
Least Median of Squares (LMS)
and Least Trimmed Squares (LTS) Fitting

for the Weighted Arithmetic Mean

Gleb Beliakov1, Marek Gagolewski2,3, and Simon James1(B)

1 School of Information Technology, Deakin University, Burwood, Victoria, Australia
{gleb,sjames}@deakin.edu.au

2 Systems Research Institute, Polish Academy of Sciences,
ul. Newelska 6, 01-447 Warsaw, Poland

gagolews@ibspan.waw.pl
3 Faculty of Mathematics and Information Science,

Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland

Abstract. We look at different approaches to learning the weights of the
weighted arithmetic mean such that the median residual or sum of the
smallest half of squared residuals is minimized. The more general problem
of multivariate regression has been well studied in statistical literature,
however in the case of aggregation functions we have the restriction on
the weights and the domain is also usually restricted so that ‘outliers’
may not be arbitrarily large. A number of algorithms are compared in
terms of accuracy and speed. Our results can be extended to other aggre-
gation functions.

Keywords: Aggregation functions · Robust statistics
Least median of squares fitting · Least trimmed squares fitting

1 Introduction

In the application of aggregation functions, a key problem is how to determine
the weights or function parameters that give the best fit with respect to some
penalty or objective to an observed dataset. The learned parameters can then
be used either for data analysis or in the prediction of new values.

A standard approach is to use programming methods such that the sum of
residuals is optimized [1–4], e.g. for a weighted arithmetic mean with respect
to an unknown n-dimensional vector of weights w, and an observed dataset
consisting of m input-output pairs (xi, yi),xi ∈ [0, 1]n, yi ∈ [0, 1], we have

c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 854, pp. 367–378, 2018.
https://doi.org/10.1007/978-3-319-91476-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91476-3_31&domain=pdf
http://orcid.org/0000-0003-1150-0628

368 G. Beliakov et al.

Minimize
w

m∑

i=1

|ri|p (1)

s.t. ri =

⎛

⎝
n∑

j=1

wjxij

⎞

⎠ − yi, i = 1, . . . ,m,

n∑

j=1

wj = 1, wj ≥ 0, j = 1, . . . , n.

For p = 2 we are minimizing the sum of squared residuals or least squares
(LS), which can be solved as a quadratic programming problem, while for p = 1,
we have the least absolute deviation (LAD), which can be solved using linear
programming methods by introducing two decision variables for each observed
instance and setting ri = r+i − r−

i and r+i , r−
i ≥ 0.

The LAD approach should be less susceptible to outliers, however as has been
well observed in statistical literature [5], leverage points can still exert influence
if the residual associated with outliers is significantly larger than residuals asso-
ciated with other points.

For example, consider the 2-variate data depicted in blue in Fig. 1(a).
When fitting using Eq. (1) and p = 1 (LAD1), we obtain the weighting vector

w = (0.300, 0.700) with a total fitting error of 4.9 × 10−4. Using p = 2 (LS), we
also obtain a good result with the same weighting vector (to 3 d.p.) and error
2.8 × 10−8.

However suppose we introduce outlying points at x = (0, 1), y = 0. These
are indicated by the red point depicted in Fig. 1(a). With the introduction of
a single outlier, the LS results in w = (0.740, 0.260), the penalty or objective
value increasing to 1.3 × 10−1 (note that these weights reverse the importance
allocated to each variable). The outlier effect on the LS method is illustrated
visually in Fig. 1(b)–(c). With the single outlier, the weights determined by LAD
are almost unchanged (when evaluated to 3 d.p.), the error increasing to 7.0 ×
10−1. However when we introduce 2 outliers (at the same point), the LS continues
to allocate more weight to the first variable, w = (0.841, 0.159) with overall
penalty 2.2 × 10−1 and, at this point, the LAD fitting results in the vector
w = (1, 0), i.e. interpolating the two outliers, because the sum of the residuals
when fitting to these points is 1.4, which is less than the error that would result
if the original model’s weighting vector w = (0.7, 0.3) were used.

In the 80s, this problem for standard linear regression prompted Rousseeuw
and others [5,7,8] to consider optimizing with respect to the median residual
(least median of squares or LMS) or the sum of the smallest 50% of residuals

(least trimmed squares or LTS) instead, i.e. minimizing
∣∣r(k)

∣∣p or
k∑

i=1

|r(k)|p where

k = �m/2� and |r(i)| indicates the i-th smallest residual.

1 All fitting performed in R [6] with details available at http://aggregationfunctions.
wordpress.com.

http://aggregationfunctions.wordpress.com
http://aggregationfunctions.wordpress.com

LMS and LTS Fitting for the Weighted Arithmetic Mean 369

Fig. 1. (a) Randomly generated data (uniformly over [0, 1]2) in blue and an outlying
point in red shown as projection onto the 2-dimensional plane. (b)–(c) Data from (a)
with a well fitting weighted mean (b) and a weighted mean affected by the outlier in
red (c), both determined using least squares fitting. In the latter case a single outlier
pulls the function towards the outlying point and in 3-dimensional space. (Color figure
online)

In [5], Rousseeuw notes that the breakdown point, i.e. the percentage of data
that can be arbitrarily large before a reliable result is obtained, is ((m/2) − n +
2)/m.

Rousseeuw’s method involves sampling n points (or n+1 in the case of stan-
dard regression requiring an intercept), solving the exact interpolation problem,
then checking the residuals. After multiple iterations, the weighting vector that
minimizes the objective function of the residuals is taken as the approximate
solution. The number of samples can be chosen such that the probability of a
‘good’ solution appearing in one of the samples is high. An underlying assump-
tion then is that there exists a sample of n points that are representative enough
of the non-outlier dataset. Rousseeuw also has investigated the reliability in
terms of estimating accuracy assuming normally distributed error.

In the case of weighted means, solving the interpolation problem for n points
could result in negative weights if the data contains noise, and depending on
the granularity at which data is collected, real data is likely to include subsets
of observed points resulting in singular matrices and hence be unsolvable. It
is noted in [9] that minimizing the median residual has a relationship to the
infinity norm (L∞), i.e. the problem can be expressed as a mixed integer program
where the maximum residual is minimized for a subset consisting of half of the
data (which theoretically could be implemented using binary variables indicating
whether a datum is included or not). Of course, for any reasonable sized dataset
this quickly becomes infeasible, however we can still look to use the minimization
of the maximum residual as the basis of a number of approximation algorithms.
Furthermore, it should be noted that with computing power and the availability
of general-purpose solvers, many real applications would have the luxury of being
able to spend a little extra computing time if high accuracy is needed, so a range
of approaches are practically feasible.

370 G. Beliakov et al.

In this contribution, we introduce and investigate a number of algorithms that
aim to find the best approximation to the weights of a weighted arithmetic mean
that minimize the LMS and LTS fitting criteria. We test the algorithms against
synthetic data to determine whether their respective performance is dependent
on factors such as the number of outliers, the structure of the outliers, and the
variable parameters of each algorithm. In Sect. 2 we give a brief overview of
aggregation functions (of which the weighted arithmetic mean is an archetypical
example) and the data-fitting problem. In Sect. 3 a number of algorithms are
presented and compared with numerical experiments. Some concluding remarks
are provided in the final section.

2 Preliminiaries

We are concerned with the modelling of data with aggregation functions
[1,3,4,10,11], a class of multi-variate functions A : [0, 1]n → [0, 1] satisfying
monotonicity in each argument and boundary conditions A(0, . . . , 0) = 0 and
A(1, . . . , 1) = 1.

Although a broad definition, in the context of machine learning, the mono-
tonicity of aggregation functions ensures a degree of robustness and conceptual
reliability in the obtained model (provided monotonicity makes sense in the
application), while the boundary conditions to some extent ensure that the scale
of the output can be interpreted over a similar scale to the inputs. In particular,

we will focus on use of the weighted arithmetic mean, WAM(x) =
n∑

j=1

wixi,

with w = (w1, w2, . . . , wn) an n-dimensional weighting vector that satisfies∑n
i=1 wi = 1 and wi ≥ 0,∀i.
The weighted arithmetic mean is said to be averaging, i.e. for all x ∈ [0, 1]n,

min(x) ≤ WAM(x) ≤ max(x).
There are countless families of aggregation functions with various interesting

properties, including those that are averaging and defined with respect to weight-
ing vectors. While we focus on the simplest family, most of our results would be
easily extended to the cases of OWA operators, weighted quasi-arithmetic means
and the Choquet integral to name a few. We note too that other intervals can
be considered, however we will contain ourselves to [0, 1] here.

How to fit weighted arithmetic means to data based on least absolute devi-
ation has been addressed in [2,12–14]. We recall that Eq. (1) can be used as the
basis for finding the best fitting aggregation function, while further requirements
on the weights may also be desired (see, e.g. the summaries and references in
[1]).

More complicated aggregation functions can be fit to data using more or
less the same approach. Ordered weighted averaging (OWA) functions merely
require each of the input vectors to be sorted, while the fitting can be performed
on weighted quasi-arithmetic means by transforming the inputs and outputs
(although this can result in residuals being over- or under-estimated, see [15]).

LMS and LTS Fitting for the Weighted Arithmetic Mean 371

3 Least Median of Squares (LMS) and Least Trimmed
Squares (LTS) Fitting for the Weighted Arithmetic
Mean

The difficult aspect of solving Eq. (1) with respect to the LMS or LTS is deter-
mining the subset S ⊂ {1, . . . , m} such that |S| = �m/2� and there exists an
observation k with |rk| ≥ |ri|,∀ i ∈ S and |rk| ≤ |ri|,∀i
∈ S.

Once we have S, the LMS problem could be solved by finding the maximum
error z = |rk| using the following linear program

Minimize
w

z (2)

s.t. z ≥
⎛

⎝
n∑

j=1

wjxij

⎞

⎠ − yi, z ≥ yi −
⎛

⎝
n∑

j=1

wjxij

⎞

⎠ , i = 1, . . . , m,

n∑

j=1

wj = 1, wj ≥ 0, j = 1, . . . , n,

z ≥ 0.

This requires only n + 1 decision variables and 2m + 1 linear constraints if
all decision variables are assumed to be positive. The LTS is solved merely by
solving Eq. (1) on the given subset. We first describe our experimental setup
before testing multiple approaches.

3.1 Random Test Data

We considered two simple data creation methods, differing in the outliers gen-
erated in order to detect whether certain LMS or LTS approaches are more
susceptible to their structure and distribution throughout the data.

We generated random 5-dimensional vectors such that one or two of the
variables held most of the importance (to ensure the potential for high residuals).
A random integer q between 400 and 600 was selected for each test, then each
wj calculated as wj = jq/100 − (j − 1)q/100 before being normalized so that the
vectors added to 1. The non-outlier data were generated with xi drawn randomly
from the unit hypercube (with uniform probability) and y-values calculated using

yi =
n∑

j=1

wjxj . Guassian noise was then added with standard deviation σ = 0.05.

Outliers were generated according to two methods. The first method assumes
these values are just extra noisy values that follow the same model. Increasing
the number of outliers present would not be expected to have a drastic impact
on the fitted weighting vectors. The second method strategically positions the
values so that the importance of the highest weight should be brought down and
the fitted weighting vector would not represent the non-outlier data very well
(See Fig. 2).

372 G. Beliakov et al.

rand.data.1. x and y values were determined in the same way as for the non-
outlier data, however with σ = 0.1 and an extra 0.3 added to the y value in
the same direction as the noise, i.e. these data points are at least 6 standard
deviations (with respect to the noise of non-outlying values) away from values
calculated using the model w. Values outside the unit interval were discarded
and redrawn.

rand.data.2. x values are centered according to the generating weighting vector
w with the weights squared and divided by the maximum w2

j before Gaussian
noise is added with σ = 0.005. The y values are set to 0 with Guassian noise
added σ = 0.1 and negative values made positive.

Fig. 2. Structure of random data generated for experiments using (a) rand.data.1 -
data randomly distributed at least 6 standard deviations away from the generating
function points, and (b) rand.data.2 - data distributed near y = 0, close to the corner
of the hypercube corresponding to the dimension allocated the highest importance. This
data is for the special case of 1 dimension - in our experiments we used 5-dimensional
x vectors. Lines indicate 3 standard deviations (with respect to Gaussian noise of
non-outlier data) either side of the generating function.

3.2 Algorithms Based on Random Sampling

We first tested 4 approaches based on Rousseeuw’s approach [5,7,8] where we
randomly sample sets of n inputs and use them to estimate the weights. In
each case, we assume an input dataset consisting of m observed n-dimensional
x inputs and the corresponding y values.

LMS1/LTS1. The weighting vector is initialized at (1/n, 1/n, . . . , 1/n) and
objective value at m. For each of Q iterations, n observed instances are sam-
pled and the corresponding matrix is solved2 to give the hyperplane through
those sampled points. If all weights are positive, the squared residual values
between this hyperplane and all m points is calculated and the objective value
determined (median residual for LMS, mean of smallest 50% of residuals for
LTS). If this objective is lower than the current best, the weighting vector

2 Achieved in R using solve(), provided the matrix is non-singular. In the event of
singular matrices, the particular iteration contributed nothing to the output.

LMS and LTS Fitting for the Weighted Arithmetic Mean 373

and best objective value are updated. The iteration is skipped if any of the
weights are negative. After Q iterations, the current best weighting vector
(not necessarily normalized) and square root of the objective are given as
output.

LMS2/LTS2. Same setup as for the LMS1/LTS1 approach, however residuals
are still calculated for weighting vectors that include negative values. After
Q iterations, the residuals are re-calculated and all inputs with values lower
than or equal to the median residual are allocated to the inclusion set S. For
LMS, The fitting method of Eq. (2) is then used to find the final weighting
vector and the corresponding median residual is then calculated. For LTS, the
least squares fitting approach is used on S and then the corresponding root
mean squared error of the smallest 50% of residuals according to the resulting
weighting vector is calculated. In other words, the method of sampling and
solving the system of n points is used to make a best guess at S and then
exact fitting approaches are used on S.

LMS3/LTS3. As with previous approaches, subsets of n observations are ran-
domly sampled in each iteration, however rather than solving the linear sys-
tem, a weighting vector is found by optimizing with respect to the n points
(which will always result in appropriate weighting vectors). LMS3a, LTS3a
optimize with respect to the maximum error, LMS3b, LTS3b optimize with
respect to the least squares criterion and LMS3c and LTS3c optimize with
respect to the least absolute deviation. For each iteration, the weighting vec-
tor that minimizes the LMS or LTS objective is checked and stored if better
than the current best. As with LMS2/LTS2, the best performing vector with
respect to the objective is then used to establish the subset S and either the
maximum error or least squares are minimized for S.

LMS4/LTS4. Same as LMS3a and LTS3b, however drawing 2n random obser-
vations.

In each of these methods, thousands of iterations can be used to sample the
observations and find the best performing weight vector.

Experiments. To observe the effect of increasing iterations and to compare
the approaches, these methods were tested for varying values of Q, and vary-
ing number of outliers. In each experiment, 100 non-outlier instances were gen-
erated along with 99 outliers, then each method was tested for each setting
of Q = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 200, 500, 1000, 2000}, incorporat-
ing progressively more of the outliers in 10s, i.e. 10, 20, 30, . . . , 90 and 99. There
were 100 random datasets generated using each of rand.data.1 and rand.data.2.

Influence of Outliers. Firstly, we are interested in the performance for the
highest number of iterations in terms of whether the outliers influenced the
weighting vector obtained. In each experiment, the outliers were deemed to have
affected the output if the maximum error of the non-outlier data calculated was
greater than the minimum error for the outliers.

374 G. Beliakov et al.

In the case of data generated by rand.data.1, with the exception of one
instance for LMS4, only LMS1 and LTS1 resulted in weighting vectors that were
influenced by outliers with increasing frequency as more outliers were included.
Table 1 shows the proportion of the 100 experiments where this occurred for each
setting of the number of outliers.

Table 1. Prop. of fitted w influenced by outliers for LMS1 and LTS1 using rand.data.1

Outliers 10 20 30 40 50 60 70 80 90 99

LMS1 0.01 0 0.01 0.02 0.01 0.02 0.08 0.18 0.24 0.31

LTS1 0 0 0.01 0.01 0.02 0.05 0.07 0.16 0.18 0.32

The main reason these methods may be more susceptible to bad fitting is
because an iteration is essentially wasted if the sample generates any negative
weights.

For the data generated by rand.data.2, the proportion of tests where the
methods resulted in weighting vectors affected by outliers was much higher.
We show only LMS1/LTS1, LMS2/LTS2 and LMS3a/LTS3b to give an indica-
tion of the performance (all LMS3/LTS3 and LMS4/LTS4 results were similar)
(Table 2).

Table 2. Prop. of fitted w influenced by outliers for LMS1 and LTS1 with rand.data.2

Outliers 10 20 30 40 50 60 70 80 90 99

LMS1 0 0 0 0.01 0.09 0.43 0.82 0.99 1 1

LTS1 0 0 0 0 0.10 0.31 0.76 0.96 0.99 1

LMS2 0 0 1 0 1 0.17 0.81 1 1 1

LTS2 0 0 0 0 0 0.19 0.67 0.96 1 1

LMS3a 0 0 0.02 0.12 0.28 0.58 0.88 0.99 1 1

LTS3b 0.01 0.01 0.05 0.14 0.31 0.60 0.84 0.98 1 1

For these results, it is not easy to determine whether the outliers exert an
influence due to a ‘bad fit’ or because the objective is actually minimized by
using the outliers. For example, where there were 50 outliers present, LMS1 had
9 instances where the resulting model was influenced by the outliers, however in
4 of those cases an unaffected model with a better objective was achieved using
LMS3a. Conversely, of the 28 affected models using LMS3a, for 4 of these, there
was an unaffected model with better error using LMS1. We can infer that the
error rate in the presence of this many outliers with this structure in the data
can be similar for affected and unaffected models.

LMS and LTS Fitting for the Weighted Arithmetic Mean 375

Influence of Iterations. Our next question is how many iterations are required
to achieve a good level of accuracy. For these particular data generation methods,
all methods except for LMS1/LTS1 actually achieved a reasonable accuracy once
the number of iterations was above 15, with only marginal improvements after
100. This is not overly surprising, since with these datasets and approaches, if the
5 sampled points happen to be non-outliers then the sampling should identify the
plane closest to the non-outlying set and the final step should obtain the optimal
error measure. The best methods overall for varying number of outliers were
those that used LAD on the random subsets. Figure 3 shows the improvement
from 5 to 100 iterations for all methods except for LTS1/LMS1 on both datasets
with 50 outliers. LTS1 and LMS1 were not comparable to the remaining methods
until the number of iterations was above 500 and at 2000 performed worst overall.

(a) LMS
data 1

(b) LMS
data 2

(c) LTS
data 1

(d) LTS
data 2

Fig. 3. Average error measures performance over 100 tests with 50 outliers present
using rand.data.1 (data 1) and rand.data 2 (data 2). Red = LMS2/LTS2, Blue =
LMS3a/LTS3a, Green = LMS3b/LTS3b, Yellow = LMS3c/LTS3b and Grey = LMS4/
LTS4. (Color figure online)

Running Time. Lastly we can comment on the time taken to execute the algo-
rithms, which increased close to linearly with the number of iterations. Table 3
shows average times for each of the methods. The LMS3b/LTS3b methods were
the slowest, since implementation of LAD requires two extra decision variables
for each observation.

3.3 General-Purpose Optimization

We can also look to whether general-purpose solvers can achieve a better trade-off
between accuracy and time. We consider two multivariate optimization methods:

376 G. Beliakov et al.

Table 3. Time taken on average (in seconds) to run each method with 100 non-outlier
and 50 outlier data.

Iterations LMS LTS

1 2 3a 3b 3c 4 1 2 3a 3b 3c 4

100 0.003 0.047 0.081 0.103 0.065 0.088 0.003 0.049 0.065 0.102 0.081 0.075

500 0.013 0.228 0.392 0.461 0.307 0.419 0.014 0.242 0.308 0.471 0.401 0.317

1000 0.028 0.449 0.765 0.917 0.596 0.821 0.029 0.453 0.602 0.929 0.774 0.617

2000 0.056 0.882 1.523 1.820 1.173 1.625 0.059 0.888 1.198 1.839 1.539 1.231

the derivative basedL-BFGS-Bmethod (Broyden-Fletcher-Goldfarb-Shannowith
lower and upper box constraints [16]) and the derivative-free COBYLA method
(Powell’s method of constrained optimization by linear approximations [17]).

LMS5/LTS5. L-BFGS-B only allows for box constraints, so we define an objec-
tive function that first normalizes the weighting vector and then calculates
the median residual or least trimmed squares. The L-BFGS-B method is then
used to optimize with respect to this function. Multiple random-start itera-
tions can be used since the result of L-BFGS-B depends on the initial setting
for w.

LMS6/LTS6. COBYLA allows for the constraint on the weighting vector to be
imposed via two inequality constraints. Multiple random-start iterations can
also be employed here.

Experiments. Numerical experiments were conducted with the same setup as
for the random sampling techniques. For 100 random test datasets, we compared
LMS5/LTS5 and LMS6/LTS6 with LMS3b/LTS3b. The same settings were used
for increasing the number of outliers, while for number of random starts we tested
{1, 3, 5, 10, 20, 50, 100}. For the comparison we set the number of iterations to
100 times the number of random starts for the general methods (as this was
anticipated to be comparable in terms of time taken).

Influence of Outliers. For rand.data.1, for the highest number of random
starts and iterations tested, LMS5 and LMS6 were influenced by outliers only
for high number of outliers present. For 90 outliers, 2 and 1 instance respectively
were influenced, while for 99 outliers, this rose to 33 and 8 respectively. In fact,
even for 20 random starts, it was still only these two methods that were sus-
ceptible. For rand.data.2, all methods were similarly susceptible to outliers. For
50 outliers, the LMS methods had between 24 and 26 tests affected by outliers,
while for LTS this was 30–31. Where there was 30 outliers, each method only
had one instance where the outliers affected the result.

Influence of Number of Random Starts. As the methods were similarly
affected by outliers, we can consider the accuracy in terms of median residual and
least trimmed squares values obtained with respect to increases in the number

LMS and LTS Fitting for the Weighted Arithmetic Mean 377

of random starts (or iterations for LMS3b/LTS3b). The general optimization
methods were more inaccurate where the number of random starts was below
50, however beyond this the methods were comparable.

Running Time. The time taken to run LMS3b/LTS3b was comparable to
LMS6 and LTS5, i.e. LMS used with the derivative-free COBYLA method and
LTS with L-BFGS-B, however LMS with L-BFGS-B and LTS with COBYLA
took considerably longer. This makes some sense given that once the non-outlier
data are found, the LTS problem is essentially a smooth quadratic problem while
for LMS there are points of discontinuity in the optimization function. Table 4
shows the average results, showing LMS6 and LTS3b to be slightly faster overall
over these tests although not significantly.

Table 4. Time taken on average to run general-purpose solvers (LMS5/LTS5,
LMS6/LTS6) compared with LMS3b/LTS3b for data generated by rand.data.1 with
10 outliers. Iterations* indicates number of random starts for general-purpose solvers
and number of iterations divided by 100 for LMS3b/LTS3b, i.e. 20 represents 2000.

Iterations* LMS LTS

3b 5 6 3b 5 6

1 0.087 0.428 0.073 0.084 0.093 0.256

3 0.250 1.399 0.229 0.252 0.266 0.774

5 0.416 2.289 0.380 0.418 0.460 1.371

10 0.825 4.542 0.771 0.838 0.912 2.630

20 1.651 9.145 1.547 1.666 1.808 5.249

50 4.124 22.436 3.805 4.170 4.563 13.408

100 8.245 45.162 7.649 8.350 9.049 26.902

4 Conclusions and Future Work

We have tested various approaches to LMS and LTS fitting of the weighted
arithmetic mean. Overall we found that random sampling techniques were fairly
competitive with general purpose solvers, however in the latter case there could
be improvements made by fine-tuning some of the parameters or altering the
objective functions slightly to make them smoother. We did investigate peeling
methods, i.e. removing outer points based on the initial optimization, however
these were not competitive for the techniques we have shown results for.

We can recommend the LMS3b or LMS6 approaches for fitting to the median
residual and LTS3b or LTS5 for fitting with respect to least trimmed squares,
although there is much more to investigate.

The techniques could be extended to other aggregation functions with some
additional problems arising in some cases, e.g., in the case of the Choquet inte-
gral, a random sample of observations, even if 2n are taken, would not necessarily

378 G. Beliakov et al.

cover all orderings and hence all simplexes over which the Choquet integral needs
to be defined. It also has many additional constraints.

References

1. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for
Practitioners. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
73721-6

2. Beliakov, G.: Construction of aggregation functions from data using linear pro-
gramming. Fuzzy Sets Syst. 160, 65–75 (2009)

3. Beliakov, G., Bustince, H., Calvo, T.: A Practical Guide to Averaging Functions.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24753-3

4. Gagolewski, M.: Data Fusion: Theory, Methods and Applications. Institute of Com-
puter Science, Polish Academy of Sciences, Warsaw (2015)

5. Rousseeuw, P.J.: Least median of squares regression. J. Am. Stat. Assoc. 79(388),
871–880 (1984)

6. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2017)

7. Dallal, G.E., Rousseeuw, P.J.: LMSMVE: a program for least median of squares
regression and robust distances. Comput. Biomed. Res. 25, 384–391 (1992)

8. Rousseeuw, P.J., Hubert, M.: Recent developments in PROGRESS. In: L1-
Statistical Procedures and Related Topics. IMS Lecture Notes - Monograph Series,
vol. 31, pp. 201–214 (1997)

9. Farebrother, R.W.: The least median of squared residuals procedure. In: Fare-
brother, R.W. (ed.) L1-Norm and L∞-Norm Estimation. BRIEFSSTATIST, pp.
37–41. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36300-9 6

10. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Cam-
bridge University Press, Cambridge (2009)

11. Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggrega-
tion Operators. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
68791-7

12. Beliakov, G., James, S.: Citation-based journal ranks: the use of fuzzy measures.
Fuzzy Sets Syst. 167, 101–119 (2011)

13. Beliakov, G., James, S.: Using linear programming for weights identification of
generalized Bonferroni means in R. In: Torra, V., Narukawa, Y., López, B., Villaret,
M. (eds.) MDAI 2012. LNCS (LNAI), vol. 7647, pp. 35–44. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34620-0 5

14. Bloomfield, P., Steiger, W.: Least Absolute Deviations: Theory Applications and
Algorithms. Birkhauser, Basel (1983)

15. Bartoszuk, M., Beliakov, G., Gagolewski, M., James, S.: Fitting aggregation func-
tions to data: part I - linearization and regularization. In: Carvalho, J.P., Lesot,
M.-J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU
2016. CCIS, vol. 611, pp. 767–779. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-40581-0 62

16. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound
constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995)

17. Powell, M.J.D.: A direct search optimization method that models the objective and
constraint functions by linear interpolation. In: Gomez, S., Hennart, J.P. (eds.)
Advances in Optimization and Numerical Analysis. MAIA, vol. 275, pp. 51–67.
Kluwer Academic, Dordrecht (1994). https://doi.org/10.1007/978-94-015-8330-5 4

https://doi.org/10.1007/978-3-540-73721-6
https://doi.org/10.1007/978-3-540-73721-6
https://doi.org/10.1007/978-3-319-24753-3
https://doi.org/10.1007/978-3-642-36300-9_6
https://doi.org/10.1007/978-3-540-68791-7
https://doi.org/10.1007/978-3-540-68791-7
https://doi.org/10.1007/978-3-642-34620-0_5
https://doi.org/10.1007/978-3-319-40581-0_62
https://doi.org/10.1007/978-3-319-40581-0_62
https://doi.org/10.1007/978-94-015-8330-5_4

	Least Median of Squares (LMS) and Least Trimmed Squares (LTS) Fitting for the Weighted Arithmetic Mean
	1 Introduction
	2 Preliminiaries
	3 Least Median of Squares (LMS) and Least Trimmed Squares (LTS) Fitting for the Weighted Arithmetic Mean
	3.1 Random Test Data
	3.2 Algorithms Based on Random Sampling
	3.3 General-Purpose Optimization

	4 Conclusions and Future Work
	References

