and negative) DPs are
in the higher part of the graph, equally important DPs are drawn at the same
horizontal level. By convention the highest positive level is at the top left of the
figure and the lowest negative level is at the bottom right. The height of the
inhibitors is not significant only their existence is used.

Example 1. Let us imagine an agent who wants to find an inexpensive hotel in
which he can swim. This agent would also be happy to have free drinks but it is
less important for him. VG = {swim, free drinks, expensive, crowded}, with
pol(swim) = pol(free drinks) = ⊕ and pol(expensive) = pol(crowded) = 

and swim � expensive  free drinks  crowded. The possible pieces of
information concern the following attributes: VF = {pool, open bar, four stars,
fine weather, special offer}. The agent considers the following principles:
P = {p1 = (pool, swim), p2 = (open bar, free drinks), p3 = (four stars,
expensive), p4 = (fine weather, crowded)}. When the weather is not fine then

3 The equivalence relation associated to � is denoted � (x � y ⇔ x � y and y � x)
and the strict order is denoted ≺ (x ≺ y ⇔ x � y and not y � x).
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the fact that there is a pool is not sufficient to ensure that the agent can swim, it
means that there is an inhibition on p1 by ¬fine weather, and the DP p4 that
expresses that “if the weather is fine the hotel will be crowded” is inhibited when
its a four stars hotel, and the DP p3 is inhibited when the agent have a special offer,
i.e. R = {(¬fine weather, p1), (four stars, p4), (special offer, p3)}.

⊕ Inhib. 

p1

¬fine weather

four stars

special offer
p2

p3

p4

In the following, the BLF (P,R, pol,�) is set and we show how it can be
used for comparing candidates. First, we present the available information and
the notion of instantiated BLF, called valid-BLF.

Given a candidate c ∈ C , we consider that the knowledge of the decision
maker about c has been gathered in a knowledge base Kc with Kc ⊆ LF . Kc is
supposed to be consistent. Given a formula ϕ describing a configuration of
features (ϕ ∈ LF ), the decision maker can have three kinds of knowledge about
c: ϕ holds for candidate c (i.e., Kc |= ϕ), or ϕ does not hold (Kc |= ¬ϕ) or the
feature ϕ is unknown for c (Kc �|= ϕ and Kc �|= ¬ϕ). When there is no ambiguity
about the candidate c, Kc is denoted K.

Definition 4 (K-Valid-BLF). Given a base K, a K-Valid-BLF is a quadru-
plet (PK ,RK , pol,�) where

• PK = {(ϕ, g) ∈ P, s.t. K |= ϕ} is the set of DPs in P whose reason ϕ holds
in K, called valid-DPs.

• RK = {(ψ, p) ∈ R, s.t. K |= ψ} is the set of valid inhibitions wrt to K.

When there is no ambiguity, we simply use “valid-BLF” instead of “K-Valid-
BLF”. The validity of a DP only depends on whether the features that constitute
its reason ϕ hold or not, it does not depend on its goal g since the link between
the reasons and the goal is given in the BLF (hence it is not questionable).

Example 2. The agent has information about a hotel situated in a place where
the weather will not be fine and that has a pool (reas(p1)) and an open bar
(reas(p2)): K1 = {¬fine weather, pool, open bar}. The K1-Valid-BLF corre-
sponding to what is known about this hotel is on the left. Now, we can consider
another knowledge base K2 = {fine weather, four stars, open bar} describing
a hotel that has an open-bar and that is located somewhere where the weather is
nice but with no information about the existence of a pool, its associated K2-Valid
BLF is on the right.
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⊕ Inhib. 

p1

¬fine weather

p2

⊕ Inhib. 

four starsp2

p3

p4

K1-Valid-BLF K2-Valid-BLF

Now in the valid-BLF the principles that are not inhibited are the ones that
are going to be trusted. A goal in VG is said to be “realized” if there is a valid-DP
that is not inhibited by any valid-inhibitor.

Definition 5 (realized goal). Let g be a goal in LITG, g is realized w.r.t. a
K-Valid-BLF (PK , RK , pol, �) iff ∃(ϕ, g) ∈ PK and (ϕ, g) not inhibited in RK .
The set of realized goals is denoted RK (and simply R when there is no ambiguity
about K) the positive and negative realized goals are denoted by R⊕ = R∩ ⊕ and
R� = R ∩ 
 respectively.

Example 3. In the BLF with the knowledge K1, concl(p2) is the only realized
goals. K2 with the same initial BLF allows us to conclude that both concl(p2)
and concl(p3) are realized. To summarize, the first valid-BLF has one positive
realized goal: RK1 = {free drinks}, while the second valid-BLF has a positive
and a negative realized goal, RK2 = {free drinks, expensive}. But the negative
goal that is realized has greater importance for the agent than the positive one,
hence he should prefer the first hotel.

In the next section we show how to use a BLF in order to compare several
candidates based on the goals that are realized in their corresponding valid-BLF.

2.2 Decision Rules for Comparing Candidates

In order to compare candidates we have to compare the levels of DPs that are
valid, hence we are going to define an absolute scale of the levels of the goals in the
BLF (this definition is straightforward from the BLF). We start by attributing
levels to the goals starting from the least important ones that are assigned a
level 1 and stepping by one each time the importance grows.

Definition 6 (levels of goals wrt a BLF). Given a BLF B = (P,R, pol,≺)
the levels of the goals of the BLF are defined by induction:

• L(B)1 = {g ∈ Goals(B) : �g′ ∈ Goals(B) s.t. g′ ≺ g}
• L(B)i+1 = {g ∈ Goals(B) : �g′ ∈ Goals(B) \ (

⋃i
k=1 L(B)k) s.t. g′ ≺ g}

where Goals(B) =
⋃

p∈P concl(p)
Given a set of goals G ∈ Goals(B), we write Gk = G ∩ L(B)k, and the level

of a goal g ∈ Goals(B) is defined by level(g) = k iff g ∈ Gk.
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In [3], Bonnefon et al. introduce three decision rules called Pareto, Bipolar
Possibility and Bipolar Leximin dominance relations. We recall only the Bipolar
Leximin dominance relation below:

Definition 7 (BiLexi decision rule of [3]). Given two candidates c and c′

respectively described by K and K ′ with their associated realized goals R = RK and
R′ = RK′ , the Bipolar Leximin dominance relation denoted �BiLexi is defined by:

c �BiLexi c′ iff |R⊕
δ | ≥ |R′⊕

δ | and |R�
δ | ≤ |R′�

δ |

where δ = argmaxλ({|R⊕
λ | �= |R′⊕

λ | or |R�
λ | �= |R′�

λ |}).

Example 4. As we expected, the hotel described by K1 is preferred to the one
described by K2, wrt �Bilexi, since
R⊕

K1
= {free drinks} R�

K1
= ∅

R⊕
K2

= {free drinks} R�
K2

= {expensive}
and free drinks ∈ L(B)2, expensive ∈ L(B)3. Hence, we have the same realized
goals at level 1 and 2, hence δ = 3.

3 Awareness and K-Potential-BLF

In [6], only the features that the agent knows are used to compare candidates, i.e.,
the decision is based on the K-Valid-BLF. It means that the knowledge about the
potential existence of a DP or of an inhibition is not taken into account. Hence,
the quality of the agent knowledge is not taken into account (see example below).

Example 5. In Example 1 with K1 = {¬fine weather, pool, open bar}, the
agent believes that the weather is not fine and that the hotel has a pool and
has an open bar. If we compare this state of belief with the belief K3 =
{open bar, fine weather, special offer}, then the realized goal is the same
(concl(p2)). However, knowing that there could be no possibility to swim in the
first hotel while there could be a pool in the second one may incline the agent to
prefer the second hotel.

To refine the comparison of candidates, we propose to improve the evaluation
of a candidate by evaluating the goals that could be realized under the actual
knowledge K.

3.1 K-Potential-BLF

Potential DPs and potential inhibition relations are the ones that could belong to
the valid BLF if we had more information. Hence they are the DPs and inhibition
relations that can be consistently assumed to be valid. In other words, they are
not proven to be not valid wrt to the agent knowledge about the candidate.
A DP is proven not valid when the agent knows that its reason does not hold
(K |= ¬reas(p)). An inhibition on a DP cannot be valid if the agent knows that
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the inhibitor does not hold. Hence a potential inhibition is an inhibition that is
not proven impossible when the reason of the DP holds.

A K-Potential-BLF is made of potential DPs and potential inhibitions with
respect to a knowledge base K.

Definition 8 (K-Potential-BLF). Given a base K and a BLF (P,R, pol,�),
the K-Potential-BLF associated to K is the quadruplet (P̂K , R̂K , pol,�) where

• P̂K is the set of potential DPs defined by:

P̂K = {p ∈ P | K ∪ {reas(p)} is consistent}
• R̂K is the set of potential inhibition relations defined by:

R̂K = {(ψ, p) ∈ R | K ∪ {reas(p) ∧ ψ} is consistent}
Example 6. TheK1-Potential-BLFassociatedtoK1 contains P̂K1 = {p1, p2, p3}
and R̂K1 = {(¬fine weather, p1), (special offer, p3)}.

Now according to whether the BLF considered is the K-Valid-BLF or the
K-Potential-BLF, some goals can be simply realized (we recall Definition 5) or
necessarily/possibly/potentially realized.

Definition 9 (Potential realization). A goal g in LITG can have eight sta-
tuses w.r.t. a knowledge base K and a BLF (P,R, pol,�):

In other words, a necessarily realized goal is realized in the K-Valid BLF and
has no potential inhibitor (i.e. no valid inhibitor and more information cannot
bring anymore inhibitor). A necessarily not realized goal is either not achieved
by any potential DP or it has a K-Valid inhibitor. A possibly realized goal is
the conclusion of a DP whose reason could hold and for which no inhibition is
known to hold.
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Example 7. We have already seen that RK1 = {free drinks}. We have also:
NRK1 = {free drinks}, PRK1 = {free drinks}, ΠRK1 = {free drinks,
expensive}.

3.2 Link Between K-Potential-BLF and K-Valid-BLF

In the following proposition we show that we have upper and lower bounds of
the set of realized goals according to the potential knowledge.

Proposition 1. For any BLF (P,R, pol,�) and any knowledge base K

NRK ⊆ RK ⊆ ΠRK ΠRK ⊆ RK ⊆ NRK

NRK ⊆ PRK ⊆ ΠRK ΠRK ⊆ PRK ⊆ NRK

Since we are able to give an interval containing the realized goals, the confi-
dence in the decision can be defined with respect to the size of this interval: the
smallest the interval the surest the evaluation of the candidate (since learning
the values of unknown features cannot change this evaluation). Hence we are
going to define a measure that evaluates the size of this interval which is called
sensibility of the BLF wrt knowledge.

Definition 10 (Sensitivity). The sensitivity of a BLF B = (P,R, pol,�) wrt
a knowledge base K is

s(B,K) = |ΠRK \ NRK |
The sensitivity is the number of goals that are possibly realized but not

necessarily realized. The aim is to take this sensitivity into account while making
a decision. In our example, s(B,K1) = 1.

Definition 11. K is a perfect knowledge wrt a BLF (P,R, pol,�) iff ∀ϕ ∈⋃
p∈P {reas(p)} ∪ ⋃

(ψ,p)∈R{ψ}, either K |= ϕ or K |= ¬ϕ.

Note that it is not necessary to have perfect knowledge in order to have
perfect information about the set of realized goals. In case of perfect knowledge
the Valid BLF and the Potential BLF are equal, then all the eight statuses
reduced to two, each goal is either necessarily realized or necessarily not realized.

Proposition 2. For all BLF B = (P,R, pol,�),
(K is a perfect knowledge wrt B) ⇒ (P̂K = PK and R̂K = RK) ⇒ s(B,K) = 0.

But the converse does not necessarily hold.

4 K-Potential-BLF and Decision Making

In the BLF framework, a goal g ∈ RK induces that “g is achieved” is the nom-
inal conclusion. In other words, it is the conclusion drawn under the available
knowledge K. Nevertheless, the ranking on goals obtained with OM(RK) or |RK |
could be challenged when the quality of the knowledge is not the same for the
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candidates that we want to compare. In this section, we explore two different
ways to exploit the K-Potential-BLF. The first way is to use the K-Potential-
BLFs in case of equality or incomparability of two candidates wrt to their K-
Valid-BLFs. Indeed, it allows us to use the three sets: the set of Necessarily
(resp. Possibly and Potentially) realized goals NRK (resp. ΠRK and PRK) addi-
tionally to the set of realized goals RK .

The second way aims at helping the decision maker to choose which informa-
tion is relevant in order to make the more reliable choice between two candidates.
When it is possible to acquire more information, it is fairer to obtain nearly the
same level of sensitivity in the knowledge bases of the candidates to be compared.

4.1 Refining the Ordering of Candidates

In order to compare two candidates we should use one of the comparison operator
recalled in Definition 7 on the Valid-BLFs of the candidates (hence on their
respective realized goals). In case of equality or incomparability between two
candidates the decision maker can use its awareness of the possible DPs given in
the generic BLF. More precisely according to the decision maker’s profile he may
choose to use either NRK (if “skeptic”) or ΠRK (if “believer”)4. The decision
maker is called skeptic when he considers that a DP is valid and not inhibited
only if this DPs remains valid and not inhibited whatever the missing information
is, in accordance to the definition of Necessary realized goals (Definition 9).
Similarly a believer considers that a DP is valid and not inhibited if there is a
way to complete the missing information in order to make it possible.

4.2 Acquisition of Knowledge in Order to Discriminate Candidates

In this section, we consider that the decision maker is able to increase her knowl-
edge K when she considers that this knowledge is not pertinent enough. After
this acquisition K is increased into K ∪ ϕ, the DM can compare the candidates
by using the rules applied to the set RK∪ϕ. In order to evaluate the quality of
the knowledge available for each candidate, we can compare the sensitivity asso-
ciated to their different knowledge bases. We may compare the candidates only
if the knowledge about them has approximately the same sensitivity:

Definition 12. Given a BLF B = (P,R, pol,�), a given constant ε and two
knowledge bases K and K ′ describing two candidates c and c′,

• c is ε-sensitivity-comparable to c′ iff |s(B,K) − s(B,K ′)| ≤ ε.
• c is BiLexi-preferred to c′ with ε-sensitivity awareness iff they are ε-

sensitivity-comparable and c �BiLexi c′

If the candidates are ε-sensitivity comparable but are equal wrt to BiLexi
preference, or if we want to decrease the sensitivity then we have to choose the
subject on which we have to increase our knowledge. The question to answer is
4 Note that the set PR is not meaningful in this context.
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“What is the most important goal that could be necessarily realized by adding
only one formula ϕ to K which would not be possibly realized by adding ¬ϕ ?
and what is the simplest formula ϕ that could do that?”

Definition 13. Given a BLF B = (P,R, pol,�) and a knowledge base K, a
best-discriminating formula (ϕ∗) is a formula ϕ ∈ LF such that:

ϕ∗ = arg max
ϕ∈LF

{k : level(g) = k and g ∈ NRK∪{ϕ} and g �∈ ΠRK∪{¬ϕ}}

The simplest-best-discriminating formula is a DNF5 best-discriminating for-
mula that is not subsumed by any other DNF best-discriminating formula.

We illustrate the two ways to use the K-Potential-BLF in the next section.

4.3 Example

We would like to compare 4 hotels: the three hotels described by K1, K2 and
K3, and a new one described by K4 = {open bar; fine weather}:

K1⊕ Inhib. �
p1

¬fine weather

p2

K2⊕ Inhib. �
¬fine weather

four starsp2

p3

p4

K3⊕ Inhib. �
¬fine weather

four stars

special offer
p2

p3

p4

K4⊕ Inhib. �
¬fine weather

p2
p4

If we apply the BiLexi rule, we obtain 1 ∼BiLexi 3 BiLexi 2 BiLexi 4. The
order relation between K1 and K2 can be refined by using the BiLexi rule either
on the set NRK or on ΠRK . The choice depends on the DM’s profile: NRK is
taken if she is a skeptic and ΠRK if she is a believer. Using NRK , the ordering
between candidate 1 and 3 remains the same but with ΠRK , we get 1 BiLexi 3.

Now, in case we can increase our knowledge. We can take into account the
sensibility of the BLF associated to each candidate, which are s(B,K1) = 1,
s(B,K2) = 2, s(B,K3) = 1 and s(B,K4) = 3. Note that Candidate 4 is very
sensitive since its sensitivity is close to the maximal possible value of sensitivity
(the number of goals). Hence, before concluding on the ordering the DM should
increase her knowledge about candidate 4. She can investigate the feature pool:
if the answer is Yes, then swim ∈ NRK4∪{pool} else swim /∈ ΠRK4∪{¬pool}. In
the first case, 4 becomes the most preferred hotel otherwise it is the worst hotel.
5 DNF: Disjunctive Normal Form.
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5 Conclusion

The BLF is a visual tool made to help human decision makers in their tasks.
Note that once the BLF is defined the decision is automatically computed, hence
BLF can be used by artificial or human agents. In [6] we have already studied
the comparison of two candidates a and b on the basis of the Ka-Valid-BLF and
the Kb-Valid-BLF, that gathers the decision principles and inhibitions which
are validated given the available knowledge-bases Ka and Kb associated with
each candidate. In this paper, we have proposed a refinement of the rules for
comparing candidates by using the potential -BLFs which can be built according
to what could additionally be learned about the candidates.

We can consider that our approach is of the kind “compare then aggregate” in
the sense that when we want to select one candidate among a set of candidates,
we can do a pairwise comparison and then decide which candidate to elect. This
last step is a kind of aggregation. Bonnefon et al. approach [3], and classical
decision making methods like Electre [10], Promethee [4] and Condorcet [1] could
be assigned to the same category of approaches where only [3] also uses bipolarity.
Another approach of decision making is “aggregate then compare”, it means that
first candidates are given an absolute value and then the best one is selected.
In this family of approaches we can find the weighted average method, Choquet
integral-based methods (like [8]), the uninorm aggregation operators [14]. An
interesting direction could be to override the pairwise comparisons done with
the valid BLFs towards defining an absolute scale for ranking the candidates
based on an aggregation function defined on BLFs.
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Abstract. A non-traditional approach on the measurement of agents
behaviour is presented. This contribution focus on measuring stability of
agents’ preferences on an intertemporal context under the assumption of
considering uncertainty opinions. To this aim, the concept of behaviour
stability measure is defined as well as a particular one, the sequential
behaviour stability measure. Finally and in order to highlight the good
behaviour of novel measure, some properties are also provided.
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1 Introduction

Human behaviour involves intertemporal decisions. In these choices, person must
evaluate costs and benefits of doing something at different points of time. Every
day, humans makes intertemporal decisions - when they select between eating
snacks now or complete meal later or between going on holidays or increasing
their pension fund contribution and so on. Therefore, intertemporal choice has
been obtaining attention from several research fields such as Economics, Psy-
chology, Decision Analysis and Neuroscience.

Generally speaking, two different approaches exist in the literature regarding
intertemporal decision behaviour. The first one is focused on exploring behaviour
causes by means of general optimization criterion (see [2,7,8] amog other). In this
line it is possible to frame the contemporary economics models where humans takes
intertemporal decision maximizing an exponentially-discount utility function to
make temporal consistency choices. The second approach,meanly provided bypsy-
chologists, is the empirical one. The human behaviour in intertemporal choices is
studied by means of empirical data collected from laboratories (see [1,4–6]).
c© Springer International Publishing AG, part of Springer Nature 2018
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In order to extend from another different perspective the intertemporal deci-
sion topic, the aim of this contribution is to develop a new tool capable of
analysing intertemporal decision-making human behaviour and measuring the
stability of their decisions. This work is inspired in the methodology proposed
by González-Arteaga, de Andrés Calle and Peral [3] where the notion of intertem-
poral decision stability is considered in the same vein that the notion of cohesive-
ness. In [3] agents must choose between to approve or disapprove an alternative
at diverse points of time (opinion takes value 1 if agent approves or 0 if agent
disapproves it).

The assumption of dichotomous opinions in this particular context could
limit and disturb the results of the behaviour analysis due to evidence suggests
that humans may experience difficulties in expressing uncertain knowledge in a
dichotomous way [9]. Consequently, this research is focused on an intertempo-
ral decision-making problem under a general framework, i.e., agents can express
their opinions on an alternative in the unit interval along different moments of
time and then overcomes the aforementioned approach. Thus, the paper objec-
tive is to determine how much stability agents’ opinions conveys to the group over
time. In order to analyse intertemporal human behaviour by means of measur-
ing such stability, a new general methodology is defined, the behaviour stability
measure. Moreover, an specific formulation of the behaviour stability measure is
introduced, the sequential behaviour stability measure as well as a study of its
analytic properties. Under this approach, the stability of human behaviour is
understood like the probability that for a randomly chosen moment of time, two
randomly chosen agents have the same opinion at such a time and its consecutive.

The overall structure of the study takes the form of three sections. Section 2
introduces some notation as well as our proposal to measure preference stability:
the behaviour stability measure. Moreover, an specific type of this measure, the
sequential behaviour stability measure, is presented. In Sect. 3, the main prop-
erties of the sequential behaviour stability measure are defined and explained by
an illustrative example. Finally, some concluding remarks and further researches
are provided.

2 Behaviour Stability Measure: Notation and Definitions

Let N = {1, 2, ..., N} a set of agents or experts that expresses their opinions
on an alternative, x, at different time moments T = {t1, . . . , tT }. A behaviour
profile of a set of agents N on an alternative x at T different time moments is
an N × T matrix

P =

⎛
⎜⎝

P1t1 . . . P1tT
...

. . .
...

PNt1 . . . PNtT

⎞
⎟⎠

N×T

where Pitj ∈ [0, 1] is the opinion of the agent i over alternative x at tj moment,
in the sense:
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– If agent i disapproves x at the tj time, then Pitj = 0 (in occasion for simplicity
notation, this option is denoted by d),

– If agent i mostly disapproves x at the tj time, then 0 < Pitj < 0.5 (in the
same vein, this option is denoted by md),

– If agent i is undecided on x at the tj time, then Pitj = 0.5 (similarly, this
option is denoted by u),

– If agent i mostly approves x at the tj time, then 0.5 < Pitj < 1 (likewise, this
option is denoted by ma),

– If agent i approves x at the tj time, then Pitj = 1 (analogously, this option is
denoted by a).

For abbreviation, let O = {d,md, u,ma, a} stand for the label set associated
to all possible opinions. Moreover, the behaviour profile arising from replacing
the values in [0, 1] by the labels in O, is also called in the same way.

Let PN×T denote the set of all such N×T matrices. For simplicity of notation,
(1)N×T , (0.5)N×T and (0)N×T are the N × T matrices whose cells are universally
equal to 1, 0.5 and 0, respectively.

A behaviour profile P is unanimous if all agents have the same opinion on
alternative x over T. In matrix terms, if behaviour profile P ∈ PN×T is constant.
Any permutation σ of the agents {1, 2, ..., N} determines a behaviour profile Pσ

by permutation of the rows of P, that is, row i of the profile Pσ is row σ(i) of
the profile P.

For each behaviour profile P, PS is the restriction to a subset of agents, an
agent-subprofile on the agents in S ⊆ N, and it emerges from selecting the rows
of P that are associated with the respective agents in S. For each behaviour
profile P, PI is the restriction to a subset of moments of time, a time-behaviour
subprofile on the moments of time in I ⊆ T, and it emerges from selecting
consecutive columns of P that are associated with the respective moments of
time in I. Any partition {I1, . . . , Ip} of P generates a decomposition of P into
behaviour subprofiles PI1 , . . . ,PIp where PI1 ∪ . . . ∪ PIp = P.

An extension of a behaviour profile P of a group of agents N at
T = {t1, . . . , tT } is a behaviour profile P at T = {t1, . . . , tT , tT+1, . . . , tT+q}
such that the restriction of P to the first T moments of time of T coincides with
P. A replication of a behaviour profile P of a group of agents N on alternative x
is the behaviour profile P � P ∈ P2N×T obtained by duplicating each row of P,
in the sense that rows r and N + r of P�P are row r of P, for each r = 1, ..., N .

For each behaviour profile P on alternative x n
tj
a is the number of agents

that approve x at tj , n
tj
ma is the number of agents that mostly approve x at tj ,

n
tj
u is the number of agents that are undecided on x at tj , n

tj
md is the number

of agents that mostly disapprove x at tj and n
tj
d is the number of agents that

disapprove x at tj . Therefore, N = n
tj
a +n

tj
ma +n

tj
u +n

tj
md +n

tj
d for each tj ∈ T.

In addition, n
tj ,tj+1
d,d denotes the number of agents that disapprove alternative

x at tj and keep their opinion at the following point of time tj+1. Similarly,
n

tj ,tj+1
a,a denotes the number of agents that approve alternative x at tj and keep
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their opinion at the following point of time tj+1 and so on. See Table 1 for
improving understanding.

Table 1. Notation summary table.

tj

tj+1
d md u ma a

d n
tj ,tj+1
d,d n

tj ,tj+1
d,md n

tj ,tj+1
d,u n

tj ,tj+1
d,ma n

tj ,tj+1
d,a n

tj
d

md n
tj ,tj+1
md,d n

tj ,tj+1
md,md n

tj ,tj+1
md,u n

tj ,tj+1
md,ma n

tj ,tj+1
md,a n

tj
md

u n
tj ,tj+1
u,d n

tj ,tj+1
u,md n

tj ,tj+1
u,u n

tj ,tj+1
u,ma n

tj ,tj+1
u,a n

tj
u

ma n
tj ,tj+1
ma,d n

tj ,tj+1
ma,md n

tj ,tj+1
ma,u n

tj ,tj+1
ma,ma n

tj ,tj+1
ma,a n

tj
ma

a n
tj ,tj+1
a,d n

tj ,tj+1
a,md n

tj ,tj+1
a,u n

tj ,tj+1
a,ma n

tj ,tj+1
a,a n

tj
a

n
tj+1
d n

tj+1
md n

tj+1
u n

tj+1
ma n

tj+1
a N

Definition 1. An behaviour stability measure for a group of agents N =
{1, ..., N} on an alternative x is a mapping

ϕ : PN×T → [0, 1]

that assigns a number ϕ(P) ∈ [0, 1] to each behaviour profile P, with the follo-
wing properties:

(i) ϕ(P) = 1 if and only if P is unanimous (full stable behaviour).
(ii) ϕ(Pσ) = ϕ(P) for each permutation σ of the agents and P ∈ PN×T (anony-

mous behaviour).

A behaviour stability measure is a collection of behaviour stability measures
for each group of agents N.

Now a particular behaviour stability measure is introduced. Formally:

Definition 2. Let N = {1, ..., N} be group of agents that give their opinion
on an alternative x by O = {d,md, u,ma, a} at different moments of time T.
The sequential behaviour stability measure is the mapping ϕS : PN×T → [0, 1]
given by

ϕS(P) =
1

T − 1
·

∑
o∈O

j=T−1∑
j=1

ntj ,tj+1
o,o · (ntj ,tj+1

o,o − 1)

N(N − 1)
.

Intuitively, it measures the probability that for a randomly chosen moment
of time, two randomly chosen agents of a group have the same opinion upon
an alternative at the moment of time selected and its consecutive. It is easy to
check that Definition 2 provides a behaviour stability measure.
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3 Sequential Behaviour Stability Measure: Properties

In this section some desirable properties of the sequential behaviour stability
measure are defined but firstly, an illustrative example is included in order to
improve the understanding of the notation and the properties.

Example 1. Suppose a set of twelve experts N = {1, 2, . . . , 12} that express
their opinions on alternative x over four consecutive moments of time
T = {t1, t2, t3, t4}. Their opinions are collected in the following behaviour profile:

P =

⎛
⎜⎝

P1t1 . . . P1t4

...
. . .

...
P12t1 . . . P12t4

⎞
⎟⎠

12×4

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a a a d
d u md d

md u md d
d a d a

ma u u a
a a a a
d d d d

md md md d
d md ma a
d u u a
d d md md
a ma md d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This behaviour profile is summarized in Table 2. Using Definition 2, the value
of the sequential behaviour stability measure is ϕS(P) = 0.02.

Henceforth, the properties of the sequential behaviour stability measure are
defined and explained by means of the example.

Reversal Invariance. This property shows that the main aspect of the sequen-
tial behaviour stability measure is the stability of agents’ opinions more than an
specific value. If agents’ opinions totally change in opposite course, then the
sequential behaviour stability measure reminds equal. Formally:

Let Pc be the complementary behaviour profile of P defined by Pc =
(1)N×T − P. If ϕS verifies reversal invariance then ϕS(Pc) = ϕS(P).

Focusing on the following matrices (from Example 1), this property means
that those agents whose opinions coincide at tj and tj+1 in P have also coincident
opinions at tj and tj+1 in Pc although those opinions are totally different than
in P, then the sequential behaviour stability measure is the same in both cases,
ϕS(P) = ϕS(Pc) = 0.02.
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Table 2. Notation summary table for Example 1



A Proposal to Measure Human Group Behaviour Stability 105

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a a a d
d u md d

md u md d
d a d a

ma u u a
a a a a
d d d d

md md md d
d md ma a
d u u a
d d md md
a ma md d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Pc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d d d a
a u ma a

ma u ma a
a d a d

md u u d
d d d d
a a a a

ma ma ma a
a ma md d
a u u d
a a ma ma
d md ma a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Time-Reducibility. It means that the stability of a behaviour profile is the
average of the sequential behaviour stability measures of all its consecutive
behaviour-subprofiles of two consecutive moments of time. This says that we
can first compute the sequential behaviour in the opinions of each time and the
sequential one by the agents (the proportion of pairs of agents whose opinions
keep the same for both times), and then aggregate these values by taking their
average. Formally:

Let P ∈ PN×T be a behaviour profile. We say that ϕS verifies time-
reducibility if

ϕS(P) =
1

T − 1

T−1∑
j=1

ϕS(PIj,j+1)

where PIj,j+1 ∈ PN×2 is the behaviour-subprofile of P containing the columns
corresponding to times tj and tj+1.

Staying on Example 1 it means that:

ϕS(P) =
1
3

(
ϕS(PI1,2) + ϕS(PI2,3) + ϕS(PI3,4)

)
=

1
3

(0.03 + 0.03 + 0) = 0.02

where

PI1,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a a
d u

md u
d a
...

...
d d
a ma

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, PI2,3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a a
u md
u md
a d
...

...
d md

ma md

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, PI3,4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a d
md d
md d
d a
...

...
md md
md d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Replication Monotonicity. When a non-unanimous behaviour profile is repli-
cated, its sequential behaviour stability measure increases. Formally:
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Let P ∈ PN×T be a non unanimous behaviour profile then

ϕS(P � P) > ϕS(P).

In addition, for an unanimous behaviour profile P ∈ PN×T , by Definition 2,
ϕS verifies

ϕS(P � P) = ϕS(P) = 1.

Keeping up with Example 1:

ϕS(P � P) = 0.035 > ϕS(P) = 0.02

being

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a a a d
d u md d

md u md d
d a d a

ma u u a
a a a a
d d d d

md md md d
d md ma a
d u u a
d d md md
a ma md d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P � P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a a a d
d u md d

md u md d
d a d a

ma u u a
a a a a
d d d d

md md md d
d md ma a
d u u a
d d md md
a ma md d
a a a d
d u md d

md u md d
d a d a

ma u u a
a a a a
d d d d

md md md d
d md ma a
d u u a
d d md md
a ma md d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Minimum Time Stability. If all agents express their opinions at a moment of
time and change their opinions at the next moment of time, that is, all agents
change their opinions over two successive moments of time, then the sequential
behaviour stability measure takes a zero value. It also happens when there are
at most two agents that keep their opinion at two consecutive moments of time
but their opinions do not coincide each other. Formally:

Let P ∈ PN×T be a behaviour profile such that there is at most one agent who
has the same opinion at tj and tj+1 for j ∈ {1, . . . , T − 1}, that is, n

tj ,tj+1
a,a ≤ 1,

n
tj ,tj+1
ma,ma ≤ 1, n

tj ,tj+1
u,u ≤ 1, n

tj ,tj+1
d,d ≤ 1 and n

tj ,tj+1
md,md ≤ 1 Then, ϕS(P) = 0.
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Following an illustrative example of a profile showing minimum time stability
is given.

P0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d u md d

a a a d

md u ma d
d a d a

ma u ma a

a ma a ma
d d d d
md md md d

d md ma a

d u u a

u d md d

a ma md d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→ P0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d u md d
a a a d
md u ma d
d a d a
ma u ma a
a ma a ma
d d d d
md md u d
d md ma a
d md u a
u d md d
a ma md d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→ P0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d u md d
a a a d
md u ma d
d a d a
ma u ma a
a ma a ma
d d d d
md md md d
d md ma a
d u u a
u d md d
a ma md d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Leaving Minimum Time Stability. In order to leave the minimum time
stability it is needed that at least the opinions of two agents coincide at the
same moment of time and the next one. Formally:

Let P ∈ PN×T be a behaviour profile such that there exists at least a j,
j ∈ T, such that n

tj ,tj+1
a,a > 1 or n

tj ,tj+1
ma,ma > 1 or n

tj ,tj+1
u,u > 1 or n

tj ,tj+1
d,d > 1 or

n
tj ,tj+1
md,md > 1, then ϕS(P) > 0.

Taking the matrix exposes in the previous property P0, if the expert in line 4
of the profile gives “approve”, instead of “disapprove”, the sequential behaviour
stability measure is greater than zero, ϕS(P) = 0.005 > 0.

P1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d u md d
a a a d

md u ma d
d a a a
ma u ma a

a ma a ma

d d d d

md md md d
d md ma a
d u u a

u d md d

a ma md d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→ P1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d u md d
a a a d
md u ma d
d a a a
ma u ma a
a ma a ma
d d d d
md md md d
d md ma a
d md u a
u d md d
a ma md d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→ P1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d u md d
a a a d
md u ma d
d a a a
ma u ma a
a ma a ma
d d d d
md md md d
d md ma a
d u u a
u d md d
a ma md d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Time Monotonicity. Consider two behaviour profiles, P and P′, that coincide
in all their elements excepting the opinion of an agent m ∈ N, at tk and tk+1.
Concretely, this agent has different opinion at tk and tk+1 in P: Pmtk �= Pmtk+1 ,
and the agent’s opinion is the same at tk and tk+1 in P′: P ′

mtk
= P ′

mtk+1
. In

this case, the sequential behaviour stability measure verifies ϕS(P′) ≥ ϕS(P).
Formally:

Let P,P′ ∈ PN×T be behaviour profiles such that:

(a) Pitj = P
′
itj

, i ∈ {N \ {m}},
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(b) Pmtk �= Pmtk+1 , m ∈ N, tk, tk+1 ∈ T,
(c) P

′
mtk

= P
′
mtk+1

, m ∈ N, tk, tk+1 ∈ T.

Then, ϕS(P′) ≥ ϕS(P).
Focusing on Example 1, the matrices P and P′ are:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a a a d
d u md d

md u md d
d a d a

ma u u a
a a a a
d d d d

md md md d
d md ma a
d u u a
d d md md
a ma md d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a a a d
d u md d

md md md d
d a d a

ma u u a
a a a a
d d d d

md md md d
d md ma a
d u u a
d d md md
a ma md d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and then ψS(P) = 0.02 ≤ ψS(P′) = 0.03.

Convergence to Full Stability. If new moments of times are repeatedly intro-
duced into the problem and all agents have the same opinion at them, then the
sequential behaviour stability measure approaches 1. Formally:

Suppose that q moments of time tT+1, . . . tT+q are added to T, and at these
new moments of time the alternative x is unanimous. If the introduction of
new moments of time does not affect agents’ opinions in past times, then the
sequential time cohesiveness measure of the extended behaviour profile P

(q) ∈
PN×(T+q) approaches 1 when q tends to infinity.

lim
q→∞ ϕS(P

(q)
) = 1

Following Example 1 the consecutive matrices are:

P
(1)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a a a ma
d u md ma

md u md ma
d a d ma
...

...
...

...
d d md ma
a ma md ma

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P
(2)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a a a ma ma
d u md ma ma

md u md ma ma
d a d ma ma
...

...
...

...
...

d d md ma ma
a ma md ma ma

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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P
(3)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a a a ma ma ma
d u md ma ma ma

md u md ma ma ma
d a d ma ma ma
...

...
...

...
...

...
d d md ma ma ma
a ma md ma ma ma

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . , P
(q)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a a a ma ma . . . ma
d u md ma ma . . . ma

md u md ma ma . . . ma
d a d ma ma . . . ma
...

...
...

...
...

...
d d md ma ma . . . ma
a ma md ma ma . . . ma

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Convexity. It means the sequential behaviour stability measure of a behaviour
profile is a weighted average of the measures of any decomposition of P into
consecutive time-subprofiles. Formally:

For each behaviour profile P ∈ PN×T , and each decomposition of P into
two consecutive time-subprofiles, PI1 ∈ PN×(k1+1) and PI2 ∈ PN×(T−k1) with
I1 = {t1, . . . , tk1+1} and I2 = {tk1+1, . . . , tT }, and (| I1 | −1)+(| I2 | −1) = T −1

ϕS(P) =
(| I1 | −1) · ϕS(PI1) + (| I2 | −1) · ϕS(PI2)

T − 1
.

In our example:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a a a d
d u md d

md u md d
d a d a
...

...
...

...
d d md md
a ma md d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, PI1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a a
d u

md u
d a
...

...
d d
a ma

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, PI2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a a ma
u md ma
u md ma
a d ma
...

...
...

d md ma
ma md ma

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ϕS(P) =
(2 − 1) · ϕS(P

I1) + (3 − 1) · ϕS(P
I2)

3
=

(2 − 1) · 0.03 + (3 − 1) · 0.015
3

4 Conclusion and Futher Research

Research in the subject of preference stability has made progress mostly in Eco-
nomics. The aim of this paper is to manage the problem of measuring human
behaviour stability from a non-traditional perspective. In order to set forth the
context of our research a framework is established where agents express their
opinions on an alternative at different moments by uncertainty information.
The general notion of behaviour stability measure is introduced. Then, a spe-
cific formulation is developed with particular regard to any two successive time
moments. In this way, the sequential behaviour stability measure is proposed.
Moreover, some meaningful properties which make our proposal compelling are
also provided as well as an illustrative example. Overall, the proposals of this
contribution have a range of implications for future research. Many problems on
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human behaviour stability from a diversity of fields can be faced by our app-
roach such as the consumers preferences, risk preference, medical preferences,
and so on.

Acknowledgment. The authors acknowledge financial support by the Spanish Min-
isterio de Economı́a y Competitividad under Project ECO2016-77900-P (T. González-
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Abstract. A growing interest is expressed by organizations for the
development of approaches enabling to take advantage of past experi-
ences to improve their decision processes; they may be referred to as
Lessons Learned (LL) processes. Within the LL processes implementa-
tion framework, the development of semi-automatic approaches able to
distinguish criteria having major influence on the evaluation of experi-
ences is crucial for identifying relevant recommendations and performing
efficient prescriptive analysis. In this paper, we propose to contribute
to LL study by focusing on the definition of an approach enabling, in
a specific setting, to identify the criteria most influencing the decision
process regarding the overall performance evaluation of a reduced set of
experiences. The proposed approach is framed on Multi-Criteria Deci-
sion Analysis, and specifically is based on the Electre tri method. In this
paper, an illustration of the proposed approach is provided studying the
evaluation of logistical response strategies in humanitarian emergency
situations.

Keywords: Multi-Criteria Decision Analysis (MCDA)
Lessons Learned · Electre tri · Influencing criteria identification
Humanitarian domain

1 Introduction

Lessons Learned process (LL)1 refers to a general Knowledge Management app-
roach aiming at ensuring and improving proper functioning of organizations by
collecting, analysing, disseminating and reusing tacit experiential knowledge.
One of the main focuses of LL is therefore to study how to improve techniques
enabling to discover and further take advantage of expert knowledge that is not

1 Sometimes referred to as Experience feedback.
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J. Medina et al. (Eds.): IPMU 2018, CCIS 855, pp. 111–123, 2018.
https://doi.org/10.1007/978-3-319-91479-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91479-4_10&domain=pdf
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explicitly formalized into organizations’ Information Systems. In this context,
LL is particularly interested in taking advantage of knowledge that is most often
difficult if not impossible to formalize nowadays - in particular because of the
technical difficulties to systematically and efficiently formalize such knowledge
considering every-day practices used in organizations, e.g. domain experts often
take decisions based on complex bodies of professional histories. Importance of
LL is thus critical to fight against sensitive losses of expertise in organizations,
and to achieve well-supported and understood decision-making processes. LL can
indeed help improving both the performance and the quality of organizations by
analysing past experiences and by using problem-solving methods – narrow links
with well-established related domains such as Case Based Reasoning, Multiple-
Criteria Decision Analysis and Knowledge Management/Representation exist;
some of them will further be discussed.

In this paper, we contribute to LL study by focusing on the definition of an
approach enabling, in a specific setting, to identify the criteria most influencing
the decision process regarding the overall performance evaluation of a reduced
set of experiences. Identifying the criteria most impacting performance is indeed
of major importance for numerous applications related to LL; it can also be cen-
tral for the global implementation of the LL process, e.g. it indeed helps a lot to
identify relevant recommendations and to perform efficient prescriptive analyses.
Identifying such criteria in real-world problems can however be challenging. We
indeed here consider - as it is most often the case in numerous complex decision
processes - that no explicit and formal definition of performance based on cri-
teria analysis can be provided by domain experts. Experts can indeed evaluate
performance but are not able to explicitly define the way it is evaluated, i.e. to
define the model on which the evaluation is based, if any. We also consider the
following common constraints: only a reduced set of observations is available2

and only limited interactions with domain experts can be expected. Addition-
ally, we consider that it is most often unthinkable to perform automatic deep
analyses of all pieces of information that could be related to each criterion to fur-
ther distinguish relevant teachings. Therefore, based on the analysis of a reduced
set of evaluated past experiences characterized by their performance on criteria,
we propose a general approach framed on Multiple-Criteria Decision Analysis
(MCDA) in order to distinguish the minimal set of criteria most impacting per-
formance. The proposed approach is built upon Electre tri, a MCDA method
enabling classifying a set of alternatives into predefined categories.

An application of the proposed approach to the humanitarian field is pre-
sented; it is used for analysing logistical response strategies in emergency sit-
uations. Our case study rests upon a corpus of past missions carried out by
a Non-Governmental Organization (NGO); the core mission of the NGO is to
deliver emergency aid to people affected by disasters (earthquake, tsunami, con-
flict, famine, epidemic. . . ). Our general goal is therefore to exploit knowledge
that can be extracted from prior missions in order to formulate relevant rec-
ommendations that could be used for better defining future logistical response

2 This de facto prevents the use of traditional Machine Learning approaches.
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strategies. To this aim, this paper focuses on identifying the set of criteria most
impacting performance evaluation of logistical response strategies. The paper
is structured as follows: Sect. 2 briefly introduces state of the art related to LL
and motivates the use of MCDA for extracting knowledge from past experiences.
Section 3 presents our contribution for identifying the criteria most impacting
performance evaluation; an introduction to Electre tri, the MCDA method used
in our work, is also given in that section. Section 4 illustrates the use of the pro-
posed approach for studying the logistical response in humanitarian emergency
situations. Section 5 concludes this paper and highlights future work.

2 Related Works and Positioning

Whatever the field of application, learning from experience is a growing concern
for numerous organizations. In this context, several approaches have emerged
to fulfill the different LL needs expressed by organizations; they differ both in
(i) the nature and the heterogeneity of information to collect, as well as in
(ii) the expected purpose: exploitation, reuse, capitalization, and dissemination
of knowledge. Various types of LL approaches can therefore be identified in
the literature. Some of them rely on databases composed of past experiences
and take advantage of domain-specific querying strategies, e.g. REX method [1].
Other approaches take advantage of knowledge models - using techniques related
to Knowledge Management and Knowledge Representation (KM/KR) such as
CommonKads [2], or MKSM (Methodology for Knowledge System Management)
[3]. Another category of LL approaches also considers the use of problem-solving
methods. These methods, in particular Case-Based Reasoning (CBR) [4], rely
on the use of knowledge extracted from previously experienced cases to solve
similar new cases. A significant number of cases is however generally required to
distinguish analogies using these methods.

In our study, we are considering LL towards an application to the logistical
emergency response carried out by humanitarian organizations. In this domain,
data collection is even more difficult, e.g. oral testimony often prevails, analy-
ses most often rest upon reduced corpora of past missions. With this in mind,
another challenge arises: to exploit and reason on a small number of complex
past experiences. These experiences are composed of successions of decisions
being influenced by different factors such as: the intuition, the context-dependent
nature of the missions - instable environment, unpredictable events affecting the
system - the multiple, and sometimes conflicting objectives. Nevertheless, despite
decision-making complexity, according to the collaborating NGO, the logistical
strategy of several missions could be, to a certain extent, generalized and repro-
duced. In that context, the NGO has established a procedure to learn lessons
from past experiences, particularly from choices made in missions. It aims at pro-
viding an a posteriori evaluation of singular cases entailing a noteworthy success
or a significant failure. To do so, a board of multidisciplinary experts conducts an
analysis of the case based on related data and complementary interviews; then
a conclusive report is provided. However, according to the NGO stakeholders,
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provided outcomes often face major weaknesses - e.g. hardly exploitable, lack of
sharpness - the time-consuming nature of the process is also pointed out.

An open challenge is thus offered to LL automation for knowledge extrac-
tion from past experiences in NGOs. Recall however that in the humanitarian
domain, relevant and accurate data is difficult to obtain, and cannot easily be
automatically analysed - data access and analysis often require costly staff and
experts involvement. A further constraint is therefore, while maintaining interac-
tions with domain experts and decision-makers (DMs), to minimize information
requests in order to lessen their involvement (both in terms of time and cog-
nitive effort). All these constraints underline the need for a prior identification
of relevant criteria in order to reduce the scope of analysis for applying deeper
data analyses. In practice, DMs always - at least implicitly - consider a set of
objectives that the mission has to reach in order to meet success. In addition, a
set of relevant criteria can be considered to measure, for a specific mission, the
degree of success of each objective, i.e., performance. Such a performance evalu-
ation can however be a complex process. Indeed, to be successful, for DMs (i) a
mission does not necessarily require maximal performance with respect to each
criterion, and (ii) the criteria may not have the same importance. We therefore
propose to take advantage of MCDA techniques to identify the subset of criteria
most impacting the overall performance assessment of a specific mission.

The best known MCDA approaches are those derived from Multi-Attribute
Value/Utility Theory (MAVT/MAUT) [5] and outranking methods [6]. Since
every MCDA method differently combines performance and criteria importance
to define the overall performance of a mission, the identification of the subset of
criteria of interest will necessarily depend on the selected MCDA method. In this
work, we have chosen to use Electre tri, a method from the well-known ELEC-
TRE family methods [7]. It has been selected according to three main criteria
related to NGOs context: it is simple to reuse; non-compensatory, and techniques
exist to reduce the amount of information asked to DMs while determining model
parameters - agreement among DMs is considered here. The non-compensatory
condition means that an excellent performance on specific criteria (e.g. cost) can-
not compensate for a bad performance on other prevailing criteria (e.g. degree of
achievement of the medical objectives). In order to reduce the amount of infor-
mation that has to be provided, Electre tri relies on indirect identification of the
parameters. In addition, Electre tri is an outranking method: instead of scor-
ing alternatives, outranking methods are based on pair comparisons. Indeed,
it is more natural for DMs to compare the strength and the weakness of two
alternatives rather than assigning an arbitrary value to each alternative, and
comparing them subsequently. Interestingly, outranking methods are based on
relatively weak mathematical assumptions [8]. Nevertheless, obtaining the model
parameters is a very difficult issue because of the non-linearity due to the thresh-
olds induced in the model. However some recent works have proposed simplified
assumptions and a procedure to determine the parameters of the Electre tri
method has been proposed [9].
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3 Determining Criteria Contribution Within Electre Tri

The following section first introduces the Electre tri method and is then dedi-
cated to the presentation of our approach: the identification of the subset criteria
having the major contribution on the overall performance of a mission.

3.1 General Approach

The approach proposed in this paper aims to determine the criteria on which LL
process should focus when a mission is analysed. To facilitate DMs’ involvement,
the information requirement is minimized and the cognitive effort reduced as
much as possible. For instance, the parameters of the MCDA model used for the
analysis will be transparent for DMs. They will only be asked to assign examples
of fictive missions to the predefined categories. These examples of missions are
defined by their performance on each evaluation criterion, such that DMs are
able to easily classify them. The general approach can be decomposed as follows:

1. Determine the set of criteria on which missions will be evaluated;
2. Automatic identification of Electre tri parameters using a training set of fic-

tive examples of missions;
3. Classify/Assign the mission to one of the predefined categories using this

Electre tri model;
4. Determine the criteria strongly contributing to that classification.

3.2 Classifying Alternatives Using Electre Tri

We introduce the technical details related to Electre Tri, the specific MCDA
method used in our work.

Let A = {a1, . . . , am} a set of alternatives, and F a set of criteria satisfying
consistency conditions, i.e. completeness (all relevant criteria are considered),
monotonicity (the better the evaluation of an alternative on considered criteria,
the more it is preferable to another), and non–redundancy (no superfluous cri-
teria are considered) [6]. According to traditional MCDA outranking methods
notations, we denote gj(a) the score of alternative a ∈ A on the criterion j ∈ F .
For some pairs of alternatives a, b ∈ A, Electre tri builds an outranking relation
aSb meaning that ‘a is at least as good as b’. To this aim, the method uses con-
cordance, comprehensive concordance, discordance and credibility indices [7].
The concordance index is defined using the indifference qj(gj(a)) and prefer-
ence pj(gj(a)) thresholds; these thresholds allow to take the imprecision of the
evaluations gj(a) into account.3

Let’s define three subsets Fc
1(a, b), Fc

2(a, b) and Fc
3(a, b) that divide criteria

of F with regard to the comparison of a and b performances:
3 Note that Electre tri non-compensatory behaviour is defined by the fact that when-

ever gj(a) − gj(b) is greater than pj(gj(a)) no distinction is made computing the
concordance index; a big difference thus cannot compensate any negative difference
on another criterion j with j �= i.
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– Fc
1(a, b) = {j ∈ F : gj(a) ≤ gj(b) − pj(gj(b))},

– Fc
2(a, b) = {j ∈ F : gj(b) − pj(gj(b)) < gj(a) < gj(b) − qj(gj(b))},

– Fc
3(a, b) = {j ∈ F : gj(b) − qj(gj(b)) ≤ gj(a)}.

The partial concordance index on criterion j is defined using the previous
subsets as follows:

∀a, b ∈ A, cj(a, b) =

⎧
⎨

⎩

0 if j ∈ Fc
1(a, b),

αj(a, b) if j ∈ Fc
2(a, b),

1 if j ∈ Fc
3(a, b).

(1)

where αj(a, b) = gj(a)−gj(b)+pj(gj(b))
pj(gj(b))−qj(gj(b))

. Criteria in Fc
3(a, b) vote without reserva-

tion for alternative a; in Fc
2(a, b) only the proportion wj · cj is considered voting

for alternative a.
The comprehensive concordance index is then defined using the relative

importance wj of each criterion j ∈ F :

∀a, b ∈ A, c(a, b) =
∑

j∈F
wj · cj(a, b) =

∑

j∈Fc
3 (a,b)

wj +
∑

j∈Fc
2 (a,b)

wj · αj(a, b) (2)

The discordance index is defined by introducing a veto threshold vj(gj(b)):

∀a, b ∈ A, dj(a, b) =

⎧
⎨

⎩

1 if j ∈ Fd
1 (a, b),

gj(a)−gj(b)+pj(gj(b))
pj(gj(b))−vj(gj(b))

if j ∈ Fd
2 (a, b),

0 if j ∈ Fd
3 (a, b).

(3)

where:

– Fd
1 (a, b) = {j ∈ F : gj(a) ≤ gj(b) − vj(gj(b))},

– Fd
2 (a, b) = {j ∈ F : gj(b) − vj(gj(b)) < gj(a) < gj(b) − pj(gj(b))},

– Fd
3 (a, b) = {j ∈ F : gj(b) − pj(gj(b)) ≤ gj(a)}.

The credibility index is further defined as follows:

ρS(a, b) = c(a, b) ·
∏

j∈Fd(a,b)

1 − dj(a, b)
1 − c(a, b)

(4)

where Fd(a, b) = {j ∈ F : dj(a, b) > c(a, b)}. Finally, the outranking relation
aSb is considered when ρS(a, b) ≥ λ, λ ∈ [0.5, 1] [9].

In Electre tri, the credibility index is used to assign alternatives to pre-
defined categories. Suppose that alternatives should be assigned to p cate-
gories {C1, ...Cp} defined by p − 1 profiles {b1, ...bp−1}. Each profile bh, h ∈
{1, . . . , p − 1}, is the upper limit of Ch and the lower limit of Ch+1. Let a be an
alternative to assign to a category Ch, h ∈ {1, . . . , p}. Two assignment proce-
dures are possible:

– Pessimistic procedure: a is compared first to profiles defining best categories
until meeting the first bh such that aSbh, then a is assigned to Ch+1.
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– Optimistic procedure: a is compared first to profiles defining worst categories
until meeting the first bh such that bhSa, then a is assigned to Ch.

Note that Electre tri requires determining the following parameters:

– the profiles of the categories, defined by their evaluations gj(bh), ∀j ∈ F ,
∀h ∈ {1, . . . , p},

– the weight coefficients, wj ,∀j ∈ F ,
– indifference, preference and veto thresholds, qj(gj(bh)),pj(gj(bh)), vj(gj(bh)),

∀j ∈ F , ∀h ∈ {1, . . . , p},
– the cutting level λ.

These parameters define the preference model of the DMs. The direct elici-
tation of these parameters values, i.e. asking directly the DMs to provide them,
remains difficult since they do not correspond to the usual language or indicators
that DMs use to express their opinion and expertise. To overcome this issue, pro-
cedures have been proposed to infer the parameters of Electre tri model. Indeed,
in [9] this inference is based on the assignment of a set of examples of alter-
natives A∗ for which DMs have a clear preference. This is done by resolving a
non-linear programming problem, given in Eq. (5), where Electre tri parameters
are the variables. The slack variables xk and yk are introduced to transform the
inequality constraints ρ(ak, bhk−1) ≥ λ and ρ(ak, bhk

) ≤ λ into equality con-
straints. Further details about variables and constants involved in Eq. (5) are
given in [9].

(

α + ε
∑

ak∈A∗
(xk + yk)

)

→ max, such that: (5)

α ≤ xk and α ≤ yk, ∀ak ∈ A∗
∑m

j=1 wjcj(ak, bhk−1)
∑m

j=1 wj
− xk = λ, ∀ak ∈ A∗

∑m
j=1 wjcj(ak, bhk

)
∑m

j=1 wj
+ yk = λ, ∀ak ∈ A∗

λ ∈ [0.5, 1]
gj(bh+1) ≥ gj(bh) + pj(bh) + pj(bh+1), ∀j ∈ F , ∀h ∈ B

pj(bj) ≥ qj(bh), ∀j ∈ F , ∀h ∈ B

wj ≥ 0, wj ≤ 1
2

∑m

j=1
wj , qj(bh) ≥ 0, ∀j ∈ F , ∀h ∈ B

3.3 Determining Criteria of Interest

Let consider a the alternative defined by the performance of the currently evalu-
ated mission on all evaluation criteria. The alternative a is classified as “good”,
“medium” or “bad” by DMs. The aim of this section is to propose a method to



118 C. L’Héritier et al.

determine which subset of criteria strongly contributes to the overall result of
a. In our setting, this alternative is assigned to one of the categories using Elec-
tre tri; this problem is therefore equivalent to identifying the subset of criteria
strongly contributing to the credibility index of a when it is compared to the
profiles determining the category finally assigned to a.

As explained above, when an outranking method is used, the contribution
of criteria to the overall score is the portion of their weights considered in the
comprehensive concordance index. This contribution depends on the belonging
of criteria to one of the three subsets Fc

1 , Fc
2 and Fc

3 . Naturally, when comparing
a to a profile b, we define the contribution of a subset of criteria I ⊆ F to the
comprehensive concordance index, as the quantity cI(a, b):

cI(a, b) =
∑

j∈I

wj · cj(a, b) =
∑

j∈Fc
3 (a,b)∩I

wj +
∑

j∈Fc
2 (a,b)∩I

wj · αj(a, b) (6)

By convention cF (a, b) is c(a, b).

Let define two indices r, s ∈ {1, ..., p} obtained by the two procedures of Electre
tri classification:

1. Pessimistic procedure: ∀h ∈ {r, ..., p}, not(aSbh) and aSbr: a is classified in
category Cr;

2. Optimistic procedure: ∀h ∈ {1, ..., s − 1}, aSbh and bsSa and not(aSbs): a is
classified in category Cs.

Two cases have to be distinguished according to the quality of Cs:

1. The category Cs is considered as a “good” category. Then we have to deter-
mine criteria strongly contributing to the strength of a;

2. The category Cs is considered as a “bad” category. Then we have to determine
criteria strongly contributing to the weakness of a.

Knowing that the criteria contributing strongly to the weakness of a are those
strongly contributing to the strength of bs, we only present the first case.

When a is assigned to a “good” category, we have aSbr. Then for the cutting
level λ ∈ [0.5, 1] defined by the DMs, ρS(a, br) > λ means:

c(a, br) ·
∏

j∈Fd(a,br)

1 − dj(a, br)
1 − c(a, br)

> λ (7)

Let denote λ(a, b) = λ
∏

j∈Fd(a,b)

1−dj(a,b)
1−c(a,b)

. The most contributing subset of criteria

I ⊆ F is the one guaranteeing cI(a, br) > βλ(a, br), β ∈]0, 1]. The criteria of I
are those having a large voting weight, i.e. c{j}(a, br), and the larger β is, the
stronger the contribution of I is. Moreover the individual contribution of each
criterion of I should exceed a minimal value γ ∈]0, 1]. This threshold prevents
the selection of criteria that could contribute to state cI(a, br) > βλ(a, br) but in
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an insignificant proportion. Since the aim is to minimize the subset of criteria to
analyse, we have to focus on the smallest subsets I ⊆ F such that the previous
conditions are verified. Finally, we can set:

I∗ = arg min
I⊆F

{|I| : cI(a, br) > β∗λ(a, br) and ∀j ∈ I, c{j}(a, br) > γ} (8)

where β∗ is the biggest β ∈]0, 1] such that {I ⊆ F : cI(a, br) > β∗λ(a, br)} �= ∅
and γ is chosen by the DMs. In case of existence of several subsets I∗, the choice
of I∗ is made considering performance of a on the criteria of I∗.

4 Case Study

This section illustrates the use of the proposed approach in a practical case
aiming at studying the logistical response in humanitarian emergency situations.

We consider the context of LL in a humanitarian organisation case (see
Sect. 2), it aims at determining, a posteriori, if choices were good or bad w.r.t
objectives of an analysed mission, and to explain why. We deal with this prob-
lem by (i) analysing a real mission using Electre tri method which assigns the
mission to a predefined category characterizing its overall success, (ii) identify-
ing the criteria contributing to the mission success and those most impacting
its performance assessment. In this case study, among the diversity of missions
carried out by the collaborating NGO, we are focusing on distribution missions
- distribution of medicines, food and shelters - which clearly entail similar logis-
tics. For this illustrative example, we consider a mission a, corresponding to a
mission largely inspired – but slightly simplified for the example – from a real
food distribution mission carried out by the NGO. We define three categories:

– C1 includes failed missions for which objectives have not been reached,
– C2 covers missions with met objectives but moderate success,
– C3 covers successful missions: those exceeding the objectives.

The performance of a mission is evaluated according to a set of eight crite-
ria, i.e. F = {1, 2, ..., 8}, listed in Table 1. Criterion g1 assesses deadline com-
pliance, criterion g3 assesses the portion of the logistical costs w.r.t the total
costs and criterion g4 the number of enlisted human resources. The preference
decreases on these criteria. Criterion g2 assesses the percentage of achieve-
ment of the targeted population: preference increase on it. Criteria g5, g6,
g7 and g8 are assessed in a qualitative way using an ordinal scale with four
levels: the scale is {Small,Medium,High, V ery High} for g5 and g6, and
{Bad,Moderate,Good, V ery Good} for g7 and g8. We use the scale {1, 2, 3, 4} to
encode these two scales. Preferences on the criteria will further be characterized
by the definition of pseudo-criteria using thresholds qj , pj and vj .

4.1 Determination of Parameters

As a starting point, several parameters have to be fixed to determine the Electre
tri model that best fits DMs’ preferences. As mentioned in Sect. 3.2, an approach
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Table 1. Evaluation criteria.

Criterion Preference

g1 Deadline ↘
g2 Achievement % ↗
g3 Portion of the logistics costs ↘
g4 Human resources ↘
g5 Added value for the organization ↗
g6 Added value for the beneficiary country ↗
g7 Environmental impact ↗
g8 Security level ↗

can be used to determine those parameters by solving a non-linear optimisation
problem [9]. Similarly to the work proposed in that paper [9], to facilitate the
optimisation problem setting and resolution, veto thresholds are not inferred, we
assume that they are directly given by DMs (see Table 3). Therefore, the vari-
ables are: gj(bh), wj , qj(gj(bh)), pj(gj(bh)), ∀j ∈ {1, . . . , 8}, ∀h ∈ {1, 2}, λ. The
problem constraints are defined from parameters definition and the assignment
of a training set:

– pj(gj(bh)) ≥ qj(gj(bh)) ≥ 0, λ ∈ [0.5, 1],
– ak assigned to Ch means that akSbh−1 and not(akSbh).

Regarding the profiles of the categories, a training set of ten alternatives
has been used (see Table 2); each alternative ak is assigned to one of the three
categories by the DMs. These fictive missions ak, used as a training set to infer
model parameters are distinct from the alternative a, a real mission that we aim
at analysing here. Then in this context, we have to consider 58 variables and 90
constraints. Table 3 gives the values of parameters obtained from the resolution
of the non-linear optimisation problem resulting from the training set analysis.

4.2 Criteria Contribution

Let denote the analysed mission by a. DMs assess the performance of a on
the criteria of F as shown in Table 4. We apply the pessimistic procedure of
Electre tri using the identified model parameters (Table 3), and we consider the
credibility indices ρ(a, b1) = 0.995 and ρ(a, b2) = 0.2. Then the mission a is
assigned to category C2, since not(aSb2), and aSb1 with b1 the lower profile of
C2. Knowing that aSb1, we are looking for the subset of criteria I ⊆ F that
most contributes to the establishment of this outranking relation, both because
of the importance of the criteria, and the performance of a on these criteria.
Table 4 shows the individual contribution c{j}(a, b1) of each criterion gj to the
global performance of a when it is compared to b1.

Then in our Electre tri model, the cutting level is λ = 0.93 and the thresh-
old γ = c(a,b1)

2n = 0.004 is considered, n = |F|. Thus, solving the equation
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Table 2. Training set.

g1 g2 g3 g4 g5 g6 g7 g8 Category

a1 5 90 38 30 3 4 3 3 C3

a2 10 97 30 37 3 3 3 4 C3

a3 12 90 40 50 4 2 4 4 C3

a4 23 85 40 60 2 2 3 2 C2

a5 10 74 48 55 3 3 2 3 C2

a6 20 60 50 65 3 2 3 2 C2

a7 16 80 55 80 2 2 2 3 C2

a8 23 55 70 120 1 2 2 1 C1

a9 60 55 60 125 2 1 1 2 C1

a10 27 40 50 100 2 3 2 1 C1

Table 3. Parameters values obtained from
the optimisation problem resolution and
given veto thresholds.

g1 g2 g3 g4 g5 g6 g7 g8

gj(b1) 26 62 53 80 2 1 2 2

gj(b2) 6.5 97 40 48 4 3 3 4

qj(gj(b1)) 3 3.5 2 7 0 0 0 0

qj(gj(b2)) 4.6 8 4 3 0 0 0 0

pj(gj(b1)) 10 5 6 14 1 0 1 1

pj(gj(b2)) 9.5 9 7 5 1 0 1 1

wj 2.4 37.5 14 18.3 3.3 0.5 3.7 2.3

vj 80 40 70 200 3 3 2 3

λ 0.93

Table 4. Individual criteria contribution.

g1 g2 g3 g4 g5 g6 g7 g8

gj(a) 22 88 52 30 2 4 2 3

c{j}(a, b1) 0.03 0.46 0.17 0.22 0.038 0.006 0.04 0.03

proposed in (8), the subset of criteria I∗ = {2, 3, 4} is identified, with a max-
imal β∗ = 0.914. This identified subset has the contribution cI(a, b1) = 0.85,
stating that I∗ contributes to 91.4% of the global performance of a when it
is compared to the reference profile b1. In the example, the subset of identi-
fied criteria I∗ corresponds to the subset of all criteria having a large weight
(w2 = 37.5, w3 = 14, w4 = 18.3) w.r.t the others criteria having weights lower
than 4. Thus, a outranks b1 on all of the criteria of I∗. Conversely, the perfor-
mance of a compared to b2 on the important criteria gives I∗ ⊂ Fc

2(a, b2) with
α2(a, b2) = 0.06, α3(a, b2) = 6.10−6 and α4(a, b2) = 0.99: the bad performance
of a compared to b2 is then explained.

In the presented solution, the selection of criteria in I∗ is not affected by the
defined threshold γ. Indeed, the coalition of criteria {2, 3, 4} having significant
contributions is enough to exceed λ. In order to highlight the role of γ, lets
consider β = 0.92, such that cI(a, b1) has to exceed 0.86. It means that at least
one criterion with a weak contribution (≥0.01) has to be selected in I∗, e.g.
c{1,2,3,4}(a, b1) = c{2,3,4,8}(a, b1) = 0.88 or c{2,3,4,5}(a, b1) = c{2,3,4,7}(a, b1) =
0.89. If a small threshold γsmall = c(a,b1)

2n = 0.004 is considered, it does not pre-
vent the selection of any criterion with an insignificant contribution. Conversely,
a large γlarge = c(a,b1)

n = 0.124, refuses the selection of criteria {1, 5, 6, 7, 8}, then
the subset I∗ cannot be built. The higher the value of γ is, the more restrictive
it is on the final identified subset of criteria.
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It is important to mention here that we have applied the approach according
to one selected combination of values for the parameters – local solution. Indeed,
the programming problem solved to determine the parameters of the model
has infinity of solutions, and thus the determined subset I∗ could change. This
solution also depends on the initial values provided to the program. In addition,
for illustration purpose a small training set has been built. Consequently, a
throughout robustness analysis should be carried out in our future works.

This application aimed at analysing, a posteriori, the performance of a food
distribution mission. The proposed approach allowed to identify three criteria:
“Percentage of population reached w.r.t the targeted one”, “Number of human
resources enlisted”, “Invested logistical costs”. It means that, in similar contexts,
a good performance on these three criteria could guaranty a successful mission.
It is then relevant to focus on these elements for learning lessons. Furthermore,
identifying this subset of criteria is of major interest to restrain the search space
to perform deeper analyses. Indeed, in a further step our work aims at identifying,
between similar distribution missions, the shared features explaining the success
or failure of the mission to then infer general lessons. Thus, knowing the criteria
mainly responsible for the achievement of a good or bad overall performance,
allows to focus searching on properties influencing these outlined criteria. In
more comprehensive approaches that we are targeting, dealing with up to twenty
criteria, the use of such a procedure will be required.

5 Conclusion

Organizations today express a growing interest for semi-automatic approaches
enabling to take advantage of past experiences to improve their decision pro-
cesses. In this paper, based on Electre tri - a well-known and established MCDA
method -, we have presented an approach for identifying the criteria most influ-
encing the decision process regarding the overall performance evaluation of a
reduce set of experiences. A case study applying the approach to the human-
itarian sector has also been proposed. Such an approach will further be used
to enable searching for recommendations in large and highly dimensional search
spaces. Future works are envisaged. First, as mentioned above a robustness anal-
ysis should be made. Furthermore, we plan to present an extended application,
and to sophisticate the proposed model on several aspects: (i) to include veto
thresholds into the procedure used to infer model parameters from assignment
examples; (ii) to take into consideration the possible interactions/dependences
between criteria; (iii) to consider potential disagreements of DMs. Finally, we are
also interested by improving the procedure for minimizing the DM’s cognitive
load (i.e. information requirement), and to both manage and reduce experts’
subjectivity.
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Abstract. In this paper we present a consensus-theoretic framework based on
weighted description logic and on a consensus modelling approach, which is
used to retrieve a consistent decision among experts along multi-attributes. We
will show that the integration of these two approaches is best suited for consensus
building between (human) experts, especially when their preferences are not
easily found or disturbed by coincidental influences. As an application of our
methodology, we interviewed experts (in our case students) on the choice of
means of transport. One time we asked them directly about their preferences and
another time we asked them about their attitudes towards ecology, economy, and
others. We will show how these two approaches of gathering data lead to dif-
ferent constructed hypothetical consensus and how the additional use of weighted
description logic reveals other diverse insights. Our consensus-theoretical
methodology begins with the modelling of basic attribute characteristics, map-
ping them into fuzzy preference relations and thus supports the decision-making
process with respect to consensus.

Keywords: Weighted description logic � Group decision making
Fuzzy preference relations � Consensus

1 Introduction

When groups of experts need to find consensus upon different choices, there are multiple
possibilities that model and support this process. One which is only able to model
preferences and rankings using weighted description logic [1] is given by [2]. Another
one which contains a consistent as well as consensus focused approach is described by
[3] and uses simple fuzzy preferences relations. Papers around basic fuzzy decision
making start with a known [4] or a known but incomplete [5] preference matrix, no
matter whether it is about 1-type or 2-type fuzzy. Thus, all of them start with more or less
well-articulated preferences (see also [6–10]), which in real world problems are often
impossible to obtain from experts, receiving benefits from leaving preferences unre-
vealed [11]. Preferences as well can be superimposed in the context of decision making
if people decide subjectively, but not objectively rational. So-called subjective
rationality describes a biased individual perception of the subject matter of a decision,
which only becomes apparent in critical exchange with neutral third parties [12].
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Reasons for a bias may be a lack of knowledge of benefits [13] or psychological
manipulation, e.g. nudging [14, 15]. To neutralize or even eliminate the distorting
influences, we will use weighted description logic on easy to vote attributes to retrieve
objective or rather the true non-biased preferences, instead of prompting those directly
from the experts. In this way we combine two existing approaches for group decision
making and consensus retrieving and build up a framework which constructs a hypo-
thetical end-to-end process, when true preferences are inferred or not detectable.

2 Preliminaries

2.1 Opinion and Consensus Mining Architecture OMA

The original architecture OMA (Opinion Mining Architecture) is part of a project of the
same name. OMA was first used for sentiment analysis from tweets for the financial
sector [2]. To achieve an automated calculation of sentiment scores from texts, tradi-
tional approaches of natural language processing and machine learning from texts were
used for the preprocessing of the texts [16]. In addition an extension of description logic
[17], so-called weighted description logic according to [1], is used to calculate the
sentiment scores in an automated way (for more details, see Sect. 2.2). The idea of
separating the “text processing” task (pre-processing, filtering out relevant phrases) and
the decision support task (evaluating extracted phrases) derives from the text under-
standing system SYNDIKATE [18] and its qualitative calculus [19, 20]. In order to
introduce the extension of OMA to include consensus mining, we must first clarify the
essential components of OMA: the TBox, which accommodates models via compli-
ances, judgements, etc., the ABox, which contains unweighted statements on the model
of the TBox and UiBoxes, that contain weighted attribute models of experts.

From a technical point of view, the models of the TBox are entirely expressed in
description logic by means of terminological concepts, roles and is-a-relations. The
elements of the ABox are terminological assertions that enter into an
instance-of-relationship with concepts of the TBox. The weighted individual attributes
per expert ei are shown in the UiBox. These models consist of a subjective-rationality
based a priori rating over attributes of concepts and represent the individual utility
function of an expert ei. With these a first a posteriori preference order for each expert’s
choice can be derived. Next, the preference relations of each expert are used to build
consensus. This is done by means of incomplete fuzzy preference relations for group
decision making [5], which repeatedly adapts the preference relations of all experts
until a satisfying consistent consensus is achieved. The theoretical basis of this
approach comes from [21] and its IOWA operator. For more details see Sect. 2.3.
Finally, the consistent consensus is represented by a preference order.

2.2 Weighted Description Logic

The signature of description logic [17] is usually specified as a triple NC;NR;NIð Þ,
where NC represents the set of atomic concepts, NR the set of role names and NI the set
of atomic instances. We denote concepts or classes C and D; roles R and S and
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instances a and b. Concept descriptions such as :C, CuD, and CtD can be derived
from NC if C and D are concept descriptions. Further, 9r:C and 8r:C exist if r 2 NR

and C is a concept description. The top concept > is an abbreviation for Ct:C and ?
for :>. To specify a semantics, an interpretation for the given syntax is introduced. An
interpretation is a pair J :¼ ðDJ ; �J Þ, where the domain DJ is a non-empty set and �J
is a so-called interpretation function. Further details can be found in [17].

The description logic distinguishes between terminological knowledge (the
so-called TBox) and assertional knowledge (the so-called ABox). A TBox contains
concept inclusions of type CYD which have the semantics CJ�DJ and concept
definitions of type C � D, where CYD and DYC. An ABox is a set of assertions
about concepts C að Þ, where a 2 NI and C að ÞJ :¼ aJ 2 CJ , as well as role assertions
R a; bð Þ, where a; bð Þ 2 NI � NI and R a; bð ÞJ :¼ aJ ; bJ

� �
2 RJ . In the following, only

a coherent TBox T and a consistent ABoxA is considered (see [17] for details). The pair
K :¼ hT ; Ai is then called a knowledge base.

To automate decision making processes, it is necessary to rank the available
choices with respect to a set of weighted attributes that have been specified by a user.
To take advantage of the reasoning capabilities of description logic the user’s prefer-
ences over attributes have to be modelled into the artefacts of the description logic.
Weighted description logic is an ontological approach to decision making and can be
considered as a generic framework, so-called DL decision base [1]. For this purpose, an
a priori preference relation via attributes (so-called ontological classes correspond
concepts) is used. From this relation, an a posteriori preference relation can be derived
(so-called ontological individuals correspond instances). This relationship is then used
to make a choice for decision making. In formal terms, an a priori utility function U is
defined by the attribute set X ðU : X ! RÞ. In addition, a utility function u, which is
defined by choices that use logical entailment, extends the utility function U to the
subset of attributes. The utility function u is used because it allows a choice to be
defined as an instance and its outcome as a set of concepts. Another reason is that U
can take various forms, e.g., max;mean. Modelling attributes has two steps:

1. Each attribute is modelled by a concept.
2. For every value of an attribute a new (sub)concept is introduced.

For instance, if attitude is an attribute of an expert to be modelled, it is simply
represented by the concept Attitude (i.e., Attitude 2 X ). Then, an attitude can be
regarded as a value, as if it were a concept of its own. If ecological minded is a value of
the attribute attitude, the attribute set X is simply extended by adding the concept
EcologicalM as a sub-concept of Attitude. It should be noted, that axioms have to be
introduced to guarantee the disjointedness from all other attitudes.

Assuming a total preference relation (i.e., <X ) over a set of attributes X , and a
function U : X ! R that represents < (i.e., U X1ð Þ�U X2ð Þ iff X1<XX2 for X1;
X2 2 X ), the function U assigns an a priori weight to each concept X 2 X . The utility
of a concept X 2 X is denoted by U Xð Þ. In addition, the greater the utility of an
attribute, the more preferable the attribute is. As mentioned above, a choice is an
instance c 2 NI � C denotes the finite set of choices. To determine a preference relation
(a posteriori) over C (i.e., <C), which respects <X , a utility function u : C ! R is
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introduced. u cð Þ indicates the utility of a choice c relative to the attribute set X . Also, a
utility function U over attributes is introduced. For simplicity, the symbol < is used for
both choices and attributes whenever it is evident from the context. The r-utility is a
particular u and is defined as ur cð Þ :=

P
U Xð ÞjX 2 X and K�X cð Þf g and is called

the sigma utility of a choice c 2 C � ur triggers a preference relation over C i.e.,
ur c1ð Þ� ur c2ð Þ iff c1<Cc2. Each choice corresponds to a set of attributes, which is
logically entailed e.g., K�X cð Þ. Due to the criterion additivity, each selection c cor-
responds to a result. Putting things (DL, U and u) together, a generic UBox (so-called
Utility Box) is defined as a pair U :¼ ur;Uð Þ, where U is a utility function over X and u
is the utility function over C. Also, a decision base can be defined as a triple
D ¼ K; C;Uð Þ where K :¼ hT ; Ai is a consistent knowledge base, T is a TBox and A
is an ABox, C�NI is the set of choices, and U ¼ u;Uð Þ is an UBox (all definitions are
due to [1]).

Example
A student would like to decide which transportation to use to get to university. Five
alternatives are considered, which fit the original purpose. The student’s decision base
D ¼ K; C;Uð Þ is given as follows:

T ¼ fEcologicalMYAttitude;EconomicalMYAttitude;

MobilityMYAttitude; SpontaneousMYAttitude;VelocityMYAttitude;

EcologicalMuEconomicalMY?;EconomicalMuMobilityMY?;

MobilityMuSpontaneousMY?; SpontaneousMuVelocityMY?g

A ¼ fUniTransfer carð Þ;UniTransfer motorcycleð Þ;UniTransfer rideð Þ;
UniTransfer publicTransð Þ;UniTransfer byFootð Þ;MobilityM carð Þ;
VelocityM carð Þ; SpontaneousM carð Þ;EconomicalM motorcycleð Þ;
VelocityM motorcycleð Þ; SpontaneousM motorcycleð Þ;EconomicalM rideð Þ;
EcologicalM rideð Þ;EcologicalM publicTransð Þ;EconomicalM publicTransð Þ;
VelocityM publicTransð Þ; EcologicalM byFootð Þ;
EconomicalM byFootð Þ; SpontaneousM byFootð Þg

C ¼ car;motorcycle; publicTrans; ride; byFootf g
U ¼ fðEcologicalM; 60Þ; EconomicalM; 30ð Þ; MobilityM; 20ð Þ; VelocityM; 10ð Þ;

SpontaneousM; 20ð Þg

Considering U, the attitude of the student is more ecologically minded than all other
attitudes, more economically minded than e.g. velocity minded, etc. The utility scores
can be calculated by

ur carð Þ ¼ 20þ 20þ 10 ¼ 50 ur motorcycleð Þ ¼ 60þ 30þ 20 ¼ 110
ur rideð Þ ¼ 60þ 30 ¼ 90 ur publicTransð Þ ¼ 60þ 30 ¼ 90
ur byFootð Þ ¼ 60þ 20 ¼ 80

Combining Weighted Description Logic with Fuzzy Logic 127



2.3 Fuzzy Group Decision Making

To obtain a consensus and select the most common preference relation a modelling
technique is needed, that respects consistency and at the same time finds consensus. In
our work the consensus modelling along [5] is used, as it fulfills all the underlying
criteria. In the following, the basic ideas of the procedure are given.

Initial position is a set of alternatives X ¼ x1; x2; . . .; xnf g and a group of experts
E ¼ e1; e2; . . .; em

� �
who have preferences between some of those alternatives. These

preferences are synthesized in matrices (one for every expert). They reflect the
underlying preference relation for each combination of compared alternatives. The
representation of the preference relation is a numerical fuzzy value, based on its
membership function lP : X � X ! 0; 1½ � with X � X being the Cartesian product of
the alternatives defined above. This means that in the cell ik of matrix l the preference
degree between the two alternatives xi and xk(plik ¼ llP xi; xkð Þ) of expert el is denoted.
The higher the value, the stronger expert el prefers alternative xi to xk. If the preference
degree is unknown or undefined an ‘x’ will be set. In order to carry out the consensus
modelling process along [5], various measures and values are required, which are
introduced below.

Consistency Measures
A consistent preference relation matrix fulfills the transitivity property. Therefore, this
property is used as base to create conditions each matrix should satisfy. Transitivity
means that if two alternatives are directly compared with each other then this value
should be at least as great as all other preference values using an indirect path. To
articulate this in formulas, the additive transitivity is given by [9]:

pij � 0:5
� �

þ pjk � 0:5
� �

¼ pik þ 0:5ð Þ 8i; j; k 2 1; . . .; nf g

where pi=j=k indicate the preference values of an arbitrary expert el:
Or rewritten and reordered to obtain a condition for pik :

pik ¼ pij þ pjk � 0:5 8i; j; k 2 1; . . .; nf g ð1Þ

The preference relations are considered to be additive consistent if they satisfy for
every possible triple xi; xj; xk 2 X the additive transitivity according to (1). This leads to
the following three equations which need to be fulfilled:

pik ¼ pij þ pjk � 0:5 ) cpikð Þj1 ¼def pij þ pjk � 0:5 8i; j; k 2 1; . . .; nf g
pjk ¼ pji þ pik � 0:5 ) cpikð Þj2 ¼def pjk � pji þ 0:5 8i; j; k 2 1; . . .; nf g
pij ¼ pik þ pkj � 0:5 ) cpikð Þj3 ¼def pij � pkj þ 0:5 8i; j; k 2 1; . . .; nf g
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A preference matrix is called fully additive consistent if the arithmetic mean is the
value itself across all possible constellations:

cpik ¼
def
Pn

j¼1;i6¼k 6¼j cpikð Þj1 þ cpikð Þj2 þ cpikð Þj3

3 n� 2ð Þ ð2Þ

where cpikð Þj1 is an additive transitivity estimation for pik according to the three
equations above (note cpik 2 �0:5; 1:5½ �). Therefore, the normalized difference is:

epik ¼
def 2

3
� cpik � pikj j

The consistency level is defined as

clik ¼
def 1� epik ð3Þ

which indicates a high consistency if the value is close to 1.
To obtain an overall consistency measure the consistency level for each alternative

xi 2 X is first calculated by building the arithmetic mean over all consistency measures:

cli ¼
def
Pn

k¼1;i 6¼k clik þ clkið Þ
2 n� 1ð Þ

The overall consistency measure is then accordingly determined:

cl ¼
Pn

i¼1 cli
n

¼def CL ð4Þ

Again, the closer this value is to 1, the more consistent the preference relation
matrix.

Not going further into details, the above Eq. (2) is used to compute missing
preference values, in which all related existing values are incorporated. A more detailed
explanation can be found in [5]. To be able to distinguish the initial preference matrix
with values pjk given explicitly by an expert and the estimated ones obtained along the
concept described above, the latter ones are formally noted as �pjk.

The Consensus Measures
In order to assess the degree of consensus among experts, two different kinds of degree
are calculated: the consensus degree and the proximity measure. The consensus degree
indicates how close the preferences of the experts are, while the proximity measure
shows how close the different experts are to a common consensus.

When calculating the consensus degree, the first step is to consider the distance
between each pair of experts. In order to not double count pairs of experts, they are
ordered sequentially ðh\l) and the similarity value is then:
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smhl
ik ¼ 1� �phik � �plik

�� �� ð5Þ

The collective similarity matrix is obtained by building the arithmetic mean as
aggregation function / over all calculated similarity matrices according to (5):

smik ¼ / smhl
ik

� �
¼def copik

In this way copik is a measure across all experts on how close they are on the
specific preference relation between alternative xi and xk.

Consensus degree on an alternative xi and analogously the overall consensus degree
are determined through building the arithmetic mean over all related copik=cai values:

cai ¼
def
Pn

k¼1;i 6¼k copik þ copkið Þ
2 n� 1ð Þ

CR ¼def
Pn

i¼1 cai
n

ð6Þ

To calculate the proximity measure, first a collective fuzzy preference matrix is
needed. Therefore, an IOWA operator is used, which is defined according to [22]:

UW u1; p1ih ; . . .; un; pnihð Þ ¼
Xn

i¼1
wi � prðiÞ ¼

def
pcik ð7Þ

where wi is a weighting vector with
Pn

i¼1 wi ¼ 1 and pr ið Þ a permutation, so that the
following condition for the inducing variables ui is fulfilled: ur ið Þ [ ur iþ 1ð Þ. In this
work the weighting vector is calculated with the help of the linguistic quantifier ‘most
of’ (function Q) and Yager’s idea on a quantifier guided aggregation [23]:

wh ¼ Q

Ph
j¼1 ur jð Þ

T

 !
� Q

Ph�1
j¼1 ur jð Þ

T

 !

being T ¼
Pn
j¼1

uj. Applied to several alternatives and experts and taking into account a

balance between consistency and consensus, the values for the different u’s are given
by the following equation:

uhik ¼ 1� dð Þ � clhik þ d � cohik

The parameter d controls the influence of consistency vs. consensus, clhik is the
consistency level per expert according to (3) and cohik is the expert’s eh degree of
proximity to all other experts:
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cohik ¼
Pn

l¼hþ 1 sm
hl
ik þ

Ph�1
l¼1 smlh

ik

n� 1

using the similarity values defined in (5). In this way a consistent consensus is spec-
ified. The proximity measure is now defined first on the level of pairs of alternatives:

pphik ¼
def 1� �phik � pcik

�� ��
The proximity measure of an expert on an alternative xi and accordingly his overall

proximity measure is then defined by using the arithmetic mean:

pahi ¼
def
Pn

k¼1;i 6¼k pphik þ pphki
� �

2 n� 1ð Þ prh ¼def
Pn

i¼1 pa
h
i

n

This results in the following formula for a global consistency and consensus
measure:

CCL ¼def 1� dð Þ � CLþ d � CR ð8Þ

At this point all necessary values and measures are defined to perform the con-
sensus model process based on consistency and consensus criteria, which runs in four
steps:

1. Computing Missing Information
2. Computing Consistency and Consensus Measures

All relevant measures according to Eqs. (4), (6), (8) are calculated
3. Consistency/Consensus Control

The CCL (8) is compared against a defined threshold. If it is reached, the process
stops, otherwise step 4 is executed

4. Feedback Process
Some values of some experts need to be changed to reach a better level of con-
sistency and consensus (for more details see [5]). After these preference relations
are adjusted, the consensus modelling routine returns to step 2 and is executed
again.

The consensus model process in this work uses the following parameters: 0.75 as
the parameter controlling weight against consensus, 0.3 and 0.8 for the quantifier used
in the IOWA operator and 0.85 as the threshold to reach for global consistency and
consensus.

2.4 Inquiry Setup and Elicitation of Attributes and Attitudes

As an example for the application of the framework, a survey among five students
(experts) will be presented which covers aspects of transportation. The three aspects
addressed in the survey are:
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– How do the students actually come to university?
– How would they ideally like to come to the university?
– Ratings of some personal attitude values that are strongly related to transportation.

The goal of this inquiry is to reveal a constructed hypothetical consensus on the
means of transportation for students. As directly involved persons these students can be
considered as experts of this question.

The first two questions had to be filled out in percentages using a table as form

Car Motorcycle Ride Public transport By foot

p1 p2 …

To compress the representation of the results of the survey only summarized tables
are shown in the following:

Actual Car Motorcycle Ride Public transport By footP
Experts 310 0 80 110 0

Ideal Car Motorcycle Ride Public transport By footP
Experts 350 0 100 0 50

For the third aspect the personal attitudes on ecology, economics, velocity,
mobility, and spontaneity were rated on the basis of the values important, rather
important, rather unimportant, unimportant, not applicable. The following table shows
the results:

Attributes Important Rather
important

Rather
unimportant

Unimportant Not
applicable

Ecology 3 1 1
Economics 2 2 1
Velocity 5
Mobility 4 1
Spontaneity 5

2.5 Consensus Mining on Actual and Ideal Situation

For the first two questions of the inquiry setup, where the preferences of the experts
were gathered directly, the consensus modelling process runs without incorporated
weighted description logic.

After the first three steps the relevant measures for the actual situation are: CL =
0.96, CR = 0.72 and CCL = 0.78. This means that the necessary threshold could not be
reached. Therefore, a feedback loop is needed. In this scenario, expert 3 and 5 need to
change some of their preferences because their individual measures were not satisfying.
Assuming that these two experts would change their preferences according to the rec-
ommendations, after a first feedback round the CCL = 0.88 and the process ends.
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The feedback loop only affects some minor preferences and the overall ranking of
means of transport stays the same: 1. Car; 2. Ride; 3. Public transport; 4. Motorcycle; 5.
By foot. This ranking is quite interesting, as looking into the preference matrices public
transport has a sum of 110% and Ride only 80%. But taking the consensus and the
consistency into account, also the distances among the different preferences of the
experts are respected.

Looking now to the ideally preferred means of transport, the calculation returns the
measures: CL = 0.99, CR = 0.77 and CCL = 0.83. This Global CCL is already sig-
nificantly higher than the one of the actual world, which is due to the fact that the ideal
world is most often less complex and therefore a higher degree of consensus can be
expected.

In this scenario only expert 1 does not reach the necessary threshold and needs to
adjust his individual preferences.

After this is done the CCL = 0.9 and the ranking is: 1. Car; 2. By foot; 3. Ride; 4.
Public transport & Motorcycle.

2.6 Combination of Weighted Description Logic with Fuzzy Logic

For the third aspect weighted description logic will be incorporated to handle and
process the attitudes of each expert. The underlying knowledge base is the same as
introduced in Sect. 2.3, with additional UiBoxes per expert (depending on his ratings).

To create the relevant UBox-es the four linguistic fuzzy labels (important, rather
important,…) need to be transferred into discrete fuzzy numbers. As there is no special
logic behind those labels a normalization up to 100 is used and divided into 3 regular
ranges to obtain weights. Summary of weights:

Ecology Economics Velocity Mobility SpontaneityP
Experts 433.33 400 400 366.67 466.67

For each expert one separate UBox is with the respective weights is created:

UExpert1 ¼ EcologicalM; 66:67ð Þ; EconomicalM; 66:67ð Þ; . . .gf
UExpert2 ¼ EcologicalM; 0ð Þ; EconomicalM; 100ð Þ; . . .gf . . .

Then every choice gets a utility value by expert:

uExpert1r carð Þ ¼ 100þ 100þ 100
uExpert1r motorcycleð Þ ¼ 66:67þ 66:67þ 100þ 100þ 100 ¼ 433:33
. . .
uExpert5r rideð Þ ¼ 66:67þ 100 ¼ 166:67
uExpert5r byFootð Þ ¼ 66:67þ 100þ 100 ¼ 266:67
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With this we are now able to determine the fuzzy preference relation matrix of each
expert. E.g.:

AExpert1 ¼

�
0; 47

0; 53
�

0; 69
0; 67

0; 56
0; 53

0; 56
0; 53

0; 31
0; 44
0; 44

0; 33
0; 47
0; 47

�
0; 64
0; 64

0; 36
�
0; 5

0; 36
0; 5
�

0
BBB@

1
CCCA

Based upon those preference relation matrices the consensus modelling process as
introduced in Sect. 2.3 is run.

After one loop the measures are CL = 0.99, CR = 0.97 and CCL = 0.97. As
anticipated the relevant measures are very high, because there were no controversial
opinions among the experts regarding their attitudes. A feedback loop is therefore not
necessary.

The overall ranking of means of transport is: 1. Car; 2. Motorcycle; 3. Public
transport & By foot and 4. Ride.

The combination of weighted description logic with consensus modelling returns a
different ranking. The first choice is still car, but the second choice is already different.
One reason for this could be, that some of the experts are not aware, that motorcycle is
also a feasible option for them use to commute to university. In the context of decision
making and consensus mining this is an interesting outcome as the combination of the
two approaches reveals a different result.

3 Results and Conclusion

As shown above, there are several ways to explore a constructed hypothetical common
sense and therefore a hypothetical decision within a group. The direct way of asking
experts about their preferences could reveal a rather superficial opinion and thus lead to
a consensus that is accepted “only” as common sense. Asking about an ideal world
does change some results compared with the actual situation. But asking for attitudes
reveals a different picture again. This proofs that even abstracted preferences in an ideal
world, do not necessarily conform to results obtained from given attitudes. Changing
the way of how preferences are captured has a high impact on common sense. This
leads to the conclusion, that a priori the way of how opinions/preferences are revealed
should be carefully selected. The combination of weighted description logic and
consensus modeling is a powerful construct for common sense mining, mainly in
complex real-world situations.

From a decision theoretical point of view, it can be shown to what extent subjective
rationality distorts the decision results. At the same time, however, it can also be shown
how, theoretically, the objective rationality could be stretched to create a consensus in a
group. Thereby, we assume an individual willingness to adapt all preferences (loss of
identity) in order to achieve consensus.
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4 Outlook

Our next step will be to combine consensus modelling with weighted description logic
for different application scenarios with the preprocessing NLP component in OMA to
build an enriched opinion & consensus mining system for different applications. In
order to adapt the model to different realistic decision-making scenarios we will check
for example, how the results will turn out if some of the decision-makers are not willing
to give up their identity as an expression of absolutely stable preferences which could
be e.g. ethic values. This can be modeled with weightings not supposed to change,
which can be the case when it comes to social preferences [24] or when decision
makers are under duress, maybe because any compromises would massively harm e.g.
their individual legal or economic status. Another option to model parts of a
decision-making process is to start the automated feedback process not before a primal
adapting feedback loop within the group of deciders took place. This would describe
dynamic adaptive decision-making, which becomes relevant within e.g. political voting
behavior tweeted in advance of the official announcement of the election results.

References

1. Acar, E., Fink, M., Meilicke, C., Thome, C., Stuckenschmidt, H.: Multi-attribute decision
making with weighted description logics. IFCoLog J. Log. Its Appl. 4, 1973–1995 (2017)

2. Schnattinger, K., Walterscheid, H.: Opinion mining meets decision making: towards opinion
engineering. In: Fred, A., Filipe, J. (eds.) IC3K17 – Proceedings of the 9th International Joint
Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Manage-
ment, vol. 1, pp. 334–341 (2017)

3. Alonso, S., Cabrerizo, F., Chiclana, F., Herrera, F.: Group decision making with incomplete
fuzzy linguistic preference relations. Int. J. Intell. Syst. 24, 201–222 (2009). https://doi.org/
10.1002/int.20332

4. Xu, K., Liao, S.S., Li, J., Song, Y.: Mining comparative opinions from customer reviews for
competitive intelligence. Decis. Support Syst. 50, 743–754 (2011)

5. Herrera-Viedma, E., Alonso, S., Chiclana, F., Herrera, F.: A consensus model for group
decision making with incomplete fuzzy preference relations. IEEE Trans. Fuzzy Syst. 15(5),
863–877 (2007)

6. Hsu, H.-M., Chen, C.-T.: Aggregation of fuzzy opinions under group decision making.
Fuzzy Sets Syst. 79, 279–285 (1996)

7. Kacprzyk, J., Fedrizzi, M., Nurmi, H.: Group decision making and consensus under fuzzy
preferences and fuzzy majority. Fuzzy Sets Syst. 49, 21–31 (1992). https://doi.org/10.1016/
0165-0114(92)90107-f

8. Nurmi, H.: Approaches to collective decision making with fuzzy preference relations. Fuzzy
Sets Syst. 6, 249–259 (1981)

9. Tanino, T.: Fuzzy preference orderings in group decision making. Fuzzy Sets Syst. 12, 117–
131 (1984). https://doi.org/10.1016/0165-0114(84)90032-0

10. Xu, Z.: A method based on linguistic aggregation operators for group decision making with
linguistic preference relations. Inf. Sci. 166, 19–30 (2004)

11. Hardin, G.: The tragedy of the commons. Science 162(13), 1243–1248 (1968)
12. Walterscheid, H.: Who owns Digital Data? Working and Discussion Paper DHBW Loerrach

(4) (2017)

Combining Weighted Description Logic with Fuzzy Logic 135

http://dx.doi.org/10.1002/int.20332
http://dx.doi.org/10.1002/int.20332
http://dx.doi.org/10.1016/0165-0114(92)90107-f
http://dx.doi.org/10.1016/0165-0114(92)90107-f
http://dx.doi.org/10.1016/0165-0114(84)90032-0


13. Stiglitz, J.: Economics of the Public Sector, 3rd edn. WW Norton & Co., New York (2000)
14. Thaler, R., Sunstein, C.: Nudge: Improving Decisions About Health, Wealth, and Happiness.

Penguin (2009). https://doi.org/10.1007/s10602-008-9056-2
15. Aprem, A., Krishnamurthy, V.: Online social media: a revealed preference framework. IEEE

Trans. Sig. Process. 65(7), 1869–1880 (2017)
16. Sun, S., Luo, C., Chen, J.: A review of natural language processing techniques for opinion

mining systems. Inf. Fusion 36, 10–25 (2017)
17. Baader, F., McGuinness, D., Narci, D., Patel-Schneider, P.: The Description Logic

Handbook: Theory, Implementation, and Applications. Cambridge University Press,
New York (2003). https://doi.org/10.1017/CBO9780511711787

18. Hahn, U., Schnattinger, K.: Towards text knowledge engineering. In: AAAI 1998 –

Proceedings of the 15th National Conference on Artificial Intelligence, pp. 524–531 (1998)
19. Schnattinger, K., Hahn, U.: A sketch of a qualification calculus. In: FLAIRS – Proceedings

of the 9th Florida Artificial Intelligence Research Symposium, pp. 198–203 (1996)
20. Schnattinger, K., Hahn, U.: Quality-based learning. In: ECAI 1998 – Proceedings of the 13th

Biennial European Conference on Artificial Intelligence, pp. 160–164 (1998)
21. Yager, R.: Quantifier guided aggregation using OWA operators. Int. J. Intell. Syst. 11(11),

49–73 (1996)
22. Yager, R.R., Filev, D.P.: Operations for granular computing: mixing words and numbers. In:

IEEE International Conference on Fuzzy Systems, vol. 2, no. 1, pp. 123–128 (1998). https://
doi.org/10.1109/fuzzy.1998.687470

23. Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages. Comput.
Math. Appl. 9(1), 149–184 (1983)

24. Chuan, Y., Schechter, L.: Stability of experimental and survey measures of risk, time, and
social preferences: a review and some new results. J. Dev. Econ. 117, 151–170 (2015)

136 N. Mueller et al.

http://dx.doi.org/10.1007/s10602-008-9056-2
http://dx.doi.org/10.1017/CBO9780511711787
http://dx.doi.org/10.1109/fuzzy.1998.687470
http://dx.doi.org/10.1109/fuzzy.1998.687470


The Use of Fuzzy Linguistic Information
and Fuzzy Delphi Method to Validate

by Consensus a Questionnaire
in a Blended-Learning Environment

Jeovani Morales1 , Rosana Montes1,2(B) , Noe Zermeño1 ,
Jeronimo Duran1 , and Francisco Herrera1,3

1 Andalusian Research Institute Data Science and Computational Intelligence,
DaSCI, University of Granada, Granada, Spain

{jeovani,nzermeno,jeronimoduran}@correo.ugr.es,
rosana@ugr.es, herrera@decsai.ugr.es

2 Software Engineering Department,
School of Informatics and Telecommunications Engineering,

University of Granada, Granada, Spain
3 Computer Science and Artificial Intelligence Department,
School of Informatics and Telecommunications Engineering,

University of Granada, Granada, Spain

Abstract. The virtual learning landscapes have created complex envi-
ronments when evaluating an educational experience. The Fuzzy Delphi
method, which incorporates the theory of fuzzy sets, takes the opinions
issued by judges, from a linguistic perspective, to validate a questionnaire
that will measure the degree of success of an educational experience. The
judges have to reach a consensus on the validity and applicability of the
instrument. This work contributes to the validation of questionnaires by
enabling linguistic assessments and not only binary answers and with a
calculus of consistency and consensus degrees for each item, which con-
tributes to consensus reaching. It has been used as a practical experience
to define, with the consensus of nine experts, a questionnaire that mea-
sures the virtual communication and the satisfaction with in a Blended-
Learning pilot experience in the subject of Software Fundamentals, 1st
semester of the Degree in Computer Engineering of the University of
Granada.
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1 Introduction

Newly emerging educational methodologies tend to encourage the creation of
virtual learning environments. In higher education they are promoted with dif-
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and cooperative learning [19]. Examples of this are the Flipped Classroom (FC)
[18] and Mobile-Learning (ML) [11] methodologies. In addition, in the context
of e-Learning, interactions between participants have been defined through the
concept of Community of Inquiry (CoI) [8]. On the other hand, the application
of in-person interactions combined with e-learning support is also an educational
methodology that integrates the advantages offered by each of the above, and is
known as Blended-Learning (B-Learning).

The application of those environments altogether become complex to evalu-
ate as there are many constructs and different ways of structuring a measuring
instrument such as the questionnaire. Moreover, specialized literature has devel-
oped each area separately, that is questionnaires for FC or questionnaires for
ML or questionnaires for CoI. So there is little basis for taking a validated ques-
tionnaire to be applied in combination of the above methodologies.

Based on a proposal to evaluate a teaching experience that combines ML
and FC [7] in a B-Learning environment, our aim is to know the degree of
applicability of that questionnaire in a pilot educational experience, by checking
the robustness of the instrument through the evaluation of judges.

In this paper, content validity of a questionnaire has been checked by the
Fuzzy Delphi (FD) method, which is based on obtaining the opinion of judges
in an iterative process for assessing consistency and consensus among the items
of the instrument. Given that experts usually evaluate on a binary linguistic or
numeric scale, the aim of this work is to use an enriched linguistic term set. In
this way, we take advantage of the expert’s knowledge in the assessments issued.
To this end, we had the support of 9 expert judges in the area of Education
Sciences and Information and Communication Technologies (ICT). At the end
of the application of this methodology, a consensual questionnaire is obtained.

In the following section, a descriptive overview of the preliminaries relating
to an educational experience and the validation of a questionnaire is provided.
In Sect. 3, the FD method is applied to the research context. Finally, Sect. 4
presents the conclusions.

2 Preliminaries

This section describes the educational experience to be evaluated in addition to
the criteria and steps required to validate data collection instrument together
with the FD method.

2.1 A Blended-Learning Experience in Higher Education

B-learning is a flexible approach to course design supported by the combina-
tion of different learning moments (face-to-face blended with online activities).
Thanks to technological advances that promote interaction between students,
traditional focus of education shifts from individual to collaborative approaches.
Collaboration and virtual communication are fundamental aspects of e-Learning
because of the effect they have on learning and satisfaction [12], so it has long
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been sought to analyze the characteristics necessary to improve learning out-
comes in higher education environments. A theoretical and analytical model is
the CoI [8] model, which is based on a collaborative-constructivist perspective
of education that conceptualizes the learning and virtual communication. Thus
representing the process of creating a deep and meaningful learning experience
that develops through three interdependent core elements:

– Cognitive Presence: Through a series of phases, it allows the student to con-
struct new educational experiences.

– Social Presence: Develops interpersonal relationships through the media avail-
able in the learning environment.

– Teaching Presence: Integrates the above elements through design, direct
teaching and resource facilitation.

A relatively new and popular pedagogical methodology for B-Learning is
known as Flipped Classroom (FC) [1]. It is based on flipping moments of learning,
conceptual acquisition and application of knowledge allowing students to learn
theory outside the classroom, through resources provided by the teacher, mainly
videos. And also through the application of knowledge within the classroom in a
collaborative and meaningful way with the support of the teacher and/or peers,
promoting more active and responsible learning by students [13].

In the same sense, the use of mobile devices such as laptops or smartphones,
being highly individualized and collaborative tools, has allowed the incorpora-
tion of Mobile Learning (ML) which is a methodology that intersects mobile
computing with e-Learning, offering benefits for the learning environment, such
as flexibility (to develop anywhere, anytime). The combined use of ML and FC
methodologies enable teachers to easily provide B-Learning environments [4].

In the subject of Software Fundamentals of the 1st semester of the Degree
in Computer Engineering at the University of Granada, 9 Telegram groups have
been used to work with 70 students. This communication tool has made it pos-
sible to carry out synchronous meetings and asynchronous teamwork, arising
from the viewing of videos and the proposal of group activities. FC has there-
fore been combined with ML and it is desired to evaluate the underlying CoI
model in the virtual community. In order to accomplish our aim, we validate
the questionnaire [7] that contains the necessary characteristics to evaluate this
specificity in blended learning situations. Table 1 shows the distribution of 45

Table 1. Blocks, dimensions and items corresponding to the questionnaire to evaluate
virtual communication and students’ satisfaction in FC and ML methodologies.

Assessment instrument in combined environments

Blocks Virtual communication Students’ satisfaction

Dimensions Cognitive
presence

Social
presence

Teaching
presence

Cognitive
presence

Social
presence

Teaching
presence

General
satisfaction

Items 1–8 9–14 15–21 22–28 29–35 36–41 42–45
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items in 7 dimensions covering the two blocks that we want to evaluate: Virtual
Communication and Students’ Satisfaction.

2.2 Instrument Validation: Questionnaire

There are several methodologies for data collection, among them are the use
of surveys and questionnaires. These instruments are cost-effective and time-
efficient, allowing for the initiation of more developed research [14].

In order for an instrument to be valid, it must meet three requirements:

1. Reliability : Consisting of consistency and stability.
2. Validity : It is the capacity of an instrument to measure the variable for which

it was designed, it contains three dimensions: criteria, construct and content.
3. Objectivity : It is the degree to which this is or is not permeable to the influence

of the biases and tendencies of the researcher or researchers who administer,
qualify and interpret it.

Consensus is the agreement produced by consent between all members of
a group or between several groups. Therefore, judgmental review process [2]
is a method which reports agreement among judges regarding the evaluation
of a questionnaire. According to Lynn [16] at least three judges are required
for the validation of an instrument, although this is not a specific figure, it
depends on the complexity of the work. In addition to, a moderator figure collects
the judges’ suggestions and redefine the proposal for the next iteration until a
consensus is reached. Then, the instrument can be applied. Consensus methods
for questionnaire validation include the Delphi method.

2.3 Fuzzy Delphi Method

The Delphi method is an iterative process [5], where participants express their
opinion as many times as necessary until consensus is reached; it has the charac-
teristic of being anonymous, thus avoiding that they are influenced by the group.
The sequential process that defines the Delphi method includes three phases: (1)
identify the problem and its characteristics, (2) create a coordinating group that
elaborates a pilot instrument and, (3) choose the group of judges that values
the instrument during iterations. Once these have been carried out, the method
must go through a series of stages:

1. Disseminate the instrument to judges.
2. Sort, assess and compare the responses obtained in the first iteration.
3. Modify the instrument items according to the judges’ suggestions.
4. Feedback to the judges in each iteration, at least three are recommended, or

until they have a positive consistency.

At the end a report is issued describing each of the elements and stages that
made up the study, the development of each iteration and the degree of consensus
reached.
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Ishikawa et al. [10], who introduced the FD method, argued that the classic
Delphi Method requires time and high costs to achieve an efficient consensus of
judges’ judgments as it requires several iterations in the instrument’s responses.
In addition, according to Gupta [9], in expert judgments, there is ambiguity
about the different meaning or interpretation each one has of what it evaluates,
so that neither real situations nor personal interpretations are usually adequately
reflected by quantitative values.

Therefore the use of the FD method, which is a combination of the Delphi
method and the theory of fuzzy sets proposed by Zadeh [20], solves some of the
drawbacks of the classical method. It avoids confusion of common understanding
between expert opinions [17] or interpretation of the responses by involving dif-
fuse numbers and taking these opinions from a linguistic perspective, providing
more reasonable results.

3 Application of Fuzzy Delphi Method with Linguistic
Assessments to Get the Validation of a Questionnaire

A measurement instrument for B-Learning is used in Sect. 3.1. As exemplifica-
tion for our proposal. This consist in the application of two iterations of the
FD method with fuzzy linguistic information provided by our experts, as it is
described in Sect. 3.2.

3.1 Proposal Design

There are few occasions when linguistic decision-making (LDM) has been asso-
ciated with the validation of a questionnaire, although it has been used to nor-
malize the results of several questionnaires to the one given as a reference [3].

A questionnaire is defined as a set of r items Q = {Q1, Q2, . . . , Qr} which
are evaluated over q criteria C = {C1, C2, . . . , Cq} of equal weights by p judges
J = {J1, J2, . . . , Jp}. Judges decide if each item is valid to represent the construct
for which it is designed, or should be discarded for not doing so (binary answer).
To validate a questionnaire, the judges face r different decision-making problems.
The assessment matrix for each item Ql(l = 1, . . . , r), is represented by a p × q
matrix. Elements are the valuation of the item over criterion Cj by the expert
Jk. The full problem of questionnaire validation stores a p × q × r matrix.

The judges answered the questionnaire using a scale of 7 linguistic terms,
S = {s0 = Lousy, s1 = V ery Wrong, s2 = Wrong, s3 = Moderate, s4 =
Correct, s5 = V ery Correct, s6 = Excellent} to express their opinion. So a
single assessment over item Ql is sijk ∈ S(i = 0, . . . , 6). This setting completely
differs from the usual binary answer (accept or discard) in the assessment matrix.

Example 1 (An Instrument to apply for B-Learning methodology). Our aim is
to use a tool that assesses the quality of virtual communication and satis-
faction in higher education in combined methodologies. Thus, our problem of
LDM proposes a variant of the questionnaire [7] with r = 45 items that are
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evaluated according to q = 4 criteria (clarity, writing, belonging and scale).
For the purposes of this research, p = 9 judges are selected considering vari-
ous aspects such as: teaching experience in blended/mobile/flipped methodolo-
gies, seniority and academic degree. The semantic for the linguistic labels is
S = {s0 = 0, s1 = 0.10, s2 = 0.25, s3 = 0.50, s4 = 0.75, s5 = 0.90, s6 = 1}.

The instrument design is part of the FD steps as shown in Fig. 1. The fol-
lowing sections detail the iterative processes.

Fig. 1. Flowchart of Fuzzy Delphi methodology.

3.2 The Iterative Process of the Fuzzy Delphi Method

This section describes the process of each iteration within the FD method used
in this document. The first iteration collects the judges’ opinion, calculates the
consistency index and evaluates the level of consensus reached. In the second
iteration, modifications to the questionnaire are made according to the judges’
suggestions and disseminated together with the average response of each item so
that each judge can reassess their opinion. Finally, discussion of results is made
in a comparison between iteration 1 and 2.

First Iteration of Fuzzy Delphi Method. Once the questionnaire has been
defined, it is sent to the judges for their opinion. Opinions are then represented by
a family of parametric functions. Each linguistic valuation sijk in S is processed
using a triangular function by defining a triangular fuzzy number (TFN) sijk =
(aijk , bijk , cijk).

We consider consensus as the agreement between several members of a group.
Let us note it by a boolean value CS that takes the value of T if there is consensus
or F in other case. The Consistency Index CI ∈ [0, 1] measures the degree of
consensus that judges have. The closer it is to 1, the more consistent the judges’
opinions are.

In our model, consistency is a boolean value noted as CC that allows us to
tag the agreement as above a minimum accepted value, set as s4 = Correct
within our scale. So CC take its value T when CI ≥ ε, where ε = 0.75 and
ε ∈ [0, 1], since this value numerically corresponds to the s4 label.
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Table 2. Judges’ evaluation matrix for dimension 7 of the questionnaire (general
satisfaction).

Criteria

Clarity Writing Belonging Scale

Q42 Q43 Q44 Q45 Q42 Q43 Q44 Q45 Q42 Q43 Q44 Q45 Q42 Q43 Q44 Q45

J1 s4 s6 s6 s6 s4 s6 s6 s6 s6 s6 s6 s4 s6 s6 s6 s6

J2 s3 s5 s4 s4 s3 s5 s4 s3 s3 s4 s5 s4 s3 s5 s3 s6

J3 s5 s4 s4 s5 s5 s4 s4 s5 s4 s4 s4 s4 s4 s4 s4 s5

J4 s6 s6 s6 s6 s6 s6 s6 s6 s6 s6 s6 s4 s6 s6 s6 s6

J5 s2 s4 s3 s2 s2 s4 s3 s3 s3 s4 s3 s2 s2 s2 s2 s2

J6 s3 s4 s4 s4 s3 s4 s4 s4 s3 s4 s4 s4 s4 s4 s4 s6

J7 s3 s4 s4 s4 s3 s4 s4 s4 s3 s4 s4 s4 s4 s4 s4 s5

J8 s4 s6 s4 s5 s4 s6 s4 s5 s4 s4 s4 s4 s4 s4 s4 s5

J9 s6 s6 s6 s6 s6 s6 s6 s6 s6 s6 s6 s5 s6 s6 s6 s6

Example 2 (Valuations). Following our example, we represent data gather for
Dimension 7 that ranges from items Q42 to Q45. Assessments are shown in
Table 2.

The triangular function is applied to each valuation. Table 3 shows the valu-
ations of item Q45 and its corresponding TFNs.

Table 3. Triangular Fuzzy Numbers matrix represented as sijk = (aijk , bijk , cijk).

Item Q45: “I have a positive impression of the course”

Clarity Writing Belonging Scale

Label TFN Label TFN Label TFN Label TFN

J1 s6 (0.9, 1.0, 1.0) s6 (0.9, 1.0, 1.0) s4 (0.5, 0.75, 0.9) s6 (0.9, 1.0, 1.0)

J2 s4 (0.5, 0.75, 0.9) s3 (0.25, 0.5, 0.75) s4 (0.5, 0.75, 0.9) s3 (0.25, 0.5, 0.75)

J3 s5 (0.75, 0.9, 1.0) s5 (0.75, 0.9, 1.0) s4 (0.5, 0.75, 0.9) s4 (0.5, 0.75, 0.9)

J4 s6 (0.9, 1.0, 1.0) s6 (0.9, 1.0, 1.0) s4 (0.5, 0.75, 0.9) s6 (0.9, 1.0, 1.0)

J5 s2 (0.1, 0.25, 0.5) s3 (0.25, 0.5, 0.75) s2 (0.1, 0.25, 0.5) s2 (0.1, 0.25, 0.5)

J6 s4 (0.5, 0.75, 0.9) s4 (0.5, 0.75, 0.9) s4 (0.5, 0.75, 0.9) s4 (0.5, 0.75, 0.9)

J7 s4 (0.5, 0.75, 0.9) s4 (0.5, 0.75, 0.9) s4 (0.5, 0.75, 0.9) s4 (0.5, 0.75, 0.9)

J8 s5 (0.75, 0.9, 1.0) s5 (0.75, 0.9, 1.0) s4 (0.5, 0.75, 0.9) s4 (0.5, 0.75, 0.9)

J9 s6 (0.9, 1.0, 1.0) s6 (0.9, 1.0, 1.0) s5 (0.75, 0.9, 1.0) s6 (0.9, 1.0, 1.0)

In order to find the values of consistence and consensus, we establish a con-
servative valuation with the triangular number t = (l,m, u), set by Eq. (1). For
each criterion, and with respect to the lower of the TFN experts opinions, l is
the minimum value, m is the geometric mean and u the maximum value.

l = min{aijk , ..., apjk
}, m = (

p∏

k=1

aijk)(1/p), u = max{aijk , ..., apjk
} (1)
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Subsequently, the optimistic valuation T = (L,M,U) is calculated using the
expression given in Eq. (2) where L is the minimum value, M is the geomet-
ric mean and U the maximum value, with respect to the TFN upper values
considered for each criterion.

L = min{cijk , ..., cpjk
}, M = (

p∏

k=1

cijk)(1/p), U = max{cijk , ..., cpjk
} (2)

The consistency index CI is then calculated for each criterion of each item
using Eq. (3). For this purpose, certain elements and requirements must be met.

In Fig. 2, the elements related to the calculus of CI are appreciated and
explained below.

In this work we use a combination of the methods described by Dong et al.
[6] and Lin [15] with certain modifications, based on the following cases:

(a) If L ≥ u, the item has an excellent consensus according to the scale used,
where CS = T , and the value of CI is:

CI =
M + m

2
(3)

(b) If L ≤ u, there is a grey interval, defined as GI = (L, u), one of the following
2 cases may occur:

(i) If this interval lies between the range of mean values of optimistic and
conservative valuation (HI), defined as HI = (m,M), consensus exists
and CS = T , as shown in Fig. 2a. In this case, CI is determined by:

CI =
(M × u) − (L × m)
(u − m) + (M − L)

(4)

(ii) If the GI interval is not within the HI range, there is no consistency and
no consensus between the judges’ valuations, as shown in Fig. 2b. Hence
CS = F , and it is necessary to perform another iteration until all the
items are consistent.

Fig. 2. Requirements for consensus and consistency. (a) Representation of consensus
and consistency. (b) Representation of lack of consensus and consistency.
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Table 4. Content validation of Q45 in the first round.

Item Q45: I have a positive impression of the course

Criteria l m u L M U GI HI CI CC CS

Clarity 0.10 0.56 0.90 0.50 0.89 1.00 (0.50, 0.90) (0.56, 0.89) 0.76 T F

Writing 0.25 0.57 0.90 0.75 0.92 1.00 (0.75, 0.90) (0.57, 0.92) 0.80 T T

Belonging 0.10 0.44 0.75 0.50 0.85 1.00 (0.50, 0.75) (0.44, 0.85) 0.63 F T

Scale 0.10 0.47 0.90 0.50 0.86 1.00 (0.50, 0.90) (0.47, 0.86) 0.68 F F

Example 3 (Consistency and Consensus). Continuing with the example of item
45, Table 4 shows the results of the application of Eq. (1) and Eq. (2).

The results for the criteria in item Q45 are as follows:

– Clarity: meets consistency but not consensus guidelines as the GI interval is
not within the HI range, see Fig. 3a.

– Writing : is the only one that achieves consensus with average value of s4 =
Correct and an adequate consistency, having a CI ≥ ε, see Fig. 3.b.

– Belonging: achieves a consensus s3 = Moderate but a consistency below the
accepted value with CI = 0.65, see Fig. 3c.

– Scale: where there is no consistency or consensus, being CI ≤ ε and the
interval GI is out of range HI, see Fig. 3d.

Concluding that the item does not have validity of content because not all
criteria are satisfactorily validated. As shown in Fig. 3, the consensus is between
s3 and s4, so we proceed to make appropriate modifications based on the judges’
suggestions.

The moderator takes the suggestions made by the judges. In the case of item
Q45 some of them are literally as follows: (1) “After using the phrase ‘I am sat-
isfied. . . ’ in the previous questions, it change to ‘I have a positive impression. . . ’
it breaks the dynamics of the questions of the dimension”, (2) “The scale I am
satisfied does not agree with having a positive impression or not, it is better to
have a binary scale”. Based on these suggestions, the moderator modifies item
Q45 “I am satisfied with the course development” for the second iteration.

Second Iteration of Fuzzy Delphi Method. Once the first iteration is com-
pleted and modifications to the first instrument have been made, the judges are
provided with the average of each item obtained from the consensus reached
during the first iteration. The GI and HI indices are recalculated to obtain the
degree of consensus from the judges. Continuing with the example of item Q45,
we can see in the Table 5 the results.

The new calculations obtained from the second iteration, considerably
improve what reveals that item Q45 has satisfactory content validity because
it achieves consistency and consensus in each of its four criteria, providing an
overall average for the CI of 0.91, indicating that there is a final consistency for
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Fig. 3. The graphs represent the values for CC and CS of item Q45 for each criterion:
(a) Clarity, (b) Writing, (c) Belonging and (d) Scale.

Table 5. Validation of the content of item Q45 in the second round.

Item Q45: I am satisfied with the course development

Criteria l m u L M U GI HI CI CC CS

Clarity 0.90 0.90 0.90 1.00 1.00 1.00 (1.00, 0.90) (0.90, 1.00) 0.95 T T

Writing 0.75 0.88 0.9 1.00 1.00 1.00 (1.00, 0.90) (0.88, 1.00) 0.94 T T

Belonging 0.75 0.88 0.9 1.00 1.00 1.00 (1.00, 0.90) (0.88, 1.00) 0.94 T T

Scale 0.25 0.64 0.9 0.75 0.93 1.00 (0.75, 0.90) (0.64, 0.93) 0.78 T T

the item of 91% agreement between the judges, thus recognizing that the FD
process has been successful in this item.

3.3 Discussion of Results

As can be seen in the FD process, the possibility of obtaining a consensus to val-
idate the content of an instrument in a single iteration is complicated, whether
numerically or linguistically evaluated, since each judge has their own percep-
tion of the clarity, writing, membership and scale of each item. Using linguistic
terms gives the judge the ability to choose the rating that really suits his or her
expertise.

The second iteration provides very significant information for judges and
educational promoters of the pilot experience. It does so by highlighting the
modifications, average assessments and suggestions of the judges themselves.
Thus, in spite of subjectivity, it is achieved that opinions are directed towards a
point in common for all, the final consensus.
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Fig. 4. Final assessment for all criteria and for all dimensions: (a) First iteration. (b)
Second iteration.

Example 4 (Comparison of first and second iteration of FD method). We ana-
lyze, using a radial chart, the agreement over all the dimension of the question-
naire by the application of the FD method. Results are linguistic values in S.
Corresponding to the first iteration (see Fig. 4a there is no consensus neither
consistency. Figure 4b illustrates the second iteration where both criteria are
satisfactorily met by having values of at least s4.

4 Conclusions

Higher Education makes use of ICT, so it is very important to evaluate the
quality of every b-Learning experience. All questionnaires should be validated
prior its use. Currently, if we apply in combination the methodologies of FC and
ML is hard to find in the literature a questionnaire already validated.

A questionnaire can be validated by judgmental review such as the Delphi
method. This is an iterative process that tries to find consensus in the judgment
opinions. When binary scales are used, much of the expert information is lost.
Our proposal is to use fuzzy linguistic information to account for situations with
imprecision and subjectivity. Then the use of the FD method is proposed to
validate by consensus a questionnaire centered in the B-Learning environments.
Our proposal incorporates the computation of the consensus status CS and
consistency CC, which are fundamental to consensus reaching.

We put in practice a Fuzzy Delphi method with linguistic assessments to
get the validation of a questionnaire of 45 items. The acceptance or rejection
of a given item is defined as LDM problem that uses 9 judges, to assess the
item considering 4 criteria. The method also uses a moderator who collects
the suggestions and makes the pertinent changes for the next iteration. In our
practical case, consensus was obtained with minimal loss of information due to
the application of the fuzzy linguistic model.
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To further validate the instrument, it will be applied with a pilot sample for
statistical test, to obtaining the validity and reliability required by the instru-
ment.
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Abstract. Nowadays the amount of data that is collected in various set-
tings is growing rapidly. These elaborate data records enable the training
of machine learning models that can be used to extract insights and for
making better informed decisions. When doing the data mining task,
on one hand, feature selection is often used to reduce the dimension-
ality of the data. On the other hand, we need to decide the structure
(parameters) of the model when building the model. However, feature
selection and the parameters of the model may interact and affect the
performance of the model. Therefore, it is difficult to decide the optimal
parameter and the optimal feature subset without an exhaustive search
of all the combination of the parameters and the feature subsets which
is time-consuming. In this paper, we study how the interaction between
feature selection and the parameters of a model affect the performance
of the model through experiments on four data sets.

Keywords: Feature selection · Model parameters
Number of clusters · Fuzzy models

1 Introduction

Nowadays the amount of data that is collected in various settings is growing rapidly
[6]. These elaborate data records enable the training of machine learning mod-
els that can be used to extract insights and for making better informed decisions
[3]. One type of these machine learning models are fuzzy inference systems (FIS).
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Fuzzy inference systems are an interpretable and transparent type of machine
learning models, whose parameters can partly be estimated from data. However,
some of its parameters, the so-called hyperparameters, should be provided.

Machine learning models are trained to discover true underlying relations
in data and so they should have good generalization capabilities. Since fuzzy
inference systems are interpretable and transparent, they function as white box
or grey box models (in opposition to for example (deep) artificial neural networks
or random forests), which makes it possible to study their underlying reasoning
mechanism. The simpler the model, the better the comprehension of these white
box models.

One way of making models simpler and therefore easier to understand is by
employing feature selection. Feature selection methods aim to select a subset of
the original variables that can efficiently describe the input data while reducing
effects from noise or irrelevant variables [8]. Feature selection reduces the com-
putational load when training a model and lowers the chances of overfitting the
model to the data. Therefore feature selection enhances the model’s generaliz-
ability [18]. However, when features are correlated, feature selection is not an
easy task. Results of feature selection might also depend on the structure of the
model class that has been chosen. Machine learning therefore has a dual goal:
identifying both the optimal model structure and the optimal model parameters.
Since these two are dependent on each other, the subset of informative features
might change for different model parameters. Therefore, it is difficult to decide
the optimal parameter and the optimal feature subset without an exhaustive
search of all the combination of the parameters and the feature subsets, which is
time-consuming. In this paper, we attempt to figure out the relationship between
feature selection and model parameters with which we may be able to simplify
the process of feature selection and parameter searching.

In fuzzy systems model structure is highly related to its hyperparameters
such as the number of rules in the system. Therefore, the selected features for a
FIS might depend on the number of rules in the system and vice versa. In this
paper we investigate this relationship between feature selection and number of
rules in a fuzzy system. We will follow a clustering-based approach for modeling,
which means that the number of rules of the system is determined by the number
of clusters in the feature space.

The remainder of the paper is structured as follows. Section 2 defines the
problem. In Sect. 3, we introduce the background information on feature selec-
tion, the Takagi-Sugeno model and hyperparameter Setting. Next, the method-
ology is described in Sect. 4 and the results are shown in Sect. 5. The discussions
of our work are presented in Sect. 6. Finally, Sect. 7 concludes this work.

2 Problem Definition

Currently, feature selection is often seen as a pre-processing step which is exe-
cuted before model building. However, the most relevant feature set is not only
inherent to the problem context. Also the structure of the model is of importance.
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For example, consider a process in which data are generated according to

x1 = r ∗ cos(t),
x2 = r ∗ sin(t).

where t is uniformly distributed in [0, 2π] and r is uniformly distributed in
[0.99, 1.01]. The data belong to class 1 if r > 1 and to class 0 otherwise. The
variables r and t can not be observed directly. Consider now that a data set is
available consisting of variables x1, x2, x2

1 and x2
2.

As can be seen in Fig. 1a, the instances in this data set show a circular
pattern in the space x1 × x2, where both output categories could be separated
by a circle. In this original feature space, a linear classifier would not be able
to reach a satisfactory performance. However, both categories can be separated
linearly when using features x2

1 and x2
2 as can be seen in Fig. 1b. Hence, when

using a linear model, x2
1 and x2

2 would be the optimal feature subset while other
features might be relevant for nonlinear models.

This example shows the dependency between the type of model and the
selected feature set, but the problem is even more complex. Not only the type of
model, but also the structure of the chosen model affects which feature subset is
optimal. For example, the behaviour of a (first-order) Takagi-Sugeno (TS) model
is heavily dependent on its hyperparameters. A TS model with only one rule
behaves like a linear classifier, while adding rules makes them universal approx-
imators that can implement a non-linear mapping between inputs and output.
Also other hyperparameters (such as the type of membership functions (MFs)
and aggregation function) change the structure of the model and are therefore
likely to affect which features are relevant. Choosing the wrong hyperparameter
setting and choosing the optimal feature set sequently (or the other way around)
might therefore lead to sub-optimal model performance. This suggests that fea-
ture selection has to be an integral part of model selection, instead of being a
pre-processing step.

3 Constructing Takagi-Sugeno Fuzzy Models

3.1 Feature Selection

Not all features present in a data set are necessarily informative. Including
these irrelevant or redundant features in the model causes a high computational
load and may lower the model performance due to overfitting [18]. To avoid
this, feature selection is a crucial step in the modelling process [8,15]. Feature
selection methods aim to select a subset of the original variables that can effi-
ciently describe the input data while reducing effects from noise or irrelevant
variables [8].

Feature selection methods can be divided into three categories. Filter meth-
ods use a fast computable proxy measure (like Fisher’s score [18] or mutual
information [20]) to score a feature set. This measure should reflect the use-
fulness of a given feature subset for modeling purposes. When using wrapper
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Fig. 1. Artificial data with (a) x1 and x2 features and (b) x2
1 and x2

2 features.

methods, for every feature subset a prediction model is trained and tested using
a hold-out set. The subset resulting in the model with the highest performance
is then selected. For embedded methods (such as SVM-RFE [9] and FS-P [17])
feature selection is performed integrated in the training process while developing
the final model.

Fuzzy modeling techniques can not deal with large number of features due to
‘the curse of dimensionality’ [12]. Therefore, feature selection is an indispensable
step. Filter methods are often used because of their simplicity and generality
[2]. These methods are less computationally intensive than wrapper methods,
because wrapper methods have to train and test the classifier for each feature
subset candidate. However, wrapper methods usually provide the best perform-
ing features subset [13].

3.2 The Takagi-Sugeno Model

A Takagi-Sugeno (TS) fuzzy inference system [19] consists of fuzzy rules where
each rule describes a local input-output relation. For a first order system, these
rules are of the type:

Rj : If x1 is Aj1 and . . . and xN is AjN then yj = aTj x + bj (1)

where, j = 1, . . . J corresponds to the rule number, x = (x1, . . . xN ) is the input
vector, N is the total number of input variables, Ajn is the fuzzy set for rule
Rj and nth feature, and yj is the consequent function for rule Rj . The degree of
fulfillment of rule j is given by:

βj =
N∏

n=1

μAjn
(x), (2)
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where μAjn
(x) is the membership value of data point x to fuzzy set Ajn. The

overall output of the system for an input vector is a weighted average of the
individual rule outputs:

y∗ =

∑J
j=1 βjyj

∑J
j=1 βj

. (3)

A Takagi-Sugeno FIS is often developed in two phases [10]. During structure
identification a proper partition of the feature space and the number of rules is
determined. To do this, for example grid partitioning or k-means clustering [16],
fuzzy c-means [1] or subtractive [5] clustering can be employed. In the second
phase, parameter identification, the system’s parameters such as the membership
functions, linear coefficients etc. are adjusted. For this, least-square methods or
derivative-based optimization techniques can be used (see [10]).

3.3 Hyperparameter Setting

A model hyperparameter is a tuning parameter of a machine learning algorithm
that is external to the model and whose value cannot be estimated from data.
Therefore, hyperparameters must be specified by the data scientist. This can
be done by trial and error, or using (meta) heuristics, for example evolutionary
algorithms (e.g. [7,21]).

When using a clustering-based modelling approach, the most important
hyperparameter of the FIS is the number of clusters, since it influences the
partitioning of the data in the feature space and determines the number of rules
in the FIS. Therefore, we will study the interaction of this hyperparameter with
feature selection in this paper. Other hyperparameters, such as the t-(co)norms
and shape of the membership functions also influence the performance of the
FIS, but more subtly. When these hyperparameters have been provided by the
data scientist, other model parameters, such as the membership functions and
linear coefficients can be estimated from data.

4 Methodology

The purpose of this study is to explore the interaction between feature selection
and the structure of the model. There are various feature selection methods and
also multiple parameters related to the structure of the models. In this study, to
make a start, we study the interaction between the simple filter feature selection
and one parameter of the model. Specifically, we design experiments to check
the interaction between the results of filter feature selection based on Fisher’s
score and the number of clusters of TS model based on fuzzy c-means.
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4.1 The Data

One artificial data set and three real world data sets are used to study the
interaction between selected features and hyperparameter settings:

The artificial data set is generated according to the process described in
Sect. 2. There are 100 records in total and each record contains 4 features: x1,
x2, x2

1 and x2
2. The output has two categories: 0 (r ≤ 1) and 1 (r > 1).

The first real world data set contains data from 569 breast cancer patients.
Based on 30 features, a prediction model is trained to classify whether these
patients suffer from a malignant (37.3% of the cases) or benign (62.7%) tumor.
This data is from the UCI Repository [14].

The second real world data set is also from the UCI Repository [14]. Toms
Hardware is a worldwide forum network focusing on new technology with more
conservative dynamics but distinctive features [11]. The data set contains 7905
records and 96 features which provide time-windows showing an upward trend.
The objective of the prediction model is to determine whether or not these time-
windows are followed by buzz events. There are 61% records followed by ‘buzz
events’ and 39% records followed by ‘non buzz events’.

The last real world data set has data from 187 patients who underwent
cardiac resynchronization therapy (CRT) between January 1, 2008 and July 1,
2015. This therapy involves implanting a biventricular pacemaker that detects
rate irregularities and emits pulses of electricity to correct them. However, CRT
only improves the condition of a fraction of the patients. This data set is used
to build a predictor to identify patients that will be responsive to this therapy.
The set contains 137 features: gender, age, surgery type, 11 lab variables and
123 ultra sound variables. There are two output classes, which are ‘responsive’
(22%) and ‘non-responsive’ (78%).

4.2 The Experiment

For each data sets described above, we do the following experiments shown
in Fig. 2. In this study, we rank the features through Fisher’s score and build
Takagi-Sugeno models using fuzzy c-means. Without prior knowledge about the
data, the number of clusters needs to be decided. Therefore, for each number of
clusters from 1 to 10 (when number of cluster equals 1, it is linear model), we
build TS fuzzy models with from 1 to 30 features. We build models with 1 to
4 features for the artificial data set because it only has four features. For each
data set, the experiment uses ten-fold cross validation and is repeated 5 times.
The average AUC of the five runs is used to assess the model performance.

For the artificial data set, we also build TS fuzzy models with the 15 combi-
nations of the features for each number of clusters from 1 to 10. The experiment
still uses ten-fold cross validation and is repeated 5 times. The average AUC of
the five runs is used as the final performance indicator. The 15 combinations of
the features is shown in Table 2.
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Fig. 2. Experimental framework.

Table 1. The average rank of each number of clusters.

Data set No. of clusters 1 2 3 4 5 6 7 8 9 10

Artificial data Average rank 3.25 1.50 2.75 3.75 4.50 6.00 7.75 7.50 9.50 8.50

CRT Average rank 1.40 1.73 3.27 5.33 5.67 6.20 7.40 7.77 8.00 8.23

Breast Average rank 1.63 2.70 2.80 5.10 4.70 5.13 6.50 7.83 8.80 9.80

Tomshardware Average rank 9.63 8.83 6.37 3.97 2.57 3.07 4.33 5.07 5.73 5.43

Table 2. The 15 feature combinations of the artificial data set.

No. of features Feature subsets

1 {x1}, {x2},
{
x2
1

}
,
{
x2
2

}

2 {x1, x2},
{
x1, x

2
1

}
,
{
x1, x

2
2

}
,
{
x2, x

2
1

}
,
{
x2, x

2
2

}
,
{
x2
1, x

2
2

}

3
{
x1, x2, x

2
1

}
,
{
x1, x2, x

2
2

}
,
{
x1, x

2
1, x

2
2

}
,
{
x2, x

2
1, x

2
2

}

4
{
x1, x2, x

2
1, x

2
2

}

5 Results

Figure 3 shows the average AUC of the models with 15 feature combinations for
each number of clusters from 1 to 10 on the artificial data. It shows that when
building fuzzy models with different feature subsets, the optimal numbers of
clusters are different and vice versa. For example, fuzzy models with 10 clusters
performs the best when the feature subset is {x1, x2}, while the models with
1 cluster (linear models) have the best performance when the feature subset is{
x2
1, x

2
2

}
as expected. Hence, the parameters of the model and the feature subsets

affect each other.
Figures 4, 5, 6 and 7 show the average AUC of the models for each num-

ber of clusters from 1 to 10 on the artificial data, CRT data, Breast data and
Tomshardware data respectively. To compare the results more explicitly, we also
rank the models with different number of clusters for each number of features
and calculate the average rank for each number of clusters, which is shown in
Table 1.
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Fig. 3. AUC of fuzzy models with all 15 feature combinations with 1 to 10 clusters on
the artificial data.

For the artificial data, model with two rules outperforms other models, except
for when building models with one feature. In general, the models with 2 clusters
perform better with the average rank 1.50. From Fig. 5, we can see that for
most of the number of features, the linear models perform better and have the
best average rank 1.4 on CRT data. Figure 6 shows that the average AUC of
models with 1, 2, 3 and 5 clusters are similar for number of features from 1 to
15. However, the linear models perform the best when there are more than 15
features. In general, the linear models performs the best on the Breast data with
the average rank 1.63. In Fig. 7, there are slightly difference among the models
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Fig. 4. Average AUC vs. number of features using fuzzy models with 1 to 10 clusters
on the artificial data.
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Fig. 5. Average AUC vs. number of features using fuzzy models with 1 to 10 clusters
on CRT data.

with all the number of clusters, but models with 5 clusters have the best average
rank 2.57.

6 Discussion

In all the above cases we have seen that models built with certain values of
number of clusters are performing better or similarly for most number of features
we select. On one hand this is an unexpected finding, on the other hand if this
observation can be verified in more general settings, it has great potential of
simplifying the process of feature selection and hyper-parameter searching.

This can be especially important for the wrapper feature selection. Currently,
ideally feature selection with wrapper method is carried out for different pos-
sibilities of the hyper-parameter. Based on the model performance, the best
combination of features and hyper-parameter is found. This is very costly from
the computational point of view. Our study suggests that there may exist a
certain value of a parameter performing better in general no matter how many
features we select for filter method in certain conditions. It may be sufficient
to test the hyper-parameter values for the first several number of features, and
based of that, optimal hyper-parameter values can be determined. It will be sig-
nificant if this can be generalized to wrapper method. However, we can not make
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sure whether this can generalize to wrappers, because the wrapper method is
dependent on the models used which is different from the filter method. We will
follow up this in future work.

Note that in this paper, we show results for the filter method with Fisher’s
score used for ranking the features. In our previous work [4], we have used the
mutual information (MI) for the CRT data set. The results obtained for filter
feature selection based on mutual information also showed this property, that
certain hyper-parameter values were consistently better, but with different values
compared to filter feature selection based on Fisher’s score. This observation
requires further investigation and will be part of our future work.

7 Conclusion

In this paper, we study how the interaction between filter feature selection and
the parameter of a model affect the performance of the model. We use exper-
iments on four data sets in our analysis. The results suggest that there exists
a certain value for the model parameter to perform better for most number of
features when using filter feature selection. This is significant for deciding the
optimal model parameter and thus simplify the process of feature selection and
parameter searching.

In the future, on one hand we will investigate the interaction between filter
method and the parameter of the model when using different feature ranking
criteria (e.g. Fisher’s score, mutual information and Spearman correlation). On
the other hand, we will explore the interaction between the wrapper methods
and the parameter a model.

Acknowledgement. This work is partially supported by Philips Research within the
scope of the BrainBridge Program.

References

1. Bezdek, J.C.: Models for pattern recognition. In: Pattern Recognition with Fuzzy
Objective Function Algorithms. Advanced Applications in Pattern Recognition,
pp. 1–13. Springer, Boston (1981). https://doi.org/10.1007/978-1-4757-0450-1 1

2. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: A review of feature
selection methods on synthetic data. Knowl. Inf. Syst. 34(3), 483–519 (2013)

3. Bose, I., Mahapatra, R.K.: Business data mining a machine learning perspective.
Inf. Manag. 39(3), 211–225 (2001)

4. Chen, P., Wilbik, A., van Loon, S., Boer, A.-K., Kaymak, U.: Finding the optimal
number of features based on mutual information. In: Kacprzyk, J., Szmidt, E.,
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des Réseaux: Approches Mathématiques et Informatiques, p. 16 (2013)

12. Keogh, E., Mueen, A.: Curse of dimensionality. In: Liu L., Özsu, M.T. (eds.) Ency-
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Abstract. Handling of missing values is a very common in data pro-
cessing. However, data values may be missing not only because of lack
of information, but also because of undefinedness (such as asking for the
age of non-married person’s spouse). The aim of this paper is to propose
an extension of fuzzy association rules framework for data with undefined
values.

Keywords: Association rules · Undefined values · Fuzzy sets
Support · Confidence

1 Introduction

Searching for association rules is a tool for explanatory analysis of large data sets.
Association rule is a formula of the form A ⇀ C, where A is called an antecedent
and C is a consequent, and which denotes some interesting relationship between
A and C. There exist many different types of association rules. In this paper, we
focus on implicative rules.

Association rules were firstly introduced by Hájek et al. in the late 1960s [1]
by formulating a GUHA (General Unary Hypotheses Automaton) method [2].
Independently on them, a similar framework was developed by Agrawal [3] in
1993. Many different authors extended the association rules framework for fuzzy
data, see [4] for a recent survey. A framework for a construction of linguistic
summaries is also very closely related to fuzzy association rules. It was proposed
by Yager in [5] and later further developed by Kacprzyk [6]. Another approach
[7] introduces intermediate quantifiers to interpret association rules in natural
language.

In real-world applications, data being analyzed are sometimes missing. Non-
availability comes very often from the fact that some values are unknown or
concealed. Handling of missing values is very common in data processing. There
were developed many techniques for missing values imputation, and many exist-
ing methods were extended to directly work with unknown values. Hájek et al.
proposed within their GUHA method [2] an extension capable of searching for
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association rules on data with missing values. However, their approach is appli-
cable on binary (or categorical) data only. Moreover, our approach focuses on
handling undefined values, whereas GUHA deals with unknown values.

Data values may be missing not only because of lack of information, but
also because of undefinedness. For instance, asking for a spouse’s age of a single
person or for an error-rate of an air conditioning unit in cars with no such unit
results in missing values that cannot be treated as unknown. It makes no sense
to impute any averages at their places nor use any existing techniques suitable
for handling unknown values. In this paper, we focus on searching for fuzzy
association rules on data with undefined values.

The objective of handling undefined values is not new. The fundamental
grounds in mathematical logic were established by Kleene, Bochvar, Sobociński
and others, who studied the properties of three-valued logics 0/1/∗, which was
also studied by �Lukasiewicz in 1920 in [8]. These authors showed that the third
value ∗ may represent an unknown, undefined or indeterminate truth value. An
overview of main contributions can be found e.g. in [9].

Their work is being generalized to fuzzy propositional partial logic and later
extended to predicate partial fuzzy logic by Novák, Běhounek and Daňková
in [10,11]. They propose a fuzzy logic (based on expansions of a well-known
fuzzy logic MTLΔΔΔ of left-continuous t-norms (see [12]) that handles a special
truth value ∗ with several types of fuzzy logical connectives that each treat the
∗ value in a different way. In [13], the author proposed a study of fuzzy type
theory (FTT) with partial functions which are used for a characterization of
the undefined values. In [14], several truth values representing different kinds
of unavailability together with a single type of fuzzy logical connectives were
introduced.

The rest of the paper is organized as follows. Section 2 recalls basic defini-
tions from fuzzy set theory and Sect. 3 provides a mathematical background for
computing with non-existent truth value. Section 4 presents a framework gen-
eralizing association rules for data with undefined values. In Sect. 5, we discuss
some other ideas of how to handle missing values, and Sect. 6 concludes the paper
by drawing some directions for future work.

2 Mathematical Background

The main goal of this section is to introduce a mathematical background which
will be used for fuzzy association rules.

2.1 Basic Logical Operations

Convention
Please recall that Zadeh [15] defined a fuzzy set as a mapping from universe of
discourse U to a real interval [0, 1], i.e. F : U → [0, 1]. Unlike crisp sets, where
an object fully belongs or does not belong to a set, fuzzy sets enable an object
u ∈ U to belong partially to a set F in a degree F (u). We will denote it by
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F ⊂∼ U . We work with a finite universe U in this paper, |U | = n. A fuzzy set X

is a subset of a fuzzy set Y , X ⊆ Y , if X(u) ≤ Y (u), for all u ∈ U . A size of a
fuzzy set X is |X| =

∑
u∈U X(u).

In [11], the authors proposed an algebraic structure for an interpretation
of “undefined”, “meaningless” or “non-applicable” values as an extension of
MTLΔΔΔ-algebra of left-continuous t-norms.

We do not limit this approach by assuming of a concrete algebra. The pro-
posal concept will be associated with t-norms, which represent the general class
of multiplications. These are binary operations ⊗ : [0, 1]2 −→ [0, 1] which have
been mainly studied by Klement et al. in [16] and later elaborated by many
others. A concept associated with t-norm is the triangular conorm (t-conorm)
⊕ : [0, 1]2 −→ [0, 1]. The other two operations which correspond to these opera-
tions are the residuation operation and the negation operation.

Definition 1. A t-norm is a binary operation ⊗ : [0, 1]2 −→ [0, 1] such that the
following axioms are satisfied for all a, b, c ∈ [0, 1]:

(a) commutativity: a ⊗ b = b ⊗ a,
(b) associativity: a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c,
(c) monotonicity: a ≤ b implies a ⊗ c ≤ b ⊗ c,
(d) boundary condition: 1 ⊗ a = a.

Example 1. Typical examples of t-norms are minimum “∧”, ‘�Lukasiewicz con-
junction “⊗L”, drastic product and nilpotent minimum.

Definition 2. A t-conorm is a binary operation ⊕ : [0, 1]2 −→ [0, 1] which fulfils
the axioms (a)–(c) from Definition 1 and for all a ∈ [0, 1] it fulfils the following
boundary condition:

(e) boundary condition: 0 ⊕ a = a.

Every t-conorm is dual to the given t-norm ⊗ if

a ⊕ b = 1 − ((1 − a) ⊗ (1 − b)) (1)

Example 2. The most important t-conorms dual to the t-norms from Example 1
are the following. Dual to minimum is maximum “∨”, dual to product is proba-
bilistic sum. Dual to �Lukasiewicz conjunction is �Lukasiewicz disjunction. Dual to
drastic product is drastic sum and finally, dual to nilpotent minimum is nilpotent
maximum.

Definition 3. A generalized implication is a binary operation �: [0, 1]2 −→
[0, 1] that is monotone decreasing in the first and monotone increasing in the
second argument and that satisfies the boundary conditions as follows:

(a) a � 1 = 1,
(b) 0 � b = 1,
(c) 1 � b = b.
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The typical example of that kind is �Lukasiewicz implication. Other general-
ized implications were discussed in [17].

Definition 4. The negation is a non-increasing operation ¬ : [0, 1] −→ [0, 1]
such that ¬(0) = 1 and ¬(1) = 0. The negation is involutive if ¬(¬(a)) = a
holds for every a ∈ [0, 1].

For simplicity, we will work with an algebra A = 〈[0, 1],⊗,⊕,�,¬〉 where
all the axioms from Definitions 1, 2, 3 and 4 are fulfilled. Please recall that we
will work with the involutive negation, which is defined as ¬a = 1 − a.

3 Representation of “non-Sense”

Now let us extend the support of [0, 1] by adding an additional truth value ∗
that represents a non-sense (i.e. non-existence of a truth value).

Definition 5. Let A = 〈[0, 1],⊗,⊕,�,¬〉 be an algebra. An extended algebra
A∗ = 〈[0, 1]∗,⊗∗,⊕∗,�∗,¬∗〉 is defined as follows:

[0, 1]∗ = [0, 1] ∪ {∗} (2)

where for all a, b ∈ [0, 1], a ⊗∗ b = a ⊗ b, a ⊕∗ b = a ⊕ b, a �∗ b = a � b, and
¬∗(a) = ¬(a), with the following extension for ∗ (where ∗ acts as an annihilator):

(a) a © ∗ = ∗ © a = ∗ © ∗ = ∗, for © ∈ {⊗∗,⊕∗,�∗} and a ∈ [0, 1],
(b) ¬∗(∗) = ∗.

Furthermore, the following unary connectives can be defined. All these unary
connectives were introduced in [11]. We start with the definitions of unary oper-
ators ↑ and ↓ which reinterpret ∗ to 1 respectively to 0.

Definition 6. Let [0, 1]∗ = [0, 1] ∪ {∗} be a support. Then ↑, ↓: [0, 1]∗ −→ [0, 1]
such that the following is true:

(a) ↑ a = ↓ a = a, for all a ∈ [0, 1];
(b) ↑ ∗ = 1, ↓ ∗ = 0.

Moreover, we can define the unary connective ! for the crisp modality “is
defined” and similarly the unary connective ? for the crisp modality “is unde-
fined”. For the detail see ([10]).

Definition 7. Let [0, 1]∗ = [0, 1] ∪ {∗} be a support. Then ?, ! : [0, 1]∗ −→ {0, 1}
such that the following is true:

(a) !a = 1 and ?a = 0, for any a ∈ [0, 1];
(b) !∗ = 0 and ?∗ = 1.
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4 Association Rules

4.1 Background

Let O = {o1, o2, . . . , oN}, N > 0, be a finite set of abstract elements called
objects and A = {a1, a2, . . . , aM}, M > 0, be a finite set of attributes. Within
the association rules framework, a dataset D is a mapping that assigns to each
object o ∈ O and attribute a ∈ A a truth degree D(a, o) ∈ [0, 1], which represents
the intensity of assignment of attribute a to object o.

For fixed D, we can treat the attribute a as a predicate, which assigns a truth
value a(o) ∈ [0, 1] to each object o ∈ O. Similarly, for each subset X ⊆ A of
attributes, we define a predicate X(o) for a selected t-norm ⊗ as follows:

X(o) =
⊗

a∈X

a(o). (3)

Association rule is a formula A ⇀ C, where A ⊆ A is the antecedent and
C ⊆ A is the consequent. It is natural to assume A ∩ C = ∅ and also |C| = 1.

As each combination of predicates in antecedent and consequent form a well-
formed association rules, an important problem is to identify such rules that are
relevant to the given dataset D. So far, there exist a large number of measures
of such relevance. An overview can be found in [18].

Perhaps the most commonly known indicators of a rule quality are the support
and confidence. Dubois et al. [19] define them on the basis of a partition of O:
they argue that a rule A ⇀ C is a three valued entity, which partitions the
objects from O into three (fuzzy) subsets, namely, into a set of positive examples
S+ that verify the rule, negative examples S− that falsify the rule, and irrelevant
examples S± that do not contribute in either direction. For any o ∈ O, Dubois
et al. [19] provide the following formal definitions for a fixed t-norm ⊗ and a
generalized implication �:

S+(o) = A(o) ⊗ C(o);

S−(o) = ¬(
A(o) � C(o)

)
; (4)

S±(o) = ¬A(o).

They argue that for 〈S+, S−, S±〉 to be a proper fuzzy partition, all o should
satisfy Ruspini condition:

S+(o) + S−(o) + S±(o) = 1. (5)

As noted in [19], Eqs. (4) and (5) lead to the admissible operator problem.
[19] selects three pairs of ⊗ and �, which together satisfy both (4) and (5),
see Table 1. Dubois et al. [19] assumes that ¬(a) = 1 − a, which together with
conditions (4) and (5) results in

a � c = ¬a ⊕ (a ⊗ b). (6)

Based on (4), the support and confidence of a fuzzy association rule A ⇀ C
may be defined as follows [19].
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Table 1. Admissible operators induced by (4) and (5) accordingly to [19]

⊗ �
min{a, b} min{1, 1 − a+ b}
a · b 1 − a(1 − b)

max{a+ b − 1, 0} max{1 − a, b}

Definition 8. Let R = A ⇀ C be a rule and S = 〈S+, S−, S±〉 be a partition of
O with respect to R. Then

suppS(A ⇀ C) = |S+|, (7)

confS(A ⇀ C) =
|S+|

|S+| + |S−| . (8)

4.2 Extension for Undefined Values

In order to extend the association rules framework for data containing undefined
membership degrees, one has to switch the range of membership degrees from
[0, 1] to [0, 1]∗. In other words, dataset D becomes a mapping such that D(a, o) ∈
[0, 1]∗ for each a ∈ A and each o ∈ O. Similarly to (3), an attribute a may be
treated as a predicate with truth value a(o) ∈ [0, 1]∗ and each subset X ⊆ A
may be used to define a predicate X(o) ∈ [0, 1]∗ by applying an extended t-norm
⊗∗ in (3):

X(o) =
⊗

a∈X

∗
a(o). (9)

In order to extend Dubois [19] definitions of S+, S−, S± for undefined values
(∗), let us consider an association rule A ⇀ C and examine all variants of
evaluations of A and C where ∗ may occur.

If both A(o) and C(o) are defined (A(o) �= ∗, C(o) �= ∗) for some o ∈ O, the
definition (4) is directly applicable.

For such o ∈ O that A(o) is undefined, then, regardless of C(o), o should
be considered as irrelevant to A ⇀ C since this object o neither supports nor
falsifies the rule (o does not have the property A at all).

Finally, if A(o) �= ∗ and C(o) = ∗, there are two alternatives possible. We
can treat A ⇀ C either as a rule about defined values only, which means that
any undefined values have to be ignored. Therefore, o with C(o) = ∗ can be
considered as an example irrelevant to A ⇀ C. The corresponding partition of
O will be called the I-partition and denoted by 〈SI

+, SI
−, SI

±〉.
On the other hand, o with C being undefined (C(o) = ∗) may be treated

as the example that o does not have the attribute C at all and therefore, o is
a negative example for A ⇀ C. The corresponding partition of O will be called
the N-partition and denoted by 〈SN

+ , SN
− , SN

± 〉.
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Definition 9 (I-partition). Let A = 〈[0, 1],⊗,⊕,�,¬〉 be an algebra with
⊗ and � being operators satisfying the admissible operator problem [19] (see
Table 1) and let A∗ = 〈[0, 1]∗,⊗∗,⊕∗,�∗,¬∗〉 be its extension (as in Defini-
tion 5). The I-partition of O with respect to association rule A ⇀ C can be
defined as follows:

SI
+(o) = ↓(

A(o) ⊗∗ C(o)
)
;

SI
−(o) = ↓¬∗(A(o) �∗ C(o)

)
; (10)

SI
±(o) = ↑¬∗A(o) ⊕∗ !C(o).

Let us check that the definition of I-partition satisfies Ruspini condition.

Proposition 1. SI
+(o) + SI

−(o) + SI
±(o) = 1 for any o ∈ O.

Proof. For A(o) �= ∗ and C(o) �= ∗, the arrow operators (↑, ↓) can be ignored
and hence SI

+(o) = S+(o), SI
−(o) = S−(o). Also !(C(o)) = 0 and therefore

SI
±(o) = ¬A(o) = S±(o). Therefore, by (5) we see that the proposition holds.

If A(o) = ∗ or C(o) = ∗ then SI
+(o) = SI

−(o) = 0. Evidently also either
↑¬∗A(o) = 1 or !C(o) = 1 so that SI

± = 1.

Definition 10 (N-partition). Let A = 〈[0, 1],⊗,⊕,�,¬〉 be an algebra with
⊗ and � being operators satisfying the admissible operator problem [19] (see
Table 1), ¬(a) = 1− a, and let A∗ = 〈[0, 1]∗,⊗∗,⊕∗,�∗,¬∗〉 be its extension (as
in Definition 5). The N-partition of O with respect to association rule A ⇀ C
can be defined as follows:

SN
+ (o) = ↓(

A(o) ⊗∗ C(o)
)
;

SN
− (o) = ↓¬∗(A(o) �∗ ↓C(o)

)
; (11)

SN
± (o) = ↑¬∗A(o).

Proposition 2. SN
+ (o) + SN

− (o) + SN
± (o) = 1 for any o ∈ O.

Proof. For A(o) �= ∗ and C(o) �= ∗, the proof is similar to the proof of Proposi-
tion 1. If A(o) = ∗ then evidently SN

+ (o) = SN
− (o) = 0 and SN

± (o) = 1.
If A(o) �= ∗ and C(o) = ∗ then SN

+ (o) = 0, SN
− (o) = ¬(A(o) � 0), which

equals (by using (6)) to ¬¬A(o) = A(o) and SN
± (o) = ¬A(o). Therefore, SN

+ (o)+
SN

− (o) + SN
± (o) = 0 + A(o) + (1 − A(o)) = 1.

Note that the support and confidence slightly differs based on the selected
partitioning method.

Proposition 3. Let SI = 〈SI
+, SI

−, SI
±〉 and SN = 〈SN

+ , SN
− , SN

± 〉. Then:

(a) suppSN (A ⇀ C) = suppSI (A ⇀ C);
(b) confSN (A ⇀ C) ≤ confSI (A ⇀ C).

Proof. (a) is evidently fulfilled. (b) SI
−(o) differs from SN

− (o) only if A(o) �= ∗
and C(o) = ∗, then 0 = SI

−(o) ≤ SN
− (o) and therefore evidently (b) holds too.
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Table 2. Sobociński ⊗S , Bochvar ⊗B and Kleene ⊗K variants for handling of ∗

5 Discussion

In Definition 5, ∗ representing non-existence of a truth-value (i.e. non-sense,
undefinedness) is defined as an annihilator. That is, the whole antecedent gets
undefined if any of its predicates obtains ∗. Such behaviour is sometimes called
Bochvar’s accordingly to [9,11]. However, there exist other variants for handling
of ∗. See Table 2 for some examples. It is therefore natural to ask for their benefits
or drawbacks with respect to association analysis.

Kleene’s ⊗K preserves 0 as an annihilator, while other values get annihilated
by ∗. Such behaviour supports interpretation of ∗ in the sense of “unknown”
truth value: if a = 0 and b is unknown then surely a ⊗K b = 0. For any other
value of a, a ⊗K b remains unknown.

Unfortunately, defining ⊗∗ like ⊗K without any changes in our proposal is
not recommended, since all objects o ∈ O resulting in “unknown” values for
A(o) or C(o) would be treated as irrelevant (resp. negative) examples of the
association rule A ⇀ C, which does not correspond to reality. In our opinion,
a better approach for handling of “unknown” truth values would be to use e.g.
interval-valued fuzzy logic [20,21] and compute intervals of possible supports
and confidences. We would like to address that topic in more detail in our future
research.

Sobociński’s ⊗S treats ∗ as something that has to be ignored. That is, for
a = ∗, a ⊗S b = b for any b. However, ignoring predicates with ∗ value may
be sometimes favorable, but sometimes disadvantageous. For example, let us
consider the following fuzzy attributes:

– X: children’s age is high
– Y : family educational expenses are high
– Z: parents have a lot of free time

In Sobociński style, ∗ is in a conjunction treated as 1. That is, for o being a
family without any children (X(o) = ∗) is treated as a family with grown children
(X(o) = 1). Such interpretation positively affects association rule X ⇀ Z, which
fortunately corresponds with reality (indeed, parents with grown children as
well as non-children families have both more free time). On the other hand,
association rule X ⇀ Y , i.e. families with grown children (X(o) = 1) have
high educational expenses (Y (o) = 1), is negatively affected by families with no
children (X(o) = ∗), which have low or nil educational expenses (Y (o) = 0) in
reality.
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Based on the above discussed example, Sobociński style seems not to be
generally useful in association analysis as ignorance of ∗ sometimes favorably
corresponds with positive cases and sometimes not.

6 Conclusion and Future Work

In this paper, an association analysis framework was developed that allows to
process data with undefined values. A mathematical background from [10] was
selected, which extends a set of truth values with ∗, which represents undefined
truth values (non-sense). Based on that, an extended definition of association rule’s
support and confidence was proposed by generalizing Dubois et al. approach [19].

A future work will address the processing of missing (“unknown”) values,
which may be represented e.g. with fuzzy interval-valued logic. Also a combina-
tion of missing and non-existent truth values may be interesting: for instance, an
attribute “spouse’s age is high” may have known truth value, non-existing (in
case the respondent is single), unknown (concealed age), or unknown whether
non-sense (knowing neither whether the spouse exists nor what age he/she is).

Acknowledgements. Authors acknowledge support by project “LQ1602 IT4Inno-
vations excellence in science” and by GAČR 16-19170S.
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6. Kacprzyk, J., Yager, R.R., Zadrożny, S.: A fuzzy logic based approach to linguistic

summaries of databases. Int. J. Appl. Math. Comput. Sci. 10(4), 813–834 (2000)
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11. Běhounek, L., Daňková, M.: Towards fuzzy partial set theory. In: Carvalho, J.P.,
Lesot, M.-J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.)
IPMU 2016, Part II. CCIS, vol. 611, pp. 482–494. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40581-0 39
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Abstract. Fuzzy relational compositions have been extended and stud-
ied from distinct perspectives, and their use on the classification problem
has been already demonstrated too. One of the recent approaches fore-
shadowed the positive influence of the so-called grouping features. When
this improvement is being applied, the universe of features is partitioned
into a number of groups of features and then the relevant composition is
applied. The use of the concept was demonstrated on the real classifica-
tion of Odonata (dragonflies). This paper shows that the Bandler-Kohout
subproduct may appropriately serve as the chosen compositions in order
to obtain an effective tool. The concepts of excluding features and gen-
eralized quantifiers will be employed in the constructed method as well.
Some interesting properties will be introduced and a real example of the
influence of the new concept will be provided.

Keywords: Fuzzy relational compositions
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Classification

1 Introduction

Fuzzy relational compositions became a crucial topic in fuzzy relational calculus
[1] and in fuzzy mathematics in general. The biggest development in the late 70’s
has been provided due to Bandler and Kohout and later on, the compositions (or
also fuzzy relational products) have been applied in a large number of applica-
tions, for instance: medical diagnosis [2], formal constructions of fuzzy inference
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systems [3,4] and related systems of fuzzy relational equations [5–8] and recently
[9], modeling monotone fuzzy rule bases [10,11], fuzzy concept analysis [1], data
mining [12] or in flexible query answering systems [13–15]. The development
and improvement on this topic have been updated during the time by numerous
authors, let us refer to some of them only [16–18].

There are several recent directions significantly contributing to the extension
of the topic, for example, the compositions of partial fuzzy relations [19]. We
will recall two other extensions, namely the concept of excluding features incor-
porated in the compositions [20,21] and the compositions based on generalized
quantifiers [22–24]. It is worth mentioning that the both approaches may be
combined together in order to obtain a more flexible and effective tool [25].

As we have shown in [26], for some types of features, the introduced
approaches do not provide sufficiently appropriate results. This may be caused by
a specific yet not unnatural way of the construction of the original features. So,
we propose a preprocessing grouping features first and then applied the chosen
composition, particularly Bandler-Kohout (BK) superproduct in [26], incorpo-
rating both excluding features and fuzzy quantifiers.

The application potential of the grouping features combined with the both
above-mentioned extensions of fuzzy relational compositions was demonstrated
on a real example of classification of dragonflies. Due to the effect of the grouping
of features into appropriate groups before the application of the composition, we
could classify a given sample (observed dragonfly) with the BK superproduct
with a different semantics. In particular, instead of classifying a sample into
a class of dragonflies in case of “all the features” belonging to the given class
are observed, it was sufficient to observe “at least one feature for any group
of features” related to the given class to be carried by a given sample. This
approach serves as motivation to show that there is a possibility for applying
the BK subproduct jointly with grouping of features as well.

2 Preliminaries

We recall some basic definitions of fuzzy relation compositions and their exten-
sions, namely of the incorporation of excluding features in fuzzy relational com-
position [20,21] and the compositions based on generalized quantifiers [22–24],
and their combination [25]. For the whole paper, all the used operations will be
from a residuated lattice L = 〈[0, 1],∧,∨,⊗,→ 0, 1〉 with the negation ¬ and
biresiduation (bi-implication) ↔ defined in standard ways for the residuated
lattices, i.e., ¬a = a → 0 and a ↔ b = (a → b) ∧ (b → a) for any a, b ∈ [0, 1].
Furthermore, we will denote the set of all fuzzy sets on a given universe U by
F(U). Finally, sets X,Y and Z will be non-empty finite universes of objects
(samples), features and classes, respectively.

2.1 Fuzzy Relational Compositions

We shortly recall four fundamental fuzzy relational compositions.
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Definition 1. Consider R ∈ F(X × Y ) and S ∈ F(Y × Z). Then the basic
composition ◦, BK-subproduct �, BK-superproduct � and BK-square product
� of R and S are fuzzy relations on X × Z defined as follows:

(R ◦ S)(x, z) =
∨

y∈Y

(R(x, y) ⊗ S(y, z)) ,

(R � S)(x, z) =
∧

y∈Y

(R(x, y) → S(y, z)) ,

(R � S)(x, z) =
∧

y∈Y

(R(x, y) ← S(y, z)) ,

(R � S)(x, z) =
∧

y∈Y

(R(x, y) ↔ S(y, z)) ,

respectively.

In order to explain the semantics of the fuzzy relations as well as their compo-
sitions, let us consider, e.g., the context of the medical diagnosis. R(x, y) stands
for the truth degree of the predicate “patient x carries symptom y”, the meaning
of S(y, z) similarly expresses the relationship between symptom y and disease z.
The value (R ◦ S)(x, z) expresses the truth-degree of the predicate: “patient x
has at least one symptom belonging to disease z” and thus, it expresses an ini-
tial suspicion. The two other BK products and the square product provide a
sort of a strengthening of the initial suspicion. In particular, the subproduct
(R � S)(x, z) expresses the truth-degree of the predicate: “all symptoms of the
patient x belong to disease z”, and (R�S)(x, z) expresses the truth-degree of the
predicate: “patient x has all symptoms belonging to the diseases z”. The mean-
ing of (R � S)(x, z) is clear as it is a conjunction of both previously described
triangle BK products, i.e., “patient x has all symptoms of disease z and at the
same time all symptoms of the patient x belong to the disease z”.

2.2 Excluding Features in Fuzzy Relational Compositions

This approach was motivated by the existence of excluding symptoms for some
particular diseases in the medical diagnosis problem [20] and it has been suc-
cessfully applied to the classification of Odonata (dragonflies) in biology [21].

Definition 2 [21]. Let X,Y,Z be non-empty finite universes, let R ∈ F(X×Y ),
S,E ∈ F(Y × Z). Then the composition R ◦ S�E ∈ F(X × Z) is defined:

(R ◦ S�E)(x, z) =
∨

y∈Y

(R(x, y) ⊗ S(y, z)) ⊗ ¬
∨

y∈Y

(R(x, y) ⊗ E(y, z)) .

The definition provided above may be rewritten into the following compre-
hensible form:

(R ◦ S�E)(x, z) = (R ◦ S)(x, z) ⊗ ¬(R ◦ E)(x, z) .
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We recall that the membership degree of the pair (x, y) to the fuzzy relation
E expresses how much it is true that y is an excluding feature for class (animal
species) z. In other words, fuzzy relation (R ◦ S�E)(x, z) expresses the truth-
degree of the predicate: “patient x has at least one symptom of disease z and at
the same time does not have any symptom that would be excluding the disease z”.

2.3 Compositions Based on Generalized Quantifiers

This approach has been proposed with the motivation to fill in the big gap
between basic composition ◦, based on the existential quantifier, and the BK
products based on the universal quantifier. This gap is naturally caused by the
use of existential quantifier in the construction of ◦ and by the use of the uni-
versal quantifier in the construction of the BK products. Indeed, the use of the
existential quantifiers will cause that too many classes will be assigned to any
sample and vice-versa, due to some potential mistakes in the determination of
the features, the use of the universal quantifier may cause that for many samples,
no class will be assigned a high degree.

The use of generalized quantifiers such as Most, Many or A Few in the
construction of the fuzzy relational compositions proved its potential [24]. We
recall the concept of fuzzy measures [27] first and then revisit the concept of
fuzzy relational compositions based on generalized (fuzzy) quantifiers [24].

Definition 3 [24]. Let U = {u1, . . . , un} be a finite universe, let P(U) denotes
the power set of U . A mapping μ : P(U) → [0, 1] is called a fuzzy measure on U
if μ(∅) = 0 and μ(U) = 1 and, if ∀C,D ∈ P(U), C ⊆ D then μ(C) ≤ μ(D).

Fuzzy measure μ is called symmetric if ∀C,D ∈ P(U) : |C| = |D| ⇒ μ(C) =
μ(D) where | · | denotes the cardinality of a set.

Example 1. The measure
μ(A) = f(|A|/|U |) ,

where f : [0, 1] → [0, 1] is a non-decreasing mapping with f(0) = 0 and f(1) = 1
is a symmetric fuzzy measure.

Definition 4 [24]. Let μ be a fuzzy measure on a finite universe U . A mapping
Q : F(U) → [0, 1] defined by

Q(C) =
∨

D∈P(U)\{∅}

((
∧

u∈D

C(u)

)
⊗ μ(D)

)
, C ∈ F(U)

is called generalized quantifier determined by μ.

If μ is a symmetric fuzzy measure, the quantifier can be calculated with help
of the following computationally unexpensive form that is actually nothing but
a Sugeno integral [28]:

Q(C) =
n∨

i=1

C(uπ(i)) ⊗ μ({u1, . . . , ui}), C ∈ F(U)
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where π is a permutation on {1, . . . , n} such that C(uπ(1)) ≥ C(uπ(2)) ≥ · · · ≥
C(uπ(n)).

Now, we recall how the fuzzy quantifiers may be directly used in the definition
of the fuzzy relational compositions such that the four classical compositions
recalled above are only special cases of the below provided general frame.

Definition 5 [24]. Let Q be a quantifier determined by a fuzzy measure μ on
Y . Then, the compositions R@QS where @ ∈ {◦,�,�, �} are defined as follows:

(R@QS)(x, z) =
∨

D∈P(Y )\{∅}

⎛

⎝

⎛

⎝
∧

y∈D

R(x, y) � S(y, z)

⎞

⎠ ⊗ μ(D)

⎞

⎠

for all x ∈ X, z ∈ Z and for � ∈ {⊗,→,←,↔} corresponding to the
composition @.

It is worth mentioning that both approaches, namely the incorporation of
excluding features and the use of the generalized quantifiers may be combined
together, see [25].

2.4 Compositions Based on Grouping Features

Let us briefly recall some basic facts on the way of getting the composition based
on grouping features, see [26].

Let X,Y,Z be non-empty finite universes of cardinalities I, J and K, respec-
tively. Let R ∈ F(X × Y ) and S,E ∈ F(Y × Z). Assume that Y can be parti-
tioned into M disjoint sets

Y = G1 ∪ · · · ∪ GM

such that each set contains all features of the “same type”1.
We define M fuzzy relations Sm ∈ F(Y × Z) by:

Sm(y, z) =

{
S(y, z), y ∈ Gm

0, otherwise
(1)

and define a new universe of features of some types:

YZ = {y1
1 , y

2
1 , . . . , y

K
1 , y1

2 , . . . , y
K
2 , . . . , y1

M , . . . , yK
M},

in which the subscript of each element stands for the group number and the
superscript of each element stands for the class number. Each component yk

m

expresses how much it is true, that any of the features in the m-th group corre-
sponds to the k-th class.
1 By the type we mean, e.g., a color or a morphological type and the features are par-

ticular colors (green, black, blue etc.) or particular morphological types (Anisoptera,
Zygoptera), see [21].
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Based on the new universe YZ , we define the fuzzy relation R′ ∈ F(X × YZ)
as follows:

R′(xi, y
k
m) = (R ◦ S�

mE)(xi, zk)

and the fuzzy relation S′ ∈ F(YZ × Z) as follows:

S′(yk1
m , zk2) =

{
1, k1 = k2,

0, otherwise.

Then, using the BK superproduct, the composition R′ � S′ ∈ F(X × Z) is
correctly defined and it has the following natural semantics. The value (R′ �
S′)(x, z) expresses the degree of truth of the predicate:

“If class z is related to some features from a certain group of features then
at least one of the features from the group is carried by object x and x does
not carry any feature that would be excluding for the classification to z.

The above-provided semantics may be easily comprehended on the real exam-
ple of the classification of dragonflies. Let the group of features is “a color”. Then
if there are some colors pre-determining that a given sample could be of a given
family of dragonflies z then R′ � S′(x, z) expresses how much it is true that the
sample x carries at least one of these colors. Observing the semantics or its first
part, it is clear, that it could be comprehended also in the following way:

“Object x carries at least a single feature that relates to class z from all
groups of features and at the same time, it carries no features that would
be excluding for the classification to z”

which will be recalled later on.
The proposed BK superproduct composition R′ � S′ ∈ F(X × Z) of fuzzy

relations R′ and S′ may be expressed as an intersection of m circlet compositions
incorporating excluding features.

Proposition 1 [26]. Let ∩ denotes the min-intersection. Then

R′ � S′ =
M⋂

m=1

(R ◦ S�
mE) . (2)

3 BK Subproduct and Grouping Features

3.1 Motivation

We have studied the new method of grouping features and applied the BK super-
product to the grouped features. Naturally, one may ask whether a similar app-
roach for the BK subproduct makes sense too and what would be the resulting
composition appropriate for. And in the case of positive answer, what is the
semantics of such a composition.
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3.2 Formal Part

Let us use the same notation, i.e., we consider finite universes X,Y,Z with
|X| = I, |Y | = J and |Z| = K as in the Sect. 2.4, fuzzy relations R ∈ F(X ×Y ),
S, E ∈ F(Y × Z). The universe Y is again partitioned into M disjoint sets
Y = G1 ∪ · · · ∪ GM , and the definition of Sm is given by (1).

Furthermore, similarly to the case of YZ , we again define a new universe of
features YX , however, unlike in the case of YZ this universe will not partition
features from the perspective of classes but from the perspective of samples:

YX = {y1
1 , y

2
1 , . . . , y

I
1 , y

1
2 , . . . , y

I
2 , . . . , y

1
M , . . . , yI

M} .

The subscript m ∈ {1, . . . ,M} of each element yi
m stands for the group number

and the superscript i ∈ {1, . . . , I} stands for the sample number.
By this setting up, the universe YX has M · I elements. Each component yi

m

expresses how much it is true, that any of the features in the m-th group relates
to the i-th sample.

Furthermore, let us define the fuzzy relation R∗ ∈ F(X × YX) as follows:

R∗(xi1 , y
i2
m) =

{
1, i1 = i2,

0, otherwise.

and the fuzzy relation S∗ ∈ F(YX × Z) as follows:

S∗(yi
m, zk) = (R ◦ S�

mE)(xi, zk).

So, in the matrix form, the fuzzy relation S∗ is a matrix of type M · I × K
that looks as follows:

S∗ =

⎛

⎝
[R ◦ S�

1E]
. . .

[R ◦ S�
ME]

⎞

⎠

and the fuzzy relation R∗ may be represented in a matrix form as a matrix of
the type I × M · I that is constituted by M diagonal identity matrices of the
type I × I ordered horizontally next to each other:

R∗ =
(
[Id1

I×I ] . . . [IdM
I×I ]

)
.

Then we may introduce the composition R∗ � S∗ ∈ F(X × Z) with the
following semantics. (R∗ � S∗)(x, z) expresses the truth-degree of the following
predicate:

“If object x carries some feature(s) from a certain group of features then
at least one of the carried features from the group relates to class z and x
does not carry any of the features that would be excluding for the classifi-
cation to z.



182 N. Cao et al.

Let us again demonstrate the semantics on the real example of the classifica-
tion of dragonflies. Let the group of features is “a color”. Then if there are some
colors carried by a given sample x then (R∗ � S∗)(x, z) expresses how much it
is true that the sample x carries at least one of the colors related to the class of
dragonflies z.

The following interesting proposition again shows that the approach of group-
ing features based on BK subproduct can be presented as an intersection of basic
compositions (with excluding features) of fuzzy relation R and fuzzy relations Sm.

Proposition 2

R∗ � S∗ =
M⋂

m=1

(R ◦ S�
mE) (3)

Proof. Using the definitions of R∗ and S∗, we obtain

(R∗ � S∗)(xi, zk)

=
I∧

h=1

(R∗(xi, y
h
1 ) → S∗

E(yh
1 , zk) ∧ · · · ∧

I∧

h=1

(R∗(xi, y
h
M ) → S∗

E(yh
M , zk)

=(1 → S∗
E(yi

1, zk)) ∧ (1 → S∗
E(yi

2, zk)) ∧ · · · ∧ (1 → S∗
E(yi

M , zk))
=(R ◦ S�

1E)(xi, zk) ∧ (R ◦ S�
2E)(xi, zk) ∧ · · · ∧ (R ◦ S�

ME)(xi, zk)

=

(
M⋂

m=1

(R ◦ S�
mE)

)
(xi, zk).

Observing the result provided by Proposition 2, one may immediately notice
that the right hand side of (3) is equivalent to the right hand side of (2) provided
in Proposition 1 and so, the left hand sides are consequently equivalent too. This
means, that both compositions are actually identical.

Indeed, standard BK triangle products differ in the direction of the used
implication. BK subproduct assumes that “all feature” of the a given object x
belong to a class z and BK superproduct assumes that “all feature” of the a given
class z are carried by a given object x. These are natural meanings, but in many
situations too much lowering the degree as the universal quantifiers operates
in both cases over all features which are in many situations not only hard to
expect (human mistake in the determination of some characteristic feature) but
even impossible (features build in a specific way – e.g. altitudes in which a given
dragonfly appears in nature) and all features related to a given class cannot be
observed at the same time (a single sample is caught only in a single altitude,
never in all the possible ones related to a given class).

As soon as we downgrade from “all features” to “all types of features” rep-
resented by “at least one” representative of the group/type of features, we app-
roach a solution to this, say, lowering problem, but we also change the character
of the compositions. The universal quantifiers is not operating on the features,
only on the groups, and within the groups of features, we deal with the existen-
tial quantifier. Therefore, we naturally come to the conclusion that the newly
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introduced products may be constructed as intersections of the circlet products.
These circlet products are using a commutative t-norm and thus, do not consider
the order of the composed elements. Thus, both approaches necessarily lead to
the same fuzzy relation.

Indeed, observing the above introduced semantics of the BK subproduct or
its first part, it is clear, that it could be comprehended also in the following way:

“Object x carries at least a single feature that relates to class z from all
groups of features and at the same time, it carries no features that would
be excluding for the classification to z”

which is equivalent to the semantics of the BK superproduct.
Consequently, if defined a sort of BK square product, it would be an inter-

section of both triangle products and as both are equivalent, we would come
again to the same fuzzy relation. Thus, the concept of grouping features helps
to deal with the required tolerance to some missing features and ignores the
direction of the composition. So, it serves universally for both types of discussed
problems. As both BK triangle products (and thus the square product too) may
be equipped with a generalized quantifier ( R′ �Q S′ or R∗ �Q S∗, respectively),
the quantifier is the only preserved choice of freedom we have above the originally
given matrices and the choice of the particular underlying algebraic structure.

Corollary 1. Let Q be a generalized quantifier determined by a fuzzy measure
μ on the set {1, . . . , M}. Then

R′ �Q S′ = R∗ �Q S∗ .

3.3 Experiment and Conclusions

Most of the recent as well as historical direct applications of fuzzy relational
compositions were more or less of the classification type, no matter we talk
about very original medical diagnosis problems studied by Bandler and Kohout,
recent dragonfly classification problem [21] or a sort of pattern recognition [29].

On the other hand, the area of fuzzy relational databases and flexible query
answering systems2 recognizes a task that is sort of inverse to the classification.
That task is a database querying. Unlike in the classification problems where
for a given sample we search for a single class, the querying a database does not
expect to get back a single object. Indeed, for a given patient we seek for a single
disease in the classification problem3. And although (multi-label) classification
methods often provide us with sets of more diseases with some assigned numbers
expressing how much it can be true or probable, that each of the assigned diseases
is the ground truth one carried by a given patient. But in the querying problem,
we formulate an opposite question to the database seeking for “all patients”
having a particular disease, so the uniqueness makes no sense at all.
2 These systems are formally based mainly on compositions and fuzzy quantifiers.
3 Here, we abstract from the more complicated cases with more illnesses at the same

time as usually there is always “the one” we seek for.
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In general, both tasks have their unquestionable importance but each of them
is based on a different approach and requires a different accuracy evaluation. But
due to the equivalence of (R′�QS′)(x, z) with (R∗�QS∗)(x, z) for any pair (x, z)
provided by Corollary 1, both tasks may be obtained by the same calculation
and simply by substituting the known instance to the particular variable x or z.

For the experimental purposes, let us adopt the dragonfly data used already
for the evaluation of the classification task in [21]. This experimental dataset
consists of I = 105943 presence records containing a description of an observed
dragonfly (morphological category, date, altitude, and up to 6 colors). Each
record has assigned also the correct dragonfly species and gender. The total
number of possible dragonfly species is 70, thus each record falls into one of 140
categories.

The objective of the experiment is to find all records corresponding to a
selected species/gender category based on the observed description of dragonflies.
For that purpose, odonatology experts defined the following features: 6 colors
encoded using three modalities (0/0.5/1 = cannot/may/must have); 14 intervals
of altitudes (encoded using 6 intensities); 36 decades in the year (encoded using
6 intensities); and 4 morphological categories. These features formed feature-
category matrices S and E (60 rows and 140 columns).

Within the experiment, several types of compositions were performed and
evaluated by means of ratios of correct selections (Ck), false positives (FPk) and
false negatives (FNk), over all categories (k = 1, . . . , K = 140), where

Ck =
∑I

i=1 rikgik∑I
i=1 rik

, FPk =
∑I

i=1(1 − rik)gik∑I
i=1(1 − rik)

, FNk =
∑I

i=1 rik(1 − gik)
∑I

i=1 rik

,

and where rik encodes the correctness of selection (0 or 1), i.e., rik = 1 if xi

is a sample of zk and rik = 0 in the opposite cases; and gik is the value of
the resulting composition evaluated for the pair (xi, zk). The results are then
averaged over all K categories and presented in Table 1.

Table 1. The results of the experiment (C = ratio of correct selections, FP = ratio
of false positives, FN = ratio of false negatives)

Method C FP FN

R ◦ S 1.0000 0.9755 0.0000

R � S 0.7408 0.0740 0.2592

R � S 0.0000 0.0000 1.0000

R�S 0.0000 0.0000 1.0000

R∗ � S∗ 0.7949 0.0790 0.2051

R∗ �75% S∗ 0.9476 0.1106 0.0524

R∗ �50% S∗ 0.9672 0.1209 0.0328
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As we may see, the basic composition ◦ provides us with a maximal score
C = 1 which expresses, that each sample of a given particular category was
really assigned to this category in the query task. However, this high score is
painfully redeemed by the too high FP rate equal to 0.9755, which expresses the
average membership degree of a sample to a given particular category, to which
it does not belong to. In other words, nearly all samples belong to all categories.
The BK subproducts nicely reduces the FP error however, it lowers the C score
(and thus increases the FN score) as well. This is the effect of the usage of
the universal quantifier over all features. The BK superproduct naturally leads
to a zero success, as no sample may carry all features created in such a way
(e.g. all decades). Grouping the features already itself brings some improvement
compared to the BK subproduct and in the combination with the generalized
quantifiers at least 3 out of 4 (>= 75%) and at least 2 out of 4 (>= 50%)
operating on the groups of the features, we are obtaining very promising results.
The choice of the quantifier is the parameter of freedom that is highly context
and particular application dependent.

References
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Abstract. The aim of this contribution is to study compositions of par-
tial fuzzy relational compositions, i.e., of fuzzy relations with membership
degrees not defined on the whole universe. This is motivated by the possi-
bility of existence of the relationships which are “undefined”, “unknown”,
“meaningless”, “non-applicable”, “irrelevant”, etc. We introduce defini-
tions for the new concept based on suitable operations used in the frame-
work of the partial fuzzy set theory. The preservations of well-known
interesting properties of compositions are studied for the compositions
of partial fuzzy relations as well. An illustrative example is provided.

Keywords: Partial fuzzy relations · Fuzzy relational compositions
Excluding features · Classification

1 Introduction

Fuzzy relational compositions became a crucial topic in fuzzy mathematics. This
concept was firstly introduced by Bandler and Kohout in late 70’s [1–3]. After-
ward, the topic has been continuously developed on various aspects and led to
an extensive amount of results. For more details on its theory, we refer readers to
some sources [4–6], and for many fields of applications including formal construc-
tions of fuzzy inference systems, related systems of fuzzy relational equations or
modeling monotone fuzzy rule bases, we refer to [7–13]. Apart from others, two
directions extending the topic have been recently proposed, namely the incor-
poration of excluding features in the fuzzy relational compositions [14] and the
compositions based on generalized quantifiers [15]. We assume that readers are
familiar with the topic and let we deal with another extension of the topic,
namely, with partial fuzzy relations and their compositions.

Partial fuzzy set theory has been recently studied in [16–18] elaborating a
new theory of fuzzy sets with partially undefined membership degrees. These
undefined degrees appear mainly values in the cases of “unknown (missing)”,
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“meaningless”, “non-applicable” or “irrelevant” values. We may accept this moti-
vation as a natural one for the fuzzy relational compositions because having no
information or having missing part of data is a natural situation as well and it
should be treated theoretically correctly. Compared to [18], the domain of partial
fuzzy relations will be not explicitly treated in the notation and we will keep the
same fixed universes. A natural question is, what are suitable operations that
should be used for the meaningful definitions. The answer will be partly pro-
vided in this work. Similar to the standard fuzzy relational compositions, where
the concept of excluding feature is incorporated to get an effective tool [14,19],
the new partial compositions are allowed to involve this concept as well. We will
provide a list of properties of the new concept of the compositions of partial
fuzzy relations and demonstrate the concept on an illustrative example.

2 Partial Fuzzy Relations

We fix a residuated lattice L = 〈L,∧,∨,⊗,→ 0, 1〉 where the support L = [0, 1]
as the underlying algebraic structure and let sets X,Y and Z will be non-empty
finite universes of objects (samples), features and classes, respectively, and let
us denote F(U) the set of all fuzzy sets on the universe U .

The appearance of undefined (e.g. missing) values for some relationships of
some pairs of elements will be represented by a dummy element •, the support L
will be extended to L• = L ∪ {•}. Following the previous works on partial fuzzy
set theory [17,18,20], we assume that L• is a poset consisting of a chain [0, 1]
and a single element • that is not comparable to any element from the chain
[0, 1]. So, the ordering relation ≤ on L• is then defined standardly for the values
from [0, 1] and • ≤ • but • 
≤ a and a 
≤ • for any a ∈ [0, 1]. The equality a = b
of two elements a, b ∈ L• is then defined standardly as the conjunction: a ≤ b
and b ≤ a.

Definition 1. Partial fuzzy relation R is a fuzzy set R : X × Y → L•.

The set of all partial fuzzy sets on U will be denoted as F•(U) and thus, we
can freely write R ∈ F•(X ×Y ) and S,E ∈ F•(Y ×Z). For the interpretation of
the meaning of partial fuzzy relations, for example in the classification problem
of animals, a defined value R(x, y) express that the sample x has the feature y
up to some degrees and S(y, z) means that how much it is true y is a feature of
the class z. In case of having no information of the relationship of the sample x
and the feature y or of the feature y and the class z, we replace the relationships
by the dummy value •.

3 Connective Operations for Undefined Degrees

This section recalls suitable connective operations for dealing with the unde-
fined values. There are several useful families of connectives extended from
three-valued logic [16,21,22] such as Bochvar-style connectives, Sobociński-style
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connectives, Kleene-style connectives, or McCarthy-style sequential binary con-
nectives. In this paper, we pick the first two well-known ones, i.e., Bochvar-style
and Sobociński-style connectives.

Definition 2 [16,18]. The Bochvar operation cB ∈ {∧B ,∨B ,⊗B ,→B}, cB :
L• × L• → L• is represented by the following truth table:

cB β •
α α c β •
• • •

.

Definition 3 [16,18]. The Sobociński operation cS ∈ {∧S ,∨S ,⊗S}, cS : L• ×
L• → L• and the Sobociński residuum →S residuated with ⊗S are represented
by the following truth tables:

cS β •
α α c β α
• β •

,
→S β •

α α → β ¬α
• β •

.

As one can see, the Bochvar operations treat the value • as the annihilator
and the Sobociński operations treat it as the neutral element. The two respective
equivalence connectives (bi-implications) of the Bochvar and Sobociński can be
defined on L• as follows [16]:

α ↔B β = (α →B β) ∧B (β →B α);
α ↔S β = (α →S β) ∧S (β →S α).

Let us recall in the following the infimum and supremum of a set of elements
from L• according to the Bochvar-style and Sobociński-style.

Definition 4 [18]. Let αi ∈ L•. Then, for arbitrary index set I we define:

(i) The Bochvar infimum:
∧B

i∈I αi =

{
inf
i∈I

αi if αi 
= • for each i ∈ I,

• otherwise.

(ii) The Bochvar supremum:
∨B

i∈I αi =

⎧
⎨

⎩

sup
i∈I

αi if αi 
= • for each i ∈ I,

• otherwise.

(iii) The Sobociński infimum:
∧S

i∈I αi =

⎧
⎪⎨

⎪⎩

inf
i∈I

αi �=•
αi if αi 
= • for some i ∈ I,

• otherwise.

(iv) The Sobociński supremum:
∨S

i∈I αi =

⎧
⎪⎨

⎪⎩

sup
i∈I

αi �=•

αi if αi 
= • for some i ∈ I,

• otherwise.

The four operations are self-explainable and thus, we avoid commenting on
them.

Given two partial fuzzy relations on the same domain, their Bochvar and
Sobociński intersection and union can be defined as follows.
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Definition 5. Let R1, R2 be partial fuzzy relations on X × Y . Then we define

(i) Bochvar union: (R1 ∪B R2)(x, y) = R1(x, y) ∨B R2(x, y) ;
(ii) Bochvar intersection: (R1 ∩B R2)(x, y) = R1(x, y) ∧B R2(x, y) ;
(iii) Strong Bochvar intersection: (R1 �B R2)(x, y) = R1(x, y) ⊗B R2(x, y);
(iv) Sobociński union: (R1 ∪S R2)(x, y) = R1(x, y) ∨S R2(x, y) ;
(v) Sobociński intersection: (R1 ∩S R2)(x, y) = R1(x, y) ∧S R2(x, y) ;
(vi) Strong Sobociński intersection: (R1 �S R2)(x, y) = R1(x, y) ⊗S R2(x, y).

The equivalence and the inclusions of partial fuzzy relations are defined in a
standard way no matter we deal on L•.

Definition 6. For any R1, R2 ∈ F•(X × Y ) we say that R1 ⊆ R2 if R1(x, y) ≤
R2(x, y) for (x, y) ∈ X×Y and, R1 = R2 if R1(x, y) = R2(x, y) for (x, y) ∈ X×Y .

4 Compositions of Partial Fuzzy Relations and Excluding
Features

4.1 Compositions of Partial Fuzzy Relations

We have recalled partial fuzzy relations and suitable operations for dealing with
their membership degrees. This section investigates possibilities of forming their
compositions. We propose four kinds of compositions following the idea of the
standard ones. Mainly, the basic composition with the inner operation represent-
ing the multiplication and the outer operation stands for the supremum will be
considered as an initial guess of the relationship between elements from X and
Z. The three other ones will be proposed as a strengthening of the first guess and
they are set by the infimum operation standing outside, and implication-based
operations for the inner ones. A natural question is which style of connectives
should be used for formalizing the compositions. We will address this question
below and demonstrate the proposed definitions on a demonstrative example.

Definition 7. Let R ∈ F•(X ×Y ), S ∈ F•(Y ×Z) then we define compositions
R ◦SB S, R �BS S, R �BS S and R �BS S as follows

(R ◦SB S)(x, z) =
S∨

y∈Y

(R(x, y) ⊗B S(y, z)) ; (1)

(R �BS S)(x, z) =
B∧

y∈Y

(R(x, y) →S S(y, z)) ; (2)

(R �BS S)(x, z) =
B∧

y∈Y

(R(x, y) ←S S(y, z)) ; (3)

(R �BS S)(x, z) =
B∧

y∈Y

(R(x, y) ↔S S(y, z)) . (4)
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The semantics of the compositions can be described in the same way
to the standard ones. For instance, considering the classification of animals,
(R◦SBS)(x, z) expresses the truth degrees of the predicate: “sample x has at least
one feature belonging to class z”. The strengthening product (R �BS S)(x, z)
expresses the truth degrees of the predicate: “all the features of sample x
belong to class z” and, similarly, (R �BS S)(x, z) expresses the truth degrees
of the predicate: “sample x has all features of class z”. The last square product
(R �BS S)(x, z) represents the conjunction of the both triangle products: “sam-
ple x carries all features of class z and all features of the sample are related to
the class z”. The difference, compared to the compositions of (non-partial) fuzzy
relations is that the above-defined compositions are correctly defined even for
the case of missing values.

An important question is why the Sobociński and Bochvar connectives are
used for the outer and inner operation in the composition R ◦SB S, respec-
tively, while the three other ones apply Bochvar-style to the outer operations
and Sobociński for the inner ones? Let us first focus on the circlet composition.
Consider the hypothetic use of the Sobociński inner operator (conjunction) for
the animal classification example. An animal without any feature that would
connect it with a certain class (family of animals) would be potentially classified
to such a class. Therefore, the use of the Bochvar conjunction seems reasonable.
Vice-versa, using the Bochvar outer operator could lead to a loss of potential
initial suspicion even in the case of more connecting features only due to a single
dummy value, which is undoubtedly not desirable.

However, the case of the triangle and the square BK products is different.
Consider, e.g., the BK subproduct. It should express that for all considered
features it holds that if a feature is possessed by the sample then the feature
should be related to a given class. So, the Sobociński-style outer operation (infi-
mum) could be too tolerant to the frequent appearance of the dummy values
still allowing to evaluate the membership degree of a certain pair (x, z) to the
composed fuzzy relation equal to 1. Therefore, we opt for the Bochvar infi-
mum. On the other hand, if the Bochvar-style of the operation would be chosen
also for the inner operation, this would significantly increase the occurrence
of the dummy values in the resulting composition. Indeed, actually any pair
(y, z) for which S(y, z) is equal to • would cause that (R �BB S)(x, z) = •
for any x. And similarly, any pair (x, y) for which R(x, y) = • would cause that
(R�BB S)(x, z) = • for any z and thus, actually, such samples x’s could be easily
deleted from the sample file as unclassifiable ones, and this is surely not the goal
of the partial fuzzy relational compositions. Therefore, we opt for R@BSS for
any @ ∈ {�,�, �}. On the other hand, any other combination of connectives is
also formally correct and a study of BK products with the opposite connectives,
i.e. SB instead of BS, is provided in [20].

4.2 The Compositions Incorporating Excluding Features

Similarly to the standard basic fuzzy relational composition which may be
extended with the concept of excluding features [14], we allow to employ this
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concept to the circlet composition of partial fuzzy relations as well. We intro-
duce the partial fuzzy relation E ∈ F•(Y × Z) where E(y, z) ∈ L• stands for
the truth-degree of the predicate: y is an excluding feature of z and, E(y, z) = •
means that we cannot decide (or do not know) whether y is an excluding feature
of z or not.

Definition 8. Let R ∈ F•(X × Y ) and let S,E ∈ F•(Y × Z) then the compo-
sition R ◦SB S�E is defined as follows

(R ◦SB S�E)(x, z) =
S∨

y∈Y

(R(x, y) ⊗B S(y, z)) ⊗B ¬S

S∨

y∈Y

(R(x, y) ⊗B E(y, z))

where ¬Sa = a →S 0.

The semantic of the composition is the same to the standard one. The mem-
bership degree of (x, z) to the composed fuzzy relation R◦SB S�E expresses how
much it is true, that the sample x has at least one feature belonging to the class
z and at the same time, there is no excluding feature of the family z carried by
the sample x.

The above-proposed composition can be written in a comprehensible form
which given as follows

(R ◦SB S�E)(x, z) = (R ◦SB S)(x, z) ⊗B ¬S(R ◦SB E)(x, z)

We propose to use the Bochvar connective ⊗B between the two basic compo-
sitions as we find unintuitive to assign non-dummy value to a pair (x, z) in the
case of not a single known connection of the sample x and the class z only due
to the fact that x has no excluding features related to the class z, which could
happen in the case of the use of the Sobociński conjunction. On the other hand,
we also agree that making the overall result unknown (dummy value) in the case
of a significant suspicion provided by (R ◦SB S)(x, z) and an unknown result of
the other part (R ◦SB E)(x, z). This can serve as a a motivation for the use of
non-commutative conjunctors which we leave for the future consideration.

5 Properties

Let us provide a list of useful properties for the proposed concept of compositions
of partial fuzzy relations. Let R,R1, R2 ∈ F•(X ×Y ), let S, S1, S2 ∈ F•(Y ×Z),
and let T ∈ F•(Z × U).

5.1 Basic Partial Composition

Proposition 1. (Associativity property)

(R ◦SB S) ◦SB T = R ◦SB (S ◦SB T ) (5)
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Sketch of the proof: The proof of (5) is based on the fact that (a ∨S b) ⊗B c =
(a ⊗B c) ∨S (b ⊗B c) and that (a ⊗B b) ⊗B c = a ⊗B (b ⊗B c) for a, b, c ∈ L•. ��
Proposition 2. (Monotonicity)

R1 ⊆ R2 ⇒ R1 ◦SB S ⊆ R2 ◦SB S (6)
S1 ⊆ S2 ⇒ R ◦SB S1 ⊆ R ◦SB S2 (7)

Sketch of the proof: Property (6) and (7) are proved using the fact that a ≤ b ⇒
a ⊗B c ≤ b ⊗B c for a, b, c ∈ L•. ��
Proposition 3. (Sobociński union)

(R1 ∪S R2) ◦SB S = (R1 ◦SB S) ∪S (R2 ◦SB S) (8)
R ◦SB (S1 ∪S S2) = (R ◦SB S1) ∪S (R ◦SB S2) (9)

Sketch of the proof: Let us sketch only the proof of the equality (8) and the other
one is analogous. Fix some x ∈ X and some z ∈ Z and let us partition the set
Y into five subsets Y1, Y2, . . . , Y5 as follows:

Y1 = {y ∈ Y | S(y, z) = •} ,

Y2 = {y ∈ Y | R1(x, y) = •, R2(x, y) = •, S(y, z) 
= •} ,

Y3 = {y ∈ Y | R1(x, y) = •, R2(x, y) 
= •, S(y, z) 
= •} ,

Y4 = {y ∈ Y | R1(x, y) 
= •, R2(x, y) = •, S(y, z) 
= •} ,

Y5 = {y ∈ Y | R1(x, y) 
= •, R2(x, y) 
= •, S(y, z) 
= •} .

Then, for each Yi, i = 1, . . . , 5, we easily check that the left hand side and
the right hand side of (8) are equal.

��
Proposition 4. (Convertibility)

(R ◦SB S)T = ST ◦SB RT (10)

where RT denotes the transposition of R, i.e., RT (x, y) = R(y, x).

Sketch of the proof: The proof is analogous to the proof for standard fuzzy rela-
tional compositions. ��
Proposition 5. (Associativity – the case of excluding features)

(R ◦SB S) ◦SB T �E = R ◦SB (S ◦SB T )�(S ◦SB E). (11)

Sketch of the proof: The proof is based on Proposition 1. ��
Proposition 6. (Monotonicity – the case of excluding features)

S1 ⊆ S2 ⇒ R ◦SB S�
1E ⊆ R ◦SB S�

2E (12)
E1 ⊆ E2 ⇒ R ◦SB S�E1 ⊇ R ◦SB S�E2 (13)
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Sketch of the proof: Property (12) can be proved similarly to the proof of (7)
from Proposition 2 and property (13) is derived from the fact that a ≤ b ⇒
¬Sa ≥ ¬Sb for a, b ∈ L•. ��
Proposition 7. (Sobociński union – the case of excluding features)

R ◦SB (S1 ∪S S2)�E = (R ◦SB S�
1E) ∪S (R ◦SB S�

2E) (14)

Sketch of the proof: The proof uses the equality: (a ∨S b) ⊗B c = (a ⊗B c) ∨S

(b ⊗B c). ��

5.2 The Bandler-Kohout Products

Let us provide some useful properties for the Bandler-Kohout products of partial
fuzzy relations which strengthen the basic partial compositions.

Proposition 8. (Interdefinability)

R �BS S = (R �BS S) ∩S (R �BS S) (15)

Sketch of the proof: The proof is based on the definition of ↔S and the fact that∧B
i∈I(ai ∧S bi) =

∧B
i∈I ai ∧S

∧B
i∈I bi for ai, bi ∈ L•. ��

Proposition 9. (Monotonicity)

R1 ⊆ R2 ⇒ R1 �BS S ⊇ R2 �BS S, (16)
S1 ⊆ S2 ⇒ R �BS S1 ⊆ R �BS S2, (17)
R1 ⊆ R2 ⇒ R1 �BS S ⊆ R2 �BS S, (18)
S1 ⊆ S2 ⇒ R �BS S1 ⊇ R �BS S2. (19)

Sketch of the proof: The proof of (16)–(19) uses the antitonicity and the iso-
tonicity of →S that are a ≤ b ⇒ a →S c ≥ b →S c and c →S a ≤ c →S b for
a, b, c ∈ L•. ��
Proposition 10. (Bochvar union and the BK subproduct)

(R1 ∪B R2) �BS S ⊆ (R1 �BS S) ∩B (R2 �BS S). (20)

Sketch of the proof: The proof of the proposition uses the same technique the
proof of Proposition 3 where we consider all possible cases. ��
Proposition 11. (Bochvar intersection and the BK subproduct)

R �BS (S1 ∩B S2) ⊆ (R �BS S1) ∩B (R �BS S2). (21)

Sketch of the proof: The proof of the proposition uses the same technique the
proof of Proposition 3 where we consider all possible cases. ��
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Proposition 12. (Bochvar union and intersection and the BK superproduct)

(R1 ∩B R2) �BS S ⊆ (R1 �BS S) ∩B (R2 �BS S). (22)
R �BS (S1 ∪B S2) ⊆ (R �BS S1) ∩B (R �BS S2). (23)

Sketch of the proof: The proof of the proposition uses the same technique the
proof of Proposition 3 where we consider all possible cases. ��
Proposition 13. (Convertibility of the BK products)

(R �BS S)T = ST �BS RT , (24)

(R �BS S)T = ST �BS RT , (25)

(R �BS S)T = ST �BS RT . (26)

where RT denotes the transposition of R, i.e., RT (x, y) = R(y, x).

Sketch of the proof: The proof is analogous to the proof for standard fuzzy rela-
tional compositions. ��
Proposition 14. (Exchange property)

R �BS (S �BS T ) = (R �BS S) �BS T. (27)

Sketch of the proof: Using the property a →S (b →S)c = b →S (a →S c) and the
property a →S (b ∧B c) = (a →S b) ∧B (a →S c) we obtain the proof of (27). ��

6 Illustrative Example, Conclusions and Future Work

We provide readers with an illustrative example that demonstrates the influ-
ence of the use of partial fuzzy relational compositions. For this purpose, let
us consider a simple example of classification of animals in biology that is sim-
ilar yet slightly modified example from [14]. Let Z = {z1, z2, . . . , z7} be a set
of families of animals, Y = {y1, y2, . . . , y10} be a set of animal features and let
X = {x1, x2, . . . , x6} be a set of particular animals, where z1 – Bird, z2 – Fish,
z3 – Dog, z4 – Equidae, z5 – Mosquito, z6 – Monotreme, and z7 – Reptile; y1 –
animal flies, y2 – animal has feathers, y3 – animal has fins, y4 – animal has claws,
y5 – animal has hair, y6 – animal has teeth, y7 – animal has a beak, y8 – animal
has scales, y9 – animal swims, y10 – animal is warm blooded; x1 – Platypus, x2

– Emu, x3 – Hairless dog, x4 – Aligator, x5 – Parrotfish, x6 – Puffin.
The task is to classify the animals from X to their classes. It may happen,

that for some of given animals, we do not know the membership degrees assigning
to some features. For instance, a decision whether a dog swims or not may be
missing in the fuzzy relation R as some dog breeds do not swim (e.g. Pugs or
Bulldogs) or swim very badly (e.g. Basset hounds or Dachshunds) and thus, the
data provider does not fill in this information. Similarly, for some providers is
might not be easy to determine whether an animal is warm-blooded or cold-
blooded. Thus, at some cases, the truth degrees of the relationships will be
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assigned to the dummy element •. Also, in case of a given feature cannot be
determined to be excluded from possibility of belonging the classes, its respective
truth degree should turn to the unknown value • as well. Thus, fuzzy relations
S,E ∈ F(Y × Z) and R ∈ F(X × Y ) can be given as follows

R y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
Platypus 0 0 0 1 1 0 1 0 0.9 •
Emu 0 1 0 1 0 0 1 0.5 • 1
Hairless dog 0 0 0 1 0.2 1 0 0 • 1
Aligator 0 0 0 1 0 1 0 1 0.9 0
Parrotfish 0 0 1 0 0 0.9 0.8 1 1 0
Puffin 1 1 0 1 0 0 1 0.4 0.9 1

,

S z1 z2 z3 z4 z5 z6 z7
y1 0.8 0 0 0 1 0 0
y2 1 0 0 0 0 0 0
y3 0 1 0 0 0 0.5 0
y4 0.9 0 1 0 0 0.8 0.3
y5 0 0 0.8 1 0 0.9 0
y6 0 0.6 1 1 0 0 0.7
y7 1 0.1 0 0 0 0.5 0
y8 0.7 0.9 0 0 0 0 1
y9 0.5 1 0.8 0.6 0.1 0.7 0.8

y10 1 0.1 1 1 0 0.7 0

,

E z1 z2 z3 z4 z5 z6 z7
y1 0 1 1 1 0 1 1
y2 0 1 1 1 1 1 1
y3 1 0 1 1 1 0 1
y4 0 1 0 1 1 0 0
y5 0.8 1 0 0 1 0 1
y6 1 0 0 0 1 1 0
y7 0 • 1 1 1 0 1
y8 0 0 1 0 1 1 0
y9 0 0 0 0 0.8 0 0

y10 0 0.8 0 0 1 • 1

.

If we use the �Lukasiewicz algebra as the underlying algebraic structure then
we get the following compositions.

R ◦SB S z1 z2 z3 z4 z5 z6 z7
Platypus 1 0.9 1 1 0 0.9 0.7
Emu 1 0.4 1 1 0 0.8 0.5
Hairless dog 1 0.6 1 1 0 0.8 0.7
Aligator 0.9 0.9 1 1 0 0.8 1
Parrotfish 0.8 1 0.9 0.9 0.1 0.7 1
Puffin 1 0.9 1 0.5 1 0.8 0.7

,

R �BS S z1 z2 z3 z4 z5 z6 z7
x1 0 0.1 0 0 0 0.5 0
x2 0.5 0 0 0 0 0 0
x3 0 0 0.8 0 0 0 0
x4 0 0 0 0 0 0 0.3
x5 0 0.3 0 0 0 0 0
x6 0.6 0 0 0 0 0 0

,

R �BS S z1 z2 z3 z4 z5 z6 z7
x1 0 0.1 0 0 0 0.3 0
x2 0.2 0 0 0 0 0.1 0.2
x3 0 0 0.2 0.2 0 0.3 0
x4 0 0 0 0 0 0.1 1
x5 0 0.9 0 0 0 0.1 0.7
x6 0.9 0 0 0 1 0.1 0.3

.

As we may see that the initial partial relation provided by R ◦SB S gives
too much pairs of elements in a high degree which does not help for the clas-
sification. The strengthening partial subproduct and superproduct improve the
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results as well as making the results to be more precise however, they are some-
how strengthening too much the assigned values for some pairs of relationships.
The proposed method of partial composition incorporating excluding features
would help as, in this situation, it can eliminate the false suspicions from the
initial ones. This is given by the following table.

R ◦SB S�E z1 z2 z3 z4 z5 z6 z7
Platypus 0 0 0 0 0 0.9 0
Emu 1 0 0 0 0 0 0
Hairless dog 0 0 1 0 0 0 0
Aligator 0 0 0 0 0 0 1
Parrotfish 0 1 0 0 0 0 0
Puffin 1 0 0 0 0 0 0

.

All the results demonstrated that the proposed compositions of partial fuzzy
relations may successfully deal with unknown (missing) values. In the case of
an appropriate choice of the operations, the compositions may even eliminate
the occurrence of the unknown values. The last result shows that a positive
result could be obtained if the number of known features is large enough for
the classification. This example, though it is simple and only illustrative, it
provides with a demonstration of the performance of compositions of partial
fuzzy relations. A real example on a real data is left for future work.

Furthermore, the results motivate us to think of studying the concept of
partial fuzzy relational compositions based on generalized quantifiers in future
work.
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15. Cao, N., Štěpnička, M., Holčapek, M.: Extensions of fuzzy relational compositions
based on generalized quantifer. Fuzzy Sets Syst. 339, 73–98 (2018)
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Abstract. We will recall three prominent families of quantifiers in first-
order partial fuzzy logic and study their properties. The background fuzzy
logic is the monoidal t-norm based logic MTL. First we will overview the
semantics of partial fuzzy propositional logic, recall the basic notions,
comment on axiomatization and present its first-order variant. Then we
will present results on the properties of quantifiers from different families.

Keywords: Partial fuzzy logic · Undefinedness · Generalized quantifier

1 Introduction

Undefined values that are present in a common practice have usually different
characters given by their sources, e.g., an argument that is out of a domain of
definition such as square root or division by zero (coded as NaN in programing
languages); a machine halt state of a recursive function which loops forever [8];
ill-posed questions in questionnaires; false presumptions [10] etc. Generally, they
are a source of bugs and thus needed to be represented in order to be correctly
handled [11].

It has been shown that partial fuzzy logic introduced in [4] can capture unde-
finedness of specific types, i.e., those that behave functionally. The important
point to note here is that unknown or uncertain data cannot be handled func-
tionally and thus, partial fuzzy logic is unable to cover undefinedness in a sense
of unknown or uncertain. More on distinctions between those phenomena can
be found in [2, page 17].

The advantage of using this logic lies in the fact that it combines graduality
and undefinedness into the common framework. A simple system of partial fuzzy
propositional logic is based on (any implicative expansion of) the well-known
fuzzy logic MTL� of left-continuous t-norms [7]. The first-order variant of partial
fuzzy logic has been proposed in [1]. There were introduced three basic families
of quantifiers further used to develop partial fuzzy set theory [1,6], fuzzy type
theory with partial functions [12] and to identify non-denoting terms [3].

Recently, it is of the main interest to know how and which properties of
fuzzy logic (relativized) quantifiers can be transmitted to partial fuzzy logic

c© Springer International Publishing AG, part of Springer Nature 2018
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(relativized) quantifiers from various families. The main aim of this paper is to
show some basic properties of the prominent families of quantifiers in partial
fuzzy logic.

2 Partial Fuzzy Propositional Logic

Let the logic L be any implicative [13] expansion of MTL�, i.e., an expansion of
MTL� such that ϕ ↔ ψ |=L c(χ1, . . . , ϕ, . . . , χn) ↔ c(χ1, . . . , ψ, . . . , χn) each
connective c. Since L is assumed to expand MTL�, the language S of L contains
at least the connectives ∧, ∨, &, →, ↔, 0, 1, and �.

The partial fuzzy propositional logic L∗ based on L is defined as follows [4]:

– The language (or signature) S ∗ of L∗ extends the language S of L by the
truth constant ∗ (representing the undefined truth degree of propositions),
the unary connective ! (for the crisp modality “is defined”), and the binary
connective ∧K (for Kleene-style min-conjunction).

– The intended L∗-algebras are defined by expanding the L-algebras by a
dummy element ∗ (interpreting the truth constant ∗). In the intended L∗-
algebra L∗ = L ∪ {∗} (where L is an L-algebra), the connectives of L∗ are
interpreted as described by the following truth tables, for all unary connec-
tives u ∈ S , binary connectives c ∈ S (and similarly for higher arities),
α, β ∈ L and γ, δ ∈ L \ {0}:

!

α 1

∗ 0

uB

α uα

∗ ∗

cB β ∗
α α c β ∗
∗ ∗ ∗

∧K 0 δ ∗
0 0 0 0

γ 0 γ ∧ δ ∗
∗ 0 ∗ ∗

(1)

– Tautologies of L∗ are defined as formulae that are evaluated to 1 under all
evaluations in all intended L∗-algebras (notation: |=L∗ ϕ).

– An axiomatic system for L∗ extends the (suitably modified) axioms and rules
of L by 4 additional derivation rules and 10 additional axiom schemata. The
general, linear, and (if enjoyed by L) standard completeness theorems (respec-
tively w.r.t. L∗-algebras L∗ over all, linear, or standard L-algebras L) can be
proved for this axiomatic system. However, since in this paper we only deal
with the semantics of partial fuzzy logic, we leave the axiomatic system for
L∗ aside.

The connectives of S ∗ make a broad class of derived connectives available
in L∗. This includes several useful families of connectives, analogous to those
well-known from three-valued logic (see, e.g., [5]):

– The Bochvar-style connectives treat ∗ as the absorbing element. Recall that
in L∗, the connectives of the original language S of the underlying fuzzy logic
L are actually interpreted Bochvar-style: see the truth tables (1) above.
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– The Sobociński-style connectives treat ∗ as the neutral element; and the
Sobociński-style implication is →S residuated with &S; for c ∈ {∧,∨,&} we
have

cS β ∗
α α c β α

∗ β ∗

→S β ∗
α α → β ¬α

∗ β ∗
(2)

– The Kleene-style connectives keep the absorbing elements of the correspond-
ing connectives of L and are evaluated Bochvar-style otherwise, i.e., for
c ∈ {∧,&}:

cK 0 β ∗
0 0 0 0

α 0 α c β ∗
∗ 0 ∗ ∗

∨K δ 1 ∗
γ γ ∨ δ 1 ∗
1 1 1 1

∗ ∗ 1 ∗

→K δ 1 ∗
0 1 1 1

α α → δ 1 ∗
∗ ∗ 1 ∗

(3)

Moreover, the following useful unary connectives are L∗-definable:

x ?x ↓x ↑x �x

γ 0 γ γ 0
1 0 1 1 ∗
∗ 1 0 1 0

(4)

The connective ? expresses the modality of being defined; ↓ and ↑ shift ∗ to 0
and 1, respectively; and � outputs ∗ provided that the input is evaluated to 1
and it is intended for designing definable connectives (see (7) below).

The following binary connectives are L∗-definable:

→∗ β ∗
α α → β 0
∗ 1 1

→∗ β ∗
α α → β 1
∗ 0 1

(5)

∼ β ∗
α α ↔ β 0
∗ 0 1

�∼ β ∗
α α ↔ β 0
∗ 1 1

(6)

for α, β = ∗ and γ /∈ {1, ∗}.
Moreover, we define the following crisp ({0, 1}-valued) binary connectives:

x ≤∗ y =df �(x →∗ y) x ≡ y =df �(x ∼ y)
x ≤∗

y =df �(x →∗
y) x � y =df �(x �∼ y)

The connective ≡ expresses the identity of truth values; � the ‘information’
order of truth values; ≤∗ the matrix order w.r.t. which L∗ is implicative; and ≤∗

the dual matrix order; and connectives defined by tables (5) and (6) are their
respective graded variants.
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Remark 1. Observe that ∼ and �∼ are definable from →∗ and →∗ as follows:

x ∼ y =df (x →∗ y) ∧ (y →∗
x)

x �∼ y =df (x →∗ y) ∧ (y →∗ x)

And analogously, ≡ and � are definable from ≤∗ and ≤∗.

Remark 2. It follows from properties of � that for an arbitrary formulas ϕ, ψ:

|=L∗ ϕ →∗ ψ if and only if |=L∗ ϕ ≤∗ ψ

|=L∗ ϕ →∗
ψ if and only if |=L∗ ϕ ≤∗

ψ

|=L∗ ϕ ∼ ψ if and only if |=L∗ ϕ ≡ ψ

|=L∗ ϕ �∼ ψ if and only if |=L∗ ϕ � ψ

Due to this fact, it is a matter of taste which connective is used in formulas of the
above listed forms. We choose {≤∗,≤∗,≡,�} because of their close connection to
style of proving tautologies in models of L∗ where we check validity of sequence
of inequalities or identities.

By means of unary connectives from table (4), we can define e.g. Kleene-style
connectives c ∈ {∧,&}:

x cK y =df ↓(x cB y) ∨B �((?x ∧ (y ≡ 0)) ∨ (?y ∧ (x ≡ 0))) (7)

where x ≡ y =df ¬(x ≡ y).
Let us give a few examples of logical laws valid in L∗. Obviously,

|=L∗ (ϕ cB ψ) � (ϕ cK ψ)
|=L∗ (ϕ cK ψ) � (ϕ cS ψ)

for arbitrary c ∈ {&,∧,∨,→}. And the distributive laws in L∗ work as follows: if
the connectives (c, c′) are distributive in the logic L, then (cB, c′

B) and (cB, c′
S) are

distributive1 in L∗; however, this is not so for (cB, c′
K). Indeed, non of {(cB, c′

K)}
is distributive, e.g., |=L∗ ϕ &B (ψ ∨K χ) ≡ (ϕ &B ψ) ∨K (ϕ &B χ), but it can be
proved that

?ϕ ∨ [((ψ �≡ 1) ∨ !χ) ∧ ((χ �≡ 1) ∨ !ψ)] |=L∗ [ϕ &B (ψ ∨K χ)] ≡ [(ϕ &B ψ) ∨K (ϕ &B χ)]

3 Quantifiers in Partial Fuzzy First-Order Logic

As a natural next step, a semantical approach to the first-order variant L∀∗

of partial fuzzy propositional logic L∗ has been given in [1], where the Bochvar,
1 A complete characterization of distributive pairs of Sobociński and Bochvar connec-

tives has been provided in [4, Theorem 3.5].
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Sobociński and Kleene quantifiers were defined. In this paper, we will recall these
L∀∗-extensions of the quantifiers of L∀ and list some of their properties.

The models for L∀∗ are the same as those for L∀, only using L∗-algebras L∗
instead of L-algebras L. The primitive quantifiers ∀B and ∃B of L∀∗ are inter-
preted Bochvar-style, yielding ∗ whenever there is an undefined instance of the
quantified formula:

‖(∀Bx)ϕ‖Me =df

{
∗ if ‖ϕ‖Me[x�→a] = ∗ for some a ∈ DM

infa∈DM
‖ϕ‖Me[x�→a] otherwise

‖(∃Bx)ϕ‖Me =df

{
∗ if ‖ϕ‖Me[x�→a] = ∗ for some a ∈ DM

supa∈DM
‖ϕ‖Me[x�→a] otherwise

Similarly, the Sobociński quantifiers ∀S and ∃S (which, like ∧S and ∨S, ignore
the undefined instances) are introduced by the following Tarski conditions:

‖(∀Sx)ϕ‖Me =df

{
∗ if ‖ϕ‖Me[x�→a] = ∗ for all a ∈ DM

infa∈DM
‖↑ϕ‖Me[x�→a] otherwise.

‖(∃Sx)ϕ‖Me =df

{
∗ if ‖ϕ‖Me[x�→a] = ∗ for all a ∈ DM

supa∈DM
‖↓ϕ‖Me[x�→a] otherwise.

Sobociński- and Kleene-style quantifiers can be defined by means of ∀B,∃B and
the connectives of L∗ as follows:

(∀Sx)ϕ ≡df (∀Bx)↑ϕ ∨B �(∀Bx)?ϕ (∀Kx)ϕ ≡df (∀Bx)ϕ ∧K (∀Sx)ϕ
(∃Sx)ϕ ≡df (∃Bx)↓ϕ ∨B �(∀Bx)?ϕ (∃Kx)ϕ ≡df (∃Bx)ϕ ∨K (∃Sx)ϕ .

Convention 1. For simplicity of notation, we write ϕ1 ≤∗ ϕ2 ≤∗ ϕ3 ≤∗ . . . ≤∗
ϕn−1 ≤∗ ϕn instead of the sequence of tautologies of L∀∗ |=L∀∗ ϕ1 ≤∗ ϕ2,
|=L∀∗ ϕ2 ≤∗ ϕ3, . . . , |=L∀∗ ϕn−1 ≤∗ ϕn.

Analogously, we shorten sequences with ≡,≤∗, or combinations all three
relations.

Let us give some examples of tautologies of L∀∗. Assume that χ does not
contain x freely. Then:

(∀Bx)ϕ &B (∀Bx)ψ ≤∗ (∀Bx)(ϕ &B ψ) ≤∗ (∀Bx)(ϕ &K ψ) ≤∗ (∀Bx)(ϕ &S ψ) ,

(∀S x)ϕ &B (∀Sx)ψ ≤∗ (∀S x)(ϕ &B ψ) ≤∗ (∀S x)(ϕ &K ψ) ≤∗ (∀S x)(ϕ &S ψ) ,

(∀S x)ϕ &K (∀Sx)ψ ≤∗ (∀S x)(ϕ &K ψ) and (∀S x)ϕ &S (∀Sx)ψ ≤∗ (∀S x)(ϕ &S ψ)
are tautologies of L∀∗.

Since the focus of this paper is on the semantics, we leave the axiomatization
of L∀∗ aside. Let us just hint that L∀∗ turns out to be implicative (in the
sense of Rasiowa) w.r.t. the connective ≤∗ of (5) above. Therefore it can be
axiomatized straightforwardly by adding Rasiowa’s axioms for quantifiers [13]
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to the axiomatic system for L∗ (and, optionally, Hájek’s axiom (∀3) of [9] to
ensure completeness w.r.t. safe models over linear intended L∗-algebras). This
axiomatizes the quantifiers ∀B and ∃S, which correspond, respectively, to inf and
sup w.r.t. the order generated by ≤∗ (the primitive Bochvar-style quantifier ∃B is
definable from ∀B,∃S and the connectives of L∗) and dually, ∀S,∃B are inf, sup,
respectively, w.r.t. ≤∗.

Due to the above arguments, we obtain that particular tautologies of L∀ are
tautologies of L∀∗ in the following manner: the universal quantifier is taken as
Bochvar-style; the existential quantifier as Sobociński-style; the principal impli-
cation as ≤∗; and the principal equivalence ↔ as ≡.

Proposition 1. Assume that χ does not contain x freely, and x′ is a variable
not occurring in ϕ. Then:

|=L∀∗ χ ≡ (∀Bx)χ (8)
|=L∀∗ (∃Sx)χ ≡ χ (9)
|=L∀∗ (∃Sx)ϕ(x) ≡ (∃Sx

′)ϕ(x′) (10)
|=L∀∗ (∀Bx)(∀By)ϕ ≡ (∀By)(∀Bx)ϕ (11)
|=L∀∗ (∃Sx)(∃Sy)ϕ ≡ (∃Sy)(∃Sx) (12)

|=L∀∗ (∃Sx)(∀By)ϕ ≤∗ (∀By)(∃Sx)ϕ . (13)

and dually

|=L∀∗ χ ≡ (∀Sx)χ (14)
|=L∀∗ (∃Bx)χ ≡ χ (15)
|=L∀∗ (∃Bx)ϕ(x) ≡ (∃Bx′)ϕ(x′) (16)
|=L∀∗ (∀Sx)(∀Sy)ϕ ≡ (∀Sy)(∀Sx)ϕ (17)
|=L∀∗ (∃Bx)(∃By)ϕ ≡ (∃By)(∃Bx)ϕ (18)

|=L∀∗ (∃Bx)(∀Sy)ϕ ≤∗ (∀Sy)(∃Bx)ϕ . (19)

Formulas (8)–(12) work for Kleene-style universal and existential quantifiers
as well.

Taking a closer look to the specification axiom and its dual of L∀, we obtain
the following results in L∀∗:

|=L∀∗ (∀Bx)ϕ ≤∗ ϕ(t) |=L∀∗ f(t) ≤∗ (∃Bx)ϕ
|=L∀∗ (∀Sx)ϕ ≤∗ ϕ(t) |=L∀∗ f(t) ≤∗ (∃Sx)ϕ

!(∀Kx)ϕ |=L∀∗ (∀Kx)ϕ ≤∗ ϕ(t) !ϕ(t) |=L∀∗ ϕ(t) ≤∗ (∃Kx)ϕ
!(∃Kx)ϕ |=L∀∗ (∀Kx)ϕ ≤∗ ϕ(t) !ϕ(t) |=L∀∗ ϕ(t) ≤∗ (∃Kx)ϕ.

If we would like to have formulas with an implication of L∗ instead of the above
inequalities, e.g. (∀Kx)ϕ →K ϕ(t), then such formula is not a tautology of L∀∗.
But we can fix this problem by excluding cases in which the considered formula
does not evaluate to 1:

{!(∀Kx)ϕ ∨ (ϕ(t) ≡ 1), ((∀Kx)ϕ ≡ 0) ∨ !ϕ(t)} |=L∀∗ (∀Kx)ϕ →K ϕ(t).
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It means that (∀Kx)ϕ →K ϕ(t) is true provided that (‖(∀Kx)ϕ‖ is defined or
‖ϕ(t)‖ = 1) and (‖(∀Kx)ϕ‖ = 0 or ‖ϕ(t)‖ is defined).

Convention 2. If |=L∀∗ ϕ ≤∗ ψ and |=L∀∗ ϕ ≤∗ ψ then we write |=L∀∗ ϕ ≤∗
∗ ψ.

Let us finish with some examples of provable formulas with various quantifiers
and Bochvar-style implication. The subsequent semantical proofs provide a gen-
eral manual for proving first order formulas in L∀∗.

Proposition 2

|=L∀∗ (∀Bx)(ϕ →B ψ) ≤∗
∗ (∀Bx)ϕ →B (∀Bx)ψ (20)

!ϕ |=L∀∗ (∀Sx)(ϕ →B ψ) ≤∗
∗ (∀Sx)ϕ →B (∀Sx)ψ (21)

ψ ≡ 0 |=L∀∗ (∀Kx)(ϕ →B ψ) ≤∗ (∀Kx)ϕ →B (∀Kx)ψ (22)

Proof (20). In this case we have to check a validity w.r.t. the both orderings ≤∗
and ≤∗. If ϕ and ψ are defined everywhere then both inequalities are trivially
valid. Let us consider that ‖ϕ‖Me[x�→a] = ∗ for some a ∈ DM then ‖(∀Bx)ϕ‖M = ∗
and also ‖ϕ →B ψ‖Me[x�→a] = ∗ which implies ‖(∀Bx)(ϕ →B ψ)‖M = ∗. Hence,
both sides of inequalities are ∗ at the same time and the validity of the inequal-
ities follows.

(21) Let us denote Domx(ψ) = {a ∈ DM | ‖ψ‖Me[x�→a] = ∗}. The conditional
requirement ‖!ϕ‖M = 1 implies Domx(ψ) ⊆ Domx(ϕ) = DM and Domx(ψ) ∩
Domx(ϕ) = Domx(ψ). Let Domx(ψ) = ∅ (ψ is not undefined everywhere) then
we have

‖(∀Sx)(ϕ →B ψ)‖M = inf
a∈DM

‖↑(ϕ →B ψ)‖M = inf
a∈Domx(ψ)

‖ϕ →B ψ‖M

≤ inf
a∈Domx(ψ)

‖ϕ‖M → inf
a∈Domx(ψ)

‖ψ‖M ≤ inf
a∈DM

‖ϕ‖M → inf
a∈Domx(ψ)

‖ψ‖M

= inf
a∈DM

‖ϕ‖M → inf
a∈DM

‖↑ψ‖M = ‖(∀Sx)ϕ‖M → ‖(∀Sx)ψ‖M

Otherwise, ‖(∀Sx)(ϕ →B ψ)‖M = ∗ and

‖(∀Sx)ϕ‖M →B ‖(∀Sx)ψ‖M = ‖(∀Sx)ϕ‖M →B ∗ = ∗

(22) ψ ≡ 0 implies (∀Kx)ψ ≡ (∀Bx)ψ ≡ 0 and also (∀Kx)(ϕ →B ψ) ≡
(∀Bx)(ϕ →B ψ) ≡ 0. Due to (20), we have that

(∀Kx)(ϕ →B ψ)︸ ︷︷ ︸
L

≤∗
∗ (∀Bx)ϕ →B (∀Bx)ψ ≡ (∀Bx)ϕ →B (∀Kx)ψ

≤∗ ((∀Bx)ϕ ∧K (∀Sx)ϕ) →B (∀Kx)ψ ≡ (∀Kx)ϕ →B (∀Kx)ψ︸ ︷︷ ︸
R

.

We have to check two cases to verify the above inequality:
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1. If ‖(∀Kx)ϕ‖M = 0 then Kleene-style quantifiers in the formula reduce to
Bochvar-style one and the inequality follows from (20).

2. If ‖(∀Kx)ϕ‖M = 0 then either R ≡ ∗ or R ≡ 1. In the first case, it follows
that there exists some a ∈ DM such that ‖(∀Kx)ψ‖M = ∗ and consequently,
L ≡ ∗. In the second case, it follows that ψ is defined everywhere this is not
so for ϕ. Hence, it may happen that L ≡ ∗ and therefore only ≤∗ is applicable
in this case.

Proposition 3

|=L∀∗ (∀Bx)(ϕ →S ψ) ≤∗ (∀Bx)ϕ →S (∀Bx)ψ (23)

|=L∀∗ (∀Sx)(ϕ →S ψ) ≤∗
∗ (∀Sx)ϕ →S (∀Sx)ψ (24)

(∃Sx)¬ϕ |=L∀∗ (∀Kx)(ϕ →S ψ) ≤∗ (∀Kx)ϕ →S (∀Kx)ψ (25)

Proof. Let us denote Domx(ϕ) = {a ∈ DM | ‖ϕ‖Me[x�→a] = ∗} and analogously
for Domx(ψ). Moreover, let U = Domx(ϕ) ∪ Domx(ψ).

(23) If ‖(∀Bx)(ϕ →S ψ)‖M is undefined then both (∀Bx)ϕ, (∀Bx)ψ evaluate
to ∗ and the inequality is fulfilled. Consider ‖(∀Bx)(ϕ →S ψ)‖M = ∗ then

‖(∀Bx)(ϕ →S ψ)‖M = inf
a∈DM

‖↑ϕ →S ↓ψ‖M

≤ inf
a∈DM

‖↑ϕ‖ →S inf
a∈DM

‖↓ψ‖M ≤∗ ‖(∀Bx)ϕ‖ →S ‖(∀Bx)ψ‖M

In case ‖(∀Bx)ϕ‖ = ∗ and defined value of ‖(∀Bx)ψ‖, we have that

‖(∀Bx)ϕ‖ →S ‖(∀Bx)ψ‖M = ∗ →S ‖(∀Bx)ψ‖M
= 1 →S ‖(∀Bx)ψ‖M = inf

a∈DM

‖↑ϕ‖ →S inf
a∈DM

‖↓ψ‖M

Analogously, we proceed for ‖(∀Bx)ψ‖ = ∗ and defined value of ‖(∀Bx)ϕ‖. The
case when both (∀Bx)ϕ, (∀Bx)ψ evaluate to ∗ is trivial.

(24) As in the above case, if ‖(∀Sx)(ϕ →S ψ)‖M is undefined then
both (∀Sx)ϕ, (∀Sx)ψ evaluate to ∗ because Domx(ϕ) = Domx(ψ) = ∅
and both inequalities ar fulfilled. Consider ‖(∀Sx)(ϕ →S ψ)‖M = ∗ and
Domx(ϕ),Domx(ψ) are non-empty then

‖(∀Sx)(ϕ →S ψ)‖M = inf
a∈U

‖↑ϕ →S ↓ψ‖M ≤ inf
a∈U

‖↑ϕ‖ →S inf
a∈U

‖↓ψ‖M

= inf
a∈Domx(ϕ)

‖ϕ‖ →S inf
a∈U

‖↓ψ‖M ≤ inf
a∈Domx(ϕ)

‖ϕ‖ →S inf
a∈Domx(ψ)

‖ψ‖M

= ‖(∀Sx)ϕ‖ →S ‖(∀Sx)ψ‖M

In the case ‖(∀Sx)ϕ‖ = ∗ and defined value of ‖(∀Sx)ψ‖, we have that

‖(∀Sx)(ϕ →S ψ)‖M = inf
a∈Domx(ψ)

‖↑ϕ →S ↓ψ‖M

≤ inf
a∈Domx(ψ)

‖↑ϕ‖ →S inf
a∈Domx(ψ)

‖↓ψ‖M = 1 →S inf
a∈Domx(ψ)

‖↓ψ‖M

= ‖(∀Sx)ϕ‖ →S ‖(∀Sx)ψ‖M
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And analogously, we proceed for ‖(∀Sx)ψ‖ = ∗ and defined value of ‖(∀Sx)ϕ‖.
(25) The conditional ‖(∃Sx)¬ϕ‖ = 1 implies

Domx(ϕ) = ∅ and inf
x∈Domx(ϕ)

‖ϕ‖ = 0.

Hence, ‖(∀Kx)ϕ →S (∀Kx)ψ‖ = 1 and v ≤∗ 1 for an arbitrary v ∈ L∗.

4 Conclusions

In this paper, some selected properties of fuzzy logic (relativized) quantifiers has
been studied in partial fuzzy logic for the three prominent families of quantifiers.
On this selection we explain a way of designing provable formulas so that their
sets of requirements are as small as possible. This is achieved by choosing {0, 1}-
valued implications ≤∗ and ≤∗ (represent orderings on a L∗-algebra) as principal
implications. It was shown that formulas in a form of implication from any family
of extended connectives do not lead directly to tautologies of L∗ and there are
tautological consequences of quite complex sets of formulas which indeed ensure
only that the respective formula does not evaluate to ∗.

A detailed investigation is left for a future work and it will serve as a prereq-
uisite for further research in fields mentioned in the introduction.
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Abstract. Feature Selection is a crucial step for inferring regression and clas-
sification models in QSPR (Quantitative Structure–Property Relationship)
applied to Cheminformatics. A particularly complex case of QSPR modelling
occurs in Polymer Informatics because the features under analysis require the
management of uncertainty. In this paper, a novel feature selection method for
addressing this special QSPR scenario is presented. The proposed methodology
assumes that each feature is characterized by a probabilistic distribution of
values associated with the polydispersity of the polymers included in the
training dataset. This new algorithm has two sequential steps: ranking of the
features, generated by correlation analysis, and iterative subset reduction,
obtained by feature redundancy analysis. A prototype of the algorithm has been
implemented in order to conduct a proof of concept. The method performance
has been evaluated by using synthetic datasets of different sizes and varying the
cardinality of the feature selected sub-sets. These preliminary results allow
concluding that the chosen mathematical representation and the proposed
method is suitable for managing the uncertainty inherent to the polymerization.
Nevertheless, this research constitutes a piece of work in progress and additional
experiments should be conducted in the future in order to assess the actual
benefits and limitations of this methodology.

Keywords: Feature selection � QSPR � Polymer informatics

1 Introduction

In Computer Science and Statistics, Feature Selection (FS), also known as variable
selection, is the process of selecting a subset of relevant features (or variables) for using
in the design of a computational model [1]. FS techniques can be applied in predictive
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modeling for several reasons as: to avoid the curse of dimensionality, to reduce the
computational efforts of the model training step, to reduce overfitting and to improve
the interpretability of the models. The main hypothesis behind the application of a FS
technique is that the data usually contains many features that are either redundant or
irrelevant, which can be removed without suffering a significant loss of information.
Irrelevant or redundant variables are key concepts in FS, because it could be the case
where a relevant feature is redundant in the presence of another relevant feature with
which it has a strong correlation.

In Cheminformatics, FS methods are commonly used as preprocessing step in
QSAR/QSPR (Quantitative Structure–Activity/Property Relationship) modelling [2].
QSAR/QSPR models are regression or classification models used for predicting a target
property from molecular descriptors (MDs), where each MD characterizes a piece of
information encoded in the structure of the chemical compounds. Therefore, these
models can be used for estimating relevant biological and physicochemical properties
as virtual screening methods for drug design [3, 4]. In this context, the selection of the
MDs subset more correlated with the target property constitutes an instance of the FS
problem.

A particularly challenging case of QSPR modelling occurs in Polymer Informatics
[5, 6]. Polymer Informatics is an interdisciplinary field that requires knowledge and
tools from polymer chemistry, computer science and information science. The key goal
behind Polymer Informatics is to progress on the design and understanding of polymer
systems. An expert in this field develops in silico approaches for polymer research by
means of systematic computational studies based on knowledge acquisition method-
ologies and machine learning algorithms [7]. Polymer Informatics requires a judicious
management of macromolecules, which are chain-like molecules consisting of one or
more structural repeat units (SRUs). Therefore, Polymer Informatics, as also occurs
with Cheminformatics, is a mostly design-oriented discipline but the chemical struc-
tures studies for polymer informaticians are more complex and computationally
demanding than the compounds modelled in drug design [8].

A polymeric material is made of several polymer chains with different lengths and
molecular weights. Therefore, in contrast with a typical drug molecule, a polymeric
material is characterized by a distribution of molecular weights instead of a single
molecular weight value. This distinctive aspect of polymeric materials is known as
polydispersion and, as a consequence of this issue, each molecular descriptor of a
polymeric material has also associated a discrete distribution of values that it is
obtained by calculating the molecular descriptor for the different polymeric chains and
its frequencies.

FS algorithms had been extensively proposed in the field of combinatorial opti-
mization for different application areas [1, 9, 10], including the selection of molecular
descriptors [11–14]. Nevertheless, none method was designed for dealing with the
uncertainty introduced by the polydispersion of materials described before. For this
reason, a novel feature selection algorithm is proposed in this paper as a strategy for
addressing the selection of molecular descriptors in QSPR modelling applied to
material sciences.
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2 Proposed Computational Approach

2.1 Polydispersity and Molecular Descriptors with Uncertainty

Polymers consist of repeat units (monomers) chemically bonded into long chains [15].
Understanding the physical properties of a polymer (such as mechanical strength,
solubility and brittleness) requires knowledge of the length of the polymer chains.
When the polymer chain length is defined, Molar mass of all monomers included in the
molecule is considered. However, all synthetic polymers are polydisperse because they
contain polymer chains of unequal length [16]. For this reason, the molecular weight of
a synthetic polymeric material is not a single value, and must be represented as a
distribution of chain lengths or molecular weights (see Fig. 1).

As polymer properties are dependent on the molecular-weight distribution of the
material, the molecular descriptors used for inferring a QSPR model for these prop-
erties should be characterized taking into account the polydispersity of the materials. In
order to address this problem, a novel approach is proposed in this paper. The key idea
consists of obtaining a discrete distribution of values for each molecular descriptor.
This distribution can be obtained by computing the molecular descriptor values for a
subset of molecular chains with different weights present in the material. Figure 2
schematizes this procedure for any molecular descriptor.

Fig. 1. The typical molecular weight distribution of a polymeric material. The x-axis represents
the different weights of molecular chains polymerized in the material and the y-axis represents
the numbers of molecular chains of each weight present in the material.

Fig. 2. (a) For each sample, the molecular descriptor value that corresponds to this polymer
chain is computed. (b) Finally, the discrete distribution of the molecular descriptor can be
obtained by matching the descriptor value of each sampled molecular chain with its
corresponding number of molecules present in the material.
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At this point, the study of polymer properties can be mathematically defined as a
QSPR modeling problem under uncertainty. In order to address this problem some
notations must be introduced.

Let Mat be a matrix with m rows (number of materials) and n columns (number of
molecular descriptors), where each entry Matij contains the discrete distribution DDij

associated with i–th material and j–th molecular descriptor, and let Y be target property
vector of length m, such that yi is the experimental value of the target property for the
i–th material. Therefore, a QSPR model can be defined as a regression function f , such
that f Matð Þ ffi Y .

2.2 Feature Selection for Variables with Uncertainty

The first step for inferring a QSPR model involves choosing the subset of molecular
descriptors (MDs) more related to the property under study. This task constitutes a
particular case of feature selection (FS) problem, where the variables under analysis
present uncertainty. Therefore, in order to accomplish this step, it is mandatory to
propose a feature selection method for dealing with variables characterized by discrete
distributions. Algorithm 1 describes the FS4RVDD (Feature Selection for Random
Variables with Discrete Distribution) method proposed in this work. In order to explain
this algorithm, the following definitions must be introduced.

Sampled molecular descriptor: a sample of the j–th molecular descriptor, sMDj, is a
m-dimensioned vector such as sMDj i½ � is a random value sampled from DDij. In other
words, sMDj vector represents a sample of the j–th molecular descriptor obtained from
the discrete distributions that characterize this descriptor for the different materials
available in the training dataset.

Similarity Ratio between molecular descriptors: let MDA and MDB two molecular
descriptors that belong to Mat training database. These molecular descriptors are
similar for the i–th material of database if only if the Bhattacharyya Distance (BD) [17]
between Mat½i; MDA� and Mat½i; MDB� is lower than a predefined threshold, hBD.
Taking into account that BD measures the similarity of two discrete probability dis-
tributions, therefore, the similarity ratio between MDA and MDB can be defined as the
proportion between the number of materials where these MDs have a BD below hBD
and the number of materials, m, available in Mat.

Using these definitions, the FS4RVDD algorithm can be explained. The method has
two main phases. In the first one, a ranking among the molecular descriptors is gen-
erated based on their linear correlations with the target property. In order to define this
ranking, k samples from each MD are computed by means of the discrete distributions
which relate each MD with the different materials included in the training dataset.
Therefore, k correlation coefficients are calculated between each of these samples
associated with a MD and the target property, Y . After that, the correlation point
estimator and its variance are estimated for each MD. Finally, the MDs are sorted by
decreasing order using their correlation point estimator values. If two MDs have the
same value, the second criteria for sorting is based on lower variance; and if two MDs
have the same point estimator and variance values, they are sorted in alphabetic order.
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In the second phase of the algorithm, all the MDs with a correlation point estimator
value below a predefined threshold is removed from the ranking. Therefore, the
remaining MDs in the ranking are contrasted in a pair-wise fashion in order to detect
MDs with similar discrete distributions. For this task, the Bhattacharyya Distance is
used for comparing the distributions associated with each pair of MDs for each material
in the training dataset. If two MD have a similarity ratio higher than some predefined
threshold, the MD with a lower position in the ranking is removed. The goal is to
achieve a subset of MDs with a low degree of redundancy. As the last step, the final
subset of selected features is cutoff to the maximum cardinality, defined by the user as a
constraint, if it is necessary.
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2.3 Inferring QSPR Models from Variables with Uncertainty

In order to evaluate the performance of the FS4RVDD algorithm, it is necessary to define a
computational approach for inferring QSPR models from molecular descriptors repre-
sented as discrete distributions. Let MatSSF a submatrix ofMat, which only includes the
columns corresponding to themolecular descriptors selected by FS4RVDD.A real-valued
matrix sMatSSF can be obtained by random sampling the discrete distributions included as
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entries ofMatSSF . In this way, the sampled sMatSSF matrix can be considered a particular
instance of the information represented by MatSSF . Thus, from sMatSSF and Y , a QSPR
model can be inferred for this instance using a traditional regression method. Therefore, if
several instances ofMatSSF are obtained by random sampling, a consensus QSPR model
can be defined from the distribution of outcomes, DDY , generated by the QSPR models
inferred by the different instances. Finally, the Ŷ value estimated by consensus will be the
mean of DDY . Figure 3 outlines this approach.

Applying a QSPR Model Based on Variables with Uncertainty to a New Material
As a final methodological point, it is necessary to define how the consensus QSPR
model is applied to a new material, matnew, during the validation step. This new
material, not included in the training dataset (Mat), can be represented as a vector. Each
entry of matnew is a discrete distribution associated with one of the molecular
descriptors included in SSF. Using these distributions, it is possible to define several
instances of this vector by random sampling. These instances of matnew can be used as
inputs for each QSPRModell and, consequently, a discrete distribution, DDYl , of Y
values can be generated from the outcomes of each model. As before, the mean of DDYl
can be reported of the Y value estimated for QSPRModell. Finally, the Y consensus
value can be estimated as the mean of DDY generated from the matnew estimations.
Figure 4 schematizes this procedure.

3 Results

3.1 Synthetic Data

Generate a database with real values of molecular descriptors for high molecular weight
polymers has a high computational cost. This is because the molecules must exceed the
average molecular weight that characterizes them. Today, it is not possible to perform

Fig. 3. Inference of a QSPR model from a matrix obtained by sampling p-times the discrete
distributions associated to the selected subset of molecular descriptors.
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this type of calculation with the software that is available for molecular modeling and
calculation of descriptors [18, 19]. For this reason, a software for generating synthetic
databases was implemented as part of this work. This tool allows developing a proof of
concept of the proposed methodology, for studying the soundness and scalability of
FS4RVDD.

For obtaining the synthetic database (see Fig. 5), it was necessary to generate a
table of materials (see 1 in Fig. 5) represented by a discretized lognormal distribution
which typically characterizes the polydispersity (see Fig. 1). For this purpose, two
random numbers were generated for each material, corresponding to the mean and
standard deviation of the distribution of molecular weights. Thus, a vector of coor-
dinates is saved in the table of materials for each material, with a length equal to
sampling.size, where the first value represents the different sampled molecular weights
(x-axis) and the second one the frequencies (y-axis).

In a second step, the increasing values that the descriptors take for the different
instances of each material are simulated (2 in Fig. 5). These vectors correspond to the
y-axis in Fig. 2.a. In order to construct each one of these vectors, two random numbers
were generated, start and step. In this way, the lowest value associated to the descriptor
will coincide with start, while the subsequent values will be defined sequentially

Fig. 4. Inference of the target property for a new material, using the consensus QSPR model, by
sampling q-times the discrete distributions associated to its molecular descriptors.

Fig. 5. Methodology for synthetic dataset generation.
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adding step until all the observations are completed. Then, the dataset core generation
starts (2 in Fig. 5). Each cell i; jð Þ of the core corresponds to the distribution of values
for the j-th descriptor for the i-th material, like the plot represented in Fig. 2.b. These
cells are represented as coordinates vectors in a manner that the y-axis of the cell i; jð Þ
coincides with the y-axis of the i-th material, while the x-axis is built from the values
randomly generated for each cell, start and step. Hence, the lowest value associated
with the descriptor will coincide with start, while the subsequent values will be defined
by adding step until all the observations are completed.

The final step is the generation of the target (see 3 in Fig. 5), for which it is
necessary to randomly select as many descriptors as one desires to correlate with the
output variable. Finally, the target vector is defined by fitting a linear correlation to the
means of the distributions associated to the chosen descriptors.

3.2 Experiments

Four dataset cores with a different number of materials (200, 400, 800 and 1600) had
been generated using the procedure described in Sect. 3.1. In all cases, the number of
molecular descriptors per table was fixed in 100. For each dataset core, four target
vectors were computed by linear correlation assuming different cardinalities for the
selected subset of molecular descriptors (5, 10, 15 and 20). Therefore, a total amount of
sixteen synthetic datasets were created for the experiments in order to evaluate the
performance scalability of the FS4RVDD algorithm.

The performance metrics calculated in these experiments have been choosing in
order to assess the algorithm skills for recovering the correct subset of features. In other
words, as an exercise of reverse engineering, the goal is to determine if FS4RVDD can
trace back the subset of features artificially correlated with the target during the creation
of the synthetic datasets. The computed metrics are four: Accuracy, which represents
the percentage of features correctly classified as selected or not selected; Mean
Absolute Percentage Error (MAPE), which is a measure of prediction accuracy of a
statistical forecasting method (0% and 100% represent the best and worst performance
respectively); Sensitivity, which measures the proportion of positives cases that are
correctly identified as such; and Specificity, which measures the proportion of nega-
tives cases that are correctly identified as such. In the context of this work, the positive
cases correspond to features that belong to the selected subset, whereas the remaining
features constitute negative cases.

Table 1 and Fig. 6 show the metrics values obtained by the experiments. The
accuracy does not present significant variations when the size of the data set is
increased. Nonetheless, the values decline with increment in the cardinality of the
selected subsets. In general terms, the accuracy values are moderately high although
this observation is tricky because they are a consequence of the strong unbalance
between the number of positive and negative cases. This can be concluded from the
inspection of the sensitivity and specificity values.

On the other hand, MAPE values trend to improve when the dataset size and the
selected subset cardinality are incremented. This is an expected result considering that
when bigger the number of materials and the selected features are, its simpler to detect
the linear correlations with the target.
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4 Conclusions

Feature selection (FS) is a well-known combinatorial optimization problem extensively
studied for different real-world environments, which usually request the design of novel
approaches for dealing with new emerging fields such as Big Data or Data Streaming
applications [10]. In particular, a challenging feature selection problem in the area of

Table 1. Metrics values obtained for each data set (200, 400, 800 and 1600 materials) with the
different cardinalities for the selected subset of molecular descriptors (5, 10, 15 and 20).

# Materials #MD Selected Accuracy MAPE Sensitivity Specificity

200 5 96.00% 13.30% 60.00% 97.89%
10 86.00% 12.28% 30.00% 92.22%
15 82.00% 11.97% 40.00% 89.41%
20 78.00% 11.23% 45.00% 86.25%

400 5 96.00% 13.68% 60.00% 97.89%
10 90.00% 13.79% 50.00% 94.44%
15 80.00% 9.45% 33.33% 88.24%
20 78.00% 9.93% 45.00% 86.25%

800 5 96.00% 13.26% 60.00% 97.89%
10 90.00% 12.73% 50.00% 94.44%
15 88.00% 11.36% 60.00% 92.94%
20 82.00% 9.36% 55.00% 88.75%

1600 5 100.00% 13.23% 100.00% 100.00%
10 98.00% 10.50% 90.00% 98.89%
15 90.00% 10.08% 66.67% 94.12%
20 80.00% 8.95% 50.00% 87.50%

Fig. 6. Graphical representation of the metrics computed for each experiment.
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Quantitative Structure–Property Relationship (QSPR) for Polymer Informatics has
been addressed in this paper. The main characteristic of this scenario is the uncertainty
introduced for the polymerization phenomenon intrinsic to these industrial materials,
which makes necessary to represent the molecular descriptor values (feature values) as
probabilistic distributions.

Following this probabilistic representation a new feature selection method, called
with the acronym FS4RVDD, has been proposed in this work. This new FS approach
has two main steps: feature ranking definition by correlation analysis and iterative
subset reduction by redundancy analysis based on the Bhattacharyya Distance as a
similarity measure between molecular descriptors. The performance of the method has
been assessed by using synthetic datasets of different sizes and varying the number of
features to be selected in the experiments.

From these preliminary results, it is possible to conclude that the mathematical
representation and FS method proposed in this paper are suitable for handling the
uncertainty inherent to this particular QSPR problem. Nevertheless, more trials are
indispensable for testing this approach under several experimental conditions, by
incorporating different levels of noise and more type of correlations among features and
target variables in the synthetic data generation procedure.

In summary, as far as we know, the FS4RVDD algorithm constitutes the first feature
selection method proposed for selecting subsets of molecular descriptors in the context
of polymeric material design. Therefore, the main contribution of this paper is to
present a proof of concept of this general idea for discussion in our scientific com-
munity, as a previous step for more exhaustive validations and potential improvements
of the proposed approach.
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Abstract. This article presents and evaluates twenty-four novel bi-
objective efficient heuristics for the simultaneous optimization of
makespan and robustness in the context of the static robust tasks map-
ping problem for datacenters. The experimental analysis compares the
proposed methods over realistic problem scenarios. We study their accu-
racy, as well as the regions of the search space they explore, by comparing
versus state-of-the-art Pareto fronts, obtained with four different special-
ized versions of well-known multi-objective evolutionary algorithms.

Keywords: Independent tasks scheduling · Robustness optimization

1 Introduction

The scheduling problem proposes assigning resources to a set of processes (usu-
ally modeled by a set of tasks), such that the resources are effectively shared or
a given quality of service metric is optimized. There are many different variants
of the problem, depending on how resources and processes are defined [3,16].

All effective scheduling algorithms consider that the time to perform a task is
known beforehand. This assumption is realistic in some versions of the problem
(e.g., manufacturing processes [10]), but not in the case of scheduling computing
tasks in datacenters, considered in this article. The reason is that accurately
predicting the time a process takes in a given processor is an open problem yet.
Therefore, estimations are used to approximate the execution time [4]. Because
estimations are often not accurate, they lead to considerable performance loss of
the system. Looking for solutions that are robust against such inaccuracies may
help alleviating, or even neglecting, the performance decrease they produce.

Scheduling independent tasks is common in datacenters [4,20,22], where inde-
pendent users submit their jobs to distributed computing infrastructures. The
performance of a schedule is measured in terms of the makespan or total execu-
tion time. It is an NP-complete problem [11].
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This article addresses a multi-objective version of the problem, considering
the robustness of the schedule against inaccuracies in the execution time esti-
mation of tasks, together with the makespan. The objective of this problem is
to find schedules that not only execute all tasks as quickly as possible, but are
resilient to inaccuracies in the execution time estimations of the tasks. These
two objectives are in conflict. This article proposes designing a number of fast
heuristics, suitable for real environments, and analyze their results.

The main contributions of this article are: (i) the formulation and implemen-
tation of twenty-four bi-objective efficient greedy scheduling heuristics for the
simultaneous optimization of makespan and robustness ratio in datacenters, (ii)
the experimental analysis comparing the proposed methods, performed over real-
istic problem scenarios, and (iii) the study of the accuracy of the methods and
the regions of the search space they explore by comparing versus state-of-the-
art Pareto fronts, obtained with four different specialized versions of well-known
multi-objective evolutionary algorithms (MOEAs).

The article is organized as follows. Next section reviews the main related
works in literature about the robust scheduling problem and similar variants.
Section 3 presents the problem formulation. The greedy scheduling algorithms
proposed in this work are introduced in Sect. 4. The experimental analysis of the
proposed methods is reported in Sect. 5. Finally, Sect. 6 summarizes the main
conclusions and formulates the main lines for future work.

2 Related Work

Only a few works proposing mathematical metrics to quantify the robustness of
schedules exist, and they cannot guarantee the correct behavior of the schedule
against uncertainties. Leon et al. [15] studied different robustness measures and
analyzed the impact on improving the average performance of the schedules after
several breakdowns. Jensen [13] defined the robustness of a schedule with task
dependencies in terms of the variation in the makespan when rescheduling after
a breakdown. Carretero et al. [5] compared robustness metrics for scheduling par-
allel applications, defined in terms of the makespan variation (standard deviation)
of different realizations of the same schedules. They proposed several algorithms to
optimize makespan and robustness, and they claim that solutions offer a smaller
variation in makespan, compared to regular schedulers. Other works focused on
optimizing the worst case, thus obtaining highly robust solutions [14], but with
low makespan.

Ali et al. [1] proposed a robustness metric for allocating independent tasks in
heterogeneous computing systems guaranteeing that, if the differences between
actual and estimated task execution times is within a certain range, then a given
makespan requirement is met. This metric was used in our previous work [8] using
different state-of-the-art MOEAs. Iturriaga et al. [12] studied the energy-aware
scheduling problem in heterogeneous computing systems considering uncertainty.
Versions of well-known scheduling heuristics were proposed for applying a real-
istic power consumption model [21]. A model for uncertainty on power con-
sumption was determined through empirical evaluations using three CPU-bound
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benchmarks. Results confirmed that uncertainly has a significant impact in the
accuracy of the scheduling algorithms.

In [9,23], authors focus on finding schedules that are somehow flexible to
uncertainties. A flexible schedule is expected to be less affected by those uncer-
tainties (e.g., by some delay) than a regular schedule. De Falco et al. [7] applied
a true multi-objective approach in which some kind of robustness is considered
by optimizing, together with the resource utilization, the resources reliability by
assigning some static reliability values to every resource in the problem defini-
tion. However, none of these techniques provide any exact metric to measure
the flexibility (how they defined the robustness) of a solution, and therefore no
guarantee can be assured on the robustness level of the solution.

Several works deal with robustness in other scheduling domains, as the robust
software planning and scheduling [2,17] or robust flight schedules to minimize
the impact of unplanned events as delays or disruptions [6].

3 The Robust Static Mapping Problem

This section presents the Robust Static Mapping Problem (RSMP) for robust
assignment of independent tasks on heterogeneous computing systems.

Consider the following elements:

– A set of n independent tasks T = {t1, t2, . . . , tn} to be scheduled. Each task
ti has a workload wi (in millions of instructions).

– A pool of k heterogeneous machines M = {m1,m2, . . . ,mk} available for exe-
cuting tasks. Each machine has a computing capacity (in millions of instruc-
tions per second).

– The ready time (readyj) indicates when machine j will finish the previously
assigned tasks. Without loss of generality, the problem formulation assumes
readyj = 0 for every machine.

– The Expected Time to Compute (ETC) matrix (nb tasks×nb machines) in
which ETC[i][j] is the expected execution time of task ti on machine mj .

Tasks must be processed by a single machine. Machines can process one task
at a time, and are heterogeneous. The RSMP proposes allocating the tasks on
the available machines minimizing the makespan of the schedule, while at the
same time its robustness is maximized. These two objectives are defined below.

– Makespan is defined as the maximum completion time of all the resources
used in the schedule. The completion time of a machine mj in schedule S is
defined in Eq. 1, S(j) is the set of tasks assigned to mj , and C is a matrix with
the actual times to compute the tasks in every machine (C = ETC when not
considering errors in the estimation of the duration of tasks). The makespan
function is defined in Eq. 2, where x represents an allocation.

Fj(C) = readyj +
∑

t∈S(j)

Ct,j (1)

fM (x) = max{Fj(C)} (2)
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– The robustness metric is defined as the minimum of the robustness radii of
the machines [1]. The robustness radius is the smallest collective increase in
the error that would cost the finishing time of a machine to be τ times the
original, as defined by Eq. 3, where Morig is the makespan of the schedule
with the estimated ETC values and Fj(Corig) is the ETC of tasks assigned
to machine mj . This robustness metric assures that if the c even when all the
task execution times are increased in a percentage ρ, the makespan will not
be increased beyond that percentage.

fR(x) = min
τ · Morig − Fj(Corig)√

number of tasks allocated to mj

(3)

The multi-objective RSMP propose finding schedules that minimizes the
makespan (fM ) and maximizes the robustness (fR). These objectives are in
conflict, thus multi-objective optimization methods must be applied.

4 Algorithms for Robust Scheduling in Datacenters

This section presents the algorithms applied in this article to solve the RSMP.

4.1 Greedy Scheduling Heuristics

Greedy scheduling techniques are deterministic static scheduling methods that
work by assigning priorities to tasks, based on a particular ad-hoc heuristic [18].
After that, the list of tasks is sorted in decreasing priority and each task is
assigned to a processor, regarding the task priority and the processor availability.

Some of the most popular heuristics in this class include [4]:

– MinMin: starting from a set U of all unmapped tasks, determines the machine
that provides the Minimum Completion Time (MCT) for each task in U , and
assigns the task with the minimum overall MCT to its best machine. The
mapped task is removed from U , and the process is repeated until all tasks
are mapped.

– MaxMin: is similar to MinMin, but it assigns the task with the overall maxi-
mum MCT to its MCT machine. Therefore, larger tasks are allocated first in
the most suitable machines and shorter tasks are mapped afterward, with the
aim of balancing the load of all available machines.

– Sufferage: identifies the task that will suffer the most if it is not assigned to
a certain host. The sufferage value is computed as the difference between the
best MCT of the task and its second-best MCT. For a particular machine,
Sufferage gives precedence to the task with highest sufferage value, assigning
it to the machine that can complete it at the earliest time.

MinMin, MaxMin, and Sufferage follow a generic schema that applies two
phases to perform the task-to-resource assignment: in the first phase, N pairs
(task, machine) are selected considering a specific criterion, and in the second
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phase one of those N pairs is selected after an overall comparison. These heuris-
tics were conceived for optimizing only one objective function (makespan), thus
the criteria applied in the two phases are related to the makespan. This arti-
cle extends the generic schema for the simultaneous optimization of the two
objective functions considered in the RSMP (makespan and robustness).

4.2 Greedy Heuristics for Makespan and Robustness Optimization

The proposed heuristics work in two phases, considering makespan or robust-
ness optimization criterion in each phase. Twenty-four heuristics were designed.
They have been named using the following convention: the criteria that optimize
the makespan metric are written in lower case (e.g.: Min, Max, Suff), and the
criteria focusing on robustness are written in upper case (e.g.: MIN, MAX). The
same convention applies to strategies that use a k-percent-best list: kpb in lower
case indicates a list sorted by MCT, while KPB in upper case stands for a list
sorted by robustness. The name starts with the kpb/KPB specification (if used),
followed by the abbreviation of the second and first criteria, in that order:
[kpb/KPB][.]<phase 2 criterion><phase 1 criterion>

The studied heuristics for makespan and robustness ratio optimization are:

1. MinMin: the traditional MinMin heuristic, optimizing only makespan.
2. MaxMin: the traditional MaxMin heuristic, optimizing only makespan.
3. Sufferage: the traditional Sufferage heuristic, optimizing only makespan.
4. MAXMin: selects pairs (ti,mj) minimizing the MCT (phase 1), and then

selects the pair that maximizes the robustness ratio (phase 2).
5. MinMAX : selects pairs (ti,mj) maximizing the robustness ratio (phase 1),

and then selects the pair that that minimizes the MCT (phase 2).
6. MAXMAX : selects pairs (ti,mj) maximizing the robustness ratio (phase 1),

and then selects the pair that maximizes the robustness ratio (phase 2).
7. MINMAX : selects pairs (ti,mj) maximizing the robustness ratio (phase 1),

and then selects the pair that minimizes the robustness ratio (phase 2).
8. SuffMAX : selects pairs (ti,mj) maximizing the robustness ratio (phase 1),

and then selects the pair that minimizes sufferage (phase 2).
9. MAXSuff : selects pairs (ti,mj) minimizing the sufferage (phase 1), and then

selects the pair that maximizes the robustness ratio (phase 2).

The k-percent-best variants of the proposed heuristics consider the MCT or
robustness to restrict the list of candidate machines for each task used in phase
1 to the best k machines, according to the selected criterion. We set k to 30%
of the machines in each instance, after a preliminary sensitivity analysis. This
way, kpb.MinMin, kpb.MaxMin, kpb.Sufferage, kpb.MAXMin, kpb.MinMAX,
kpb.MAXMAX, kpb.MINMAX, kpb.SuffMAX, and kpb.MAXSuff only consider
in phase 1 the 30% best machines, in terms of MCT for every task. Simi-
larly, heuristics KPB.MinMin, KPB.MaxMin, KPB.Sufferage, KPB.MAXMin,
KPB.SuffMAX, and KPB.MAXSuff only consider in phase 1 the top 30%
machines with the largest robustness ratio for every task.
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5 Experimental Analysis

This section describes the experimental evaluation of the proposed greedy
scheduling heuristics for makespan and robustness optimization.

Table 1. Average makespan and robustness results for the greedy scheduling heuristics

Heuristic HTRH LTRH

Makespan Robustness Makespan Robustness

MinMin 5797.4 303.3 18047.6 947.2

MaxMin 10235.0 505.1 28116.2 1452.7

Sufferage 5045.1 258.9 17610.4 914.1

MAXMin 6630.5 341.9 20971.3 1085.8

MinMAX 17472.6 1285.4 20404.4 1123.9

MAXMAX 22572.3 2880.7 24801.2 1635.9

MINMAX 26317.3 3664.2 26881.1 1915.9

MAXSuff 6630.5 341.9 20971.3 1085.8

SuffMAX 30023.0 4185.4 28014.2 2124.0

kpb.MinMin 5798.9 303.8 18152.7 949.9

kpb.MaxMin 8240.6 396.9 21526.3 1094.0

kpb.Sufferage 5155.9 263.5 17844.9 925.9

kpb.MAXMin 6471.3 334.2 19960.7 1036.5

kpb.MinMAX 6985.8 372.2 19478.5 1025.5

kpb.MAXMAX 10912.0 953.0 23562.8 1375.7

kpb.MINMAX 7919.1 473.5 20671.6 1134.1

kpb.SuffMAX 8932.2 738.7 21544.8 1260.1

kpb.MAXSuff 6462.9 333.4 19960.7 1036.5

KPB.MinMin 54771.3 2869.6 41964.9 2197.2

KPB.MaxMin 63537.5 3066.2 46450.6 2358.2

KPB.Sufferage 50758.7 2570.7 41463.9 2150.4

KPB.MAXMin 57419.3 2979.3 44165.9 2296.2

KPB.MAXSuff 57419.3 2979.3 44165.9 2296.2

KPB.SuffMAX 69956.5 5180.4 46972.4 2705.8

5.1 Methodology

Problem scenarios. Two different problem classes are considered: High Task and
Resource Heterogeneity (HTRH) and Low Task and Resource Heterogeneity
(LTRH). Task heterogeneity represents the variation of the tasks execution times
for a given machine. Resource heterogeneity evaluates the variation of execution
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times for a given task across the available machines. 200 problem instances are
solved (100 for each of the two studied problem classes, using 100 different ETC
matrices). Instances were generated using the coefficient of variation method for
ETC matrices. All instances are composed of 512 independent tasks that must
be scheduled on a cluster of 16 machines, as proposed in related works [4,24].
The length of tasks in all instances are within the same range.

Development and execution platform. The proposed heuristics were implemented
in C language. The experimental evaluation was performed on a Dell PowerEdge
(QuadCore Xeon E5430 processor at 2.66 GHz, 8GB RAM and CentOS Linux),
from Cluster FING, Universidad de la República, Uruguay [19].

Baseline for comparison. Four state-of-the-art MOEAs were selected for the
results comparison: IBEA, MOCell, MOEA/D, and NSGA-II. These methods
provide competitive results for the problem solved in this article [8].

5.2 Numerical Results and Discussion

Table 1 reports the average makespan and robustness results for the greedy
scheduling heuristics when solving the HTRH and LTRH scenarios. The results
indicate that the traditional Sufferage method is the best heuristic regarding the
makespan optimization in the two scenarios. However, the combined heuristic
KPB.SuffMAX, using a k-percent-best list of machines based on the maximum
robustness ratio, is the best option for maximizing the robustness of solutions.

The KPB versions of the heuristics find more robust solutions than their
original counterparts. For instance, SuffMAX is the second best heuristic for
HTRH (after KPB.SuffMAX), with 19.2% worse robustness quality in average.
For LTRH, SuffMAX is 21.5% worse than its KPB version in terms of robustness.
Indeed, using KPB increases the robustness by up to 89.9% for Sufferage, but at
the cost of 90.1% increase in makespan. Incorporating the kpb policy generally
leads to makespan reductions, but it also worsens the robustness.

Figures 1 and 2 show how the heuristics find similar robustness and makespan
values for all instances, with a few exceptions (mainly for HTRH). There are sta-
tistically significant differences when the notches of the boxes are not overlapped.

Several heuristics provide accurate trade-off values between makespan and
robustness ratio, as shown in the sample trade-off analysis for HTRH scenario
in Fig. 3. SuffMAX, MAXMAX, and MINMAX compute balanced schedules,
providing the best compromise values for makespan and robustness. The KBP
heuristics are located on the right-most part, and the rest are in the bottom left
region. A similar situation holds for the LTRH scenario. The best heuristics for
makespan have the worst robustness values, confirming the conflicting nature of
the two objectives.

Table 2 reports the average ranks of each heuristic computed by the non-
parametric Friedman statistical test for each objective and problem class, regard-
ing makespan and robustness results. For example, a makespan rank value of 3
means that a given method occupied, on average, the third position when sorting
the twenty heuristics regarding the makespan values (the average is computed
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Fig. 1. Boxplot results for the 100 HTRH instances

over the 100 instances in each problem class). In all cases, the p-values of the
Friedman test was lower than 0.095, therefore the differences between the algo-
rithms are statistically significant with 95% confidence.

Table 2 confirms Sufferage as the best heuristic in terms of makespan, and
KPB.SuffMAX in the case of robustness. The kpb and KPB versions of the
heuristics usually lead to better quality solutions in terms of makespan and
robustness, respectively. Additionally, the best heuristics for makespan are
among the worst ones in terms of robustness, and vice-versa. The best trade-off
algorithms are SuffMAX, MAXMAX, and MINMAX for HTRH, according to
the analysis in Fig. 3. The same algorithms are the best ones for LTRH, together
with kbp.MINMAX, which is slightly better positioned than they three.

Figure 4 shows representative cases of the comparison of the results of the
proposed heuristics (plotted as ‘+’) versus the Pareto fronts from [8], built with
the best non-dominated solutions of four state-of-the-art MOEAs, hybridized
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Fig. 2. Boxplot results for the 100 LTRH instances

with specific operators for the problem (plotted as ‘·’). Results are encouraging.
In the region with the lowest makespan solutions, heuristics results are very close
to the reference Pareto fronts, for all instances. In some cases, the best heuristics
dominate solutions from the reference Pareto front, finding schedules with higher
robustness at similar makespan values. This is the case of kpb.MINMAX for
HTRH instance number 0 and KBP.SuffMax for LTRH instance number 35.

The heuristics find a large variety of results, covering a wide area of trade-
off solutions and are much more efficient than state-of-the-art methods. Indeed,
the runtime of the heuristics is about 0.01 seconds, while the reference Pareto
front was built from the results of 100 independent runs of four MOEAs with
runtime between 40 and 200 seconds per run, for every algorithm. Please note
that offering a quick response is crucial for this problem.
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Table 2. Average Friedman ranks for the proposed heuristics

HTRH LTRH

Makespan Robustness Makespan Robustness

Algorithm Rank Algorithm Rank Algorithm Rank Algorithm Rank

Sufferage 1.24 KPB.SuffMAX 1.45 Sufferage 1.21 KPB.SuffMAX 1.01

kpb.Sufferage 1.85 SuffMAX 2.84 kpb.Sufferage 2.31 KPB.MaxMin 2.51

MinMin 3.65 MINMAX 3.65 MinMin 3.03 KPB.MAXSuff 3.52

kpb.MinMin 3.77 KPB.MaxMin 4.96 kpb.MinMin 3.45 KPB.MAXMin 3.52

kpb.MAXSuff 5.96 KPB.MAXSuff 5.66 kpb.MinMAX 5.71 KPB.MinMin 5.40

kpb.MAXMin 6.98 KPB.MAXMin 5.66 kpb.MAXMin 6.81 SuffMAX 6.22

MAXMin 7.57 MAXMAX 6.42 kpb.MAXSuff 6.81 KPB.Sufferage 6.27

MAXSuff 7.57 KPB.MinMin 6.49 MinMAX 8.37 MINMAX 8.06

kpb.MinMAX 8.15 KPB.Sufferage 8.12 kpb.MINMAX 9.38 MAXMAX 8.93

kpb.MINMAX 10.05 MinMAX 10.06 MAXSuff 10.09 MaxMin 9.92

kpb.MaxMin 10.88 kpb.MAXMAX 10.90 MAXMin 10.09 kpb.MAXMAX 10.84

kpb.SuffMAX 11.60 kpb.SuffMAX 11.97 kpb.SuffMAX 11.93 kpb.SuffMAX 12.06

MaxMin 13.21 MaxMin 13.20 kpb.MaxMin 12.04 kpb.MINMAX 14.00

kpb.MAXMAX 13.74 kpb.MINMAX 13.82 kpb.MAXMAX 14.45 MinMAX 14.66

MinMAX 15.43 kpb.MaxMin 15.49 MAXMAX 15.06 kpb.MaxMin 15.50

MAXMAX 16.29 kpb.MinMAX 16.63 MINMAX 15.98 MAXMin 15.76

MINMAX 16.85 MAXMin 18.34 SuffMAX 17.16 MAXSuff 15.76

SuffMAX 17.32 MAXSuff 18.34 MaxMin 17.32 kpb.MAXSuff 18.60

KPB.Sufferage 18.99 kpb.MAXMin 18.68 KPB.Sufferage 19.18 kpb.MAXMin 18.40

KPB.MinMin 20.20 kpb.MAXSuff 18.70 KPB.MinMin 19.82 kpb.MinMAX 18.97

KPB.MAXMin 21.40 MinMin 21.00 KPB.MAXSuff 21.50 kpb.MinMin 21.87

KPB.MAXSuff 21.40 kpb.MinMin 21.16 KPB.MAXMin 21.50 MinMin 21.88

KPB.MaxMin 23.08 kpb.Sufferage 23.12 KPB.MaxMin 23.37 kpb.Sufferage 22.90

KPB.SuffMAX 23.81 Sufferage 23.35 KPB.SuffMAX 23.63 Sufferage 23.30

Fig. 3. Trade-off analysis for the HTRH scenario
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Fig. 4. Results comparison: heuristics (‘+’) and the reference Pareto front [8]

6 Conclusions and Future Work

This article addresses the robust scheduling problem in heterogeneous computing
datacenters. This is a very important problem to address the uncertainties due
to the lack of accurate estimations on the time required to perform tasks, trying
to reduce the negative impact of such inaccuracies on the system performance.

The bi-objective problem of simultaneously optimizing the makespan and the
robustness ratio of the computed schedules against inaccuracies in the execution
time estimation of tasks, was formulated. These two objectives are in conflict,
since reducing the makespan implies also reducing the robustness of the schedule.

Twenty-four greedy scheduling heuristics were proposed and evaluated. These
heuristics are able to compute different trade-off solutions for the problem in effi-
cient execution time, thus being more suitable for scheduling in real heteroge-
neous computing infrastructures. The proposed methods were designed following
a two-phase approach considering the two objectives in the problem.

The experimental analysis demonstrated that accurate schedules are com-
puted by the proposed heuristics. Results indicate that the traditional Sufferage
method is the best heuristic for optimizing makespan. However, KPB.SuffMAX,
applying the two-phase approach and a k-percent-best list of machines based
on the maximum robustness ratio, is the best option for maximizing robustness.
In addition, several other heuristics provide accurate trade-off values between
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the makespan and robustness ratio results, as the trade-off and Pareto analysis
shows. Results showed that MAXMAX, MINMAX, and SuffMAX are the most
accurate heuristics, accounting for both objectives on all problem instances.

When comparing the results against state-of-the-art Pareto fronts for the
problem, computed using accurate MOEAs, the proposed heuristics provide very
accurate trade-off solutions, specially in the region of the Pareto front with lower
makespan and robustness values. In some cases, the heuristics are even able
to find solutions dominating some regions of the Pareto front, providing better
robustness for similar makespan values. These Pareto fronts were computed after
performing 100 independent runs of four well-known multi-objective evolutionary
algorithms. One single run of these evolutionary algorithms takes 1000 times
longer than one run of any proposed heuristic.

The main lines for future work include the hybridization of heuristics with
more complex parallel algorithms to find more accurate solutions to the problem
in reasonably short times and identifying/exploring deeply regions of interest in
the Pareto front for some specific systems.

Acknowledgment. B. Dorronsoro would like to acknowledge the Spanish MINECO
and ERDF for the support provided under contract TIN2014-60844-R (the SAVANT
project). The work of S. Nesmachnow is partly funded by ANII and PEDECIBA,
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Abstract. Games offer a suitable testbed where new methodologies and
algorithms can be tested in a near-real life environment. For example, in
a car driving game, using transfer learning or other techniques results can
be generalized to autonomous driving environments. In this work, we use
evolutionary algorithms to optimize a fuzzy autonomous driver for the
open simulated car racing game TORCS. The Genetic Algorithm applied
improves the fuzzy systems to set an optimal target speed as well as the
instantaneous steering angle during the race. Thus, the approach offer an
automatic way to define the membership functions, instead of a manual
or hill-climbing descent method. However, the main issue with this kind
of algorithms is to define a proper fitness function that best delivers the
obtained result, which is eventually to win as many races as possible. In
this paper we define two different evaluation functions, and prove that
fine-tuning the controller via evolutionary algorithms robustly finds good
results and that, in many cases, they are able to play very competitively
against other published results, with a more relying approach that needs
very few parameters to tune. The optimized fuzzy-controllers (one per
fitness) yield a very good performance, mainly in tracks that have many
turning points, which are, in turn, the most difficult for any autonomous
agent. Experimental results show that the enhanced controllers are very
competitive with respect to the embedded TORCS drivers, and much
more efficient in driving than the original fuzzy-controller.
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1 Introduction

Autonomous driving has become a hot research topic since many traditional
and emerging companies have entered the arena of their design and manufacture.
Automotive industry needs the creation of real self-driving cars that can travel in
everyday roads and streets or, for that matter, in a desert or hostile environment.
However, this is only an objective; autonomous vehicles should also optimize fuel
consumption as well as car safety and, in some cases, occupant comfort [10].

Optimization in car racing simulators or games can be placed in that con-
text, with solutions obtained there having utility beyond the game itself. For
instance, The Open Racing Car Simulator (TORCS) [21] is a realistic racing
simulator with a sophisticated engine which has been used for many standalone
racing competition challenges. This fact, combined with the possibility to com-
pare controllers, have made TORCS one of the most used simulator in the field
of autonomous driving [4,6,9,16].

Among the different types of controllers that have been used in TORCS,
fuzzy-based ones have proved to have one of the best performances, since they
simulate in part the human reasoning when driving [12,17]. Thus, the authors
presented previously an approach in which two specialized fuzzy controllers were
combined to decide the car’s steering angle and desired speed in every single
point (or tick) during a race [19]. It yielded good results in several tracks, but
the autonomous driver had some troubles in difficult circuits, such as those with
many curves or competing against tough rivals.

Its main disadvantage is related with the parameters of the fuzzy systems,
namely those which define the membership functions, which were set ‘manually’.
Thus, in this work we have considered this issue as an optimization problem, so
we have applied a real-coded Genetic Algorithm (GA) [7] to obtain the best
configuration.

This kind of algorithm mainly require the definition of a good evaluation or
fitness function, which will determinate the final performance of the solution (an
autonomous driver in this case). Thus, in order to evaluate an individual/solution
of the algorithm (a potential driver), we set the parameters which define its
Artificial Intelligence (AI) engine, and then we put it in a test race (with or
without rivals). Then, the fitness function follows two different approaches for
the evaluation: the first one is computed using the mean lap time and damage
obtained during the race, while the second also considers the maximum speed
reached.

Once optimized, the best genetic-fuzzy based controllers (one per fitness)
have been evaluated in a practice race (without rivals) first, and then in a real
race against different drivers in TORCS. According to the obtained results the
enhanced controllers perform both much better than the original fuzzy controller,
improving the lap time and reducing the received damage. Moreover they are
much more competitive against tough rivals, reaching high ranks in the most
difficult races.

The rest of the paper is organized as follows.Nextwe present the state of the art,
to be followed by a description of the TORCS simulator in Sect. 3 and the method
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for optimizing fuzzy controllers will be presented in Section Results will be pre-
sented next in Sect. 4. Finally, conclusions and future lines ofworkwill be presented
in Sect. 5.

2 State of the Art

Evolutionary algorithms have targeted TORCS almost since its publication, for
instance, for determining the optimal trajectory of a lap in a known circuit [18],
but this approach suffers from the problem that the obtained trajectory in the
evolving process strongly depends on the initial state of the car. In the same
context, the authors in [14] tried to design a novel approach to compute the
optimal racing line without any human intervention, using a GA to find the best
trade-off between the minimization of two conflicting objectives: the length and
the curvature of the racing line.

However, definitely, the most prolific area of application of EAs inside
TORCS has been the optimization of autonomous controllers for car driving,
i.e. conducting a meta-optimization process. Thus, EAs have been applied to
‘refine’ the parameters which define the driver’s behavior [1,9], or to improve the
structure/architecture of the models [11,20], working offline, or online (during
the game) [2,22]. Our approach is focused in this line, proposing the application
of an off-line genetic algorithm for the improvement of the parameters which
determine the behavior of a controller for TORCS. We have focused on a Fuzzy-
based model, as it is one of the best options for modeling human-like decisions
and actions, as others authors have also used this kind of technique in the litera-
ture with good results [17]. For instance, in [6], a fuzzy rule-based car controller
for a Car Racing Competition was built and tuned with co-evolutionary genetic
algorithms. Two fuzzy sub-controllers were designed (acceleration and turning
angle). But this approach was applied to a simpler simulator than TORCS which
is a more realistic and time-constrained simulator.

Pérez et al. introduced an evolutionary fuzzy approach for TORCS in [12],
where they applied EAs for improving fuzzy models to infer the acceleration and
turning angle. However, the models were not so specialized as the proposed here,
since their controller did not compute the target speed, which is a key factor for
a competitive controller.

Onieva et al. [16] presented a parametrized modular architecture with a fuzzy
system and a GA in the design of fuzzy logic controllers for steering wheel man-
agement that can reproduce human driver behavior, but it did not take the
target speed into account, unlike our previous controller [19] which computed
the target speed and the steer with two fuzzy sub-controllers and whose mem-
bership functions parameters were defined by trial/error process. In this paper,
we propose to optimize these parameters using a real coded genetic algorithm
aiming to improve the performance of the original fuzzy controller.
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3 Experimental Setup

The Open Racing Car Simulator (TORCS) [21] is an open source, modern, multi-
player, modular and portable racing simulator that allows users to race against
computer-controlled opponents. There is a large set of sensors [13] which the
car can consider during a race, such as distances to track borders, to rivals,
current fuel, current gear, position in the race, speed, or damage, among others.
A controller is a program, which runs inside TORCS, that automatically drives
a car. It gets as input information about the current state of the car and its
situation on the track (sensors). These collected data are used to decide actions
to perform in the next simulation tick.

The initial proposed controller [19] has the same modular architecture as the
simple TORCS driver, however, the target speed and steering angle are computed
by means of two modular and specialized fuzzy sub-controllers, which consider
five position sensors. This is the controller which will be improved by means of
a GA in this work.

The fuzzy target speed sub-controller aims to estimate the optimal target
speed of the car, both in straight parts and curves of the track, taking into
account two criteria: move as fast as possible and be safe. This estimation is
based on two general cases: if the car is in a straight line, the target speed will
take a maximum value (maxSpeed km/h). However, if it is close to a curve, the
controller will decrease the current speed to a value included in the interval
[minSpeed, maxSpeed] km/h.

This fuzzy controller has an output, the speed, and three input values:

– Front = Track 9: front distance to the track border (angle 0◦).
– M5 = max (Track 8, Track 10): max distance to the track border in an angle

of +5◦ and -5◦ with respect to Front.
– M10 = max (Track 7, Track 11): max distance to track border in an angle of

+10◦ and -10◦.

It is a Mamdani-based fuzzy system [8] with three trapezoidal Membership
Functions (MF) for every input variable. The description of these fuzzy inputs
and output are represented in Table 1. In [19] we set the values by hand; previ-
ously we had made initial tests using an evolutionary algorithm. In this paper we
will try to improve obtained results by fine-tuning this evolutionary algorithm.

Table 1. Fuzzy variables description.

Variable Range Name MF Low Medium High

Input [0–100] m Front trapezoidal [0–50] [20–80] [60–100]

Input [0–100] m M5 trapezoidal [0–40] [10–70] [50–100]

Input [0–100] m M10 trapezoidal [0–30] [20–60] [50–100]

Output [0–200] m/s TargetSpeed singleton / / /
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Theproposed optimization approach aims to find the optimal parameters of the
membership functions of the two sub-controllers previously introduced. The GA
starts by creating the initial population with random values for the parameters in
the defined range [0, 100]. The fitness of each candidate solution is computed by
injecting its gene values to the parameters of the membership functions of the two
fuzzy sub-controllers. The defined autonomous controller is used to drive a car in
a 20 laps race in a circuit without opponents, and the results (Top speed, Damage
and Mean Lap time) are used to compute the fitness value.

As previously stated, the designed fuzzy controllers have trapezoidal mem-
bership functions. In such a controller, fuzzy rules are applied to linguistic terms.
These terms, which qualify a linguistic variable, are defined through membership
functions, which, in turn, depend on a set of parameters that ‘describes’ their
shape (and operation). Using a GA we will optimize the parameters of the mem-
bership functions that constitute the fuzzy partition of the linguistic variable
[16]. The input linguistic variables in our problem, Front, Max5 and Max10, are
represented by three trapezoidal membership functions (See Table 1).

And a fuzzy partition with n trapezoidal membership functions is defined by
2n variables (a = x1,x2,. .., x2n = b) (Eq. 2). In this case, the representation is
given by the Fig. 1 with:

a = x1 ≤ x2 ≤ ... ≤ x2n−1 ≤ x2n = b (1)

μA1(x) =

⎧
⎨

⎩

1, x1 ≤ x ≤ x2
x3−x
x3−x2

, x2 ≤ x ≤ x3

0, x > x3

μAi(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, x ≤ x2i−2
x−x2i−2

x2i−1−x2i−2
, x2i−2 ≤ x ≤ x2i−1, n = 2, ..., i − 1

1, x2i−1 ≤ x ≤ x2i
x2i+1−x
x2i+1−x2i

, x2i ≤ x ≤ x2i+1

0, x > x2i+1

μAn(x) =

⎧
⎨

⎩

0, x ≤ x2n−2
x−x2n−2

x2n−1−x2n−2
, x2n−2 ≤ x ≤ x2n−1

1, x > x2n−1

(2)

When the number of parameters is reduced and their ranges of variations are
well defined, a GA with a binary coding is largely sufficient to find their optimal
values. On the other hand, if the number of parameters becomes important, and
their variation interval is not well known, the real coding is the most appropriate

Fig. 1. Trapezoidal-shaped MFs coding
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[3]. Since our work requires some precision and the variation interval of each
parameter is not well known, we have considered a real coding implementation
in a vector that includes all variables to optimize.

The initialization of the chromosomes (first population) is performed assign-
ing random values inside a range of variation [5], in order to start from feasible
values [19]. Tournament based selection has been used to elect chromosomes as
parents for genetic operators, while simple arithmetic two point crossover [23]
and non uniform mutation [15] have been chosen, as two of the most contrasted
methods in the literature.

The objective of the car controller is to win as many races as possible. How-
ever, we have to optimize the most general case by carrying out solo training
races in which we try to minimize the damage of the car (damage) and the
average lap time LapT ime, while maximizing TopSpeed. It is a multiobjective
optimization problem, but since we want to obtain a single controller, we will
have to use heuristics to derive two possible fitness functions:

GFC1:
f1 = damage + α · LapT ime (3)

GFC2:
f2 = damage + α · LapT ime + β · 1

TopSpeed
(4)

α and β are two heuristic weights. The main difference is in the use of the
TopSpeed in the fitness to enhance the controller performances in straight lines
aiming to reduce lap time and the overall race time. To evaluate the candidate
controllers during the evolutionary process, we will make each of them com-
pete in a 20 laps practice race in a medium difficulty circuit without rivals. We
have omitted the presence of opponents in order to avoid including additional
uncertainty sources to the optimization process.

Then, the obtained output values damage, LapT ime and TopSpeed are col-
lected to compute the corresponding fitness value. As a clarification, LapT ime
is the average of the 20 laps time.

4 Experimental Results

We will first need to choose whose tracks and cars are going to be used in the
experiment among the ones TORCS provides; in our case, we have selected the
E-Track5 circuit as it is a quite complex one, with multiple turns. car1-tbr1 has
been selected as the driving car [19]. According to previous experiments, this is
a fair choice due to its moderate performance. This will lead our controller to
be prepared to drive in the most usual conditions.

We have evaluated the FGC with the two proposed fitness functions, compar-
ing them for racing performance. Also, we have carried out two algorithm execu-
tions with two different population sizes: 20 and 50, respectively. The rest of the
parameters are: Generations = 50, Crossover rate = 0.7, Mutation rate = 0.3,
number of runs per configuration = 20.
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– GFC1: GA-Fuzzy controller with fitness 1 (Eq. 3).
– GFC2: GA-Fuzzy controller with fitness 2 (Eq. 4).

The coefficients α and β are chosen to be 1 and 10 ∗ MaxSpeed respectively,
where MaxSpeed is the maximum value of speed that car1-tbr1 could take
(MaxSpeed = 300) [19], this choice is motivated by the fact to normalize the
Top speed values and make them in the same level as other fitness terms. The
results of these runs are shown in Table 2. Wilcoxon rank sum non-parametric
test is used to reject or accept the null hypothesis of equality of medians of
the values of the two fitness functions for the 20 runs with 50 chromosomes.
The obtained p-value was p = 0.0011, this result lead to the rejection of null
hypothesis with a threshold α = 0.01 which allows us to conclude that the two
samples sets are different.

Table 2. Results of 10 runs of GA with the two fitness functions. Please bear in
mind that fitness follow different formula, and thus cannot be compared; LapTime and
Damage should be the quantities used for comparison.

With population size 20

GFC1 GFC2

Min GFC1 LapT ime Damage TopSpeed Min fit. 2 LapT ime Damage TopSpeed

Best 29.44 29.44 0 231 39.74 29.25 0 286

Mean 33.88 30.79 3.10 227.43 44.14 30.14 2.70 267.30

St. Dev. 5.61 1.18 4.58 32.55 6.73 0.78 5.81 22.03

With population size 50

GFC1 GFC2

Min GFC2 LapT ime Damage TopSpeed Min fit. 2 LapT ime Damage TopSpeed

Best 28.78 28.78 0 233 28.11 38.52 0 288

Mean 33.14 29.89 4.14 230.19 42.93 29.57 3.46 271.74

St. Dev. 4.98 1.32 4.22 31.14 5.63 0.93 5.19 23.90

Since the GFC2 controller also optimizes the TopSpeed, we can notice that it
is clearly superior to that of GFC1 which surely influences the overall Lap time.
This improvement in TopSpeed greatly increases the performance of the GFC2.

Increasing the population size to 50 has led to better values of the two con-
trollers, yielding better values for lap time, speed and damage. This increase in
the population size has allowed a better coverage of the research space, thus get-
ting closer to the optimal solution. The best solution obtained with each fitness
function from these runs will be used in races against selected opponents. The
shapes of the obtained membership functions are completely different from those
obtained by Trial/Error in the previous work [19] where the Medium linguistic
variable of the new functions has bigger range. This makes the controller very
sensitive to the middle distances of the inputs, like for a real driver who consid-
ers most of the cases the car distance from the borders in that range. The other
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remark from the obtained membership functions is the dimension of the common
range between the LOW and MEDIUM, which provide a higher diversity in the
output values.

The two best genetic based fuzzy controllers obtained in the previous exper-
iments, one per fitness function, and thus named GFC1 and GFC2, have been
tested in a practice race together. They have been run each one for 20 laps in
E-Track5 circuit, which was the one used during the evolution; then, they will
be tested also in a practice race in E-Road, a track not used previously. The
obtained results are presented in Table 3.

Table 3. Results of the three controllers in a 20 laps practice race. Results of the AD
controller [19], a hand-designed fuzzy controller, are included for comparison purposes
where tested.

From the table, we can see that the fuzzy controllers optimized by the GA
yield the best results, obtaining very good overall global race times and elimi-
nating damage, which is reduced to 0. For the sake of comparison, we include
the hand-designed AD controller [19], which finished the practice race where it
was tested with a lot of damage, implying that it could, in some difficult cases,
not finish the race. Testing the controllers in CG Track2, which is quite long and
difficult as it can be seen by the time it takes to run a single lap, has proved their
value in the adaptation to other tracks different from the one used for ‘training’,
that is, the optimization of the fuzzy controllers.

The GFC2 controller has run with a higher speed (considering overall Top
Speed and Min Speed) than GFC1 in the two tracks. This is a positive conse-
quence of the inclusion of the TopSpeed variable in the fitness computation so
the GA based fuzzy controller has optimized the speed of the car due to early
braking and detection of turns and their curving angles. This ability of the GA-
fuzzy controller collaborates to minimize the overall race time and thus the final
ranking. According to these results, GFC2 seems to be the best controller.

Comparing average lap time gives us an overall idea of which controller per-
forms the best; however, at the end of the day in a racing game the race has
to be won. That is why we have tested every fuzzy separately from the others
in a real race against five standard controllers from each team integrated with
TORCS. Tables 4 and 5 illustrate their performance in two 5 laps real races.

GFC1 and GFC2 controllers are quite competitive in these races; GFC2 has
got an excellent second position in the track used during optimization (E-Track),
and it has also got a remarkable third rank in the unknown track (E-Road).
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Table 4. Results of GFC1 in two real races (5 laps)

E-TRACK5 GFC1 berwin 10 bt 3 damned 2 inferno 5 tita 10

Ranking 3/6 4/6 1/6 5/6 2/6 6/6

Race Time 02:29:32 + 24:11 02:29:32+1 lap 02:29:32 02:29:32+1 lap 02:29:32+13:67 02:29:32+1 lap

Best Lap 33:79 35:39 28:09 36:73 31:49 34:12

Max Speed 199 206 233 198 229 219

Damages 0 0 0 599 7 566

CG Track2 GFC1 berwin 10 bt 3 damned 2 inferno 5 tita 10

Ranking 3/6 4/6 1/6 6/6 5/6 2/6

Race Time 05:10:66+25:43 05:10:66+55:65 05:10:66 05:10:66+1 lap 05:10:66+38:44 05:10:66+19:82

Best Time 1:03:65 1:04:21 1:00:57 1:04:26 1:03:19 1:03:98

Max Speed 233 236 288 200 238 229

Damage 112 376 433 988 541 890

Table 5. Results of GFC2 in two real races (5 laps)

E-TRACK5 GFC2 berwin 10 bt 3 damned 2 inferno 5 tita 10

Ranking 2/6 4/6 1/6 6/6 3/6 5/6

Race Time 02:30:83+03:99 02:30:83+1 lap 02:30:83 02:30:83+1 lap 02:30:83+08:35 02:30:83+1 lap

Best Time 29:82 36:38 28:35 37:04 30:53 36:00

Max Speed 214 202 230 188 226 204

Damage 0 0 343 1230 0 668

E-ROAD GFC2 berwin 10 bt 3 damned 2 inferno 5 tita 10

Ranking 3/6 4/6 1/6 6/6 2/6 5/6

Race Time 05:38:23+17:72 05:38:23+1 lap 05:38:23 05:38:23+1 lap 05:38:23+10:73 05:38:23+1 lap

Best Time 1:17:34 1:16:29 1:14:97 1:20:80 1:13:98 1:15:29

Max Speed 221 206 228 178 228 206

Damage 120 356 753 2750 130 894

Both controllers have dealt very well for not being damaged, which even the
winner, bt 3, could not avoid.

These results are a confirmation of the proper optimization done by the
GA and mainly when the Top Speed was considered in the fitness. The obtained
results in real races with opponents from tough teams of TORCS are encouraging
even if the optimization process was in practice races. This good adaptation
of the proposed controller in races with rivals is due to the fact the modular
fuzzy controller takes into consideration the presence of opponents in the track
[19]. The enhancement of that driver by the optimal values of the membership
function values, allows it to detect and overtake the other cars with no damage
or stuck.

In the last experiment, we tried to get the best of our controller by testing
its limits in a disadvantageous track, so A-Speedway was selected. The results
are shown in Table 6 where one could clearly notice the degradation of the
performances of the optimized fuzzy controller. It was ranked in the fourth
position just before tita10 and bt3 controllers. Its top speed is acceptable
considering that the used car is not as fast as others but the fast lap time
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was higher and the GFC2 controller was not as competitive with its rivals in
this race.

These results could be justified by the nature of the track. A-Speedway is
an oval circuit with only four turns, this kind of tracks deprives our controller
of its strongest point which is the late braking and the selection of an optimal
trajectory in turns. The fact that the car has a worse average speed compared
to the others and that our controller can not compensate for this loss of time in
the turns will not work in favor of getting better best lap times.

Table 6. Results of GFC2 in a real race (5 laps)

A-Speedway GFC2 berwin 10 bt 3 damned 2 inferno 5 tita 10

Ranking 4/6 2/6 1/6 6/6 3/6 5/6

Race Time 02:37:74+29:12 02:37:74+19:03 02:37:74 02:37:74+1 lap 02:37:74+28:89 02:37:74+1 lap

Best Time 35:78 32:83 29:40 39:49 34:86 40:92

Max Speed 239 251 266 223 259 238

Damage 119 615 1290 363 739 899

5 Conclusions and Future Work

In this work, we have presented an improved Genetic Algorithm implementa-
tion that optimizes and improves an autonomous driver using fuzzy systems
for TORCS simulator [19]. It combines two sub-controllers, one to calculate the
target speed and the other for the direction, that is, for driving the steering
wheel.

After initial tests, that showed the promise of using evolutionary algorithms
with two different fitness functions, one considering the average lap time and the
car damage and another adding the top speed reached, we have fine-tuned some
algorithm parameters to obtain better results.

The yielded results are very promising since the optimized controllers (one
per fitness function) were ranked among the first ones in three different evalua-
tion races with rivals, with the minimum of damage.

In the comparison with the original (before the optimization) fuzzy controller,
the improvement can be clearly seen in the results. The new controllers are able
to drive much faster than it, and moreover they manage to not receiving any
damage, while the original controller even crashed the car in some races.

The results show that including the top speed in the calculus improves results,
since the obtained drivers have proved to be able to run a 10 to 15% faster in the
races. However the damage term must be also considered to ‘compensate’ some-
how the influence of the top speed, otherwise the controller would be extremely
aggressive and would not finish many of the races.

Thus, we can conclude from the results that the presented evolutionary algo-
rithm with the proposed fitness functions are well suited for finding the best
trade-off between the two objectives of any racing controller: damage and speed.
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Nevertheless, these results can be improved by extending the evaluation of
population controllers in the Genetic algorithm to other tracks and not just
one, to allow the elected controller to adapt to many different situations during
the races. The applied GA could be improved in different ways, for instance,
reducing its computation time by means of the parallelization of the evaluation
phase. Also, a multi-objective approach could be implemented, in which the main
objectives to address by the controller could be optimized at once. Moreover, we
could also try to generate, optimize and tune automatically the rule base of the
fuzzy controller by means of a Genetic Programming algorithm.

Finally, the fuzzy controller could be evolved and adapted to be an efficient
autonomous driver for a real car. This could be addressed by considering real-life
traffic situations instead of races and, of course, redefining the fitness functions
to accomplish other objectives, mainly related with security and comfort.
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SE 54145 Skövde, Sweden
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Abstract. We present a new self-organizing algorithm for classifica-
tion of a data that combines and extends the strengths of several com-
mon machine learning algorithms, such as algorithms in self-organizing
neural networks, ensemble methods and deep neural networks. The
increased expression power is combined with the explanation power of
self-organizing networks. Our algorithm outperforms both deep neural
networks and ensembles of deep neural networks. For our evaluation case,
we use production monitoring data from a complex steel manufacturing
process, where data is both high-dimensional and has many nonlinear
interdependencies. In addition to the improved prediction score, the algo-
rithm offers a new deep-learning based approach for how computational
resources can be focused in data exploration, since the algorithm points
out areas of the input space that are more challenging to learn.

Keywords: Self organisation · Ensemble methods
Complex processes · Artificial neural networks

1 Introduction

Our modern society generates tremendous amounts of data and the potential
impact of data analysis is immense [16]. Using recent powerful data analysis
techniques, data collected from complex processes containing multiple non-trivial
dependences, can be analyzed to achieve new insights. Deep Learning has proven
itself in several areas to be a powerful technique that is especially successful in the
analysis of very complex and complicated systems, and it has therefore gained
a lot of attention in the machine learning community [10]. Due to the large
amounts of data in the manufacturing industry, combined with the potential of
both process and product improvements for an increased competitiveness, new
machine learning techniques start to gain attraction in that industry. In steel
manufacturing, there are many complex and interdependent physical and chem-
ical processes involved, and is it difficult to fully understand the entire process
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for full process control1. A transition into a more data-driven manufacturing
process development has the potential to utilize intelligent data analysis for a
more thorough process understanding and improved control. For the evaluation
of our proposed algorithm, we have chosen one particular problem within the hot
rolling steel industry. In hot rolling, coils of rolled steel sheets can be obliquely
reeled, causing the final product to be askewed. This is called telescoping, and
the underlying factors causing such defects, in this specific production setting,
is not fully understood. The classification of finished coils, being telescoped of
not, is conducted manually by an operator. In this paper, we present a novel
approach for self organizing ensemble of neural networks (SOENN) to be used
for such a classification tasks. Besides that this algorithm performs best in our
experiments, it also allows for interpretation of what the algorithm has learned
and decided to focus on in the input data.

The SOENN algorithm is inspired by the supervised growing neural gas
(SGNG) algorithm [4], but in SOENN neural networks are dynamically added
and removed from an ensemble, rather than individual neurons. Each network
within this ensemble is assigned a position in the input space. These networks
can then only focus on samples in their vicinity. Hence, the global classification
problem is split into many smaller local problems. The self organizing property
also allows SOENN to find good ways to distribute its networks in the input
space and thus trying to find optimal sub problems that can be used to solve the
global problem. The result is that in the ensemble more networks will be located
in areas of the input space with samples that are more difficult to classify. The
global solution consists of the combination of relative positions of the networks
and the weights of the networks. For the data of this study, we believe that there
are several regions of the input space that are independent of each other, since
the data comes from different production stations in a complex production line
where multiple types of products are produced. By modeling a complex mix of
stations, using an expressive self-organizing network, we believe that SOENN
can model both the overall structure of the input space, as well as the individual
stations.

The hypothesis of this paper is that an algorithm that considers multiple
local problems separately, such as the SOENN, would perform better than other
algorithms, such as a Deep Neural Network (DNN). To this end, the SOENN
algorithm is compared to a DNN, where the total number of neurons is the same
in the ensemble as in the DNN. A common drawback of DNNs is that they are
very difficult to interpret and thus, it is often intractable to understand and
gain further knowledge about the data through these methods. The SOENN
algorithm consists of several smaller artificial neural networks, easier to analyze
and interpret that the full DNN. The smaller networks are distributed over the
input space, and each (relative) position reveals where the ensemble needs to
allocate more networks to model the data in that sub problem. Hence, these

1 This work was supported by Vinnova and Jernkontoret under the project Dataflow.
We would like to thank Andreas Persson at Outokumpu AB for the valuable
collaboration.



250 N. St̊ahl et al.

positions can be used to find problematic sub problems, to target for deeper
analysis. Further, we compare the self organizing ensemble with an ensemble
without this property, to evaluate whether an improvement is due to the self
organizing property itself. The SOENN algorithm is shown to significantly out-
perform the two other algorithms used for comparison. We conjecture that this
is mainly due to the networks ability to assign networks to different subspaces of
the input space and hence, split the problem into several smaller sub-problems.
While there is still remaining work to be done in making the result of the SOENN
algorithm interpretable, we argue for that the algorithm presents some insights
about the data it is trained on and thus, is a step in the right direction in order
to make deep learning methods interpretable in the context of complex processes
and data.

2 Background

In this section, the three different methods and ideas which the SOENN algo-
rithm is inspired by are presented. First, a description of self organizing networks
is given. There will be a special focus on the supervised growing neural gas algo-
rithm, which is the main inspiration to the presented algorithm. Secondly, a
description of ensemble methods is presented. Finally, an overview to deep neu-
ral networks is given.

2.1 Self Organizing Neural Networks

While there exists a large variety of self organizing neural networks, they all
relate to Kohonens self-organizing feature map, which was introduced by [9]. In
a self-organizing feature map, neurons are arranged in a low dimensional dis-
cretized space. The most common approach is to use two or three dimensions so
that the resulting configuration can be visualized. A mapping between the space
of the map and the input space is learnt through competitive Hebbian learning
and thus the self-organizing feature map finds a low dimensional representation
of the data in the input space. This method has previously been applied to
visualize and further understand steel manufacturing processes [2].

Another self organizing method is the growing neural gas algorithm that was
first introduced by [4]. The main idea behind this algorithm was to combine
the neural gas [13] and the growing cell structure algorithm [3]. Thereby, using
the ability to learn general topologies without having to specify the number of
neurons to use a priory. As with self-organizing feature maps, the GNG learns
a mapping between each neuron and the input space. But, instead of organizing
the neurons in a low dimensional space, the GNG organizes them into an arbi-
trary graph structure, which is generated by a successive addition and deletion
of neurons. When new neurons are added to the network, they are added where
the current configuration is least adapted. As with the growing cell structure,
[4] points out that the GNG algorithm can be applied for both supervised and
unsupervised learning. A major advantage of the GNG algorithm, and especially
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the SGNG algorithm, is that any arbitrary measure can be used to represent the
goodness of a local configuration of the graph structure [5]. Hence, in the super-
vised case it is possible to take into account the difficulty of the classification
in a certain area of the input space and therefore assign more neurons to areas
where the classification is difficult. This makes it possible to effectively use each
neuron for classification and [5] shows that a SGNG often achieves a much bet-
ter classification accuracy than a radial basis network with the same number of
neurons.

2.2 Ensemble Methods

Ensemble methods are learning algorithms that consist of a set of classifiers.
When new predictions are made by the ensemble, each classifier presents its
own prediction and these are then weighted together into a final prediction. It
is generally believed that a good set of (even weak) classifiers can be combined
into a strong classifier, assuming that each weak classifier are loosely correlated
in making errors [6]. There are many different approaches to find such a set
of classifiers. In for example bootstrap aggregating, abbreviated bagging, each
classifier is trained on a random subset of the data and thus these classifiers will
learn from different sets of data.

The most commonly used ensemble algorithm is the random forest algorithm,
in which multiple decision trees are trained [1]. Besides random forests, there
have been several works considering ensemble methods using neural networks as
classifiers in the ensemble. An example of this is the empirical study by Opitz
and Maclin [14], which studies the behaviour of ensembles of decision trees and
neural networks on 25 different datasets. The general conclusion of this study is
that the ensemble most often learnt to classify new examples better than any of
its individual classifiers.

2.3 Deep Neural Networks

Much of the advances within AI in the last years can be attributed to deep
learning and hence deep neural networks [10]. While there are multiple different
architectures of such networks, this study will only consider deep feed forward
neural networks. A feed forward neural network is neural network which has
its neurons structured in multiple layers. There are no cyclical connections in
such networks and all neurons in one layer is connected to all neurons in the
next layer. It has been theoretically shown that such networks, using only one
hidden layer, can approximate any given function to any degree. However, this is
under the assumption that there are an infinite number of neurons in that layer
[11]. Moreover, it has been shown, both with practical and theoretical results
that it is often better to use a deep architecture for the network, hence net-
works with multiple layers. One finding that supports this is presented by Poole
et al. [15], whom show that the expressibility of a network grows exponentially
when more layers are added. As mentioned earlier, such networks have been suc-
cessfully applied to many machine learning problems due to their flexibility and
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expressibility. However, one big disadvantage of such methods is that it is often
intractable to interpret the final result and hence, it is intractable to gain any
new knowledge about the data from the final configuration.

3 Self-Organizing Ensemble of Neural Networks

In this section, a novel algorithm using a self-organizing ensemble of neural net-
works (SOENN) is presented. This algorithm is mainly inspired by the different
methods presented in the previous section. The main idea behind this algorithm
is to start with just two networks in the ensemble. These two networks have the
randomly initialized weights, W1 and W2, and are each assigned a position in
the input space, annotated p1 and p2. As the training progresses more networks
will be added to the ensemble and some will be removed. The conditions for this
is described later on in this section. A basic visual description of the algorithm
is shown in Fig. 1 and more specific pseudo code is given in Algorithm 1.

When calculating the prediction ŷi of the ensemble the prediction for each
internal network is first calculated. These predictions are then weighed together
to get the final prediction. The weight assigned to each prediction is dependent
of the adjacency of the network and the sampled point. Hence, the prediction is
calculated by:

ŷi =
1
2

∗
⎛
⎝1 +

N∑
j=0

(
(2 ∗ ŷi,j − 1) ∗ d(pj , xi)∑N

k=0 d(pk, xi)

)⎞
⎠ , (1)

where d(pj , xi) is the adjacency of sampled data-point xi and the j : th neural
network in the ensemble. Thus, networks that are close to the sampled point will
have a higher impact on the prediction than networks that are far away. The
adjacency between a network and a sampled point is calculated as:

d(pj , xi) = e
−

(
1
M

M∑
k=0

(xi,k−pj)
2
)
. (2)

The binary cross entropy error is then minimized in order to train the SOENN
and make it better at a given classification task. The binary cross entropy error
is calculated by:

Δi = −yi log ŷi − (1 − yi) log(1 − ŷi) (3)

This error is then minimized using backpropagation. Hence, changing Wj and pj

in the opposite direction of the gradients ∂Δi

∂Wj
and ∂Δi

∂Wj
. for all networks. Note

that ∂Δi

∂Wj
depends on d(pj , xi) and will therefore be much smaller if the sample

xi is far away from the position of the network. Hence, the internal networks
will mostly be trained on samples in the vicinity of their position in the input
space.

A new network is added to the ensemble after λ iterations. The position of
this newly added network is assigned position γ in the input space. Here, γ is
the same as the sample xk in the last λ iterations with the maximal value of:

(1 − d(pj , xk)) ∗ |yk − ŷk| where d(pj , xk) > d(pj , xk) ∀j �= l (4)
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Hence, γ is selected as a sampled data-point that is far away from any net-
works in the ensemble and that the ensemble is unable to predict well. All net-
works that have not been the closest or the second closest to any sampled point in
the last λ iterations are then removed. The algorithm is furthermore described
in greater detail in Algorithm 1. In this description, one additional variable,
C is used to keep track of the networks that has been the closest or the next
closest to any sampled data-point.

For intuition of the algorithm, we give and example (Fig. 1) of the progress
of SOENN: In the initialization phase at (a), two neural networks are placed at
the same location in the inputs as two randomly sampled points. At each itera-
tion, a random data-point is sampled and the ensemble will provide a prediction,

Fig. 1. Initial configuration.

Algorithm 1. The SOENN algorithm
1: Initialize the ensemble, containing only two networks with position p1 and p2.
2: C = {1, 2}
3: for η number of iterations do
4: for λ number of iterations do
5: (xi, yi) ← random sample from dataset.
6: Calculate ŷi, as defined in equation 1.
7: Train all networks in the ensemble through one step of backpropagation in

order to minimize Δi which is defined in equation 3.
8: Find the two networks r and q which are closest to the sampled point xi.
9: Add r and q to C

10: Calculate a temporal value for γ, annotated γtemp using equation (4).
11: γ ← γtemp if γtemp > γ
12: end for
13: Remove network j from the ensemble if j is not in C.
14: if the maximum networks has not been reached: then
15: Add a new network to the ensemble.
16: Set the position of the newly added network to γ.
17: end if
18: γ ← 0
19: C ← {}
20: end for
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according to Eq. (1), for that sample. The weights in the networks and the posi-
tion of the networks will then be adjusted in order to minimize the difference
between this prediction ŷi and the real value of yi. After λ iterations a new
network will be added to the ensemble, this is shown in sub-figure (b). This new
network is added at the position γ, how γ is calculated is described in Eq. (4).
The final result, shown in sub-figure (c), is achieved after repeating this process
multiple times. Here, the ensemble has organized itself to put more networks
in the upper left cluster where the data distribution is very heterogeneous and
hard to classify.

4 Evaluation

This section describes all experiments that are conducted within this study
and the data that are used. It is also described how the network architecture
is selected and which hyper-parameters are used for the training in the three
selected algorithms.

4.1 Data

The data used in our evaluation is collected from hot rolling manufacturing at a
steel plant in Sweden. Measurements are collected from all production stations
of the rolling process, from the furnace to the final down coiling, resulting in
9276 samples where each sample consists of measurements of 1718 different vari-
ables. Each sample is manually labeled as either telescoped or not telescoped.
In addition to the data complexity, there exist several non-linear dependencies
between data. In addition, the dataset is unbalanced since the amount of tele-
scoped samples are much fewer than the amount of non-telescoped samples. For
several production stations, such as rolling, there are repeated operations, which
produces multiples of the station data, and the number of repetitions differ for
different product types. Data from repetitions are aggregated as mean and stan-
dard deviation. Further, each variable of the data is normalized to zero mean
and unit variance.

4.2 Selecting Network Architecture

Theoretically, any arbitrary size and shape of network can be used within the
algorithm presented in the previous section. But, in order to show that the
concept of several weak classifiers can be used to create one strong classifier,
several small, but deep, neural networks are selected. The networks consist of
3 hidden layers and 1 output layer. These networks have 4 neurons in the first
hidden layer, 4 neurons in the second one and 2 neurons in the last hidden
layer. Each hidden layer consists of leaky rectified linear units. The output layer
consists of a single neuron, which uses the sigmoid function as its activation
function.
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One hypothesis of this work is that SOENN algorithm can outperform a
single large DNN. Therefore, for a fair comparison, the same amount of neu-
rons will be used within both algorithms. However, the SOENN contains an
extra computational step where the results of all internal network are combined.
Hence, to match the number of neurons, the large DNN has to contain one more
layer than the networks in the SOENN. To not bias the results in favour of
SOENN algorithm, experiments to find the best possible configuration for the
large DNN is first conducted. To find such a configuration multiple experiments
where multiple configurations of the large DNN are evaluated. This process is
repeated 30 times and the configuration achieving the best result is selected for
the comparison. The configurations that are evaluated correspond to between
at most 10 and 75 networks in the SOENN algorithm. The maximal number of
networks in the SOENN algorithm is then selected, to make sure that it cannot
have more neurons than the best achieving DNN. A second aim of this work
is to investigate the benefit of the self organizing property of the SOENN algo-
rithm. Therefore, experiments using an ensemble with the same architecture and
number of networks, but without the self organizing property are conducted.

4.3 Experiments

In the main experiment of this research, the SOENN algorithm, presented in
Sect. 3, as well as a large DNN and a standard ensemble of neural networks, are
applied to the presented problem of predicting if a rolled steel block, (referred to
as a slab), should be classified as telescoped or not. The original data is divided
into a training set of 70%, a validation set of 15% and a test set of 15%. The
aim of this division is to be able to show how well each algorithm would perform
on new unseen data. Each algorithm is trained using the training data and the
validation data. The final performance of the algorithm is then evaluated on the
test set. Since the dataset is unbalanced an evaluation metric that depends on
both the precision and recall should be considered. Therefore, the area under
the receiver operating characteristic curve (AUC-ROC) score is selected for the
evaluation of the algorithm performance. To be able to give a fair comparison
between the performance of each algorithm, this process is repeated over 30
random splits of the dataset and the average performance of each algorithm for
all different test sets is reported. All these algorithms use backpropagation with
the ADAM optimization algorithm [8] for the training. The values assigned to
the hyper-parameters used when training the three different algorithms in the
final experiment are listed in Table 1.
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To determine if there is a significant difference between the average perfor-
mance of the SOENN algorithm and the two other algorithms, t-tests are con-
ducted. These are paired t-tests since the same division of the data into training,
validation and test sets are used once for each algorithm. Since multiple tests are
conducted, Holm–Bonferroni correction is used to adjust the achieved p-values.

Table 1. Algorithms evaluated, with their hyper-parameters.

Algorithm Parameters

Simple ensemble of DNNs Epochs = 150, learning rate = 0.003, total number of
networks = 45, bootstrap samples = 1000, hidden
layer sizes = {4, 4, 2}

Large DNN Epochs = 150, learning rate = 0.003, hidden layer
sizes = {180, 180, 90, 45}

SOENN η = 150, λ = 6500, learning rate = 0.003, hidden layer
sizes = {4, 4, 2}, maximum number of networks = 45

5 Result

The first experiment conducted aimed to find a good architecture for the large
DNN that later could be used in the comparison with SOENN algorithm. The
result from this experiment is shown in Fig. 2. Using these results, it was decided
to use 45 networks in the two ensemble methods in the following experiments.

Fig. 2. The mean AUC-ROC score for the conducted experiments with different archi-
tectures for the large DNN. The x-axis shows the maximum number of networks in the
SOENN algorithm that a given configuration would correspond to. Each measurement
consist of 30 randomly selected instantiations of the DNN.

In the main experiment the three described methods are applied to the pre-
diction problem of classifying slabs as either telescoped or not. The SOENN algo-
rithm is the algorithm that achieves the highest AUC-ROC score on this problem.
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This method achieves a mean AUC-ROC score of 0.822 while the large DNN and
a standard ensemble of DNNs achive mean AUC-ROC scores of 0.812 and 0.804
respectively. The distribution of AUC-ROC scores for the performed analysis,
using these three methods is shown in Fig. 3. The differences between the results
are shown to be significant, using two separate paired t-tests which both yield a
p-value that is smaller than 0.00001 after Holm–Bonferroni correction.

To show that the SOENN algorithm managed to exploit the internal structure
of the data, the positions of the networks in relation to the data, are displayed.
Since the input data are very high dimensional, the number of dimensions have
to be reduced, using t-SNE [12], in order to plot it in two dimensions. The final
result is shown in Fig. 4. This allows for the interpretation of where the network
has decided to focus, in the input space, and thus where it is difficult to perform
classifications.

Fig. 3. The distribution of AUC-ROC scores for the three tested algorithms. The
SOENN algorithm is positioned furthest to the right. The median AUC-ROC score
is represented by an orange line, while the mean is represented by an orange x. The
achieved mean value for the AUC-ROC scores are 0.804, 0.812 and 0.822. (Color figure
online)

In Fig. 4 we show the distribution of data points in the training set, reduced
to a two dimensional space using t-SNE. Telescoped samples are presented as
red (darker) points and non-telescoped samples are presented as blue (lighter)
points. Each network in the ensemble is presented as a black “x”. The important
concept that is shown by this figure is that the ensemble has managed to spread
out the networks throughout the input space and hence, managed to exploit the
distribution of samples in the input data. It can be seen that the networks in
the ensemble has been distributed to areas where the distribution of classes is
heterogeneous and thus, classification is difficult. A typical example of this can
be observed in the bottom of the left bottom of the figure. A typical example
of the opposite, i.e an area where it is trivial to classify samples, can be seen in
the middle right area.
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Fig. 4. Data samples and network locations. (Color figure online)

6 Conclusion and Discussion

The SOENN algorithm achieves the highest AUC-ROC score compared to the
alternatives on the collected dataset. We hypothesize that part of this result is
due to the self organizing property of the SOENN algorithm, which allows the
algorithm to divide the problem into several local and independent sub-problems.
We further believe that this approach is especially suited for the presented case,
mainly due to the complexity of the data and different sub problems in the data.
There is nothing suggesting that this result is only applicable to hot rolling.
Instead, the same improvement is likely when applying SOENN to any data with
similar complex structure and with several sub problems. However, more research
is needed to further investigate this. Unbalanced data, typical in a production
setting, can be difficult for a DNN to learn. Using SOENN for unbalanced data,
the smaller networks of SOENN can learn individual sub-problems in spite of
the imbalance, in contrast with a DNN that needs to learn the overall problem.
It is easier to learn to classify local points with simpler classifiers in a ensemble.
This is supported by He and Garcia [7] who shows that ensemble methods often
perform better than other methods on unbalanced datasets.

At this point, SOENN is limited by the ad. hoc addition and removal of its
internal networks, so there is a need to develop refined schemes for this. An
improvement for network removal would be that removals would depend on the
ensembles’ ability to classify samples correctly without the given network.

In Fig. 4, it is shown that the SOENN algorithm manages to spread out the
internal networks in the input space. Thus, SOENN is able to allocate more net-
works to areas where the classification is more difficult. This representation of what
the SOENN algorithm has learned from the data is not optimal but it still offers
some insights, and this is more than what can be expected from the other evaluated
algorithms. One of the main utilities of the presented visualization is that it can
be used to target further analyses, manual or not, in order to gain more insights
about the process.
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Abstract. Multi-objective optimization under epistemic uncertainty is
today present as an active research area reflecting reality of many prac-
tical applications. In this paper, we try to present and discuss relevant
state-of-the-art related to multi-objective optimisation with uncertain-
valued objective. In fact, we give an overview of approaches that have
already been proposed in this context and limitations of each one of
them. We also present recent researches developed for taking into account
uncertainty in the Pareto optimality aspect.
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1 Introduction

Multi-objective optimization is a well-studied research field encountered in many
academic and industrial applications such as in engineering, manufacturing and
logistics. It rises as a salient paradigm of decision making in which the decision
maker is always confronted with different conflicting objectives. For instance, a
good purchase choice is associated with several factors like the price, the dura-
bility and the quality, etc. Hence, the most common purpose is to choose the
best trade-off among all these factors. In that sense, it is practically impossible
to find a single solution that optimize all predefined objectives at the same time
but rather many efficient and incomparable solutions. Thus, the challenge of
solving a combinatorial multi-objective problem lies in the difficulty to find a
set of best compromise solutions between the different objectives. This set rep-
resents, in the objective space, the Pareto front from which the decision maker
will subsequently choose one final alternative to realize. Then if the number of
multiple objectives and/or decision variables grows, the problem becomes much
more complex. A wide variety of resolution methods and techniques have been
designed according to the complexity and way of solving such problems [19,23].

In addition, when dealing with real-life problems, the massive amounts of
data are generally associated with unavoidable imperfections. In other words,
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practical applications are strongly connected to some uncertainties in inputs,
parameters and environmental data. In fact, uncertain data may result from
using unreliable information sources such as bad analysis or interpretation pro-
cesses, faulty description, data incompleteness, ambiguity in perception and so
on. Besides, it may be caused by poor decision maker opinions due to any lack
of its background knowledge, absence of information or even difficulty of giv-
ing perfect qualification for some costly situations. Depending on the nature of
imperfection and the problem context, two types of uncertainty can be distin-
guished: Aleatory (or objective) uncertainty which is characterized by natural
randomness and variability and Epistemic (or subjective) uncertainty associated
with ambiguity, fuzziness or any lack of information [29].

Indeed, the literature exposes over the years many modeling approaches for
reasoning under uncertainty in single-objective optimization problems [10,22,25].
Nevertheless, this aspect is, until today, not well considered in the multi-objective
setting that reflects more reality in every domain of our lives. Moreover, the few
state-of-the-arts in this setting, such as [11,12,30], are primely focused on multi-
objective problems under aleatory uncertainty (e.g. phenomenon of randomness
and noise). Thereby, from our deep survey of existing approaches relative to epis-
temic uncertainty, we have identified that almost all of them have been limited to
transform the problem into crisp or single-objective equivalents. Unfortunately,
such transformation may affect the problem results and decision making pro-
cess. Only some approaches have been proposed to address the uncertain multi-
objective problem as-is, without ignoring any of its characteristics [3,18].

Hence, there is a significant need for examining and classifying the different
approaches capable to deal with epistemic uncertainty in combinatorial multi-
objective optimization. Our primary motivation in this paper is to give a global
view of these approaches, while focusing on two major issues: Where does the
effects of uncertainty propagation occur? and How ranking uncertain valued-
solutions in the sense of Pareto optimality?

The remainder of the paper is organized as follows: Sect. 2 recalls some
basic definitions of deterministic multi-objective optimization and highlights the
main classes of resolution methods. Section 3 discusses the specific case of multi-
objective problems with uncertain-valued objectives by defining the problem and
reviewing some approaches in this field.

2 Deterministic Multi-objective Optimization

Multi-objective optimization is the process of optimizing systematically and
simultaneously two or more conflicting objectives subject to certain constraints.
Then, contrary to the single-objective case, multi-objective optimization does
not restrict to find a unique global solution but it aims to find a set of efficient
solutions.
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Formally, a deterministic multi-objective optimization problem (MOP),
defined in the sense of minimization of all objectives, consists of solving the
following mathematical program:

min F (x) = (f1(x), . . . , fn(x)) s.t. x ∈ X (1)

where F (x) is the vector of n (n ≥ 2) objective functions to be minimized and
x = (x1, . . . , xk) is the vector of decision variables from the feasible decision
space X ⊆ R

n. In the objective space, F can be defined as a cost function by
assigning an objective vector y ∈ Y which represents the quality of solutions.

F : X → Y ⊆ R
n, F (x) = y =

⎛
⎜⎝

y1
...

yn

⎞
⎟⎠ (2)

where Y = F (S) represents the feasible points (solutions) in the objective space
and yi = fi(x) is a point of this space that represents the solution quality or
fitness.

The objectives are often in conflict with each other (e.g., minimize cost and
maximize profit), so that it is practically impossible to have a unique solution
x∗ optimal for all the objectives: ∀i ∈ 1..n,∀x∗ ∈ S, fi(x∗) ≤ fi(x)). Otherwise,
the main purpose of a MOP is to find the set of efficient solutions called as
Pareto optimal (i.e. efficient, non-dominated and non-inferior solution). To this
end, other concepts of optimality, namely Pareto dominance relations, should be
applied to define an order relation between the optimal compromise solutions.

Fig. 1. Taxonomy of multi-objective methods
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Various multi-objective resolution methods have been developed through
years. They can be classified into different classes according to their effective-
ness, applicability and problems complexity. Figure 1 describes a classification of
the main multi-objective methods (for details see [19,23,26]).

All these methods have been initially developed to tackle deterministic
MOPs, without taking into account any imperfect or inexact inputs data. There-
fore, this may restrict their applicability to real-life problems and practical
applications in which the big amount of data provides certainly some inevitable
imperfections or uncertainties. However, the uncertainty aspect has been exten-
sively discussed in the context of single-objective optimization, whereas its com-
bination with the multi-objectivity aspect has not been deeply studied so far.

In the following, we first present a general description of uncertain MOPs
and the major issues related to such problems. Then, we propose a classification
of the existing approaches while discussing their advantages and limits.

3 Multi-objective Optimization Under Epistemic
Uncertainty

In general, the aim of uncertain multi-objective optimization is to satisfy pre-
defined objectives while considering that some information are uncertain and
without knowing what their full effects will be. In other words, a MOP under
uncertainty is characterized by the necessity of optimizing simultaneously several
conflicting objectives in presence of some uncertain input data.

This field has attracted nowadays increasing attention since it appears in
many real-life applications and poses very interesting challenges. One of these
challenges is how to identify the type of inevitable uncertainties and their impacts
on the results and optimal decision making. However, a great number of studies
have been conducted to treat the case of aleatory uncertainty inherent to natural
and stochastic behavior. A literature review can be found in [11,12,30]. Some
studies exist today for dealing with the combination of multi-objectivity aspect
and epistemic uncertainty i.e. resulting from imperfection and ambiguity. Their
main purpose is to analyse the manner in which such uncertainty is modeled
and propagated through the multi-objective optimization process. At this level,
many important issues should be taken into account such as:

– How propagating such uncertainty through the optimization process?
– What are the effects and consequences on the problem solutions?
– How to develop and perform a resolution method in this context?

In that sense, the hardest issue is that disturbances in inputs data may be
propagated through the model to the quantities of interest. Usually, the quan-
tum of propagation depends on the problem context, the nature of uncertain
inputs data, the form of uncertainty distributions and their transfer to the out-
puts through the functional relationship. Then, propagating uncertainties may
affect the optimization process and even the key elements of decision making
such as preference parameters, decision variables, constraints and/or objectives.
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This may subsequently mislead the analyst into determining the optimal alter-
natives, leading to a final bad choice. All these factors contribute to an excessive
increase in problem’s complexity and difficulty in resolution stage. Thus, it is
necessary to analyze the effects of uncertainty propagation before the optimiza-
tion process.

Another important issue is the uncertainty inherent to the resolution stage.
The question is how to explore an uncertain design space which often leads to
very large-scales and complex optimization models. Evidently, as a deterministic
MOP is already NP-hard and time-consuming, the consideration of uncertainty
in the optimization process may lead to prohibitive computation. The increasing
costs of such very complex problems motivates more and more the scientific
researchers to develop efficient resolution methods. In this context, a resolution
method may still contain some uncertainties due to its inability to provide exact
results or to the lack of optimality proof.

In what follows, we focus on the specific case where epistemic uncertainty
is assumed to occur in the objective functions. Indeed, uncertainty propagation
to the objectives presents a critical and sensitive obstacle because it may affect
the whole search process and consequently the optimality of solutions. Thus, we
propose in the next section a classification of the existing approaches according
to how uncertainty in objectives is treated.

3.1 Existing Approaches for MOPs with Uncertain Objectives

Formally, a minimization MOP with uncertain objectives may be defined as:

min F (x, ξ) = min[f1(x, ξ), f2(x, ξ), . . . , fn(x, ξ)] s.t. x ∈ X, ξ ∈ U (3)

where F is the set of objective functions that may depend on some inputs uncer-
tainty U. Each fi(x, ξ) represents an uncertain valued-objective, where x is a
decision variable vector from its admissible region X ⊆ R

n and ξ represents a
vector of uncertain distributions or quantities induced by U.

Once the nature of inputs uncertainties and their effects are identified, the
second relevant challenge consists to find a suitable way for treating such uncer-
tainty in the objective search space of any resolution method. Nonetheless,
although uncertainty in the objective functions has gained attention in recent
years, the efforts devoted to this problem are still limited. Figure 2 presents a
taxonomy of the existing approaches.

The first attempts to cope with uncertainty in objectives belong to the
category of aggregation-based approaches. The basic idea of these traditional
approaches is to combine the multiple objectives into a single uncertain one. For
example, in [8], authors convert the MOP into a one or a set of single-objective
problems. Furthermore, the different objectives can be rewritten into an aggre-
gate objective fA by applying a weighted sum function as follows:

fA(x, ξ) =
n∑

i=1

[f1(x, ξ), f2(x, ξ), . . . , fn(x, ξ)] (4)
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Fig. 2. Taxonomy of approaches for MOPs with uncertain objectives

In this case, the existing approaches designed for single-objective optimization
problems under uncertainty can simply be applied. Clearly, aggregation-based
approaches have the advantage of simplicity because they do not require a par-
ticular development for uncertain multi-objective optimization. Yet, they still
not efficient since they limit the objective space, ignore the significant role of
multi-objectivity and also relationship between the conflicting objectives. In con-
sequence, the obtained results are very often useless and far from reality.

The second category encloses approximation-based approaches that use sta-
tistical functions to convert the uncertain objectives into their crisp equivalents
[13,24]. Otherwise, these approaches still abide to the certainty of objectives and
usually allow to carry out an approximation of observed uncertainty. In this case,
a statistical function may be applied to approximate each objective function as
follows:

Φ(f1(x, ξ)), Φ(f2(x, ξ)), . . . , Φ(fn(x, ξ)) (5)

where Φ(.) denotes the statistical operator which can be the expected function
E[.] with respect to ξ. This category includes also mean-value and mean-penalty
approaches such as [21]. Commonly, each objective is approximated by estimat-
ing the mean value of each random sample. This allows to transform the uncer-
tain MOP into a crisp problem that can be resolved using standard deterministic
multi-objective optimizers. A major limit of approximation-based approaches is
that the propagation and effects of uncertainty are neglected. Yet, ignoring the
uncertainty propagation in the optimization process can lead to very poor deci-
sions with often misleading simulation results. It is therefore necessary to account
for the relationship between uncertain inputs and generated solutions, because if
the input data or parameters are highly uncertain, how can the optimizer simply
state that the outputs are exact values? It may be feasible only for simplicity
or other practical reasons as long as the optimization performance will not be
affected.

The third category includes different approaches [5,20] that combine uncer-
tainty of objectives and quality indicators (i.e., real-valued functions which allow
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assessment of Pareto approximations). This combination is done by estimating
indicator evaluations for the uncertain objective vectors as:

I(f1(x, ξ),X∗), I(f2(x, ξ),X∗), . . . , I(fn(x, ξ),X∗) (6)

where X∗ = {x∗
1, . . . , x

∗
r} is a variable reference set and I(.) stands for the vector

of indicator values that can be minimized or maximized depending on the quality
goal. For instance, in [5], authors proposed an indicator-based model to reflect
the uncertainty of objectives. More precisely, the objective vector is associated
with uncertain distributions, where the optimization goal is defined in terms of
the ε−indicator values.

Another category of approaches refers to the robustness aspect [1,9]. This
aspect is connected to the idea that in presence of uncertain inputs, the outputs
should be relatively insensitive (small uncertainty outputs). The robustness in
objective functions can be modeled as:

(f1(x, ξ), R1), (f2(x, ξ), R2), . . . , (fn(x, ξ), Rn) (7)

where Ri is the robustness criterion that should be maximized. It is defined
in terms of the variation of fi(x) regarding the uncertainty associated with x.
For instance, [9] proposed to estimate the expected uncertainty using Monte
Carlo simulations based on effective objective function that takes into account
robustness. In [1], a propagating approach based on the concept of robustness
degrees of uncertain objectives is introduced.

However, the main drawback of robustness-based and indicator-based
approaches is that they rely on the assumption of a priori knowledge about
decisive information such as the reference set of solutions or the robustness con-
fidence level. Evidently, if such information is inappropriate or incorrect, the
outputs of theses approaches can be misleading.

Further studies assume to display uncertainty of objectives through intervals
and thereby to perform the multi-objective optimization based on this uniform
distribution. These studies fall under the category of interval-based approaches
[7,17,18]. In this case, the cost of evaluating f(x, ξ), namely Y is represented as
intervals as:

F (x, ξ) = Y = ([y1, y1], . . . , [yn, yn]) (8)

where yi and yi are respectively lower and upper bounds of the corresponding
interval-valued function i. For instance, in [7], authors expressed uncertainty via
confidence intervals of fuzzy sets and then proposed a multi-objective genetic
algorithm for handling such interval-valued functions.

Recently, in our previous work [3], we have suggested a novel different app-
roach able to model uncertainty in objectives by means of an intuitive and
natural shape of fuzzy sets, namely the triangular fuzzy numbers. Then, we
have developed new multi-objective optimizers for solving such specific type of
problems.

In this latter category of approaches, another challenging issue occurs which
consists on identifying and/or ranking the uncertain solutions disrupted by the
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shape of objectives (i.e. modeled by crisp or non-crisp intervals). Then, as the
classic Pareto concepts cannot be used in this case, a need for special dominance
relations capable to handle uncertain solutions is evident In the following, we
present an overview of some recent works related to the definition of Pareto
optimality within an uncertain context.

3.2 Pareto Optimality with Uncertainty

Pareto dominance concepts are crucial when dealing with multi-objective opti-
mization because we need to maintain a set of non-dominated solutions rather
than only one. These solutions, called Pareto optimal set, correspond to a com-
promise between different objectives (i.e., achieving the optimal value for one
objective requires some sacrifice of quality on at least one other objective). This
notion of Pareto optimality is based on intuitive discrimination of what are the
most good or desired alternatives among others. In the case of uncertain MOPs,
the purpose becomes to explicitly consider uncertainty into account during the
Pareto analysis. In fact, the solutions of such a problem are not modeled by
single points in the objective space, but rather by a range or set of points. Then,
in order to find out the best solutions in the sense of dominance, some contri-
butions for exploring the Pareto front in uncertain context have been proposed
in the literature such as [14,15,17,24,27].

On the one hand, most of existing studies are based on the idea of reducing
the amount of uncertainty in the solution space. Indeed, they are often limited
to quantify such uncertain solutions as crisp degrees or to estimate the whole
Pareto set through some simulations. Thus, the visualization of solutions still
absolutely equivalent as in classical Pareto front (where non-dominated solu-
tions are exact points). For instance, in [4], a tool based on Gaussian conditional
simulations is interpreted for quantifying how much uncertainty remains at every
stage of Pareto exploration. Thereafter, an estimation of the total Pareto front is
deduced based on meta-model notion. In [16,28], the solutions are firstly repre-
sented as fuzzy cost functions. Then, a ranking scheme is defined by assigning a
dominance degree to each fuzzy solution. The advantage of these studies is their
simplicity, computational efficiency and the possibility of application of classi-
cal concepts for any comparative analysis. Whereas, their principal drawback is
that uncertainty of Pareto front is only visualised through approximations or
simulations. Yet, the quality and efficiency of these latter depends entirely on
the used tool or measures.

On the other hand, some other studies propose to extend the Pareto domi-
nance relations for ranking interval-valued outcomes. For instance, in [14,24], a
probabilistic dominance based on intervals is used to guide the selection process
of Pareto-set. In [17,18], intervals of belief functions are used to represent the
uncertain Pareto optimal solutions. Moreover, authors in [27] involve uncertainty
as fuzzy coefficients in the objective functions. Then, an interval-based abstrac-
tion is introduced to generate the Pareto optimality of candidate solutions. In
this case, a non-deterministic configuration or representation of Pareto front is
provided. More precisely, the solutions are represented by finite bounding-boxes
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in the objective space, as shown in Fig. 3, where each bounding box represents a
unique interval-valued solution. However, such a configuration can only express
lower an upper bounds and it is often not enough to express uncertainty and its
distribution.

Another important issue is how to analyse the Pareto optimality when epis-
temic uncertainty is modeled by non-crisp intervals? Unfortunately, there is a
lack of research studies on this topic due to its increasing complexity. In other
words, extending the Pareto dominance for ranking two or more non-crisp inter-
vals like fuzzy ones is a very hard task. To the best of our knowledge, there is
only our previous research work that addressed the Pareto optimality between

Fig. 3. Interval-based Pareto front

Fig. 4. Triangular-based Pareto front
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triangular fuzzy-valued solutions [2]. Consequently, instead of the rectangular
form in the case of crisp intervals, the Pareto front is composed by a set of tri-
angular vectors, where each triangle represents one fuzzy solution as shown in
Fig. 4. This alternative of representation offers much more flexibility depending
on the nature of uncertainty.

4 Conclusion

In this paper, we have firstly presented the fundamental background of deter-
ministic multi-objective optimization, starting with some classical definitions to
a brief overview of resolution methods. Then, we have surveyed the state-of-
the-art relative to uncertain multi-objective optimization. In particular, we have
introduced a classification of the different existing approaches to handle epis-
temic uncertainty in objective functions. In the second part of the paper, we
also gave a survey of some research works regarding Pareto-optimality notion in
the uncertain context.

It will be interesting to study the consideration of uncertainty into the com-
monly used multi-objective quality indicators. This allows us not only evaluating
the generated uncertain solutions, but also providing an accurate and better per-
formance assessment. Finally, whatever the studied aspect, there are still many
open questions and perspectives to investigate in this field.
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16. Köppen, M., Vicente-Garcia, R., Nickolay, B.: Fuzzy-Pareto-dominance and its
application in evolutionary multi-objective optimization. In: Coello Coello, C.A.,
Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 399–412.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4 28

17. Limbourg, P.: Multi-objective optimization of problems with epistemic uncertainty.
In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS,
vol. 3410, pp. 413–427. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-31880-4 29

18. Limbourg, P., Aponte, D.E.S.: An optimization algorithm for imprecise multi-
objective problem functions. In: IEEE CEC, vol. 1, pp. 459–466 (2005)

19. Liefooghe, A.: Methodes pour l’optimisation multiobjectif: Approche cooperative,
prise en compte de l’incertitude et application logistique. PHD thesis, Universit de
Lille 1, pp. 13–20 (2009)

20. Liefooghe, A., Jourdan, L., Talbi, E.G.: Indicator-based approaches for multiob-
jective optimization in uncertain environments. In: 25th Mini-EURO Conference
URPDM (2010)

21. Meng, Z., Shen, R., Jiang, M.: An objective penalty functions algorithm for mul-
tiobjective optimization problem. J. Oper. Res. 1(4), 229 (2011)

22. Petrone, G.: Optimization under Uncertainty: theory, algorithms and industrial
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Abstract. Sensitivity analysis is a mathematical tool that distributes
the uncertainty of the output of a model among its different input vari-
ables. We use in this work the Extended Fourier Amplitude Sensitiv-
ity Test to carefully analyze the impact of 54 LLVM code optimization
operators on the execution time of nine benchmark software programs.
Experiments presented involve performing over 16 million executions.
The results show that the different LLVM transformations have a low
direct effect on the execution time, but it becomes meaningful when
considering the transformation in combination with the others (almost
60% average impact by all passes on all considered benchmarks). These
results provide slight indications on the transformations to apply for
optimizing the software, revealing the extreme difficulty of the problem.

Keywords: Sensitivity analysis · Software optimization
LLVM transform passes

1 Introduction

LLVM [1] is a modern compilation framework, widely used nowadays, with very
interesting features. The core of LLVM is the Intermediate Representation (IR),
a novel programming language that LLVM defines, to which the software code is
translated as an intermediate step during compilation. A salient characteristic of
IR is that it is independent of both the language in which the software is coded
and the target architecture. LLVM currently provides support for a number of
well-known programming languages, as C, C++, Objective C, Java, or Python,
among others.

LLVM implements a large number of tools for its IR, and programs imple-
mented in any of the programming languages supported by LLVM can benefit
from them. Because these tools work on the IR, they are generic for all sup-
ported programming languages. We are particularly interested in this work on
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LLVM transform passes. They are 54 IR-to-IR code transformations designed for
software optimization. Designing software optimizers based on LLVM transform
passes allows using exactly the same optimizer tool on software code imple-
mented in numerous programming languages, with no changes. Additionally,
working with IR prevents the introduction of any additional unpredictable opti-
mization by the compiler.

Despite the popularity of LLVM and the usefulness of the transform passes
it provides for software optimization, there is little known on how the differ-
ent passes actually affect the performance of the program. Only a few works
exist providing empirical experiments, and they do not allow extracting generic
conclusions (they are reviewed in Sect. 4). Therefore, there is a need of thor-
ough studies analyzing the impact of the different passes LLVM provides on the
performance of software programs. Such a study could provide highly valuable
information for compilers, and software optimization in general. This paper goes
in that direction.

Sensitivity Analysis (SA) [2] is a mathematical method that allows quantify-
ing the impact of the input parameter values of a model on the uncertainty on
the output of the model. SA was used in the past, for instance, to analyze the
impact of the values the parameters of a simulator can take on its output [3], or
for parameter tunning [4,5].

The main contribution of this work is the systematic mathematical study
of the influence of the different LLVM passes on the performance of several
software benchmark programs. The impact on the software execution time of
every transformation both itself and when combined with the others are ana-
lyzed. This will be done through the Extended Fourier Amplitude Sensitivity
Test (EFAST) [2]. We analyze the impact of all LLVM transform passes on a
selection of eight benchmark programs from the BEEBS benchmark suite [6], as
well as on a new program we implemented as the sequential execution of all the
benchmarks considered in this work, one after the other. Our main conclusion
is that the influence of the different transformations on the performance of the
software is highly unpredictable. Indeed, the direct influence of the transforma-
tions is almost negligible in most studied cases, but it becomes highly important
when combined with the other passes. This result exposes the complexity of the
problem of designing software optimizers.

The structure of this paper is as follows. We first give a short introduction
to LLVM and SA in Sects. 2 and 3, respectively. Section 4 presents some relevant
related works from the Literature. After that, Sects. 5 and 6 present the configu-
ration we designed for our experiments, as well as an elucidation on the obtained
results. Finally, the paper ends with our main conclusions and the most salient
lines of future work we identify from this work.

2 LLVM Compiler Infrastructure

LLVM [1] is a modular compiler infrastructure that includes a collection of modu-
lar compiler and toolchain technologies. It is an open-source project implemented
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in C++, designed for the compilation and optimization of programs written
in different programming languages. This is possible thanks to the Intermedi-
ate Representation (IR), which is the core of LLVM. IR is a back-end pseudo-
assembly language, composed by a strongly typed RISC instruction set, which
abstracts away details of the target architecture.

LLVM was originally written to be a replacement for the existing code gen-
erator in the GCC stack, and many of the existing GCC front-ends have been
modified to work with it. Thanks to the widespread interest in LLVM, there are
a large number of projects to develop new front ends for different languages. One
of the most important examples is Clang, a new compiler for C, Objective-C and
C++ supported by Apple.

LLVM implements a set of 54 different code optimizations, called transform
passes. These IR-to-IR transformations do not alter the semantics of the pro-
gram, and they are often used for code optimization. They are performed on the
IR code, providing a generic solution to optimize software, whatever the pro-
gramming language used and the target architecture, if they are supported in
LLVM.

The application of the passes is handled by a class called PassManager,
which allows applying the transformations in three different ways: Over the
entire module, on individual functions or on individual basic blocks. The avail-
able passes target many different operations, as those focusing on memory (e.g.,
mem2reg, memcpyopt, reg2mem, etc.), loops (e.g., loop-extract, loop-reduce, or
loop-unroll, among others), and many other optimizations, as the elimination
of useless and/or redundant pieces of code (e.g., constprop. This pass looks for
instructions involving only constant operands and replaces them with a constant
value; add i32 1,2 will be transformed into i32 3 ). Because LLVM is an open
source project, it also offers the possibility of building custom passes.

3 Sensitivity Analysis

Sensitivity Analysis (SA) identifies how the uncertainty of the output of a given
model is influenced by the uncertainty of in its input parameters [2]. SA performs
a systematic study of the behavior of the model for a large set of different input
values, and it offers multiple information about the model, such as: (i) verification
of the initial hypothesis of the model designer by understanding its real behavior;
(ii) identification of the most influential factors; (iii) simplification of the model
by possibly setting fixed values to the least influential ones; (iv) ascertainment of
some interaction effects within the model, or (v) help for designing experiments
and setting parameters

There are basically two main approaches for SA, namely local and global ones.
On the one hand, the local approach consists in calculating the partial derivatives
of the model in a certain point of the space of variables. Therefore, it studies
how little variations in a certain input value modify the output of the model
(while holding the other inputs fixed), providing information about the space
of the input parameters. On the other hand, the global approach does not need
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an initial set of values but considers the whole input domain, which is essential
in non-linear systems. In this case, this global approach studies the model as a
whole and not as a particular solution similar to another one previously defined.

We can find a number of techniques that allow performing SA, either visual
(e.g., scatterplot) or quantitative [2]. A well-known representative of the latter
group, is the Fourier Amplitude Sensitivity Test (FAST) [7], a tool that can be
used to calculate the first order sensibility indexes, as well as superior ones. The
SA method used in this work is the extended FAST (EFAST) [7]. It calculates
the interrelation among parameters, where a global interaction happens when
the influence of a set of parameter modifications over the output is not the sum
of the individual effects. This method allows us analyzing not only the direct
effect of an input parameter on the uncertainty of the model, but also its effect
in combination with the values of the other input parameters. For a review on
the different existing methods of global SA, please refer to [8].

4 Related Work

The problem of software optimization through the application of passes can be
divided into two subproblems: (1) the selection of the best passes to apply, and
(2) the order in which they should be applied. Each of them has an important
influence on the other, meaning that the performance of a software program
after being optimized with a given selection of passes strongly depends on the
order in which they were applied, and vice versa. Covering both subproblems
simultaneously is a complex task, as reflected in [9–11].

Different techniques are used in the Literature to predict the adequacy of
a given sequence of code transformations. Thus, in [12], a two-level method is
proposed to choose the most convenient selection of optimizations for an auto-
tuning application. In [13] sub-sequences are determined by machine learning to
accelerate the choice of LLVM optimizations. The same idea of grouping passes
is followed in [14], but making use of data mining processes.

Evolutionary algorithms (EAs) and heuristic strategies have been used to
select compiler flags for software optimization, focusing on different performance
metrics as run time [15] or energy consumption [16]. In [17], statistical techniques
are used together with EAs to help improving the solutions. EAs are also used
to parallelise sequential programs by means of straight-line code parallelisation,
loop transformations, or parallelisation of recursive routines, as reviewed in [18].
This approach led to the first auto-parallelising compiler, called Parafrase [19].

Another novel line of research is the use of statistical techniques to calcu-
late the impact of the optimizations. In [20], a procedure based on Orthogonal
Arrays is used to propose an iterative algorithm to activate or deactivate a sub-
set of passes. In a similar approach to ours, Tuzov et al. [21] make use of SA to
determine the list of flags offered by FPGA manufacturers to optimize a given
design. There are 71 synthesis flags available to choose from, and the authors
reduce that number to 9 factors.

Because of the difficulty of the considered problem, all commented related
works focus their efforts on reducing the search space. This is done by grouping
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passes following different methods. However, to the very best of our knowledge,
there is not any work that thoroughly analyzes the influence of the source code
optimizations on the performance of the program. Such an study, although dif-
ficult and time consuming, could set a fundamental theoretical basis for future
works on source code optimization. In this work, we perform a systematic math-
ematical study to analyze the influence of all available LLVM transform passes
(up to 54), one of the most popular compilers nowadays, on nine benchmark
problems.

5 Configuration of Experiments

The model we analyze with SA in this work is a simple program that first applies
a number of transform passes to the target software and after that it compiles
and executes it, measuring the run time. The decision on the passes to apply is
made according to the input variables. There are 54 variables (one per considered
transform pass available in LLVM), and its value is the probability to apply the
corresponding transformation. SA requires the input variables of the model to
be real values in a given (wide) interval. The interval of allowed values for all
input variables is: [0, 1] (because they are probabilities), and the distribution of
the values variables can take is set to be uniform.

Table 1. Description of the benchmark programs used and the operations they contain.

Name Branching Memory Integer Floating
point

License Category

AES High Low Medium Low GPL Security

Blowfish Low Medium High Low GPL Security

CRC32 Medium Low High Low GPL Network

Dijkstra Medium Low High Low GPL Network

FDCT High High Low High None Consumer

FIR 2D High Medium Low High None Automotive/Consumer

Quicksort High Medium High Low None Automotive

SHA High Medium Medium Low GPL Network/Security

Among the multiple SA tools available, we used an implementation of EFAST
called Fast99, which is available in package sensitivity of the R language [22].
In the studies made in this work, we considered eight programs from the
BEEBS benchmark suite [6] with different features, as presented in Table 1.
They are chosen because they expose processor and memory’s performance. The
selected benchmark programs are Advanced Encryption Standard (AES), Blow-
fish, CRC32, the Dijkstra shortest path algorithm, Finite Discrete Cosine Trans-
form (FDCT), 2D FIR filters, Quicksort, and Secure Hashing Algorithm (SHA).
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They contain algorithms typically found in sorting, security, networking, and
telecommunications applications. In addition, we implemented a ninth program
that executes all the chosen benchmarks, one after the other. The idea behind
this, is to analyze how the influence of the passes applied to an individual pro-
gram can change when it becomes part of a larger program.

The SA method used generates 54, 000 parameter combinations, numberOf-
Samples*numberOfParamaters (the number of samples is typically 1, 000). Every
benchmark program is executed with these 54, 000 different parameterizations,
and every parameterization is executed for 32 independent runs, since the pro-
gram that we evaluate is non-deterministic. The same 32 seeds were used in
the independent runs, and the average execution time was selected to evaluate
the performance of the algorithm. This means that the results presented in this
paper are obtained after performing 1, 728, 000 executions for every benchmark
program, making 15,552,000 experiments in total.

The execution platform is an Intel Core i7-7700K 4.20 GHz with 16 GB
2400 MHz RAM memory. The operative system is a clean installation of Ubuntu
14.04.5 LTS and we worked with LLVM version 3.8.1.

6 Results

We proceed to summarize in this section our main findings. Figures 1 and 2
present the results of our SA test on the different benchmarks considered. In the
plots, the white box means the direct influence of the corresponding transforma-
tion on the performance of the benchmark program evaluated. Value 0.0 means
that applying the transformation has no effect on the program execution time,
while value 1.0 indicates that the execution time of the program only depends
on that transformation. The grey box indicates the effect of the transformation
in combination with the others. Large grey boxes indicate strong dependencies
among all variables.

With the purpose of clarity, we do not plot the results for all the 54 transform
passes but just for those with a direct effect higher than 1%. on average, the
number of transform passes exceeding this threshold is 9.6, supposing around
18% of the total number of transformations analyzed. The benchmark programs
with the highest number of passes over 1% direct effect are FDCT and SHA,
with 13 passes each. The one with less passes over 1% effect is CRC32, with 5.

We analyze in Fig. 1a the influence of the LLVM transform passes on SHA.
SHA is a hashing algorithm used for verification in data streams. It has low
memory requirements, and mostly integer operations. The average direct effect
of all passes is 0.76% for this program, and 74, 21% in the case of the effect with
interactions. For SHA, loop.rotate and loop.extract are the transformations
with the strongest effect on the run time of the program, with 2.3% and 1.9%
direct effect, respectively. It calls our attention that, despite these two passes
present the highest direct effect, their effect in interaction with the others does
not stand out: it is roughly 74% in both cases, matching the average value
for all passes in this benchmark. The transformation with the highest effect in
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Fig. 1. Impact of LLVM transform passes on the uncertainty of the performance of
AES, Blowfish, CRC32, and Dijkstra shortest-path. Only those passes with over 1%
main effect are displayed.

interaction with the others is sink, with 80.1% effect (but only 0.16% direct
effect, which is actually the minimum one). This transformation tries to move
instructions into successor blocks, so that they are executed just when they are
needed, and not before. It makes sense that this transformation can be very
useful after applying a number of automatic transformations to the code.

We can find similar behaviors for Blowfish (Fig. 1b), FIR 2D (Fig. 1c), Dijk-
stra (Fig. 2a), and FDCT (Fig. 2b). The main effect of all passes is almost neg-
ligible in all of them (below 2%). In contrast, the impact of the passes on the
performance of the program when interacting with the others is meaningful
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Fig. 2. Impact of LLVM transform passes on the uncertainty of the performance of
FIR 2D, FDCT, Quicksort, and SHA. Only those passes with over 1% main effect are
displayed.

(over roughly 70%, and up to 82%). Similar results are also observed for CRC32
(Fig. 1d), where the highest direct effect is 1.6%, obtained for always.inline
operator. However, we can appreciate in this case a different behavior of the
passes in combination with the others: although most of them provide an effect
over 70%, as before, there are a number of passes with very low effect (14 passes
below 30%), and this is not observed in any other studied benchmark. This issue
cannot be appreciated in Fig. 1d because most passes are not displayed.

In the case of Quicksort algorithm (Fig. 2c), we can see how gvn is clearly
more important than the other passes, with a direct effect of 10% (the highest



280 J. C. de la Torre et al.

ad
ce

al
w

ay
s.

in
lin

e
ar

gp
ro

m
ot

io
n

bb
.v

ec
to

riz
e

br
ea

k.
cr

it.
ed

ge
s

co
de

ge
np

re
pa

re
co

ns
tm

er
ge

co
ns

tp
ro

p
dc

e
de

ad
ar

ge
lim di

e
ds

e
fu

nc
tio

na
ttr

s
gl

ob
al

dc
e

gl
ob

al
op

t
gv

n
in

dv
ar

s
in

lin
e

in
st

co
m

bi
ne

ip
co

ns
tp

ro
p

ip
sc

cp
ju

m
p.

th
re

ad
in

g
lc

ss
a

lic
m

lo
op

.d
el

et
io

n
lo

op
.e

xt
ra

ct
lo

op
.e

xt
ra

ct
.s

in
gl

e
lo

op
.r

ed
uc

e
lo

op
.r

ot
at

e
lo

op
.s

im
pl

ify
lo

op
.u

nr
ol

l
lo

op
.u

ns
w

itc
h

lo
w

er
at

om
ic

lo
w

er
in

vo
ke

lo
w

er
sw

itc
h

m
em

2r
eg

m
em

cp
yo

pt
m

er
ge

fu
nc

m
er

ge
re

tu
rn

pa
rt

ia
l.i

nl
in

er
pr

un
e.

eh
re

as
so

ci
at

e
re

g2
m

em
sc

al
ar

re
pl

sc
cp

si
m

pl
ify

cf
g

si
nk

st
rip

st
rip

.d
ea

d.
de

bu
g.

in
fo

st
rip

.d
ea

d.
pr

ot
ot

yp
es

st
rip

.d
ea

d.
de

cl
ar

e
st

rip
.n

on
de

bu
g

ta
ilc

al
le

lim

0.0

0.2

0.4

0.6

0.8

1.0
main effect
interactions

Fig. 3. Impact of LLVM transform passes on the uncertainty of the performance of the
software composed of all considered benchmark problems. All passes are displayed.

impact we found in all our experiments) against 4.4% for the second one,
scalarrepl. Transformation gvn performs global value numbering to eliminate
redundant instructions. In this case, unlike for SHA, the influence of this trans-
formation in interaction with the others is also the highest one.

The transformation with the highest impact on AES (Fig. 2d) algorithm is
strip, with 2.2% direct effect. Its influence in combination with the other passes
is roughly 82%, similar to the highest value. It is interesting to mention that the
transformation with the lowest direct effect, globaldce, offers the second highest
influence when combined with the others for this algorithm. We obtain a similar
result for Blowfish benchmark: the transformation with the lowest direct effect,
lcssa in this case, is among the operations with the highest combined effect.
The same behavior in which the operation with the lowest direct effect presents a
combined effect over the average is observed in FDCT, Dijkstra, and FIR 2D too.
However, despite being a common result, it is not the case for all benchmarks. A
counterexample is CRC32, for which sink is the transformation with the lowest
direct effect, and also among those with the lowest influence in combination with
the others.

In summary, our findings indicate that the effects of the different passes
(both direct or combined) strongly change from one benchmark to the other.
Indeed, the transformation with the strongest effect for some software might
be the less important one in another, as it is the case of deadargelim, provid-
ing the highest combined effect for CRC32 and FDCT, and the weakest one on
Dijkstra. In order to extract some conclusions, we computed the average effect
of every transformation in all studied benchmark programs. We obtained that
the transformation with the highest average effect was gvn, with 2.01%, followed
by reg2mem (1.19%), prune.eh (1.04%), strip (1.02%), and loop.rotate and
mergefunc, both with 0.98% effect. On the contrary, the passes with the low-
est average effect were found to be break.crit.edges (0.38%), sink (0.44%),
mem2reg (0.48%), and partial.inliner and die (0.49%).

Finally, we also evaluated the effects of all passes on a new benchmark that
is composed by the sequential run of all studied benchmarks. The results are
shown in Fig. 3 (please, note that here we are not filtering those passes with less
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than 1% effect). In this case, the average main effect of all passes is 8.7%, while it
is 64.3% when considering interactions. These values are slightly higher than the
average effect of all passes when running the benchmarks independently, which
is 7.5%, while the average effect of passes in interaction with the others is 58, 3%.
We can see how the best (and worst) passes identified before are generally the
ones with the strongest (and weakest) effect in Fig. 3. It is also interesting to see
how some passes have strong influence (in comparison with the others) for some
benchmarks, but not for the aggregation of all of them. For instance, globalopt
has 1.3% influence in the latter, while it is below 1% for all benchmarks but
SHA (1.17%).

7 Conclusions and Future Work

We perform in this work a thorough study on the influence of LLVM source
code optimization transformations (called passes) through sensitivity analysis.
We considered for the study eight benchmark programs, taken from BEEBS
benchmark suite [6], as well as another one we implemented as the sequential
run of all considered benchmarks, in order to analyze the influence of the different
passes in a larger software.

After our studies, involving over fifteen million experiments, we can identify
gvn, reg2mem, prune.eh, and strip as the LLVM passes showing the highest
effect on the performance of the considered benchmark programs, on average.
However, we obtained very low direct effect values for all passes in all studied
benchmarks (7.5% on average). The effect of passes when combined with the
others is roughly one order of magnitude higher. This fact shows the difficulty
of software optimization problem.

As future work, we are currently considering extending the study to a larger
benchmark suite. Additionally, we consider of high interest studying the impact
of the passes on the energy consumption of the execution platform, in addition
to the run time.
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Abstract. Literature reveals that optimization algorithms are generally
composed of a large number of parameters that highly influence on its
performance. In the early stages of the definition of a new algorithm, it
is crucial to know how the uncertainty in the input parameters affects
the behavior of the algorithm, influencing on its final output, so that it
is possible to set up the most efficient configuration.

In this work, we are making a sensitivity analysis using the Extended
Fourier Amplitude Sensitivity Test to compute the first order effects and
interactions for each parameter on a recently proposed particle swarm
optimization algorithm that implements a dynamic structured swarm,
based on coalitions. This technique, inherited from game theory, includes
four new parameters that are analyzed and tested on a well-known bench-
mark for continuous optimization. Results give interesting insights of the
importance of one of the parameters over the rest.

Keywords: Sensitivity analysis · Particle Swarm Optimization
Optimization · Coalitions

1 Introduction

It is well known that decentralizing the population helps Evolutionary Algo-
rithms (EAs) keeping diversity of solutions for longer and therefore, contributing
to mitigate premature convergence in the population [1,2]. This is done at the
cost of reducing the convergence speed, so algorithms implementing such decen-
tralized populations might take longer to find accurate solutions with respect to
panmictic ones. However, they can find accurate solutions to problems for which
panmictic EAs get stuck in low quality local optimal solutions.

Not all problems require the same convergence speed. Panmictic populations
are, generally, more effective optimization tools for problems displaying simple
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landscapes with a low number of local optimal solutions, while structured pop-
ulations are a more appropriate configuration when dealing with multi-modal
and complex functions. Algorithms implementing dynamic population topolo-
gies [3,4] aim at efficiently solving problems of different features.

We recently introduced in [5] a novel Particle Swarm Optimization algo-
rithm [6,7] that implements a dynamic topology in the swarm. The algorithm is
called PSO-CO, and it implements coalitions of particles in the swarm. The dif-
ferent coalitions can be understood as independent swarms so that particles can
only interact with other particles in the same swarm. Particles can leave their
swarm and join another, or build their own, at any moment, based on their own
expected benefit. The resulting algorithm clearly outperformed the equivalent
PSO implementation with a panmictic population, but at the cost of introducing
four new parameters in the algorithm, required for implementing the coalitions.

The main contribution of this work is the performance of a rigorous sys-
tematic study to mathematically evaluate the impact of the already mentioned
four new parameters of PSO-CO on the uncertainty of the performance of the
algorithm, in terms of both, the quality of the solutions found and execution
time. This is done through the extended Fourier Amplitude Sensitivity Test [8]
(EFAST for short). We carefully analyze the output of EFAST method and
results show the importance of one of the parameters over the rest.

This paper is organized as follows. Next Section introduces the concept of
sensitivity analysis and its purpose. Section 3 presents some relevant work on
the topic. The optimization algorithm we are tackling, PSO-CO is explained in
Sect. 4. Both, the experiments and the results obtained are shown in Sects. 5
and 6, respectively. Finally, Sect. 7, concludes the papers and presents our main
future research lines.

2 Sensitivity Analysis

The objective of performing a sensitivity analysis (SA) of a model is to determine
the dependency of its output on its input factors [8]. SA allows quantifying the
effects of the values these parameters can take on the uncertainty of the output
of the model [9].

SA helps to understand the behavior of the model and how different parts of
the model interplay. It also identifies the most and the least influencing param-
eters, and measures how variations of a specific input parameter affects on the
uncertainty of the output of the model. This study allows to fix non-influential
inputs to nominal values and to fine tune the influencing ones using available
information. Moreover, in the design of an algorithm, the developer usually
implements an algorithm considering his initial idea of its behavior. SA pro-
vides verification of the designer’s hypothesis and allows him/her to modify the
model, if necessary.
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We can find in the Literature two different techniques related to sensitivity
analysis: local and global SA. The former is the first approach to SA and modifies
one parameter at a time around a nominal value (keeping the others fixed) and
analyses the local variation of the output of the model. In order to overcome its
limitations, global SA methods appear, considering the whole input domain.

SA is often applied to analyze simulators. Simulations allow to accomplish
experiments that otherwise can be very costly in terms of time or resources in
multiple areas (physics, engineering, etc.). They generally rely on mathematical
models that require the estimation of different parameters to determine the
behavior of the experiment. Therefore, parameter analysis is essential in the
development of the final model. SA allows measuring and quantifying how input
parameters can influence output values. It is a basic tool for extracting knowledge
from the system, as well as for modeling and development.

There are many techniques to perform SA, either visual (e.g., scatterplot)
or quantitative [9] (e.g., the Sobal method or the extended Fourier’s amplitude
sensibility test –EFAST–). For a more detailed review on the different existing
global analysis methods, please refer to [10]. The Sobol and EFAST methods
can be used to calculate the first order sensibility indexes or even superior ones.
The implementation used in this work is Fast99, and can be found in the R
project [11]. It is an implementation of the –EFAST– algorithm originally pro-
posed in [8,9], that calculates the interrelation among parameters, where a global
interaction happens when the influence of a set of parameter modifications over
the output is not the sum of the individual effects.

3 The Influence of Parameters on Software Performance,
A Review

Methods for Sensitivity analysis are inestimable tools in any field. We can find
in the Literature many works facing the challenging problem of trying to under-
stand how the different input factors interact and influence on the behavior of
the algorithm (the uncertainty of the output). In this section, we point out some
the most relevant works that use these tools in many different domains.

In software configurable systems, performance is very dependent on the
selected characteristics of the system. In [12], the authors perform two SA analy-
sis levels (uniform binding and statistical sampling), to determine their influence
over the software and hardware contexts.

Concerning Science of Materials, the work described in [13] performs a SA
to optimize crossover and mutation parameters over a basic genetic algorithm
(GA) used to manage machinery configurations.

Considering search and optimization methods, [14] proposes a SA algorithm
(Local-Global SA algorithm) for its Artificial Bee Colony algorithm (ABC). Also
in [15], authors performed an exhaustive SA on an evolutionary algorithm (EA)
and pointed out that the metaheuristic parameters have little influence on the
accuracy of the algorithm but some local search operators had strong impact.
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In the Telecommunications area, the work presented in [16] uses Fast99 to deter-
mine the influence of the parameters used by the algorithm AEDB-MLS, and
this analysis is used to design local search operators.

In nuclear engineering, uncertainties in the pressurized thermal shock of a
nuclear pressurized reactor are determined in [17], simulating an accidental sce-
nario. A very complete review of different SA methods tested on environmental
models is presented in [18]. In the field of stealth technology, Lefebvre uses a
SA for finding the most influential parameters in an aircraft infrared signature
simulation model with more than 30 input factors [19].

Finally, in Biomedical Informatics, [20] proposes a framework to speed up
the SA and the parameter tuning processes in a framework for performing tissue
image analysis.

4 PSO with Coalitions, PSO-CO

Particle Swarm Optimization algorithms (PSO hereinafter) are well-known
metaheuristics that emulate the social behavior of bird flocks or school of fish
for solving complex continuous optimization problems. The population of the
algorithm is called swarm. In this swarm, the best particle found so far is con-
sidered the leader, and the rest of the swarm follows it during the search. In
every iteration, each particle updates its position in terms of the speed and the
current position as shown in Eq. 1 for particle i:

−→xi(t) = −→xi(t − 1) + −→vi (t). (1)

Particles are in pursuit of the leader by updating their speed in terms of the
leader’s position (the global best position in the swarm), and the best position
the particle ever visited (i.e. historical local best position). The speed is defined
as follows:

−→vi (t) = w · −→vi (t − 1) + C1 · r1 · (−→xli − −→xi) + C2 · r2 · (−→xgi − −→xi), (2)

where −→xli represents the best solution visited by particle i, −→xgi refers to the
best particle of the swarm (the leader), w is the weight of the particle’s inertia
(controls the balance between local and global experience), r1 and r2 are two
random numbers, and C1 and C2 are two specific parameters that control the
effect of the position of the best particle and the leader.

PSO provides a simple and effective implementation for solving continuous
optimization problems. However, its centralized population and movement strat-
egy allow a fast convergence, that generally gets stuck in local optima. Decen-
tralizing the population prevents that fast convergence, preserving at the same
time the diversity of the population for longer [1].
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In [5], we proposed PSO-CO, a PSO where we applied cooperative game
theory techniques (formation of coalitions) for decentralizing the swarm. These
coalitions are known to help the agents achieving their goals and even accom-
plishing others they might not be able to fulfill independently [21].

By applying the coalitions into the swarm of the PSO-CO we are benefit-
ing from two of the most well-known population structures: island and cellular.
Inside the coalition every particle interacts with any other particle of the same
coalition, behaving like a subpopulation of an algorithm structured in islands.
However, isolated or frontier particles that just left a coalition, analyze neigh-
boring ones (like a cellular algorithm) before deciding whether to join one or not.

Particles in the swarm can only belong to one coalition, and they do not
follow the leader of the swarm anymore, but the leader of the coalition they
belong to. Coalitions are measured in terms of their quality (explained later)
and it is desirable they join the most profitable coalition. In the same way,
particles that consider the benefit of belonging to a coalition is low, can leave
it and analyze neighboring ones. If the expected reward of joining an adjacent
coalition is low, particles can remain isolated.

The pseudocode of PSO-CO is detailed, in Algorithm 1.

Algorithm 1. Pseudocode of PSO-CO
1: InitialiseSwarm();
2: EvaluateSwarm();
3: BelongCoalition();
4: numEvals = 0;
5: while numEvals < maxNumEvals do
6: for i = 1 : NumCoalitions do
7: CalculateSpeeds();
8: UpdatePositions();
9: EvaluateCoalition();

10: end for
11: DecideBelongCoalition();
12: end while
13: ReturnBestSolutionFound();

Particles are able to evaluate the potential reward (in case of merger) and
compare different coalitions by using a quality value associated to them. It is
known that, in optimization algorithms, keeping the diversity of the population
is key for spacing from local optima and obtaining good results. Therefore, it is
desirable to have large coalitions with diverse solutions. In PSO-CO, the quality
of the coalition is determined by its size, as well as the quality and diversity of
the particles composing it. This quality value is defined as follows:

Quality(Ci) = α · Size(Ci) + β · V ar(Ci) + γ · Avg(Ci) (3)
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where α + β + γ = 1. These coefficients model the importance given to the
size, diversity and average of the fitness value of all the solutions composing the
coalition, respectively.

Additionally, in order to promote the exchange of information between coali-
tions, a parameter called Independent Coefficient, Indc is also introduced and
models the desire of a particle of remaining independent (probabilistic value).

In [5], the values of these four parameters were experimentally chosen, and
the performance of the original PSO was improved. However, a deeper study on
the influence of each the parameters over the results of the algorithm is needed to
better understand the impact of the coalitions on the solutions. These interaction
and influence between the parameters and the performance of the algorithm is
analyzed here through a sensitivity analysis.

5 Experiments

We now proceed to present and explain the experiments done in order to under-
stand the uncertainty of the output that is derived from the coalition param-
eters. These four new parameters required by PSO-CO for implementing the
coalitions are: Indc, α, β, andγ. Indc represents the probability of individuals
to leave the coalition and remain independent; α, β, and γ, are used to evaluate
the expected benefit of joining a given coalition (as described in Eq. 3). The
rest of the parameters of PSO-CO are the same of the classical PSO algorithm
(introduced in Sect. 4), and they are described in Table 1. These values have also
been experimentally chosen after an exhaustive preliminary analysis. The size of
the swarm is larger than the typically used values in PSO, in order to allow the
simultaneous formation of a number of coalitions in the swarm. The inertia (W )
has a fixed value of 0.1, and the other four parameters take random values for
each particle in each iteration. Parameters r1 and r2 are uniformly distributed in
the [0, 1] interval, whereas C1 and C2 are in the [1.5, 2.5] interval. The maximum
allowed number of generations if the optimum is not found is 2500 (i.e. 1,000,000
of evaluations).

The SA method requires to set up a wide range for the four targeted variables.
As already mentioned in Eq. 3, the sum of α, β and γ must be equal to 1, and at
the same time, Indc is a probabilistic value. Therefore, we use the range [0, 1]
for the four parameters, as presented in Table 2.

In our SA study, we use an implementation of the Extended Fourier Ampli-
tude Sensitivity Test proposed in [8] by Saltelli et al., known as fast99, that is
included in the R project [11]. All variables must be independent for this test. As
we previously said in Sect. 4, there exists a restriction with three of the studied
variables: α + β + γ = 1. However, this restriction implies there are just two
degrees of freedom, but we still have three independent variables. Therefore, we
can apply the fast99 test.
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Table 1. Parameters of PSO-CO

Parameter Value

Swarm size 400

W 0.1

C1 random value in [1.5, 2.5]

C2 random value in [1.5, 2.5]

r1 random value in [0, 1]

r2 random value in [0, 1]

Max evaluations 1,000,000

Table 2. Range of parameters of
coalitions

Parameter Value

α [0, 1]

β [0, 1]

γ [0, 1]

Indc [0, 1]

The method generates a large number of parameter combinations. Then,
the algorithm is run with the prepared parameter combinations. The number of
combinations is Nsamples×Nparameters (typically, Nsamples = 1000). Considering
we have to cope with the already mentioned restriction of the parameters, we
normalize the values before using these combinations in PSO-CO. For that, we
just divide each of the three parameters α, β and γ by the sum of the three of
them (α + β + γ).

The benchmark used for analyzing our algorithm was first proposed in CEC
2015 Competition on Learning-based Real-Parameter Single Objective Optimiza-
tion [22]. This benchmark is composed of 15 minimization problems with dimen-
sions 10, 30, 50, 100 (we consider in this study the two largest ones). Each func-
tion has different features and they all have been shifted and rotated. There are
two unimodal functions (F1 and F2), three simple multimodal (F3–F5), three
hybrid (F6–F8) and seven composition functions (F9–F15). The performance of
the algorithm is compared in terms of both, the quality of the solution found
and the execution time.

6 Results

In this section, we are presenting the results obtained after performing SA to
PSO-CO. As explained in Sect. 5, we are performing the sensitivity analysis
over the well-known competition for optimization algorithms of CEC 2015. We
present here only representative results, so we show the results obtained for one
problem of each the four different types proposed (unimodal, multimodal, hybrid
and composition).

Results are shown in stacked bar charts presenting for each factor, their linear
and non-linear (or interaction) effects on the output. The gray color represents
the interaction that the parameter has along with the others on the algorithm,
whilst the white color represents the direct effect this parameter exerts.

Figures 1 and 2 present the results obtained in terms of the accuracy of the
algorithm for F1, F3 and F6, and F9 respectively, for the two studied dimensions
(50 and 100). The benefits of the sensitivity analysis are immediately visible.
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Fig. 1. Impact of the variables used for coalitions on the accuracy of the algorithm.

Results show that the only parameter that directly influences, to some extent,
in the accuracy of the algorithm is Indc (the independent coefficient), regardless
of the dimension considered. In Figs. 1a, b, c and d, we can see that for both
unimodal and multimodal problems, Indc influences the most the output, while
the influence of the three parameters α, β, and γ is negligible. However, for the
hybrid and composition problems, F6 and F9, the direct influence is reduced
almost to 0 for all parameters, but the interaction of all parameters is high,
which means that all parameters combined, influence the output more than
individually (see Figs. 2a, b, c and d).
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Fig. 2. Impact of the variables used for coalitions on the accuracy of the algorithm.

In terms of the execution time, Figs. 3 and 4 reveal that regardless the type of
problem faced, the influence of α, β, and γ is insignificant. Nevertheless, the Indc
highly and directly influences the execution time. This result is consistent with
the expected behavior of PSO-CO because the creation of the coalitions delays
the execution time (as it was shown in [5], PSO-CO takes longer than classical
PSO). Additionally, while α, β, and γ determine the quality of the coalition,
Indc is the only parameter involved in the actual creation of the coalition. High
values of Indc would lead to classical PSO, where coalitions do not exist.
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Fig. 3. Impact of the variables used for coalitions on the run time of the algorithm.
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Fig. 4. Impact of the variables used for coalitions on the run time of the algorithm.

7 Conclusions and Future Work

This work focuses on the analysis of the influence and interdependencies of the
parameters arisen from the formation of coalitions of the PSO-CO algorithm.

This influence is measured, through a sensitivity analysis, that helps to under-
stand how the different variables of the algorithm interact, in terms of both the
accuracy and the execution time.

Results show that the most impacting parameter is the Indc, which has the
highest influence on the accuracy as well as on the execution time regardless the
problem or the dimension studied.

In terms of the execution time, SA shows that the influence of the other three
parameters (α, β, and γ) is negligible. That was expected because Indc models



Finding the Most Influential Parameters of Coalitions 295

the desire of particles to remain independent. If this value is 1, PSO-CO behaves
as a classical PSO (there are no coalitions in the swarm).

Regarding the accuracy, Indc also generally shows the highest impact. For
the unimodal and multimodal problems there exists direct influence whilst for
the hybrid and composite there is not. At the same time, the interaction of α, β,
and γ for these problems is not relevant. For the two last problems, F6 and F9,
the sensitivity analysis does not show any significant direct influence for any of
the parameters. However, in these cases, the common interaction of α, β, and γ
is the highest.

As future work, we are considering redesigning the algorithm so that the
number of parameters is reduced by grouping the three parameters whose direct
influence is less relevant, α, β, and γ, or even assigning them a fixed value.
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Abstract. Consider a decision maker (DM) who must select an alternative to
evaluate when using an online recommender engine that displays multiple
evaluations from unknown raters regarding the different characteristics of the
available alternatives. The evaluations of the raters do not necessarily coincide
with those that would be provided by the DM, who must consider the differences
existing between the ratings observed and his subjective perception and sub-
sequent potential evaluations. We formalize the incentives of the DM to observe
and evaluate an alternative through a function that accounts for these differences
in a multi-criteria decision making setting. The resulting perception-based
framework is implemented in a data envelopment analysis (DEA) scenario to
analyze the effects of perception differentials on the evaluation and ranking
behavior of DMs.

Keywords: Uncertainty � Subjective perception � Data envelopment analysis
Online evaluations � Multi-criteria decision making

1 Introduction

Consider a decision maker (DM) who must select an alternative to evaluate when using
an online recommender engine that provides him with multiple evaluations from
unknown raters regarding the different characteristics that compose the available
alternatives (Li et al. 2014; Cyr 2014).

Psychologists have consistently illustrated the dependence of the evaluations pro-
vided on the differences in the beliefs and experience of the DMs (Kimmel 2012).
Consequently, the marketing literature has shown how the attitude of DMs towards an
alternative is determined by the subjective importance assigned to its different char-
acteristics by the DM together with his beliefs (Blackwell et al. 2006). Cognitive
sciences have focused on the substantial importance given to the subjective perception
of DMs in the evaluation of the characteristics composing an alternative (Bartels and
Johnson 2015; Chater 2015). This branch of the literature has illustrated that the
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perceived value of an alternative is affected by the attention and memory capacities of
the DMs (Stewart et al. 2006), with differences in perception arising between genders
(Bae and Lee 2011). As a result, information scientists have highlighted the importance
of accounting for the differences existing between the perception of the DM and that of
the raters when formalizing different evaluation scenarios (Tavana et al. 2015a, 2015b).

The intuition on which the current formal structure is built follows from the dif-
ferences in the perception and evaluation of the characteristics composing a given set of
alternatives. In other words, when presented with a set of alternatives rated by a group
of unknown users, the DM must consider the differences existing between these ratings
and his subjective perception and subsequent potential evaluations. The DM has to
account for two main sources of uncertainty

• First, the distribution of the realizations of each characteristic is unknown to the
DM. Thus, independently of the evaluations provided by the raters, if the DM were
to observe and evaluate an alternative, the potential realizations assigned to each
characteristic should follow a uniform probability distribution.

• Second, the potential evaluations provided by the DM after observing the charac-
teristics of a given alternative are subjective and must therefore be contained within
an uncertain interval determined by the inaccuracy inherent to his perception.

Thus, the value assigned by the DM to a characteristic must account for the
uncertainty regarding the distribution of its realizations and the subjective quality of the
perception determining his own evaluation. We formalize the incentives of the DM to
observe and evaluate an alternative given the realizations received from the raters and
the width of the uncertain intervals determining his subjective evaluations. The
resulting perception-based framework is implemented within a data envelopment
analysis (DEA) scenario to study numerically the effects that differences in perception
have on the evaluation and ranking behavior of DMs.

2 Basic Assumptions

Assume that the DM must evaluate different alternatives composed by finite sets of
characteristics and let X1 be the set of potential values that may be taken by a given
characteristic. We will actually identify each alternative with its numerical evaluation,
x1 2 X1, such as those that can be retrieved from online recommender engines. In other
words, the initial part of the paper focuses on one characteristic per alternative, while
multiple uncertain ones defining the evaluations of different alternatives will be con-
sidered when defining the perception-based online-evaluation DEA framework.

Assume that X1 ¼ ½xm1 ; xM1 � corresponds to the set of potential evaluations, where xm1
and xM1 are two real numbers such that xm1 6¼ xM1 . Moreover, we will use D to denote a
generic DM. The traditional approach to decision-making under uncertainty
(Mas-Collel et al. 1995), requires D to define a

• strictly increasing continuous utility function u1 : X1 ! R that represents his
preferences on X1;
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• continuous probability density function l : X1 ! ½0; 1� that expresses his subjec-
tive beliefs regarding the potential realizations that could be observed from a ran-
domly selected alternative within X1. Without loss of generality, it will be assumed
that SupportðlÞ ¼ X1.

2.1 Uncertain Evaluations

It will also be assumed that after observing the realization xr1 of a characteristic,D expects
its potential evaluation to be definedwithin ½xr1 � e1; xr1 þ e1�, with e1 [ 0 determining the
spread of his perception. That is, given the subjectivity inherent to his evaluations, D
defines an interval of viable evaluations around the potential realizations that he could be
retrieving from each characteristic if he were to observe the alternative in detail.

Therefore, D must consider the set of evaluations associated to each xr1 potential
realization together with the probability density value assigned to both each realization
and its associated evaluations. It will be assumed that the evaluations are uniformly
distributed over ½xr1 � e1; xr1 þ e1�, maximizing information entropy and uncertainty on
the side of D

#ðx1je1Þ ¼
1
2e1

if x1 2 ½xr1 � e1; xr1 þ e1�
0 otherwise

�
ð1Þ

It should be emphasized that the distribution of potential evaluations defined within
½xr1 � e1; xr1 þ e1� can be adapted to the degree of optimism or pessimism with which D
is assumed to be endowed.

3 Perception-Based Evaluation Intervals

Let xro 2 X1 be the rating received by D regarding a given characteristic of an alter-
native. We define below the sets I þ ðxroÞ and I�ðxroÞ contained in X1 that account for all
the potential evaluations x1 2 ½xr1 � e1; xr1 þ e1� that may be defined by D for each xr1
realization and deliver a utility higher or lower than xro 2 X1, respectively. That is, any
potential evaluation derived from xr1 must be defined with respect to xro, while con-
sidering the uncertainty inherent to the new realization observed by D, i.e.
½xr1 � e1; xr1 þ e1�.

The subset I þ ðxroÞ, which defines the potential improvements relative to xro 2 X1, is
given by

I þ ðxroÞ ¼
deffx1 2 ½xr1 � e1; x

r
1 þ e1� \ SupportðlÞ : xr1 2 X1 ^ u1ðx1Þ� u1ðxroÞg ð2Þ

Similarly, the subset I�ðxroÞ, which defines the potential worsenings relative to
xro 2 X1, is given by

I�ðxroÞ ¼
deffx1 2 ½xr1 � e1; x

r
1 þ e1� \ SupportðlÞ : xr1 2 X1 ^ u1ðx1Þ\u1ðxroÞg ð3Þ
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Finally, note that both improvements and worsenings relative to xro must be con-
sidered whenever xro 2 ½xr1 � e1; xr1 þ e1�.

4 Perception-Based Value Function

We analyze the evaluation behavior of D if he were to observe a given alternative,
while acknowledging that his behavior is determined by the subjective perception sets
I þ ðxroÞ and I�ðxroÞ defined in Eqs. (2) and (3). We introduce the notion of
perception-based value function, determined by the initial observation xro and the
potential evaluations composing the sets I þ ðxroÞ and I�ðxroÞ defined 8xr1 2 X1.

Letting xr1 vary above xro but below xro þ e1, or below xro but above xro � e1, the
perception-based value function V : X1 � Rþ ! R is given by

Vðxro; e1Þ ¼
Z

I þ ðxr0Þ [ I�ðxr0Þ

lðxr1Þ

Rxro
xr1�e1

#ðx1je1Þ uðx1Þð Þ dx1 þ

Rxr1 þ e1

xro

#ðx1je1Þ uðx1Þþ x1�xro
xM1 �xro

h i� �
dx1

2
66664

3
77775dxr1 ð4Þ

The potential improvements and worsenings relative to xro that may be realized by
D together with their corresponding subjective evaluation spreads condition the value
of the function defined in Eq. (4). In particular, the second right hand side (RHS) term
defined for x1 2 ½xro; xr1 þ e1� constitutes an improvement over xro, leading D to incre-
ment his utility proportionally by ðx1 � xroÞ=ðxM1 � xroÞ:

Given the fact that D has no information about the distribution of potential real-
izations of the characteristics, he must account for all the values of xr1 2 X1 when
computing Vðxro; e1Þ for each and every xro 2 X1. The corresponding value of Vðxro; e1Þ
is obtained via I þ ðxroÞ and I�ðxroÞ, 8xr1 2 X1. Figure 1 illustrates the behavior of several
xr1 potential realizations and their respective uncertain evaluation intervals ½xr1 �
e1; xr1 þ e1� considered by D when computing Vðxro; e1Þ for different values of xro 2 X1.

Fig. 1. Computation of Vðxro; e1Þ by D through ½xr1 � e1; xr1 þ e1� for different xro realizations.
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We describe the different cases defining the function Vðxro; e1Þ in the next sections.
Five different cases determined by the relative position of xro within X1 and the spread
of the subjective uncertain evaluation intervals, e1, will be analyzed.

4.1 Lower Interval Case: xro 2 ½xm1 ; xm1 þ e1�

Vðxr0; e1jxro\xm1 þ e1Þ

¼ Rxm1 þ e1

xm1

lðxr1Þ

Rxro
xm1

1
ðxr1 þ e1Þ�xm1

uðx1Þ
� �

dx1 þ

Rxr1 þ e1

xro

1
ðxr1 þ e1Þ�xm1

uðx1Þþ x1�xro
xM1 �xro

h i� �
dx1

2
66664

3
77775dxr1

þ Rxro þ e1

xm1 þ e1

lðxr1Þ
Rxro

xr1�e1

1
2e1

uðx1Þ
� �

dx1 þ
Rxr1 þ e1

xro

1
2e1

uðx1Þþ x1�xro
xM1 �xro

h i� �
dx1

" #
dxr1

þ RxM1 �e1

xro þ e1

lðxr1Þ
Rxr1 þ e1

xr1�e1

1
2e1

uðx1Þþ x1�xro
xM1 �xro

h ih i
dx1

" #
dxr1

þ RxM1
xM1 �e1

lðxr1Þ
RxM1

xr1�e1

1
xM1 �ðxr1�e1Þ uðx1Þþ x1�xro

xM1 �xro

h ih i
dx1

" #
dxr1

ð5Þ

Vðxro; e1j�Þ has been defined so as to consider all the values of xr1 that may be
realized when observing an alternative. Note that when xr1\xm1 þ e1, part of the interval
½xr1 � e1; xr1 þ e1� surpasses the lower limit of X1, i.e. xm1 , while x

r
1 improves potentially

upon xro. This possibility is described by the first RHS term within Eq. (5), where the
#ðx1je1Þ expressions have been adapted to account for the corresponding support limits
of the density function.

As already stated, the weight ðx1 � xroÞ
�ðxM1 � xroÞ has been included to represent

the increments in utility obtained by D as he observes alternatives considered to be
potentially better than xro, and is determined by the relative location of the xro and xr1
realizations within X1.

Note that the value function defined by D must account for two distinct levels of
uncertainty:

• lðxr1Þ, reflecting the uncertainty of the xr1 2 X1 potential realizations;
• #ðx1je1Þ, reflecting the uncertainty inherent to xr1 while adapting to the limits of the

domain of X1.
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4.2 Lower-Middle Interval Case: xro 2 ½xm1 þ e1; xm1 þ 2e1�

Vðxr0; e1jxm1 þ e1 � xro � xm1 þ 2e1Þ

¼ Rxro�e1

xm1

lðxr1Þ
Rxr1 þ e1

xm1

1
ðxr1 þ e1Þ�xm1

uðx1Þ
� �

dx1

" #
dxr1

þ Rxm1 þ e1

xro�e1

lðxr1Þ

Rxro
xm1

1
ðxr1 þ e1Þ�xm1

uðx1Þ
� �

dx1

þ Rxr1 þ e1

xro

1
ðxr1 þ e1Þ�xm1

uðx1Þþ x1�xro
xM1 �xro

h i� �
dx1

2
66664

3
77775dxr1

þ Rxro þ e1

xm1 þ e1

lðxr1Þ
Rxro

xr1�e1

1
2e1

uðx1Þ
� �

dx1 þ
Rxr1 þ e1

xro

1
2e1

uðx1Þþ x1�xro
xM1 �xro

h i� �
dx1

" #
dxr1

þ RxM1 �e1

xro þ e1

lðxr1Þ
Rxr1 þ e1

xr1�e1

1
2e1

uðx1Þþ x1�xro
xM1 �xro

h ih i
dx1

" #
dxr1

þ RxM1
xM1 �e1

lðxr1Þ
RxM1

xr1�e1

1
xM1 �ðxr1�e1Þ uðx1Þþ x1�xro

xM1 �xro

h ih i
dx1

" #
dxr1

ð6Þ

Equation (6) accounts for the progressive overtaking of xro by xr1 until reaching xM1 .
Note that the first RHS term represents potential evaluations contained exclusively
within I�ðxroÞ, the second and third terms those contained within both I�ðxroÞ and
I þ ðxroÞ, while the last two terms consider evaluations contained exclusively within
I þ ðxroÞ. The remaining expressions for the Vðxro; e1Þ function complement these pre-
vious ones through the different realizations of xro and xr1 composing the domain of X1

until the upper interval case xro 2 ½xM1 � e1; xM1 � is reached.

4.3 Middle Interval Case: xro 2 ½xm1 þ 2e1; xM1 � 2e1�

Vðxr0; ejxm1 þ 2e1 � xro � xM1 � 2e1Þ
¼ Rxm1 þ e1

xm1

lðxr1Þ
Rxr1 þ e1

xm1

1
ðxr1 þ e1Þ�xm1

uðx1Þ
� �

dx1

" #
dxr1

þ Rxro�e1

xm1 þ e1

lðxr1Þ
Rxr1 þ e1

xr1�e1

1
2e1

uðx1Þ
� �

dx1

" #
dxr1

þ Rxro þ e1

xro�e1

lðxr1Þ
Rxro

xr1�e1

1
2e1

uðx1Þ
� �

dx1 þ
Rxr1 þ e1

xro

1
2e1

uðx1Þþ x1�xro
xM1 �xro

h i� �
dx1

" #
dxr1

þ RxM1 �e1

xro þ e1

lðxr1Þ
Rxr1 þ e1

xr1�e1

1
2e1

uðx1Þþ x1�xro
xM1 �xro

h ih i
dx1

" #
dxr1

þ RxM1
xM1 �e1

lðxr1Þ
RxM1

xr1�e1

1
xM1 �ðxr1�e1Þ uðx1Þþ x1�xro

xM1 �xro

h ih i
dx1

" #
dxr1

ð7Þ
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4.4 Upper-Middle Interval Case: xro 2 ½xM1 � 2e1; xM1 � e1�

Vðxr0; e1jxM1 � 2e1 � xro � xM1 � e1Þ
¼ Rxm1 þ e1

xm1

lðxr1Þ
Rxr1 þ e1

xm1

1
ðxr1 þ e1Þ�xm1

uðx1Þ
� �

dx1

" #
dxr1

þ Rxro�e1

xm1 þ e1

lðxr1Þ
Rxr1 þ e1

xr1�e1

1
2e1

uðx1Þ
� �

dx1

" #
dxr1

þ RxM1 �e1

xro�e1

lðxr1Þ
Rxro

xr1�e1

1
2e1

uðx1Þ
� �

dx1 þ
Rxr1 þ e1

xro

1
2e1

uðx1Þþ x1�xro
xM1 �xro

h i� �
dx1

" #
dxr1

þ Rxro þ e1

xM1 �e1

lðxr1Þ

Rxro
xr1�e1

1
xM1 �ðxr1�e1Þ uðx1Þ

� �
dx1

þ RxM1
xro

1
xM1 �ðxr1�e1Þ uðx1Þþ x1�xro

xM1 �xro

h i� �
dx1

2
66664

3
77775dxr1

þ RxM1
xro þ e1

lðxr1Þ
RxM1

xr1�e1

1
xM1 �ðxr1�e1Þ uðx1Þþ x1�xro

xM1 �xro

h i� �
dx1

" #
dxr1

ð8Þ

4.5 Upper Interval Case: xro 2 ½xM1 � e1; xM1 �

Vðxr0; e1jxro þ e1 [ xM1 Þ
¼ Rxm1 þ e1

xm1

lðxr1Þ
Rxr1 þ e1

xm1

1
ðxr1 þ e1Þ�xm1

uðx1Þ
� �

dx1

" #
dxr1 þ

þ Rxro�e1

xm1 þ e1

lðxr1Þ
Rxr1 þ e1

xr1�e1

1
2e1

uðx1Þ
� �

dx1

" #
dxr1

þ RxM1 �e1

xro�e1

lðxr1Þ
Rxro

xr1�e1

1
2e1

uðx1Þ
� �

dx1 þ
Rxr1 þ e1

xro

1
2e1

uðx1Þþ x1�xro
xM1 �xro

h i� �
dx1

" #
dxr1

þ RxM1
xM1 �e1

lðxr1Þ

Rxro
xr1�e1

1
xM1 �ðxr1�e1Þ uðx1Þ

� �
dx1

þ RxM1
xro

1
xM1 �ðxr1�e1Þ uðx1Þþ x1�xro

xM1 �xro

h i� �
dx1

2
66664

3
77775dxr1

ð9Þ

As was the case in Eq. (5), the density #ðx1je1Þ must be adapted to the realizations
of xr1 as the upper domain limit of X1, xM1 , is exceeded.
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5 DEA with Subjective Perception-Based Intervals

After observing xro, D computes the expected utility from evaluating an alternative
using Vðxro; e1j�Þ, which, at the same time, is based on the e1 width defining his
subjective uncertain evaluation intervals. We implement this perception-based value
function Vðxro; e1j�Þ within an output-oriented DEA framework determined by objective
inputs and subjectively evaluated outputs.

A basic DEA framework consists of a set of n decision making units (DMUs) or
alternatives using m inputs, xi, xi 6¼ 0, to produce s outputs, yr, yr 6¼ 0. Given the e1-
based subjectivity inherent to the evaluation of the outputs, D transforms yrj into
Vðyrj; e1Þ; j ¼ 1; . . .; n; r ¼ 1; . . .; s. An output-oriented DEA model determining the
efficiency of the DMUo under variable returns to scale is given by

max ho
subject toPn
j¼1

kjxij � xip i ¼ 1; 2; . . .; m;

Pn
j¼1

kjVðyrj; e1Þ � hoVðyro; e1Þ r ¼ 1; 2; . . .; s;

Pn
j¼1

kj ¼ 1;

kj � 0 j ¼ 1; 2; . . .; n:

ð10Þ

Model (10) assigns an efficiency score of 1=ho to DMUo, with ho � 1. A value of
ho [ 1 implies that DMUo is inefficient and ho defines the output increment required
for DMUo to become efficient. After deriving the optimal values of h�o from Model (10),
the following linear programming problem is solved to obtain the reference set asso-
ciated with DMUo

max
Pm
i¼1

s�i þ Ps
r¼1

sþr
subject toPn
j¼1

kjxij þ s�i ¼ xio i ¼ 1; 2; . . .; m;

Pn
j¼1

kjVðyrj; e1Þ � sþr ¼ h�oVðyro; e1Þ r ¼ 1; 2; . . .; s;

Pn
j¼1

kj ¼ 1;

kj � 0; j ¼ 1; 2; . . .; n; s�i � 0; i ¼ 1; 2; . . .; m; sþr � 0; r ¼ 1; 2; . . .; s:

ð11Þ

Definition 1. Let h�o be the optimal solution of Model (10). Let s��
i ði ¼ 1; 2; . . .;mÞ

and sþ�
r ðr ¼ 1; 2; . . .; sÞ be the optimal solutions of Model (11). DMUo is

• efficient if h�o ¼ 1 and
Ps
r¼1

sþ�
r þ Pm

i¼1
s��
i ¼ 0;
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• weakly efficient if h�o ¼ 1 and
Ps
r¼1

sþ�
r þ Pm

i¼1
s��
i 6¼ 0;

• inefficient if h�o [ 1.

The next section illustrates numerically the effect that different values of e1 have on
the ranking obtained by D when applying Models (10) and (11) to a set of objective and
subjective evaluation categories such as those commonly observed in recommender
engines.

6 Numerical Evaluation

We provide now a numerical example describing the ranking obtained by D as the
values of e1 defining the ½xr1 � e1; xr1 þ e1� intervals are modified. Consider a set of
alternatives whose online ratings are defined within [0, 10] and account for both
objective characteristic as well as subjective evaluation categories. For illustrative
purposes, assume that all the alternatives are endowed with the same input and output
evaluations, given by ðx1j; x2j; x3jÞ ¼ ð5; 5; 5Þ; j ¼ 1; . . .; n, and ðy1j; y2j; y3jÞ ¼
ð4; 5; 6Þ; j ¼ 1; . . .; n.

Consider also a basic setting with a risk neutral D, i.e. uðx1Þ ¼ x1, and
lðxr1Þ ¼ 1=10; 8xr1 2 X1, with X1 ¼ ½0; 10�. The Vð�; e1Þ functions generated by D for
four different e1 values are presented in Fig. 2. The horizontal axis corresponds to the
set of realizations within X1 that may be received from the raters as well as those
potentially observable by D. The vertical axis defines the subjective evaluations derived
from the corresponding value functions. We have applied the following simplification
to deal with the non-linear expressions of the value function: the xr1 terms have been
removed from the #ðx1je1Þ expressions dealing with the domain limits of X1. Conse-
quently, 1

�½ðxr1 þ e1Þ � xm1 � and 1
�½xM1 � ðxr1 � e1Þ� have both been transformed into

functions of e1, i.e. 1=e1, with e1 [ 0.
An important result can be directly derived from comparing the different Vð�; e1Þ

obtained. Increasing e1 leads to an increase in the Vðxro; e1Þ obtained by D for identical
xro realizations. Thus, the incentives of D to evaluate an alternative differ substantially
depending on the value of e1 assumed. Note also the decreasing trend exhibited by the
Vðxro; e1Þ function as the value of xro increases. This is the case since the uncertainty
faced by D regarding the realizations of an alternative implies that potential
improvements become more plausible for relatively lower realizations of xro. At the
same time, these improvements are less probable and lead to lower expected Vðxro; e1Þ
as the value of xro increases.

The subjective evaluations of ðy1j; y2j; y3jÞ ¼ ð4; 5; 6Þ; j ¼ 1; 2; . . .; n, computed by
D for eight different values of e1 and the corresponding efficiency results derived from
implementing the output-oriented perception-based DEA model described in the pre-
vious section are reported in Table 1. Figure 3 illustrates the efficiencies obtained from
the DEA model, which are clearly increasing in the value of e1. That is, higher spreads
lead to a higher efficiency for the set of xro realizations selected. It can be inferred from
Fig. 2 that when considering the previous and lower realizations of xro; the efficiency of
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Fig. 2. Perception-based Vðxro; e1Þ corresponding to different evaluation spreads.

Table 1. Inputs, evaluation spreads and the relative efficiency of the DMUs/alternatives

DMU x1 x2 x3 y1 y2 y3 e h

1 5 5 5 4 5 6 – 1.0417
2 5 5 5 5.4370 5.3869 5.3367 0.25 1.1710
3 5 5 5 5.5729 5.5225 5.4719 0.5 1.1422
4 5 5 5 5.7078 5.6569 5.6055 0.75 1.1150
5 5 5 5 5.8417 5.7900 5.7375 1 1.0893
6 5 5 5 5.9745 5.9219 5.8680 1.25 1.0651
7 5 5 5 6.1062 6.0525 5.9969 1.5 1.0422
8 5 5 5 6.2370 6.1819 6.1242 1.75 1.0205
9 5 5 5 6.3667 6.3100 6.2500 2 1.0000

Fig. 3. h values per DMU/alternative with different evaluation spreads.

308 D. Di Caprio and F. J. Santos-Arteaga



the corresponding reference alternative will be lower than that of those alternatives
facing relatively higher spreads. On the other hand, such a feature does not prevail for
relatively higher realizations of xro, opening the way for strategic considerations within
the current evaluation environment.

7 Conclusion

We have studied a formal setting determined by the subjective uncertainty inherent to
the potential realizations expected to be observed by D when evaluating a set of
alternatives. A function has been introduced to determine the value that D expects to
assign to the characteristics composing an alternative when his evaluations are con-
tained within subjective uncertain intervals defined with respect to all potentially
observable realizations. Leaving aside the possibility of reporting strategically
(Di Caprio and Santos Arteaga 2011; Tavana et al. 2017), we have analyzed the effect
that the width of these subjective evaluation intervals has on the rankings derived from
an output-oriented DEA model.

We conclude by emphasizing that the current framework can be applied to any
multi-criteria decision making technique such as TOPSIS in order to account for dif-
ferences in perception and their effect on the evaluations and rankings derived by D.
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Abstract. The Shortest Path (SP) problem is one of the most widely used
problems in network optimization which has a wide range of applications in
various fields of science and engineering such as communication, transportation,
routing and scheduling. The aim of this problem is to find a minimum cost path
between two specified nodes. In the present communication, we consider a
modified version of the SP known as constraint SP (CSP) problem with an
additional constraint that establishes an upper limit on the travel time for the
path. The objective of the CSP problem is to determine a minimum cost path
between two specified nodes that the traversal time of the path does not exceed
from a specified time. Traditional CSP problems assume the arc weights rep-
resented by time and cost are specified precisely. However, these weights can
fluctuate with traffic conditions, weather, or payload. For this reason, being able
to deal with vague and imprecise data may greatly contribute to the application
of CSP problems. Here, we first formulate a CSP problem in a directed network
where the arc weights represented by cost and time are intuitionistic trapezoidal
fuzzy numbers. We then develop an approach for solving the intuitionistic fuzzy
CSP problem under consideration. Finally, we present a small numerical
example to illustrate the proposed approach.

Keywords: Constraint shortest path � Intuitionistic fuzzy numbers
Intuitionistic fuzzy ranking

1 Introduction

The shortest path (SP) problem is an important network optimization. The aim of the
SP problem is to find a path between two nodes and optimizing the weight of the path.
In this paper, we consider a generalized version of the SP problem known as constraint
SP (CSP) problem with an additional constraint that establishes an upper limit on the
travel time for the path [16]. In the network considered here, the arc weights represent
transportation cost and time. As time and cost fluctuate with traffic conditions, weather
and payload, fuzzy numbers based on fuzzy set theory or intuitionistic fuzzy numbers
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(IFNs) based on intuitionistic fuzzy theory can be utilized to represent such arc weights.
This type of the problem is called fuzzy CSP (FCSP) problem or intuitionistic FCSP
(IFCSP) problem, respectively.

Many researchers have focused on fuzzy (SP) and intuitionistic FSP (IFSP) for-
mulations and solution approaches. Okada and Soper [14] developed an algorithm for
solving the FSP problem on the basis of the multiple labeling methods for a multi–
criteria shortest path. Okada [15] proposed an algorithm for solving FSP problem.
Based on possibility theory, the degree of possibility for each arc is determined by this
algorithm. Chuang and Kung [2] proposed a heuristic procedure to find the length of
FSP among all possible paths. Moazeni [12] developed a new algorithm for finding the
set of non–dominated paths with respect to the extension principle. Hernandes et al. [9]
considered a generic algorithm for solving the FSP problem. Mahdavi et al. [11]
proposed a dynamic programming approach to solve the fuzzy shortest chain problem
using a suitable ranking method. The other approaches for solving the FSP problem can
be found in [3–5, 8]. Mukherjee [13] considered the SP problem in an intuitionistic
fuzzy environment. Geetharamani and Jayagowri [7] proposed a new algorithm to deal
with the IFSP problem using intuitionistic fuzzy shortest path length procedure and
similarity measure. Biswas et al. [1] developed a method to search for an intuitionistic
fuzzy shortest path from a source node to a destination node. Kumar et al. [10] pro-
posed an algorithm to find the shortest path and shortest distance in a network with
nodes and arcs being crisp but the arcs weights will be interval–valued IFNs. Sujatha
and Hyacinta [17] proposed two different approaches for solving the IFSP problem. To
the best of our knowledge, there is no method in the literature to find the optimal
solution of IFCSP problems. In this study, we formulate IFCSP problem and propose a
solution technique to find the optimal solution of the problem.

The rest of the paper is organized as follows: In Sect. 2, some basic concepts of
IFNs are reviewed. In Sect. 3, the mathematical formulation of the IFCSP problem is
given. In Sect. 4, a new method is proposed for solving the same problem. In Sect. 5,
the application of the proposed method is illustrated by using a numerical example.
Finally, we conclude the paper in Sect. 6.

2 Preliminaries

This section is devoted to review some necessary background and notions of the
intuitionistic fuzzy numbers which are applied throughout this paper [6].

Definition 1: Let X denote the universe set. An intuitionistic fuzzy set (IFS) ~AI in X is
defined by a set of ordered triple ~AI ¼ x; l~AI ðxÞ; t~AI ðxÞ

� �
; x 2 X

� �
where the functions

l~AI ðxÞ : X ! ½0; 1� and t~AI ðxÞ : X ! ½0; 1�, respectively represent the membership
degree and non-membership degree of x in ~A such that for each element x 2 X,
0� l~AI ðxÞþ t~AI ðxÞ� 1.

Definition 2: An intuitionistic fuzzy set ~AI ¼ x; l~AI ðxÞ; t~AI ðxÞ
� �

; x 2 X
� �

is called
normal if there is any x� 2 X such that l~AI ðx�Þ ¼ 1 ðso t~AI ðx�Þ ¼ 0Þ:
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Definition 3: An intuitionistic fuzzy set ~AI ¼ x; l~AI ðxÞ; t~AI ðxÞ
� �

; x 2 X
� �

is called
intuitionistic fuzzy convex if its membership function is fuzzy convex, i.e. 8x1; x2 2
X; 8k 2 ½0; 1�; l~AI ðkx1 þð1� kÞx2Þ�min l~AI ðx1Þ; l~AI ðx2Þ

� �
and its non-membership

function is concave, i.e. t~AI ðkx1 þð1� kÞx2Þ�max t~AI ðx1Þ; t~AI ðx2Þ
� �

.

Definition 4: A normal and convex intuitionistic fuzzy set ~AI ¼ x; l~AI ðxÞ;
��

t~AI ðxÞi;
x 2 Rg defined on the set of real numbers R is called an intuitionistic fuzzy number
(IFN) if l~AI is upper semi-continuous and t~AI is lower semi-continuous.

Definition 5: A Trapezoidal Intuitionistic Fuzzy Number (TrIFN) ~AI , denoted by
~AI ¼ ða1; a2; a3; a4; a01; a02; a03; a04Þ, is an especial IFN with the membership function
non-membership function defined as follows:

l~AI ðxÞ ¼

x�a1
a2�a1

; a1\x� a2;
1; a2\x� a3;
a4�x
a4�a3

; a3 � x\a4
0; Otherwise:

8>><
>>: and t~AI ðxÞ ¼

a02�x
a02�a01

; a01\x� a02;
0; a01\x� a03;
x�a03
a04�a03

; a03 � x\a04;
1; Otherwise:

8>>><
>>>:

where a01 � a1 � a02 � a2 � a3 � a03 � a4 � a04.

Definition 6: The summation operation between two TrIFNs ~AI ¼ ða1; a2; a3;
a4; a01; a

0
2; a

0
3; a

0
4Þ and ~BI ¼ ðb1; b2; b3; b4; b01; b02; b03; b04Þ is defined as ~AI � ~BI ¼

ða1 þ b1; a2 þ b2; a3 þ b3; a4 þ b4; a01 þ b01; a
0
2 þ b02; a

0
3 þ b03; a

0
4 þ b04Þ.

Definition 7: Given TrIFNs ~AI ¼ ða1; a2; a3; a4; a01; a02; a03; a04Þ and real number k� 0,
the scaler multiplication operation is defined as k~AI ¼ ðka1; ka2; ka3; ka4; ka01;
ka02; ka

0
3; ka

0
4Þ.

Definition 8: A TrIFN ~AI ¼ ða1; a2; a3; a4; a01; a02; a03; a04Þ is said to be a non–negative
TrIFN if and only if a01 � 0.

Definition 9: For TrIFN ~AI ¼ ða1; a2; a3; a4; a01; a02; a03; a04Þ, its accuracy function is
defined as follows:

Hð~AIÞ ¼ ða1 þ a2 þ a3 þ a4Þþ ð a01 þ a02 þ a03 þ a04Þ
8

ð1Þ

Definition 10: Let ~AI ¼ ða1; a2; a3; a4; a01; a02; a03; a04Þ and ~BI ¼ ðb1; b2; b3; b4; b01; b02;
b03; b

0
4Þ be two TrIFNs. Then ~AI	 ~BI if a1 � b1; a2 � b2; a3 � b3; a4 � b4; a01 � b01;

a2 � b02; a
0
3 � b03; a

0
4 � b04.
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3 Mathematical Formulation of the IFCSP Problem

In this section, the mathematical formulation of the constraint shortest path problem
with intuitionistic fuzzy numbers is presented.

We consider a directed network G ¼ ðV ;EÞ, where V ¼ 1; 2; . . .;mf g is the set of
nodes and E ¼ ði; jÞ : i; j 2 V ; i 6¼ jf g is the set of arcs. Each arc is denoted by an
ordered pair ði; jÞ, where i; j 2 E. The network has two distinguished nodes s and t,
called the source node and the destination node, respectively. It is supposed that there is
only one directed arc ði; jÞ from node i to node j. A path pij from node i to node j is a
sequence of arcs pij ¼ ði; i1Þ; ði1; i2Þ; . . .; ðik; jÞf g in which the initial node of each arc
is same as the terminal node of preceding arc in the sequence. We define the length
(weight) of a directed path as the sum of the lengths (weights) of arcs in the path. It is
supposed that the network contains a directed path from the source node to every other
node in the network.

Two non–negative weights cij and tij are associated with each arc ði; jÞ representing
the length (or cost) and the travel time associated with the respective arc, respectively.
The objective of the CSP problem is to determine a minimum cost path between the
source node s and the destination node t such that the traversal time of the path does not
exceed from the maximum allowable time to transverse the path. Conventional CSP
problems assume precise values for the cost and time weights. But, this may not be
suitable for situations where one has to deal with uncertainty as well as with hesitation.
In such situations, intuitionistic fuzzy numbers are used to represent the imprecise
parameters of the CSP problem under consideration. The resulting problem is therefore
referred to as an Intuitionistic Fuzzy CSP Problem (IFCSP).

An IFCSP problem having uncertainty and hesitation for the cost and time weights
can be formulated as follows:

min ~ZI ¼Pm
i¼1

Pm
j¼1

~cIijxij

s:t:Pn
j¼1

xij �
Pm
k¼1

xki ¼
1; i ¼ s;
0; i 6¼ s; t;
�1; i ¼ t;

8<
:

Pm
i¼1

Pm
j¼1

~tIijxij 	 ~TI ;

xij � 0; i; j ¼ 1; 2; . . .;m:

ð2Þ

In model (2), xij are binary variables associated with each arc ði; jÞ. If arc ði; jÞ is
included in the optimal path, then xij ¼ 1; otherwise xij ¼ 0. The intuitionistic fuzzy
parameter, ~TI , represents the maximum value allowed for the sum of the~tIij arc weights.
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Let Pst denotes the set of all paths from node s to node t. Define ~CIðpÞ ¼ P
ði;jÞ2p

~cIij

and ~DIðpÞ ¼ P
ði;jÞ2p

~tIij. Given ~TI % 0I , let Pstð~TIÞ be the set of all paths pst from node s to

node t such that ~DðpstÞ 	 ~TI , i.e. Pstð~TIÞ ¼ pst : ~DðpstÞ 	 ~TI
� �

. Each path belonging
to the set Pstð~TIÞ is called an intuitionistic fuzzy feasible path. In this case, the IFCSP
problem is to find a minimum cost intuitionistic fuzzy feasible path.

Definition 11: The intuitionistic fuzzy optimal path of IFCSP problem (2) is an
intuitionistic fuzzy feasible path p
st such that H ~CIðp
stÞ

� �
\H ~CIðpstÞ

� �
for any intu-

itionistic fuzzy feasible path pst.

4 Solution Approach

In this section, a solution approach is proposed for solving the IFCSP problem (2).
Assume that intuitionistic fuzzy parameters of model (2) are all trapezoidal.

Therefore, ~cIij, ~t
I
ij and ~TI are all represented by intuitionistic trapezoidal fuzzy numbers

ðcij;1; cij;2; cij;3; cij;4; c0ij;1; c0ij;2; c0ij;3; c0ij;4Þ, ðtij;1; tij;2; tij;3; tij;4; t0ij;1; t0ij;2; t0ij;3; t0ij;4Þ and ðT1;
T2; T3; T4; T 0

1; T
0
2; T

0
3; T

0
4Þ, respectively. Thus, the IFCSP problem (2) can be rewritten

as follows:

min ~ZI ¼Pm
i¼1

Pm
j¼1

ðcij;1; cij;2; cij;3; cij;4; c0ij;1; c0ij;2; c0ij;3; c0ij;4Þxij
s:t:Pn

j¼1
xij �

Pm
k¼1

xki ¼
1; i ¼ s;
0; i 6¼ s; t;
�1; i ¼ t;

8<
:

Pm
i¼1

Pm
j¼1

ðtij;1; tij;2; tij;3; tij;4; t0ij;1; t0ij;2; t0ij;3; t0ij;4Þxij 	 ðT1; T2; T3;T4; T 0
1; T

0
2; T

0
3; T

0
4Þ;

xij � 0; i; j ¼ 1; 2; . . .;m:

ð3Þ

Regarding Definitions 6 and 7, the intuitionistic trapezoidal fuzzy objective func-
tion of model (3), can be rewritten as follows:

min ~ZI ¼ Pm
i¼1

Pm
j¼1

cij;1xij;
Pm
i¼1

Pm
j¼1

cij;2xij;
Pm
i¼1

Pm
j¼1

cij;3xij;
Pm
i¼1

Pm
j¼1

cij;4xij;

 

Pm
i¼1

Pm
j¼1

c0ij;1xij;
Pm
i¼1

Pm
j¼1

c0ij;2xij;
Pm
i¼1

Pm
j¼1

c0ij;3xij;
Pm
i¼1

Pm
j¼1

c0ij;4xij

! ð4Þ
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Similarly, with regard to Definitions 6–9, the inequality constraint of model (3), can
be rewritten as follows:

Pm
i¼1

Pm
j¼1

tij;1xij � T1;
Pm
i¼1

Pm
j¼1

tij;2xij � T2;
Pm
i¼1

Pm
j¼1

tij;3xij � T3;
Pm
i¼1

Pm
j¼1

tij;4xij � T4;

Pm
i¼1

Pm
j¼1

t0ij;1xij � T 0
1;
Pm
i¼1

Pm
j¼1

t0ij;2xij � T 0
2;
Pm
i¼1

Pm
j¼1

t0ij;3xij � T 0
3;
Pm
i¼1

Pm
j¼1

t0ij;4xij � T 0
4:

ð5Þ

Now, in order to obtain the intuitionistic fuzzy optimal path of IFCSP problem (2)
which satisfies the properties of Definition 11, we solve the following problem with
regard to Eqs. (4) and (5):

min Hð~ZIÞ ¼ H
Pm
i¼1

Pm
j¼1

cij;1xij;
Pm
i¼1

Pm
j¼1

cij;2xij;
Pm
i¼1

Pm
j¼1

cij;3xij;
Pm
i¼1

Pm
j¼1

cij;4xij;

 

Pm
i¼1

Pm
j¼1

c0ij;1xij;
Pm
i¼1

Pm
j¼1

c0ij;2xij;
Pm
i¼1

Pm
j¼1

c0ij;3xij;
Pm
i¼1

Pm
j¼1

c0ij;4xij

!
s:t:Pn

j¼1
xij �

Pm
k¼1

xki ¼
1; i ¼ s;
0; i 6¼ s; t;
�1; i ¼ t;

8<
:

Pm
i¼1

Pm
j¼1

tij;1xij � T1;
Pm
i¼1

Pm
j¼1

tij;2xij � T2;
Pm
i¼1

Pm
j¼1

tij;3xij � T3;
Pm
i¼1

Pm
j¼1

tij;4xij � T4;

Pm
i¼1

Pm
j¼1

t0ij;1xij � T 0
1;
Pm
i¼1

Pm
j¼1

t0ij;2xij � T 0
2;
Pm
i¼1

Pm
j¼1

t0ij;3xij � T 0
3;
Pm
i¼1

Pm
j¼1

t0ij;4xij � T 0
4:

xij � 0; i; j ¼ 1; 2; . . .;m:

ð6Þ

The above model is obviously a linear program and can be solved using the
standard LP algorithms.

5 Numerical Example

In this section, for the illustration of the proposed approach, a simple IFCSP problem is
solved.

Let us consider the network in Fig. 1 with arc intuitionistic fuzzy weights associ-
ated with cost and time as given in Table 1.

The maximum intuitionistic fuzzy value allowed for the sum of the~tIij arc weights is
~TI ¼ 11; 13; 14; 16; 10; 12; 15; 17ð Þ. It is desired to find minimum cost intuitionistic
fuzzy feasible path from node 1 to node 5.
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Based on model (2), we should solve the following IFCSP problem:

min ~ZI ¼ 12; 14; 15; 17; 11; 13; 16; 18ð Þx12 þ 8; 10; 11; 13; 7; 9; 12; 14ð Þx13
þ 10; 12; 13; 15; 9; 11; 14; 16ð Þx14 þ 5; 7; 8; 10; 4; 6; 9; 11ð Þx25
þ 3; 5; 6; 8; 2; 4; 7; 9ð Þx32 þ 11; 13; 14; 16; 10; 12; 15; 17ð Þx35
þ 5; 7; 8; 10; 4; 6; 9; 11ð Þx43 þ 8; 10; 11; 13; 7; 9; 12; 14ð Þx45

s:t:

x12 þ x13 þ x14 ¼ 1;

x25 � x12 � x32 ¼ 0;

x32 þ x35 � x13 � x43 ¼ 0;

x45 þ x43 � x14 ¼ 0;

�x25 � x35 � x45 ¼ �1;

2; 4; 5; 7; 1; 3; 6; 8ð Þx12 þ 2; 4; 5; 7; 1; 3; 6; 8ð Þx13
þ 3; 5; 6; 8; 2; 4; 7; 9ð Þx14 þ 5; 7; 8; 10; 4; 6; 9; 11ð Þx25
þ 4; 6; 7; 9; 3; 5; 8; 10ð Þx32 þ 3; 5; 6; 8; 2; 4; 7; 9ð Þx35
þ 1; 3; 4; 6; 0; 2; 5; 7ð Þx43 þ 3; 5; 6; 8; 2; 4; 7; 9ð Þx45 	 11; 13; 14; 16; 10; 12; 15; 17ð Þ;

x12; x13; x14; x25; x32; x35; x43; x45 � 0:

ð7Þ

Table 1. Arc information in terms of interval numbers

Arc Intuitionistic fuzzy cost Intuitionistic fuzzy time

(1, 2) (12, 14, 15, 17; 11, 13, 16, 18) (2, 4, 5, 7; 1, 3, 6, 8)
(1, 3) (8, 10, 11, 13; 7, 9, 12, 14) (2, 4, 5, 7; 1, 3, 6, 8)
(1, 4) (10, 12, 13, 15; 9, 11, 14, 16) (3, 5, 6, 8; 2, 4, 7, 9)
(2, 5) (5, 7, 8, 10; 4, 6, 9, 11) (5, 7, 8, 10; 4, 6, 9, 11)
(3, 2) (3, 5, 6, 8; 2, 4, 7, 9) (4, 6, 7, 9; 3, 5, 8, 10)
(3, 5) (11, 13, 14, 16; 10, 12, 15, 17) (3, 5, 6, 8; 2, 4, 7, 9)
(4, 3) (5, 7, 8, 10; 4, 6, 9, 11) (1, 3, 4, 6; 0, 2, 5, 7)
(4, 5) (8, 10, 11, 13; 7, 9, 12, 14) (3, 5, 6, 8; 2, 4, 7, 9)

Fig. 1. An example of IFCSP network
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This model is transformed to the following linear program with regard to model (6):

min Hð~ZIÞ ¼ 1
8
116x12 þ 84x13 þ 100x14 þ 60x25 þ 44x32 þ 108x35 þ 60x43 þ 84x45½ �

s:t:

x12 þ x13 þ x14 ¼ 1;

x25 � x12 � x32 ¼ 0;

x32 þ x35 � x13 � x43 ¼ 0;

x45 þ x43 � x14 ¼ 0;

� x25 � x35 � x45 ¼ �1;

x12 þ x13 þ 2x14 þ 4x25 þ 3x32 þ 2x35 þ 2x45 � 10;

2x12 þ 2x13 þ 3x14 þ 5x25 þ 4x32 þ 3x35 þ x43 þ 3x45 � 11;

3x12 þ 3x13 þ 4x14 þ 6x25 þ 5x32 þ 4x35 þ 2x43 þ 4x45 � 12;

4x12 þ 4x13 þ 5x14 þ 7x25 þ 6x32 þ 5x35 þ 3x43 þ 5x45 � 13;

5x12 þ 5x13 þ 6x14 þ 8x25 þ 7x32 þ 6x35 þ 4x43 þ 6x45 � 14;

6x12 þ 6x13 þ 7x14 þ 9x25 þ 8x32 þ 7x35 þ 5x43 þ 7x45 � 15;

7x12 þ 7x13 þ 8x14 þ 10x25 þ 9x32 þ 8x35 þ 6x43 þ 8x45 � 16;

8x12 þ 8x13 þ 9x14 þ 11x25 þ 10x32 þ 9x35 þ 7x43 þ 9x45 � 17;

x12; x13; x14; x25; x32; x35; x43; x45 � 0:

ð8Þ

The optimal solution of the crisp linear model (8) is as follows:

x
12 ¼ 0; x
13 ¼ 1; x
14 ¼ 0; x
25 ¼ 0; x
32 ¼ 0; x
35 ¼ 1; x
43 ¼ 0; x
145 ¼ 0: ð9Þ

This means that the intuitionistic fuzzy optimal path is p
15 : 1 ! 3 ! 5. By sub-
stituting the optimal solution (9) in the intuitionistic fuzzy objective function of model
(7), we obtain:

~CIðp
15Þ ¼ 8; 10; 11; 13; 7; 9; 12; 14ð Þþ 11; 13; 14; 16; 10; 12; 15; 17ð Þ
¼ ð19; 23; 25; 29; 17; 21; 27; 31Þ

Moreover, we have:

~DIðp
15Þ ¼
X

ði;jÞ2p
15

~tIij ¼ ~tI13 þ~tI35

¼ 2; 4; 5; 7; 1; 3; 6; 8ð Þþ 3; 5; 6; 8; 2; 4; 7; 9ð Þ ¼ ð5; 9; 11; 15; 3; 7; 13; 17Þ:

6 Conclusions

On the basis of the presented study, it can be concluded that there is no method in the
literature for solving the constraint shortest path problems in an intuitionistic environment.
In this paper, a CSP problem having uncertainty as well as hesitation in prediction of the
arc weights has been investigated. In the CSP problem considered in this study, the arc
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weights represented by cost and time were intuitionistic triangular fuzzy numbers. Here,
we proposed a new solution approach for solving intuitionistic fuzzy CSP problem. We
converted the IFCSP problem under consideration into a linear programming problem
which can be solved using the standard linear programing algorithms.
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Abstract. Many researchers have focused on a Transportation Problem (TP) in
uncertain environment because of its importance to various applications. This
paper is concerned with the solution procedure of a TP in which transportation
costs are represented in terms of intuitionistic triangular fuzzy numbers and
supplies and demands are real numbers. We first formulate the intuitionistic
fuzzy TP (IFTP) and then propose a new solution technique to solve the
problem. Based on the proposed approach, the IFTP is converted into a Multi
Objective Linear Programming (MOLP) problem with five objective functions.
Then, a lexicographic approach is used to obtain the efficient solution of the
resulting MOLP problem. The optimization process confirms that the optimum
intuitionistic fuzzy transportation cost preserves the form of an intuitionistic
triangular fuzzy number. A simple numerical example is included to illustrate of
the proposed technique. The obtained results confirm the reliability and appli-
cability of the proposed approach.

Keywords: Transportation problem � Intuitionistic fuzzy number
MOLP

1 Introduction

The transportation problem (TP) is a special class of linear programming (LP) prob-
lems, and widely used in the areas of inventory control, communication network,
aggregate planning, logistic, supply chains, personal management and so on. The
central concept in this problem is to determine the minimum total transportation cost of
a commodity for satisfying the demand at destinations using the available supply at the
origins. In classical TP it is assumed that the transportation costs are exactly known. In
real-life transportation cases, decision makers may face with many uncertainties on the
cost of transportation because of changing weather, social, or economic conditions. In
other words, the decision makers cannot exactly know the transportation costs of a TP
in reality. Additionally, they are not stable since this imprecision may follow from the
lack of exact information or data, uncertainty in judgment and high information cost.
This imprecision embedded into the transportation costs can be handled via fuzzy
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parameters and a Fuzzy Transportation Problem (FTP) appears in a natural way. From
this point of view, numerous researchers have devoted their efforts to using fuzzy
numbers in real life TP [3–7, 11, 12].

In spite of this, although fuzzy numbers are commonly used for modeling imprecise
data when one has to cope with real TP, this may not be suitable for situations where
one has to deal with uncertainty as well as with hesitation. In such situations, Intu-
itionistic Fuzzy Numbers (IFNs) [2] are used to represent the imprecise transportation
costs of the TP under consideration. The resulting problem is therefore referred to as an
Intuitionistic Fuzzy Transportation Problem (IFTP). Thus, determining solutions for the
IFTPs is a relatively new and active research topic. There are just a few research papers
in this subject.

As there is a hesitation in the parameters of TP many authors have solved this
problem under intuitionistic fuzzy environment successfully. Hussain and Kumar [10]
proposed an intuitionistic fuzzy zero point method to solve a TP in which supply and
demand were intuitionistic fuzzy numbers. Singh and Yadav [15] developed a new
ordering procedure using accuracy function of triangular IFN (TIFN) and used this
ordering to develop an algorithm for finding optimal solution of the same IFTP. But,
these methods [10, 15] cannot be used for solving fully IFTP, where transportation costs
are IFNs as well. To overcome this shortcoming, Kumar and Hussain [13] transformed
the fully IFTP into a crisp one and applied the conventional method to solve the
problem. But, all of these proposed methods [10, 13, 15] cannot provide non-negative
intuitionistic fuzzy optimal solution and optimal cost for the IFTP under consideration.
To overcome this shortcoming, Ebrahimnejad and Verdegay [9] proposed a novel
solution approach for solving fully IFTP based on classical LP algorithms.

Although the fully IFTP problem is the general case of the IFTP, it may not be
suitable for all IFTP problems with different assumptions and sources of imprecision.
The IFTP model proposed in this study belongs to those categories in which the
transportation costs are represented in terms of intuitionistic triangular fuzzy numbers
(ITFNs) and supplies and demands are real numbers. Antony et al. [1] have used
Vogel’s approximation method for solving TP with TIFNs. They claimed that the
solution obtained by this method is optimal without providing any optimality condi-
tions. Singh and Yadav [14] formulated a same IFTP. They first used an accuracy
function defined on score functions for membership and non-membership functions of
TIFNs for ordering of IFNs. Then, they used this ordering to develop methods for
finding an initial basic feasible solution and optimal solution of IFTP in terms TIFNs.
However their method [14], in spite of its merits, requires a lot of intuitionistic fuzzy
arithmetic operations and a lot of comparisons on TIFNs. For this reason, Ebrahim-
nejad and Verdegay [8] proposed an efficient computational solution approach for
solving the same problem based on classical transportation algorithms. However, such
solution methods [1, 8, 14] neglect the valuable uncertain information in the opti-
mization process because of using linear accuracy function for defuzzification the IFTP
in the intuitionistic fuzzy sense. In this paper, we propose a new solution technique to
solve the same IFTP without neglecting valuable uncertain information. In the
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proposed approach, the IFTP is converted into a Multi Objective Linear Programming
(MOLP) problem with five objective functions. Then, a lexicographic approach is used
to obtain the efficient solution of the resulting MOLP problem.

The rest of the paper is organized as follows: In Sect. 2, some basic concepts of
intuitionistic fuzzy sets theory are reviewed. In Sect. 3, the TP with intuitionistic fuzzy
transportation costs is formulated. In Sect. 4, a new method is proposed for obtaining
the optimal solution of the IFTP. In Sect. 5, the application of the proposed method is
illustrated by using a simple numerical example. Section 6, including the main con-
clusions as well as some interesting future research lines, ends the paper.

2 Preliminaries

This section is devoted to review some necessary background and notions of the
intuitionistic fuzzy numbers which are applied throughout this paper [8, 10, 14].

Definition 1. Let X denote the universe set. A fuzzy set ~A in X is defined by a set of
ordered pairs ~A ¼ x; l~AðxÞ

� �
; x 2 X

� �
where l~AðxÞ 2 ½0; 1� represents the mem-

bership degree of x in ~A, and is called the membership function of ~A.

Definition 2. Let X denote the universe set. An intuitionistic fuzzy set (IFS) ~AI in X is
defined by a set of ordered triple ~AI ¼ x; l~AI ðxÞ; t~AI ðxÞ

� �
; x 2 X

� �
where the func-

tions l~AI ðxÞ : X ! ½0; 1� and t~AI ðxÞ : X ! ½0; 1�, respectively represent the mem-
bership degree and non-membership degree of x in ~A such that for each element x 2 X,
0� l~AI ðxÞþ t~AI ðxÞ� 1.

Definition 3. For each intuitionistic fuzzy set ~AI ¼ x; l~AI ðxÞ; t~AI ðxÞ
� �

; x 2 X
� �

in X,

the value h~AI ðxÞ ¼ 1� l~AI ðxÞ � t~AI ðxÞ is called degree of hesitancy of x to ~AI .

Definition 4. An intuitionistic fuzzy set ~AI ¼ x; l~AI ðxÞ; t~AI ðxÞ
� �

; x 2 X
� �

is called
normal if there is any x� 2 X such that l~AI ðx�Þ ¼ 1(so t~AI ðx�Þ ¼ 0).

Definition 5. An intuitionistic fuzzy set ~AI ¼ x; l~AI ðxÞ; t~AI ðxÞ
� �

; x 2 X
� �

is called
intuitionistic fuzzy convex if its membership function is fuzzy convex, i.e.
8x1; x2 2 X; 8k 2 ½0; 1�, l~AI ðkx1 þð1� kÞx2Þ�min l~AI ðx1Þ; l~AI ðx2Þ

� �
and its

non-membership function is concave, i.e. t~AI ðkx1 þð1� kÞx2Þ�max t~AI ðx1Þ; t~AI ðx2Þ
� �

.

Definition 6. An intuitionistic fuzzy set ~AI ¼ x; l~AI ðxÞ; t~AI ðxÞ
� �

; x 2 R
� �

of the real
number R is called an intuitionistic fuzzy number if

• ~AI is intuitionistic fuzzy normal and intuitionistic fuzzy convex.
• l~AI is upper semi continuous and t~AI is semi lower continuous.
• Supp ~AI ¼ x 2 R; t~AI ðxÞ\1

� �
is bounded.
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Definition 7. A Triangular Intuitionistic Fuzzy Number (TIFN) ~AI is an especial IFN
with the membership function non-membership function defined as follows:

l~AI ðxÞ ¼
x�a1
a2�a1

; a1\x� a2;
a3�x
a3�a2

; a2 � x\a3
0; Otherwise:

8<
: and t~AI ðxÞ ¼

a2�x
a2�a01

; a01\x� a2;
x�a2
a03�a3

; a2 � x\a03;
1; Otherwise:

8<
:

where a01 � a1 � a2 � a3 � a03. This TIFN is denoted by ~AI ¼ ða1; a2; a3; a01; a2; a03Þ.
Definition 8. The arithmetic operations between two TIFNs ~AI ¼ ða1; a2; a3; a01;
a2; a03Þ and ~BI ¼ ðb1; b2; b3; b01; b2; b03Þ are defined as follows:

(i) ~AI � ~BI ¼ ða1 þ b1; a2 þ b2; a3 þ b3; a01 þ b01; a2 þ b2; a03 þ b03Þ
(ii) ~AI	~BI ¼ ða1 � b3; a2 � b2; a3 � b1; a01 � b03; a2 � b2; a03 � b01Þ,
(iii) k~AI ¼ ðka1; ka2; ka3; ka01; ka2; ka03Þ, k[ 0,
(iv) k~AI ¼ ðka3; ka2; ka1; ka03; ka2; ka01Þ, k\ 0.

Definition 9. Two TIFNs ~AI ¼ ða1; a2; a3; a01; a2; a03Þ and ~BI ¼ ðb1; b2; b3; b01; b2; b03Þ
are said to be equal, i.e. ~AI ¼ ~BI if and only if a1 ¼ b1; a2 ¼ b2; a3 ¼ b3;
a01 ¼ b01; a

0
3 ¼ b03.

Definition 10. A TIFN ~AI ¼ ða1; a2; a3; a01; a2; a03Þ is said to be a non-negative TIFN
if and only if a01 � 0.

Definition 11. For TIFN ~AI ¼ ða1; a2; a3; a01; a2; a03Þ, its accuracy function is defined
as follows:

Hð~AIÞ ¼ ða1 þ 2a2 þ a3Þþ ð a01 þ 2a2 þ a03Þ
8

ð1Þ

Definition 12. Let ~AI ¼ ða1; a2; a3; a01; a2; a03Þ and ~BI ¼ ðb1; b2; b3; b01; b2; b03Þ be two
TIFNs. Then ~AI � ~BI if Hð~AIÞ�Hð~BIÞ, and ~AI � ~BI if Hð~AIÞ�Hð~BIÞ.

3 Intuitionistic Fuzzy Transportation Problems

In this section, the linear programming formulation of TP in intuitionistic fuzzy
environment is presented.

The IFTP in which a decision maker considers the cost as TIFN to deal efficiently
with the uncertainty as well as hesitation arising in prediction of transportation cost, but
(s)he is sure about the availability and demand of the product, can be formulated as
follows [8, 9, 13]:
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min ~ZI ¼
Xm
i¼1

Xn
j¼1

~cIijxij

s:t:
Xn
j¼1

xij ¼ ai; i ¼ 1; 2; . . .;m;

Xm
i¼1

xij ¼ bj; j ¼ 1; 2; . . .; n;

xij � 0; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n:

ð2Þ

where ai is: the total availability of the product at ith source; bj: the total demand of the

product at jth destination; ~cIij ¼ ðcij1; cij2 ; cij3; cij
0

1 ; c
ij
2 ; c

ij0
3 Þ: the intuitionistic cost for trans-

porting one unit quantity of the product from the ith source to the jth destination; xij: the
quantity transported from the ith source to the jth destination or decision variables;Pm
i¼1

Pn
j¼1

~cIijxij: total intuitionistic fuzzy transportation cost.

Because negative transportation costs have no physical meaning, it is assumed that
intuitionistic fuzzy transportation costs of the IFTP (2) are non-negative TIFNs. Hence,
with regard to Definition 8, IFTP (2) can be reformulated as follows:

min ~ZI ¼Pm
i¼1

Pn
j¼1

ðcij1xij; cij2xij; cij3xij; cij
0

1 xij; c
ij
2xij; c

ij0
3 xijÞ

s:t:
Pn
j¼1

xij ¼ ai; i ¼ 1; 2; . . .;m;

Pm
i¼1

xij ¼ bj; j ¼ 1; 2; . . .; n;

xij � 0; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n:

ð3Þ

Equivalently, with regard to Definitions 8, IFTP (3) may be rewritten as follows:

min ~ZI ¼
Xm
i¼1

Xn
j¼1

cij1xij;
Xm
i¼1

Xn
j¼1

cij2xij;
Xm
i¼1

Xn
j¼1

cij3xij;
Xm
i¼1

Xn
j¼1

cij
0

1 xij;
Xm
i¼1

Xn
j¼1

cij2xij;
Xm
i¼1

Xn
j¼1

cij
0

3 xij

 !

s:t:
Xn
j¼1

xij ¼ ai; i ¼ 1; 2; . . .;m;

Xm
i¼1

xij ¼ bj; j ¼ 1; 2; . . .; n;

xij � 0; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n:

ð4Þ
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4 New Method

Model (4) is an IFTP with one intuitionistic fuzzy variable in the objective function.
This study proposes a new method for solving model (4) by converting this model into
an MOLP problem with five objective functions.

The resulting intuitionistic fuzzy objective function of IFTP (4) has different five
components that can be considered as a multi objective function. Here, we present a
lexicography approach for solving IFTP (5). The steps of the proposed method are as
follows:

Step 1: Solve the following crisp LP problem using the standard LP algorithms:

Z
I 0
1 ¼ min ZI 0

1 ¼Pm
i¼1

Pn
j¼1

cij
0

1 xij

s:t:
Pn
j¼1

xij ¼ ai; i ¼ 1; 2; . . .;m;

Pm
i¼1

xij ¼ bj; j ¼ 1; 2; . . .; n;

xij � 0; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n:

ð5Þ

The optimal value of the objective function of model (5), Z
I 0
1 , is the fourth com-

ponent of the intuitionistic fuzzy optimal total transportation cost.
Step 2: Solve the following crisp LP problem using the standard LP algorithms:

Z
I
1 ¼ min ZI

1 ¼
Xm
i¼1

Xn
j¼1

cij1xij

s:t:
Xm
i¼1

Xn
j¼1

cij
0

1 xij ¼ Z
I 0
1

Constraints of Model ð5Þ:

ð6Þ

The optimal value of the objective function of model (6), Z
I
1 , is the first component

of the intuitionistic fuzzy optimal total transportation cost.

Proposition 1. The optimal value of the objective function of model (5) is less than or
equal to that of the objective function of model (6).

Step 3: Solve the following crisp LP problem using the standard LP algorithms:

Z
I
2 ¼ min ZI

2 ¼
Xm
i¼1

Xn
j¼1

cij2xij

s:t:
Xm
i¼1

Xn
j¼1

cij1xij ¼ Z
I
1

Constraints of Model ð6Þ:

ð7Þ
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The optimal value of the objective function of model (7), Z
I
2 , is the second and fifth

components of the intuitionistic fuzzy optimal total transportation cost.

Proposition 2. The optimal value of the objective function of model (6) is less than or
equal to that of the objective function of model (7).

Step 4: Solve the following crisp LP problem using the standard LP algorithms:

Z
I
3 ¼ min ZI

3 ¼
Xm
i¼1

Xn
j¼1

cij3xij

s:t:
Xm
i¼1

Xn
j¼1

cij2xij ¼ Z
I
2

Constraints of Model ð7Þ:

ð8Þ

The optimal value of the objective function of model (8), Z
I
3 , is the third component

of the intuitionistic fuzzy optimal total transportation cost.

Proposition 3. The optimal value of the objective function of model (7) is less than or
equal to that of the objective function of model (8).

Step 5: Solve the following crisp LP problem using the standard LP algorithms:

Z
I 0
3 ¼ min ZI

3 ¼
Xm
i¼1

Xn
j¼1

cij
0

3 xij

s:t:
Xm
i¼1

Xn
j¼1

cij3xij ¼ Z
I
3

Constraints of Model ð8Þ:

ð9Þ

The optimal value of the objective function of model (9), Z
I 0
3 , is the sixth com-

ponent of the intuitionistic fuzzy optimal total transportation cost.

Proposition 4. The optimal value of the objective function of model (8) is less than or
equal to that of the objective function of model (9).

Theorem 1. The intuitionistic fuzzy optimal total transportation cost,
~Z
I ¼ Z
I

1 ; Z
I
2 ; Z
I 0

3 ; Z
I 0
1 ; Z
I

2 ; Z
I 0
3

� �
, maintains the form of a non-negative intuitionistic

triangular fuzzy number.

5 Numerical Example

In this section, in order to demonstrate the effectiveness of the proposed method, an
intuitionistic fuzzy TP taken from Singh and Yadav [14] is considered.

Table 1 gives the crisp supply (ai) of the product available at four origins Si ð i ¼
1; 2; 3; 4Þ and the crisp demand (bj) at four destinations Djðj ¼ 1; 2; 3; 4Þ. The trans-
portation costs from origins to destinations are represented by ITFNs. The aim is to find
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the least total intuitionistic fuzzy transportation cost of the commodity in order to
satisfy demands at destinations using available availabilities at origins.

Mathematically, IFTP is formulated as follows:

min 2; 4; 5; 1; 4; 6ð Þx11 þ 2; 5; 7; 1; 5; 8ð Þx12 þ 4; 6; 8; 3; 6; 9ð Þx13
þ 4; 7; 8; 3; 7; 9ð Þx14
þ 4; 6; 8; 3; 6; 9ð Þx21 þ 3; 7; 12; 2; 7; 13ð Þx22 þ 10; 15; 20; 8; 15; 22ð Þx23
þ 11; 12; 13; 10; 12; 14ð Þx24
þ 3; 4; 6; 1; 4; 8ð Þx31 þð8; 10; 13; 5; 10; 16Þx32 þ 2; 3; 5; 1; 3; 6ð Þx33
þ 6; 10; 14; 5; 10; 15ð Þx34
þ 2; 4; 6; 1; 4; 7ð Þx41 þ 3; 9; 10; 2; 9; 12ð Þx42 þ 3; 6; 10; 2; 6; 12ð Þx43
þ 3; 4; 5; 2; 4; 8ð Þx44

s:t: x11 þ x12 þ x13 þ x14 ¼ 11;

x21 þ x22 þ x23 þ x24 ¼ 11;

x31 þ x32 þ x33 þ x34 ¼ 11;

x41 þ x42 þ x43 þ x44 ¼ 12;

x11 þ x21 þ x31 þ x41 ¼ 16;

x12 þ x22 þ x32 þ x42 ¼ 10;

x13 þ x23 þ x33 þ x43 ¼ 8;

x14 þ x24 þ x34 þ x44 ¼ 11;

xij � 0; i; j ¼ 1; 2; 3; 4:

ð10Þ

The fuzzy optimal solution of IFTP (10) can be obtained using the proposed
method in Sect. 4, as follows:

Step 1: We solve the following classical transportation problem using the standard
LP algorithms:

Z
I 0
1 ¼ min ZI

0

1 ¼ x11 þ x12 þ 3x13 þ 3x14 þ 3x21 þ 2x22 þ 8x23 þ 10x24
þ x31 þ 5x32 þ x33 þ 5x34 þ x41 þ 2x42 þ 2x43 þ 2x44

s:t: Constraints of Model ð10Þ:
ð11Þ

Table 1. Summary of the intuitionistic fuzzy transportation problem

D1 D2 D3 D4 ai
S1 (2, 4, 5; 1, 4, 6) (2, 5, 7; 1, 5, 8) (4, 6, 8; 3, 6, 9) (4, 7, 8; 3, 7, 9) 11
S2 (4, 6, 8; 3, 6, 9) (3, 7, 12; 2, 7, 13) (10, 15, 20; 8, 15, 22) (11, 12, 13; 10, 12, 14) 11
S3 (3, 4, 6; 1, 4, 8) (8, 10, 13; 5, 10, 16) (2, 3, 5; 1, 3, 6) (6, 10, 14; 5, 10, 15) 11
S4 (2, 4, 6; 1, 4, 7) (3, 9, 10; 2, 9, 12) (3, 6, 10; 2, 6, 12) (3, 4, 5; 2, 4, 8) 12
bj 16 10 8 11 45
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The optimal solution of Model (11) is as follows:

x11 ¼ 11; x12 ¼ 0; x13 ¼ 0; x14 ¼ 0;
x21 ¼ 1; x22 ¼ 10; x23 ¼ 0; x24 ¼ 0;
x31 ¼ 3; x32 ¼ 0; x33 ¼ 8; x34 ¼ 0;
x41 ¼ 1; x42 ¼ 0; x43 ¼ 0; x44 ¼ 11:
Z
I 0
1 ¼ 68

ð12Þ

Step 2: We solve the following classical transportation problem using the standard
LP algorithms:

Z
I
1 ¼ min ZI

1 ¼ 2x11 þ 2x12 þ 4x13 þ 4x14 þ 4x21 þ 3x22 þ 10x23 þ 11x24
þ 3x31 þ 8x32 þ 2x33 þ 6x34 þ 2x41 þ 3x42 þ 3x43 þ 3x44

s:t: x11 þ x12 þ 3x13 þ 3x14 þ 3x21 þ 2x22 þ 8x23 þ 10x24
þ x31 þ 5x32 þ x33 þ 5x34 þ x41 þ 2x42 þ 2x43 þ 2x44 ¼ 68

Constraints of Model ð11Þ:

ð13Þ

The optimal solution of Model (13) is as follows:

x11 ¼ 11; x12 ¼ 0; x13 ¼ 0; x14 ¼ 0;

x21 ¼ 1; x22 ¼ 10; x23 ¼ 0; x24 ¼ 0;

x31 ¼ 3; x32 ¼ 0; x33 ¼ 8; x34 ¼ 0;

x41 ¼ 1; x42 ¼ 0; x43 ¼ 0; x44 ¼ 11:

Z
I
1 ¼ 116

ð14Þ

Similarly, using the Steps 3–5 of the proposed method, the optimal solution and the
minimum total intuitionistic fuzzy transportation cost of IFTP (10) are obtained as
follows:

x11 ¼ 11; x12 ¼ 0; x13 ¼ 0; x14 ¼ 0;

x21 ¼ 1; x22 ¼ 10; x23 ¼ 0; x24 ¼ 0;

x31 ¼ 3; x32 ¼ 0; x33 ¼ 8; x34 ¼ 0;

x41 ¼ 1; x42 ¼ 0; x43 ¼ 0; x44 ¼ 11:

ð15Þ

By substituting the optimal solution (15) in the objective function of the IFTP (10),
the total intuitionistic fuzzy transportation cost is determined as follows:

~Z
I ¼ ð116; 204; 302; 68; 204; 372Þ: ð16Þ

The degree of acceptance of the transportation cost for the decision maker
(DM) increases if the cost increases from 116 to 204; while it decreases if the cost
increases from 204 to 302. Beyond (126, 282), the level of acceptance or the level of
satisfaction for the DM is zero. The DM is totally satisfied or the transportation cost is
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totally acceptable if transportation cost is 204. The degree of non-acceptance of the
transportation cost for the DM decreases if the cost increases from 68 to 204 while it
increases if the cost increases from 204 to 372. Beyond (68, 272), the cost is totally
un-acceptable.

6 Conclusions

In this paper, a TP having uncertainty as well as hesitation in prediction of the
transportation cost has been investigated. In the TP considered in this study, the values
of transportation costs are represented by triangular intuitionistic fuzzy numbers and
the values of supply and demand of the products are represented by real numbers. Here,
we proposed a new solution approach for solving IFTP. We converted the IFTP under
consideration into a MOLP problem with five objective functions and used a lexico-
graphic approach to obtain the efficient solution of the resulting MOLP problem. In
contrast to the existing methods [1, 8, 10, 14], the proposed algorithm in this study kept
the valuable uncertain information in the optimization process. Here, we shall point out
that the IFTP studied in this paper is not in the form of a problem whose demands and
supplies are as triangular intuitionistic fuzzy numbers too. Therefore, further research
on extending the proposed method to overcome these shortcomings is an interesting
stream of future research.
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Abstract. Every decision problem, understood as the need to take the
best decision in some sense, leads to an optimization problem. There is
a need to consider the “context” where each decision is made because it
directly affects the underlying decision/optimization model with obvious
implications in the change of the optimal solutions.

In this contribution this topic is further explored using the problem
of locating emergency services (ambulances) in a set of available loca-
tions. A number of different contexts are considered and how they can be
defined from an operational point of view is shown. The results obtained
allowed to show how the best solutions of the problem may change.

Even using this simple example, we can conclude that the role of
the context in decision/optimization problems and the need to properly
define it should not be underestimated.

Keywords: Decision · Optimization · Contexts
Maximal coverage location problem

1 Introduction

Decision making and optimization are ubiquitous tasks in our modern societies.
From which clothes to wear, to the selection of the cheapest flight or to find
the best route to work, decisions must be taken with the aim of optimizing the
results associated with the final decision.
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Decision Theory has been traditionally linked with Economics, Statistics and
Operations Research. Also the connections between Decision Theory and Arti-
ficial Intelligence, aiming at providing more or less autonomous behaviour to
different devices or software artifacts (like non-player characters in videogames)
are gaining increasing attention.

In many cases, most of the studies are focused on how to take the “best
decision”, which in turn, means that under every decision problem, there is an
underlying optimization problem.

Another key aspect is that decisions are not taken in a vacuum space. There
is always a context where a decision should be made. Recently Lamata, Pelta
and Verdegay [7] explored the connections between decision problems, optimiza-
tion and contexts. They showed the close relation between decision problems
and optimization problems and they also illustrated how the so called “frame-
work of behaviour” (the context, in what follows) where each decision is made
directly affects the underlying decision/optimization model with obvious impli-
cations in the change of the optimal solutions. They develop the idea of this
decision/optimization synergy in the context of fuzzy optimization problems.

The aim of this contribution is to further explore this topic using the maximal
covering location problem (MCLP) as an example. MCLP aims at selecting a
number of location in which a number of service units should be located in
such a way that the highest coverage is attained. By service units, one may
understand a variety of possibilities ranging from taxis stops or WiFi hotspots
to supermarkets or hospitals. We will show how a number of different contexts
can be defined from an operational point of view and, in turn, how the best
solutions of the problem may change.

The paper is organized as follows: Sect. 2 briefly describe the main aspects
about the connections among decisions, optimization and context. Then we
present the standard mathematical formulation of the Maximal Coverage Loca-
tion Problem (MCLP) [3] and we pose it later under the terms of the decision-
making process approach presented in [7]. We will focus on the problem of allo-
cating emergency services (ambulances) in a city. We consider different contexts,
their corresponding mathematical formulations and the optimal solution for each
case. Finally, Sect. 6 is devoted to conclusions and further research.

2 Preliminaries

A one step unipersonal decision problem can be represented by a sextet
(X,E, f,≤,H,K) where X is the set of available actions to take, E is the envi-
ronment, f measures the consequences or results produced by the actions, ≤ is
the relation that sorts the results, H is the available information and K is the
context in which the decision-maker makes decisions [6,7].

Departing from this formalization, the optimization problem associated with
a given decision problem can be represented as a tuple (XHK , EHK , fHK ,≤HK ),
where Hk stands for a specific type of information (H) and a context (K).
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In this optimization problem (we assume a maximization one), the objective
is to find the action/alternative x ∈ XHK such that

fHK (x∗) = Max≤HK {fHK (x) : x ∈ XHK , fHK : XHK × EHK → UHK} (1)

Now, when different definitions for the elements of the problem are consid-
ered, several variations are obtained.

In order to properly describe our ideas, in what follows we rely on two
assumptions: (1) we will focus in the particular case where the information H
of the problem is complete and precise; and (2) as a consequence, there is only
one possible state or environment E to consider.

Both elements H and E are removed from the formulation in order to sim-
plify the notation. Then, the problem may be represented in a shorter way as
(XK , fK ,≤K), where K, as before, is the context. In this optimization problem,
the objective is to find that alternative x ∈ XK such that

fK(x∗) = MaxK{fK(x) : x ∈ XK ; fK : XK → UK} (2)

In the following sections, we will illustrate how different contexts (the defi-
nition of K) can be represented in an optimization problem and how the corre-
sponding solutions vary.

3 The Maximal Coverage Location Problem

In this contribution we will focus on the problem of locating emergency service
units (e.g., ambulances). Departing from a set of J potential locations, we need
to decide where p available ambulances should be located in order to maximize
the population coverage. We say that a location is open if it is used to place an
ambulance and it is closed if not.

The demand of an area (a node) wj represents the number of emergency
calls issued from that area in the past. A demand node is covered if there is
an ambulance located at a distance or travel time closer/shorter than certain
reference value S (usually called the service time or coverage radius).

This problem can be modeled as a Maximal Covering Location Problem
(MCLP) [3]. MCLP has been widely studied [1,4,5,10] and applied to solve
problems in different domains [2,8–12]. The mathematical formulation is as
follows:

Sets

i, I - index and set of the demand nodes.
j, J - index and set of potential locations for the ambulances.
Ni - {j ∈ J |dij � S} the set of potential ambulance locations that can cover the

node i within the time or distance S, dij is the distance between the node i
and the potential location for the facility j.
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Input Parameters

p - the number of ambulances to be located
S - the maximum allowed time or distance to respond to a request.
wi - value that represent the demand associated to node i.

Decision Variables

xj - 1 if an ambulance is located at the node j, 0 otherwise.
yi - represents the coverage of node i, 1 if node is covered (∃j |xj = 1 ∧ j ∈ Ni),

0 otherwise.

Mathematical Model

maxZ =
∑

i∈I

wiyi (3)

subject to∑

j∈Ni

xj � yi ∀i ∈ I (4)

∑

j∈J

xj = p (5)

xj = {0, 1} ∀j ∈ J (6)
yi = {0, 1} ∀i ∈ I (7)

The objective function (3) maximizes the demand covered by the set of estab-
lished facilities (ambulances). Constraints (4) state that one or more facilities
will be located within the distance or travel time pre-defined S from the demand
node i. Constraint (5) ensures that the number of ambulances to be located is p.
Finally, the constraints (6) and (7) indicate binary restrictions on the decision
variables xj and yi.

4 Possible Context: Examples

Before trying to solve the problem in a given context K, it is necessary to provide
a proper definition of the elements of the tuple (XK , fK ,≤K). Such definitions
depart from a “context-independent” (X, f,≤) where the elements are:

– X: a binary vector (x1, x2, . . . , xn) of size n that represents the set of decisions
xi with respect to use (or not) a particular location point i.

–
∑n

i=1 xi = p,
– f :

∑m
j=1 yjwj , where wj is the demand in the demand point j, and yj is a

binary variable that reflects that the demand j is covered by an open location
i, i.e. Yj = 1 ⇐⇒ ∃i∈Nxi = 1 ∧ Dij ≤ S, yj = 0 otherwise.

– ≤: As the objective is to maximize the demand, the order relation ≤ between
two decisions A and B is as follows, A ≤ B ⇐⇒ f(A) ≥ f(B)
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The decisions and the corresponding demands covered in the “context inde-
pendent” MCLP can be used as reference values for what can be attained.

The key question here is how the value K is defined in every context consid-
ered. In the following subsections we describe an instance of the MCLP problem
and the particular contexts considered: an ethical context, an emergency context,
and a sustainability context.

Fig. 1. A simple example of the maximal covering location problem.

4.1 Context Independent

This case represents a reference situation, where no specific context is consid-
ered. Figure 1 presents an instance of the MCLP. In this example there are five
locations where the ambulances may be located (n = 5) which are represented
by rectangles. Each big circle (with radius S) represents the area covered by such
locations. There are six demand points (m = 6) represented by small circles with
a number inside representing the demands (wj): w1 = 1, w2 = 5, w3 = 4, w4 = 3,
w5 = 8, and w6 = 2.

Figure 2 shows an example where p = 2 ambulances are located. The selected
locations x2 = 1, x4 = 1 are marked with filled rectangles and the demand
covered is highlighted with a darker circle.

The number of potential decisions for this “context-independent” example
is 2n = 25 = 32 binary vectors indicating if each one of the 5 locations points
is used or not. In this case, we consider that only two ambulances are available
(p = 2). Thus, some of these 32 vectors do not represent feasible solutions
(they violate the constraint

∑n
i=1 xi = p either due to the use of a higher or

lower number of ambulances). Consequently, the number of feasible solutions is(
n
p

)
=

(
5
2

)
= 10. The space of feasible solutions contains 00011, 00101, 00110,

01001, 01010, 01100, 10001, 10010, 10100 and 11000. Table 1 shows the coverage
attained by each feasible solution. The optimal solution 01010 with a coverage
of 20 units is the one displayed in Fig. 2.
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Fig. 2. A simple example of maximal covering location problem with p = 2. Ambu-
lances are located at x2, x4.

Table 1. Set of feasible solutions for the MCLP instance with p = 2. The optimum is
marked in bold.

Decision Covered demand Uncovered demand f

00011 3 + 5 + 8 + 2 1 + 4 18

00101 1 + 3 + 2 4 + 5 + 8 6

00110 1 + 3 + 5 + 8 4 + 2 17

01001 4 + 2 1 + 3 + 5 + 8 6

01010 4+3+5+8 1+2 20

01100 4 + 1 + 3 5 + 8 8

10001 1 + 5 + 2 3 + 8 + 4 8

10010 1 + 3 + 5 + 8 4 + 2 17

10100 1 + 3 + 5 4 + 8 + 2 9

11000 1 + 5 + 4 3 + 8 + 2 10

4.2 Ethical Context

Motivation
The ethical context arise when the decision is not taken just from a maximization
point of view. An example could be the need to provide an ambulance in a
neighborhood where most of the population is old.

As a consequence a new location point appears, and an ambulance should
be located there. In the simplest case, only one specific neighborhood should be
covered but this may be extended to considered that a set C of new locations
(|C| = c, c ≤ p) is now available to place ambulances on them. Thus, the set of
available locations is R = N ∪C and the number of available locations r = n+c.
The ethical context imposes that one ambulance must be placed in the new
locations.
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From an operational point of view, the parameter K in an ethical context
gives raise to the following model.

Model
The model for this context may be formalized as follows:

– X: a binary vector (x1, x2, . . . , xn, . . . , xr) of size r that represents the set of
decisions xi with respect to use (or not) a particular location point i.

– ∀i∈C xi = 1
– f =

∑m
j=1 yjwj

–
∑n

i=1 xi = p − c
– yj = 1 ⇐⇒ ∃i∈R xi = 1 ∧ dij ≤ S, yj = 0 otherwise
– ≤k = ≤

Example
For illustrating the ethical context, let’s suppose that the local government iden-
tified that a new location x6 should be considered and, in this ethical context,
an ambulance should be located there, so x6 = 1. This is shown in Fig. 3.

This implies that r = n+ c = 5+1 = 6. In this simple case, the real decision
is where to place the remaining ambulance, i.e. originally p = 2 and c = 1, then
we have p − c = 1 ambulances to place. The optimal solution for this modified
instance is 000101 presented in Fig. 3(a), with a coverage of 1 + 3 + 5 + 8 = 17.

In this case the coverage is lower than in the context-independent problem
but this is not always the case. For example, if the location of the neighborhood
to cover varies, as shown in Fig. 3(b) (now, in the right-most filled rectangle), the
optimal solution 000101 has a coverage of 3 + 5 + 8 + 4 + 2 = 22 which is greater
than the coverage attained in the context independent problem.

Fig. 3. Two examples of the ethical context where a new location appears and needs to
be covered x6 = 1. In (a), the total coverage is lower than in the context independent
case. While in (b) the total coverage is higher.
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4.3 Emergency Context

Motivation
In an emergency context, for example a heavy snow, it may happen that a
subset U ⊂ N of location points becomes unavailable. This implies that u = |U |
locations must be closed

From an operational point of view, the parameter K in an emergency context
gives raise to the following model.

Model
The model is addressed as follows.

– Xk = X
– ∀i∈U xi = 0
–

∑n
i=1 xi = p

– fk = f and ≤k = ≤
Example
Let’s suppose now that due to a contingency (for example a heavy snow), the
locations points U = {1, 2} are unavailable. This implies that ambulances will
not be located there (x1 = 0 and x2 = 0). Under the emergency context, the
optimal solution is 00011 presented in Fig. 4, attaining a coverage of 18 units.

Fig. 4. An instance of the emergency context where two location points are unavailable
(x1 = 0 and x2 = 0).

An emergency context may have much more implications than the one consid-
ered here. Different combinations of several conditions (less ambulances, modified
distances, unavailable locations, reduced radius of coverage) may occur in real
emergency situations. It is out of the scope of this contribution the consideration
of such combinations.
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4.4 Sustainability Context

Motivation
In this context, a decision maker should take now the best decision without
compromising (in some sense) the future. This context implies that the deci-
sion maker has certain expectations about how certain conditions/parameters
will vary in the future. For example, if snowfall happens frequently, it is very
predictable its occurrence in the future.

In the problem of locating ambulances, the sustainability context may imply
that the current location of ambulances should guarantee a minimum level of
coverage (l) when a snowfall happens. As the reader may notice, information
about the change of conditions should be available. For example, we may know
how the distances dij between each possible location and each demand node will
change (denoted as dTij) due to snow.

From an operational point of view, the parameter K in a sustainability con-
text gives raise to the following model where an additional constraint appears.

Model
This situation may be formalized as follows.

– Xk = X
–

∑n
i=1 xi = p

– dTij are the distances in the future (when the snowfall)
– the coverage in the future should have a minimum level:

∑m
j=1 y

T
j wj ≥ l,

where yTj = 1 ⇐⇒ ∃i∈N xi = 1 ∧ dTij ≤ S, and yTj = 0, otherwise
– fk = f and ≤k = ≤

Example
Suppose that we need to locate the ambulances “now” in such a way that, after
a heavy snow, a minimum level of coverage l = 16 is guaranteed.

Let’s assume the situation shown in Fig. 5(a). The original solution having
x2 = 1, x4 = 1 attained a coverage of 20 units. Now, due to the snow, the
path (marked with a line) connecting demand node 2 (with w2 = 5) with the
potential location x4 is not available anymore. In other words, dt42 = ∞. Under
this circumstance, the coverage will degrade down to 15 units.

However, if we had considered the solution shown in Fig. 5(b), we observe that
if demand node 2 is now served by location x4, the solution attains a coverage of
17 units. When we consider the new conditions (dt42 = ∞) the coverage is also
17 (thus condition 17 ≥ 16 holds), because demand node 2 is served by x1.

Table 2 shows, for every potential solution, the current and the future cov-
erage attained. In this example, just one feasible solution exists: 10010. Other
solutions do not guarantee the expected coverage required in the sustainability
context.
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Fig. 5. The original solution (a) having x2 = 1, x4 = 1 cannot satisfy the level of
coverage desired when the conditions changed (the path marked in red is not available
anymore). However, the solution in (b), although suboptimal in “normal conditions”
fits the requirements in the sustainability context. (Color figure online)

Table 2. Solutions in the sustainability context with l = 16. Just the first solution is
feasible (the future coverage is higher than l).

Solutions f Future coverage
10010 17 17
00011 18 13
00101 6 6
00110 17 12
10010 6 6

Solutions f Future coverage
01010 20 15
01100 8 8
10001 8 8
10100 9 9
11000 10 10

5 Summary of the Contexts

Table 3 show the optimal solution and the coverage attained in the different
contexts exemplified.

It may be observed that even in this illustrative example, the optimal solution
changes as a function of the context considered.

If we analyze the coverage, the optimal solution in the second example of
the ethical context is better than the one from the context independent case.
However, in the remaining cases, the coverage value attained with the context
independent solution represents an upper bound for the attainable coverage in
the other contexts.

If we analyze the solutions, we observe that x4 = 1 is part of the optimal
decision in the five examples considered. In other words, we can consider x4 as
a critical location. In turn x3 = 0 in all the cases, meaning that it is not an
“attractive” location. No other clear pattern is detected for the other potential
locations.
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Table 3. Comparison of the solutions from different contexts of decision

Context Optimal solution f

Independent 01010 20

Ethical1 000101 17

Ethical2 000101 22

Emergency: less locations 00011 18

Sustainability 10010 17

6 Conclusions

In [7], the authors explored the close relation between decision problems and opti-
mization problems and they also illustrate how the context, where each decision
is made directly affects the underlying decision/optimization model with obvi-
ous implications in the change of the optimal solutions. They developed the
idea of this decision/optimization synergy in the context of fuzzy optimization
problems.

In order to emphasize the role of the context in decision/optimization, in
this contribution we further explored the topic using the problem of locating
p emergency services (ambulances) in a set of available locations. The problem
was modelled as a maximal covering location problem (MCLP). We considered
a number of different contexts and we showed how they can be defined from an
operational point of view. The results obtained allowed us to show how the best
solutions of the problem may change.

Even using this simple example, we can conclude that the role of the context
in decision/optimization problems and the need to properly define it should not
be underestimated.
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and Pablo Garćıa-Sánchez3

1 Instituto Tecnológico de Tijuana, Tijuana, BC, Mexico
mario@tectijuana.edu.mx

2 Universidad de Granada, Granada, Spain
jmerelo@geneura.ugr.es

3 Universidad de Cádiz, Cádiz, Spain
pablo.garciasanchez@uca.es

Abstract. Distributed computing systems can be created using volun-
teers, users who spontaneously, after receiving an invitation, decide to
provide their own resources or storage to contribute to a common effort.
They can, for instance, run a script embedded in a web page; thus, col-
laboration is straightforward, but also ephemeral, with resources depend-
ing on the amount of time the user decides to lend. This implies that
the user has to be kept engaged so as to obtain as many computing
cycles as possible. In this paper, we analyze a volunteer-based evolution-
ary computing system called NodIO with the objective of discovering
design decisions that encourage volunteer participation, thus increasing
the overall computing power. We present the results of an experiment
in which a gamification technique is applied by adding a leader-board
showing the top scores achieved by registered contributors. In NodIO,
volunteers can participate without creating an account, so one of the
questions we wanted to address was if the need to register would have
a negative impact on user participation. The experiment results show
that even if only a small percentage of users created an account, those
participating in the competition provided around 90% of the work, thus
effectively increasing the performance of the overall system.

Keywords: Distributed evolutionary algorithms
Volunteer computing · Socio-technical systems

1 Introduction

The World Wide Web is an increasingly reliable and high-performance operating
system for running distributed applications. Besides the maturity of HTTP, the
underlying protocol itself, there are other factors: the JavaScript virtual machine
embedded in every browser and the REST interface, providing a de facto stan-
dard interface for communication. A distributed system based on the browser can
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be easily created using these mechanisms, which lately have been enhanced by
WebSockets for lower latency; you can start to gather users just by announcing
the URL. This approach for creating distributed experiments is called volunteer,
cycle-scavenging, or opportunistic computing [24] and it dates back, in different
shapes and underlying mechanisms, to the origin of the Internet [1].

In this context, we are mainly interested in evolutionary algorithms [19,22,26].
The fact that they are population-based makes them suitable for a straightfor-
ward distribution of work to different clients, and since they have an asynchronous
nature, there is no considerable impact on their performance, and might even be
beneficial for a number of reasons, including an increased diversity [4]. All these
properties make them ideal candidates for volunteer computing setups such as the
one presented in this paper.

But even if adaptation is straightforward, the application of volunteer com-
puting techniques to the development of distributed evolutionary algorithms
still has several open issues. An important research aspect is approaching the
problem as a socio-technical system [18,27], which integrates user decisions and
behavioral patterns in the model; this includes trying to optimize the number of
users or the overall time they contribute in a particular experiment. The chal-
lenge is to design a system that, whatever the number of users available and
willing to perform the experiment, it is able to maximize their contribution to
the evolutionary algorithm. One obvious way of achieving that is trying to find
as many users as possible. But another approach, and the one that we will be
following in this paper, is to delve into the socio-technical nature of the system,
using gamification techniques to try and improve the amount of time every user
will lend to the system. However, there is a trade-off with gamification, since
users have to be identified in some way to participate, and thus it has to include
some way of user authentication, which is a hurdle that might take users away.
However, the open design of the system we use means that we can actually mix
anonymous (with no gamification) and authenticated (gamified) users, with only
the small overhead of adding the gamification mechanism.

This trade-off between ease of use, allowing users to participate by just vis-
iting a web page, and customization, making registration a requirement in order
to participate, is what we will analyze in this paper. In a socio-technical system
such as this one, every decision the user has to take has an influence on the overall
performance, and registration could be seen as a hurdle to volunteers trying to par-
ticipate in an ephemeral experiment, so it is a challenge to analyze what actually
happens in this case; quite clearly, the inclusion of gamification techniques has an
impact on page loading and complexity of server-side programming; if the number
of users or the amount of time they contribute to the experiment is not enough,
it would be better to revert NodIO to a purely anonymous system. The rest of
the paper is organized as follows: The state of the art in opportunistic/volunteer
distributed evolutionary computation (EC) is presented next. The proposed Gam-
ification Technique is described in Sect. 3. Section 4 will describe the framework
and the problem used in the experiments, which are publicly available under a free
license. The results of each of the steps in the incremental design are presented in
Sect. 5, to finally wrap up with the conclusions.
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2 Related Work

Volunteer computing involves users who decide to run a program that acts as a
client or as a peer in a distributed computing experiment and, as such, has been
deployed in many different ways since the beginning of the Internet, starting with
the SETI@home framework for processing extraterrestrial signals [1], which used
a client that acted as an screensaver. However, the dual facts of the introduction
of JavaScript as a universal language for the browser and the browser itself as
both an ubiquitous web and Internet client has made this combination the most
popular for volunteer computing frameworks in what is generally described as
BBVC or Browser-Based Volunteer Computing [8].

In order to attract volunteers, many systems rely on downloadable clients;
Fabisiak [8] analyzes the different capabilities of Internet and browser-based
systems, including their ability to handle large sets of input data and time-
consuming problems, concluding that BBVC is mostly apt for short, data-light
tasks. As indicated in the introduction, the human is an integral part of the
system, which we can consider a human computation [23]. Giving the user more
control, and adding visibility to their participation might have positive effects.
In fact, the BOINC project applies this technique by having a web page present-
ing the “Top 100 multi-project BOINC participants” in which the name of the
volunteer, the number of projects, GFLOPS, country and team are displayed.

Several authors have already described systems using JavaScript either for
unwitting [2,3,12] or volunteer [13,15] distributed EC and it has been used by
several authors ever since. In fact, [21] performs an analysis of what is called
Gray computing covering aspects of feasibility, cost-effectiveness, change in the
userś experience and the architectural optimization needed, concluding that the
computing power available is vast and it can be cost-effective to use it.

Many of the systems described above do not go any further than trying to
find out how many users join the effort, and how many of them the system can
support. In fact, systems such as the one described in [15] had severe scaling
issues; some of them also tried to find out how much time was needed to find
the solution or, alternatively, how many users would be needed to be competi-
tive against single-user single-computer implementations of the same algorithm.
Lately, researchers have tried to integrate volunteer computing techniques as a
part of a larger distributed evolutionary computing effort [14]. In fact, systems
using volunteers exclusively, exhibit a certain amount of unpredictability, and
they might be better used in combination with ready-available computing power.

3 Proposed Gamification Technique

A definition of Gamification given by Huotari [11] is “Gamification is the process
by which gaming concepts are brought to real world tasks associated with real
people”. Gamification uses game design elements out of the domain of games
with the objective of enhancing the user’s experience, engagement, productivity,
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learning, among others. Deterding et al. proposes the following definition: “Gam-
ification is the use of game design elements in non-game contexts” [6]. Gami-
fication techniques in a volunteer context seeks to persuade users to use their
natural desire to compete, learn and socialize in given non-game context applica-
tion [5,9]. By Making the rewards for tasks achievements visible to other players
or providing leader boards are ways of encouraging players to compete [10].

In this work, a leader board was implemented in order to promote competi-
tion, presenting only the all-time top five participating users.

Another gamification technique employed in this work is based on a rewarding
mechanism [7]. In general rewards consist of a reputation system with score
points, levels and leader boards. Points are awarded to users in response of the
accomplishment of certain activities that need to be encouraged. In these case
a point is awarded for each HTTP PUT Request sent to the server. Levels are a
long term achievement, in this case the level depends on the score:

level(score; a, b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, score ≤ a

2( score−a
b−a )2, a ≤ score ≤ a+b

2

1 − 2( score−b
b−a )2, a+b

2 ≤ score ≤ b

1, score ≥ b

The function returns a normalized value that is multiplied by the maximum level
in this case 100. The variables a= 100 and b= 7360 are set to give users a rapid
increase of levels at the beginning. The effect a and b have on the results was
not determined, and other techniques could be used.

4 Experimental Setup and Execution

For this experiment the gamification technique is applied to the NodIO volun-
teer computing framework, using the particular version described in detail in
[16,17]. The objective of the experiment is to test the kind of impact applying
a gamification technique has on user engagement in this particular application.
In order to apply a rewarding system user authentication had to be developed
first. In earlier designs this functionality was not desired because it was seen as
a barrier for participation. After all, the advantage of a browser based volunteer
system is precisely the minimum amount of user intervention needed to start.
The last thing a user wants to see is yet another registration form. Then, the
first design decision for this version is that registration is optional and simple.

After login to the NodIO web application, registered users are welcomed by
their name, and they can see their current score and level. All users can see
the leader board in a modal dialog. While the modal is opened, the scores are
refreshed every second. All other functionality is available to all users and is the
same as the previous NodIO version, showing the state of the current algorithm.
In the front page a link to the open source code of the experiment was also
available in https://github.com/lucero21/login-master.

https://github.com/lucero21/login-master
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4.1 Problem

In the browser, each page visiting the experiment loads an HTTP Web Worker
that runs a local island of an evolutionary algorithm to solve a multi-modal
problem called l-trap which has been used extensively as a benchmark for evolu-
tionary algorithms [20]. This function counts the number of bits in a sequence l
and assigns the local maximum a if it has 0 bits and the global maximum b if it
has l bits, this makes the fitness fall into a trap as the number of bits increases,
and decreasing linearly until a change in slope is reached at point z, adding a
deceptive component for evolutionary algorithms. In order to increase difficulty,
trap functions can be concatenated, in our case we have used 40 concatenated
traps. The trap function is defined as:

f(u) =

{
a
z (z − u) if u ≤ z
b

l−z (u − z) otherwise

Each local GA had the following parameters, the initial population was ran-
domly generated with a size between 128 and 256 individuals, the period to send
individuals to the server was set at 100 local generations, the parameters for the
trap function are fixed at l = 4, a= 1, b= 2, z = 3 with a chromosome length of
160 bits.

4.2 Experiment Execution

We made a call to participation on November 23th, 2016 through the authors’
social networks: “Asking again for your help, we are conducting a computational
experiment that requires computer power. Can we borrow some of your CPU?
just visit the web page (link) and leave the tab open. Be part of the TOP
TEN, register so we can track your participation. The experiment will run until
November 27th, Thanks!” As you can see, the message mentioned a deadline;
a link that could be used to register was also included. Users visiting the page
after the deadline were presented with a thank you message and a final leader
board. Considering the number of friends, followers and the organic sharing of
the posts, we estimate the post was visited by around 2000 users. Only some of
them registered, but in fact relatively small samples of users (10±) are sufficient
for discovering 80% of usability problems [25]. In fact, we were not so much
interested in making a precise model but on how the behavior of the registered
users was different from non-registered ones; in non-parametric comparisons,
using 15 sample units is in general good enough, as seems to be the case in this
particular experiment, where we were also interested in computing the number of
users who actually registered, proving that, in fact, for most users the fact that
they have to register represents a bigger effort they seem to be able to muster
for this kind of experiments.
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5 Results

At the end of the experiment the resulting log file contained 933,513 contribu-
tions considering both registered and anonymous volunteers. Registered users
were responsible for about 90% of the contributions, while being only 16% of
the total number of unique users (assuming each IP is from a single user).

Fig. 1. Usage by registered (green triangles) and anonymous (red dots) users. Users
are ranked by the number of requests sent, in the x axis is the rank, and in the y axis
number of PUTs in a logarithmic scale. (Color figure online)

Contributions are counted by the number of HTTP PUT requests sent to
the server. In Fig. 1 a comparison between the contribution of registered vs
anonymous users is presented.

The first observation arises from the length of the x axis. There were only
18 registered users vs 91 distinct IPs; the exact number of anonymous users is
upper-bounded by that amount but is not known precisely as we only recorded
the IP of the request, we did not use cookies or other means of identification
since it was not actually needed for the experiment. Besides, a registered user
could sometimes be anonymous too, which could be caused by the fact that
the first time they visited the application they automatically begin to work as
anonymous, so the number of non-anonymous users, 91, is actually the amount
of unique IPs that had ‘anonymous’ as the user. In the plot of anonymous users,
some of the lasts in the rank could in fact be registered users, momentarily
participating as anonymous. Even if this is not considered, only about 16% of
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users attending the call decided to participate as named users and thus enter
the game dynamics. The second observation is apparent in the y axis of Fig. 1.
There is a notable difference in the amount of participation between the two
groups, and also in the slope of the plot. An independent-samples t-test was
conducted to compare participation, and there was a significant difference in the
scores for anonymous users (M = 1057.97, SD = 3669.86) and non-anonymous
users (M = 46513.55, SD = 93537.20); t-test = 4.70, p = 7.5e−06; that is, the con-
tribution of registered users was two orders of magnitude bigger than for anony-
mous users. This difference is highlighted in Fig. 2, which is a boxplot of the
participation by two groups, shows the big difference between registered users
(shown as “users”) and anonymous ones (shown as “IPs”). This chart also shows
the number of outliers in the groups, which is an obvious consequence of the
ephemeral and spontaneous nature of the collaboration; in fact, two registered
outliers were very important participants, maybe competing between them, an
expected consequence of the gamification, in fact, although not in this precise
form and quantity. But there were more outliers between anonymous IPs, and
some of them could be related to the same users. The lower quartile in the users
box-plot has more spread, indicating a participation similar to the median of
anonymous IPs, indicating that the difference in distribution is mainly due to a
few highly engaged and registered users.

Fig. 2. Box-plot of the number of requests sent by registered users and anonymous
IPs. In the y axis are number or PUTs in a logarithmic scale.
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Fig. 3. Participation of registered users. Each circle represents a user relating in the x
axis the number of workers used and in the y axis number or PUTs in a logarithmic
scale. The area of the circle is the number of unique IPs associated to every user.

Figure 3 gives an interesting view on the amount of resources shared by reg-
istered users. The area of the circle is proportional to the number of unique IPs
used by each user; the user with the most participation used a total of 66 differ-
ent IPs. This number could be related with the number of different devices used
during the participation. There are some users that using less devices partici-
pated more, this could mean a more powerful device, faster Internet connection
or simply more time spent participating. At any rate, the chart seems to indicate
that the main mechanism registered users employ to increase their rank seems to
be using all devices available, and maxing out their CPUs by increasing the num-
ber of workers. This indicates that, in fact, registered users who have incurred
in additional time expenses by performing registration and login are ready to
work even more by manually deploying more workers and using more comput-
ers, which is another proof of the socio-technical nature of volunteer computing
systems.

User engagement is related to the amount of time a user spends in the appli-
cation. Figure 4 shows two important aspects of engagement, the overall time
spent and the amount of resources shared in that time. Registered users were
more engaged during the experiment. They contribute more resources during
longer periods of time.

The amount of participation of the top ranked user is presented in 15 s time
slots in Fig. 5. In the beginning this user was using more than 30 workers, this
means that more than 30 tabs of the page were open at the same time, perhaps
using several computing devices. Some users reported that they wanted to test
the limits of their own systems, checking the percentage of CPU they were using.



350 M. Garćıa-Valdez et al.

Fig. 4. Number of PUTs by User (green dots) or IP (blue triangles) in 15 min slots.
(Color figure online)

Fig. 5. Number of workers used by the top ranked user in 15 min slots.
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6 Conclusions, Discussion and Future Work

In this paper we have added gamification to a volunteer computing system via a
leaderboard of contributions of registered users. The objective of this work was to
test the kind of impact applying a gamification technique has on user engagement
in the NodIO volunteer evolutionary computing framework; in concordance with
the results obtained in other browser-based volunteer systems, after applying
the gamification techniques, registered users participated much more intensely
than anonymous ones.

In fact, we have proved that, although only a minority of the users opt for
registration, their individual contributions are on average much higher than for
non-authenticated/non-gamified users. The fact that less than one fifth of users
actually registering would discard the exclusive use of this feature; however,
it is an interesting addition to the volunteer system that in fact enhances its
computing power.

The fact that applying a gamification technique improved user participation
highlights the social nature of volunteer computing systems, piling on the fact
that successful social clouds must embed games and other social mechanisms to
enhance participation. That is why future lines of work will look for interme-
diate ways of including gamification without registration, as well as some ways
of making the user increase control over the algorithm that would go beyond
simply staying for longer or leaving the page. Since it is a sociotechnical system,
including social features in it and studying emerging social networks is an inter-
esting line of work too. Other factors, such as the language used, the way the
experiment is announced, are also very important in this social context, which
is why they will be included in future lines of work too, along with the study of
the behavior of users as they are participating in the web system.

Another line of work would be to study the possible negative effects of using
gamification techniques to improve engagement, like cheating or literally gaming
the system to defeat competition. We already found some hints of this behav-
ior, but more subtle effect could be taking place. Finally, the refinement of the
proposed framework will need more case studies and further multi-disciplinary
research.
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Abstract. Vehicle Routing Problem is the most common and simplest
routing problems. One of its important variants is the Dynamic Vehicle
Routing Problem in which a new customer orders and order cancellations
continually happen over time and thus perturb the optimal routing sched-
ule that was originally invented. The Dynamic Vehicle Routing Problem
is an NP-H ard problem aims to design the route set of minimum cost
for a homogenous feet of vehicles, starting and terminating at the depot,
to serve all the customers. In this paper, we propose a prototype of a
Decision Support System that integrates a hybrid of Genetic Algorithm
and Local Search to solve the Dynamic Vehicle Routing Problem. The
performance of the proposed algorithm is highlighted through the imple-
mentation of the Decision Support System. Some benchmark problems
are selected to test the performance of the proposed hybrid method.
Our approach is better than the performance of compared algorithms
in most cases in terms of solution quality and robustness. In order to
demonstrate the performance of the proposed Decision Support System
in term of solution quality, we apply it for a real case of the Regional
Post Office of the city of Kef in the north west of Tunisia. The results
are then highlighted in a cartographic format using Google Maps.

Keywords: Dynamic Vehicle Routing Problem · Genetic algorithm
Local search · Decision Support System

1 Introduction

The delivery of goods to customers is considered to be one of the most chal-
lenging activities in logistic sectors. One of the most studied problems in supply
chain and logistics-related areas is the Vehicle Routing Problem (VRP). VRP
was first introduced by Dantzig and Ramser [1] as a generalization of the Trav-
eling Salesman Problem (TSP). The objective consists in designing a set of
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trips, starting and terminating at a central depot, minimizing the total trans-
portation cost with a homogenous fleet of vehicles based on a depot node. In
some cases, not all customers are known in advance, but are revealed as the
system progresses. One of those formulations is VRP with Dynamic Requests,
referred to a Dynamic Vehicle Routing Problem (DVRP). Although, in the liter-
ature, several types of metaheuristic methods have been applied to solve DVRP.
The first one is due to Wilson and Colvin [2], where a single vehicle DARP
is studied and customer requests are trips from an origin to a destination that
appear dynamically. The approach uses insertion heuristics. Pillac et al. [20] pre-
sented a review of the DVRP and introduce the notion of degree of dynamism.
Elhassania et al. [3] presented an Ant Colony Optimization (ACO) with a
Large Neighbourhood Search (LNS) algorithm for depot visits order requests.
Okulewicz and Mandziuk [4] used a standard continuous Particle Swarm Opti-
mization (PSO) and a cluster-based heuristic generating initial solutions for
priorities separate requests and clusters centers multi requests. Mandziuk and
Zychowski [5] presented a Memetic Algorithm (MA) consisting of GA with a
local search based on adaptive heuristic operators sequences for order requests.
Okulewicz and Mandziuk [6] solved requests-to-vehicles assignment by the PSO
algorithm, route optimization by a separate instance of the PSO algorithm.
Recently, [21] proposed an ant colony based meta-heuristic for solving the
DVRPP with time windows and also, AbdAllah et al. [19] solve DVRP using
GA. They propose a weighted fitness evaluation approach as an alternative for
the biased time-based approach.

In this paper, In order to enhance the exploitation ability of GA, we propose
a hybrid Genetic algorithm (GA) with a local search (LS) algorithm for solving
a DVRP for order depot visits requests. In DVRP, new customer demands are
received along the day. Hence, they must be serviced at their locations by a set of
vehicles in real time. The effectiveness of our approach is demonstrated through
experiments on widely used benchmark instances. Numerical experiments show
that the proposed method outperforms other local searches and metaheuristics.
We also, present a Decision Support System (DSS) that integrates a Geograph-
ical Information System (GIS) for solving the addressed problem. The proposed
DSS is applied for a real case of the Regional Posts Office of Kef (RPOK) on the
city of kef in the north west of Tunisia in order to demonstrate the performance
of the solution quality. The results are then highlighted in a cartographic format
using Google Maps.

The remainder of this paper is structured as follows. The DVRP is stated
mathematically in Sect. 2. In Sect. 3 the main steps of the proposed DSS are
outlined. Section 4 provides a description of the resolution methodology HGLS.
Section 5 describes the computational results. Section 6 details the case study.
Finally, Sect. 7 concludes the paper.

2 Problem Description

The standard VRP is defined on a connected graph G = (V ,A), where V defines
a set of n + 1 vertices and E = ((i, j)|i, j ∈ V ) enumerates the availability of
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direct routes between vertices i and j of V . Vertices v0 and vn+1 correspond
to the depot at which K homogeneous vehicles are based, and the remaining
vertices denote the customers. Each arc (vi,vj) is associated with a non-negative
weight cvivj

, which represents the travel distance from vi to vj . Each customer i
has a delivery demand qi. The CVRP consists of determining a set of least cost
vehicle routes such that:

– Each route starts and ends at the depot,
– Each customer is visited exactly once by exactly one vehicle,
– The total demand of the customers assigned to any vehicle must not exceed

the vehicle capacity Q.

To ensure the dynamic aspect to the VRP, we additionally two parameters:
tri is a point in time when their is a new request and T is the duration (time)

of a service.
The decision variables of the problem are, xij defined as:
xk
ij takes 1 if the vehicle k travels from customer i to j (0 otherwise).

Where n presents the total number of customers, k is the total number of
vehicles, Q is the capacity of each vehicles and cij is the cost of traveling from
customers i, j.

Figure 1 presents a simple example of a dynamic vehicle routing situation
is shown. The advance request customers are represented by black nodes, while
those that are immediate requests are depicted by white nodes.

Fig. 1. An example of a DVRP solution



A Decision Support System 357

3 Problem Formulation

We state in what follows the mathematical model of the DVRP:

MinZ(x) =
k∑

k=1

n∑

i=0

n∑

j=0,j �=i

cijx
k
ij (1)

S.t.
n∑

j=1

xk
0j =

n∑

i=1

xk
i0 = 1, k ∈ {1, . . . , n} (2)

n∑

j=0,j �=i

k∑

k=1

xk
ij = 1, i ∈ {1, . . . , n} (3)

∑

i∈St

∑

j∈St

xk
ij ≤ |St| − 1, k ∈ {1, . . . , n}, St ⊆ V (4)

tri ≤ T (5)

The objective function (1) consists of minimising the total cost of a fleet of
vehicles, Constraints (2) express that each travel should begin and end at the
depot. In addition, Constraints (3) provide that a single vehicle leaves each client
i. Constraints (4) eliminate the sub tour (St ⊆ V ) with |St| = i is Ci

n×K. Finally,
constraints (5) ensure that the time of the dynamic request is less or equal to
the total time T of service.

4 Decision Support System Architecture

We develop DSS based on an HGLS that satisfies all customer requests in order
to generate the optimum vehicle paths (see Fig. 3). The first step of our DSS
is to input problem parameters, namely the number of customers to be served,
vehicles capacity and the number of available vehicles. The second step after
providing data, geographical coordinates and customer demands are to be set.
The Genetic algorithm proceeds iteratively by an alternative use of the Local
Search in order to diversify the search. Once the numerical solution is generated,
the DSS moves to design the cartographical solution that well illustrates the real
itinerary. Finally, Vehicles pathways are then highlighted.

5 The HGLS Approach for DVRP

The DVRP is obviously NP -H ard problem [7]. In this study we propose a
hybridization based on an Genetic Algorithm and Local Search algorithm to
solve the DVRP presented in Algorithm 1.
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Algorithm 1. The proposed HGLS approach for the DVRP
1: Begin
2: t=0
3: Create an Initial Population
4: Evaluate each chromosome in P(t)
5: while stopping criterion is not satisfied do
6: Initialize a temporary population p’
7: for i=1 to —P(t)— do
8: Select two parents from P(t)
9: Apply Crossover (offspring)

10: if the offspring and parents are identical then
11: Improve each offspring by the Mutation operator
12: end if
13: end for
14: t=t+1;
15: Replace the old Population P(t) by the new P’;
16: end while
17: Apply the Local search procedure (Algorithm2)
18: The best solution founded is returned
19: END

5.1 Genetic Algorithm

Since their introduction by Holland [8], based on the concept of natural selec-
tions and genetics, Genetic algorithms have become popular in a wide variety
of NP -H ard combinatorial optimization problems such as the Traveling Sales-
man Problem(TSP) [9], the Vehicle Routing Problem (VRP)[14], the Job-shop
Scheduling Problem [11] and the Quadratic Assignment Problem (QAP) [10],
because of ease of operation (Selection, Crossover, Mutation), its simplicity, and
global perspective. The different steps of the GA are stated as follows:

GA starts by generating some feasible solutions (individuals) after initialized
the parameters used in the algorithm, and then using the objective (fitness) func-
tion each of them is evaluated. The GA is iterated until the terminal condition
is satisfied. In each iteration (generation). The second step is to select proba-
bilistically individuals from the population according to selection methods. The
third one is to generate offspring by applying the crossover and mutation oper-
ators. Then, the worst individual in population is removed to keep the size of
population constant if the generated offspring is not the same as any individual
in population. Finally, the pheromone trails are updated. In the reminder of this
section, we introduce the main processes of the proposed algorithm.

Chromosome Representation and Initial Population Creation
In our approach, we use a variable length chromosome representation that
includes some information on previously visited customers [12]. There exists
awaiting customers that have recently been added to the days planning but
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not yet allocated to any vehicle and engaged customers that have already been
visited by a given vehicle, since any given chromosome represents a number of
partial tours at any time step. Figure 2 represents an example of a DVRP chro-
mosome representation where the positive nodes represent the static customers
and the negative one represent the dynamic customers (when a new customer is
newly added). In our contribution, the initial population of DVRP is generated
randomly.

Fig. 2. An example of a DVRP chromosome representation

Fitness Evaluation
Each individual is evaluated using the fitness value FDVRP (x). according to
FDVRP (x) =

∑k
k=1 cost(Ei) where Ei represents a set of routes.

Crossover Operator
In the crossover operator, two parents P1 and P2 are selected from the pop-
ulation. A route is randomly selected from each parent chromosome and the
customer orders present in each route are eliminated from the other parent. In
this paper we use the Ordered Crossover (OX) [13] like a crossover operator,
where two points are randomly selected. The substring between the two sections
points on the first parent is copied to the offspring. Then, the remaining posi-
tions are replaced by following the customer order on the second parent, starting
at the position just after the second cross point.

Mutation Operator
we use Exchange Mutation to select two random positions in new chromosome
and those positions are interchanged.

Our Proposed algorithm is iterated until the best solution doesn’t change to
a better value for a predefined value of generations during the evolution process.

5.2 Local Search procedure

The role of local search is to encourage better convergence and to discover any
missing trade-off regions in evolutionary optimization. The general scheme of LS
procedure is presented in Algorithm 2. An initial solution S0 is generated and
improved. The local optimum that is obtained is indicated by S. The following
steps are repeated, until predetermined termination criteria are not met. The
solution S is perturbed and a new current solution S′ is obtained. The LS is
applied to S′ and a solution S” is obtained. If S” is accepted, it becomes the
new current local optimum.
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Algorithm 2. Local Search procedure
1: Begin
2: Create a solution S0

3: Apply LS to S0 and obtain S
4: while Termination criteria are not met do do
5: Perturb S to obtain S′

6: Apply LS to S′ and obtain S”
7: if S” is accepted then
8: S′ = S”
9: end if

10: end while
11: END

6 Computational Experiments

The proposed solution approach is implemented using Java Language version 7.
All experiments were performed on a PC equipped Intel (R) Core (TM) i3-4005U
CPU with 4 Go RAM under Microsoft Windows 7.

Table 1. Comparison between the published systems and the HGLS proposed system.

Problem M-VRPDR GA-based DVRP Proposed HGLS
Bst Avg Bst Avg Bst Avg

c50D 524.61 548.10 566.01 597.34 520.11 550.30
c75D 852.95 885.00 944.46 990.78 853.5 794.66
c100D 860.56 913.81 943.89 988.15 855.4 911.23
c100bD 820.92 864.03 869.41 904.03 820.50 866.52
c120D 1189.06 1295.31 1288.66 1399.40 1189.01 1290.63
c150D 1083.79 1142.24 1273.50 1359.25 1200.99 1141.25
c199D 1377.26 1466.30 1646.36 1700.54 1083.77 1466.25
tai75aD 1656.12 1705.76 1744.78 1823.71 1656.09 1704.77
tai100aD 2093.63 2168.87 2181.31 2290.95 2093.63 2166.99
tai150bD 2847.08 2980.33 2885.94 3073.58 2844.89 2999.40
tai75cD 1355.41 1427.74 1433.73 1502.56 1344.90 1425.88
tai100bD 1990.99 2097.86 2119.03 2212.58 1998.50 2096.58
tai150dD 2737.37 2903.68 2911.47 3010.34 2740.23 2901.30
f71D 260.17 297.61 288.30 309.49 260.17 296.65
f134D 11815.95 12299.59 14871.40 15789.80 11815.80 12278.55
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The dynamic problems adopted in this paper have been originally proposed
in Kilby et al. [15]. They are derived from some very popular static VRP bench-
mark datasets, namely 6 problems are taken from Taillard [16] 7 problems are
from [17] and 2 problems are from [18]. These problems range from 50 to 199 cus-
tomers. The number of customers can be inferred from the name of each instance.
Table 1 illustrates the comparison between the optimal/best objective values of
our best objective values in the literature for these benchmark instances. Aver-
age performances are computed over all problem instances of the corresponding
data set. In Table 1, best results reported in two recently published heuristic
which are the Memetic Algorithm [5] and GA-based DVRP [19] papers for com-
parison. The proposed HGLS DVRP finds 9 new best solutions and 12 better
averages out of the 15 problems in this comparison

7 Real Case Study

In order to test the proposed approach, we experiment it for a Regional Post
Office of the city of Kef in the north west of Tunisia. To ensure the distribution
of letters and postal products in different countries offices and postal cells that
cover the governorate of Kef, the RPOK has three paths: Tajerouine-Kalaat
Senan, Sakia-Nebeur and Dahmani-El Kssour (Table 2). In order to achieve this
task, the DRPK has awarded three vehicles. The choice of the vehicle depends
on the driver. Table 2 explains the existing paths.

Table 2. The RDPK existing paths

Path Traveled distance

Sakia-Nebeur Distribution centre −→ Quickpostoffice −→ Ain

Karma −→ Sakia −→ Touiref −→ Nebeur −→
Maleg −→ SidiKhiar −→ Tal el Ghoelene −→
Nebeur −→ BorjelAifa −→ Sakia −→ AinKarma

−→ Distributioncentre −→ Quickpostoffice

273 Km

Dahmani-ElKssou Distribution −→ CenterCEF −→ WestKef −→
Dahmani −→ ElKssour −→ Ezzaitouna −→ LeSers

−→ WedSouani −→ LeSers −→ Elles −→
ElKssour −→ Dahmani −→ CEF −→ WestKef

−→ DistributionCenter −→ Quickpostoffice

250 Km

Tajrouine -Kaat Senan Distribution Center −→ Quickpostoffice −→ Sidi

Mtir −→ Jezza −→ Tajerouine −→ Jerissa −→
ManzelSalem −→ KalaatSenan −→ AinSenan −→
Mahjouba −→ Boujaber −→ KalaatSenan −→
SidiAhmedSaleh −→ KalaaKhasba −→
SidiAhmedSaleh −→ Jerissa −→ Tajerouine −→
Jezza −→ SidiMtir −→ DistributionCenter −→
Quickpostoffice

270Km
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Study of the Transportation Cost within the Regional Posts Direction
of Kef
The goal of our work is the resolution of the DVRP within the DRPK. Our
problem lies in the planning of the distribution rounds some mail; in other words,
the planner has no idea about the appearance of the dynamic node, therefore
the information necessary for the planning tours is not known entirely by the
planner when the process planning begins and can change after the initial tours
were built. Our goal is to study all the dynamic cases that may appear once
the vehicle starts its tour and try to find a better solution while minimizing the
total cost of transportation as well as the distance traveled to get the shortest
way. Table 3 details the cost of transportation or the distribution of the mail
and postal assets and shows the total cost of each route before minimization.

Table 3. Paths characteristic

Path Distance Cost

Sakia-Nebeur 273 155.610
Dahmani-El Kssour 250 142.500
Tajerouine-Kallat Senan 270 153.900

Minimization of the Distance
In order to minimize the cost of transportation, we will try to minimize the
total distance traveled for each route without touching the progress of the mail
distribution operation. According to Tables 2, 3 and 4 we notice at the level
of each path a sub tour. A sub tour designs that the vehicle of mail visits the
majority of post offices twice a day during of his distribution work. That’s why
we’re going to eliminate the sub-tour, we will obtain new short paths. Table 5
shows the new routes:

Table 4. New obtained paths

Path New distance

Sakia-Nebeur Distribution Center −→ Quickpostoffice −→
AinKarma −→ Sakia −→ Touiref −→ Sidi Khiar

−→ Talelghozlne −→ Malg −→ Nebeur −→
BorjelAifa −→ DistributionCenter

185 Km

Dahmani-ElKssou Distribution Center −→ Quickpostoffice −→
Exploitation center −→ KefOuest −→ Dahmani −→
ElKssour −→ Ezzaitouna −→ Sers −→
WedSouani −→ DistributionCenter

169Km

Tajrouine -Kaat Senan Distribution Center −→ Quickpostoffice −→ Sidi

Mtir −→ Jezza −→ Tajerouine −→ Jerissa −→
Mahjoub −→ ManzelSalem −→ KalaatSenan −→
AinSenan −→ Boujaber −→ SidiAhmedSaleh −→
KalanKhasba −→ Distributioncenter

245Km
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Fig. 3. DSS inputs and outputs

Fig. 4. (a) Illustrates the distance before and after minimization (b) Illustrates the
cost before and after minimization

The minimization of distance leads to a minimization of the cost, which shows
Table 6.

As a conclusion, Fig. 4 Illustrates the distance and the cost before and after
minimization.
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8 Conclusion and Future Work

In this paper, Dynamic Vehicle Routing Problem was solved using a Hybrid
Genetic Local Search heuristic. Results show that our approach provides signif-
icant improvements over other examined heuristic approaches. In order to find
more interesting results, we proposed a GIS to design a Decision Support Sys-
tem. Finally, our approach was applied on a real case study in Regional Post
Office of Kef in the north west of Tunisia and we obtain satisfied results in
terms of effectiveness and productiveness. For future work, we suggest to apply
our approach for the Dynamic Vehicle Routing Problem under multi objective
framework.
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Abstract. This work presents an approach to deal with uncertainty in
patient’s medical record. After giving a brief characterisation of possible
sources of uncertainty in medical records, the paper introduces fuzzy set
based approach that allows modelling of such information. First, het-
erogeneous data is converted to homogeneous model with the use of
Feature Set structure. With such model uncertainty may be represented
directly as Fuzzy Membership Function Families (FMFFs). Some theo-
retical results connecting FMFFs with Hesitant Fuzzy Sets and Type-2
Fuzzy Sets are also given.

Keywords: Medical data · Hesitant Fuzzy Sets
Imperfect information

1 Introduction

Over the years, many models have been developed to extend and generalise
the fuzzy sets theory. Motivation for a large part of them was the modelling
of broadly understood data uncertainty. Most commonly used in practice are:
IVFS [1], AIFS [2,3], HFS [4], and T2FS [1,5,6]. All these extensions enrich the
set of values that membership function can take, replacing a single number with
an interval, set, and even a fuzzy number in [0, 1]bib0, bib1. Depending on the
interpretation, new values of membership can be considered as separate “logical”
values (ontic interpretation) or as an approximation of our imperfect knowledge
of a certain value (epistemic interpretation) [7,8].

This work is devoted to uncertainty in an epistemic sense, i.e. one that results
from limited, incomplete or imperfect knowledge. The simplest case is the com-
plete lack of knowledge – the case of incomplete data. However, even here one
should be careful. Missing values are often marked with a very ambiguous abbre-
viation NA. NA – not available – the value is not available, no one conducted
an examination or test. This is a perfect example of total epistemic uncertainty.
On the other hand, another interpretation of NA – not applicable – has nothing
to do with the incompleteness of the data. After all, this is completely certain
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 855, pp. 369–380, 2018.
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information that a given parameter is not suitable for describing a particular
case. This fact further highlights how important it is to understand the context
of modelled data.

The primary objective of this paper is to describe how one can use fuzzy sets
for patient record modelling. The two main problems will be addressed. The first
involves the process of transforming heterogeneous medical data into a fuzzy set
with clearly defined semantics. The second concerns the modelling of epistemic
uncertainty.

The rest of the paper is organised as follows. Section 2 gives some background
information about fuzzy sets and their extensions. The third section covers the
issue of medical data normalisation. Section 4 deals with uncertainty model for
medical data. The concept of Fuzzy Membership Function Family (FMFF) is
defined and some theoretical results connecting it with Hesitant Fuzzy Sets and
Type-2 Fuzzy Sets are given. Finally, in Sect. 5 some conclusions and areas for
further research are given.

2 Definitions

Let U = {x1, x2, . . . } be a crisp, at most countable universal set. A mapping
A : U → [0, 1] is called a fuzzy set in U . For each i, the value A(xi) (ai for
short) represents the membership grade of xi in A. Let FS(U) be the family of
all fuzzy sets in U .

Interval-valued fuzzy set theory, which is a special case of Type–2 Fuzzy Set
(T2FS) theory, was introduced by Zadeh [1]. Let I be the set of all closed subin-
tervals of [0, 1]. A mapping Â : X → I is called an Interval-Valued Fuzzy Set.
For each 1 ≤ i ≤ n, the value Â(xi) = [A(xi), A(xi)] ∈ I represents the mem-
bership of an element xi in Â. Usually A and A are called the lower and upper
membership functions of Â respectively. In epistemic approach, interval Â(xi) is
understood to contain the true membership degree of xi in some incompletely
known fuzzy set A represented by Â. We denote the set of all interval-valued
fuzzy sets in U by IVFS(U).

In 2010, Torra defined Hesitant Fuzzy Sets (HFS [4]). They perfectly combine
the simplicity of IVFS and the ability to model very complex data provided by
Type–2 Fuzzy Sets [9]. The important fact about Hesitant Fuzzy Sets is that
they were created with the aim of representing the uncertain, epistemic data. A
Hesitant Fuzzy Set is a mapping AH : X → 2[0,1]. It is worth noting that this is an
equivalent concept to the notion of Set-Valued Fuzzy Sets [9,10]. Type–2 Fuzzy
Sets were proposed by Zadeh in 1971 [11]. They generalise most of the known
extensions of fuzzy sets. A T2FS is defined as a mapping Ã : X → FS([0, 1]).

3 Modelling Medical Data as Fuzzy Membership
Function

In applications such as classification or decision support, it is often required that
individual instances (patients) should be represented as homogeneous real vec-
tors. Given the wide variety of data types encountered in the patient record,
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Table 1. Sample medical data represented with original values.

No Age Gender Tumor in family WBC Qualitative
assessment

Quantitative
assessment

1 38 F Yes 2817.3 1/brown 2/medium

2 18 F No 2181.8 3/blue 4/very high

3 64 F No 8611.3 4/yellow 1/low

4 40 F Yes 3017.1 2/grey 2/medium

Table 2. Data from Table 1 after min/max normalisation.

No Age Gender Tumor in family WBC Qualitative
assessment

Quantitative
assessment

1 0.38 1 1 0.282 0.0 0.333

2 0.18 1 0 0.218 0.667 1

3 0.64 1 0 0.861 1.0 0

4 0.40 1 1 0.302 0.333 0.333

direct conversion/normalisation of data can lead to some anomalies. In this
section we will present a procedure for converting heterogeneous medical data
into a homogeneous model that allow to preserve full semantics of data.

3.1 Data Normalisation and Fuzzy Sets

Let start with the example data presented in Table 1. The simplest methods of
transforming these data are min/max normalisation and standardisation. Table 2
shows the results of the min/max normalisation.

Many researchers (including the author of this work [12,13]) have tried to
treat these vectors as fuzzy sets. This is a convenient approach because there are
many useful tools in the field of Fuzzy Logic such as similarity measures or rule
based models. This approach leads to the following fuzzy sets in the universal
set U = {age, gender, in family,WBC, qualitative, quantitative}:

A1 = 0.38/age+1/gender+1/in family+0.282/WBC+0/qualitative+0.333/quantitative . (1)

This design is correct (at least formally). In addition, through the use of appro-
priate methods, it is possible to achieve very good results, for example, in sup-
porting medical diagnosis [12,14].

But can A1 be called a (fuzzy) set? What would it contain? It turns out
that the interpretation of such fuzzy set is difficult to determine. Of course,
according to the characteristics given in the classic work of Dubois and Prade
[15], we are dealing here with the “degree of similarity” semantics. However, to
be able to interpret the degrees of membership as the similarity, a reference point
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Fig. 1. Linguistic variables used to define feature set for data from previous subsection.

(prototype) is required. Was it determined in this case? Certainly not explicitly.
For some attributes, definition of the “prototype” is a simple task: age – old
person; WBC – high serum level; quantitative assessment – very high. The most
difficult part is to determine prototype for the qualitative assessment, and it is
an attribute type that most often cause problems. Choosing the highest value
(4/yellow) as a prototype is as unjustified as any other. There is no naturally
defined order between the values. It can not be said that 2/green is somehow
similar to 4/yellow, since they are not related to each other and cannot be
compared.

In this section a method of data normalisation will be given, which in par-
ticular:

– allows to specify a clear semantics of a (fuzzy) set for a patient representation,
– describes how to deal with different types of data in order to preserve their

interpretation,
– can be easily extended to model the uncertainty.

3.2 Proposed Approach to Normalisation

The basic idea is to represent each instance (the patient) as a fuzzy set. For
this purpose, the concept of feature set will be introduced. Each instance is
described by a fuzzy set of features that it has. The feature set itself is defined
in terms of the mappings from any number (k) of attributes to a single feature
fi : Rk → [0, 1]. Each such mapping should also give clear description of the new
feature meaning. In this paper we will present simple approach where each term
of linguistic variable defines new mapping. Interpretations of terms for linguistic
variables for the data from the previous example are shown on Fig. 1.



Modelling Medical Uncertainties 373

Fig. 2. Alternative definition of linguistic variable for WBC attribute.

Particular attention should be paid to the attribute “qualitative assessment”.
The corresponding linguistic variable has 4 terms, one for each value. In this
situation, the fuzzy set representing the patient will contain 4 four features
for one attribute. Moreover, each of these features can have a different level of
membership, symbolically indicated by the dashed line in the graph. Whether
a given attribute, and later a feature allows partial membership depends only
on the semantics of the attribute (e.g. gender where a partial membership to
“women” feature is rather difficult to interpret).

Also for numerical attributes, conversion to features using the linguistic vari-
able brings some certain advantages. In addition to clearly defining the meaning
of membership degree, we also get the possibility of a more advanced, but still
easy to interpret, transformation of numerical values. For example, for a WBC
attribute the medically recognised norm is 4000–10000. Hence, instead of defin-
ing a feature as “high”, you can specify the “normal” feature, as shown in the
Fig. 2. Although it’s just a small change, experience shows that it can signif-
icantly affect model quality, especially when we are limited to simple models
such as regression [16,17]. In addition, the medical norm, rather than embedded
into the decision model, is explicitly included in the data model, which in some
applications can be very useful.

What will be the fuzzy representation of patients from the previous subsec-
tion? First, the universal set is now a set of all features in feature set. Membership
values are now calculated with respect to each term interpretation. The patient
record is represented by the following fuzzy set:

P1 = 0.5/old+1/woman+1/in family+0.28/high WBC+1/1/brown+0.33/quantitative . (2)

Apparently little has changed compared to (1). Referring to the three semantics
of a fuzzy set, we are still in the “degree of similarity” semantics. However, now
P1 can certainly be called a fuzzy set. It is a set of features possessed by the
first patient. Answer to the question whether a ∈ P1 has simple interpretation
and tells whether and to what extent a feature a describes the specific medical
case. All membership degrees, regardless of the data type of the corresponding
attribute, now have a uniform and clearly defined interpretation.

However, the greatest advantage of this data model, is the ability to directly
model incomplete and, more generally, uncertain data. The proposed data uncer-
tainty model will be formalised in the next section. The aim of the following
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discussion is to show that an adequate data model can considerably simplify
modelling of the uncertainty.

The benefits of using the feature set based model for the representation of
incomplete data will be presented on the examples of attributes from the begin-
ning of the section. It will be compared to the classical min/max normalisation.
Singleton notation will be used, where membership value depending on the sit-
uation may be modelled by number, interval or arbitrary set which corresponds
to the normal, interval and hesitant fuzzy sets.

Lack of knowledge of the patient’s age may occur for elderly patients whose
documentation is missing, and getting information from them is not possible.
For example, if a patient was born before 1939, then in the new model, thanks
to the use of non-linear normalisation with the use of the linguistic variable
we have 1/old. With min/max normalisation, it would be necessary to use the
interval membership degree [0.79,1]/age. The uncertainty for the gender attribute
may result from the refusal to provide information. In our model, this means that
the “woman” feature can simultaneously belong and not belong to the feature
set. Hence, we get {0,1}/woman. Because for this feature there is no sense of
partial membership, we use a two-element set instead of interval. In the classic
approach, you can use the same model {0,1}/gender. In the case of cancer in
the family, the patient can know only the immediate family, or part of it. For
example, if it is known that the cancer did not occurred in parents and the distant
family is unknown, then such situation can be modelled in both approaches as
[0,0.8]/in family.

The most interesting, however, is the case of qualitative assessment (in the
example of eye colour), where modelling of some uncertainty variants posed
problems. Suppose that the only thing that is known about eye colour is that
they are not 3/blue. In the original model we get {0,0.33,1}/qualitative. However,
such a degree of membership can not be easily converted to interval, which
makes it impossible to use simple modelling using for example IVFS. Thanks
to new normalisation scheme we have 4 features which allows us to use follow-
ing representation [0,1]/1/brown + [0,1]/2/grey + [0,1]/4/yellow. Therefore, the same
knowledge was successfully modelled using only intervals. What if the doctor
evaluating a given parameter is leaning towards option 1/brown but does not
exclude 4/yellow? Unfortunately, this information can not be reproduced in the
classic model, where at most we can write {0,1}/qualitative (solution using T2FS
is possible, although is not feasible here). Thanks to the introduction of feature
set, we have [0,0.75]/1/brown + [0,0.25]/4/yellow.

3.3 Evaluation

Evaluation was based on test dataset from recent research on application of
aggregation operators to incomplete data classification [18]. Original study group
consists of 388 patients diagnosed and treated for ovarian tumor in the Division
of Gynecological Surgery, Poznan University of Medical Sciences, between 2005
and 2015. Among them, 61% were diagnosed with a benign tumor and 39% with
a malignant one. Moreover, 56% of the patients had no missing values in the
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Fig. 3. Total cost of classification based on data normalised using some variant of
min/max (original research) and using proposed approach. The lower the value the
better classification is. Models A, B and C are selected best models form original
research.

attributes required by diagnostic models, 40% had a percentage of missing values
in the range (0%, 50%], and the remainder had more than 50% missing values.
The test set consists of patients with real missing data and some proportion of
patients with a complete set of features. As a result, the test set consisted of
175 patients. Patients with more than 50% missing values were excluded from
the study. The results from [19] are reproduced and compared with the same
classification scheme applied to data normalised using proposed approach. For
more information regarding dataset we refer the reader to original papers [18–20].

Performance of classification based on data normalised using some variant of
min/max (original research) and using proposed approach are presented in Fig. 3.
Total cost method was used to measure model performance since accuracy does
not fit the medical diagnosis problem. They show that change of normalisation
scheme may give slight improvement in overall classification cost. The main
reason of this improvement is proper handling of qualitative attributes.

4 Families of Fuzzy Membership Functions

The previous section shows that the patient’s medical record can be reliably and
unambiguously modelled while still preserving the semantics of the fuzzy set.
It was also presented that it may have positive impact on modelling of incom-
pleteness and uncertainty. Although the examples presented here will relate to
medical issues, the model and results of this section are generic to any fuzzy set,
regardless of interpretation.

4.1 Motivation

In this subsection, two example problems will be presented. They aim is to show
that classic approaches to uncertainty modelling based on fuzzy sets may not be
sufficient to fully take into account all available knowledge. First example shows
that interval representation of uncertainty, though effective, is not sufficient to
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Fig. 4. Drawing of ovaries from Example 1 along with their interval representations.
(Color figure online)

fully reflect the real data. Second one presents situation where some information
is lost during conversion to fuzzy based representation.

Example 1. Figure 4 presents drawings of ovaries, which in actual medical prac-
tise are obtained with the help of ultrasound. Among the many features eval-
uated by a physician, very interesting is the case of papillary projections and
septum. Drawings I and II show an average size papillary projection and total
septum, respectively (along with interval representation below). Sometimes the
septum is not yet completely developed which has been depicted in the third
drawing. The fourth drawing shows a situation where you can not explicitly
qualify whether we are dealing with a large papillary projection and the lack of
septum (red, dotted line), or maybe it is a small papillary projection and almost
full septum (blue, dashed line). The inability to distinguish between these two
situations arises only from lack of knowledge (the impossibility of observing the
ovary from the other side). As can be seen interval representation is not sufficient
to cover both situations in one data description (it is necessary to assign two dis-
joint intervals). This example shows the limitations of interval representation of
incomplete data, indicating a real need for more general formalism with greater
power of expression such as HFS.

Example 2. Let assume we have information on the volume of tumor calculated
as V = γabc. Unfortunately, some diagnostic models use a combination of the
two largest dimensions of the tumor M = αa+βb. For simplicity, we can assume
that α = β = γ = 1 and that a, b, c ≥ 1.
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Let for a certain patient V=200 mm2. Representing the three dimensions
of the tumor as intervals we get a = [1, 200], b = [1, 200] and c = [1, 200].
Calculating the model using interval arithmetic we get M = [2, 400].

The same data, however, can be better represented by the use of appropriate
set-based approach A = {(a, b, c) : abc = 200, a ≥ b ≥ c}. The M model with
such a knowledge representation gives:

M ′ = M(A) = {M(a, b) : (a, b, c) ∈ A} ≈ [11.696, 201] . (3)

It is easy to see that the resulting model values are much more specific and
M ′ ⊂ M .

Using interval representation and arithmetic we lose some important infor-
mation. This knowledge is given in the form of dependencies between several
membership degrees, and therefore can not be represented using three indepen-
dent intervals.

4.2 Proposed Approach to Uncertainty Modelling

This subsection will present a new approach to uncertainty modelling. During
its design, it was assumed that it should be as simple as possible and based on
fuzzy sets, and most importantly allow for modelling the situations presented in
Examples 1 and 2. For the purposes of modelling medical data, we can narrow
the discussion to the situation in which the universal set U is at most countable.
Then, FS(U) can be treated as a subset of Rn or l∞.

Any closed subset A of FS(U) will be called Fuzzy Membership Function
Family (FMFF). Most known extensions of fuzzy sets can be fully accurately
represented using FMFF. For example, interval–valued fuzzy set Â corresponds
to the following FMFF

A =
{
A ∈ FS(U) : ∀x∈U A(x) ≤ A(x) ≤ A(x)

}
. (4)

This approach is largely inspired by the Mendel representation theorem and his
Wavy-Slice representation [21,22]. Referring to this theory for the above IVFS
we have A = FOU(Â).

Returning to the examples from the previous subsection, one can see that
both situations can be directly modelled using FMFF.

Example 3 (Solution to Example 1). The situation shown in Fig. 4 IV can be
represented by the following FMFF

AIV =
{

α/pap + β/septum ∈FS({pap, septum})
:

(α, β) ∈ [0, 0.25] × {1} ∪ [0, 0.25] × [0.75, 1]
}

. (5)

Example 4 (Solution to Example 2). The solution to this problemhas alreadybeen
implicitly given. Now it will be shown in the formalism of fuzzy sets. The first step is
normalisation of input data. Because they are numeric attributes, simple approach
is sufficient. For all three tumor dimensions, we define the same mapping shown in
Fig. 5. Thus, we obtain following FMFF representing patient condition

A =
{
µbig(a)/first + µbig(b)/second + µbig(b)/third : abc = 200

}
. (6)
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Fig. 5. Linguistic variable used to convert tumor dimensions from Example 4.

Diagnostic model needs to be adapted to handle normalised data

Mnorm

(
µbig(a)/first + µbig(b)/second + µbig(b)/third

)
= a + b . (7)

With this model we obtain Mnorm (A) = [11.696, 201] which is an optimal solution.

Definition 1. Let ∼ be an equivalence relation between FMFF such that

A ∼ B ⇐⇒ ∀x∈U {μA(x) : A ∈ A} = {μB(x) : B ∈ B} . (8)

Two FMFF are ∼–equivalent if they have exactly the same membership val-
ues for the same elements of the universal set. In accordance with this observation
it should not be surprising that the equivalence classes [A]∼ can be identified
with Hesitant Fuzzy Sets.

Remark 1. Hesitant Fuzzy Sets are the smallest extension of fuzzy sets con-
taining all FMFF in which there are no dependencies between the membership
degrees of different elements of U .

Since HFS accurately describes the values of membership, ignoring the depen-
dencies, they can be extended with the description of the dependency, gaining
much wider data modelling capabilities.

Consider now the situation in which individual membership functions belong-
ing to the FMFF have the weights assigned to them. Weighted FMFF (WFMFF)
is defined as

A∗ ⊆ FS(U) × [0, 1] . (9)

Similarly as before, equivalence relation can be defined.

Definition 2. Let ∼∗ be an equivalence relation between WFMFF such that

A∗ ∼∗ B∗ ⇐⇒ ∀w∈[0,1]∀x∈U {μA(x) : (A, w) ∈ A∗} = {μB(x) : (B, w) ∈ B∗} . (10)

In this case, the equivalence classes [A∗]∼∗ can be identified with Type–2
Fuzzy Sets.

Remark 2. Type–2 Fuzzy Sets are the smallest extension of fuzzy sets containing
all WFMFF in which there are no dependencies between the membership degrees
of different elements of U .
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4.3 Computational Issues

In order for the proposed model to be used in practice, it is necessary to solve
computational problems. The model in the proposed form is computationally
inefficient at least using classical computation methods. Of course, by applying
appropriate restrictions to HFS and representation of dependencies, this task
can be reduced to various known computational problems, for example to linear
programming, for which there is an effective calculation method. The second app-
roach is to use highly parallel and increasingly accessible computing platforms
such as GPGPU (general-purpose computing on graphics processing units) to
effectively find satisfactory solutions. The author of this work believes that the
combination of these two approaches will allow the construction of computation-
ally efficient models based on FMFF.

5 Conclusions and Further Research

The presented results are the starting point for a comprehensive approach to
modelling medical data. By defining an unambiguous and uniform interpretation
of the patient record as a fuzzy set, further efforts can be focused on the problems
of modelling data uncertainty and developing methods of supporting medical
diagnostics.

The most important direction of further research, is the research on the effec-
tive use of this model in practical computations. However, for this to be possible,
at least a few theoretical issues must be solved. It is necessary to examine the
theoretical properties of the FMFFs which may be required to simplify compu-
tations. Moreover, it is important to solve the problem of additional elements
introduced in feature set, which in some cases can increase the computational
complexity and even reduce the efficiency [23]. This can be done thought intro-
duction of hierarchical data model. It still needs to be developed formally. There
is proposition to use lattice theory and L–Fuzzy Sets to solve this problem.
The last step is to reconstruct some operations on FMFFs, important from the
practical point of view, such as similarity measures.
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Abstract. In the paper we describe a computer system that store and
process uncertain data in such a way as to be able to obtain information
essential to make an effective diagnosis while also indicating the uncer-
tainty level of that diagnosis. We consider the problem of incompleteness
and imprecision of medical data and discuss some issues connected with
such kind of information - like modeling, making decision that is aware
of the imperfection of data, evaluating results in the context of uncer-
tain medical data. As an example we describe a method of supporting
medical decision implemented in the OvaExpert system that is based on
interval-valued fuzzy sets cardinality.
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1 Introduction

Computer decision-making systems are highly effective in terms of prognosis
when solving many diagnostic problems in medical context. This is true espe-
cially for common diseases for which there is access to large number of cases.
The situation is less satisfactory for diseases which are less common and thus
the access to large number of well-depicted cases is limited. Lack of centralized
system for gathering uniform data from many medical institutions is also a prob-
lem. If such databases exist they are gathered in a specific medical center and are
not accessible to others. Another problem is lack of access to full required diag-
nostics (e.g. due to unavailability of proper diagnostic equipment or high cost
of diagnostic examinations), which contributes to ambiguities and omissions in
patient’s record. In addition, by their very nature, medical descriptions are often
imprecise and ambiguous. In most cases, they are descriptive and terminology
used in them is not standardized. Their quality often depends on the education
of the doctor (including the center where he or she was educated) as well as the
doctor’s experience. The existing situation calls for the use of unconventional
data modeling and reasoning methods. It requires methods factoring in both the
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imprecision and incompleteness of the data. Those methods must ensure high
efficacy for disease entities for which there are no sufficiently large databases
available.

In this paper we demonstrate some part of a bigger concept - the OvaExpert
system - that was meant to deal with a forementioned situation. A set of concepts
and methods cover the problem at every stage - collecting, modeling and process-
ing of uncertain data. They combine theoretical knowledge with the capabilities
of a computer system. We propose how to maximize the use of such a system
and of computing power to solve efficiently the problem of uncertain data.

In Sect. 2 we give a brief view on the OvaExpert system and two research
path that we have taken. Section 3 is devoted to one of the implemented meth-
ods, among many others, that supports gynaecologists in a diagnosis of ovarian
tumors. In Sect. 4 we present the results of the analysis of methods based on
counting. Section 5 gives some conclusions and areas for further research.

2 OvaExpert System - Two Research Tracks

OvaExpert, the intelligent system for ovarian tumor diagnosis, introduces a com-
pletely novel approach to the imprecision connected with data imperfection
(see [1–4]), The aim of the system is to store and process uncertain data in
such a way as to be able to obtain information essential to make an effective
diagnosis while also indicating the uncertainty level with which the information
is suggested.

Traditionally, gynaecologists are assisted by many prognostic models, ultra-
sonographic morphological scales, and other risk of malignancy calculators that
are used for differential diagnosis of ovarian tumors. The most common diag-
nostic models are based on scoring systems [5,6] and logistic regressions [7].
Another predictive models were proposed by IOTA group: the most recent one
is ADNEX [8].

The starting point for presented research was finding out that some of those
models in some specific cases are complementing each other, i.e. applying them
simultaneously yields better diagnostic efficacy as opposed to applying them
separately (see [9]).

Consequently, there were two research tracks. The first one concerned the
design of a decision model while the other involved using the synergy of the
existing diagnostic models. Both tracks used interval-valued fuzzy sets in an
epistemic sense which allowed us to include imperfect input data.

The first research track resulted in the concept of interval valued classifier
based on similarity measures allowing imperfect input data. The results of this
part of the research have been published in [10–13]. The method based on this
algorithm will be marked as IVFC (method in the Ovaexpert system based on
similarity measures).

The other research track involved using the method of aggregation/synergy
of imperfect knowledge from several decision models. Our previous research has
shown that fuzzy aggregation methods prove to be very effective in improving the
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quality of diagnosis and minimizing the impact of lack of data and imprecision.
This is due to the variety of models and their different levels of efficacy across differ-
ent patient groups. Many models, when used simultaneously, considerably improve
the quality of the decision. As a part of this research path we applied the theory
of interval-value fuzzy set cardinality, that will be described in more details in the
next section. This approach allows to make a decision supported by majority of
data sources (models) preserving the information about the level of uncertainty
about this decision. The other research centers are also currently developing this
approach using intuitionistic fuzzy preference relations (cf. [14–17]).

3 Algorithm for Decision Support Based
on Interval-Valued Fuzzy Set Cardinality

Interval-valued fuzzy sets (IVFS) are a special variant of type-2 fuzzy sets, also
introduced by Zadeh (see [18]). The notion of interval-valued fuzzy sets is a
generalization of the notion of a usual fuzzy set. Its significant role is to introduce
uncertainty as an actual value of membership function (epistemic interpretation
of interval-valued fuzzy set (see [19])) that can be anywhere between the given
interval values. Two approaches to interval-value fuzzy set cardinality were used:
scalar (sigma f-Count) and fuzzy (f-FECount). Both make use of the cardinality
patterns – functions that help determine the influence of single elements of an
interval-valued fuzzy set on the value of its cardinality. In the case of interval-
valued fuzzy set its cardinality is an interval or an interval-valued fuzzy set,
and a notion of interval representative was introduced to compare cardinalities.
It is a single real number belonging to this interval. The most obvious interval
representatives include: interval center, right limit (minimum value) and left
limit (maximum value).

The idea behind the algorithm conforms with a usual method of making
decisions by counting crisp sets. We make a decision supported by majority of
data sources, on condition that they are more numerous that the reverse option
by a specified value. If both options have the same support of decision sources
(or the difference is minimal), then we do not decide. The idea behind decision
algorithm is to use bipolar perspective on IVFS. Because an IVFS contains
information about uncertainty level, it carries both information supporting and
rejecting the decision. This property of IVFS is used in decision algorithm.
The basic idea behind this algorithm consists of a couple of steps:

1. On the basis of input data, we define two IVFSs: P (“Pro”) modeling support
level for a positive decision and C (“Contra”) mirroring support level for a
negative decision.

2. We calculate cardinalities of these IVFSs with the selected calculation
method.

3. We compare cardinalities to find out whether we can make a decision i.e.
whether one of them significantly outweighs the other, and if so we select the
decision supported by greater cardinality.
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In order to make a decision we need to determine a method for comparing
cardinality intervals. For this purpose, we defined two approaches (modes):

– interval approach consisting in comparing overlap of intervals of respective
distances between their endpoints,

– numerical approach consisting in determining numerical interval representa-
tives.

Depending on selection of calculation methods and comparison methods we
obtain various decision algorithms based on sigma f-count from specific groups:

– SC-cen – based on interval center representatives
– SC-int – based on interval comparison method
– SC-max – based on left limit representatives.

and based on f − FEcount:

– FE-cen – based on interval center representatives
– FE-int – based on interval comparison method
– FE-max – based on left limit representatives.

An outline of the solution is presented in Fig. 1.

Fig. 1. A solution based on the cardinality of IVFSs.

The interval mode is much more restrictive and only efficient in situations
with small amount of missing information (size of ignorance intervals). Definition
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of cardinality pattern is also of key importance. If using identity function as
cardinality pattern (using sigma-count for calculating cardinality) cardinalities
of both IVFSs P and C are symmetrical and decision is only made if both
IVFSs are sufficiently similar to crisp sets. It is also important that thresholds
(parameters defining cardinality pattern) are selected in such a way as to reduce
the significance of input decisions close to 0.5.

4 Evaluation of Efficiency - Results

A very important aspect of construction and application of tumor malignancy
classification (prediction) methods is to evaluate their efficiency (prediction qual-
ity). In a binary classification, we divide the decisions into two classes: posi-
tive (malignant tumors, which also include borderline malignant tumors which
require the same treatment as ovarian cancer), and negative (benign tumors
and non-neoplastic changes). In addition, in our research we allow a situation in
which a classifier may not make a decision due to data being of too low quality.
In medicine, numerous quality classification measures are applied, i.e. sensitivity,
specificity, accuracy, f-measure etc. For classifiers that operate on data of poor
quality (e.g. incomplete data), in some applications, it is necessary to consider a
situation in which the classifier has insufficient information to make a sufficiently
certain decision. This is often the case in medical applications when insufficiently
certain decision can have serious consequences for the patient. This is why an
additional measure has been introduced – decisiveness – which determines in
how many cases the classifier was able to make a decision.

In many applications (often including medical ones) the above measures do
not reflect the actual required quality of the classifier. This is the case when the
significance of the individual classes of errors (actual effects of wrong decisions)
are different. For example, in the medical diagnosis of ovarian tumors the situa-
tion when the system diagnoses a tumor as benign and, in fact, it was malignant
causes much more significant effects for the patient as opposed to the situation
when the benign tumor is diagnosed as cancer. In such models, the concept of
cost matrix (cost function) is used where for each error type a weight (penalty)
is assigned for a wrong decision. The quality value is the sum of costs (penalties)
assigned to the classifier for making wrong decisions. Such a cost matrix will be
used to evaluate the quality of classifications in our system.

The presented algorithms have been tested on real medical data. These data
described 388 cases of patients diagnosed and treated in the Division of Gyneco-
logical Surgery, Poznan University of Medical Sciences, between 2005 and 2015.
Out of them 61% have been diagnosed as suffering from benign tumors and 39%
as suffering from malign tumors. Moreover, 56% of patients had full diagnostic
(no test required by diagnostic scales was missing), 40% had significant amounts
of missing data varying from 0% to 50%, and for the remaining ones 50% of data
was missing. Detailed description of data used for evaluation can be found in [9].
More information on the data format and technical details can be found in [20].
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Fig. 2. Decision making efficacy of
algorithms based on sigma f-count

Fig. 3. Decision making efficacy of
algorithm based on f-FEcount

Figures 2 and 3 present classification results based on the proposed algorithms
with the best versions obtained from optimization in specific groups. Efficiency
area of original models has been marked in grey. The graphs show the total cost
(the higher the cost the lower the classification quality) in relation to the level
of missing data. The graph in Fig. 2 presents the best three algorithms based on
sigma f-count: SC-cen, SC-int, SC-max, whereas, the graph presented in Fig. 3
presents three best algorithms based on f −FEcount: FE-cen, FE-int, FE-max.

As a result of analysis of the obtained decision efficiency, the algorithm FE-
cen has been selected as the best for application in the OvaExpert system from
amount the counting methods. A method based on this algorithm with the use of
cardinality pattern is designated as FSC (the OvaExpert system method based
on counting). The prognostic results of all three decision modules implemented
in the OvaExpert system - OEA, IVFC and FSC - are presented in Table 1 and
for the purpose of comparison the results for the original diagnostic models are
also presented.

The original diagnostic models differ in their classification properties: some
of them tend to make more conservative decisions (i.e. LR1, LR2, SM), and some
of them are more liberal (i.e. RMI, Tim.). This can be observed in discernible
differences in values between sensitivity and specificity. Only one of these models
ensures the balance of both factors (Alc.). It should be noted that all original
models have very low decisiveness (due to deficiencies in diagnostic data), which
results in high total cost.

The new models implemented in the OvaExpert system have high sensitivity
and specificity values. Two of them tend to be more conservative (OEA and
IVFC), while FSC is more balanced. All three models provide a high level of
decisiveness because they are able to deal with deficiencies in data. This is why
their total cost is much lower than the original models.
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Table 1. The results of the decision-making quality of the original models compared
to the OvaExpert methods

Total cost Dec. Sen. Spec. Acc.

Original models Alc. [5] 189.0 20.6 % 88.2 % 89.5 % 88.9 %

LR1 [21] 184.0 27.4 % 92.6 % 57.1 % 77.1 %

LR2 [21] 164.0 33.1 % 94.3 % 65.2 % 82.8 %

RMI [22] 156.0 56.6 % 75.9 % 87.1 % 83.8 %

SM [23] 142.0 62.9 % 94.6 % 71.2 % 79.1 %

Tim. [24] 159.0 47.4 % 66.7 % 97.1 % 91.6 %

New diag.modules OEA 72.0 96.6 % 90.2 % 86.4 % 87.6 %

IVFC 72.5 100.0 % 90.4 % 84.6 % 86.3 %

FSC 67.0 93.7 % 90.0 % 90.2 % 89.4 %

It can be noted that the diagnostic models of the OvaExpert system differ
significantly from the original models in terms of classification. Although diag-
nostic modules differ in classification quality indicators from one another, the
differences in classification are not statistically significant.

In the light of these results, the OvaExpert system based on the presented
modules is a promising tool for supporting the prognosis of ovarian cancers,
especially in the case of partial gaps in diagnostic data that are common in the
everyday medical practice.

5 Conclusions and Further Research

At the moment, the OvaExpert system is tested in several medical centers offer-
ing the diagnosis and treatment of gynecological tumors. Its further implementa-
tion depends on overcoming legal and organizational obstacles concerning med-
ical systems in Poland.

The demo version of the system is available on the project website http://
ovaexpert.pl where one can get acquainted with the functions and possibilities
offered by the system.

Statistical evaluation and implementation of the proposed methods have
been performed with R, version 3.1.2. Scripts, documentation and non-sensitive
data are available at GitHub (see http://ovaexpert.github.io/ovarian-tumor-
aggregation). Because of large amount of calculations needed to do the research,
we decided to use Microsoft Azure cloud service available to our team under
Microsoft Azure Research Grant “Azure Machine Learning – Development of an
Intelligent System for Ovarian Tumor Diagnosis”.

The OvaExpert system was designed to take advantage of the synergy of
many classic diagnostic models and those newly created based on the knowledge
derived from the data. The system has implemented all well-known prediction

http://ovaexpert.pl
http://ovaexpert.pl
http://ovaexpert.github.io/ovarian-tumor-aggregation
http://ovaexpert.github.io/ovarian-tumor-aggregation
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models since medical specialists trust their results. Additionally, new diagnos-
tic methods have been implemented - among others a method based on IVFSs
cardinalities, described in this paper. This method, based on a solid theoretical
foundation, is relatively easy to implement and interpret, and, most importantly,
achieves very good effectiveness in real-life applications such as medical diagnos-
tics. Our approach is meant to be adapted also to non-medical problems where
data quality is a matter of concern. It could be applied when the information
that comes from independent experts is imperfect and it is important to pre-
serve information about this imperfection in the final result. By returning bipolar
information – concerning the quantities of positive and negative premises – we
are able to evaluate that imperfection and the quality of the information.

All of our effort may be summarized with the following achievements:

– Development of computational intelligence methods that help make decisions
based on low quality data, in particular:
• Development of representation and processing methods for low quality

data using interval-valued fuzzy sets.
• Development of selection and optimization methods for decision making

algorithms based on interval-valued fuzzy sets.
• Development of methods calculating the cardinalities of interval-valued

fuzzy sets.
• Development of decision making algorithms based on the cardinalities of

interval-valued fuzzy sets.
– Application of the above-mentioned methods in designing the intelligent sys-

tem OvaExpert supporting medical diagnosis.
– Pilot implementation of the OvaExpert system that supports gynecologists

and helps gathering data for further research and development.
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fuzzy classifier based on an uncertainty-aware similarity measure. In: Angelov, P.,
Atanassov, K.T., Doukovska, L., Hadjiski, M., Jotsov, V., Kacprzyk, J., Kasabov,
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Abstract. In this contribution results connected with using new types
of aggregation functions in medical diagnosis support are presented.
These aggregation functions belong to the recently introduced families of
possible and necessary aggregation functions as well as aggregation func-
tions with respect to admissible linear orders. Examples of the mentioned
families of aggregation functions proved to be comparably effective (if it
comes to statistical measures and lower cost of prediction) to the previ-
ously used aggregation functions in medical diagnosis support systems.
The considered classes of aggregation functions differ from the ones pre-
viously applied by the comparability relations between intervals involved
in the monotonicity conditions.

Keywords: Aggregation functions with respect to admissible linear
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1 Introduction

Interval-Valued Fuzzy Sets (IVFSs) [24,34], which are extensions of fuzzy sets
[33], are applied in many areas like databases, pattern recognition, neural net-
works, fuzzy modeling, economy, medicine or multicriteria decision making. Also
in classification the use of IVFSs has led to improvements of the performance
of some of the state-of-the-art algorithms for fuzzy rule based classification sys-
tems. More precisely, the use of intervals for the creation of the rules gives more
flexibility to the algorithms, which leads to better results [25].

One of the real-life diagnosis support systems for ovarian tumor diagnosis
is OvaExpert [15,16,19,26,28,31,32,36,37]. It enables to make accurate and
high-quality decisions under incomplete information and uncertainty. For the
evaluation process in [32] there were selected six diagnostic models: two scoring
systems SM and Alc [1,27] and four regression models LR1, LR2, Tim and RMI
[17,29,30]. OvaExpert uses interval modeling of incomplete data and thanks to
this uncertaintification of the classical mentioned models is possible. The classi-
cal models were created by individual research units, such as the Alcazar model
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 855, pp. 391–403, 2018.
https://doi.org/10.1007/978-3-319-91479-4_33
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and SM, other methods (like LR1) by organizations (incorporating a number
of research centers), such as IOTA (The International Ovarian Tumor Analysis
group which was founded in 1999 by Dirk Timmerman, Lil Valentin and Tom
Bourne). The majority are scoring models and models based on logistic regres-
sion. In decision module of diagnostic models aggregation of the existing models
may be applied in order to take advantage of the synergy of data. Moreover,
aggregation methods applied to diverse structures and problems proved to be
effective (cf. [2,3,8,13,14,20,21]).

In OEA (cf. [16,32]) the main approach deployed in the system is based on
Ordered Weighted Averaging operation (OWA). In ovarian tumor diagnosis the
problem of missing data is commonly encountered. The results presented in [37]
confirmed that methods based on interval modeling and aggregation make it
possible to reduce the negative impact of lack of data and lead to meaningful
and accurate decisions. A diagnostic model developed in this way proved better
than classical diagnostic models for ovarian tumor. OEA is based on the binary
classifier (malignant or benign). In OvaExpert [16] there are applied diverse mod-
ules where multi-class classification is possible. In OEA the aim of the training
phase was to optimize the parameters of the aggregation operators and thresh-
olding strategies on different simulated percentages of missing features. In the
testing phase, the optimized aggregation operators and thresholding strategies
were examined on the test set. This step checked the performance of these aggre-
gation operators on data with the actual missing values. Although there were
considered interval-valued functions representing models, there were applied two
possible modes of aggregation. The first, called numerical, uses a single value that
represents the whole interval (e.g. the interval’s center, lower bound or upper
bound). The interval mode, on the other hand, utilizes the whole of the interval
information. The study group consisted of 388 patients diagnosed and treated
for ovarian tumor in the Division of Gynecological Surgery, Poznan University
of Medical Sciences, between 2005 and 2015.

The aim of this contribution is to show the performance of diverse classes
of aggregation functions in medical decision support systems using aggregation
methods. One of such systems is OvaExpert with its module OEA [32]. Here we
present the results on aggregation methods connected with recently introduced
possible and necessary aggregation functions [4] and also aggregation functions
with respect to admissible linear orders [35]. These new concepts of aggrega-
tion functions follow from diverse concepts concerning comparability of inter-
vals. Namely, these are possible and necessary comparability relations connected
with epistemic and ontic setting of interval-valued calculus [11,12] and the con-
cept of linear orders introduced in [5]. It turned out that on OEA dataset the
considered examples of aggregation functions are statistically comparable with
the previously applied operators and in is some cases they obtained lower cost
of prediction. However, the presented results were obtained with less number
of repetitions in the training phase what may result in lower stability of the
obtained results.
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This work is composed of the following parts. Firstly, some concepts and
results connected with aggregation functions are presented (Sect. 2). Next, basic
information about OvaExpert diagnosis support system are recalled and infor-
mation about the performance of the new types of aggregation functions in OEA
in connection with decision support are provided (Sect. 3).

2 Aggregation Functions for Interval-Valued Fuzzy
Setting

Firstly, we recall definition of an interval-valued fuzzy set and the classically
applied order for this setting.

Definition 1 (cf. [24,34]). An interval-valued fuzzy set F in X is a mapping
F : X → LI such that F (x) = [F (x), F (x)] ∈ LI for x ∈ X, where

LI = {[x1, x2] : x1, x2 ∈ [0, 1], x1 � x2}.

The well-known classical monotonicity (partial order) for intervals is of the form

[x1, y1] � [x2, y2] ⇔ x1 � x2, y1 � y2. (1)

The family of all fuzzy sets on a given universe X with � is partially ordered
and moreover it is a lattice. We may also consider the following comparability
relations on LI (cf. [22]):

[x1, y1] �π [x2, y2] ⇔ x1 � y2, (2)

[x1, y1] �ν [x2, y2] ⇔ y1 � x2. (3)

These relations, including classical order, follow from the epistemic setting
of interval-valued fuzzy sets and form the full possible set of interpretations of
comparability relations on intervals. Relation �π is an interval order and the
relation �ν is antisymmetric and transitive on LI . Detailed discussion on this
subject will be presented in [23].

Classical order (1) is not complete, which is important for application reasons
for example in decision making problems. In the paper [5] the general method to
build different linear orders for LI , covering some of the known linear orders for
intervals, such as lexicographical orders, the Xu and Yager order, was presented.
An order ≤LI on LI is called admissible if it is linear and for all x, y ∈ LI , such
that if x � y, then x ≤LI y. For example in [6], this class of linear orders on
LI was used to extend the definition of OWA operators to interval-valued fuzzy
setting. We recall here only the notion of Xu and Yager ≤XY linear order which
will be applied in this paper.
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Let x = [x, x], y = [y, y]. Xu and Yager linear order is defined as follows
[x, x] ≤XY [y, y] if and only if x+x < y +y or (x+x = y +y and x−x � y −y).

In this paper we will present the behavior of some operations for interval-
valued fuzzy setting, namely possible and necessary aggregation functions and
aggregation functions with respect to admissible linear orders. Before giving
these definitions we recall the notion of interval-valued aggregation functions,
already applied on OEA dataset [16], and an aggregation function on [0, 1].

Definition 2 (cf. [7], p. 6). An increasing function A : [0, 1]n → [0, 1], n ∈ N,
n � 2, is called an aggregation function if A(0, . . . , 0) = 0, A(1, . . . , 1) = 1.

Definition 3 (cf. [18]). An operation A : (LI)n → LI is called an aggregation
function on LI if it is increasing, i.e.

∀
xi,yi∈LI

xi � yi ⇒ A(x1, . . . ,xn) � A(y1, . . . ,yn) (4)

and A(0, ...,0
︸ ︷︷ ︸

n×
) = 0, A(1, ...,1

︸ ︷︷ ︸

n×
) = 1.

For the simplicity of notations all examples and representations of aggrega-
tion functions will be presented for two–argument cases (n-argument versions
may be obtained recursively).

Definition 4 (cf. [9]). Let A : (LI)2 → LI be an aggregation function. A is said
to be a representable aggregation function on LI if there exist two aggregation
functions A1, A2 : [0, 1]2 → [0, 1], A1 � A2 such that, for every [x1, x2], [y1, y2] ∈
LI it holds that

A([x1, x2], [y1, y2]) = [A1(x1, y1), A2(x2, y2)].

Representability is not the only possible way to build interval-valued aggre-
gation functions.

Definition 5 (cf. [10]). Let x = [x1, x2],y = [y1, y2] ∈ LI and let A1, A2 :
[0, 1]2 → [0, 1], A1 � A2 be aggregation functions. The aggregation function A
on LI is called pseudomax A1A2 - representable if

A(x,y) = [A1(x1, y1),max(A2(x1, y2), A2(x2, y1))], (5)

and pseudomin A1A2-representable if

A(x,y) = [min(A1(x1, y2), A1(x2, y1)), A2(x2, y2)]. (6)

By replacing in the monotonicity condition (4) the natural order � with
the admissible linear orders or relations �π and �ν , new types of aggregation
functions are obtained [4,35].
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Definition 6. A : (LI)n → LI is called an aggregation function with respect to
≤LI , if

∀
xi,yi∈LI

xi ≤LI yi ⇒ A(x1, . . . ,xn) ≤LI A(y1, . . . ,yn)

and A(0, ...,0
︸ ︷︷ ︸

n×
) = 0, A(1, ...,1

︸ ︷︷ ︸

n×
) = 1.

Definition 7. An operation A : (LI)n → LI is called a possible aggregation
function (for short pos-aggregation function) if

∀
xi,yi∈LI

xi �π yi ⇒ A(x1, . . . ,xn) �π A(y1, . . . ,yn) (7)

and A(0, ...,0
︸ ︷︷ ︸

n×
) = 0, A(1, ...,1

︸ ︷︷ ︸

n×
) = 1.

Definition 8. An operation A : (LI)n → LI is called a necessary aggregation
function (for short nec-aggregation function) if

∀
xi,yi∈LI

xi �ν yi ⇒ A(x1, . . . ,xn) �ν A(y1, . . . ,yn) (8)

and A(0, ...,0
︸ ︷︷ ︸

n×
) = 0, A(1, ...,1

︸ ︷︷ ︸

n×
) = 1.

Let x = [x1, x2], y = [y1, y2]. The following functions are aggregation func-
tions on LI (non-representable) and they are also pos-aggregation functions (but
they are not nec-aggregation functions):

Api1(x,y) =

{

[1, 1], (x,y) = ([1, 1], [1, 1])

[y1
x1+x2

2
2 , x2+y2

2 ], otherwise

Api2(x,y) =

{

[1, 1], (x,y) = ([1, 1], [1, 1])

[x1
y1+y2

2
2 , x2+y2

2 ], otherwise

The following function is a nec-aggregation function (it is a pseudomax A1A2 -
representable aggregation function) but it is not a pos-aggregation function:

Anu(x,y) = [
x1 + y1

2
,max(

x1 + y2
2

,
x2 + y1

2
)].

As a useful example of aggregation function with respect to an admissible
linear order we may put OWA operator. Firstly, we recall definition of OWA
operator in a numeric case.

Definition 9. Let w = (w1, ..., wn) ∈ [0, 1]n be a weighted vector (i.e., wi ∈
[0, 1] and

∑n
i=1 wi = 1). An OWA operator of dimension n associated with the

weighted vector w is a function OWA : [0, 1]n → [0, 1] defined by

OWA(x1, ..., xn) =
n

∑

i=1

wix(i),

where (.) denotes a permutation of {1, ..., n} such that x(1) � x(2) � ... � x(n).
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And for an interval case we have

Definition 10 [6]. Let ≤ be an admissible order on LI , and let w =
(w1, . . . , wn) ∈ [0, 1]n, with w1 + · · · + wn = 1. The Interval-Valued OWA opera-
tor (IVOWA) associated with ≤ and w is a mapping IV OWA≤,w : (LI)n → LI ,
given by

IV OWA≤,w([a1, b1], . . . , [an, bn]) =
n

∑

i=1

wi · [a(i), b(i)],

where [a(i), b(i)], i = 1, . . . , n, denotes the i-th greatest of the inputs with respect
to the order ≤ and w · [a, b] = [wa,wb], [a1, b1] + [a2, b2] = [a1 + a2, b1 + b2].

Let us note that IV OWA≤,w is not an aggregation function with respect to
� (see [6]). This is why it is necessary to use linear orders in its notion.

3 Performance of New Types of Aggregation Functions
in Ovarian Tumor Diagnosis

As we have already mentioned in the Introduction, application of aggregation
methods in medical diagnosis support proved to be fruitful and improved the
ability to obtain the final diagnosis (cf. [31]). In this contribution we would like
to present the results connected with potential application of the possible and
necessary aggregation functions as well as aggregation functions with respect to
admissible linear orders. In fact we would also like to check the performance
of diverse comparability relations for interval comparing, i.e. possible, neces-
sary and linear orders. We use analogous methods to the ones presented in [29]
and apply our operators on OEA dataset from [16] designed for ovarian tumor
diagnosis. However, in the training phase (due to the ability of the applied equip-
ment) we performed less repetitions of the evaluation. For some of the examples
of aggregation functions we obtained comparable results and for the others even
better results, i.e. these examples of aggregation functions proved to be com-
parable statistically but with lower cost of prediction. We have tested several
examples of each considered class of aggregations and diverse tresholding strate-
gies (cf. [37]). We have considered three classes of aggregation functions. We
have chosen the best representatives of each class. Moreover, diverse methods
of creating n-argument versions of binary aggregation functions [4] were consid-
ered. If it comes to the class of possible and necessary aggregation functions we
had to take into account the properties of comparability relations involved in
the notions of these aggregation functions. Since, �π is connected but it is not
antisymmetric, we also took into account the width of intervals and the position
of endpoints while creating the n-argument versions of aggregation functions.
The inputs were sorted increasingly and decreasingly. Since relation �ν is not
connected, we also had to perform analogous procedure as for creating pos-
aggregation functions. For both types of aggregation functions we considered
methods of sorting involving �π and �ν . In the class of aggregation functions
with respect to linear orders we have considered OWA operator (cf. [6]) with
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Xu and Yager order and we compared the obtained results to the ones for OEA
from [32].

Concerning the classifier we used the same assumptions as in original app-
roach. To select the best aggregation operator from these returned in the training
and testing phases, it was required that the following conditions be satisfied:

– sensitivity � 90%
– specificity � 80%
– sensitivity > specificity
– decisiveness < 100%.

The first two rules choose aggregation operators with high sensitivity and speci-
ficity values. The third rule reflects the fact that in a medical context sensitivity
is more important than specificity. Since these two measures are correlated there
may be some models (aggregation operators) that trade off sensitivity for speci-
ficity. Such models were rejected. Finally, models with 100% decisiveness were
excluded in order not to impose diagnoses that lack sufficient justification. No
decision, leading to further examinations, is better than a wrong decision.

Moreover, in OvaExpert interval representation of data was applied. This
approach enabled effective decision-making, in spite of missing data. The novel
approach applied in OvaExpert was to describe the value of each attribute of
a patient by an interval, regardless of whether or not the description of the
attribute was given. If the value was not provided, then the proposed repre-
sentation had the form of a set containing all possible values for the attribute.
If the value was given, it was represented by an interval reduced to a point.
The main advantage of this approach is that all patients can be described in
the same, uniform way and can be processed with the same diagnostic model.
There are many different diagnostic models for ovarian tumor, which use dif-
ferent attributes describing the patient, and are therefore subject to different
levels of uncertainty. The main idea was to improve the final diagnosis by taking
advantage of the models? diversity. Given n models m1,m2, ...,mn, an aggre-
gation function is used and as result a new diagnosis is obtained that gathers
information from the input models. There are two possible modes of such aggre-
gation. The first, called numerical, uses a single value that represents the whole
interval (the most common choices are the interval’s center, lower bound and
upper bound). The interval mode utilizes the whole of the interval information.
At the end some tresholding strategies are applied. They have the aim of con-
verting a numerical or interval decision into a final diagnosis. For the numerical
case there was only one class of thresholding strategies, i.e. thresholding with
margin ε ∈ [−0.5, 0.5] given by

τε(a) =

{

B, a < 0.5 − ε
M, a � 0.5 + ε
NA, otherwise

, a ∈ [0, 1].

For interval mode there were evaluated three thresholding strategies. The first
approach was to apply a numerical threshold to the interval representative. The
second was to calculate the common part between intervals (cf. [37]). Finally,
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Fig. 1. Cost matrix

the third one was the interval version of thresholding with a margin given for
each ε ∈ [−0.5, 0.5] by

τε([a, b]) =

{

B, b < 0.5 + ε
M, a � 0.5 − ε
NA, otherwise

, [a, b] ∈ LI .

We used the notation B for benign tumor, M for the malignant one, and NA
for the case, where there was no diagnosis.

In the medical diagnosis of ovarian tumors the situation when the system
diagnoses a tumor as benign and, in fact, it was malignant causes much more
significant effects for the patient, as opposed to the situation when the benign
tumor is diagnosed as cancer. In such models the concept of cost matrix (cost
function) is used where for each error type a weight (penalty) is assigned for a
wrong decision. The quality value is the sum of costs (penalties) assigned to the
classifier for making wrong decisions. If it comes to the cost matrix the costs have
been selected in cooperation with experts in ovarian cancer diagnosis. Figure 1
presents costs (penalties) attributed to classifiers for incorrect decisions. Correct
decisions did not receive a penalty. A classifier receives top penalty in the case
if a patient with malign tumor is classified as a benign case. Penalty for the
case if a patient with benign tumor was classified as malignant was half of it,
as unjustified operation is still dangerous for a patient but death risk is much
lower. Additionally, there were also penalties for the classifier for failure to make a
decision (NA). The penalty is lower, as in such a case the patient needs additional
diagnostics and will probably be directed to a more experienced specialist who
would make a correct diagnosis. However, penalties for lack of decision in positive
(malignant) was twice as high as in the negative (benign) case. For more details
we refer the readers to [32,37].

If it comes to the presented in this paper study the best result for possi-
ble aggregation functions were obtained for Api1, Api2, and for the necessary
aggregation functions for Anu. We present in Fig. 2 the measures of performance
and cost matrix for the mentioned above the best representatives of the fam-
ilies of aggregation functions. We analyze the results regarding accuracy, sen-
sitivity, specificity and decisiveness. Where accuracy is a measure of the ratio
of the number of correctly classified objects to all evaluated objects. This is
the most intuitive measure, but despite its simplicity it is not always the best
measure. Especially in the case of unbalanced number of positive and negative
cases in test sample. Additionally, accuracy does not work in situations where
it is more important for us to have no errors of a given type. While, sensitivity
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Fig. 2. Comparison of performance for diverse aggregation functions

specifies how many of the positive class objects are properly categorized. It can be
interpreted as the probability that the classification will be correct, provided
that the case is positive, i.e. the probability that the test performed for a cancer
patient will show that the tumor is malignant. Specificity shows how often the
model correctly classifies objects from the negative class. In other words, it is
the probability that the classification will be correct, provided that the case was
negative, i.e. the probability that a person with a benign tumor will show that
the tumor is benign. Moreover, decisiveness measure determines in how many
cases the classifier was able to make a decision.

In Fig. 2 we present the results for the original models [1,17,27,29,30]
(denoted orig. for short) and the uncertaintified ones (denoted unc. for short).
The uncertaintified models are the original models adjusted to uncertainty data,
i.e. data presented with the use of intervals. We also recall the results for the
operator with best results in OEA. It is an OWA operator with central element
of interval as a representative selector and τ0.025 as threshold. We also give the
results for FSC module (involving methods based on counting) which was pre-
sented in detail in [16]. Considered here aggregation operators (not included in
the original system) were tested with diverse comparability relations if needed
(for creating n-argument versions of operators or for ordering inputs). In Fig. 2
there are given results for the best obtained options. Since Api1 and Api2 gave
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similar results, we put only the data for Api1 and denote it by Api which were
obtained in interval mode with τ0.025, sorting with respect to �π and width of
intervals, the recurrence for obtaining n–argument versions of operations begin-
ning from the right end. We see that these operators have weaker results than
assumed concerning specificity. For Anu the results were obtained in interval
mode with τ0.025, sorting with respect to �π and width of intervals (what is inter-
esting for the relation �ν there were worse results), the recurrence for obtaining
n–argument versions of operations beginning from the right end. Moreover, to
obtain better results the inputs were also taken in the reverse form (i.e., 1 − x)
and the final result was again reversed. The results for OWA operator with Xu
and Yager order were equally good both for the numerical and the interval mode.
The treshold τ0.025 there was used in both cases and in the numerical case the
central element of interval was taken as a representative selector.

We may conclude that the presented representatives of newly tested aggrega-
tion operators obtained comparable values in comparison to the operators and
methods of ordering for inputs from [32]. Furthermore, in our experiment OWA
operator with the Xu and Yager order applied for inputs ordering, obtained the
lowest cost matrix among all the considered methods. However, the results were
obtained for less number of repetitions than in [32].

4 Conclusions

We showed that application of aggregation functions defined with respect to
possible and necessary relations as well as admissible linear orders may result in
good results of cost prediction of the classifier in systems applying aggregation
methods (cf. [32]). However, due to the equipment ability we performed the eval-
uation with less repetitions which may result in lower stability of the obtained
results. For the future work we would like to study what are the properties of
the presented here aggregation functions that allowed to obtain better results of
accuracy, sensitivity, specificity, decisiveness and cost matrix than other exam-
ples of aggregation operators from [4].
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8. De Miguel, L., Bustince, H., Pȩkala, B., Bentkowska, U., Da Silva, I., Bedregal,
B., Mesiar, R., Ochoa, G.: Interval-valued atanassov intuitionistic owa aggrega-
tions using admissible linear orders and their application to decision making. IEEE
Trans. Fuzzy Syst. 24(6), 1586–1597 (2016)

9. Deschrijver, G.: Arithmetic operators in interval-valued fuzzy set theory. Inform.
Sci. 177, 2906–2924 (2007)

10. Deschrijver, G.: Quasi-arithmetic means and OWA functions in interval-valued and
Atanassov intuitionistic fuzzy set theory. In: Galichet, S., et al. (eds.) Proceed-
ings of EUSFLAT-LFA 2011, 18–22 July 2011, Aix-les-Bains, France, pp. 506–513
(2011)

11. Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)
12. Dubois, D., Prade, H.: Gradualness, uncertainty and bipolarity: making sense of

fuzzy sets. Fuzzy Sets Syst. 192, 3–24 (2012)
13. Dudziak, U.: Weak and graded properties of fuzzy relations in the context of aggre-

gation process. Fuzzy Sets Syst. 161, 216–233 (2010)
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Abstract. Clinical protocols are introduced in hospitals to standardize
the care delivery process. Compliance is a measure used to determine
whether the protocol has been followed. However, so far an activity in
the protocol could be either compliant or non-compliant. In this paper
we consider the compliance of a single activity as a fuzzy term. We pro-
pose to define the rules which can assess the compliance degree of an
activity. We proposed the fuzzy compliance measure of clinical protocol
that aggregates those compliance degrees. We demonstrate a case of glu-
cose management protocol at Intensive Care Unit (ICU). Initial results
are promising.

Keywords: Clinical protocols · Compliance · Fuzzy evaluation

1 Introduction

Contemporary advances in medicine result in better diagnosis, more and better
treatment options, but also increased complexity and costs of healthcare. In
order to deal with this complexity and to increase the efficiency of the care,
many hospitals and healthcare providers introduce standardization of care, e.g.
by using clinical guidelines and protocols. There is compelling evidence of the
positive effects of such approaches, e.g., reduced hospital complications without
increased length of stay and cost [1], reduced treatment cost [2].

Clinical practice guidelines [3] are defined as “systematically developed state-
ments to assist practitioners and patient decisions about appropriate health care
for specific circumstances”. They are designed based on best available evidence.
Clinical protocols can be seen as more specific than guidelines, defined in greater
detail. Protocols provide “a comprehensive set of rigid criteria outlining the
management steps for a single clinical condition or aspects of organization” [4].
Examples of clinical protocols used in practice are glucose management pro-
tocol which defines how much insulin or glucose should be administered to the
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patients, or weaning protocol which defines step-by-step the process of switching
the patient from the artificial breathing.

In many intervention case studies, it was shown, that by changing the way
of working (by implementing a protocol), better results could be obtained, such
as improved patient outcomes or lower costs [5,6]. These papers often measure
the compliance level to the new protocol, i.e. whether the protocol has been
followed. However each paper employs a different metric, since compliance is not
standardized nor well defined.

In this paper we address the issue of compliance measurement and propose
a new measure for (fuzzy) compliance of a clinical protocol. We define com-
pliance as “the degree to which the behavior of the executors of the clinical
protocol corresponds to the behavior described in the clinical protocol”. Please
note that in the literature and also here, the terms adherence and compliance
are used interchangeably. Another aspect is patients’ compliance or adherence
to the doctors’ recommendations, e.g. regarding drug intake [7]. We believe that
our metric could be also used for this purpose, although patients’ compliance is
out of scope for this study.

This paper is structured as follows. The next section provides the overview
of several compliance measures found in the literature. Section 3 describes the
proposed method, which is followed by an illustrative case study of compliance of
a glucose management protocol in Sect. 4. The paper is finished with concluding
remarks.

2 Background

In this section we describe the compliance measures found in literature. Gener-
ally, it can be seen that there is no consensus on what compliance/adherence is.
In order to measure compliance many metrics has been proposed, but none of
them has been evaluated.

2.1 Definitions of Clinical Protocol Compliance

In many of those examples compliance for a patient is treated as a binary (crisp)
notion. For instance, [6] defines overall adherence to a prescribed distress screen-
ing protocol were calculated based on documentation in the EHR that screening
adherence and an appropriate clinical response had occurred. Only when both
the screening and response took place, overall adherence per patient was consid-
ered as “yes”. The authors calculated the overall adherence rate as number of
overall adherent patients per number of all patients.

A different metric was adopted by Lobach et al. [8]. The authors were eval-
uating compliance of the recommendations given. First the authors individually
evaluated all recommendations as complaint, if the physicians followed the guide-
line’s recommendation within prescribed time interval. Moreover the clinicians
are also considered as compliant with a guideline, if they state why the guide-
line was not being followed. The authors calculate two rates, compliance rate,
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calculated as percentage of compliant recommendations during one encounter.
Adherence rate is defined as the rate of all complaint recommendations to all
recommendations made.

Some authors like Stewart et al. [9] introduced a scoring system. Each proto-
col execution could receive a score between 0 and 5, where score 4 or 5 allowed
one deviation from the protocol and meant excellent protocol execution. The
adherence was reflected by the percentages of the protocol executions with each
of the six scores. Similarly, Drews et al. [10] calculated the number of steps
that were compliant to report the percentages of executions with zero, one, two
non-compliant activities.

Another way of reporting of compliance is to report the compliance per activ-
ity [5,11], presenting the percentages of compliant activities per treatment path.
Such analysis can go even further, to distinguish whether an activity was done
within certain time frame or in general [12]. Moreover one more measure is
reported, that is the fraction of cases in which all activities were performed in
due time.

In a few cases the authors used the questionnaires to evaluate the compliance
to the protocol [13,14].

Lauzier et al. [15] introduces another measure for medication compliance, i.e.
evaluation to what extent patient receives the correct amount of medication in the
correct times. However the case, the authors consider, concerns continuous drug
administration, namely vasopressors. As a simple solution, the authors defined
potential protocol deviations when patient had pressure outside predefined tar-
get range for more than four hours without adjustment of the vasopressor dose.
Those deviations were next divided into two groups as clinically-justified and non-
clinically-justified. Beside the number of deviation events, the number of days and
number of patients with at least one deviation event were also reported, as well as
their percentages.

2.2 Conformance Checking in Process Mining

Clinical protocol can be considered as the process model. In the process mining
field [16], conformance (compliance) checking is one of the tasks, next to model
discovery and model enhancement. We can consider a protocol as a process
model. The observed behavior is recorded in an execution log. It is assumed
that such log consists of a list of the tasks that were performed, the time at
which each task was finished and an identifier of the (patient) case for which the
task was performed. Additional information, such as the time at which the task
started, the healthcare provider who performed the task, and information about
the patient can enable further analysis. In [17] two different types of metric were
proposed for compliance checking:

– fitness, defined as the degree to which log traces can be linked with valid
execution paths in the process model, and

– appropriateness, defined as the degree of accuracy to which the process model
describes the observed behavior.



On Fuzzy Compliance for Clinical Protocols 407

In our context, appropriateness can be seen as the validity measure of a clinical
protocol, that is beyond scope of this paper.

3 Fuzzy Compliance

In all above examples of the compliance assessment, a single activity within the
protocol could be either compliant to the clinical protocol or not compliant.
Based on this information, two metrics can be easily derived: percentage of
protocol executions with all activities compliant and percentage of compliant
activities.

However, can the activity be only compliant or non-compliant? Consider a
case when a patient receives 2.5 units of a drug instead of 2 units, or a protocol
in which activity B was done 35 min after activity A, 5 min too late according
to the protocol. Are the following examples truly non-compliant? There may be
good reasons for slight deviations, as doctors see every patient as a unique and
complex case.

We believe that compliance of a single activity is not a binary state, but a
matter of degree. This was also reflected in the conversations with many health-
care providers. Therefore each activity should have defined a compliance level.
This compliance level in case of drug administration can be defined simply, using
a fuzzy set with trapezoidal membership function, e.g. as shown in Fig. 1, with
clearly defined four threshold points, where dose deviation that is perfectly ok
(compliance degree of 1), and dose deviation which is completely not OK (com-
pliance degree of 0). For the values in between we use linear interpolation. The
use of such membership function was already advocated by Zadeh [18], since
it is easy to understand by domain experts, and provides a good compromise
between a so-called cointension and computational complexity.
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Fig. 1. Membership of a fuzzy set defining compliant dose of a medication

In the remainder of this paper we will use the following notation. Let us
consider a protocol P , which consists of n unique activities pi, i = 1, ..., n.
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The protocol P may include decision points, as well as loops in which certain
activities can be repeated. For instance, weaning protocol starts with doing the
check of the patients. Next assisted spontaneous breathing (ASB) is reduced in
steps and after each step the patient status is checked. Last activity is extubation
of the patient.

Behavior of healthcare providers is captured in forms of traces T . Let us
assume that, there are m executions, traces of this protocol tj , j = 1, ...,m. For
instance, it can mean that for m patients the weaning protocol was followed. A
trace tj contains information about rj activities performed related to this pro-
tocol ajk, k = 1, ..., rj . In case of a weaning protocol, a trace tj may contain
information, that first activity, aj1, was the check. Next ASB was reduced fol-
lowed by a patient check. This happened three times. At the end patient was
extubated.

Therefore for each activity pi, the healthcare providers may define rules defin-
ing the degree of compliance. For instance, a compliance degree µpi

(·) of an activ-
ity pi can be described as the membership value of a fuzzy set of the difference
between the drug dose administered and described in the protocol.

In order to calculate the compliance of a trace tj , we align the trace with the
protocol execution. There are many algorithms for this purpose [16,19]. For each
activity ajk from the trace tj that is in the protocol P we calculate its compliance
degree µP (ajk). It may happen that some activities were not performed. During
the alignment procedure, such missing activities are added to the execution log
and marked with special symbol. For such activities the compliance degree is
naturally 0. Please note that this also implies that length of the trace rj is
longer.

Once we have the compliance degree of each activity µP (ajk) for j = 1, ...,m
and k = 1, ..., rk, we can aggregate them. In this paper we are using the average.
Hence the compliance degree of the protocol is calculated as

C(P ) =
1

∑m
j=1 rj

m∑

j=1

rj∑

k=1

µP (ajk). (1)

4 Case Study

As an example we used the glucose management protocol of the Intensive Care
Unit (ICU) as currently used in the Maastricht University Medical Centre, Maas-
tricht, The Netherlands. It is a nurse-driven protocol. The process in the protocol
is very simple, a nurse is measuring glucose value of a patient, either using point
of care measurement or laboratory determination using arterial blood samples.
Based on the result he/she adjust the settings of the perfusor (i.e. machine that
administers drug to the patient on continuous basis).

The ICU consists of three different wards. Two of them, lets denote them
A and B, treat mixed medical/surgical patients, where most patients (90%) are
acute patients (requiring immediate assessment or treatment). On the wards A
and B the same glucose management protocol was implemented around 7 years
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ago, while on third ward a different protocol was implemented. Therefore in this
paper we will analyze only wards A and B. The protocol under consideration
concerns intravenous administration of short-acting insulin and is considered
for each patient till the moment when she/he can receive oral nutrition. The
protocol assumes that the target values of blood glucose are between 4.5 and
7.0 mmol/l. The protocol consists of four tables, that define perfusor settings as
well as additional actions. In Table 1 we show the starting scheme, so perfusor
settings for a new patient. Table 2 shows perfusor settings adaptation schemes.

Table 1. Starting scheme of the glucose management protocol used in the study (trans-
lation from Dutch).

Starting schema

Blood glucose (mmol/l) Perfusor setting (50 units/50 ml
NaCl 0.9%)

Insulin bolus

<7.0 -

7.0–8.0 1 unit/hour

8.0–10.0 2 unit/hour

10.0–15.0 4 unit/hour 4 units insulin

15.0–20.0 6 unit/hour 6 units insulin

>20.0 6 unit/hour 8 units insulin

In our study we first interviewed the wards’ coordinators and had a survey
among nurses regarding the compliance of this protocol. Only afterwards we
analyzed the data, and draw conclusions combining also the baseline information.

We interviewed the wards’ coordinators and nurses working on those two
wards regarding the awareness, use and reasons for (non)adherence to this pro-
tocol. In the ward A the protocol was used for about six months after implemen-
tation, but it is not used anymore. Controlling the blood glucose level is done
based on the experience and insight of nurses. The staff believes that everyone
is roughly aware of the protocol, but stated that it is less of a protocol act, but
more about own insight. This is confirmed by the survey results, where 57% of
respondents were aware of the protocol, but 42% of them responded that they
don’t use the protocol at all.

In the ward B the protocol is still in use, and its physical version is available
behind the desk. It was confirmed also by the survey among the nurses, where
all of them confirmed that they are aware of the protocol and most of them are
following the protocol to a huge extend. Hence we can conclude that according
to the nurses the protocol is still being adhered to, however, slightly less than
the ward’s coordinator believes.

We obtained data from those two wards, A and B, regarding the glucose
management from year 2014 and 2015. Those data included the perfusor set-
tings and glucose results of 297 patients in Ward A and 274 patients in Ward B.
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Table 2. Perfusor adaptation scheme for glucose management protocol used in the
study (translation from Dutch)

Blood glucose decreased >30% or increased
Blood glucose Perfusor setting Action

(mmol/l) (50units/50ml NaCl 0.9%)
<3.5 stop act according hypoglycemia protocol

3.5- 4.5 -1.0 unit/hour check glucose after 30 minutes
4.5 - 7.0 no changes
7.0 - 8.8 +0.5 unit/hour
8.0-9.0 +1.0 unit/hour
9.0-10 +1.5 unit/hour
10-15 +2.0 unit/hour 2 units insulin as bolus
>15 +3.0 unit/hour 4 units insulin as bolus

Blood glucose decreased <30%
Blood glucose Perfusor setting Action

(mmol/l) (50units/50ml NaCl 0.9%)
<3.5 stop act according hypoglycemia protocol

3.5 - 4.5 stop, if glucose > 5 mmol/l
then start with half of last

dose

check glucose every 15 minutes till
glucose > 5 mmol/l

4.5-7 half the dosage
7-10 -1 unit/hour
>10 no changes

hypoglycemia (blood glucose <3.5 mmol/l)
Blood glucose Perfusor setting Action

(mmol/l) (50units/50ml NaCl 0.9%)
<3.5 stop 50 ml glucose 50% in 10 minutes and

check glucose level
> 4.5 (after 1st
glucose bolus)

start with last setting -1
unit/hour

check glucose after 30 minutes

<4.5 (after 1st
glucose bolus)

keep perfusor stopped 30ml glucise 50% in 10 minutes and
check glucose level

> 4.5 (after 2st
glucose bolus)

start with last setting -2
unit/hour

< 4.5 (after 2st
glucose bolus)

keep perfusor stopped 50ml glucose 50% in 10 minutes and
consult the doctor

Since the protocol concentrates on the medication dosages, and the glucose mea-
surement activity is implicit, in this case study we assess the compliance only
with respect to the aspect of medication dosage on those three aspects: insulin
perfusor settings, insulin bolus (injection) and glucose bolus (injection).

For comparison purposes, we first calculated the strict compliance of the
protocol. In Ward A only 5 executions (1.7%) were completely according to the
protocol. In total 37.8% of separate activities were according to the protocol.
For Ward B only 2 executions (0.7%) were completely according to the proto-
col, and 34.8% of separate activities were compliant. Those very low values for
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Ward B are surprising in comparison to the results of the interview, as both the
coordinator and nurses believed that they are following the protocol.

However, in the interviews it was indicated that the protocol should be
treated more like a guideline, and some deviations are possible. Therefore
in consultation with healthcare providers we defined clinically accepted and
non-accepted deviations. We decided to use the trapezoidal membership func-
tion, because it was comprehensive for the medical experts. We asked them to
provide two threshold values (completely acceptable deviation and completely
unacceptable deviation) for each of the actions (perfusor settings, insulin bolus
and glucose bolus). Those values are presented in Table 3. The degree of com-
pliance of an activity was defined as the minimal value of the compliance with
respect to the three medication types.

Table 3. Thresholds for accepted and non-accepted deviations

Medication Totally acceptable deviation Totally unacceptable deviation

Perfusor setting 1 unit/hour 2 units/hour

Insulin bolus 2 units 3 units

Glucose bolus 10mL 15 mL

The fuzzy compliance values (on activity level) for Wards A and B are both
around 82%. All values are shown in Table 4. Of course those values are much
higher. But does it mean that this protocol is executed very well? Not necessarily.
Because the fuzzy compliance is taking into consideration acceptable deviations
from the protocol, a score below 100% still indicates noncompliance to a certain
extent. Further analysis of the protocol is required to pinpoint the reasons the
non-acceptable deviations.

Table 4. Compliance values for Wards A and B according to different metrics.

Method Ward A Ward B

% of compliant executions 1.7% 0.7%

% of compliant activities 37.8% 34.8%

Fuzzy compliance 82.6% 82.8%

Furthermore, it would be beneficial to introduce the concept of “comply or
explain”, in which the healthcare providers are given a choice either to comply
with the protocol or explain, why they think they should deviate. Such infor-
mation, combined with the outcome measures would be extremely beneficial for
the clinical protocol improvement.
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5 Concluding Remarks

Clinical protocols are introduced in hospitals to standardize the care delivery
process. Compliance is a measure used to determine whether the protocol has
been followed or not and to what extent. However, an activity in the protocol
could be either compliant or non-compliant. In this paper we proposed to treat
the compliance of a single activity as a fuzzy term described by the compliance
degree. We proposed the fuzzy compliance measure of clinical protocol that
aggregates those compliance degrees.

Further work will focus on using different aggregation functions instead of
averaging and incorporating the importance of different activities. We will also
investigate in more detailed non-compliance in the clinical protocol executions,
since a single number is not enough to understand the situation.
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Abstract. Foreground detection algorithms are commonly employed as
an initial module in video processing pipelines for automated surveil-
lance. The resulting masks produced by these algorithms are usually
postprocessed in order to improve their quality. In this work, a post-
processing filter based on the Pearson correlation among the pixels in a
neighborhood of the pixel at hand is proposed. The flow of information
among pixels is controlled by the correlation that exists among them.
This way, the filtering performance is enhanced with respect to some
state of the art proposals, as demonstrated with a selection of bench-
mark videos.

Keywords: Foreground detection · Postprocessing
Pearson correlation · Morphological operators · Background modeling

1 Introduction

Extracting objects of interest from a video or image is a very important task
in computer vision applications. Numerous features can be extracted from the
foreground to develop classifying and recognizing processes in subsequent steps.
For instance, autonomous visual systems must be able to recognize relevant
objects and its movements in order to maintain an internal representation of the
environment and understand the scene. Most of surveillance systems are only
interested on the moving objects, so the aim of these segmentation algorithms
[6,10] consists in separating the foreground pixels from the background pixels.

In the literature, many foreground detection algorithms [2,7–9] have been
proposed, whose internal parameters (thresholds, sizes of regions...) and post-
processing techniques are fixed to obtain meaningful results depending on the
application.

The result produced by foreground object detection algorithms usually con-
tains noise and it is not suitable to carry out high-level processing like object
tracking or the analysis of the behavior of these objects. So that, it is necessary
to execute a filtering of the binary mask obtained in the segmentation step. Some
of the possible causes that can produce this kind of noise are listed below:
c© Springer International Publishing AG, part of Springer Nature 2018
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– Camera noise. It is produced by the quality of the acquisition of the images
from the camera. Sometimes, a pixel from an image presents a color tone,
and the same pixel in the next frame (without any movement in the scenario)
exhibits a different one. In this kind of noise, the noise produced by the video
downsampling applied in the hardware device can be included.

– Reflection noise. The movement of a spotlight, for example, the sun, produces
that some background parts reflect the light and the result of the foreground
object detection algorithm is affected by this effect, considering those zones
as foreground.

– Noise in the background objects. Several parts of the objects have the same
color (or tone in the case of grayscale images) as the background behind them.
This similarity produces that some algorithms do not detect these pixels as
foreground objects, so they are not correctly detected.

– Shadows and abrupt illumination changes. Most algorithms detect the pro-
jected shadows of the objects as foreground. The illumination changes (for
example, turn on a light in a room) also produce that the algorithms fail in
the detection of the foreground objects.

All of these commented failures can not be solved by the objects in motion
segmentation pixel-level algorithms. Thus, it is necessary to develop post-
processing techniques in order to improve the quality of the final segmentation.

2 Model Approach

In this section, the foreground object detection algorithm (2.1), considered as
our baseline method, is described. After that, the morphological operators are
depicted (Subsect. 2.2), since they are the most applied technique in order to
remove the noise. And finally we also propose the employ of the Pearson corre-
lation to reduce the noise (Subsect. 2.3).

2.1 Foreground Object Detection Algorithm

A foreground object detection algorithm provides a mask for each frame of a
sequence where it presents the same size than the input frame and each pixel
has a value in the range [0, 1] that represents the likelihood (in order to manage
the uncertainty) of belonging to the foreground. Thus, pixels from this mask
with a value close to 1 (white pixels) represent the foreground objects, while
pixels with a value close to 0 (black pixels) are considered as background.

In order to quantify the improvement of the application of a postprocessing
method to the result produced by the algorithms of this kind, we need to com-
pare the output of the algorithm and the result provided by the postprocessing
method.

In this case, we have considered as our baseline method the algorithm
described in [5], and noted as AE. This proposal uses mixtures of uniform distri-
butions and multivariate Gaussians with full covariance matrices, and it is indi-
cated to detect foreground objects in complex context, like videos which exhibit
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Fig. 1. Result after the noise removal. (a) Frames corresponding to a traffic sequence.
(b) Segmentation by Gaussian distributions. (c) Noise removal by morphological
operators.

dynamic backgrounds or shadow appearances. In addition, due to the employ of
a stochastic approximation, the computational complexity of this algorithm is
low, so it is a suitable method for real time applications.

2.2 Morphological Operators

Morphological operators like erosion or dilation are applied to the segmentation
of the foreground objects in order to remove spurious pixels [1,3], that cause the
three first items referred in Sect. 1. The aim of the application of this kind of
process is to remove those pixels that do not belong to the foreground (NFN,
non-foreground noise) and to delete those that they are detected as background
(NBN, non-background noise) in the closest zones and the interior of the objects
that actually belong to the foreground.

The erosion process erodes a unit over the external limits of the objects. The
dilation is the opposite process, expanding the limits of the foreground objects.
The decision about the order and the quantity of filters to be applied is quite
significant. The order of the operators affects the quality and the quantity affects
the quality and time complexity of the algorithm.

For example, if we apply the dilation and then the erosion process, we can not
remove isolated unit pixels (NFN), since the dilation operator increases its limits
with one pixel and the erosion will remove the added pixels, thereby keeping the
spurious original pixels. On the other hand, this order will remove some NBN
noise from the inside of the objects (gaps). In the case of the application of this
operations in inverse order, so that, dilation after erosion, it will remove isolated
unit pixels that do not belong to the foreground (NFN), but the filling of the
existing gaps inside the objects (NBN) can not be carried out. Thus, the sequence
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of the application of the morphological operators depends on the peculiarities of
the analyzed scene.

2.3 Pearson Correlation

In this subsection we propose the employ of information from the 8 neighbors of
a given pixel x in order to remove the noise. Nevertheless, we can not consider all
neighbors in the same proportion due to several adjoining pixels are not related.
For example, this can be produced in the border of a road: the outside pixels
(where the vehicles do not drive along it) are practically independent from those
that belong to the interior of the road (where the vehicles usually circulate) in
spite of their proximity.

Thus, we need a quantitative measure of the correlation of pixels pairs. Our
selected measure is the Pearson correlation [11] between two random variables,
that they will be the likelihood to belong to the foreground, PFore,x and PFore,y,
corresponding to each pair of pixels 8 neighbors x and y:

ρx,y =
φx,y√
νx

√
νy

(1)

φx,y = cov (PFore,x, PFore,y)

= E [(PFore,x − E [PFore,x]) (PFore,y − E [PFore,y])] (2)

νx = var (PFore,x) = E
[
(PFore,x − E [PFore,x])2

]
(3)

νy = var (PFore,y) = E
[
(PFore,y − E [PFore,y])2

]
(4)

where we have that:
E [PFore,x] = πFore,x (5)

E [PFore,y] = πFore,y (6)

and πFore is the likelihood to belong to the foreground that is updating through-
out the time.

Please, note that the properties of the Pearson correlation imply that:

ρx,y ∈ [−1, 1] (7)

ρx,y = ρy,x (8)

where the last equation saves half of the required calculations.
The values of ρx,y are high and positive if and only if the pixels x and y

are usually assigned to the same class, i.e. both pixels belong to the background
or the foreground. On the other hand, if the pixels are quite independent, then
we will have ρx,y = 0; we remember that independence implies no correlation,
but the reverse implication is not true, i.e. if it does not exist a correlation
between variables then this does not imply that these variables are independent.
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In relation to the negative correlations, it is expected that they will be infrequent,
and theoretically they are related to pairs of pixels that are usually assigned to
opposite classes. Nevertheless, in practice, the negative correlations are obtained
due to the noise in the estimations of the input data.

The correlations ρx,y allow us to obtain a free-noise version of PFore,x (t),
combining it with the information of the 8 neighbors of x:

P̃Fore,x (t) = ramp

⎛
⎝1

9

∑
y∈Neigh(x)

ρx,yPFore,y (t)

⎞
⎠ (9)

where Neigh (x) contains the pixel x and its 8 neighbors, and

ρx,x = 1 (10)

ramp (z) =

{
z iff z ≥ 0
0 in other case

(11)

ramp function is used in the Eq. (9) in order to fix the variable in the range [0, 1]
of belonging likelihood to the foreground, when a excess of negative correlations
related to the noise is presented. Empirically, it is observed that the argument
of the trunc function in the Eq. (9) is negative in less than 0.5% of the cases,
since ρx,y are nearly always positive.

The P̃Fore,x (t) values correspond to a probability of belonging to the fore-
ground class, which can be considered a measure of uncertainty. Thus, a pixel
whose P̃Fore,x (t) value is close to one will be part of a foreground object with
great certainty, while if its value is close to 0.5 it is not possible to deduce
anything (it has the same probability of belonging to the foreground as to the
background).

3 Experimental Results

3.1 Parameter Selection

In order to appreciate what kind of filtering is the most convenient, we are going
to make a comparison between the two proposed alternatives, the application of
morphological operators and the Pearson correlation. For this last case, we have
to consider that the the baseline algorithm (AE) has to provide the likelihood
that a pixel belongs to the foreground class. We will note it as Basic and different
learning rate options are considered: ε0= {1e−4, 5e−4, 0.001, 0.005, 0.01, 0.05,
0.1}. In the case of the morphological operators, we will distinguish in the order
application. We note as OMDE the application of the morphological operators
in the dilation - erosion order, and OMED is related to the erosion - dilation
order, due to the highly significant influence of a change in the order. We will have
the number of applied iterations as a parameter, where #ED = #DE = {1, 2, 3}.
For example, a value of #DE = 2 indicates that two iterations of the dilation
operator are carried out, followed by two iterations of the erosion operator.
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3.2 Sequences

We have used several sequences in order to make the comparison. This repository
of indoor and outdoor videos provides a wide range of the existing variability
in real scenes. We have selected the sequences named Video2 (V2) and Video4
(V4) from a synthetic dataset (the sequences are composed by motion objects
generated by software with real background scenes) designed for the algorithm
competition of foreground objects detection methods created by the Interna-
tional Conference VSSN’061.

Several sequences have been chosen from the dataset2 developed by Li et al.
[4], namely: water surface (WS), moving escalators in a subway station (SS),
campus with plentiful vegetation moving continuously (CAM), meeting room
with moving curtain (MR) and public fountain throwing water (FT).

We also have taken three videos from the IPPR (Image Processing and Pat-
tern Recognition)3 contest held in Taiwan in 2006, whose names are IPPRData1
(IP1), IPPRData2 (IP2) and IPPRData3 (IP3). The two first sequences are
indoor videos where a corridor is observed from different points of view, and the
third video is a highway recorded from an elevated position.

Finally, we have included in our test dataset two sequences from CAVIAR
dataset4: a sequence where people are walking on the corridor (OC) and an
outdoor level crossing scene (LC).

3.3 Qualitative and Quantitative Results

From a qualitative point of view, a comparison of the four commented options
can be observed in Figs. 2 and 3, one of them without the application of any
postprocessing method (Basic AE ) and the remaining options by applying the
different alternatives described previously (Pearson, OMED and OMDE ). The
results are obtained with the best tuned configuration that we have tested. It
is obvious that the postprocessing method improves and removes the existing
noise (false positives) in scenes with a high variability in the background. It can
be observed in the sequence CAM, in the two first columns of the Fig. 2, and V4
and WS, two last columns of the Fig. 3. In these videos, the dilation - erosion
strategy in morphological operators (OMDE ) is not the best appropriate because
the application of the dilation operator in the first step maintains the noise. On
the other hand, Pearson and OMED largely remove the spurious pixels, without
any considerable penalization in the real objects in motion. Nevertheless, note
that Pearson maintains the shape of the object better than OMED in spite of
filtering the noise of the background in a lower grade.

Nevertheless, in scenes where the appearance of false negatives is prevailing,
the employ of OMED is worse than the basic output of the segmentation algo-
rithm, as it can be observed in the third and forth columns in the Fig. 2. In this
case, the postprocessing method with OMED produces more false negatives than
1 http://mmc36.informatik.uni-augsburg.de/VSSN06 OSAC.
2 http://perception.i2r.a-star.edu.sg/bk model/bk index.html.
3 http://media.ee.ntu.edu.tw/Archer contest/.
4 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/.

http://mmc36.informatik.uni-augsburg.de/VSSN06_OSAC
http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
http://media.ee.ntu.edu.tw/Archer_contest/
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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Fig. 2. Results over complex scenes with stable objects in motion. Two first columns
exhibit the exterior sequence CAM with vegetation continuously moving on it (frames
1372 and 1392). Third and forth columns show the analysis of the sequences MR,
meeting room, and SS, escalators, over the frames 3242 and 4558, respectively.

the original ones, while the output with OMDE is the optimal in comparison
with the remaining alternatives.

In order to compare the performance of each proposed method from a quan-
titative point of view, we have chosen several well-known measures [4]. The
spatial accuracy (AC), the precision (PR) and the recall (RC) are considered
in this work in make the comparison. A value in the range [0, 1], where higher
is better, is provided by each measure. We also consider True positives (TP),
True negatives (TN), False negatives (FN) and false positives (FP) rates. A good
overall evaluation of the performance of a given method is offered by AC, while
PR must be considered against RC. Each measure can be defined as follow:

AC =
TP

TP + FN + FP
(12)
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Fig. 3. Another set of experimental results. An interior scene of a hall (IP1 ) is observed
in the first column (frame 116) while a scene of a level crossing without barriers is shown
in the second column (LC, frame 389). Third and forth columns analyze the sequences
V4, synthetically generated, and WS, where the movement of the waves of the sea,
with frames 815 and 1624, respectively.

RC =
TP

TP + FN
(13)

PR =
TP

TP + FP
(14)

In general, and for all the tested sequences, we can indicate that Pearson is
the most suitable method together with OMED for scenes with false positives,
while those with false negatives is not as effective as OMDE, but it is quite
competitive. This information is shown in Tables 1, 2 and 3.

In the first of them (Table 1) we can assume the comments from a visual
point of view of the qualitative comparison from Figs. 2 and 3. We could con-
sider OMED as the best suitable method because it is the best in five of the
twelve analyzed sequences, while Pearson and OMDE are better in three videos
each one. But, because of the fact that OMED is the worst in quality terms in



Foreground Detection Enhancement Using Pearson Correlation Filtering 425

Table 1. Quantitative assessment using the measure AC. The mean and the standard
deviation are shown after the analysis of each set of data, where best result is high-
lighted in bold. The last row indicates the average performance of each method, where
the best method obtains one point, the second two points, and so on. The fewer score
the better the postprocessing on average. Rows with a star indicate that the results
are statistically significant.

Basic Pearson OMED OMDE

Campus (CAM ) 0.594± 0.168 0.725± 0.093 0.735±0.075 0.607± 0.182

*Meeting Room (MR) 0.775± 0.060 0.803± 0.058 0.752± 0.072 0.866±0.036

Subway Station (SS) 0.458± 0.124 0.462± 0.128 0.424± 0.140 0.511±0.144

Fountain (FT ) 0.407± 0.150 0.435± 0.143 0.463± 0.086 0.480±0.194

IPPRData1 (IP1 ) 0.536± 0.169 0.620± 0.170 0.632±0.183 0.539± 0.181

*IPPRData2 (IP2 ) 0.451± 0.134 0.469± 0.140 0.628±0.133 0.459± 0.137

IPPRData3 (IP3 ) 0.606± 0.174 0.620±0.172 0.603± 0.194 0.619± 0.171

*Level Crossing (LC ) 0.878± 0.035 0.897±0.030 0.879± 0.035 0.883± 0.033

Corridor (OC ) 0.709± 0.037 0.712± 0.038 0.723±0.039 0.706± 0.038

Video2 (V2 ) 0.920±0.019 0.919± 0.023 0.910± 0.024 0.916± 0.027

Video4 (V4 ) 0.682± 0.111 0.722± 0.112 0.723±0.115 0.714± 0.128

WaterSurface (WS) 0.870± 0.023 0.902±0.025 0.890± 0.026 0.899± 0.022

Puntuación 41 22 29 28

several sequences (see the performance for the MR, IP3 and V2 scenes) we have
incorporated a ranking index which scores each method in ascending order of its
performance. Thus, the winner method for a sequence will obtain one point, the
second two points, the third three points and the forth four points. The last row
of the Table 1 represents the sum of these scores for all the sequences. From these
results, we can conclude that Pearson is the best method on average because,
although it is not always the best, it is the second best method in most of the
sequences (see the ranking of the methods in Table 3). Therefore, this approach
could be viewed as the most stable method regardless of the type of sequence.
It is interesting to observe that, except one case and with low margin (sequence
V2 ), the Pearson correlation filtering always improves the result produced by
the Basic segmentation algorithm.

Another non-trivial advantage of the postprocessing with Pearson is that it
is not necessary to adjust any kind of parameters, except those required by the
segmentation algorithm (ε0 for AE in this experiments). As it is observed in
Table 2, the number of iterations of erosion - dilation or dilation - erosion for
the morphological operators is not always the same, so it is needed to estimate
the optimal value to avoid performing the search exhaustively.

Finally, in Table 3 a statistical significance test employing the Student’s t
test is carried out. A two-tailed test between the best method and the remaining
alternatives is computed, where the result is considered statistically significant
if the p-value is lower than 0.05 for all the comparisons in the same sequence.
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Table 2. Best configuration for each method and each sequence.

Seq. Metd. Accuracy Precision Recall Parameters

CAM Basic 0.594± 0.168 0.65± 0.19 0.88± 0.06 ε0=0.01

Pearson 0.725± 0.093 0.79± 0.11 0.90± 0.05 ε0=0.005

OMED 0.735± 0.076 0.85± 0.09 0.85± 0.08 ε0=0.001, #ED=1

OMDE 0.607± 0.182 0.64± 0.20 0.93± 0.05 ε0=0.01, #DE=1

MR Basic 0.775± 0.060 0.96± 0.03 0.80± 0.06 ε0=0.0005

Pearson 0.803± 0.058 0.96± 0.03 0.83± 0.06 ε0=0.0005

OMED 0.752± 0.072 0.98± 0.02 0.76± 0.08 ε0=0.0005, #ED=1

OMDE 0.866± 0.036 0.95± 0.03 0.91± 0.02 ε0=0.001, #DE=3

SS Basic 0.458± 0.124 0.70± 0.18 0.59± 0.16 ε0=0.01

Pearson 0.462± 0.128 0.72± 0.19 0.59± 0.17 ε0=0.01

OMED 0.424± 0.140 0.68± 0.17 0.54± 0.17 ε0=0.1, #ED=1

OMDE 0.511± 0.144 0.65± 0.19 0.72± 0.14 ε0=0.01, #DE=2

FT Basic 0.407± 0.150 0.52± 0.18 0.64± 0.11 ε0=0.005

Pearson 0.435± 0.143 0.52± 0.17 0.72± 0.10 ε0=0.001

OMED 0.463± 0.086 0.71± 0.08 0.57± 0.10 ε0=0.0001, #ED=1

OMDE 0.480± 0.194 0.51± 0.20 0.87± 0.10 ε0=0.01, #DE=2

IP1 Basic 0.536± 0.169 0.66± 0.18 0.73± 0.17 ε0=0.01

Pearson 0.620± 0.170 0.81± 0.11 0.72± 0.19 ε0=0.005

OMED 0.632± 0.183 0.93± 0.06 0.67± 0.20 ε0=0.01, #ED=1

OMDE 0.539± 0.181 0.63± 0.19 0.78± 0.17 ε0=0.01, #DE=1

IP2 Basic 0.451± 0.134 0.53± 0.18 0.76± 0.08 ε0=0.01

Pearson 0.469± 0.140 0.56± 0.19 0.77± 0.08 ε0=0.005

OMED 0.628± 0.133 0.77± 0.15 0.78± 0.12 ε0=0.01, #ED=2

OMDE 0.459± 0.137 0.52± 0.17 0.81± 0.08 ε0=0.01, #DE=1

IP3 Basic 0.606± 0.174 0.70± 0.17 0.81± 0.14 ε0=0.05

Pearson 0.619± 0.172 0.71± 0.17 0.83± 0.14 ε0=0.05

OMED 0.603± 0.194 0.79± 0.14 0.72± 0.20 ε0=0.05, #ED=1

OMDE 0.619± 0.171 0.68± 0.17 0.87± 0.11 ε0=0.05, #DE=1

LC Basic 0.879± 0.035 0.91± 0.03 0.96± 0.01 ε0=0.01

Pearson 0.897± 0.030 0.91± 0.03 0.98± 0.01 ε0=0.01

OMED 0.879± 0.034 0.93± 0.02 0.94± 0.02 ε0=0.01, #ED=1

OMDE 0.883± 0.033 0.89± 0.03 0.99± 0.01 ε0=0.01, #DE=1

OC Basic 0.709± 0.037 0.75± 0.02 0.92± 0.04 ε0=0.01

Pearson 0.712± 0.038 0.75± 0.02 0.92± 0.04 ε0=0.01

OMED 0.723± 0.039 0.81± 0.02 0.87± 0.04 ε0=0.01, #ED=3

OMDE 0.706± 0.038 0.74± 0.02 0.94± 0.04 ε0=0.01, #DE=1

V2 Basic 0.920± 0.019 0.94± 0.01 0.97± 0.02 ε0=0.001

Pearson 0.919± 0.023 0.95± 0.01 0.97± 0.02 ε0=0.0005

OMED 0.910± 0.024 0.94± 0.01 0.96± 0.02 ε0=0.0001, #ED=1

OMDE 0.916± 0.027 0.94± 0.01 0.97± 0.03 ε0=0.005, #DE=1

V4 Basic 0.682± 0.111 0.75± 0.13 0.88± 0.03 ε0=0.005

Pearson 0.722± 0.112 0.79± 0.13 0.90± 0.03 ε0=0.005

OMED 0.723± 0.115 0.82± 0.15 0.87± 0.03 ε0=0.001, #ED=1

OMDE 0.714± 0.128 0.74± 0.14 0.96± 0.02 ε0=0.005, #DE=1

WS Basic 0.870± 0.023 0.95± 0.02 0.91± 0.02 ε0=0.001

Pearson 0.902± 0.025 0.97± 0.01 0.93± 0.02 ε0=0.0005

OMED 0.890± 0.026 0.98± 0.01 0.91± 0.02 ε0=0.0001, #ED=1

OMDE 0.899± 0.022 0.96± 0.02 0.93± 0.02 ε0=0.005, #DE=2
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Table 3. P-values after the application of the Student’s t test between the best method
and the remaining competitors. If all the p-values of the same sequence are lower than
0.05, the result of the best technique is regarded as significant, whose name in the table
is formatted in bold style.

Seq. Best metd. Competitor 1 Competitor 2 Competitor 3

CAM OMED Pearson 0.7079 OMDE 6.10e − 003 Basic 1.43e − 003

MR OMDE Pearson 2.06e − 004 Basic 1.10e − 006 OMED 2.05e − 007

SS OMDE Pearson 0.2647 Basic 0.2172 OMED 0.0606

FT OMDE OMED 0.7237 Pearson 0.4092 Basic 0.1884

IP1 OMED Pearson 0.5246 OMDE 2.93e − 006 Basic 5.38e − 007

IP2 OMED Pearson 0.00e + 000 OMDE 0.00e + 000 Basic 0.00e + 000

IP3 Pearson OMDE 0.9538 Basic 0.4230 OMED 0.3761

LC Pearson OMDE 6.25e − 005 OMED 1.00e − 006 Basic 3.75e − 007

OC OMED Pearson 0.4916 Basic 0.3821 OMDE 0.2957

V2 Basic Pearson 0.3784 OMDE 4.96e − 003 OMED 8.45e − 013

V4 OMED Pearson 0.9188 OMDE 0.3522 Basic 5.65e − 006

WS Pearson OMDE 0.6302 OMED 0.1377 Basic 1.37e − 004

Consequently, the obtained results are quite similar, since the improvement of
the method is significant in only three of the tested sequences. Nevertheless, if we
observe, for example, the p-values of the CAM sequence, we can see that OMED
is not significantly better than Pearson, but, in fact, it is regarding OMDE and
the proposal without any postprocessing method (Basic). In addition, it can
be observed that Pearson is the second method (Competitor 1 in Table 3) in
practically all the sequences where it is not the winner.

4 Conclusion

We can conclude that the postprocessing method, in general, is necessary because
it substantially improves the result obtained by the segmentation algorithms. In
addition, it has been observed that Pearson is the best method on average for
all the tested sequences, although with no statistically significant evidence.
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Abstract. Floods may occur in rivers when the flow rate exceeds the
capacity of the river channel, particularly at bends or meanders in the
waterway. Floods often cause damage to homes and businesses becoming
the most prevalent type of disaster in the world and the one with the
highest number of events, causing the greatest economic losses, affecting
a large number of people. This paper has the objective of mapping and
identifying the flooding areas of a selected region in the municipality of
Itaqui-RS using remote sensing. In order to do it, we used the Fuzzy
ckMeansImage Algorithm to group and to classify the image into simi-
larity clusters. The methodology consists in processing satellite images
before and after the flooding occurs. Finally, we discuss the processed
images and present the flooded area.

Keywords: ckMeans · Clustering · Flood · Fuzzy · Sensing remote

1 Introduction

Several of the human senses gather their awareness of the external world almost
entirely by perceiving a variety of signals, either emitted or reflected, actively or
passively, from objects that transmit these information in waves or pulses. Thus,
one hears disturbances in the atmosphere carried as sound waves, experiences
sensations such as heat, reacts to chemical signal form food through taste and
smell, is knowledge of certain material properties such as roughness through
touch, and recognizes shapes, colors, and relative positions of exterior objects
and classes of materials by means of seeing visible light and issuing from them. In
the previous sentence, all sensations that are not received through direct contact,
they are remotely sensed [1].

Remote sensing, according to [2], can be defined as a science and art of
obtaining information about an object, area or phenomenon through the analysis
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 855, pp. 429–440, 2018.
https://doi.org/10.1007/978-3-319-91479-4_36
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of data acquired by instruments that are not in direct contact with object,
area or phenomenon. Still, the analysis and interpretation of such data, the
representations of images, tables or graphs, also integrate a science of remote
sensing.

One of the areas in which the application of remote sensing has a vast field of
work is flood monitoring. As presented by [3], flooding is the most prevalent type
of disaster in the world and the one with the highest number of events, causing
the greatest economic losses, affecting a large number of people. Considering all
sorts of natural disasters, floods are probably the most devastating and which
occurs more frequently. It is a natural and recurrent event for a river and, sta-
tistically, the average annual flood is matched or exceeded every 2.33 years. In
order to be able to have a flood coverage dimension, it is worth mentioning, as
recorded by the authors, that they are responsible for almost 55% of all recorded
disasters and for approximately 72.5% of total economic losses around the world.

In the conception work, the analysis and interpretation of such data, the
representations of images, the tables or the graphs, also integrate a science of
remote sensing. The extraction of remote sensing information demands clear and
logical methods and analyzes so that they can be applied to any product [4].
One of the tools of analysis is the classification, which can be understood as
a technique of recognizing patterns represented in a multispectral image, by
grouping pixels so that similar pixels belong to the same cluster [5].

In [6], the authors concluded that fuzzy logic becomes more appropriate when
it is necessary to work with information that addresses possible ambiguities or
inaccuracies. Thus, it is possible to note the potential of the methodology to be
applied in the field of remote sensing.

In this context, this work applies the fuzzy ckMeansImage algorithm [7] to a
multispectral image with the objective of detecting and measuring the extent of
the flood occurred on the municipality of Itaqui-RS. For this, two images of the
selected area, one with the river in its normal level and other in its flood period.
The two images are processed by the algorithm and the total area of the river
in the selected region is calculated to estimate the extension of the flood.

2 Background

In this section we present the Fuzzy ckMeans algorithm, proposed by [8] and the
definition of the α-cut [9].

2.1 ckMeans Algorithm

The idea is basically to share the fuzzy set X = {x1, x2, . . . , xn} in p clusters
where μij is the membership degree of the sample xi that belongs to the j-
th cluster and the result of clustering is expressed by membership degrees on
matrix μ.



Identifying Pixels Classified Uncertainties ckMeansImage Algorithm 431

The ckMeans use techniques of FCM [10] and K-Means [11] algorithms
attempts to partitionate sets of data by minimizing an objective function shown
in Eq. (1):

J =
n∑

i=1

p∑

j=1

μm
ij dij (xi; cj)

2 (1)

where:

– n is the number of data;
– p is the number of clusters considered in the algorithm, which must be decided

before execution;
– m is a fuzzification parameter in the range (1;w), indicating the width of n

dimensional cluster perimeter. Usually, m is the range [1.25; 2] [12] - we only
consider rational values to simplify the calculation of Eqs. (1), (2) and (4).
Actually, it is used rational m’s;

– xi a vector of training data, where i = 1, 2, . . . , n. These are the cluster
attributes selected from the source data elements (such as columns in a
database table);

– cj the centroid (or centrer) of a fuzzy cluster (j = 1, 2, . . . , p);
– dij (xi; cj) is the distance between xi and cj - when the values are numbers,

it is usually used the Euclidean distance;

The input of the algorithm are n data, the number of clusters p and value
m. Its steps are:

1. Starts μ (membership degree) with a continuous random value between zero
(no relevance) and 1 (total relevance) where the sum of pertinence must
be one.

2. Calculate the centroid of the cluster j as follows: We stabilize the centroid of
each cluster as in the K-Means algorithm [11]. However, in our algorithm we
first create a new matrix, which is called μCrisp, containing values 1 or zero.
Each line of this new matrix has 1 in the positions with the greatest value of
this line in the μ and zero in the other positions of the line. When a column of
the matrix μCrisp, after this step, has only zeros in it, it is assigned the value
1 in the position that corresponds to the largest value of the same column in
the matrix μ.
The ckMeans algorithm returns a matrix μCrisp, which the values of the
elements belong to the set {0, 1} as shown in Eq. (2). Thus, μCrispij the
content of matrix at the position (ij), is defined in Eq. (2).

μCrispij = max

⎛

⎝

⎢⎢⎢⎣ μij
p

max
l=1

μil

⎥⎥⎥⎦ ,

⎢⎢⎢⎣ μij
n

max
l=1

μlj

⎥⎥⎥⎦

⎞

⎠ (2)

The first argument of the right side of Eq. (2) is for any datum whose value
is 1 for the cluster it belongs with the greatest degree, and 0 for the others.
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The second argument is for the greatest degree of each column (cluster) is
1, so as to ensure that all clusters have at least one element. Thus, on rare
occasions may happen that a line has more than one value 1 (which does not
occur in the algorithm K-Means), but as this matrix is only auxiliary, this
does not bring any inconvenience.
The steps of the algorithm to calculate μCrispij are performed as follows
(there may be a situation where the result of μCrispij is not completely
accurate in Eq. (2). In this case, the greatest value of the column μij have 1
in μCrispij):
(a) Read μ;
(b) Find the larger value at the first line of the matrix μ. After that, assign,

on μCrisp matrix, the value 1 to the position corresponding to the larger
value position on matrix μ and 0 to the others. To complete the process,
repeat the same procedure to the other lines;

(c) Store in a vector the number of 1’s that each column μCrisp has.
If a column in μCrisp has no 1’s, assign 1 in the position of the largest value
of that column of the matrix μ.
After calculating the matrix μCrisp calculate the new centroids of clusters as
in Eq. (3):

cj =
Σn

i=1xiμCrispij

Σn
i=1μCrispij

(3)

cj is calculated by adding the data belonging to cluster (in crisp form) and
dividing it by the number of classified objects as 1 in the matrix μCrisp for
this cluster.

3. Calculate an initial value (a data) for J using the Eq. (1);
4. Calculate the table of the fuzzy membership function as shown in Eq. (4):

μij =

(
1

dij(xi;cj)

) 2
m−1

p∑

k=1

(
1

dik (xi; ck)

) 2
m−1

(4)

5. Return to step 2 until a convergence condition is reached.

Some possible stopping conditions are:

– A fixed number of iterations is executed;
– The user reports a value ε > 0 of convergence, and if

dij (JU ;JA) ≤ ε

then the algorithm stops, where JA is the objective function (Eq. (1)) calcu-
lated in the previous iteration and JU is the objective function of the last
iteration.
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2.2 α-cut

A fuzzy set is a collection of objects with various membership degree. Often it is
useful to consider those elements that have at least some minimal membership
degree α. This is liking asking who has a passing grade in a class, or a minimum
height to ride on a roller coaster [13]. We call this process an αcut.

For every α ∈ [0; 1], a given fuzzy set A yields a crisp set Aα which contains
those elements of the universe X who have membership grade in A of at least
α (Eq. 5):

Aα = {x ∈ X|A(x) ≥ α} (5)

where α is in the range of 0 < α ≤ 1 and “|” stands for “such that” [14].
We can not emphasize enough that an α-cut of a fuzzy set is not a fuzzy set,

it is a crisp set.
In other works, several authors use the idea of the α-cut in the clusteriza-

tion process. In [15], the authors proposed the alpha-cut implemented in fuzzy
clustering algorithms, called FCMalpha. It allows the data points for being able
to completely belong to one cluster. The proposed FCMalpha algorithms may
form a cluster core for each cluster, where data points inside a cluster core will
have a membership value of 1 so that it can resolve the drawbacks of FCM.

A study in [16] shows an analyses of FCM using a literature review based
on various articles ranging from 1987 to 2015 with the keywords to find out
how FCM along with alpha-cuts and various similarity or dissimilarity measures
have advanced in this period. On the basis of 75 articles, this work has classified
the previous FCM classification works using the four categories such as: Land
Cover Classification method; Fuzzy c-Classification; Measures of similarity and
dissimilarity; and Fuzzy alpha-cuts in accordance with various research problems
and domains.

Similarly to the work of [15] where as defined a value α-cut a priori and as
discussed in several other articles, as shown in [16], we also chose to use the α-cut
concept to create and highlight an uncertainty data cluster. Thus, it allows the
knowledge specialist to visualize the uncertainty pixels that the algorithm was
not so certain in its classification.

3 Methodology

The images selected for the experiment are a fragment of the T21JWH tile of
the Sentinel-2 satellite, dated 06/02/2017 (Fig. 5(a)), when the Uruguay River
was 10.96 m above the normal level, and 08/17/2017 (Fig. 3(a)), when the river
quota was normal. The spatial resolution of the images was 10 m and the follow-
ing spectral bands with their respective central wavelengths were used: band 3
(green, 560 nm), band 4 (red, 665 nm) and band 8 (infrared, 842 nm).

Using TerrSet’s remote sensing tools [17], the RGB color composition 483 was
run, which was exported to the JPG format for further processing by the Fuzzy
ckMeans algorithm. The choice of the spectral bands and the color composition
in question was determined by the possibility of a good distinction between the
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targets, especially the water slides, which are the subject of the present study.
The image used has the following characteristics: 660 rows and 629 columns,
with a total of 415140 pixels, making a covered area of 41,51 km2.

The area covered by the images selected for the present experiment, represent
the city of itaqui and adjacencies, located in the western border of Rio Grande
do Sul, Brazil (Fig. 1). The region is characterized by a flat relief, and the city
being situated between the Uruguay River to the north, the Cambai stream to
the east, and the Olarias stream to the west. The morphological characteristics
of the region, associated with a large area drained by the Uruguay River basin,
cause successive floods in Itaqui, which cause disorders to the population and
must be a constant object of planning processes by the municipal authority.
The center point of the used images are defined with the following geographical
coordinates: 29◦ 08’ 22.81”S and 56◦ 32’ 32.04”W.

Fig. 1. Study area

The procedure to obtain an image pass trough a five-steps process, describes
how we obtained the river images. From steps 2 to 5, the TerrSet software
was used.

1. Data acquisition - Acquisition from LandViewer (Avaliable in: https://lv.
eosda.com);

2. Image importation - Image casting from tiff to img ;
3. Area extraction - Image cropping (window);
4. False-color band combination - Image composition;
5. Image exportation - Image casting from img to jpg.

4 Proposal

The process, since the image reading until the characterized image, follows the
steps:

https://lv.eosda.com
https://lv.eosda.com
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Fig. 2. Decomposition and overlapping process (Color figure online)

1. Image Read - extracts the image digital number for RGB;
2. Input Matrix - converts the digital numbers in each pixel into a three col-

umn matrix (Input Matrix), where the columns represent RED, GREEN and
BLUE digital numbers. The process is shown in Fig. 2(a). It is important to
mention that the ckMeans outputs a membership degree for each line in the
Input Matrix, it is necessary to convert the pixel matrix into a decomposed
input matrix. In this way, it is necessary to recreate the pixel matrix to be
able to interpret the patterns in the characterized image;

3. Fuzzy ckMeans - runs the ckMeans with the Input Matrix, as describe in
Subsect. 2.1;

4. Define a priori the α-cut parameter;
5. Membership Degree Matrix - resulting matrix with the membership degree

for each line in the Input Matrix (Fig. 2(b));
6. Characterized Image - the membership degree matrix generates three pixels

matrix, one for each RGB spectrum, and the overlay generates the Char-
acterized Image. Also, when the algorithm sets a pixel to a cluster, in the
overlapping process, the cluster size is updated. In the end of the process,
the Fuzzy ckMeansImage returns, besides the clustered image, the pixel size
(i.e., the amount of pixels in each cluster).
This process was namely ckMeansImage algorithm for adapting ckMeans to
the image segmentation process and by using alpha-cut conceptualization.

5 Results

The experiment consist in processing two images, river in normal level (Fig. 3(a))
and river in flood period (Fig. 5(a)) of the same area: before and after the flooding
occurrence using the K-Means, ckMeans and ckMeansImage algorithms. The
images were processed with 3, 4 and 5 clusters and the best result was chose. The
cluster number may be different due to the image characteristics. This image are
evaluated qualitatively, by an specialist, and quantitatively by the measurement
of its areas (the cluster size). The calculated area is a simple product between
the number os pixels in each cluster and its size (10 m).
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5.1 River in Normal Level

In order to separate the area effectively occupied by the water bodies, the result-
ing image with the ckMeans algorithm that presented the satisfactory results was
the one clustered into 4 clusters, as can be observed in Fig. 4(b). The K-Means
algorithm presented similar results (Fig. 4(a)). Figure 3(b) shows the clusterized
image with the river using α-cut = 0.6.

Analyzing this figure, it is possible to infer that the pixels clustered in the
blue color refer to the water bodies, especially those already mentioned previ-
ously, besides natural accumulations of water, depending of the declivity that
are possibly used as sources for the irrigation of rice fields, which is one of the
main economic activities of the municipality.

The pixels clustered in dark green color represent areas with denser vegeta-
tion such as riparian forests, urban afforestation, grazing areas or grasses with a
lower accumulation of moisture during the image capture period. On the other
hand, the pixels clustered in the light green color are associated to the areas
with less dense or senescent vegetation, or, for the most part, to the areas tra-
ditionally occupied by rice fields, and that, during the recording period of the
image by the satellite, maintained a higher concentration of moisture in the soil.

All the other elements, which had their pixels clustered in yellow, represent
the great majority of the urban structure of Itaqui and other elements of human
interference as irrigation, compacted soil and road structures.

Analysing the Fig. 3(a), comparing with Figs. 4(a) and (b), there is a region
that has been clustered the wrong way, for both K-Means and ckMeans. The
ckMeansImage algorithm, using the α-cut, shows exactly that region on the
circled area (Fig. 3(b)).

5.2 River in Flood Period

In the image processing of the flood season, the image generated with the Fuzzy
ckMeans algorithm presented satisfactory results with 3 clusters, as can be
observed in Fig. 6(b). Still, it obtained better clusters compared to the result
generated with the K-Means algorithm (Fig. 6(a)), where the ckMeansImage
clustered the urban structure more accurately.

Analysing these figures, it is possible to infer that the pixels that represent
the water slides, were clustered in the blue color. The pixels of the image rep-
resenting vegetative elements and exposed soil were clustered in green. In turn,
the other elements, especially the urban structure and clouds were represented
in the yellow cluster.

The ckMeansImage algorithm with the α-cut highlights an area (presented in
Fig. 5(b)) where the pixels do not have a acceptable membership degree. For this
region, the ckMeansImage algorithm clustered some area as vegetative elements
and some area as urban structure. The K-Means algorithm clustered some area
as vegetative elements too, but the other area as water bodies.
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Fig. 3. Selected area with the river in normal level (Color figure online)

Fig. 4. Selected area with the river in normal level (Color figure online)

5.3 Floodplain Analysis

From the counting of pixels per cluster that was made by the algorithm, it
was possible to estimate the area effectively flooded in the image used in the
experiments. Considering that the area of each pixel is 0.0001 km2 (considering
the spatial resolution of 10 m of the image), the results presented in Table 1 were
obtained.
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Fig. 5. Selected area with the river in flood period (Color figure online)

Fig. 6. Selected area with the river in flood period (Color figure online)

Through observation of the image after processing, it becomes possible to
clearly define the existence of a transition area located between the urban perime-
ter of the municipality and the rice fields, which presents a significant probability
of flooding. However, using ckMeansImage algorithm with the α-cut equal to 0.6
shows that it is necessary the attention from the expert, showing that there are
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Table 1. Analysis of the floodplain area for K-Means and ckMeans

No of pixels Area (km2) %

K-Means ckMeans K-Means ckMeans K-Means ckMeans

Normal level 32.267 34.534 3.23 3.45 7.77 8.32

Flood period 160.145 154.105 16.01 15.41 38.57 37.12

areas where the membership degree is lower, being able to group in the imprecise
form. The total number of imprecise pixels for the river in normal level was 39.759,
using the α-cut equals to 0.6. For the river in the flood period, the number of impre-
cise pixels was 25.979.

In this way, it is possible to infer beforehand the areas with potential flood
risk, serving as subsidies for the implementation of public policies aimed at plan-
ning the expansion of the urban area. A non-observation of the areas considered
at risk may cause serious social problems, resulting from the relocation of fam-
ilies, sanitation and infrastructure, as well as economic losses arising from the
adversities provided in routine, regarding the activities of commerce and indus-
try located in the central part, as well as in the primary production within the
municipality.

6 Conclusions

We compared the proposed method to others robusts clustering algorithms such
as K-Means and ckMeans. Note that Fuzzy ckMeansImage is a robust version of
ckMeans by implementing the α-cut concept. It will be equivalent to ckMeans
when α-cut = 0.

The present work shows a comparison between a normal and flooded stage
in the municipality of Itaqui, western border of Rio Grande do Sul. Two images
were used to analyse and infer the floodplains allowing us to estimate the area
size and the region where it occurs. It is also possible to infer that the results
presented by the K-Means, ckMeans and Fuzzy ckMeansImage algorithms are
accurate in cases where the original images present a more homogeneous set of
pixels, thus allowing the extraction of core areas, as it was possible to verify with
the water masses.

Given the characteristic of the Fuzzy ckMeansImage algorithm in dealing
with membership degree, such as future work, we intend to map areas of uncer-
tainty. Since each pixel is classified in every clusters, it is intended to create a
threshold, highlighting the pixels with low membership degree, relying on the
expert’s knowledge for decision making.
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c.franco31@uniandes.edu.co

2 Department of Statistics and OR, Complutense University, Madrid, Spain
cguada@ucm.es, {jtrodrig,monty}@mat.ucm.es

3 Department of Plant and Environmental Sciences, University of Copenhagen,
Copenhagen, Denmark
{jon,jer}@plen.ku.dk

4 Department of Statistics and OR III, Complutense University, Madrid, Spain
dagomez@estad.ucm.es

5 Geosciences Institute (CSIC-UCM), Complutense University, Madrid, Spain

Abstract. Capturing aerial images by Unmanned Aerial Vehicles
(UAV) allows gathering a general view of an agricultural site together
with a detailed exploration of its relevant aspects for operational actions.
Here we explore the challenging task of detecting cirsium arvense, a
thistle-weed species, from aerial images of barley-cereal crops taken from
50m above the ground, with the purpose of applying herbicide for site-
specific weed treatment. The methods for automatic detection are based
on object-based annotations, pointing out the RGB attributes of the
Weed or Cereal classes for an entire group of pixels, referring to a crop
area which will have to be treated if it is classified as being of the
Weed class. In this way, an annotation belongs to the Weed class if
more than half of its area is known to be covered by thistle weeds.
Hence, based on object and pixel-level analysis, we compare the use
of k-Nearest Neighbours (k-NN) and (feed-forward, one-hidden layer)
neural networks, obtaining the best results for weed detection based on
pixel-level analysis, based on a soft measure given by the proportion of
predicted weed pixels per object, with a global accuracy of over 98%.

Keywords: Image analysis · k-Nearest Neighbours · Neural networks
Soft measures · Weed detection · Precision agriculture

1 Introduction

Unmanned Aerial Vehicles (UAV) allow gathering images with high potential for
knowledge discovery, having added attractiveness due to their low operational
costs and flexible driving capabilities [15]. Focusing on images of agricultural
sites, UAVs stand as ideal tools for monitoring seasonally variable crop/soil
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 855, pp. 441–452, 2018.
https://doi.org/10.1007/978-3-319-91479-4_37
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conditions in time-specific and time-critical crop management [13]. In this way,
images can be stitched together into a detailed map with the position and distri-
bution of the objects of interest (see e.g. [15,19]), or can be directly interpreted
for real-time implementation of the required actions (see e.g. [6]). Either way,
images are the raw visual input on the characteristics of the site, holding rich
information that can be understood by (knowledge-based) data-driven models
for its efficient use (see [10], but also [9] for a review on different image pro-
cessing techniques). By means of these models, automatic or semi-automatic
implementation of certain operational actions can be undertaken in the field.

Detection and identification of weeds under a wide range of conditions is in
fact an important challenge for weed control systems [12,18,19] and remote sens-
ing (i.e., unmanned, air and space borne sensing) in precision agriculture (see
e.g. [1,4,17,20]). Here, we explore the use of the k-Nearest Neighbours (k-NN)
and (feed-forward, one-hidden layer) neural network methodologies for inducing
relevant knowledge from aerial images, examining standard (RGB) aerial images
captured at 50 m above ground, and running (supervised) learning-based simu-
lations on late-stage barley fields for thistle weed (cirsium arvense) detection.

In order to train the models, we used a set of aerial images with two types
of object-based annotations. These annotations indicated the RGB attributes of
the Weed and the Cereal classes, grouping under a unique label an entire group
of pixels to the Weed or the Cereal class. In this way, if more than half of the
annotated area was known to be covered by thistle or cereal, then it would be
marked accordingly. Hence, examining these images at pixel-level, there is an
inherent uncertainty regarding the membership of the pixel to either the Weed
or the Cereal class.

Thereby, weed detection can be carried out at two different levels: pixel and
object. In the first approach, the focus is placed on analysing and being able
to effectively separate the weed and crop classes at a pixel basis. In the second
one, the interest is rather placed on compact groups of pixels, usually referred
to as objects, somehow identifiable with relatively small plots of land, that are
in this way analysed in order to assign each object as a whole to either decision
class. In the set of images we analyse in this paper, the supervision was made at
the object level, that is, a priori information about the decision classes is only
available for certain predefined objects (a set of square plots of land). Therefore,
at pixel-level, there is an inherent uncertainty of the membership of pixels to
either class, since the pixels belonging to a given object may not necessarily all
belong to the object class.

In the existing literature, the k-NN has been previously applied to remote
sensing data (see e.g. [5]). On this line of research, such a methodology has
been examined for pixel-based classification on multi-spectral ASTER data [21],
comparing the results with an object-based approach relying on maximum like-
lihood. Although the latter (the object-based approach) seems to obtain better
results (see again [21]), it can also be that pixel-level analysis allows arriving at
results with similar significance under less complex procedures [16].
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Reflecting on the object-based paradigm (see [2]), its popularity can be justi-
fied by the particular resolution of the remote sensing images that are commonly
studied, mainly coming from space borne platforms, together with the nature of
the objects under study. In this sense, with increasing spatial resolution, objects
are made up of several pixels, which implicitly suggests the use of object-oriented
methods (see [3] for an extensive discussion). Different researchers have focused
on comparison studies between the performance of object and pixel based meth-
ods (see e.g. [4,14,21]), trying to find evidence supporting the use of one or
another. But it remains clear that the suitability of either approach depends on
the specific classification problem and its level of difficulty, as well as the image-
space resolution. At the same time, addressing the value of information, it is
noticed here that pixel level analysis allows a very precise application of decision
making actions (such as fumigation), which require the appropriate instruments
for implementing those actions (see e.g. [6]).

Taking into account these ideas, in the present study a mixed pixel-object
approach is developed, in which objects are classified attending to a soft measure
obtained from a previous classification of the pixels belonging to these objects.
This mixed approach allows combining some of the advantages of both the pixel-
based and object-based paradigms. Particularly, it allows for pixel-based recog-
nition of areas of interest (i.e. plots to be fumigated) from the distribution of
predicted weed pixels in an image, as well as to treat these whole areas as objects
upon which a decision has to be made. As we shall see, an added value of the
proposed approach is that it seems to enable a more robust and accurate classi-
fication of objects.

This paper is organized as follows. In the first section we present the experi-
mental setting for collecting and capturing the input (raw data) images, briefly
reviewing the k-NN and the neural network procedures and their use of the
object-based annotations. In Sect. 3 results are discussed together with the sta-
tistical performance of the algorithms, also addressing their potential impact for
decision making. Lastly, in Sect. 4, some final comments are given along with
open lines for future research.

2 Methodology

In this section, the setting for the site experiments is introduced, also explaining
the theoretical framework for the k-NN and the neural networks.

2.1 Instrumentation and Data Sets

Images were captured with a camera mounted on an UAV, consisting in a six-
rotor hexacopter equipped with a (Canon G15) camera (see [15,19] for the full
details). The UAV flew over the agricultural sites located at Taastrup, Denmark,
focusing on barley fields infested with thistle. The camera had a 10 megapixel
CCD sensor, with a Field-Of-View of roughly 60 m by 45 m, flying at 50 m from
the ground. In this way, an image size is 4000 pixel wide and 3000 pixel high,
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thus corresponding to a Ground-Sampling-Distance of 15 mm and an area of
2700 m2. The computational procedures were developed in Matlab (R2014),
treating images according to their RGB pixel-color composition.

The available set of images in this study consists of 28 images (as the one
shown in Fig. 1a), coming from 5 different days at an advanced growth stage
of the crops. All images were taken under sunny conditions during day light.
There are respectively 3, 2, 11, 2 and 10 images in the different days. Through
an expert knowledge, coming e.g. from farmers or specialists, a set of reference
ground in the field is classified in weed and thistle and they are represented in
the set of images. That is, as shown in Fig. 1, each RGB image is accompanied of
two annotated templates, one identifying plots of land (i.e. objects) associated
to the crop class (see Fig. 1b), and the other identifying objects associated to
the weed class (see Fig. 1c). There are fewer crop annotations than weed ones,
but the former usually contain far more pixels than the latter. In addition, the
annotations have different colours to distinguish between them, but there is no
other meaning associated to these colours.

Fig. 1. An (a) aerial image and its annotations, (b) crop and (c) weed.

Such an identification can be developed directly on the field, demanding a
very expensive practice if the whole area covered by the UAVs is to be covered, or
can be inferred directly from the images, carefully examining a representative set
of sample images. Here, the available annotations come from gathered knowledge
on the field, where a given area of the crop is annotated as belonging to the Weed
class if more than half of the area is covered by the thistle weed. Then, taking
a set of annotated samples, the algorithms can be trained on the basis of the
knowledge captured for a given group of pixels, not for pixels themselves, making
it difficult to develop robust pixel-based procedures.

From these images, we have obtained two kinds of datasets: one at object
level, in which each annotated object is stored as a single observation or row,
measuring its class and the average R, G and B intensities of the pixels it con-
tains. The second type of dataset, at pixel level, contains an observation for each
pixel in an annotated object, storing the RGB intensity of each pixel together
with the class and the ID of the object it belongs to. We also record the ID
of each image for the objects and pixels it contains, as well as the date at
which the image was taken. Particularly, we organize this information in pairs of
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object-level and pixel-level datasets for each of the 5 days at which the different
available RGB images were taken.

2.2 Experimental Setting

At an experimental level, we focus on measuring the performance of our app-
roach when the information of 4 of the 5 different days is used to train the
classifiers, and the information of the remaining day is used as test data to vali-
date the trained models. The idea is thus to analyse the suitability of effectively
detecting weed pixels and objects in an RGB image from supervised information
coming from images taken in potentially different conditions (e.g. differences in
luminosity or wind intensity and direction among different days). This would
allow in practice to perform weed detection when desired or necessary, without
needing to invest funds and time in acquiring annotated information with the
particular conditions of the specific moment at which the task is performed.

This 4-days-vs.-1-day cross-validation setting is applied at both pixel and
object level, thus feeding the classifiers with a training sample composed of
either pixels or objects from images of the 4 of the 5 available days, and then
predicting all the annotated pixels or objects of the images of the remaining
day. Because of the huge number of pixels available at the training stage, the
pixel level experiments proceed by selecting as training sample a relatively small
random sample of pixels from the selected 4 days, from which all the test sample
pixels are predicted. This process is then replicated a number N of times (it will
be N = 15) in order to obtain more robust performance estimations. At object
level, this randomization and replication scheme is not necessary as the number
of objects is easily manageable, and thus the training sample for each 4 vs. 1
combination is composed of all the annotated objects in all the images of the
4 days used for learning.

Finally, once pixel level predictions are available, it is possible to exploit its
distribution in order to derive an alternative prediction for the test objects. This
is carried out by means of a soft measure given by the proportion of predicted
weed pixels in each object, and a threshold τ ∈ [0, 1] controlling the proportion
required to assign each object to the weed class. Formally,

p(object i) =
#{pixels assigned to the weed class in object i}

#{pixels in object i} , (1)

and thus object i is assigned to the weed class whenever p(object i) > τ . Notice
that different values of this threshold τ , allows setting up different sensitivity lev-
els in order to assign objects to the weed class, as different decision-requirements
may be imposed. Also, the soft measure defined in (1) allows considering soft
accuracy measures, as the ones proposed in [7], avoiding the assumption that all
errors in classification should be taken as equally important (see also [8]).

2.3 Classification Methodologies

In the present study, we have mainly focused on the k-NN supervised classi-
fication methodology. Let us recall that k-NN classifiers proceed by assigning
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a query or item to be classified to the most frequent class in the set of the k
training instances which are closer to such query. That is, given a query x, it
is necessary to measure the distance d(x, t) from the query to each instance t
in the training sample, then find the k nearest training instances, so finally x
is assigned to the majority class of this set of k nearest-neighbours of x. Thus,
the distance d is a key ingredient of the k-NN methodology, as it is in charge of
defining the notion of proximity being applied to find the nearest neighbours.

Despite its conceptual simplicity, k-NN classifiers may achieve a rather good
performance, and its low computational complexity and suitability for paral-
lelization make its usage appealing in contexts with massive datasets. These
reasons have often motivated its application in the context of image processing,
in which relatively big datasets are easily obtained when combining information
at a pixel level from several images. We adhere to these motives in the present
study, and as we describe below, the results obtained through this classification
methodology are quite competitive even for k = 1.

Regarding the applied metric d(x, t), we have used a weighted Euclidean
distance scheme, in such a way that the distance between two instances x =
(R(x), G(x), B(x)) and y = (R(y), G(y), B(y)) in the RGB space is obtained as

d(x, y) = wR(R(x) − R(y))2 + wG(G(x) − G(y))2 + wB(B(x) − B(y))2,

with w = (wR, wG, wB) being a vector of weights. Particularly, we experimentally
found that assigning nearly three times more weight to the R-coordinate than
to the other two, provided the best results in our application context.

In order to compare and extend the results obtained through the previous
k-NN methodology, we have also conducted some similar experiments using arti-
ficial neural networks. Here we use a simple, single-layer, learning network with
error back propagation [11]. The activation function of the neurons in the sin-
gle hidden layer was the hyperbolic tangent-sigmoid function, the initialization
of weights and bias was randomly repeated 100 times, and the training for
the updating of the synaptic weights and the bias values was done using the
Levenberg-Marquardt optimization algorithm. Under this framework, all the
possible combinations from 5 to 15 neurons were tested in the hidden layer,
applying the early stopping technique for setting the optimal number of itera-
tions of the network model. Thus, the best neural network corresponded with
the model specification on number of neurons and the required iterations, which
accomplished the minimum mean squared error (MSE).

3 Experimental Results and Discussion

In this section we present and discuss the results obtained by applying the clas-
sification methodologies described in the experimental setting exposed above in
Sect. 2.2. Basically, we describe here the results of three different experiments:
(i) an object level experiment, in which classifiers are fed with the object-level
dataset containing the average RGB of each object in order to predict test
objects; (ii) a pixel level experiment, using the pixel level datasets to predict
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test pixels; and (iii) a mixed approach experiment, using the test pixels predic-
tions obtained in (iv) to provide an alternative prediction of the corresponding
test objects.

In the experiment at the pixel level, all 28 images are used as test image, one
at a time, gathering the training data from all the images taken in different days
than the test image. Particularly, the training data is composed of a randomly
selected 1% of each image pixels. This process is repeated 15 times for each
test image, thus replicating the random sampling step in order to obtain a more
robust estimation of the performance indexes.

We just show the results of the k-NN classifiers for k = 1. We experimentally
found that greater values of k do not provide improvements of the results as
significant as to make up for the increased computational costs.

3.1 Object Level Experiment

We start by describing the results obtained on the object-level data. Here we
are measuring the ability of the classifiers to accurately detect weed objects in
the test images (all taken the same day) from the object-level information of
the remaining 4 days. Therefore, a total of 5 experiments were conducted, each
taking the objects in all the images of a single, different day as test sample,
while the objects in all the images of the remaining 4 days are used as training
sample. Let us recall that objects are described through the average R, G and
B intensities of the pixels that compose them.

There is a total of 1955 annotated objects in all images, of which 738 belong
to the crop class (i.e., the negative class), while the remaining 1216 belong to
the weed class (the positive class). The combined confusion matrix of the 5
experiments is given in Table 1, achieving a sensitivity of 0.9762 and a specificity
of 0.7249, for a global accuracy of 88.13%.

Table 1. Confusion matrix of the object level experiment

Predicted condition

Negative Positive

True condition Negative 535 203

Positive 29 1188

These results point to the 1-NN classifier being quite effective at detecting
positive, weed objects, although it does not perform that well regarding negative,
crop objects. In other words, although almost all weed plots will be detected,
there is a significant risk that many actual crop plots are identified as weed
objects, leading to unnecessarily expenses for fumigating or treating (possibly)
weed-free crop areas.

Nevertheless, it is important to remark that most of the false positives and
negatives were obtained in 2 of the 5 experiments. Table 2 shows the pairs of
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sensitivity-specificity indexes attained when using the images of each day to
form the test sample, together with the number of test objects in each case.
Clearly, most false positives are committed in the first day, while the majority
of false negatives occur in the second day.

Table 2. Sensitivity, specificity and number of test objects of the 4 vs. 1 experiments

Day 1 Day 2 Day 3 Day 4 Day 5

Sensitivity 1 0.4782 0.9914 0.9941 0.9881

Specificity 0.6808 1 1 1 1

Number of objects 1267 53 146 207 282

3.2 Pixel Level Experiment

Now we describe the results obtained when using the pixel-level data. Here the
aim is to predict the class of the object each pixel belongs to, since pixels are not
directly annotated, but only indirectly, through the objects they make part of.
Let us recall that, in this case, the experimental setting proceeds by randomly
drawing 1% of the pixels in the images taken in a different day than the test
image. This process is replicated 15 times for each test image, and thus the
confusion matrix in Table 3 counts 15 times the actual number of pixels (i.e.
replication results are summed rather than averaged). For this confusion matrix,
specificity is 0.9315 and sensitivity is 0.9016, for a total accuracy rate of 92.69%.

Table 3. Confusion matrix of the experiments using the pixel-level data

Predicted condition

Negative Positive

True condition Negative 270481707 19879713

Positive 5201477 47667883

A few (2 or at most 3) specific test images provide somehow worse results than
the other, with a similar pattern to the one detected in the previous object-level
experiment, i.e. 2 of these images were taken at days 1 and 2, which obtained a
poorer object-level performance. However, other images also taken during these
first 2 days obtained much better results, so actually at the pixel level evidence is
not clear regarding the potential worse behaviour of the classifiers for some of the
days. Anyway, these are quite competitive results for a classification methodology
as simple as the 1-NN.



Automatic Detection of Thistle-Weeds in Cereal Crops 449

3.3 Mixed Approach Experiment

Now we use the pixel predictions obtained in the previous experiment to compute
the soft index p(oi) introduced in Sect. 2.2 for each object oi, i = 1, . . . , 1955.
That is, we now try to predict test objects (i.e. plots of land) attending only to
the available pixel-level class information of those pixels that compose each test
object. Here we provide results for τ = 0.5, as a neutral value not specifically
biasing the results towards a greater specificity or sensitivity. Again, the confu-
sion matrix in Table 4 combines the results of the 15 replications for each test
image, leading to a total of 15×1955 = 29325 test objects classified. In this case,
specificity is 0.9949 and sensitivity is 0.9854, for a global accuracy of 98.90%.

Table 4. Confusion matrix of the mixed approach experiment

Predicted condition

Negative Positive

True condition Negative 11013 57

Positive 267 17988

Interestingly, the results at the object-level are significantly better when
objects are not directly predicted through their average RGB (see Table 1 above),
but through the predicted class proportions of the pixels they contain. In this
sense, it is better to assume the uncertain, indirectly obtained class annotations
of pixels in the training objects, than to discard it and proceed by averaging the
RGB intensities of the pixels in each object.

Furthermore, now all days’ objects are predicted with an almost uniform
effectivity, as shown in Table 5. Particularly, days 1 and 2 now obtain a similar
performance to the other days (compare with the results in Table 2).

Table 5. Sensitivity, specificity and number of test objects of the 4 vs. 1 experiments

Day 1 Day 2 Day 3 Day 4 Day 5

Sensitivity 0.9978 0.9246 0.9675 0.9831 0.9749

Specificity 0.9984 1 1 1 0.9034

Number of objects 1267 53 146 207 282

3.4 Experiments with Artificial Neural Networks

In an equivalent way as previous subsections, we have also used the artificial
neural networks using the object and pixel level data for the detection of weed.

In the first place, a one-day image was used to train the model, testing it on
the remaining set of images. The best model was found consisting of six neurons



450 C. Franco et al.

Table 6. Confusion matrix of pixel-level experiment using neural networks

Predicted condition

Negative Positive

True condition Negative 16286621 449076

Positive 490187 2585985

(see Table 6), obtaining a sensitivity of 0.8407 and a specificity of 0.9732, for a
total accuracy rate of 95.26%.

Then, we tested the previous best model over the remaining images (from
all the other days) to detect weed objects (see Table 7). The results obtained
a sensitivity of 0.9819 and a specificity of 1.0000, for a total accuracy rate of
98.87%.

Table 7. Confusion matrix of object level experiment using neural networks

Predicted condition

Negative Positive

True condition Negative 738 0

Positive 22 1195

An excellent performance is obtained with this model compared with the 1-
NN method, where the results for the neural network obtains a 100% specificity.
Such results imply that there is a minimum (≈ 0) risk in predicting the crop areas
as weed areas, entailing higher savings for the farmer regarding the site-specific
application of herbicide. Nonetheless, there is still an error of less than 2% in
detecting the thistle weeds, which should be carefully analyzed to understand its
implications, from an economic/agricultural viewpoint, according to its effects
over the yield and quality of the barley-agricultural product. Also, the accuracy
of 98% obtained at object level is higher than the one obtained in [19], where the
convolutional networks obtained a 96–97% accuracy with other images of crops
taken at 10 and 50 m in early and late growth stages.

4 Conclusions

In this paper, k-NN and neural network methodologies have been examined
for thistle weed detection from object-based annotations. The relevance of this
approach focuses on the treatment of such (pixel-level) imprecise annotations,
due to the high cost of gathering precise annotations on the occurrence of thistle
weed on the field. Both methods achieve a satisfactory performance on images
taken from 50 m above ground by UAV, with respect to both their statistical
reliability and expected implications for undertaking the required actions.
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It is relevant to point out that the best results were obtained from the pixel-
level analysis, based on the computation of a soft index p(oi) introduced in
Sect. 2.2. The suggested measure allows taking into account in a basic and flexi-
ble way, the uncertainty in detecting the decision object from the aerial image of
the crop, allowing further interaction through the fine-tuning of the free param-
eter τ . As it was mentioned earlier, this soft index was fixed at 0.5, but a robust
methodology should be implemented for optimizing its value. On the other hand,
different metrics could be explored, such as the intersection-over-union, which
is commonly used for evaluating semantic segmentation approaches.

For future research, soft accuracy statistics could be further explored together
with testing the models under broader, general conditions, regarding the
resolution of the images, ranging e.g. from 10 m to 100 m above ground, and
the different growth stages of the crop. Besides, neural networks could be fur-
ther examined paying special attention to the random sampling in their train-
ing, and the balance/imbalance ratio between the classes. Finally, building on
the present proposal, it is suggested that the neural networks and the stored
knowledge gained while solving the particular problem of this study can be
exploited by means of semi-supervised learning and transfer learning, develop-
ing efficient algorithms for thistle-weed detection under different and changing
crop conditions.
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novel edge detection algorithm based on a hierarchical graph-partition approach.
J. Intell. Fuzzy Syst. 34(3), 1875–1892 (2018, in press)

11. Haykin, S.: Neural Networks. A Comprehensive Foundation. Prentice Hall Inter-
national, Upper Saddle River (1999)

12. Lamb, D.W., Brown, R.B.: Remote-sensing and mapping of weeds in crops. Agri.
Eng. Res. 78, 117–125 (2001)

13. Moran, M.S., Inoue, Y., Barnes, E.M.: Opportunities and limitations for image-
based remote sensing in precision crop management. Remote Sens. Environ. 61,
319–346 (1997)

14. Myint, S.W., Gober, P., Brazel, A., Grossman-Clarke, S., Weng, Q.: Per-pixel vs.
object-based classification of urban land cover extraction using high spatial reso-
lution imagery. Remote Sens. Environ. 115, 1145–1161 (2011)

15. Rasmussen, J., Nielsen, J., Garcia-Ruiz, F., Christensen, S., Streibig, J.C.: Poten-
tial uses of small unmanned aircraft systems (UAS) in weed research. Weed Res.
53, 242–248 (2013)

16. Robertson, L.D., King, D.J.: Comparison of pixel and object based classification
in land cover mapping. Int. J. Remote Sens. 32, 1505–1529 (2011)

17. Seelan, S.K., Laguette, S., Casady, G.M., Seielstad, G.A.: Remote sensing appli-
cations for precision agriculture: a learning community approach. Remote Sens.
Environ. 88, 157–169 (2003)

18. Slaughter, D.C., Giles, D.K., Downey, D.: Autonomous robotic weed control sys-
tems: a review. Comput. Electron. Agric. 61, 63–78 (2008)

19. Sørensen, R., Rasmussen, J., Nielsen, J., Jørgensen, R.N.: Thistle detection using
convolutional neural networks. In: Proceedings EFITA-WCCA 2017 Conference,
Montpellier, France, paper 75, 2–6 July 2017

20. Tellaeche, A., Pajares, G., Burgos-Artizzu, X.P., Ribeiro, A.: A computer vision
approach for weeds identification through support vector machines. Appl. Soft
Comput. 11, 908–915 (2011)

21. Whiteside, T.G., Boggs, G.S., Maier, S.W.: Comparing object-based and pixel-
based classifications for mapping savannas. Appl. Earth Obs. Geoinf. 13, 884–893
(2011)



Meaning and Uncertainty Inherent
in Understanding Images, Spatial-Taxon

Hierarchy, Word Annotation
and Relevant Context

Lauren Barghout(B)

Berkeley Institute for Soft Computing (BISC), Visiting Scholar 2014 - 2017,
U.C. Berkeley Electrical Engineering and Computer Sciences, Berkeley, CA, USA

lbarghout@eecs.berkeley.edu

http://www.laurenbarghout.org

Abstract. This paper explores the meaning and uncertainty inherent in
(a) understanding image hierarchies; (b) describing them with words; and
(c) navigating the abstraction context of the viewer. A spatial-taxon hier-
archy, a standardized scene architecture, partitions an image into a fore-
ground, subject and salient objects and/or sub-objects. The introduction
starts with a thought experiment (Thought experiments, borrowed from
the model-theoretic isomorphism standard of structure-mapping theory,
enable readers to compare two systems thought to be similar. It’s a form
of inductive reasoning that expands knowledge in the face of uncertainty
(Holland et al. 1986 [13]) by providing an explicit representation of how
two systems are similar. Though the conclusion that the two systems do
share an isomorphic structure can only be supported via various degrees
of truth (fuzzy membership), it establishes its plausibility. Analogical rea-
soning is natural to human thought and communication making it useful
for scientific papers.) based on a poem & an image landscape. The thought
experiment is intended to provide analogical inference as scaffolding for
the rest of the paper. The results of experimental data of human anno-
tated spatial-taxon and corresponding word descriptions of two images are
presented. The experimental results are analyzed in terms of spatial-taxon
designation and the meaning & uncertainty presented by the human anno-
tations. The results support the fuzzy spatial-taxon hierarchy of human
scene perception described by other works, show that word descriptions
depend on spatial-taxon designation and that long tail word distributions
require unbounded possibility with semantic uncertainty (type 2 fuzzy
sets) for the word counts in the probability distribution. Deep learning
image recognition, Zadeh information restriction principal, Shannon’s dis-
tinction between information content and semantics, customized image
descriptions and fuzzy inference techniques are explored.
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1 Introduction

As homage to Lotfi Zadeh, I describe a novel & preliminary method for exam-
ining two entwined classes of uncertainty described in Professor Zadeh’s 2013
paper titled “Toward a Restriction-centered Theory of Truth and Meaning.” [37]
In his paper he distinguishes two classes of uncertainty: perceptual and other-
mind. Both are invoked when two or more people use language and pictures to
reach mutual understanding. This paper uses experimental data that collected
language and spatial annotation of two pictures to explore these two classes of
uncertainty.

In day-to-day speech, the truism “a picture is worth a thousand words” shows
the usefulness of pictures for bridging communication when language falls short.
When people share an image to augment language they invoke what cognitive
psychologist refer to as the ‘theory of other-minds’1 and ‘directed gaze’ [24].
Both rest on an implicit assumption that though individual minds are separate,
they are similar enough to perceive roughly the same thing when they direct
their gaze upon the same point in an image. Descartes subject-object distinction
underlies much of the scientific method2. The distinction between self and others
underlies human understanding. If telepathy, humans directly experiencing the
phenomenology of other humans, existed it could minimize perceptual and other-
mind uncertainty. The prevalence of telepathy in myth and fantasy draws on the
frustration caused by other-mind uncertainty.

1.1 Thought Experiment

Consider the frustration on the limitations of language as expressed in lyrics of
the song “Language” by Suzanne Vega shown on the left of Fig. 1. Since this
paper presents data combining image and language descriptions of images, the
lyrics of this song are useful for analogical reasoning. As a thought experiment,
let’s walk through each idea expressed in the lyrics and link them to their cor-
responding analogue.

The first stanza analogizes between liquefied words and visual attention as it
flows within contextual abstraction of an image. For the purpose of this thought
experiment, let’s assume that “eloquent silence” refers to a picture’s ability to
“speak a thousand words.” Yet as observed by John Berger in the 1972 BBC tele-
vision series Ways of Seeing, “images are still in a sense that information never
is” [12]. In other words, visual attention and the thoughts (words) associated
with them change quickly. [18] As described by Barghout (2016) [8]

1 I chose the term “other mind” used in cognitive psychology, after personal com-
munication with Professor Zadeh regarding an example of unprecisiated restriction,
which he described as “a perception evoked in one’s mind.” In this paper “other-
mind uncertainty” refers to the unknown differences between each human’s individ-
ual mental construct. It does not refer to uncertainty in the word semantics, context
or particular definitions.

2 Excluding Quantum Mechanics.
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Fig. 1. (A) “Language” by Suzanne Vega and Michael Visceglia. Each Stanza labelled
A through D. (B) An ambiguous figure [23] with liquefied words (analogous to the first
line of lyrics “if language were liquid”) poured over a landscape an image comprised of
a hierarchy of nested spatial-taxons. The least abstract taxon is at the highest point
in landscape. In this 3 dimensional version of the image the third dimension (height)
designates the abstraction level of the spatial taxon.

“Images convey multiple meanings that depend on the context in which
the viewer perceptually organizes the scene. Spatial-taxon granularity is
dynamically linked to this context and the viewer’s evolving understand-
ing as he/she navigates physically, intellectually or emotionally through
the scene. The phenomenology of information granule, defined by Bargiela
& Pedrycz (2003) as conceptual entities that compactly encapsulate infor-
mation at specific level of abstraction giving rise to cognitive hierarchies
(such as the nested spatial-taxon hierarchy).”–L. Barghout

Stanza B (as shown in Fig. 1b) captures the phenomena of words not coming fast
enough to keep up with the “blur in the brain”, where blur in the brain analogizes
to information granules changing at the speed of thought. Visual attention [24,31],
a cognitive process that filters the granularity of detailed perception to a limited
region, shifts quickly which is why blur in the brain works as an analogy.

Stanza C (as shown in Fig. 1c) works to describe the semantic uncertainty
of words and the perception of words. Stanza D (as shown in Fig. 1d) alludes to
semantic cognitive hierarchies. The phrase “crust of the meaning” analogizes to
a primary word definition, but invokes the nuance that underlying the common
definition is the context each human brings to a conversation. Though statistical
analysis can capture common and co-correlated word descriptions, it can’t get
at context without a proxy. The phrase “never even stirred” analogizes to: not
statistically examined.

Consider the image abstraction landscape on the right side of Fig. 1. The
pitcher pouring liquefied words over the landscape corresponds to Stanza A.
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Liquid flows down hill. The liquefied words fill in at the most abstract spatial-
taxon of the image. As explained in Barghout (2014) and shown again in Fig. 2,
the most abstract spatial-taxon is the whole image.

1.2 Spatial-Taxon Hierarchy

Definition: Spatial-Taxon. Let X be the universe of discourse consisting of all
pixels within the rectangular (or square) pixel array of an image, such that X1,1

is located at the upper left corner, and pixel XI,J at the lower left corner. Let
ST0 be a non-empty set that contains all pixels in the universe of discourse (the
image). ST0 has two mutually exclusive children ST1 and ST0 - ST1 such that
ST1 ∧ (ST0 - ST1) = ∅ and ST1 ∨ (ST0 - ST1) = ST0 (the parent). We have now
defined abstraction level 0 and level 1. The most abstract information granule
is the whole image and the second most abstract level contains two mutually
exclusive children subsets.

Let’s next define the set ST1 as having two children subsets: ST2, (ST1 -
ST2). As before, these children are mutually exclusive, such that ST2 ∧ (ST1 -
ST2) = ∅ and ST1 ∨ (ST0 - ST1) = ST0 (the parent). This is the third most
abstract level in nested spatial-taxon hierarchy.3

Using this definition of spatial-taxons lets return to the analogy liquefied
words to predict how people would annotate images. By analogy liquefied words
should fill in the most abstract spatial-taxon ST0 (shown as the checkerboard
pattern in Fig. 1(B) before filling in the child spatial-taxon ST1) shown as the
embracing figures that compose the foreground of the image.

Foreshadowing the experimental results, the pitcher pours liquefied words
into a channel hugging the crevice along the edge boundary between the child
spatial-taxon of the left figure and the right figure. Interesting things happen
at spatial-taxon boundaries. Research on human perceptual organization show
people remember outlines of figures as opposed to ground [22]. Tracing the out-
line of an object in the dark often provides enough information to identify the
object. Therefore Fig. 1 provides a deep channel in the crevice in which liquefied
words may pool.

The different abstraction heights of the spatial-taxon as illustrated, leads
us to expect that different volumes of liquefied words would pool within each
spatial-taxon.

1.3 Zadeh External and Internal Restriction on Truth and Meaning

Zadeh observes that the external truth value, which in our thought experiment
refers to a spatial-taxon and the words used to describe it, relates the degree of
agreement with factual information such that it induces a possibilistic restriction

3 I could have used subset (ST1 - ST2) as a root for a new child subset. However, to
make this readable, I limit the definition to spatial-taxon children stemming from a
single initial image root.
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on instantiated facts [35,37]. It follows then that experimentally we expect lin-
guistic descriptions, like the liquified words in the thought experiment, to be con-
strained by perceptual organization of the spatial-taxon hierarchy. Specifically,
a human annotation word set wi = [words of a descriptive phrase] restricts the
external numerical truth value Ti of the spatial-taxon STi within an explanatory
database induced by the instantiated words. The explanatory database refers
to the semantics induced by the specific words and constrains the possibilistic
interpretation of that spatial-taxon. This class of perceptual uncertainty lends
itself to be precisiated via sampling of natural language descriptions. Other-mind
uncertainty lends itself to indirect modeling of an internal truth value that can
modeled by its agreement to factual external information. Other-mind uncer-
tainty is an unbounded set as alluded to by Stanza C in the thought experiment.

2 Methods

Human subjects filled out paper surveys containing a bird (as shown in the
bottom layer of Fig. 2.a) or the ambiguous ghost-woman (as shown in the bottom
layer Fig. 3.b). Participants were asked to mark the center of the subject of the
image and label it. Spatial-taxons were determined via k-means clustering of
location measurements (as shown by each layer in Fig. 2). Word and word phrases
for each spatial taxon were grouped by the ambiguous figure to which they
referred, rank & corresponding word are reported in the table under each image.
Words were counted and ranked by frequency, such that the most commonly
occurring word was given a rank of one. Words with the same count were given
the same rank. Surveys were conducted at the Burningman Art Festival in NV,
U.S.A. the Macworld conference in CA U.S.A. and at department of motor
vehicles in Raleigh, NC, U.S.A. [4–6,10].

The simple image of a still bird was chosen to contrast with the complex
ambiguous figure. Because ambiguous figures are not perceived simultaneously,
the data collected can be grouped according to which ambiguous figure the
subject identifies. In addition, the dichotomous interpretations do not belong to
the same superordinate spatial-taxon, enabling us to avoid “word overlap” due
to subject choosing word labels at various abstraction levels. If as our paradigm
assumes, the center of the subject serves as a proxy of figural status then the
words used to label the spatial-taxon should correspond to the name of the figure
perceived.

Fig. 2. A & B Scatter plot human chosen centers.C & D. Most frequent words for each
spatial taxon or boundary
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3 Results

For the bird image an ANOVA of the positions selected by human subjects yields
two spatial-taxons (F = 742.55, df = 1/106, p< .01)) with a long tail of single
occurring words. Statistics enable us to quantify the probability distribution
of words, but reveal little of the semantic uncertainty due to the unbounded
event set of the meaning of the words used by individual. Each spatial-taxon
and associated word frequency vs word rank layers are shown in Fig. 2. For
brevity, scatter plots of the raw data are not included in this paper (see [4,5]
www.burningeyedeas.com for raw data). Below are three example descriptions
provided by human subjects for the whole bird spatial-taxon.

Fig. 3. A. Spatial-Taxon hierarchy of the bird image as derived from statistical analysis
of human annotated surveys. B. Corresponding word count verses word rank for human
subject word descriptions of the spatial-taxon layer on the left. An additional x-axis
shows some example word ranks and words to provide context. Bottom chart shows
words for the full image.

1. “bird standing in grass”
2. “black and orange, bird standing on the ground”
3. “spring has sprung”

Three different survey respondents described the ‘eye’ spatial-taxon with
these phrases:

www.burningeyedeas.com
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1. “black eye”
2. “pure noble basic glorious”
3. “bird small orange chest, eye is actual center”

For the ambiguous Ghost image, K-means cluster analysis was performed on
the normalized horizontal and vertical location data to classify spatial-taxons.
An ANOVA of these positions yielded F(2,58) = 146, p< .01 and vertical:
F = (2,58) = 16.1, p< .01)). To help the reader visualize these spatial-taxons,
they were segmented, artistically modified to illustrate the figure and organized
into layers (as shown in Fig. 3). For each spatial-taxon, its associated word fre-
quency vs word rank layer is shown on the right Fig. 3.

The word choices for each spatial taxon are strongly correlated with the figure
descriptions. As foreshadowed in the thought-experiment, ghost-woman spatial-
taxon boundaries had a super-ordinate interpretation - ie ‘two beings kissing’.
Both the ghost and face spatial-taxons contained descriptive present participles
‘kissing’.

As Professor Zadeh identified as other-mind uncertainty, the meaning as it
occurred for individuals, is unbound. The perception uncertainty, may be pre-
cisiated as shown in the three sample phrases for the spatial-taxons (below).
The motif similarity to the yin-yang icon, increase the statistical co-occurrence
of the terms “yin & yang” but the possibility space needs to include uncertainty
as to whether objects are human, aliens or an octopus. In other words, we have
unbounded semantic universe of discourse and fuzzy memberships (type 2 fuzzy
sets) for each word.

Three different survey respondents described the “Kissing” boundary
between the ghost and “Face” spatial-taxons with these phrases:

1. “It is whatever you can get away with”
2. “Its like a love yin-yang or a woman kissing an octopus”
3. “Cliche, really looks like a woman kissing an alien who is trying to escape”

Three different survey respondents described the “Face” spatial-taxon with these
phrases:

1. “Surrounded by shadow in love”
2. “white face of woman and black ghost”
3. “unity”

And to the “Ghost” spatial-taxon with:

1. “it looks like a black ghost that is getting smothered with kisses”
2. “Ghost”
3. “dark side shadow self foreboding”

Thus stanza D from the thought experiment “never even stirred through”
analogizes to unbounded sets unavailable to statistics4. Bounding the event space
by calculating only the statistical occurrence of a particular word ignores the
semantic uncertainty of the perception and other-minds.
4 Since deep learning neural nets learn only possible classification within bound of

composite training data, they are also limited by statistics.
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4 Discussion

The thought experiment in Sect. 1.1 established the plausibility of an isomorphic
structure between two types of uncertainty inherent in both images and language.
The data collected by the experiment presented provide concrete examples of
these uncertainties. The word frequency data anchor with associated spatai-
taxon in manner consistent with hierarchical spatial-taxon scene architecture
[4,5,10]. The last step in this paper is to discuss this isomorphic structure in
terms of Professor Zadeh‘s information theory proposal [37].

Discussions on information theory are generally dominated by metrics
introduced by Shannon, specifically that the Information of an outcome is
h(x = ai) = log2

1
P (x=ai)

and that Entropy is expected information for a series
of outcomes H(X) =

∑
x P (x)log2 1

P (x=ai)
. Where x is a random variable in the

ensemble5, P the probability function, and ai an instance of the ensemble. Yet
as shown plausible by both the thought experiment and image annotation data
collected by human subjects, the meaning transmitted through human commu-
nication transfers more semantic information then the simple sum of pixels and
words. The Gestalt truism that the message is more then the sum of its parts
holds for image and language mediated communication. Other-mind uncertainty,
perceptual uncertainty and attentional shifts between abstraction levels within a
spatial-taxon hierarchy yield an unbounded possibility fuzzy event space. When
these issues are considered, Zadeh‘s assertion that restriction equals informa-
tion makes intuitive sense [37]. In his 2016 Cognitive Informatics talk, Rodolfo
Fiorini [15] used an ambiguous figure from Douglas Hofstader (as shown in Fig. 5)
to illustrate his point on computational information conservation theory. This
same figure captures the conundrum quoted below by Shannon in his 1948 paper
considered a founding paper of information theory.

“The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
point. Frequently, the messages have meaning: that is they refer to or are
correlated according to some system with certain physical or conceptual
entities. The semantic aspects of communication are irrelevant to the engi-
neering problem.”–C.E. Shannon [28]

Specifically, according to Shannon a perfect reproduction of the data, event
set of pixels delineating the figure, reproduces the signal but uncertainty as to the
meaning of the signal. As pointed out by Fiorini [15] the Hofstader ambiguous
figure can mean either a ‘wave’ or a ‘particle’. Its meaning is uncertain. Zadeh
5 An ensemble, often referred to as an alphabet, is the set of possible outcomes of

word annotations and pixel designations. In this paper, allowed pixel designations
are spatial-taxons or the edges that outline spatial-taxons. The word annotations
collected and shown in the results are outcomes. Note that since nested spatial-
taxons are not mutually exclusive, the results count word annotations for each child
spatial-taxon [5], which by the definition of spatial-taxons are included in both the
parent taxon and child taxons [8,9].
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Fig. 4. A. Spatial-Taxon hierarchy of images used in thought experiment as derived
from statistical analysis of human annotated surveys. B. Corresponding word count
verses word rank for human subject word descriptions of the spatial-taxon layer on
the left. An additional x-axis shows some example word ranks and words to provide
context. Bottom chart shows words for the full image. The top chart word descriptions
of boundary between the ghost and face spatial-taxon.

Fig. 5. Douglas Hofstader ambiguous wave-particle figure.



462 L. Barghout

takes up the uncertainty with respect to semantics in many papers, but for the
purpose of brevity I use this paraphrase from his 2013 paper.

‘Two postulates play essential roles in restriction centered reasoning and
computation. (1) Information equates to restriction, implying that infor-
mation about a value or variable is conveyed by restricting the values the
variable can take. This interpretation of information is considerably more
general then the entropy based definition of information in information
theory. (2) Meaning equates to restriction, implying that the meaning of a
proposition, p, with p viewed as a carrier of information about a variable
X, may be represented as a restriction on the values which X can take.’–
Zadeh [37] (paraphrase combines words and equations)

Unlike Shannon’s communication based theory of information, Zadeh’s
broader definition handles meaning & semantics by requiring a theory of informa-
tion to include restriction on meaning in the possibility space. This handles the
ambiguouity by enabling an information system to restrict the uncertainty in the
meaning of the message contained in the spatial-taxon pixels. The spatial-taxon
hierarchy follows this approach by restricting pixels at each level of abstraction
to either a spatial-taxon or its background complement. Since spatial-taxons are
only mutually exclusive at the same level of abstraction, Shannon information
content, which relieves on mutually exclusive events, does represent information.

As noted by Zadeh restriction is precisiated if information granules can be
designated. As he notes “unprecisiated restriction is the perception which it
evokes in ones mind” [37]. The diversity of the three example annotations listed
for each spatial taxon (see Results) provides an example of this. The meaning of
the whole annotation is greater than the sum of the words and is therefore not
captured by the long tail of precisiated words.

“Integrated information theory starts from the essential properties of phe-
nomenal experience, from which it derives the requirements for the phys-
ical substrate of consciousness. It argues that the physical substrate of
consciousness must be a maximum of intrinsic cause effect power and
provides a means to determine, in principle, the quality and quantity of
experience.”– Tononi et al. [30]

Integrated information theory provides a means to restrict a perceptual
unprecisiated value to is most basic phenomenology (also known as qualia
[7–9,19,24,30]) described as other-mind uncertainty [37]. This method was used
in another paper presented in these proceedings in 2014 [8]. Future work on infor-
mation metrics needs to Zadeh information restriction for full image hierarchies to
the depth of qualia and handle uncertainty does to noise (Shannon), other-mind
and unprecisiated perception.

To conclude, this paper explored methods for understanding the meaning and
uncertainty within images and their linguistic descriptions. Uncertainty caused
by image hierarchy was analyzed using spatial-taxons. Uncertainty due to ambi-
guity in language annotation was analyzed by word frequency subdivided by
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spatial-taxon abstraction. Perceptual and other-mind uncertainty was explored
through using a thought-experiment that invoked analogical inference by assum-
ing the plausibility of model-theoretic isomorphism between language (poem)
and visual perception. Finally, the implications were explored in terms of Zadeh
information restriction principal, integrated information theory, and Shannon’s
distinction between information content and semantics.
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Abstract. New technology deployment for facilitating the control and
managing huge amount of data and its uncertainty is very important challenge in
the industry field. Energy sector as important part of the industry knows
nowadays a high transformation towards renewable energy, and one of impor-
tant solution is the wind energy. The wind control system must guarantee safe
and reliable operation, monitor components and variables, and check that these
variables are in an admissible range and must perform the detection and pre-
diction of faults. We propose in this paper a new Internet of Things solution to
control and monitor a wind energy system. The IoT gateway is used as a bridge
between the different devices in the wind turbine control system and Internet.
We adopted OPC Unified Architecture, as a protocol of communication, and we
implemented the new IoT tool Node-RED in the gateway, in order to facilitate
the link between OPC UA client and IBM cloud. The obtained results are
evaluated in real-time in the cloud platform which eventually provides a con-
sistent analysis and interpretation, and making better decision.

Keywords: Wind energy � Industry 4.0 � IoT gateway � OPC UA
Node-RED � IBM cloud

1 Introduction

As an important source of energy of different countries, renewable energy is widely
used nowadays, it accounts for around 16% of global power generation as reported in
IRENA (2017) [1]. This number is expected to double in the next 15 years and 65% of
energy use could be provided from renewable resources by 2050. This is due to the
rapid growth of different renewable energy supplied by sources like wind and solar
photovoltaic. Wind power penetration has increased significantly. Across the global
market, over 54 GW of clean renewable wind power was installed in 2016. Which
currently comprises more than 90 countries, and allows building new industries,
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creating new jobs and more importantly leading the way towards a clean energy future
[2]. The renewable energy industry benefits from the use of digital technologies. The
existing machines used for manufacturing already support analog or digital sensing that
is reported to a central control station for monitoring over a wired Ethernet systems [3].
However these systems are typically unconnected to the internet [4]. This is the era
which meets the important evolution of the industry and the internet. To follow up this
important evolution of wind energy, it is mandatory to apply the internet capacity to
assess every collected data from different industrial components, motors, sensors,
actuators, etc. This can be performed by building applications able to predict, prescribe,
and order maintenance in order to improve significantly the efficiency of the control
system [5], and to have a clear vision of the entire system, in real-time, without need to
be physically in the area of the installation. Consequently, this will cut off waiting times
and diminish unnecessary costs. Digitization is setting off a radical transformation of
the manufacturing environment. With the advent of Internet of Things, data and ser-
vices, stand on the verge of the fourth industrial revolution (Industry 4.0), where
subjects and objects alike can communicate in real-time, as well as the convergence of
the real and virtual worlds [6]. Each renewable energy resource is considered an object
and it is assigned a unique IP address. Using bidirectional communication, it becomes
possible to monitor and control each object [7]. All data obtained by sensors and
actuators can be acquired, analyzed and managed, through the cloud-based platform.
The communications between devices and objects can be performed through wired and
wireless networks, using different technologies such as RS485, PLC, I2C, Z-Wave,
WiFi, and ZigBee [8]. IoT is considered of one of the complex systems, and this
complexity hails from the interaction of the environment, the inter-connectivity of the
components of the IoT, and the number of the networks involved. The IoT gateway is
the component that allows those different networks to communicate [9].

In order to acquire the significance of IoT in renewable energy, we perform in this
paper, the different steps to forward data from sensors used in wind energy, to the
cloud, using the new IoT gateway from Siemens. We provide a clear presentation of the
state of each sensor in real-time in the cloud. We describe the different protocols and
application used in the IoT gateway so as to maintain a reliable connection between the
objects and the cloud. Moreover, we examine the possibilities that can be done using
the transmitted data in real-time. The remainder of this paper is organized as follows.
Section 2 discusses the IoT solution for the wind control system. The concept of an IoT
gateway is described in Sect. 3. Section 4 talks over the IoT and the cloud service.
Section 5 depicts the proposed IoT control system for power generation and the sim-
ulation results in the Cloud. Section 6 concludes the paper.

2 IoT as a Solution for the Wind Control System

The concept of Industry 4.0 was initially proposed for developing German economy in
2011 [10], as a next industrial revolution. The industrial internet affords a way to get
better visibility and insight into the company’s operations and assets through inte-
gration of machine sensors, middle-ware, software, and back-end cloud compute and
storage systems [11]. One of the significant reasons of this revolution is that the
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complexity of traditional industrial has outpaced the human operator’s capability to
recognize and manage the inefficiencies. A new term of the industry evolution appeared
(CPS: Cyber Physical Systems) that connect virtual and physical worlds, it is perceived
to be a core ingredient in the so-called 4th Industrial Revolution [12]. Computers
elements collaborate for the control of physical entities together to build a networked
world and act as intelligent agents in the IoT and represent the basic framework of a
smart factory [13]. The renewable energy as a type of industrialization face also
important challenges, and the harnessing of the green energy is not always stable, thus
the key of that is the optimization. This is where new technologies such as IoT,
machine learning, cloud, big data, come into the picture. They can facilitate better
usage of resources and help to harness clean power along with optimization. The IoT
has important benefits for energy sector, especially wind energy, often this technology
is applied to inaccessible environments, and remote areas, such as mountains, seas and
volcanoes [14]. In our case, inside a wind energy system, a wind turbine converts wind
energy into electrical energy. It consists firstly of a rotor, which transforms the aero-
dynamic thrust in rotation movement, then a Multiplier, which adapts the rotation speed
to the speed of the generator, also an Alternator, which transforms the energy of
rotation into electrical energy, and finally a dump to the network, which injects energy
into the electrical network.

The wind turbine control system must guarantee safe and reliable operation,
monitor components and variables, check that the variables are in an admissible range
and must perform the detection and prediction of faults. In a wind turbine, a yaw-drive
motor turns the nacelle to face the wind, and the motor movement is based on the data
from wind-direction sensors. Indeed, a predictive analytic will alert operators in
advance if a component needs repairs or inspection. In addition, the sophisticated units
that are embedded in equipment require frequent maintenance [15]. Real-time control
and maintenance are the main purposes for the proposed sensing intelligence in the
renewable energy industry [16].

3 Concept of an IoT Gateway

3.1 Definition

IoT gateway is one of the most important components of IoT, and is considered as
bridge which connects traditional network and sensors network. It is the master device in
charge of protocol conversion and data fusion of different sensor data [17]. The IoT
gateway can also transmit data to application platform, not only receives sensed data
from sensor node and commands from application, it is the middle layer between sensor
node and application platform [18]. In other words, IoT gateway acts as a proxy for the
sensing domain and network domain towards the things that are connected to it [19].

Actually, the IoT gateways become smarter, they are now physical devices with
software programs and protocols that act as intermediaries between the sensors, con-
trollers, intelligent devices, and the cloud. And provide the needed connectivity,
security, and manageability; while some existing devices cannot share any data with
the cloud [20] (Fig. 1). They are in charge of transfer data between the device network
and the LAN (Local Area Network), reaching the Cloud service [21].
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In the industry field, there are different objects that have to be controlled and
connected such as sensors, actuators, motors, programmable logic controllers (PLCs),
SCADA [22]. In order to be part of the new revolution industry, Industry 4.0, it is
necessary to cover the lack of connection protocols between industrial nodes and the
IoT architecture. The IoT gateway links different objects to the internet in the industrial
environment and able to operate as a joint interface among different networks and
support different communication protocols.

3.2 Siemens IoT Gateway for Industry 4.0

One of the major challenges in IoT, is that different technologies and machines do not
speak the same data language. In industry, every system consists of many subsystems,
and each subsystem consumes and produces data. It is important to solve the coop-
eration problematic in industry and to make these subsystems working together [23].
One of the consistent solution to deal with this challenge is the SIMATIC IOT2040
(Table 1). It is a reliable open platform for collecting, treatment and transferring data in
the production environment. It is used as gateway between the company’s production
and the cloud. It is a salient interface to use in both directions, to transfer also the data
from the cloud to the production control [24].

Fig. 1. General graph of an IoT communication system

Table 1. Overview of enhancement possibilities of IOT2040

Hardware
extensions

Communication
interfaces

I/Os Sensors/specific
functionality

Software
extensions

Communication
protocols

Arduino
shields

Ethernet /
CAN/RS485
NFC/RFID
ZigBee

Digital,
analog,
relays

GPS (position),
DCF77 (radio
clock)

Arduino
lib

MODBUS RTU,
MODBUS TCP,
(Basic) CAN

mPCIe WLAN,
Bluetooth,
UMTS, LTE,
ZigBee

Yocto
Linux

PROFINET RT
planned, AMQP,
MQTP, OPC UA,
MODBUS RTU,
MODBUS TCP
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4 IoT and the Cloud Service

One of the best solution to allow the real-time computation and delivery of high value
information, is to combine optimally the IoT with cloud services, which brings
important values to manufacturing, so to gain unprecedented operation effectiveness,
increase profits, and reduce costs [25]. The cloud service is responsible to receive data
from industrial devices and monitor industrial machines on a larger scale using data
analytic algorithms, and also produce commands to be sent back to the device network
[21]. The cloud has two principal functions, it affords a compatible environment and a
configurable services, by integrating a dynamic flow of resources, and all kinds of
heterogeneous software and hardware [26].

Companies such as Google, IBM, Microsoft, Oracle, SAP and Amazon have
developed their own cloud OS [27–30]. For example, IBM Watson IoT Platform,
allows for any device to publish data to a back-end message broker and also to receive
control messages from other devices or IoT applications. Furthermore, this solution
gives the possibility to create applications that communicate to the IBM Platform, so
that applications could use data provided from devices or send control messages.
Microsoft has developed a solution called Azure, which provides software as a service
(SaaS), platform as a service and infrastructure as a service. With AWS IoT Core from
Amazon, it can be directly filter, transform, and leverage data from designated devices
based on the business rules you have defined.

5 Proposed IoT Control System for Power Generation

5.1 Hardware Description

According to this diagram (Fig. 2), we employed a solution that uses the Siemens
technology, using two types of PLCs: the PLC 1214 and the PLC 1512 for control, and
the new industrial IoT gateway IOT2040, which is the most important device for
forwarding the data from devices to the cloud. In this proposition, we present different
sensors used in a wind energy system; the most important are the wind direction sensor
(Wind Vane) and the wind power direction sensor (Anemometer). They are directly
connected to the 1214 Siemens PLC to control the state of the wind and send an order
to the motor generator to change the direction of the blades to maximize the use of the
system. Moreover, it allows switching off the operation in case of a strong flue of wind.
Additionally, the quality of the energy can be monitored and visualized using the
SENTRON PAC (3200), which provides the important data to assess the quality of an
electrical network.

Figure 3 shows the connection between the sensors, two PLCs and the IoT gate-
way. The two devices are connected to the PLC 1214 and all information for this
sensors are sent from the PLC 1214 to the PLC 1512 using the industrial communi-
cation standard PROFINET over Ethernet.
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5.2 Software Description

The communication between the devices and the cloud, is performed through the
IOT2040 gateway. In order to send data from the SIMATIC IOT2040 to the cloud, it is
required an OPC UA protocol to be implemented for industry and IoT. The OPC
Unified Architecture (UA) is an independent service-oriented architecture that inte-
grates all the functionality of the individual OPC Classic specifications into one
extensible framework [31]. OPC UA is also an M2M communication protocol,
developed to create an inter-operable, secure and reliable communication protocol.
Based on these properties, OPC UA increasingly predominates as standard in the
industrial plant communication and environment [32].

Fig. 3. Hardware implementation

Fig. 2. General Block diagram
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OPC-UA uses client-server architecture with a clear assigned roles. Servers are
applications that present information following the OPC-UA information model, and
clients are applications getting back information from servers by querying and browsing
the information model. In each server, an address space is defined containing nodes of
the OPC-UA model. These nodes represent software or real physical objects [33].

Node-RED is a programming tool for wiring together hardware devices, APIs and
online services. It is a solution to control flows to be designed and managed graphi-
cally. Node-RED has a sample set of nodes that we can use for the communication
between different protocols and platforms.

Before using OPC Client in Node-RED in the IOT2040 gateway, we used the
UaExpert tool in our local machine to test the communication between our OPC UA
server, which is the PLC 1512, and the OPC UA client (Fig. 4). UaExpert can be used
as server and Client as well, in this case we use it as a general purpose test client,
connecting with UA Server (PLC1512) in order to show the UA Server information
model, like tags, blocks, etc.

Fig. 4. Evaluation setup

Fig. 5. Checking OPC UA connection using UaExpert Software
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After connecting to UaExpert, we can test the connection to the OPC UA server,
and display every information from the PLC. In our case, we need to control the two
variables of the orientation sensor and the speed sensor (Fig. 5). Besides, we check the
Node-ID of each variable in UaExpert, which is the most important ID used in
Node-RED, in order to be connected to the PLC server.

Afterward, we used Node-RED the Internet of Thing tool to connect the different
protocols and hardware, using just nodes, and a link between them (Fig. 6). In the first
blue Node (Inject Node) we have introduced the topic, used to connect to the variable
Orientation in the PLC, this topic is called also Node-ID that can be taken from the
software UaExpert, after that, we connected the Inject Node to the Node OPC UA
Client which has the address of the PLC server that we want to connect to, and finally
we linked the Node IBM Watson IoT which has all the information about our variables
created in our account IBM Bluemix cloud. Figure 7, shows the Node-RED dashboard,
in the IOT2040 gateway, for the two sensors in real-time.

Fig. 6. Communication between the PLC 1512 and IBM Cloud through OPC UA protocol
using Node-RED in the industrial Gateway IOT2040

Fig. 7. Dashboard Data of wind Sensors in the IoT2040 Gateway
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After having all the information about our sensors in the IOT2040 gateway, we
have created an account in IBM Bluemix, then we created a device in this account,
which is the IOT2040 gateway in order to connect it to the IBM Watson node in
Node-RED. IBM allows to create different boards, and for each board it is possible to
create cards that present your data and each data is a representation for your devices,
sensors, actuators, or other. In the IBM Watson IoT Platform, we created the board
Wind-Energy, in order to present in a real-time the two wind sensors (Fig. 8).

6 Conclusion

This paper presented a control system using a smart IoT gateway to create a connection
between an industrial case and the cloud. We have provided in this paper, a solution for
a wind energy system in order to visualize in a real-time and remotely the different
components and devices inside a wind turbine control system. In this work, we pro-
posed, the IOT2040 gateway from Siemens, and we have installed, several tools that
helped us connect our device’s information. It is simple to connect each sensor
information of the wind turbine to the cloud by using the tool Node-RED, and through
different communication protocols like OPC UA. This solution can really ease the
control system of wind energy, by collecting, saving and communicating relevant data
in real-time.

With an IoT gateway, is possible to transfer analyzed data from the cloud to the
control system and devices. In the future research directions, we will focus more on
how to treat an important amount of data and the uncertainty in the cloud, coming from
different types of devices and protocols, and using an IoT Bot application that execute
automated tasks over the cloud and send control messages to the devices.

Fig. 8. Data sensors in IBM Watson IoT Platform
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Abstract. For most regression models, their overall accuracy can be
estimated with help of various error measures. However, in some appli-
cations it is important to provide not only point predictions, but also
to estimate the “uncertainty” of the prediction, e.g., in terms of con-
fidence intervals, variances, or interquartile ranges. There are very few
statistical modeling techniques able to achieve this. For instance, the
Kriging/Gaussian Process method is equipped with a theoretical mean
squared error. In this paper we address this problem by introducing a
heuristic method to estimate the uncertainty of the prediction, based
on the error information from the k-nearest neighbours. This heuristic,
called the k-NN uncertainty measure, is computationally much cheaper
than other approaches (e.g., bootstrapping) and can be applied regard-
less of the underlying regression model. To validate and demonstrate the
usefulness of the proposed heuristic, it is combined with various models
and plugged into the well-known Efficient Global Optimization algorithm
(EGO). Results demonstrate that using different models with the pro-
posed heuristic can improve the convergence of EGO significantly.

Keywords: Efficient global optimization · Uncertainty quantification
Expected error

1 Introduction

Statistical models, and more specifically, regression models are widely used in
a large variety of fields. From estimating the chance of a certain disease given
a set of symptoms to estimating the next best move in a game of chess. The
correctness of a prediction is in many cases of extreme importance. For example:
in the aviation industry, regression models can be used to estimate the drag
and lift of a specific wing shape. Big differences between these estimates and the
actual behaviour of the designed prototypes might have significant impact on the
overall design process. The traditional way of estimating model accuracy is by
using cross-validation. In general, the prediction error of a statistical model can
be decomposed according to the well-known Bias-Variance decomposition [3].
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On one hand, a model can perfectly fit the training data (zero bias) and fail to
generalize the prediction on a test data set (high variance), which is considered
as over-fitting on the training data. On the other hand, a model can generalize
the global trend of the test data very well (low variance) while having a larger
error on the known data points (high bias). Besides the bias and variance of the
predictor, there is also the irreducible error or noise, that is caused by the noise
in the function value.

The prediction error plays a vital role in many algorithms and application,
e.g., the field of efficient global optimization (EGO) [8]. In EGO, the goal is to
optimize an expensive black-box function under a very small evaluation budget.
This is achieved by heavily exploiting a regression model on the objective func-
tion. In this algorithm, the prediction error measures the expected risk when
optimizing only the response surface of the model [14].

Gaussian Process Regression [11], also known as Kriging [9] is the ideal choice
for EGO, as it models the prediction error as a normal distribution and thus a
theoretical prediction error follows in a straightforward manner. However, many
regression models lack such a theoretical uncertainty measure and cannot be
easily adopted to the EGO algorithm. This paper proposes a novel heuristic to
estimate the prediction error, regardless of the knowledge of the regression model.
The proposed heuristic is beneficial for the EGO algorithm because it allows for
using regression models other than Kriging, e.g., Random Forests. Since Kriging
is computationally very expensive (its time complexity is O(n3)) and known to
work less effective in higher dimensions, using alternative models would boost
the performance of EGO. Next to being useful in an EGO context, the heuristic
can be used as general uncertainty measure for any predictive model, aiding
decision makers to trust or reject predictions.

2 Efficient Global Optimization

The efficient global optimization algorithm was proposed to optimize expensive
objective functions by sequentially choosing new candidate solutions from an
underlying regression model. In principle, there are two key features exploited
here: the model prediction and the uncertainty of the prediction. These two
features balance the exploration - exploitation trade-off of the global search.
Although the Kriging model (or Gaussian process regression) is the main model
for EGO, we would like to relax such a model dependence and extend the EGO
algorithm to other regression methods. To achieve this, we first re-visit the EGO
algorithm from the perspective of uncertainty quantification and propose a novel
empirical uncertainty quantification method in the next section.

2.1 Uncertainty Quantification in EGO

In the EGO algorithm, to optimize a computational expensive function, a regres-
sion model is used to approximate the (noisy) objective function based on a train-
ing data set D = {X ,y}: input data points X = {x(1),x(2), . . . ,x(n)} ⊂ R

d with
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their corresponding observations y = {y(1), y(2), . . . , y(n)} ⊂ R. The standard
assumption in regression is adopted here, in which the noisy objective func-
tion is linked to the regression function f(x) (to be estimated) via an additive
Gaussian white noise process ε:

y(x) = f(x) + ε, ε ∼ N (0, σ2
ε) (1)

The noise variance σ2
ε is either estimated from the data or specified by the user.

Regardless of the regression model assumed in Eq. 1, the model gives an estimate
of the regression function f̂(·) after fitting on the data D. As the estimate f̂ is
stochastic (a function of the data), it is possible to formulate the expected error
of the model prediction:

s2(x) = E

[(
f(x) − f̂(x)

)2
]

(2)

Note that, f̂ is an unbiased estimate of f (meaning that E[f̂ ] = f) according
to the construction of this method. As a result, the expected error above is
equivalent to the variance of the prediction. Given such a model uncertainty
measurement, it is not plausible to optimize the objective function f by simply
searching for the optimality of f̂ . In addition, the uncertainty associated with
each unseen point needs to be considered. In EGO, the so-called infill-criterion
is designed to integrate the models response surface and the uncertainty. One of
the most frequently used criteria, the expected improvement (EI) [8], calculates
the expected amount of the improvement provided by an unseen point over the
current best solution min(y):

EI(x) = (min(y) − f̂(x))Φ

(
min(y) − f̂(x)

s(x)

)
+ s(x)φ

(
min(y) − f̂(x)

s(x)

)
, (3)

where s(x) =
√

s2(x) and Φ(·), φ(·) denote the cumulative distribution function
and the probability density function of the standard normal distribution, respec-
tively. It takes into account the quantity of the improvement and rewards high
uncertainty: it monotonically increases with increasing uncertainty measure s(x)
and decreases with increasing prediction f̂ . Because of this nice property of EI,
it is sensible to adopt it for any model on f as long as such a model provides
good uncertainty quantification, although EI is originally proposed under the
assumption that the regression function is modeled by Kriging.

The new candidate solution x∗ is obtained by maximizing the EI function
over the optimization domain. Then the new solution and its fitness value y(x∗)
are appended to the data set D and the regression model f̂ is re-trained on
the extended data set. In this manner, the fitness function is optimized itera-
tively until a budget of function evaluations is reached. The EGO algorithm is
summarized in Algorithm 1.
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Algorithm 1. Efficient Global Optimization
1 Fit a regression model f̂ on the initial data set X ,y.
2 while the stop criteria are not fulfilled do
3 Find global optimum of the infill criterion:

x∗ = argmaxx EI(x)

4 Evaluate x∗: y∗ = y(x∗) and append x∗, y∗ to X ,y.
5 Re-estimate the model f̂
6 end while

2.2 Kriging

In the original EGO algorithm, Kriging is used as the regression model because
in addition to predicting a value of a function, it also provides an estimation of
the variance of such a prediction. It is a stochastic interpolation method where
the unseen value of a stochastic process (random field) is estimated as a linear
function of the observed values. Kriging models the distribution of an unknown
function by placing a prior Gaussian process on it. The data set D is used to
compute the posterior process [6]:

f(x) | X ,y ∼ N
(
f̂(x), s2(x)

)

f̂(x) = μ̂ + c�Σ−1 (y − μ̂1n)

s2(x) = σ2
ε − c�Σ−1c +

(1 − c�Σ−11n)2

1�
n Σ−11n

Note that, originally the EI function (Eq. 3) is derived from the posterior Gaus-
sian distribution at an unseen point x. For the explanation on the terms above
(e.g., μ̂), see [10].

Despite the elegance of the Kriging model, it also suffers from some disadvan-
tages. One of the main bottlenecks of Kriging is the computational complexity
of fitting the model which is O(n3). Another downside of Kriging, and more
specifically, the Kriging variance, is that it is known that the Kriging variance
can be over-optimistic as shown in [2]. Moreover, Kriging might not be the opti-
mal regression model for some data set. For example, when the data set doesn’t
come from a Gaussian process or when the dimensionality of data is high, Krig-
ing can be outperformed by other regression methods such as tree-based models.
In other words, it is important to adopt the EGO algorithm for other regression
models instead of Kriging.

2.3 Alternative Prediction Variances

Next to the prediction variance given by the Kriging model, there are a few
proposed alternatives. One specific alternative for Kriging is an interpolation
variance proposed in [15]. The interpolation variance is defined as follows
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s2o =
n∑

i=1

λi[z(xi) − z∗(xo)]2 (4)

where λi’s are the ordinary Kriging weights. The properties of this interpolation
variance are very similar to the properties of the proposed heuristic, but the
downside of the Kriging interpolation variance is that it can only be used together
with a Kriging model.

An alternative that seems to be most promising and model independent is
using Bootstrap [4,13]. Bootstrapping is a popular technique to reduce the bias
of a (simple) predictor by using several predictors on different samples of the
data set and averaging their predictions. The set of predictions gained from the
simple predictors can then also be used to give an indication of the prediction
variance, as in the variance of the prediction set. This procedure is for example
used in Sequential Model-Based Algorithm Configuration (SMAC) [7], by using
a Random Forest [1] model where the variance is calculated using the predictions
of the trees of the Random Forest. This method however, might not work well
when the modeling assumptions of the individual predictors are wrong. Another
downside of using bootstrapping is that depending on the model it may require a
lot of additional computational resources, especially in EGO, since each iteration
the regression models need to be refitted.

3 k-NN Uncertainty Measure

In this section, we propose a novel empirical measure of the prediction uncer-
tainty. Such a measure aims at the following objectives: (1) It should operate
independently of the modeling assumptions. (2) It should be exploitable by the
Efficient Global Optimization algorithm, making it possible to use any regression
model in the EGO framework.

In the nonparametric settings, when estimating the mean squared error of
the predictor, the available information are the data set D := {X ,y} and the
prediction f̂(x) at x. Intuitively, this empirical uncertainty measure should be
zero at correctly predicted known observations and increase for the data points
that are far from the observations. Given these preferred properties, a distance-
weighted measure Ûk-NN is proposed as follows:

Ûk-NN =

∑
i∈N(x)

wk
i

∣∣∣f̂(x) − yi

∣∣∣
∑

i∈N(x)

wk
i

︸ ︷︷ ︸
empirical prediction error

+
min

i∈N(x)
d(xi,x)

max
xi,xj∈X

d(xi,xj)
σ̂

︸ ︷︷ ︸
variability of the observation

. (5)

where

wi = 1 − d(xi,x)∑
i∈N(x)

d(xi,x)
, σ̂ =

√
Var

[
{yi}i∈N(x) ∪ {f̂(x)}

]
.
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Note that N(x) collects the indices of k nearest neighbours to x and d(·, ·)
denotes the Euclidean distance metric. σ̂ is computed as the standard deviation
of the observations in the neighbourhood with the prediction f̂(x).

The proposed uncertainty quantification consists of two components: (1) the
empirical error of the prediction and (2) the variability of the observed outputs y.
Intuitively, less empirical prediction error leads to higher certainty of the predic-
tion. Moreover, when comparing two different regression tasks, a large variability
of the observations y could contribute to the high uncertainty of the prediction,
even if the predictor f̂ were making the same empirical error on both tasks.
The empirical error is computed from the difference between the prediction f̂(x)
and the observations at the k-nearest neighbours. Such differences are linearly
scaled where the weights are inversely proportional to Euclidean distances to the
neighbours. This heuristic is based on the intuition that the closer neighbours
have more influence than neighbours that are further away. To quickly diminish
the effect of far-away neighbours, the exponent k (the number of neighbours) is
applied to the weights. The variability of the observation is estimated by cal-
culating the standard deviation of the observations at the nearest neighbours
and the predicted point. The resulting value is then rescaled by the distance
to the nearest neighbour. Using the distances to scale the heuristic error pre-
diction, we make sure that the uncertainty goes to zero at correctly predicted
known points and that it increases when predicting points further away from the
known observations.

A good number of neighbours depends on the number of known points and the
data dimensionality. For most of the experiments in this paper k is set to 20, more
neighbours will provide a more smooth but also slightly more pessimistic predic-
tion error while less neighbours make the expected prediction error more optimistic
and less smooth. To illustrate the behaviour of k-NN uncertainty, a 1-D function
f(x) = x sin(x) is used in Fig. 1. Note that k-NN uncertainty (green area) pro-
gresses very similarly to the Kriging uncertainty quantification (blue area). It can
also be observed that at the known observations the prediction error given by the
k-NN uncertainty algorithm is exactly the error between the prediction and the
known observation. Note that the SVR model is badly fitted, and different hyper-
parameterswould result in amuchbetter fit.This is onpurpose to illustrate how the
k-NNuncertaintywould look like using less fittedmodels. Lastly, it can be observed
that when the to be predicted point is far away from the known data points the
uncertainty of the prediction increases.

4 Experimental Setup and Results

Two different experimental setups are used to demonstrate the properties and
effectiveness of k-NN uncertainty in Efficient Global Optimization. First, we val-
idate k-NN uncertainty by visual inspection of plotted two and five dimensional
benchmark functions that are often used in the field of optimization (in this case
the Ackley and Schaffer function). In Fig. 2 it can be observed that k-NN uncer-
tainty is quite similar to the Kriging variance as shown in the lower subplots of
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Fig. 1. Best viewed in color. Visualization of k-NN uncertainty heuristic. The dotted
red line is the real function f(x) = x sin x, the red dots are the observed points. The blue
line is the predicted mean of the Kriging model with the shaded blue area showing the
standard Kriging variance and the shaded green area is k-NN uncertainty on the same
Kriging model. The yellow line shows the predictions of a Support Vector Regression
(SVR) model with default hyper-parameters (C = 1, RBF kernel, ε = 0.1) with the
shaded yellow area denoting k-NN uncertainty using the SVR model. The number of
neighbours for k-NN uncertainty is set to 4 in this case. (Color figure online)

Fig. 2a. k-NN uncertainty is a bit less optimistic than the Kriging variance but
shows roughly the same areas with higher variance. When looking at the Ran-
dom Forest bootstrapping variance and k-NN uncertainty it can be observed
that the bootstrapping variance is very blocky, due to the Random Forest model
assumptions. k-NN uncertainty however does not use the individual tree predic-
tions of the Random Forest model and because of the interpolation effect using
the distances to the known observations, it creates a much more smooth surface.
In Fig. 3 the models are trained on samples of the Schaffer function in the space
of −50 to 50 for both dimensions while tested on the complete range of −100
to 100. It can be observed that the k-NN uncertainty gradually increases when
moving away from the known observations, while the Kriging variance almost
immediately explodes to a flat high value. When looking at the same bench-
mark function but now in five dimensions, we can plot a one-dimensional slice
of the function (using the first dimension) to show the local behaviour of k-NN
uncertainty versus the Kriging variance in Fig. 4. Here it can be observed that
the Kriging variance is over-optimistic and actually wrong, while k-NN uncer-
tainty is much more pessimistic and actually captures very well the shape of the
underlying function.
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Fig. 2. (a) Upper-left plot is the Ackley function in 2D, up-right the Kriging prediction
of this function using 100 data points for training. Lower-left plot shows the Kriging
variance and bottom-right shows k-NN uncertainty using the same Kriging model. (b)
Upper-left plot is the same as (a), up-right shows a Random Forest predictor with 50
trees using 100 data points for training. Lower-left plot shows the variance given by
the Random Forest and bottom-right shows k-NN uncertainty using the same Random
Forest model. The number of nearest neighbours for k-NN uncertainty is set to 20.

Fig. 3. Same as in Fig. 2 but now using the Schaffer benchmark function.



488 B. van Stein et al.

Fig. 4. The green dots are unseen observations of the Ackley function in five dimensions
(slice with the last four dimensions set at zero), the blue line is the predicted mean of a
Kriging model, the blue shaded area is the Kriging variance and the green shaded area
k-NN uncertainty with 20 nearest neighbours using the same Kriging model. (Color
figure online)

The second experiment is more quantitative as we compare the performance
of k-NN uncertainty in the setting of Efficient Global Optimization. We com-
pare the convergence speed of the original EGO with Kriging, EGO with Kriging
using k-NN uncertainty instead of the Kriging variance, EGO with a Random
Forest model using k-NN uncertainty as the prediction variance and finally EGO
with a multi-layer perceptron using k-NN uncertainty (using two hidden layers
of size 100 and 50 nodes respectively). The experiment is carried out using three
different benchmark functions Ackley, Rastrigin and Schaffer with implementa-
tions from the DEAP [5] python package. For each function, the experiments
are repeated using 100 initial samples using a Latin hypercube sampling strat-
egy, and in 2, 5 and 10 dimensions (d). The EGO algorithm is run for 10 · d
evaluations and each experiment is repeated 40 times. The number of nearest
neighbours for k-NN uncertainty is set to 20.

From Fig. 5 we can observe that in most cases the convergence is very similar
for all four EGO setups. In the two dimensional cases the Random Forest setup
seems to be slightly worse performing than the Kriging setups, on the other hand,
in the ten dimensional cases the Random Forest setup seems to outperform the
Kriging setups. For the Kriging models, the Kriging variance seems to perform
slightly better than the k-NN uncertainty, however in most cases this is only
marginal. Interesting is to note the performance of the neural network using
k-NN uncertainty, which perform very well and even outperforms the standard
EGO procedure with Kriging in the five dimensional cases. Further investigation
showed us that the neural network fits the underlying global trend of the function
much more accurate than the Kriging or Random Forest model, allowing the
EGO procedure to quickly convert to the global optimum.
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Fig. 5. Efficient Global Optimization convergence on the three benchmark functions.
As blue line with dots the original EGO procedure with Kriging variance, the red
line with stars shows the convergence of EGO with a Random Forest model using k-
NN uncertainty, the green diamonds illustrate the convergence of EGO with Kriging
using k-NN uncertainty and the yellow triangles illustrate te convergence of EGO with
a multi-layer perceptron using k-NN uncertainty. The shaded areas show the 95%
confidence interval over the 40 runs. (Color figure online)
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5 Choosing Parameter k

k-NN uncertainty uses only one parameter, k, which controls the number of
neighbours taken into account. To use k-NN uncertainty as efficient as possible,
it is of high importance to know how to set this parameter. We have done a
few experiments ranging the value k from 2 to 50 using an EGO setup with
neural network model on the Ackley function in ten dimensions. The results of
this experiment can be viewed in Fig. 6. It can be observed that the algorithm
is very robust and that the choice of k is not essential. We recommend setting
k to 20 to ensure a smooth and stable variance function. Depending on the
dimensionality and density of the data you can set it higher or a bit lower.

Fig. 6. Convergence of EGO with an artificial neural network using k-NN uncertainty
as the prediction variance where the parameter k is varied.

6 Conclusions and Further Research

An uncertainty quantification measure, the k-NN uncertainty is proposed. The
proposed heuristic works independently of the modeling assumptions and can
therefore be used in combination with any regression model. It is shown that
the heuristic function obeys the preferred properties: (1) it ensures exactitude;
on known observations a correct prediction gives zero prediction variance. (2) it
increases with the dispersion of the known observations. (3) It is exactly the predic-
tion error when applied to known data points. The behaviour of the k-NN uncer-
tainty is verified by plotting the surface of several predictors on two benchmark
functions and by running a wide set of experiments using the Efficient Global Opti-
mization framework. Results of the EGO experiments show that the heuristic can
be used in such optimization settings and that the performance in both high and
low dimensions, using different statistical models, can even outperform the original
EGO concept that uses Kriging. It also shows that different regression models can
be used in Efficient Global Optimization using such a heuristic as prediction vari-
ance, making EGO more widely applicable. It is shown that the proposed heuristic
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is robust with respect of its parameter k, the number of neighbours, and a recom-
mendation of k = 20 is given.

For future research, one interesting direction would be to replace the nearest
neighbour approach with Locality-sensitive hashing [12], to make the heuristic
faster.
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isation for Scientific Research) PROMIMOOC project (project number: 650.002.001).
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Observations with an Uncommon Feature
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Abstract. In this paper we introduce the concept of singular outliers
and provide an algorithm (SODA) for detecting these outliers. Singular
outliers are multivariate outliers that differ from conventional outliers
by the fact that the anomalous values occur for only one feature (or a
relatively small number of features). Singular outliers occur naturally in
the fields of fraud detection and data quality, but can be observed in
other application fields as well. The SODA algorithm is based on the
local Euclidean Manhattan Ratio (LEMR). The algorithm is applied to
five real-world data sets and the outliers found by it are qualitatively and
quantitatively compared to outliers found by three conventional outlier
detection algorithms, showing the different nature of singular outliers.

Keywords: Anomaly detection · Outliers · LOF · Tax administration

1 Singular Outliers

Currently, many outlier detection algorithms exist [5]. However, hardly any of
these is able to detect a particular type of outliers, which we will call singular
outliers. These outliers are met frequently in practice and often represent obser-
vations with an interesting characteristic that is mostly ignored by conventional
outlier detection algorithms.

Roughly speaking, singular outliers are observations that show an anomalous
value for one feature (or a relatively small set of features), while displaying
common behavior on all other features. The feature with the anomalous value
will be called the discriminating feature. The discriminating feature may be
different for each outlier and finding the discriminating feature is part of the
learning process. Singular outliers are typically overlooked by current outlier
detection algorithms, since these algorithms prefer observations with anomalous
values on as many features as possible.

To explain the concept of singular outliers more clearly, suppose we have a
set of points X in a 5-dimensional space and a point x ∈ X, surrounded by
its 20 nearest neighbors. Denote the (local) mean vector of the 20 neighbors
with m. This allows calculating the absolute distances between x and m for
each dimension. When visualized in a needle plot, the result may look as one of
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 855, pp. 492–503, 2018.
https://doi.org/10.1007/978-3-319-91479-4_41
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subplots of Fig. 1. The subplot in the left shows large deviation from the local
mean in all dimensions. This observation can be labeled a conventional outlier.
However, the right subplot shows an observation with small deviations to the
local mean on all but one dimension (dimension 4). This is what we will call a
singular outlier.

0.0
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Singular Outlier

Fig. 1. Needle plots of the absolute differences |xi −mi| (i ∈ 1, . . . , 5) of a point x and
the (local) center m of its 20 nearest neighbors.

Singular outliers can provide interesting insights in the field of fraud detection
or data quality. We will illustrate this by our experiences at the Netherlands Tax
and Customs Authority (NTCA), where erroneous VAT tax returns had to be
detected. It turns out that tax returns containing many unusual values, are often
less risky than tax returns containing only one (or two) anomalous fields. This
apparent contradiction can be explained partly by efforts of taxpayers to conceal
tax evasion. But also by the existence of unconventional businesses with non-
standard business models, that produce uncommon values on many fields of a tax
declaration, without any increased risk of tax evasion. Moreover, it was noted
at the NTCA that taxpayers sometimes unintentionally change two adjacent
fields, leading to an example of singular outliers in the field of data quality. The
examples in Sect. 4 point to other application areas.

Singular outliers usually differ from those found by conventional outlier detec-
tion algorithms. Let us consider a real life example from Sect. 4, where two algo-
rithms, our SODA and the popular LOF algorithm, [3], are used to find outliers
in a data set containing the marks on 5 courses of 88 students. Figure 2 shows two
identical parallel coordinates plots (for more information on parallel coordinates
plots see e.g., [4]) of this data set, but each plot highlights different outliers. The
left plot highlights three singular outliers. We see that the singular outliers are
students that have common marks on at least three subjects, but one or two
exceptional marks. In contrast, the right subplot shows the same parallel coordi-
nates plot but with three conventional outliers highlighted. These students have
exceptional marks on all subjects. The singular outliers are interesting, since
valuable insight might be gained in exploring the cause of the exceptional mark
of these students.

We can now give a formal definition of a singular outlier.
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Outliers found by SODA
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Fig. 2. Two identical parallel coordinates plot of the Marks data set. The left plot high-
lights three observations that are singular outliers (detected by the SODA algorithm).
The right plot highlights three conventional outliers (detected by the LOF algorithm).
We see that the singular outliers have one or two features with exceptional values,
whereas the conventional outliers show exceptional values on all features.

Definition 1. An observation is called a singular outlier if there exits one fea-
ture (or a relatively small number of features), called the discriminating fea-
ture(s) such that the observation is an outlier when the discriminating feature
is taken into account, but no outlier when the features are restricted to the non-
discriminating features.

The purpose of this paper is to point to the class of singular outliers
and present an algorithm for finding them. The paper is organized as follows.
Section 2 gives a short overview of classes of outlier detection algorithms. Sub-
sequently Sect. 3 describes the SODA algorithm for finding singular outliers and
explains the experimental setup to test the algorithm on five public data sets.
Section 4 contains the results of the experiments. Finally, Sect. 5 contains the
conclusions of the paper and a discussion of the results.

2 Related Work

Chandola et al. [5] present an overview of commonly used outlier detec-
tion techniques. They distinguish five classes of unsupervised outlier detection
algorithms: nearest neighbor-based algorithms (including density based
approaches), clustering-based algorithms, statistical algorithms, information the-
oretic algorithms, and spectral algorithms. Goldstein and Uchida [6] present a
similar categorization.

Nearest neighbor and clustering-based outlier detection are by far the most
used categories in practice, according to Goldstein and Uchida. Of these two
categories, nearest-neighbor based algorithms perform better in most cases [6].
Moreover it is useful to split the class of nearest neighbor algorithms in two
subclasses: local algorithms and global algorithms. In the remaining categories
outlier detection algorithms, the statistical algorithm HBOS (Histogram-based
Outlier Score) performs remarkably well in experiments [6].
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We will briefly describe three algorithms that we used in our comparisons
to SODA: Local Outllier Factor, kth Nearest Neighbor and HBOS. The Local
Outlier Factor (LOF) is introduced by Breunig et al. [3] The basic idea is to
compare the density of an observation x with the density of its k closest neighbors
Nk(x). As a density estimator is taken the mean reachability distance from
an observation to its neighbors. To compute this distance, first the Euclidean
distance is calculated between an observation x and its kth nearest neighbor
x(k). Subsequently, the distance is calculated of this kth nearest neighbor x(k)

to its kth nearest neighbor x(k)(k)
. Finally the maximum of these two is taken.

In equations,

LOF (x) = density(x)
mean

y∈Nk(x)
(density(y)) ,where (1)

density(x) = 1
max{dEucl(x,x(k)),dEucl(x(k),x(k)(k)

)} (2)

The kth nearest neighbors outlier detection algorithm is straightforward: the
distance to the kth neighbor is used as an anomaly score [9]. By taking the
distance to the kth neighbor instead of the average distance to the kth nearest
neighbors, the algorithm is better able to detect a small cluster of outliers.

The Histogram Based Outlier Score [6] starts with making a histogram for
each feature in the data set. Then, for each observation, the height of the bins
it resides are multiplied. This will result in a positive number. Subsequently the
negative of this number is taken as an outlier score. In the experiments, the
frequently used Sturges’ formula is applied to compute the number of bins.

3 Singular Outlier Detection Algorithm

3.1 The Algorithm

We propose an algorithm called SODA (Singular Outlier Detection Algorithm)
to find singular outliers. The algorithm involves several steps which are specified
in Algorithm 1. The input of the algorithm is a data set with n observations and
p numeric features as well as a parameter k that specifies the number of nearest
neighbors. The output of the algorithm is an outlier score for each observation;
large scores represent outliers. Additionally, the discriminating feature for each
observation is given as output. The latter is a convenient starting point when
manual inspection of outliers is required.

In the first step, for each observation xi, i = 1, . . . , n, its k neighbors Nk
i

are found. Subsequently, the center of these neighbors, mi, is determined as the
trimmed mean, i.e., the mean calculated after removing the largest value and
the smallest value along each dimension. These extreme values are ignored to
limit their impact on mi.

As a next step, the Euclidean distance dEucl(xi,mi) as well as the Manhat-
tan distance dManh(xi,mi) are calculated. We will call the ratio of these two
distances LEMR (Local Euclidean Manhattan Ratio), i.e.:
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LEMR(xi) =
dEucl(xi,mi)
dManh(xi,mi)

. (3)

This ratio is the singular outlier score for observation xi. It is an indicator of
the ‘spread’ of the values of the vector vi = |xi −mi|. The left subplot of Fig. 3
displays a 2-dimensional example with the Euclidean unit sphere (i.e., the circle)
as well as the Manhattan unit sphere (the square: all points with a Manhattan
distance 1 to the origin). It is clear from the figure that points on the coordinate
axes (i.e., singular outliers) are in both spheres, so the ratio of the Euclidean to
the Manhattan distance is 1. On the other hand, points that are on the diagonals
(the opposite of singular outliers) have the largest difference in Euclidean and
Manhattan distance to the origin and consequently have a low LEMR value. The
right subplot of Fig. 3 shows the LEMR value in this 2-dimensional example.
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Fig. 3. Left: the Euclidean unit sphere and the Manhattan unit sphere in 2 dimen-
sions. Points on coordinate axes (singular outliers) have a maximal value of the Local
Euclidean Manhattan Ratio (LEMR = 1). Points on the diagonals (i.e., conventional
outliers) have a minimal LEMR value (LEMR = 1/

√
2), see subplot right. In more

dimensions the difference between the Euclidean and the Manhattan distance is more
pronounced.

The value of LEMR cannot exceed 1 since the Euclidean length of a vector
||v|| is always smaller or equal to the L1-norm ||v||1 =

∑ |vj |. The LERM value
of 1 occurs when all but one components of v equal 0. The value of LEMR is a
minimum in case the elements of v are all of equal length (and unequal 0). The
minimal value depends on the number of features p and is given by 1/

√
p.

The calculation of the nearest neighbors in the first step of the algorithm is
performed using the Manhattan distance in contrast to the more frequently used
Euclidean distance. The reason is that the discriminating feature of a singular
outlier ideally deviates strongly from other observations. This deviation may
however be so large that it can have too big influence on the determination
of the nearest neighbors. In the worst case, this would lead to neighbors that
only share a similar value for the discriminating feature. To diminish the effect,
we prefer the Manhattan distance that is less influenced by extreme values in
one feature.
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Algorithm 1. Singular Outlier Detection Algorithm (SODA)
Input : A data set X = {x1,x2, . . .} with p (numeric) features,

k the number of nearest neighbors
Output: 1) outlier score. The observations with the largest scores represent the

singular outliers,
2) discriminating feature for each xi. This indicates the feature that

contains the anomalous value.
1 Find the k nearest neighbors Nk

i for each observation xi in df based on the
Manhattan distance dManh.

2 for each observation (row) xi in df do

3 Compute the vector of trimmed means mi of the neighbors Nk
i :

mi = meantrimmed
xj∈Nk

i

{xj}

4 Compute

5 dEucl(xi,mi) =
√∑p

s=1(x
s − ms)2

6 dManh(xi,mi) =
∑p

s=1 |xs − ms|
7 outlier score(xi) = LEMR(xi) = dEucl(xi,mi)

dManh(xi,mi)

8 discriminating feature(xi) = argmax
s∈{1,...,p}

|xs − ms|
9 end

The algorithm has one parameter k. A (too) small value of k will lead to
observations x with very few neighbors. Consequently, it might result in outliers
whose non-discriminating features have a risk of being not so common. A (too)
large value of k usually has less severe consequences. However, in theory it can
lead to bad results if the data points are gathered in many small clusters and
k exceeds the cluster size. For instance this may happen if the data contains
binary features. In our experiments we used k = n/5.

The time complexity of the singular outlier detection algorithm is O(n2pk).

3.2 Measurement of Characteristics of Singular Outliers

To determine whether an outlier can be called singular, two characteristics must
hold. These two characteristics follow from Definition 1 and are listed below.

No outlier with respect to non-discriminating features When the dis-
criminating feature is removed, the observation stops to be an outlier.

Outlier with the discriminating feature The observation must become an
outlier when the discriminating feature(s) is taken into account.

To quantify these two qualitative characteristics, we will formulate two mea-
sures. These measures will be applied in Sect. 4, Table 2 to see whether the
outliers found by SODA can be called singular outliers.
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The first characteristic is measured for an outlier by removing the discrimi-
nating feature from the data set and then calculate an outlier score. This outlier
score must be low for the characteristic to be valid. In principle any outlier score
can be used. In this paper the LOF score is chosen, since it is a well established
outlier score that performs well on a broad variety of data sets [6]. A LOF score
around 1 will be accepted as a sign that the first characteristic is applicable.

The second characteristic is measured for an outlier by computing an outlier
score with and without the discriminating feature. Subsequently the ratio of
the outlier scores is taken as a measure. Again, in principle any outlier score
can be taken, but in this paper we choose the LOF score. Hence, the measure
of the second characteristic becomes LOFall(x)

LOFw.o.discr(x)
. A large ratio signifies that

the addition of the discriminating feature has substantially increased the outlier
score (LOF) and is taken as a sign that the second characteristic is applicable.

In Sect. 4 the outliers found by SODA will be compared with outliers of the
three conventional outlier algorithms mentioned in Sect. 2. In order to apply the
two measurements above, we have to determine the discriminating feature for
outliers found by these algorithms as well. For the algorithms based on nearest
neighbors (LOF and kthNN) a natural choice is to take:

discriminating feature(x) = argmax
s∈{1,...,p}

|xs − xs
(k)|, (4)

where xs
(k) is the sth feature of the k-nearest neighbor of x. For the HBOS algo-

rithm we take the feature with the lowest bin height as the most discriminating
feature.

4 Comparison

This section compares the outliers found by SODA with outliers detected by
three conventional outlier detection algorithms (mentioned in Sect. 2) to five
real world data sets. The comparison consists of parallel coordinates plots and
the two measurements described in Sect. 3.2.

The selected data sets are listed in Table 1, along with some key properties.
One of these properties is the value k that is used in the SODA algorithm and
the two conventional outlier detection algorithms based on nearest neighbors
(LOF and kthNN). In the experiments, k is set to (approximately) one-fifth of
the number of observations, see Sect. 3.1.

4.1 Marks Data

The first data set, Marks, comes from Mardia et al. [8] and consists of the
examination marks of 88 students in the five subjects mechanics, vectors, algebra,
analysis and statistics. We used these unstandardized marks.

The parallel coordinates plot of this data set is displayed in the introduction,
see Fig. 2. Clearly, the SODA algorithm picks up students that perform com-
monly on most subjects, except for one subject. In contrast, the LOF algorithm



Singular Outliers: Finding Common Observations 499

Table 1. Data sets used in the experiments with key indicators.

Data set name # rows # columns k

Marks 88 5 20

Istanbul stock exchange 536 9 100

Wholesale customers 440 6 80

Polish bankruptcy 5907 5 1000

Algae 306 8 60

Outliers found by SODA

Min

Max

ISE SP DAX FTSE NIK BOV EU EM

Outliers found by LOF algorithm

Min

Max

ISE SP DAX FTSE NIK BOV EU EM

Fig. 4. Parallel coordinates plot for the Istanbul Stock Exchange data set with the
three largest outliers highlighted.

selects students that perform exceptionally well on all subjects. The measure-
ments of Table 2 confirm that the SODA outliers can be called singular outliers:
the average value for the SODA outliers on measurement 1 equals 1.02, which
is close to 1 and much lower compared to the values of other algorithms. The
average value on the second measurement (1.09) is not very large, but at least
larger than the values for the outliers found by the other algorithms.

4.2 Istanbul Stock Exchange Data

The Istanbul Stock Exchange data set [2] displays the daily increase in eight
major stock exchange indices for the period January 5 2009 to February 22,
2011. The data are already standardized.

The parallel coordinates plots of Fig. 4 show that the SODA algorithm has
picked three days where the average stock return is common (0.3 %), but the
Istanbul stock exchange performed deviantly. In contrast, the LOF algorithm
has selected three days on which most stock indices got exceptional good returns
(average return of these days was 4.1 %, average of all days is less than 0.1 %).
Table 2 confirms the differences of the outliers found by SODA and the three
conventional algorithms.
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Table 2. Measurements of the two characteristics of singular outliers (see Sect. 3.2)
for the outliers selected by SODA, LOF, kthNN and HBOS on five data sets. Each
algorithm is allowed to pick 3 outliers and the values reported are averages over these
three outliers. The first measurement computes an outlier score (LOF) without the
discriminating feature. The second measurement computes the ratio of the LOF score
with all features and the LOF score without the discriminating feature. Singular out-
liers are characterized by a value close to 1 for measurement 1 and a large value for
measurement 2. We see that the outliers selected by SODA can be termed ‘singular
outliers’ and differ on these characteristics from the outliers found by conventional
outlier detection algorithms.

Measurement 1 - no outlier without discriminating feature: LOF−d

Data sets

Algorithm Marks Istanbul Wholesale Polish Algae

SODA 1.02 0.99 1.16 1.01 1.01

LOF 1.45 2.57 2.98 147.7 3.84

kthNN 1.42 2.56 3.69 147.7 4.20

HBOS 1.39 2.57 4.02 122.0 3.28

Measurement 2 - outlier with discriminating feature: LOFall
LOF−d

Data sets

Algorithm Marks Istanbul Wholesale Polish Algae

SODA 1.09 1.28 2.31 5.75 1.99

LOF 1.04 1.08 2.11 1.46 1.73

kthNN 1.02 1.04 1.60 1.46 1.27

HBOS 1.06 1.06 1.06 1.13 1.08

4.3 Wholesale Customers Data

The Wholesale Customers data set [1] contains the annual spending on six prod-
uct categories for 440 customers of a wholesaler in Portugal. These not stan-
dardized spending amounts were input for the algorithms. It is clear from the
parallel coordinates plots in Fig. 5 that the SODA algorithm selects customers
with average sales on all product categories, but one. The LOF algorithm selects
customers with exceptional high purchases on at least three product categories.

The statement that SODA picks out singular outliers is confirmed by looking
at the measurements of Table 2. However, some experts might be inclined to call
the red and/or pink line of the LOF algorithm singular outliers as well. See
Sect. 5 for a discussion of this aspect.

4.4 Polish Bankruptcy Data

The Polish Bankruptcy data contains financial information of Polish companies
and was originally used to model the probability of a bankruptcy [10]. We took
the ‘five year set’ and standardized the ratios. We selected five financial ratios
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that correspond to major economic indicators of the company: X2 (total liabili-
ties/total assets), X3 (working capital/total assets), X7 (Earnings Before Interest
and Taxes/total assets), X9 (sales/total assets), and X10 (equity/total assets).
After removing observations with missing values, 5907 observations remain.

Outliers found by SODA

Min

Max

Fresh Milk Grocery Frozen Det_Paper Delic

Outliers found by LOF algorithm

Min

Max

Fresh Milk Grocery Frozen Det_Paper Delic

Fig. 5. Parallel coordinates plot for the Wholesale Customers data set with the three
largest outliers highlighted. (Color figure online)

Outliers found by SODA

Min

Max

X2 X3 X7 X9 X10

Outliers found by LOF algorithm

Min

Max

X2 X3 X7 X9 X10

Fig. 6. Parallel coordinates plot for the Polish Bankruptcy data set with the three
largest outliers highlighted. (Color figure online)

Comparing the outliers found by SODA and LOF in the parallel coordinates
plots of Fig. 6, we see that the SODA outliers show more common behavior than
the LOF outliers. It is not clear from the figure whether the SODA outliers have
at least one anomalous value. The latter is confirmed by Table 2. The first mea-
surement shows an average LOF value of 1.01 for the SODA outliers, indicating
that the observations are not considered outliers without the discriminating fea-
ture. Simultaneously, measurement 2 shows that the average LOF score increases
by a factor of over 5 when the discriminating feature is added. However, if one
is interested in two-feature singular outliers, one may find the blue and pink line
of the LOF plot interesting. See Sect. 5 for a discussion on this aspect.
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4.5 Algae Data

The data set Algae, available via the UCI repository [7], comes from a water
quality study where samples were taken from sites on different European rivers of
a period of approximately one year. We used the (standardized) concentrations of
8 chemical substances from these samples as features. We exclude the additional
measures on different algae populations. After removing rows with missing data,
306 observations and 8 features remain.

The parallel coordinates plots of Fig. 7 show that the SODA outliers have one
chemical substance that has an unusual value. One of these outliers is picked
up by the LOF algorithm as well. The other two LOF outliers show unusual
values for three chemical characteristics. Table 2 confirms the on average different
nature of the outliers selected by SODA and the three conventional algorithms. If
one is interested in three-feature outliers, the blue and pink lines of the LOF plot
are interesting observations as well. See Sect. 5 for a discussion on this aspect.

Outliers found by SODA

Min

Max

mxPH mnO2 Cl NO3 NH4 oPO4 PO4 Chla

Outliers found by LOF algorithm

Min

Max

mxPH mnO2 Cl NO3 NH4 oPO4 PO4 Chla

Fig. 7. Parallel coordinates plot for the Algae Data with the three largest outliers
highlighted. (Color figure online)

5 Conclusion and Discussion

In this paper, we introduced the concept of a singular outlier and pointed to its
usefulness in the contexts of fraud detection, data quality and other areas. We
introduced an algorithm (SODA) to detect these outliers, based on the Local
Euclidean Manhattan Ratio (LEMR). The algorithm has been applied to five
publicly available data sets. The parallel coordinates plots as well as the results
shown in Table 2 confirm that the SODA algorithm is suited for finding singular
outliers.

Although Table 2 points out that the SODA algorithm finds observations that
better match the definition of singular outliers when one restricts oneself to one
discriminating feature, the parallel plots of the latter three data sets show that
there might be interesting outliers that have two discriminating features. These
observations may not get the highest outlier scores for SODA, despite the fact
that the deviations in the discriminating features may be large. When in such
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a situation, the SODA algorithm can be adapted to focus more on two-feature
singular outliers or to take the absolute value of the deviations into account.
This might be a fruitful aspect for further research.

Part of such research can be to adjust the Local Euclidean Manhattan Ratio.
The Euclidean and the Manhattan distances are based on the Lp norm. Other
ratios can be constructed by taking other values for p instead of 2 and 1.

Another interesting path for further research might be to view the detection
of singular outliers as an optimization problem where simultaneously attention
is given to maximize dissimilarity (discriminating feature) as well as maximizing
similarity (non-discriminating features).

Finally, singular outliers might be found with an algorithm with a lower time
complexity than SODA. The time complexity of the SODA algorithm is domi-
nated by finding the nearest neighbors of each observation. The nearest neighbors
component gives a local flavor to SODA that might be beneficial for data sets
that possess local structures (like separate clusters). However, for data sets that
do not display this property, comparison of an observation x to the global center
mglobal might be used. This reduces computational time considerably.
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Abstract. This work addresses the problem of efficiently and coher-
ently locating a gas source in a domestic environment with a mobile
robot, meaning efficiently the coverage of the shortest distance as pos-
sible and coherently the consideration of different gas sources explain-
ing the gas presence. The main contribution is the exploitation, for the
first time, of semantic relationships between the gases detected and the
objects present in the environment to face this challenging issue. Our
proposal also takes into account both the uncertainty inherent in the
gas classification and object recognition processes. These uncertainties
are combined through a probabilistic Bayesian framework to provide a
priority-ordered list of (previously observed) objects to check. Moreover
the proximity of the different candidates to the current robot location
is also considered by a cost function, which output is used for planning
the robot inspection path. We have conducted an initial demonstration
of the suitability of our gas source localization approach by simulating
this task within domestic environments for a variable number of objects,
and comparing it with an greedy approach.

Keywords: Mobile robotics · Semantics · Gas source localization
e-nose

1 Introduction

The fusion of different sensing modalities can empower service robots operating
in human environments (e.g. for elder care at homes or as assistants at offices, air-
ports or hospitals) with new abilities and the possibility to efficiently accomplish
complex tasks. With this aim, in this work we focus on the senses of vision and
olfaction, and face a challenging task: gas source localization, i.e. the finding of
the object releasing a particular smell. In this context, olfaction is understood
as the sensing of volatile chemical substances by means of an electronic nose
(e-nose) [1], while vision is interpreted as the perception of the environment
through a camera capturing light intensity [2,3].
c© Springer International Publishing AG, part of Springer Nature 2018
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Given the volatile nature of gases and the complex processes involved in
their dispersion (i.e. dominated by turbulent flows [4]), after the perception
of an unusual gas concentration it is necessary to carry out a search of the
object that is releasing it in the environment, process commonly referred as gas
source localization (GSL). For the case of domestic environments it includes the
location of methane or butane leaks from the home heating system, the pres-
ence of smoke, or unpleasant smells coming from spoiled food, the toilet, or
the pet sandbox, among others. An efficient localization of these gas sources
would permit the robot to act consequently and in time, for instance alerting a
human (e.g. notifying the presence of smoke from the oven) or suggesting differ-
ent actions to be carried out (e.g. replacing the pet sandbox).

GSL is usually addressed by mimicking animal behaviors through bio-inspired
algorithms, assuming the existence of a downwind gas plume (i.e. plume track-
ing) [5,6], or by exploiting other information sources like dispersion models or
windflow data [7,8]. However, most of these methods are prone to fail in human-
like environments due to the important assumptions they rely on (e.g. existence
of a gas plume, the predominance of laminar and uniform windflows, or the
absence of obstacles in the environment that can interfere with the gas disper-
sion). Thereby, their success heavily relies on how well the given algorithm adjust
itself to the environmental conditions, which determines the way in which gases
are dispersed. A way to overcome this issue is to employ artificial vision systems
to detect gas source candidates and inspect them, reducing the complexity of
the search process. For example, if the e-nose detects an abnormal concentration
of a gas classified as smoke, a visually recognized oven is a good candidate to
check, while a chair is not. This approach, not being novel, has only been superfi-
cially explored under very simple scenarios where the robot exploited knowledge
about the source physical characteristics to reduce the locations to search [9].
Yet, what is still needed is a principled way to set the nature of the objects and
their possible gas emissions –in other words, their semantics–, from which we
can infer what objects in the environment are prone to be the gas source.

Moreover, traditional GSL approaches work, in most cases, with gas classi-
fication systems that produce an exact outcome, for example, a detected smell
is smoke or not. However, the classification of gases is not extent of uncertainty
sources (e.g. the cross-sensitivity of gas sensors or the environmental conditions),
being mandatory their consideration for a coherent robot operation. For example,
an ambiguous gas classification result between smoke and spoiled food (prob-
ability of 0.55 vs. 0.45) could end up with the robot only searching for smoke
when indeed a dish with fish was forgotten in the kitchen counter. The same
holds for the uncertainty inherent to the object recognition process: an object
can be recognized as a heater with probability 0.60 or as a fan with 0.40, so it
must be also considered.

This work presents, to the best of our knowledge, the first attempt towards a
system performing an efficient and coherent gas source localization under uncer-
tainty exploiting semantics. For that, it is built and maintained a semantic rep-
resentation of the robot environment that provides the GSL task with valuable
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smoke:          0.7
Rotten_food: 0.3
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Ontology
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results

Semantic Gas Source Localization System

Includes:
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that can realease the
detected smells.

• Objects belonging to
that categories and their
associated uncertainty.

• Objects’ locations.
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obj15:  0.4
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Robot location

toObj15:  10.5m.
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toObj24:  5.6m.
toObj14:  8.3m.
toObj3 :  15.1m.

Distances

Fig. 1. Overview of the proposed Semantic Gas Source Localization System: from a
new gas observation with a detected gas until the generation of the navigation plan
for localizating the source. White boxes are processes, while blue shapes are gener-
ated/consumed data.

prior information (see Fig. 1). Concretely, an ontology [10] is used to encode the
semantic knowledge of the domain at hand (e.g. ovens can give off smoke with
probability Pa, cocked meal smell with probability Pb, and no smell with Pc), and
also to store information about previously perceived objects: their probability of
belonging to the considered categories (e.g. heater, cigarette, fish, etc.), and their
locations. In this work we assume that the robot workspace has been already
visually inspected and a number of objects have been recognized and codified
into the ontology. In this way, when a gas emission is perceived and classified
as belonging to a number of gas classes with their respective uncertainties, a
semantic request is submitted to the ontology which returns: the object cate-
gories that can release those gases, and the instances (objects) of that categories
already observed in the environment, also with their recognition uncertainty.
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A probabilistic Bayesian framework is then in charge of fusing this information
and assigning to each object (i.e. candidate) a probability of being the gas source.
Finally, a cost function is introduced to weight the probability of each candidate
by the distances from the current robot location to them, and a path planning
module processes its output to provide the navigation plan to be executed by
the robot.

A demonstration of the system suitability has been carried out within com-
plex simulated scenarios using GADEN [11]. The obtained results were promis-
ing, suggesting that our probabilistic approach is suitable for efficient gas source
localization within complex environments, such as domestic ones.

2 Related Work

Gas source localization strategies are many and varied [12]. In this section we
focus on two particular approaches: the fusion between the chemical data pro-
vided by the e-nose with vision systems in order to boost the GSL task efficiency,
and works that consider uncertainty during the search process.

The former approach enables robots to identify candidates from a distance,
thus dramatically diminishing the effective search space and greatly enhancing
the ability to locate an odor source. It must be noticed that opposed to vision,
which is a range sensing modality, most of the gas sensors are point-sampling
devices, measuring only the gas that is in contact with them. Despite the notable
advantages of considering vision in the GSL task, only very basic algorithms
have been proposed so far, most of them relying on strong assumptions about
the gas-source shape or color for the visual detection of candidates [9,13]. An
exception is the work proposed by Loutfi et al. [14], where the authors proposed
a symbolic reasoning technique for fusing vision and olfaction. However, focus
is placed on object recognition, where gas sensing is only employed for object
disambiguation, not to locate the source releasing the volatiles.

Related to works considering some type of uncertainty in the search process,
we can highlight some engineered plume-tracing strategies such as infotaxis [7], a
gradient-free method exploiting the expected entropy of future samples to guide
the robot search towards the gas source, probabilistic approaches based on parti-
cle filters [8,15], or strategies based on gas distribution mapping [16]. The latter
do not rely on the presence of a plume, neither on strong assumptions about the
environmental conditions, however, their limitation resides in the time necessary
to sweep the entire environment, and their bad scalability as the environment
enlarges.

3 The Semantic Gas Source Localization System

Figure 1 shows an overview of the processes and data involved in the proposed
system. In a nutshell, if an unusual gas concentration is detected (e.g. while the
robot is exploring the environment or while performing other non gas-related
tasks) (see Sect. 3.1), the Semantic Gas Source Localization (SGSL) System is
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triggered for detecting the object releasing that odor and acting consequently.
For that the system performs a semantic query to an ontology to get prior infor-
mation with different flavors (see Sect. 3.3), which is introduced into a proba-
bilistic framework that yields an ordered list of objects candidates according to
their probability of being the source (see Sect. 3.3). This list is the input to a cost
function, which is also feed with the distance from the robot current location
to the source candidates. A path planning algorithm exploits this function to
re-order the candidates list and produce a navigation plan to check them (see
Sect. 3.4). For checking if an object candidate is the gas source (process know
as validation), the robot will sample the air in the object’s proximity, measur-
ing concentration and carrying out a new gas classification. By comparing these
values with the ones that triggered the search, the robot is able to discern if the
object is or not the gas source it is looking for. The main components of the
SGLS system are described next.

3.1 Starting Point: Gas Detection and Classification

In this work we assume that an assistance robot deployed in a home environment
is equipped with an e-nose that is sampling the environment on a regular basis.
This implies that while the robot is performing its duty tasks (e.g. patrolling,
assistance, cleaning, etc.), it is also monitoring the gases present in the air.
When an abnormal gas concentration level is detected, that is, when the gas
concentration observed exceeds a predetermined threshold, the SGSL system
triggers the search.

Once the search has been triggered, and in order to determine which objects
in the environment are susceptible for releasing the observed gas, we carry out a
gas classification. As in many other disciplines, classification corresponds to the
process of determining which of a set of classes a new sample belongs. In this
work we account for the uncertainty in this process by considering probabilistic
classifiers. The output of such classifiers is not a class label, but a set of probabil-
ities representing the belief of the gas observation to belong to each considered
gas-class [17,18]. Therefore, any gas classifier giving as output a probability dis-
tribution over the set of classes can be employed, e.g. Support Vector Machines,
Naive Bayes (the one considered in this work), Decision Trees, etc.

3.2 Exploiting Semantic Knowledge: The Ontology

Once a gas has been detected and classified with a certain belief, e.g. 0.6 of
being smoke and 0.4 rotten food, the first step towards the localization of its
source is to obtain valuable prior information to assist the process. With prior
information in this context we mean: (i) knowledge about the categories of
objects that can release such gas, i.e. in the case of smoke and rotten food smells,
ovens, ashtrays or bins are candidates, and (ii) information regarding the objects
already detected in the environment which can belong to that categories. As
a reminder, we are assuming that the gas source is between a set of object
candidates previously recognized in a visual inspection of the robot workspace.
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Fig. 2. Excerpt of the ontology used in this work, showing part of the hierarchy of
encoded concepts, the definition of the concept Oven, and an example of object instance.

The chosen recognition method must be able to provide confidence values about
its results, and although this task is simulated in the experiments conducted in
this paper, we plan to use Conditional Random Fields (CRFs) [19] given their
high recognition rates and proved suitability to this end [20,21].

For codifying the previous information, which is clearly a form of Semantic
Knowledge (SK), we have resorted to an ontology [10]. An ontology is a prin-
cipled way to naturally represent and update SK about a domain of discourse,
employing for that a set of concepts arranged hierarchically, properties of that
concepts, and instances of them.

As an illustrative example, let us consider an excerpt of the ontology used in
this work, shown in Fig. 2. The root concept is Thing with two children: Feature
and World element, the latter establishing the elements that could be found in
the robot surroundings and the former their features, i.e. Size, Orientation,
and Smell. The elements can be Inert elements or Living beings, although
in this work we are interested in the first one, which is the parent of concepts
like Oven, Astray, Dishwasher or Bin. The concepts within this hierarchy are
defined by their properties, as it is shown in the same figure for the Oven case.
From that definition we can retrieve that ovens usually exhibit a medium or big
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size, that can release different smells: gas, rotten food, or smoke, and that they
are placed in kitchens.

This ontology is also populated with instances of concepts, whose in this case
are objects in the robot workspace previously detected to the SGSL process. The
bottom part of Fig. 2 shows an instance that, according to the output of an object
recognition method, could be an oven with belief 0.6 or a dishwasher with 0.4.
This is specified in the three first lines of the instance definition. The fourth
one tell us that the object has a medium size, and the next one that, at the
time of its detection, it did not release any smell. The sixth line expresses that
the object could release three different smells: gas, rotten food, or smoke, and
also their associated believes. By now, these beliefs are set uniformly, although
we are studying how to update them according to the robot experience in a
certain workspace. The last line stands for the object position (coordinates) in
the environment metric map.

This representation allows us to make semantic requests about the concepts
(concerning objects) that could release a certain smell, as well as the instances
of that concepts already detected. Notice that these instances come with uncer-
tainty measurements about their belonging to the posed concepts, while the
concepts that can give off that smell define an uniform probability distribution,
information that is probabilistically propagated by the framework in the next
section, along with the initial information about the detected gas.

3.3 Handling Uncertainty and Its Propagation: The Probabilistic
Framework

Our probabilistic Bayesian model for uncertainty propagation aims to, given the
gas classification results and the prior information from the ontology, provide
the probability for each candidate being the source. For that it considers four
random variables:

• Z is the gas observation (i.e. a measurement of the e-nose (zg)).
• G = {Gi, i = 1 : NG} models the gas class and takes values on the set of NG

possible gases.
• C = {Ci, i = 1 : NC} stands for the category of a candidate object, assigning

to it a value from the set of NC categories.
• S = {Oi, i = 1 : NO} stands for the gas source, taking values on the set of
NO objects perceived in the environment.

Thus, the probability of a certain candidate object oi being the gas source,
given a gas observation zg, is modeled as:

P (S = oi|Z = zg) =
NC∑

j=1

P (S = oi|Z = zg, Cj) P (Cj |Z = zg) (1)

P (Cj |Z = zg) =
NG∑

k=1

P (Cj |Z = zg, Gk) P (Gk|Z = zg)
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Such source probability is calculated by marginalizing first against the object
categories Cj , and second against the gas classes Gk. It allows us to model
the probability of each object in the environment of being the gas source
as the product of three conditional probability distributions. The first one,
P (S = oi|Z = zg, Cj), represents the probability of object i being the gas source
conditioned on both the gas observation and knowledge about the object cate-
gory of the gas source (e.g. bin, oven, toilet, etc.). Assuming independence with
the gas observation given the object category Cj , this probability can be defined
as the likelihood of the object belonging to that category (i.e. object recognition
probabilities), information provided by the ontology (recall line 3 in the bottom
part of Fig. 2).

The second probability distribution P (Cj |Z = zg, Gk), models the likelihood
of the source to belong to a certain category Cj conditioned on the gas obser-
vation and knowledge of the gas class Gk that has ben released. Again, we can
safely assume that this distribution is independent of the gas observation given
the gas class, computing its value from the semantic knowledge encoded in the
ontology about the object categories that can give off the gas Gk. For exam-
ple, if Gk = Smoke and the defined object categories that can release smoke are
Oven, Heater and Ashtray, then: P (COven|GSmoke) = P (CHeater|GSmoke) =
P (CAshtray|GSmoke) = 0.33, while for the rest of object categories it takes a
value of 0, e.g.P (CPet sandbox|GSmoke) = 0.

Finally, P (Gk|Z = zg) is interpreted as the probability of the gas release
belonging to gas of class Gk conditioned on the gas observation, which corre-
sponds to the output of the probabilistic gas classifier (recall Sect. 3.1). Given
the three described probability distributions, the computation of Eq. (1) can be
accomplished in short time, enabling a real time operation.

3.4 Giving Coherence to the Localization Process: The Path
Planning Algorithm

Once computed the probability of each object in the environment of being the
gas source, the robot must plan and inspect the different objects in order to
locate the one that is the gas source. For this step we rely on a path planning
module that in addition to the referred probabilities also takes into account the
distance between the current robot location and the objects. For doing that a
cost function is used:

L(oi) = − ln
(
P (S = oi|Z = zg)

)
distTo(oi) (2)

where distTo(oi) is the distance between the robot location and the candidate
object oi. This cost function models a trade off between source probability and
distance, giving lower values for objects with high probability and/or close to
the robot. On each iteration, the path planning module calculates these costs to
retrieve the best object to check ô through the optimization:

ô = argmin
oi, 1≤i≤NO

L(oi) (3)
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Gas Source

Gas Dispersion

(a) (b)

Dishwahser (0.55)
Oven (0.45)

Oven (0.6)
Dishwasher (0.4)

Vase (0.9)
Ashtray (0.1)

Heater (0.9)
Fan (0.1)

Pet_bed (0.7)
Pet_sandbox (0.3)

Puf (0.7)
Bin (0.3)

Ashtray (0.6)
Vase (0.4)

Bin (0.8)
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Pet_bet (0.3)

Vase (0.85)
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Ashtray (0.4)

Fan (0.45)
Heater (0.55)

Ashtray (0.75)
Vase (0.25)

Puf (0.5)
Bin (0.5) Fan (0.8)

Heater (0.2)

Fig. 3. Experimental setup. (a) 3D simulated environment composed of four rooms
and fifteen objects. Objects are shown as 3D colored boxes specifying their location in
the environment and their category probabilities. (b) Illustration of a gas dispersion
simulation within the environment using GADEN [11]. When the robot is exposed to
a gas concentration higher than a set threshold, the search is triggered to locate the
source. As can be seen, gas dispersion is chaotic and spreads over multiple rooms, which
implies that the robot may be far from the source when the search is triggered.

Once ô has been calculated, the robot checks if it is the gas source releasing
the gas through a process commonly referred as source validation. If it is, we are
done. If not, the object is removed from the list of candidates, and the optimiza-
tion in Eq. (3) is carried out again (since the distances from the robot to the
remaining candidates have changed), obtaining a new target candidate. Recall
that we are assuming that the gas source is among the objects already present
in our system, otherwise a more sophisticated search must be implemented for
example by performing object recognition along the search process to find new
candidates. We will explore that approach in a future work.

4 System Demonstration

This section presents a simulated experiment where a mobile robot equipped with
an e-nose must locate a gas emission source in a home environment (see Fig. 3).
For this scenario we consider 3 gas classes, namely: Smoke smell, Gas smell and
Rotten food smell, 11 object categories (Vase, Bin, Ashtray, Oven, Heater,
Dishwasher, Fan, Puf, Incense stick, Pet sandbox and Pet bed), and model
P (Cj |Z = zg, Gk) as an uniform probability distribution (see Table 1). Further-
more, we set up fifteen different objects in the environment, which we assume
have been previously detected by the robot with the probabilities shown in Fig. 3.
All this information is managed by the ontology by means of associations between
the objects, categories, gases, the robot and the environment itself.

For demonstration purposes we compare our approach with a deterministic
case where there is no uncertainty consideration neither in the gas classification,
nor in the object recognition. It must be noticed that this second approach
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Table 1. Conditional probabilities of each object category given the gas class being
released by the source: P (Cj |Gk). As can be seen, some categories do not release any of
the gas classes considered in the experiment (P (Cj |Gk) = 0), aspect to be exploited by
our system, together with the object recognition uncertainty, to locate the gas source.

Category Smoke smell Gas smell Rotten food smell

Vase

Bin 0.33

Ashtray 0.25

Oven 0.25 0.5 0.33

Heater 0.25 0.5

Dishwasher 0.33

Fan

Puf

Incense stick 0.25

Pet sandbox

Pet bed
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Fig. 4. Traveled distance (left) and number of objects visited (right) during the gas
source localization experiments for three different set of objects. In each case, the
average ± one standard deviation are plotted. As can be seen our approach improves
both magnitudes substantially, specially for a high number of objects.

will fail when the gas or the objects are misclassified (i.e.when uncertainty is
relevant), being necessary to check all the objects in the environment one by one
using only the distance between the robot and the objects to optimize the search.
Figure 4 shows the averaged distance traveled by the robot and the number of
objects checked before locating the gas source for three setups with different
number of objects: 7, 11 and 15. In order to obtain statistically representative
results, for each case we run the experiment 1000 times varying (i) the initial
robot pose, randomly selecting a pose from within the environment, (ii) the gas
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source, randomly selecting an object to be the gas source from the list of objects,
and (iii) the class of the released gas, generating a gas dispersion in accordance
with the types of gases the selected source can emit (see Table 1). As can be
seen our approach improves both magnitudes considerably, not only reducing
the total distance traveled (which is directly related to the exploration time),
but also reduces the number of objects visited before locating the source. The
latter is important since the validation of a gas source is also an expensive task
in terms of time. Furthermore, it can be noticed that the improvement seems
to increase with the number of considered objects, something reasonable when
comparing with the greedy approach that visits all the objects one by one.

5 Discussion

This work contributes a gas source localization system for mobile robots that
aims to find the object releasing a smell efficiently and coherently by exploiting
semantic information. On the one hand, it is efficient in the way that selects a
set of candidate objects to be the source, and checks them according to their
source probability and their distance from the current robot location. On the
other hand, its coherence comes from the consideration of the uncertainty com-
ing from both the gas classification and object recognition processes, as well
as semantic information providing valuable prior information, like the possible
smells that a type of object can release. The system relies on an ontology to nat-
urally encode this prior knowledge in a principled way, and also serves to codify
information about the objects already detected in previous explorations of the
robot workspace, including the belief concerning their classification as belonging
to a certain object category.

We have proposed a probabilistic Bayesian framework to fuse such informa-
tion, and implemented a simple cost function to derive a path planning algorithm
that completes the localization system. The suitability of our approach has been
demonstrated in a simulated home-like scenario with multiple objects and with
realistic uncertainties. Comparison with a greedy approach based only on dis-
tance to the objects has been provided, suggesting that the consideration of
semantics and uncertainty represents an interesting approach for tackling this
complex problem.

The proposed system has significant room to explore. First of all, experiments
in real environments must be carried out in order to find possible limitations and
face them. We also plan to replace the simulated object recognition system by
one based on Conditional Random Fields. Another certainly interesting point is
how to update the beliefs about the smells of objects with the robot experience
in a certain environment, which could further improve the search efficiency.
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Abstract. In this paper, an alternative view on measurement of data
quality is proposed. Current procedures for data quality measurement
provide information about the extent to which data misrepresent real-
ity. These procedures are descriptive in the sense that they provide us
numerical information about the state of data. In many cases, this infor-
mation is not sufficient to know whether data is fit for the task it was
meant for. To bridge that gap, we propose a procedure that measures
the operational characteristics of data. In this paper, we devise such a
procedure by measuring the cost it takes to make data fit for use. We lay
out the basics of this procedure and then provide more details on two
essential components: tasks and transformation functions.

Keywords: Data quality · Measurement · Cost

1 Introduction

Since the proposal of the relational model for databases in 1970, many new areas
of research have been developed. One of them is the field of data quality, that
emerged around 1995 [25] as a direct consequence of the successful commercial-
isation of RDBMSs. It was recognized that, due to the versatile possibilities of
these storage systems, the term “data quality” had surpassed the simple con-
cept of accuracy. From the early stage, research of data quality has been focus-
ing intensively on the “multi-dimensionality” [23,25,26] of the concept “qual-
ity”, leading to dimensions like correctness, consistency, currency, reliability and
many more. Unfortunately, this focus has not aided much in the development
of formally well-defined measurement procedures for data quality. It has been
a historical misconception that dimensions necessarily treat different aspects of
data quality. For example, when we closely consider the dimensions previously
listed, it becomes apparent that they all try to formulate an answer to the same
question: “Is data correct or not?”. The true difference between these dimensions
is that they approach this question in a different manner. With consistency, we
consider a set of rules and search for violations of these rules in order to con-
clude that some data are wrong. With currency and reliability, there is a factor of
uncertainty involved with answering the question. If data gets older, the proba-
bility that data are still correct may drop whereas with reliability, the uncertainty
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 855, pp. 517–528, 2018.
https://doi.org/10.1007/978-3-319-91479-4_43
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stems from the provider of the data, who might not be trustworthy. Because of
the blurred perception of the true nature of dimensions, well understood insights
in measurement of data quality only emerged very recently. In this paper, we
continue this trend by investigating a formal approach where quality of data is
assessed in terms of the cost required to make data fit for use.

The remainder of this paper is structured as follows. In Sect. 2, we provide
an overview of the state-of-the-art concerning procedures for measurement of
data quality. We thereby focus on procedures with an ordinal nature and show
that these can be jointly represented in one framework. In Sect. 3, we introduce a
novel procedure for measurement of data quality that fundamentally differs from
the existing ones. Whereas existing procedures provide descriptive information
about data in light of the real world it describes, the new procedure aims at
measuring operational characteristics of data in light of some task(s) that must
be completed. We propose to express this operational characteristics in terms
of the cost required to make data fit for use. We point out that this cost does
not align with utility as it is assumed up front that we want to use data for
the task, but cannot do so because there is some quality degradation that holds
us back. We detail both the nature of tasks and transformation functions that
can make data fit for use. Finally, in Sect. 4, we summarize the most important
contributions of this paper.

2 Related Work

Before we introduce a novel approach for measurement of data quality, we first
present an overview of current methodologies handling this problem. In this
overview, we limit ourselves to those methods that utilize a clear measurement
procedure in terms of Representational Measurement Theory [19]. Methods that
remain vague as to how numbers are assigned to data items in order to express
quality, are left out of the comparison here.

In general, data are created when some observations are made concerning
objects or events in the real world, which are registered in a data storage system.
As such, the creation of data involves two procedures: an observation procedure
and a registration procedure. In general, it is reasonable to assume that none of
these procedures are perfect, which may lead to the situation where the outcome
of the registration (the data) is not a true representation of reality. The quality
of data reflects the extent to which this is the case.

When trying to devise a measurement procedure for data quality, the first
decision to be taken is about the kind of information that must be obtained
regarding the quality of data. More specifically, it must be decided how the
extent to which data reflects reality must be expressed. Roughly speaking, there
are two options. The first option is to accept Boolean information, meaning that
we want to know whether data reflects reality, or not. The second option is to
require more granular information, which means that we want to obtain some
notion on the extent of deviation from reality.

Once this choice is made, we must decide which kind of measurement we
wish to perform to obtain information. The type of measurement usually aligns
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Type of  Information

Aspect

All dimensions Correctness
Currency
Reliability

GRANULAR BOOLEAN

Accuracy

Aspect

Consistency
Completeness
Schema Normality

DISTANCE COUNTS UNCERTAINTY RULES

-measurement

Fig. 1. Different procedures for measurement of Data Quality

with a certain aspect of quality that we want to account for. In case we want
granular information, the sole aspect that is considered in literature is a notion
of distance between data and reality. The main dimension for which the strategy
applies, is accuracy [13] (Fig. 1).

When considering Boolean information, literature is more rich when it comes
to its various aspects. The simplest methods adopt a counting procedure where
artefacts are counted across a set of data, yielding an absolute scale for data qual-
ity. The counting procedure has been somehow formalized in [22], but has been
applied in numerous cases [7,8,11,16,21,23]. This procedure is the most simple
of measurement procedures and can be applied to virtually any dimension that
relies on an observable characteristic of the data. More recently, authors have
been considering the case where some characteristics are not easily observed. In
that scenario, uncertainty about these characteristics provides a way to express
data quality [8,17,18]. Such models are very suitable for measuring, for exam-
ple, reliability (uncertainty by lack of trust) or currency (uncertainty by age).
Usually, these procedures yield a ratio scale, although some uncertainty theories
(like possibility theory) might lead to an ordinal scale. Finally, there are also
procedures that rely on a set of rules to judge upon the quality of data and
these procedures induce ordinal information. The rule-based approach finds its
origin in the seminal Fellegi-Holt model, in which two categories of edit rules are
distinguished [9]. Since their model was published, many forms of edit rules have
been proposed. Examples include, among others, functional dependencies [15],
conditional functional dependencies [2], denial constraints [5], inclusion depen-
dencies [1] and regular expressions [4].

Interestingly, it has been shown recently that the mentioned aspects of
Boolean information can be represented in a single framework [3]. In this frame-
work, one considers a set of predicates P and a capacity function C. The latter is
a function that maps the power set of P onto a totally ordered, finite set of qual-
ity levels S. The quality of a data item d is then the capacity that corresponds
to the set of predicates for which d passes. Quality of data is therefore expressed
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as an element of S and the procedure yields an ordinal scale. When the outcome
of one or more predicates is uncertain, we can not be certain of the quality of
d. In that case, uncertainty about the outcome of predicates can be propagated
and we obtain a distribution over S. The procedures for measurement with a
Boolean nature can be cast to a (P, C,S)-structure as illustrated in Table 1.

Table 1. Different measurement procedures with a Boolean nature represented as
(P, C, S)-structure.

P S Predicate uncertainty

Counting {p} {0, 1} No

Uncertainty {p} {F, T} Yes

Edit rules {p1, ..., pn} {s1, ..., sk} No

The fact that all procedures with a Boolean nature can be represented in
a common framework, allows us to reason about them in more general terms.
More specifically, in the general case, data quality is measured by establishing
a suitable structure (P, C,S) and information comes from either measured dif-
ferentiations in quality in terms of levels from S, or from an uncertainty model.
Essentially, all procedures that can be derived from the (P, C,S)-structure are
always descriptive with respect to the data in the sense that they provide us
numerical information about the correspondence of data and reality. In this
paper, we want to introduce a novel way of looking at quality in the sense that
we want to measure the extent to which a certain quality loss is stopping us
from doing something. The notion of “doing something” is understood here as
the completion of a well-defined task. We propose to assess quality by not only
looking at the correspondence between data and reality, but also at the inability
to use data for this task.

3 Measurement of Data Quality as Inverted Cost

In this section, we step away from descriptive measurements and move in the
direction of operational measurements. We start from the notion of “fitness for
use” installed by Wang and Strong in [26], but we propose a fundamentally
different way of measuring “fitness”. Traditional techniques measure the quality
of data by looking for data artefacts using some knowledge base (i.e., a set
of rules or an uncertainty model). Our main argument is that a quantitative
assessment of such violations is not always very informative in an operational
setting. Imagine a scenario in which there are many observed artefacts in the
data, but we have a way (automatically or manually) to efficiently repair these
artefacts. In this scenario, the observed issues are not stopping us from using the
data and this justifies the question whether we should care about them. Following
this line of thought, we propose to assess the quality of data by measuring the
“hardness” of preparing the data for completion of a task.
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3.1 The Basic Framework

In order to provide a generic theory, we do not initiate from a specific data model,
but rather reason about data in simple terms of a set of data items D ⊆ D, where
D is the domain of interest. In order to emphasize the fact that data resources
are usually limited, we assume D to be finite. Let us now focus on the problem of
measuring quality of elements in D. Rather than measuring descriptive aspects
of d ∈ D, we want to measure the extent to which elements from D can serve
their purpose. Therefore, we consider a set of tasks T = {t1, ..., tn} in such a way
that each task t ∈ T relies on elements from D. In this setting, we can define a
degradation of quality as any inability to complete some t ∈ T . In other words,
d ∈ D is of low quality if, for some reason, we cannot use it to complete some
t ∈ T . In order to present this line of thought more formally, we define a decision
function and a transformation function below.

Definition 1 (Decision function). Let D be a universe of discourse for data
and T a set of tasks. A decision function is defined by:

σ : D × T → B (1)

where B = {T, F} is the set of Boolean truth values. For any d ∈ D and for
any t ∈ T , σ(d, t) = T indicates that task t can be executed with d as input and
σ(d, t) = F indicates that this is not the case.

Definition 2 (Transformation function). Let D be a universe of discourse
for data and T a set of tasks. A transformation function is defined by:

θ : D → D (2)

In simple terms, a decision function determines whether data d ∈ D can be used
to complete a task t. Note that, for the sake of simplicity, we assume that each
task relies on one data item, but this can be generalized easily. If there is no
d ∈ D such that σ(d, t) = T , we can try to make elements of D fit for use. A
transformation function serves to alter d ∈ D in such a way that θ(d) is better
fit for some task t ∈ T than d. Note that this does not imply necessarily that
σ(θ(d), t) = T . The improvement comes from a reduction in cost, as we explain
in the following. More precisely, each transformation is assigned a positive cost
and therefore comes with a cost function which is defined by:

Cθ : D → R≥0. (3)

The identity transformation is denoted as θ1 and satisfies θ1(d) = d, which
implies that Cθ1(d) = 0. With a set of transformations Θ = {θ1, ..., θk} at our
disposal, the cost of utilizing d for task t ∈ T is given by:

C (d, t) = min
{θ∈Θ|σ(θ(d),t)}

Cθ (d) . (4)
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The above equation allows us to assign a cost to each data item in light of task t
for which it ought to be used and with respect to some transformations. If data
can not be transformed to complete t ∈ T , then by convention we say that:

C (d, t) = +∞. (5)

A [0, 1]-quality indicator, if desired for some purpose like visualisation, can
be derived from these costs by means of a quality function.

Definition 3 (Quality function). Let D ⊆ D be a set of available data, T a
set of tasks and Θ a set of transformations such that θ1 ∈ Θ. A quality function
for a task t ∈ T is defined by:

Qt : D → [0, 1] : d �→ I (C (d, t)) (6)

where I : R≥0 → [0, 1] is decreasing and satisfies I(0) = 1.

In words, a quality function maps a cost to a number in the unit interval in a
decreasing way. Some candidate functions for I are I1(x) = 10−x·α, I2(x) =
exp (−x · α) and I3(x) = 1

1+x·α . Hereby, α is a positive real number that plays
the role of a shape parameter. Note that I1 and I2 are basically variations of
the same family. It is easily verified that all of these functions are continuous,
decreasing and that they satisfy the boundary condition. We point out a few
properties of these functions. For a fixed value of α, we have that:

∀x ∈ R≥0 : I1(x) ≤ I2(x) ≤ I3(x). (7)

For α = 0, we have that

∀x ∈ R≥0 : I1(x) = I2(x) = I3(x) = 1 (8)

which means that, for the considered quality functions, α = 0 models a situation
in which the cost to transform data is never perceived as degradation of quality.

In the following, additivity of costs will play an important role, which is why
it is interesting that:

I1 (x + y) = I1 (x) · I1 (y) (9)

from which it follows that:

log (I1 (x + y)) = log (I1 (x)) + log (I1 (y)) . (10)

Additivity of costs is thus transferred to log additivity in terms of quality levels.
A similar property holds for I2 if log is replaced by ln. In the presented frame-
work, we measure the quality of data inverse to the cost we must invest to make
those data usable. Hereby, there are two essential aspects we further characterize
in the following: (i) the set of tasks and (ii) the set of transformations.
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3.2 Characterization of Tasks

By considering a set of tasks, measurement of data quality becomes a procedure
that considers data in a specific setting. Therefore, we call this procedure opera-
tional. The measurement procedures described earlier do not have this property
and are therefore called descriptive. In [10], the distinction between internal pro-
cedures (without context) and external procedures (with context) is made in a
similar way. Because of the operational nature, it is tempting to suspect that
measurement of quality as an inverse of cost, is somehow equivalent to utility.
However, this is not the case. Utility theory deals with preferences and subjec-
tivity and its role in data quality measurement has been treated elsewhere [6–8].
In our approach, the inability to use some d ∈ D for a task t ∈ T is caused only
by the fact that d somehow misrepresents reality. Thus, there is a degradation
in representation of reality that stops us from executing t.

The assumption that d ∈ D is required for completion of t, is essential in
our reasoning. If we would consider graded completions of t, the problem of
devising a measurement procedure for data quality is shifted to a measurement
procedure for completion of t. We avoid this problem by considering a Boolean-
valued decision function (Definition 1). Note that any system where completion
of t is measured on an ordinal scale, can be transferred into the proposed system
by decomposing tasks into as many subtasks as there are levels of completion.
To illustrate this, suppose there is a task t for which there are three intuitive
grades of completion c1 ≤ c2 ≤ c3, then we can consider three subtasks t1, t2
and t3. For each of these subtasks, we can consider a Boolean-valued decision
function and the “complex” task is modelled by the set {t1, t2, t3} ⊆ T .

In order to get a notion of the applicability of our framework, we present two
concrete scenarios in which tasks that rely on data and are hampered by quality
degradations: query resolution and predictive modelling.

Query Resolution. In the first scenario, we consider D to be a database and T
a set of questions that need to be answered. In order to answer a question, a user
has to formulate a query q in some query language (e.g., sql, sparql, Cypher,
XPath or regular expressions as a degenerate case). Depending on the state of the
database, the construction of q may vary from easy to very difficult. There may
be different reasons why construction of q is difficult, but as mentioned before,
we focus here on misrepresentation of reality. Those misrepresentations may take
different forms. One apparent reason is that data are not properly structured,
making it difficult to fetch information from D. For example, if a column in
a relational database contains many cluttered data, we require extensive use of
advanced functions in the select clause in order to complete the query. Another
reason might be that certain types of databases are simply not fit for certain
types of queries. This is especially the case in the era of NoSQL databases.
Document stores are for example very efficient at retrieving all information about
a certain object in a single query, but perform bad in queries that involve many
relationships. This latter kind of queries is handled very efficiently by graph
databases.
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Predictive Modelling. In the second scenario, we consider D to be a collection
of data and t to be the construction of a predictive model with D as a training
set such that there is a certain requirement on the predictive accuracy of the
model. As mentioned in [20], application of data mining techniques typically
requires a series of additive costs to be invested in preprocessing before the
actual training method can be applied. In the context of predictive modelling, the
foremost studied data quality problem is completeness, which is usually solved
by imputation. However, noise and inconsistencies often pose a problem as well
[14]. The scenario of predictive modelling is particularly interesting because,
usually, learning methods will have a certain robustness against data quality
degradations. So it could be that, although we know that D is not a perfect
representation of reality, we accept it anyway to complete our task. Consequently,
the cost is zero and quality is perceived as perfect. This observation illustrates
the operational nature of the approach.

It should be clear from the both scenarios sketched above that the proposal
for operational measurements for data quality has no intention of rendering other
approaches irrelevant. On the contrary, the cost that we are willing to pay to
transform the data will in many cases depend on the outcome of the descriptive
measurements listed above. The proposal of cost calculation and operational
measurements should be regarded as an intent to better balance the costs and
the gains of improving data.

3.3 Characterization of Transformations

In this section, we focus on the set of transformations and their cost functions.
We consider again a set of transformations Θ = {θ1, ..., θk} and it is assumed
that θ1 ∈ Θ. We first show that, for a set D and some set Θ, we can derive other
data and the entire set of producible data items gives rise to a partial order. To
see this, we first note that θ1 has cost zero and is always present. Production
is thus reflexive. Second, we argued before that each transformation modifies
data in such a way that it becomes more suitable for completion of some task. A
justification for this is the economic observation that each transformation comes
with a non-negative cost. In light of Eq. (4), a transformation that degrades d
for all tasks, will never contribute to the minimal cost. Such transformations are
therefore irrelevant in our cost calculations and can therefore be ignored. From
that however, it follows that:

θ ∈ Θ ⇒ θ−1 /∈ Θ. (11)

In other words, if θ improves quality of d, then the inverse transformation, pro-
vided that it exists, will decrease quality and can therefore be left out Θ. It
follows that production is anti-symmetric. Finally, it is often infeasible and even
undesirable that Θ contains all necessary transformations directly. Rather, we
want to consider compositions of transformations in Θ.
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Definition 4 (Composed transformation function). For a set of transfor-
mation functions Θ = {θ1, ..., θk}, a composed transformation θ∗ is a transfor-
mation function for which we have:

θ∗ = θ(1) ◦ ... ◦ θ(m) (12)

where each θ(i) ∈ Θ and where ◦ is the usual functional composition operator.

We can see that any θi ∈ Θ can be composed from Θ and that θ1 is a neutral
element of the composition operator ◦ because θ ◦ θ1 = θ1 ◦ θ = θ. The cost of a
composed transformation θ∗ = θ(1) ◦ ... ◦ θ(m) is calculated by:

∀d ∈ D : Cθ∗(d) =
m−1∑

i=0

Cθ(m−i) (θ∗
i (d)) (13)

where θ∗
i is a composed transformation θ(m−i+1)◦...◦θ(m) if i > 0 and θ1 if i = 0.

From the above, we find that for any D ⊂ D and for any Θ, we can consider an
acyclic, directed graph G where the set of nodes N(G) satisfies D ⊆ N(G) ⊂ D,
the set of edges E(G) satisfies E(G) ⊆ D × D and

∀(d, d′) ∈ E(G) : d �= d′ ∧ ∃θ ∈ Θ : θ(d) = d′ (14)

In this graph representation, a data item d′ ∈ D satisfies d ∈ N(G) if there
exists some composed transformation that transforms some d ∈ D into d′. The
set of all data we can produce corresponds to those nodes that are reachable
from any d ∈ D and therefore, the total set of data items that can be produced
to complete tasks T , takes the structure of a partial order. This is illustrated in
Fig. 2, where D = {d1} and Θ = {θ1, ..., θ4}.

Fig. 2. Example partial order of data items that can be produced from D = {d1} via
transformations {θ1, ..., θ4}.

From this graph structure, it can be deduced that, in general, we will be able
to complete more tasks if N(G) is larger. To obtain this, we could consider more
data in D, but this is usually difficult. Instead, we can also make N(G) larger
by considering more atomic transformations. Transformations are atomic if they
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can not be logically decomposed into other transformations. If we consider Θ to
be as atomic as possible, we can always construct composed transformations and
we can produce more data items. To conclude this section, we list some typical
characteristics of transformations. A deeper study of these characteristics lies
outside the scope of this paper and is deemed as future work.

– Automation. We can distinguish between two important categories of trans-
formations: automated transformations and manual transformations. For
automated transformations, we assume that there is some algorithm we can
apply to D to improve its quality. Examples of these transformations include
standardization, resolution of inconsistencies, repair algorithms, imputation
techniques and fusion algorithms. With automated transformations, the main
factor to calculate cost is the computational complexity of the algorithm.
Automated transformations are always preferable, but not always applicable.
By definition, a degradation of quality is a misrepresentation of reality. Hence,
some quality improvement steps require knowledge of reality, which usually
implies manual supervision. This gives rise to manual transformations, which
tend to come with a higher cost, but are sometimes unavoidable.

– Uncertainty of costs. So far, we have assumed that the cost of a trans-
formation is deterministic in terms of d. The fact that cost depends on d, is
fairly straightforward. For example, in the case of automated transformations,
the computational complexity usually depends on d in some way (i.e., linear,
polynomial, exponential...). However, if we think of manual transformations,
it might not be feasible to assume that the cost of a transformation is fixed
for a given d. Experience and work load are two examples that can influence
the cost of manual transformations. A more reasonable assumption would be
to assume that the cost of a transformation is inherently uncertain. Instead
of a deterministic cost, we consider a belief function (e.g., a probability distri-
bution) over the domain of costs R≥0 to model this uncertainty. In terms of
the graph G, the total cost is then usually calculated in terms of the expected
cost of a transformation [12,24].

– Limited resources. Another assumption that we have made so far, is that
each transformation is an unlimited resource. More precisely, the cost of each
transformation depends only on d and not on other factors such as the num-
ber of times the transformation is utilized at the same time. Under this
assumption, the graph representation G where nodes represent data items
and edges represent transformations, can be stripped from all paths that have
sub-optimal cost. To illustrate this, consider the example in Fig. 2 and suppose
that the cost of applying θ4 is higher than the sum of the cost of θ1 and the
cost of θ2. If transformations are unlimited resources, there is no reason why
we should ever consider θ4. However, for manual transformations, the assump-
tion of unlimited resources is infeasible and a more complex cost model that
accounts for other factors than d, is required.
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4 Conclusion

In this paper, we proposed a fundamentally novel procedure for measurement
of data quality. Whereas current procedures aim at measuring aspects of data
with respect to the real world it describes, the new procedure measures the cost
it takes to make data fit for use for some task. We have introduced the basics of
this framework and detailed on the characteristics of tasks and transformation
functions.
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Abstract. Quality of data is often measured by counting artifacts.
While this procedure is very simple and applicable to many different
types of artifacts like errors, inconsistencies and missing values, counts
do not differentiate between different distributions of data artifacts. A
possible solution is to add a randomness measure to indicate how ran-
domly data artifacts are distributed. It has been proposed to calculate
randomness by means of the Lempel-Ziv complexity algorithm, this app-
roach comes with some demerits. Most importantly, the Lempel-Ziv app-
roach assumes that there is some implicit order among data objects and
the measured randomness depends on this order. To overcome this prob-
lem, a new method is proposed which measures randomness proportion-
ate to the average amount of bits needed to compress the bit matrix
matching the artifacts in a database relation by using unary coding. It
is shown that this method has several interesting properties that align
the proposed measurement procedure with the intuitive perception of
randomness.

Keywords: Data quality · Randomness · Unary codes

1 Introduction

With the enormous increase in data storage capabilities and the use of data in
several applications, assessment of the quality of data is increasingly gaining
importance. Although it is easy to have an intuitive notion of what data qual-
ity is, many definitions of the concept exist [1,20,22]. Because of this diverse
set of definitions, it is not easy to propose one single measurement procedure
[1,2,10,12,21]. However, a general trend that can be seen among the different
approaches is that many of them rely on simple counting procedures of basic
artifacts. A basic artifact is hereby defined as a low-level degradation of data.
The advantages of counting procedures are that they are simple, can be applied
in virtually any case and can easily be aggregated. In many approaches, aggre-
gation is implemented by averaging the counts into an error rate [15].

In this paper, basic artifacts are introduced at the level of attribute values
in a database relation and the error rate is defined as the relative number of
attribute values where an error occurs. This rate is extended by a measure of
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randomness to indicate how randomly data artifacts are distributed, which has
an impact on the amount of work to repair the relation. A measure of randomness
is already introduced in [8] where it is calculated by using the Lempel-Ziv (LZ)
complexity algorithm. Although the concept of adding a randomness measure
is useful, calculating a randomness measure with the LZ-complexity algorithm
gives rise to some problems. The goal of this paper is first, to illustrate the
disadvantages of the LZ approach and after that, to develop a new method to
measure randomness by means of binary code compression.

The remainder of the paper is structured as follows. In Sect. 2, it is pointed
out that the level of randomness in measured artifacts plays an important role
in root cause analysis. Therefore, contributions in the field of data quality mea-
surement and methodologies to calculate randomness as a complexity measure
are listed. In Sect. 3, the approach given in [8] is explained in detail and some
important drawbacks of the approach are described. After that, in Sect. 4, a novel
approach is proposed based on binary code compression and useful properties of
the approach are proven. In Sect. 5 some options for future work are listed and
finally, the concluding remarks are given in Sect. 6.

2 Related Work

Over the past decades, many measurement procedures in the field of data quality
are proposed. Besides that, many attempts have been made to formalize the sub-
jective concept of randomness. Before extending data quality measurement with
a randomness value, most important contributions in the field of data quality
assessment and randomness are introduced in the following.

Among all definitions of data quality, many of them deal with the multi-
dimensional quality model introduced by Wang et al. [27] and Redman [22]. This
multi-dimensional view led to the introduction of a broad range of measurement
procedures [1,5,6,10,20]. When it comes to fundamental procedures in terms of
Representational Measurement Theory [14], most procedures can be expressed
in terms of the measurement procedure presented in [2]. In this work, Bronselaer
et al. state formally that the highest possible quality can be described by means
of a set of predicates. By evaluating and combining those predicates, a given
capacity function maps the results to an ordinal scale to indicate a measure of
quality.

One of the reasons that measurements of quality are useful, is because they
can be used for application in root cause analysis [26,28]. An efficient increase in
quality can be guaranteed by eliminating the root causes of artifacts. Originated
to increase the quality of software [17], Haegemans et al. recently introduced
the idea of root cause analysis in data analysis. In [11], a theoretical framework
is proposed to acquire the causes of errors in manually acquired data. Besides
that, Haegemans et al. developed a new approach to visually represent objec-
tive data quality measurements [9]. The motivation behind this approach is that
aggregation of data quality measurements is not enough for root cause analysis
and that one needs information about many other aspects to assess data qual-
ity. One of the desired properties is that the information should indicate if the
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distribution of artifacts occurs randomly or not, because this could indicate a
common causality.

In order to measure randomness of a sequence, the Minimum Description
Length (MDL) principle due to Risannen [23] is considered, which states that
the best hypothesis on data is the one with minimal description size. This prin-
ciple overcomes the non-computability of the Kolmogorov complexity [13,18]
by considering codes to describe data. At the same time, it was adopted by
Solomonoff [25] and Chaitin [3] in their definitions of randomness and by Lem-
pel et al. in the derivation of the normalized Lempel-Ziv complexity [16]. The
motivation to mentally encode a sequence to judge the extent of its random-
ness is given in [7]. Their judgment is substantiated by the fact that strings of
maximum complexity must be patternless and therefore incompressible, other-
wise a pattern could have been used to reduce the description length [18]. This
insight is adopted in the remainder of the paper to develop a novel measure of
randomness.

3 Randomness of Data Artifacts

3.1 Lempel-Ziv Randomness

A simplified form of the procedure introduced in [2] comes down to counting
items that pass a single test. Because of the simplicity of the procedure, it can
be applied to any dimension of quality. However, it has been pointed out in [8]
that this measurement procedure does not differentiate between different distri-
butions of artifacts1 of data. The previous claim is advocated by the observation
that data sets with the same error rate may have different error distributions,
which, on its turn, has an impact on the complexity of improving the quality.
An example is given in Fig. 1 where data artifacts are presented by grey squares
and each of the three relations has an error rate of 0.2. In cases a and b, it takes
little effort to fix the artifacts. One may argue that a systematic failure in the
procedure that generates data of the fourth column is the root cause of artifacts
in case b. For these reasons, randomness of artifacts deserves a closer inspection.

The solution given in [8] is to include, besides the error rate, a measure for
the randomness of the artifact distribution in a database relation. This mea-
surement is calculated as follows: first, the cells where an artifact occurs are
identified and a 0 is assigned to every errorless cell and a 1 is assigned to every
cell where at least one error occurs. After that, all the rows of the relation are
concatenated into one bit string and finally, the normalized Lempel-Ziv complex-
ity [16] of this bit string is calculated which serves as a measurement value for
the randomness. The combination of the error rate and the randomness measure
is interpreted as a metric for the accuracy of a database relation.2 The prob-
lem with this approach is that the randomness measure depends on the order
1 The paper in questions deals with correctness of data, but we aim at a more general

approach here.
2 In [8], Fisher et al. also add a parameter indicating the probability distribution of

the errors. This is out of scope of this paper.
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(a) (b) (c)

Fig. 1. Three relations with the same error rate (0.2) but a different error distribution

of rows, whereas essentially the “ordering of rows is immaterial” [4]. Therefore,
equivalent representations of the same relation, may produce different outcomes
of the randomness measurement. A solution to this problem would be to define
a specific order on the rows of a relation. An example of such a row order is
to map every row of the binary matrix retrieved after the error detection phase
to its integer number and sort the rows in natural ordering as illustrated in
Fig. 2. By doing this, there is a unique randomness measure for every database
relation, but the downside is that a certain structure is still introduced in the
bit string by sorting. Besides that, there are certain other properties that the
Lempel-Ziv method fails to achieve. For example, it is not possible to derive a
relation between the randomness measure and a row/column addition. For those
reasons, a different method for measurement of randomness is advocated in the
following section.

0
520
2
64
292
8
128
20
256
3

Fig. 2. Reordering of the rows based on their integer value

4 Binary Code Compression

4.1 Method Description

As described in Sect. 3, the Minimum Description Length (MDL) principle [23] is
adopted by calculating the normalized Lempel-Ziv complexity of a bit string [16].
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However, in the following, a novel randomness measure is introduced that relies
on the MDL principle but makes use of unary codes. This alternative reveals
many interesting properties.

Consider a relational table R with n rows and k columns and assume that
a procedure to detect artifacts in the relation already exists. Following the app-
roach in [8], a binary n × k matrix B can be constructed where B[i, j] = 1
indicates that the ith row has an observed artifact for column j. Note that,
although an order of both rows and columns is implicitly assumed here, the
described approach is independent on the order. This is proved later. In matrix
B, each row represents a bit string bi of fixed length k. The set of all bit strings
of size k is denoted as B

k and for each b ∈ B
k, the number c (b) is defined as

the number of times b occurs in B. Considering the definition of B, each b ∈ B
k

corresponds to a certain combination of artifacts in R and the probability that
a specific combination appears in B is given by:

Pr[b] =
c (b)

n
. (1)

If it is assumed that artifacts are random, the distribution over all bit strings
occurring in the relation is expected to be uniform. Therefore, a possible app-
roach to measure randomness is to calculate the deviation of the distribution
under consideration from the uniform distribution. At first glance, this devia-
tion can be calculated by using a statistical test, but this approach causes some
problems. For example, for the Chi-squared test [19], it is difficult to guarantee
the sample size assumption as many combinations of artifacts tend to be rare.
In addition, if the considered data artifacts are difficult3 to measure, B is usu-
ally based on a small sample from R, yielding a small set of observations. It is
also often know upfront that the error distribution will deviate from the uniform
distribution, but a notion on which relations deviate more than others is desired.

For those reasons, the MDL principle is considered to measure randomness.
In simple words, the observed artifacts in R are deemed random if the set of bit
strings represented by B is hard to compress with a certain coding schema. To
represent the bit strings in B as efficient as possible, shorter codes are assigned
to bit strings with higher probability (or equivalently higher c (b)). The method
proposed here makes use of unary codes [24], which are a special type of variable-
length codes that are prefix-free and self-synchronizing. Unary coding represents
a positive integer n with n − 1 1-bits followed by a 0-bit. Therefore, the length
of a unary code for the integer n is n. Consider now the set of m unique bit
strings observed in B as U and denote this set as {u1, . . . ,um} where is assumed
without loss of generality that c (ui) ≥ c (ui+1) with c (ui) the number of times
ui appears in B. For every i ∈ {1, . . . , m}, map ui to i and encode i to retrieve
code word ci with unary coding. As a result, the expected length of a code word
required to encode a bit string from B with unary encoding, is equal to:

L(B) =
|U |∑

i=1

Pr[ui] · i. (2)

3 Determining that data is in error is difficult, while determining that it is missing is
easy.
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In what follows, randomness of artifacts in R is assessed as L(B). The rationale
of this measure is that, in the spirit of the MDL principle, artifacts in R are
more random if the corresponding bit matrix B is harder to compress, yielding a
higher expected length of codes. Unary codes are used because it turns out that
they posses a set of properties that make them very attractive for the intended
purpose.

4.2 Properties of L(B)

In the following, a series of properties of L(B) is given that align the proposed
procedure with the intuitive perception of randomness.

First, it is shown that, for a binary matrix B of a given relation R, the
corresponding L(B) has a lower and upper bound. These boundary values can
be useful when one would like to compare the randomness of two relations with
a different number of rows and/or columns to each other.

Property 1. The lower bound of L(B), denoted L (B), given a binary n × k
matrix B with n, k ≥ 1 is 1.

Proof. Given a binary n×k matrix B with n, k ≥ 1. To have minimum random-
ness, all rows in B are equal and only 1 bit is needed to encode this single bit
string u1. Because Pr[u1] = 1.0, the following applies:

L(B) =
|U |∑

i=1

Pr[ui] · i =
|U |∑

i=1

1.0 · 1 = 1. (3)

��
Property 2. The upper bound of L(B), denoted L (B), given a binary n × k
matrix B with n, k ≥ 1 is

1
n

·
(

q ·
(
2k

) · (
2k + 1

)

2
+

(
n mod 2k

) · ((
n mod 2k

)
+ 1

)

2

)
(4)

with
q =

⌊ n

2k
⌋
. (5)

Proof. Given a binary n × k binary matrix B with n, k ≥ 1 and q = � n
2k

�. In
total, when k is given, there are 2k possible bit strings. Since the goal is to have
maximum randomness, the distribution of bit strings appearing in B should be as
uniform as possible. Therefore, there are n mod 2k bit strings u1, . . . ,un mod 2k

that appear (q + 1) times and 2k − (
n mod 2k

)
bit strings u(n mod 2k)+1, . . . ,u2k

that appear q times in B. The expected length of the code used to compress a
bit string in binary matrix B is then equal to
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L(B) =
|U |∑

i=1

Pr[ui] · i

=
(q + 1)

n
·
⎛

⎝
n mod 2k∑

i=1

i

⎞

⎠ +
q

n
·
⎛

⎝
2k∑

i=1+(n mod 2k)

i

⎞

⎠

=
1
n

·
((

n mod 2k
) · ((

n mod 2k
)

+ 1
)

2
+ q ·

(
2k · (

2k + 1
)

2

))

(6)

which is equal to Eq. (4). ��
It should be noted that the probability that the measure reaches its upper

bound is higher when the number of columns is high. The probability that two
rows are the same in a binary n × k matrix is 1 − ( n!

2kn ∗ (
2k

n

)
) which decreases

exponentially with k. Therefore, the proposed measure is less useful when a
relation has a high number of columns.

Next, it is shown that L(B) is invariant to the order of rows and/or columns
of a relation in a database. This is summarized in the following Theorem.

Theorem 1. Let B and B′ be two binary n × k matrices with n, k ≥ 1. If B′ is
a row and/or column permutation of B, then L(B) = L(B′).

Proof. Given a random binary n × k matrix B with n, k ≥ 1 for which L(B) is
the expected length of a code word needed to compress a bit string of B.

1. Reordering of the rows of B matches the bijective function X : B 	−→ B′ with
B′ consisting of a permutation on the order of the bit strings appearing in B.
Therefore the number of times every bit string appears in B′ will be the same
as the number of times every bit string appears in B and thus L(B) = L (B′).

2. Reordering of the columns of B matches the bijective function X : B 	−→ B′

with
∀i ∈ {1, . . . , n} : b′

i = σ(bi). (7)
and σ a permutation function which is the same as the permutation function
used to reorder the columns. The result of this is that there are still m′ = m
unique bit strings u1, . . . ,um in B′ with

∀i ∈ {1, . . . , m} : c (ui) = c (u′
i) . (8)

and thus L(B) = L (B′).

��
Next, the impact of a changing R on L(B) is studied. From this point of view,

there are two important properties that adhere to the intuition of randomness.
The first property deals with the change in randomness when a row is added to R.
More specifically, if a new row is added to R and the corresponding code for the
corresponding new row in B has a size above (resp., below) the previous expected
size, then randomness increases (resp., decreases). This result is summarized in
the following Theorem.
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Theorem 2. Given a binary n×k matrix B with n, k ≥ 1 consisting of m unique
bit strings u1, . . . ,um and with randomness measure L(B). If a new row is added
to B with a code word of length j where j ∈ {1, . . . , m + 1}, the randomness will
increase (resp., decrease) if and only if L(B) ≤ j (resp., L(B) ≥ j).

Proof. Given a binary n × k matrix B with n, k ≥ 1 consisting of m unique bit
strings u1, . . . ,um with frequencies c (u1) , . . . , c (um) and randomness measure
L(B) and a binary (n + 1)×k matrix B′ with n, k ≥ 1 and randomness measure
L (B′) consisting of n same rows as B. Then

L(B) ≤ L (B′)

↔ 1
n

·
|U |∑

i=1

i · c (ui) ≤ 1
n + 1

·
⎛

⎝
|U |∑

i=1

i · c (ui) + j

⎞

⎠

↔ 1
n · (n + 1)

·
|U |∑

i=1

i · c (ui) ≤ j

n + 1

↔ 1
n

·
|U |∑

i=1

i · c (ui) ≤ j ↔ L(B) ≤ j

(9)

It should be taken into account that adding a row can change the frequencies
and therefore the order of the different bit strings. This happens only when,
before the addition, bit strings ui and ui+1 appear equally often and a row with
bit string ui+1 is added. In this case, both bit strings swap positions in the order
and the result still holds. ��

Next, the fact that adding a column consisting of all 0-bits or all 1-bits does
not change the measure of randomness is shown. This result is summarized in
Theorem 3.

Theorem 3. Given a binary n × k matrix B with n, k ≥ 1 consisting of m
unique bit strings u1, . . . ,um. For a binary n × (k + 1) matrix B′ derived from
B by adding a column of all 0-bits or all 1-bits, L (B′) = L(B) applies.

Proof. Given a binary n × k matrix B with n, k ≥ 1 consisting of m unique bit
strings u1, . . . ,um and randomness measure L(B) and a binary n× (k + 1) matrix
B′ with n, k ≥ 1 and randomness measure L (B′) where column k+1 only consists
of 0-bits and the other k columns are the same as in B. The set of unique bit strings
U ′ of B′ will contain all the bit strings contained in the set of unique bit string U of
B with a 0-bit added at the end. Therefore, m = m′ and as a result following from
the definition of the randomness measure, L(B) = L(B′). ��

Theorem 3 is again in line with intuition. If a column is added to R that
contains no errors or only errors (e.g., all null values), then this new column
is systematic when it comes to artifacts. It is expected that it has no impact on
the randomness and this is indeed the case with L(B). A corollary of Theorem 3
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is that, any column of B in which all bits are equal, has no impact on L(B).
Theorem 4 shows that the randomness measure is not influenced by the absolute
number of times every bit string appears in B when the relative number of times
remains the same. In other words, the measure L(B) is invariant to scaling the
counts of bit strings in B with a fixed scale factor.

Theorem 4. The randomness measure L(B) of a binary n × k matrix B with
n, k ≥ 1 is scale invariant.

Proof. Follows immediately by noting that scaling counts does not change fre-
quencies. ��

As mentioned before, it is intuitively expected that randomness is maximized
when all bit strings in B have equal probability of occurring. Put differently,
randomness is maximized if Pr[u] has a uniform distribution. It is now fairly
easy to see how L(B) behaves in this case. For m unique bit strings in B with
equal probability, it applies that:

∀i ∈ {1, ...,m} : Pr[ui] =
1
m

(10)

from which it follows that

L(B) =
1
m

m∑

i=1

i =
m + 1

2
. (11)

From this result, it is possible to conclude that in case the bit strings in B
have a uniform distribution, the expected length of a code word is precisely
the average of the longest (length m) and shortest (length 1) code word. This
simple expression allows to analyze randomness under the assumption of uniform
distributions of (combinations of) artifacts in R. This analysis can be made for a
specific scenario that might occur in practice. For example, consider the case of
single column artifacts only, meaning that a row contains an artifact in exactly
one column or it contains no artifacts at all. In that case, m = k + 1 and
L(B) = (k/2) + 1. Now, it is possible to consider, step by step, more columns
that are in error at the same time. For a relation with k columns, the number
of possible combinations of i ≤ k artifacts is given by

(
k
i

)
. When those terms

are added for increasing i, the values of L(B) are retrieved in case of uniform
distributions, but under certain structural constraints. This analysis gives an
idea of the worst-case scenario of quasi-equal probabilities for all ui. Opposed to
that, the best-case scenario for m different bit strings in B is the one where u1

occurs maximally (n − m + 1 times) and all other ui occur only once. So what
happens in between? To answer that question, the last important result of this
paper is summarized in the following Theorem.

Theorem 5. Let B and B′ be two binary n × k matrices with n, k ≥ 1 such
that B has unique bit strings u1, . . . ,um with randomness measure L(B) and B′

has unique bit strings u′
1, . . . ,u

′
m with randomness measure L (B′). If Pr[ui] is

stochastic dominant over Pr[u′
i] then L(B) > L(B′).
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Proof. If a probability distribution f is stochastic dominant over another distri-
bution f ′, then it applies that:

∀j ∈ N>0 : F (j) ≤ F ′(j) (12)

and there must be some j for which the inequality is strict. Here, F and F ′

represent the cumulative distributions. If follows that the expected value of f is
higher than the expected value of f ′. Thus, as a result: L(B) > L(B′) ��

Theorem 5 has some important consequences. First of all, it shows that strict
rankings in randomness can be made even when the set of unique bit strings is
different. The reasons for this is because each bit string is translated into a
code word and the contribution of that code word to the measured randomness
is determined only by its length. So, even with different bit strings in B, the
same coding system will be used for both cases and randomness is calculated by
looking at the expected length of a code word. This principle can now be used
to generate, for fixed m and n, a sequence of distributions Pr[ui] in such a way
that each next distribution is dominant over the previous and such that L(B)
changes minimally. Therefore, L(B) can be interpreted well.

Let us conclude this section with a brief discussion of the computational com-
plexity of L(B). First, the time complexity of calculating L(B) is O(n) because
the occurrence of each ui can be counted in a single scan of R. Opposed to that,
the complexity of calculating the normalized Lempel-Ziv randomness is O(n2).
The space complexity is upper bounded by m, which is itself upper bounded by
2k. An important property is that the frequencies of each ui can be stored in a
histogram, which can be updated incrementally.

5 Future Work

One possible extension of the randomness measure is to give an indication of
the location of data artifacts instead of only considering the distribution of the
artifacts. Besides that, it can be interesting to identify certain dependencies
between the attributes of a relation considering data artifacts. By adding this,
it will be much easier to quickly see where most errors are located and what
columns are worth to repair with little effort. Besides that, it is the case that
the method described in this paper works only when a binary matrix indicating
data artifacts is given. Unfortunately, the difficulty of identifying data artifacts
depends on the type of artifact. Therefore, it can be useful to distinguish between
types of artifacts (e.g. null values vs. values that not stroke with reality) or,
even more interesting, to introduce a scale of artifacts where a high value implies
an unacceptable error in the relation. To calculate the randomness in matrices
described above, the proposed measure should be modified to deal with non-
binary values.

Finally, one plans to test and evaluate the proposed measure in real-world
applications. Therefore, it is necessary to identify artifacts and calculate the
measurement on artifact-rich relational databases.
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6 Conclusion

In this paper, counting of data artifacts to assess the quality of data is extended
by a novel randomness measure to distinguish between systematic and random
artifacts in a database relation. The novel measure is calculated as the expected
length of a code word required to encode a bit string from B with unary encoding.
This novel approach has many advantages compared to the earlier introduced
method to calculate a measure for the randomness of data artifacts by means of
the Lempel-Ziv complexity algorithm. Besides that, it matches closer with the
intuitive perception of randomness.
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Abstract. This paper includes the main notions associated with the syn-
tax and semantics of two interesting paradigms in fuzzy logic programming
with default negation:multi-adjoint normal logic programming introduced
in [5] and the fuzzy answer set logic programming approach presented
in [16]. We will show that fuzzy answer set logic programs can be trans-
lated into multi-adjoint normal logic programs, as long as the implication
operator used in the former is a residuated implication. Moreover, we will
relate the notions of fuzzy y-model and model by means of a characteriza-
tion theorem which allow us to guarantee the existence of fuzzy y-models
of fuzzy answer set logic programs.

Keywords: Multi-adjoint logic programming · Fuzzy model
Negation operator

1 Introduction

Multi-adjoint logic normal programming arises as an extension of multi-adjoint
logic programming [14] considering a negation operator in the underlying lattice.
This logic programming framework was recently introduced in [5], where a wide
study on the syntax and semantics corresponding to this paradigm is carried
out. In what regards to the syntax, the most remarkable feature is the use of
different implications in the rules of a same multi-adjoint normal logic program
and general operators in the bodies of the rules. With respect to the semantics,
the developed theory is based on the stable models semantics [8,13]. Note that,
when multi-adjoint normal logic programs correspond to some search problem
related to a real dataset, the stable models coincide with their possible solutions.
Therefore, the results on the existence and unicity of stables models presented
in [5] are useful to know both if the logic program is associated with a solvable
problem and if only one solution exists. We are interested in applying these
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results to other logic programming frameworks in which a negation operator is
considered. In this paper, we will focus on the fuzzy answer set logic programming
framework presented in [16], since its semantics is also based on the notion of
stable model.

This logic programming framework [16] was introduced as a combination of
two important approaches: answer set programming and fuzzy logic. In recent
years, answer set programming [9] has reached a great popularity because it is an
useful tool for interesting applications associated with knowledge representation
systems and non-monotonic reasoning [6,7,12,13,17,19]. Depending on the con-
sidered application, some disadvantages can appear as it is shown in [1,2]. The
idea of combining answer set programming with fuzzy logic arises in order to
increase the expressive power and the range of potential applications of answer
set programming.

This paper will present a first study on the relations between the multi-
adjoint logic normal programming and the fuzzy answer set logic programming
frameworks given in [5] and [16], respectively, in order to apply the recent exis-
tence and unicity results introduced in the first one to the second one. First of
all, we will recall the main notions associated with the syntax and semantics
of both fuzzy logic programming approaches. In the following, we will present a
procedure to translate fuzzy answer set logic programs into multi-adjoint normal
logic programs. Considering a particular family of the multi-adjoint normal logic
programs obtained in this translation, we will provide the required conditions in
order to guarantee the existence of fuzzy y-models of fuzzy answer set logic pro-
grams. To reach this goal, a characterization of fuzzy y-models of fuzzy answer
set logic programs in terms of models of multi-adjoint normal logic programs
will be given. It is important to emphasize that the existence theorem of stable
models for multi-adjoint normal logic programs will play a fundamental role in
order to ensure the existence of fuzzy y-models. This work will finish with some
conclusions and prospects for future work.

2 Multi-adjoint Normal Logic Programming

Multi-adjoint normal logic programming is an logical theory characterized by
the use of different implications in the rules of a same logic program, as well
as a negation operator and general operators defined on complete lattices in
the bodies of the rules. The formal definitions associated with the syntactic
structure of multi-adjoint normal logic programming framework are presented
below. These definitions are given in detail in [5,15].

Definition 1. The tuple (L,�,←1,&1, . . . ,←n,&n,¬) is a multi-adjoint nor-
mal lattice if the following properties are verified:

1. (L,�) is a bounded lattice, i.e. it has a bottom (⊥) and a top (�) element;
2. (&i,←i) is an adjoint pair in (L,�), for i ∈ {1, . . . , n};
3. �&i ϑ = ϑ &i � = ϑ, for all ϑ ∈ L and i ∈ {1, . . . , n};
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4. ¬ : L → L is a negation operator, that is, an order-reversing mapping satis-
fying the equalities ¬(⊥) = � and ¬(�) = ⊥.

We will define a multi-adjoint normal logic program P from a multi-adjoint
normal lattice together with an additional (symbol of) negation ∼. LitP will
denote the whole set of elements appearing in the rules of P, which will be
called literals since they will be either (positive) propositional symbols or negated
propositional symbols by ∼.

Definition 2. Let (L,�,←1,&1, . . . ,←n,&n,¬) be a multi-adjoint normal lat-
tice. A multi-adjoint normal logic program (MANLP) P is a finite set of weighted
rules of the form:

〈l ←i @[l1, . . . , lm,¬lm+1, . . . ,¬ln];ϑ〉

where i ∈ {1, . . . , n}, @ is an aggregator operator, ϑ is an element of L and
l, l1, . . . , ln are literals such that lj �= lk, for all j, k ∈ {1, . . . , n}, with j �= k. The
literal l is called head of the rule, @[l1, . . . , lm,¬lm+1, . . . ,¬ln] is called body of
the rule and the value ϑ is its weight.

It is important to clarify that the roles played by the negation operators
¬ and ∼ are different. The truth value of ¬φ can be computed from the truth
value of φ, while ∼ φ can straightforwardly be inferred from the program. As
usual, we will call “default negation” to ¬ and “strong negation” to ∼. Observe
that the strong negation operator used in this paper should not be confused with
the well-known notion of involutive negation.

A depth study about the syntax and the semantics of the multi-adjoint nor-
mal logic programming framework was given in [3–5]. Specifically, the developed
semantics for multi-adjoint normal logic programs is based on the notion of stable
model [8] which is closely related to the notion of minimal model. Before intro-
ducing the notion of model, we need to include the definition of interpretation
and some notational conventions.

Definition 3. Given a complete lattice (L,�), a mapping I : LitP → L, which
assigns to every literal appearing in LitP an element of the lattice L, is called
L-interpretation. The set of all L-interpretations is denoted by IL.

It is important to mention that the interpretation of an operator symbol ω
under a multi-adjoint normal lattice will be denoted by

.
ω. In what regards to

the evaluation of a formula F under an interpretation I, it will be denoted as
Î(F) and it proceeds inductively as usual, until all propositional symbols in F
are reached and evaluated under I.

Taking into account these considerations and following the philosophy used in
the semantics of multi-adjoint logic programming [14], we introduce the notions
of model and satisfiability as follows.
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Definition 4. Given an interpretation I ∈ IL, we say that:

(1) A weighted rule 〈l ←i @[l1, . . . , lm,¬lm+1, . . . ,¬ln];ϑ〉 is satisfied by I if and
only if ϑ � Î (l ←i @[l1, . . . , lm,¬lm+1, . . . ,¬ln]).

(2) An L-interpretation I ∈ IL is a model of a MANLP P if and only if all
weighted rules in P are satisfied by I.

Stable models of a normal logic program are related to the minimal models of
a monotonic logic program obtained from the original program. For that reason,
before introducing the notion of stable model for a MANLP P, a procedure to
obtain a positive multi-adjoint logic program from a MANLP is required. Given
an L-interpretation I, we will build a positive multi-adjoint program PI called
reduct of P, by substituting each rule 〈l ←i @[l1, . . . , lm,¬lm+1, . . . ,¬ln];ϑ〉 in P

by the rule 〈l ←i @I [l1, . . . , lm];ϑ〉 where the operator
.
@I : Lm → L is defined

as
.
@I [ϑ1, . . . , ϑm]=

.
@[ϑ1, . . . , ϑm,

.¬ I(lm+1), . . . ,
.¬ I(ln)], for all ϑ1, . . . , ϑm ∈ L.

Definition 5. Given a MANLP P and an L-interpretation I, we say that I is
a stable model of P if and only if I is a minimal model of PI .

Below, we will show that each stable model of a MANLP P is actually a
minimal model of P.

Proposition 1. Any stable model of a MANLP P is a minimal model of P.

Requiring the continuity of the operators involved in the rules of MANLPs
will guarantee the existence of stable models.

Theorem 1. Let (K,�,←1,&1, . . . ,←n,&n,¬) be a multi-adjoint normal lat-
tice, where K is a non-empty convex compact subset of an euclidean space, and
P be a finite MANLP defined on this lattice. If &1, . . . ,&n, ¬ and the aggregator
operators in the body of the rules of P are continuous operators, then P has at
least a stable model.

Once the main notions corresponding to the multi-adjoint normal logic pro-
gramming framework have been recalled, we will continue including the basic
notions of the other logical programming framework in which we are interested,
that is, fuzzy answer set logic programming.

3 Fuzzy Answer Set Logic Programming

The fuzzy answer set logic programming framework [16] arises as an interesting
combination of the concepts of answer set programming and fuzzy logic. The
main feature of this logical theory is that elements appearing in the rules of a
fuzzy answer set logic program P

∗ can be either (positive) propositional symbols,
either negated propositional symbols by the negation operator ∼ or negated
propositional symbols by the negation operator ¬. Notice that, the negation
operators ¬ and ∼ behave like the “default negation” and the “strong negation”,
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respectively, described previously in Sect. 2. The set LitP∗ will collect (positive)
the propositional symbols and the negated propositional symbols by ∼. We say
that the elements belonging to LitP∗ are called literals. The set ELitP∗ will collect
the literals and the negated literals by ¬. We say that the elements belonging to
ELitP∗ are called extended literals.

Definition 6. A fuzzy answer set logic program (FASLP) P
∗ is a finite set of

rules of the form l ← β such that:

1. The head of the rule l is either a literal or the bottom element ⊥ ∈ L;
2. The body of the rule β is a finite set of extended literals;
3. Constraints are rules whose head is the bottom element.
4. Facts are rules with an empty body.

Although we have called fuzzy answer set logic programs (FASLPs) to the
programs introduced in Definition 6, it is easy to see that the notion of fuzzy
answer set is not used in these programs. However, we will mantain this notation
in order to indicate that the semantics defined for this kind of programs will be
based on the notion of fuzzy answer set.

As far as the fuzzy answer set semantics is concerned, we will firstly state
the notion of fuzzy interpretation.

Definition 7. Given a complete lattice (L,�), a fuzzy interpretation is a map-
ping I : LitP∗ → L which assigns to every literal appearing in LitP∗ an element
of L.

We will present the concept of satisfaction function in the following. To do
this, we will need a triangular norm (t-norm) T : L2 → L and a negation operator
N : L → L, which is an order-reversing mapping satisfying that N (⊥) = � and
N (�) = ⊥, in order to compute the degree of satisfaction of the body of a
rule. Specifically, the evaluation of an extended literal ¬l under a given fuzzy
interpretation I will be obtained by using the following equality I(¬l) = N (I(l)).

Moreover, in [16] an specific implication operator I : L2 → L will be needed in
order to obtain the degree of satisfaction of a rule. That is, the considered impli-
cation I is an order-reversing mapping in the first argument and order-preserving
mapping in the second argument; and I verifies the equalities I(⊥,⊥) = � and
I(�, x) = x, for all x ∈ L.

Definition 8. Let P
∗ be a FASLP and I be a fuzzy interpretation. The induced

satisfaction function I|= : 2ELitP∗ ∪ P
∗ → L is defined by:

I|=(∅) = �
I|=({l} ∪ β) = T (I(l), I|=(β))
I|=(⊥ ← β) = I(I|=(β),⊥)
I|=(l ← β) = I(I|=(β), I(l))
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Next, we will use the satisfaction function to develop the notion of fuzzy
model. For computing the degree in which a given fuzzy interpretation I is a
fuzzy model, we need to consider an aggregator operator A which combines all
the degrees of satisfaction of the rules appearing in P

∗ into a single truth value.

Definition 9. Let P
∗ be a FASLP, I be a fuzzy interpretation and y ∈ L. We

say that I is a fuzzy y-model of P
∗ if and only if y ≤ A(P∗, I|=).

In the following, we will illustrate how the value A(P∗, I|=) is computed.
Given a finite FASLP P

∗, we can suppose without loss of generality that the
rules appearing in P

∗ are denoted as r∗
1 , . . . , r

∗
m, with m ∈ N. As we mentioned

above, the aggregator operator A combines all the degrees of satisfaction of the
rules in P

∗, being these values belonging to L. Consequently, we can say that the
aggregator operator assigns to each element in Ln an element in L. Therefore,
given an interpretation I such that I|=(r∗

i ) = αi, for each i ∈ {1, . . . , m}, with
αi ∈ L, we obtain that A(P∗, I|=) = A(α1, . . . , αn). Notice that, by definition of
aggregator operator [10], A can be any order-preserving operator.

Finally, following the idea presented in [18,20], we will introduce the notion
of fuzzy answer set by using unfounded sets. In the classical case, an unfounded
set is a set of literals for which there is no motivation to suppose that they
have to be true. This fact is due to that these literals either depend on each
other, or the rules that can motivate them are not satisfied. As a consequence,
an interpretation will be an answer set of a FASLP P

∗ if and only if it is a model
of P

∗ and it does not contain such unfounded sets. In order to translate the
classical notion of unfounded set to the fuzzy interpretations environment, we
need to introduce the concept of support of a rule.

Given a rule l ← β ∈ P
∗ and a fuzzy interpretation I, the support of the rule

l ← β with respect to I is defined as:

Is(l ← β) = inf{y ∈ L | I(I|=(β), y) ≥ I|=(l ← β)}

Definition 10. Let P
∗ be a FASLP and I be a fuzzy interpretation. A set of

literals X is an unfounded set with respect to I if and only if for each literal
l ∈ X and each rule l ← β ∈ P

∗, one of the following statements holds:

1. β ∩ X �= ∅;
2. I(l) > Is(l ← β);
3. I|=(β) = 0.

Once the definition of unfounded set has been presented, we are in position
to define when a fuzzy interpretation is a fuzzy answer set of a FASLP P

∗.

Definition 11. Given a fuzzy interpretation I and y ∈ L, then:

(1) I is unfounded-free if and only if {l ∈ LitP∗ | I(l) > 0} ∩ X = ∅, for every
unfounded set X with respect to I.

(2) I is a fuzzy y-answer set of a FASLP P
∗ if it is an unfounded-free fuzzy

y-model of P
∗.
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It is convenient to mention that Definitions 9 and 11 have been presented
in [16] requiring the x-consistency property. In this paper, we will not consider
such extra property because it is not relevant in the translation of the results
obtained in the multi-adjoint logic programming framework to the fuzzy answer
set logic programming framework.

4 On the Relationship Between Multi-adjoint Normal
Logic Programming and Fuzzy Answer Set Logic
Programming

In this section, we will study what conditions are required in order to guarantee
that a fuzzy answer set logic program can be translated into a multi-adjoint
normal logic program. To do this, we need to analyze the similarities and differ-
ences corresponding to the syntax and the semantics of both logic programming
frameworks. Our main contribution consists in providing a characterization of
fuzzy y-models given in fuzzy answer set logic programming by means of mod-
els considered in multi-adjoint normal logic programming. This characterization
will allow us to apply the results obtained for MANLPs to FASLPs.

First of all, we will see how a FASLP can be translated into a MANLP.
Consider a finite fuzzy answer set logic program P

∗, that is, a finite set of rules
of the form l ← β, such that l ∈ LitP∗ ∪ {⊥} and β is a finite set of elements
in ELitP∗ . On the one hand, observe that β can be seen as a finite union of
singletons and, as a consequence, a rule l ← β where β = {l1, . . . , ln} can be
rewritten as l ← l1 ∪ · · · ∪ ln. On the other hand, we need to consider a t-norm
T , a negation operator N and an implication operator I in order to obtain
the degree of satisfaction of a rule. This fact is due to that the evaluation of
the operator symbols ∪, ← and ¬ under a fuzzy interpretation will be ∪̇ = T ,
←̇ = Iop and ¬̇ = N , where Iop(x, y) = I(y, x), for all x, y ∈ L. If the operator
I is a residuated implication, that is, there exists & such that (&, Iop) forms
an adjoint pair, then we can say that the algebraic structure from which P

∗ is
defined (L,�,&, I,¬) is a multi-adjoint normal lattice.

Taking into account these considerations and assigning a weight ϑ ∈ L to each
rule l ← {l1, . . . , ln} belonging to P

∗, we obtain a program composed of the rules
〈l ← @[l1, . . . , ln];ϑ〉, where @ is an aggregator operator symbol interpreted as
@̇ : Ln → L, @̇[x1, . . . , xn] = T (x1, . . . , xn), for all x1, . . . , xn ∈ L. This program
is a MANLP P.

It is important to note that the given FASLP P
∗ can contain rules with the

bottom element ⊥ ∈ L in its head and the translation of these kind of rules
〈⊥ ← @[l1, . . . , ln];ϑ〉 cannot be considered in the multi-adjoint approach. In
order to deal with this issue, we will introduce an extra literal denoted as Ct
(simplifying the name “constraint”). The rules ⊥ ← {l1, . . . , ln} in P

∗ become
into 〈Ct ← @[l1, . . . , ln];ϑ〉 in the multi-adjoint normal logic program. From
the semantical point of view, we will demand that any interpretation I in the
multi-adjoint framework satisfies I(Ct) = ⊥ so that it also works in the fuzzy
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answer set programming environment. Observe that, the set LitP∗ ∪ {Ct} in P

is considered to be the set of literals in P
∗.

A last remark should be considered in order to check that the rules of the
FASLP P

∗ are expressed in the same way as the rules of a MANLP given in
Definition 2. The elements included in the bodies of the rules of P

∗ are extended
literals, that is, they can be literals and negated literals by ¬. Hence, a rule
in the given FALSP P

∗ which has been translated into 〈l ← @[l1, . . . , ln];ϑ〉
is actually a rule 〈l ← @[p1, . . . , pm,¬pm+1, . . . ,¬pn];ϑ〉, where p1, . . . , pn are
either (positive) propositional symbols or propositional symbols negated by ∼.

After explaining the procedure in order to translate a fuzzy answer set logic
program into a multi-adjoint normal logic program, we will state the correspond-
ing notational conventions. Without loss of generality, suppose that the rules of
the given finite FASLP P

∗ are ordered as r∗
1 , . . . , r

∗
m, with m ∈ N. Considering

ϑ1, . . . , ϑm ∈ L, we will define a MANLP which will be denoted as Pϑ1,...,ϑm
as

the set of rules of the form:

ri ≡

⎧
⎨

⎩

〈l ← @[l1, . . . , ln];ϑi〉 if r∗
i ≡ l ← {l1, . . . , ln}, l ∈ LitP

〈Ct ← @[l1, . . . , ln];ϑi〉 if r∗
i ≡ ⊥ ← {l1, . . . , ln}

for each i ∈ {1, . . . ,m}. From now on, given a fuzzy interpretation I : LitP∗ → L
in the fuzzy answer set logic programming framework, we will define a mapping
I+ : LitP∗ ∪ {Ct} → L such that I+(l) = I(l) if l ∈ LitP∗ and I+(Ct) = ⊥.
This mapping I+ is an L-interpretation in the multi-adjoint logic programming
approach on the set of literals LitP∗ ∪ {Ct}.

The following theorem shows a characterization of fuzzy y-models in fuzzy
answer set programming framework in terms of models in the multi-adjoint
approach.

Theorem 2. Let P
∗ be a FASLP and I : LitP∗ → L be a fuzzy interpretation.

Given y ∈ L, consider the following set of MANLPs:

Sy = {Pϑ1,...,ϑm
| ϑ1, . . . , ϑm ∈ L and A(ϑ1, . . . , ϑm) ≥ y}

Then, I is a fuzzy y-model of the FASLP P
∗ if and only if there exists Pϑ1,...,ϑm

∈
Sy such that I+ is a model of Pϑ1,...,ϑm

.

In the following, we present an example in order to illustrate Theorem 2.

Example 1. Consider the next FASLP P
∗ consisting of the following six rules:

r∗
1 : p ← {¬t} r∗

4 : t ← {s}
r∗
2 : q ← {¬s} r∗

5 : t ← {¬p,¬q}
r∗
3 : p ← {q, s} r∗

6 : 0 ← {¬p}

The operators involved in the computation of the degree of satisfaction of the
previous rules are defined on the complete lattice ([0, 1],≤). These operators
T , I : [0, 1]2 → [0, 1] and N : [0, 1] → [0, 1] are defined, for all x, y ∈ [0, 1],
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by T (x, y) = x ∗ y; I(x, y) = 1, if x ≤ y, and I(x, y) = y, otherwise; and
N (x) = 1 − x, for all x, y ∈ [0, 1]. Therefore T is the product t-norm, I is the
Gödel implication and N is the standard negation [11]. For computing the degree
in which a given fuzzy interpretation is a fuzzy model, we will consider the aggre-

gator operator A1 : [0, 1]6 → [0, 1] defined by A1(α1, . . . , α6) =
α1 + · · · + α6

6
,

for all α1, . . . , α6 ∈ [0, 1].
By Theorem 2, we will demonstrate that the fuzzy interpretation given by

I ≡ {(p, 0.8), (q, 0.4), (s, 0.5), (t, 0.9)} is a fuzzy 0.7-model of P
∗. To reach this

conclusion, we will see that the mapping I+ is a model of the multi-adjoint
normal program P1,0.3,1,1,1,0 composed of the next five rules:

r1 : 〈p ← @[¬t] ; 1〉
r2 : 〈q ← @[¬s] ; 0.3〉
r3 : 〈p ← @[q, s] ; 1〉
r4 : 〈t ← @[s] ; 1〉
r5 : 〈t ← @[¬p,¬q] ; 1〉

Observe that, the rule r6 has not been written in the definition of P1,0.3,1,1,1,0

since its weight is equal to zero and therefore, that rule is straightforwardly
satisfied. It is easy to see that the program P1,0.3,1,1,1,0 belongs to S0.7 since the
inequality A1(1, 0.3, 1, 1, 1, 0) = 0.716̂ ≥ 0.7 holds. Now, we will check that I+

satisfies the rule ri, for each i ∈ {1, . . . , 5}. The corresponding computations for
these five rules are given below:

r1 : Î(p ← @[¬t]) = I(1 − I(t), I(p)) = I(1 − 0.9, 0.8) = I(0.1, 0.8) = 1 ≥ 1

r2 : Î(q ← @[¬s]) = I(1 − I(s), I(q)) = I(1 − 0.5, 0.4) = I(0.5, 0.4) = 0.4 ≥ 0.3

r3 : Î(p ← @[q, s]) = I(I(q) ∗ I(s), I(p)) = I(0.4 ∗ 0.5, 0.8) = I(0.2, 0.8) = 1 ≥ 1

r4 : Î(t ← @[s]) = I(I(s), I(t)) = I(0.5, 0.9) = 1 ≥ 1

r5 : Î(t ← @[¬p,¬q]) = I((1 − I(p)) ∗ (1 − I(q)), I(t)) = I(0.2 ∗ 0.6, 0.9)
= I(0.12, 0.9) = 1 ≥ 1

As a consequence, I+ satisfies all rules in P1,0.3,1,1,1,0, and thus it is a model of
the MANLP P1,0.3,1,1,1,0. Applying Theorem 2, we can ensure that the interpre-
tation I is a fuzzy 0.7-model of P

∗.
It is worth to mention that I is not a fuzzy 0.7-model of P

∗ when the aggre-
gator operator A2 : [0, 1]6 → [0, 1] is given by A2(α1, . . . , α6) = min{α1, . . . , α6}.
Indeed, in this case, I is not a fuzzy y-model of the FASLP P

∗ for each y ∈ (0, 1]
since I|=(r∗

6) = I(1 − I(p), 0) = I(0.2, 0) = 0. ��
An interesting consequence of Theorem 2 is the following one. If a FASLP

P
∗ does not contain literals negated by ¬, then it always has at least a fuzzy y-

model, for each y ∈ L, when the set Sy is not empty. This proposition is obtained
from the results introduced in [14] for multi-adjoint logic programming.

Proposition 2. Let P
∗ be a FASLP without constraints such that there are no

elements negated by ¬ in the bodies of their rules. Given y ∈ L, consider the
following set of MANLPs:

Sy = {Pϑ1,...,ϑm
| ϑ1, . . . , ϑm ∈ L and A(ϑ1, . . . , ϑm) ≥ y}
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If Sy is a non-empty set then there exists at least a fuzzy y-model of P
∗.

It is important to note that the existence of fuzzy y-models in a FASLP P
∗

cannot be guaranteed in general, when some literals negated by ¬ appear in the
bodies of some rules of P

∗. Nevertheless, taking into account Proposition 1 and
Theorem 2, we can assert that if I+ : LitP∗ ∪ {Ct} → L is a stable model of
Pϑ1,...,ϑm

∈ Sy with y ∈ L, then I+ is a model of Pϑ1,...,ϑm
∈ Sy, and thus the

restriction of I+ to the set of literals LitP∗ , which we will denoted by I+|LitP∗ , is
a fuzzy y-model of P

∗. Therefore, the results concerning the existence of stable
models of MANLPs presented in [5] can be applied in order to ensure the exis-
tence of fuzzy y-models. For instance, from Theorem 1 we can deduce that if a
FASLP P

∗ is defined in a convex and compact subset of an euclidean space and
with continuous operators, then it always has fuzzy y-models, whenever the set
Sy is non-empty.

Theorem 3. Let P
∗ be a FASLP without constraints and consider the following

set of MANLPs:

Sy = {Pϑ1,...,ϑm
| ϑ1, . . . , ϑm ∈ L and A(ϑ1, . . . , ϑm) ≥ y}

If Sy is a non-empty set, L is a non-empty convex compact set in an euclidean
space and T , N are continuous operators, then P

∗ has at least a fuzzy y-model,
with y ∈ L.

The previous theorem will allow us to guarantee the existence of fuzzy-y
models for a program built from the FASLP P

∗ given in Example 1, when the
considered aggregator operator A is the minimum operator.

Example 2. Coming back to Example 1, we obtained that the fuzzy interpreta-
tion I ≡ {(p, 0.8), (q, 0.4), (s, 0.5), (t, 0.9)} is not a fuzzy y-model of the FASLP
P

∗ composed of the rules r∗
1 , r

∗
2 , r

∗
3 , r

∗
4 , r

∗
5 , r

∗
6 , for each y ∈ (0, 1], when the aggre-

gator operator is the minimum. In order to apply Theorem 3, we will consider
the FASLP only composed of the rules r∗

1 , r
∗
2 , r

∗
3 , r

∗
4 , r

∗
5 and we will see that there

exist fuzzy y-models for such program considering the minimum. Now, we will
check that the hypothesis of Theorem 3 are satisfied.

Notice that, the MANLP Py,y,y,y,y belongs to Sy for each y ∈ [0, 1] and,
therefore, Sy is a non-empty set. Moreover, [0, 1] is a non-empty convex compact
set in the euclidean space ([0, 1],+, ∗, R), where +, ∗ are the usual sum and prod-
uct defined in R. Since T , N are continuous operators, we can apply Theorem 3
which leads us to assert that the program built from P

∗ has at least a fuzzy
y-model, for each y ∈ [0, 1].

In particular, given y = 0.7, we will see that the fuzzy interpretation given
by J ≡ {(p, 1), (q, 0.4), (s, 0.9), (t, 0.8)} is a fuzzy 0.7-model with the minimum
operator as aggregator operator A. In the following, the computations related
to the satisfaction function value for the five rules are given:
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J|=(r
∗
1)= J|=(p ← {¬t}) = I(1 − J(t), J(p)) = I(1 − 0.8, 1) = I(0.2, 1) = 1

J|=(r
∗
2)= J|=(q ← {¬s}) = I(1 − J(s), J(q)) = I(1 − 0.9, 0.4) = I(0.1, 0.4) = 1

J|=(r
∗
3)= J|=(p ← {q, s}) = I(J(q) ∗ J(s), J(p))= I(0.4 ∗ 0.9, 1)= I(0.36, 1)= 1

J|=(r
∗
4)= J|=(t ← {s}) = I(J(s), J(t)) = I(0.9, 0.8) = 0.8

J|=(r
∗
5)= J|=(t ← {¬p,¬q}) = I((1 − J(p)) ∗ (1 − J(q)), J(t)) = I(0 ∗ 0.6, 0.8)

= I(0, 0.8) = 1

Therefore, we obtain that min{J|=(r∗
1), . . . , J|=(r∗

5)} = 0.8 ≥ 0.7. Conse-
quently, we can conclude that J is a fuzzy 0.7-model of the FASLP whose rules are
r∗
1 , r

∗
2 , r

∗
3 , r

∗
4 , r

∗
5 . Indeed, we obtain straightforwardly that J is a fuzzy 0.8-model. ��

5 Conclusions and Future Work

An initial study on the relationship between multi-adjoint normal logic program-
ming and an interesting fuzzy answer set logic programming framework has been
presented. We have shown a procedure which allows us to translate the fuzzy
answer set logic programs given in [16] into multi-adjoint normal logic programs,
when the implication operator involved in FASLPs is a residuated implication.
Moreover, a new literal whose interpretation is the bottom element in the lat-
tice must be considered in the multi-adjoint framework. This fact is due to that
FASLPs can contain rules with empty head which must be included in MANLPs.
A characterization of fuzzy y-models of fuzzy answer set logic programs in terms
of models of multi-adjoint normal logic programs has been introduced. This
characterization is very valuable because it leads us apply the existence theorem
of stable models in MANLPs and ensure the existence of fuzzy y-models for a
FASLP.

As future work, we will continue analyzing more properties corresponding to
both logic programming frameworks in order to establish connections between
the notions of fuzzy answer set and stable model. Specifically, we are interested
in obtaining a characterization of fuzzy answer sets in terms of stable models
so that the existence and unicity results for MANLPs [5] can be applied in the
considered fuzzy answer set logic programming.
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Abstract. We propose a new approach to Hellwig’s method for the
reduction of dimensionality of a data set using Atanassov’s intuition-
istic fuzzy sets (A-IFSs). We are mainly concerned with the dimension
reduction for sets of data represented as the A-IFSs, and provide an illus-
trative example results which are compared with the results obtained by
using the PCA (Principal Component Analysis) method. Remarks on
comparisons with some other methods are also mentioned.
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1 Introduction

The reduction of dimensionality of a data set is relevant in many fields though a
different terminology may be used. For instance, in statistics, the term “variable”
is used whereas in machine learning and computer science instead of “variable”,
the terms “feature” and “attribute” are employed. The idea of the most often
used methods lies in exploring relationships among interrelated variables and
using some transformations to obtain a smaller yet representative enough new
set of the variables describing a data set.

One of the best known and widely employed techniques for the reduc-
tion of dimensionality of a data set is Principal Component Analysis (PCA)
(Jolliffe [11]) which was first introduced in the early 1900s by Pearson [15], and
later developed independently by Hotelling (1933). The method gives reliable
results but is complicated from the point of view of calculations for many inter-
related variables. Other methods of data reduction have their drawbacks which
implies a quest for new methods. This particularly complicates matters when
there are crisp, fuzzy, and other “non-standard” types of data representing dif-
ferent specific features of the real systems.

One of the problem faced while constructing a model of a real system is the
presence of a lack of knowledge which is crucial for making decisions but at the
c© Springer International Publishing AG, part of Springer Nature 2018
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same time difficult to foresee. This problem is amplified when we deal with the
behavior of consumers (if they would buy or not a new product), investors (the
value of a portfolio and behavior of separate assets), voters (for which candidate
they would vote) etc., etc. Atanassov’s intuitionistic fuzzy sets (A-IFSs, for short)
(Atanassov [1–3]), being an extension of the fuzzy sets (Zadeh [39]), have an
inherent possibility to take into account such a lack of knowledge. However, here
again, the reliable models can be described by too many variables to efficiently
perform simulations. So, we again face the well known problem of the reduction
of dimensionality of data. The Principal Component Analysis (PCA) for the
A-IFSs (cf. Szmidt and Kacprzyk [35]), Szmidt [19]) gives correct results but,
again, it is quite complicated from the point of view of calculations.

In this paper we recall Hellwig’s method (Hellwig [9]) for reducing the dimen-
sionality of a linear model (just like in the case of the PCA). Hellwig’s method
is based, in its original terminology, on the so called capacity of information
bearers. The method reduces the data dimensionality by looking for a smaller
combination of the variables of a model which is best from some point of view.
The best combination of the variables used in a model means here the pointing
out of a subset of independent variables with the highest capacity of information.
In other words, the chosen independent variables should be strongly correlated
with the output of a model (a dependent variable) and weakly correlated among
themselves. The method was proposed for crisp data so that we modify it so
that it works with data expressed via the A-IFS in which data are described in
terms of the membership values, non-membership values, and hesitation mar-
gins expressing the lack of knowledge (cf. Sect. 2). Since the A-IFSs become more
and more widely applied in diverse fields, exemplified by image processing (cf.
Bustince et al. [6,7]), classification of imbalanced and overlapping classes (cf.
Szmidt and Kukier [36–38]), group decision making, negotiations, voting and
other situations (cf. Szmidt and Kacprzyk [21,23,27,30–32]), the dimensionality
reduction of sets of data given as the A-IFSs is of utmost interest, too.

We present an illustrative example showing how Hellwig’s method works
which makes it possible to see the advantage of the method, i.e., simpler cal-
culations than in other methods. Hellwig [9] emphasizes that for n independent
variables there are 2n−1 of the possible subsets of the variables to verify to point
out the best subset. However, Hellwig’s method of finding an optimal combina-
tion of the variables does not require finding the inverse matrices. The illustrative
example is a well known example formulated by Quinlan [17]. The example is
small but in spite of its size it is not trivial and is a challenge for different
learning methods. As we know, Quinlan’s optimal set of variables leads to 100%
of classification accuracy and we can immediately verify obtained results. We
also discuss briefly results obtained by the PCA so to compare necessary steps
to receive the solution by using this technique (that has found applications in
many fields), and the solution itself. The obtained results are promising both in
the sense of finding a proper subset of variables and numerical implementation.
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2 A Brief Introduction to Intuitionistic Fuzzy Sets

One of the possible generalizations of a fuzzy set in X (Zadeh [39]) given by

A
′
= {< x, μA′ (x) > |x ∈ X} (1)

where μA′ (x) ∈ [0, 1] is the membership function of the fuzzy set A
′
, is an A-IFS

(Atanassov [1–3]) A is given by

A = {< x, μA(x), νA(x) > |x ∈ X} (2)

where: μA : X → [0, 1] and νA : X → [0, 1] such that

0< μA(x) + νA(x)< 1 (3)

and μA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of non-
membership of x ∈ A, respectively. (An approach to the assigning memberships
and non-memberships for A-IFSs from data is proposed by Szmidt and Bald-
win [20]).

Obviously, each fuzzy set may be represented by the following A-IFS:
A = {< x, μA′ (x), 1 − μA′ (x) > |x ∈ X}.

An additional concept for each A-IFS in X, that is not only an obvious
result of (2) and (3) but which is also relevant for applications, we will call
(Atanassov [2])

πA(x) = 1 − μA(x) − νA(x) (4)

a hesitation margin of x ∈ A which expresses a lack of knowledge of whether
x belongs to A or not (cf. Atanassov [2]). It is obvious that 0< πA(x)< 1, for
each x ∈ X.

The hesitation margin turns out to be important while considering the dis-
tances (Szmidt and Kacprzyk [22,24,26], entropy (Szmidt and Kacprzyk [25,28]),
similarity (Szmidt and Kacprzyk [29]) for the A-IFSs, etc. i.e., the measures that
play a crucial role in virtually all information processing tasks (Szmidt [19]).

The hesitation margin turns out to be relevant for applications – in image pro-
cessing (cf. Bustince et al. [6,7]), the classification of imbalanced and overlapping
classes (cf. Szmidt and Kukier [36–38]), the classification applying intuitionistic
fuzzy trees (cf. Bujnowski [5]), group decision making (e.g., [4]), genetic algo-
rithms [16], negotiations, voting and other situations (cf. Szmidt and Kacprzyk
papers).

2.1 Correlation Between the A-IFSs

The (degree of) correlation between variables is essential for further analysis. In
the case of crisp or even fuzzy data [8,13,18] (in our context, the non-A-IFS-
type data), the problem is clear and solved. Unfortunately, the very essence of
the A-IFSs, in which 3 degrees (of membership, non-membership and hesitation)
characterize information conveyed, the problem of correlation between such types
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of data is not obvious. An effective and efficient approach, which takes a full
advantage of the very essence of the A-IFSs has been proposed by the authors,
(cf. Szmidt and Kacprzyk [34,35], Szmidt [19]) in which a new concept of the
Pearson’s correlation coefficient between two A-IFS-type data was introduced
and discussed.

To briefly recall, the correlation coefficient (Pearson’s r) between two vari-
ables is a measure of the linear relationship between them. The correlation coef-
ficient is 1 in the case of a positive (increasing) linear relationship, −1 in the case
of a negative (decreasing) linear relationship, and some value between −1 and
1 in all other cases. The closer the coefficient is to either −1 or 1, the stronger
the correlation between the variables.

The same features we demand from a correlation coefficient for two A-IFSs,
A and B for which a correlation coefficient should express not only a rela-
tive strength but also a positive or negative relationship between A and B
(Szmidt and Kacprzyk [34]). Next, all three terms describing an A-IFSs (mem-
bership, non-membership values and the hesitation margins) should be taken into
account because each of them influences the results (Szmidt and Kacprzyk [34],
Szmidt [19]). The above assumptions make the difference between our approach
and those from the literature (the arguments for our approach are in (Szmidt
and Kacprzyk [34], Szmidt [19]).

Suppose that we have a random sample x1, x2, . . . , xn ∈ X with a sequence
of paired data [(μA(x1), νA(x1), πA(x1)), (μB(x1), νB(x1), πB(x1))], [(μA(x2),
νA(x2), πA(x2)), (μB(x2), νB(x2), πB(x2))], . . . , [(μA(xn), νA(xn), πA(xn)),
(μB(xn), νB(xn), πB(xn))] which correspond to the membership values, non-
memberships values and hesitation margins of A-IFSs A and B defined on X,
then the correlation coefficient rA−IFS(A,B) is given by Definition 1 (Szmidt
and Kacprzyk [34]).

Definition 1. The correlation coefficient rA−IFS(A,B) between two A-IFSs, A
and B in X, is:

rA−IFS(A,B) =
1
3
(r1(A,B) + r2(A,B) + r3(A,B)) (5)

where

r1(A,B) =

n∑

i=1

(μA(xi) − μA)(μB(xi) − μB)

(
n∑

i=1

(μA(xi) − μA)2)0.5(
n∑

i=1

(μB(xi) − μB)2)0.5
(6)

r2(A,B) =

n∑

i=1

(νA(xi) − νA)(νB(xi) − νB)

(
n∑

i=1

(νA(xi) − νA)2)0.5(
n∑

i=1

(νB(xi) − νB)2)0.5
(7)

r3(A,B) =

n∑

i=1

(πA(xi) − πA)(πB(xi) − πB)

(
n∑

i=1

(πA(xi) − πA)2)0.5(
n∑

i=1

(πB(xi) − πB)2)0.5
(8)
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where: μA = 1
n

n∑

i=1

μA(xi), μB = 1
n

n∑

i=1

μB(xi), νA = 1
n

n∑

i=1

νA(xi),

νB = 1
n

n∑

i=1

νB(xi), πA = 1
n

n∑

i=1

πA(xi), πB = 1
n

n∑

i=1

πB(xi),

The proposed correlation coefficient (5) depends on two factors: the amount of
information expressed by the membership and non-membership degrees (6)–(7),
and the reliability of information expressed by the hesitation margins (8).

Remark: Analogously as for the crisp and fuzzy data, rA−IFS(A,B) makes
sense for A-IFS variables whose values vary. If, for instance, the temperature is
constant and the amount of ice cream sold is the same, then it is impossible to
conclude anything about their relationship (as, from the mathematical point of
view, we avoid zero in the denominator).

The correlation coefficient rA−IFS(A,B) (5) fulfills the following properties:

1. rA−IFS(A,B) = rA−IFS(B,A)
2. If A = B then rA−IFS(A,B) = 1
3. |rA−IFS(A,B)| ≤ 1

The above properties are fulfilled both by the correlation coefficient
rA−IFS(A,B) (5) and also by all of its components (6)–(8).

Remark: It is should be emphasized that rA−IFS(A,B) = 1 occurs not only for
A = B but also in the cases of a perfect linear correlation of the data (the same
concerns each component (6)–(8)).

In Szmidt and Kacprzyk [34] there are examples showing that each compo-
nent may play an important role when considering correlation between A-IFSs.
On the other hand, (5) which aggregates (6)–(8)) plays an important role as a
bird-eye-view revision of the correlation – in extreme cases, i.e., for the values:
−1. 0, and 1 we have exact summarized information about the correlation. For
other cases (5) suffers from the same drawbacks each aggregation measure does.

3 Hellwig’s Method of Data Reduction for the A-IFSs

Hellwig’s method (Hellwig [9]), also called the method of the capacity of infor-
mation bearers, is a method of variable selection in linear models. The method
looks for the best combination of the variables i.e. selects them which means
data reduction. The best combination of the variables used in a model means
pointing out a subset of a model independent variables with the highest capac-
ity of information. In other words, the chosen independent variables should be
strongly correlated with the output of a model (a dependent variable) and weakly
correlated among themselves.

The advantage of Hellwig’s method lies in a simpler calculations than in
other methods reducing the dimensionality of a model. For example, for well
known Principal Component Analysis (PCA) method (Jackson [10], Jolliffe [11],
[12], Marida et al. [14]) one should find the eigenvectors which is easy only for
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small matrices. As Hellwig stresses [9], for n independent variables there are
2n − 1 of the possible subsets of variables and his method of finding the optimal
combination does not require finding the inverse matrices.

To apply Hellwig’s method ones needs to use the correlation coefficients,
namely,

– a vector of correlation coefficients R0 between dependent attribute (called
as well “feature”, “variable” or “predictand”) Y and independent attributes
(“features”, “variables” or “predictors”) X1,X2, . . . , Xn, and

– a matrix of correlation coefficients R among independent attributes
X1,X2, . . . , Xn.

In other words, we need a vector Ro = (r1, r2, . . . , rn) where rj is a correlation
coefficient between Xj and Y , and a symmetric matrix of correlation coefficients
R, with the elements ri,j being the correlation coefficients between values Xi

and Xj :

R =

⎡

⎢
⎢
⎣

1 r12 . . . r1n
r21 1 . . . r2n
. . . .

rn1 rn2 . . . rnn

⎤

⎥
⎥
⎦

Performing of the Hellwig’s method consists of three steps

– calculation of the capacity of an individual information bearer Xj for the k-th
combination

hkj =
r2j

1 +
m∑

i=1,i �=j

|rij |
(9)

where k is number of a combination, k = 1, 2, . . . , l, and j is a number of a
variable in the combination, j = 1, 2, . . . ,m.

– calculation of the integral capacity of individual information bearers for all
combinations

Hk =
m∑

j=1

hkj (10)

where k = 1, 2, . . . , l.
– the last step is to find the maximal value among the Hk’s.

As an illustration how Hellwig’s method works, i.e. how the reduction of the
dimensionality of a data set proceeds, we will recall a well known problem for-
mulated by Quinlan [17] but expressed in terms of the A-IFSs. The Quinlan’s
example, the so-called “Saturday Morning” example, considers the classification
with nominal data. This example is small enough and illustrative, yet is a chal-
lenge to many classification and machine learning methods. The main idea of
solving the example by Quinlan was to select the best attributes (variables) to
split the training set (Quinlan used a so-called Information Gain which was a
dual measure to Shannon’s entropy).
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We will verify if Hellwig’s method gives satisfying results of selecting the best
attribute for the problem formulated by Quinlan [17] but expressed in terms of
the A-IFSs.

In Quinlan’s example [17] (Table 1) we have objects described by attributes.
Each attribute represents a feature and takes on discrete, mutually exclusive val-
ues. For example, if the objects were “Saturday Mornings” and the classification
involved the weather, possible attributes might be [17]:

– outlook, with values {sunny, overcast, rain},
– temperature, with values {cold, mild, hot},
– humidity, with values {high, normal}, and
– windy, with values {true, false},

Table 1. The “Saturday Morning” data from [17]

No. Attributes Class

Outlook Temp Humidity Windy

1 Sunny Hot High False N

2 Sunny Hot High True N

3 Overcast Hot High False P

4 Rain Mild High False P

5 Rain Cool Normal False P

6 Rain Cool Normal True N

7 Overcast Cool Normal True P

8 Sunny Mild High False N

9 Sunny Cool Normal False P

10 Rain Mild Normal False P

11 Sunny Mild Normal True P

12 Overcast Mild High True P

13 Overcast Hot Normal False P

14 Rain Mild High True N

The limitation of space does not let us discuss the method of deriving the
A-IFS counterpart of Quinlan’s example (Table 2) in detail (cf. Szmidt and
Kacprzyk [33]) and we only present here the final results.

Next, making use of the A-IFS model (Table 2) and applying (5) we computed
the correlation matrices
Ro = (r1, r2, r3, r4) = [0.48, 0.45, 0.258, 0.257],
and matrix R which values are in Table 3.

As there are 4 variables in our example: Outlook, Humidity, Windy, Temper-
ature (which are abbreviated further as: X1,X2,X3,X4), it is possible to select
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Table 2. The “Saturday Morning” data in terms of the A-IFSs

No. Attributes Class

Outlook Humidity Windy Temperature

1 (0, 0.33, 0.67) (0, 0.33, 0.67) (0.2, 0, 0.8) (0, 0.33, 0.67) N

2 (0, 0.33, 0.67) (0, 0.33, 0.67) (0, 0.33, 0.67) (0, 0.33, 0.67) N

3 (1, 0, 0) (0, 0.33, 0.67) (0.2, 0, 0.8) (0, 0.33, 0.67) P

4 (0.2, 0.11, 0.69) (0, 0.33, 0.67) (0.2, 0, 0.8) (0, 0, 1) P

5 (0.2, 0.11, 0.69) (0.6, 0, 0.4) (0.2, 0, 0.8) (0.4, 0.11, 0.49) P

6 (0.2, 0.11, 0.69) (0.6, 0, 0.4) (0, 0.33, 0.67) (0.4, 0.11, 0.49) N

7 (1, 0, 0) (0.6, 0, 0.4) (0, 0.33, 0.67) (0.4, 0.11, 0.49) P

8 (0, 0.33, 0.67) (0, 0.33, 0.67) (0.2, 0, 0.8) (0, 0, 1) N

9 (0, 0.33, 0.67) (0.6, 0, 0.4) (0.2, 0, 0.8) (0.4, 0.11, 0.49) P

10 (0.2, 0.11, 0.69) (0.6, 0, 0.4) (0.2, 0, 0.8) (0, 0, 1) P

11 (0, 0.33, 0.67) (0.6, 0, 0.4) (0, 0.33, 0.67) (0, 0, 1) P

12 (1, 0, 0) (0, 0.33, 0.67) (0, 0.33, 0.67) (0, 0, 1) P

13 (1, 0, 0) (0.6, 0, 0.4) (0.2, 0, 0.8) (0, 0.33, 0.67) P

14 (0.2, 0.11, 0.69) (0, 0.33, 0.67) (0, 0.33, 0.67) (0, 0, 1) N

Table 3. Evaluation of the correlation coefficients (5) of the “Saturday Morning” data

Attribute Outlook (X1) Humidity (X2) Windy (X3) Temperature (X4)

Outlook (X1) 1 0.05 −0.002 0.06

Humidity (X2) 0.05 1 0 0.4

Windy (X3) −0.002 0 1 −0.14

Temperature (X4) 0.06 0.4 −0.14 1

from them 24 − 1 = 15 various subsets. If Qm stands for an element of such
arrangement, we get

Q1 : {X1}, Q2 : {X2}, Q3 : {X3}, Q4 : {X4},
Q5 : {X1,X2}, Q6 : {X1,X3}, Q7 : {X1,X4}, Q8 : {X2,X3}, Q9 : {X2,X4},
Q10 : {X3,X4}, Q11 : {X1,X2,X3}, Q12 : {X1,X2,X4}, Q13 : {X1,X3,X4},
Q14 : {X2,X3,X4}, Q15 : {X1,X2,X3,X4}

For all the combinations Q1 − Q15 we find from (9)–(10)
H1 = h11 = r21 = 0.482 = 0.23
H2 = h22 = r22 = 0.452 = 0.2
H3 = h33 = r23 = 0.2582 = 0.067
H4 = h44 = r24 = 0.2572 = 0.066
H5 = h51 + h52 = r21

1+|r12| + r22
1+|r12| = 0.41
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H6 = h61 + h63 = r21
1+|r13| + r23

1+|r13| = 0.296

H7 = h71 + h74 = r21
1+|r14| + r24

1+|r14| = 0.279

H8 = h82 + h83 = r22
1+|r23| + r23

1+|r23| = 0.267

H9 = h82 + h84 = r22
1+|r24| + r24

1+|r24| = 0.19

H10 = h10,3 + h10,4 = r23
1+|r34| + r24

1+|r24| = 0.117

H11 = h11,1 + h11,2 + h11,3 = r21
1+|r12|+|r13| + r22

1+|r12|+|r23| + r23
1+|r23|+|r13| = 0.476

H12 = h12,1 + h12,2 + h12,4 = r21
1+|r12|+|r14| + r22

1+|r12|+|r24| + r24
1+|r14|+|r24| = 0.39

H13 = h13,1 + h13,3 + h13,4 = r21
1+|r13|+|r14| + r23

1+|r13|+|r34| + r24
1+|r14|+|r34| = 0.327

H14 = h14,2 + h14,3 + h14,4 = r22
1+|r23|+|r24| + r23

1+|r23|+|r34| + r24
1+|r24|+|r34| = 0.245

H15 = h15,1 + h15,2 + h15,3 + h15,4 = r21
1+|r12|+|r13|+|r14| + r22

1+|r12|+|r23|+|r24| +
r23

1+|r13|+|r23|+|r34| + r24
1+|r14|+|r24|+|r34| = 0.445

It is easy to notice that the best combination of the attributes is combination
Q11 : {X1,X2,X3} (Outlook, Humidity, Windy) for which its corresponding
value of H11 is the highest among all the values of Hl.

It is worth noticing that Quinlan obtained 100% classification accuracy, and
the optimal solution (the minimal possible ID3 tree) also involved the same (as
pointed out by Hellwig’s method) three (of four) attributes.

3.1 Brief Comparison with the Principal Component Analysis
(PCA) for the A-IFS Data

Now we will compare the results for the same example but obtained by Principal
Component Analysis PCA) as it is one of the best known and widely used linear
dimension reduction technique Jackson [10], Jolliffe [11], Marida et al. [14] in the
sense of mean-square error.

The Principal Component Analysis (PCA), i.e., the reduction of dimension-
ality of a data set in which there are lots of interrelated variables, is per-
formed by transforming the source set of data to a new set of uncorrelated
variables/features/attributes (the principal components PC) to summarize the
features of the original data. The principal components (PCs) are ordered such
that the k-th PC has the k-th largest variance among all PCs. The k-th PC
points out the direction that maximizes the variation of the projections of the
data points such that it is orthogonal to the first (k − 1)-th PCs. Traditionally,
the first few PC are used in data analysis (they capture most of the variation in
the original data set).

The steps of PCA for crisp sets (Jolliffe [12], Jackson [10]) are:

– find the correlation matrix,
– find the eigenvectors and eigenvalues of the correlation matrix,
– rearrange the eigenvectors and eigenvalues in the order of decreasing eigen-

values,
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– select a subset of the eigenvectors as the basis vectors,
– convert the source data into the new basis.

After performing the above steps adapted to the data expressed via A-IFSs
(cf. Szmidt and Kacprzyk [35]), we have noticed that the first three eigenvalues
explain most of variability of the data (85%), and summarize the most important
features of the data. The obtained result is consistent with the original result
Quinlan gives [17] who has indicated that the optimal tree that classifies correctly
all data consists of three attributes only (Outlook, Humidity, Windy). The result
is just the same as we have obtained while applying Hellwig’s method.

Clearly, our example is just for illustration as feature reduction makes sense
for large problems (very many features) and then the reduction is usually con-
siderable and very welcome.

4 Conclusions

We presented a novel approach to Hellwig’s method for the reduction of data sets
for data expressed by the A-IFSs. We used three terms representation of A-IFSs,
i.e. taking into account the degree of membership, non-membership and hesita-
tion margin. Such a description turned out important while calculating correla-
tion coefficients in the case of A-IFSs (Szmidt and Kacprzyk [34,35], Szmidt [19]).
We hope that the new approach to Hellwig’s method for the A-IFS-type data
can be important because, on the one hand, the A-IFSs gain a wider and wider
importance as a tool for data representation and processing in more and more
areas. On the other hand, because of the drawbacks of the existing methods,
new techniques in data analysis are constantly looked for. Some methods like
the PCA, which is one of the most relevant techniques in data analysis, are
difficult to perform for bigger data (complicated calculations). In this context,
Hellwig’s method with its simpler calculations seems very promising.
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Abstract. Continuous time Bayesian networks offer a compact repre-
sentation for modeling structured stochastic processes that evolve over
continuous time. In these models, the time duration that a variable stays
in a state until a transition occurs is assumed to be exponentially dis-
tributed. In real-world scenarios, however, this assumption is rarely sat-
isfied, in particular when describing more complex temporal processes.
To relax this assumption, we propose an extension to support the model-
ing of the transitioning time as a hypoexponential distribution by intro-
ducing an additional hidden variable. Using such an approach, we also
allow CTBNs to obtain memory, which is lacking in standard CTBNs.
The parameter estimation in the proposed models is transformed into a
learning task in their equivalent Markovian models.
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1 Introduction

Continuous time Bayesian networks, or CTBNs for short, firstly introduced by
Nodelman et al. [1], offer a compact representation for modeling structured
stochastic processes that evolve over continuous time. By providing an explicit
representation of time, i.e., time acts as a continuous parameter, these models
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have the advantage of representing a probability distribution over observations
that are made at irregularly spaced points in time. The powerful expressiveness
of CTBNs to model data in such a form has been demonstrated by numerous
early work (see e.g. reliability modeling [2], network intrusion detection [3,4],
heart failure modeling [5,6], and gene network construction [7]).

In spite of supporting time irregularity, CTBNs suffer from an important
limitation in their expressiveness: the time that a variable stays in a state until
transition follows an exponential distribution. This distribution occurs naturally
when describing a process where events occur continuously and independently at
a constant average rate. In real-world scenarios, however, the assumption is rarely
satisfied. In particular, it is inappropriate to describe more complex temporal
processes, such as business processes that model interpurchase times [8]. The
limitation was firstly described by Nodelman and Horvitz [9]; subsequent work
by Gopalratman et al. [10] focuses on Erlang-Coxian distributions to handle
time duration. To overcome the limitation, two approaches were proposed by
Nodelman et al. [11] to extend CTBNs to phase-type duration distributions,
yielding a richer and more flexible distribution. The first approach is to add
hidden states to the random variables of a CTBN, which is called the direct
approach. Alternatively, a second and more elegant approach is to add hidden
variables to a CTBN. From a practical point of view, this approach is attractive,
because existing CTBN inference algorithms can be directly applied. For the
direct representation, states have to be interpreted as a disjunction of hidden
states, which is cumbersome and computationally expensive when using existing
software packages. However, the question of how to add the hidden variables to
the network structure and what constraints should be imposed on the structure
of their parameters was left unresolved [11].

In this paper, we show that the hidden variable approach can be used to
represent a large class of duration distributions described by hypoexponential
distributions. These distributions significantly generalize the existing exponen-
tial distributions. As a second contribution of this paper, we give precise con-
ditions on the CTBN graph and discuss the exact constraints on the parameter
structure for representing these distributions. We also show how these models
are formally related to the direct representation, which we use for learning the
parameters of the model.

The rest of the paper is organized as follows. We start with a motivating
example in Sect. 2, followed by a brief summary of CTBNs and hypoexponen-
tial distribution in Sect. 3. Then, in Sect. 4, we define hidden continuous time
Bayesian networks (HCTBNs). In Sect. 5, we show the relationships between the
hidden variable model and the direct models. Subsequently, in Sect. 6, we demon-
strate the usefulness of our proposed models by describing non-exponential dis-
tribution using HCTBNs and CTBNs, and by modeling dynamics of a medical
problem. Finally, the paper is concluded with a brief discussion of possible future
work for HCTBNs.
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2 Motivating Example

To illustrate the proposed theory, we consider a medical example, viz. factors
that influence the cardiac output, i.e., the blood flow to and from the heart.
According to the literature, the heart rate, defined in terms of the number of
heart beats per minute, has a positive influence on the cardiac output. However,
a reduced blood supply, thus oxygen supply, as the result of coronary artery
disease, may give rise to a heart attack (myocardial infarction). Consequently,
some of the heart muscle fibers will die and the heart may fail to comply with
respect to its function as a pump, thus cardiac output will be negatively affected.
With regard to the prognosis, (increased) heart rate may be considered a risk
factor for myocardial infarction (this is the rationale behind treatment of coro-
nary artery disease patients with beta-blocking drugs, such as propranolol, that
decrease heart rate). This causal knowledge is formalized as a directed graph in
Fig. 1. Diagnosis of a myocardial infarction is done by examining the shape of the
ECG and by determining the levels of troponin (a protein that is released from
the dying heart cells) in the blood. In the model we take into account that lab
facilities (to determine an ECG and troponin levels in the blood) are not avail-
able, as is common in some developing countries. Thus, diagnosing a myocardial
infarction in the common way is not an option. As a result, the observations
solely consist of the heart rate. With respect to modeling, this also implies hid-
den causes, such as myocardial infarction, must be taken into consideration when
assessing potential causes for reduced cardiac output. More importantly, remem-
bering having a myocardial infarction in the past, which is called memory, can
alter the evolution of cardiac output in the future. In the remainder of this paper,
we propose a method to deal with modeling such hidden causes, in particular
to describe the memory behavior of temporal processes that evolve continuously
over time.

MI HR

CO

Fig. 1. Causal model for cardiac output: MI= Myocardial infarction; CO = cardiac
output, HR = heart rate. The dashed node indicates a hidden cause.

3 Preliminaries

In this section, we will introduce the technical background of continuous time
Bayesian networks as originally presented by Nodelman et al. [12] and phase-type
distributions. The domain for an n-valued variable X is denoted as Val(X) =
{1, 2, . . . , n} with the notation X = i indicating that variable X has the value i.
We also use the notation π(X) for the parents of variable X in a given graph.
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3.1 Continuous Time Bayesian Networks

A continuous-time Bayesian network represents a stochastic process over a struc-
tured state space consisting of assignments to a set of local variables. The dynam-
ics of the temporal evolution of the structured state space is described in terms
of the evolution of the local variables. Let X be such a local variable with finite
domain Val(X) = {1, 2, . . . , n}, where i ∈ Val(X) is called a state, and state
changes over continuous time. The dynamics of X can be described as a homo-
geneous Markov process via its intensity matrix :

QX =

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

q11 q12 · · · q1n

q21 q22 · · · q2n
...

...
. . .

...

qn1 qn2 · · · qnn

where qii = −∑
j �=i qij . The time that variable X stays in state i is exponentially

distributed with rate −qii and the expected time is given by −1/qii, and once it
transitions from state i, it shifts to state j with probability −qij/qii.

CTBNs are based on homogeneous continuous time Markov processes, which
has the Markov property, also known as a stronger assumption of memoryless-
ness. The Markov property states that given the state of the process X at any
set of times prior to time t, the distribution of X at time t depends only on X
at the most recent time prior to time t. It is equivalent to say that given the
state of the process X at time s, the distribution of X at any time after s is
independent of the entire past of X prior to time s. More formally:

P (Xt = j | Xt1 = k1,Xt2 = k2, . . . , Xtn = kn,Xs = i) = P (Xt = j | Xs = i)

where 0 < t1 < t2 < · · · < tn < s < t.
However, this property has to be interpreted more carefully in CTBNs as

these models also express the local dependence of one variable on the others.
It is true that the Markov property still holds for CTBNs when conditioned on
all the local variables in a model; it is not the case when only conditioning on
a proper subset of the variables. This is due to the temporal entanglement in
CTBNs where time is also considered. Let X be the variables in a CTBN and
Z be a proper subset of X, i.e., Z � X. When querying the distribution over
variables Z at time t, the distribution over variables Z at time t is no longer
independent from its states at time prior to s given the states of variables Z at
time s. More formally:

P (Zt = j, | Zt1 = k1,Zt2 = k2, . . . ,Ztn = kn,Zs = i) �= P (Zt = j | Zs = i)

This is because the information at time prior to s is propagated to the time t
through variables X \ Z. In this paper, we refer such behavior of variables Z as
memory. Without loss of generality, we introduce memory to all variables in a
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given CTBN by adding an additional hidden variable. The states of non-hidden
variables are dependent on the their states in the past as the hidden variable
is always unobservable. In this paper, we restrict ourselves to studying such
memory behavior in CTBNs.

3.2 Hypoexponential Distribution

A phase-type distribution is a distribution which describes the time until reach-
ing the absorbing state of a continuous time Markov chain with n transient
states and one absorbing state. A phase-type distribution represented by n tran-
sient states is said to have order n. This continuous time Markov chain can be
described as a state transition diagram. The diagram is a convenient graphical
representation in terms of the initial probabilities, i.e., the distribution over the
transient states at t = 0, the transition rates between the transient states, and
the exit rates, i.e., the probability of entering the absorbing state.

Exponential distributions are a special case of phase-type distributions, where
the continuous time Markov process has one transient state. The distribution can
thus be graphically represented by a state transition diagram with only one state
as shown in Fig. 2a. The diagram asserts that the chain enters the first and only
transient state 1 with probability one and enters the absorbing state with rate λ.
The hypoexponential distribution, also known as generalized Erlang distribution,
is the distribution of the sum of n independent and identically exponentially
distributed random variables. The state transition diagram of the Markov chain
of n-order hypoexponential distribution is shown in Fig. 2. More details about
phase-type distribution can be found in [13].

11
λ

(a)

1 · · · n1
λ1 λn−1 λn

(b)

Fig. 2. State transition diagram for exponential distribution as shown in (a) and an n-
order hypoexponential distribution as shown in (b). A solid node indicates a transient
state and a dashed node indicates an absorbing state.

4 Hidden Continuous Time Bayesian Networks

In this section, we define a new extension of CTBNs, which we call hidden contin-
uous time Bayesian networks, abbreviated to HCTBNs, where there is only one
variable whose time staying in a state until a transition occurs, given a particular
configuration of its parents, is described by a hypoexponential distribution. For
other variables, the transition times are exponentially distributed.
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4.1 Structure

First, we define the structure associated to an HCTBN, which contains a labeled
node X which will correspond to a binary hypoexponential variable, a labeled
node H corresponding to a hidden variable that is used to represent the hypo-
exponential distribution for X, and labeled Y to exponential variables.

Definition 1 (HCTBN Graph). An HCTBN graph is a labeled graph defined
by a triple G = (V,E, l), where V = {X,H} ∪ Y denotes a set of vertices, E ⊆
V×V a set of arcs on V, and l a label function such that l(X) = hypoexponential,
l(H) = hidden and l(Y) = exponential. The following conditions apply to G:

1. H → X ∈ E and X → H ∈ E;
2. For any vertex Y ∈ Y, Y → X ∈ E iff Y → H ∈ E;
3. For any vertex Y ∈ Y, H → Y �∈ E.

Condition 1 asserts that there is a bidirected edge between vertices X and H.
Second, Condition 2 asserts as a parent of vertex X, vertex Y is also a parent
of the hidden variable H. Together with Condition 1, it is clear that vertices
X and H have the same number of parents. Thus, the number of parameters
for H grows exponentially with the number of the parents of vertex X. Third,
Condition 1 and 3 state that vertex X is the only child for vertex H.

Example 1. Consider the two simplest HCTBN graphs where we have two ver-
tices X and H. In the first case, we have no other vertices, i.e., Y = ∅. In
the second case, we have another vertex Y and it is a parent of vertex X, i.e.,
Y = {Y }. The HCTBNs graphs are given in Fig. 3.

X H

S

(a)

Y X

H

S

(b)

Fig. 3. Two simplest HCTBNs graphs where vertex X has no children: (a) Y = ∅ and
π(X) = {H}; (b) Y = {Y } and π(X) = {H, Y }.

4.2 Model Definition

Now we give a formal definition of HCTBNs.

Definition 2 (Hidden Continuous Time Bayesian Networks
(HCTBNs)). An n-order hidden continuous time Bayesian network (HCTBN)
is a triple N = (G,Λ, P0) with the graph G as defined in Definition 1. In addition,
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Λ is a set of conditional intensity matrices and P0 is the initial distribution for the
variables associated to the nodes in the graph G with P0(X = 1,H = 1) = 1, and
for each configuration u of the parents U for variable X, U = π(X) \ {H}, the
intensity matrices for variable X and H have the following form:

QH|X=1,u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−λu
1 λu

1 . . . 0 0

0 −λu
2 λu

2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 −λu
n−1 λu

n−1

0 0 0 0 0

QH|X=2,u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

0 0 0 0 0
γu
n−1 −γu

n−1 . . . 0 0

0 γu
n−2 −γu

n−2

.

.

. 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 0 0 γu

1 −γu
1

QX|H=1,u =
(

0 0
γu
n −γu

n

)
QX|H=n,u =

(
−λu

n λu
n

0 0

)
If n ≥ 3, QX|H=2:n,u =

(
0 0
0 0

)

The intensity matrices defined in such a form make sure that the time duration
distribution for variable X staying in a state is represented by a Markov chain
with n transient states.

Example 2. Given the graph where U = ∅ as shown in Fig. 3a, and λ1 = 1, λ2 =
2, λ3 = 3, γ1 = 4, γ2 = 5, γ3 = 6, we can define a 3-order HCTBN by giving the
intensity matrices for variable X and H as below:

QH|X=1 =
(−1 1 0

0 −2 2
0 0 0

)

QH|X=2 =
(

0 0 0
5 −5 0
0 4 −4

)

QX|H=1 =
(
0 0
6 −6

)
QX|H=2 =

(
0 0
0 0

)
QX|H=3 =

(
−3 3
0 0

)

Alternatively, we can view the hypoexponential variable X and the hidden
variable H as a whole by amalgamating them into a single variable S, whose state
space is the joint state space over X and H. Each state of X now corresponds
to a set of instantiations to S. When we amalgamate over the hypoexponential
variable X and the hidden variable H, their joint intensity matrix follows a
particular structure. The states in the intensity matrix are given by iterating
over all the values of X in the ordering before iterating to the next values of H.
In this particular case, this gives:

QXH =

11 21 12 22 13 23 · · · 1n − 2 2n − 2 1n − 1 2n − 1 1n 2n
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−λ1 0 λ1 0 0 0 0 0 0 0 0 0 0 11

γn −γn 0 0 0 0 0 0 0 0 0 0 0 21

0 0 −λ2 0 λ2 0 0 0 0 0 0 0 0 12

0 γn−1 0 −γn−1 0 0 0 0 0 0 0 0 0 22

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0 0 0 0 −λn−1 0 λn−1 0 1n − 1

0 0 0 0 0 0 0 0 γ2 0 −γ2 0 0 2n − 1

0 0 0 0 0 0 0 0 0 0 0 −λn λn 1n

0 0 0 0 0 0 0 0 0 0 γ1 0 −γ1 2n
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Example 3. Consider the HCTBN as given in Example 2. The joint intensity
matrix for variable X and H is given as below:

QXH =

11 21 12 22 13 23
⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

−1 0 1 0 0 0 11
6 −6 0 0 0 0 21
0 0 −2 0 2 0 12
0 5 0 −5 0 0 22
0 0 0 0 −3 3 13
0 0 0 4 0 −4 23

Proposition 1. Let X be the hypoexponential variable in an n-order HCTBN.
The time that variable X stays in each of its states follows an n-order hypoex-
ponential distribution.

Given the joint intensity matrix of the hypoexponential variable X and the hid-
den variable H in an n-order HCTBN, now we can reinterpret the time duration
of variable X in terms of the joint state over variables X and H. More specif-
ically, the time of variable X staying in a state is then reinterpreted as the
absorbing time of a Markov chain with a sequence of joint states over variable
H and X where variable X in the joint states remains in the given state. For
example, the time of variable X stays in state 1 is thus viewed as the absorbing
time of a Markov chain with a sequence of joint states 11, 12, . . . , 1n, where X
always stays in state 1 and the final transition in such a chain is the transition
from state 1n to 2n. As noted, there is a no explicit absorbing state. It is clear
that such a Markov chain describes an n-order hypoexponential distribution.
Analogously, we can construct another Markov chain corresponding to state 2
for variable X. Together, we can obtain a single Markov chain that could be
graphically represented by a cyclic state transition diagram as shown in Fig. 4a.

11 12 · · · 1n

2n· · ·2221

1

2

λ1 λ2 λn−1

λn

γ1γn−2γn−1

γn

(a)

1 2 · · · n

n+1· · ·2n−12n

1

2

λ1 λ2 λn−1

λn

γ1γn−2γn−1

γn

(b)

Fig. 4. State transition diagram for joint states over the hypoexponential variable X
and hidden variable H in an n-order HCTBN (a) and for states of its extended variable
X ′ in its equivalent Markovian model (b).

5 Equivalent Markovian Models

An important task for any probabilistic graphical models is to estimate param-
eters from data. In this paper, we transform parameter estimation in HCTBNs
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into a learning task in their equivalent Markovian models in terms of the same
time distribution for the hypoexponential variable. In this section, we devote
ourselves to defining such equivalent Markovian models. The introduction of
these models only serves as a tool to estimate parameters in HCTBNs.

Definition 3 (Equivalent Markovian Graph). Let G = (V,E, l), V =
{X,H}∪Y be an HCTBN graph. An equivalent Markovian graph G′ = (V′,E′)
is obtained with vertices V′ = {X} ∪ Y and arcs E′ = E ∩ (V′ × V′).

Hence, the graph structure is restricted by excluding the hidden variable H in
the graph G′ while all other variables remain. However, a different distribution is
associated to vertex X in G′, in particular the state-space has grown. For exam-
ple, the equivalent Markovian model graphs associated to HCTBNs introduced
in Fig. 3 are shown in Fig. 5.

X

(a)

Y X

(b)

Fig. 5. Equivalent Markovian graphs associated to HCTBNs as introduced in Fig. 3:
(a) Y = π(X) = ∅; (b) Y = π(X) = {Y }.

Definition 4 (Equivalent Markovian Models). Let N be an n-order
HCTBN with intensity matrices Λ. An equivalent Markovian model M is defined
as a triple M = (G′, Λ′, P ′

0) where graph G′ = ({X} ∪ Y, E) as in Definition 3,
Λ′ a set of intensity matrices over the vertices of G′, and P ′

0 the initial distri-
bution with P ′

0(X = 1) = 1. For any Y ∈ Y, if X �∈ π(Y ), QM
Y |π(Y ) = QN

Y |π(Y );
otherwise, QM

Y |K,X=1:n = QN
Y |K,X=1 and QM

Y |K,X=n+1:2n = QN
Y |K,X=2, where

K = π(Y )\{X}. Given each configuration u of parents π(X) from M and joint
intensity matrix QN

XH, intensity matrices QM
X|π(X)=u are defined by re-ordering

the states of QN
XH from current indices [1, . . . , 2n] to [1, 3, . . . , 2n−1, 2n, . . . , 4, 2].

Definition 4 implies that HCTBNs have the same number of parameters in their
equivalent Markovian models.

Example 4. An equivalent Markov model for the HCTBN, as defined in Exam-
ple 2, with the intensity matrix for variable X is given as below:

QX =

1 2 3 4 5 6
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−1 1 0 0 0 0 1

0 −2 2 0 0 0 2

0 0 −3 3 0 0 3

0 0 0 −4 4 0 4

0 0 0 0 −5 5 5

6 0 0 0 0 −6 6
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Proposition 2. Let X be the hypoexponential variable in an n-order HCTBN
and X ′ be the extended variable of X in its associated equivalent Markov model.
The absorbing time in a Markov chain described by a sequence of states 1, 2, . . . , n
of variable X ′ follows the same distribution as the time distribution of X staying
in state 1, and the absorbing time in a Markov chain described by a sequence
of states n + 1, n + 2, . . . , 2n of variable X ′ follows the same distribution as the
time distribution of X staying in state 2.

Similar to an HCTBN, we can also construct a state transition diagram for
its equivalent Markovian model, as shown in Fig. 4b. The time that X staying
in state 1 has an n-order hypoexponential distribution with rates λ1, λ2, . . . , λn.
The same distribution can also be represented by a Markov chain of a sequence
of states of variable X ′, 1, 2, . . . , n. The same applies to X staying in state 2.

6 Experiments

In the experiments, we investigate two aspects. First, we investigate whether
HCTBNs provide a better approximation than CTBNs when the true temporal
processes are governed by a hypoexponential time distribution. Second, we show
the usefulness of HCTBNs by modeling a number of factors that influence cardiac
output in the medical setting, which was previously introduced in Sect. 2. In
this model, an interesting question is how the dynamics of cardiac output are
affected by other factors, in particular when a hidden cause is present, i.e., when
myocardial infraction is not observed.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Time

P
ro
ba

bi
lit
y

True model CTBNs HCTBNs(n=2)
HCTBNs(n=3) HCTBNs(n=10)

(a)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Time

P
ro
ba

bi
lit
y

True model CTBNs HCTBNs(n=3) HCTBNs(n=5)

(b)

Fig. 6. Probability of X staying at state 1, given evidence X = 2 and Y = 2 at time
8, 10 and 12. (a): the true process has 10-order hypoexponential distribution and no
parents. (b): the true process has 5-order hypoexponential distribution and one parent.
The rates in the distribution follow a Gamma distribution with rate = 1 and shape = 2.
The number of hidden states for the learned HCTBNs is indicated by the number n.

In the experiments, two software packages were mainly used to learn param-
eters for HCTBNs. The transformation between a given HCTBN and its
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equivalent Markovian model was implemented by CTBN-RLE 1. We reformu-
lated the parameter estimation task in HTCBNs as one in their equivalent
Markovian models, where the EM algorithm is used to approximate a phase-type
distribution from data by employing EMpht2. The EMpht also supports learning
parameters from right censored data, i.e., a variable staying in a state for at least
a given amount of time. A more detailed discussion can be found in [10].

For the first purpose, we generated a number of datasets from temporal
processes where the time distribution follows a more complex distribution, rather
than simple exponential distribution. In the experiments, a hypoexponential
distribution was chosen. With respect to learning parameters for HCTBNs, we
also considered the impact of the number of hidden states on the quality of the
approximation in learned HCTBNs. The number of hidden states was set to 2, 3
and 10 when the underlying hypoexponential distribution has an order 10, and
to 3 and 5 when the distribution has order 5.

For illustrative purpose, we considered learning parameters for a variable with
complex time distribution without parents as shown in Fig. 5a and in the pres-
ence of one single parent as shown in Fig. 5b. The underlying time distribution
was approximated by using the proposed HCTBNs and CTBNs. The dynamics
of the hypoexponential variable X in the time interval [0, 20] in learned CTBNs
and HCTBNs, as shown in Fig. 6, suggest that HCTBNs have a better approxi-
mation of the underlying generalized hypoexponential distribution than CTBNs.
It also indicates that other complex distributions may be better approximated
using HCTBNs. In addition, we obtained a better approximation using HCTBNs
with more hidden states. More importantly, the memory in a given temporal pro-
cess can be easily captured by HCTBNs, whereas it can not be captured using
CTBNs.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Time (Weeks)

P
ro
ba

bi
lit
y
of

lo
w

ca
rd
ia
c
ou

tp
ut

Fig. 7. Probability of having a low cardiac output given the evidence of high heart rate
at time 8, 10 and 12.

For the second part of the experiments, we show the usefulness of HCTBNs
for the medical example by modeling the dynamics of a patient’s cardiac output
over time. We computed the probability distribution of cardiac distribution for
1 http://rlair.cs.ucr.edu/ctbnrle/.
2 http://home.math.au.dk/asmus/pspapers.html.

http://rlair.cs.ucr.edu/ctbnrle/
http://home.math.au.dk/asmus/pspapers.html
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a period of 20 weeks. At time 0, the patient has a myocardial infarction and
evidence of the patient having high heart rate is given at time 8, 10, 12. Results
of this experiment are plotted in Fig. 7. The plot shows that it is less likely for the
patient to have a low cardiac output given a high heart rate (see drops at time
8, 10 and 12). The plot also suggests that factors that influence cardiac output
cannot be solely explained by heart rate as we have different probabilities of
having a low cardiac output at time 8, 10 and 12, even given the same evidence.

7 Conclusions

In this paper, we show that time duration in CTBNs governed by hypoexpo-
nential distributions can be modeled by using hidden variables. In addition, we
show that the hidden variable also introduces memory, which is lacking in stan-
dard CTBNs. This memory will make CTBNs better-suited as a modeling tool
for more general real-world problems in many domains, such as biology where
memory plays a central role. In this paper, we provide a complete formalization
of the approach. In addition, experimental results show that HCTBNs indeed
can learn this more complex distributions, which was also illustrated by a small
medical example.

A limitation of HCTBNs so far is that the observable variables are restricted
to two states, as the focus of this paper has been on the introducing a richer
time distribution and memory. In future work, we aim to overcome this limitation
by supporting multinomial variables. At first glance, the proposed procedure for
transforming to equivalent Markovian models can also be applied for multinomial
variables but a further careful examination is necessary.

References

1. Nodelman, U.D.: Continuous time Bayesian Networks. Ph.D. thesis, Stanford Uni-
versity (2007)

2. Boudali, H., Dugan, J.B.: A continuous-time Bayesian network reliability modeling,
and analysis framework. IEEE Trans. Reliab. 55(1), 86–97 (2006)

3. Xu, J., Shelton, C.R.: Continuous time Bayesian networks for host level network
intrusion detection. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML
PKDD 2008. LNCS (LNAI), vol. 5212, pp. 613–627. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87481-2 40

4. Xu, J., Shelton, C.R.: Intrusion detection using continuous time Bayesian networks.
J. Artif. Intell. Res. 39, 745–774 (2010)

5. Gatti, E., Luciani, D., Stella, F.: A continuous time Bayesian network model for
cardiogenic heart failure. Flex. Serv, Manuf. J. 24(4), 496–515 (2012)

6. Liu, M., Hommersom, A., van der Heijden, M., Lucas, P.J.F.: Hybrid time Bayesian
networks. Int. J. Approximate Reasoning 80, 460–474 (2017)
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Abstract. This paper focuses on sequential decision problems under
uncertainty, i.e. sequential problems where no probability distribution
on the states that may follow an action is available. New qualitative
criteria are proposed that are based on ordinal uninorms, namely R∗
and R∗. Like the Hurwicz criterion, the R∗ and R∗ uninorms arbitrate
between pure pessimism and pure optimism, and generalize the Max-
imin and Maximax criteria. But contrarily to the Hurwicz criterion they
are associative, purely ordinal and compatible with Dynamic Consis-
tency and Consequentialism. This latter important property allow the
construction of an optimal strategy in polytime, following an algorithm
of Dynamic Programming.

Keywords: Qualitative decision making · Uncertainty
Sequential decision problems

1 Introduction

In a sequential decision problem under uncertainty, a decision maker faces a
sequence of decisions, each decision possibly leading to several different states,
where further decisions have to be made. A strategy is a conditional plan which
assigns a (possibly non deterministic) action to each state were a decision has to
be made (also called “decision node”), and each strategy leads to a compound
lottery, following Von Neuman and Morgenstern’s terminology [17] - roughly, a
tree representing the different possible scenarios, and thus the different possible
final states that the plan/strategy may reach. The optimal strategy is then the
one which maximizes a criterion applied to the resulting compound lottery.

Three assumptions are desired to accept the optimal strategy without dis-
cussions on the meaning of optimal strategy. Those assumptions are:

– Dynamic Consistency: when reaching a decision node by following an optimal
strategy, the best decision at this node is the one that had been considered
so when computing this strategy, i.e. prior to applying it.

– Consequentialism: the best decision at each step of the problem only depends
on potential consequences at this point.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 855, pp. 578–590, 2018.
https://doi.org/10.1007/978-3-319-91479-4_48
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– Tree Reduction: a compound lottery is equivalent to a simple one.

Those three assumptions are linked to the possibility to compute an optimal
strategy using an algorithm of dynamic programming [13].

When the problem is pervaded with uncertainty the Hurwicz criterion [7] is
often advocated since it generalizes the optimistic maximax and the pessimistic
maximin approaches. It makes a “compromise” between these approaches,
through the use of a coefficient α of optimism - the Hurwicz value being the
linear combination, according to this coefficient, of the two criteria.

Unfortunately, this approach does not suit qualitative, ordinal, utilities: the
Hurwicz criterion proceeds to an additive compensation of the min value by
the max value. Moreover, the criterion turns out to be incompatible with the
above assumptions: it can happen that none of the optimal strategies is dynam-
ically consistent nor consequentialist - as a consequence the optimization of this
criterion cannot be carried out using dynamic programming.

In such a situation, a decision maker using the Hurwicz criterion should adopt
a resolute choice behavior [2], initially choosing a strategy and never deviating
from it later. But many authors insist on the fact that Resolute Choice is not
acceptable since a normally behaved decision maker is consequentialist. This
leads some of them to use algorithmic approaches based on Veto-process [11]
and Ego-dependent process [3] (see also [8,9]).

In the present paper, rather than trying to “repair” the Hurwicz criterion in
an algorithmic way, we are looking for new qualitative criteria which can take
into account the level optimism/pessimism of the decision maker, like Hurwicz’s
criterion, and satisfies the three properties stated above (Dynamic Consistency,
Consequentialism and Tree Reduction).

The paper is structured as follows. The next Section presents the Hurwicz
criterion, the background on decision trees under pure uncertainty and the prin-
ciple of dynamic programming. Section 3 then proposes the use of two qualitative
uninorms, R∗ and R∗, as alternatives to the Hurwicz criterion. Drowning them
in the context of sequential decision making, we show in Sect. 4 that R∗ and R∗
are compatible with Dynamic Consistency and Consequentialism, and propose
to apply an algorithm of dynamic programming to compute an optimal, conse-
quentialist and dynamically consistent strategy. Section 5 eventually summarises
the discussion between the two uninorms and the Hurwicz criterion1.

2 Background

2.1 The Hurwicz Criterion [7]

Let us first consider simple, non sequential decision problems under uncertainty:
each decision δi is characterized by the multi set of final states Eδi = {si

1, ..., s
i
mi}

it can lead to. Given a utility function u capturing the attractiveness of each
of these final states, δi can be identified with a simple lottery over the utility

1 The proofs are omitted for the sake of brevity.
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levels that may be reached: in decision under uncertainty, where no probability
distribution over the consequences of an act is available, a simple lottery is
indeed the multiset of the utility levels of the si

j , i.e. Lδi = (ui
1, ..., u

i
mi) (where

ui
j = u(si

j)).
A usual way to take the optimism of the decision maker (DM in the following)

into account is to use the Hurwicz criterion. The worth of δi is then:

H(δi) = H(Lδi) = (1 − α) × min(ui
1, ..., u

i
mi) + α × max(ui

1, ..., u
i
mi).

where α ∈ [0, 1] is the degree of optimism. H indeed collapses with max aggre-
gation when α = 1 (and with the min aggregation when α = 0).

2.2 Decision Trees

A convenient language to introduce sequential decision problems is through deci-
sion trees [13]. This framework proposes an explicit modeling in a graphical way,
representing each possible scenario by a path from the root to the leaves of a
tree. Formally, a decision tree T = (N , E) is such that N contains three kinds
of nodes (see Fig. 1 for an example):

– D = {d0, . . . , dm} is the set of decision nodes (depicted by rectangles).
– LN = {ln1, . . . , lnk} is the set of leaves, that represent final states in S =

{s1, . . . , sk} ; such states can be evaluated thanks to a utility function: ∀si ∈ S,
u(si) is the degree of satisfaction of being eventually in state si (of reaching
node lni). For the sake of simplicity we assume, without loss of generality,
that only leaf nodes lead to utilities.

– X = {x1, . . . , xn} is the set of chance nodes (depicted by circles).

For any node ni ∈ N , Succ(ni) ⊆ N denotes the set of its children. In a decision
tree, for any decision node di, Succ(di) ⊆ X : Succ(di) is the set of actions that
can be chosen when di is reached. For any chance node xi, Succ(xi) ⊆ LN ∪ D:
Succ(xi) is the set of possible outcomes of action xi - either a leaf node is
observed, or a decision node is reached (and then a new action should be chosen).

The present paper is devoted to qualitative decision making under uncer-
tainty; thus:

– the information at chance nodes is a list of potential outcomes - this suits
situations of total ignorance, where no probabilistic distribution is available.

– the preference about the final states is purely qualitative (ordinal), i.e. we
cannot assume more than a preference order on the consequences (on the
leaves of the tree), captured by the satisfaction degrees. The scale [0, 1] is
chosen for these degrees, but any ordered set can be used.

Solving a decision tree amounts at building a strategy, i.e. a function δ that
associates to each decision node di an action (i.e. a chance node) in Succ(di):
δ(di) is the action to be executed when decision node di is reached. Let Δ be the
set of strategies that can be built for T . We shall also consider the subtree Tn of
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T rooted at node n ∈ T , and denote by Δn its strategies: they are subtrategies
of the strategies of Δ.

Any strategy in Δ can be viewed as a connected subtree of T where there
is exactly one edge (and thus one chance node) left at each decision node -
skipping the decision nodes, we get a chance tree or, using von Neuwman and
Morgernstern’s terminology, a compound lottery2.

Simple lotteries indeed suit the representation of decisions made at the last
step of the tree: (u1, ..., uk) is the multiset of the utilities of the leaf nodes
(ln1, ..., lnk) that may be reached when some decision x is executed. Consider
now a decision x made at the penultimate level: it may lead to any of the decision
nodes di in Succ(x), and thus to any of the simple lotteries Li = (ui

1, ..., u
i
mi),

di ∈ Succ(x) - the substrategy rooted in x defines the compound lottery
(Li, s.t. di ∈ Succ(x)). The reasoning generalizes for decisions x at any level
of the tree, hence the definition of the (possibly multi level) compound lottery
Lδ associated to δ.

In order to apply a criterion, e.g. Hurwicz’s, a simple lottery is needed. To
this extent the Reduction of the compound lottery relative to the strategy is com-
puted, which is the simple lottery which gathers all the utilities reached by the
inner lotteries. Formally, the reduction of a compound lottery L = (L1, ..., Lk)
composed of lotteries Li is defined by:

Reduction(L) = Reduction(L1) ∪ ... ∪ Reduction(Lk) (1)

where the reduction of a simple lottery is the simple lottery itself. For instance,
if L composed of simple lotteries (L1, ..., Lk), with Li = (ui

1, ..., u
i
ni):

Reduction(L) = (u1
1, ..., u

1
n1 , ..., uk

1 , ..., u
k
nk) (2)

The principle of reduction make the comparison of compound lotteries (and thus
of strategies) possible: to compare compound lotteries by some criteria O, simply
apply it to their reductions:

O(L) = O(Reduction(L)) (3)

For instance, considering the Hurwicz criterion, the preference relation over
strategies is defined by:

δ �H δ′ iff H(Reduction(Lδ) � H(Reduction(Lδ′)) (4)

In all the approaches that follow Eq. (3), and in particular in the approach con-
sidered in this paper, Tree Reduction is thus obeyed by construction.

Optimality can now be soundly defined, at the global and the local levels:

– δ ∈ Δ is optimal for T iff ∀δ′ ∈ Δ,O(Reduction(Lδ)) � O(Reduction(Lδ′))
– δ ∈ Δn is optimal for Tn iff ∀δ′ ∈ Δn, O(Reduction(Lδ)) � O(Reduction(Lδ′))

2 Recall that a simple lottery L = (u1, ..., uk) is a multiset of utilities; a compound
Lottery L = (L1, . . . , Lk) is a multiset of (simple or compound) lotteries.
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Fig. 1. A decision tree

Let us now consider Dynamic Consistency. An optimal strategy δ is said to
be dynamically consistent iff for any decision node n, δn, the restriction of δ to
node n and its descendent, is optimal for the subtree rooted in n. A criterion is
said to be compatible with Dynamic Consistency if there is always an optimal
strategy that is dynamically consistent.

The purely optimist (resp. pessimist) criterion, max (resp. min) is compat-
ible with Dynamic Consistency - there always exist an optimal strategy whose
substrategies are optimal. Unfortunately, the Hurwicz criterion is not compatible
with Dynamic Consistency. Let us give a counter example:

Example 1. Consider the decision tree of Fig. 1 and α = 0.1; Strategy (d0 ←
down, d1 ← down, d2 ← up) is optimal, with a Hurwicz value of 0.1 · 0.04 +
0.9 · 1 = 0.904 ; as a matter of fact (d0 ← down, d1 ← down, d2 ← down) has
a Hurwicz value of 0.9 and all the strategies with d0 ← up or d1 ← up have a
lower value. Hence the (only) optimal strategy prescribes “up” for d2. On the
other hand, considering the tree rooted in d2, “up” has a H value equal to 0.684,
while “down” has a H value equal to 0.864 - up is not the optimal strategy in
this subtree. This counter example shows that Hurwicz is not compatible with
Dynamic Consistency.

2.3 Dynamic Programming

Consequentialism prescribes that the decision maker selects a plan looking only
at the possible futures (regardless of the past or counterfactual history). This is
the case when choosing, at each node n, the decision that maximizes O. Hence
a consequentialist strategy can be built starting from the anticipated future
decisions and rolling back to the present (see Algorithm 1). This is the idea
implemented in the algorithm of dynamic programming, which simulates the



Uninorm Criteria for Decision Trees 583

Algorithm 1. Dynamic programming
Input: decision tree T of depth p > 1, criterion O
Output: A strategy δ which is optimal for O, its value O(δ)
for ln ∈ LN do

L(ln) = u(ln)

for t = p − 1 to 0 do
for d ∈ Dt do

// Dt denotes the decision nodes at depth t
for n ∈ Succ(d) do

L(n) =
⋃

n′∈Succ(n) L(n′)

δ(d) = argmaxn∈Succ(d)O(Reduction(L(n)))
L(d) = L(δ(d))

Return (δ, O(Reduction(L(d0))))

behaviour of such a consequentialist decision maker: the algorithm builds the
best strategy by a process of backward induction, optimizing the decisions from
the leaves of the tree to its root. Roughly, one can say that a criterion is coherent
with Consequentialism iff the strategy returned by the algorithm of dynamic
programming is optimal according to this criterion.

Unfortunately this is not always the case when optimality is based on the
principle of Tree Reduction: rolling back the Hurwicz optimization at each node
of the tree of Fig. 1 leads to strategy (d0 ← down, d1 ← down, d2 ← down)
which is not optimal according to Eq. (3).

The correctness of dynamic programming actually relies on an important
property, called weak monotonicity:

Definition 1. A preference criterion over lotteries is said to be weakly mono-
tonic iff whatever L, L′ and L′′:

O(L) �O O(L′) ⇒ O((L,L′′)) � O((L′, L′′)) (5)

Proposition 1. If a criterion O satisfies weak monotonicity then the strategy
returned by dynamic programming is optimal according to O.

By construction, this strategy is dynamically consistent (any of its substrate-
gies is optimal it its subtree), consequentialist and equivalent, according to O,
to its reduction.

Corollary 1. If a criterion O satisfies weak monotonicity then strategy returned
by dynamic programming is consequentialist and dynamically consistent.

3 R∗ and R∗ as Criteria for Decision Making Under
Uncertainty

As we have seen in the previous Section, the Hurwicz criterion which is often
advocated for decision making under uncertainty suffers from severe drawbacks,
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and in particular form its incapacity to satisfy Dynamic Consistency. This is
regrettable from a prescriptive point of view: when optimizing this criterion, the
decision planned for a node is not necessarily the one that would be the best
one if the tree rooted at this node were be considered - when reaching this node,
a Hurwicz maximizer would be tempted not to follow the plan. That is why
we look for alternative qualitative generalizations of the maximax and maximin
rules, which, like Hurwicz, allow a balance between pure pessimism and pure
optimism.

3.1 The R∗ and R∗ Uninorms

The uninorm aggregators [18] are generalization of t-norms and t-conorms. These
operators allow the identity element (e) to lay anywhere in the unit interval - it
is not necessarily equal to zero nor to one, as required by t-norms or t-conorms,
respectively.

Definition 2 [18]. A uninorm R is a mapping R : [0, 1] × [0, 1] → [0, 1] having
the following properties:

1. R(a, b) = R(b, a) (Commutativity)
2. R(a, b) ≥ R(c, d) if a ≥ c and b ≥ d (Monotonicity)
3. R(a,R(b, c)) = R(R(a, b), c) (Associativity)
4. There exists some element e ∈ [0, 1], called the identity element, such that for

all x ∈ [0, 1] R(x, e) = x

In this paper we focus on two ordinal uninorms proposed by Yager [18]:

1. R∗ : [0, 1]n → [0, 1]:
– R∗(a1, ..., an) = Min(a1, ..., an) if Min(a1, ..., an) < e
– R∗(a1, ..., an) = Max(a1, ..., an) if Min(a1, ..., an) ≥ e

2. R∗ : [0, 1]n → [0, 1]:
– R∗(a1, ..., an) = Min(a1, ..., an) if Max(a1, ..., an) < e
– R∗(a1, ..., an) = Max(a1, ..., an) if Max(a1, ..., an) ≥ e

R∗ specifies that if one of the ai’s is lower than e then the min operator is
applied, otherwise max is applied. R∗ specifies that if one of the ai’s is greater
than e then the max operator is applied, otherwise min is applied. One can see
that both R∗ and R∗ generalize the min and max uninorms, as Hurwicz does
(min is recovered when e = 1, max when e = 0). The identity element e can
represent the threshold of optimism (as α for Hurwicz).

R∗ and R∗ constitute two different ways of generalizing the maximin and
maximax criterion, and capture different types of behaviours of the decision
maker. In the context of decision making under uncertainty, we propose to inter-
pret [0, e[ as an interval of hazards and [e, 1] as interval of opportunities:

1. When all the possible utilities lay in the hazardous interval, both R∗ and R∗

behave in a pessimistic way and evaluate the lottery by its worst outcome.
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2. When all the possible utilities lay in the interval of opportunity, both R∗ and
R∗ behave in an optimistic way and evaluate the lottery by its best outcome.

3. When some possible utility belongs to the hazardous interval and others in
interval of opportunities, R∗ returns a pessimistic value (the worst one) while
R∗ returns the best, optimistic, one.

Hence, in the simultaneous presence of hazards and opportunities, R∗ focuses
on the hazards while R∗ focuses on the opportunities. In other terms, the com-
parison of strategies is made as follows:

– R∗: if one of the two strategies may lead to (at least) one opportunity, the DM
prefers the strategy with the greatest opportunity. If both lead surely into the
interval of hazards, the DM prefers the more robust strategy.

– R∗: if one of the two strategies may lead to (at least) one hazardous utility, the
DM prefers the more robust of the strategies. If both are exempt of hazards,
the DM prefers the one with the greatest opportunity.

In robust decision making, where performance guarantees are looked for,
one will obviously apply the R∗ uninorm because of its cautiousness. R∗ indeed
appears as too adventurous: one single possible opportunity carries the final
decision, and this even if all the other utilities lay in the hazard interval. On the
contrary, R∗ looks for opportunity only when the required level of satisfaction,
e, is guaranteed for all the possible outcomes.

Example 2. Let us consider three decisions � = (0.55, 0.55), � = (0.7, 0.39)
and © = (0.9, 0.2) (see Fig. 2). In red, on the figure, is represented the zone
containing decisions that the DM would like to avoid because too risky when e
is set equal to 0.6 ((a). Figure 2 for R∗ and (b). Figure 2 for R∗). One can see
that if the DM uses R∗, all the solutions are in the red zone hence she/he will
select �. Conversely, if the DM uses R∗, decision � is the only decision in the
red zone and © will be selected.

Depending on the value e ∈ [0, 1], the optimal solutions are:

– ∀e ∈ [0, 0.2] the optimal solution is © for both R∗ and R∗.
– ∀e ∈]0.2, 0.39] for R∗: � and for R∗: ©
– ∀e ∈]0.39, 0.9] for R∗: � and for R∗: ©
– ∀e ∈]0.9, 1] the optimal solution is � for both uninorms.

Notice that � is favoured by R∗, when the degree of guaranteed performance, e,
is moderate (e ≤ 0.39). If a higher degree of performance must be ensured, R∗
chooses � = (0.55, 0.55).

4 R∗ and R∗ in the Sequential Decision Context

Let us now study the two uninorms in the context of sequential decision. Apply-
ing the principle of lottery reduction, we have:

δ �R∗ δ′ iff R∗(Reduction(δ)) � R∗(Reduction(δ′)) (6)

δ �R∗ δ′ iff R∗(Reduction(δ)) � R∗(Reduction(δ′)) (7)
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Fig. 2. Illustration of R∗ and R∗ (Color figure online)

Example 3. Let us go back to the example of Fig. 1 and focus first on criterion
R∗. The strategies that decide down for d2 are risky (may reach s5, which have
a utility of 0) and have a R∗ equal to 0 whatever the value of e. This is also the
case for all the strategies that decide up for d0. Now,

– if e ∈]0, 0.04] (d0 ← down, d1 ← down, d2 ← up) is optimal, with a R∗ = 1.
– if e ∈]0.04, 1] there are two optimal strategies, (d0 ← down, d1 ← up, d2 ← up)

and (d0 ← down, d1 ← down, d2 ← up), both with R∗ = 0.04.

It can be checked that any optimal strategy is dynamically consistent. For
instance, R∗(d2 ← up), which is at least equal to 0.04 (whatever e), is always
greater than R∗(d2 ← down), which is always equal to 0.

If we consider R∗, both (d0 ← down, d1 ← down, d2 ← down) and (d0 ←
down, d1 ← down, d2 ← up) are optimal: their R∗ is equal to 1, whatever the
value e (and both are dynamically consistent)

Beyond this example, R∗ and R∗ behave well for sequential problems in
the general case; indeed, both are compatible with Dynamic Consistency and
Consequentialism. The reason is that, contrarily to the Hurwicz criterion, they
satisfy weak monotonicity:

Proposition 2. The R∗ and R∗ satisfies weak monotonicity.

A direct consequence of Propositions 1 and 2 is that both uninorms can be
optimized by dynamic programming (see Algorithm2).

Theorem 1. Algorithm2 computes a strategy optimal w.r.t R∗ (resp. R∗) in
time polynomial with respect to the size of the decision tree.

This strategy is thus consequentialist and dynamically consistent; it follows
from Theorem 1 that:
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Algorithm 2. R∗ and R∗ under pure uncertainty
Input: decision tree T of depth p > 1, criterion O ∈ {R∗, R∗}, optimism

coefficient e
Output: A strategy δ which is optimal for O, its value O(δ)
for ln ∈ LN do

V (ln) = u(ln)

for t = p − 1 to 0 do
for d ∈ Dt do

// Dt denotes the decision nodes at depth t
for n ∈ Succ(d) do

V (n) = O((V (n′), n′ ∈ Succ(n)))

δ(d) = argmaxn∈Succ(d)V (n)
V (d) = V (δ(d))

Return (δ, V (d0))

Corollary 2. The uninorm R∗ and R∗ are compatible with Dynamic Consis-
tency, Consequentialism and Tree Reduction.

As already outlined compatibility with Dynamic Consistency guarantees that
the DM cannot be tempted to deviate from the plan during its execution. Because
R∗ is consequentialist, the evaluation of a decision can be conservative at some
node in the tree (because hazard cannot be excluded) and become optimistic
when some safer point is reached (e.g. at node d1 when e ≤ 0.08). On the
example of Fig. 1, with e = 0.05, R∗ compares the min values of the two candidate
decisions at node d2, but is optimistic at node d1: all the outputs that can be
reached from d1 are greater than 0.05, i.e. all the decision are safe when d1
is reached. Similar examples can be built for R∗ (which is nevertheless less in
accordance with the intuition, since pessimism is taken into account only when
no opportunity is available).

A last algorithmic advantage of R∗ and R∗ over Hurwicz is that they are
associative (like any uninorm). This allows the algorithm of dynamic program-
ming to memorize, for each node, the value of the corresponding reduced lottery
rather than the lottery itself.

Definition 3. A criterion O satisfies the decomposition principle iff whatever
L,L′, O(L ∪ L′) = O(O(L), O(L′)).

Proposition 3. R∗ and R∗ satisfy the decomposition principle.

Hurwicz, which is not associative, does not satisfy this principle - for instance
H((1, 0), (0)) = α2 while H((1, 0, 0)) = α.

5 R∗ and R∗ vs. Hurwicz

Let us now focus on the comparison between the uninorms (and especially of R∗,
which has a well founded interpretation in terms of robustness) and Hurwicz’s
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criterion. All are generalization of the maximax and maximin criteria, allow a
tuning between optimism and pessimism, and extend to sequential problems
through the application of the principle of lottery reduction.

The first remark is that R∗ can capture the desiderata of a decision maker who
looking for guarantees of performance, the level of performance being represented
by e. This kind of requirement cannot be captured by the Hurwicz criterion,
unless α = 0, i.e. unless Hurwicz collapses with the min (and also collapses with
R∗ and with R∗, setting e = 0).

Moreover, the behaviour of Hurwicz’s approach may appear chaotic in its
way to move from pessimism to optimism. Consider again Example 2: � =
(0.55, 0.55) and © = (0.2, 0.9) are the min optimal and max optimal solutions,
respectively. The max (resp. the min) value of � lays between the ones of �
and ©, so � = (0.39, 0.7) appears as an intermediate solution between � and
© (see Fig. 2). Nevertheless, � is never optimal for Hurwicz. It can indeed be
checked than H(�) = 0.55 whatever α. H(�) = 0.545 at α = 0.5. When α ≤ 0.5,
H(�) < 0.55 = H(�); when α ≥ 0.5 H(©) ≥ H(�), because H(©) increases
faster than H(�). Hence a slight variation of α makes Hurwicz jump directly
from the pessimistic solution � to the very optimistic solution ©, without con-
sidering �, which is Pareto optimal and intermediate between � and ©.

If we look at the formal properties that may be looked for, the first difference
is that the uninorms are purely ordinal. They do not need to assume that the
utilities are additive to some extent, while Hurwicz is basically an additive crite-
rion. The second one is their associativity - a basic property that is not satisfied
by the Hurwicz’s aggregation. Last but not least, R∗ and R∗ are compatible with
Dynamic Consistency and Consequentialism, while Hurwicz is not.

A first, practical consequence is that a polynomial algorithm of dynamic pro-
gramming can be designed to find consequentialist and dynamically consistent
optimal solutions. Dynamic Consistency and Consequentialism are also impor-
tant from a prescriptive point of view. Because the R∗ and R∗ optimal strategies
are dynamically consistent, the DM will never be tempted to deviate from it -
we have seen on Example 1 that Hurwicz does not prevent for such deviations.

Consequentialism says that the value of a (sub)strategies only depends on the
future consequences - R∗ and R∗ never care of “parallel”, counter factual worlds.
As we have seen, Hurwicz is not compatible with this principle: what happens
in a world (e.g., in Example 1 in d2 when up is chosen for d2) may influence
the decision in an independent, parallel world (here, in d1). Indeed, Hurwicz will
always prefer d1 ← down to d1 ← up even in case of a very low - but positive -
degree of optimism. This is due to the fact the low value (0.04) for s3, which is
not a descendent of d1 but of d2, masks the 0.08 utility of s2.

Our running example also shows that Hurwicz can be very adventurous even
for small positive α’s: (d0 ← down, d1 ← down, d2 ← up) might reach a very low
utility (0.08) is indeed optimal for Hurwicz as soon as α > 0. This strategy will
on the contrary be considered as too risky for R∗, unless a low level (e < 0.08)
of guaranteed performance is looked for.
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6 Conclusion

In this paper, we have shown how the R∗ and R∗ uninorms can be used for deci-
sion under uncertainty. They constitute an appealing alternative to Hurwicz’s
criterion to model the behavior ofa DM who is not purely optimistic nor purely
pessimistic: an optimal strategy can be computed in polytime, which satisfies
the three natural assumptions of sequential decision making. Moreover, these
utilities are purely qualitative; as a perspective, it would be natural to extend
them to possibilistic (qualitative) decision trees [14], that allow the expression of
some knowledge about the more or less possible consequences of the decisions.
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Abstract. This paper considers an abstract framework for expressing
approximate inference algorithms in valuation based systems. It will pro-
vide a definition of a ‘more informative’ binary relation between repre-
sentations of information as well as the basic properties of a divergence
measure. The approach is illustrated with the cases of probabilistic rea-
soning (computation of marginal probabilities and most probable expla-
nation) and with inference problems in propositional logic. Examples of
divergence measures satisfying the basic properties will be given for these
problems. Finally, we will formulate in an abstract way the mean field
variational approach and the iterative belief propagation algorithm.
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1 Introduction

Valuation based systems are a general framework to describe inference algo-
rithms in graphical models [1–4]. The main advantage is that algorithms can be
described in an abstract way, in such a way that they can be particularized for
different reasoning tasks, as the computation of conditional probabilities [2] or
inferences in propositional logic [5,6]. As the problems solved by these algorithms
are in general NP-hard, they are exponential and many cases can not be effec-
tively solved. It is for this reason that many approximate algorithms have been
devised, in particular for the computation of conditional probabilities. Among
them, we can consider Monte Carlo algorithms as Markov chain Monte Carlo [7]
or importance sampling [8,9], but also deterministic approaches as mini bucket
deletion algorithm [10], variational approaches [11], iterative belief propagation
[12,13] or penniless propagation [14]. Very often, it is said that approximate
algorithms provide a solution which is ‘similar’ to the exact one, but without
making precise what similar does mean and many basic questions are left unan-
swered. For example, it is not specified whether the approximation is more or
less informative than the exact computation. This is a very important issue, as
for example if an approximate algorithm for propositional logic says that p is
c© Springer International Publishing AG, part of Springer Nature 2018
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true, it is useful to know whether we can deduce that p is necessarily true or
we could have that p is false. In numerical cases, it is also important to know
whether we are obtaining an upper bound or a lower bound of the true value.
For example, in the problem of computing the most probable explanation [13],
if the approximate algorithm provides and upper bound, it can be used as an
heuristics for an A∗ or a branch and bound search algorithm [15].

Valuation based systems are also useful for an abstract specification of the
approximate computation problems and to study the different strategies with
independence of the formalism which is used for representing information [4,
6]. In this paper, we will follow this direction by defining a preorder relation
between valuations and discriminating between upper and lower approximations.
To measure the quality of approximations, we will need and additional divergence
measure, as the case of the Kullback and Leibler divergence for probabilities
[16], to make precise the meaning of similarity. So, we will provide a set of basic
properties for these divergence measures and examples of them for different
inference tasks. Finally, to illustrate their use, we will consider the specification
of the mean field variational approach in this framework as well as the iterative
belief propagation algorithm [12,13] showing as these strategies can be also used
in the case of propositional logic.

Section 2 introduces the basics of valuation based systems; Sect. 3 introduces
an axiomatic definition of divergence measures and the approximation problems;
Sect. 4 considers the approximation of a general valuation by a combination of
one-dimensional valuations; and finally Sect. 5 is devoted to the conclusions.

2 Valuation Based Systems

Let X a finite set of variables. We will assume that each variable X ∈ X takes
values on a finite set UX . A generic subset Y ⊆ X will take values in the set
UY =

∏
X∈Y UX . If y ∈ UY and Z ⊆ Y, we will denote by y↓Z the element

from UZ obtained from y by removing the coordinates corresponding to variables
X ∈ Y\Z.

In a valuation based system [1–4] it is assumed that for each Y ⊆ X there
exists a set of valuations VY. The set of all the valuations is denoted as V =⋃

Y⊆X VY.
If V ∈ V, the set of variables Y such that V ∈ VY is denoted as s(V ). Shenoy

and Shafer [1,2]) consider two operations: marginalization and combination. The
marginalization is a family of mappings from VY to VZ, where Z ⊆ Y: if V ∈ VY

then the marginalization of V to Z is a valuation from VZ denoted by V ↓Z. The
combination applies two valuations V1 ∈ VZ, V2 ∈ VY into a valuation from
VZ∪Y which is denoted by V1 ⊗ V2. The following basic properties are assumed
to be satisfied:

Axiom 1. ∀V1, V2, V3 ∈ V, V1⊗V2 = V2⊗V1, (V1⊗V2)⊗V3 = V1⊗(V2⊗V3).
Axiom 2. If W ⊆ Z ⊆ Y, and V ∈ VY, then (V ↓Z)↓W = V ↓W.
Axiom 3. If V1 ∈ VY, V2 ∈ VZ, then (V1 ⊗ V2)

↓Y = V1 ⊗ V2
↓(Y∩Z).
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In [3] and [4] two additional axioms have been considered:

Axiom 4. Neutral Element.- There exists a valuation V0 ∈ VX such that for
any V ∈ V with s(V ) = Y, then V0

↓Y ⊗ V = V .
Axiom 5. Contradiction.- There exists a valuation Vc ∈ VX such that for any

V ∈ V, then Vc ⊗ V = Vc.

When the following axiom is also satisfied, we will say that we have an
idempotent valuation system or an information algebra [4,6,17]:

Axiom 6. Idempotence.- ∀V ∈ VY,∀Z ⊆ Y, V ↓Z ⊗ V = V .

Two basic examples will be considered in this paper: probability theory and
propositional logic.

Example 1. In probability theory a valuation on VY is a mapping (potential)
from UY to the R

+
0 (the non-negative real numbers). Combination in carried out

by multiplication: if f1 ∈ VY and f2 ∈ VZ, then

f1 ⊗ f2(u) = f1(u↓Y).f2(u↓Z), ∀u ∈ UY∪Z.

There are two types of marginalization that can be considered depending of the
associated inference problem:

– Sum-marginalization.- This marginalization is useful for the computation of
conditional probabilities P (x|y) when x ∈ UX and y ∈ UY is a set of obser-
vations for variables in Y. In this case if W ⊆ Z, then

f↓W(w) =
∑

z↓W=w

f(z).

We will also assume that two potentials f1 and f2 are equivalent if there is
α > 0 such that f1 = αf2 (a valuation is an equivalence class).

– Max-marginalization.- This marginalization is useful for solving the MPE
problem [13]

z0 = arg max
z∈Z

P (z|y),

where Z = X\Y is the set of non-observed variables. In this case we will
assume that potentials are always valued in [0, 1] interval and are not equiv-
alent under multiplication by a positive number. In this case: f↓W(w) =
max{f(z) : z↓W = w}.

The neutral element is: f0(x) = 1, ∀x ∈ UX.
The potential representing the contradiction is: fc(x) = 0, ∀x ∈ UX.

Example 2. In the case of propositional logic, the set of variables is identified
with a finite set of labels: X = {p, q, r, . . .}. The set Up will have two values 0 (p
is false) and 1 (p is true).

A valuation about Y⊆X will be a set of clauses F in which all the variables
are in Y. Two sets of clauses F1 and F2 are said to be equivalent if their set
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of consequences in propositional logic are the same: Cons(F1) = Cons(F2). So,
F1 = {p ∨ q ∨ ¬z, q ∨ z} and F2 = {p ∨ q, q ∨ z} are equivalent.

Combination is union, F1 ⊗ F2 = F1 ∪ F2. Marginalization of F into a set
of variables Y, is the set Cons(F ) ∩ LY, where LY is the set of all the clauses
defined over variables Y. An equivalent set of clauses can be obtained by means
of a repeated application of Davis-Putnam elimination procedure [5]. If Y =
Z\{p}, and F ∈ VZ, then F ↓Y can be obtained by computing F+

p (clauses
containing p), F−

p (clauses containing ¬p), and F 0
p (the rest of clauses). Then the

marginalization is obtained by the union of F 0
p and the results of the resolution

of any clause in F+
p with any clause in F−

p .
The neutral element can be represented by the empty set, and the contra-

diction by a set containing only the empty clause.
A valuation about variables in Y, can be also represented by a subset AF ⊆

UY: y ∈ AF if and only if all the clauses in F are satisfied when the true value
of p is y↓p.

A valuation in a set Z, can be extended to a greater set Y ⊇ Z by multiplying
it by the neutral element: if V ∈ VZ and Z ⊆ Y, then the extension of V to Y
is defined as V ↑Y = V ⊗ V Y

0 .
It is possible to define a preorder relation in valuation based systems. This

preorder is a partial order in the case of idempotent valuations [4,6].

Definition 1. V1 is said to be more informative than V2 (V2 
 V1) if and only
if there is a valuation V ∈ V such that V ⊗ V2 = V1.

A consequence of the definition is that if V2 
 V1 then we have that s(V2) ⊆
s(V1). It is possible to extend the definition to valuations in different frames, by
considering that a valuation is equivalent to all its extensions, but this is not
done in this paper.

With this definition, we have that if V2 
 V1, then for any V ∈ V, (V2⊗V ) 

(V1 ⊗ V ). However, there is a property of ordered valuation algebras [17] that
it is not necessarily satisfied: if V1 
 V2, then V ↓Y

1 
 V ↓Y
2 , though in all the

examples we have considered (probability theory and propositional logic) it is
satisfied.

Example 3. In the case of probabilistic valuations we have two different situa-
tions depending of whether we have sum-marginalization or the case of max-
marginalization. In the former case f1 
 f2 if and only if Support(f2) ⊆
Support(f1), where Support(f) is the set of values y ∈ UY such that f(y) > 0,
for f ∈ VY. When s(f2) ⊂ s(f1), a subset A of Us(f1) is identified with the subset
A × Us(f2)\s(f1). In this case, the preorder is not antisymmetrical.

In the case of max-marginalization, the order is f1 
 f2 if and only if
f1(y↓Z) ≥ f2(y) for any y ∈ UY and where Y = s(f1) ⊆ s(f2) = Z. In this case
we have a partial order relationship and the supremum, sup(R), and infimum,
inf(R), always exist for any family of valuations R ⊆ V. Take into account that
sup(R) is the valuation f given by f(y) = infg∈R g(y↓s(g)) and that inf(R) is
the valuation f given by f(y) = supg∈R g(y↓s(g)).
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When the order relation is not antisymmetrical, we can define an equivalence
relation: V1 ∼ V2 if and only if V1 
 V2 and V2 
 V1. It is important to note that
V1 ∼ V2 does not imply that V1 and V2 have the same information content. In fact
in the case of probabilistic valuations (potentials) under sum-marginalization, we
have that f1 ∼ f2 if and only if Support(f1) = Support(f2), but the numbers in
the potentials can be very different.

In the case of idempotent valuations, the order is always antisymmetrical,
and the supremum of two valuations V1 and V2 always exists: it is equal to the
combination V1 ⊗ V2.

Example 4. In the case of propositional logic we have that F1 
 F2, if and
only if Cons(F1) ⊆ Cons(F2). In this case, we have that if R is a family
of valuations, then the supremum and infimum always exist and are given by
Sup(R) = Cons(

⋃
F∈R F ) and Inf(R) =

⋂
F∈R Cons(F ).

3 The Inference Problem, Approximations,
and Divergence Measures

The inference problem is the following: given a finite set of valuations
{V1, . . . , Vn} and a variable of interest X ∈ X, we want to compute V =
(V1 ⊗ V2 ⊗ · · · ⊗ Vn)↓X .

In the case of probabilistic valuations with sum-marginalization, if f = V
is the result of this marginalization, then we can prove that P (X|y) ∝ f , if
the initial potentials integrate the observations (a value of 0 is assigned to the
configurations that are incompatible with the observed values Y = y). In the
case of max-marginalization we have that if z0 = arg maxz∈Z P (z|y), then z↓X

0 =
arg maxx∈Ux

f(x), i.e. the value of X in z0 can be computed using the marginal
potential f which is defined for only one variable.

In the case of propositional logic if F = V is the result of the marginalization
on p, then if F contains the empty clause or p and ¬p, we have that clauses in the
initial valuations are inconsistent (there is not a true assignment satisfying all
the clauses). In other case, if F = {p}, then we can deduce p. if F = {¬p}, then
we can deduce ¬p, and if F = ∅, nothing can be deduced about the true value
of p (all the clauses can be satisfied both making p true and making p false).
In this case, solving the marginal problem implies the solution of SAT problem
which is NP-complete, so not known polynomial algorithm exists. In some cases,
it would be necessary to apply approximate algorithms. In general, we want to
compute a valuation V ′ such that V ′ is ‘similar’ to the exact marginal V . In the
following, we try to make the word ‘similar’ more precise. A first basic question
which is very often neglected is whether we are computing an approximation V ′

which is less or more informative than V .
In general, the problem of approximating a valuation V can be stated in the

following way: we have a subset V∗ ⊂ V of simple valuations, then an upper
approximation from V∗ is a valuation V ′ ∈ V∗ such that V 
 V ′ and a lower
approximation from V∗ is a valuation V ′ ∈ V∗ such that V ′ 
 V .



596 S. Moral

To determine how good is an approximation, we need a divergence measure. In
probabilistic valuations with sum-marginalization the most common divergence is
the Kullback-Leibler divergence. Assume that f1 and f2 are probabilistic poten-
tials such that s(f2) = s(f1) = Y and such that they add 1, i.e.

∑
y∈UY

f1(y) =∑
y∈UY

f2(y) = 1, then

KL(f1, f2) =
∑

y∈UY

f1(y) log
(

f1(y)
f2(y)

)

.

When f1 and f2 do not add to one, they should be normalized before applying
above expression by dividing each value of the potential by its total sum. When
f1 is the contradiction (it is identically equal to 0) then normalization is not
possible, and we will assume that KL(f1, f2) = 0 when f2 is also the contradic-
tion and +∞ otherwise. If f2 is the contradiction and f1 is not the contradiction
KL(f1, f2) = +∞.

The divergence can be extended to the case of s(f2) ⊆ s(f1) by considering
KL(f1, f2) = KL(f1, f

↑s(f1)
2 ), i.e. f2 is first extended to the set of variables of f1

and then above expression is applied (after normalization when it is necessary).
It is important to remark that KL(f1, f2) = ∞ when f2 �
 f1, i.e. when

Support(f1) �⊆ Support(f2), i.e. the divergence is infinite when f1 is not more
informative than f2. In the following, we define a divergence measure for general
valuations, generalizing this and other basic properties.

Definition 2. A divergence measure in a valuation based systems is a family of
mappings, Di : VY × VZ → R

+
0 ∪ {+∞}, where Z ⊆ Y satisfying:

1. Di(V1, V2) = Di(V1, V
↑s(V1)
2 ).

2. Di(V1, V2) = 0 if and only if V1 = V
↑s(V1)
2 .

3. Di(V1, V2) = +∞ when V2 �
 V1.
4. If V3 
 V2 
 V1, then there is a valuation V ′

2 ∼ V2 with Di(V1, V
′
2) ≤

Di(V1, V3) and a valuation V ′′
2 ∼ V2 with Di(V ′′

2 , V3) ≤ Di(V1, V3) .
5. If V ∈ VY, Z ⊆ Y, and V ′ ∈ VZ, then Di(V, V ↓Z) ≤ Di(V, V ′), being this

inequality strict when V ′ �= V ↓Z.
6. If V1, V3 ∈ VY, V2, V4 ∈ VZ, with Y ∩ Z = ∅, we have that

Di(V1 ⊗ V2, V3 ⊗ V4) = Di(V1, V3) + Di(V2, V4).

7. If s(V1) = s(V ′
1) and s(V2) ∩ s(V1) = ∅ and V1 ⊗ V2 
 V , then

Di(V, V1) ≤ Di(V, V ′
1) ⇒ Di(V, V1 ⊗ V2) ≤ Di(V, V ′

1 ⊗ V2).

Example 5. It is immediate to prove that KL(f1, f2) is a divergence measure
for probabilistic pontentials with sum-marginalization. In the case of max-
marginalization, KL is not a divergence measure: Property 4 is not satisfied.
You only have to consider UY = {0, 1}, and three potentials f1, f2, f3, where

f1(0) = f1(1) = 1, f2(0) = 1, f2(1) = 0.5, f3(0) = f3(1) = 0.5
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We have that f1 
 f2 
 f3, however KL(f3, f1) = 0 and KL(f3, f2) > 0, and
as in this case the relation 
 is antisymmetrical, there is not f ′

2 different from
f2 such that f2 ∼ f ′

2. A divergence measure in this case can be defined by the
following expression when s(f1) = s(f2) = Y:

Dm(f1, f2) =
{

log(
∑

y∈UY
f2(y)) − log(

∑
y∈UY

f1(y)) if f2 
 f1
+∞ otherwise

In this expression, it is considered that Di(f, f) = 0 when f is the contradiction
(it is identically equal to 0). When s(f2) ⊆ s(f1), then we consider Di(f1, f2) =
Di(f1, f

↑s(f1)
2 ).

In the case of propositional logic, we can define a divergence as follows:

Dl(F1, F2) =
{

log(|AF2 |) − log(|AF1 |) if F2 
 F1

+∞ otherwise

where AFi
is the set of true values such that all the clauses of Fi are satisfied

(as defined in Example 2), and |AFi
| stands for its cardinal. It is assumed that

F1 and F2 are defined for the same set of variables. In other case, F2 is extended
to the set of variables of F1.

With a divergence measure we can state the approximation problems as
follows:

– Lower Approximation: given a set of simple valuations V∗ and V ∈ V, to
compute V ∗ = arg minV ′∈V∗,s(V ′)=s(V ) Di(V, V ′).

– Upper Approximation: given a set of simple valuations V∗ and V ∈ V, to
compute V ∗ = arg minV ′∈V∗,s(V ′)=s(V ) Di(V ′, V ).

An approximation problem is well defined when this minimum always exists.

Example 6. In the probabilistic case, imagine that V∗ is given by the potentials
in each set of variables Y that are different from zero at most in one point
y0 ∈ UY, i.e. the potentials fy0 such that fy0(y) = 0 if y �= y0. In this case, we
are talking about upper approximations as these potentials are very informative
(they are the most informative ones among the non contradictory potentials).
Given a potential f and an upper approximation fy0 , where f(y0) > 0, we have
that KL(fy0 , f) = − log(f(y0)). Therefore, minimizing the KL divergence is
equivalent to finding the value y0 maximizing f(y0). In this way, the problem
of finding the configuration of maximum probability of a potential (or product
of potentials) can be seen as a way of upper approximating it.

A similar approximation can be devised in the propositional logic case. Imag-
ine that V∗ is given by all the set of formulas on variables Y assigning a true
value to any variable in Y, i.e. F ∈ V∗

Y if and only if for any p ∈ Y, we have
that p ∈ Cons(F ) or ¬p ∈ Cons(F ), or equivalently |AF | ≤ 1. In this way, given
F finding F ∗ ∈ V∗ such that Dl(F ∗, F ) is equivalent to finding F ∗, such that
F 
 F ∗ and |F ∗| maximum, i.e. finding a true assignment to all the variables in
F satisfying all the formulas, when this assignment exists: the FSAT problem.
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4 Approximating by a Product of Marginals

Assume that we have a product of valuations V1 ⊗ · · · ⊗ Vn defined on variables
X and we want to approximate this product by a product of valuations, each one
of them defined for only one variable X ∈ X, i.e. the space of approximations
is V∗ =

⋃
Y⊆X V∗

Y such that for any set of variables Y, the potentials in V∗
Y

are the potentials
⊗

Y ∈Y VY , where VY is a potential defined for variable Y .
This set of potentials V∗ is closed under combination and marginalization and
it is a valuation based system. In fact, the two operations are quite simple, if we
represent a product (

⊗
Y ∈Y1

VY ) by the list of valuations VY . For example, the
combination is given by the following expression:

(
⊗

Y ∈Y1

V 1
Y )⊗ (

⊗

Y ∈Y2

V 2
Y ) = (

⊗

Y ∈Y1∩Y2

(V 1
Y ⊗V 2

Y ))⊗ (
⊗

Y ∈Y1\Y2

V 1
Y )⊗ (

⊗

Y ∈Y2\Y1

V 2
Y ).

Observe that only one-dimensional combinations are carried out. Marginalization
is even simpler. If Z ⊆ Y, then (

⊗
Y ∈Y VY )↓Z = (

⊗
Y ∈Z VY ). In this case, we

only have to remove those valuations defined for variables in Y\Z.
It is important to remark that once we have approximated V1⊗· · ·⊗Vn by the

product
⊗

X∈X VX , computing the marginal valuation to X in the approximate
potential is very simple: it is the potential VX corresponding to this variable.

4.1 Upper Approximation

The upper approximation problem is to find the product
⊗

X∈X VX minimizing
the divergence Di(

⊗
X∈X VX , V1 ⊗· · ·⊗Vn). This is, in general, a difficult prob-

lem and, for example, it implies solving an FNP-complete problem (FSAT) in
the propositional logic example. However, in many cases it is efficient to apply an
iterative algorithm in which given a current approximation

⊗
X∈X VX , we select

a variable X ∈ X, and try to find a valuation V ∗
X minimizing the divergence

Di(V ∗
X ⊗

(⊗
Y ∈X,Y �=X VY

)
, V1 ⊗ · · · ⊗ Vn). We will show that this is in some

situations a simple computational problem, and in this way, we can devise an
iterative algorithm in which, each time a variable X is selected and then the cur-
rent approximation

⊗
X∈X VX is changed to V ∗

X ⊗
(⊗

Y ∈X,Y �=X VY

)
minimizing

the divergence.
The efficiency of the local improvement steps is based on the following decom-

position property satisfied by some of the divergences defined on valuation based
system, as the case of Kullback-Leibler divergence for probabilistic potentials.

Proposition 1. Divergence KL defined on probabilistic potentials under sum
satisfies the following property:

arg min
f∈VY

KL(f.f ′, f1.f2) = arg min
f∈VY

KL(f.f ′, f1). arg min
f∈VY

KL(f.f ′, f2),

for any f1, f2 ∈ V and f ′ ∈ VZ with Z ∩ Y = ∅.
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Proof. If we compute arg minf∈VY
KL(f.f ′, f∗) where s(f∗) = W, we have to

minimize in f such that
∑

y,z f(y).f ′(z) = 1 the function

∑

y∈Y,z∈Z

f(y).f ′(z) log
(

f(y).f ′(z)
f∗((y, z)↓W)

)

where f ′ is fixed and variables Z ∩ Y = ∅. It is not necessary that f∗ is defined
for all the variables Y ∪ Z.

By applying Lagrange multipliers, we can obtain that this sum is minimized
when

∑

z

(

f ′(z) log
(

f(y)f ′(z)
f∗((y, z)↓W)

)

+ f ′(z)
)

+
∑

z

(f ′(z).λ) = 0,

i.e. when f(y) ∝ e
∑

z f ′(z) log(f∗((y,z)↓W)).
If we call f12 = arg minf∈VY

KL(f.f ′, f1.f2), f1 = arg minf∈VY
KL

(f.f ′, f1), and f2 = arg minf∈VY
Di(f.f ′, f2), then applying above expression

with f∗ equal to f1.f2, f1, and f2 respectively, we get:

f12 ∝ e
∑

z f ′(z) log(f1.f2((y,z)↓W))

f1 ∝ e
∑

z f ′(z) log(f1((y,z)↓W))

f2 ∝ e
∑

z f ′(z) log(f2((y,z)↓W))

It is immediate to prove f12 = f1.f2, with which we obtain the desired result.

According to this result, to compute f∗
X minimizing KL(f∗

X ⊗(⊗
Y ∈X,Y �=X fY

)
, f1 ⊗ · · · ⊗ fn) we can compute the potential f i

X , minimiz-

ing the divergence KL(f i
X ⊗

(⊗
Y ∈X,Y �=X fY

)
, fi) for i = 1, . . . , n and then

making f∗
X =

∏n
i=1 f i

X . This is the most important step which makes computa-
tionally efficient the local improvement of upper marginal approximations and
it is the basis of mean field variational techniques [11]. We can do an additional
simplification, taking into account that if X �∈ s(fi), then f i

X is the neutral poten-

tial (constant) and that the minimization of KL(f i
X ⊗

(⊗
Y ∈X,Y �=X fY

)
, fi) is

equivalent to the minimization of KL(f i
X ⊗

(⊗
Y ∈s(fi),Y �=X fY

)
, fi), i.e. it is

only necessary to consider the valuations fY where Y ∈ s(fi), instead of all the
potentials (this is an immediate consequence of Properties 1 and 6 of divergence
measures).

In the case that the preorder relation 
 is antisymmetrical, then property
6, can be rephrased as: if V3 
 V2 
 V1, then Di(V1, V2) ≤ Di(V1, V3) and
Di(V2, V3) ≤ Di(V1, V3) . If we also assume that for any valuations V1, V2 and
set of variables Y, with s(V2) ⊆ Y ∪ s(V1), then the set RY

V2/V1
= {V ∈ VY :

V2 
 V1 ⊗ V } has a minimum element, i.e. a valuation V ∗ ∈ RY
V2/V1

such that
V ∗ 
 V, ∀V ∈ RY

V2/V1
, then the local improvement step, i.e. finding a valuation

V ∗
X minimizing the divergence Di(V ∗

X ⊗
(⊗

Y ∈X,Y �=X VY

)
, V1 ⊗· · ·⊗Vn) can be

found by computing the minimum of the set RX

(⊗
Y ∈X,Y �=X VY )/(V1⊗···⊗Vn)

.
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The existence of this minimum is satisfied in our two examples of valu-
ations in which 
 is a partial order. In the case of probabilistic valuations
with max-marginalization, the minimum of RY

f2/f1
is given by the potential

f∗(y) = min{1,minz∈Z f2.f
−1
1 (y, z)}, where Z = (s(f1) ∪ s(f2))\Y. In the case

of propositional logic potentials the minimum, F ∗ of RY
F2/F1

is the set of clauses
t ∈ VY such that t ∈ Cons(F2) and t ∈ Cons(¬f), ∀f ∈ F1, where ¬f is the set
of clauses equivalent to the negation of f .

In the case of idempotent valuations we have a property which is the analo-
gous to Proposition 1 for probabilistic valuations and that allows a decomposition
of the computations.

Proposition 2. If we have an idempotent valuation system in which the min-
imum of RY

V/V ′ always exists when s(V ) ⊆ s(V ′) ∪ Y, then for any V ′, V1, V2

and set of variables Y with (s(V1) ∪ s(V2)) ⊆ Y ∪ s(V ′) we have that

arg min RY
(V1⊗V2)/V ′ = arg min RY

V1/V ′ ⊗ arg min RY
V2/V ′

Proof. Let us call V 1 = arg min RY
V1/V ′ , V 2 = arg minRY

V2/V ′ ,
V 12 = arg min RY

(V1⊗V2)/V ′ .
It is clear that if V 1 ∈ RY

V1/V ′ and V 2 ∈ RY
V2/V ′ , then V1 
 (V 1 ⊗ V ′) and

V2 
 (V 2 ⊗ V ′), then (V1 ⊗ V2) 
 (V 1 ⊗ V ′ ⊗ V 2 ⊗ V ′) = (V 1 ⊗ V 2 ⊗ V ′), and
therefore V1 ⊗ V2 ∈ RY

(V1⊗V2)/V ′ , and V 12 
 V 1 ⊗ V 2.
On the other hand, as V 12 ∈ RY

(V1⊗V2)/V ′ , we have that (V1⊗V2) 
 (V ′⊗V 12)
and as V1 
 (V1⊗V2) we have that V 12 ∈ RY

V1/V ′ and, analogously V 12 ∈ RY
V2/V ′ .

As a consequence, V 1 
 V 12 and V 2 
 V 12, and (V 1 ⊗V 2) 
 V 12 ⊗V 12 = V 12.
As, in this case 
 is antisymmetrical, we have that V 1 ⊗ V 2 = V 12.

A similar decomposition for probabilistic potentials under max-
marginalization is not satisfied.

4.2 Lower Approximation

The lower approximation problem is to find the product
⊗

X∈X VX minimizing
the divergence Di(V1⊗· · ·⊗Vn,

⊗
X∈X VX). This is even a more difficult problem

than the upper approximation one and we will show that under very general
conditions, it is equivalent to solve the marginal problem.

We will say that a valuation system satisfies the independence consistency
property if and only if for any sets of variables Y,Z such that Y ∩ Z = ∅, if
V1 ∈ VY and V2 ∈ VZ are such that V1 
 V and V2 
 V , then V1 ⊗V2 
 V . This
property is satisfied in all the cases of idempotent valuations and in probabilistic
valuations under sum-marginalization, but not under max-marginalization.

Proposition 3. Consider Y,Z such that Y∩Z = ∅, V ′′ ∈ VZ, and V ′ ∈ VY∪Z,
with V ′′ 
 V ′, then arg minV ∈VY

Di(V ′, V ⊗ V ′′) = V ′↓Y.
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Proof. The proof is an immediate consequence of Properties 5 and 7 of divergence
measures.

As a consequence of this proposition, when the independence consistency
property is satisfied, the best lower approximation of (V1 ⊗ · · · ⊗ Vn) is given by⊗

X∈X VX where VX = (V1 ⊗ · · · ⊗ Vn)↓X . In this way, to compute the approxi-
mation is equivalent to solve the marginal problem and it makes no sense to use
the approximation as a method to compute the marginal problem. A common
strategy is to change the global approximation problem to a local approximation
one, i.e. instead of approximating (V1⊗· · ·⊗Vn) by a product of one-dimensional
valuations, we try to approximate each Vi by a product

⊗
X∈s(Vi)

V i
X , obtaining

a global approximation of (V1⊗· · ·⊗Vn) by
⊗n

i=1

(⊗
X∈s(Vi)

V i
X

)
. If we make all

the approximations in a fully local way, the results can be poor, so a better proce-
dure should approximate Vj taking into account the other approximations (of Vi

for i �= j). For example, by means of a greedy algorithm that tries to compute the
best approximation of Vj minimizing Di(V1 ⊗ · · · ⊗ Vn,

⊗n
i=1

(⊗
X∈s(Vi)

V i
X

)
),

where V i
X is fixed for i �= j. However, this problem is again equivalent to

the marginal problem. A further step can be to replace in this divergence
each Vi by its approximation (if i �= j). And then to try to minimize an
approximate divergence: Di(Vj ⊗ ⊗

i�=j

(⊗
X∈s(Vi)

V i
X

)
,
⊗n

i=1

(⊗
X∈s(Vi)

V i
X

)
.

By Property 6 of divergence measures, this is equivalent to minimize Di(Vj ⊗
(
⊗

X∈s(Vj),i �=j V i
X),

⊗
X∈s(Vj)

V j
X ⊗ (

⊗
X∈s(Vj),i �=j V i

X)). As this is an approxi-
mation problem involving only valuations in variables s(Vj), it is computational
feasible. In the case of probabilistic potentials, this is what iterative belief prop-
agation does [12,13]. As in each step the divergence is also approximate and
there is not a global measure which is decreasing with the approximations, this
approach does not guarantee convergence.

5 Conclusions

In this paper we have considered the abstract framework of valuation based sys-
tems to define divergence measures and to state approximation problems. This
allows a better understanding of the different strategies and their properties. It
also allows to extend the methods designed for one representation of uncertainty
to other formalisms. For example, our specification of iterative belief propaga-
tion allows to apply it to propositional logic. In the future we plan to extend this
framework to schemes where upper and lower approximations are jointly com-
puted in such a way that they cooperate, in the sense that a lower approximation
can be used to improve an upper approximation as in importance sampling [8].

Acknowledgements. This research was supported by the Spanish Ministry of Econ-
omy and Competitiveness under project TIN2016-77902-C3-2-P and the European
Regional Development Fund (FEDER).
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Abstract. In this paper, we introduce the concept of topological MI-
groups, where the MI-group structure, which naturally generalizes the
group structure, is enriched by a topology and the respective binary
operation and inversion are continuous. To demonstrate that the pro-
posed generalization of topological groups is meaningful, we prove that
there are the products of topological MI-groups and the topological quo-
tient MI-groups. The concept of topological MI-group is demonstrated
on examples.

Keywords: MI-group · Topological MI-group · Hausdorff metric
Quotient MI-groups

1 Introduction

In practice, data are usually collected by a measurement procedure, which often
provides inaccurate results. Therefore, data processing has to admit a measure-
ment uncertainty and use techniques that enable to handle vaguely specified
quantities. Fuzzy intervals or stochastic values are typical examples of such
quantities. The vaguely specified quantities, however, require novel approaches
to computation with them and measurement of their distances, which respect
the nature of present vagueness. Because of the failure of group inversion and
distributivity law in non–standard arithmetics considered for vaguely specified
quantities, the very popular algebraical structure summarizing their fundamen-
tal properties became the semimodule structure (a generalization of a vector
space). Moreover, the semimodules are often endowed by an appropriate met-
ric, e.g., the extended Hausdorff metric for fuzzy intervals, to form a complete
metric space (see [3,17] and references therein). This type of metric spaces then
enables us to introduce functions with vaguely specified outputs like intervals,
fuzzy intervals or convex sets and investigate the concepts like continuity, mea-
surability or integrability of such functions. The theoretical results are applied,
among others, to fuzzy statistic methods, fuzzy differential equations, optimiza-
tion or image processing [3]. As an example, let us mention fuzzy valued random
variables and a strong law of large numbers for this type of random variables
(see [13,15–17]) that guarantees the correctness of the application of fuzzy Monte
Carlo simulation in risk analysis of construction projects [28].
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 855, pp. 603–615, 2018.
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As we have mentioned above the non-existence of group inversion forced
researches to consider commutative monoids, and therefore, semimodules, as a
suitable algebraic structure generalizing the properties of non-standard arith-
metics for vaguely specified quantities. Nevertheless, practical applications of
vaguely specified quantities and their non-standard arithmetics usually require
certain “inverse” quantities, even if they are not the results of the group inver-
sion, i.e., xx−1 �= 1 holds in general. To establish the inverse like quantities,
the monoid structures are extended by an appropriate unary operation relax-
ing the properties of the group inverse. A deeper investigation of properties of
commutative monoids of intervals and convex bodies that, moreover, satisfy the
cancellation law and are extended by a unary operation called the negation has
been provided by Markov in [22] (see also [23,24]) and gave rise to a novel alge-
braic structure standing between monoids and groups.1 A relaxation of Markov’s
properties has been proposed by Bica in his algebraic structure for real fuzzy
numbers [1,2]. Both above mentioned algebras introduced for particular types
of vaguely specified quantities can be included under a unique algebraic struc-
ture called the many identities group (MI-group, for short), which is defined as
a monoid endowed with an involutive anti-automorphism satisfying the chosen
properties of the group inversion. As a consequence of this generalization, the
product of an element x and its inversion x−1 need not be equal to the iden-
tity element 1 and is referred only as a pseudo-identity element. Note that the
concept of MI-group has been introduced by Holčapek and Štěpnička in [7,8]
(see also [9]) and further developed in [6,10] together with other MI-algebras
to describe properties of various approaches to arithmetics of vaguely specified
quantities (e.g., stochastic or fuzzy quantities) in a unified way. It is interest-
ing that a submonoid containing pseudoidentities of an MI-group gives rise to
a congruence, which generalizes so-called Mareš equivalences introduced and
developed in [18–20] and actually interconnects the theory of MI-groups with
Mareš theory on fuzzy quantities. A recent deeper investigation of properties of
extended monoids of fuzzy intervals in the framework of Mareš theory can be
found [25–27].

In [25], Qui et al. enriched the commutative monoid of fuzzy numbers by
the extended Hausdorff metric and provided a novel analysis of this algebraic
structure from the topological point of view. It should be notated that a similar
research on the commutative monoids of fuzzy numbers can be found in [5]. The
results obtained in both papers show, among others, that there exists a quotient
metric on the quotient monoid, whose equivalence classes are determined by the
Mareš equivalence. This non-trivial result extends the knowledge that has been
obtained from the research on the metric spaces of fuzzy numbers. Moreover,
this type of results belongs rather to the theory of topological (metric) groups
than to the theory of metric spaces. Since the considered algebraic structures for
fuzzy numbers are particular examples of an MI-group, a natural question arises

1 It should be noted that Markov called this novel structure as quasimodule, which is,
however, terminologically confusing with the standard denotation, since no scalar
operation is consider here.
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whether the obtained results can be generalized for MI-groups and a reasonable
theory of topological (metric) MI-groups can be developed. Therefore, the aim
of this contribution is to provide foundation stones of the possible theory of
topological MI-group and demonstrate its meaningfulness by the verification
of the existence of two fundamental algebraic constructions – the product of
topological MI-groups and quotient topological MI-groups.

The paper has the following structure. The next section presents the sum-
mary of definitions and results from the MI-group theory important for the
understanding of text. The third section provides basic definitions and results
on the topological MI-groups including the product of topological MI-groups and
the quotient topological MI-groups. The last section is a conclusion. We assume
that the reader has an elementary knowledge in the fuzzy set theory, topological
spaces and group theory, otherwise, we refer to [12,14,21].

2 MI-Groups: A Survey

2.1 Basic Definitions

We use the definition of MI-groups considered in [6].

Definition 1. A triple (G, �,−1 ) is said to be an MI-group if it satisfies

(G1) (G, �) is a monoid with eG denoting the identity element;
(G2) −1 : G → G is an involutive anti-automorphism, i.e., for any x, y ∈ G, it

holds
(i) (x � y)−1 = y−1 � x−1

(ii) (x−1)−1 = x;
(G3) x � (y � y−1) = (y � y−1) � x for any x, y ∈ G;
(G4) the cancellation law, i.e., for any x, y, z ∈ G, it holds that

x � y = x � z ⇒ y = z (left cancellation law)
y � x = z � x ⇒ y = z (right cancellation law).

An MI-group is said to be abelian or commutative if x � y = y � x holds for
any x, y ∈ G.

Standardly, we write G = (G, �,−1 ) and x � y = xy. Let G be an MI-group.
We use PG to denote the least submonoid of the monoid G, which contains the
set {xx−1 | x ∈ G}. The elements of PG are called pseudo-identities and PG.
Obviously, if G is a group, then PG = {eG}, and if G is an abelian MI-group, then
PG = {xx−1 | x ∈ G}. Note that PG contains exactly the symmetric elements
of G, i.e., x = x−1, if G is a commutative monoid of fuzzy numbers as it was
considered in [5,20,27]. Generally, PG is determined as follows [9].

Lemma 1. The set PG is determined as

PG = {x1x
−1
1 · · · xnx−1

n | n ∈ N, x1, . . . , xn ∈ G}.

Moreover, sx = xs for any x ∈ G and s ∈ PG.
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Recall that fuzzy intervals, sometimes referred as fuzzy numbers, are special
fuzzy sets, which are very popular in practice for their bell shaped membership
function [4,14]. We use R to denote the set of real numbers.

Definition 2. A fuzzy set A on R is called a fuzzy interval if it satisfies the
following conditions:

(i) A is normal, i.e., there is x ∈ R such that A(x) = 1,
(ii) A is convex, i.e., A(λx+(1−λ)y) ≥ min{A(x), A(y)} for any x, y ∈ R and

λ ∈ (0, 1),
(iii) A is upper semi-continuous,
(iv) A0 is compact, where A0 = cl({x ∈ R | A(x) > 0}) and cl denotes the

standard topological closure operator of intervals.

We use F to denote the set of all fuzzy intervals. A fuzzy interval defined
over the set of positive real numbers is called a positive fuzzy interval. We use
F+ to denote the set of all positive fuzzy intervals.

Example 1. Let F be the set of all fuzzy intervals over the real numbers. Then,
the triplet (F ,+,−), where +, − are defined by the interval operations on α-cuts:

(A + B)α = [x−
A(α) + x−

B(α), x+
A(α) + x+

B(α)]

= [x−
A(α), x+

A(α)] + [x−
B(α), x+

B(α)] = Aα + Bα,

(−A)α = [−x+
A(α),−x−

A(α)] = −(Aα)

for any A = [x−
A, x+

A], B = [x−
B , x+

B ] ∈ F and α ∈ [0, 1], is an abelian additive MI-
group. Similarly, one can define the abelian multiplicative MI-group (F+, ·,−1 )
of positive fuzzy intervals.

An MI-subgroup is a substructure of MI-group which is themselves MI-group.

Definition 3. Let G be an MI-group, and let H be a non-empty subset of G.
If H is itself an MI-group under the product and the inversion of G, then H is
said to be an MI-subgroup of G. This is denoted by H ≤ G.

Theorem 1. Let H ⊆ G be a non-empty subset. Then H is an MI-subgroup
of G iff eG ∈ H and xy−1 ∈ H.

A homomorphism of monoids (monoidal part of MI-groups) preserving their
inversions is called the homomorphism of MI-groups.

Definition 4. Let G and H be MI-groups. A map f : G → H is a homomor-
phism of MI-groups if it holds

(HG1) f is a monoidal homomorphism of G to H;
(HG2) f(x−1) = f(x)−1 for any x ∈ G.

If f is injective (surjective, bijective), then f is said to be a monomorphism
( epimorphism, isomorphism).
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Example 2. A map Exp: F → F+ defined as

A = [x−
A, x+

A] 	−→ Exp(A) = [exp(x−
A), exp(x+

A)],

where exp(x−
A)(α) = exp(x−

A(α)) and exp(x+
A)(α) = exp(x+

A(α)) for α ∈ [0, 1], is
a isomorphism of MI-groups.

2.2 Product of MI-Groups

In this part, we show that MI-groups have products. Let {Xi, i ∈ I} be a
non-empty family of sets. We use

∏
i∈I Xi or simply

∏
Xi, if no confusion can

appear, to denote the Cartesian product of sets. The elements of
∏

Xi will be
denoted by (xi). Moreover, we write ι instead of −1 to denote the inversion in an
MI-group.

Theorem 2. Let {(Gi, �i, ιi) | i ∈ I} be a non-empty family of MI-groups. Then
(
∏

Gi, �, ι), where
∏

Gi is the product of the supports of MI-groups and

(ai) � (bi) = (ai �i bi),
(ai)ι = (aιi

i ),

for any (ai), (bi) ∈ ∏
Gi, is the product of MI-groups.

Proof: Obvious. �

2.3 Quotient MI-Groups

In this part, we define the quotient MI-groups induced by normal MI-subgroups.
For details, we refer to a recent paper [6]. Let us start with the concept of a
closed subset in an MI-group G with respect to a submonoid K of PG.

Definition 5. Let (G, �,−1 ) be an MI-group, and let K be a submonoid of PG.
A non-empty subset H of G is said to be closed in G w.r.t. K if xs ∈ H holds
for some x ∈ G and s ∈ K, then x ∈ H. If H is an arbitrary subset of G, then
the closure of H in G w.r.t. K is the set

H
K

=
⋂

{L ⊆ G | H ⊆ L and L is closed in G w.r.t. K}. (1)

The following lemma shows a way how to introduce the closure of H in G
w.r.t. K.

Lemma 2. Let (G, �,−1 ) be an MI-group, and let K be a submonoid of PG. For
any ∅ �= H ⊆ G, we have

H
K

= {x ∈ G | there is s ∈ K such that xs ∈ H}. (2)

The concept of the (right, left) congruence modulo H is defined with help of
closure of cosets that are formed for the pseudo-identities.
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Definition 6. Let H be an MI-subgroup of an MI-group (G, �,−1 ), let x, y ∈ G.
We say that x is right congruent to y modulo H denoted x ≡r y (mod H) if

xy−1 ∈ yy−1H
PH

. (3)

We say that x is left congruent to y modulo H denoted x ≡l y (mod H) if

x−1y ∈ xx−1H
PH

. (4)

Theorem 3. Let H ≤ G.

(i) Right (resp. left) congruence modulo H is an equivalence relation on G.
(ii) The equivalence class of x ∈ G under right (resp. left) congruence modulo

H is the closure of Hx = {hx | h ∈ H} (resp. xH = {xh | h ∈ H}) in G
w.r.t. PH .

(iii) |HPH | ≤ |Hx
PH | ≤ |Hxx−1

PH | and |HPH | ≤ |xH
PH | ≤ |xx−1H

PH |.
Corollary 1. Let H ≤ G.

(i) G is the union of the closures of the right (left) cosets of H in G.
(ii) Two closures of right (left) cosets of H in G w.r.t. PH are either disjoint

or equal.
(iii) For all x, y ∈ G, Hx

PH = Hy
PH (resp. xH

PH = yH
PH ) iff xy−1 ∈

yy−1H
PH (resp. x−1y ∈ xx−1H

PH ).
(iv) If R is the set of the closures of all right cosets of H in G w.r.t. PH and

L is the set of the closures of all left cosets of H in G w.r.t. PH , then
|R| = |L|.

A normal subgroup H of a group G makes the left and right congruences
modulo H (cosets) coincident. A similar idea is applied for the definition of
normal MI-subgroup. The following theorem belongs to the folklore in group
theory (cf., [11]) and is fundamental for normal MI-subgroups.

Theorem 4. Let H ≤ G. Then the following conditions are equivalent:

(i) the left and right congruence modulo H coincide;
(ii) the closure of each left coset of H in G w.r.t. PH is the closure of a right

coset of H in G w.r.t. PH ;
(iii) xH

PH = Hx
PH for all x ∈ G;

(iv) xHx−1
PH ⊆ xx−1H

PH for all x ∈ G;
(v) xHx−1

PH = xx−1H
PH for all x ∈ G.

The definition of a normal MI-subgroup is as follows.

Definition 7. An MI-subgroup H of an MI-group G which satisfies the equiva-
lent conditions above is said to be a normal MI-subgroup of G. We write H �G
if H is normal in G.
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A quotient MI-group induced by a normal MI-subgroup is defined similarly
to quotient group (cf. [11]), where the only difference is that the cosets used for
groups are replaced now by their closures in G w.r.t. K.

Theorem 5. If H � G, G/H is the set of closures of all left cosets of H in
G w.r.t. PH . Then G/H = (G/H, �, −1), where xH

PH
� yH

PH = xyH
PH and

the inversion −1 is given by
(
xH

PH
)−1

= x−1H
PH , is an MI-group called the

quotient MI-group of G by H.

3 Topological MI-Groups

3.1 Basic Definition

Topological MI-groups are defined in a similar way as topological groups. We
use the following definition, where the continuity of both MI-group operations
is considered.

Definition 8. A quadruplet (G, �,−1 ,J ) is said to be a topological MI-group if

(i) (G, �,−1 ) is an MI-group,
(ii) (G,J ) is a topological space,
(iii) � and −1 are continuous maps.

Note that � is a continuous map of the product topological space (G,J ) ×
(G,J ) to (G,J ). Recall that the product topology on G × G is defined in such
a way that the set B = {U × V | U, V ∈ J } is its base. An equivalent definition
of a topological MI-groups is provided in the following lemma.

Lemma 3. (G, �,−1 ,J ) is a topological MI-group if and only if the map f : G×
G → G given by f(x, y) = xy−1 is a continuous map.

Sketch of the proof: To prove that f is continuous, one defines two functions
g, h : G × G → G × G by g(x, y) = (x, y−1) and h = � and shows that g is
continuous. The statement follows from the continuity of g and h and the fact
that f = h ◦ g.

To show that � and −1 are continuous functions, one defines a function p :
G → G × G by p(x) = (eG, x), where eG denotes the identity element in G,
and shows that p is continuous. Since −1 = f ◦ p, the inversion −1 is continuous.
Since −1 is continuous, the function g defined above is continuous. The statement
follows from � = f ◦ g. �

Example 3. Each MI-group (G, �,−1) endowed with the discrete topology τD is
a topological MI-group.
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Example 4. Let (F ,+,−) be the additive MI-group of fuzzy intervals introduced
in Example 1, and let us consider the extended Hausdorff metric proposed by
Klement et al. in [13]:

�∞(A,B) = sup
0≤α≤1

max
{|x−

A(α) − x−
B(α)|, |x+

A(α) − x+
B(α)|} .

For any ε > 0 and A ∈ F , we define the ε-ball of A as the set Bε(A) = {B |
�∞(A,B) < ε}. Let J�∞ on F denote the topology determined by the ε-balls.
Then (F ,+,−,J�∞) is a topological MI-group of fuzzy intervals (induced by
the metric �∞). Similarly, (F+, ·,−1 ,J�∞) is a topological MI-group of positive
fuzzy intervals.

A homomorphism of topological MI-groups is defined as a continuous homo-
morphism of MI-groups.

Definition 9. A map f : G → H is a continuous homomorphism (simply mor-
phism) of topological MI-groups if f is a homomorphism of MI-groups G and H
and simultaneously a continuous map of G to H.

Example 5. Let us consider the homomorphism Exp: F → F+ of MI-groups
introduced in Example 2. From the continuity of the exponential function in the
definition of Exp one can show that Exp is a homeomorfism of topological MI-
groups (F ,+,−,JH) and (F+, ·, −1,JH). Note that the inverse map from F+

onto F can be defined by the logarithmic function, which is also continuous.

Lemma 4. Let G be a topological MI-group and a, b ∈ G. Then the following
maps are all injective continuous maps of G to G:

(i) x 	→ ax,
(ii) x 	→ xb,
(iii) x 	→ x−1 (it is a homeomorphism).

A continuous map f : G → H is said to be open (closed) if the image of any
open (closed) set in G under f is open (closed) in H. If F,H ⊆ G, we define

FH = {xy | x ∈ F, y ∈ H}. (5)

Particularly, we use xF instead of {x}F . The following lemma is important in
the analysis of quotient topological MI-groups.

Lemma 5. Let (G, �,−1 ,J ) be a topological MI-group, H ⊆ G, and fa : G → aG
(ga : G → Ga) is defined by fa(x) = ax (ga(x) = xa) for a ∈ G, where aG (Ga)
is the topological space with the relative topology.

(i) fa (ga) is open if and only if fa (ga) is a homeomorphism of G and aG
(Ga) and aG (Ga) is open in G.

(ii) fa (ga) is closed if and only if fa (ga) is a homeomorphism of G and aG
(Ga) and aG (Ga) is closed in G.
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(iii) If fa (ga) is open for any a ∈ H and U is open in G, then HU (UH) is
open in G.

(iv) If fa (ga) is closed for any a ∈ H, where H is finite, and U is closed in G,
then HU (UH) is closed in G.

It should be noted that fa is always open and closed for topological groups.
Indeed, if G is an topological group, then aG = G, and the inverse map to
fa is defined by fa−1 , which is again a continuous homeomorphism. Hence,
fa(U) = f−1

a−1(U) is open (closed) in G, whenever U is open (closed) in G.
The same statement is not evidently true for MI-groups, since a−1a �= eG in
general; therefore, fa−1 ◦ fa �= 1G.

Definition 10. Let G = (G, �,−1 ,J ) be a topological MI-group, and let H ⊆ G
be a non-empty subset. If H is itself an MI-subgroup under the product and inver-
sion of G, then (H, �,−1 ,JH), where JH is the relative topology, is a topological
MI-subgroup of G.

It is easy to show (see, e.g., [21]) that each MI-subgroup of a topological
MI-group endowed by the relative topology is a topological MI-subgroup.

3.2 Products of Topological MI-Groups

Let us recall that if {(Gi,Ji) | i ∈ I} is a non-empty family of topological spaces,
the base of the product topology of

∏
Gi is the set B ⊆ {∏ Ui | Ui ∈ Ji, i ∈ I}

such that
∏

Ui ∈ B iff Ui �= Gi only for a finite number of i ∈ I. (6)

It is well known that πi :
∏

Gi → Gi is a continuous map for any i ∈ I. Moreover,
it holds the following statement [12].

Theorem 6. Let g : H → ∏
Gi be a map of a topological space H to the product

of topological spaces
∏

Gi. Then, g is continuous if and only if πi◦g is continuous
for any i ∈ I.

Now we can introduce the product of topological MI-groups.

Theorem 7. Let {(Gi, �i, ιi,Ji) | i ∈ I} be a non-empty family of topological
MI-groups. Then, the quadruplet (

∏
Gi, �, ι,J ) such that

(i) (
∏

Gi, �, ι) is the product of MI-groups {(Gi, �i, ιi) | i ∈ I},
(ii) (

∏
Gi,J ) is the product of topological spaces {(Gi,Ji) | i ∈ I}

is the product of topological MI-groups.

Sketch of the proof: To prove the statement, let f :
∏

Gi × ∏
Gi → ∏

Gi be
defined by f((xi), (yi)) = (xi �i yιi

i ), and put hi = πi ◦ f , where πi denotes the
i-th projection. One can simply prove that hi is continuous for any i ∈ I. The
continuity of f follows from Theorem 6, hence, the quadruplet (

∏
Gi, �, ι,J ) is a

topological group according to Lemma3. The proof is finished by the verification
that (

∏
Gi, �, ι,J ) is really a product of topological MI-groups. �
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3.3 Quotient Topological MI-Groups

Recall that a fundamental concept used in the definition of quotient MI-groups
is a closed subset of an MI-group G with respect to a submonoid K of PG. The
following lemma shows an important property of closed subsets.

Lemma 6. Let G = (G, �,−1 ,J ) be a topological MI-group, and let K ≤ PG. If
U is open in G, then U

K
is also open in G.

Sketch of the proof: From Lemma 5, the set f−1
s (U) is open for any open set

U , where fs : G → G is defined by f(x) = xs for any s ∈ K. If x ∈ U
K

, then
fsx

(x) ∈ U for a certain sx ∈ K; therefore, x ∈ f−1
sx

(U). The statement follows

from U
K

=
⋃

x∈U
K f−1

sx
(U) and the fact that the union of open sets is open. �

Note that a similar statement is not valid for closed sets in G. Let H be an
MI-subgroup of a topological MI-group G. Denote G/H the family of closers
of all left cosets, i.e., G/H = {xH

PH | x ∈ G}. Recall that G/H becomes an
MI-group if H is normal (see Theorem 5). The quotient topology, denoted by
JG/H , on G/H is defined as the largest collection of subsets of G/H such that
the projection π : G → G/H given by

π(x) = xH
PH

, x ∈ G,

is a continuous map, i.e., π−1(U) ∈ J holds for any U ∈ JG/H . It is well
known that each projection π : G → G/H is open for the topological groups. The
following theorem shows that a similar statement holds also for the topological
MI-groups, only we have to assume that x 	→ xh for h ∈ H are open maps.

Theorem 8. Let H � G, and let gh(x) = xh be open for any h ∈ H. Then, the
projection π : G → G/H is an open map.

Sketch of the proof: By the definition of the quotient topology, one has to verify
that π−1(π(U)) ∈ J . From (iii) of Lemma 5 and the assumption on gh for h ∈ H,
it holds that UH ∈ J . Moreover, UH

PH ∈ J according to Lemma 6. The proof
is finished by the verification of π−1(π(U)) = UH

PH . �

Theorem 9. Let H be a normal MI-subgroup of a topological MI-group G, and
let gh(x) = xh be open for any h ∈ H, and let gh(x) = xh be open for any
h ∈ H. Then (G/H, �,−1 ,JG/H) is a quotient topological MI-group.

Sketch of the proof: To prove the statement, define g(x, y) = xy−1 and consider
the following commutative diagram
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where f(xH
PH

, yH
PH ) = xy−1H

PH and (π × π)(x, y) = (π(x), π(y)). Let U be
an open neighborhood of xy−1H

PH in the quotient topology JG/H . Since g and
π are continuous, there exist open neighborhoods Vx of x and Vy of y such that
g(Vx × Vy) ⊆ π−1(U); therefore, (π ◦ g)(Vx × Vy) ⊆ U . Due to Theorem 8, π(Vx)
and π(Vy) are open neighborhoods of xH

PH and yH
pH , respectively; therefore,

(π × π)(Vx × Vy) = π(Vx) × π(Vy) belongs to the base of the product topology
JG/H . From the commutative diagram, it holds that

f(π(Vx) × π(Vy)) = f ◦ (π × π)(Vx × Vy) = (π ◦ g)(Vx × Vy)) ⊆ U,

which implies that f is a continuous map in a point (xH
PH

, y−1H
PH ). The

statement follows from Theorem 3. �

Corollary 2. Let H be a normal MI-subgroup of a topological MI-group G, and
let gy(x) = xy be open for any y ∈ H. If H is open, then G/H has the discrete
topology.

4 Conclusions

In this contribution, we introduced topological MI-groups to generalize the con-
cept of topological groups and studied their basic properties. We demonstrated
the existence of the product of topological MI-groups and, under certain assump-
tions, the existence of the quotient topological M-groups. Both constructions
indicate that the concept of topological MI-groups is meaningful and a further
research in this field should bring interesting and non-trivial results that could
enrich the known results from metric spaces over vaguely defined quantities.
For example, one open problem is related to the existence of quotient metric
MI-groups, where a metric MI-group is an MI-group with a metric such that this
MI-group becomes topological with respect to the topology induced by open balls
determined by the metric. More precisely, if (G, �,−1 , �) is a metric MI-group
and H is a normal metric MI-subgroup of G, it is not clear how to introduce
a quotient metric �G/H on G/H from the metric � on G such that the natural
homomorphism π is a quotient map, i.e.,

U ∈ τG/H if and only if π−1(U) ∈ τ,

where τ and τG/H are the sets of open balls determined by the metrics ρ and
ρG/H , respectively. The solution of this open problem could integrate the results
in [5,25] under a more general theory.
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Abstract. A common problem in mining data streams is that the dis-
tribution of the data might change over time. This situation, which is
known as concept drift, should be detected for ensuring the accuracy
of the models. In this paper we propose a method for subconcept drift
detection in discrete streaming data using probabilistic graphical mod-
els. In particular, our approach is based on the use of conditional linear
Gaussian Bayesian networks with latent variables. We demonstrate and
analyse the proposed model using synthetic and real data.

Keywords: Concept drift · Data stream · Bayesian networks
Latent variables · Conditional linear Gaussian

1 Introduction

In recent years, the field of mining data streams has received an increasing
attention as large amounts of data are continuously being generated (e.g., at
financial sector, at social networks, etc.). An important aspect of data streams
is that the domain being modelled is often non-stationary. In other words, the
distribution governing the data changes over time. This situation is known as
concept drift [6,15,19] and if not carefully taken into account, the result can be
a failure to capture and interpret intrinsic properties of the data.

We propose a method for detecting (virtual) subconcept drift in discrete
streaming data. This kind of drift affects only to some subspaces of the variables
domain. Many approaches might fail in its detection as they usually analyse the
whole domain. Our approach is an extension of the one by Borchani et al. [1,4],
an approach using the conditional linear Gaussian (CLG) model [7,8] with latent
variables. Yet, this previous approach was applied to continuous domains. Thus,
we propose transforming the discrete data into continuous. Then, for improving
the detection of subconcept drift, our model contains multiple latent variables
that are parent of only a few variables in the data.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 855, pp. 616–628, 2018.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91479-4_51&domain=pdf


Virtual Subconcept Drift Detection in Discrete Data Using PGMs 617

The paper is organized as follows. Sections 2 and 3 introduce some basic con-
cepts. Section 4 details our approach for concept drift detection. The empirical
analysis is presented in Sect. 5. Finally, the conclusions are given in Sect. 6.

2 Data Streams with Concept Drift

2.1 Definitions and Notation

Let us first introduce the basic notation. We use upper-case letters for random
variables and lower-case for their possible values. For example, x is a value of
a given variable X. The set of all possible values that a variable X can take is
called domain and denoted ΩX . For the sets of variables and their assignments
we use boldface letters, e.g, the set of variables X takes the values in x .

In general, a data stream is observed at time-points t1, t2, . . . where tj < tj+1

for all j. At each time point t we have a collection of instances called batch
(a.k.a window). For example, if a data stream defined over X , then the
batch at time point t is {x t[1],x t[2], . . . ,x t[Nt]}. In classification tasks, data
streams are defined over X ∪ C, where X is the set of features or covari-
ates and C is the class variable or label. In this case, a batch is denoted
{〈x t[1], ct[1]〉, 〈x t[2], ct[2]〉 . . . , 〈x t[Nt], ct[Nt]〉}. We use P (X , C) to denote the
joint distribution over the covariates and class labels. In the literature, this is
called concept [6]. We use P (C|X ) to denote the conditional distribution over
class labels given covariates and P (X ) to denote the prior probability distribu-
tion over covariates. A given distribution P (•) at time-point t is denoted Pt(•).

Data streams are usually non-stationary, which implies changes in the sta-
tistical properties of the data stream over time. This is known as concept drift
[6,15]. More formally, if concept drift is present, it holds that Ptj (X , C) �=
Ptk(X , C) where tj , and tk are 2 different time-points. In case of a data stream
without a class variable, this is simply Ptj (X ) �= Ptk(X ). In what follows we
shall consider that concept drift only happens across time and not within a set
of instances belonging to the same time-point.

2.2 Concept Drift Taxonomy

In the literature, there is much work aiming to characterize concept drift
[6,14,18], which can be classified according to different aspects: scope, speed,
recurrence, etc. We only describe the different types depending on the scope.

Real concept drift or class drift [17] occurs when the likelihood distribution
over the class labels given the covariates changes, i.e., it holds that Ptj (C|X ) �=
Ptk(C|X ). As proposed by Webb et al. [18], we will use the term pure class drift
if also holds that Ptj (X ) = Ptk(X ). On the other hand, virtual concept drift or
covariate drift [17] implies changes in the prior distribution of the covariates,
i.e. Ptj (X ) �= Ptk(X ). Similarly, pure covariate drift occurs when the prior
distribution of the class remains stable, i.e., Ptj (C|X ) = Ptk(C|X ). Real concept
drift can be further divided into two subtypes depending on its scope [11,18].
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First, Subconcept drift (a.k.a intersected drift) occurs when P (C|X ) changes only
for a subspace of ΩX . Otherwise, it is called full-concept drift. More formally,
subconcept drift can be defined as:

Ptj (C|X ) �= Ptk(C|X ) ∧ ∃x∈ΩX
∀c∈ΩC

Ptj (c|x ) = Ptk(c|x ) (1)

We consider the same idea for virtual concept drift, where the variations in
the prior distributions over the covariates affects only to some subspaces of ΩX .
Therefore, we can define virtual subconcept drift as follows:

Ptj (X ) �= Ptk(X ) ∧ ∃x∈ΩX
Ptj (x ) = Ptk(x ) (2)

Figure 1 shows virtual concept drift examples across time points tj and tk in
a data stream over {X,C}.
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Fig. 1. Concept drift examples across time points tj and tk: (left) initial probabilities
at tj , (center) virtual full-concept drift, (right) virtual subconcept drift.

2.3 Detection and Adaptation

In the context of concept drift, we can consider two important tasks: detection
and adaptation. Detection methods should be robust to noise and always signal
concept drift when it occurs. In recent years, several detection methods have been
developed that either monitor the evaluation of performance indicators [19] or
compare the distributions on two different data samples [1]. Our approach for
concept drift detection belongs to the second group. On the other hand, model
adaptation methods aim to keep the model up-to-date [5]. For dealing with
subconcept drift, Minku et al. [11] proposed the use of ensembles of classifiers.

3 Bayesian Networks

Our approach for concept drift detection is based on Bayesian networks (BNs)
[13], which are a class of PGMs representing a joint probability distribution
over a finite set of random variables. The nodes represent the variables in the
problem being modelled, and the links represent the (conditional) dependencies
and independencies among the variables.
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Definition 1 (Bayesian network). A Bayesian network (BN) is a tuple
〈X,P,G〉 where: X is a set of discrete random variables; G is a DAG where
each node represents a variable in X; P is a set of conditional probability distri-
butions, containing one distribution P (X|pa(X)) for each X ∈ X where pa(X)
is the set of parents of X according to G.

We will consider conditional linear Gaussian (CLG) BNs [8], which are an
extension of BNs allowing discrete and continuous variables. The conditional
probability distributions of continuous variables are specified as CLG distribu-
tions and discrete variables can only have discrete parents. The conditional dis-
tribution of each discrete variable XD ∈ X given its parents is a multinomial. On
the other hand, the conditional distribution of each continuous variable Z ∈ X
with discrete parents XD ⊆ X and continuous parents XC ⊆ X , is given by

p(z|XD = xD,XC = xC) = N (z;α(xD) + β(xD)ᵀxC , σ(xD)), (3)

for all xD ∈ ΩXD
and xC ∈ ΩXC

. Figure 2 depicts two examples. Note that
the BN on the right contains a latent (i.e., hidden) variable [12] depicted as
a white node. A variable of this kind cannot be directly observed. The rest of
the variables are called observed and will be represented with nodes in grey.
When we have a set of observable variables, it can happen that the existing
relationships among them are very complex, but that this relationships can be
highly simplified under the assumption of the existence of one or several hidden
variables. Think for example in a Naive Bayes classifier assuming that this is
the correct model for the data. If the class variable is not observed, then there
are not conditional independence relationships between the attributes (without
conditioning to the class). Then, the relationships between these attributes are
very complex. These can be simplified if we assume the existence of a hidden
variable which is a father of all the attributes (the non-observed class).

D

X

C

P (D) = (0.25, 0.75)

P (X|d1, c) = N (x; 1 + 4 · c, 1)
P (X|d2, c) = N (x; 2− 0.5 · c, 0.25)

P (C) = N (c; −2, 1)

H

X Y

P (H) = (0.45, 0.55)

P (X|h1) = N (x; 0, 1)
P (X|h2) = N (x; 2, 1.2)

P (Y |h1) = N (y; 1, 1.3)
P (Y |h2) = N (y; 5, 0.25)

(a) (b)

Fig. 2. Example of 2 conditional linear Gaussian BNs.

The BN in Fig. 2b defines a multivariate Gaussian mixture [12, p. 339], which
is a latent variable model typically used for unsupervised clustering. Here, the
latent variable H represents the clusters or groups while variables X and Y are
the data attributes. Note that, if H were continuous, its interpretation would be
a variable that summarizes all the data attributes. This is the key idea in the
model here proposed for concept drift detection.
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In the task of learning BNs from streaming data, the following problem
appears. It is not possible to learn the model with the whole data, which might
not have been generated yet or it cannot be stored in the memory due to its
size. For that reason, some scalable methods for learning BNs from data streams
have been developed in the last years, allowing to efficiently update the model
when new data is available [2,9,10,20]. With these methods, uniform prior dis-
tributions of the latent variables are considered.

4 Concept Drift Detection Using Latent Variables

Herein we address the issue of (virtual) concept drift detection using PGMs with
latent variables. First, we give a brief explanation of the method proposed by
Borchani et al. [1,4], on which we base our model. Then, we propose a pre-
processing algorithm that allows to apply the previous model to discrete data
stream. Finally, we explain our model for detecting subconcept drift.

4.1 Full-Concept Drift Detection in Continuous Data

The approach by Borchani et al. [1,4] is defined in the context of classification
where X = {X1,X2, . . . , Xn} is the set of (continuous) covariates and a discrete
class C. Figure 3 shows the BN with plate (a.k.a. plateau) notation [3] proposed
by Borchani et al. [1] for modelling concept drift.

Ct[i] Xt
1[i] Xt

2[i] . . . Xt
n[i]

Ht

time-point t

instance i

β

θ

Fig. 3. Model for concept drift detection proposed by Borchani et al. [1].

In this model, the observed variables are the covariates and the class variable.
A continuous latent variable Ht is set as a parent of all the nodes in X . The
nodes labelled with θ and β represent the parameters, which are shared for all
time points and across all instances. As Ht is parent of the observed variables,
its values have an influence in the probabilities of the observed variables. So,
changes in the value of Ht produce changes in the attribute probabilities. In
this way, a concept drift can be associated to variations on Ht. For determining
the presence of concept drift, we estimate the posterior distributions of the Ht-
variable at each time-point. A variation on its expected value implies that P (X )
drifts. This is a global detector as all the subspaces of ΩX are analysed.
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4.2 Full-Concept Drift Detection in Discrete Data

Now, we consider how to adapt the previous model to discrete data. In CLG mod-
els, discrete variables cannot have continuous parents. Thus, the model in Fig. 3
cannot be directly applied to discrete domains. For that, we propose to apply
Algorithm 1 for transforming discrete data over X into equivalent numerical
data over X ′ (that will be considered as continuous). For simplicity, we assume
that we have unlabelled data. In case of a class variable, it can be treated as
another covariate. The idea is to transform each variable X ∈ X in a set of
numerical variables {Xj}|ΩX |

j=1 , where Xj = 1 if X = xj ∈ ΩX , and 0, otherwise.
Note that each new variable Xj ∈ X ′ corresponds to a state xj ∈ ΩX .

Algorithm 1. pre-processing
input : {x [1], x [2], . . . , x [N ]} (batch of discrete instances over X )
output : {x ′[1], x ′[2], . . . , x ′[N ]} (batch of continuous instances X ′)
1: for i ← 1 to N do
2: x ′[i] ← ∅
3: for each X ∈ X do
4: Let x[i] the value of X in the instance x [i]
5: if X is discrete then
6: for j ← 1 to |ΩX | do
7: Let xj the jth state in ΩX

8: if x[i] = xj then
9: x ′[i] ← x ′[i] ∪ {1.0}
10: else
11: x ′[i] ← x ′[i] ∪ {0.0}
12: end if
13: end for
14: else
15: x ′[i] ← x ′[i] ∪ {x[i]}
16: end if
17: end for
18: end for
19: return {x ′[1], x ′[2], . . . , x ′[N ]}

For example, let us consider a data stream defined over X = {X,Y } with
ΩX = {x1, x2, x3} and ΩY = {y1, y2, y3, y4}. Then, the resulting data will be
defined over the set of continuous variables X ′ = {X1,X2,X3, Y 1, Y 2, Y 3, Y 4}.
Table 1 shows an example of this transformation. Once that the data is trans-
formed, we can consider a similar model with latent variables. Figure 4 depicts
the proposed BN for detecting concept drift in a data stream over X .

Note that the BN is defined over X ′ instead. Again, the concept drift detec-
tion is done by monitoring the Ht-variable. A variation on its expected value
implies that P (X ′) and so does P (X ). Again, this is a global detector as all the
subspaces of ΩX are analysed.
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Table 1. Example of output of Algo-
rithm 1.

X Y X1 X2 X3 Y 1 Y 2 Y 3 Y 4

x1 y1 1.0 0.0 0.0 1.0 0.0 0.0 0.0

x3 y1 0.0 0.0 1.0 1.0 0.0 0.0 0.0

x2 y4 0.0 1.0 0.0 0.0 0.0 0.0 1.0

x1 y3 1.0 0.0 0.0 0.0 0.0 1.0 0.0

X ′t[i]

Ht

time-point t

instance i

θ

β

Fig. 4. Model for concept drift detec-
tion in a discrete data stream.

4.3 Subconcept Drift Detection in Discrete Data

The previous approaches might fail to detect the presence of subconcept drift:
if many subspaces of the variables domains remain stable, the variations in the
expected value of the Ht-variable might be too small. To address this problem, we
propose a model that detects variations only in some subspaces of the domains.

Initially, the original discrete data over X is transformed using the pre-
processing algorithm (and hence we obtain numerical data over X ′). Then,
according to the user preferences, X ′ is partitioned into the following subsets:
S1,S2, . . . ,SN are the subsets of interest while R contains the rest of the vari-
ables. Each of these subsets of interest contains the variables corresponding to
the subspaces of X that we want to analyse together. For example, for a joint
analysis of P (X = xi) and P (Y = yj) with {X,Y } ⊆ X , the variables Xi ∈ X ′

and Y j ∈ X ′ will belong to the same subset of interest.
Figure 5 depicts the proposed BN for detecting subconcept drift in data

with discrete variables. Unlike previous models, this BN contains multiple
Ht-variables, one per each subset of interest. Now the detection can be done
independently for each subset: a variation in the expected value of a given Ht

k,
implies that the marginal distribution of any of the Xi ∈ Sk drifts, and so does
P (X = xi).

S1
t[i] S2

t[i] . . . Sn
t[i] Rt[i]

Ht
1 Ht

2 Ht
n

. . .
time-point t

instance i

θ

β

Fig. 5. Model for subconcept drift detection in a data stream with two discrete
variables.
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In the model presentation, we have assumed that there are no links connecting
variables in X ′. This has been done by simplicity, as there is nothing preventing
the existence of these links, taking into account that in that case, we will study
the existence of changes in the conditional probabilities of the variable given its
parents. For example, we can have a class variable and assume that there is a
link from this variable to all the attributes, and in that case we will consider the
existence of a concept drift in P (S i|C).

This model is more appropriate for those cases where subconcept drift occurs:
if we suspect that, for a given x ∈ ΩX the distribution P (x ) could remain stable
(i.e Eq. (2) holds), then the subset R will contain the corresponding variables
in X ′ associated to the states in x .

5 Empirical Validation

Herein we empirically test our approach. We consider a synthetic data stream
and another one including information about intrusion detection in a web server.
In both cases, Algorithm 1 is applied to each batch in the data stream. Then,
for both data streams, the subconcept drift detectors (Sect. 4.3) are compared
against the global detectors for full-concept drift (Sect. 4.2). The experimentation
was done using the AMIDST Toolbox1 and all the material for its replication is
available at GitHub2.

5.1 Synthetic Data Stream

When generating the data, at certain time-points, the probabilities used for
sampling are changed in order to simulate the presence of concept drift. Here,
we consider two discrete variables X and Y with 3 and 4 states respectively.
The data set contains a total of 12000 instances sampled from the distributions
shown in Table 2. We consider that each time-step contains 1000 instances.

We first apply Algorithm1 to each batch in the data stream. The result is a
stream defined over the set of continuous variables {X1,X2,X3, Y 1, Y 2, Y 3, Y 4}.
Assume that we aim to detect changes in P (X = x1) or P (X = x3) on the
one hand, and in P (X = x2), P (Y = y2) or P (Y = y3) on the other. Thus,
the model in Fig. 5 can be adapted to this scenario by considering the subsets
S1 = {X1,X3}, S2 = {X2, Y 2, Y 3} and R = {Y 1, Y 4}. All in all, the BN
modelling a subconcept drift detector is shown in Fig. 6.

The evolution of the expected values of Ht
1 and Ht

2 are shown in Fig. 7. The
changes in the probabilities of interest are proportionally reflected in variations
of the latent variables. For example, the most significant variations in Ht

1 cor-
respond to the large variations of P (X = x1) or P (X = x3) at time points 3,7
and 9. On the other hand, at time point 5, P (X = x1) barely changes while
P (X = x3) does not vary. This implies a very small variation in Ht

1. If we anal-
yse the evolution of Ht

2, the single significant variation occurs at time point 9,
1 http://www.amidsttoolbox.com.
2 https://github.com/PGM-Lab/2018-ipmu-subconcept.

http://www.amidsttoolbox.com
https://github.com/PGM-Lab/2018-ipmu-subconcept
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Table 2. Multinomial distributions for sampling the synthetic data. Values shown in
bold indicates the variations in the probabilities.

Time-step t

1 2 3 4 5 6 7 8 9 10 11 12

P (X = x1) 0.2 0.2 0.6 0.6 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2

P (X = x2) 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5

P (X = x3) 0.6 0.6 0.2 0.2 0.2 0.2 0.8 0.8 0.3 0.3 0.3 0.3

P (Y = y1) 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.0 0.0 0.0 0.0

P (Y = y2) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.6 0.6 0.6

P (Y = y3) 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.3 0.3

P (Y = y4) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

X1,t[i] X2,t[i] X3,t[i] Y 1,t[i] Y 2,t[i] Y 3,t[i] Y 4,t[i]

Ht
1 Ht

2

time-point t

instance i

θ

β

Fig. 6. Proposed model for concept drift detection in the synthetic data stream gen-
erated using the distributions given in Table 2.
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Fig. 7. Results for the synthetic data stream.

which corresponds to a large variation in P (X = x2). In the probabilities of
P (Y = y2) and P (Y = y3) there are not drastic variations. The Ht series repre-
sents the output of the corresponding full-concept drift detector. We observe that
its value remains almost constant, making difficult the concept drift detection.
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5.2 Intrusion Detection Data Stream

Now we consider large real-world data. In particular, we use a modified version of
the intrusion detection data from KDD Cup 1999 competition [16]. Each instance
corresponds to a connection to a web server. It contains 494021 instances with
42 variables. Yet, we only consider the discrete variables V1, V2 and V3 taking 3,
66, 11 states respectively. These variables describe the connection to the server,
e.g., we have that ΩV1 = {tcp, udp, icmp}. Figure 8 shows the evolution of the
distributions of the discrete variables. For simplicity of the display, improbable
states in variables with large domains are not shown. In addition, the variables
with temporal information in the data stream have been omitted and we consider
that each time step is made of 1000 consecutive instances.

0.
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8

1.
0

time-point

0 50 100 150 200 250 300 350 400 450

P (V1 = tcp) P (V1 = udp) P (V1 = icmp)
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0

0.
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0.
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time-step

0 50 100 150 200 250 300 350 400 450

P (V3 = SF ) P (V3 = REJ) P (V3 = S0) P (V3 = RSTO)

Fig. 8. Evolution of the probability values for the variables V1, V2 and V3. For simplic-
ity, 63 improbable states of V2 and 7 of V3 are not shown.

Suppose that we aim to analyse together the probabilities P (V1 = tcp),
P (V1 = icmp) and P (V2 = http). The usual traffic in the server are HTTP
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packages which are sent using TCP protocol. By contrast, during a denega-
tion of service attack, the number of ICMP packages increases. For that reason,
it is interesting to concept drift in these 3 states. Suppose that we also aim
to analyse the evolution of P (V3 = REJ) and P (V3 = RSTO). Taking this
into account, and after applying Algorithm 1, we define the subsets of interest
S1 = {tcp, icmp, http} and S2 = {REJ,RSTO}, where for simplicity we have
represented the variable Xj associated with case xj of variable X as xj . The
model with these considerations is shown in Fig. 9.

tcpt[i] udpt[i] icmpt[i] httpt[i] ecrit[i] privatet[i] SF t[i] REJ t[i] S0t[i] RSTOt[i]

Ht
1 Ht

2

time-point t

instance i

θ

β

Fig. 9. Proposed model for concept drift detection in the intrusion data stream.

Figure 10 shows the output of the previous model. We can observe that the
changes in the distributions of the states tcp, icmp and http imply a change in
Ht

1. This is also a robust method which has a smoothing effect: short changes in
the distributions are ignored. For example, in P (V3 = REJ) many probability
peaks appear in a few time points which are not reflected in Ht

2. The series Ht

corresponds with the output of a global detector, which is not shown due to
space restriction. We observe that this value barely changes and hence a global
detector cannot capture concept drift with this data.

-0
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Ht
1 Ht

2 Ht

Fig. 10. Results for the intrusion data stream.
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6 Conclusions

In this paper we have presented a method for detecting changes in the underlying
distributions of discrete streaming data that affect to only some subspaces of the
variables domain (i.e. subconcept drift). Our approach, which is based on the
use of CLG Bayesian networks, can capture this kind of variations while other
global detectors cannot. In the experimental work, we have seen that our method
can be applied to large and high dimensional data streams. As future work, our
method could be adapted for automatically selecting the subspaces of interest.
It could also be extended for detecting subconcept drift in continuous data.
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6. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)

7. Lauritzen, S.L.: Propagation of probabilities, means, and variances in mixed graph-
ical association models. J. Am. Statist. Assoc. 87(420), 1098–1108 (1992)

8. Lauritzen, S.L.: Graphical Models. Oxford University Press, Oxford (1996)
9. Masegosa, A.R., Martinez, A.M., Borchani, H.: Probabilistic graphical models on

multi-core CPUs using Java 8. IEEE Comput. Intell. Magaz. 11(2), 41–54 (2016)
10. Masegosa, A.R., Mart́ınez, A.M., Langseth, H., Nielsen, T.D., Salmerón, A.,
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Abstract. There has been a significant increase in the volume of Arabic dialect
messages on social networks, providing a rich source for opinion mining
research. Most research works done on Arabic dialect focus on messages written
in Arabic script, with very limited scope on Latin script. In this paper, we are
interested in the classification of social networks messages retrieved from
Twitter, Facebook and YouTube written in Algerian dialect in Latin script into
positive or negative classes using existing opinion mining approaches
(lexical-based, machine learning, and hybrid). Also, we apply a regrouping
process in the preprocessing step to overcome the issues related to the Algerian
dialect such as the orthographic varieties to express the same word. Furthermore,
we focus on the hybrid approach which consists in automatically annotating the
training corpus with the lexical-based approach and then use the machine
learning approach on this corpus for creating the classification model. This
approach allows classifying the messages into positive or negative classes,
without having to annotate manually a training corpus.

Keywords: Opinion mining � Social networks � Algerian dialect
Classification

1 Introduction

For centuries, researchers have been interested in the study and analysis of human
sentiments and opinions. With the growth of social networks, where users give their
opinions on several fields and areas, new research works on the field of opinion mining
in microblogging have emerged.

Nowadays, the use of social networks such as Twitter has significantly risen, and
the data recovered from social networks platforms is being used in many study fields
such as economics, politics or social behavior with the various application of text
mining. Although the areas of study vary in terms of goals, the dependency on social
media has proven to be quite useful as it provides easy access to real time information.

Opinion mining does not only benefit companies in order to enhance their products,
but it also helps other fields mentioned before such as politics, where governments
could detect and extract the public opinion on government related matters and act
accordingly.
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The very first challenge in microblogging opinion mining is language. Social media
users tend to use a language, dialect and abbreviations that sometimes differs from a
culture to another. Generally, users in the Greater Middle East communicate with
Modern Standard Arabic (MSA) and Arabic dialects, which differ from one region to
another, because of the various spoken regional dialects of Arabic. Note that the MSA
is the only variety of Arabic that is standardized, regulated, taught in schools, and used
in written and formal speech. However, in social networks, both MSA and dialectal
Arabic are used. In addition to problems related to the use of the Arabic dialect, it’s
transcription in Latin letters presents additional challenges. This phenomenon is called
Arabizi, which is often used in the Maghreb mainly in Tunisian, Moroccan and
Algerian dialects where there are no specific or predefined rules in the way of writing
the messages. Furthermore, phonetic and orthographic varieties differ for example from
Algerian dialects to Moroccan dialects considerably and from one region to another
within the same country which means the preprocessing of the data has to be an
important part of any Arabic dialect related study.

There are several works on the Arabic dialects in Arabic script. They essentially
study the resources building [1–5] and the dialects identification [6–10]. However, in
Latin script, there are noticeably less works, in particular in Algerian dialects, which
are represented only by the resources building [11]. We noticed that very few works
studied the opinion mining in the Arabic dialect written in Latin script. There are for
example [12] in the Moroccan dialect and [13] in the Tunisian dialect, but in the
Algerian dialect there aren’t any studies dealing with opinion mining detection in
messages although there is one work on the dialect that focuses essentially on the
construction of lexicon [14]. Therefore in our best knowledge there is not yet any
opinion mining work done in the Algerian dialect written in Latin script although the
dialect is widely used in social networks by the Algerian users. In this paper, we apply
the hybrid opinion mining approach to classify social networks messages written in the
Algerian dialect in Latin letters on positive or negative classes. In the following, we
introduce important works related to our study, then we present our proposed approach,
after that we give our test results, and finally, we end with our conclusion and
perspectives.

2 Related Works

We can distinguish three main approaches when dealing with researches in the opinion
mining in microblogging according to the three classes positive, negative and neutral.

The first approach is the lexical-based approach. In most cases when using this
approach, researchers construct a vocabulary of initial opinion words, then use methods
to enrich it and finally they classify messages by calculating their score according to the
opinion words present in them [15]. Hu and Liu [16] used synonyms and antonyms to
identify the semantic orientation of each word in the vocabulary, they achieved an
accuracy of 69.3% in detecting opinion sentences and 84.2% in detecting their orien-
tation. In another work, Turney [17] proposed a statistical method using the
PMI-Information retrieval (PMI-IR) algorithm which calculates the correlation between
a message and the seed words ‘excellent’ and ‘poor’ using the search engine ‘AltaVista’,

630 M. Bettiche et al.



the accuracy he achieved is 84.2%. Taboada et al. [18], on the other hand, calculated the
polarity force of each word of the vocabulary that was mainly composed of adjectives,
using the techniques of aggregation and average. They also took into account intensi-
fication and negation reporting an accuracy of 90% after testing on several corpora.

The lexical-based approach has the advantage of not requiring a manually anno-
tated training corpus and gives a very precise prediction of semantic orientation but is
not suitable for detecting opinions and subjectivity. Indeed, many messages bearing
positive or negative opinions are detected as neutral, which is translated by a weak
recall. The reason behind this weak recall comes from the fact that many opinion words
appearing in the messages and expressing a positive or negative opinion are not present
in the vocabulary.

The second approach is the machine learning approach. Pang et al. [19] used the
Naïve Bayes (NB), Maximum Entropy (ME) and Support Vector Machine
(SVM) classifiers to classify movie reviews into two classes, positive and negative.
They took a bag of uni-gram words as features. The SVM classifier gave a better
accuracy with 82.9% compared to NB 81.5% and ME 81%. Pak and Paroubek [20]
worked on the social network Twitter using Tweets as a corpus. They classify Tweets
into three classes: positive, negative or neutral using SVM and Naïve Bayes classifiers.
Their approach classifies Tweets into subjective or objective messages first, then the
subjective ones into positive and negative using emoticons and POS tags as features.
Wang et al. [21] compared between several classifiers: NB, ME, DT, KNN and SVM.
They also compared between the Boolean, frequency and TF-IDF representations
adding to that comparison the uni-grams and bi-grams features and with several cor-
pora. The best reported result was with the ME classifier scoring 92.62% in accuracy
using the frequency representation and the bi-grams. The classifier with the best
average score between the different corpora is SVM with 79% accuracy using the
TF-IDF representation and the uni-gram features.

The machine learning approach is widely used by researchers because it gives
better results and a much better recall than the lexical based approach. Though, it has
the disadvantage of needing a manual annotation of the training corpus which is
difficult to perform and time consuming when we have a big set of messages.

Finally, the last approach is the hybrid approach which combines the lexical-based
approach and the learning-based approach. Zhang et al. [22] used a hybrid approach by
automatically annotating the training corpus with the lexical-based approach, and then
training the classifier on this corpus which gave an accuracy of 87.7%.

3 Proposed Approach

Our opinion mining approach (see Fig. 1) for the Algerian dialect in Latin script focus
on the hybrid approach by combining the lexical based and machine learning based
approaches to classify messages in positive or negative. This approach was inspired by
[22] although their interest is in entity level sentiment analysis. First we use the lexical
based approach to automatically annotate the training corpus that will be used as the
input corpus for the machine learning based approach. We compared the results
obtained using the hybrid approach with the lexical based and learning based
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approaches in the case of the Algerian dialect corpus. Figure 1 presents the global
architecture of our system.

One of the most important steps is the preprocessing which is performed on the
messages collected from the social networks Twitter, Facebook and YouTube. Indeed,
the vocabulary needs to be processed and grouped to overcome the multiple spell
checking of the same words.

3.1 Preprocessing

The phase of preprocessing consists of applying multiple techniques on the collected
corpus messages in order to structure and organize them for further analysis [20].

Like other dialects, Algerian dialect has no orthographic rules, and therefore several
spellings can be observed in the corpus for the same word. We can see the following
example where a word (which means “everything” in the Algerian dialect) has user
using multiple spellings.

Example: kolach, kollach, kolchi, koulach, koulch, kolech etc.

To overcome this problem, we propose to add a regrouping step that is split into
two sub-steps: Phonetic regrouping, and similarity regrouping.

Phonetic Regrouping
We used an algorithm called ‘soundex’ [23] which gives a phonetic code for a given
word. This algorithm analyses the word, keeps its first letter in the code, and for the rest
of the letters it associates a number according to the table below (Table 1).

Preprocessing

Lexical based approach 

Initial opinion 

words

SO annotation of training corpus

Corpus words-classes correlation calculation

Annotation of the rest of training corpus

Machine Learning based approach

Messages

Corpus-based vocabulary enrichment

Fig. 1. Global architecture of our approach.
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Code = first letter of the word + a number
Example: KOLACH ! K42

We assign a phonetic code to each word belonging to the corpus, and then, for the
same phonetic code, we collect all the words associated with it.

Example: K42: [‘kolach’, ‘kelach’, ‘kollach’, ‘kolchi’, ‘koulach’, ‘khlass’, ‘kolch’,
‘koulch’, ‘khalikk’, ‘kolech’, ‘khalik’, ‘koulech’, ‘khalissa’, ‘kliké’, ‘koleche’, ‘khe-
l3oki’, ‘klacha’, ‘khlasse’, ‘khlas’, ‘kolache’, ‘koulchi’, ‘khlak’].

At the end of this step, we have a phonetic dictionary where we associate each
group of words having the same phonetic code with their corresponding phonetic code.

Similarity Regrouping
We have noticed that the phonetic regrouping has some weaknesses since several
words which have not the same meaning are phonetically regrouped. For example:
‘kolach’ and ‘khlasse’ do not have the same meaning. It is therefore necessary to make
a second regrouping within each group of words.

We used the similarity regrouping using the Levenshtein distance [24] giving a
measure of the similarity between two words. It is equal to the minimum number of
characters to be deleted, inserted or replaced to pass from one string to another. We use
it to give a percentage of similarity between two words, as follows:

Ratio ¼ 1� distance w1; w2ð Þ=lensum w1; w2ð Þ

Where:

lensum w1; w2ð Þ : Sum of word w1 and w2ð Þ lengths:

Example:

• Ratio (kolach, kollach) = 92%
• Ratio (kolach, khlasse) = 38%.

This test is done for each word in the list of the given dictionary in the phonetic
grouping step. Then, we take the most frequent word in the corpus from this list, and
we count its similarity to all other words, when the similarity is greater than a certain

Table 1. Soundex code

Code Letters

1 B, F, P, V
2 C, G, J, K, Q, S, X, Z
3 D, T
4 L
5 M, N
6 R
SKIP A, E, H, I, O, U, W, Y, H, W, Y

Opinion Mining in Social Networks for Algerian Dialect 633



estimated threshold (that we set at 75% after testing several examples), the words are
grouped together, giving the first list that represents the initial regrouping by similarity.

In our previous example the most frequent word is: kolach, after regrouping by
similarity we have the following list which accurately contains only the multiple
spellings of the word:

kolach: [‘kelach’, ‘kollach’, ‘kolchi’, ‘koulach’, ‘kolch’, ‘koulch’, ‘kolech’, ‘kou-
lech’, ‘koleche’, ‘kolache’, ‘koulchi’].

We do the same thing for the words that remain in the list until it is empty. We then
construct a dictionary of similarity where each word of the corpus has its equivalent
which is the most frequent word of the group to which it belongs.

In the end we replace each word in the messages preprocessed by their equivalents
in the dictionary of similarity.

3.2 Lexical Based Approach

Corpus-Based Vocabulary Enrichment
The lexical based approach relies on a pre-constructed vocabulary. Therefore, we first
construct a vocabulary of initial opinion words manually, then we enrich it with the
words present in the corpus. To enrich the vocabulary, we must go through several
stages. First we create the co-occurrence matrix of the words in the corpus, then we
calculate the correlations between the words of the corpus with the PMI, and finally, we
enrich the vocabulary by calculating the semantic orientation (SO) of each word of the
corpus using the following equation:

SOðwÞ ¼
X
i

PMI w; vocpos i½ �
� ��X

i

PMIðw; vocneg i½ �Þ

Where:

• vocpos: set of positive opinion words.
• vocneg: set of negative opinion words.

Then we do a simple comparison:

If SO (w) > 0 then the word is assigned to positive opinion words.
If SO (w) < 0 then the word is assigned to negative opinion words.

We can do several iterations by taking at each iteration the set of words constructed
at the previous iteration.

SO Annotation of Training Corpus
After constructing our vocabulary, the next step is classifying the messages into pos-
itive or negative. To do so, we sum the polarity of each word of the message:

Polarity messageð Þ ¼
X
i

PolarityðwordiÞ
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PolarityðwordiÞ can take several values:

Method 1: The basic method would be adding +1 to a message if a positive word is
present and −1 if a negative word is present.
Method 2: We take the result given by the semantic orientation (SO) calculated for
each word during the construction of the vocabulary.

We used the second method by taking the semantic orientation (SO) of each word
to avoid giving the same polarity strength to all words.

Corpus Words-Classes Correlation Calculation
In this approach, many positive and negative messages will not be classified. Then, we
add two new steps to classify the rest of the messages.

First, we take all the words of the classified messages as our vocabulary. After that,
we calculate their correlation with the positive and negative classes using the PMI to
know their polarity.

PMIpos wð Þ ¼ log
Ppos wð Þ
Ppos

� �
and PMInegðwÞ ¼ logðPneg wð Þ

Pneg
Þ

Where:

• Ppos: frequency of positive messages.
• Pneg: frequency of negative messages.
• PposðwÞ: frequency of appearance of the word w in positive messages.
• PnegðwÞ: frequency of appearance of the word w in negative messages.

If the PMI between the word and the positive class is positive then the word
expresses a positive opinion, otherwise if the PMI between the word and the negative
class is positive then the word expresses the negative opinion.

Annotation of the Rest of Training Corpus
In order to classify the messages, we take as a polarity of each word the average PMI
between the word and the two positive and negative classes taking into consideration
their semantic orientation.

PMI wð Þ ¼ Ppos � PMIposðwÞþPneg � PMInegðwÞ
Polarity messageð Þ ¼ P

i
�PMIðwiÞ

We can also take the average khi-2 and GI as the value of polarity.

khi2ðwÞ ¼ n � P wð Þ2�ðPpos wð Þ � PposÞ2
PðwÞ � ð1� P wð ÞÞ � Ppos � ð1� PposÞ
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GI wð Þ ¼ � Ppos � log Ppos
� �þPneg � log Pneg

� �� �þP wð Þ�
Ppos wð Þ � log Ppos wð Þ� �þPneg wð Þ � log Pneg wð Þ� �� �þð1� P wð ÞÞ � ð 1� Ppos wð Þ� ��
log 1� Ppos wð Þ� �þ 1� Pneg wð Þ� � � log 1� Pneg wð Þ� �Þ
Where:

• P wð Þ: frequency of appearance of the word w in the corpus.

3.3 Machine Learning Based Approach

In this approach, the training corpus must be annotated. Like the lexical based
approach, the machine learning based approach relies on a vocabulary which is either
constructed using all the words of the corpus after the preprocessing and representation
step, or using features selection to select the words which are correlated to positive or
negative messages.

Constructing the vocabulary is followed by the classification step. In this step, we
use the classifiers: Naïve Bayes (NB), Multinomial Naïve Bayes (MNB), Bernoulli
Naïve Bayes (BNB), Decision Tree (DT), K-Nearest Neighbors (KNN), SVM and
Artificial Neural Networks (ANN). The goal is to construct a classifying model
depending on the annotated training corpus and the vocabulary created, and use this
classifying model to classify the messages of test corpus.

4 Tests and Results

First, we tested the machine learning approach and the hybrid approach in a French
corpus (see Table 2). For machine learning, we annotated manually the training and the
test corpus. We trained the NB, MNB, BNB, DT, KNN, SVM and ANN classifiers on
the training corpus (results in Table 3). And then we tested the hybrid approach by

Table 2. French Corpus statistics

French corpus

Number of messages 2000
Number of words in the vocabulary 3395
Number of messages in training corpus 1200
Number of messages in test corpus 800

Table 3. Machine learning approach results for French corpus

Manually annotation Classifiers
NB MNB BNB DT KNN SVM ANN

Precision 0.734 0.863 0.776 0.694 0.668 0.84 0.835
Recall 0.733 0.826 0.774 0.683 0.657 0.81 0.805
F 0.733 0.825 0.773 0.684 0.658 0.811 0.804
Accuracy 0.733 0.826 0.774 0.683 0.657 0.81 0.805
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annotating automatically the training corpus with the lexical based approach and
training the classifiers on it (results in Table 4). We used the same classifiers.

The goal of the first test is to compare between the real manual annotation and the
automatic annotation of the training corpus. Also, French language is used by many
Algerian users, and often they combine French words to Algerian words within the
same sentence. So, it is interesting to see the French corpus results compare it with the
dialectal corpus results.

We used four evaluation metrics, namely precision, recall, F and accuracy. Preci-
sion is defined as the fraction of the classified messages that are in the correct class.
Recall is defined as the fraction of opinion bearer message that are retrieved by the
approach. F characterizes the combined performance of precision and recall. Finally,
accuracy is defined as the fraction of the correctly classified messages to all messages.

French corpus is collected from a YouTube video speaking about Islam in France.
The machine learning approach outperforms the hybrid approach. For the MNB

classifier, the first approach achieves an F-score of 82.5% whereas the second approach
gets 77.4%. This is due to the automatic annotation which has an error rate. However,
the hybrid approach gave satisfying results.

Since it is very difficult to find an annotated training corpus in the Algerian dialect
and the hybrid approach gave satisfying results, we settled for testing only the
lexical-based approach and the hybrid approach for the dialectal corpus. Operating this
way helps avoiding the need to manually annotate a corpus for the machine learning
approach which is time consuming. For the hybrid approach, we used the same pre-
vious classifiers.

Algerian dialectal corpus is collected from YouTube videos about politics in
Algeria (Table 5).

Table 4. Hybrid approach results for French corpus

Automatic annotation Classifiers
NB MNB BNB DT KNN SVM ANN

Precision 0.68 0.775 0.758 0.704 0.768 0.772 0.767
Recall 0.678 0.774 0.719 0.701 0.766 0.769 0.766
F 0.678 0.774 0707 0.698 0.766 0.768 0.766
Accuracy 0.678 0.774 0.719 0.701 0.766 0.769 0.766

Table 5. Algerian dialect corpus statistics

Dialectal corpus

Number of messages in the corpus 2650
Number of words in the vocabulary before regrouping 13555
Number of words in the vocabulary after regrouping 9274
Number of messages in Training corpus 2250
Number of messages in test corpus 400
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4.1 Lexical Based Approach

We tested the approach by taking as a polarity the sentiment orientation (SO) of each
word while using multiple iterations of vocabulary enrichment and the presence or not
of the regrouping step.

Note that when we do not enrich the vocabulary (number of iteration = 0) we have
a very good precision (� 92%) but a very low recall (� 48%).

The results also show that the more we enrich the vocabulary, the more the pre-
cision decreases and the recall grows. This is mainly due to the fact that, when the
vocabulary is not enriched, we are sure of the polarity of all the word, therefore having
a very good precision.

Furthermore, since the vocabulary is rather poor in words we have a weak recall
because several messages bearing opinions are ignored. On the other hand, when the
vocabulary is enriched we have a better detection of opinion messages but the error rate
increases and thus precision decreases.

In general, the constructed model gave better results when we use the vocabulary
enrichment. In fact, the F grows with 18%, for the first iteration (see Table 7). We
noticed that when using regrouping, we achieve the highest F score on the first iteration
(81.9%), but when we do not use regrouping, the highest F score is seen on the second
iteration (78.2%), (see Tables 6 and 7).

Also, the regrouping that we proposed earlier improved the performance of the
approach in terms of precision, recall, F and accuracy. The best F achieved without the
regrouping is 78.2% in the second iteration, while with the regrouping it’s 81.9% in the
first iteration. So, this method enhances the results, since we got the highest F score on
the first iteration only.

Table 6. Lexical based SO classification without regrouping results

Without regrouping Number of iteration
0 1 2 3

Precision 0.924 0.836 0.82 0.812
Recall 0.389 0.723 0.749 0.747
F 0.547 0.775 0.782 0.778
Accuracy 0.389 0.723 0.749 0.747

Table 7. Lexical based SO classification with regrouping results

With regrouping Number of iteration
0 1 2 3

Precision 0.929 0.841 0.824 0.821
Recall 0.48 0.797 0.802 0.801
F 0.634 0.819 0.813 0.811
Accuracy 0.48 0.797 0.802 0.801
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If we go to the third iteration the performance deteriorates for both methods:
without regrouping (F = 77.8%) and with regrouping (F = 81.1%) method. Indeed,
here, we find that many words which are not opinion-related are detected due to the
expansion of the initial set of words.

4.2 Hybrid Approach

We tested the hybrid approach by automatically annotating the training corpus with the
lexical based approach. First we used the set of initial opinion words. We then
annotated the rest of the ignored messages by taking as the polarity of each word in the
corpus, the PMI computed by the correlation between the words and the positive and
negative classes.

For this study, we used all the words present in the training corpus as vocabulary
and used the TF-IDF representation for the messages. Also, we compared the presence
or not of the regrouping step.

The KNN classifier gave better results when we used the regrouping step with
93.7% in terms of F, and then came the ANN and MNB with F = 91.3% for ANN and
F = 91% for MNB (see Table 9). However, when regrouping was not used, the results
were not as good as previously, with F = 91.2% for KNN, F = 89% for ANN and
F = 88.7% for MNB (see Table 8). From the table above, we can witness that this
approach gives very good results either in terms of precision, recall, F or accuracy (see
Tables 8 and 9). Thus, the hybrid approach gives better results than the lexical based
approach in terms of F-Score, with 93.7% for the hybrid approach and 81.9% for the
lexical one.

Table 8. Hybrid approach without regrouping results.

Without regrouping Classifiers
NB MNB BNB DT KNN SVM ANN

Precision 0.822 0.893 0.828 0.867 0.918 0.879 0.892
Recall 0.805 0.887 0.747 0.867 0.912 0.877 0.89
F 0.802 0.887 0.731 0.867 0.912 0.877 0.89
Accuracy 0.805 0.887 0.747 0.867 0.912 0.877 0.89

Table 9. Hybrid approach with regrouping results

With regrouping Classifiers
NB MNB BNB DT KNN SVM ANN

Precision 0.847 0.917 0.865 0.867 0.937 0.89 0.915
Recall 0.822 0.91 0.82 0.867 0.937 0.882 0.912
F 0.819 0.91 0.814 0.867 0.937 0.882 0.913
Accuracy 0.822 0.91 0.82 0.867 0.937 0.882 0.912
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Overall, this approach presents much better results than the lexical-based approach
and is simpler to develop than the machine learning approach since we do not need to
manually annotate a training corpus.

Against all odds, the approaches give better results in dialect than in French. In
analyzing the messages of our corpus, we noticed that the Algerian dialect corpus is
less rich and developed than the French corpus, the positive or negative words are often
recurrent, as long as we regroup their different spellings in the regrouping phase.

5 Conclusion/Perspective

In this paper, we presented a hybrid approach in opinion mining. When applied to the
Algerian dialect, this approach gave interesting results even though the dialect is not
standardized.

Using the lexical based approach to annotate the training corpus, and using that
annotated corpus as an input for the machine learning approach gave better results than
using the lexical based approach only. We achieved an F-score of 93.7% for the hybrid
approach and 81.9% for the lexical one. Also, when working with dialect, we tested a
new regrouping step when preprocessing the messages. It consists of performing a
phonetic and similarity regrouping, which, when applied to our study was helpful in
regrouping the same words with different writings.

Overall, this study on the Algerian dialect enabled us to set new perspective for
opinion mining in microblogging, especially with dialectal messages. We can now
proceed to other areas of the opinion mining field such as subjectivity analysis, by
taking in account for instance a neutral class (for messages that are not classified either
as positive or negative) and elaborate on whether those message bear equally positive
and negative opinion words or do not contain opinion words at all. Another possible
area of interest would be opinion extraction by using for example the opinion
vocabulary we constructed to detect or extract messages containing specific opinions.
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Abstract. When dealing with complex problems, designing a planning
domain becomes a hard task that requires time and a skilled expert.
This issue can be a problem when trying to model a planning domain
intended to work in real-world applications. In order to overcome this
problem, domain learning techniques are developed aiming to learn plan-
ning domains from existing real-world processes. Domain learning tech-
niques then must face typical problems from this kind of applications
such as data incompleteness. In this paper, we extend a classification
algorithm developed by our research group, in order to create a highly
resistant to incompleteness domain learner. We achieve this by extracting
the information contained in a collection of plans and creating datasets,
applying cleaning and preprocessing techniques to these datasets and
then extracting the hypothesis that model the domain’s actions using
the classifier. Seeking a first validation of our solution before trying to
work with real-world data we test it using a collection of simulated stan-
dard planning domains from the International Planning Competition.
The results obtained shows that our approach can successfully learn
planning actions even with a high degree of incompleteness.

Keywords: Automated planning · Domain learning
Inductive learning · Machine learning · Rule learning

1 Introduction

AI planning systems require the definition of planning domains in order to
solve planning problems. Defining handmade planning domains is a task that
requires experience and an extensive knowledge of the problems that want to be
solved. Also, designing a planning domain able to solve problems that work in a
world with a different array of situations is a difficult task because the domain’s
designer must take into account every single one to allow the domain to handle
them. These two factors provoke that build planning domains be a cumbersome
task. A way to reduce the time and effort needed to design planning domains
is to automate the process as much as possible using planning domain learning
techniques. Planning domain learners use plan traces examples and produces as
an output a domain able to solve planning problems.
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The solution presented in this paper aims to extend a classification algorithm
[1] to learn logical action models from incomplete plan traces. The algorithm
selected was NSLV [2] a classification algorithm based on inductive rule learn-
ing with fuzzy sets [3]. The extension consist of the addition of preprocessing
techniques to convert data obtained from solved planning problems to the data
format needed as input to NSLV, as well as postprocessing techniques to build
a planning domain from the rules obtained from the classification algorithm.
In the early stages of the development of our approach, we choose algorithms
that create rule-based models as the core of the learning process because of
rule’s interpretability and their ability to explicitly show the relationships among
the variables involved in the problem. These two characteristics help lessen the
problem of translating a classification model to a planning domain. Finally, by
considering the domain learning problem as a classification problem, we reduce
the problem to find a collection of hypothesis that model the state of the world
before and after the execution of each domain’s action.

There are several proposed solutions to learn planning domains [4]. In the
literature, we can find solutions as different as OBSERVER [5] that monitors
executions of expert agents and learns using the information obtained from them,
TRAIL [6] that relies on an expert human teacher to guide the learning process
or EXPO [7] that starts from an initial incomplete domain and uses plans execu-
tions to complete it. New solutions rely on diverse strategies such as LOCM [8]
that uses context-free models relating action’s parameters, or NLOCM [9] that
extends LOCM’s strategy in order to learn action’s cost. Approaches that can
learn from incomplete information are few: ARMS [10] and LAMP [11] are good
examples of these solutions. Both generate sets of logic formulas to model the
domain’s actions and select the best ones using a MAX-SAT solver (ARMS) or
a Marvok Net (LAMP).

Most of these solutions can’t deal with incompleteness (EXPO, OBSERVER,
TRAIL, LOCM, NLOCM) and the few ones that can handle it (ARMS, LAMP)
doesn’t generate symbolic representations of the actions learned, difficulting the
understanding of the results. Another drawback is that although the learned
domains obtained with these algorithms are close to the original ones, they
usually don’t give information about the learned domain’s ability to reproduce
the plans used during the learning process. The main objective of our research
is to use a classifier based on inductive learning resistant to data incompleteness
that outputs models easy to understand from a human point of view to learn
planning domain’s actions models. As secondary objectives, we aim to generate
domains that can reproduce correctly the solutions obtained by the original
domains.

Our solution has been validated using examples obtained from problems
solved using benchmark domains obtained from the international planning com-
munity. The noisy and incomplete state’s information contained on these exam-
ples varies and each one has been used to learn a planning domain. These new
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learned domains have been compared with the originals ones to measure not only
the differences between them but also to measure its capabilities of reproducing
the plans used as input on the learning process.

Next section will cover in detail every background concept needed to com-
prehend how our solution works. In Sect. 3 the NSLV rule learner algorithm will
be explained. Then, Sect. 4 will contain the information about the techniques
added to extend NSLV. Section 5 will cover our experiments and results. Finally,
in Sect. 6 the conclusions drawn from the results will be discussed together with
possible improvements of our solution in the near future.

2 Problem Statement

As said earlier, in order to use AP techniques a planning domain is needed
along with a planning problem to be solved. The result of a planner is a plan
that solves the given problem. A plan is defined as an ordered set of tasks
whose execution modify the world until achieving the goals presented in the
problem. In AP the world is represented as a conjunction of fluents. A fluent
is a statement in the form of p(arg1, arg2, ..., argn) where p is a logic predicate
and argx an object of the world. Objects may have a type associated, and those
types may have a hierarchical relationship with other types. Each fluent has
a value associated: True or False in the case of literal fluents or a numerical
value in the case of function fluents. When interpreting the incompleteness of a
state two interpretations can be used: the Close World Assumption (CWA) or
the Open World Assumption (OWA). CWA interprets the world by considering
that unobserved fluents are false. Meanwhile, OWA considers that unobserved
fluents are missing, nor true or false, and can’t be evaluated. This work follows
the OWA interpretation.

A planning domain can be seen as a tuple <Ont,Act> where Ont is the
ontology of the world, the definition of the predicates and objects of the world,
and Act is a collection of PDDL actions. In the same way, a PDDL planning
action is a tuple <Header, Pre,Eff>, where Header is the action’s name plus
its parameters, Pre the preconditions that must be true to allow the execution
of the action and Eff the effects of the action in the world after being executed.
An action whose Par, Pre and Eff components are if the parameters are not
instantiated with world’s objects is called action model. Below, there’s the action
model of the example action (boardp1, a1, c1) and an example of the execution
of the same action over a given state:
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(:action board :parameters (?p − person ?a − aircraft ?c − city)

:precondition

(and

(at ?p ?c)(at ?a ?c)

)

:effect

(and

(not(at ?p ?c))(in ?p ?a)

)

)

Sn

(at a1 c1)
(at p1 c1)

(¬(in a1 p1))

→
(board p1 a1 c1)

Sn+1

(at a1 c1)
(¬(at p1 c1))
(in a1 p1)

An ordered set of interleaved states Sx and actions Ax <S0, A0, S1,
A1, ..., Sn, An, Sn+1> is called Plan Trace (PT). A plan with states Sx

interleaved between its actions Ax is called Plan Trace. In a plan trace
<S0, A0, S1, A1, ..., Sn, An, Sn+1>, S0 is the initial state of the problem solved
by the original plan, Sn+1 is the goal state of that problem and the rest of states
are snapshots of the world at a given point during the execution of the plan.
Each action has an associated prestate and poststate. The state Sx of an action
Ax is the prestate associated with the action and can be seen as the world just
before executing the action. In the same way, the state Sx+1 is the poststate
associated with Ax and is the state of the world just after executing the action.
Listing 1.1 shows an example of a PT.

S0: (at p1 c2) ∧ (= (fuel − level a1) 100) ∧ (at a1 c2)
T0: (board p1 − person a1 − aircraft c2 − city)
S1: (at p1 c2) ∧ (= (fuel − level a1) 100) ∧ (in p1 a1)
T1: (fly a1 − aircraft c2 − city c1 − city)
S2: (= (fuel − level a1) 0) ∧ (in p1 a1) ∧ (at a1 c1)

Listing 1.1. Extract of a PT from a Zeno Travel problem.

The world’s states of a PT are usually observed during the execution of a
given plan. This can lead to have partially (incomplete) or wrongly (noisy) states
observed. Incompleteness occurs when some fluents of the state (or the whole
state) are not observed. Noise, on the other hand, is a problem where the value
of a fluent is different of the value of the observed fluent. Following the states
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shown in Listing 1.1 an incomplete version of state S0 would be (at p1 c2) ∧ (=
(fuel − level a1) 50) ∧ (at a1 c2) an example of noise over the same state.

In order to use the information contained inside a PT in a classification
algorithm, datasets must be extracted from the PT’s. When translating a PT
into a dataset each example is a state from the PT and the attributes correspond
with the state’s fluents.

Those datasets are size n ∗ m matrices where n is the number of examples of
the dataset and m the number of attributes.

Fluent1 Fluent2 ... F luentm Class
V alue11 V alue12 ... V alue1m Label1
V alue21 V alue22 ... V alue2m Label2

... ... ... ... ...
V aluen1 V aluen2 ... V aluenm Labeln

Fluentj are the elements which make up the state Si, and V alueij the values
of those fluents. V alueij depends on the Fluentj type. Literal fluents values
can be True or False, while function fluents values are a numerical value. Labeli
depends on the problem and the relation of the example i with the rest of the
dataset’s elements. When representing states with a different number of fluents,
the set of all fluents is calculated as the union of the different sets of fluents
of each example. If a fluent doesn’t appear in an example it’s value is set as
a Missing Value. Dataset’s Missing Values (MV) are treated depending on the
world assumption made in the planning domain.

3 NSLV

The algorithm extended was NSLV [2] (New SLaVe) an algorithm of the SLaVe
family [12]. NSLV is a classification algorithm based on inductive rule learning
with fuzzy sets. NSLV uses the Sequential Covering (SC) strategy described in
Algorithm 1, where E is a collection of examples and f a fitness function used
to measure the validity of the rules. Other elements of the SC strategy used are:

– PERFORMANCE. Measures the difference in the degree of completeness
that causes the inclusion of a given rule in the ruleset. In other words, it
measures the number of new examples of E explained by the addition of the
rule in the collection of previously learned rules.

– LEARN ONE RULE. Uses a genetic algorithm (GA) to select which tuples
<attribute, value> define the antecedent of the rule that best fits a set of
examples E. The rule learned must cover at least one example of E. The
GA used is a steady state genetic algorithm whose population size maintains
constant: each time an element is included in the population the worst element
of it is erased.

Starting from an empty ruleset, a new rule is extracted and added to it in
each iteration. The examples covered by this new rule are penalized (step 3.b)



Using Inductive Rule Learning Techniques to Learn Planning Domains 647

Algorithm 1. Sequential covering strategy of NSLV
Input: A set of examples. Output: A learned ruleset.

SEQUENTIAL COVERING (E, f)

1. Learned rules ← {}
2. Rule ← LEARN ONE RULE (E, f)
3. While PERFORMANCE (Rule, E) > 0, Do

(a) Learned rules ← Learned rules + Rule
(b) E ← Penalize (Learned rules, E)
(c) Rule ← LEARN ONE RULE (E, f)

4. Return Learned rules

in order to guide the GA to learn rules that explain new examples. Penalization
is realized by marking the examples instead of erasing it from the examples set,
helping the algorithm to find a new rule that explains new examples besides
previously covered examples. This process ends when the PERFORMANCE of
an extracted rule is zero or less.

The rules created by NSLV use a weighted Disjuntive Normal Form (DNF)
fuzzy model, following the structure detailed below:

IFC1 and C2 and . . . and Cm THENClass is B

withweight w

where a condition Ci is a sentence Xh is A, with A a fuzzy label (or a set of
fuzzy labels) of the domain of the variable Xn. Xn is an element of X the set of
antecedent variables of the rule, those antecedent correspond with the attributes
of the problem’s dataset. Finally, B is the value that represents a class of a
particular problem and w a measure of the PERFORMANCE of the rule.

The criterion used to select the best rule is a key element in NSLV. The crite-
rion defined uses a multi-criteria evaluation guided by a Lexicographical Evalu-
ation Function (LEF). The evaluation function’s different criteria are ordered by
their importance level. This order is essential to assure the rule’s accuracy and
interpretability level. The criteria defined follows measure the accuracy, consis-
tency and simplicity of the rule.

The most important criterion is the one related to the accuracy. This criterion
measures the consistency and completeness of the rule [13] returning the product
between them.

On the first hand, rule’s completeness degree is measure as:

Λ(R) =
n+(R)
nclass

with n+(R) as the number of examples covered by the rule [14] of a certain
class, and nclass the number of elements of the examples set of this class. When
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checking the coverage of an example with MVs, NSLV considers the MV always
as correct when evaluating them with a rule’s antecedent.

In the other hand, the consistency degree of the rule is measured by con-
sidering the possibility of the existence of noise in the rules [13]. Consistency is
defined following the next formula:

Γ (R) =

⎧
⎪⎨

⎪⎩

1, if n−(R) = 0
n+(R)−n−(R)

n+(R) , if n−(R) < n+(R)

0, otherwise

where n+(R) is the number of examples covered the rule and n−(R) the uncov-
ered examples [14].

Rule’s inference is introduced in the criterion by using ns as a measure of the
success of the rule (number of examples correctly classified) and nf a measure
of the failure of the rule (number of examples incorrectly classified):

Γ ′(R) =

{
Γ (R), if (ns(R) > nf (R))
0, otherwise.

Finally, in order to combine both criterions to ensure a high degree of com-
pleteness and (Λ) and consistency (Γ ′) a new criterion Ψ is defined. The criterion
is defined by the next function:

Ψ(R) = Γ ′(R) × Λ(R).

The rest of the defined criterions measure the simplicity of the rules. First,
svar(R), is the definition of the degree of simplicity of the rule’s variables. This
measure is the number of irrelevant variables in a rule. Second, sval(R), is the
rule’s values degree of simplicity. Values degree of simplicity is calculated as the
number of understandable assignments. Both criterions are fully defined in [15].

In the end, the multi-criteria evaluation function defined to select the best
rules is:

fitness(R) = [Ψ(R), svar(R), sval(R)].

As said earlier, the evaluation function follows a lexicographical order. This
means that the first criterion in the function guides the selection. In case of a
tie between fitness measures, the other two criterions are used sequentially to
break the tie.

NSLV can output two kinds of DNF rules: descriptive rules and predictive
rules. Predictive rules are rules that contain the minimum information needed to
classify an example. While descriptive rules contain the minimum information
needed to model a set of examples. In terms of antecedent’s information, the
difference between these rules is that predictive rules contain only the relevant
attributes needed to classify an example, on the other hand, descriptive rules
contain every relevant attribute of the example. In this work, we focus in the
use of descriptive rules because we need the maximum information in order to
model correctly the world’s states.
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4 PlanMiner-O

As a result of extending NSLV we present the PlanMiner-O planning domain
learner. PlanMiner-O takes a collection of plan traces, extracting a dataset for
each different action model in it. Then using NSLV, PlanMiner-O generates a set
of rules, which once postprocessed form the PDDL planning action. Algorithm2
shows an overview of PlanMiner-O where PTs is a collection of input plan traces.
Other elements of PlanMiner-O are:

– EXTRACT INFORMATION. Generates a dataset from the information
stored in PTs. The datasets contain the prestates and poststates of a given
action.

– PREPROCESS DATASET. Applies various techniques to the dataset in
order to increase tolerance to incompleteness of the rule learner.

– LEARN RULES. This step uses the NSLV algorithm to output a set of
rules for each class in it, either pre-state or post-state.

– SELECT RULES. By selecting the rule that best fits the prestates and
poststates of an action PlanMiner-O obtains the information needed to con-
struct an action.

Algorithm 2. Plan Miner algorithm overview.
Input: A collection of Plan Traces.
Output: A set of learned action models.

PlanMiner-O(PTs)

1. ActM ← {}
2. Foreach action in PTs, Do

(a) Dataset ← EXTRACT INFO(action, PTs)
(b) Dataset ← PREPROCESS(Dataset)
(c) rules ← LEARN RULES(Dataset)
(d) ActM ← ActM + COMBINE(rules)

3. Return ActM

EXTRACT INFORMATION creates a dataset for each different action in
PTs. First, selects each pair <prestate, poststate> associated with a given
action across the set of PTs. prestates and poststates of each action that agree
with action are selected and its schema form is calculated. This is achieved cal-
culating the schema form of the states. State’s schema form is calculated by
taking each argument <arg1, arg2, ..., argn> of the action and replacing the
i-th argument in every prestate’s and poststate’s fluent in which it appears
with a Parami token who represents a variable. Finally, every fluent in the
state that has not undergone at least one substitution is erased from the state
following a criterion of relevance [10]. A fluent is relevant if it shares any-
one of its parameters with the associated task’s parameters. Given an action
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(board person1, plane1, city2) and an associated state ((at plane1 city2) ∧ (=
(fuel − level plane1) 100) ∧ (at person1 city2)) the schema form of the state is:
((at Param2 Param3)∧(= (fuel−level Param2) 100)∧(at Param1 Param3)).
Datasets’ label is prestate or poststate depending on the relation of the state
with the given action.

For each function fluent in the states EXTRACT INFORMATION adds an
extra column to the dataset. The information of this new attribute is com-
puted by selecting the pairs <prestate, poststate> and calculating the difference
between the function’s value in prestate and poststate.

Before beginning the learning process, PREPROCESS DATASET cleans the
dataset by erasing noisy values and missing states. PREPROCESS DATASET
selects a dataset’s class and extracts every example of the selected class. Then, it
makes a statistical frequency analysis over these examples. This analysis calcu-
lates the appearance rate of each tuple <fluent, value> in the selected examples
in comparison with other tuples with the same fluent. The analysis ignores those
tuples with an MV as value. If the frequency of a tuple is lower than a threshold
it value is replaced by an MV in every example it appears. Table 1 shows an
example of a frequency table extracted from preselected examples of a dataset.
PREPROCESS DATASET repeats the process with the other dataset’s class.

Table 1. Collection of examples and associated frequency table

# Attr1 Attr2 Attr3 Attr4
1 True False False True
2 True True True True
3 MV True False MV
4 True True False False

Element Tally Frequency
< Attr1, T rue > 3 100%
< Attr2, T rue > 3 75%
< Attr2, False > 1 25%
< Attr3, T rue > 1 25%
< Attr3, False > 3 75%
< Attr4, T rue > 2 66%
< Attr4, False > 1 33%

When PREPROCESS DATASET has been finished replacing those values
that not meet the frequency requisite set, it begins to search for those examples
of the dataset whose attributes’ values only contains MVs. Any time it founds
an example like that, PREPROCESS DATASET erases it. This ensures that
every example in the dataset had at least one attribute with useful information,
minimizing future noise problems.

LEARN RULES takes a Dataset and output a set of rules that model the
collection of examples of a given class using NSLV. In order to assure the quality
of the rules, the dataset is split randomly into two datasets: NSLV create the
rules using one of them and test its accuracy with the other. Using a noise-free
complete dataset the number of rules created by NSLV is always two: one for
each class in the dataset.

SELECT RULES takes the ruleset created by NSLV and selects the best rule
of each class. The rules selected are the ones that cover the maximum number of
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examples of each dataset’s class. Rules with a low coverage of examples are inter-
preted as rules that model noisy examples and therefore they are ignored. Rule’s
antecedent contains explicitly the information needed to create a PDDL planning
action. In example, given the rule IF (Attr1 = TRUE) ∧ (Attr2 = FALSE) ⇒
C its antecedent can be translated directly to the fluents (attr1) ∧ (not(Attr2)).
Finally, this fluents can be used to create the proper PDDL preconditions or
effects using C following a straightforward process:

– Action’s preconditions are taken directly from the antecedent of the prestate-
class’ rule.

– Action’s effects are extracted by calculated the difference Δ(pre, post).
Δ(pre, post) is defined as the set of changes that must be done over a state pre
in order to make it equal to the state post. pre is obtained from the prestate
rule’s antecedent, while post is obtained from the poststate rule’s antecedent.

Once the whole learning process has finished the rest of the PDDL planning
domain is created by simply adding the list of different types’ and parametrized
fluents extracted from PT to it.

5 Experiments and Results

PlanMiner-O was tested using a collection domains from the International Plan-
ning Competition IPC. The objective of these experiments is to demonstrate that
PlanMiner-O is able to learn planning domains even with high levels of missing
states’ information. The details of the domains used can be seen in Table 2. From
each domain, 200 problems were set. The 80% of these problems were used as
train problems and the 20% left as test problems. The experimental process used
was defined as follows:

1. Training problems were solved using the original planning domain.
2. For each plan obtained in Step 1, a PT was created.
3. PTs were modified with noise or incompleteness if applicable.
4. A new domain was learned from the collection of PTs.
5. The learned domain and the original one were compared and performance

values were calculated.
6. Test problems are solved using the learned domain.
7. New plans generated in Step 6 were validated with the original domain.

In order to ensure the results, Steps 3–7 were repeated 10 times. The final
result is the average of the results obtained in Steps 5 and 7. Noise is included in
the PTs randomly: A given percentage of fluents’ values of the PTs are changed
randomly to another valid value. Incompleteness is included following the same
philosophy: A given percentage of fluents are selected randomly and erased from
the PTs.

http://ipc.icaps-conference.org/
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Table 2. Benchmark Domains Characteristics(from left to right): domain’s number of
tasks, domain’s number of fluents, average number of tasks in the plans solved, average
number of fluents in the plans’ states and average CPU time(in seconds) to learn a
domain.

Problem |tasks| |fluents| P̃L S̃L ˜CPUt

BlocksWorld 4 5 600 500 100

Depots 5 6 236 381 83

DriverLog 6 6 173 169 70

ZenoTravel 5 4 165 95 40

Satellite 5 8 91 178 37

Parking 4 5 57 200 98

PlanMiner-O’s Performance is measured using 3 different metrics:

– NSLV rules’ accuracy rate.
– Learned domain’s error rate.
– Learned domain’s validation rate with test problems.

Rule’s accuracy is measured as classSucc
classEx , where classSucc is the number of

examples correctly classified by a given rule and classEx is the total number
of examples of the class modelled by that rule in the whole dataset. Then, the
ruleset’s total accuracy is defined by the following function:

Acc =

∑

r∈Rules

RAcc(r)

2
with Rules as the set of rules selected by PlanMiner-O for a single dataset and
RAcc(r) the accuracy of a given rule. Total rules’ accuracy is calculated as the
average of the accuracy of the rules of every action of the domain.

Figure 1 shows that NSLV maintains an accuracy above 90% of success even
with certain levels of noise. Taking into account that PlanMiner-O doesn’t have
implemented any procedure to deal with noise in the input PTs these results
show that NSLV is viable to keep working with this kind of problems. In fact,
rules accuracy’s behaviour is the same that actions error’s behaviour when fac-
ing incompleteness: results are invariable regardless incompleteness levels of the
input information.

The second criterion used to measure the quality of the learned domains is
the domain’s error rate in comparison with the original domain [11]. Domain’s

error is defined as

∑

a∈Actions

error(a)

|Actions| where Actions is the set of Actions of a given
domain. Action’s error rate is calculated by counting the number of missing or
extra fluents in the action’s preconditions and effects and dividing it between
the number of possible fluents in those preconditions and effects. The number
of possible fluents is limited to a finite number of fluents in order to delimit the
error rates.
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Fig. 1. NSLV error rates.
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Fig. 2. Learned domains error rates.
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The results showed in Fig. 2 demonstrate that our solution learns planning
domains close to the original handmade planning domains. In fact, results show
that incompleteness in the input PTs affects little to the learning process. With-
out noise, the results are the same, regardless of the level of incompleteness.
And, even with some levels of noise results varies only a 1% in the worst cases.

Table 3. Domains validity matrix.

Noise % 0% 5%
Incompleteness % 0% 10% 50% 90% 0% 10% 50% 90%
BlocksWorld � � � � � � � �
Depots � � � � � � � �
DriverLog � � � � � � � �
Satellite � � � � � � � �
ZenoTravel � � � � � � � �
Parking � � � � � � � �

Noise % 10% 20%
Incompleteness % 0% 10% 50% 90% 0% 10% 50% 90%
BlocksWorld � � � � X X X X

Depots X X X X X X X X

DriverLog � � X X X X X X

Satellite X X X X X X X X

ZenoTravel X X X X X X X X

Parking X X X X X X X X

Finally, the last criterion used to measure the learned domains is the plan
validation rate. A domain is valid if it can generate plans using the test problems
and then validating those plans using the original domain. Plan validation is
realized using VAL [16], an automatic validation tool used in the IPC. Roughly,
VAL takes a problem, a plan and a planning domain and executes the plan’s
actions in order over the initial state defined in the problem. A plan is valid
if the resultant state of applying every plan’s action is equal to the problem’s
goal state. Table 3 contains the validation results of our experiments. Validation
is the hardest criterion to meet because of a single error may affect a lot to
the domain’s validity. A single error in the effects of an action can make the
entire action model invalid, while an error in the preconditions may no affect the
model’s validity. Although both affects the domain’s error rate the same.



Using Inductive Rule Learning Techniques to Learn Planning Domains 655

6 Conclusions and Future Work

In this paper, we have developed PlanMiner-O, an extension of the NSLV algo-
rithm to learn planning domains. The results obtained show that PlanMiner-O
is able to learn actions models, even with high levels of incompleteness. The
experiments carried out to test our proposal checked not only the error rates
from both the domain and NSLV’s resultant models but the domain’s validity
too. Another conclusion extracted from the experiments is that PlanMiner-O
can handle some levels of noise, even if there is no procedure implemented to
increase noise tolerance. This is achieved thanks to NSLV that is robust enough
to deal with these problems.

In the near future, we are going to focus on increase PlanMiner-O’s noise
tolerance. When increasing noise levels results show an erratic behaviour. As
NSLV’s accuracy rate modelling states are high enough to fit our expectations,
our efforts are going to focus on developing a new procedure able to take the
rules learned by NSLV and output a planning domain by combining them instead
of selecting the best one. With this new procedure, we aim to fix the erratic
behaviour of PlanMiner-O when facing high levels of noise. This will allow us to
deal with the problem of create valid domains even with noisy input data.

In order to improve the capabilities of PlanMiner-O we are going to study of
to make it deal with numerical values. This addition will increase the research
value of PlanMiner-O, opening the door to work with plan traces extracted from
more complex problems. These new problems may include the use of action’s
cost, time constraints or continuous numerical functions. As NSLV is already
able to work with this kind of information by discretizing the numerical values
using fuzzy labels, we will be going to study how to preprocess the information
contained in the plan traces, manipulate it and send it to NSLV.

PlanMiner-O is a concept test of a new family of domains learners we plan
to develop. These new domain learners aim to learn HTN planning domains
from real-world data. The PlanMiner-O algorithm is the first algorithm that
addresses part of this challenge. Before advancing any further in this line of
work we developed PlanMiner-O to test our main hypothesis and ideas. Next
versions of the PlanMiner domain learners will include new functionalities to deal
with data closer to real-world data or learn the hierarchical structures needed in
HTN Planning.
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656 J. Á. Segura-Muros et al.

References

1. Michalski, R.S.: A theory and methodology of inductive learning. In: Michalski,
R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning. Symbolic Com-
putation, pp. 83–134. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-
662-12405-5 4
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Abstract. The visualization of specific attributes of the maps is not
achieved with standard maps representations or area cartograms. Adap-
tive Maps can deal with multiple attributes like travel time, quality of
the road or tourism interest of the path between two points.

A method to generate and visualize Adaptive Maps is proposed. It
departs from a graph with multiple attributes and generates a single
measurement matrix that represent the desired distance between points.
A Multidimensional Scaling problem on that matrix is solved to finally
visualize the adapted map.

To illustrate the proposal, 4 adapted maps are generated and
visualized.

Keywords: Adaptive maps · Maps visualization
Multiple attributes · Decision making

1 Introduction

A map is a depiction that emphasizes relationships among elements of some
space. In usual geographical maps this relation is just the euclidean distance.

Despite general purpose maps (like tourist city maps) help to understand
some features of the depicted area (e.g. the location of sites of interest) they
lack of further information about the relationships among the elements on the
map (besides the euclidean distance).

However, such information is crucial in some circumstances: for example,
people with limited mobility would consider that a destination that looks close
in a map is impossible to reach due to certain physical barriers. In other words,
not only the euclidean distance is relevant: other features should be considered.

The general concept of modifying maps to represent certain information is
related to the so called “area cartograms” where geographic variables are visu-
alized as spatial objects whose size is proportional to certain variable strength.
There are several methods to generate cartograms. Rubber maps method is a
popular construction method of contiguous area cartograms [10]. Rubber-sheet
algorithm uses control points as vertices and map triangles onto corresponding
triangles on the stable map [5]. Carto3F algorithm also constructs contiguous
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 855, pp. 657–666, 2018.
https://doi.org/10.1007/978-3-319-91479-4_54
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Fig. 1. Workflow diagram of the proposed method.

area cartograms improving the rubber-sheet algorithms in preserving topology
[7]. BS Daya Sagar [6] presents a methodology based on mathematical morphol-
ogy to generate contiguous cartograms that relies on weighted skeletonization by
zone of influence. Those cartograms preserves the global shape and local shapes
and yields minimal area errors.

The aim of this contribution is to present the idea of “Adaptive Maps”
together with a number of procedures to generate and visualize them. Adaptive
Maps have a similar purpose as cartograms, in the sense they are a modification
of the map to represent certain information. However, as contraposition to the
deformed area cartograms, the adapted maps will be used to represent some
measure among points of interest according to multiple attributes values. Adap-
tive Maps also represent the information according to the user preferences being
possible to weight the attributes in order to give them more of less importance
on the desired adapted map.

The paper is organized as follows. In Sect. 2 the concept of Adaptive Map is
presented. The generation method is explained in Sect. 2.1 and the visualization
of the Adaptive Maps is detailed in Sect. 2.2. We show the application of the
proposed method in Sect. 3 giving details on the generation and visualization of
adapted maps with one and multiple attributes. The conclusions are detailed in
Sect. 4.

2 Adaptive Maps

The idea motivating the concept of Adaptive Maps is that when moving in a city,
everything related with distances, travel time, pleasant walk, and so on depends
on the eye of the beholder. For example, a cathedral could be just 100 m away
which can be perceived as very close, unless you have a mobility problem avoid-
ing you to overcome the stairs that exist in the middle of the way. Or you are
carrying a baby in a pushchair and prefer to walk a longer distance that takes
you through a pedestrian area instead of the shortest path that goes through a
narrow street.

Now the question is: how can we reflect such information on a map?
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Fig. 2. Elements on the Adaptive Map problem with |N | = 5, |P | = 3 and D = 2.

We start defining an Adaptive Map as a depiction of a measurement, or a
combination of measurements, relating elements of interest in some geographical
space.

From an operational point of view, the following elements are considered:

1. A number of “layers” d1, d2, . . . , dD where every dk with k = {1, 2, . . . ,D}
stands for a kind of measure (i.e. distance, time, slope, etc.).

2. A directed multigraph G(N,A) where N is a set of nodes and A is a set of
labelled arcs. An arc aij ∈ A connects two nodes ni, nj ∈ N . A multigraph
is a graph from which multi-edges are not excluded, but which has no self-
loops [4].

3. Every arc aij has D labels stating some measurements. We denote akij as the
value of the measure dk ∈ D between nodes ni, nj ∈ N .

4. A set P ⊆ N , which indicates the points of interest that we want to represent
in the adapted map.

The considered elements are depicted in Fig. 2.

A “standard map” is a special case of an adaptive map where D = 1, P = N
and the measure d1 is the Euclidean distance.

Please, note that we talk about measures and measurements instead of met-
rics as we do not require the properties of the latter. We do not assume symme-
try: a1ij �= a1ji. For example, let’s suppose that d1 is the travel time by bicycle.
Then, consider the case when the path connecting ni → nj has a slope. It would
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be faster moving downwards than upwards. The triangle inequality is neither
assumed: a1ij � a1ik + a1kj . In other words, we should not assume that the best
way to go from ni → nj is the straight path. For example, a physical barrier
may exist (e.g. stairs) making the path impossible.

Departing from this information we need to follow a two step process which
requires first to construct a sort of “measurement matrix” among every pair of
points pi, pj ∈ P and second, to visualize such points in a plane. These steps are
summarized in Fig. 1 and are explained in the next sections.

2.1 First Step: Generation of a Measurement Matrix

The generation of an Adaptive Map consists first on constructing a matrix reflect-
ing the measurements between each pair of points of interest P .

Combined Graph Calculation. The aim of this process is to transform the
multigraph G into a single combined graph CG(N,A) where every arc aij ∈ A
will have a single measure cij associated with it. We differentiate two cases for
the calculation of CG depending on the number of measures under consideration:

1. One measure. Let’s suppose that the measure of interest is dk. Then,
cij = akij . In other words, we just keep the information associated with the
measure dk.

2. Multiple measures. In this case, as there are multiple measures to combine,
a normalization process should be applied.
Let’s define
mink = min{akij | akij ∈ A} and
maxk = max{akij | akij ∈ A}.
Then, the normalized measure âkij is calculated:

âkij =
akij − mink

maxk − mink
. (1)

Using the normalized measurements, we calculate a single aggregated cost for
each arc as

cij =
k∑

i=1

wi × âkij , (2)

where we use a set of weights W = {w1, . . . , wk} with
∑k

i=1 wi = 1 and
wi ∈ [0, 1] to reflect the importance that each measure has for the user.

Measurement Matrix. Departing from the CG graph, we need to calculate a
measurement matrix M |P |×|P | between the points of interest P ⊆ N .

This implies searching for the path of minimum cost [2,3] on CG but just
among the points of interest in P . The reader should note that even when a direct
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arc between two points cij , with pi, pj ∈ P is available, the path of minimum
cost should be calculated as the triangle inequality is not assumed.

After these calculations, a measurement matrix M representing the adapted
map is obtained. This is shown in Table 1. The value C(pi, pj) stands for the
minimum cost path joining pi with pj .

Table 1. Measurement matrix M . The value C(pi, pj) stands for the minimum cost
path joining pi with pj .

M p1 p2 . . . pi . . . pn

p1 0 C(p1, p2) . . . . . . . . . C(p1, pn)

p2 C(p2, p1) 0 . . . . . . . . . C(p3, pn)

. . . . . . . . . . . . . . . . . .

pi . . . . . . . . . 0 . . .

. . . . . . . . . . . . . . . . . .

pn C(pn, p1) C(pn, p2) . . . . . . . . . 0

2.2 Visualization

A key aspect in the Adaptive Map concept is visualization.
The problem we need to solve is: find the location in the plane of the points

in P in such a way that the distances among them reflects as much as possible
the information contained in the measurement matrix M .

When considering path attributes from a non metric space, this representa-
tion is not trivial or exact. Because we are looking for approximate solutions
for visualizations purposes, we will solve a classical Multidimensional Scaling
(classical MDS) problem [1]. MDS problem departs from a matrix known as
dissimilarity matrix (M in our case) and calculates the location of the points
of interest such that the distances between the points are approximately equal
to the values on the matrix. The solution from a classical MDS problem is a
coordinate matrix that minimizes a loss function called strain given by:

Strain(x1, . . . , xn) =

(∑
i,j(bi,j − 〈xi, xj〉)2∑

i,j b
2
i,j

)1/2

(3)

where bi,j are coefficients from the matrix B = − 1
2JM

2J , with J = In − 1
N O a

centering matrix and O a N-by-N matrix of 1.
After solving this problem, the coordinates x1, . . . , xn ∈ �2 are the location

of the points p1, . . . , pn ∈ P .
In order to visualize the adapted map, the points of interest P could be easily

represented with the locations x1, . . . , xn.
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Fig. 3. Original graph with two measures. The measurements are normalized.

3 Example

In this section we will show a detailed example of the construction of an adaptive
map, including the generation and visualization steps using 4 cases. For the sake
of simplicity we consider an undirected graph (the measurements in the arc are
symmetric).

Data. We depart from the graph shown in Fig. 3, where D = 2 and there are
|P | = 4 points of interest located at the positions indicated in Table 2.

Table 2. Original location of the points of interest.

x y

p1 3 19

p2 16 20

p3 13 4

p4 4 2
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→

M1 p1 p2 p3 p4
p1 0.0 0.7 0.9 0.9
p2 0.7 0.0 0.8 1.0
p3 0.9 0.8 0.0 1.0
p4 0.9 1.0 1.0 0.0

→

M2 p1 p2 p3 p4
p1 0.0 0.9 1.5 0.8
p2 0.9 0.0 1.4 0.7
p3 1.5 1.4 0.0 0.9
p4 0.8 0.7 0.9 0.0

Fig. 4. Combined graphs CG1, CG2 and their measurement matrices M1,M2 obtained
from the individual measurements.

Measurement Matrix Calculation. The first step of the generation of an
Adaptive Map is the construction of the combined graph. In the case of mul-
tiple attributes, the preferences of the user are needed to achieve the required
aggregation process, see Sect. 2.1.

We will show 4 different adapted maps. Two of them are constructed from the
individual measures, and the other two, using different weights distributions on
the user preferences. More specifically, we consider W1 = {w1 = 0.5, w2 = 0.5}
and W2 = {w1 = 0.9, w2 = 0.1}.

The combined graphs for the individual measurements CG1, CG2 are shown
in Fig. 4 together with the measurement matrices M1,M2 that represent the
minimum cost of the path between the points of interest. Figure 5 shows the
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combined graphs CG3, CG4 and measurement matrices M3,M4 when consider-
ing W1 and W2.

→

M3 p1 p2 p3 p4
p1 0.0 0.8 1.4 1.4
p2 0.8 0.0 1.3 1.35
p3 1.4 1.3 0.0 1.0
p4 1.4 1.35 1.0 0.0

→

M4 p1 p2 p3 p4
p1 0.0 0.72 1.11 1.01
p2 0.72 0.0 1.18 1.08
p3 1.11 1.18 0.0 1.08
p4 1.01 1.08 1.08 0.0

Fig. 5. Combined graphs CG3, CG4 and their corresponding measurement matrices
M3,M4 obtained with different weights distributions: (top) w1 = 0.5, w2 = 0.5 and
(bottom) w1 = 0.9, w2 = 0.1.

Visualization. The visualization process is achieved by solving the MDS prob-
lem using the cmdscale function [9] on R [8]. For each measurement matrix Mi,
the solution of the MDS problem determines the location of the points of interest
on the final adapted map. The adapted maps obtained are shown in Fig. 6.

If the map is adapted using the individual measurements, as shown in
Fig. 6(a), we can observe that the points of interest look closer when consid-
ering the first measurement than the second one. In particular, point 2 is closer
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to point 1 and point 3 using the former metric while the distance between point
3 and point 4 looks longer.

If we take into account both measurements simultaneously, as shown in
Fig. 6(b), we can observe differences. For example, the distance between point 1
and point 4 in Map 4 is shorter than the one reflected in Map 3.

(a) (b)

Fig. 6. Visualization of the location of the points in the adapted maps Map 1, Map 2,
Map 3 and Map 4 generated with matrices (a) M1 and M2, (b) M3 and M4.

4 Conclusions

In this paper we introduced the concept of Adaptive Maps, as well as initial
procedure to generate and visualize them. Adaptive Maps are useful for repre-
senting specific attributes like walking or cycling time that standard maps based
on Euclidean distance are not able to represent.

The method consists on generating a combined graph and its corresponding
measurement matrix that represent the desired distance between points on the
adapted map. An approximated visualization of the adapted map is achieved by
solving a multidimensional scaling problem. The method is proposed with one or
multiple attributes. The examples provided show the suitability and feasibility
of the proposal.
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Abstract. The main aim of this contribution is to develop a co-words
analysis of the International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems in the last ten years (2008–2017). The soft-
ware tool SciMAT is employed using an approach that allows us to
uncover the main research themes and analyze them according to their
performance measures (qualitative and quantitative). An amount of 562
documents were retrieved from the Web of Science. The corpus was
divided into two consecutive periods (2008–2012 and 2013–2017). Our
key findings are that the most important research themes in the first
and second period were devoted with decision making process and its
related aspects, techniques and methods.
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1 Introduction

The International Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems (IJUFKS) is one of the most important journals in the field of computer
science. According to its webpage, it is a forum for research on various method-
ologies for the management of imprecise, vague, uncertain or incomplete informa-
tion. In its first year, 1993, there was only two issues with nine articles, and then
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it published four issues each year in 1994 and 1995. Since 1996, it is published
bimonthly; and now it has worldwide distribution to researchers, engineers, deci-
sion makers, and educators. The latest Journal Citation Reports indicates that
IJUFKS had an impact factor of 1.214, and its quartile was Q3 in the Web of
Science category of Computer Science, Artificial Intelligence.

So, the main aim of this contribution is to carry out a conceptual science
mapping analysis [1–3] of the research conducted by the IJUFKS from 2008 to
2017 (the last ten years). The analysis is developed using SciMAT [4] software
tool and partially based in the approach presented in [5].

This article is organized as follows: Sect. 2 introduces the methodology
employed in the analysis. In Sect. 3, the dataset is described. In Sect. 4, the
science mapping analysis of the IJUFKS is presented. Finally, some conclusions
are drawn in Sect. 5.

2 Methodology

Science mapping or bibliometric mapping is a spatial representation of how dis-
ciplines, fields, specialties, and documents or authors are related to one another
[6]. It has been widely used to show and uncover the hidden key elements (doc-
uments, authors, institutions, topics, etc.) in different research fields [7–11].

Science mapping analysis can be carried out with different software tools [3].
Particularly, SciMAT was presented in [4] as a powerful tool that integrates the
majority of the advantages of available science mapping software tools [3]. It is
an open source software tool that present the following key features:

– It incorporates all the necessary modules to develop all the steps of the science
mapping workflow, from data acquisition and preprocessing to the visualiza-
tion and interpretation of the results.

– It has methods to build the majority of the bibliometric networks, different
similarity measures to normalize them and build the maps using clustering
algorithms, and different visualization techniques useful for interpreting the
output.

– It implements a wide range of preprocessing tools such as detecting duplicate
and misspelled items, time slicing, data reduction and network preprocessing.

– It enrich the maps with bibliometric measures based on citation indicators,
such as the h-index.

SciMAT was designed according to the science mapping analysis approach
presented in [5], combining both performance analysis tools and science mapping
tools to analyze a research field and detect and visualize its conceptual subdo-
mains (particular topics/themes or general thematic areas) and its thematic
evolution.

Therefore, in this contribution, SciMAT was employed to develop a longitu-
dinal conceptual science mapping analysis [1,3] based on co-words bibliographic
networks [2,12]. Thus, the analysis was carried out in three stages:
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1. Detection of the research themes. In each period of time studied the corre-
sponding research themes are detected by applying a co-word analysis [2] to
raw data for all the published documents in the research field, followed by
a clustering of keywords to topics/themes [13], which locates keyword net-
works that are strongly linked to each other and that correspond to centres
of interest or to research problems that are the subject of significant interest
among researchers. The similarity between the keywords is assessed using the
equivalence index [14].

2. Visualizing research themes and thematic network. In this phase, the detected
themes are visualized by means of two different visualization instruments:
strategic diagram [15] and thematic network [5]. Each theme can be charac-
terized by two measures [14]: centrality and density. Centrality measures the
degree of interaction of a network with other networks. On the other hand,
density measures the internal strength of the network. Given both measures,
a research field can be visualized as a set of research themes, mapped in a
two-dimensional strategic diagram (Fig. 1) and classified into four groups:
(a) Themes in the upper-right quadrant are both well developed and impor-

tant for the structure of the research field. They are known as the motor-
themes of the specialty, given that they present strong centrality and high
density.

(b) Themes in the upper-left quadrant have well-developed internal ties but
unimportant external ties and so, they are of only marginal importance
for the field. These themes are very specialized and peripheral.

(c) Themes in the lower-left quadrant are both weakly developed and
marginal. The themes in this quadrant have low density and low cen-
trality and mainly represent either emerging or disappearing themes.

Highly developed
and

isolated themes
Motor themes

Emerging or
declining themes

Basic and
transversal themes

Density

Centrality

Fig. 1. The strategic diagram.
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(d) Themes in the lower-right quadrant are important for a research field but
are not developed. This quadrant contains transversal and general, basic
themes.

3. Performance analysis. In this phase, the relative contribution of the research
themes to the whole research field is measured (quantitatively and quali-
tatively) and used to establish the most prominent, most productive and
highest-impact subfields. Some of the bibliometric indicators to use are: num-
ber of published documents, number of citations, and different types of h-
index [16–18].

For each theme, the performance measure are computed taking into
account the documents associated with it. Thus, for instance, the h-index
is computed using the citations of the theme’s documents.

3 Dataset

In order to carry out the performance and science mapping analysis, the research
documents published by the journal IJUFKS during the last ten years must be
collected and also, preprocessed.

Since Web of Science (WoS) is the most important bibliographic database,
the research documents published by IJUFKS were downloaded from it. The
query retrieved a total of 562 documents from 2008 to 2017 (Fig. 2). The corpus
was further restricted to articles and reviews. Citations of these documents are
also used in this study; they were counted up to 2nd January 2018.
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Fig. 2. Distribution of documents retrieved by years.
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The raw data was downloaded from WoS as plain text and entered into Sci-
MAT to build the knowledge base for the science mapping analysis. Thus, it con-
tains the bibliographic information stored by WoS for each research document.
To improve the data quality, a de-duplicating process was applied (the author’s
keywords and the Keywords Plus were used as unit of analysis). Words represent-
ing the same concept were grouped. Furthermore, some meaningless keywords in
this context, such as stop-words or words with a very broad and general meaning,
e.g. “MODEL” or “DESIGN”, were removed.

Next, using the SciMAT period manager, the corpus was divided in time
spans. To avoid data smoothness, the best option would have been to choose
one-year periods. However, it was found that not enough data were generated in
the span of a single year to obtain good results from science mapping analysis.
For this reason, two consecutive periods of five years were established (Fig. 3):
2008–2012 and 2013–2017, with 1,395 and 1,508 keywords, respectively.

265

270

275

280

285

290

2008-2012 2013-2017

Fig. 3. Distribution of documents retrieved by period.

4 Conceptual Analysis

In order to analyze the most highlighted themes of the IJUFKS, a strategic
diagram is shown for each period. In addition, the spheres size is proportional
to the number of published documents associated with each research theme.

First Period (2008–2012). According to the strategic diagram shown in
Fig. 4, during this period the journal pivoted on fifteen themes, with the fol-
lowing eight major themes (motor themes plus basic themes): Fuzzy-Processing-
Time, Preference-Relations, Similarity-Measure, Classification, Association-
Rules, Group-Decision-Making, Genetic-Algorithm and Decision-Making
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The performance measures of the themes are given in Table 1, showing the
number of documents, numbers of citations and h–index per theme. According
to these performance measures, the following seven themes stand out (more than
100 citations): Decision-Making, Group-Decision-Making, Preference-Relations,
Genetic-Algorithm, Similarity-Measure, Classification and Rough-Set.

The basic and transversal theme Decision-Making gets the highest citations
count (more than 1,000) and h-index in this period. It is related with topics
such as, fuzzy logic and fuzzy sets, uncertainty, vague set and Dempster Shafer
Theory, among others. It plays a central role, and is the basis for other important
themes of the journal.

centrality

density

DECISION-MAKING
71

GROUP-DECISION-MAKING
32

PREFERENCE-RELATIONS
27

GENETIC-ALGORITHM
23

SIMILARITY-MEASURES
18

CLASSIFICATION
17

PRIVACY
16

FUZZY-PROCESSING-TIME
9

ROUGH-SET
8

ASSOCIATION-RULES
7

FUZZY-REGRESSION
6

FUZZY-ORDERING
5

FUZZY-ONTOLOGIES
5

FUZZY-TRUTH-VALUES
5

TAIL-DEPENDENCE
3

Fig. 4. Strategic diagram for the 2008–2012 period.

Another important basic and transversal theme relatedwith the process of deci-
sion making is Group-Decision-Making (Fig. 5a), which gets great impact scores.
It is devoted with aggregation operators, consensus model, linguistic, etc.
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Table 1. Performance of the themes in the 2008–2012 period

Name Number of documents Number of citations h-index

DECISION-MAKING 71 1, 023 14

GROUP-DECISION-MAKING 32 695 12

PREFERENCE-RELATIONS 27 908 12

GENETIC-ALGORITHM 23 121 5

SIMILARITY-MEASURES 18 421 7

CLASSIFICATION 17 208 6

PRIVACY 16 48 4

FUZZY-PROCESSING-TIME 9 71 5

ROUGH-SET 8 134 5

ASSOCIATION-RULES 7 48 4

FUZZY-REGRESSION 6 81 4

FUZZY-ORDERING 5 40 4

FUZZY-ONTOLOGIES 5 68 5

FUZZY-TRUTH-VALUES 5 28 3

TAIL-DEPENDENCE 3 35 3

AGGREGATION-OPERATORS

CONSENSUS-MODEL

ENVIRONMENT

FUZZY-PREFERENCES

INCOMPLETE-FUZZY-PREFERENCE-RELATION

TRANSITIVITY

GROUP-DECISION-MAKING

UTILITY

LINGUISTIC-PREFERENCE-RELATIONS CONSISTENCY

DIFFERENT-FORMATS

FUZZY-LINGUISTIC-APPROACH

(a) Theme Group Decision Making.

OWA-OPERATORS

UNCERTAIN-LINGUISTIC-VARIABLE

WORDS

AGGREGATION

REPRESENTATION-MODEL

PREFERENCE-RELATIONS

CONSENSUS

FUSION

MULTIPLE-ATTRIBUTE-GROUP-DECISION-MAKING
AVERAGING-OPERATORS

LABELS

2-TUPLE

(b) Theme Preference Relations

Fig. 5. Thematic networks for the period 2008–2012.

The motor theme Preference-Relations (Fig. 5b) is also related with the deci-
sion making process, getting the second position in citations count. It is related
with consensus, OWA operators and representation models.

The motor theme Fuzzy-Processing-Time gets the highest density in this
period, and it is related with due dates.
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Finally, the basic and transversal theme Classification is devoted with the
development of classification algorithms and the related issues, such as, feature
selection, decision trees, imbalance datasets, statistical comparison, etc. More-
over, the theme Genetic-Algorithm is related with machine learning techniques
for optimization.

centrality

density

DEMPSTER-SHAFER-THEORY
57

GROUP-DECISION-MAKING
55

CLASSIFICATION
47

FUZZY-SETS
40

SIMILARITY-MEASURES
26

AGGREGATION
24

UNINORMS
19

FUZZY-NUMBERS
14

FUZZY-INTEGRAL
11

DATA-MINING
9

EXPECTED-VALUE-MODELS
8

TRACKING-CONTROL
7

NUMERICAL-REPRESENTABILITY
5

GALOIS-CONNECTIONS
4

DATA-ENVELOPMENT-ANALYSIS
4

Fig. 6. Strategic diagram for the 2013–2017 period.

Second Period (2013–2017). The research conducted in this period
pivots on fifteen themes. According to the strategic diagram shown in
Fig. 6, during this period eight themes stand out (motor themes plus basic
themes): Numerical-Representability, Group-Decision-Making, Tracking-Control,
Similarities-Measures, Classification, Fuzzy-Sets, Dempster-Shafer-Theory and
Aggregation.
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Table 2. Performance of the themes in the 2013–2017 period

Name Number of documents Number of citations h-index

DEMPSTER-SHAFER-THEORY 57 159 7

GROUP-DECISION-MAKING 55 377 11

CLASSIFICATION 47 104 6

FUZZY-SETS 40 49 4

SIMILARITY-MEASURES 26 147 7

AGGREGATION 24 119 7

UNINORMS 19 44 3

FUZZY-NUMBERS 14 24 3

FUZZY-INTEGRAL 11 45 3

DATA-MINING 9 15 2

EXPECTED-VALUE-MODELS 8 43 4

TRACKING-CONTROL 7 7 2

NUMERICAL-REPRESENTABILITY 5 9 2

GALOIS-CONNECTIONS 4 4 2

DATA-ENVELOPMENT-ANALYSIS 4 6 1

According to the performance measures shown in Table 2, five themes could
be highlighted (more than 100 citations): Dempster-Shafer-Theory, Group-
Decision-Making, Classification, Similarities-Measures and Aggregation.

The theme Group-Decision making (Fig. 7a) evolved from the first period
turning into an important motor theme. Furthermore, it gets the highest impact
rates. Mostly, it is related with different techniques and tools necessary for the
decision making process in group, such as, OWA, preference relations, and dis-
tance measure.

AGGREGATION-OPERATORS

DISTANCE-MEASURE

ENVIRONMENT

OWA-OPERATORS

GROUP-DECISION-MAKING

REPRESENTATION-MODEL

PREFERENCE-RELATIONS

CONSENSUS

TERM-SETS CONSISTENCY

INDUCED-AGGREGATION-OPERATORS

COMPATIBILITY

(a) Theme Group Decision Making.

BELIEF-FUNCTIONS

RULES

OPTIMIZATION

UNCERTAINTY

DECISION-MAKING

CHOQUET-INTEGRAL

DEMPSTER-SHAFER-THEORY

RISK

COMBINATION

SPECIFICITY

(b) Theme Multi-Attribute-
Decision-Making.

Fig. 7. Thematic networks for the period 2013–2017.
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The basic and transversal theme Dempster-Shafer-Theory (Fig. 7b) gets the
second highest impact rates. It is related with the general decision making pro-
cess, and some techniques such as the Choquet integral.

The theme Classification is consolidated in this period, covering a great vari-
ety of aspects related with classification algorithms and techniques, such as, pat-
tern classification, accuracy, reduction, rough set, neural networks and genetic
algorithm, among others.

Finally, the theme Aggregation is devoted to the aspects related with the
multicriteria decision making process.

5 Conclusions

In this contribution, a conceptual science mapping analysis of the articles pub-
lished in the last ten years (2008–2017) by the International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems (IJUFKS) has been performed.
The analysis was carried out using SciMAT [4].

An amount of 562 documents (articles and reviews) were retrieved. The cor-
pus was split into two consecutive periods of five years length: 2008–2012 and
2013–2017.

In the first period, the themes Decision-Making, Group-Decision-Making,
Preference-Relations, Genetic-Algorithm, Similarity-Measure, Classification and
Rough-Set stand out due to their highest impact rates. It should be point out
that the theme Decision-Making get more than 1,000 citations. Similarly, in
the second period, five themes must be highlighted according to their impact
scores: Dempster-Shafer-Theory, Group-Decision-Making, Classification, Aggre-
gation and Similarities-Measures. It should be mentioned that Group-Decision-
Making gets two time more citations than the second one. As general conclusion,
the themes that get highest impact scores are related with the decision making
process.

Finally, we would like to address some future works. First, a global analysis
could be carried out taking into account a wider time span. Second, the evolution
of the research themes could be studied across the consecutive time periods.
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Abstract. Graphical models (GMs) are powerful statistical tools for
modeling the (in)dependencies among random variables. In this paper,
we focus on two different types of graphical models: R-vines and poly-
trees. Regarding the graphical representation of these models, the for-
mer uses a sequence of undirected trees with edges representing pairwise
dependencies, whereas the latter uses a directed graph without cycles
to encode independence relationships among the variables. The research
problem we deal with is whether it is possible to build an R-vine that
represents the largest number of independencies found in a polytree and
vice versa. Two algorithms are proposed to solve this problem. One algo-
rithm is used to induce an R-vine that represents in each tree the largest
number of graphical independencies existing in a polytree. The other
one builds a polytree that represents all the independencies found in the
R-vine. Through simple examples, both procedures are illustrated.

Keywords: Regular vine copulas · Polytrees
(In)dependence relationships · Graphical models

1 Introduction

Graphical models (GMs) [7,13] have been widely used for modeling the depen-
dence structure of multivariate probability distributions through two closely
related components: (i) The qualitative component is a graph where nodes corre-
spond to random variables and edges to graphical relationships among them; (ii)
The quantitative component is given by a set of local probability distributions
that quantify the strength and uncertainty of the (in)dependencies encoded in
the graph (or network). According to the type of the graph, directed and undi-
rected, we can distinguish two different GMs: Bayesian networks (BNs) and
Markov networks respectively. The interpretation of graphical (in)dependencies
is different in directed and undirected graphs.
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In this paper, we focus on two GMs representative of undirected and directed
graphs, namely regular vine copulas [4,12] (or simply R-vines) and a subclass of
BNs called polytrees [8] respectively.

A copula is a probability distribution function with uniformly distributed
margins [14,17]. Copulas allow us to model the dependence structure of mul-
tivariate distributions and its margins separately. Despite the generality of the
copula-based framework, it turns out that building high-dimensional joint cop-
ulas is a difficult problem [1].

Pair copula constructions (PCCs) [11] and their graphical model, called reg-
ular vines (R-vines) [3,4], overcome the lack of flexibility of the copula-based
modeling in the high-dimensional case. R-vines build multivariate copulas in
terms of bivariate copulas (pair-copulas) taking advantage of the fact that the
bivariate copulas are more tractable than multidimensional ones. Besides that,
bivariate copulas of different families, can be combined in the same decomposi-
tion allowing the specification of different types of non-linear dependencies. The
qualitative component of R-vines is specified by an R-vine structure (or graph)
– a set of nested trees, where the variables are represented by nodes linked by
edges, each associated with a pair-copula that captures certain types of pair-
wise dependence. It is in this sense that we say that R-vine structures encode
dependence relationships rather than independencies relationships.

Polytrees (also known as singly connected networks) are directed acyclic
graphs (DAGs) where there is no more than one undirected path that connects
any two nodes (without undirected cycles). In these graphs, missing edges can
represent either conditional independencies or conditional dependencies among
random variables.

In general, Bayesian networks, particularly polytrees, have well-studied math-
ematical properties that have been developed throughout decades. In contrast,
R-vines have boomed in the last few years. Previous works have addressed the
question of the relationship between directed GMs and R-vines from different
perspectives. In [9], a new method for learning the structure of a BN based on
PCCs is introduced. In [10], a non-parametric Bayesian belief net as an alterna-
tive to a particular subclass of R-vines is introduced. The paper discusses the
differences between both models and offers some guidelines on when to use one
or the other from a quantitative perspective. In [2], a Bayesian network with
pair-copulas is built using PCCs.

However, the problem of verifying whether the graphical independencies
found in a polytree can be represented in an R-vine and vice versa has not
been answered yet. In this work, we investigate the relationship between the
graphical representations of R-vines and polytrees in both directions: (i) Given
the graph of a polytree, we want to obtain an R-vine tree-structure that rep-
resents the largest number of independencies existing in the starting graph. To
this end, a heuristic is proposed that, from the list of independences found in the
polytree, performs this task locally, tree-by-tree of the R-vine. (ii) Given an R-
vine, we want to build a polytree that represents the largest number of indepen-
dences existing in the R-vine. Similarly, a heuristic is proposed that, based on the
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independence list extracted from the R-vine, builds a polytree that represents
the independencies existing in the R-vine. These results are useful as they make
it clear that properties and algorithms that can be applied to polytrees can be
carried over to R-vines, and vice versa.

The paper is organized as follows: In Sects. 2 and 3, we provide the basic
concepts as well as a short review of R-vines and polytrees respectively. In Sect. 4,
we present the main contribution of this work: two algorithms that induce the
graph of a R-vine from the graph of a polytree and vice versa. Section 5 offers a
short summary and an outline of future work.

2 Regular Vines

Let X = (X1, . . . , Xn) be an n-dimensional random vector with joint density
function f : Rn → [0,∞) and cumulative distribution function F : Rn → [0, 1].
Furthermore, let Fi : R → [0, 1], i = 1, . . . , n be the corresponding marginal
distributions of Xi

1. Capital letters denote variables and lower letters are their
assignments.

A n-dimensional copula C is a multivariate probability distribution function
for which the univariate margins are uniform: C : [0, 1]n → [0, 1] [14]. Copulas
are used to describe the dependence structure among random variables.

The relevance of copulas in probabilistic modeling is given by Sklar’s
theorem [17], which states that an n-dimensional (multivariate) distribution
function F of a random continuous vector X = (X1, . . . , Xn) ∈ R

n can be
expressed in terms of its marginal distributions Fi (xi) and a unique copula C.
Sklar’s theorem for densities is given by

f (x1, . . . , xn) = c (F1 (x1) , . . . , Fn (xn)) ·
n∏

i=1

fi (xi) (1)

where f and c denote the density functions corresponding to F and C respec-
tively.

In (1), the copula c can be approximated by an PCC. This decomposition
is represented graphically by an R-vine – a sequence of trees, of which each
edge corresponds to a pair-copula. An R-vine is a probabilistic graphical model
represented as a pair (G, θ). G is the structural part that is composed of a
sequence of trees T1, T2, . . . , Tn−1, where the nodes of Tj are edges in Tj−1.
Two nodes in Tj (for j ≥ 2) can only be adjacent if the corresponding edges
in the previous tree have a common node (known as proximity condition) [2].
θ contains, for each edge of the trees, a pair-copula and its parameters. The
number of edges in an R-vine is n (n − 1) /2. Figure 1-(right panel) illustrates an
R-vine copula c12345 for n = 5 and its respective factorization.

We define an R-vine formally by following the definition given in [5]: If we
denote Tj = (Nj , Ej), the tree of the decomposition at level j, where Nj and Ej

1 We assume that all multivariate, marginal and conditional distributions are abso-
lutely continuous with corresponding densities.
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denote the node and edge sets of the jth tree, the edge e ∈ Ej joins two vertices
of Nj , Xk(e) and Xl(e), which are determined by the set of indices k (e) and l (e)
respectively. Then, in the pair-copula ck(e),l(e)|D(e), the nodes Xk(e) and Xl(e)

are the conditioned nodes, whereas XD(e), which represents a subvector of X
determined by the indices in D (e), is the conditioning set. Consequently, a reg-
ular vine distribution is the distribution of the random vector X = (X1, . . . , Xn)
with marginal densities fi (xi), i = 1, . . . , n, and where the conditional density of(
Xk(e),Xl(e)

)
given XD(e) is specified as ck(e),l(e)|D(e) for the R-vine copula with

n−1 trees, set of nodes N = {N1, . . . Nn−1} and set of edges E = {E1, . . . En−1}.
If the dependence structure of X is represented by an R-vine copula, then the
n-dimensional density fR−vine (x1, . . . , xn) is given by

n−1∏

j=1

∏

e∈Ej

ck(e),l(e)|D(e)

(
F

(
xk(e) | xD(e)

)
, F

(
xl(e) | xD(e)

))

︸ ︷︷ ︸
R-vine copula

·
n∏

i=1

fi (xi)

︸ ︷︷ ︸
Margins

(2)

In the approximation given in (2), only in the first tree are the pair-copulas
unconditional as their arguments are marginal distributions. In the remaining
trees, the pair-copulas are conditional as their arguments are conditional distri-
butions. The number of variables in the conditioning set increases in one variable
as we go deeper into the R-vine tree-structure: in the second tree, we have first-
order conditional copulas; in the third tree, second-order conditional copulas,
and so on; that is, in the tree j we have conditional copulas of the order j − 1.

Fig. 1. Example of a polytree (left panel) and an R-vine (right panel) where n = 5. The
polytree factorization is given as p (x1)·p (x5)·p (x3 | x1, x5)·p (x2 | x3)·p (x4 | x3). The
R-vine factorization is given as c12 · c23 · c34 · c45

︸ ︷︷ ︸

T1

·c13|2 · c24|3 · c25|3
︸ ︷︷ ︸

T2

·c15|23 · c14|23
︸ ︷︷ ︸

T3

·c45|123.
︸ ︷︷ ︸

T4
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2.1 Graphical (In)Dependence in R-vines

We define two types of edges (or links): dashed edges indicate linked nodes are
independent and continuous edges indicate linked nodes are dependent with each
other.

To provide the R-vine tree-structure with a semantic interpretation in terms
of independencies, we define the vine-graphical independence criterion as follows.

Definition 1 (r-separation). Let Xk(e), Xl(e), XD(e) three disjoint subsets in
and R-vine. We say that XD(e) r-separates Xk(e) from Xl(e) if there is a dashed
edge in some tree that joins two vertices, on of them is associated with the vertices
in Xk(e) the other to the vertices in Xl(e), and XD(e) r-separates nodes Xk(e)

and Xl(e).

When XD(e) v-separates Xk(e) and Xl(e) in G, we write I
(
Xk(e),Xl(e) |

XD(e)

)
G

to indicate that this graphical conditional independence relationship is
represented in the graph G. We write D

(
Xk(e),Xl(e) | XD(e)

)
G

to indicate that
Xk(e) and Xl(e) are conditionally dependent given XD(e) in the graph G.

3 Polytrees

3.1 Directed Graphs

Let G = (X,E) be a directed acyclic graph (DAG), consisting of the node set X
and the edge set E. Directed graphs only contain directed edges. A directed edge
from node X to node Y is represented as X → Y . A path from X = X1 to Y = Xd

is a sequence of nodes X1, . . . , Xd connected by edges in the graph G, where the
edge (Xi,Xi+1) ∈ E, i = 1, . . . , d− 1. A cycle is a path where X = Y . We say that
X is an ancestor of Y if we can find a path that, starting from X, reaches the node
Y , such that X → ... → Y ; correspondingly, Y is a descendant of X. An undirected
path is a path in which the directions of the edges are not considered. The skeleton
of G is the undirected graph obtained by eliminating the directions of edges from
G. A head-to-head (h-h) connection is a subgraph X → Z ← Y in which Z is a h-h
node (i.e., a node with convergent edges). A comprehensive introduction to graph
theory and graphical models is found in [6].

3.2 Graphical (In)Dependence in DAGs

The concept of d-separation [15] is the graphical independence criterion that
provides the DAG a semantic interpretation, allowing it to determine the inde-
pendence relationships encoded by the topology of the network.

Definition 2 (d-separation). If X, Y and Z are three disjoint subsets of nodes
in a DAG G, then Z d-separates X from Y or, similarly, X and Y are graphically
independent given Z if and only if along any undirected path between any node
of X and any node of Y there is an intermediate node A such that (i) eitherA
is a head-to-head node in the path and neither A nor its descendants are in Z,
or (ii) A is not a head-to-head node in the path and it is in Z.
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When Z d-separates X and Y in G, we write I (X,Y | Z)G to indicate that
the independence relationship is given by the graph G. We write D (X,Y | Z)G
to indicate that X and Y are conditionally dependent given Z in the graph G.

3.3 Dependence Models

Necessary definitions on dependence models are taken from [6]. The terms of
the dependence and the independence models refer exclusively to the qualitative
structure of the relationships existing in a set of variables. These models allow us
to check which sets of variables are unconditionally or conditionally dependent
or independent.

Definition 3 (Dependence Model). A model M of the variable set
{X1, . . . , Xn} is called a dependence model if it allows to determine whether
I (X,Y | Z)M is true for all the possible triples of subsets X, Y and Z.

Two possible correspondences between a graphical representation G and a
dependence model M are I-map and D-map.

Definition 4 (I-map). The graph G is an I-map of the dependence model M
if I (X,Y | Z)G ⇒ I (X,Y | Z)M , i.e., if all independence relationships derived
from G are verified in M .

Definition 5 (D-map). The graph G is a D-map of the dependence model M
if D (X,Y | Z)G ⇒ D (X,Y | Z)M , i.e., if all dependence relationships derived
from G are verified in M .

An I-map G of M includes some of the independence relationships of M , but
not necessarily all of them. An I-map guarantees that the d-separated nodes cor-
respond to independent variables in M , but does not guarantee that connected
nodes correspond to dependent variables in M . On the other hand, a D-map G
of M includes some of the dependence relationships of M , but not necessarily
all of them. A D-map guarantees that connected nodes correspond to dependent
variables in M , but does not guarantee that the d-separated nodes correspond
to independent variables in M . Empty graphs (the set of edges is empty) and
complete graphs (there is an edge between each pair of nodes) are called trivial
D-maps and I-maps respectively.

3.4 Polytrees

Bayesian networks (BNs) are GMs based on DAGs. A BN is a pair (G(X,E), P ),
where G is a DAG, X and E are the set of variables (or nodes) and the set of
directed edges in G respectively, and P = {P (X1 | Pa1) , · · · , P (Xn | Pan)} is
a set of n conditional probability distribution functions (one for each variable)
where Pai is the set of parents of Xi in G. The set P defines a probability
function given by

P (X) =
n∏

i=1

P (Xi | Pai) (3)
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A particular subclass of BNs are polytrees (of course, (3) also applies to
polytrees). In these networks, there is no more than one undirected path that
connects any two nodes. Particular types of polytrees include chains: each node
has at most one parent and/or only one child, and trees: each node has only one
parent. The number of edges in a polytree is n − 1. Figure 1-(left panel) shows a
polytree where n = 5 and its respective factorization.

4 The Graphical Relationship Between R-vines
and Polytrees

This section proposes two methods that induce the graph of an R-vine from the
graph of the polytree and vice versa, so that the resulting graph represents the
largest number of independencies existing in the other graph.

4.1 From Polytrees to R-vines

We want to obtain an R-vine GR−vine that represents the largest number of inde-
pendencies found in the polytree GP . For this purpose, we propose Algorithm1.
To simplify the notation used in Definition 1, we use X = Xk(e), Y = Xl(e), and
V = XD(e). Moreover, |V| = j−1 denotes the cardinality of V, and conditioning
sets with cardinality |V| belong to the tree at the level j = |V| + 1.

We consider a dependence model M that contains the list of independencies
and dependencies represented in the polytree GP , LI and LD respectively. These
lists are obtained via the d-separation criterion in Step 1. The elements of these
lists have the form I (X,Y | V) and D (X,Y | V) respectively. Both lists are
arranged in ascending order according to |V|.

In Step 2, we obtain the first tree of GR−vine, which is nothing more than the
skeleton of the polytree. Notice that T1 and the skeleton of the polytree have the
same edge set, so that both structures represents the same set of unconditional
dependencies.

In Steps 3 and 4, the next trees of GR−vine are built inside a for-loop that
runs over the levels j = 2, . . . , n−1. These trees are maximum weighted spanning
trees (MWSTs) [16] that satisfy the R-vine properties. As the edge’s weight we
use zero for continuous edges and one for dashed edges respectively. Afterward,
each relation in LD of order j − 1 suggests an edge, which is inserted in the
graph if the following two conditions are satisfied: (i) the edge to be inserted
does not introduce undirected cycles, which ensures that the resulting R-vine
remains singly connected; (ii) the proximity condition holds. If both conditions
are met, the boolean function ϕ (Tj ,Di (X,Y | V)) is true.

Note that not all independencies found in the polytree can be represented in
the R-vine, but those inserted exist in the polytree. On the other hand, we have
that all the independence relationships represented in the R-vine exist in the
polytree and we denote it as I (GR-vine) ⊆ I (GP), thus the R-vine is an I-map
of the dependence model M obtained from the polytree.
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It is worth noting that if the R-vine is a D-vine – a subclass of R-vines where
the trees have chain structure – we do not need to select MWSTs since the first
tree determines completely the structure of the next trees [1]).

Example 1. Let us illustrate Algorithm 1 based on the polytree of Fig. 2-(left-
panel).

Step 1. Obtain M = {LI , LD} from GP .

LI = {I1 (2, 4 | 3) , I2 (1, 4 | 3) , I3 (1, 3 | 4) , I4 (1, 4 | 2, 3)}
LD = {D1 (1, 3 | 2) , D2 (1, 4 | 2) , D3 (1, 2 | 3, 4) , D4 (1, 3 | 2, 4) , D5 (2, 3 | 1, 4)}

Step 2. From T1 (Fig. 2-(right panel)) we obtain the connected nodes: 1−2, 2−
3, 3 − 4.

Step 3. As T1 is a chain (as in D-vines) we do not need to built an MWST at
each level, but only determine if the edges are dashed or continuous. Next
we pass to T2, and from LI we see that I1 (2, 4 | 3) may be represented with
the dashed edge 23-·-34. However, the dashed edges 13-·-34 and 14-·-34 corre-
sponding to the relationships I2 (1, 4 | 3) and I3 (1, 3 | 4), respectively, cannot
be inserted in T2 since the nodes 13 and 14 do not belong to the node set of
this tree, which are: 12, 23, and 34.

Step 4. D1 (1, 3 | 2) can be represented by the continuous edge 12 − 23 in T2

without violating the graphical constraints that should hold an R-vine, which
implies that ϕ (T2,D1 (1, 3 | 2)) is true.

Step 5. To build T3, only I4 has to be inserted. This can be done by means of
the dashed edge 14 | 2-·-24 | 3.

Notice that the independence relationships represented in this R-vine structure,
namely: [I1 (2, 4 | 3) , I2 (1, 4 | 2, 3)], exist in GP, thus this R-vine is an I-map
of the dependence model obtained from the polytree. This way of building the
structure of R-vines guarantees that only graphical independencies found in the
polytree are inserted in the corresponding R-vine tree. Consequently, all the
independencies represented in the R-vine are true in the polytree.

Fig. 2. Illustration of Example 1: (left panel) polytree GP ; (right panel) the resulting
R-vine GR−vine.
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Algorithm 1. Procedure to build the R-vine tree-structure from the graph of
a polytree.
Input: GP

Output: GR−vine

Step 1 Create the lists LI and LD from GP .
Step 2 Obtain T1 = skeleton of GP .
for j = 2, . . . , n − 1:

Step 3:
if GR−vine = D-vine:

for each i in Ii (X, Y | V ) of order j − 1 in LI

if ϕ (Tj , Ii (X, Y | V)) :
Add a dashed edge X-·-Y in Tj .

else
Build the MWST Tj with dashed edges only.

Step 4:
for i, Di (X, Y | V), in LD:

if ϕ (Tj , Di (X, Y | V)):
Add a continuous edge X − Y in Tj .

4.2 From R-vines to Polytrees

Similarly to previous section, the idea of this section is to build a polytree
GP that represents the largest numbers of independencies found in an R-vine
GR−vine. The heuristic proposed is shown in Algorithm2.

We consider a denpendence model M that contains the list of independencies
and dependencies represented in the R-vine GR−vine, LI and LD respectively.
Step 1 consists of extracting both lists: LI is represented by dashed lines and LD

is represented by continuous lines via the v-separation criterion. In Step 2, we
obtain the skeleton of GP that is no other than tree T1 of GR−vine. To extract
LI and LD, we can use the procedure given in [6]

Steps 3 and 4 are responsible for determining the direction of the edges of
the polytree skeleton. Firstly, the algorithm goes through the list LI in order to
insert the independence relationships. In Step 3, for each I (X,Y | V) the edges
of the corresponding subgraph X −V−Y are oriented preventing any node of V
from being a h-h. In Step 4, the algorithm goes through the list LD in order to
insert those dependencies that do not eliminate any independencies previously
represented. So, for each D (X,Y | V) the algorithm allows a node belonging
to V to be a h-h if the independencies already inserted are still represented;
otherwise, edges are not oriented towards any node of V.

Notice that a complete R-vine structure (all its edges are continuous) is
a trivial I-map of the dependence model obtained from the polytree. In the
opposite case, if all the R-vine’s edges are discontinuous or continuous in the
first tree, it is a trivial D-map of the dependence model obtained from polytree.
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Example 2. Let us illustrate Algorithm 2 based on the R-vine of Fig. 3-(left
panel).

Step 1. Obtain M = {LI , LD} from GR−vine.
LI = {I1 (1, 3 | 2)}
LD = {D1 (2, 4 | 3) ,D2 (1, 4 | 2, 3)}

Step 2. The skeleton of GP is the tree T1 of GR−vine.
Step 3. By representing the independence I1, the graphs of Fig. 3-

(right panel, top) are obtained.
Step 4. To represent D1 (2, 4 | 3), the node 3 must be considered a head-to-head

node. This is done by adding the directed edge 4 → 3. This can be done with-
out adding or removing independencies. However, the relationship D2 cannot
be represented since it can only be inserted as an independence in the polytree.
Therefore, the final graph remains as shown in Fig. 3-(right panel, middle).

The resulting polytree, in addition to representing the same independence rela-
tionships existing in the R-vine structure, also includes others that are not ver-
ified in M (obtained from a polytree). As the independencies of the R-vine are
a subset of those of the polytree, we can say that the R-vine is an I-map of M
obtained from a polytree, and that the polytree is a D-map of M obtained from
an R-vine as all the dependence relationships of the polytree exist in the R-vine.
Notice that from the same R-vine, more that one polytree can be obtained, which
is illustrated in Fig. 3-(right panel, bottom).

Example 3. Let us illustrate Algorithm 2 based on the R-vine of Fig. 4-(left
panel).

Step 1. Obtain M = {LI , LD} from GR−vine.
LI = {(I1 (2, 5 | 4) , I2 (3, 5 | 2, 4) , I3 (1, 5 | 2, 3, 4))}
LD = {(D1 (1, 3 | 2) ,D2 (3, 4 | 2) ,D3 (1, 4 | 2, 3))}

Step 2. The skeleton of GP is the tree T1 of GR−vine.
Step 3. By representing the independence relationships I1, I2 and I3, the graphs

of Fig. 4-(middle panel) are obtained. If we take a look at the last graph, we
can see that in GP not only independencies found in GR−vine are represented,
but also other independencies that are not visible in LI . In order to preserve
the same independence relationships, in the next step we proceed to insert
the conditional dependencies that are in LD.

Step 4. To represent D1 (1, 3 | 2), 2 must be considered as head-to-head node,
this is done by changing the direction of the edge between the nodes 2 and 3.
This can be performed without affecting independence relationships. Analo-
gously, regarding relation D2, the edge between 2 and 4 is redirected. Never-
theless, D3 cannot be represented since it would change the existing indepen-
dencies in the graph. Therefore, the final graph remains as shown in Fig. 4-
(right panel).
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Algorithm 2. Procedure to build the graph of a polytree from the R-vine tree-
structure.
Input: GR−vine consistent
Output: GP

Step 1 Create the lists LI and LD from GR−vine.
for edge e in GR−vine:
if e is a dashed edge:

Add I (X, Y | V) to LI .
else e is a continuous edge:

Add D (X, Y | V) to LD.
Step 2 Obtain the skeleton of GP as T1 of GR−vine.
for I (X, Y | V) in LI :

if at least one edge between nodes X, Y,V is an undirected edge:
Step 3 Orient the edges of the subgraph X − V − Y without creating a

head-to-head node.
for D (X, Y | V) in LD:

if possible to set some node of V as a head-to-head node:
Step 4 Insert the subgraph X → V ← Y .

Fig. 3. Illustration of Example 2: (left panel) R-vine GR−vine; (right panel) edge ori-
entation to represent the relationships of LI = {I1} (top) and LD = {D1} (middle),
and an example of another polytree that can be obtained from the R-vine on the left.

Fig. 4. Illustration of Example 3: (left panel) starting R-vine GR−vine; (middle panel)
edge orientation to represent the independence relationships of LI = {I1, I2, I3} (from
top to bottom); (right panel) edge orientation to represent the dependence relationships
of LD = {D1, D2, D3}.
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5 Conclusions

In this work, we have studied the connection between the graphical representa-
tions of polytrees and R-vines. We have introduced two algorithms for translat-
ing between the underlying semantics of polytrees and regular vines from the
graphical perspective.

We have shown that we can find an R-vine where all independencies it encodes
exist in the polytree, although not all independencies existing in the polytree can
be represented in an R-vine. Thus, the R-vine is an I-map of the dependence
model obtained from the polytree. On the other hand, given an R-vine, the
resulting polytree includes the same independence relationships existing in the
R-vine and also others that are not true in the R-vine. As all the dependence
relationships inserted in the polytree exist in the R-vine, the polytree is a D-map
of the dependence model obtained from the R-vine. An ongoing topic demanding
future work is the extension of this study to BNs with undirected cycles.
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1 Introduction

An estimated 183 million people consumed cannabis in 2014 [1] making it the most
popular illicit drug in the world. Legalising cannabis, especially in countries such as the
Netherlands and Uruguay, and in some states of USA, and the increasing lobby for
making cannabis use legal in other countries such as Canada, is an important con-
tributing factor for the popularity of this drug. On the other hand evidence shows that
the increase in cannabis consumption is proportionate to the increase in the proportion
of people seeking treatment for psychotic disorders [1]. While there is some evidence
that consuming cannabis is a risk factor for several types of psychotic disorders [2], the
link between these two factors needs to be better quantified.

These days, researchers attempted to understand whether specific patterns of can-
nabis use such as potency or age are associated with a higher risk of developing
psychotic disorders. One study concluded that nearly a quarter of all new psychosis
patients in South London (UK) could be associated with the use of high-potency,
skunk-like cannabis [3]. Another study [4] estimated that if a person uses cannabis
daily for more than six months, then there is a 70% likelihood that this person will
suffer from psychotic disorders.

There are few such studies based on risk prediction modelling using advanced
machine learning algorithms establishing a link between cannabis use and first-episode
psychosis – in fact we are not aware of the existence of other studies apart our recent
work [4]. Most studies so far rely only on explanatory research strategies and are
mainly based on a number of conventional statistical techniques such as hypotheses
formulation and verification via statistical tests, logistic regression modelling, etc.
These techniques are well-recognised and used in medical research, but in many sit-
uations, they do not match the high potential of machine learning methods. The domain
of machine learning has developed at an enormous speed in recent years, with
advanced predictive techniques being expanded and improved upon. In particular
artificial neural networks and especially deep networks, which are state of the art in
prediction, have proven their abilities in many pattern recognition and machine learning
applications. One such field of implementation is the domain of medical research [5, 6].

On the one hand, artificial neural networks have been successfully used in
understanding the heterogeneous manifestations of asthma [7], diagnosing tuberculosis
[8], classifying leukaemia [9], detecting heart conditions in ECG data [10], etc. These
studies show that neural networks have been proven to be capable of dealing with
complicated medical data such as the ambiguous nature of the ECG signal data, where
neural networks show some outstanding results compared to other methods.

On the other hand, recently, deep networks have attracted widespread attention,
mainly by defeating alternative machine learning methods such as support vector
machines in numerous critical applications such as classifying Alzheimer’s disease [11],
classifying AD/MCI patients [12], and improving palliative care [13]. While support
vector machines are still popular techniques within the machine learning community [4,
14], the family of deep learning techniques are gaining considerable attention [15]. Deep
learning methods are types of representation learning methods, which can automatically
identify the optimal representation of raw data without requiring prior feature selection.
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In this study, we propose a novel machine learning approach based on neural
networks and deep learning techniques to develop predictive models for the onset of
first-episode psychosis. The dataset that we based our study upon was collected by
psychiatry practitioners, and used in previously conducted studies such as [3, 4]. It
comprises an extensive set of variables including demographics, drug-related, and
several other variables with specific information on the participants’ history of cannabis
use as seen in Table 1.

Our approach features a gradual control of the limitation of the uncertainty present
in the data due to missing values which are usually inherent in clinical datasets due to
patients missing appointments, patients not reporting all details, etc. This feature
involves considering different thresholds for allowed levels of missingness (per attri-
butes and per records) in the data sets, that we call cutting points, in order to examine
how the prediction models’ performances may vary with these thresholds. Our
approach is based also on a novel methodology of optimising and post-processing the
predictive models in a computationally intensive framework. Furthermore, we extended
our approach by proposing and encapsulating a novel post-processing k-fold
cross-testing method in order to further optimise, and test these models. The results
show that the accuracy in predicting first-episode psychosis achieved by our best
models in intensive Monte Carlo simulation, falls between 85.13% and 91.54%, with
an average of about 89%.

2 Methods

2.1 The Clinical Data

The data used to develop our novel approach to predict the first-episode psychosis is a
part of a case-control study at the inpatient units of the South London and Maudsley
(SLaM) NHS Foundation Trust in United Kingdom [3]. The clinical data consists of

Table 1. Cannabis use attributes among other attributes in the analysed dataset

Attribute Description

lifetime_cannabis_user Ever used cannabis: yes or no
age_first_cannabis Age when first used cannabis: 7 to 50
age_first_cannabis_under15 Age less than 15 when first used cannabis: yes, no or never

used
age_first_cannabis_under14 Age less than 14 when first used cannabis: yes, no or never

used
current_cannabis_user Current cannabis user: yes or no
cannabis_fqcy Pattern of cannabis use: never used, only at weekends, or daily
cannabis_measure Cannabis usage measure: none, hash less than once per week,

or hash at weekends, hash daily, skunk less than once per
week, or skunk at weekends, skunk daily

cannabis_type Cannabis type: never used, hash, or skunk
duration Cannabis use duration: 0 to 41 (months)
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1106 records, including 489 patients, 370 controls and 247 unlabelled records. Those
described as patients were patients of the Trust who at one time presented with
first-episode psychosis; controls were healthy people recruited from the local area.
Each record refers to a participant in the study and has 255 possible attributes, which
were divided into four categories. The first category consists of demographic attributes
which represent general features such as gender, race, and level of education. Secondly,
drug-related attributes contain information on the use of non-cannabis drugs such as
tobacco, stimulants and alcohol. The third category is formed of genetic attributes
which were removed from the analysis for the purpose of this study. The final category
contains cannabis-related attributes such as the duration of use, initial date of use,
frequency, cannabis type, etc. (see Table 1).

2.2 Rationalisation and Refinement

The goal of this stage is to perform a high-level simplification of the dataset, and it
embraces several steps. First, records that were missing critical data were removed
from the dataset. This included records with missing labels as well as records with
missing values on all cannabis-related variables. Secondly, certain variables were
removed from the dataset. This primarily involved variables that were deemed to be
irrelevant to the study (such as those related to individual IDs of the study participants),
and also variables which were outside the scope of the current study (for example,
certain gene-related variables). In addition, any numeric predictors that had zero or
near-zero variance were dropped. Thirdly, we sought to make the encoding of missing
values consistent across the dataset. Prior to this step, values including 66, 99, and −99
all represented cases with missing values – so all such indicators were replaced with a
consistent missing value indicator, NA. Fourthly, some variables were re-labelled to
provide more intuitive descriptions of the data contained within. Finally, since in
multiple situations some variables had a similar meaning, yet there were often missing
values for some records in some of these variables, a process of imputation was used to
effectively combine the information from related variables into one. For example, two
variables described alcohol use but were inconsistently present across the records and
presented missing values. These were combined in a way that created one single
variable with consistent and as complete as possible values. Such a process was used to
generate value-reacher and value-consistent variables related to alcohol use, tobacco
use, employment history, and subjects’ age.

2.3 A Trade-off Between the Extent of Missing Values
and the Dataset Size

A trade-off between the extent of missing values present in the dataset, and the dataset
size, needed to be investigated from the point of view of the predictive power of the
models that can be built on the dataset. The intuition is that by using a larger subset of
the available dataset in the analysis, one would obtain a positive effect on the per-
formance of predictive models (since more data is used to build the models). But this
larger subset may also encapsulate more uncertainty due to the presence of more
missing values, which usually has a negative effect on the predictive models (even with
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imputation). Therefore, different cutting points, defined as the thresholds for the per-
centage of missing values (or level of missingness) allowed in attributes and records,
respectively, were considered in order to study the variation of the predictive power of
subsets of the dataset. Attributes and records presenting some levels of missingness up
to the respective cutting points or thresholds, respectively, were kept in the dataset, and
the remaining ones were removed. The considered cutting points for the records were
10%, 20%, …, 100%. For instance 30% in this grid means that we keep in the dataset
only the records that have up to 30% missing values (and 100% means practically that
all records are kept in the dataset). Moreover, the cutting points for the attributes were
identified by first determining the percentage of missing values for each attribute, and
then ordering these percentages and splitting them into twenty equal groups. The
extreme values in each group formed the cutting points for the attributes.

Overall, these cutting points were applied to the dataset and compared with respect
to the performance of single-layer neural network tuned models, in an attempt to
determine optimal cutting points which were those for which these models had the
highest accuracy. Once these cutting points were determined, they were applied, and a
final dataset was thus obtained as the outcome of a trade-off between the extent of
missing values present in the dataset, and the dataset size.

How did we exactly proceed to obtain this final dataset? Note that we don’t do a
full optimisation on all pairs of cutting points for attributes and records to determine
this final dataset (because training and tuning neural networks is a computationally
expensive procedure), but we just apply a heuristic in our framework. Initially we
search for an optimal value among all the attribute cutting points, and we apply it on
the dataset. In our case this was 92%. Then, on the resulting dataset, we applied
different record cutting points following the grid mentioned above, and we determined
the best cutting point, which was 70% in our case. To compare the cutting points and
select the best ones, the criterion was the accuracy of the single-layer neural networks
which have been tuned on the training set (70% of the data), in a 5-fold cross-validation
procedure, on a 10 � 10 grid for the number of hidden units, and decay values to
prevent overfitting with regularisation methods. Random forest imputations of missing
values were applied. The models’ performances consisting of accuracy and kappa were
estimated on the test set (30% of the data).

Figure 1 illustrates the process, in which we observed a decrease in the perfor-
mance when all the attributes were included or when the cannabis attributes were not
present in the obtained dataset.

By applying the determined 92% cutting point for the attributes and 70% cutting
point for the records to the original dataset, we obtained 107 attributes and 628 records
divided into 360 patients and 268 controls, on which the main phase of predictive
modelling with various algorithms was developed, and presented in what follows. We
note that the proportion of controls and patients in the final dataset are approximately
the same as in the original dataset, so the current dataset is representative.
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2.4 Imputation

Missing values’ presence in clinical data is rather common due to reasons explained
above, and this is the case also of our dataset. The predictive power in the data may
depend significantly on the way missing values are treated. While some machine
learning algorithms, such as decision trees [16], have the capability to handle missing
data outright, most machine learning algorithms do not. In many situations missing
values are imputed using a supervised learning technique such as k-Nearest Neighbour
(KNN) after suitable scaling to balance the contribution of the numeric attributes.
These imputation techniques do not have theoretical formulations but have been much
implemented in practice [4, 6]. In this work, we considered different imputations such
as the KNN imputation, the tree bagging imputation from the caret package [16], and
the random forest imputation from the randomForest package [17]. The last method led
to the best results in terms of the performance of the predictive models finally built,
although it was more computationally expensive.

2.5 Training and Optimizing (Tuning) Predictive Models

For the purpose of developing optimised predictive models for the first-episode psy-
chosis, the values of the parameters for each of the considered algorithms have been
controlled by chosen grids. Predictive models have been fitted, in a 5-fold
cross-validation procedure, on each training set after pre-processing techniques were
applied on the same training set, and have been tested on each test set. Models based on
neural networks with a single-layer, neural networks with multi-hidden-layers, and
deep networks, were optimized (tuned) based on maximizing AUC, the area under the
ROC curve.

The single-layer neural networks were tuned over 10 values of the size (i.e. the
number of hidden units) and 10 values of the decay (i.e. the weight decay), which is the
parameter in the penalization method for model regularization to avoid overfitting,

Fig. 1. Model performance for record and attribute cutting points
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similar to the penalization method in ridge regression, based on the L2 norm [16]. The
optimal values were 3 and 0.01, respectively. The neural network with multi-hidden
layers were tuned over 10 values for each of the 3 hidden layers (i.e. 10 values for the
number of hidden units in each layer), and 10 values for the decay. The optimal values
were 5, 5, 5 for the 3 layers, and 0.01 for decay, respectively.

As for the deep networks, we employed the H2O’s deep learning, which is based on
a multi-layer feedforward artificial neural network that is trained with stochastic gra-
dient descent using back-propagation [19]. The deep networks usually contain a large
number of hidden layers consisting of neurons with tanh, rectifier, and maxout acti-
vation functions. This type of models has many parameters, but it was designed to
reduce the number of parameters that the researcher has to specify by applying feature
selection and early stopping techniques. We used deep networks with the method of
Gedeon [18] to select the best attributes. In our experiments, the early stopping was set
to let it stop automatically once the area under the curve AUC does not continue
improving, in particular, when AUC does not improve by at least 1% for 10 consec-
utive scoring events.

Also, a grid optimisation was used with the parameters that need to be tuned such
as the activation function, the number and sizes of the hidden layers, the number of
epochs, and the 2 parameters corresponding to the L1 and L2 regularisations for
preventing overfitting.

The models were tuned over all activation functions, and over 3, 4, …, 25 layers
and 30, 35, …, 50 layers. The number of units in each layer had the values 50, 100,…,
250. Also, we used the values 2, 3, 5, and 10 for tuning the number of epochs. Finally,
the parameters for the L1 and L2 regularisations were each tuned over the values 10−1,
10−2,…, 10−10.

After performing the proposed techniques, the optimal values selected for the deep
learning model are rectifier as an activation function, 5 epochs, and 8 hidden layers of
200 neurons each. As for the L1 and L2 parameters, the optimal values were 10−4 and
10−5, respectively.

2.6 Sampling and Post-processing K-fold Cross-Testing

When there is a priori knowledge of a class imbalance, one direct method to reduce its
influence on model training is to select training set samples to have roughly equal event
rates [16]. Treating data imbalance usually leads to better predictions models and better
trade-off between sensitivity and specificity.

In this study, we considered three sampling approaches to subsample the training
data in a manner that mitigates the imbalance problem. The first approach is
down-sampling in which we sampled (without replacement) the majority class to be the
same size as the minority class. The second method is up-sampling in which we
sampled (with replacement) the minority class to be the same size as the majority class.
The last approach we used is the synthetic minority over-sampling technique (SMOTE)
[20]. SMOTE selects a data point randomly from the minority class, and the K-nearest
neighbours to that point are determined and used to generate new synthetic data points
by slight alterations to these data points. Five neighbours are used in our analysis. The
results show that the up-sampling procedure had no real improvement on AUC or the
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accuracy performances. Simple down-sampling of the data also had no positive effect
on the model performances. However, SMOTE with neural network models has led to
an increase in AUC and accuracy.

Figure 2 gives an overall description of the methodology followed here, based on
pre-processing, model optimisation, and post-processing. The dataset is randomly split,
with stratification, in 60% and 40% parts denoted here by D1 and D2, respectively. D1
is used for training and for optimising the model, as explained in Subsect. 2.5, in a
cross-validation fashion, with AUC as optimisation criterion, with and without class
balancing. Different pre-processing methods such as missing values imputation and
sampling methods that we have explained above, were appropriately integrated into the
cross-validation. The optimal model obtained on D1 was then applied to score D2
accounting for the remaining 40% of the dataset. In order to further enhance the model
performance, a specially designed post-processing procedure that we introduce here,
was applied with the optimised model using D2 dataset. We call it the k-fold cross-
testing method. In this procedure, we produce k post-processed model variants of the
original optimised model. First, we create k stratified folds of D2 dataset. Then, k-1
folds are used to find an alternative probability cut-off on the ROC curve such as the
cut-off associated with the largest accuracy. The remaining one-fold is scored with the
post-processed model based on the newly found cut-off point. Finally, the whole
procedure is repeated until all folds are used for scoring at their turn, then the pre-
dictions are integrated, and the model performance is measured on the whole scored
dataset D2. We note here as an important remark that in each such iteration of the
procedure, the ROC optimisation data (the k − 1 folds) and the scored data (the
remaining fold) are always distinct, so the data for model post-processing and the data
for scoring are always distinct.

2.7 Monte Carlo Simulations

Due to expected potential variations of the predictive models’ performance, depending
on the datasets for training and testing, but in particular due to the uncertainties
introduced by the missing values in the data, we conducted extensive Monte Carlo
simulations to study these variations, and the stability of the models. In particular, the
simulations for each single-layer neural networks, multi-layers neural networks and
deep networks consisted of 2,000 iterations of the procedure included in the bold
contour box of Fig. 2. The models’ performances consisting of accuracy, sensitivity,
specificity, and kappa were evaluated in each iteration. The aggregation of all iterations
formed various distributions of the above performance measures. These distributions
were visualised using histograms to capture the performance capability and stability of
models, as shown in the Results section.

2.8 Hardware and Software

The Monte Carlo simulations that we conducted as explained above are computa-
tionally very expensive procedures, therefore a robust framework was required. Parallel
processing was performed on a data analytics cluster of 11 servers with Xeon pro-
cessors and 832 GB fast RAM. The R software was used with a number of packages,
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including caret, pROC, e1071, randomForest, ggplot2, plyr, DMwR, AppliedPredic-
tiveModeling, doParallel and H2O.

3 Results

We present here the performances obtained with our approach to predicting
first-episode psychosis, investigated with Monte Carlo simulations, as explained above.
We should note that, due to lack of space, in this section we only report results
regarding models which either are not post-processed, or are post-processed with ROC
optimisation based on the largest accuracy cut-off methodology.

The results show that the single-layer neural network scored a mean accuracy of
0.80 (95% CI [0.76, 0.84]) and a mean sensitivity of 0.84 (95% CI [0.76, 0.91]). Also,
the multi-layers neural networks achieved a mean accuracy of 0.81 (95% CI [0.77,
0.85]) and a mean sensitivity of 0.85 (95% CI [0.77, 0.92]). Figure 3 shows histogram
plots of the Monte Carlo simulations for single and multi-layer neural networks with
post-processing and performances evaluated with our k-fold cross-testing method.
Results indicate that the difference between single and multi-layer neural networks is
not significant regarding the 4 performances (Table 2).

As for deep learning, the results show significantly better performances. Figure 4
illustrates histogram plots of the 2000 Monte Carlo simulations for models based on
deep networks without the post-processing (left) and with post-processing (right). The
results for the latter show a mean accuracy of 0.89 (95% CI [0.85, 0.92]) and a mean
sensitivity of 0.83 (95% CI [0.74, 0.92]).

Fig. 2. Summary of the implemented methodology, with k-fold cross-testing method
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(a) Multi-layers neural networks (b) Single layer neural networks

Fig. 3. 2000 Monte Carlo simulation for neural networks.

Table 2. Estimations of the predictive models’ performances.

Model Accuracy Kappa Sensitivity Specificity

Single-layers neural networks 0.80 0.59 0.84 0.74
Multi-layers neural networks 0.81 0.60 0.85 0.75
Deep networks 0.89 0.76 0.83 0.93

(a) Deep network without post-processing (b) Deep network with post-processing

Fig. 4. 2000 Monte Carlo simulation for deep networks.
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Overall, we remark a good predictive power and stability of these models, based on
an acceptable level of variation of their performance measures evaluated across
extensive Monte Carlo experiments. As mentioned before, a significant proportion of
this variation may be explained by the uncertainties due to the presence of missing
values in the dataset.

4 Conclusion and Directions for Further Work

The aim of this work has been to propose a novel machine learning approach to
developing predictive models for the onset of the first-episode psychosis with neural
networks and deep learning. To our knowledge, previous studies on the link between
cannabis use and first-episode psychosis investigated this highly important relationship
via conventional statistical methodologies and techniques and did not tackle the pre-
dictability of this condition in relation to the cannabis use. An exception is [4] which is
the first study to predict first episode-psychosis using machine learning based on
support vector machines, bagged trees, boosted classification trees, eXtreme gradient
boosting and random forests. However, the accuracy performances in [4] were slightly
under 80%, and as such, under all neural and deep network models’ performances
achieved in this work.

In this paper, we successfully classified first-episode psychosis from normal control
with 89% accuracy using deep learning. This solution proves the high potential of
applicability of machine learning, in particular deep learning, in Psychiatry, and
enables researchers and doctors to evaluate the risk for and predict first-episode
psychosis.

Our approach features a gradual control of the limitation of the uncertainty present
in the data by investigating a trade-off between the extent of missing values entailing
uncertainty, and the dataset size. Moreover, due to expected potential variations of the
predictive models’ performance due to the uncertainties entailed by the remaining
missing values in the data, we conducted extensive Monte Carlo simulations to study
these variations, and the stability of the models.

A potential work direction concerns including genotype data in the study for pre-
diction purposes, and redefining the predictive modelling approach by taking into
account the particularities of the newly introduced data, such as the high
dimensionality.
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Abstract. The aim of the paper is to introduce the concept of fuzzy
power set in a universe of sets and investigate its basic properties. We
focus here on an analysis of Cantor’s theorem for fuzzy sets, which states
in the set theory that the cardinality of a set is strictly smaller then the
cardinality of its power set. For our investigation of Cantor’s theorem
we chose two types of equipollency of fuzzy sets, particularly, the binary
Cantor’s equipollence and its graded version.

Keywords: Cardinal theory · Fuzzy sets · Universe of sets
Fuzzy power sets · Cantor’s theorem

1 Introduction

In the elementary set theory, the cardinality of the power set of a set x is strictly
greater than the cardinality of the original set x. Symbolically, we write |x| <
|P(x)|, where |x| denotes the cardinality of the set x and |P(x)| the cardinality
of the power set of x. This fundamental result is known as Cantor’s theorem and
has been used to demonstrate that there are sets having cardinality greater than
the infinite cardinality of the set of natural numbers. In literature on the set
theory, Cantor’s theorem is sometimes formulated as there is no function from x
onto P(x) or x is not equipollent P(x), which is also referred as a more general
form of Cantor’s theorem. For the purpose of this contribution, we consider the
last formulation of Cantor’s theorem.

In the standard fuzzy set theory, we can distinguish two concepts: the power
set and the fuzzy power set of a fuzzy set A over a universe of discourse x.
The power set of a fuzzy set A : x −→ [0, 1] is the classical set, denoted by
F (A), consisting of all fuzzy subsets of A, where a fuzzy set B : x −→ [0, 1]
is a fuzzy subset of A if B(z) ≤ A(z) holds for any z ∈ x. A generalization of
this concept can be found in the theory of categories under the name of (fuzzy)
powerset operator [10,12]. An extension of the power set of a fuzzy set to the
fuzzy power set has been proposed by Bandler and Kohout in [1]. In this paper,
the fuzzy power set of a fuzzy set A, denoted by P(A), is defined as a fuzzy set
P(A) : F (x) −→ [0, 1], where F (x) is the power set of the fuzzy set x (each
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 855, pp. 703–714, 2018.
https://doi.org/10.1007/978-3-319-91479-4_58
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classical set can be considered as a special fuzzy set), and P(A)(B) expresses
the membership degree in which B belongs to the power set of A, or equivalently,
the truth degree of the statement saying that B is a fuzzy subset of A. Using a
fuzzy implication operator → on [0, 1],1 Bandler and Kohout defined the value
of P(A)(B) as

P(A)(B) =
∧

z∈x

(B(x) → A(x)), (1)

where
∧

denotes the infimum operation in [0, 1]. One can see that B ∈ F (A)
if and only if P(A)(B) = 1. The fuzzy power sets can be extended also for
fuzzy sets whose membership degrees are interpreted in more general algebras
of truth values. As an example, let us mention the development of lattice-valued
set theory provided by Takeuti and Titani in [11] (see also [4]).

In this contribution, we deal with fuzzy sets whose universes of discourse
belong to a given universe of sets (e.g., the class of all sets or finite sets; or
a set known as a Grothendieck universe). Note that the universe of sets has
been introduced in [8] to form a framework for development of fuzzy set theory.
The concept of fuzzy power set, which is sound in each universe of sets, has
been introduced in [7] and admits only classical (crisp) sets in the universe of
discourse of the fuzzy power set. This restriction to crisp sets ensures that each
fuzzy power set becomes a fuzzy set in the given universe of sets, which is not
true in general, if one admits also fuzzy sets as in the case of Bandler-Kohout
definition. A typical example is the fuzzy power set of a fuzzy set over a finite
set with the membership degrees interpreted in an infinite algebraic structure
of truth values, which does not belong to the universe of all finite sets. For our
analysis of Cantor’s theorem within the fuzzy set theory, we introduce two types
of equipollence for fuzzy sets. The first type of equipollence is a binary class
relation on the class of all fuzzy sets in a universe of sets stating that two fuzzy
sets have or have not the same cardinality. The second type of equipollence is
a graded version of the first type (a fuzzy class relation) and its definition has
been proposed in [8] and further developed in [5,6] (see also [7] for finite fuzzy
sets).

The main goal of this contribution is to show that Cantor’s theorem is valid
(valid in a weaker form) for fuzzy sets and proposed fuzzy power sets in each
universe of sets if the first (second) type of equipollence is considered.

The paper is structured as follows. The next section introduces basic concepts
that are used in the main part of the contribution. The third section is devoted to
Cantor’s theorem whose validity is verified for Cantor’s equipollence. The fourth
section provides the proof of Cantor’s theorem for graded Cantor’s equipolence.

1 The fuzzy implication operator on [0, 1] is often modeled in fuzzy logic as a residuum
operation on a complete residuated lattice on [0, 1] (see Subsect. 2.1).
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2 Preliminaries

2.1 Algebraic Structures of Truth Values

A complete linearly ordered residuated lattice is considered as a structure of
membership degrees for fuzzy sets. Recall that a residuated lattice is an algebra
L = 〈L,∧,∨,⊗,→ ⊥,
〉 with four binary operations and two constants, for
which it holds that

(i) 〈L,∧,∨,⊥,
〉 is a bounded lattice, where ⊥ is the least element and 
 is
the greatest element of L, respectively,

(ii) 〈L,⊗,
〉 is a commutative monoid,
(iii) the pair 〈⊗,→〉 forms an adjoint pair, i.e.,

a ≤ b → c if and only if a ⊗ b ≤ c (2)

holds for each a, b, c ∈ L (≤ denotes the corresponding lattice ordering).

A residuated lattice is said to be complete (linearly ordered) if the correspond-
ing lattice 〈L,∧,∨,⊥,
〉 is a complete (linearly ordered) lattice. Details and
examples of residuated lattices can be found in [2,9].

2.2 Fuzzy Sets in a Universe of Sets

A fuzzy set is usually defined as a function from a fixed non-empty universe of
discourse to a set (lattice) of truth values. Nevertheless, the fuzzy set construc-
tions like fuzzy power sets or exponentiation of fuzzy sets requires a system of
universes of discourse rather than one fixed universe (cf., [3]). This motivated
us to introduce a universe of sets over a complete residuated lattice as a basic
framework for our fuzzy set theory [8]. In what follows, we use x ∈ y to denote
that the set x is a member of set y, further, we use P(x), D(f) and R(f) to
denote the power set of a set x, the domain and the range of a function f ,
respectively.

Definition 1. Let L be a complete linearly ordered residuated lattice. A universe
of sets over L is a non-empty class U of sets in the Zermelo–Fraenkel set theory
with the axiom of choice (ZFC) satisfying the following properties:

(U1) x ∈ y and y ∈ U, then x ∈ U,
(U2) x, y ∈ U, then {x, y} ∈ U,
(U3) x ∈ U, then P(x) ∈ U,
(U4) x ∈ U and yi ∈ U for any i ∈ x, then

⋃
i∈x yi ∈ U,

(U5) x ∈ U and f : x −→ L, then R(f) ∈ U,

where L denotes the support of L.

Basic examples of the universes of sets are the classes of all or finite sets. If the
ZFC is extended by the axiom admitting the existence of strongly inaccessible
cardinals, one can introduce a universe of sets over L to be a Grothendieck
universe.
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Definition 2. Let U be a universe of sets over L. A function A : z −→ L (in
ZFC) is called a fuzzy set in U if z ∈ U.

Let A : z −→ L be a fuzzy set in U. The domain z = D(A) is called the
universe of discourse of A, and the set S (A) = {x ∈ z | A(x) > ⊥} the support
of fuzzy set A. Further, for α ∈ L, the sets Aα = {x ∈ z | A(x) ≥ α} and
Aα = {x ∈ z | A(x) = α} are called the α-cut and α-level of A, respectively.
An element x ∈ z is said to be negligible in A whenever x ∈ S (A). A fuzzy
set A is said to be crisp and referred to a crisp set if A(x) ∈ {⊥,
} for any
x ∈ z. The empty function ∅ : ∅ −→ L is called the empty fuzzy set. One can
see that the empty function as a vacuous fuzzy set is crisp, since the assumption
on a crisp set is trivially satisfied. If x ⊆ y are sets in U, we use χx to denote
the characteristic function of x on y, i.e., χx : y −→ L, which is defined by
χx(z) = 
 if z ∈ x, and χx(z) = ⊥, otherwise. A fuzzy set A is a fuzzy subset
of B in U provided that D(A) ⊆ D(B) and A(a) ≤ B(a) for any a ∈ D(A). It is
easy to see that ⊆ is a partial ordering on the class F(U) of all fuzzy sets in U.

We say that two fuzzy sets A and B in U are identical (symbolically, A = B)
if D(A) = D(B) and A(a) = B(a) for any a ∈ D(A). Moreover, A and B are
identical up to negligibility (symbolically, A ≡ B) if S (A) = S (B) and A(a) =
B(a) for any a ∈ S (A). One can observe that the relation “to be identical up to
negligibility” is an equivalence on F(U). We use cls(A) to denote the equivalence
class of all fuzzy sets from U being identical with A up to negligibility.

2.3 Functions Between Fuzzy Sets

Let Fcs and Fcs(x, y) denote the class of all functions in U and the set of all
functions from x to y, respectively. Let x, y, a, b ∈ U such that a ⊆ x and b ⊆ y.
By the definition, a function f : x −→ y is a function from a to b if f(z) ∈ b for
any z ∈ a or

χa(z) ≤ χb(f(z)) (or χa(z) → χb(f(z)) = 
) (3)

for any z ∈ a, if we consider the characteristic functions of the sets a and b.
Replacing the characteristic functions in condition (3) by fuzzy sets, we obtain
a natural definition of a function between fuzzy sets.

Definition 3. Let A,B ∈ F(U), and let f ∈ Fcs. We say that f is a function
from A to B (symbolically f : A −→ B) if f ∈ Fcs(D(A),D(B)) and

A(z) ≤ B(f(z)) (or equivalently A(z) → B(f(z)) = 
) (4)

for any z ∈ D(A).

The set of all functions from A to B is denoted by Fcfs(A,B). Note that
the empty function from the empty fuzzy set to an arbitrary fuzzy set trivially
satisfies condition (4) and thus belongs to Fcfs(A,B). Obviously, the composition
of functions g ◦ f ∈ Fcfs(A,C), whenever f ∈ Fcfs(A,B) and g ∈ Fcfs(B,C).
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A function f : x −→ y in U is a 1-1 correspondence between x and y if there
exists a function f−1 : y −→ x (an inverse function) for which f−1 ◦ f = 1x

and f ◦ f−1 = 1y, where 1x and 1y denote the identity functions on x and y,
respectively. Similarly, we define the 1-1 correspondence between fuzzy sets.

Definition 4. Let A,B ∈ F(U), and let f ∈ Fcfs(A,B). We say that f : A −→
B is a 1-1 correspondence (symbolically f : A 1-1

corr−→ B) if there exists f−1 : B −→
A such that f−1 ◦ f = 1D (A) and f ◦ f−1 = 1D (B).

The set of all 1-1 correspondences between fuzzy sets A and B in U is denoted
by Cfs(A,B). Later, we introduce a graded version of 1-1 correspondences that
play a fundamental role in the definition of graded equipollence. An equivalent
definition in terms of 1-1 and onto functions is the following. Denote Fcs1-1

corr(x, y)
the set of all 1-1 correspondences between x and y.

Theorem 1. Let A,B ∈ F(U). A function f : A −→ B is a 1-1 correspondence
between fuzzy sets if and only if f ∈ Fcs1-1

corr(D(A),D(B)) and A(a) = B(f(a))
for any a ∈ D(A).

Proof. (⇒) Let f : A−→B be a function such that there exists f−1 : B−→A
such that f−1 ◦ f = 1D (A) and f ◦ f−1 = 1D (B). Then, f is a 1-1 function of
A onto B. Since A(a)→ B(f(a)) = 
 for any a ∈ D(A) and simultaneously
B(b) → A(f−1(b)) = 
 for any b ∈ D(B), we find that

(A(a) → B(f(a))) ∧ (B(f(a)) → A(a)) = A(a) ↔ B(f(a)) = 

for any a ∈ D(A); therefore, A(a) = B(f(a)) for any a ∈ D(A).

(⇐) Since f is a 1-1 function of D(A) onto D(B), there exists f−1 : D(B) −→
D(A) such that f−1 ◦ f = 1D (A) and f ◦ f−1 = 1D (B). To finish the proof, we
have to prove that f−1 is a function of B to A, i.e., (4) is satisfied for f−1. Let
b ∈ D(B), and let a ∈ D(A) such that f(a) = b. Then, we find that

B(b) → A(f−1(b)) = B(f(a)) → A(a) = A(a) → A(a) = 
,

where we used A(a) = B(f(a)). ��
Hence, its easy to see that the composition of functions g ◦ f ∈ Cfs(A,C),

whenever f ∈ Cfs(A,B) and g ∈ Cfs(B,C).
Let f : x −→ y be a function between sets, and let z ⊆ x. The image of

z under f is defined by f→(z) := {b ∈ y | ∃a ∈ x & f(a) = b}. The image
of a fuzzy set under a function is a straightforward extension of the previous
definition and is given by Zadeh’s extension principle as follows.

Definition 5. Let x, y ∈ U, and let f : x −→ y be a function. Let A : x −→ L
be a fuzzy set in U. The image of A under f is denoted by f→(A) and defined by

f→(A)(b) :=
∨

a∈x;f(a)=b

A(a) (5)

for any y ∈ y.
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2.4 Functions Between Fuzzy Sets in a Certain Degree

Let ϕ be a formula in fuzzy set theory. Then [ϕ] denotes the truth degree in
which the formula ϕ is true, which is interpreted in the residuated lattice L.
For example, the truth degree [f ∈ Fcs(x, y)] expresses how it is true that the
function f is a member of the set Fcs(x, y). Of course, in this case, the truth
degree becomes ⊥ or 
.

Definition 6. Let A,B ∈ F(U), and let f ∈ Fcs. We say that f is a function of
A to B in the degree α provided that

α = [f ∈ Fcs(D(A),D(B))] ⊗
∧

(a,f(a))∈D (A)×D (B)

(A(a) → B(f(a)). (6)

By our convention, [f : A −→ B] denotes the truth degree in which the
function f can be considered as a function from A to B. Let us emphasize that
if f is not a function from D(A) to D(B), then [f : A −→ B] = ⊥ even if the
infimum value in (6) is greater than ⊥. Similarly we define the truth degree of a
correspondences between fuzzy set.

Definition 7. Let A,B ∈ F(U), and let f ∈ Fcs. We say that f is approximately
a one-to-one correspondence between A and B in the degree α provided that

α = [f ∈ Fcs1-1
corr(D(A),D(B))] ⊗

∧

(a,f(a))∈D (A)×D (B)

(A(a) ↔ B(f(a)). (7)

The value [f : A 1-1
corr−→ B] denotes the truth degree in which the function f can

be considered as a one-to-one correspondence between fuzzy sets A and B.

2.5 Fuzzy Power Sets

As we have mentioned in Introduction, the fuzzy power set for fuzzy sets is
considered to be a fuzzy set over the set of appropriate fuzzy sets. Here, we
propose an alternative definition that straightforwardly generalizes the classical
approach to the power set and it is sound in our fuzzy set theory.

Definition 8. Let A ∈ F(U), and x = P(D(A)). The fuzzy set P(A) : x −→ L
defined by

P(A)(y) =
∧

z∈D (A)

(χy(z) → A(z)) (8)

is called the fuzzy power set of A, where χy is characteristic function of y on
D(A).

One can see that the previous definition copies the Bandler-Kohout definition
(1) with the restriction to crisp sets. As a simple consequence of (8), we obtain
a simple expression of the membership degrees of fuzzy power set

P(A)(y) =
∧

z∈y

A(z). (9)
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The following statement shows that the fuzzy power sets preserve the class equiv-
alence of being identical up to negligibility.

Theorem 2. P(A) ≡ P(B), whenever A ≡ B.

Proof. It can be found in [7]. ��
Example 1. Let L�L be the �Lukasiewicz algebra, and let A = {1/a, 0.4/b}. Then,

P(A) = {1/∅, 1/{a}, 0.4/{b}, 0.4/{a, b}}.

Moreover, P(∅) = {1/∅}, since P(∅)(∅) =
∧ ∅ = 1.

Example 2. Let L be a complete residuated lattice on [0, 1], let the set of all
natural numbers ω belong to U, and let A : ω −→ L be defined by A(n) = 1/n.
Then, curiously, it holds that |S (A)| = |S (P(A))|. Indeed, one can see that
P(A) assigns the zero truth degree to each infinite subset of ω. Hence, we obtain
that x ∈ S (P(A)) if and only if x is a finite subset of ω. It is well-known that
the set of all finite subsets of ω is countable.2 The statement follows from the
fact that the support of A is a countable set.

Theorem 3. Let A,B ∈ F(U), and let f : A −→ B be a function between fuzzy
sets. Then, the following diagram commutes

A
f−−−−→ B

iA

⏐⏐�
⏐⏐�iB

P(A) −−−−→
f→

P(B),

where iA, iB are the inclusion functions, i.e., iA(a) = {a} for any a ∈ D(A) and
similarly iB, and f→ is the image function of sets.

Proof. Obviously, iA : D(A) −→ P(D(A)) given by iA(a) = {a} is a function
from A into P(A), since A(a) = P(A)({a}), and similarly iB is a function from
B into P(B). Obviously, the diagram commutes. To finish the proof, we show
that f→ is a function from P(A) to P(B). If x ⊆ D(A), then

P(A)(x) =
∧

a∈x

A(a) ≤
∧

a∈x

B(f(a)) =
∧

b∈f→(x)

B(b) = P(B)(f→(x)),

and the proof is finished. ��
2 For example, we can put λ(n) := {1, . . . , n}. Then

|S (P(A))| = |
⋃

n∈ω

P(λ(n))| ≤ |
⋃

n∈ω

(P(λ(n)) × {n})| ≤ |ω × ω| = |ω|,

where P(λ(n) is the power set of λ(n) and we used that |P(λ(n))| < |ω| for any
n ∈ ω.
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2.6 Fuzzy Classes

Although the fuzzy sets in U are the major objects in our theory, it is useful,
similarly to the set theory, to introduce the concept of fuzzy class in U.

Definition 9. Let U be a universe of sets over L. A class function A : Z −→ L
(in ZFC) is called a fuzzy class in U if Z ⊆ U.

Note that each fuzzy set is a fuzzy class because of (U1), but not vice versa.
Hence, a fuzzy class A is said to be proper if there is no fuzzy set which is identical
to A up to negligibility (the relation ≡ is extended here to fuzzy classes).

Fuzzy class relations are defined similarly to fuzzy set relations, only fuzzy
sets are replaced by fuzzy classes. For the purpose of this paper, we introduce
the fuzzy class equivalence and fuzzy class partial ordering.

Definition 10. A fuzzy class relation R : Z × Z −→ L is called a fuzzy class
equivalence if for any a, b, c ∈ Z, it satisfies

(FE1) R(a, a) = 
,
(FE2) R(a, b) = R(b, a),
(FE3) R(a, b) ⊗ R(b, c) ≤ R(a, c).

3 Cantor’s Equipollence

In set theory, two sets are equipollent (equipotent, equivalent, bijective, or
have the same cardinality, etc.) if there exists a 1-1 correspondence between
them. This definition was proposed by G. Cantor. Formally, the class relation of
equipollence denoted by ∼ is introduced on the class of all sets as follows:

x ∼ y iff ∃f : x 1-1
corr−→ y. (10)

Obviously, the equipollence of sets is a class relation extending the relation to
be identical sets. One can see that the substitution of fuzzy sets for the sets in
(10) does not reflect the idea that fuzzy sets being identical up to negligibility
should be also equipollent. Furthermore, the restriction to particular fuzzy sets
in (10) the consistency of our theory is broken as the following simple examples
demonstrate.

Example 3. Let x = {a, b} and y = {c, d, e}. Let A = χx and B = χz, where
z = {c, d} ⊂ y. Obviously, the set Fcfs(A,B) is empty because there is no 1-1
correspondence between the domains of A and B; hence, A ∼ B. On the other
hand, there is a function f such that f : x 1-1

corr−→ z; therefore, naturally it should
be A ∼ B.

Example 4. Let ω be the set of natural numbers, and assume that ω ∈ U. Let
L�L be the �Lukasiewicz algebra, and let N,O : ω −→ [0, 1] be fuzzy sets defined
by

N(n) = 1 and O(n) =
{

1, if n is an odd number,
0, otherwise,
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for any n ∈ ω. Obviously, the set Fcfs(N,O) is empty even if there exists a 1-1
correspondence f : ω −→ ω; hence, N ∼ O. On the other hand, the sets of odd
numbers and natural numbers are equipollent; therefore, it should be N ∼ O.

To overcome the aforementioned difficulties and simultaneously to accept
fuzzy sets that differ up to negligible elements to be identical we propose the
following definition of the equipollence of fuzzy sets.

Definition 11. Let A,B ∈ F(U). We say that A and B are Cantor’s equipollent
(symbolically A c∼ B) provided that there exist A′ ∈ cls(A), B′ ∈ cls(B), and
f ∈ Fcs such that f : A′ 1-1

corr−→ B′.

The following theorem states a necessary and sufficient condition reducing the
verification of Cantor’s equipollence to two specific fuzzy sets that are identical
to the original ones up to negligibility.

Theorem 4. Let A,B ∈ F(U), and let C ∈ cls(A) and D ∈ cls(B) such that
S (C) = D(C) and S (D) = D(D). Then A c∼ B if and only if there exists
f : C 1-1

corr−→ D.

Proof. If A c∼ B, then there exist A′ ∈ cls(A), B′cls(B) and f : A′ 1-1
corr−→ B′. A

simple consequence of Cantor’s equipollence, we find that A′(x) = ⊥ if and only
if B′(f(x)) = ⊥. Hence, f restricted to S (A) must be a 1-1 correspondence
between the supports of A and B such that A(x) = B(f(x)) for any x ∈ S (A).
Therefore, f � S (A) : C 1-1

corr−→ D, and the sufficient part is proved. Since the
necessary part follows immediately from the definition of Cantor’s equipollence,
the statement is proved. ��

The equipollence of sets is a class equivalence. The same holds for the Can-
tor’s equipollence of fuzzy sets.

Theorem 5. The class relation c∼ is a class equivalence on U.

The following lemma provides an equivalent definition of Cantor’s equipol-
lence of fuzzy sets based on the classical equipollence of α-levels.

Lemma 1. A c∼ B if and only if |Aα| = |Bα| for any α ∈ L \ {⊥}.
Proof. (⇒) Let A c∼ B. By Theorem 4, we may assume that the domains and the
supports of A and B coincide. If f : A 1-1

corr−→ B is the respective 1-1 correspondence,
then, for any α ∈ L \ {⊥}, we simply find that Aα = ∅ if and only if Bα = ∅;
otherwise, we have f→(Aα) = Bα. Hence, |Aα| = |Bα| for Aα = ∅. If Aα = ∅,
then f � Aα : Aα 1-1

corr−→ Bα, which implies that |Aα| = |Bα|.
(⇐) Let |Aα| = |Bα| for any α ∈ L \ {⊥}. Since

S (A) =
⋃

α∈L\{⊥}
Aα
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and A(x) = α if and only if x ∈ Aα (note that Aα ∩ Aβ = ∅ whenever α = β),
and similarly for B, we find that a 1-1 correspondence f between A and B can
be derived as

f :=
⋃

α∈L\{⊥}
fα,

where fα is an arbitrary 1-1 correspondence of Aα onto Bα for any α ∈ L \ {⊥}.
Note that f(x) = fα(x) if and only if x ∈ Aα; therefore, f : S (A) 1-1

corr−→ S (B)
such that A(x) = B(f(x)); hence, we obtain A c∼ B. ��

The following theorem is Cantor’s theorem for fuzzy sets based on the
equipollence relation c∼.

Theorem 6 (Cantor’s theorem). A  c∼ P(A).

Proof. Let A ∈ F(U). First, we show that P(Aα) ⊆ P(A)α for any α ∈ L \ {⊥}.
From the fuzzy power set definition, if y ⊆ Aα (including y = ∅), then P(A)(y) =∧

x∈y A(x) = α; therefore, y ∈ P(A)α, which means that P(Aα) ⊆ P(A)α.
The statement is a simple consequence of Lemma 1 and the fact that |Aα| <
|P(Aα)| ≤ |P(A)α|. ��

4 Graded Cantor’s Equipollence

We say that fuzzy sets A,B ∈ F(U) have cardinal separable supports if

|S (A)| ≤ |D(B) \ S (B)| and |S (B)| ≤ |D(A) \ S (A)|. (11)

In [8], we have introduced the graded version of Cantor’s equipollence. The
following definition of graded Cantor’s equipollence has been presented in [6].

Definition 12. Let A,B ∈ F(U), and let C ∈ cls(A) and D ∈ cls(B) be fuzzy
sets that have cardinal separable supports and |D(C)| = |D(D)|. We say that A
and B are Cantor’s equipollent in the degree α provided that

α =
∨

f∈Fcs(D (C),D (D))

[f : C 1-1
corr−→ D]. (12)

We use c≈ to denote the fuzzy class relation of being Cantor’s equipollent in
a certain degree and the value [A c≈ B] denotes the truth degree in which the
fuzzy sets A and B are Cantor’s equipollent.

Definition 13. The fuzzy class relation c≈ is called the graded Cantor’s equipol-
lence of fuzzy sets.

It is well known that a ∼ b implies P(a) ∼ P(b) in set theory. The following
theorem is a natural extension of this statement for fuzzy sets.
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Theorem 7. Let A,B ∈ F(U). Then,

[A c≈ B] ≤ [P(A) c≈ P(B)]. (13)

Proof. Let A,B ∈ F(U). Without lost of generality (due to Theorem 2), we
assume that A and B have cardinal separable supports and |D(A)| = |D(B)|.
For A = B = ∅, the statement is a trivial consequence of Theorem 2. Let A = ∅
or B = ∅. Recall that D(P(A)) = P(D(A)). For any f ∈ Fcs1-1

corr(D(A),D(B)),
let us define f→ : D(P(A)) −→ D(P(B)) by

f→(y) = {f(x) | x ∈ y}, y ∈ D(P(A)). (14)

Obviously, f→ ∈ Fcs1-1
corr(D(P(A)),D(P(B))) and

[P(A) c≈ P(B)] ≥
∧

y∈D (P (A))

(
P(A)(y) ↔ P(B)(f→(y))

)

=
∧

y∈D (P (A))

(( ∧

x∈y

A(x)
) ↔ ( ∧

z∈f→(y)

B(z)
)) ≥

∧

y∈D (P (A))

∧

x∈y

(A(x) ↔ B(f(x)))

=
∧

x∈D (A)

(A(x) ↔ B(f(x))) = [f : A 1-1
corr−→ B].

Since the previous inequality holds for any f ∈ Fcs1-1
corr(D(A),D(B)), we obtain

[P(A) c≈ P(B)] ≥
∨

f∈Fcs1-1corr(D (A),D (B))

[f : A 1-1
corr−→ B] = [A c≈ B],

and the proof is finished. ��
One can observe that A  c∼ P(A) does not imply [A c≈ P(A)] < 
. In

other words, if there is no 1-1 correspondence between A and P(A), we cannot
immediately exclude that the fuzzy sets A and P(A) are equipollent in degree

, where 
 is a result of the supremum operation in (12). Nevertheless, this
claim is true and can be considered as a graded version of Cantor’s theorem.

Theorem 8 (Graded version of Cantor’s theorem). [A c≈ P(A)] < 
.

Since the proof is long we left it out in the paper. The following example
demonstrates the graded version of Cantor’s theorem on the fuzzy set from
Example 2.

Example 5. Assume that L is the �Lukasiewicz algebra, and let A : ω −→ [0, 1]
be the fuzzy set defined by A(n) = 1/n . Since P(A)(∅) = 1, the evaluation of
[A c≈ P(A)] is based on one-to-one correspondences f , for which f(1) = ∅ and
f(2) = {1} or f(1) = {1} and f(2) = ∅. Obviously, [f : A 1-1

corr−→ P(A)] = 1/2,
which follows from A(1) ↔ P(A)(∅) = 1 = A(1) ↔ P(A)({1}) and A(2) ↔
P(A)(∅) = 1/2 = A(2) ↔ P(A)({1}). Since there is no one-to-one correspon-
dence in a degree α, which is greater than 1/2, we obtain [A c≈ P(A)] = 1/2.
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5 Conclusion

In this contribution, we proposed a novel concept of fuzzy power sets of a fuzzy
set defined over the set of crisp subsets of the universe of discourse and analyzed
the validity of Cantor’s theorem for it with respect to types of equipollences of
fuzzy sets. We gave preference to this simpler definition over the Bandler-Kohout
concept of fuzzy power set to ensure the soundness of fuzzy set theory, which is
built in the framework of a universe of fuzzy sets. Nevertheless, if the Bandler-
Kohout fuzzy power sets exist in a universe of sets, a similar analysis can be
provided, but this is a subject of our future research.

Acknowledgments. This work was supported by the project LQ1602 IT4Innovations
excellence in science.
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Abstract. Graph-based data representation formats enable more
advanced processing of data that leads to better utilization of infor-
mation stored and available on the web. Intrinsic high connectedness of
such representation provides a means to create methods and techniques
that can assimilate new data and build knowledge-like data structures.
Such procedures resemble a human-like way of dealing with information.

In the paper, we focus on processing a knowledge graph data. In par-
ticular, we propose a simple way of clustering pieces of data that contain
levels of uncertainty associated with them. That uncertainty is a result
of collecting data from multiple sources. It is due to the fact that infor-
mation about the same entities occurs a number of times and can be
inconsistent. Existence of a number of ‘alternative’ pieces of data means
that we can associate with them different levels of uncertainty. In order
to accomplish that, we represent pieces of data from knowledge graphs
as propositions with multiple alternatives. Each alternative is associ-
ated with an uncertainty value expressing its ‘correctness’, i.e., a level of
confidence that a given alternative represents an accurate piece of infor-
mation. Those values are generated based on frequency of occurrence
and consistency of alternatives. Our method is designed to cluster such
propositions. The methodology is presented together with a number of
illustrating examples.

Keywords: Knowledge graph · Propositions · Uncertainty · Clustering

1 Introduction

In order to fully utilize web data, i.e., to ‘create’ data structures reflecting lev-
els of uncertainty in data found on the web and to use that data to extract
knowledge, we need techniques that process data and information in a more
‘intelligent’ way. Existence of multiple sources of information on the web means
that the same entities could be described with the same or different statements.
Quite often, there is no clarity if we deal with correct or not information. Fol-
lowing a human-like approach, we would like to have an approach that is able

c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 855, pp. 715–726, 2018.
https://doi.org/10.1007/978-3-319-91479-4_59
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to determine, based on all found statements and frequency of their occurrence,
which pieces of information are correct and what levels of uncertainty we can
associate with them.

In our previous work [1–4], we have proposed to use elements of participatory
learning [5,6] for a process of aggregating collected pieces of information repre-
senting alternatives of statements describing a single entity. The process is able
to determine a level of uncertainty associated with each alternative applying ele-
ments of possibility theory. The approach is suitable for processing graph-based
data format. Each set of alternative statements about an entity is represented
as a proposition. Propositions are built based on segments of knowledge graphs
in a form of Resource Description Framework (RDF) triples [7].

In this paper, we address a problem of clustering entities represented as sets
of proportions with uncertainty. We propose a simple cosine similarity measure
based technique for determining similarity between propositions. The process
leads to building a similarity matrix for clustering purposes.

2 Knowledge Graph Representation

One of the most important contributions of the Semantic Web concept [8] is the
Resource Description Framework (RDF) [7]. This framework is a graph-based
format of representing data on the web. The key RDF concept is to represent
a piece of data as a triple: <subject-property-object>, where the subject is
an entity being described, the object is an entity describing the subject, and
the property is a ‘connection’ between the subject and object. For example,
Edmonton is city is a triple with Edmonton as its subject, is its property, and
city its object.

In general, a subject of one triple can be an object of another triple, and
vice versa. The growing presence of knowledge graphs as a data representation
format on the web, and Resource Description Framework (RDF) in particular,
brings opportunity to develop new ways how data is processed, and what type
of information is generated from it.

2.1 RDF Triples as Definitions of Entities

A single RDF triple <subject-property-object> can be perceived as a fea-
ture of an entity represented by object. In other words, an individual triple is
a statement about the entity, and multiple triples with the same subject con-
stitute a set of statements about the entity. An illustration of this is shown in
Fig. 1(a). It is a set of RDF triples – statements – about Edmonton. If we think
‘graphically’ about it, an RDF-based description of entity resembles a star with
an subject as its core and tuples <...-property-object> as its rays. We will
call it an RDF-star.
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Fig. 1. Resource Description Framework: RDF-based definition of entity – RDF-star
(a); evaluation of similarity of RDF-stars (b).

2.2 Similarity of RDF Triples

Evaluation of similarity between RDF-stars is a fundamental process required for
clustering. The simplest way of determining similarity between two RDF-stars
is to enumerate a number of shared statements/features between both stars.
Such a feature-based similarity measure resembles the Jaccard’s index [9]. In the
case of RDF-stars, it nicely converts into checking how many nodes are shared
between two entities. The idea is presented in Fig. 1(b). The entities Edmon-
ton and Toronto share a number of nodes that are connected to the entities
representing both cities with the same property (black circles in Fig. 1(b)).

2.3 RDF Data Processing

With a growing number of RDF triples on the web – more than 62 billions
right now (http://stats.lod2.eu) – processing data represented as RDF triples is
gaining attention. There are multiple works focusing on RDF data storage and
querying strategies using a specialized query language SPARQL [10]. More and
more publications look at handling RDF triples directly.

The work described in [11] looks at the efficient processing of information in
RDF data sources for detecting communities. A process of identifying relevant
datasets for a specific task or topic is addressed in [12]. A hierarchical clustering
algorithm is used for inferring structural summaries to support querying Linked
Data sources in [13]. Linked data classification is a subject of the work presented
in [14], while an approach for formalizing the hierarchy of concepts from linked
data is described in [15].

3 Aggregation and Learning Process – Overview

RDF data contained in repositories represents, in majority of cases, specific
pieces of information and statements. Such a vast amount of data can and should
be utilized to support learning and knowledge extraction processes. Repeated
occurrences of data describing the same entities, missing and/or conflicting pieces

http://stats.lod2.eu
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of data – all of these should be considered and analyzed in order to create a realis-
tic representation of underlying information. Such representation should reflect
strength and weaknesses of data collected from multiple sources, and should
enable further processing leading to construction of definitions of entities [16].

Figure 2 illustrates our approach to aggregate data about the same entities
from multiple sources, and use these aggregated views of entities for constructing
definitions of concepts. The approach uses data in a form of knowledge graphs
that are further represented as propositions containing alternatives equipped
with levels of uncertainty associated with them.

Fig. 2. Aggregation/Learning Process: multiple data sources – A,B, . . . , N – with
descriptions of the same entities (I); aggregation of data about the same entities –
aggregated data about Edmonton, and other cities (different thickness of lines indicate
different levels of uncertainty associated with statements about entities) (II); and clus-
tering of aggregated data – a snapshot of hierarchy defining city.

As it can be seen, Fig. 2, pieces of data about the same entities – RDF
triples – can be found in multiple data repositories. Each repository, no matter
where located, can contain the same or different information about the same
entities. Therefore, the first step is dedicated to aggregation of information (RDF
triples) and creation of ‘definitions’ of individual entities. It should contain all
pieces of information found in all repositories. Also, it should include levels of
uncertainty associated with each statement. The uncertainty values reflect levels
of significance of statements determined based on the collected data. The work
related to that task has been presented in [1–4].

Once the aggregation process is performed, the obtained definitions of enti-
ties are clustered. Such an operation leads to creation of definitions of concepts.
The advantage of using entity definitions with levels of uncertainty in statements
would mean building definitions (clusters) of concepts that reflect levels of con-
fidence in statements (RDF triples). In other words, we look for and propose
a process that clusters entity definitions when levels of uncertainty associated
with different statements are considered and influence a clustering process.
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4 RDF Triples and Propositions

An essential component of the proposed process of clustering RDF data/triples
is representing a single RDF triple, i.e., a statement about an entity, as a
proposition. Eventually, a proposition enables expressing degrees of possibility
associated with a number of alternative statements. This section explains the
conversion from RDF triples to propositions.

4.1 Propositions in Participatory Learning

In a version of participatory learning adopted for propositional knowledge [6], all
statements about an entity are represented as propositions. A single proposition
is of a format:

Pi : Vi is Si(x) (1)

where a variable Vi is defined over the domain X, Si is a fuzzy subset of X, and
Si(x) is a degree of possibility that x is a value of Vi. For example, a proposition
representing a degree of possibility a that the statement ‘Edmonton is located
in Canada’ is:

Plocation : VCountry is S(Canada) = a (2)

Another way of representing it (Eq. 1) is:

Pi : Vi is
Si(x)

x
(3)

and then:
Pcountry : VCountry is

a

Canada
(4)

In general, a proposition could be equipped with a level of certainty [6]:

Pi : Vi is Si(x) is αi − certain (5)

where αi represents a degree of certainty in correctness of the statement. Accord-
ing to Zadeh’s theory of approximate reasoning [17], we can transform such a
propositions into its equivalent non-qualified form:

Pi : Vi is Si(x) is αi − certain =⇒ Vi is Fi(x) (6)

where
Fi(x) = max(Si(x), 1 − αi) = Si(x) ∨ (1 − αi) (7)

In a case of multiple x’s, a proposition takes the form:

Pi : Vi is Si : {a1

x1
,
a2

x2
, . . . ,

an

xn
} (8)

where a1, a2, . . . , an are degrees of possibility that the variable Vi assumes values
x1, x2, . . . , xn ∈ X, respectively.
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4.2 RDF Triples as Propositions, Their Aggregation

The ability to perceive an RDF triple as a single statement about an entity
leads to a very important observation that becomes a basic idea of ‘treating’
RDF based data as a set of propositions. We state that each RDF triple is a
single proposition defined on the domain of values that can be assigned to the
triple’s property. For example, the highlighted triple in Fig. 1:

Edmonton – country – Canada

can be expressed as a proposition:

Pi : VCountry is Si :
{

1.0
Canada

,
0.0

other values of VCountry

}
(9)

where VCountry is a variable, and Si is a fuzzy subset where Canada is asso-
ciated with 1.0, while all other possible values of VCountry have value of 0.0.
This means that the Edmonton’s country is Canada, and that there is a high
certainty that this is a correct statement. Please note, we have added a value
other values of VCountry to indicate that possibility of VCountry assuming other
values is 0.0. An introduction of such alternative value sets up a stage for ‘accept-
ing’ other values (see below).

Collecting statements on the web can result in information that could con-
firm what is already known, i.e., new statements are the same as the ones we
know, or they contradict what is known, i.e., new statements could be differ-
ent. In both cases, we provide a mechanism for aggregating both pieces of data,
and determining levels of uncertainty associated with them. The details of the
mechanism are presented in [1]. If we have a statement:

Pi : VCountry is Si :
{

1.0
UK

,
0.0

other values of VCountry

}
(10)

that should be aggregated with the statement presented in Eq. 9, then the
result is:

Pi : VCountry is Si :
{

0.8
Canada

,
0.6
UK

,
0.0

other values of VCountry

}
(11)

The values of 0.8 and 0.6 are exemplary ones. At this time, we would like to
emphasis the fact that if we have the following proposition:

Pi : VCountry is Si :
{

1.0
Canada

,
1.0

other values of VCountry

}
(12)

then we state that both locations Canada and other values are equally possible
to a degree of 1.0. In other words, this means ‘I do not know’.

Example I. Let us take a look at a little bit more general case. One source of
data has the following two propositions:

PropA1 : VCountry is SLP :
{

aA

Canada
,

bA
UK

,
cA

other values

}
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PropA2 : VTimeZone is STZ :
{

xA

MST
,

yA
other values

}

while the other two propositions from a different source are:

PropB1 : VCountry is SLP :
{

aB

Canada
,

bB
US

,
cB

other values

}

PropB2 : VCityPopulation is SCP :
{

xB

1200k
,

yB
1300k

,
zB

other values

}

Now we would like to aggregate information from both sources A and B. We
obtain:

Prop1 : VCountry is SLP :
{

a1

Canada
,

a2

UK
,

a3

US
,

a4

other values

}

Prop2 : VTimeZone is STZ :
{

xA

MST
,

yA
other values

}

Prop3 : VCityPopulation is SCP :
{

xB

1200k
,

yB
1300k

,
zB

other values

}

The values a1, a2, a3, a4 are determined using the participatory learning rules
adopted for aggregating propositions with uncertainty [1].

4.3 Clustering of RDF-Based Propositions

A process of building categories involves clustering of RDF-stars, and to be more
specific, entity definitions represented as sets of i = 1, . . . , N propositions:

Prop1 : VProp1 is SProp1 :
{

a1
1

x1
1

,
a1
2

x1
2

, . . . ,
a1
p

x1
p

}

...

PropN : VPropN
is SPropN

:
{

aN
1

xN
1

,
aN
2

xN
2

, . . . ,
aN
q

xN
q

}
(13)

where ai
1, a

i
2, . . . , a

i
n are degrees of possibility that the variable VPropi

of the
proposition Propi assumes alternatives xi

1, x
i
2, . . . , x

i
n ∈ X, respectively. In

other words, each definition of entity obtained as a result of the aggregation
process (Sect. 4.2), is a set of propositions (Eq. 13).

A clustering process starts with construction of a similarity matrix. Once a
set of triples (RDF-stars) is obtained, for example due to a collection process
performed by an agent followed by the aggregation process, similarity values
should be determined for all pairs of entity definitions. Such similarity matrix is
an input to a hierarchical clustering algorithm. The result is a hierarchy of clus-
ters (groups of entity definitions) with the most specific clusters at the bottom,
and the most abstract one (one that contains everything) at the top.
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The main contribution of this paper is a procedure suitable for determining
similarity between propositions with uncertainty – an essential ‘ingredient’ of
building a similarity matrix. Let us explain the idea first. We have two proposi-
tions Propi and Propj :

Propi : VPropi
is SPropi

:
{

ai
1

xi
1

,
ai
2

xi
2

,
ai
3

xi
3

}
(14)

Propj : VPropj
is SPropj

:
{

aj
1

xj
1

,
aj
2

xj
2

,
aj
3

xj
3

,
aj
4

xj
4

}
(15)

and let xi
1 = xj

1 = x1 and xi
3 = xj

4 = x2, while xi
2, x

j
2, x

j
3 are different.

We create a vector based on the union of all different alternatives. So, in our
case it will be:

vPropi, Propj
= [ x1, x2, xi

2, xj
2, xj

3 ] (16)

Based on the vector of alternatives (Eq. 16), we create two vectors with numerical
values, where each of them represents a given proposition using its uncertainty
values. As the result, we obtain:

vi = [ai
1, ai

3, ai
2, 0.0, 0.0 ] (17)

vj = [aj
1, aj

4, 0.0, aj
2, aj

3] (18)

In order to determine a degree of similarity between both propositions, we
use cosine similarity measure:

Sim(V i, V j) =
V i · V j

||V i||2 ||V j ||2 (19)

To generalize, let EA and EB be two entities we want to determine similarity
of. The entity EA is defined by a set of RDF triples:

EA = {< EA − pAi − OA
ik >,where i = 1, . . . , MA, k = 1, . . . , NA

i } (20)

while the entity EB is of the form:

EB = {< EB − pBj − OB
jt >,where j = 1, . . . ,MB , t = 1, . . . , NB

j } (21)

We generate a set OAB = OA
ik ∪ OB

jt for i = 1, . . . ,MA, k = 1, . . . , NA
i , and j =

1, . . . ,MB , t = 1, . . . , NB
j . This set contains all alternatives of all properties

of both entities. The cardinality of OAB is identified as n. Now, we represent
both entities as sets of MA propositions (Eq. 13) describing the entity EA, and
MB proposition representing the entity EB . Please note, that a proposition
representing a single property contains all its alternatives. Then, two vectors are
built: V A = [vA

1 , . . . , vAn ] and V B = [vB
1 , . . . , vBn ] where the values are uncertainty

levels associated with alternatives existing in the propositions, or 0.0 in the case
a given entity does not have a particular alternative. The final value of similarity
is determined using cosine similarity measure (Eq. 19).
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Example II. Let us go back to Example I that contains two sets of propositions:
PropA1 and PropA2 describing an entity EA, and PropB1 and PropB2 describing
an entity EB . The vector of all alternatives is as follows:

v = [Canada, UK,US, other valuesLoc,

MST, other valuesTZ ,

1200k, 1300k, other valuesCP ]

Based on it, we create two vectors. Each of them describing a single entity:

vA = [aA(Canada), bA(UK), 0.0(US), cA(other valuesC),
xA(MST ), yA(other valuesT ),
0.0(1200k), 0.0(1300k), 0.0(other valuesCP ]

vB = [aB(Canada), 0.0(UK), bB(US), cB(other valuesC),
0.0(MST ), 0.0(other valuesT ),
xB(1200k), yB(1300k), zB(other valuesCP ]

The similarity between both RDF-triples, i.e., sets of propositions, i.e., two vec-
tors vA and vB, is calculated using cosine measure (Eq. 19).

5 Clustering of Propositions: Examples

In order to illustrate a clustering process and the influence of uncertainty on the
obtained clusters, we include the results of a simple example of utilization of the
presented method on six RDF stars/entities downloaded from dbpedia.org and
representing different cities. Three of the cities are from France: Paris, Marseille,
and Lyon; and three from US: Houston, Chicago, and Los Angeles.

5.1 Scenario I

The first experiment focuses on clustering all six cities when a full information
about two of them – one from France one from US – become ‘more and more’
uncertain. The intermediate results of the clustering with increased levels of
uncertainty are shown in Fig. 3.

The first dendogram (Fig. 3a) shows the clustering with the ‘original’, i.e.,
without uncertainty, information about cities. The second one (Fig. 3b) illus-
trates changes in clustering – properties of Paris and Houston have a level of
uncertainty of 0.4, while the next two dendograms illustrates the results of clus-
tering when levels of uncertainty increased to 0.6 and 1.0 (do not know state),
respectively.

As expected, both cities that are associated with increased levels of uncer-
tainty are ‘drawn’ to each other. The distance (Ward’s distance) between them
shrinks, compare Fig. 3b with Fig. 3c, and with Fig. 3d. At the very end, they
create a group by themselves.
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Fig. 3. Dendograms of clustering results: uncertainty for all properties of two cities
Paris and Houston gradually increase: – no uncertainty (a); – uncertainty 0.4 (b); –
uncertainty 0.6 (c) ; – uncertainty 1.0 (d).

5.2 Scenario II

The second example shows how clustering results change in the case when only
a few properties reach the status do not know. The experiment also targets two
cities: Paris and Houston, Fig. 4.

As before Fig. 4a illustrates the initial – no uncertainty – situation. Figure 4b
shows grouping when one property, type, exhibits uncertainty of 0.6. As we can
see, besides smaller values of distances, the hierarchy stays the same. Situation
changes when level of uncertainty of 0.6 ‘spreads’ among top five properties:
type, subject, seeAlso, abstract, externalLink. The last dendogram show a total
degradation of certainty across all properties.

5.3 Scenario III

The last experiment addresses a situation when two pairs of cities have uncer-
tainties associated with different properties. Two sets of cities are used: Paris
and Houston; and Lyon and Chicago. The first pair has not definite information
for properties type, subject, while the second pair for properties abstract, seeAlso.
Figure 5a show the initial – all is known – situation, while Fig. 5b, the situation
do not know. As we can see, the distances are smaller when compared with the
initial situation. However, they are larger when compared with Figs. 3d and 5d
due to the fact that only two properties experiences uncertainty compared with
all of them for Scenarios I and II.
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Fig. 4. Dendograms of clustering results: uncertainty for selected properties of two
cities Paris and Huston: – no uncertainty (a); – uncertainty 0.4 for one property (b); –
uncertainty 0.6 of five top properties (c); – uncertainty 1.0 of five top properties (d).

Fig. 5. Dendograms of clustering results: uncertainty for selected properties of two
pairs of cities: – no uncertainty (a); – uncertainty 0.6 of five top properties (b).

6 Discussion and Conclusion

The paper introduces a simple methodology for determining similarity between
entities that are represented as sets of propositions with uncertainty. Each propo-
sition is a collection of alternative statements describing a single feature of the
entity. Further, each alternative is associated with a level of uncertainty express-
ing a degree of confidence in its correctness. Those propositions are constructed
based on RDF triples that are building blocks of knowledge graphs.

We show details of transforming sets of propositions describing two entities
into two vectors of uncertainty levels associated with alternative statements. That
leads to representing a single entity as a single vector. Once two vectors are cre-
ated a cosine similarity measure is used to determine similarity between vectors –
entities. We illustrate the proposed approach with a number of examples.
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Robust Lookup Table Controller
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Abstract. This paper proposes a robust lookup table controller based
on piecewise multi-linear model for nonlinear systems with parametric
uncertainty. We construct a piecewise multi-linear model of a nonlinear
system. The model is a nonlinear approximation and the model can be
derived from fuzzy if-then rules with singleton consequents. The piece-
wise model can be expressed as a lookup table. The model dynamics is
described by multi-linear interpolation of the lookup table elements. We
design a robust piecewise multi-linear controller for the piecewise model
via feedback linearization. The robust piecewise controller can be also
expressed as a lookup table. We apply the robust lookup table controller
to ball and beam system as a nonlinear system with parametric uncer-
tainty. Examples are shown to confirm the feasibility of our proposals by
computer simulations.

Keywords: Lookup table · Robust control · Parametric uncertainty
Feedback linearization · Piecewise model

1 Introduction

A lookup table (LUT) is an array of data that maps input values to output
values. Because LUT can reduce computational load and time, it is widely used
in various fields. LUT is also widely used in control engineering [1,2], especially
industrial fields [3,4]. However many control systems with LUT controllers do
not take into account the stability analysis because it is very difficult to analyze
the stability.

This paper proposes a robust nonlinear control system represented by LUTs
based on piecewise multi-linear (PMLs) models. We construct a PML model of a
nonlinear system. The piecewise model is a nonlinear approximation. The model
is built on hyper cubes partitioned in state space and is found to be multi-linear
[5], so the model has simple nonlinearity. The model has the following features:
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(1) The PML model is derived from fuzzy if-then rules with singleton conse-
quents. (2) It has a general approximation capability for nonlinear systems. (3)
It is a piecewise nonlinear model and second simplest after the piecewise linear
(PL) model. (4) It is continuous and fully parametric. The stabilizing conditions
are represented by bilinear matrix inequalities (BMIs) [6], therefore, it takes
long computing time to obtain a stabilizing controller. To overcome these difficul-
ties, we have derived stabilizing conditions [7–9] based on feedback linearization,
where [7,9] apply input-output linearization and [8] applies full-state lineariza-
tion. The control system has the following features: (1) It is not necessary to get
the overall model dynamics of an objective plant, but only the vertex values of
the plant. (2) These control systems are applicable to a wider class of nonlin-
ear systems than conventional feedback linearization. (3) The piecewise model
can be also expressed as an LUT. The internal model dynamics is described by
multi-linear interpolation of the LUT elements. Because the piecewise model has
an approximation error it is necessary to design a robust controller. We design
a robust piecewise controller for the PML model via feedback linearization. The
robust piecewise controller can be also expressed as an LUT.

This paper is organized as follows. Section 2 introduces the canonical form
of PML models. Section 3 briefly presents ball and beam (BAB) system as a
nonlinear system. Section 4 proposes an LUT model based on PML models for
BAB system via feedback linearization. Sections 5 and 6 propose LUTs controller
and robust controller based on PML models via feedback linearization. Section 7
shows an example demonstrating the feasibility of the proposed methods. Finally,
Sect. 8 summarizes conclusions.

2 Canonical Forms of Piecewise Multi-linear Models

2.1 Open-Loop Systems

In this section, we introduce PML models suggested in [5]. We deal with the two-
dimensional case without loss of generality. Define vector d(σ, τ) and rectangle
Rστ in two-dimensional space as d(σ, τ) ≡ (d1(σ), d2(τ))T ,

Rστ ≡ [d1(σ), d1(σ + 1)] × [d2(τ), d2(τ + 1)]. (1)

σ and τ are integers: −∞ < σ, τ < ∞ where d1(σ) < d1(σ+1), d2(τ) < d2(τ +1)
and d(0, 0) ≡ (d1(0), d2(0))T . Superscript T denotes a transpose operation.

We consider a two-dimensional nonlinear system: ẋ = f(x). For x =
(x1, x2) ∈ Rστ , the PML system is expressed as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ =fp(x) =
σ+1∑

i=σ

τ+1∑

j=τ

ωi
1(x1)ω

j
2(x2)f(i, j),

x =
σ+1∑

i=σ

τ+1∑

j=τ

ωi
1(x1)ω

j
2(x2)d(i, j),

(2)
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where f(i, j) is the vertex of nonlinear system ẋ = f(x),
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ωσ
1 (x1) = (d1(σ + 1) − x1)/(d1(σ + 1) − d1(σ)),

ωσ+1
1 (x1) = (x1 − d1(σ))/(d1(σ + 1) − d1(σ)),

ωτ
2 (x2) = (d2(τ + 1) − x2)/(d2(τ + 1) − d2(τ)),

ωτ+1
2 (x2) = (x2 − d2(τ))/(d2(τ + 1) − d2(τ))

(3)

and ωi
1(x1), ω

j
2(x2) ∈ [0, 1]. In the above, we assume f(0, 0) = 0 and d(0, 0) = 0

to guarantee ẋ = 0 for x = 0.
A key point in the system is that state variable x is also expressed by a

convex combination of d(i, j) for ωi
1(x1) and ωj

2(x2), just as in the case of ẋ.
As seen in Eq. (3), x is located inside Rστ which is a rectangle: a hypercube in
general. That is, the expression of x is polytopic with four vertices d(i, j). The
model of ẋ = f(x) is built on a rectangle including x in state space, it is also
polytopic with four vertices f(i, j). We call this form of the canonical model (2)
parametric expression. Figure 1 shows the expression of f(x).

Fig. 1. Piecewise region (fp1(x) =
∑σ+1

i=σ

∑τ+1
j=τ ωi

1ω
j
2f(i, j), x ∈ Rστ )

3 Ball and Beam System

The dynamics of ball and beam (BAB) system [10] is
{

0 =r̈ + G sin θ − rθ̇2,

τ =(Mr2 + J)θ̈ + 2Mrṙθ̇ + MGr cos θ
(4)
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where J is the moment of inertia of the beam, M is the mass of the ball and G is
the acceleration of the gravity. θ is the angle of the beam and r is the position of
the ball. τ is the torque applied to the beam. Using the invertible transformation

τ =2Mrṙθ̇ + MGr cos θ + (Mr2 + J)u (5)

to define a new input variable u, the system is expressed as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎝

ẋ1

ẋ2

ẋ3

ẋ4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

x2

x1x
2
4 − G sin x3

x4

0

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ u,

y =x1

(6)

where x = (x1, x2, x3, x4)T = (r, ṙ, θ, θ̇).

4 Lookup Table Model Based on PML Models

We construct the PML model of BAB system (6). The nonlinear terms x1x
2
4 and

sin x3 of BAB system are transformed into PML model representations. The
variables of x1, x3 and x4 are divided by m1 vertices, x1 ∈ {d1(1), . . . , d1(m1)},
m3 vertices, x3 ∈ {d3(1), . . . , d3(m3)} and m4 vertices, x4 ∈ {d4(1), . . . , d4(m4)},
respectively. The PML model is expressed as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ =fp + gpu =

⎛

⎜
⎜
⎝

x2

fp2(x1, x3, x4)
x4

0

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ u

y =hp = x1,

(7)

where x ∈ Rρτυ ≡ [d1(ρ), d1(ρ + 1)] × [d3(τ), d3(τ + 1)] × [d4(υ), d4(υ + 1)],

fp2(x1, x3, x4) =f1
p2

(x1, x4) + f2
p2

(x3),

f1
p2

(x1, x4) =
ρ+1∑

i=ρ

υ+1∑

�=υ

wi
1(x1)w�

4(x4)fs1(i, �), fs1(i, �) = d1(i)d4(�)2,

f2
p2

(x3) =
τ+1∑

k=τ

wk
3 (x3)fs2(k), fs2(k) = −G sin d3(k),

ωρ
1(x1) =

(d1(ρ + 1) − x1)
(d1(ρ + 1) − d1(ρ))

, ωρ+1
1 (x1) =

(x1 − d1(ρ))
(d1(ρ + 1) − d1(ρ))

,

ωτ
3 (x3) =

(d3(τ + 1) − x3)
(d3(τ + 1) − d3(τ))

, ωτ+1
3 (x3) =

(x3 − d3(τ))
(d3(τ + 1) − d3(τ))

,

ωτ
4 (x4) =

(d4(τ + 1) − x4)
(d4(τ + 1) − d4(τ))

, ωυ+1
4 (x4) =

(x4 − d4(υ))
(d4(υ + 1) − d4(υ))

,
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ρ, τ and υ are integer: −∞ < ρ, τ, υ < ∞, d1(ρ) < d1(ρ + 1), d3(τ) < d3(τ + 1)
and d4(υ) < d4(υ + 1). The model is found to be fully parametric and its model
can be represented by a Lookup table (LUT). Table 1 shows the LUT model
with respect to fp2(x1, x3, x4). The internal model dynamics is described by
multi-linear interpolation of the lookup table elements (see Fig. 1).

Note that trigonometric functions of BAB system (6) are smooth functions
and are of class C∞. The PML models are not of class C∞. In BAB system
control, we have to calculate the fourth derivatives of the output y. Therefore
the derivative PML models lose some dynamics. In this paper we design a robust
piecewise controller as a countermeasure for the approximation error of PML
model method.

Table 1. LUT model of fp2(x1, x3, x4)

x3 x1 x4

−0.3 −0.15 0 0.15 0.3

−π/8 −2 3.574 3.709 3.754 3.709 3.574

−1 3.664 3.732 3.754 3.732 3.664

0 3.754 3.754 3.754 3.754 3.754

1 3.844 3.777 3.754 3.777 3.844

2 3.934 3.799 3.754 3.799 3.934

−π/16 −2 1.734 1.869 1.914 1.869 1.734

−1 1.824 1.891 1.914 1.891 1.824

0 1.914 1.914 1.914 1.914 1.914

1 2.004 1.936 1.914 1.936 2.004

2 2.094 1.959 1.914 1.959 2.094

0 −2 −0.180 −0.045 0 −0.045 −0.180

−1 −0.090 −0.023 0 −0.023 −0.090

0 0 0 0 0 0

1 0.090 0.023 0 0.023 0.090

2 0.180 0.045 0 0.045 0.180

π/16 −2 −2.094 −1.959 −1.914 −1.959 −2.094

−1 −2.004 −1.936 −1.914 −1.936 −2.004

0 −1.914 −1.914 −1.914 −1.914 −1.914

1 −1.824 −1.891 −1.914 −1.891 −1.824

2 −1.734 −1.869 −1.914 −1.869 −1.734

π/8 −2 −3.934 −3.799 −3.754 −3.799 −3.934

−1 −3.844 −3.777 −3.754 −3.777 −3.844

0 −3.754 −3.754 −3.754 −3.754 −3.754

1 −3.664 −3.731 −3.754 −3.732 −3.664

2 −3.574 −3.709 −3.754 −3.709 −3.574
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5 Lookup Table Controller Based on PML Models
via Feedback Linearization

We define the output as y = x1 in x ∈ Rρστυ, the time derivative of y is calculated
as ẏ = Lfp

hp = x2. The time derivative of y doesn’t contain the control inputs
u. We calculate the time derivative of ẏ. We get

ÿ =L2
fp

hp = fp2(x1, x3, x4) =
ρ+1∑

i=ρ

υ+1∑

�=υ

wi
1(x1)w�

4(x4)fs1(i, �) +
τ+1∑

k=τ

wk
3 (x3)fs2(k).

The time derivative of ẏ also doesn’t contain the control inputs u. We continue
to calculate the time derivative of ÿ. We get

y(3)=L3
fp

hp + Lgp
L2

fp
hpu =

∂f1
p2

(x1, x4)
∂x1

x2 +
∂f2

p2
(x3)

∂x3
x4 +

∂f1
p2

(x1, x4)
∂x4

u. (8)

The piecewise controller u derived from (8) can not be defined at x1 = 0 or x4 =
0. Therefore we consider the following approximate feedback linearization [10].

y(3) ≡L3
fp

hp =
∂f2

p2
(x3)

∂x3
x4 =

fs2(τ + 1) − fs2(τ)
d3(τ + 1) − d3(τ)

x4

We continue to calculate the time derivative of y(3). We get

y(4) =Lgp
L3

fp
hpu =

fs2(τ + 1) − fs2(τ)
d3(τ + 1) − d3(τ)

u

The stabilizing controller of (7) is designed as

u =αc(x) + βc(x)μ (9)

where

αc(x) = −
L4

fp
hp

Lgp
L3

fp
hp

= 0, βc(x) =
1

Lgp
L3

fp
hp

=
d3(τ + 1) − d3(τ)

fs2(τ + 1) − fs2(τ)
,

μ = −Fζc is the linear controller of the following linear system (10).
{

ζ̇c =Acζc + Bcμ,

y =Ccζc,
(10)

where ζc = (hp, Lfp
hp, L2

fp
hp, L3

fp
hp)T , Ac, Bc and Cc are the matrices of the

Brunovsky canonical form. If fs(i) �= fs(i+1) and d3(i) �= d3(i+1), i = 1, . . . , m,
there exists a stabilizing controller (9) of BAB system (7) since det(Lgp

L3
fp

hp) �=
0. Thus we have to construct the PML model of BAB system such that fs(i) �=
fs(i + 1) and d3(i) �= d3(i + 1), where i = 1, . . . , m (see Fig. 2).
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Fig. 2. PML modeling (d3(3) = 0, d3(4) = π/2, d3(5) = π)

Next we consider the PML model of the torque (5).

τp = τp1 + τp2 + τp3u, (11)

where x ∈ Rρστυ,

τp1 =
ρ+1∑

i=ρ

σ+1∑

j=σ

υ+1∑

�=υ

ωi
1(x1)ω

j
2(x2)ω�

4(x4)τs1(i, j, �),

τs1(i, j, �) = 2Md1(i)d2(j)d4(�),

τp2 =
ρ+1∑

i=ρ

τ+1∑

k=τ

ωi
1(x1)ωk

3 (x3)τs2(i, k), τs2(i, k) = MGd1(i) cos d3(k),

τp3 =
ρ+1∑

i=ρ

ωi
1(x1)τs3(i), τs3(i) = Md1(i)2 + J,

Finally we get the torque controller applied to the beam when the controller (9)
is substituted into the torque controller (11).

The torque controller is found to be fully parametric and its controller can be
represented by an LUT. Due to lack of space, the LUT controller at x2 = −π/16
is only showed in Table 2a. The internal model dynamics is described by multi-
linear interpolation of the LUT elements.

6 Robust Lookup Table Controller Based on PML
Models via Feedback Linearization

The PML model is a nonlinear approximation. Therefore it is necessary to design
a robust controller. We design a robust piecewise controller for the piecewise
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multi-linear model via feedback linearization. We design the robust controller
from the following tangent linearized system around an operating point.

ż =Az + Bv, (12)

where A = ∂fp(0)/∂x and B = gp(0). We suppose the distributions G0, G1, ... ,
Gn−1 defined as

G0 = span{g1, g2, . . . , gm},

G1 = span{g1, . . . , gm, adfg1, . . . , adfgm},

...
Gi = span{g1, . . . , gm, adfg1, . . . , adfgm}, i = 0, 1, . . . , n − 1,

satisfy the following hypotheses [11]

(i) Distribution Gi has constant dimension near x = 0 for 0 ≤ i ≤ n − 1
(ii) Distribution Gn−1 has dimension n.
(iii) Distribution Gi is the involutive for 0 ≤ i ≤ n − 2.

Consider system and suppose that fp(x) and gp(x) satisfy hypotheses (i), (ii)
and (iii). Then under the controller

u(x, v) =α(x) + β(x)ν (13)

and the coordinate transformation vector z = ζ(x) defined by

α(x) =αc(x) + βc(x)LT−1, β(x) = βc(x)R−1, ζ(x) = T−1ζc(x),

where

L = − Lgp
L3

fp
hp

∂αc

∂x

∣
∣
∣
∣
x=0

, T =
∂ζc

∂x

∣
∣
∣
∣
x=0

, R =
1

Lgp
L3

fp
hp

,

the system (7) is transformed into the system (12). A robust linear controller
ν is substituted into the controller (13). As discussed in the previous section,
substituting the controller (13) to (11) we get the torque controller τp.

The torque controller τp is also found to be fully parametric and its controller
can be represented by an LUT. Due to lack of space, the LUT controller at
x2 = −π/16 is only showed in Table 2b. The internal model dynamics is described
by multi-linear interpolation of the lookup table elements.

7 Simulation Results

We apply the LUT controller in Table 2a and the robust LUT controller in
Table 2b to a nominal BAB system (4) and a BAB system with parameter
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Table 2. LUT controllers based on PML model (x2 = −π/16)

(a) LUT controller

x4

x3 x1 -0.3 -0.15 0 0.15 0.3
-2 -0.792 -0.962 -1.153 -1.364 -1.595
-1 -0.475 -0.546 -0.621 -0.701 -0.784

−π/8 0 0.246 0.199 0.153 0.107 0.061
1 1.457 1.344 1.234 1.129 1.028
2 3.248 2.957 2.686 2.435 2.205
-2 -1.327 -1.499 -1.690 -1.900 -2.131
-1 -0.701 -0.773 -0.848 -0.927 -1.010

−π/16 0 0.160 0.114 0.067 0.021 -0.025
1 1.340 1.227 1.117 1.012 0.911
2 2.925 2.634 2.364 2.113 1.881
-2 -1.781 -1.953 -2.144 -2.354 -2.584
-1 -0.886 -0.958 -1.033 -1.112 -1.196

0 0 0.077 0.030 -0.016 -0.062 -0.108
1 1.192 1.079 0.970 0.865 0.763
2 2.546 2.256 1.986 1.735 1.503
-2 -2.185 -2.355 -2.546 -2.757 -2.988
-1 -1.043 -1.114 -1.189 -1.269 -1.352

π/16 0 -0.010 -0.057 -0.103 -0.149 -0.195
1 1.000 0.887 0.778 0.672 0.571
2 2.079 1.787 1.516 1.266 1.035
-2 -2.489 -2.659 -2.850 -3.061 -3.292
-1 -1.153 -1.225 -1.300 -1.379 -1.463

π/8 0 -0.094 -0.140 -0.186 -0.232 -0.278
1 0.778 0.665 0.556 0.450 0.349
2 1.551 1.260 0.989 0.738 0.508

(b) Robust LUT controller

x4

x3 x1 -0.3 -0.15 0 0.15 0.3
-2 -0.073 -0.331 -0.661 -1.062 -1.518
-1 0.009 -0.110 -0.246 -0.397 -0.557

−π/8 0 0.585 0.509 0.430 0.350 0.272
1 2.332 2.145 1.967 1.798 1.646
2 5.924 5.418 4.964 4.566 4.239
-2 -1.481 -1.752 -2.087 -2.484 -2.942
-1 -0.566 -0.690 -0.827 -0.977 -1.139

−π/16 0 0.325 0.247 0.168 0.088 0.009
1 1.868 1.677 1.497 1.330 1.175
2 4.735 4.219 3.762 3.366 3.034
-2 -2.833 -3.112 -3.447 -3.837 -4.295
-1 -1.111 -1.238 -1.375 -1.522 -1.683

0 0 0.062 -0.018 -0.097 -0.175 -0.254
1 1.361 1.167 0.987 0.823 0.668
2 3.458 2.935 2.477 2.089 1.757
-2 -4.147 -4.427 -4.758 -5.136 -5.592
-1 -1.632 -1.760 -1.896 -2.037 -2.198

π/16 0 -0.207 -0.288 -0.367 -0.442 -0.520
1 0.803 0.607 0.427 0.269 0.117
2 2.073 1.545 1.091 0.715 0.389
-2 -5.322 -5.610 -5.940 -6.311 -6.767
-1 -2.091 -2.222 -2.357 -2.496 -2.657

π/8 0 -0.465 -0.547 -0.626 -0.699 -0.778
1 0.232 0.034 -0.145 -0.301 -0.454
2 0.675 0.139 -0.315 -0.683 -1.010

variation in computer simulations. To construct the PML model of BAB sys-
tem, the state variables x1, x2, x3 and x4 of BAB system (4) are divided by the
following vertices

x1 ∈{−2, −1, 0, 1, 2}, x2 ∈ {−1, −0.5, 0, 0.5, 1},

x3 ∈{−π/8, −π/16, 0, π/16, π/8}, x4 ∈ {−0.3, −0.15, 0, 0.15, 0.3}.

The initial condition is x(0) = (1, 0, 0, 0)T and the acceleration of the gravity
G = 9.81 [m/s2]. The nominal values of the system parameters are M is 0.1 [kg]
and J = 0.1 [kg·m2]. Figure 3 shows that the control responses x1, . . . , x4 of the
nominal BAB system. In Figs. 4 and 5, we consider the parameter variations with
respect to the mass M of the ball. Figures 4 and 5 show the control responses of
the BAB systems with parameter variations (the masses of the ball: M ′ = 1.1M
and M ′ = 1.2M). The results show that the feasibility of the proposed robust
LUT controller for BAB system with the parameter variations.
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Fig. 3. State responses of nominal BAB system
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Fig. 4. State responses of BAB system with parameter variation (M ′ = 1.1M)
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Fig. 5. State responses of BAB system with parameter variation (M ′ = 1.2M)

8 Conclusions

This paper has proposed a robust lookup table controller based on piecewise
multi-linear model for nonlinear systems with parametric uncertainty. We have
constructed a piecewise multi-linear model of a nonlinear system. The model is
a piecewise multi-linear system and a nonlinear approximation. The piecewise
model can be expressed as a lookup table. The model dynamics is described
by multi-linear interpolation of the lookup table elements. We have designed
a robust piecewise multi-linear controller for the piecewise model via feedback
linearization. The robust piecewise controller can be also expressed as a lookup
table. We have applied the robust lookup table controller to ball and beam
system. Examples have been shown to confirm the feasibility of our proposals
by computer simulations.
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Abstract. Recently, a classification method called Credal C4.5 (CC4.5)
has been presented which combines imprecise probabilities and the C4.5
algorithm. The action of the CC4.5 algorithm depends on a parameter
s. In previous works, it has been shown that this parameter has relation
with the degree of overfitting of the model. The noise level of a data
set can influence on the choice of a good value for s. In this paper, it is
presented a new method based on the CC4.5 method with a refining of
its parameter in the time of training. The new method has an equivalent
performance than CC4.5 with the best value of s for each level noise.

Keywords: Classification · Credal sets · Decision trees
Imprecise probabilities

1 Introduction

An algorithm that designs decision trees, called credal decision trees (CDTs), has
been developed [1] by using Imprecise Dirichlet Model (IDM). In [5,6], the C4.5
algorithm and the theory of CDTs have been related with the presentation of the
Credal C4.5 (CC4.5) algorithm, which uses the split criterion called Imprecise
Info-Gain Ratio (IIGR).

The models CDT and CC4.5, called as credal trees, are suitable to classify
noisy data sets because decision trees are built by using imprecise probabilities.
In this manner, it is supposed that the data sets are not clean.

The parameter s determines the imprecision degree of the probability distri-
butions in the CDTs. According IDM, The probability for each possible value of
a variable is within an interval. This interval is wider if the value of s is higher.
If the value of s is small then we think that the data set is reliable in order to
estimate probabilities. In the previous works, the value s = 1 is always used due
to computational reasons and the recommendation of the author of the IDM
(see [5]). For this reason, the imprecision degree of the probability distributions
was constant.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 855, pp. 739–747, 2018.
https://doi.org/10.1007/978-3-319-91479-4_61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91479-4_61&domain=pdf
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In a recent work [7], it was analyzed the relation between the noise level of a
data set and the action of CC4.5 on this data set with a concrete value for s. It
was concluded that it is important to choose correctly the value for s in terms
of the noise level of a data set. Usually, it is interesting to use high values of s
for data sets with high noise level. However, this is not a rule always correct for
all the data sets, as it can be seen in [7]. It can not be determined a value of s
for each noise level and for all the data sets. Besides, The estimation of the noise
level can be incorrect.

In this paper, it is presented a new method (called cv-CC4.5) where the
value of the s parameter for the CC4.5 algorithm is determined by means of a
parameter selection procedure by cross-validation [4] for each training data set.
An experimental study is finally shown.

2 Credal Decision Trees

The Credal Decision Trees (CDTs) are built by using a split criterion based on
imprecise probabilities and uncertainty measures on credal sets. The mathemat-
ical basis of this procedure can be described as follows: Let Z be a variable with
values in {z1, . . . , zk}. Let us suppose a probability distribution p(zj), j = 1, .., k
defined for each value zj from a data set.

Walley’s Imprecise Dirichlet Model (IDM) [9] is used to estimate probability
intervals from the data set for each value of the variable Z, in the following way:

p(zj) ∈
[

nzj

N + s
,
nzj + s

N + s

]
, j = 1, .., k;

with nzj as the frequency of the set of values (Z = zj) in the data set, N the
sample size and s a given parameter.

This model produces a type of credal set on the variable Z, K(Z) (see Abellán
[2]), defined as

K(Z) =
{

p | p(zj) ∈
[

nzj

N + s
,
nzj + s

N + s

]
, j = 1, .., k

}
.

On this type of sets (credal sets), uncertainty measures can be applied. The
function of the maximum of entropy on the previously defined credal set is used
for building CDTs. This function, denoted as H∗, is defined as

H∗(K(Z)) = max {H(p) | p ∈ K(Z)} ,

where the function H is the Shannon’s entropy function.
An algorithm that calculates the distribution with maximum entropy for

s > 1 is presented in [7].
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3 Credal C4.5

The method to build a Credal C4.5 tree is equivalent to the C4.5 algorithm [8],
the difference is that the CC4.5 algorithm estimates the values of the variables
with imprecise probabilities and calculates split criteria by using uncertainty
measures on credal sets. CC4.5 considers that the training set is not very reliable
because it can be affected by class or attribute noise. So, CC4.5 can be considered
as a proper method for noisy domains.

CC4.5 is defined by changing the Info-Gain Ratio split criterion from C4.5
with the Imprecise Info-Gain Ratio (IIGR) split criterion. This criterion is
defined as: in a classification problem, let C be the class variable, {X1, . . . , Xm}
the set of features, and X a feature; then

IIGRD(C,X) =
IIGD(C,X)

H(X)
,

where Imprecise Info-Gain (IIG) is:

IIGD(C,X) = H∗(KD(C)) −
∑
i

PD(X = xi)H∗(KD(C|X = xi)),

with KD(C) and KD(C|X = xi) are the credal sets obtained by the IDM for the
variables C and (C|X = xi) respectively and for a partition D of the data set (see
Abellán and Moral [1]); PD(X = xi) (i = 1, ..., n) is a probability distribution
of the credal set KD(X).

It is chosen the probability distribution PD from KD(X) that maximizes the
expression

∑
i P (X = xi)H(C|X = xi)). The procedure for calculating PD and

building Credal C4.5 trees can be found in [5,6].

4 The New cv-CC4.5 Classification Method

The cv-CC4.5 algorithm is an extension of the CC4.5 algorithm where the value
of s is established using the training set before using CC4.5. So, this value for s
depends on the data set to be classified and it is calculated before applying the
algorithm. In previous works about CDTs, the value s = 1 was fixed, without
observing the data set to be classified.

In the cv-CC4.5 algorithm, the value for s is determined by cross-validation
from the training data set. So, s is calculated for each training data set. After
that, the CC4.5 algorithm is executed with the calculated value for s.

The k-fold cross-validation [4] is used to find a good value of s for each data
set. The original (training) sample is randomly partitioned into k equal sized
subsamples. Of the k subsamples, a single subsample is retained as the validation
data for testing the built decision tree, and the remaining (k−1) subsamples are
used as training data for designing a credal tree by using the CC4.5 algorithm
with a concrete value for s. The cross-validation process is then repeated k times
(the folds), with each of the k subsamples used exactly once as the validation
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data. The k results from the folds are averaged to produce an estimation of the
goodness of the CC4.5 algorithm with this value of s. 10-fold cross-validation is
commonly used.

The steps of the cv-CC4.5 method to obtain a value for the s parameter by
k-fold cross-validation from a data set are:

(1) The interval [0, smax] is discretized into q values: s1, ..., sq.
(2) For each value si ∈ {s1, ..., sq} a k-fold cross-validation is carried out to

obtain an estimation of the CC4.5 algorithm with s = si when the data set
is classified.

(3) Finally, the value si with the best estimation is selected to be used in the
execution of the CC4.5 algorithm.

5 Experimental Analysis

A group of 50 data sets, obtained from the “UCI repository of machine learning
data sets”, are used. They are anneal, arrhythmia, audiology, autos, balance-
scale, breast-cancer, wisconsin-breast-cancer, car, cmc, horse-colic, credit-rating,
german-credit, dermatology, pima-diabetes, ecoli, Glass, haberman, cleveland-
14-heart-disease, hungarian-14-heart-disease, heart-statlog, hepatitis, hypothy-
roid, ionosphere, iris, kr-vs-kp, letter, liver-disorders, lymphography, mfeat-pixel,
nursery, optdigits, page-blocks, pendigits, primary-tumor, segment sick, solar-
flare2, sonar, soybean, spambase, spectrometer, splice, Sponge, tae, vehicle, vote,
vowel, waveform, wine and zoo.

The C4.5 algorithm from Weka software [10], called J48, was used for
the experimentation. Several methods were added to this software to build
Credal C4.5 trees with the same experimental conditions and s ∈ {0.25, 0.5, 1.0,
1.5, 2.0, 3.0} (for s = 0.0 CC4.5 and C4.5 are equivalent).

For the cv-CC4.5 algorithm, the selection of the value for s by 10-fold cross-
validation was implemented by using the Weka software wrapper method to
perform a parameter selection by cross-validation [4]. In the experimentation for
cv-CC4.5, the interval [0.0,3.0] was discretized into q = 7 values, that is, the
discrete set {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0} was used as possible values for s in
the 10-fold cross-validation process. Once selected the best value for s, the CC4.5
algorithm with this value for s was used to compare with the other algorithms.

By using Weka’s filters, random noise percentages of 0%, 5%, 10%, 20% and
30% were added to the class variable, only in the training data set. Finally, a
10-fold cross validation procedure was repeated 10 times for each data set.

A series of tests were used to compare the methods for a level of significance
of α = 0.05, the following tests were used: a Friedman test to check if all
the procedures are equivalents and a pos-hoc Nemenyi test to compare all the
algorithms to each other (see [3] for more references about the tests).

5.1 Results and Comments

Table 1 presents the average accuracy result for each method and each level
of noise. More details are not shown by limitations of space. Table 2 shows
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Table 1. Average accuracy result for C4.5, CC4.5 (varying s) and cv-CC4.5 on each
level of noise.

Tree Noise 0% Noise 5% Noise 10% Noise 20% Noise 30%

C4.5 82.62 81.77 80.77 78.20 74.14

CC4.5s=0.25 82.45 81.88 80.97 78.67 74.89

CC4.5s=0.5 82.44 81.87 81.10 79.03 75.41

CC4.5s=1.0 82.31 81.85 81.21 79.44 76.38

CC4.5s=1.5 81.96 81.61 81.03 79.58 76.95

CC4.5s=2.0 81.54 81.25 80.77 79.55 77.32

CC4.5s=3.0 81.00 80.67 80.29 79.35 77.44

cv-CC4.5 82.77 82.07 81.29 79.79 77.38

Table 2. Friedman’s ranks of C4.5, CC4.5 (varying s) and cv-CC4.5 on each level of
noise

Tree Noise 0% Noise 5% Noise 10% Noise 20% Noise 30%

C4.5 3.75 4.16 5.32 6.19 6.42

CC4.5s=0.25 3.81 3.81 4.81 5.82 6.00

CC4.5s=0.5 4.01 4.03 3.83 5.24 5.57

CC4.5s=1.0 4.00 4.00 3.61 4.39 4.91

CC4.5s=1.5 4.87 4.58 3.92 3.54 3.88

CC4.5s=2.0 5.84 5.39 4.98 3.60 2.96

CC4.5s=3.0 6.12 6.32 5.83 4.00 2.99

cv-CC4.5 3.61 3.71 3.70 3.22 3.27

Friedman’s ranks (numbers in bold fonts are the best result for each noise level,
numbers in italic fonts are the second best value). Tables 3, 4, 5, 6 and 7 show
the p-values of the Nemenyi test for the methods C4.5, CC4.5 (varying the s
parameter) and cv-CC4.5 in the experimentation. In all the cases, Nemenyi pro-
cedure rejects the hypotheses that have a p-value≤ 0.001786. The methods in
bold fonts are better than its pair about accuracy. It is only shown the pairs of
methods that are not equivalent by limitations of space.

From the experimentation, it can be deduced that the new method cv-CC4.5
achieves the best general results. The cv-CC4.5 algorithm is always better than
the rest except for 30% of added noise where it is equivalent to the best (CC4.5
with s = 2.0). For low levels of added noise, cv-CC4.5 is significantly better than
CC4.5 with high values for s. Besides, for these low noise levels, cv-CC4.5 and
CC4.5 with low values for s achieves the best results. On the other hand, for high
levels of noise, cv-CC4.5 is significantly better than CC4.5 with low values for s.



744 C. J. Mantas et al.

Table 3. P-values of Nemenyi test for C4.5, CC4.5 (varying s) and cv-CC4.5, without
added noise

i Algorithms p− values

10 CC4.5s=3.0 vs. cv-CC4.5 0

9 C4.5 vs. CC4.5s=3.0 0.000001

8 CC4.5s=0.25 vs. CC4.5s=3.0 0.000002

7 CC4.5s=2.0 vs. cv-CC4.5 0.000005

6 CC4.5s=1.0 vs. CC4.5s=3.0 0.000015

5 CC4.5s=0.5 vs. CC4.5s=3.0 0.000017

4 C4.5 vs. CC4.5s=2.0 0.000020

3 CC4.5s=0.25 vs. CC4.5s=2.0 0.000031

2 CC4.5s=1.0 vs. CC4.5s=2.0 0.000173

1 CC4.5s=0.5 vs. CC4.5s=2.0 0.000187

Table 4. P-values of Nemenyi test for C4.5, CC4.5 (varying s) and cv-CC4.5 (5% of
noise)

i Algorithms p− values

8 CC4.5s=3.0 vs. cv-CC4.5 0

7 CC4.5s=0.25 vs. CC4.5s=3.0 0

6 CC4.5s=1.0 vs. CC4.5s=3.0 0.000002

5 CC4.5s=0.5 vs. CC4.5s=3.0 0.000003

4 C4.5 vs. CC4.5s=3.0 0.000010

3 CC4.5s=1.5 vs. CC4.5s=3.0 0.000383

2 CC4.5s=2.0 vs. cv-CC4.5 0.000605

1 CC4.5s=0.25 vs. CC4.5s=2.0 0.001259

Besides, cv-CC4 and CC4.5 with high values for s are the best for these high
noise levels. These facts can be checked with the results of the tests carried out.

The results are analyzed as follows:

• Average accuracy: cv-CC4.5 achieves the best result for each added noise
level, except for 30% of added noise where it obtains the second best value
but close to the best achieved by CC4.5 with s = 3.0.

• Friedman’s ranking: cv-CC4.5 obtains the best Friedman’s rank for all the
noise levels except for 10% (where the best is CC4.5 with s = 1.0) and for
30% (where the best is CC4.5 with s = 2.0). In these cases, the ranking of
the new method is close to the one of the best method.
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Table 5. P-values of Nemenyi test for C4.5, CC4.5 (varying s) and cv-CC4.5 (10% of
noise)

i Algorithms p− values

6 CC4.5s=1.0 vs. CC4.5s=3.0 0.000006

5 CC4.5s=3.0 vs. cv-CC4.5 0.000014

4 CC4.5s=0.5 vs. CC4.5s=3.0 0.000045

3 CC4.5s=1.5 vs. CC4.5s=3.0 0.000097

2 C4.5 vs. CC4.5s=1.0 0.000482

1 C4.5 vs. cv-CC4.5 0.000944

Table 6. P-values of Nemenyi test for C4.5, CC4.5 (varying s) and cv-CC4.5 (20% of
noise)

i Algorithms p− values

12 C4.5 vs. cv-CC4.5 0

11 C4.5 vs. CC4.5s=1.5 0

10 CC4.5s=0.25 vs. cv-CC4.5 0

9 C4.5 vs. CC4.5s=2.0 0

8 CC4.5s=0.25 vs. CC4.5s=1.5 0.000003

7 CC4.5s=0.25 vs. CC4.5s=2.0 0.000006

6 C4.5 vs. CC4.5s=3.0 0.000008

5 CC4.5s=0.5 vs. cv-CC4.5 0.000037

4 CC4.5s=0.25 vs. CC4.5s=3.0 0.000203

3 C4.5 vs. CC4.5s=1.0 0.000239

2 CC4.5s=0.5 vs. CC4.5s=1.5 0.000520

1 CC4.5s=0.5 vs. CC4.5s=2.0 0.000815

• Nemenyi test: The only method that is always significantly better than the
worse methods is cv-CC4.5. For low noise levels, the worse methods are CC4.5
with s value in {2.0, 3.0}; and for high added noise levels, the worse methods
are C4.5 and CC4.5 with s values in {0.25, 0.5, 1.0}.
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Table 7. P-values of Nemenyi test for C4.5, CC4.5 (varying s) and cv-CC4.5 (30% of
noise)

i Algorithms p− values

15 C4.5 vs. CC4.5s=2.0 0

14 C4.5 vs. CC4.5s=3.0 0

13 C4.5 vs. cv-CC4.5 0

12 CC4.5s=0.25 vs. CC4.5s=2.0 0

11 CC4.5s=0.25 vs. CC4.5s=3.0 0

10 CC4.5s=0.25 vs. cv-CC4.5 0

9 CC4.5s=0.5 vs. CC4.5s=2.0 0

8 CC4.5s=0.5 vs. CC4.5s=3.0 0

7 C4.5 vs. CC4.5s=1.5 0

6 CC4.5s=0.5 vs. cv-CC4.5 0.000003

5 CC4.5s=0.25 vs. CC4.5s=1.5 0.000015

4 CC4.5s=1.0 vs. CC4.5s=2.0 0.000069

3 CC4.5s=1.0 vs. CC4.5s=3.0 0.000089

2 CC4.5s=0.5 vs. CC4.5s=1.5 0.000561

1 CC4.5s=1.0 vs. cv-CC4.5 0.000815

6 Conclusion

In this work, cv-CC4.5 is presented where the problem of finding a good value
for s in CC4.5 is minimized. This model cv-CC4.5 is always better or equivalent
to the best CC4.5 with distinct values for s when noisy data sets are classified. In
this way, an improvement of the method CC4.5 is obtained. By using cv-CC4.5,
it is not necessary to indicate a value for s before performing CC4.5, regardless
the noise of the data set to be classified.
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Abstract. Most Recommender Systems rely exclusively on ratings and
are known as Memory-based Collaborative Filtering systems. This is cur-
rently dominant approach outside of academia due to the low implemen-
tation effort and service maintenance, when compared with more com-
plex Model-based approaches, Traditional Memory-based systems have
as their main goal to predict ratings, using similarity metrics to deter-
mine similarities between the users’ (or items) rating patterns. In this
work, we propose a user-based Collaborative Filtering approach based on
tags that does not rely on rating prediction, instead leveraging on Fuzzy
Fingerprints to create a novel similarity metric. Fuzzy Fingerprints pro-
vide a concise and compact representation of users allowing the reduction
of the dimensionality usually associated with user-based collaborative fil-
tering. The proposed recommendation strategy combined with the Fuzzy
Fingerprint similarity metric is able to outperform our baselines, in the
Movielens-1M dataset.

Keywords: Recommender system · Collaborative Filtering
Fuzzy Fingerprint · Tags

1 Introduction

Users of the digital world are overloaded with information [16]. Recommender
Systems (RSs) allow us to cope with this, by cataloging a vast list of items, that
later can be recommended. Due to their success, RSs can be found in a number of
services, providing recommendations for movies, music, news, products, events,
services, among others [1]. However, turning state of the art solutions into real-
world scenarios is still challenging, mainly due to a large amount of available data
and the ensuing scalability issues. For this reason, more traditional approaches,
such as Collaborative Filtering (CF) are still the most widely used [18]. Despite
its simplicity, CF can provide quite accurate results, thus yielding an advanta-
geous trade-off between engineering effort and user satisfaction.

Memory-based Collaborative Filtering can usually be implemented using one
of two different strategies: user-based CF, which compares users ratings to deter-
mine a neighborhood of similar users; and item-based CF, which instead computes
item similarities and forms item neighborhoods to produce the rating predictions.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 855, pp. 748–758, 2018.
https://doi.org/10.1007/978-3-319-91479-4_62
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Over the years, item-based CF has replaced user-based CF, given its bet-
ter scalability properties [11]. Since the number of users grows over time, and
generally at a faster rate than the items, so does the number of similarities,
thus posing a scalability problem. Similarities between users also vary more over
time than similarities between items, since individual users tend to change their
preferences, while the global opinion on a given item tends to remain stable.

In this work, we argue that an effective and efficient user-based CF system
can be implemented. To this effect, we use Fuzzy Fingerprints (FFPs) to repre-
sent users based on item tags and ratings. Tags, i.e. short textual labels attached
by the users to the items, provide an item description or categorization and are a
common resource in current online RSs. They allow us to create a more detailed
user representation than traditional CF, in a controlled manner, i.e. by control-
ling the number of tags used in the FFPs, we can easily fine-tune our system to
improve recommendation quality or to speed up the similarity computation. In
this work, we mainly focus on obtaining an improved recommendation quality.

Our main contributions are, therefore, (1) a new way to determine relevant
items to recommend to users without requiring the computation of rating pre-
dictions for user-based CFs, and (2) a novel similarity metric for RSs, using the
concept of FFPs [9] to represent users based on tags from rated items. More
specifically, we propose to represent users by their low-dimensional Fingerprints,
which can then be directly used to determine similarities between them. A sim-
ilar idea has been previously applied to text authorship identification [9] with
success. Our goal is to apply the same principle to RSs using tags from the
items rated by each user, to obtain better recommendations. This solution has
three major advantages: (1) provides overall better recommendations to users;
(2) requires a minimal implementation effort; and (3) its representation of the
users is scalable and easily maintainable.

To demonstrate our claims, experiments were performed on a movie dataset
providing movies metadata information, allowing the creation of users FFPs.

The remainder of this paper is organized as follows: Sect. 2 contains liter-
ature review on similarity metrics for CF; Sect. 3 presents how FFPs can be
applied to RSs; Sect. 4 presents an experimental evaluation; finally, in Sect. 5
some conclusions are drawn from the results and directions for future work are
proposed.

2 Related Work

Fuzzy systems approaches have been previously used to improve the RS sim-
ilarity metric [6] focusing exclusively on item-based CF. Our proposal applies
concepts of Fuzzy Systems to the problem of user-based Collaborative Filtering.
More specifically, we use Fuzzy Fingerprints, in a CF system, to represent users
in a more compact way.

CF systems usually rely on the ratings given to items by users to determine
similarities between users (or items), through the use of a similarity metric. This
allows the creation of neighborhoods of similar users, to predict new ratings.
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Traditionally, the similarity is measured using metrics such as Pearson Correla-
tion (PC) or the Cosine similarity (COS) [2]. Nevertheless, many other ways of
measuring similarity have been proposed, ranging from simple variations of PC
and COS, through the design of more complex functions.

An example is the work of [7], where ratings are combined with a measure of
trust between users, which is inferred from social information. By introducing
the degree of trust between users the authors show that it does improve the
overall rating prediction. On a different approach, in [3], the authors propose
a combination of the mean squared difference between the user’s ratings with
the Jaccard coefficient. Through experiments, they demonstrate that results are
improved, when compared to traditional CF.

To determine the neighborhood of each user, usually, similarities are com-
puted between the user and all other users, which are then sorted by their degree
of similarity and only the top k are kept. In [17] an alternative way to determine
neighborhoods is proposed. The authors randomly choose a possible neighbor
from the set of all users. This neighbor is kept only if its similarity is above a
given threshold. The process is then repeated until a certain amount of neighbors
is obtained. Their work has two threshold variables that depend on the data and
must be fine-tuned: (1) the minimum similarity for a user to be considered a
neighbor; (2) the minimum number of users in the neighborhood.

Combining Recommender systems and tags is not a novel idea [10,13,15].
Tags can help alleviate the so-called cold-start and data sparsity problems. The
cold-start problem occurs when new items, not yet rated by any user, or new
users, who have not rated any item yet, cannot receive recommendations since
they cannot be compared to other items/users. The data sparsity problem is also
associated with CF systems since it is common for users and items to have very
few ratings, and thus not enough information to produce valuable recommenda-
tions [4]. Tags can help address these issues, they only depend on the availability
of metadata, for each item. Our RS takes advantage of tags to more accurately
represent each user and, therefore, improve the quality of the user similarity
computation.

Liu et al. [12] also propose a new similarity metric, which assigns penalties to
bad similarities, while rewarding good similarities. Defining a similarity as good
or bad depends on several factors, such as the popularity of the rated items or
the similarity of the rating to the other user’s ratings.

In [5] a FFP was applied to item-based CF using also movies synopsis to
represent items. The FFP results from ratings and synopsis words that are also
added as features. A normalization is applied to both ratings and synopsis words,
separately, resulting in FFP which combines both. Note that in this work, we are
currently creating a user-based CF to represent users with item tags weighted
by the ratings, and not represent item using FFP.

The above works show that the selection process of neighbors and the
improvement of the similarity measures have a beneficial impact on the over-
all RS results. This work presents a similarity metric based on FFPs, adapted
for user-based CF, using the tags associated to each item, with the main goal of
improving the recommendation quality.



Tag Fuzzy Fingerprints for User-Based CF 751

3 Tag-Based User Fuzzy Fingerprints for Collaborative
Filtering

A Fuzzy Fingerprint (FFP) is a fuzzified ranked vector containing information
based on frequencies of occurrence of the elements being encoded [9]. In this
Section, we explain how to build and apply a tag-based FFP to represent users
in a CF recommender system.

Let N be the total number of tags in the system and let M be the total
number of items in the system. Let θi represent the set of tags of a given item
i: θi = (t1i, t2i, t3i, · · · , tNi). Any element tni ∈ θi can assume the value 1 if the
respective tag occurs in the item, or 0 if it does not.

Let ru be the set of ratings for a given set of items i1 · · · , iM , provided by
a user u: ru = (r1u, r2u, · · · , rMu). We assume, without loss of generality, that
rmu ≥ 0 and that a value of zero means that the user has not yet rated item im.

A Fingerprint φu is built by counting, for user u, the number of occurrences
of each tag in the items rated by u, multiplied by the respective item’s rating,
i.e. φu = (c1u, c2u, · · · , cNu), where:

cnu =
M∑

∀i=1

tni × riu (1)

The rationale behind Eq. (1) is that tags from items a user has rated higher
should also get a higher importance in the Fingerprint. The next step consists
in ordering φu according to cnu and keeping only the k highest values. The
Fingerprint size k is a parameter of the system and can be optimized offline.

To illustrate the previous procedure, let ru = (5, 2, 4) for items a, b, and c.
Assume there are only 5 tags and let θa = (1, 0, 0, 1, 1), θb = (0, 1, 0, 0, 1), and
θc = (0, 0, 1, 1, 0}. Assuming that k = 4, the resulting Fingerprint φu will be
(c4u = 9, c5u = 7, c1u = 5, c3u = 4).

The Fingerprint φu is, therefore, an ordered set of tags. The rank of each
tag reflects its importance in representing the user. This Fingerprint still needs
to be transformed into a Fuzzy Fingerprint. The fuzzification of the Fingerprint
leverages the importance of the order (and not of the frequency) to distinguish
between users. The FFP of user u, Φu, is obtained by fuzzifying the rank (the
position in the Fingerprint) of each tag.

The choice of the fuzzifying function can affect the obtained results [8,9].
Here, we have tested the linear approach, shown in Eq. 2, where puj

is the rank
of tag tn within φu (starting with t = 0).

μlinear(ptn) =
k − ptn

k
(2)

Preliminary experiments indicate that using other fuzzifying functions does not
significantly improve or degrade the quality of the results in this approach.

After the fuzzification step, we can now define the FFP Φu as:

Φu = {(tn, μ(ptn)),∀tn ∈ φu} (3)
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The FFP is, therefore, a ranked set of tags, each of which is associated with a
membership value, built based on the description of the items rated by the user.

Once the FFP for each user is determined, it is possible to compute similar-
ities between users.

Consider Φu and Φj the FFPs of users u and j. The FFP similarity between
users u and j is defined as:

simFFP = (Φu,Φj) =
∑

tn∈Ui∩Uj

min(Φu(tn),Φj(tn))
k

(4)

where Φx(tu) denotes the membership value associated to tag tn in Φx. Note
that the use of k in this equation as a normalization factor is only needed to
facilitate development and parameter optimization. It can be omitted during
system operation when computing similarities, largely improving computational
efficiency.

The recommendation process of the proposed RS does not rely upon rat-
ing predictions as in traditional Collaborative Filtering (see Sect. 4). Instead, it
identifies the user’s nearest neighbors (according to Eq. 4) and uses the items
seen and liked by them to extrapolate possible items to recommend to the user.

The RS starts by computing which users are the nearest neighbors of user
u, based on the FFP similarity metric. Users are considered neighbors if the
similarity is greater than a defined threshold simthreshold.

We consider that any item rated highly by a neighbor (e.g., 4 or 5 on a 0–5
scale) and rated higher than that neighbor’s item rating average, is recommend-
able to the user.

The final step in the recommendation process consists in getting the difference
between the rating of the recommendable item, the average rating given to that
item by the neighbor, and multiplying it by the similarity between the user and
the neighbor. This allows to create a ranking of recommendable items.

4 Evaluation

To assert the effectiveness of the proposed RS experiments were performed using
a movie dataset. Precision, Recall, and F1-score are used as evaluation metrics.

The similarity metrics used as baselines for comparison are the tradi-
tional Pearson Correlation (PC) and Cosine similarity (COS). In addition, we
also include the Jaccard Mean Squared Difference (JMSD) [3], an improvement
on previous metrics that offers a high rating prediction accuracy, while using a
lower number of neighbors. Finally, a similarity metric, that uses FFPs [6] yet
is only applicable to traditional item-based CF and which only relies upon rat-
ings to compute similarities. We refer to this baseline [6] throughout the rest of
this document as FFPrating. While the FFP proposed in this document will be
referenced as FFPtags. All similarity metrics baselines use both user-based and
item-based, except FFPrating that is only applicable to item-based CF.
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Pearson Correlation coefficient has been widely used since it is simple to
implement, intuitive, and provides good quality results [3]. PC is defined in
Eq. 5, where I is the set items both user u and j rated.

simPC(u, j) =
∑

i∈I(ru,i − r̄u) × (rj,i − r̄j)√∑
i∈I(ru,i − r̄u)2 × √∑

i∈I(rj,i − r̄j)2
(5)

The resulting similarity will be in within the interval [−1, 1], where −1 corre-
sponds to an inverse correlation, +1 to a positive correlation, and values near
zero show that no linear correlation exists between the two users.

Another often used similarity measure is the Cosine similarity, as defined in
Eq. 6. COS will yield a value between 0 and 1, where 0 corresponds to no simi-
larity between u and j and 1 to exactly proportional ratings between both users.

simCOS(u, j) =
∑

i∈I ru,i × rj,i√∑
i∈I r2u,i ×

√∑
i∈I r2j,i

(6)

The idea behind Jaccard Mean Squared Difference (JMSD) is to combine the
Jaccard coefficient, which captures the number of ratings in common between
users, with the Mean Square Difference (MSD) of those ratings, resulting in Eq. 7:

simJMSD(u, j) = Jaccard(u, j) × (
1 − MSD(u, j)

)
; (7)

where Jaccard and MSD are defined as:

Jaccard(i, j) =
|Iu ∩ Ij |
|Iu ∪ Ij | MSD(i, j) =

∑
i∈I(ru,i − rj,i)2

|I| (8)

where Is is the set of items rated by user s.
The FFPrating metric uses an approach that is totally different to the one

proposed in this work: each item has its own FFP and the recommendation is
based exclusively on ratings. The user’s ratings constitute the item Fingerprint
and ratings are sorted taking into consideration the total amount of ratings from
each user.

We now explain how a traditional CF computes rating predictions. Let r̂ui
be the predicted rating that a given user u would assign to item i. We start
by computing the neighborhood Nu, of user u, i.e. the set of n users in the
database that are more similar to u, using a similarity function. The value of r̂ui
is defined as:

r̂ui = r̄u +

∑
v∈Nu

sim(u, v) × (rvi − r̄v)∑
v∈Nv

sim(u, v)
(9)

where rvi is the rating assigned by user v to item i, r̄x is the average of all ratings
assigned to user x. A traditional CF system usually performs these predictions
for a large set of items and returns those with the highest rating predictions, as
recommendations.
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An evaluation was conducted using MovieLens-1M (ML-1M) dataset, from
the movie domain. By using Dbpedia1, Tags and other meta-data, regarding each
movie, were collected. In this work, we focus exclusively on Tag information.

The ML-1M dataset has 1 million ratings, 6040 users, 3706 items, a sparsity
of 95.53% and has an average of 125 ratings per user.

The evaluation process was performed through 5-fold cross-validation, using
RiVal [14], a framework to make RSs evaluation fair process, completely sepa-
rating the recommendation task of a RS from the Evaluation of the recommen-
dations.

We define any item with rating greater than or equal to 4 as a relevant (i.e.
should be recommended) to the user.

Precision can be computed using Eq. 10 and Recall using Eq. 11. In this
work, we do not set a threshold for a maximum number of recommendations
i.e. the RS can recommend as many relevant items to a user as possible. Even
though we calculate the F1-score (Eq. 12.), we support the idea that Precision
is a far better indication for a good RS, as long as Recall is within a range that
allows the retrieval of a sufficient number of relevant items (in the tested cases,
all approaches fulfill the Recall criteria).

PR =
#TruePositives

#TruePositives + #FalsePositives
(10)

RC =
#TruePositives

#TruePositives + #FalseNegatives
(11)

F1 = 2 × PR × RC

PR + RC
(12)

We start by comparing the similarity distribution using our similarity metric
and the baselines, this allows us to determine the best simthreshold when selecting
the neighborhood. We then vary the number of neighbors used by the FFPtags

over different sizes of k. This allows us to determine not only the best k for the
FFPtags but also the most adequate number of neighbors to use. Finally, we
present a summary table with baselines and how do they perform in comparison
to the proposed RS.

Figure 1 shows the similarity distributions. By analyzing Fig. 1d, we notice
that the average similarity is around 0.2. This provides a good indicator to
experiment different simthreshold around 0.2. Experimentally, we determined that
using 0.25 provides good results, for this dataset.

Figure 2 compares different sizes for the FFP and for each size we vary the
number of neighbors used by the RS. According to the F1 − measure the best
results are obtained using k equal to 200. Knowing that, on average, each user
has 637 tags associated to rated movies, the proposed FFP similarity metric uses
only 31% of existing tags, being able to correctly select relevant tags to represent
each user.

1 Dbpedia: http://www.dbpedia.org.

http://www.dbpedia.org
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(d) FFPtags similarity distribution.

Fig. 1. Histograms show the similarity distribution of different similarity metrics when
applied to user similarity computation. FFPtags uses k = 200 tags to represent a user
FFP.

Table 1 shows how the different tested approaches perform. The proposed
Tag-user based FFP performs better overall than any other approach, even
when compared to the state-of-the-art JMSD, although the improvement is not
significant.

An interesting result is how much better the proposed approach is when
compared to other previously proposed user-based approaches, thus opening the
door to further developments in user-based RS. It should be noted that item-
based approaches have been thoroughly used in the past and have been highly
optimized. Yet user-based approaches are also viable. For example, it is very easy
to enrich the FFP using data other than simple tags, from movie descriptions
to a user’s favorite actors, directors or genres.
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Fig. 2. Comparison between different sizes of the FFP, while varying the number of
neighbors used.

Table 1. Summary results in which FFPtags (using k = 200) combined with the
proposed recommendation algorithm is compared with several baselines using item-
based and user-based CF.

Similarity Metric Approach Num. neighbors F1-score Precision Recall

FFPtags User-based 150 0.76929 0.63504 0.97554

COS Item-based 50 0.76622 0.62112 0.99978

PC Item-based 75 0.76621 0.62115 0.99969

JMSD Item-based 20 0.76623 0.62112 0.99980

FPPratings Item-based 20 0.76623 0.62113 0.99979

COS User-based 200 0.42356 0.26869 0.99989

PC User-based 100 0.42338 0.26854 0.99990

JMSD User-based 100 0.42356 0.26869 0.99989



Tag Fuzzy Fingerprints for User-Based CF 757

5 Conclusion

In this work, we have applied the concept of Fuzzy Fingerprints to user-based
Collaborative Filtering and represented users based on tags according to the
items they rated. FFPs are used to create a new concise user representation that
improves the F1-score and Precision of an RS. The best result for the proposed
approach was obtained for k = 200. In this dataset, each user has on average
637 tags, which shows that the FFPs are able to reduce the problem complexity
while still improving recommendation quality.

We have experimentally compared our proposal to two traditional similar-
ity measures, Pearson Correlation and Cosine similarity, and a state-of-the-art
similarity metrics such as Jaccard Mean Squared Difference.

Results show that FFPs are a promising approach since they can be applied
with success in recommendation tasks. In fact, using FFPs we are able to repre-
sent a user using, on average, 68% less features. In addition, and even though we
do not address such issue in this paper, FFP similarity is a much more computa-
tionally efficient process than any of the other similarity measures. This can be
arguably enough to compensate for the fact that there are usually much more
users than items in RS, as we will try to show in a future work.

Future work includes more extensive parameter optimization, enriching the
FFP with other features, and improving the last step of the recommendation
algorithm by using more sophisticated ways to aggregate the influence of each
neighbor.
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