
Obtaining WAPO-Structure Through
Inverted Indexes

Úrsula Torres-Parejo1(B) , Jesús R. Campaña2 , Maria-Amparo Vila2 ,
and Miguel Delgado2

1 Department of Statistics and Operational Research, University of Cádiz,
Cádiz, Spain

ursula.torres@uca.es
2 Department of Computer Science and Artificial Intelligence, University of Granada,

Granada, Spain

Abstract. In order to represent texts preserving their semantics, in
earlier work we proposed the WAPO-Structure, which is an intermedi-
ate form of representation that allows related terms to remain together.
This intermediate form can be visualized through a tag cloud, which in
turn serves as a textual navigation and retrieval tool. WAPO-Structures
were obtained through a modification of the APriori algorithm, which
spends a lot of processing time computing frequent sequences, for which
it must perform numerous readings on the text until finding the frequent
sequences of maximal level.

In this paper we present an alternative method for the generation of
the WAPO-Structure from the inverted indexes of the text. This method
saves processing time in texts for which an inverted index is already
computed.

Keywords: Inverted indexes · Implications · Primary rules
Content representation · Text processing · Semantics
Frequent sequences · Text retrieval

1 Introduction

One of the main problems of information management in textual databases is
the amount of unstructured text that is difficult to recover, due to the way of
processing it. Many retrieval systems perform only syntactic text processing,
which means that much of the content identification capability is lost in the
retrieved text.

Frequent ordered itemsets preserve the semantics of the text since they allow
related terms to remain ordered and united. This is achieved through the APO
(Ordered APriori)-Structure [9], which represents the text through an interme-
diate form facilitating its processing, representing the content of the information
and allowing greater precision and recall with the query results.

The WAPO-Structure introduces weights into the APO-Structure, so that
the ordered sets can be visualized through a tag cloud with different font sizes.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 854, pp. 647–658, 2018.
https://doi.org/10.1007/978-3-319-91476-3_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91476-3_53&domain=pdf
http://orcid.org/0000-0003-0496-7609
http://orcid.org/0000-0002-5820-4095
http://orcid.org/0000-0002-2773-3306
http://orcid.org/0000-0001-5333-5179


648 Ú. Torres-Parejo et al.

In this way, the tag cloud works as an assistant for the query formulation and
as a tool for exploring the contents of the database.

There are many methods to obtain the WAPO-Structure, such as all those
for obtaining frequent itemsets [1,2,11] with slight modifications. But if the
inverted indexes [4] are available, the processing time is considerably reduced,
since it does not have to perform repeated readings on the database to calculate
support values.

Hipp et al. [6] compare several of the algorithms in terms of performance
for obtaining frequent itemsets, verifying that all have a similar behavior with
respect to the execution time, although spending different time depending on
tasks. While some of the algorithms compared use most of the time to determine
the support of the candidate itemsets below level four, the Apriori algorithm
finds the greatest difficulty in calculating support for itemsets of level four or
higher.

In previous work [8,9] we obtained the WAPO-Structure from a modification
of the Apriori algorithm [1]. In this paper, we propose its generation from a
complete inverted index which is more advantageous as the level of the itemsets
increases. With the Apriori algorithm, each time we add an item to an itemset,
a new reading of the database is required, while with the inverted indexes, the
maximum level itemsets are located in a single reading.

To the better understanding of the terminology used in this paper, we estab-
lish some previous concept definitions in Table 1.

Table 1. Concept definitions

Expression Definition

Term A word or group of words

Mono-term Single word

Item An individual article or unit, especially one that is part of a list,
collection, or set

Sequence Ordered list of items

This paper is organized as follows. Section 2 defines APO-Structure and
WAPO-Structure. Section 3 gives the definition of Full Inverted Index. Section 4
explains the method for obtaining the WAPO-Structure from a complete inverted
index. Section 5 illustrates this process with a practical example and, finally, we
end with a brief discussion and conclusions in Sect. 6.

2 APO-Structure and WAPO-Structure

The lack of structure in textual attributes complicates their automatic process-
ing. In [8,9] we see how the APO and WAPO Structures provide the mathe-
matical structure to obtain the semantics inherent to the text, facilitating the



Obtaining WAPO-Structure Through Inverted Indexes 649

processing. These semantics are achieved by allowing the frequently related terms
to remain together.

The complete process is carried out in five steps: Selecting the textual
attribute, syntactic preprocessing, semantic preprocessing, structure generation
and displaying of the structure.

The WAPO-Structure provides weight into the APO-Structure.

2.1 APO-Structure [9]

Definition 1. AP-Seq (AP-Sequences)
Let X = {x1, x2, . . . , xn} be a referential set of items and R a sequence of

frequent itemsets. R is then an AP-Seq if and only if:

1.

∀Z = (z1, z2, . . . , zk) ∈ R ⇒
{

(z1, z2, . . . , zk−1) ∈ R
(z2, z3, . . . , zk) ∈ R

∀k ∈ [2, n] (1)

2. ∃ Y ∈ R such that:

card(Y ) = maxZ∈R (card(Z)) and � Y ′ ∈ R | card(Y ′) = card(Y ) (2)
∀Z ∈ R =⇒ Z ⊆ Y (3)

The sequence Y with higher order is the spanning sequence of R, R = g(Y ),
in other works g(Y ) is the AP-Seq with spanning sequence Y , being the cardinal
of Y the level of g(Y ).

Example 1. Let X = {intelligence, online, measure, test, partner}.
Let R = {<intelligence, test, partner>,<intelligence, test>,
<test, partner>,<intelligence>,<test>,<partner>}.
Then, R is an AP-Seq with spanning sequence Y = <intelligence, test,

partner>. All the other sequences are included in it with the same order position
between the terms.

Definition 2. APO-Structure
Let X = {x1, . . . , xn} be a referential set of items and S = {A,B, . . .} a set

of frequent item-seqs with a cardinal higher than or equal to one and A,B, . . .
AP-Seqs such as:

∀ A,B ∈ S; A � B,B � A and B �= A

An APO-Structure generated by S, E = g(A,B, . . .), is the set of AP-Seqs
whose spanning sequences are A,B, . . .



650 Ú. Torres-Parejo et al.

2.2 WAPO-Structure [9]

Definition 3. Frequent weighted item-seq of an AP-Seq
Let R=g(Y) be an AP-Seq with a referential set of items X. It is said that

α̃t ⊆ Y is a frequent weighted item-seq from Y if:

α̃t = [αt, ωt]. (4)

where αt is a frequent term sequence and ωt is its weight or frequency.

WAPO-Structures are structures composed of weighted AP-Seqs which are
AP-Seq composed of weighted item-seqs.

Definition 4. WAPO-Structure
Let X = {x1, x2, . . . , xn} be a referential set of items and S̃ = {Ã, B̃, . . .} a

set of frequent weighted item-seqs with a cardinal higher than or equal to one,
and Ã, B̃, . . . weighted AP-Seqs such as:

∀ A,B ∈ S; A � B, B � A and B �= A. (5)

A WAPO-Structure generated by S̃, Ẽ = g(Ã, B̃, . . .) is the set of AP-Seqs
whose spanning sequences are Ã, B̃, . . .

Note 1. We express the spanning sequence Ã as well as g̃(A).

Example 2. Let us suppose a database containing tuples in Table 2.

Table 2. Tuples in the Example 2

n Item-seqs

1 <intelligence, test, online, measure>

2 <measure, intelligence, test>

3 <measure, online>

Setting a support of 2 in terms of absolute frequency to consider an item-seq
to be frequent, we obtain the following structures:

APO − Structure : g(<intelligence, test>,<online>,<measure>)
= (<intelligence, test>,<intelligence>,<test>,

<online>,<measure>)
WAPO − Structure : g̃(<intelligence, test>,<online>,<measure>)

= (<intelligence, test>, 2), (<intelligence>, 2),
(<test>, 2), (<online>, 2), (<measure>, 3)



Obtaining WAPO-Structure Through Inverted Indexes 651

3 Complete Inverted Index

The inverted indexes are widely used in information retrieval [3,7], as well as
for other applications [5,10]. In this work we use the definitions given in [4], to
understand them, some notations are established in Table 3.

Table 3. Notations

Symbol Definition
∑

Finite non-empty alphabet
∑∗ Set of all items on

∑

λ Empty word
∑+ ∑∗ −{λ}
S Finite set of text words S ⊆ ∑+

Sub(S) Set of sub-strings in S

Note 2. If ω = xyz for the terms x, y, z ∈ ∑∗ ⇒ y is a subterm of ω, x is a
prefix of ω and z is a suffix of ω.

Definition 5. Complete Inverted Index [4]
Given a finite alphabet

∑
, a set of terms k ⊆ ∑+ and a set of texts S ⊆ ∑+,

a complete inverted index for (
∑

, k, S) is an abstract data type that implements
the following functions:

1. find:
∑+ → k∪{λ}, where find(ω) is the largest prefix x of ω with x ∈ k∪{λ}

and x occurs in S, that is, x is a subset of terms of a text in S.
2. freq: k → N, where freq(ω) is the number of times that ω occurs is a subset

of terms of a text in S.
3. locations: k → 2N×N , where locations(ω) is the number of ordered pairs

indicating the number of the text in which ω occurs and its position within
the text.

Definition 6. Rule of S [4]
A rule of S (rS) is a production x →s γxβ where x ∈ sub(S), γ, β ∈ ∑∗ that

occurs each time that x is preceded by γ and followed by β in S.

Definition 7. Primary rule of S [4]
tS : x →s γxβ is a primary rule of S if it is a rule S and γ and β are sets

of terms of the highest possible order, that is, � δ, τ ∈ ∑∗ with δ, τ �= λ such as
x →s δγxβτ be a rule of S.

Definition 8. Implication of x in S [4]
If x →s γxβ is a primary rule of S, then γxβ is called implication of x in S

and is denoted impS(x): P (S) = {impS(x) : x ∈ sub(S)}
The members of P (S) are called subsets of primary terms of S.



652 Ú. Torres-Parejo et al.

4 Obtaining the WAPO-Structure Through Complete
Inverted Indexes

It is possible to obtain the WAPO-Structure from the APO-Structure through
inverted indexes mainly in two ways:

The first is through the Apriori algorithm, in a similar way as the AprioriTid
and AprioriHybrid algorithms work [1], with a slight modification to introduce
order and weight into the itemsets.

These algorithms construct iteratively the set of frequent terms, using the
frequent itemsets found in a step to build the candidate itemsets and check if
they are frequent in the next step.

In the first step, the support of elementary items or items of level 1 is cal-
culated and determines which of these items are considered frequent according
to the minimum support. In each subsequent step, it starts with a “seed” set
consisting of itemsets found in the previous step combined with each other to
generate the candidate itemsets deciding which of these are, in turn, frequent.

To do this, the Apriori algorithm requires at each step to re-read data, but
the AprioriTid has the property that it is not necessary to go through the entire
database to calculate the support of the candidate itemsets after the first step.
For this purpose, a codification of the candidate itemsets found in the previous
step is created, before deciding whether they are frequent in the subsequent step.
In successive steps, the size of this coding is becoming much smaller than that
of the database, saving a lot of reading effort.

This coding is the one that we can perform through the inverted index,
to later apply the Apriori algorithm, just instead of going through the entire
database at each step, only the inverted indexes are read, which indicate the
ordered positions of each term in the text, discarding those that do not corre-
spond with a frequent itemset for the later step.

The second way is the one proposed in this article and consists of identifying
the implications of x1

i with the spanning sets of the APO-Structure, being x1
i

each of the frequent itemsets of level equal to 1. Obviously, we would have to
identify those implications that, in turn, were frequent.

To do this, the primary rules of x1
i (tuples containing the term in question)

are previously obtained and the maximals are selected, storing the frequent ones.
Those not frequent are divided into sub-rules, deciding which of these are, in
turn, frequent. Once the set of all the frequent rules is obtained, we eliminate
the redundant and not maximal ones and the remaining rules are what we will
call “frequent implications of x1

i ”, identifying them with the spanning sets of the
APO-Structure.

Finally, we use the function freq to obtain the weight of the item-seqs in the
APO-Structure and generate the WAPO-Structure.

Next, we define the set of frequent implications of x in S, where all the
frequent implications of x1

i are stored for identifying them with the spanning
sets of the APO-Structure.



Obtaining WAPO-Structure Through Inverted Indexes 653

Definition 9. Set of frequent implications of x in S
Let P (S) = {impS(x) : x ∈ sub(S)} be the set of all the implications in

S, we call Pf(S) the set of all the frequent implications in S, then Pfx1
i
(S) =

{impjS(x1
i ) : x ∈ sub(S)} with x1

i = frequent itemset of level 1 and j each of the
frequent implications of the itemset i.

Definition 10. Correspondence between frequent implications and the
spanning sets of the APO-Structure

Let E = g(A,B, . . . ,K, . . .) be the APO-Structure generated by the sets
A,B, . . . , K, . . . , then:

A = imp1S(x1
1), B = imp2S(x1

1), . . . ,K = imp1S(x1
2), . . . removing redundan-

cies.

The following algorithm specifies the process in more detail. For its applica-
tion it is necessary to have the complete inverted index for all the terms of the
base of texts S.

Algorithm

1. Identify frequent mono-terms according to support:
ωi = x1

i i ∈ S

If freq(ωi) > support ⇒ ωi is frequent (denoted as ωf
i )

2. Calculate the primary rules of ωf
i :

If ωf
i ∈ tj and tj=maximal tuple in S

⇒ tj primary rule of ωi (denoted as rk)
3. Remove redundancies
4. Check if the rules obtained are frequent:

If freq(rk) > support ⇒ rk frequent rule (denoted as rfk )
5. Store the frequent rules in the set of frequent implications:

Input rfk en Pf(S)
6. Split non-frequent rules into sub-rules:

If freq(rk) < support ⇒ rk no frequent rule (denoted as rfk )

∀ (rfk ) = {i1, . . . , in} non-frequent rule of S ⇒
{ii, . . . , in−1} y {i2, . . . , in} rule of S.

7. Go back to step 4.
8. Remove redundancies in Pf(S)
9. Identify each of the frequent implications in Pf(S) with the spanning sets of

the APO-Structure.

5 Example of How to Obtain APO-Structure
and WAPO-Structure Through Implications

Let us suppose we obtain the item-seqs listed in Table 4 from a database after
cleaning the text.

The function locations(ω) for all mono-terms is presented in Table 5 and
the image of the function freq(ω) in Table 6.



654 Ú. Torres-Parejo et al.

Table 4. Item-seqs after text cleaning

ni Item-seqs(i)

1 <pink, yellow, blue>

2 <green, pink, yellow>

3 <green, blue>

4 <orange, pink, yellow, blue>

5 <green, pink>

6 <yellow, green>

7 <green, pink, yellow>

Table 5. locations(ω)

Term n1 n2 n3 n4 n5 n6 n7

pink (1,1) (2,2) (4,2) (5,2) (7,2)

yellow (1,2) (2,3) (4,3) (6,1) (7,3)

blue (1,3) (3,2) (4,4)

green (2,1) (3,1) (5,1) (6,2) (7,1)

orange (4,1)

Table 6. freq(ω)

ωi Locations(ωi) Fωi

pink {(1,1), (2,2), (4,2), (5,2), (7,2)} 5

yellow {(1,2), (2,3), (4,3), (6,1), (7,3)} 5

blue {(1,3), (3,2), (4,4)} 3

green {(2,1), (3,1), (5,1), (6,2), (7,1)} 5

orange {(4,1)} 1

Let us consider a minimum support for an item-seq to be frequent greater
or equal than an absolute frequency of 2. In the current example the frequent
item-seqs of cardinality 1 are the mono-terms <pink>, <yellow>, <blue> and
<green>.

We compute the implications for each of these frequent item-seqs of cardinal-
ity 1. To do it first, it is necessary to compute their rules. The rules for item-seq
<pink> along with each rule frequency are shown in Table 7, where ri represents
the rule i and freqi represents its frequency.

Then, the primary rules are identified. We select only maximal rules. Rule
r4 it is not a primary rule, as it is contained in rule r2. Rule r1 it is neither a
primary rule as it is contained in rule r3.



Obtaining WAPO-Structure Through Inverted Indexes 655

Table 7. Rules for item-seq <pink>

i ri(<pink>) freqi(ri(<pink>))

1 <pink, yellow, blue> 2

2 <green, pink, yellow> 2

3 <orange, pink, yellow, blue> 1

4 <green, pink> 3

Table 8. Primary rules for item-seq <pink>

i ti(<pink>) freqi(ti(<pink>))

1 <green, pink, yellow> 2

2 <orange, pink, yellow, blue> 1

Table 9. Subrules for (t2)

i r′
i(<t2>) freqi(r

′
i(<t2>))

1 <orange, pink, yellow> 1

2 <pink, yellow, blue> 2

Table 10. Subrules for (r′
1)

i r′′
i (<r′

1>) freqi(r
′′
i (<r′

1>))

1 <orange, pink> 1

2 <pink, yellow> 4

Table 8 shows the primary rules for item-seq <pink>, where ti represents the
primary rule i and freqi its frequency. Of these primary rules, only t1 is frequent
regarding the support, so we store it in the set of frequent implications Pf(S).

Since t2 is not frequent, it is divided into two sub-rules that we can see in
Table 9, where r′

i represents the sub-rule i and freqi its frequency. In this case, r′
2

is frequent and comes from a non-frequent primary rule, so r′
2 becomes a frequent

primary rule (since there is no frequent higher-order rule) and it is stored in the
set of frequent implications Pf(S).

Since r′
1 is not frequent, it is divided into two sub-rules r′′

i (see Table 10). The
rule r′′

2 is frequent and it is stored in Pf(S), however it is not a primary rule since
there is another maximal rule in Pf(S) containing it, so it will be removed from
this set. The r′′

1 rule is not frequent, so the operations of dividing into sub-rules,
checking the frequencies and storing the frequent rules would be repeated.

Finally, two frequent implications for <pink> in Pf(S) have been obtained.
They are shown in Table 11.



656 Ú. Torres-Parejo et al.

The same procedure is applied for the item-seqs <yellow>, <blue> and
<green>, obtaining their frequent implications. They are shown in Tables 12,
13 and 14.

Table 11. Frequent implications for <pink>

i impi(<pink>) freqi(impi(<pink>))

1 <green, pink, yellow> 2

2 <pink, yellow, blue> 2

Table 12. Frequent implications for <yellow>

i impi(<yellow>) freqi(impi(<yellow>))

1 <pink, yellow, blue> 2

2 <green, pink, yellow> 2

Table 13. Frequent implications for <blue>

i impi(<blue>) freqi(impi(<blue>))

1 <pink, yellow, blue> 2

In total we have determined the next implications:

– impS(x1
1) = imp(<pink>) ⇒ imp1(x1

1) = <pink, yellow, blue> and
imp2(x1

1) = <green, pink, yellow>
– impS(x1

2) = imp(<yellow>) ⇒ imp1(x1
2) = <pink, yellow, blue> and

imp2(x1
2) = <green, pink, yellow>

– impS(x1
3) = imp(<blue>) ⇒ imp1(x1

3) = <pink, yellow, blue>
– impS(x1

4) = imp(<green>) ⇒ imp1(x1
4) = <green, pink, yellow>

When duplicate implications are removed, two implications remain:
imp1(x1

1) = <pink, yellow, blue> and imp2(x1
1) = <green, pink, yellow>

These implications will be used as the maximal itemseqs in the APO-
Structure, which has cardinal 2.

Let E be an APO-Structure, with spanning sequences A and B:
E = g(A,B) ⇒ A = imp1(x1

1) and B = imp2(x1
1)

E = g(<pink, yellow, blue>,<green, pink, yellow>)
E = (<pink, yellow, blue>,<green, pink, yellow>,<pink, yellow>,
<yellow, blue>,<green, pink>,<pink>,<yellow>,<blue> and
<green>)
In order to compute the weight for the WAPO-Structure, we use the function

freq(ωi) with i = item-seq ∈ APO-Structure. The resulting WAPO-Structure is
the following:



Obtaining WAPO-Structure Through Inverted Indexes 657

Table 14. Frequent implications for <green>

i impi(<green>) freqi(impi(<green>))

1 <green, pink, yellow> 2

Ẽ = g((<pink, yellow, blue>, 2), (<green, pink, yellow>, 2))
Ẽ = ((<pink, yellow, blue>, 2), (<green, pink, yellow>, 2),
(<pink, yellow>, 4), (<yellow, blue>, 2), (<green, pink>, 3)
(<pink>, 5), (<yellow>, 5), (<blue>, 3) and (<green>, 5))

6 Conclusions

The inverted index helps us to identify the primary rules of the frequent terms
and the frequent sub-rules of the non-frequent primary rules. The set consisting
of all frequent maximal rules is called “the set of frequent implications”. Each
of the rules in this set corresponds to a spanning set of the APO-Structure,
so we have the WAPO-Structure from these frequent implications and their
frequencies.

The biggest drawback of this method is that when there are many maxi-
mal non-frequent item-seqs, a lot of time is lost in the decomposition of these
sequences until finding the level in which they are frequent, in order to find the
frequent implications. This drawback makes the method more appropriate in
a text in which many large repeated sequences are found. In other case, it is
preferable to use the Apriori algorithm, which according to Hipp et al. [6] finds
the greatest difficulty in calculating support for itemsets of level four or higher
and is best known for its ease and simplicity of implementation.

In short, the method proposed in this paper saves reading time by not having
to go through the database repeatedly to get the frequent item-seqs as the Apriori
algorithm method [1] does. Its application is recommended in databases where
most of the frequent sequences are long, but the Apriori algorithm works better
in other cases, depending on the characteristics of the text.

Acknowledgements. This work has been partially supported by the “Plan Andaluz
de Investigación, Junta de Andalućıa” (Spain) under research project P10-TIC6019.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceed-
ings of the 20th International Conference in Very Large Data Bases, VLDB, vol.
1215, pp. 487–499. Citeseer (1994)

2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the
Eleventh International Conference on Data Engineering, pp. 3–14. IEEE (1995).
https://doi.org/10.1109/ICDE.1995.380415

https://doi.org/10.1109/ICDE.1995.380415


658 Ú. Torres-Parejo et al.

3. Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern Information Retrieval. ACM
Press, New York (1999)

4. Blumer, A., Blumer, J., Haussler, D., McConnell, R., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. J. ACM 34(3), 578–595 (1987).
https://doi.org/10.1145/28869.28873

5. Cutting, D., Karger, D., Pedersen, J., Tukey, J.: Scatter/Gather: a cluster-based
approach to browsing large document collections. In: ACM SIGIR Forum, vol. 51,
pp. 148–159. ACM (2017). https://doi.org/10.1145/3130348.3130362

6. Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining - a
general survey and comparison. SIGKDD Explor. Newsl. 2, 58–64 (2000). https://
doi.org/10.1145/360402.360421

7. Patil, M., Thankachan, S., Shah, R., Hon, W., Vitter, J., Chandrasekaran, S.:
Inverted indexes for phrases and strings. In: Proceedings of the 34th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 555–564. ACM (2011). https://doi.org/10.1145/2009916.2009992

8. Torres-Parejo, U., Campaña, J.R., Vila, M.A., Delgado, M.: MTCIR: a multi-
term tag cloud information retrieval system. Expert Syst. Appl. 40(14), 5448–5455
(2013). https://doi.org/10.1016/j.eswa.2013.04.010

9. Torres-Parejo, U., Campaña, J., Vila, M., Delgado, M.: A theoretical model for
the automatic generation of tag clouds. Knowl. Inf. Syst. 40(2), 315–347 (2014).
https://doi.org/10.1007/s10115-013-0651-9

10. Vdorhees, E.: The cluster hypothesis revisited. In: ACM SIGIR Forum, vol. 51,
pp. 35–43. ACM (2017). https://doi.org/10.1145/3130348.3130353

11. Zaki, M.: SPADE: an efficient algorithm for mining frequent sequences. Mach.
Learn. 42(1), 31–60 (2001). https://doi.org/10.1109/ICDE.2004.1320012

https://doi.org/10.1145/28869.28873
https://doi.org/10.1145/3130348.3130362
https://doi.org/10.1145/360402.360421
https://doi.org/10.1145/360402.360421
https://doi.org/10.1145/2009916.2009992
https://doi.org/10.1016/j.eswa.2013.04.010
https://doi.org/10.1007/s10115-013-0651-9
https://doi.org/10.1145/3130348.3130353
https://doi.org/10.1109/ICDE.2004.1320012

	Obtaining WAPO-Structure Through Inverted Indexes
	1 Introduction
	2 APO-Structure and WAPO-Structure
	2.1 APO-Structure torres2
	2.2 WAPO-Structure torres2

	3 Complete Inverted Index
	4 Obtaining the WAPO-Structure Through Complete Inverted Indexes
	5 Example of How to Obtain APO-Structure and WAPO-Structure Through Implications
	6 Conclusions
	References




