
A Fuzzy Close Algorithm for Mining
Fuzzy Association Rules

Régis Pierrard1,2(B), Jean-Philippe Poli1, and Céline Hudelot2
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Paris-Saclay University, 91190 Gif-sur-Yvette, France
celine.hudelot@centralesupelec.fr

Abstract. Association rules allow to mine large datasets to automati-
cally discover relations between variables. In order to take into account
both qualitative and quantitative variables, fuzzy logic has been applied
and many association rule extraction algorithms have been fuzzified.

In this paper, we propose a fuzzy adaptation of the well-known Close
algorithm which relies on the closure of itemsets. The Close-algorithm
needs less passes over the dataset and is suitable when variables are
correlated. The algorithm is then compared to other on public datasets.
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1 Introduction

Extracting association rules from data has been one of the main tasks in data
mining for years. It relies on the extraction of frequent itemsets. In order to deal
with both quantitative and qualitative variables, some algorithms have used the
fuzzy set theory. Fuzzy logic provides tools to manage the vagueness inherent in
both the natural language and the knowledge itself. Different fuzzy association
rule mining algorithms have already been developed to handle this kind of data.

Because datasets are nowadays getting bigger and bigger, the way these fuzzy
association rule mining algorithms manage huge databases is essential. Some
algorithms store a big amount of data while some others need to perform many
database passes.

There exist several crisp association rule mining algorithms that do not store
a lot of data or need only a limited number of database passes. However, most
of them do not have a fuzzy counterpart. In this paper, we propose an algorithm
that uses the fuzzy set theory and the fuzzified version of the Close mining
algorithm [1] to extract frequent itemsets from data with a reduced number of
database passes.
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The rest of the paper is organized as follows. Section 2 reviews related work.
In Sect. 3, we present the fuzzy set framework and we describe the algorithm.
Section 4 presents the experimental results we got and Sect. 5 concludes the
paper.

2 Related Works

2.1 Fuzzy Association Rule Mining

The first fuzzy association rule mining algorithms were based on the Apriori
algorithm [2]. It consists in two main steps. First, finding the frequent itemsets
and second, generating fuzzy rules based on the previously extracted frequent
itemsets. In order to find the frequent itemsets, it first scans the whole database
to extract frequent itemsets that contain only one item (1-itemsets). An item-
set is said to be frequent when the support of this itemset in the database,
i.e. the number of occurrences, is larger than a user-specified minimum support
threshold. After that first step, frequent 1-itemsets are used to generate can-
didate 2-itemsets. Frequent 2-itemsets are extracted computing their support.
The process continues until no more candidate can be generated. It requires
n database passes, where n is the size of the maximum length frequent item-
set. Once frequent itemsets have been mined, every candidate association rule
is generated. An association rule is valid when its confidence is larger than a
user-specified minimum confidence threshold. For a frequent itemset I and an
association rule I1 ⇒ I2 such as I1 ⊂ I, I2 ⊂ I and I1 ∩ I2 = ∅, the confidence
of this association rule is its number of occurrences among the occurrences of
I. All candidate association rules are generated to find the most confident ones.
Many fuzzy association rule mining algorithms rely on the Apriori algorithm.
The F-APACS algorithm [3] first converts data into linguistic terms using the
fuzzy set theory. A statistical analysis is performed to automatically set both
the minimum support threshold and the minimum confidence threshold. The
FDTA algorithm [4] proposes another way of converting quantitative data into
linguistic terms. AprioriTid [18] is an improved version of FDTA. Kuok et al. [5]
proposed a different approach to handle quantitative databases for generating
fuzzy association rules.

A completely different way of mining fuzzy frequent itemsets relies on a
frequent-pattern tree structure. The generic framework is as follows. The first
step consists in fuzzifying data, if necessary. Then, the tree is constructed and
the final step is the mining of fuzzy frequent itemsets based on the previously
constructed tree. Papadimitriou and Mavroudi [6] proposed an algorithm called
fuzzy frequent pattern tree (FFPT). Non frequent 1-itemsets are removed from
the database and each transaction is sorted according to the membership value
of its frequent 1-itemsets. Then, the tree is constructed by handling each trans-
action one by one. Since transactions are sorted by membership values, several
different paths may represent the same itemset. As a consequence, a few useless
tree nodes are generated. The compressed fuzzy frequent pattern tree (CFFPT)
algorithm solves this problem by using a global sorting strategy [7]. However,
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this solution leads to attaching an array to each node. Lin et al. [8] proposed
the upper bound fuzzy frequent pattern tree algorithm (UBFFPT). It estimates
the upper bound membership values of frequent itemsets to avoid attaching an
array to each node. This algorithm requires four database passes to build the
tree. Then, the tree is parsed several times to generate all candidate frequent
itemsets. Depending on the database, the tree can be long and have a large
amount of nodes. An ultimate database pass is performed to compute the sup-
port of every candidate frequent itemset.

2.2 The Close Algorithm

Pasquier et al. [1] proposed the Close algorithm. This algorithm handles non-
fuzzy databases. It uses a closure operator to find closed itemsets. Those itemsets
have interesting properties that benefit the mining of frequent itemsets. Since
there are often less frequent closed itemsets than frequent itemsets, the search
space is smaller, the computation is less costly and the number of database
passes is reduced. The algorithm relies on the following properties [1]:

1. all subsets of a frequent itemset are frequent;
2. all supersets of an infrequent itemset are infrequent;
3. all closed subsets of a frequent closed itemset are frequent;
4. all closed supersets of an infrequent closed itemset are infrequent;
5. the set of maximal frequent itemsets is identical to the set of maximal frequent

closed itemsets;
6. the support of a frequent itemset I which is not closed is equal to the support

of the smallest frequent closed itemset containing I.

The algorithm goes through three phases to generate association rules. First,
it generates all frequent closed itemsets from the database. Then, it derives all
frequent itemsets from the previously generated frequent closed itemsets. The
final step consists in generating all confident association rules.

3 Fuzzified Close Algorithm

3.1 Fuzzy Sets

Zadeh introduced the fuzzy set theory [9]. In a universe X, a fuzzy set F is
characterized by a mapping µF : X → [0, 1]. This mapping specifies in what
extent each x ∈ X belongs to F and it is called the membership function of F .
If F is a non-fuzzy set, µF (x) is either 0, i.e. x is not a member of F , or 1, i.e.
x is a member of F . The set of all fuzzy sets in a universe X is written FX .

The kernel of a fuzzy set F is a non-fuzzy set defined as

ker(F ) = {x ∈ X|µF (x) = 1}. (1)

A binary fuzzy relation can be defined the same way as a fuzzy set. Given
two universes X and Y , a binary fuzzy relation R is a mapping defined as

R : X × Y → [0, 1] . (2)

It assigns a degree of relationship to any (x, y) ∈ X × Y .
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3.2 Formal Concept Analysis

Formal Concept Analysis (FCA) [10–12] provides a framework for analyzing the
relationship between a set of objects and a set of attributes. A database with
fuzzy values can be represented by a triplet 〈O,A,R〉 with O a finite set of
objects, A a finite set of attributes and R a binary fuzzy relation defined as
R : O × A → [0, 1]. This triplet is called a formal fuzzy context.

In the following, a fuzzy set of attributes (objects) is a fuzzy set whose
membership function is defined as µ : A → [0, 1] (µ : O → [0, 1]).

Operators ↑ and ↓ can then be defined [13]. Let X be a fuzzy set of objects
and Y be a fuzzy set of attributes. ↑ and ↓ are defined as follows:

∀a ∈ A, µX↑(a) =
∧

o∈O

(
µX(o) → R(o, a)

)
, (3)

∀o ∈ O, µY ↓(o) =
∧

a∈A

(
µY (a) → R(o, a)

)
. (4)

X↑ is a fuzzy set of attributes and Y ↓ is a fuzzy set of objects. In the next
section, the composition of these two functions is written ↑↓.

We use the Lukasiewicz implication operator defined as

a → b = min(1 − a + b, 1). (5)

The Lukasiewicz implication is compatible with the implication from classical
logic.

3.3 Fuzzy Closure Operator

The closure operator cannot be the same in the fuzzified version of the algorithm.
It still takes as an argument a crisp set, which we call a generator, and also
returns a crisp set. However, the relation R between objects and attributes is
no longer crisp. That is why this operator needs to be modified.

Definition 1. A fuzzy closure operator in a universe X is defined as h : FX →
FX and satisfies the following conditions:

∀I ⊂ FX , I ⊂ h(I) , (6)
∀I ⊂ FX , h(h(I)) = h(I) , (7)

∀I, J ⊂ FX , I ⊂ J ⇒ h(I) ⊂ h(J). (8)

For any formal fuzzy context 〈O,A,R〉, for a fuzzy set of attributes Y , ↑↓ is
a fuzzy closure operator [12,14]. The fuzzy closure of Y by ↑↓ is Y ↑↓, which is a
fuzzy set of attributes.

In our case, the closure operator takes a crisp set of items (or attributes) as
a generator. Let I be a crisp set of items. It can be turn into a fuzzy set to be
used by the fuzzy closure operator as follows:

∀a ∈ A, µI(a) =
{

1, if a ∈ I
0, otherwise . (9)
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As for the set the closure operators returns, it also has to be a crisp set. The
fuzzy closure operator ↑↓ returns a fuzzy set F . We can get a crisp set of items
I using the kernel function as follows:

I = ker(F ). (10)

This operator is still a closure operator. In the following, this closure operator is
written h such as h : P(A) → P(A). One can interpret the result of this closure
operator as the set of attributes that are shared by all the objects that have all
the attributes from the generator.

3.4 Support and Confidence

The support of an itemset and the confidence of a rule are computed as stated
in [17]. Both of them are numbers between 0 and 1.

The following property states that an itemset and its closure have the same
support. This will be used in our algorithm.

Proposition 1. ∀I ∈ P(A), support(h(I)) = support(I).

3.5 Algorithm Description

The proposed fuzzy association rule mining approach integrates concepts from
both the fuzzy set theory and the Close algorithm [1]. It does not tackle the
fuzzification of the database. This task has been addressed in the previously
mentioned articles [3–5]. Besides, the generation of all confident association rules
is the same as in the Apriori algorithm [2].

FCCi refers to the set of triplets associated with all the frequent closed
candidate itemsets whose generator’s size is i. FCi refers to the set of triplet
associated with all the frequent closed itemsets whose generator’s size is i. Each
triplet is under the following form:

(generator, closure, support).

Thus, in the remainder of this article, for any p ∈ FCCi or FCi, p.generator
refers to the generator linked to p, p.closure is its closure and p.support is its sup-
port. FCCi.generators refers to the set of all generators in FCCi. FCCi.closures
and FCCi.supports are defined the same way.

Algorithm 1 below describes the process. On line 1, FCC1 is initialized with
every item from the set of attributes A. On line 5, for each generator in FCCi,
the generateClosures function provides the corresponding closure and support.
This function is detailed below. Then, on lines 6 to 9, the set of candidate closed
itemsets FCCi is pruned to get the set of frequent closed itemsets FCi. New
generators, whose size is i + 1, are generated on line 11 using the generateGen-
erators function. This function is described below. The whole process will last
until no new generators can be generated. The output is the set of all frequent
closed itemsets that will be used to generate all frequent itemsets.
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The generateClosures function is stated as shown in Algorithm 2 below. This
function has been designed to compute the closures and the supports of the
generators in FCCi performing only one database pass. For each object o ∈ O,
for each element p ∈ FCCi, the contribution k to the support and µp↓(o) are
computed looping over the items in p.generator (from line 10 to line 13). Then,
for each attribute a ∈ A, the membership function µp↑↓ of the fuzzy closure is
updated (line 15). When the last object is reached and there is no more update
to the membership function, the kernel of the fuzzy closure is computed (from
line 16 to line 20).

This generateGenerators is exactly the same as in the Close algorithm. This
function generates all the potential generators of size i + 1 from the generators
in FCi. In order to get one potential generator, two generators from FCi that
have the same i − 1 first elements are combined. Then, this set of potential
generators is pruned to avoid useless computations. In particular, if one of the
new generators is included in the closure of one of the former generators, then
it is pruned.

Overall, the whole algorithm, i.e. Algorithm 1, needs one database pass per
iteration. That is the same as the algorithms based on the Apriori algorithm.
However, the total number of iterations is usually smaller with the close algo-
rithm because there are often less frequent closed itemsets than frequent item-
sets.

After this phase, all the frequent closed itemsets are used to find all the
frequent itemsets. This new phase is exactly the same as in the original Close
algorithm. The first step consists in splitting the set of all frequent closed itemsets
according to their size. Then, these new sets Li are browsed in descending order
of size to generate all frequent itemsets of size i−1. The process will finish when
the set of frequent 1-itemsets is completed.

3.6 Example

For the sake of comprehension, we apply in this section the algorithm on a small
database D, shown in Table 1. D contains five objects (1 to 5) and five items (A
to E). The minimum support is equal to 0.4 (40%).

Table 1. The fuzzy database D

Objects Items

A B C D E

1 0.8 0.1 0.9 0.8 0

2 0 0.3 0.2 0 0.9

3 1 0.7 0.7 1 0.6

4 0 0.2 0 0.2 1

5 0.9 0.6 0.8 1 0.9



94 R. Pierrard et al.

The pruning of FCC1 leads to removing {B} since its support is smaller
than the minimum support threshold. The other elements from FCC1 are kept
to generate FC1. This corresponds to line 5 to line 10 in Algorithm 1. FCC1

and FC1 are shown in Table 2.

Table 2. FCC1 on the left and FC1 on the right. {B} is pruned from FCC1 to FC1

because it is not frequent.

Then, on line 11, FCC2 is generated. {AD} is not a generator in FCC2

because it is included in the closure of {A}. FC2 is then generated. {CD} and
{AC} have the same closure, so only one of them is kept. FCC2 and FC2 are
shown in Table 3.

Table 3. FCC2 on the left and FC2 on the right.

FC2 contains only one element, that is why FCC3 is empty. That is the end
of the first phase, which corresponds to Algorithm 1. FC is returned. It is shown
in Table 4.

The second phase consists in deriving frequent itemsets from frequent closed
itemsets. The longest closed itemset contains three items. That is why three
different sets are generated for deriving frequent itemsets: L3, L2 et L1. Bold
itemsets are itemsets which have been derived from a bigger closed itemset.
These three sets are shown in Table 5.
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Table 4. FC

Closure Support

{AD} 0.54

{C} 0.52

{D} 0.60

{E} 0.68

{ACD} 0.46

Table 5. Deriving frequent itemsets. Bold lines refer to derived itemsets. From left to
right: L3, L2 and L1.

4 Experimental Results

In order to compare our algorithm to the fuzzy version of Apriori and to
UBFFPT, we have implemented these algorithms. As our implementations of
the algorithms may not be fully optimized, our results do not show any execu-
tion time. The metric that we used is the number of database passes. It allows
to directly compare the fuzzy version of Apriori to our algorithm.

4.1 Datasets

We used three different datasets. The first one is the mushroom dataset [15].
It contains 8124 examples (objects). The number of attributes is 22. Those are
all categorical attributes, so the final binary dataset contains 119 attributes. To
fuzzify it, zeros were replace by a uniform random number in [0, 0.5] and ones
were replace by a uniform random number in [0.5, 1].

The two other datasets come from the 2017 Civil Service People Survey [16].
Those are surveys that only contain numbers in [0, 1]. One dataset, that is called
benchmark scores, contains 9 examples. Attributes have been pruned to avoid
missing values for a final amount of 87 attributes. The other dataset is called
all organisation scores. After filtering missing values, the dataset contains 93
examples and 84 attributes.
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Algorithm 1. Close algorithm
input : A fuzzy formal context 〈O,A,R〉

A minimum support threshold S ∈ [0; 1]
output: All frequent closed itemsets and their support

1 generators in FCC1 ← {1-itemsets}
2 for (i ← 1; FCCi.generators �= ∅; i++) do
3 closures in FCCi ← ∅

4 supports in FCCi ← 0
5 FCCi ← generateClosures(FCCi)
6 forall candidate closed itemsets c ∈ FCCi do
7 if c.support ≥ minsupport then
8 FCi ← FCi ∪ {c}
9 end

10 end
11 FCCi+1 ← generateGenerators(FCi)

12 end

13 FC ←
i−1⋃

j=1

{FCj .closures, FCj .supports}
14 return FC

4.2 Results and Discussion

Results are shown in Fig. 1. For the mushroom dataset, we can observe that our
algorithm makes at best one less database pass than the fuzzy version of Apriori.
This is due to the fact that data are not highly correlated and are sparse. That
means that most frequent itemsets are closed. As a consequence, with the cost of
computing closures, our algorithm should not be expected to outperform Apriori
and UBFFPT on such a dataset.

Observations are different with the two other datasets. We can see that the
lower the minimum support threshold, the larger the difference between the num-
ber of database passes of both algorithms. These data come from surveys, whose
data are usually highly correlated and dense. Our algorithm takes advantage of
this using the closure operator. Thus, most generators are much shorter than
their closures. That explains the lower amount of database passes.

The UBFFPT algorithm needs 4 database passes to construct its tree and
to extract frequent itemsets. Besides, frequent pattern mining algorithms, such
as UBFFPT, spend most of their time traversing the tree. For highly correlated
data, as in the benchmark dataset, our algorithm has an edge on these algo-
rithms. Moreover, it consumes less memory than Apriori, which generates many
candidates at each iteration, and than UBFFPT, which browses all the paths to
the currently studied item1 to generate candidates.

1 One item is usually represented by several nodes in the tree.
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Algorithm 2. generateClosures function
input : The set of candidate closed itemsets FCCi

output: Updated FCCi after the computation of closures and supports

1 n ← 0
2 forall p ∈ FCCi do
3 numbers in µp↑↓a ← 1
4 end
5 forall objects o ∈ O do
6 n++
7 forall p ∈ FCCi do
8 k ← 1

9 µp↓ b ← 1
10 forall attributes i ∈ p.generator do
11 k ← min

(
k,R(o, i)

)

12 µp↓ ← min
(
µp↓ , 1,R(o, i)

)

13 end
14 forall attributes i ∈ A do
15 µp↑↓,i ← min

(
µp↑↓,i, 1, 1 + R(o, i) − µp↓

)

16 if n = Card(O) then
17 if µp↑↓,i = 1 then
18 p.closure ← p.closure ∪ {i}
19 end

20 end

21 end
22 p.support ← p.support + k

23 end

24 end
25 return FCCi

a µp↑↓ is a vector corresponding to the membership function of the fuzzy closure p↑↓.
b µp↓ is a fuzzy number that corresponds to µp↓(o).

Also, the first iteration of generating closures in our algorithm can bring
valuable insight. Indeed, if most 1-itemsets are closed, then the data is likely to
be weakly correlated and another algorithm may perform better. However, if the
proportion of closed 1-itemsets is low, the data is likely to be highly correlated
and our algorithm will then compute all the frequent itemsets in few database
passes.
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Fig. 1. Plots showing the number of database passes relatively to the minimum support
threshold for the three datasets.

5 Conclusion

In this paper, we introduced a new fuzzy association rule mining algorithm
inspired by the Close algorithm. Our goal was to make it able to mine frequent
itemsets from data in a reduced number of database passes and without storing
too much data.

It relies on a closure operator that is able to process fuzzy data while both
taking as an argument and returning a crisp set. This new closure operator is
based on a fuzzy closure operator of whom we take the kernel. The closure is the
set of items that are shared by all the objects that include the generator. That
is why it is very efficient with highly correlated data.

The algorithm finds the set of all the closed frequent itemsets. This set is
sufficient to extract all the frequent itemsets. As it is usually a smaller set than
the set of all the frequent itemsets, the search space is also smaller.

We have tested our algorithm on three different datasets. We have shown
that this approach outperforms other algorithms when dealing with correlated
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and dense data, which are the kind of data that can be found in surveys, census
dataset or in some classification datasets. It needs less database passes and stores
a small amount of data to extract all the frequent itemsets.
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