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Abstract. In this paper, we propose a new approach to the discrete
fuzzy transform of higher degree based on the piecewise constant rep-
resentation of discrete functions and the application of the continuous
fuzzy transform. We show how a given discrete function can be recon-
structed by using the discrete higher degree fuzzy transform and how
convenient the latter is computed by the novel approach. Finally, we
illustrate and compare the proposed technique with the original discrete
fuzzy transform of higher degree.
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1 Introduction

The fuzzy transform (F-transform, for short) has been introduced by Perfilieva in
[10]. In this paper, Perfilieva proposed both the continuous F-transform for con-
tinuous (and later locally integrable) functions and the discrete F-transform for
discrete functions defined over sets of finite points. The continuous F-transform
has been extended to higher degrees in [11] to improve its ability to approxi-
mate functions whose domains are connected subsets of the real line. The con-
tinuous higher degree F-transform has been reformulated for discrete functions
by Holčapek and Tichý in [4]. It is well known that the F-transform consists of
two phases, namely, direct and inverse. The direct phase transforms a (locally
integrable or discrete) function into a set of its local approximations, which are
called the direct F-transform components and are determined with respect to
basic functions, i.e., fuzzy sets, that form a fuzzy partition of the domain of the
given function. On the other hand, the inverse phase provides an approximate
reconstruction of the original function from its direct fuzzy transform compo-
nents. Due to its good reconstruction ability, low computational complexity and
successful reduction of noise, the F-transform has become a popular alternative
in various fields of application, e.g., data analysis, time series analysis, image pro-
cessing, non-parametric regression, numerical solution of differential equations,
(see, e.g., [3,5,7,9,13]).
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In practice, all applications of F-transform are designed in a discrete form;
therefore, the importance of discrete (higher degree) F-transform increases, when
one solves practical tasks. Besides a discretization of integral formulas used in
the computation of the continuous F-transform (see, e.g., [12]), it seems to be
reasonable to apply the discrete F-transform of higher degree in the form as
has been introduced in [4]. Recall that if p is a real function defined on a finite
set D = {ti ∈ [a, b] | i = 1, . . . , n, ti < ti+1}, then the k-th component of the
direct F-transform of degree m (m ∈ N) of p with respect to a fuzzy partition
{Ak | k = 1, . . . , �} of D is a polynomial

Fm
k [p](t) = Ck,0 + Ck,1(t − ck) + · · · + Ck,m(t − ck)m,

where ck denotes the node of the k-th basic function, and

(Ck,0, . . . , Ck,m)T =
(
XT

k AkXk

)−1
XT

k AkY (1)

with

Xk =

⎡

⎢
⎣

1 t1 − ck · · · (t1 − ck)m

...
...

...
...

1 tn − ck · · · (tn − ck)m

⎤

⎥
⎦ ,

Ak = diag{Ak(t1), . . . , Ak(tn)} and Y = (p(t1), . . . , p(tn))T . The reconstruction,
providing an approximation of the original function p, is then given by the linear
like combinations

Fm[p](ti) =
�∑

k=1

Fm
k [p](ti) · Ak(ti). (2)

One of the disadvantages of the presented approach is the setting of a fuzzy
partition to ensure the invertibility of XT

k AkXk for any k. Indeed, each setting
of a fuzzy partition has to control that the number of elements in which each
basic function gives a non-zero value is greater then or equal to m + 1. Another
disadvantage of the presented approach is the computation of the inverse matrix
in (1) for each k, if discrete functions are defined over non-uniformly distributed
elements and the nodes of a fuzzy partition do not coincide with some of them.
Obviously, these updates make the computation of discrete higher degree F-
transform more time consuming, especially, if the number of basic functions is
large, which appears in the case of higher dimensions.

The recent theory of the higher degree F-transform is mostly developed in
the continuous design [1,2,8]. Particularly, we proposed in [1] an efficient app-
roach to the computation of the direct higher degree F-transform components
based on various bases of polynomials. The aim of this paper is to introduce
a novel (alternative) approach to the computation of a discrete higher degree
F-transform with the use of benefits of the continuous design, which can over-
come the mentioned disadvantages. To justify the usefulness of our approach, we
analyze the quality of reconstruction of the original discrete function provided
by the proposed novel approach. Furthermore, we compare our novel approach
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with the original approach to the computation of discrete F-transform. For the
purpose of this paper, we restrict ourselves to discrete functions defined over inte-
gers. Nevertheless, the proposed technique can be simply modified for discrete
functions defined over sets with uniformly distributed elements.

The paper is structured as follows. The next section provides a brief intro-
duction to the continuous F-transform of higher degree. In Sect. 3, we introduce
the novel approach to the discrete higher degree F-transform and discuss the
reconstruction of discrete functions. An illustration and comparison of the novel
approach and the original approach is presented in Sect. 4. The last section is a
conclusion.

2 Preliminaries

Let N, Z, R and C denote the set of natural numbers, integers, reals and complex
numbers, respectively.

2.1 Fuzzy Partition

Fuzzy partition is a fundamental concept of the theory of F-transform of higher
degree. In this paper, we restrict our analysis to a particular type of fuzzy par-
titions, which is called a simple uniform fuzzy partition. This type of fuzzy par-
tition consists of fuzzy sets, determined by a generating function and uniformly
spread along the real line.

Definition 1. A real-valued function K : R → [0, 1] is said to be a generating
function if it is continuous, even, non-increasing on [0, 1] and vanishing outside
of (−1, 1).

Basic examples of generating functions that are frequently used in applica-
tions of F-transform are the triangle and raised cosine functions.

Example 1. The functions Ktr,Krc : R → [0, 1] defined by

Ktr(t) = max(1 − |t|, 0) and Krc(t) =

{
1
2 (1 + cos(πt)), −1 ≤ t ≤ 1;
0, otherwise,

for any t ∈ R, are called the triangle and raised cosine generating functions,
respectively.

Definition 2. Let K be a generating function, let h and r be positive real con-
stants, and let t0 ∈ R. For any k ∈ Z, let

Ak(t) = K

(
t − t0 − ck

h

)
,

where ck = kr. The set A = {Ak | k ∈ Z} is said to be a simple uniform fuzzy
partition of the real line determined by the quadruplet (K,h, r, t0) if, for any
t ∈ R, there exists k ∈ Z such that Ak(t) > 0. The parameters h, r and t0 are
called the bandwidth, shift and central node of the fuzzy partition A, respectively.
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Since the setting of the central node has no effect on the theoretical results
concerning the fuzzy transform, for the sake of simplicity, we restrict our inves-
tigation to the simple uniform fuzzy partitions with t0 = 0. Moreover, we omit
the reference to t0 = 0 in the quadruplet (K,h, r, t0) and simply write (K,h, r).

2.2 Continuous F-transform of Higher Degree

Let L2
loc(R) be a set of all complex-valued functions that are square Lebesgue

integrable on any closed subinterval of R. As we have mentioned in Introduction,
the F-transform of higher degree consists of two phases: direct and inverse. In
what follows, we briefly recall their definitions in the form presented in [1,8].

Definition 3. Let f ∈ Lloc(R), m ∈ N, and let A be a simple uniform fuzzy
partition of R determined by the triplet (K,h, r). The direct continuous fuzzy
transform of degree m (Fm-transform) of f with respect to A is the family

Fm
A [f ] = {Fm

k [f ] | k ∈ Z}
where, for any k ∈ Z,

Fm
k [f ](t) = Ck,0 + Ck,1

(
t − ck
h

)
+ . . . + Ck,m

(
t − ck
h

)m

, t ∈ [ck − h, ck + h],

such that

(Ck,0, Ck,1, . . . , Ck,m)T = (Zm)−1 · Ym,k (3)

with Zm = (Zij) is the (m + 1) × (m + 1) invertible matrix defined by

Zij =
∫ 1

−1

ti+j−2K(t) dt, i, j = 1, . . . ,m + 1,

and Ym,k = (Yk,1, . . . , Yk,m+1)T is defined by

Yk,� =
∫ 1

−1

f(h · t + ck) · t�−1K(t) dt, � = 1, . . . ,m + 1. (4)

The polynomial Fm
k [f ] is called the k-th component of the direct continuous

Fm-transform of f .

Note that the k-th component Fm
k [f ] receives the interval [ck − h, ck + h] as

its support, so Fm
k [f ](t) is not defined for t �∈ [ck − h, ck + h]. From the linearity

property that holds for the Lebesgue integral, it is easy to see that the direct
Fm-transform satisfies the linearity property, i.e.,

Fm
A [a · f + b · g] = a · Fm

A [f ] + b · Fm
A [g],

for any a, b ∈ C and f, g ∈ L2
loc(R). Moreover, the direct Fm-transform naturally

preserves polynomials up to degree m. This fact is stated in the following lemma.
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Lemma 1. Let P be a polynomial of degree n, n ∈ N, and let Fm
A [P ] = {Fm

k [P ] |
k ∈ Z} be the direct Fm-transform of P with respect to a simple uniform fuzzy
partition of R. If m ≥ n, then, for any k ∈ Z, it holds that

Fm
k [P ](t) = P (t), t ∈ [ck − h, ck + h].

Proof: See [1] or [8].

Definition 4. Let f ∈ L2
loc(R), and let A = {Ak | k ∈ Z} be a simple uniform

fuzzy partition of R determined by the triplet (K,h, r). Let the family Fm
A [f ] =

{Fm
k [f ] | k ∈ Z} be the direct Fm-transform of f with respect to A. The inverse

continuous fuzzy transform of degree m (Fm-transform) of f with respect to
Fm

A [f ] and A is defined by

f̂m
A (t) =

∑
k∈Z

Fm
k [f ](t) · Ak(t)

∑
z∈Z

Ak(t)
, t ∈ R. (5)

By the linearity property of the direct Fm-transform, one can simply demon-
strate that the inverse Fm-transform also satisfies the linearity property. Addi-
tionally, the inverse Fm-transform approximates the original function f , where
the quality of the approximation is controlled mainly by the setting of the band-
width parameter h. The details can be found in [1,8,11].

In the next part, we assume that a simple uniform fuzzy partition A deter-
mined by a triplet (K,h, r) is fixed. Moreover, if no confusion can appear, we
simply write the (direct or inverse) Fm-transform of a function f , whereas the
reference to a simple uniform fuzzy partition A determined by a triplet (K,h, r)
is omitted.

3 Higher Degree Fuzzy Transform for Discrete Functions

3.1 Novel Definitions of the Discrete Fm -transform

Let p : Z → C be a complex-valued discrete function defined on the set of all
integers.1 Note that we chose the set of integers for a simple description of our
approach, but the same idea can be applied also for an arbitrary discrete set.
Let us extend the function p to a piecewise constant function p̄ defined on the
real line R as follows. For any t ∈ R, we define

p̄(t) = p(z) if and only if t ∈ [z − 1/2, z + 1/2) .

An example of the extension of discrete function p is depicted in Fig. 1. Since
piecewise constant functions belong to the linear space L2

loc(R), the continuous
Fm-transform, which has been defined in the previous section, can be directly
applied to them.

The introduced conversion from the discrete to the continuous space is the
core of our novel approach to the higher degree fuzzy transform for discrete func-
tions. The following definition introduces the direct Fm-transform of a discrete
function.
1 Complex-valued functions are frequently used in analysis of stochastic processes or

signal processing (see [14]).
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(a) Original discrete function p

(b) Piecewise constant extension p̄

Fig. 1. The extension of a discrete function.

Definition 5. Let p : Z → C be a complex-valued discrete function, m ∈ N, and
let A be a simple uniform fuzzy partition of R determined by the triplet (K,h, r).
The direct discrete Fm-transform of p with respect to A is defined as follows:

Fm
A [p] = {Fm

k [p̄] | k ∈ Z} , (6)

where p̄ is the extension of p defined above.

By the previous definition, the components of direct discrete Fm-transform of
a function p with respect to a fuzzy partition can be simply computed using the
product of matrices introduced in Definition 3. As a consequence of our conver-
sion to the continuous case the verification of the invertibility of matrices in (1) is
no longer required. Moreover, in spite of using integrals in the computation, the
speed of the computation of the novel approach is completely comparable with
the original. Indeed, the matrix Zm in formula (3) is fixed. Moreover, assuming
that the parameters h and r of a given fuzzy partition are natural numbers, the
components of vector Ym,k = (Yk,1, . . . , Yk,m+1)T can be simply obtained as the
product Yk,� = Pk · I�, where

Pk = (p(ck − h), p(ck − h + 1), . . . , p(ck), . . . , p(ck + h − 1), p(ck + h))

and I� = (I�,1, . . . , I�,2h+1)T is determined by

I�,j =
∫ aj

aj−1

t�−1K(t) dt, j = 1, . . . , 2h + 1,
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where a0 = −1, a2h+1 = 1 and aj = −1 + 2(j−1)+1
2h , j = 1, . . . , 2h. Since the

matrix I� is independent on the choice of k and the indefinite integral of t�−1K(t)
can be found for the standard generating functions, the derivation of vector
Ym,k can be obtained in a very short time, which consequently accelerates the
computation of the direct discrete Fm-transform.

The inverse Fm-transform of a discrete function is analogously defined as in
Definition 4. The only difference is the use of Z instead of R as the domain of
reconstructed functions.

Definition 6. Let p : Z → C be a complex-valued discrete function, and let
A = {Ak | k ∈ Z} be a simple uniform fuzzy partition of R determined by the
triplet (K,h, r). Let the family Fm

A [p] = {Fm
k [p] | k ∈ Z} be the direct discrete

Fm-transform of p with respect to A. The inverse discrete Fm-transform of p
with respect to Fm

A [p] and A is determined as follows:

p̂m
A(z) =

∑
k∈Z

Fm
k [p](z) · Ak(z)

∑
k∈Z

Ak(z)
, z ∈ Z. (7)

Obviously, the direct and inverse discrete Fm-transform preserves the linear-
ity property similarly to the continuous case.

3.2 Estimation of the Reconstruction Error

Let p : Z → C be a discrete complex-valued function. We use ||c|| to denote the
size of the complex number c, i.e. ||c|| =

√
c · c̄, where c̄ is the complex conjugate

of c. Let z0 ∈ Z and δ > 0. Then, the value

ωz0(p, δ) = sup {||p̄(z0) − p̄(z0 + ε)|| | ε ∈ R, |ε| ≤ δ} , (8)

provides us a measure of how much the function values p(z) differ from each
other in a neighborhood of z0. Obviously, formula (8) imitates the definition of
modulus of continuity. If p is bounded, then we define

ω(p, δ) = sup{ωz(p, δ) | z ∈ Z}
which measures the changes in the shape of function p with respect to the param-
eter δ.

Below, we consider the quality of reconstruction of a given function by the
proposed discrete Fm-transform. First, we have to evaluate how the components
of the direct Fm-transform are locally close (i.e., close in specific neighborhoods)
to the original function.

Theorem 1. Let p : Z → C be a complex-valued discrete function. Let A =
{Ak | k ∈ Z} be a simple uniform fuzzy partition of R determined by the triplet
(K,h, r), and let Fm

A [p] be the direct discrete Fm-transform of p with respect to
A. Then, for any k ∈ Z, it holds that

||p(z) − Fm
k [p](z)|| ≤ ωz(p, 2h) · Θ(m,K),
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for any z ∈ Z such that z ∈ [ck − h, ck + h], where

Θ(m,K) =
m+1∑

j,�=1

|Vj�| ·
∫ 1

−1

|t|�−1K(t) dt

with (Vj�)j,�=1,...,m+1 = (Zm)−1.

Proof: Let k ∈ Z, and let z ∈ Z such that z ∈ [ck −h, ck +h]. Since Fm
k [c](t) = c

holds for any complex-valued constant function c, we obtain

||p(z) − Fm
k [p](z)|| = ||Fm

k [p(z)](z) − Fm
k [p](z)|| =

∣
∣
∣
∣

∣
∣
∣
∣(Ck,0 − Dk,0) + · · · + (Ck,m − Dk,m)

(
t − ck

h

)m∣
∣
∣
∣

∣
∣
∣
∣ ≤

m∑

j=0

||Ck,j − Dk,j)|| ·
∣
∣
∣
∣
t − ck

h

∣
∣
∣
∣

j

≤
m∑

j=0

||Ck,j − Dk,j ||, (9)

where we used |(t − ck)/h| ≤ 1, and (Ck,0, . . . , Ck,m) and (Dk,0, . . . , Dk,m) are
determined by

(Ck,0, . . . , Ck,m)T =(Zm)−1 · Ym,k, (10)

(Dk,0, . . . , Dk,m)T =(Zm)−1 · Wm,k (11)

with Ym,k = (Yk,j)j=1,...,m+1 and Wm,k = (Wk,j)j=1,...,m+1, which are the col-
umn matrices given by

Yk,j =
∫ 1

−1

p(z) · tj−1K(t) dt, and Wk,j =
∫ 1

−1

p(h · t + ck) · tj−1K(t) dt.

From (10) and (11), we obtain

(Ck,0 − Dk,0, . . . , Ck,m − Dk,m)T = (Zm)−1 · (Ym,k − Wm,k).

Hence, for any j = 0, . . . ,m, we find that

||Ck,j − Dk,j || ≤
m+1∑

�=1

|Vj+1�| · ||Yz� − Wz�||

=
m+1∑

�=1

|Vj+1�| ·
∫ 1

−1

||p(z) − p(h · t + ck)|| · |t|�−1K(t) dt

=
m+1∑

�=1

|Vj+1�| ·
∫ 1

−1

||p(z) − p(h · t + ck)|| · |t|�−1K(t) dt

≤ ωz(p, 2h) ·
m+1∑

�=1

|Vj+1�| ·
∫ 1

−1

|t|�−1K(t) dt,
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where we used ||p(z) − p(h · t + ck)|| ≤ ωz(p, 2h). By this inequality and (9), we
obtain

||p(z) − Fm
k [p](z)|| ≤ ωz(p, 2h) ·

m∑

j=0

m+1∑

�=1

|Vj+1�| ·
∫ 1

−1

|t|�−1K(t) dt

≤ ωz(p, 2h) ·
m+1∑

j,�=1

|Vj�| ·
∫ 1

−1

|t|�−1K(t) dt

= ωz(p, 2h) · Θ(m,K),

and the proof is finished. �	
The upper bound of the error of reconstruction of a function by its inverse

discrete Fm-transform is established in the following theorem.

Theorem 2. Let p : Z → C be a complex-valued discrete function. Let A =
{Ak | k ∈ Z} be a simple uniform fuzzy partition of R determined by the triplet
(K,h, r). Let p̂m

A be the inverse discrete Fm-transform of p with respect to Fm
A [p]

and A. Then,

||p(z) − p̂m
A (z)|| ≤ ωz(p, 2h) · Θ(m,K), (12)

for any z ∈ Z, where Θ(m,K) is defined in Theorem 1.

Proof: Let Fm
A [p] = {Fm

k [p] | k ∈ Z} be the direct Fm-transform of p with respect
to A. For any z ∈ Z, we have

||p(z) − p̂m
A(z)|| =

∣
∣
∣
∣

∣
∣
∣
∣p(z) −

∑
k∈Z

Fm
k [p](z) · Ak(z)

∑
k∈Z

Ak(z)

∣
∣
∣
∣

∣
∣
∣
∣

=
∣
∣
∣
∣

∣
∣
∣
∣

∑
k∈Z

(p(z) − Fm
k [p](z)) · Ak(z)

∑
k∈Z

Ak(z)

∣
∣
∣
∣

∣
∣
∣
∣ ≤

∑
k∈Z

|p(z) − Fm
k [p](z)| · Ak(z)

∑
k∈Z

Ak(z)
.

It follows from Theorem 1 that

||p(z) − Fm
k [p](z)|| ≤ ωz(p, 2h) · Θ(m,K),

for any k ∈ Z. Consequently,

||p(z) − p̂m
A (z)|| ≤

∑
k∈Z

ωz(p, 2h) · Θ(m,K) · Ak(z)
∑

k∈Z
Ak(z)

= ωz(p, 2h) · Θ(m,K)

and the proof is finished. �	
The following corollary is a straightforward consequence of Theorem 2 in the

case that the original discrete function is bounded.

Corollary 1. Let the assumptions of Theorem 2 be satisfied. If the function p
is bounded, then

||p(z) − p̂m
A (z)|| ≤ ω(p, 2h) · Θ(m,K),

where Θ(m,K) is defined in Theorem 1.
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It is easy to see from (12) that for the bandwidth h ≤ 1/4, we obtain
ωz(p, 2h) = 0 for any z ∈ Z; hence, the reconstruction of p is ideal. Note that, in
practice, the bandwidth is chosen higher than 1/4 with respect to specific tasks.

4 Illustration Examples

In this section, we illustrate the novel approach to the discrete Fm-transform on
functions representing two time series. Particularly, we compare the inverse Fm-
transform functions obtained by the newly defined discrete Fm-transform with
that provided by the original approach presented in [4]. For the comparison, we
use the MAPE and the time-consumption in computation for both approaches.

First, we consider the time series data “Monthly closings of the Dow–
Jones industrial index, Aug. 1968–Aug. 1981” stored on the website http://
datamarket.com that form a discrete function p with the domain {1, 2, . . . , 291}.
In Fig. 2, we display the inverse discrete F2- and F5-transform of p, obtained by
the proposed approach, with respect to the simple uniform fuzzy partition deter-
mined by the triplet (Ktr, 20, 10). Note that the results obtained by the novel and
the standard approach are negligible; particularly, the differences between them
are MAPE = 2.1137 × 10−5 for the F2-transform and MAPE = 5.7637 × 10−5

for the F5-transform. In Fig. 3, we depict the newly defined inverse discrete

Fig. 2. The inverse F2- (red line) and F5-transform (dotted black line). (Color figure
online)

F3-transform of p with respect to varying fuzzy partitions A1, A2 and A3

determined by the triplets (Ktr, 20, 10), (Ktr, 10, 5) and (Ktr, 1, 1), respectively.
Among others, the results presented in Figs. 2 and 3 demonstrate the fact, which
is well-known for the continuous Fm-transform, saying that a better reconstruc-
tion of the original function may be attained either by shortening the length of
bandwidth h, if it is possible, or by enlarging the degree of the F-transform.

Below, we compare the time-consumption of the novel and the original app-
roach in computation of inverse Fm-transform. For the comparison, we choose a
long time series “Daily minimum temperatures in Melbourne, Australia, 1981–
1990” with the dimension d = 3650, stored on the website http://datamarket.
com. The both approaches to the discrete Fm-transform are programmed by

http://datamarket.com
http://datamarket.com
http://datamarket.com
http://datamarket.com
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Fig. 3. The inverse F3-transform functions (green, black and dashed red lines) with
respect to A1, A2 and A3, respectively. (Color figure online)

Matlab 2014 on the notebook with CPU Intel CoreTM i5-3320M, Ram 8Gb and
OS Windows 10. The computation time is also measured by Matlab. The consid-
ered simple uniform fuzzy partitions were determined by triplets (Ktr, h, h/2),
where h varies from 20 to 100 with the step 20. From the results depicted in
Table 1, one can see that the computational times for both approaches are low
and very similar, which is a consequence of our restriction to discrete functions
defined over uniformly distributed elements (integers). This restriction actually
enables us to optimize and speed up the algorithm of the original approach.
Moreover, one can see that the computation time depends on the size of the
bandwidth.

Table 1. Time-consumption (second) in computation of inverse Fm-transform.

Fm-transform \ Bandwidth h = 20 h = 40 h = 60 h = 80 h = 100

F0 Original 0.11479 0.07451 0.06506 0.05151 0.04940

Novel 0.11826 0.07386 0.05214 0.04461 0.04081

F1 Original 0.14210 0.08974 0.07528 0.06187 0.05556

Novel 0.14657 0.08249 0.06088 0.05216 0.04426

F2 Original 0.16912 0.09855 0.08097 0.06433 0.06021

Novel 0.16797 0.09163 0.07021 0.05520 0.04861

F3 Original 0.27800 0.16698 0.12056 0.09538 0.08498

Novel 0.28627 0.16790 0.11868 0.09233 0.07524

5 Conclusions

In this paper, we introduced a novel approach to the discrete fuzzy transform
of higher degree. We analyzed the quality of the reconstruction of an original
discrete function provided by the inverse discrete Fm-transform. We compared
the novel approach with the original one proposed in [4] on two examples of time
series. The restriction to the discrete functions defined over uniformly distributed
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elements (integers) results in similar computation times for both approaches. The
computation times are low in all tests and naturally depend on sizes of the band-
width. Intuitively, the novel approach should provide better time consumption in
computation for discrete functions defined over non-uniformly distributed values,
because, in contrast to the novel approach, the original one needs to recompute
the inverse matrices to get the respective F-transform components. A verification
of our conjecture is a subject of our future research.
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Analysis of seasonal time series using fuzzy approach. Int. J. Gen. Syst. 39, 305–328
(2010)

10. Perfilieva, I.: Fuzzy transforms: theory and applications. Fuzzy Sets Syst. 157,
993–1023 (2006)
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