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To Lotfi A. Zadeh



Preface

These are the proceedings of the 17th International Conference on Information Pro-
cessing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2018.
The conference was held during June 11–15, in Cádiz, Spain.

The IPMU conference is organized every two years with the aim of bringing
together scientists working on methods for the management of uncertainty and
aggregation of information in intelligent systems. Since 1986, the IPMU conference
has been providing a forum for the exchange of ideas between theoreticians and
practitioners working in these areas and related fields.

This IPMU edition held special meaning since one of its co-founders,
Lotfi A. Zadeh, passed away on September 6, 2017. To pay him a well-deserved
tribute, and in memory of his long relationship with IPMU participants, a special
plenary panel was organized to discuss the scientific legacy of his ideas. Renowned
researchers and Lotfi’s good friends made up the panel: it was chaired by
Ronald Yager, while Bernadette Bouchon-Meunier, Didier Dubois, Janusz Kacprzyk,
Rudolf Kruse, Rudolf Seising, and Enric Trillas acted as panelists. Besides this, a
booklet of pictures with Lotfi Zadeh and friends was compiled and distributed at the
conference.

Following the IPMU tradition, the Kampé de Fériet Award for outstanding contri-
butions to the field of uncertainty and management of uncertainty was presented. Past
winners of this prestigious award were Lotfi A. Zadeh (1992), Ilya Prigogine (1994),
Toshiro Terano (1996), Kenneth Arrow (1998), Richard Jeffrey (2000),
Arthur Dempster (2002), Janos Aczel (2004), Daniel Kahneman (2006), Enric Trillas
(2008), James Bezdek (2010), Michio Sugeno (2012), Vladimir N. Vapnik (2014), and
Joseph Y. Halpern (2016). In this 2018 edition, the award was given to Glenn Shafer
(Rutgers University, Newark, USA) for his seminal contributions to the mathematical
theory of evidence and belief functions as well as to the field of reasoning under
uncertainty. The so-called Dempster–Shafer theory, an alternative to the theory of
probability, has been widely applied in engineering and artificial intelligence.

The program consisted of the keynote talk of Glenn Shafer, as recipient of the
Kampé de Feriet Award, five invited plenary talks, two round tables, and 30 special
sessions plus a general track for the presentation of the 190 contributed papers that
were authored by researchers from more than 40 different countries. The plenary
presentations were given by the following distinguished researchers: Gloria Bordogna
(IREA CNR – Institute for the Electromagnetic Sensing of the Environment of the
Italian National Research Council), Lluis Godo (Artificial Intelligence Research
Institute of the Spanish National Research Council, Barcelona, Spain), Enrique
Herrera-Viedma (Department of Computer Science and Artificial Intelligence,
University of Granada, Spain), Natalio Krasnogor (School of Computing Science at
Newcastle University, UK), and Yiyu Yao (Department of Computer Science,
University of Regina, Canada).



The conference followed a single-blind review process, respecting the usual
conflict-of-interest standards. The contributions were reviewed by at least three
reviewers. Moreover, the conference chairs further checked the contributions in those
cases were conflicting reviews were obtained. Finally, the accepted papers are pub-
lished in three volumes: Volumes I and II focus on “Theory and Foundations,” while
Volume III is devoted to “Applications.”

The organization of the IPMU 2018 conference was possible thanks to the assis-
tance, dedication, and support of many people and institutions. In particular, this
renowned international conference owes its recognition to the great quality of the
contributions. Thank you very much to all the participants for their contributions to the
conference and all the authors for the high quality of their submitted papers. We are
also indebted to our colleagues, members of the Program Committee, and the orga-
nizers of special sessions on hot topics, since the successful organization of this
international conference would not have been possible without their work. They and
the additional reviewers were fundamental in maintaining the excellent scientific
quality of the conference. We gratefully acknowledge the local organization for the
efforts in the successful development of the multiple tasks that a great event like IPMU
involves.

We also acknowledge the support received from different areas of the University of
Cádiz, including the Department of Mathematics, the PhD Program in Mathematics, the
Vice-Rectorate of Infrastructures and Patrimony, and the Vice-Rectorate for Research;
the International Global Campus of Excellence of the Sea (CEI�Mar) led by the
University of Cádiz and composed of institutions of three different countries; the
European Society for Fuzzy Logic and Technology (EUSFLAT); and the Springer team
who managed the publication of these proceedings. Finally, J. Medina,
M. Ojeda-Aciego, J. L. Verdegay, I. Cabrera, and D. Pelta acknowledge the support
of the following research projects: TIN2016-76653-P, TIN2015-70266-C2-P-1,
TIN2014-55024-P, TIN2017-86647-P, and TIN2017-89023-P (Spanish Ministery of
Economy and Competitiveness, including FEDER funds).

June 2018 Jesús Medina
Manuel Ojeda-Aciego

Irina Perfilieva
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Bernadette Bouchon-Meunier
Ronald R. Yager
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Abstract. The aim of this paper is to analyze the influence of sentiment-
related terms on the automatic detection of topics in social networks. The
study is based on the use of an ontology, to which the capacity to gradu-
ally identify and discard sentiment terms in social network texts is incor-
porated, as these terms do not provide useful information for detecting
topics. To detect these terms, we have used two resources focused on the
analysis of sentiments. The proposed system has been assessed with real
data sets of the social networks Twitter and Dreamcatcher in English
and Spanish respectively.

Keywords: Topic detection · Hierarchical clustering · Fuzzy sets
Sentiment terms

1 Introduction

The growth and popularity of social networks has made them one of the
main sources of unstructured textual data, so it is expected that organizations
and researchers employ time and resources studying them. However, the great
amount of texts, along with their lack of structure, hinders automatic process-
ing and analysis at a large scale, so it is practical to group the texts beforehand
according to the addressed topic. In this sense, it is particularly useful, to detect
automatically the main topics that are being addressed and are relevant to users.

On the other hand, the detection of topics depends to a great extent on the
origin of the texts. In social networks, users tend to express ideas, feelings and
opinions on a certain topic in a colloquial manner, so there is a high frequency of
terms that express sentiments or opinions related to certain products or services.
These terms are a great source of information in tasks such as sentiment analysis,
opinion mining or recommendation systems, but not for topic detection.

In order to solve the above problem, this research aims to gradually analyze
the influence of sentiment or opinion terms on the automatic detection of topics
in social media texts. Our proposal is based on data mining, lexical resources for
c© Springer International Publishing AG, part of Springer Nature 2018
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sentiment analysis and a multilingual knowledge base. This new approach allows
us to identify and gradually discard sentiment terms with the aim of improving
the automatic detection of topics in social media texts.

To achieve the task, we applied a filter to detect sentiment terms during
the semantic processing stage. To this end, we used the resources SentiWordNet
3.0 [1] and SenticNet 3 [2]. The main advantage of using these two resources
is that they both assign a polarity to every sense or concept, which allowed us
to carry out an analysis establishing various polarity thresholds (α-cuts). These
values allow us the possibility of deleting only the terms which are above a
certain polarity threshold. This is extremely interesting, as sometimes the ana-
lyzed texts have a large quantity of opinion terms and many texts are therefore
automatically rejected, thus affecting topic detection negatively.

Sentiment analysis has been addressed using various techniques. In the lit-
erature there are various studies where we can observe that the main focuses
to take into account when analyzing sentiments are based on Machine learn-
ing techniques [3–5] and the use of a opinion lexicon (sentiment lexicon) [6,7].
There is also a series of studies which combine other techniques related with the
subject, such as the use of ontologies [8] and part-of-speech tagging [9].

From a fuzzy logic approach, in [10] the author analyzes the progress that
has been made and the challenges there are in the field of fuzzy sentiment anal-
ysis. Opinion words are fuzzy by nature, so it is interesting to combine current
sentiment analysis techniques with fuzzy logic [10]. In order to take advantage of
fuzzy logic, we need to know the polarity of opinion words, provided by opinion
lexicons such as SentiWordNet 3.0 and SenticNet 3.

This is the case in [11], where membership and non-membership values of
sentiment words are calculated using SentiWordNet. Once calculated, a fuzzy set
operator is applied to classify the term as positive, negative or neutral. In [12]
the authors put forward a system using fuzzy functions to adjust the polarities of
SentiWordNet with the aim of emulating the effect of various linguistic hedges.
Before applying the function, an extraction of features is performed applying a
system based on rules. Finally, texts are classified using a K-Means algorithm.

In [13], fuzzy logic is used to model concept polarities and the uncertainty
associated with them regarding different domains. A knowledge graph is built on
the basis of the resources WordNet and SenticNet. The graph is then exploited
using a graph-propagation algorithm that propagates sentiment information
learnt from labelled data sets. The graph has two levels; the first represents the
semantic relationships between concepts, whilst the second contains the links
between the concept membership functions and the different domains.

Although in this study we do not make sentiment analysis specifically, opinion
words are taken into account as they have to be identified and then gradually
discarded to be able to analyze their influence in the automatic detection of
topics. In Sect. 3.3 we describe the fuzzy model to take into account for the
goals of our research.

The rest of the paper is structured as follows: Sect. 2 briefly describes the pro-
posal for detecting topics automatically. Section 3 describes in detail the process
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for identifying and discarding sentiment terms gradually from the textual data of
social networks. Section 4 presents and analyzes the experimental results. Finally,
in Sect. 5 the conclusions derived from the analysis are presented.

2 Overview of Our Topic Detection Approach

In this section, we describe the different stages of our approach to automatically
detect topics in social networks.

2.1 Syntactic Preprocessing

The data used for this first stage are the texts extracted from social media. These
texts are processed syntactically and different filters are applied to aid in their
automatic processing.

First of all, grammatical categories labelling and entities recognition were
carried out. This was done using the Stanford Part-of-Speech (POS) Tagger [14]
and Stanford Named Entity Recognition (NER) [15] tools, respectively. The first
tool assigns grammatical categories to the words of a text (noun, adjective, verb,
etc.). The second identifies words within a text representing names or things,
such as people, companies or places, on the basis of various provided models.

A token filter was then applied to delete all punctuation as it hinders auto-
matic text processing. Subsequently, filters are applied to delete empty words,
terms that are not identified as nouns by the POS, words identified as proper
nouns by the entity recognizer and words that are not included in the external
knowledge base Multilingual Central Repository 3.0 (MCR 3.0) [16], as none of
these provide useful information to detect contexts and topics.

2.2 Semantic Preprocessing

Once the above filters have been applied, the texts are ready to be semanti-
cally processed. The main goal of semantic preprocessing is homogenizing the
syntactic representation of the concepts in the text.

To achieve this, each term is replaced with its corresponding labels from the
WordNet Domains taxonomy [17] of the knowledge base MCR 3.0. To determine
the set of labels of a term, it is necessary to know the sense of the term, as each
sense has a set of labels of WordNet Domains. For this reason, it is necessary to
disambiguate all the terms to know their real sense before replacing them with
their labels.

2.3 Hierarchical Clustering

Once the texts have been homogenized, the hierarchical clustering of the texts is
carried out on the basis of the labels of WordNet Domains. To do this, a weight
matrix relating the labels to the documents has to be created on the basis of the
texts obtained in the previous phase.
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When the weight matrix has been created, the hierarchical clustering algo-
rithm is run to create text clusters on the basis of the semantics of WordNet
Domains. Each text is associated to a cluster (context).

2.4 Cluster Labeling

Finally, the clusters (contexts) are labelled. During this process each cluster is
assigned the most relevant set of labels of the texts belonging to that cluster. To
this end, the Chi-Square (X2) technique is used. This is one of the most widely
used techniques for (Differential cluster labeling) [18] and one of the techniques
showing best results.

3 Sentiment Influence in Topic Detection

In the following section we will describe in detail the process we used to detect
and discard sentiment terms (positive or negative) in social network texts. This
is the main contribution of this research. The main reason to discard these terms
is that we aim to detect the main topics addressed in social network texts, where
users usually express their feelings or opinions on a subject.

These terms, as well as empty words, are very frequent in this kind of texts
so, when applying certain data mining techniques, they can disguise the real
topics of texts. This is why, it is important to detect and discard the noise that
sentiment terms provoke.

To detect sentiment terms, the resources SentiWordNet 3.0 [1] and SenticNet
3 [2] have been used, which are based on WordNet [19] and allow us to determine
if a term in a certain context expresses any sentiment. The first step is to dis-
ambiguate the term in order to know its real sense and determine if it expresses
sentiment.

In general, when sentiment terms are discarded, regardless of the lexical
resource that has been used, the most frequent terms belonging to certain topic
are more related to it. Also, many texts which have been filtered for sentiment
can then not be processed as all the terms have been discarded. This is mainly
because most texts of social networks only express an opinion on a certain topic.
For this reason, we have decided to establish α-cuts to discard only the terms
above certain polarity thresholds, in order to increase the final number of texts
used to detect topics.

It is important to highlight that the idea of applying a filter to detect sen-
timent terms is totally new, as it allows the separation of terms with relevant
information to detect topics, from sentiment-related terms, which are useful for
many computational studies, but not for the goals of this study.

3.1 SentiWordNet 3.0

This is a lexical resource created specifically for tasks focused on classifying sen-
timents, as well as applications based on opinion mining [1]. It is an improved
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version of WordNet 1.0 [20] and is publicly available for research purposes. Sen-
tiWordNet 3.0 is the result of assigning to all the senses (synsets) of WordNet
two numerical values, which indicate the polarity value (positive and negative),
these values are in the range [0, 1] [1].

Figures 1 and 2 show histograms of positive and negative polarities in Sen-
tiWordNet, respectively. As can be observed, most senses have polarities in the
range [0.0, 0.2].
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Fig. 1. Positive polarities in SentiWordNet 3.0
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Fig. 2. Negative polarities in SentiWordNet 3.0

In our case, once each term is disambiguated, we determine the positive and
negative values assigned in SentiWordNet to the corresponding sense of each
of the analyzed terms. If the sense has a positive value higher that the estab-
lished positive polarity threshold or a negative value higher than the established
negative polarity threshold, the term is totally discarded and is not taken into
account for the subsequent analysis of the main topics addressed in texts.

3.2 SenticNet 3

SenticNet 3 [2] is one of most relevant lexical resources regarding sentiment
analysis. It is a semantic and sentiment resource based on WordNet and is used
mainly to carry out concept-level sentiment analysis. This trait allows us to
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infer the semantics and emotions present in natural language opinions, so it is a
very useful tool to carry out sentiment analysis based on the characteristics of
products and services [2].

In other words, SenticNet 3.0, goes further than assessing the opinion on a
certain element, offering the chance to compare each of the characteristics of the
element. It is composed of 30,000 expressions with a polarity between [−1, 1].

Figure 3 shows the histogram of the polarities of SenticNet 3. As in Sen-
tiWordNet, most senses have polarities in the range [0.0, 0.2]. But, unlike in
SentiWordNet, where each sense has assigned positive and negative values, in
SenticNet, in order to determine the polarity of a sense, it was necessary to
calculate the average of the polarities of each of the terms of a sense.
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Fig. 3. Sentiment score histogram of SenticNet

SentiWordNet has been used in a similar way. That is, once a term is disam-
biguated, it is discarded if its sense in the current context has a higher polarity
than the established positive polarity threshold or a lower polarity than the
established negative polarity threshold.

3.3 Flexible Treatment of Sentiment Terms

We now present the polarity model to construct fuzzy sets of sentiment terms.
This model is the basis of our proposal and allows us to gradually analyze the
influence of sentiment terms when detecting topics.

SentiWordNet Case. Let V be the fuzzy set of terms in SentiWordNet: ∀t ∈ V
∃α1, α2 ∈ [0, 1] such that α1 is the intensity of t representing positive sentiment
and α2 the intensity of t representing negative sentiment.

We define F̂ as the fuzzy set of terms derived from V with the membership
function:

∀t ∈ V, μF̂ (t) = max (α1, α2). (1)

therefore, for each term we reflect the intensity of its representation as a senti-
ment, regardless of it being positive or negative.
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SenticNet Case. Let W be the fuzzy set of terms included in SenticNet: ∀t ∈ W
∃α1 ∈ [−1, 1] such that α1 is the intensity of t representing positive or negative
sentiment. So that t can only have one polarity.

We define Ŝ as the fuzzy set of terms derived from W with the membership
function:

∀t ∈ W, μŜ(t) = mod α1. (2)

obviously, for this case, we also reflect the intensity of t representing a sentiment,
regardless of it being positive or negative.

The topics can now be obtained considering the α-cuts of the F̂ and Ŝ sets,
instead of discarding all the sentiment terms (in that case, the α-cut would be
0). This increases the flexibility of the process, including a larger amount of
documents without deteriorating the Silhouette Coefficient of resulting clusters.

4 Experiments

We will now demonstrate experimentally the validity of our proposal. We should
highlight that we did not have any previous information on the topics present in
the texts (categories or labels). Therefore, we selected the Silhouette Coefficient
[21] as a quality measure. It is an unsupervised measure that can determine the
number of clusters for which the clustering algorithms offer best results.

The data sets we used for the experiment have been extracted from the social
networks Twitter and Dreamcatchers. The first, is one of the most popular social
networks and one of the most used in research. On the other hand, Dreamcatch-
ers has been developed using a collaborative approach and the database that
supports it is available. The data selected from Twitter and Dreamcatchers is
in English and Spanish respectively, demonstrating the validity of the proposal,
regardless of the language.

4.1 Data Sets

Eight data sets (Table 1) belonging to Twitter and Dreamcatchers have been
selected. We only included the graphs of data sets 4 and 8 and a summary of
the most relevant results of the other data sets, due to space constraints. The
amount of documents is varied in order to validate the proposal, regardless of
the number of processed texts.

The data from Twitter were downloaded using Sentiment1401, which is in
CSV format and has six fields, one of which is the text of the tweets that was
used in this research. The reason why the data were selected is that they are
directed at sentiment analysis.

On the other hand, we also used the Dreamcatchers database with 61 tables
in total. The gathered information refers to personal and membership data of
users and the interactions they carry out in their profiles and with other users.
Mainly, the posts and their comments, the ideas and their dreams and the chat
provide textual information.
1 http://www.sentiment140.com/.

http://www.sentiment140.com/
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Table 1. Description of used data sets

Data set Number of
documents

Source Number of
different terms

Total number
of terms

Data set 1 1000 Twitter 1665 4875

Data set 2 2000 Twitter 2417 9542

Data set 3 5000 Twitter 3189 12915

Data set 4 10000 Twitter 4597 25634

Data set 5 1000 Dreamcatchers 808 3138

Data set 6 2000 Dreamcatchers 1284 6806

Data set 7 5000 Dreamcatchers 1661 8851

Data set 8 10000 Dreamcatchers 2218 17141

4.2 Evaluation

In this section we explain how our proposal to detect topics automatically
applying the filter to discard sentiment terms was assessed, using the different
resources and for the different selected α-cuts. To assess the results of the hierar-
chical clustering algorithm and then compare the different employed resources,
the Silhouette Coefficient has been used as a goodness measure.

Experimentation has been carried out using the clustering method Complete-
link, establishing the number of clusters (17, 25, 40, 60, 80, 100 and 120) and
seven polarity α-cuts (0, 0.2, 0.3, 0.4, 0.5, 0.7 and 1). We experimented with
these numbers of clusters as in previous experiments, we realised that for values
of clusters lower than 17 and higher than 120, the performance of the algorithms
is lower than with the values indicated above. In all cases, the cosine distance
was used as measure of similarity.

4.3 Results and Discussion

In Table 2 the statistics referring to the number of sentiment terms discarded
for each data set and for each opinion lexicon are shown. In this case, all the
opinion terms have been discarded (the α-cut is 0) and the SenticNet 3 is the
resource with which more terms have been discarded.

As mentioned previously, it is worth studying how our proposal behaves when
instead of discarding all the sentiment terms, only the terms above a certain
polarity threshold are discarded. This analysis is of great importance, as opinion
terms are very frequent, especially in social media texts and when we discard
them many texts will not be taken into account when detecting topics. That is
why, on some occasions, it may be convenient to discard only some of the opinion
terms in order for more of the texts to remain to detect topics.
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Table 2. Number of sentiment-related terms discarded by data set

Dataset SentiWordNet % SenticNet %

Data set 1 2904 59.57 4086 83.83

Data set 2 5775 60.52 7949 83.31

Data set 3 1696 13.13 9160 70.9

Data set 4 3281 12.8 18141 70.77

Data set 5 2081 66.32 2137 68.1

Data set 6 4147 60.93 4592 67.47

Data set 7 1314 14.85 5122 57.87

Data set 8 2533 14.78 10101 58.93

Figure 4(a) and (b) show the values of the Silhouette Coefficient for data sets
4 and 8 respectively. In both cases, the hierarchal clustering method Complete-
link and the lexical resource SentiWordNet have been used. The number of clus-
ters (17, 25, 40, 60, 80, 100 and 120) and seven polarity thresholds (0, 0.2, 0.3,
0.4, 0.5, 0.7 and 1) have been established, where 0 means all opinion terms are
discarded and 1 means not discarding any term. As can be observed for each
data set, from 60 clusters onwards, which is when the values of the Silhouette
Coefficient stabilise, the best results are obtained for the threshold 0.
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Fig. 4. (a) Silhouette Coefficient for data set 4 using SentiWordNet, (b) Silhouette
Coefficient for data set 8 using SentiWordNet

Figure 5(a) and (b) analyze the relationship of the Silhouette Coefficient and
the number of documents that remain after applying the filter that discards
opinion terms, according to the different selected thresholds for each data set.
In these graphs we can observe, that although the Silhouette Coefficient always
has the highest value when the threshold is 0, for this same value the number of
documents that remain after applying the filter that discards opinion terms is
always the lowest. As expected, the lower the α-cut, the more sentiment terms are
discarded and the more documents are discarded and are not taken into account
to detect topics. It is therefore useful to achieve a consensus (equilibrium point)
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between both parameters to improve the topic detection process. This point is
obviously the intersection between both lines.
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Fig. 5. Relationship between the Silhouette Coefficient and the number of documents
that remain after discarding the sentiment-related terms for different α-cuts (a) data
set 4 using SentiWordNet, (b) data set 8 using SentiWordNet

As in the above examples, Fig. 6(a) and (b) show the Silhouette Coefficient
for data sets 4 and 8, respectively. In this case, all parameters are the same except
the lexical resource used to discard opinion terms, which is SenticNet3. In this
case also from 60 groups onwards, which is when the values of the Silhouette
Coefficient stabilise, the best results are obtained for the threshold 0.
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Fig. 6. (a) Silhouette Coefficient for data set 4 using SenticNet, (b) Silhouette Coeffi-
cient for data set 8 using SenticNet

Figure 7(a) and (b) analyze the relationship between the Silhouette Coeffi-
cient and the number of documents that remain after applying the filter that
discards opinion terms, according to the different selected thresholds for each
data set. The conclusions are the same as for the previous case.
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Fig. 7. Relationship between the Silhouette Coefficient and the number of documents
that remain after discarding the sentiment-related terms for different α-cuts (a) data
set 4 using SenticNet, (b) data set 8 using SenticNet

5 Conclusions

In this study, a new approach for the automatic detection of topics in text from
social networks is developed. For such purpose, a filter has been incorporated
during the semantic preprocessing of texts, allowing us to detect and discard
sentiment-related terms, as these terms do not constitute relevant information
to detect topics. To this end, SentiWordNet 3.0 and SenticNet 3 are used.

The experiments carried out with Twitter and Dreamcatchers, allow us to
demonstrate the viability of the proposal. With the aim of establishing a com-
parison, we have experimented with various polarity thresholds.

For each data set, a study was carried out to establish a consensus between
the value of the Silhouette Coefficient and the number of texts to analyze in
order to detect topics, as when discarding all the sentiment-related terms a
great amount of documents can be discarded and will not be part of the topic
detection process. To this end, seven different thresholds were established. The
conclusion was that in order to obtain an equilibrium between the two analyzed
parameters, the threshold varies in the range [0.0, 0.3] depending on the case.
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Abstract. Discovering new trends and co-occurrences in massive data
is a key step when analysing social media, data coming from sensors,
etc. Traditional Data Mining techniques are not able, in many occasions,
to handle such amount of data. For this reason, some approaches have
arisen in the last decade to develop parallel and distributed versions of
previously known techniques. Frequent itemset mining is not an excep-
tion and in the literature there exist several proposals using not only
parallel approximations but also Spark and Hadoop developments fol-
lowing the MapReduce philosophy of Big Data.

When processing fuzzy data sets or extracting fuzzy associations from
crisp data the implementation of such Big Data solutions becomes cru-
cial, since available algorithms increase their execution time and memory
consumption due to the problem of not having Boolean items. In this
paper, we first review existing parallel and distributed algorithms for
frequent itemset and association rule mining in the crisp and fuzzy case,
and afterwards we develop a preliminary proposal for mining not only
frequent fuzzy itemsets but also fuzzy association rules. We also study
the performance of the proposed algorithm in several datasets that have
been conveniently fuzzyfied obtaining promising results.

Keywords: Big data algorithms · Fuzzy frequent itemset
Fuzzy association rules · Data Mining · Apriori

1 Introduction

The vast amounts of data generated, stored and analysed by companies, and by
extension by private users, has given rise to a new phenomenon known as Big
Data. Every day millions of tweets are published on Twitter, countless messages
are sent via messaging apps and multitudes of comments are generated in online
shops. In addition to this, every year more buildings are summed to the “smart
sensored” fashion to collect data and use it in their daily performance to be more
efficient. The necessity of constantly extracting information from all the gathered

c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 854, pp. 15–25, 2018.
https://doi.org/10.1007/978-3-319-91476-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91476-3_2&domain=pdf


16 C. Fernandez-Bassso et al.

data is a fact, and the Big Data philosophy using MapReduce framework enables
it. In particular, Data Mining techniques are currently under development to
benefit from this new framework [3,5,11,12].

One important technique, often employed for exploratory analysis, is that of
association rules. They have the form of implications A → B, which represent
the joint co-occurrence of A and B. However, many of the data to be analysed
have a nature that is difficult to represent, such as natural language texts. Beside
this, when discovering associations between numerical variables we have to take
care when data is discretized since final results can vary a lot depending on how
the ranges are defined [17]. To better represent this kind of data, Fuzzy Sets
theory [26] has proved to be a good option, having as a result fuzzy databases
where we can search for fuzzy association rules [6].

In this paper we propose a solution to perform this analysis. There are vari-
ous methods for mining fuzzy association rules which enable us to analyse and
extract interesting information from datasets. These methods run into problems
when they are used to analyse vast amounts of data, becoming less efficient at
processing and analysis. To this end, we propose a new technique for mining
fuzzy association rules that enables the processing of big amounts of data. We
have implemented it using Spark [8] which enable faster memory operations than
Hadoop [25] since it allows in-memory computations. The results of our exper-
iments show that this method improves the efficiency of the algorithm, with
respect to traditional techniques, in terms of time and memory when the num-
ber of transactions increases. However when the number of items increases, the
algorithm does not offer in all cases significant efficiency improvements in terms
of execution time compared to traditional methods. Nonetheless, thanks to the
fact that the Big Data techniques offer greater memory capacity, substantial
improvements can be achieved when memory problems arise in the generation
of the item combinations to be analysed in massive datasets.

The paper is organized as follows: Sect. 2 reviews the literature to show how
Big Data technologies can improve existent Data Mining algorithms. Section 3
introduces the measures and methods employed to mine fuzzy association rules.
Next section presents the BDFARE algorithm developed for mining fuzzy asso-
ciation rules employing Big Data technologies. Section 5 shows the experiments
and results obtained, prior to concluding the paper in Sect. 6.

2 Preliminary Concepts and Related Work

In the literature there are several approaches for mining frequent itemsets
using Big Data techniques. The most famous framework, called MapReduce was
designed by Google in 2003. Since then, there have been proposed several ways
to perform association rule analysis with some minor changes. The MapReduce
framework bases in two different functions to distribute the computation. On
one hand, the Map() function transforms data into (key, value) pairs according
to some criteria, and on the other hand, the Reduce() function aggregates the
lists of key-value pairs sharing the same key to obtain a piece of processed data.
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There are two different frameworks for distributed processing of data: Hadoop
and Spark. Some of the methods that are already implemented in these platforms
include RandomForest and K-means (clustering) within the official Spark MLlib
library [8]. These methods have achieved substantial improvements compared to
traditional forms of implementation in the sense that we can now make full use
of our cluster, obtaining thus substantial improvements compared to traditional
techniques and more scalable algorithms. In particular, in Spark it is included
the PFP (Parallel FP-Growth) which is a distributed version of FP-Growth to
obtain the frequent itemsets of higher level exceeding the minimum support
threshold [18].

In addition to this, we can find in the literature other proposals for mining fre-
quent itemsets using MapReduce techniques for the non-fuzzy case. We can high-
light some approaches implementing Apriori extensions using hadoop: [9,10,19].
As mentioned, Spark accelerates the performance versus Hadoop implementa-
tions since it makes computations in memory. In addition to this, the algorithms
proposed in [9,10,19] search directly in the data the itemsets instead of using
other data structures, e.g. trees, hash tries or hash tables, which can decrease
time execution as concluded in a study made in [24]. Spark frameworks for Apri-
ori extensions can be found in [21,22]. The R-Apriori and YAFIM algorithms
proposed in [21,22] respectively, are very similar to the non-fuzzy phase for each
α-cut of our approach but they make a loop to search k-itemsets inside the
distributed process using a hash tree while we make the MapReduce for every
k-itemset using a hash table.

To the best of our knowledge there is only one work presenting how to discover
fuzzy association rules employing the MapReduce framework. This work [14] is
based on an extension to the fuzzy case of the Count Distribution algorithm
[13,15].

3 Fuzzy Association Rules

Association rules were formally defined for the first time by Agrawal et al. [1].
The problem consists in discovering implications of the form X → Y where X,Y
are subsets of items from I = i1, i2, ..., im fulfilling that X ∩Y = ∅ in a database
formed by a set of n transactions D = t1, t2, ..., tn each of them containing
subsets of items from I. X is usually referred as the antecedent and Y as the
consequent of the rule.

The problem of discovering association rules is divided into two sub-tasks:

– Finding all the sets above the minimum support threshold, where support is
provided by the percentage of transactions in the set. These sets are known
as frequent sets.

– On the basis of the frequent sets are found, rules are discovered as those
exceeding the minimum threshold for confidence or another measurement of
interestingness generally given by the user.
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However, the nature of the data can be diverse and can come described in
numerical, categorical, imprecisely, etc. In the case of numerical elements, a first
approximation could be to categorise them so that, for example, the height of a
person may be given by a range to which it belongs, as for instance [1.70, 1.90].
However, depending on how these intervals are defined, the obtained results may
vary a lot. To avoid this, the use of linguistic labels such as “high” represented
by a fuzzy set is a good option to represent the height of a person having at
the same time a meaningful semantic to the user. Beside this, we may also have
a dataset with imprecise knowledge where ordinary crisp methods cannot be
directly applied.

To deal with this kind of data we introduce the concept of fuzzy transaction
and fuzzy association rule defined in [4,6].

Definition 1. Let I be a set of items. A fuzzy transaction, t, is a non-empty
fuzzy subset of I in which the membership degree of an item i ∈ I in t is repre-
sented by a number in the range [0, 1] and denoted by t(i).

By this definition a crisp transaction is a special case of fuzzy transaction.
We denote by D̃ a database consisting in a set of fuzzy transactions. For an
itemset, A ⊆ I, the degree of membership in a fuzzy transaction t is calculated
as the minimum of the membership degree of all its items:

t(A) = min
i∈A

t(i). (1)

Then, a fuzzy association rule A → C is satisfied in D̃ if and only if t(A) ≤
t(C) ∀t ∈ D̃, that is, the degree of satisfiability of C in D̃ is greater than or
equal to the degree of satisfiability of A for all fuzzy transactions t in in D̃.

Using this model the support and confidence measures are defined using a
semantic approach based on the evaluation of quantified sentences as proposed
in [4,6]. Using the GD-method [6] and the quantifier QM (x) = x the support of
a fuzzy rule A → B results:

FSupp(A → B) =
∑

αi∈Λ(A∩B)

(αi − αi−1)
|(A ∩ B)αi

|
|D̃| (2)

where Λ(A ∩ B) = {α1, α2, . . . , αp} with αi > αi+1 and αp+1 = 0 is a set of
α-cuts. In the previous formula, by abuse of notation, we consider the associated
fuzzy set to a set of items, i.e. Xαi

represents the α-cut of the fuzzy set derived
from the itemset X, which is the fuzzy set with membership degree μX(t) =
t(X) = mini∈X t(i) where X ⊂ I. Note that the elements of the fuzzy set derived
from X are the transactions.

Analogously the confidence is computed as follows:

FConf(A → B) =
∑

αi∈Λ(A∩B)

(αi − αi−1)
|(A ∩ B)αi

|
|Aαi

| (3)

Employing support and confidence measures and setting appropriated thresh-
olds for them fuzzy association rules can be discovered. In [7] it is proposed a
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parallelization of the computation of FSupp and FConf using a set of prede-
fined α-cuts. Note that considering a sufficiently dense set of α-cuts in the unit
interval, the obtained measure will be a good approximation of the real measure
that should consider every α ∈ [0, 1] appearing in the dataset. This is the main
idea of our proposal for mining fuzzy association rules using MapReduce. Firstly,
the algorithm developed using MapReduce is applied repeatedly for every α-cut.
The final step consists in applying a MapReduce phase which aggregates the
results using the previous formulas for support and confidence.

4 BDFARE Algorithm

Traditional algorithms have some problems when dealing with large amounts of
data as they make multiple scans of the whole database. This means that the
execution time increases with the number of transactions. In our research we
have used Spark to improve Apriori algorithm for mining fuzzy association rules
as follows.

The data is stored in a Big Data architecture, for which we used Hadoop
(which allows for replication through its HDFS - Hadoop Distributed File Sys-
tem) and enables distributed processing using Spark.

This new algorithm, called BDFARE (Big Data Fuzzy Association Rules
Extraction) algorithm, is based on two phases. The first one involves loading the
dataset and calculating how often each item appears in the set of transactions
using the Map and Reduce functions. In Fig. 1 we can see an example of first
phase with the value of α = 0.5. In this example, the Map() function, in par-
ticular it is used the FlatMap() function, returns only the items with support
higher than 0.5 (column in the middle only contains items with membership
values ≥ 0.5). After that, a re-counting of the obtained items is done using the
Reduce() function.

Fig. 1. First phase of BDFARE
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This is followed by the second phase, in which we extract the size-k item-
sets (see Fig. 2). For this task we used a function that returns the candidate
k-itemsets from the frequent items. As a result, a list of pairs of the type
<itemset, degree of membership> is saved in a global variable representing
the candidate list. This enables a faster access to the list. After this, the map()
function returns, as in the previous phase, the counts of the candidates, having a
pair <itemset, 1> when the membership value of the itemset is higher than the
value of the α considered in that iteration. In this way, the algorithm calculates
in each step all the cardinalities necessary for the computation of the final sup-
port and confidence measures. These two phases will be repeated until no new
k-itemsets can be found.

Fig. 2. Second phase of BDFARE

As mentioned in Sect. 2, we have employed a hash table as the central data
structure to accelerate the searching of itemsets. If we use instead of the hash
table a linear search at each node it will result in an increase of time. In [24] a
comparison between the different data structures was made concluding that the
hash table outperformed among the three data structures (hash tree, trie and
hash table) for both real-life and synthetic datasets.

5 Experiments and Results

In order to check the performance of our proposal we have carried out several
experiments to compare running time using the non-distributed version of Apri-
ori for discovering fuzzy association rules with the distributed proposal using
BDFARE algorithm. Our aim is to study the behaviour of the algorithm with
and without Big Data techniques. To this end, we applied the algorithms in
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several fuzzy transactional datasets and we study their running time according
to different parameters: the number of items and the number of transactions of
the datasets.

Three different datasets have been considered from the UCI machine learning
repository1 where some attributes have been conveniently fuzzyfied as described
in [23]. The German dataset consists of transactions about credits offered by a
german bank. Three variables were fuzzyfied: amount of the credit, its duration
and the age of the person who owns the credit. The Autompg dataset consists
of several attributes about cars. In this case, the continuous attributes were
fuzzified using the following linguistic labels: low, medium and high. The Bank
dataset contains data about marketing campaigns of a Portuguese banking insti-
tution. In this dataset we have fuzzified their continuous attributes by defining a
suitable fuzzy partition according to the semantics of the attribute (description
of the fuzzy sets employed can be found in [23]).

The final datasets used in the experiments have been replicated in order to
obtain larger datasets to prove the performance of the algorithm in extreme
situations. Their original size can be found in Table 1. Actually, there is not any
large fuzzy dataset available in open data repositories, but we plan to apply
the algorithm to data collected during a time period from sensored buildings.
These sensors give numerical values from a continuous scale that are very close
among them (e.g. 25◦ and 25.2◦). In this case, the building operators are more
interested in obtaining patterns relating temperatures such as “warm”, “cold”,
“very cold”, etc. that can be represented by convenient fuzzy sets instead of
using intervals that may divide very close data in two different intervals.

Table 1. Datasets

Fuzzy database Transactions Items

German 1000 79

Autompg 398 39

Bank 45211 112

5.1 Results

The experimental evaluation have been made in an computer architecture con-
sisting of a cluster comprised of three processing units with Intel Xeon pro-
cessors with 4 cores at 2.2 GHz, while the traditional algorithm was executed
on one of these clusters. We have performed several experiments with different
thresholds values, but we show here the results for minimum support equal to
0.2 and minimum confidence equal to 0.8. The important thing here is to set
the same thresholds for distributed and non-distributed approaches since we are
1 http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/


22 C. Fernandez-Bassso et al.

Fig. 3. Performance of BDFARE vs non-distributed algorithm when the quantity of
transactions increases

more interested here in observing the performance (time and memory) of both
approaches depending on the number of transactions and the number of items.

We began by studying the behaviour of the algorithms (distributed and non-
distributed) when the number of transactions increases. To this end, they were
run as subsets of the whole datasets in order to observe the behaviour with regard
to the number of transactions. Figure 3 shows the behaviour of the algorithm
when the quantity of transactions increases in each of the datasets (the number of
transactions has been replicated till obtaining four millions). It can be observed
that the traditional algorithm performed worst than the BDFARE algorithm, as
expected.

To be exhaustive, with the datasets consisted of 0.5 million and 1 million
transactions, we achieved time savings in average of 12% and 18% respectively
compared to the non-distributed version. We can also see in this graph that the
traditional algorithm did not complete its execution for the dataset containing
4 million transactions due to an error resulting from the lack of memory. By
contrast, BDFARE completed the execution thanks to the use of Big Data tech-
niques, which allow us to use the memory of the three nodes, thereby obtaining
a higher capacity.
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Fig. 4. Performance of BDFARE vs non-distributed algorithm when the quantity of
items increases

Figure 4 shows the running time when the number of items increases in the
three datasets. In this graph we observe that the execution time using BDFARE
does not offer substantial improvements in some cases compared to the tradi-
tional algorithm. This is because the Apriori algorithm explores all possible item
combinations and in each of these explorations it consults the dataset. Addition-
ally, with a small number of items BDFARE does not achieve always more effi-
cient executions due to the time consumed in the planning of the jobs, necessary
when distributing data. However when the number of transactions increases, the
performance of the BDFARE algorithm tends to improve the non-distributed
approach.

6 Conclusions and Future Research

As we have seen, this paper has focused on the study of one of the most commonly
used techniques in data mining, association rules, which allows to extract co-
occurrence patterns from datasets. The algorithms proposed traditionally for
mining association rules fail when analysing massive datasets because the process
results in very high computational costs and its efficiency decreases when the
dataset grows.
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To this end we have presented an extension to Apriori algorithm for mining
fuzzy association rules using Spark, a Big Data framework which enables MapRe-
duce implementations. The algorithm has been compared with non-distributed
version of the algorithm showing improvements not only in terms of execution
time and but also in terms of memory, improving the processing capacity, since
some of the experiments were not able to process with the non-distributed ver-
sion. An additional advantage is that our algorithm and its performance can be
easily improved even further just by expanding our processing system with more
clusters (computation nodes). This allows to scale our approach in external data
centers or in cloud systems such as AWS (Amazon Web Services), another great
advantage of Big Data technology.

As regards future research, we want to implement more efficient approaches
[16] that have been proved that performs quite well in the non-distributed case
such as the Apriori-TID [2], FP-Growth [20] or ECLAT [27] algorithms. Addi-
tionally, we plan to apply the presented approach and the new implementations
to sensor data collected from several buildings in order to study the efficiency
patterns relating indoor and outdoor temperatures, HVAC (Heating, ventila-
tion, air-conditioning) set points and energy consumptions. In this case, fuzzy
sets are suitable to represent understandable value ranges for the users, building
operators, etc.
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the Spanish Ministry for Economy and Competitiveness by the project grant TIN2015-
64776-C3-1-R.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining associations between sets of items in
large databases. In: ACM-SIGMOD International Conference on Data, pp. 207–216
(1993)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the Twentieth International Conference on Very
Large Databases, Santiago, Chile, pp. 487–499 (1994)

3. Anastasiu, D.C., Iverson, J., Smith, S., Karypis, G.: Big data frequent pattern
mining. In: Aggarwal, C.C., Han, J. (eds.) Frequent Pattern Mining, pp. 225–259.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07821-2 10

4. Berzal, F., Delgado, M., Sánchez, D., Vila, M.A.: Measuring accuracy and interest
of association rules: a new framework. Intell. Data Anal. 6(3), 221–235 (2002)
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Abstract. Anomalies are cases that are in some way unusual and do not appear
to fit the general patterns present in the dataset. Several conceptualizations exist
to distinguish between different types of anomalies. However, these are either
too specific to be generally applicable or so abstract that they neither provide
concrete insight into the nature of anomaly types nor facilitate the functional
evaluation of anomaly detection algorithms. With the recent criticism on ‘black
box’ algorithms and analytics it has become clear that this is an undesirable
situation. This paper therefore introduces a general typology of anomalies that
offers a clear and tangible definition of the different types of anomalies in
datasets. The typology also facilitates the evaluation of the functional capabil-
ities of anomaly detection algorithms and as a framework assists in analyzing
the conceptual levels of data, patterns and anomalies. Finally, it serves as an
analytical tool for studying anomaly types from other typologies.

Keywords: Anomalies � Outliers � Deviants � Typology � Data analysis
Classification � Pattern recognition � Exploratory analytics � Machine learning
Data mining

1 Introduction

Anomalies are cases that are in some way unusual and do not appear to fit the general
patterns present in the dataset [1–3]. Such cases are often also referred to as outliers,
novelties or deviant observations [3, 4]. Anomaly detection (AD) is the process of
analyzing the dataset to identify these deviant cases. Anomaly detection can be used for
various goals, such as fraud detection, data quality analysis, security scanning, process
and system monitoring, and data cleansing prior to training statistical models [1–4].

Several ways to distinguish between different kinds of anomalies have been pre-
sented in the literature. These conceptualizations, however, are either only relevant for
specific situations or too abstract to provide a clear and concrete understanding of
anomalies (see Sects. 2 and 4). This paper therefore presents a typology of anomalies
that offers a theoretical and tangible understanding of the nature of different types of
anomalies, assists researchers with evaluating the functional capabilities of their
anomaly detection algorithms, and as a framework aids in analyzing, i.a., the con-
ceptual levels of data and anomalies. A preliminary version has been presented briefly
in [1, 5] to evaluate an unsupervised non-parametric AD algorithm. This paper extends
that initial typology and discusses its theoretical properties in more depth.
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A clear understanding of the types of anomalies that can be encountered in datasets
is relevant for several reasons. First, it is important in statistics, data science, machine
learning, analytics and knowledge-based systems to have a fundamental and tangible
understanding of anomalies, of the various anomaly types that exist, and of their
defining characteristics. In this context, the typology presented here not only helps in
theoretically understanding the nature of data and (deviations from) patterns, but also
provides a functional evaluation framework that enables researchers to demonstrate
which anomaly type(s) their AD algorithms are able to detect. Second, with the recent
criticism on ‘opaque’ and ‘black box’ analytics methods that may result in unfair
outcomes [6, 7], it has become clear that it is undesirable to have algorithms and
analysis results that lack transparency and cannot be interpreted meaningfully. This is
especially true for AD algorithms, as these may be used to identify and act on ‘sus-
picious’ cases. Although the typology presented here does not make the algorithms
themselves more transparent, a clear understanding of (the types of) anomalies and
their properties helps in making the results of data analyses understandable and
transparent. Third, even if statistical and machine learning algorithms are functionally
transparent and understandable, the implementations of these algorithms – and the
knowledge-based systems they are part of – may be done poorly or simply fail due to
overly complex real-world settings [8, 9]. The results of data analyses conducted in
practice may thus prove to be incorrect and unpredictable. A deep understanding of
anomalies is therefore needed to determine whether detected cases indeed constitute
true anomalies. This is especially relevant for unsupervised AD algorithms, as these are
often not used with known labelled data. Finally, the no free lunch theorem, which
posits that no single algorithm will show superior performance in all problem domains,
also holds for anomaly detection [10–12]. Individual AD algorithms are generally not
able to detect all types of anomalies and will differ in their performance. In addition,
more complex algorithms do not necessarily perform better than relatively simple ones.
The typology assists researchers in making transparent which algorithms are able to
detect what types of anomalies to what degree.

This paper proceeds as follows. Section 2 discusses related research. Section 3
presents the typology of anomalies. Section 4 discusses the properties of the typology
and compares it with other research. Finally, Sect. 5 is for conclusions.

2 Related Work

The literature acknowledges various ways to distinguish between types of anomalies.
In [3] a distinction is made between a weak outlier (noise that can be attributed to the
statistical variation of a random variable) and a strong outlier (a true anomaly that may
be generated by a mechanism different from the one generating the normal cases). The
general typology presented in [13] differentiates between three types. A point anomaly
refers to one or several individual cases that are deviant with respect to the rest of the
data. A contextual anomaly appears normal at first sight, but is deviant when an
explicitly mentioned context is taken into account [also see 14]. For example, when a
measured temperature value is not low in general, but only in the summer season.
Finally, a collective outlier refers to a group of data points that belong together and, as
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a group, deviates from the rest of the data. This requires ‘dependent data’, in which
individual cases (rows) are related by e.g. a time, space or identification attribute.
A unique sequence of events is an example of such a collective outlier.

Several more specific and concrete typologies are also known, especially from time
series or sequence analysis. In [15] several within-sequence types are presented. An
additive outlier in this context is an isolated spike during a short period, whereas a
transitory change outlier is a spike that requires some time to disappear. A level shift
outlier is a sudden but structural change to a higher or lower value level, whereas an
innovational outlier may show shifts in both the trend and the seasonal pattern. The
taxonomy presented in [16] focuses on between-sequences anomalies and makes a
distinction between isolated outliers, shift outliers, amplitude outliers and shape out-
liers. Even more types can be acknowledged, such as deviant cycle anomalies. Figure 5
in the Discussion section illustrates several of these types. Another example of a
specific typology is known from regression analysis, in which it is common to dis-
tinguish between outliers, high-leverage points and influential points [2, 17].

The above mentioned typologies, summarized in Fig. 1, are either too general and
too abstract to provide a clear and concrete understanding of anomaly types, or feature
well-defined types that are only relevant for a specific purpose (such as time series
analysis or regression modeling). This paper therefore presents a typology of anomalies
that is general but still offers a meaningful, tangible and useful description of the
various types of anomalies. Such a typology has significant value for both practitioners
and researchers. It seems that a similar typology, grounded in the fundamental
dimensions of data types and attribute relationships, has not been published before
(note that many typologies regarding anomaly detection techniques do exist).

3 Typology of Anomalies

This section presents the general typology of anomalies that offers a theoretical,
detailed and concrete understanding of the types of anomalies that can be encountered
in datasets. It also gives researchers a tool to evaluate which types of anomalies can be

Ref. G/S Anomaly types Use of Explicit Dimensions
[1,5,18] G Extreme value anomaly, Multidimensional 

numerical anomaly, Sparse class anomaly, 
Multidimensional mixed data anomaly

Nature of data (c.f. Types of data), 
Number of interacting attributes
(c.f. the Cardinality of relationship)

[3] G Weak outlier, Strong outlier None (random noise is a candidate)
[13] G Point anomaly, Contextual anomaly, 

Collective anomaly
None

[2, 17] S Outliers, High-leverage points,
Influential points

None

[15] S Additive outlier, Transitory change outlier,
Level shift outlier, Innovational outlier

None

[16] S Isolated outliers, Shift outliers, 
Amplitude outliers, Shape outliers

None

Fig. 1. Overview of typologies and anomaly types (G/S refers to general vs. specific)
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detected by a given AD algorithm, assists in analyzing the conceptual levels of patterns
and anomalies, and aids in studying anomaly types from other typologies.

The typology uses two dimensions, each of which describes a fundamental aspect
of the nature of data, to distinguish between anomaly types. The first dimension rep-
resents the types of data involved in describing the behavior of the cases. This refers to
the data types of the attributes (i.e. variables) that are involved in the anomalous
character of a deviant case and thus have to be handled appropriately during the
analysis in order for it to be detected. The data types are:

• Continuous: The variables that capture the anomalous behavior are all numeric in
nature. Examples of such variables are age, height and temperature.

• Categorical: The variables that capture the anomalous behavior all represent codes
or class values. This includes binomial and multinomial attributes. Examples of
such variables are gender, country, color and animal species.

• Mixed: The variables that capture the anomalous behavior are both continuous and
categorical in nature. At least one attribute of each type is present.

Not all data types acknowledged in so-called multimodal objects are included here.
The reason is that e.g. video, audio and free text anomalies can generally be reduced to
class- or number-based deviations, or require a very specific analysis.

The second dimension is the cardinality of relationship and represents how the
various attributes relate to each other when describing anomalous behavior. These
attributes, individually or jointly, are responsible for the deviant character of the case:

• Univariate: Except for being part of the same set, no relationship between the
variables exists to which the anomalous behavior of the deviant case can be
attributed. To detect the anomaly, its attributes can therefore be analyzed separately
– i.e. the analysis can assume independence between the variables.

• Multivariate: The deviant behavior of the anomaly lies in the relationships between
its variables. The anomaly can thus not be detected by studying the individual

Types of Data
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Fig. 2. The typology of anomalies
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attributes separately. Variables need to be analyzed jointly in order to take into
account their relations, i.e. combinations of values. ‘Relationships’ should be
interpreted broadly here, including (partial) correlations, interactions, collinearity,
as well as associations between attributes of different data types.

The preliminary typology presented in [1, 5, 18] is summarized in the first row of
Fig. 1. The typology presented in this paper is an updated and extended version. All
data types are now treated separately, yielding six basic anomaly types. In addition, the
terminology is updated. The new typology is depicted in Fig. 2. The types are illus-
trated in Figs. 3 and 4 (note: the reader might want to zoom in on a digital screen to see
colors, patterns and data points in detail). Figures 3A, B and 4A are simulated datasets,
while Fig. 4B depicts real-world data from the Polis Administration, an official register
of income data in the Netherlands [1]. The six types of anomalies, which follow
naturally and objectively from the two dimensions, are described below.

I. Extreme value anomaly: A case with an extremely high, low or otherwise rare
value for one or multiple individual numerical attributes [cf. 3, 19]. As such
cases deviate w.r.t. one or more individual attributes, their anomalous nature
does not rely on relationships between attributes. However, the more attributes
take on an extremely high, low or rare numerical value, the more anomalous the
case is. The two cases with label Ia in Fig. 3A are examples, as are the Ib cases
in Fig. 4B. Traditional univariate statistics typically offers methods to detect this
type, e.g. by using a measure of central tendency plus or minus 3 times the
standard deviation or the median absolute deviation [3, 13, 17]. These cases are
literally ‘outliers’, as they lie in an isolated region of the numerical space.
However, note that this type includes rare cases [cf. 19] and that such
low-density values can also be located in the middle of the value range.

Ia

IVa

IIa

VIa

Fig. 3. (A) Set with two numerical variables; (B) Set with three numerical attributes and two
categorical attributes (color and size) (Color figure online)
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II. Rare class anomaly: A case with an uncommon class value for one or multiple
categorical variables. Cases of this type are anomalous w.r.t. one or more
individual attributes, so the deviant nature of rare class anomalies does not rely
on relationships between attributes. However, like Type I cases, the more
attributes take on a rare class value, the more anomalous the case is. The
research in [20] deals with this type of anomaly. Case IIa in Fig. 3B is a rare
class anomaly, being the only green data point in the set. Case IIb in Fig. 4A, the
only square class, is another example. The rare red and orange colors of
Fig. 4B’s IIc points make for rare class anomalies as well.

III. Simple mixed data anomaly: A case that is both a Type I and Type II anomaly,
i.e. with at least one extreme value and one rare class. This anomaly type
deviates with regard to multiple data types. This requires deviant values for at
least two attributes, each anomalous in its own right. These can thus be analyzed
separately; analyzing the attributes jointly is unnecessary because the case is not
anomalous in terms of a combination of values. However, similar to the other
univariate anomaly types, the more attributes take on a rare value, the more
anomalous the case in question is. Case IIIa in Fig. 4A is an example. Case IIa
in Fig. 3B would be a Type III anomaly if it had been positioned to the extreme
left (at the location of label ‘IIa’).

IV. Multidimensional numerical anomaly: A case that does not conform to the
general patterns when the relationship between multiple continuous attributes is
taken into account, but which does not have extreme values for any of the
individual attributes that partake in this relationship. The anomalous nature of a
case of this type lies in the deviant or rare combination of its continuous attribute
values, and as such hides in multidimensionality. It therefore requires several

Va

Ib

IIc

IIb

IVb
VIb

IIIa

Fig. 4. (A) Set with two numerical attributes and two categorical attributes (color and shape);
(B) Polis Administration set with one categorical and three numerical attributes, and large dots
representing the 30 most extreme anomalies detected by SECODA [1] (Color figure online)
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continuous attributes to be analyzed jointly to detect this type. A multidimen-
sional numerical anomaly in independent data is literally ‘outlying’ with respect
to the relatively dense multivariate clouds or local patterns, and is thus located in
an isolated area [cf. 21]. Case IVa in Fig. 3A is an example, as well as the IVb
cases in Fig. 4B. In dependent data the focus may lie on one substantive attribute
(e.g. ‘amount spent’), although at least one other attribute is still needed to link
the related individual cases. See the discussion on examples Fig. 5B, C and D in
Sect. 4 for more information. So-called ‘contextual’ [13] or ‘conditional’ [14]
anomalies should be seen as a special case of a multidimensional numerical
anomaly. These require that the respective contextual or environmental attri-
butes, such as time or location, are denoted explicitly. This explicit denotation is
allowed, but not demanded, for Type IV anomalies.

V. Multidimensional rare class anomaly: A case with a rare combination of class
values. In datasets with independent data points a minimum of two substantive
categorical attributes needs to be analyzed jointly to discover a multidimensional
rare class anomaly. An example is this curious combination of values from three
attributes used to describe dogs: ‘MALE’, ‘PUPPY’ and ‘PREGNANT’. Another
example is case Va in Fig. 4A, as it is the only red circle in the set. When dealing
with dependent data (see Sects. 2 and 4), the anomaly can also be a deviant
combination of class values of a single substantive attribute, but from multiple
related cases. Again, an additional attribute, such as time, is still required to link
these dependent cases. An example of such a type V anomaly in dependent data
is the deviant phase-sequence in Sect. 4.

VI. Multidimensional mixed data anomaly: A case with a class or a combination
of classes that in itself is not rare in the dataset as a whole, but is only rare in its
local pattern or neighborhood (numerical area). The anomalous nature of a case
of this type lies in the deviant relationship between its continuous and cate-
gorical attributes. As with the other multivariate anomalies, such cases hide in
multidimensionality and thus multiple attributes need to be jointly taken into
account to identify them. As a matter of fact, multiple data types need to be used,
as anomalies of this type per definition are comprised of both numerical and
categorical attributes. Cases VIa in Fig. 3B are illustrations of a multidimen-
sional mixed data anomaly in independent data, as they are points with a color
rarely seen in their respective neighborhoods. This also holds for the VIb cases in
Fig. 4B, being blue points in an otherwise pink local pattern (or vice versa).
Type VI cases can also take the form of second- or higher-order anomalies, with
categorical values that are not rare (not even in their neighborhood), but are rare
in their combination in that specific area. Here is another way to look at this: a
first-order Type VI anomaly can be seen as a rare class anomaly in its local
neighborhood, while a second- or higher-order Type VI anomaly can be seen as
a multidimensional rare class anomaly in its local neighborhood. More exam-
ples of the different types of anomalies will be provided in the Discussion
section. Additional illustrations (including those of higher-order anomalies) can
be found in [1].
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4 Discussion

The typology presented here offers a clear and tangible definition of the different types
of anomalies. As the various figures show, these types lend themselves to be clearly
illustrated by visual plots. In addition to providing a clear understanding of the dif-
ferent kinds of anomalies that exist, the typology can be used to evaluate AD algo-
rithms. This is a relevant contribution because most research publications do not make
it very clear which types can be detected by the anomaly detection algorithms pre-
sented, even though it is clear that many of those algorithms are incapable of identi-
fying all types [1, 11]. It is therefore advised that researchers use the typology to
provide clear insight into the functional capabilities of their AD algorithms by
explicitly stating which anomaly type(s) can be detected. This also gives due
acknowledgment of the no free lunch theorem in an AD context [cf. 10, 11, 12].

Evaluation of Algorithms. Using the typology for algorithm evaluation has more
implications than merely stating which types can be detected, since the typology is
ideally also used to create test sets. AD studies often evaluate algorithms by treating (a
sample of) one class in existing datasets as anomalies [22]. However, this is a ques-
tionable practice because these classes may actually represent true patterns rather than
true deviants, and may be very similar to other classes in the dataset. This latter
situation can indeed be observed for several classes in the real-world Polis dataset.
Moreover, there is no guarantee that all anomaly types will be present in such a test set.
A better approach for creating AD test sets would therefore be to take the typology
presented here and insert several instances of each anomaly type in a simulated or
real-world dataset. This ensures that the different types of anomalies are present in the
set and a thorough evaluation of the algorithm can thus be conducted. Researchers
should at least aim to include the most important types, based on the domain or the
problem being studied. See [1] for an example of an evaluation.

Local vs. Global Anomalies. The typology presented here also offers a natural way to
distinguish between local and global anomalies. It follows from the typology that the
three univariate anomaly types are global anomalies, as these are unusual w.r.t. an
individual attribute (possibly several individual attributes, but each attribute is
anomalous in its own right). They are anomalous with regard to the entire dataset.
When taking all the set’s cases into account, extreme value anomalies will always have
an extremely low, high or rare value for the given attribute. Rare class anomalies and
simple mixed data anomalies likewise have an extremely rare value for the given
attribute(s), without any condition and regardless of the other attributes. The three
multivariate anomaly types, on the other hand, are only deviant given the categorical
condition or the specific numerical area the case in question is located in. This is the
result of the fact that the anomalous nature of the case lies in the combination of its
attribute values. This is clearly illustrated by the VIb cases in Fig. 4B, where the blue
cases are not anomalous because they are blue (which is a very normal color in the set),
but because they seem to be misplaced between the pink cases. A similar argument
holds true for the pink VIb cases. In short, the three multivariate anomaly types are
situational and therefore local. The three univariate anomaly types represent global
anomalies, as they are anomalous regardless of the values of other attributes.
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Other Typologies. The typology presented here can be used both for clarifying more
abstract typologies and for positioning the anomalies of more specific typologies in a
broader framework. The typology presented in [13] is very general in nature, yielding
rather abstract anomaly types. This is made clear by the fact that, given some
assumptions, all six anomaly types of this paper’s typology can manifest themselves as
a point anomaly. A point anomaly is simply an individual case that deviates from the
rest of the data [13]. The example is given of a very high ‘amount spent’ in a dataset
with credit card transactions. This is exactly what the extreme value anomaly in the
typology of Fig. 2 is. Another example in [13] concerns isolated cases that are
described by two numerical dimensions, of which none has an extremely high or low
value. This is therefore this paper’s multidimensional numerical anomaly. The
explanation in [13] does not explicitly state whether point anomalies can also be
comprised of categorical data. However, if this type is interpreted in a broad sense, then
rare class anomalies are also point anomalies because these are unique or rare data
points and there is no need for dependent data or an explicitly denoted context (see
below). A similar argument can then be made for multidimensional rare class
anomalies, multidimensional mixed data anomalies and simple mixed data anomalies,
which renders point anomalies a very broad and abstract type indeed. The typology
presented in Fig. 2 is thus helpful, and even needed, to obtain a more concrete
understanding of how point anomalies can manifest themselves.

The contextual anomaly in [13] is only deviant in a specific and explicitly specified
context, such as a certain location or time period. This requires relationships between
variables, making this a multidimensional numerical anomaly (and possibly a multi-
dimensional rare class anomaly or multidimensional mixed data anomaly) for which
the analyst has explicitly specified the contextual variables before running the analysis.

Finally, the collective anomaly in [13] refers to a group of cases that, as a combined
whole, shows deviant behavior. An example is when individual cases are not deviant in
themselves, but only as a group of cases that represents a deviant sequence. The set of
red underlined classes in the following phase-sequence can therefore be regarded as
such an anomaly:

phase1, phase2, phase3, phase1, phase2, phase3, phase1, phase3, phase1, phase2, phase3

In terms of this study’s typology this is a multidimensional rare class anomaly, in
which the combination (sequence) of classes deviates from the regular pattern (the
cycle ‘phase1, phase2, phase3’). As one can see from the example, the anomaly is
comprised of multiple cases in a set with dependent data (related points or rows). If
relevant, however, one could abstract from the original individual points and declare
the anomaly at the group level (i.e. the cycle), turning this into a rare class anomaly.

Collective anomalies in sequence data can be described in more detail both by the
typology presented in this paper and by the specific typologies from time series
analysis [15, 16]. Additional examples are shown in Fig. 5 and will be discussed
below. In time series analysis, the left red spike of Fig. 5A is an additive outlier, the
right spike a transitory change outlier that takes some time to disappear [15]. In terms
of this paper’s typology, both are extreme value anomalies as they have an extremely
high respectively low value for a single attribute. The isolated spike in Fig. 5B also
constitutes an additive outlier. However, this is not an extreme value anomaly, as it
deviates from the local pattern without exhibiting extreme values from a global
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perspective. This is therefore a multidimensional numerical anomaly, as it requires two
numerical attributes to identify the anomaly in the local pattern. Interestingly, the
typology of Fig. 2, albeit in principle more abstract than a specific typology dedicated
to time series anomalies, is thus able to distinguish between instances of one and the
same time series type. The typology’s ability to make this more specific distinction is
due to its fundamental dimensions: data types and cardinality of relationship.

The red transition of Fig. 5C constitutes a level shift outlier. This can be regarded as
a collective anomaly because no individual point is anomalous – the deviation lies in
the sudden level shift of the sequence. The deviant behavior can only be detected by
taking into account both the time and the value variable, making this a multidimen-
sional numerical anomaly. However, by first determining the difference between two
consecutive cases, this change point detection problem can be turned into a simple
search for extreme values. Given the transformed dataset that results from this oper-
ation, this would thus be an extreme value anomaly, representing a deviant transition –

which is now a single case – rather than (a group of) cases from the original set.
The red part of Fig. 5D is another example of a collective anomaly, in the form of a

deviant cycle anomaly. As this involves numerical data of which the red part – which
does not feature extremely high, low or rare individual values – is found to be
anomalous when taking into account the entire sequence, this is a multidimensional
numerical anomaly. Re-ordering the sequence in a random fashion (i.e. discarding the
time attribute) would make the anomaly ‘disappear’, leaving neither a deviant cycle
anomaly nor a multidimensional numerical anomaly. It is similar to Fig. 5B’s anomaly,
except for the fact that Fig. 5D’s anomaly represents a group (cycle) of related cases
instead of a single data point. Note that collective anomalies such as those in Fig. 5D
can usually only be discovered in sets with dependent data and by specialized algo-
rithms [cf. 13, 22]. As with Fig. 5C, the example of Fig. 5D can be transformed from a
multidimensional numerical anomaly into a simpler type. The individual cycles could
first be detected and classified, after which a rare class anomaly can be denoted.

Fig. 5. Four time series with time on the horizontal axis and the anomalies in red (Color figure
online)
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Conceptual Levels. The examples of Fig. 5C, D and the phase-sequence make clear
that one can abstract from the original micro-level data points to view the data and
anomalies at a higher and somewhat simpler conceptual level. The grouping variables,
such as time, location and identification attributes, are generally used for this. In
Fig. 5D (and the phases example) the sequence data were also analyzed at the level of a
cycle, transforming a Type IV (and Type V) anomaly into a rare class anomaly. In
terms of the typology of Fig. 2 this implies a change from a multivariate anomaly to a
univariate one. In terms of [13] this changes the anomaly from a collective to a point
anomaly. In addition to the change in conceptual perspective, this may involve a
different AD algorithm or a transformation of the dataset. There can be several reasons
to change the conceptual level of a dataset and its anomalies. First, the goal of the
analysis may imply a certain conceptual focus. The aim may be to detect anomalous
individual data points (e.g. logged events such as login attempts) or aggregated entities
(e.g. entire user sessions comprised of multiple actions). A second reason to change the
level of a dataset is the fact that some sets may be too big to process. The data reduction
obtained by transforming the dataset into a set with aggregated cases may be required
to make the analysis more manageable. A third reason concerns the AD algorithms the
analyst has at his or her disposal. An advanced algorithm to analyze dependent data
may simply not be available, meaning that the analyst first needs to transform the
dataset to a format that is suitable for the algorithms at hand.

Terminology. To conclude this discussion, it is worthwhile to re-assess the synonyms
mentioned at the beginning of this paper. As stated, the terms anomaly, outlier, novelty
and deviant are often treated as having an identical meaning. However, in light of the
typology and discussion presented here, several of these terms should be defined more
clearly. The term outlier, from a traditional statistical perspective, refers to observations
that literally lie outside the general patterns or dense data clouds. In other words, such
cases lie in a numerically isolated region of the space. Given this typology, the term
outlier can thus best be reserved for extreme value anomalies, simple mixed data
anomalies and, in the case of independent data, multidimensional numerical anomalies.
Likewise, the term novelty can be defined more strictly, as this should refer to cases that
in some way represent new and hitherto unknown events or objects. Therefore, this
term can best be applied to situations in which a case represents something that has not
happened or been detected before. This could be the case in change point detection
analysis, such as in the time series of Fig. 5. Alternatively, a novelty could refer to
cases discovered with unsupervised or one-class anomaly detection, in which the
identified case is not a data point from a pattern that the algorithm has learned before by
training on labelled data. Finally, the terms anomaly and deviant can be regarded as
general terms and true synonyms.

5 Conclusion

This paper has presented a general typology of anomalies that offers a concrete
understanding of the different anomalies one can encounter in datasets. The typology
can also be used to evaluate AD algorithms in a more transparent way. In particular,
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researchers can utilize it to create test sets that will be used in the evaluation and should
report explicitly which types of anomalies can be detected by a given AD algorithm.
Furthermore, as a result of its fundamental dimensions, the typology can be used both
for clarifying existing typologies that are more abstract in nature [e.g. 13] and for
studying the anomalies of specific typologies [e.g. 15] through a more general lens. For
some specific, dedicated typologies, this study’s typology can even provide deeper
insight by proposing meaningful sub-divisions within existing types. Finally, the
typology clearly distinguishes between local and global anomalies, and can be used as
a framework to analyze the conceptual levels of data and anomalies.

Remarks. The data examples and the R code to analyze them can be downloaded from
www.foorthuis.nl. The author thanks Emma Beauxis-Aussalet for her valuable
remarks.
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Abstract. Clustering method is one of the most important and basic
technique for data mining which aims to group a collection of samples
into clusters based on similarity. Clustering Big datasets has always been
a serious challenge due to its high dimensionality and complexity. In
this paper, we propose a novel clustering algorithm which aims to intro-
duce the concept of intuitionistic fuzzy set theory onto the framework
of CLARANS for handling uncertainty in the context of mining Big
datasets. We also suggest a new scalable approximation to compute the
maximum number of neighbors. Our experimental evaluation on real data
sets shows that the proposed algorithm can obtain satisfactory clustering
results and outperforms other current methods. The clusters quality was
evaluated by three well-known metrics.

Keywords: IF-CLARANS · Clustering algorithm · Big data
Intuitionistic fuzzy set

1 Introduction

In the digital world today, according to unpreceded progress and development of
the internet and online world technologies such as big and powerful data servers,
the amounts of data have increased exponentially not only according to the size
but also in terms of variety and complexity data sets. Nevertheless, the treatment
of this large amount of data becomes a major challenge.

Classical data mining, like classification and clustering, approaches are not
sufficient for analyzing such data. In fact, big data is fundamentally different
from other data because of the three V’s volume, velocity, and variety [9].

– The volume of data stored today is exploding. In the year 2000, 800,000
petabytes (PB) of data were stored in the world and by 2020 it is anticipated
to hit 35 zettabytes.

– The velocity is the speed at which the data is generated, captured and shared.
– Variety means the diversity of the data sources and data formats.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 854, pp. 39–50, 2018.
https://doi.org/10.1007/978-3-319-91476-3_4
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Clustering big data is a very challenge to data mining because large volumes
and different varieties must be taken into account. A broad collection of clus-
tering methods has been proposed for clustering big data, see [9] for a recent
review. Uncertainty caused by the overlapping nature of the various partitions is
a very challenging problem in cluster analysis, and several algorithms have been
proposed for it. Fuzzy set theory is one of the most popular tools to handle,
with greater flexibility, uncertainty and imprecision in intelligent systems. Fuzzy
models allows us to represent patterns or members in a vague or ambiguous
way. In fact, the concept of fuzzy membership μ, lying in [0, 1], allows a pat-
tern to simultaneously belong in more than one partition when, in conventional
techniques, it is assumed that each object belongs to exactly one cluster. Fuzzy
methods are less sensitive to local minima than crisp ones because of the fuzzy
updating at each iteration [12].

In fuzzy set theory, the membership of an object to a fuzzy set is a real
number between zero and one. But in reality, it may not always be certain that
the degree of non-membership of an element in a fuzzy set is equal to 1 minus
the membership degree because there may be some hesitation degree. Therefore,
a generalization of fuzzy sets was introduced by Atanassov [15] as intuitionistic
fuzzy sets (IFS) which incorporated the degree of hesitation called hesitation
margin (and is defined as 1 minus the sum of membership and non-membership
degrees respectively).

In this paper, a new clustering algorithm called Intuitionistic Fuzzy
CLARANS (IF-CLARANS) is proposed. The concept of intuitionistic fuzzy
membership (like IFCM) is incorporated onto the framework of CLARANS for
handling uncertainty in the context of mining large data. The goodness of cluster-
ing is evaluated using the Xie-Beni (XB) cluster validity index [5], the partition
entropy (PE) [11] and the accuracy of the partitioning results [16]. Algorithms
like FCM [12], IFCM [17] and CLARANS [2] are used for comparative study.

The rest of this paper is organized as follows. Section 2 is devoted to some
preliminaries in order to make the paper as self-contained as possible. The pro-
posed model is introduced in Sect. 3. Section 4 presents the main results of the
paper. Finally, the paper ends with some conclusions and references.

2 Preliminaries

2.1 Original Fuzzy C-Means (FCM)

Fuzzy C-means clustering (FCM) is an objective function-based clustering orig-
inally developed by Dunn in 1971 and further improved by Bezdek [12]. Unlike
the traditional k-means algorithm, which partitions a set of data into predeter-
mined c clusters and each element in the data set belongs to only one exact
cluster, FCM admits partial belongingness (membership) of a data to more than
a single cluster, and member-ship grades quantify the degree to which this ele-
ment belongs to different clusters. Given a finite collection of data set containing
N elements, X = x1, x2, . . . , xN ⊂ Rq, the FCM method splits the data into c
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clusters by minimizing a certain objective function. The algorithm returns clus-
ter centers (prototypes) r1, r2, . . . , rc and a fuzzy partition matrix U = [uij ],
uij ∈ [0, 1], i = 1, 2, . . . ., N ; j = 1, 2, . . . , c. An ijth entry of U , Uij , indicates
to which extent the element xi belongs to the jth cluster. The FCM algorithm
minimizes the following objective function:

f =
N∑

i=1

c∑

j=1

Um
ij d2ij (1)

dij = ‖xi − rj‖ is the Euclidean distance between xi and rj .

In Eq. (1), the fuzziness exponent (fuzziness coefficient) m assumes values
greater than 1, while the value m = 2 is the most commonly used. Different
values of m control the shape of membership functions produced by the FCM
algorithm. Higher value of m leads to spike-like membership functions while the
values close to 1 produce more Boolean-like shapes of membership functions. The
parameter exhibits some influence on the performance of the FCM algorithm and
can be subject to optimization. The iterative updates of the partition matrix and
the prototypes are realized as follows [12]:

Uij =
1

c∑

k=1

(
dij

dik
)

2
m−1

, (2)

where i is an integer in range [1, N ] and j is an integer in range [1, c]

rj =

N∑

i=1

Um
ij xi

N∑

i=1

Um
ij

(3)

Where j is an integer in range [1, c]
The algorithm is terminated once the following condition is satisfied:

max
{∣∣Uk+1

ij − Uk
ij

∣∣} ≺ ε (4)

Where ε is a certain non negative threshold value whereas k denotes the
index of the successive iteration of the algorithm.

2.2 Intuitionistic Fuzzy Sets (IFSs)

Let X be a universe of discourse. In [13], Zadeh introduced the concept of fuzzy
set:

F = {(x, μF (x))|x ∈ X} (5)
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whose basic component is only a membership degree μF (x) with the non-
membership degree being 1 − μF (x). However, in real-life situations, when a
person is asked to express his/her preference degree to an object, there usually
exists an uncertainty or hesitation about the degree, and there is no means to
incorporate the uncertainty or hesitation in a fuzzy set [14]. To solve this issue,
Atanassov [15] generalized Zadeh’s fuzzy set to intuitionistic fuzzy set (IFS) by
adding an uncertainty (or hesitation) degree. IFS is defined as follows:

A = {(x, μA(x), vA(x))|x ∈ X} (6)

which is characterized by a membership degree μA(x) and a non-membership
degree vA(x), where:

μA : X → [0, 1] , x ∈ X → μA(x) ∈ [0, 1] , (7)

vA : X → [0, 1] , x ∈ X → vA(x) ∈ [0, 1] , (8)

and it holds the condition 0 ≤ μA(x) + vA(x) ≤ 1.
when vA(x) = 1 − μA(x) for every x in set A, then the set A becomes a fuzzy
set.

For all intuitionistic fuzzy sets, Atanassov [15] also indicated a hesitation
degree, πA(x), which arises due to lack of knowledge in defining the membership
degree of each element x in set A and is given by:

πA(x) = 1 − μA(x) − vA(x) (9)

It is evident that 0 ≤ πA ≤ 1 for each x ∈ A.
Due to the hesitation degree, the membership values lie in the interval

[μA(x), μA(x) + πA(x)]

3 The Proposed Algorithm

3.1 Our Contribution

This work deals with the problem of clustering large datasets. The main contri-
butions of the proposed algorithm called IF-CLARANS are as follows:

1. The concept of Atanassov’s intuitionistic fuzzy set theory is used onto the
framework of CLARANS for handling uncertainty in the context of mining
large data.

2. We suggest a new scalable approximation to compute the maximum number
of neighbors in CLARANS algorithm.
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3.2 CLARANS Algorithm

CLARANS [2] considers two parameters numlocal, representing the number of
iterations for the algorithm, and maxneighbor, the number of adjacent nodes
in the graph G that need to be searched up to convergence. These parameters
are provided as input at the beginning. While CLARA [1] compared very few
neighbors corresponding to a fixed small sample, CLARANS uses random search
to generate neighbors by starting from an arbitrary node and randomly check-
ing maxneighbor neighbors [2]. If a neighbor represents a better partition, the
process continues with this new node. Otherwise a local minimum is found, and
the algorithm restarts until numlocal local minima are obtained.

The clustering process searches through a graph GN,c, where node vq is
represented by a set of c medoids mq

1, . . . ,m
q
c of the clusters. Two nodes are said

to be neighbors if they differ by only one medoid, and are connected by an edge.
More formally, two nodes v1 = m1

1, . . . ,m
1
c and v2 = m2

1, . . . ,m
2
c are said to be

neighbors if and only if the cardinality of the intersection of v1 and v2 is given
as card(v1

⋂
v2) = c−1. Hence each node in the graph has c∗ (N −c) neighbors.

For each node vq ∈ GN,c we assign a cost function:

Jq
c =

N∑

i=1

c∑

j=1

dq
ij , (10)

where dq
ij denotes the dissimilarity measure of the ith object xi from the jth

cluster medoid mq
j in the qth node. The aim is to determine that set of c-medoids

m∗
1, . . . ,m

∗
c at node v∗, for which the corresponding cost is the minimum as

compared to all other nodes in the graph.
The main steps of the algorithm are outlined as follows:

CLARANS algorithm
begin
1) Input parameters numlocal and maxneighbor. Initialize i to 1,
and mincost to a large number.
2) Set current to an arbitrary node in G_{n,k}.
3) Set j to 1.
4) Consider a random neighbor S of current, and based on cost
function (Equation (14)), calculate the cost differential of the
two nodes.
5) If S has a lower cost set current to S, and go to 3).
6) Otherwise, increment j by 1. If j <= maxneighbor, go to 4).
7) Otherwise, when j > maxneighbor, compare the cost of current
with mincost. If the former is less than mincost, set mincost to
the cost of current and set bestnode to current.
8) Increment i by 1. If i > numlocal, output bestnode and halt.
Otherwise, go to 2).

end.
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Note that maxneighbor is computed as:

maxneighbor = p%(c ∗ (N − c)) (11)

with p being provided as input by the user. Typically, 1.25 ≤ p ≤ 1.5 [2].

3.3 Intuitionistic Fuzzy CLARANS (IF-CLARANS)

In order to incorporate intuitionistic fuzzy property in conventional CLARANS
algorithm, the clusters centers are updated in the following manner.

Hesitation degree is initially calculated using

πA(x) = 1 − μA(x) − (1 − μA(x)α)1/α (12)

Where α 	 0 is the Yager’s coefficient [24].
The intuitionistic fuzzy membership values are obtained as follows:

U∗
ik = Uik + πik (13)

where U∗
ik(Uik) denotes the intuitionistic (conventional) fuzzy membership of the

kth data in ith class.
The objective function is defined as follow:

Jq =
∑

N
i=1

c∑

j=1

(U∗q
ij )(dq

ij)
2, (14)

Here the distance component is weighted by the corresponding member-
ship value d∗q

ij = (xi, υ
∗
j ). This is used in Steps 1, 4, and 7, of the algorithm

CLARANS.
Fuzzy partitioning is carried out through an iterative optimization of the cost

function defined in Eq. (14), with the membership at node vq being computed
as defined in Eq. (13).

Where υ∗
i =

n∑

k=1

U∗
ijxk

n∑

k=1

U∗
ij

3.4 Estimating the Maximum Number of Neighbors Examined

In CLARANS, the process of finding k medoids from n objects is viewed
abstractly as a search for a minimum through a certain graph Gn,k. Each node
in the graph has c ∗ (N − c) neighbors. At each step, PAM [1] searches and
examines all of the neighbors of the current node in its search for a minimum
cost solution. The main improvement made by the CLARANS algorithm com-
pared to the PAM algorithm is that it performs the search only in a subset of
neighboring nodes by the definition of the maxneighbor parameter (Eq. 11). This
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reduces the number of searches, and hence greatly reduces the local minimum
search time [2]. But the value of maxneighbor turns up to be very high when
N is sufficiently large (N ≥ 10, 000). By Step 6 of the CLARANS algorithm,
this increases the computational burden. We, therefore, define a new scalable
approximation of the maxneighbor parameter expressed as:

maxneighbor =
c2log2(N/c)

2log2(c)
(15)

By introducing this new approximation of maxneighbor, the number of neigh-
bors to be examined at each iteration is increased reducing the computational
burden of the algorithm to reach at the best solution, which is not worse than
that obtained using maxneighbor in Eq. (11). We are, as a result, able to elim-
inate the user-defined parameter p while also reducing computational time of
the algorithm. This new equation has been employed in this article for experi-
ments involving large datasets (N ≥ 10, 000). Note that maxneighbor, is gently
increasing and thus able to model larger clusters better.

The choice of the logarithmic function with respect to the linear and power
function is justified by the fact that, the slope of the curve actually becomes more
gentle as the value of N increases, which is more suitable for large datasets.

4 Experimental Results

4.1 Experimental Environments

In this part, the experimental environments are described such as,

Experimental Tools: In all experiments we use MATLAB program as a power-
ful tool to compute clusters and Intel Core i7-7700, 3.6 GHz, 16 GB RAM/3 TB
HDD running windows 10. The experimental results are taken as the average
values after 10 runs.

Cluster Validity Measurement: The results are expressed in terms of indices
XB [5], Partition Entropy (PE) [11] and the accuracy measure [16].

XB =

N∑

i=1

c∑

j=1

Um
ij dij

N ∗ mini,j d′(Ui, Uj)2
(16)

where Uij is the membership of pattern xi to cluster cj , dij denotes the dissimi-
larity measure of the ith object xi from the jth cluster medoid and d′ denotes the
dissimilarity measure of the ith and jth cluster medoids. Minimization of XB is
indicative of better clustering, particularly in case of fuzzy data.

PE(c) = − 1
N

N∑

i=1

c∑

j=1

Uij log2Uij (17)
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where 0 ≤ PE(c) ≤ log2c. In general, we find an optimal c∗ by solving
min2≤c≤n−1PE(c) to produce a best clustering performance for the data set
X [11].

Experimental Datasets: We present results on five well-known datasets
(Spambase, connect-4, Nursery, covtype and FARS) which are available from
the UCI Machine Learning Repository (available at: http://archive.ics.uci.edu/
ml/). All attributes/variables of these datasets are used concurrently for the best
evaluation of the algorithms. The basic information of the five real data sets that
we will use in our experiments is illustrated in Table 1.

Table 1. Real data sets summary.

Dataset # instances #attributes #clusters

Spambase 4597 57 2

connect-4 67,557 126 3

Nursery 12690 8 5

covtype 581,012 54 7

FARS 100968 29 8

4.2 The Comparison of Clustering Quality

We compared the solution results of the IF-CLARANS algorithm with those of
the FCM algorithm [12], the IFCM algorithm [17] and the CLARANS algorithm
[2]. The clustering quality results of the different clustering algorithms, in terms
of the XB and PE, are shown in Table 2. The results show that our algorithm
yields reasonably good results in all datasets. The XB and PE measures value
results of the IF-CLARANS method are much lower than those of the FCM,
IFCM and the CLARANS methods, which means that by using the proposed
method, the best quantitative evaluation results available have been achieved.

The clustering efficiency is also experimented using the accuracy measure.
Good clustering corresponds to higher values of the accuracy that represents the
average of well clustered elements in their corresponding classes. The obtained
results are shown in Table 3. Our method gives the highest clustering accuracy
in the majority of the tests, except for the Spambase dataset, which is the small-
est dataset used in the experiments, where IFCM algorithm achieved higher
accuracy.

We also measured the execution time of CLARANS and IF-CLARANS algo-
rithms. The experiments are conducted on the five real data sets listed in Table 1
when the number of instances is very large (N reaches 581,012 instances). the
aim of this study is to investigate the behavior of the two algorithms when oper-
ating on large data sets. Figure 1 lists the average execution time of our proposed

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
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Table 2. Clustering performance of the involved clustering algorithms on real data for
c = c∗

Dataset Algorithm maxneighbor XB PE

Spambase FCM - 0.41 0.61

IFCM - 0.26 0.39

CLARANS p%c ∗ (N − c) = 91 0.37 0.46

IF-CLARANS c2log2(N/c)/2log2(c) = 44 0.22 0.33

connect-4 FCM - 0.38 0.51

IFCM - 0.23 0.41

CLARANS p%c ∗ (N − c) = 2026 0.34 0.48

IF-CLARANS c2log2(N/c)/2log2(c) = 82 0.24 0.42

Nursery FCM - 0.35 0.47

IFCM - 0.43 0.49

CLARANS p%c ∗ (N − c) = 634 0.28 0.44

IF-CLARANS c2log2(N/c)/2log2(c) = 121 0.18 0.40

covtype FCM - 0.36 0.43

IFCM - 0.24 0.36

CLARANS p%c ∗ (N − c) = 40670 0.28 0.39

IF-CLARANS c2log2(N/c)/2log2(c) = 285 0.21 0.35

FARS FCM - 0.28 0.41

IFCM - 0.26 0.36

CLARANS p%c ∗ (N − c) = 8076 0.22 0.35

IF-CLARANS c2log2(N/c)/2log2(c) = 290 0.19 0.35

Fig. 1. Running time comparison of CLARANS and IF-CLARANS for different
datasets.

algorithm and the CLARANS algorithm. As the graph shows, our algorithm out-
performs CLARANS on all datasets in execution time, especially as the number
of objects increase. In fact, for the covtype dataset (which is the largest one)
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Table 3. Clustering performance in terms of accuracy for different number of clusters.

Dataset Algorithm #clusters

2 3 4 5 6 7 8

Spambase FCM 52.3 21.2 23.4 9.8 11.3 15.4 17.6

IFCM 56.4 24.1 25.7 12.1 11.5 18.3 14.2

CLARANS 42.8 12.4 25.2 10.1 9.7 11.8 17.4

(maxneighbor) (92) (137) (183) (229) (175) (321) (367)

IF-CLARANS 47.2 17.4 21.4 14.3 11.5 11.1 10.3

(maxneighbor) (45) (60) (81) (106) (133) (163) (196)

connect-4 FCM 21.2 48.3 18.7 15.4 14.2 16.7 13.2

IFCM 23.4 46.8 17.4 16.5 13.4 17.4 15.5

CLARANS 18.7 41.2 17.3 20.2 18.3 15.3 16.6

(maxneighbor) (1351) (2026) (2702) (3378) (4053) (4728) (5404)

IF-CLARANS 19.8 48.7 18.2 21.1 19.6 17.8 18.1

(maxneighbor) (60) (82) (112) (148) (187) (231) (278)

Nursery FCM 11.2 14.6 19.1 42.2 21.3 17.5 10.3

IFCM 13.3 14.8 21.2 43.7 24.5 18.9 12.8

CLARANS 15.3 18.5 23.4 45.2 25.7 21.2 17.9

(maxneighbor) (254) (381) (507) (634) (761) (888) (1014)

IF-CLARANS 17.8 13.1 20.6 52.6 18.1 23.5 20.5

(maxneighbor) (51) (68) (93) (122) (154) (189) (227)

covtype FCM 11.5 15.1 19.4 21.3 25.4 41.8 27.8

IFCM 13.4 17.8 20.1 19.7 21.3 43.4 22.2

CLARANS 15.4 17.3 19.7 24.3 23.7 49.2 30.1

(maxneighbor) (11620) (17430) (23240) (29050) (34860) (40670) (46480)

IF-CLARANS 14.6 22.4 18.7 19.1 15.4 53.8 22.8

(maxneighbor) (73) (100) (137) (181) (231) (285) (344)

FARS FCM 12.5 15.4 17.6 11.8 21.1 14.9 39.4

IFCM 17.3 11.3 18.6 11.4 17.3 18.3 41.2

CLARANS 14.3 14.3 17.9 15.4 21.1 17.2 44.7

(maxneighbor) (1019) (2028) (3038) (4004) (5122) (6170) (8076)

IF-CLARANS 20.1 18.1 14.6 15.8 19.7 17.3 47.5

(maxneighbor) (63) (85) (117) (154) (196) (241) (291)

when the number of instances is equal to 581,012, the running time of our algo-
rithm was 176 sec compared to 320.8 sec for running CLARANS Algorithm on
the same database. The main cause of this big difference may be attributed to
the effect of the maxneighbor choice. However, for CLARANS algorithm equa-
tion (Eq. 11) is used to calculate maxneighbor and it number corresponding to
the covtype dataset is equal to 40670. CLARANS algorithm takes a long time
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(a) CLARANS (b) IF-CLARANS

Fig. 2. Effect of maxneighbors choice on the clustering running time for different
datasets.

to examine all this number of neighbors while for our algorithm, using equation
(Eq. 15), the number of neighbors to examine is equal to 285 for the same base.

To see how effective was our method of selecting the number of maxneighbor,
we compared the execution times of our algorithm and CLARANS algorithm
using the modified expression for maxneighbor given by Eq. (15) and that of the
CLARANS algorithm Eq. (11).

We can observe from Fig. 2 that, for both algorithms, the execution time
improves by a significant amount when the modified expression for maxneigh-
bor is used. This is clearly seen for the case of very large datasets with high
dimensionality (such as covtype dataset described in Table 1).

5 Conclusion

In this paper, we introduced a new algorithm to intuitionistic fuzzy clustering,
called IF-CLARANS that uses intuitionistic fuzzy set theory onto the framework
of CLARANS for handling uncertainty. In order to evaluate the performance of
our algorithm, we used five real data sets. based on the criteria of the solution
quality, the experimental results show that IF-CLARANS has better quality
level of clustering and performance that outperforms some of the best-known
approaches.
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Abstract. Semi-supervised clustering algorithms aim at discovering the
hidden structure of data sets with the help of expert knowledge, generally
expressed as constraints on the data such as class labels or pairwise
relations. Most of the time, the expert is considered as an oracle that
only provides correct constraints. This paper focuses on the case where
some label constraints are erroneous and proposes to investigate into
more detail three semi-supervised fuzzy c-means clustering approaches
as they have been tailored to naturally handle uncertainty in the expert
labeling. In order to run a fair comparison between existing algorithms,
formal improvements have been proposed to guarantee and fasten their
convergence. Experiments conducted on real and synthetical datasets
under uncertain labels and noise in the constraints show the effectiveness
of using fuzzy clustering algorithm for noisy semi-supervised clustering.

Keywords: Fuzzy clustering · Label constraints
Semi-supervised clustering · Noise

1 Introduction

Semi-supervised clustering algorithms are part of exploratory data analysis.
They intend to extract the underlying structure of datasets by grouping similar
objects together with the help of some partial external knowledge usually pro-
vided as pairwise constraints [1], e.g. must-link/cannot-link constraints between
pairs of objects that indicate if two objects must (or not) be in the same cluster,
or labels constraints [2], that specify explicitly the class labels for some objects.
These approaches can lead clustering algorithms towards a better definition of
the existing structures in the data, or at least to a definition that better fits the
needs of the final user. For clustering algorithms that are directly derived from
the optimization of an objective function, like k-means and its variants, various
methods have been proposed by adding a penalty term [2–4] or by learning a
proper metric [2,5] that adapts the topology so that less constraints are violated.

However, all these methods heavily depend on the quality of the provided
expert knowledge. Even in the best case, where only correct constraints are pro-
vided to the algorithms, it has been shown that improperly chosen constraints
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 854, pp. 51–62, 2018.
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can deteriorate performances [6]. Hence, solutions have been proposed to eval-
uate the quality or the utility of constraints prior to clustering to avoid such
problem [7,8]. But, to the best of our knowledge, no work has directly tack-
led the problem of semi-supervised clustering when the expert does not provide
relevant constraints.

This paper shows that, in this context of erroneous or uncertain expert label-
ing, it is possible to use the natural property of fuzzy clustering algorithm to
handle uncertainty in constraints to maintain good clustering performances. For
the sake of clarity, this paper is restricted to label constraints since they are more
general than pairwise constraints. The study is also limited to variants of fuzzy
c-means (FCM) that include a term to penalize the solution when label con-
straints are not respected. As such, we discard more complex FCM algorithms
as the kernel-based [9] or those that determine the number of clusters [2,10].

Without loss of generality, we consider label constraints expressed as a fuzzy
membership matrix Ũ = (ũik) that indicates to which extent each object i is
supposed to be assigned to the cluster k according to the expert. In this case, an
object does not necessarily have constraints and these constraints may not be
completely certain, i.e. 0 ≤ ∑

k ũik ≤ 1. Table 1 illustrates such matrix Ũ with
4 objects and 3 clusters and introduces the vocabulary that will be used in the
experiments.

Table 1. Example of a constraint membership matrix. Object o1 represents the tra-
ditional seed constraint with a crisp assignment to a single cluster. Object o4 is not
constrained. Objects o2 and o3 show the expressiveness brought by fuzzy representation
of constraints with certain or uncertain/single or multi-labels.

c1 c2 c3
∑

k ũik Explanations

o1 1 0 0 1 Single-label and certain constraint

o2 0 0.3 0 0.3 Single-label and uncertain constraint

o3 0 0.5 0.5 1 Double-label and certain constraint

o4 0 0 0 0 Unconstrained object

A comparative review on semi-supervised fuzzy c-means algorithms with
label contraints has already been performed in [11]. However, their objective
is not to evaluate the ability of the algorithms to deal with erroneous or noisy
expert labels and the soundness of optimization techniques is not discussed, as
a strict copy of the original algorithms is employed. In this paper, we consider
modified algorithms to conduct a fair comparison that only involves penalty
term employed in FCM for the constraints. To this aim, we ensure and fasten
the convergence of the optimization and we introduce the Mahalanobis distance
when it is not already achieved, as a specific and adaptive distance for each
cluster is beneficial for some datasets.

The rest of the paper is then organized as follows. Semi-supervised clustering
algorithms and their modifications are presented Sects. 2 and 3. Experiments
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on raw, uncertain and noisy labels are introduced Sect. 4 and a conclusion is
available Sect. 5.

2 Semi-supervised Clustering Algorithms

Let X = {xi, . . .xn} be a dataset composed of n objects such that xi ∈ R
p is

the feature vector representing the object i. The clusters are defined by cen-
troids V = {v1, . . .vc} and d2ik corresponds to the squared Euclidean distance
between the object xi and the centroid vk. The standard fuzzy c-means algo-
rithm minimizes the intraclass inertia by alternatively optimizing the degrees of
membership U = (uik) and the centroids V [12,13]. The objective function is
the following:

JFCM (U,V) =
n∑

i=1

c∑

k=1

um
ikd

2
ik, (1)

where m > 1 is a fixed value that controls the degree of fuzziness for the partition
and uik should satisfy:

c∑

k=1

uik = 1; uik > 0 ∀i ∈ {1 . . . n},∀k ∈ {1 . . . c}. (2)

Gustafson and Kessel have proposed a variant of FCM that use a specific
Mahalanobis distance for each cluster [13]. The distance between an object xi

and a cluster k becomes d2ik = (xi − vk)TSk(xi − vk), where Sk is the norm-
inducing matrix of the cluster k. The matrices S1 . . .Sc are defined as fuzzy
covariance matrices and enable to detect the optimal geometrical shapes of the
clusters.

sfcm is a famous algorithm that add a penalty term in the objective function
of FCM to take into account uncertain labels [10] and for which an extension
with Mahalanobis distance already exists [2]. The proposed objective function
minimizes the following criteria such that constraints (2) are respected:

Jsfcm(U,V) =
n∑

i=1

c∑

k=1

um
ikd

2
ik + α

n∑

i=1

c∑

k=1

(uik − ũikbi)md2ik, (3)

where m > 1 must be an even number, α ∈ R
+ is a coefficient controlling the

tradeoff between the objective function of FCM and the constraints, Ũ = (ũik)
is a partition given by an analyst and bi is such that bi = 1 if xi is constrained
and bi = 0 otherwise.

This paper proposes a simple correction of the update equation of the pro-
totypes V that is similar to what is proposed in [2]:

vk =

n∑

i=1

α (um
ik + (uik − ũikbi)m)xi

n∑

i=1

αum
ik + (uik − ũikbi)m

,∀k ∈ {1 . . . c}. (4)
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ssfcm is the first of the two semi-supervised FCM algorithms proposed in [14].
It minimizes the following objective function:

Jssfcm(U,V) =
n∑

i=1

c∑

k=1

|uik − ũik|md2ik, (5)

with m ≥ 1 and such that constraints (2) are respected.
The algorithm ssfcm has no coefficient to set for some tradeoff between the

inherent structure of the data and the constraints. Thus, the optimization is
straightforward and the convergence ensured. However, it enforces a total respect
of the constraints and consequently may not be able to deal efficiently with noisy
or erroneous constraints.

In our test, we have proposed an extension of ssfcm with a Mahalanobis
distance following the approach of Gustafson and Kessel [13] to make possible
a fair comparison with the other algorithms when ellipsoidal clusters are to be
found. Learning a Mahalanobis distance comes down to defining a (p×p) matrix
Sk for each cluster k and minimizing the objective function (5) with the respect
to U, V and S = (S1 . . .Sc). In order to avoid trivial solution consisting of Sk

with only zeros that would minimize the objective function, a constant volume
ρk > 0 is assigned to each cluster k:

det(Sk) = ρk,∀k ∈ {1 . . . c} (6)

The constrained optimization problem is solved by introducing c Lagrange mul-
tipliers λk in Jssfcm:

L = Jssfcm(U,V,S) −
c∑

k=1

λk(ρk − det(Sk)). (7)

Setting the derivative of the Lagragian function to 0 leads to the following result:

Sk = ρk det(Σk)
1
p Σ−1

k ,

Σk =
n∑

i=1

c∑

k=1

|uik − ũik|m(xi − vk)T (xi − vk).

esfcm is an entropy regularized FCM [14] with the following objective function:

Jesfcm =
n∑

i=1

c∑

k=1

uikd
2
ik + λ−1

n∑

i=1

c∑

k=1

(|uik − ũik|) log(|uik − ũik|), (8)

such that λ ∈ R
+ and constraints (2) are respected. In order to minimize this

objective function, the authors remove the absolute value and replace it by new
constraints uik ≥ ũik ∀i ∈ {1 . . . n}, ∀k ∈ {1 . . . c} so that the function is still
convex. As for ssfcm, the update equation of uik depends on ũik which may limit
the way esfcm deals with erroneous constraints. Finally, enriching esfcm with a
Mahalanobis distance is similar to what is performed for FCM.
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3 Mapping Function

One common problem when evaluating semi-supervised clustering algorithms
based on random initial centers such as FCM, is that the label assigned randomly
to these centers may not coincide with the labels used to express the constraints.
The problem can be solved by taking as initial centers the barycenter computed
with the constrained labeled objects [15]. However, this solution is inappropriate
when there exists clusters without labels or when the constraints set is noisy.

As an exemple, let us consider a dataset with 4 objects and for each object
the following constraints labels: x1 and x2 in cluster 1, x3 in cluster 2 and x4

in cluster 3. Figure 1 presents a dataset with the previous constraints and some
initial centers named v1,2,3. It is obvious to observe that there exists a mismatch
between the clusters, more particularly their centers labels, and the labels of the
constrained objects. For instance, x4 should be in the class 3 but is assigned to
cluster 1. In this case, the convergence of the algorithm to a solution where the
centroid v3 is close to x4 is too expensive compared to a solution where some
constraints are violated which in turn leads to poor results.

Fig. 1. Dataset with three clusters. Symbols ‘+’, ‘o’, ‘x’ correspond to the real classes
whereas stars represent centroids.

To this aim, our mapping function simply considers all pairing of labels
between the one provided by clusters centers and the one provided by the con-
straints and each time performs the complete clustering. The pairing that is
finally kept is the one that minimizes the objective function.

4 Experiments

This section is devoted to the comparison of sfcm, esfcm, ssfcm as well as skmeans
when possible for several real-world and synthetic datasets. The skmeans algo-
rithm is a semi-supervised clustering method that uses labeled data to improve
a traditional k-means algorithm [15]. We use it as a baseline to show the interest
of using fuzzy approaches in the case of uncertain or noisy supervision. We also
implicitly compare our approach to a traditional FCM as it corresponds to sfcm
without constraints. First, a study of the λ parameter for esfcm is conducted
as its behavior highly depends on this parameter. Next, experiments are carried
out to represent different scenarios where expert annotation can induce errors in
constrained algorithms. In the case of single constraint, the membership degree
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provided by the expert can either be wrong (error in the chosen class label),
uncertain (low membership constraint while 1 was expected) or both at the
same time. Finally, in our multi-label scenario, we deal with the case where the
expert may hesitate between two class labels to annotate one object.

4.1 Experimental Settings

We selected six well-known datasets from the UCI repository1: Glass, Ionosphere,
Iris, Letters, Vehicle, Wine and a synthetic dataset generated with Gaussians:
GaussK6. Characteristics are available in Table 2. For the Letters dataset, only
the three letters I, J, L are kept as done in [16]. GaussK6 contains 2 overlapped
classes. This dataset, as well as Wine, is suitable for a Euclidean distance whereas
the other datasets offer better results with the Mahalanobis distance.

Table 2. Description of the datasets.

Name GaussK6 Glass Ionosphere Iris Letters Vehicle Wine

n 1200 214 351 150 227 846 178

p 2 8 33 4 16 18 13

c 6 2 2 3 3 4 3

Class sizes 200/class {163,51} {126,225} 50/class {81,72,74} {199,217,218,212} {59,71,48}

In order to obtain a fair comparison between the algorithms, the same con-
straints and the same centers initializations have been tested at each experiment.
An experiment consists in 100 trials where 1 trial executes 5 different initializa-
tions of the centers. The final result selected is the one with the minimal objective
function.

In our experiments, our objective is to see how fuzzy clustering algorithms
may help reaching better performances than crisp clustering algorithms when
dealing with uncertain/noisy labels. However, in the end, we are interested in
solving the crisp clustering problem since a decision has to be made about the
class memberships of the objects. For this reason, the evaluation of the accu-
racy is calculated with the Adjusted Rand Index (ARI) [17] rather than a specific
index related to fuzzy clustering. Moreover, ARI measures the similarity between
two crisp partitions by taking into account the possibility that the obtained clus-
tering is observed by chance. For fuzzy clustering algorithms, hard partition was
determined by assigning objects to the cluster with the maximum membership
value provided by the final fuzzy partition.

The modified partition coefficient (MPC) [18] has also been calculated to
choose the λ parameter. This validity index measures the fuzziness of a partition:
a crisp partition corresponds to a 1 value and a total fuzzy partition to a 0 value.

1 Available at http://archive.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml
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4.2 Choice of Parameters

For all experiments the exponent m controlling the fuzziness of the final partition
is set to 2.

The α parameter is set in such a way that two terms of the objective function
have the same importance. Then, it gives a balance between the search for an
underlying structure and the respect of the constraints. It is left to future work
to study the influence of this parameter.

The λ parameter is more complicated to set, as it plays a key role on the
behavior of esfcm even without constraints. Thus, experiments were conducted
on esfcm with no partial supervision to set the value of λ. Various λ values have
been tested and both MPC and ARI measures have been calculated.

As a result, we noticed that the MPC value is increasing as the λ value
increases. This behavior is easily explained by the fact that MPC measures the
fuzziness of a partition and λ acts as a fuzzy controller of the final partition.
Thus, setting a MPC value close to 0.8 ensures us to obtain a partition neither too
crisp nor too fuzzy. Nonetheless, we have also observed that the MPC and ARI
measures are not totally correlated, particularly when a Mahalanobis distance
is used. Experiments reported in Table 3 show that, in general, a good accuracy
is reached when MPC is around 0.8.

Table 3. λ values used in esfcm for the average MPC measure around 0.8 and the
average corresponding ARI.

GaussK6 Glass Ionosphere Iris LettersIJL Vehicle Wine

λ 0.14 3.24 2.35 4 0.125 2.5 0.31

MPC 0.80 0.81 0.80 0.80 0.81 0.79 0.80

ARI 0.81 0.37 0.08 0.67 0.22 0.16 0.90

4.3 Comparative Experiments

Several experiments are reported in this section depending on the presence or
not of constraints and on the quality of constraints ranging from single-label
(un)certain constraints with added noise, to multi-label (un)certain constraints
to simulate expert annotation errors.

No Constraint. First, the algorithms are executed without constraints to
establish a comparative baseline for each dataset. Table 4 illustrates the average
ARI and its 95% confidence interval for skmeans, sfcm, ssfcm and esfcm without
constraints, i.e. k-means, FCM and FCM with an entropy regularization. Since
skmeans has only the possibility to use a Euclidean distance, it cannot be com-
pared to algorithms employing a Mahalanobis distance, hence the missing values
in Table 4.
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The sfcm and ssfcm algorithms without constraints, which correspond to
FCM, outperform most of the time esfcm and skmeans. Low values of ARI are
still visible, for example with the Vehicle dataset or the Ionosphere dataset. It
means that the global structure of the data is difficult to detect and requires
background knowledge to help its discovery.

Since we observed that the confidence interval remains stable when con-
straints are introduced, their values are not presented in the next tables.

Table 4. No constraint: average ARI and 95% confidence intervals for each algorithm
and each dataset.

Dataset skmeans sfcm ssfcm esfcm

GaussK6 0.80 ± 0.1 0.91 ± 0.1 0.91 ± 0.1 0.78 ± 0.1

Glass / 0.48 ± 0.1 0.48 ± 0.1 0.41 ± 0.2

Ionosphere / 0.46 ± 0.0 0.46 ± 0.0 0.10 ± 0.1

Iris / 0.75 ± 0.0 0.75 ± 0.0 0.68 ± 0.1

Letters / 0.21 ± 0.1 0.21 ± 0.1 0.22 ± 0.1

Vehicle / 0.06 ± 0.0 0.06 ± 0.0 0.16 ± 0.0

Wine 0.82 ± 0.2 0.90 ± 0.0 0.90 ± 0.0 0.90 ± 0.0

Single Labels. In this experiment, we assume that each constraint is expressed
on a single cluster label with a specific membership value μ. Table 5 describes,
for all the datasets, the performances of the algorithms when μ = 1 (like in any
traditional crisp seed-based semi supervised clustering) or μ = 0.5. Figure 2(a)
depicts the evolution of the ARI varying with the percentage of constraints.
Results with μ = 0.2 are similar to those with μ = 0.5 and thus are not reported.

As expected, when provided contraints are correct, adding constraints enables
the clustering algorithms to improve their accuracies and a membership on the
constraint label equal to 1 achieves better results than a membership equal to 0.5.

As a general manner, esfcm and sfcm outperform the ssfcm algorithm
although ssfcm holds better results than esfcm without constraints. As a matter
of fact for ssfcm, constraints are not taken into account to compute the new cen-
ters, reducing indirectly its capacity to take into account an harmonious solution
encompassing both constrained and unconstrained objects.

Single Labels with Noise. Noise effect is studied by randomly modifying
the labels of 20% of the constrained objects so as to produce erroneous anno-
tations. In the end, 6% of the constraints are incorrect, 24% have the correct
label and the rest is unconstrained. Table 6 and Fig. 2(b) presents, with the same
parametrization as before, the results with noisy constraints.

These results show that as a general manner, noisy sets of labels generate
lower quality solutions compared to labels constraints without noise. However,
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Table 5. Single label constraints: average ARI for each algorithm and each dataset
containing 30% of single label constraints with membership μ = 1 or μ = 0.5.

Dataset μ = 1 μ = 0.5

skmeans sfcm ssfcm esfcm sfcm ssfcm esfcm

GaussK6 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Glass / 0.75 0.56 0.74 0.61 0.47 0.65

Ionosphere / 0.59 0.50 0.46 0.59 0.56 0.44

Iris / 0.92 0.82 0.92 0.87 0.83 0.92

Letters / 0.69 0.39 0.73 0.48 0.33 0.69

Vehicle / 0.48 0.13 0.53 0.31 0.13 0.42

Wine 0.93 0.93 0.91 0.93 0.92 0.92 0.93
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Fig. 2. Average ARI and 95% confidence intervals on the Iris dataset as a function of
the percentage of (a) not noisy (b) noisy constraints for sfcm, ssfcm and esfcm. Con-
tinuous lines represent constraints with membership μ = 1 and dotted lines constraints
with μ = 0.5.

Table 6. Single label constraints with noise: average ARI for each algorithm and each
dataset containing 30% of single label constraints with membership μ = 1 or μ = 0.5.
Here 20% of the constraints are mislabeled.

Dataset μ = 1 μ = 0.5

skmeans sfcm ssfcm esfcm sfcm ssfcm esfcm

GaussK6 0.84 0.85 0.85 0.84 0.98 0.84 0.84

Glass / 0.55 0.35 0.51 0.67 0.33 0.43

Ionosphere / 0.39 0.34 0.23 0.49 0.38 0.26

Iris / 0.59 0.63 0.55 0.73 0.62 0.54

Letters / 0.45 0.28 0.43 0.38 0.25 0.42

Vehicle / 0.31 0.09 0.38 0.21 0.09 0.33

Wine 0.75 0.75 0.74 0.75 0.87 0.75 0.75
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the sfcm algorithm is still able to reach a better accuracy than FCM (when there
is no constraint). Indeed, sfcm can adjust to which extent it will respect the
constraints. Thus, sfcm has a flexibility to ignore some constraints if it enables
to keep a coherent overall structure. Inversely, esfcm and ssfcm force the total
respect of the constraints, leading to a drop in performances in the presence of
noise.

The sfcm algorithm with noisy labels has a better accuracy than FCM in two
situations. The first situation happens when the overall structure of a dataset
is difficult to retrieve without constraints. It is for example the case for Vehi-
cle or Letters, where the ARI without constraints is low. Consequently, the
constraints, even a little noisy, enable to lead the algorithm towards a totally
different solution, improving the accuracy. In the second situation, when con-
straints are uncertain (i.e. with membership strictly below 1), it let sfcm more
degrees of freedom to make a choice amongst the constraints in order to preserve
a coherent overall structure.

Double Labels. In real-life use-case, an other source of erroneous annotations
comes from an expert hesitating between two labels. The following experiment
models such situation by setting for each object a pair of constraints on mem-
bership values for two classes. This pair of values indicates to some extent the
degree of certainty of the expert for these two class labels. We simulate two
distinct cases: one with membership values ξ = (0.5, 0.5) where the expert is
sure that one of the two labels is correct and ξ = (0.2, 0.2) that indicates that
the choice of the expert is not certain. As Glass and Ionosphere datasets only
contains two classes, they are discarded from this experiment.

Table 7 and Fig. 3 illustrate the results of both experimentations. Most of the
time, the sfcm algorithm outperforms esfcm and ssfcm. While sfcm works better
with membership values set to ξ = (0.5, 0.5), esfcm and ssfcm often achieves
higher accuracies with lower membership values. Indeed, sfcm has the ability
to violate constraints when the solution gets too far from a coherent choice for
an overall structure, whereas esfcm and ssfcm are directly incorporating the
constraints membership values in the fuzzy partition.

Table 7. Double labels constraints: average ARI for each algorithm and each dataset
with 30% of constraints with either ξ = (0.5, 0.5) or ξ = (0.2, 0.2).

Dataset ξ = (0.5, 0.5) ξ = (0.2, 0.2)

sfcm ssfcm esfcm sfcm ssfcm esfcm

GaussK6 0.99 0.89 0.88 0.99 0.95 0.98

Iris 0.85 0.71 0.67 0.80 0.73 0.71

Letters 0.63 0.32 0.55 0.38 0.30 0.55

Vehicle 0.43 0.10 0.44 0.22 0.11 0.34

Wine 0.92 0.79 0.81 0.92 0.92 0.91
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Fig. 3. Double labels constraints: average ARI and 95% confidence intervals as a func-
tion of the percentage of constraints for sfcm, ssfcm and esfcm on the Iris dataset.
Continuous lines represent constraints ξ = (0.5, 0.5) while dotted lines corresponds to
ξ = (0.2, 0.2).

5 Conclusion

In this paper, we propose to use fuzzy algorithms to handle erroneous or uncer-
tain expert annotations for the semi-supervised clustering problem. For the sake
of clarity, we restrict our study to three main fuzzy semi-supervised algorithms.
In order to make the comparison fair, each algorithm has been either corrected or
improved with Mahalanobis distance to ensure comparable performances on all
our test datasets. Moreover, we propose a first mapping function that solves the
mismatch problem that may occur between labels defined by the initial cluster
centers and labels defined in the constraints set. This mapping function although
fully functional needs to be optimized, eventually based on a Hungarian algo-
rithm.

Several scenarios are introduced to represent the variety of causes of anno-
tation errors by an expert: either a wrong label, a low confidence in the chosen
label or an hesitation between two labels.

We observed that sfcm reaches the more stable results with a good accuracy
and esfcm obtains high accuracies only when labels constraints are certain. The
ssfcm algorithm often does not achieve good performances. Such results can be
explained by the fact that sfcm allows to violate constraints in the final solution
whereas esfcm and ssfcm prohibit this behavior.

In our opinion, the major interest of fuzzy semi-supervised algorithms is their
ability to handle constraints with a degree of certainty. In case of noise, lower-
ing the labels confidence enables to keep a good improvement of the accuracy
when compared to unsupervised clustering algorithm. A perspective is to inves-
tigate the addition of labels constraints in other soft clustering algorithms, that
generates for instance possibilistic partitions.
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Abstract. We are concerned with the bipolar database queries in which
the query is composed of a necessary (required) and optional (desired)
part connected with a non-conventional aggregation operator “and pos-
sibly”, combined with context, as, for instance, in the query “find houses
which are cheap and – with respect to other houses in town – possibly
close to a railroad station”. We deal with a multivalued logic based inter-
pretation of bipolar queries. We assume that the human user, usually a
database novice, tends to use general terms in the queries in natural lan-
guage, which do not directly relate to attributes, and via a question and
answer process these terms are “decoded” using a concept hierarchy that
at the end involves terms directly related to attribute values. We propose
a novel extension of our contextual hierarchical bipolar database query in
which the original query is considered a level 0 query at the bottom of the
precisiation hierarchy, then its required and optional parts are assumed
to be bipolar queries themselves, with an account of context. This makes
it possible to further precisiate the user’s intentions/preferences. A level
1 of precisiation is obtained, and the process is continued so far as it is
necessary for the user to adequately reflect his/her intentions/preferences
as to what is sought. The new concept is demonstrated on an intuitively
appealing real estate example which will serve the role of both an illus-
tration of the idea of our approach and of a real example.

Keywords: Database query · Bipolar query · Context · Fuzzy logic
User intention · User preference

1 Introduction

The paper is concerned with a very important issue in database querying con-
text, as well as in information retrieval, Web search, etc., in that the human
user is mostly a database novice for whom the only fully natural way of artic-
ulation and communication is natural language, with its inherent imprecision.
Therefore, questions, queries, requests, etc. posed originally by the humans in
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natural language should be “rephrased” into another form suitable for the com-
puter. In our work we deal with database querying in which the user tends to
formulate queries to a database involving human specific terms and relations
that are not directly applicable in a querying language exemplified by the SQL.
For instance, in a simple real estate example that will be used here, a “natural”
human query may be “find all houses that are comfortable and well located”,
and it is obvious that “comfortable” and “well located” are imprecise terms that
may not relate directly to database attributes, and should be further precisiated,
or “decoded”. Moreover, both conditions present in the query may not be of the
same importance, meant in a subtle way as that the user may be happy with
a house just comfortable if at a given location there are no houses both “com-
fortable” and “well located”. However, if it turns out that such an “ideal” house
exists at a given location, then the user is not anymore interested in houses just
“comfortable” but not “well located”.

Thus, in the proposed approach we aim at providing a database user with a
high flexibility in forming a query via taking into account the fact that conditions
may be satisfied to a degree and that they may be of a different importance,
in the above mentioned sense, as well with a possibility to express his or her
preferences at a higher level, i.e., characterizong the data sought using terms
not necessarily directly represented in a database.

Our point of departure is an important new direction in fuzzy querying
which – by extending straightforward approaches that have been used since
the late 1970s, and even some extended approaches based on fuzzy logic with
linguistic quantifiers (cf. Kacprzyk and Zió�lkowski [21], Kacprzyk et al. [22]) –
tries to explicitly take into account bipolarity in human judgments and inten-
tion/preference articulation. Further, we adopt our extension of the concept of
bipolarity including the notion of the context. Finally, we combine that with
our concept of hierarchical bipolar queries and propose a novel approach to the
flexible querying of databases.

In Sect. 2 we briefly remind the essence of one of possible approaches to
bipolarity in querying. Next, in Sect. 3 the concept of the context, as used in our
approach to bipolar queries, is briefly discussed. Then, in Sect. 4 we will present
the new hierarchical contextual bipolar queries.

2 Bipolar Fuzzy Queries

The term “bipolar query”, first introduced by Dubois and Prade [8–11], boils
down practically to the distinguishing of two types of query conditions which
express negative and positive user preferences. Essentially, as proved by many
psychological, cognitive, etc. experiments, a human being in his/her assessments
is usually tempted to use some sort of a bipolar scale in the sense that while trying
to provide an opinion or testimony about some objects, values of their features,
capabilities, etc. he or she would rather assess and evaluate them through:

– some degree of being negative, i.e., to be rejected,
– some degree of being positive, i.e., to be accepted.
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Here we follow the main line of reasoning in the formalization of bipolarity in
judgments and evidence via fuzzy logic and possibility theory due to Dubois and
Prade and their collaborators, e.g.: Benferhat et al. [1], Dubois and Prade [8,
9,11], cf. also Dubois and Prade [12], De Tré et al. [6], Dziedzic et al. [13,20],
Hadjali et al. [15], Lietard and Rocacher [24], Lietard et al. [26], Matthé et
al. [27], to name a few.

The first issue is to properly choose a scale to one’s positive/negative evalu-
ation. In practice two such scales are used (cf. Grabisch et al. [14]):

– bipolar univariate and
– unipolar bivariate,

with the former assuming one scale with three main levels of, respectively, neg-
ative, neutral and positive evaluation, gradually changing from one end of the
scale to another, usually represented by [−1, 1], while the latter assuming two
independent scales for a positive and negative evaluation, usually represented by
[0, 1]. The latter will be used here.

Then, we adopt the approach to bipolar queries which assigns a different
semantics to the negative and positive evaluations. Namely, the objects (here:
tuples) admitting negative evaluation are rejected and positive evaluation con-
tributes to the overall evaluation of an object only if it is non-rejected objects.
This is a bit oversimplified view on the semantics of the bipolar queries we adopt
as the positive/negative evaluations are assumed to be gradual and their combi-
nation is more peculiar but this serves well the purpose of presenting the essence
of our new proposal. Moreover, even if the role of positive evaluations seems
to be somehow secondary from what was said above, they are however equally
important as negative evaluations in case when there exist non-rejected objects
admitting positive evaluations. Such a bipolar semantics may be best described
via introducing a special aggregation operator “and if possibly” which is briefly
described in what follows.

A prototypical example of a bipolar query considered in this paper is:

C and possibly P (1)

exemplified by “find a house which is inexpensive (C) and possibly close to public
transportation (P )” which is basically meant as that the above query is satisfied
by a tuple t only if either one of the two conditions holds:

1. it satisfies (to a high degree) both conditions C and P , or
2. it satisfies just C and there is no tuple in the whole database which satisfies

both conditions.

The idea of such a query has been introduced in the seminal paper of Lacroix
and Lavency [23] who proposed the use of a query (C,P ) with two categories of
conditions: C which is required (mandatory), and P which expresses just mere
preferences (desires).

The semantics of Lacroix and Lavency’s approach is provided by the “and
possibly” operator meant as sketched above, i.e., if at least one tuple in given
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database satisfies both mandatory and desired condition then the “and pos-
sibly” operator is interpreted as the standard conjunction, otherwise only the
mandatory condition is taken into account while evaluating the tuples.

Such an aggregation operator has been later proposed independently by
Dubois and Prade [7] in default reasoning and by Yager [28,29] in multicriteria
decision making, cf. also Bordogna and Pasi [2] in information retrieval.

Bipolar queries with the “and possibly” operator my be also seen as a spe-
cial case of Chomicki’s [5] queries with preferences based on an extra relational
algebra operator called the winnow, proposed by Chomicki. Such an operator is
associated with a preference relation on the universe of tuples and returns as
a result those tuples which are non-dominated with respect to this preference
relation. More on how a bipolar query (C,P ) may be expressed using a query
with preferences may be found, e.g., in Zadrożny and Kacprzyk [32]; cf. also (4).

While discussing the bipolarity, this semantics may well be explained as fol-
lows. The unipolar bivariate scale is assumed, and a special interpretation in
which the negative and positive assessments are considered to correspond to the
required and desired conditions, i.e. the negative assessment is identified with
the degree to which the required condition is not satisfied as, e.g., if a house
sought has to be cheap (the required condition), then its negative assessment
corresponds to the degree to which it is not cheap. The desired condition directly
corresponds to the positive assessment.

Lacroix and Lavency [23] consider only the crisp (nonfuzzy) conditions C
and P . Then, a bipolar query (C,P ) can be processed via the “first select using
C then order using P” strategy, i.e., by finding tuples satisfying C and, second,
choosing from among them those satisfying P , if any. Some fuzzifications of
the original Lacroix and Lavency’s approach are proposed by Zadrożny [30], and
Zadrożny and Kacprzyk [31], which will be used here; for some other approaches,
see Bosc et al. [3,4], or Lietard et al. [25], etc.

Consider the general form of the bipolar query (1) and denote, as previously,
by C the complement of the negative assessment (e.g., “price is cheap”) and by
P the positive assessment (e.g., located “near a railroad station”). Then, the
semantics of the bipolar query (1) may be formally expressed as:

– a tuple t belongs to the answer set of the query (1) if it satisfies (notice that
P (t) and C(t) are binary predicates):

C(t) and possibly P (t) ≡ C(t) ∧ ∃s(C(s) ∧ P (s)) ⇒ P (t) (2)

– and if there are tuples satisfying both P and C, then (2) boils down to C ∧P
while otherwise it boils down to C alone.

Basically, the fuzzification of the above mentioned concepts of a bipolar query,
can be done in the following ways (cf. Zadrożny and Kacprzyk [32]):

– by a direct fuzzification of (2); notice that the notation is the same as for (2)
but now the predicates are fuzzy:

C(t) and possibly P (t) ≡ C(t) ∧ ∃s (C(s) ∧ P (s)) ⇒ P (t) (3)
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– by a direct fuzzification of the winnow operator (cf. Chomicki [5]) and apply-
ing it with a preference relation based on P (·), i.e., t is preferred to s iff P (t)
and ¬P (s) (this will not be dealt with in more detail since it is not the main
focus of this paper):

C(t) and possibly P (t) ≡ C(t) ∧ ¬∃s ((C(s) ∧ P (s) ∧ ¬P (t))) (4)

– by using our fuzzy version of the winnow operator (cf. Zadrożny and Kacprzyk
[32]) and applying it with a preference relation based on P (·) as above:

C(t) and possibly P (t) ≡ C(t) ∧ ∀s (C(s) ⇒ (¬P (s) ∨ P (t))) (5)

and, clearly, these forms are equivalent in the classic Boolean logic.
The above logic formulas can then be precisiated in the sense that the one

can choose a specific form of the conjunction and disjunction, i.e. a t-norm and
t-conorm (often called an s-norm), and the negation, which form so-called De
Morgan Triples (∧,∨,¬) that comprise a t-norm operator ∧, a t-conorm (s-norm)
operator ∨ and a negation operator ¬(x∨ y) = ¬x∧ ¬y, which then give rise to
specific S-implications and R-implications; Clearly a type of a fuzzy logic formal
system should be specified. For details, cf. Zadrożny and Kacprzyk [32].

3 Contextual Bipolar Queries

The general form of a bipolar query can be extended in various ways but for
our purposes its extension into a contextual bipolar query proposed by Zadrożny.
Kacprzyk and Dziedzic [33,34] is relevant.

We start, as before, with the bipolar query meant within the required/desired
semantics and, the query “C and possibly P” is satisfied by a tuple t only
if either of two conditions holds: (1) it satisfies (of course, possibly to a high
degree) both conditions C and P , or (2) it satisfies C and there is no tuple in
the whole database which satisfies both conditions.

However, a natural extension of the “if possibly” in (1) is that the satisfaction
of both C and P can be meant in a certain context. For instance, a person
planning to visit a few regions (towns, . . . ) of a given country can be looking for
a cheap and comfortable hotel(s) but maybe this wish cannot be fulfilled in case
of some regions because, for instance, a given region can just be very expensive.
The inclusion of a context can therefore be natural making it possible to constrain
the check for the possibility of satisfying both conditions to a suitable subset of
tuples. This implies the concept of a contextual bipolar query introduced by
Zadrożny. Kacprzyk and Dziedzic [33,34] which may be exemplified by:

Find cheap and possibly –with respect to the hotels located in the
same region– comfortable hotels (6)

to be meant as to be satisfied by a hotel if:
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1. it is cheap (to a high degree) and is comfortable (to a high
degree), or

2. it is cheap (to a high degree) and there is no other hotel
located in the same region which is both cheap and comfort-
able.

(7)

The new “and possibly + context” operator may be formalized as follows.
The context is identified with a part of the database defined by an additional
binary predicate W , i.e.,

Context(t) = {s ∈ R : W (t, s)} (8)

where R denotes the whole database (relation).
The “and possibly + context” operator has three arguments:

C and possibly P with respect to W (9)

where the predicates C and P should be interpreted, as previously, as repre-
senting the required and desired conditions, respectively, while the predicate W
denotes the context.

Then, the formula (9) is interpreted as:

C(t) and possibly P (t) with respect to W ≡
C(t) ∧ ∃s(W (t, s) ∧ C(s) ∧ P (s)) ⇒ P (t) (10)

In our example, C and P represent the properties of “cheap” and “comfort-
able”, respectively, while W denotes the relation of being “located in the same
region”, i.e., W (t, s) is true if both tuples represent hotels located in the same
region; W can also be fuzzy.

A relation expressed by the context, i.e. predicate W , defines basically a
partition (in a broad sense) of the set of tuples, crisp or fuzzy. This can be
formalized in various ways, for instance by specifying an equivalence, similarity,
etc. relation, an ordering, or even a modal logic based interpretation. For a
lack of space, for details we refer to our papers, e.g. Zadrożny. Kacprzyk and
Dziedzic [33,34].

4 Hierarchical Contextual Bipolar Queries

Now, by following the argument for the hierarchical bipolar queries proposed by
Kacprzyk and Zadrożny [16] (cf. also a related concept of a compound bipolar
query, cf. Kacprzyk and Zadrożny [17–19]), we will present how the degrees of
truth for particular tuples are calculated for the contextual bipolar queries in
a hierarchical context. We will follow, to make our short presentation easier
comprehensible, the real estate example presented in Sect. 1.
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Suppose that a customer looks for houses that are “financially advantageous
and possibly well located” but is interested in houses in different parts of the
town and is well aware that in some of them meeting both conditions is perfectly
possible while in some other this may not be the case, so that a contextual bipolar
query should be more appropriate, that is, a potential customer can pose the
initial query as:

find a house that is financially advantageous (C0) and possibly
– with respect to other houses located in the same part of town
(W ) – is well located (P0)

(11)

to be meant to that a house satisfies this query if:

1. it is financially advantageous and is well located (to a high degree ), or
2. it is financially advantageous (to a high degree) and there is no other house

located in the same part of town which is both financially advantageous and
well located,

and notice the lower index 0 associated with the predicates C and P indicates
that they correspond to the initial (zero) level of the query, and we also assume –
for clarity of presentation – that the context W is the same for all levels. Clearly,
one can also assume different contexts for different levels which does not change
the essence of the approach.

Then, using the interpretation of bipolar queries due to (2), used throughout
the rest of this paper for simplicity, (9) is interpreted as:

C0(t) and possibly P0(t) with respect to W ≡
C0(t) ∧ ∃s(W (t, s) ∧ C0(s) ∧ P0(s)) ⇒ P0(t) (12)

where t, as previously, denotes a tuple (here: representing a house).
Then, since the real estate agent tries to “decode” the intention/preference of

the customer, he or she is requested to more specifically formulate the required
condition (here “financially advantageous”) and desired condition (here “good
location”), in context W . For instance, the customer can say that (notice that
the upper indexes of the C and P conditions will correspond to the level of
concept hierarchy, i.e. generality, at which a concept in question is considered):

– the extent of the predicate C0, representing the required condition “a finan-
cially advantageous house”, may be equated with the answer set of the fol-
lowing query:

find a house that is inexpensive (C1
C0) and possibly – with

respect to other houses located in the same part of town (W ) –
in a modern building (P1

C0)
(13)

which, similarly as for (12), yields

C1
C0(t) and possibly P1

C0(t) with respect to W ≡
C1

C0(t) ∧o ∃s(W (t, s) ∧ C1
C0(s) ∧ P1

C0(s)) ⇒ P1
C0(t) (14)
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– the extent of the predicate P0, representing the desired condition “well
located”’, may be equated with the answer set of the following query:

find a house that is in an affluent part of town (C1
P0) and

possibly – with respect to other houses located in the same part
of town (W ) – is close to a recreational area (P1

P0)
(15)

which, similarly as for (12), yields

C1
P0(t) and possibly P1

P0(t) with respect to W ≡
C1

P0(t) ∧o ∃s(W (t, s) ∧ C1
P0(s) ∧ P1

P0(s)) ⇒ P1
P0(t) (16)

and these can be viewed as the first level query formulations (inten-
tions/preferences).

Again, these condition can also be viewed to be too general, not directly
related to database attribute values, and one can proceed further:

– for the second level formulation of the first level required condition C1
C0 , i.e.

“inexpensive”:

find a house that has a low price (C2
C1

C0) and possibly – with
respect to other houses located in the same part of town (W ) –
has a good bank loan offer (P2

C1
C0 )

(17)

which, similarly as for (14), yields

C2
C1

C0 (t) and possibly P2
C1

C0 (t) with respect to W ≡
C2

C1
C0 (t) ∧o ∃s(W (t, s) ∧ C2

C1
C0 (s) ∧ P2

C1
C0 (s)) ⇒ P2

C1
C0 (t)

(18)

– for the second level formulation of the first level desired condition P1
C0 , i.e.

“modern building”:

find a house that has an intelligent energy management
(C2

P1
C0) and possibly – with respect to other houses located

in the same part of town (W ) – has fast lifts (P2
P1

C0 )
(19)

which, similarly as for (16), yields

C2
P1

C0 (t) and possibly P2
P1

C0 (t) with respect to W ≡
C2

P1
C0 (t) ∧o ∃s(W (t, s) ∧ C2

P1
C0 (s) ∧ P2

P1
C0 (s)) ⇒ P2

P1
C0 (t)

(20)
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– for the second level formulation of the first level required condition C1
P0 , i.e.

“an affluent part of town”:

find a house that is in a quiet zone (C2
C1

P0) and possibly
– with respect to other houses located in the same part of town
(W ) – is close to the business district (P 2C1

P0
)

(21)

which, similarly as for (20), yields

C2
C1

P0 (t) and possibly P2
C1

P0 (t) with respect to W ≡
C2

C1
P0 (t) ∧o ∃s(W (t, s) ∧ C2

C1
P0 (s) ∧ C2

C1
P0 (s)) ⇒ C2

C1
P0 (t)

(22)

– for the second level formulation of the first level required condition P1
P0 , i.e.

“close to a recreational area”:

find a house that is close to a park (C2
P1

P0) and possibly
– with respect to other houses located in the same part of town
(W ) – is close to a lake (P 2P1

P0
)

(23)

which, similarly as for (22), yields

C2
P1

P0 (t) and possibly P2
P1

P0 (t) with respect to W ≡
C2

P1
P0 (t) ∧o ∃s(W (t, s) ∧ C2

P1
P0 (s) ∧ P2

P1
P0 (s)) ⇒ P2

P1
P0 (t)

(24)

and, if necessary, one can continue until the conditions involve attributes in
the database.

Notice that the context condition in the above queries (i.e. “with respect to
other houses located in the same part of the town”) is assumed the same for all
queries and conditions but, in general, we can also employ local contexts which
will not be considered here.

5 Concluding Remarks

We have further extended two classes of our works: first, on contextual bipolar
queries to databases in which the query is composed of a required and desired
part connected with a non-conventional aggregation operator “and possibly”,
with context, as, for instance, in the query “find houses which are cheap and
– with respect to other houses in town – possibly close to a railroad station”
assuming a multivalued (fuzzy) logic based perspective. Second, our hierarchi-
cal bipolar database query in which, basically, the original query is considered
a level 0 query at the bottom of the precisiation hierarchy, then its required
and desired parts are assumed to be bipolar queries themselves, in this paper
under a specified context. This makes it possible to further precisiate the user’s
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intentions/preferences that involve initially natural language terms the human
user cannot initially present via values of attributes. A level 1 of precisiation is
obtained, and the process is continued as far as it is necessary for the user to
adequately reflect his/her intentions/preferences as to what is sought. The new
concept has been illustrated on an intuitively appealing real estate example.
Notice that, for simplicity and clarity, this example – used both for the illustra-
tion of our approach and as an application example – is shown in a general way
using linguistic information only.
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Abstract. In this work, the structure for the prototype construction of
an application that can be framed within ubiquitous sensing is proposed.
The objective of application is to allow that a user knows through his
mobile device which other users of his environment are doing the same
activity as him. Therefore, the knowledge is obtained from data acquired
by pervasive sensors. The FIWARE infrastructure is used to allow to
homogenize the data flows.

An important element of the application is the Intelligent Data Anal-
ysis module where, within the Apache Storm technology, a Data Mining
technique will be used. This module identifies the activity carried out by
mobile device user based on the values obtained by the different sensors
of the device.

The Data Mining technique used in this module is an extension of the
Nearest Neighbors technique. This extension allows the imperfect data
processing, and therefore, the effort that must be made in the data pre-
processing to obtain the minable view of data is reduced. It also allows us
to parallelize part of the process by using the Apache Storm technology.

Keywords: Intelligent Data Analysis · Fuzzy k nearest neighbors
Imperfect data · Activity recognition

1 Introduction

With the technology development in recent years, more specifically in the Inter-
net of Things area (IoT), nowadays large amounts of data of a very diverse
nature are generated. Due to this, one of the investigation fields that is taking
more relevancy inside the Intelligent Data Analysis is Smart Cities. It intends
to make use of the data that are generated to provide services of higher qual-
ity, with greater efficiency, more sustainable and where citizens have an active
participation.

In this sense, one of the most interesting topics is the city contextualization
and its inhabitants, so that the environment can be perceived and the services
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can be adapted according to the actual state of them. In this way, it is nec-
essary to understand the citizens day to day based on the activities that their
inhabitants carry out and their way of interacting with the environment.

Inside this framework, mobility and the use of transport have become two
major sectors to pay attention to. Therefore, lots of works are found, as [18,
24,26], where information about points and the most important connections of
a city, the social use of those zones and the traffic conditions can be obtained
from the trajectory marked by the GPS sensors in the taxis. This information
can help to make decisions when choosing a route and even serves as a basis
for urbanism according to the needs or characteristics of each place. Following
this approach, in [2], several elements such as GPS sensors located in buses,
the stop geolocation and the smart cards of the users are used to improve the
management of the bus lines of a city classifying zones based on four categories:
residential, work, nightlife and personal. Making use of these cards, in [4] points
of user origin-destination are used together with each trajectory timestamps to
understand the use of the lines depending on the area where the main stations
are located (residential, work, etc.) and the time slots. In this way, several lines
and links can be proposed to the user avoiding crowds at peak times.

However, to achieve a real service personalization, it is necessary to collect
data directly on people [13,25], working within the Ubiquitous Sensing scope.
Because of this, the use of smartphones as ubiquitous devices and provided
with diverse sensors constitutes an essential tool within this field. Currently,
smartpthones incorporate accelerometers, pedometers, heart rate monitors, and
global positioning systems, among many other sensors, which make them ideal
for the activity recognition task.

So, data generated by GSM and WIFI signals are used in several works, as
in [16,21], to detect several activities (walk, drive, stay at home/be still, ride
a bicycle) by means of the distances between the reception towers and using
decision trees to determine the activity. In [12,23], accelerometers located on
smartphones were used to obtain the data and then different studies of classifi-
cation techniques were performed for the carried out activities detection.

Activity recognition from a user can have many applications in different areas.
For example, it can be used to monitor and diagnose patients who need more
continuous control, [14,22], or to help detecting falls of elderly sending alerts for
a faster intervention [1]. It can also be used to adapt the devices to the activity
realized on a certain moment, such as increasing the music volume or sending
calls to voicemail directly if the user is running [11] or, as in [15], increasing the
letter size of the devices and, thereby, to improve readability when the user is
walking.

However, the human activity recognition takes great importance in the sports
domain. For people who want to monitor themselves when they perform physical
exercise is useful to be aware of the time and intensity of it, the calories burned,
their activity history, etc. This explains the success of applications like [7,17]
that give the user all this information and the opportunity to plan their own
routines.
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That is why the aim of this work is to create an application that identifies
the activity that a user is doing in real time, as well as its location, to be able to
recommend points of the city where there are more people doing the same kind
of activity as him to improve the realization of it and the social skills.

This paper is structured as follows. In Sect. 2, the proposed social application
is presented, illustrating its main objective and its general design. In Sect. 3, two
application elements are presented: the Intelligent Data Analysis module and
the data preprocessing. These elements are preliminarily evaluated in Sect. 4.
Finally, in Sect. 5 the conclusions and future works are presented.

2 Developing a Social Application from Smartphone
Sensors

In this paper, the initial prototype of an application is proposed. The application
can be framed within ubiquitous sensing since its main objective is the extraction
of knowledge from data acquired by pervasive sensors [19]. More specifically, the
application carries out the human activity recognition from smartphone sensors
aimed to create a system to social activity monitoring. This application is named
Social Jogging (SJogg).

The objective of SJogg application is to allow that a user knows through his
smartphone, which other users of his environment are doing the same activity.
In this way the user will be able to carry out this activity in a group way,
improving the performance of the same as well as his social skills. There are
several studies that indicate that doing group activities has the advantage of
greater motivation, improving performance and avoiding the boredom of doing
it alone and without interacting with others. Figure 1 shows the objective of
SJogg application illustratively.

Fig. 1. SJogg application objective

The starting point of the application development is a dataset obtained from
sensors that are currently being incorporated into mobile devices, such as mobile
phones or music players. On these data, an Intelligent Data Analysis (IDA)
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process is performed to model the activity carried out by the mobile device
user, based on the values obtained by the different sensors. From this model
and with the values of the sensors at a given moment, the application must be
able to identify the activity that the user is doing and suggest him what other
application users are doing the same activity in a nearby environment.

To implement the application, the FIWARE infrastructure is used. FIWARE
allows us to homogenize the data flows in order to make the ETL process
(Extract, Transform and Load) easier. FIWARE [8] is part of the FI-PPP (Future
Internet Public-Private Partnership), the main reference in the European Union
in terms of the construction and implementation of Future Internet policies. Its
objective is to become a general purpose tool by standardizing the most common
phases, allowing that new sources of data can be added in a comfortable and
agile way.

A whole architecture scheme used in the application design is shown in Fig. 2.
In this scheme, the workflow begins with the data collected by the user’s mobile
device sending. Accelerometer data are sent in packets of X data collected every
Y seconds to the App Server (where the data preprocessing will be performed)
together with the user’s GPS coordinates. The data, in the appropriate format,
are sent to the IDA module, where using the Apache Storm technology, a Data
Mining (DM) technique will be used.

User Recogni on and 
recommender Data warehouse

IDA

Recommender

Iden ty Manager 
Access Control

Users jogging in 
the environment

Data 
Collec on Data 

Preprocessing

Fig. 2. Integration of the SJogg application in the FIWARE architecture

Once the data have been analyzed, IDA module will generate an output com-
posed by the feasible activities recognized. This information will serve both to
update the user information in the temporary database (MongoDB) and to ask
to the Context Orion Broker the information about which users are perform-
ing the same activity in an environment close to the user. The information is
retrieved and sent to the Recommender module, which will finally generate the
information that is provided to the user.
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On the other hand, from time to time the application will ask the user to
label his activity. This information will be sent to the Orion Context Broker
which, using the connector that Cygnus provides for Hadoop, will register it in
that framework. In this way, a new dataset is generated allowing to update the
model when the sensors change their technology and a new model is needed.

The next section focuses on IDA module to explain the steps followed since
the input of information until obtaining the information that will be provided
as output.

3 Intelligent Data Analysis Module and Data
Preprocessing

This section focuses on IDA module and the preprocessing data that are needed
in the SJogg application. The technique used in IDA module is based on k
Nearest Neighbors technique, that has been used in many applications that solve
problems of daily life obtaining good results. In this paper, an extension of this
technique is used. The main is not only to use a technique with a high accuracy
but also to allow the imperfect data processing. This possibility will reduce the
effort that must be made in the data preprocessing to obtain the minable view
of data. It also allows us to parallelize part of the process by using the Apache
Storm technology.

3.1 Data Collection and Preprocessing

The starting point of the IDA module of SJogg application is a set of labeled
data (which will be the system model) obtained from different users through
of accelerometers of their mobile devices while performing activities of daily
life (such as walking, jogging, etc.). When the collection of the labeled data is
carried out, it is interesting that the user can provide the label of the activity
he is performing in a more natural way. So, the labeling/classification of certain
instances in an imprecise way is allowed when performing an activity that is
not totally determined, for example, when the activity is to walk fast. In this
case, it would be more natural to label these instances in an imprecise way as
{0.5/jogging, 0.5/walking} or {jogging, walking}.

The accelerometer measures the acceleration that occurs in the axes of the
three space dimensions. In addition, it can detect the orientation of the device
and the Earth gravity. So, placing the device in the trouser pocket and making
this the reference system, we have to:

– Axis x: measures the value of the acceleration on the horizontal axis.
– Axis y: measures the value of the acceleration on the vertical axis.
– Axis z: measures the value of the acceleration that occurs in the forward

movement.

These data are collected with a temporary frequency that results in collecting
large amounts of instances. A first processing of these data is their grouping
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in certain time intervals. Thus, groups of m vectors (x, y, z) are made for the
measures obtained in the readings. As a second step, the following information,
used in various works as in [12], is obtained for each group:

– x̄, ȳ, z̄ indicating the means of the accelerations in the axes x, y, z, respec-
tively.

– sx, sy, sz indicating the standard deviation for each axis.
– dax, day, daz indicating the mean absolute deviation for each axis.

– resultant =
∑m

i

√
(x2

i+y2
i+z2

i )

m indicating the average resultant acceleration.

Therefore, several datasets based on the obtained information are consid-
ered (some experiments are performed to select the specific dataset that will be
incorporated into the SJogg application):

• Dataset with 10 attributes, x̄, ȳ, z̄, sx, sy, sz, dax, day, daz, resultant, and also
the class attribute indicating the performed activity (SJoggDS-11 dataset).

• Dataset with 7 attributes, Fx, Fy, Fz, dax, day, daz, resultant, and the class
attribute indicating the performed activity. Attributes Fx, Fy, Fz indicate
fuzzy (triangular) values obtained as follows:

◦ [x̄−sx, x̄, x̄+sx], [ȳ−sy, ȳ, ȳ+sy] and [z̄−sz, z̄, z̄ +sz] (SJoggDS-F-8
dataset).

• Dataset with 7 attributes, Ix, Iy, Iz, dax, day, daz, resultant, and the class
attribute indicating the performed activity. Ix, Iy and Iz indicate interval-
valued attributes obtained as follows:

◦ [x̄−sx, x̄+sx], [ȳ−sy, ȳ+sy] and [z̄−sz, z̄+sz] (SJoggDS-I-8 dataset).

In addition, during the data collection the sensors can have some operation
error producing the loss of some values. This situation can lead to some instances
having missing values and it would be interesting not to have to discard these
instances.

Therefore, after the data collection and preprocessing, instances in the
minable view of the application are expressed by imperfect values (interval val-
ues, fuzzy values, missing values and imprecise classes). In order to carry out the
DM process it is necessary the use of techniques that can deal with this kind of
data.

3.2 Data Mining

To approach the DM process from imperfect data is necessary a technique that
can work with these data and can be used in the IDA module of SJogg applica-
tion. Next, the kNNimp technique proposed in [3], and potentially useful for our
purposes is described.

kNNimp - A Classifier From Imperfect Data. The classification/
identification process is carried out with the kNNimp technique that can work
with imperfect data. Due to this technique lacks of learning phase, the model
will be formed by the set of available data.
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The technique supports nominal and numerical attributes. Nominal
attributes can be expressed by crisp, crisp subset, fuzzy subset and missing
values. Numerical attributes can be expressed by crisp, interval, fuzzy and miss-
ing values. In addition, the technique can provide as output an imprecise class
if the weights of the most important classes differ by less than an amount that
is specified by an external parameter. The classification or identification of the
activity carried out by an application user is obtained using the Algorithm1.

Algorithm 1. kNNimp technique
Input Dataset E, Instance z, Value k (1 ≤ k ≤ |E|), Values UD and UI (UD, UI ∈ [0, 1])
Let KIMPz be the set of the k nearest instances of z according to dimp(·, ·)
Calculate imperfection weight (p(xj)) and distance weight (q(xj)) for all xj ∈ KIMPz

if (degree of imperfection of KIMPz) ≤ UI then
Aggregate the information of each neighbor in order to obtain possible class values for
the instance z using AggreN and AggreF functions
Calculate the set of output classes zn using UD

Output zn

else
Output Classification is not performed

end if

As Algorithm 1 shows, kNNimp technique computes the set KIMPz that
contains the k instances xj ∈ E which are the nearest to z according to the
measure dimp(xj, z). Then, for each instance xj ∈ KIMPz, two weights are
calculated depending on its degree of imperfection (p(·)) and its distance to z
(q(·)). Furthermore, the overall degree of imperfection in KIMPz is measured,
if it is too high, the classification is not performed. To establish the maximum
degree of imperfection, kNNimp uses the parameter UI . This parameter plays an
important role when the dataset can contain instances with high imperfection
degree. If KIMPz passes the imperfection check, the functions AggreN and
AggreF obtain the set of possible weighted classes taking into account the k
nearest neighbors. The class with the highest score is chosen as output, together
with other classes whose score is similar to the highest. To assess if a class should
be included in the final output, kNNimp uses the threshold UD.

Next, some kNNimp elements are briefly commented (for more depth, see [3]):
Distance/dissimilarity measures, contribution of neighbors to the classification,
controlling the output class similarity, aggregation methods for classification and
the process to obtain the accuracy.

Distance/Dissimilarity Measures. In order to calculate the nearest neigh-
bors, the technique uses a measure (distance/dissimilarity) which computes
the distance between two instances and can work with/without imperfect
data coming from numerical and nominal attributes. The measure is defined

as dimp(x,x′) =
√∑n−1

i=1 f(xi,x′
i)

2

n−1 where f(xi, x
′
i) is defined by two functions

f1(xi, x
′
i) and f2(xi, x

′
i). dimp(x,x′) is a heterogeneous function defined from

different functions, f1(·, ·) and f2(·, ·), on different kinds of attributes (numerical
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and nominal respectively) where f1(·, ·) and f2(·, ·) are normalized fuzzy distance
or dissimilarity measures.

Contribution of Neighbors to the Classification.

– Weights based on distance: q(x) = 1 − dimp(x, z) with x ∈ KIMPz

– Weights based on imperfection: p(x) = 1 − imp(x) with x ∈ KIMPz and
imp(·) : E → [0, 1] defined as imp(x) = 1

n

∑n
i=1 g(xi) where g(·) : Ωxi

→ [0, 1]
measures the imperfection of the value in the attribute xi.

Controlling the Output Class Similarity. The kNNimp technique exploits
the definition of a similarity value between possible classes, defined as
sim(ωM , ωi) = μ(ωM )−μ(ωi)

μ(ωM ) , to perform the classification of an instance. The
minimum sim(ωM , ωi) necessary to consider that the classes ωM and ωi are pos-
sible outputs is controlled by the threshold 0 ≤ UD ≤ 1. Thus, let us assume
that ωc is the class having the highest membership degree μ(ωc) to classify an
instance. If there are other classes with very close membership degrees to μ(ωc),
all these classes could be returned as possible instance classification. The role of
UD threshold is to define how close to ωc must be a class to be considered an
output class. Thus, the threshold UD allows the output of kNNimp technique is
multivalued.

Aggregation Methods for Classification. The aggregation methods defined
for kNNimp technique are composed of the two functions AggreN(·) and
AggreF (·). These two functions provide high flexibility to this technique, allow-
ing choose them according to the classification problem. In [3], different aggrega-
tion methods are defined. Next, two aggregation methods are described because
they are used later in the experiments. Method WMCV uses AggreN() =
WCV EN() and AggreF () = CV (), and method SMCV uses AggreN() =
SV EN() and AggreF () = CV ().

• SV EN() returns a vote of 1 to the class of xj with the highest membership
degree and 0 to the other classes:

SV EN(i, xj
n, p(xj), q(xj)) =

{
1 if i = arg max

h=1,...,I
μj(ωh)

0 otherwise

• WCV EN() returns the score assigned by a neighbor (xj) to each class value
(i = 1, . . . , I) and is defined as follows:

WCV EN(i, xj
n, p(xj), q(xj)) = μj(ωi) · p(xj) · q(xj)

that is, the weight assigned by a neighbor to each class value is determined by
the weight of that value in xj

n (μj(ωi)), by the weight of xj according to its
distance (q(xj)) and by the weight of xj according to its imperfection (p(xj)).
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• CV () provides as output the fuzzy set {μ(ωi)/ωi} composed of ωi with
μ(ωi) > 0.

μ(ωi) =

∑k
j=1 AggreN(i, xj

n, p(xj), q(xj))
∑k

j=1

∑I
i=1 AggreN(i, xj

n, p(xj), q(xj))

4 Preliminary Evaluation of the IDA Process

As a preliminary evaluation of the kNNimp technique in the context of the SJogg
application, an available public dataset is used. This dataset has the necessary
characteristics for the proposed application.

4.1 Dataset Description

The selected dataset was generated as part of the work done by the WISDM
team for the activity recognition in [12]. For the experiments, data obtained
from the accelerometers located on the smartphones are used. The acceleration
values in the axes x, y, z have been grouped in time intervals of 10 s, where each
group contains a total of 150 instances. From these groupings, the complete
preprocessing is performed as described in the Sect. 3.1, obtaining the different
datasets with 11 attributes (SJoggDS-11 dataset) and 8 attributes (SJoggDS-F-8
and SJoggDS-I-8 datasets) with 7430 instances each one.

4.2 Parameter Configuration

On the datasets described in the previous section, four DM techniques have been
applied: for datasets without imperfect values, a classic kNN technique (IBk) and
a decision tree (J48) provided by Weka package [9]; and a fuzzy decision tree
(FID3.5) [10] have been applied. For datasets with imperfect values, the kNNimp

technique has been applied. The parameter configuration for the techniques is
shown in Table 1.

Table 1. Parameters of techniques

J48Weka IBkWeka NNk5.3DIF imp

M=2 k=1 Fuzzy Top-down For numerical attributes: similarity proposed in [5]
(best M) (best k) discretization For nominal attributes: similarity proposed in [20]

For others, the default values Imperfection function: Power of fuzzy sets [6]

Also, since the class inferred by kNNimp technique, using the aggregation
methods defined above and the threshold UD, can be a set, it is necessary to
define how the accuracy in classification is measured. Algorithm 2 shows this
process where the considered dataset is a subset of reserved instances as test
dataset (Etest).
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Algorithm 2. Classification Accuracy
Input Dataset Etest, Class value inferred to each z ∈ Etest (classkNNimp(z))
Suc, SucErr=0;
for all z in Etest do

if classkNNimp(z) = class(z) then Suc = Suc + 1
else if (classkNNimp(z)

⋂
class(z)) �= ∅ then SucErr = SucErr + 1

end for
Accmin = Suc

|Etest| , Accmax = Suc+SucErr
|Etest|

Output [Accmin, Accmax]

In the definition of the upper bound of this interval, those cases where the
class value of a test instance is not the same but it is included in the inferred
class value are considered as success. Note that situations in which the two values
of interval are equal will be denoted with a single value Acc.

4.3 Preliminary Results

The results obtained when performing a 10-fold cross validation with the different
datasets are shown in Table 2. In addition, for kNNimp technique, the k values,
the combination method and UD that obtain the best results are shown.

Table 2. Averaged accuracies (%)

Datasets Techniques
J.48Weka IBkWeka FID3.5 kNNimp

SJoggDS-11 91.79 96. 96 78.84 –

SJoggDS-F-8 – – – [94.12,97.87]k=2;(SMcv,UD=0);(WMcv,UD=0.05)

SJoggDS-I-8 – – – [94.02,97.89]k=2;(SMcv,UD=0);(WMcv,UD=0.05)

Table 3 shows the confusion matrix of kNNimp technique (with k = 2, WMcv
and UD = 0.05) and JoggDS-F-8 dataset. The matrix shows (when is compared
with the confusion matrix of IBkWeka) that some successes have a second nearest
neighbor with a different class to the correct one. In addition, some errors have
a second nearest neighbor with the correct class. These successes/errors are
included in the upper bound of the accuracy interval (therefore, this upper bound
is higher). This is an important result because the technique’s output indicates
that some activities have a similar behavior to others, as for example {Jogging,
Uptairs} or {Walking, Uptairs}.

These preliminary results show the importance of expressing the information
in a more adequate way to its true nature, avoiding important loss of information
it contains. Expressions of the information in a more appropriate or concrete way
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Table 3. Confusion matrix for kNNimp

a b c d e ab ac ad ae bc bd be cd ce de ←classified as

2187 3 18 1 1 1 13 0 0 3 0 0 0 0 0 a=Jogging
0 2768 19 0 0 0 3 0 0 62 0 0 0 0 0 b=Walking
8 86 1304 3 3 3 46 1 0 147 0 0 2 2 1 c=Upstairs
0 0 2 404 0 0 0 0 0 1 0 0 1 0 2 d=Sitting
0 0 2 0 330 0 0 0 0 0 0 0 0 0 3 e=Standing

allows us to improve the accuracy results obtained, but it is necessary to have
DM techniques that can deal with this kind of information.

4.4 Building the IDA Module

Based on the obtained results, the SJoggDS-F-8 dataset and the kNNimp tech-
nique are used with the parameter values defined by UD = 0.05, k = 2 and
WMCV .

The mobile device of an application user will collect data from the accelerome-
ter and GPS for 10 s. These data are sent to the application server. On the server,
data will be transformed into the set of 7 attributes described in Sect. 3.1. These
7 attributes will be the input of the IDA module that holds the kNNimp tech-
nique. The execution of the technique in Apache Storm will be carried out by
partitioning the dataset SJoggDS-F-8, which constitutes the model, in smaller
subsets distributed in the different system nodes. Each node provides the two
nearest neighbors of the local subset and a final node is responsible for obtaining
the two global nearest neighbors and providing the output class. With this value
and the user GPS coordinates, Context Orion Broker obtains the GPS coordi-
nates of the users that perform the same or similar activity. This information
is downloaded to the application server and, through the recommender module,
the output that will be sent to the user is generated by means of a text message
or on a city map.

5 Conclusion and Future Works

This paper shows the importance of data mining techniques development, that
allow working with data that express the true nature of them or an informa-
tion very close to said nature. Therefore, it is important to continue working
on the data mining technique extension that currently obtain good results when
addressing daily life problems so that they can perform other type of data treat-
ment, maintaining their performance. This is one of the work lines that can be
addressed. In this way, there will be several possibilities to implement the IDA
module in order to select the one that works best in each domain. Since the pre-
liminary results obtained in this work indicate that kNNimp obtains good results
in the social sport domain and the technique model is the set of examples, it is
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interesting to deep in the study and design of instance selection techniques that
can also work from imperfect data. In this way, a reduced dataset and the com-
mented technique parallelization, makes kNNimp a suitable real-time response
technique. On the other hand, although this work focuses on the human activity
recognition applied to social sport, the following objective is to carry out an
activity recognition in other domains such as healthcare, transport and other
types of social activities.

Acknowledgement. Supported by the project TIN2017-86885-R (AEI/FEDER, UE)
granted by the Ministry of Economy, Industry and Competitiveness of Spain (including
ERDF support).
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Abstract. Association rules allow to mine large datasets to automati-
cally discover relations between variables. In order to take into account
both qualitative and quantitative variables, fuzzy logic has been applied
and many association rule extraction algorithms have been fuzzified.

In this paper, we propose a fuzzy adaptation of the well-known Close
algorithm which relies on the closure of itemsets. The Close-algorithm
needs less passes over the dataset and is suitable when variables are
correlated. The algorithm is then compared to other on public datasets.

Keywords: Fuzzy data mining · Fuzzy closure operator
Frequent itemsets mining · Fuzzy logic · Association rules

1 Introduction

Extracting association rules from data has been one of the main tasks in data
mining for years. It relies on the extraction of frequent itemsets. In order to deal
with both quantitative and qualitative variables, some algorithms have used the
fuzzy set theory. Fuzzy logic provides tools to manage the vagueness inherent in
both the natural language and the knowledge itself. Different fuzzy association
rule mining algorithms have already been developed to handle this kind of data.

Because datasets are nowadays getting bigger and bigger, the way these fuzzy
association rule mining algorithms manage huge databases is essential. Some
algorithms store a big amount of data while some others need to perform many
database passes.

There exist several crisp association rule mining algorithms that do not store
a lot of data or need only a limited number of database passes. However, most
of them do not have a fuzzy counterpart. In this paper, we propose an algorithm
that uses the fuzzy set theory and the fuzzified version of the Close mining
algorithm [1] to extract frequent itemsets from data with a reduced number of
database passes.

c© Springer International Publishing AG, part of Springer Nature 2018
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The rest of the paper is organized as follows. Section 2 reviews related work.
In Sect. 3, we present the fuzzy set framework and we describe the algorithm.
Section 4 presents the experimental results we got and Sect. 5 concludes the
paper.

2 Related Works

2.1 Fuzzy Association Rule Mining

The first fuzzy association rule mining algorithms were based on the Apriori
algorithm [2]. It consists in two main steps. First, finding the frequent itemsets
and second, generating fuzzy rules based on the previously extracted frequent
itemsets. In order to find the frequent itemsets, it first scans the whole database
to extract frequent itemsets that contain only one item (1-itemsets). An item-
set is said to be frequent when the support of this itemset in the database,
i.e. the number of occurrences, is larger than a user-specified minimum support
threshold. After that first step, frequent 1-itemsets are used to generate can-
didate 2-itemsets. Frequent 2-itemsets are extracted computing their support.
The process continues until no more candidate can be generated. It requires
n database passes, where n is the size of the maximum length frequent item-
set. Once frequent itemsets have been mined, every candidate association rule
is generated. An association rule is valid when its confidence is larger than a
user-specified minimum confidence threshold. For a frequent itemset I and an
association rule I1 ⇒ I2 such as I1 ⊂ I, I2 ⊂ I and I1 ∩ I2 = ∅, the confidence
of this association rule is its number of occurrences among the occurrences of
I. All candidate association rules are generated to find the most confident ones.
Many fuzzy association rule mining algorithms rely on the Apriori algorithm.
The F-APACS algorithm [3] first converts data into linguistic terms using the
fuzzy set theory. A statistical analysis is performed to automatically set both
the minimum support threshold and the minimum confidence threshold. The
FDTA algorithm [4] proposes another way of converting quantitative data into
linguistic terms. AprioriTid [18] is an improved version of FDTA. Kuok et al. [5]
proposed a different approach to handle quantitative databases for generating
fuzzy association rules.

A completely different way of mining fuzzy frequent itemsets relies on a
frequent-pattern tree structure. The generic framework is as follows. The first
step consists in fuzzifying data, if necessary. Then, the tree is constructed and
the final step is the mining of fuzzy frequent itemsets based on the previously
constructed tree. Papadimitriou and Mavroudi [6] proposed an algorithm called
fuzzy frequent pattern tree (FFPT). Non frequent 1-itemsets are removed from
the database and each transaction is sorted according to the membership value
of its frequent 1-itemsets. Then, the tree is constructed by handling each trans-
action one by one. Since transactions are sorted by membership values, several
different paths may represent the same itemset. As a consequence, a few useless
tree nodes are generated. The compressed fuzzy frequent pattern tree (CFFPT)
algorithm solves this problem by using a global sorting strategy [7]. However,
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this solution leads to attaching an array to each node. Lin et al. [8] proposed
the upper bound fuzzy frequent pattern tree algorithm (UBFFPT). It estimates
the upper bound membership values of frequent itemsets to avoid attaching an
array to each node. This algorithm requires four database passes to build the
tree. Then, the tree is parsed several times to generate all candidate frequent
itemsets. Depending on the database, the tree can be long and have a large
amount of nodes. An ultimate database pass is performed to compute the sup-
port of every candidate frequent itemset.

2.2 The Close Algorithm

Pasquier et al. [1] proposed the Close algorithm. This algorithm handles non-
fuzzy databases. It uses a closure operator to find closed itemsets. Those itemsets
have interesting properties that benefit the mining of frequent itemsets. Since
there are often less frequent closed itemsets than frequent itemsets, the search
space is smaller, the computation is less costly and the number of database
passes is reduced. The algorithm relies on the following properties [1]:

1. all subsets of a frequent itemset are frequent;
2. all supersets of an infrequent itemset are infrequent;
3. all closed subsets of a frequent closed itemset are frequent;
4. all closed supersets of an infrequent closed itemset are infrequent;
5. the set of maximal frequent itemsets is identical to the set of maximal frequent

closed itemsets;
6. the support of a frequent itemset I which is not closed is equal to the support

of the smallest frequent closed itemset containing I.

The algorithm goes through three phases to generate association rules. First,
it generates all frequent closed itemsets from the database. Then, it derives all
frequent itemsets from the previously generated frequent closed itemsets. The
final step consists in generating all confident association rules.

3 Fuzzified Close Algorithm

3.1 Fuzzy Sets

Zadeh introduced the fuzzy set theory [9]. In a universe X, a fuzzy set F is
characterized by a mapping µF : X → [0, 1]. This mapping specifies in what
extent each x ∈ X belongs to F and it is called the membership function of F .
If F is a non-fuzzy set, µF (x) is either 0, i.e. x is not a member of F , or 1, i.e.
x is a member of F . The set of all fuzzy sets in a universe X is written FX .

The kernel of a fuzzy set F is a non-fuzzy set defined as

ker(F ) = {x ∈ X|µF (x) = 1}. (1)

A binary fuzzy relation can be defined the same way as a fuzzy set. Given
two universes X and Y , a binary fuzzy relation R is a mapping defined as

R : X × Y → [0, 1] . (2)

It assigns a degree of relationship to any (x, y) ∈ X × Y .
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3.2 Formal Concept Analysis

Formal Concept Analysis (FCA) [10–12] provides a framework for analyzing the
relationship between a set of objects and a set of attributes. A database with
fuzzy values can be represented by a triplet 〈O,A,R〉 with O a finite set of
objects, A a finite set of attributes and R a binary fuzzy relation defined as
R : O × A → [0, 1]. This triplet is called a formal fuzzy context.

In the following, a fuzzy set of attributes (objects) is a fuzzy set whose
membership function is defined as µ : A → [0, 1] (µ : O → [0, 1]).

Operators ↑ and ↓ can then be defined [13]. Let X be a fuzzy set of objects
and Y be a fuzzy set of attributes. ↑ and ↓ are defined as follows:

∀a ∈ A, µX↑(a) =
∧

o∈O

(
µX(o) → R(o, a)

)
, (3)

∀o ∈ O, µY ↓(o) =
∧

a∈A

(
µY (a) → R(o, a)

)
. (4)

X↑ is a fuzzy set of attributes and Y ↓ is a fuzzy set of objects. In the next
section, the composition of these two functions is written ↑↓.

We use the Lukasiewicz implication operator defined as

a → b = min(1 − a + b, 1). (5)

The Lukasiewicz implication is compatible with the implication from classical
logic.

3.3 Fuzzy Closure Operator

The closure operator cannot be the same in the fuzzified version of the algorithm.
It still takes as an argument a crisp set, which we call a generator, and also
returns a crisp set. However, the relation R between objects and attributes is
no longer crisp. That is why this operator needs to be modified.

Definition 1. A fuzzy closure operator in a universe X is defined as h : FX →
FX and satisfies the following conditions:

∀I ⊂ FX , I ⊂ h(I) , (6)
∀I ⊂ FX , h(h(I)) = h(I) , (7)

∀I, J ⊂ FX , I ⊂ J ⇒ h(I) ⊂ h(J). (8)

For any formal fuzzy context 〈O,A,R〉, for a fuzzy set of attributes Y , ↑↓ is
a fuzzy closure operator [12,14]. The fuzzy closure of Y by ↑↓ is Y ↑↓, which is a
fuzzy set of attributes.

In our case, the closure operator takes a crisp set of items (or attributes) as
a generator. Let I be a crisp set of items. It can be turn into a fuzzy set to be
used by the fuzzy closure operator as follows:

∀a ∈ A, µI(a) =
{

1, if a ∈ I
0, otherwise . (9)
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As for the set the closure operators returns, it also has to be a crisp set. The
fuzzy closure operator ↑↓ returns a fuzzy set F . We can get a crisp set of items
I using the kernel function as follows:

I = ker(F ). (10)

This operator is still a closure operator. In the following, this closure operator is
written h such as h : P(A) → P(A). One can interpret the result of this closure
operator as the set of attributes that are shared by all the objects that have all
the attributes from the generator.

3.4 Support and Confidence

The support of an itemset and the confidence of a rule are computed as stated
in [17]. Both of them are numbers between 0 and 1.

The following property states that an itemset and its closure have the same
support. This will be used in our algorithm.

Proposition 1. ∀I ∈ P(A), support(h(I)) = support(I).

3.5 Algorithm Description

The proposed fuzzy association rule mining approach integrates concepts from
both the fuzzy set theory and the Close algorithm [1]. It does not tackle the
fuzzification of the database. This task has been addressed in the previously
mentioned articles [3–5]. Besides, the generation of all confident association rules
is the same as in the Apriori algorithm [2].

FCCi refers to the set of triplets associated with all the frequent closed
candidate itemsets whose generator’s size is i. FCi refers to the set of triplet
associated with all the frequent closed itemsets whose generator’s size is i. Each
triplet is under the following form:

(generator, closure, support).

Thus, in the remainder of this article, for any p ∈ FCCi or FCi, p.generator
refers to the generator linked to p, p.closure is its closure and p.support is its sup-
port. FCCi.generators refers to the set of all generators in FCCi. FCCi.closures
and FCCi.supports are defined the same way.

Algorithm 1 below describes the process. On line 1, FCC1 is initialized with
every item from the set of attributes A. On line 5, for each generator in FCCi,
the generateClosures function provides the corresponding closure and support.
This function is detailed below. Then, on lines 6 to 9, the set of candidate closed
itemsets FCCi is pruned to get the set of frequent closed itemsets FCi. New
generators, whose size is i + 1, are generated on line 11 using the generateGen-
erators function. This function is described below. The whole process will last
until no new generators can be generated. The output is the set of all frequent
closed itemsets that will be used to generate all frequent itemsets.
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The generateClosures function is stated as shown in Algorithm 2 below. This
function has been designed to compute the closures and the supports of the
generators in FCCi performing only one database pass. For each object o ∈ O,
for each element p ∈ FCCi, the contribution k to the support and µp↓(o) are
computed looping over the items in p.generator (from line 10 to line 13). Then,
for each attribute a ∈ A, the membership function µp↑↓ of the fuzzy closure is
updated (line 15). When the last object is reached and there is no more update
to the membership function, the kernel of the fuzzy closure is computed (from
line 16 to line 20).

This generateGenerators is exactly the same as in the Close algorithm. This
function generates all the potential generators of size i + 1 from the generators
in FCi. In order to get one potential generator, two generators from FCi that
have the same i − 1 first elements are combined. Then, this set of potential
generators is pruned to avoid useless computations. In particular, if one of the
new generators is included in the closure of one of the former generators, then
it is pruned.

Overall, the whole algorithm, i.e. Algorithm 1, needs one database pass per
iteration. That is the same as the algorithms based on the Apriori algorithm.
However, the total number of iterations is usually smaller with the close algo-
rithm because there are often less frequent closed itemsets than frequent item-
sets.

After this phase, all the frequent closed itemsets are used to find all the
frequent itemsets. This new phase is exactly the same as in the original Close
algorithm. The first step consists in splitting the set of all frequent closed itemsets
according to their size. Then, these new sets Li are browsed in descending order
of size to generate all frequent itemsets of size i−1. The process will finish when
the set of frequent 1-itemsets is completed.

3.6 Example

For the sake of comprehension, we apply in this section the algorithm on a small
database D, shown in Table 1. D contains five objects (1 to 5) and five items (A
to E). The minimum support is equal to 0.4 (40%).

Table 1. The fuzzy database D

Objects Items

A B C D E

1 0.8 0.1 0.9 0.8 0

2 0 0.3 0.2 0 0.9

3 1 0.7 0.7 1 0.6

4 0 0.2 0 0.2 1

5 0.9 0.6 0.8 1 0.9
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The pruning of FCC1 leads to removing {B} since its support is smaller
than the minimum support threshold. The other elements from FCC1 are kept
to generate FC1. This corresponds to line 5 to line 10 in Algorithm 1. FCC1

and FC1 are shown in Table 2.

Table 2. FCC1 on the left and FC1 on the right. {B} is pruned from FCC1 to FC1

because it is not frequent.

Then, on line 11, FCC2 is generated. {AD} is not a generator in FCC2

because it is included in the closure of {A}. FC2 is then generated. {CD} and
{AC} have the same closure, so only one of them is kept. FCC2 and FC2 are
shown in Table 3.

Table 3. FCC2 on the left and FC2 on the right.

FC2 contains only one element, that is why FCC3 is empty. That is the end
of the first phase, which corresponds to Algorithm 1. FC is returned. It is shown
in Table 4.

The second phase consists in deriving frequent itemsets from frequent closed
itemsets. The longest closed itemset contains three items. That is why three
different sets are generated for deriving frequent itemsets: L3, L2 et L1. Bold
itemsets are itemsets which have been derived from a bigger closed itemset.
These three sets are shown in Table 5.
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Table 4. FC

Closure Support

{AD} 0.54

{C} 0.52

{D} 0.60

{E} 0.68

{ACD} 0.46

Table 5. Deriving frequent itemsets. Bold lines refer to derived itemsets. From left to
right: L3, L2 and L1.

4 Experimental Results

In order to compare our algorithm to the fuzzy version of Apriori and to
UBFFPT, we have implemented these algorithms. As our implementations of
the algorithms may not be fully optimized, our results do not show any execu-
tion time. The metric that we used is the number of database passes. It allows
to directly compare the fuzzy version of Apriori to our algorithm.

4.1 Datasets

We used three different datasets. The first one is the mushroom dataset [15].
It contains 8124 examples (objects). The number of attributes is 22. Those are
all categorical attributes, so the final binary dataset contains 119 attributes. To
fuzzify it, zeros were replace by a uniform random number in [0, 0.5] and ones
were replace by a uniform random number in [0.5, 1].

The two other datasets come from the 2017 Civil Service People Survey [16].
Those are surveys that only contain numbers in [0, 1]. One dataset, that is called
benchmark scores, contains 9 examples. Attributes have been pruned to avoid
missing values for a final amount of 87 attributes. The other dataset is called
all organisation scores. After filtering missing values, the dataset contains 93
examples and 84 attributes.



96 R. Pierrard et al.

Algorithm 1. Close algorithm
input : A fuzzy formal context 〈O,A,R〉

A minimum support threshold S ∈ [0; 1]
output: All frequent closed itemsets and their support

1 generators in FCC1 ← {1-itemsets}
2 for (i ← 1; FCCi.generators �= ∅; i++) do
3 closures in FCCi ← ∅

4 supports in FCCi ← 0
5 FCCi ← generateClosures(FCCi)
6 forall candidate closed itemsets c ∈ FCCi do
7 if c.support ≥ minsupport then
8 FCi ← FCi ∪ {c}
9 end

10 end
11 FCCi+1 ← generateGenerators(FCi)

12 end

13 FC ←
i−1⋃

j=1

{FCj .closures, FCj .supports}
14 return FC

4.2 Results and Discussion

Results are shown in Fig. 1. For the mushroom dataset, we can observe that our
algorithm makes at best one less database pass than the fuzzy version of Apriori.
This is due to the fact that data are not highly correlated and are sparse. That
means that most frequent itemsets are closed. As a consequence, with the cost of
computing closures, our algorithm should not be expected to outperform Apriori
and UBFFPT on such a dataset.

Observations are different with the two other datasets. We can see that the
lower the minimum support threshold, the larger the difference between the num-
ber of database passes of both algorithms. These data come from surveys, whose
data are usually highly correlated and dense. Our algorithm takes advantage of
this using the closure operator. Thus, most generators are much shorter than
their closures. That explains the lower amount of database passes.

The UBFFPT algorithm needs 4 database passes to construct its tree and
to extract frequent itemsets. Besides, frequent pattern mining algorithms, such
as UBFFPT, spend most of their time traversing the tree. For highly correlated
data, as in the benchmark dataset, our algorithm has an edge on these algo-
rithms. Moreover, it consumes less memory than Apriori, which generates many
candidates at each iteration, and than UBFFPT, which browses all the paths to
the currently studied item1 to generate candidates.

1 One item is usually represented by several nodes in the tree.
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Algorithm 2. generateClosures function
input : The set of candidate closed itemsets FCCi

output: Updated FCCi after the computation of closures and supports

1 n ← 0
2 forall p ∈ FCCi do
3 numbers in µp↑↓a ← 1
4 end
5 forall objects o ∈ O do
6 n++
7 forall p ∈ FCCi do
8 k ← 1

9 µp↓ b ← 1
10 forall attributes i ∈ p.generator do
11 k ← min

(
k,R(o, i)

)

12 µp↓ ← min
(
µp↓ , 1,R(o, i)

)

13 end
14 forall attributes i ∈ A do
15 µp↑↓,i ← min

(
µp↑↓,i, 1, 1 + R(o, i) − µp↓

)

16 if n = Card(O) then
17 if µp↑↓,i = 1 then
18 p.closure ← p.closure ∪ {i}
19 end

20 end

21 end
22 p.support ← p.support + k

23 end

24 end
25 return FCCi

a µp↑↓ is a vector corresponding to the membership function of the fuzzy closure p↑↓.
b µp↓ is a fuzzy number that corresponds to µp↓(o).

Also, the first iteration of generating closures in our algorithm can bring
valuable insight. Indeed, if most 1-itemsets are closed, then the data is likely to
be weakly correlated and another algorithm may perform better. However, if the
proportion of closed 1-itemsets is low, the data is likely to be highly correlated
and our algorithm will then compute all the frequent itemsets in few database
passes.
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Fig. 1. Plots showing the number of database passes relatively to the minimum support
threshold for the three datasets.

5 Conclusion

In this paper, we introduced a new fuzzy association rule mining algorithm
inspired by the Close algorithm. Our goal was to make it able to mine frequent
itemsets from data in a reduced number of database passes and without storing
too much data.

It relies on a closure operator that is able to process fuzzy data while both
taking as an argument and returning a crisp set. This new closure operator is
based on a fuzzy closure operator of whom we take the kernel. The closure is the
set of items that are shared by all the objects that include the generator. That
is why it is very efficient with highly correlated data.

The algorithm finds the set of all the closed frequent itemsets. This set is
sufficient to extract all the frequent itemsets. As it is usually a smaller set than
the set of all the frequent itemsets, the search space is also smaller.

We have tested our algorithm on three different datasets. We have shown
that this approach outperforms other algorithms when dealing with correlated
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and dense data, which are the kind of data that can be found in surveys, census
dataset or in some classification datasets. It needs less database passes and stores
a small amount of data to extract all the frequent itemsets.
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Abstract. Real-world applications using fuzzy ontologies are increas-
ing in the last years, but the problem of fuzzy ontology learning has
not received a lot of attention. While most of the previous approaches
focus on the problem of learning fuzzy subclass axioms, we focus on
learning fuzzy datatypes. In particular, we describe the Datil system,
an implementation using unsupervised clustering algorithms to auto-
matically obtain fuzzy datatypes from different input formats. We also
illustrate the practical usefulness with an application: semantic lifestyle
profiling.

Keywords: Fuzzy ontologies · Machine learning · Lifestyle profiling

1 Introduction

Ontologies can nowadays be considered a standard for knowledge representation.
An ontology is an explicit and formal specification of the concepts, individuals
and relationships that exist in some area of interest, created by defining axioms
that describe the properties of these entities [20]. Ontologies can provide seman-
tics to data, making knowledge maintenance, information integration, and reuse
of components easier. The current standard language for ontology representation
is OWL 2 (Web Ontology Language) [24].

Classical ontologies are not appropriate to deal with imprecise and vague
knowledge, inherent to several real world domains. Fuzzy ontologies [3,21] extend
classical ontologies with elements of fuzzy set theory and fuzzy logic [25].
Although fuzzy ontologies have been successfully used in several real-world appli-
cations [9–11,13] and some methodologies [1] and tools [5] supporting their devel-
opment are available, the cold start problem is still common. It is difficult for
ontologists who are experts in a domain but not familiar with fuzzy logic to
develop fuzzy ontologies. To overcome this problem, fuzzy ontology learning tech-
niques are necessary, but unfortunately there is not been a lot of research in this
direction.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 854, pp. 100–112, 2018.
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The few exceptions are focused on learning fuzzy subclass axioms [4,15–
17,22]; the three latter references are implemented in the FuzzyDL-Learner tool.1

Starting from the (possibly partial) membership of individuals to classes, it is
possible to automatically compute some partial inclusions between (possibly
fuzzy) concepts. Fuzzy concept descriptions can be based on fuzzy datatypes.

Because the focus is on learning fuzzy subclass axioms, these approaches
usually restrict to a simple case: a uniform partition of the domain into fuzzy
datatypes. Instead, we propose to compute fuzzy datatypes from existing real
data using clustering algorithms.

In some cases, only attribute values are available and there are no data about
the membership to classes. In such cases, we can still learn the fuzzy datatypes,
use them to build some preliminary fuzzy subclass axioms to populate the classes,
and learn a more complete set of fuzzy subclass axioms using existing approaches.

The main contribution of this paper is the description of the Datil system,
an implementation of an automatic fuzzy datatype learning algorithm for fuzzy
ontologies supporting different input and output formats. We also discuss how to
integrate this learning step into existing approaches for fuzzy subclass learning
and illustrate it with a real-world use case: semantic lifestyle profiling, i.e., the
automatic classification of the lifestyle of people given their digital footprints.
The ultimate aim is to help tasks such as long-term human behavior classification
and thus improve virtual coaching or customize lifestyle recommendation and
intervention programs from free form non-labelled sensor data.

The rest of this paper is organized as follows. Section 2 provides some back-
ground on fuzzy ontologies and clustering algorithms. Next, Sect. 3 describes
the Datil tool. Then, Sect. 4 illustrates the usefulness of the system with a use
case on semantic lifestyle profiling. Finally, Sect. 5 sets out some conclusions and
addresses some ideas for future work.

2 Background

2.1 Fuzzy Ontologies

Fuzzy ontologies extend classical (crisp) ontologies by considering several notions
of fuzzy set theory and fuzzy logic [3,21]. Before going into the details, let us
briefly recall the elements of an ontology:

– Individuals denote domain elements or objects. For example, john and mary.
– Datatypes denote elements that do not belong to the represented domain, but

rather to a different domain that is already structured and whose structure is
already known to the machine. Data values can be numerical values, textual,
or dates, among many other possibilities.

– Concepts or classes denote unary predicates and are interpreted as sets of
individuals, such as Human. Concept can be simple (atomic) or complex, built
up using different types of concept constructors depending on the expressivity
of the ontology language.

1 www.umbertostraccia.it/cs/software/FuzzyDL-Learner.

www.umbertostraccia.it/cs/software/FuzzyDL-Learner
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– Properties or roles denote binary predicates relating a pair of elements. There
are two types of properties: object properties (or abstract roles) link a pair of
individuals, whereas data properties (or concrete roles) relate an individual
with a data value. For instance, isFriendOf relates two human individuals and
is an object property, while hasAge links an individual with an integer number
and is a data property.

– Axioms are formal statements involving these ontology elements, like a recipe
that defines how to combine the previous ingredients to represent the knowl-
edge of some particular domain. The available types of axioms depend on the
expressivity of the ontology language, but some typical types are:

• Concept assertions state the membership of an individual to a class. For
example, the fact that john belongs to the concept of Human people.

• Object property assertions describe the relation between two individuals.
For instance, one can state that john and mary are related via hasChild.

• Data property assertions describe the relation between an individual and
a data value. For example, it is possible to express that John’s age is 18
by relating john and the number 18 via hasAge.

• Subclass axioms, stating that a concept is more specific (a subclass) of
another one. For example, Woman is more specific than Human.

The interested reader can find a complete list of the OWL 2 elements in [24].
In fuzzy ontologies, the elements of an ontology are extended in such a way

that concepts, relations, datatypes, and axioms are fuzzy. In particular:

– Fuzzy concepts and fuzzy properties are interpreted as fuzzy sets of individ-
uals and fuzzy binary relations, respectively. For example, YoungHuman can
contain the fuzzy set of young people.

– Fuzzy axioms express statements that are not either true or false but hold to
some degree. For example, we can state that john belongs to the concept of
YoungHuman with at least degree 0.9, meaning that he is rather young.

– Fuzzy datatypes generalize crisp values by using a fuzzy membership function.
For example, instead of considering the crisp value 18, now it is possible to
consider about18. The former datatype is incompatible with the value 17.99,
whereas the latter one is not. Some popular membership functions, commonly
used to define fuzzy datatypes are the trapezoidal, the triangular, the left-
shoulder, and the right-shoulder, depicted in Fig. 1.

Although there is not an standard fuzzy ontology language, Fuzzy OWL 2 [5]
is a popular choice. The language extends OWL 2 ontologies with OWL 2 anno-
tations encoding fuzzy information using a XML-like syntax. The key idea of
this representation is to start with an OWL 2 ontology created as usual, with a
classical ontology editor. Then, it is possible to annotate the elements to repre-
sent the features of the fuzzy ontology that OWL 2 cannot directly encode. In
particular, it is possible to annotate fuzzy axioms by adding a degree of truth,
to represent fuzzy datatypes, and to define specific elements of fuzzy ontologies
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(a) (b) (c) (d)

Fig. 1. (a) Trapezoidal; (b) Triangular; (c) Left-shoulder; (d) Right shoulder functions.

(such as fuzzy modifiers or aggregated concepts). There is a Protégé plug-in
making the syntax of the annotations transparent to the users.2

For practical reasons, the range of the fuzzy datatypes is usually restricted
to an interval [k1, k2], e.g., in the fuzzyDL reasoner and Fuzzy OWL 2 [5,6].

2.2 Clustering

This section recaps three well-known unsupervised clustering algorithms, namely
k-means, fuzzy c-means, and mean-shift. These learning algorithms cluster a
collection of n real data values (or points) denoted xj into a set of classes or
clusters Ci described by means of their centroids (one per cluster) ci.

K-means groups a set of data into k clusters [18]. The algorithm starts by
computing randomly the k initial centroids ci. Then, it repeats two steps: first,
each point xj is assigned to its nearest cluster, denoted C(xj), according to the
Euclidean distance: C(xj) = Ck if arg mini ||xj −ci||2 = k. Second, the centroids
are updated: ci = (

∑
xj∈Ci

xj)/|Ci|. The algorithm aims at minimizing a squared
error function and finishes when a stopping criteria is met (typically, after a total
number of iterations or when there are no further changes in the centroids).

Fuzzy c-means [2] is an extension where every point can belong to several
clusters with different degrees of membership. To this end, the algorithm con-
siders c fuzzy clusters and a matrix of membership degrees μ, where μij ∈ [0, 1]
denotes the membership degree of the datum xj to the i-th cluster. The positions
of the centroids are computed as ci = (

∑n
j=1 μm

ijxj)/
∑n

j=1 μm
ij , where m ≥ 1 is

a parameter indicating a fuzziness degree. The membership degrees are then

updated as μij =
( ∑c

k=1
‖xj−ci‖2/(m−1)

‖xj−ck‖2/(m−1)

)−1

.
Mean-shift [7,8] is widely used in clustering but also in image segmentation.

It seeks modes or local maxima of density in a feature space by computing
a mean-shift vector m(x). The algorithm defines a window around each point,
computes the mean of the data points in the window and then shifts its center to
the mean. It uses a Gaussian Kernel Kg to keep track of the nearest neighbors of
each xi according to a bandwidth or window size h. To compute the bandwidth
we use the rule of thumb proposed in [23]. This rule can be used to compute a

2 http://www.umbertostraccia.it/cs/software/FuzzyOWL.

http://www.umbertostraccia.it/cs/software/FuzzyOWL
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quick estimation of h for a given Kg, and allows to define a local seeking distance
l = h

2 . At the end of the process, the mean-shift vector converges into a set of
centroids after removing data points at a too close distance.

The main advantage of fuzzy c-means when compared to k-means is that it
is more robust to the random initialization of the centroids. The main advantage
of mean-shift is that it does not require to fix a priori the number of clusters, as
both k-means and fuzzy c-means do.

3 The Datil System

Overview. Datil3 (DATatypes with Imprecision Learner) is a software that auto-
matically learns fuzzy datatypes for fuzzy ontologies from different types of
inputs. Datil implements several unsupervised clustering algorithms: k-means,
fuzzy c-means, and mean-shift (see Sect. 2.2). The tool is publicly available.4.

For each data property in an ontology with a numerical range (or with asser-
tions involving numerical values), Datil collects an array of real numbers cor-
responding to the values of the property for different individuals. A clustering
algorithm provides a set of centroids from these array of values. These centroids
are used as the parameters to build fuzzy membership functions partitioning the
domain, as illustrated in Fig. 2.

Learning the fuzzy datatypes. Assuming that k ≥ 2, Datil creates the following
datatypes using a set of centroids {c1, c2, . . . , ck}:

– a left-shoulder function with parameters c1 and c2,
– a right-shoulder function with parameters ck−1 and ck, and
– k − 2 triangular functions, where the i-th triangular function has parameters

ci, ci+1, and ci+2.

As already mentioned, the fuzzy datatypes are defined over a range [k1, k2]
and not over (−∞,∞). For each data property d, Datil uses several strategies
to compute such k1, k2 for all the fuzzy datatypes defined for d:

– First, checking if the range of dp is of the form [>= k1, <= k2], where >= and
<= denote xsd:minInclusive and xsd:maxInclusive OWL 2 facets, respectively,
that constrain the possible values of an OWL 2 numerical datatype.

– Otherwise, it computes the minimum (min) and the maximum (max) of the
array of real numbers formed by the values of dp and defines k1 = min − σ
and k2 = max + σ for some σ. In the case of mean-shift, σ = h/2.

For small numbers of clusters (k ≤ 7), Datil automatically provides read-
able names for the fuzzy datatype labels. For example, for a data property
SkinTemperature, the tool can create 7 fuzzy datatypes VeryVeryLowSkinTemper-
ature, VeryLowSkinTemperature, LowSkinTemperature, NeutralSkinTemperature,
3 Dátil is the Spanish for the date fruit.
4 http://webdiis.unizar.es/∼ihvdis/Datil.

http://webdiis.unizar.es/~ihvdis/Datil
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HighSkinTemperature, VeryHighSkinTemperature and VeryVeryHighSkinTempera-
ture. If the number of clusters was 6, NeutralSkinTemperature would be omitted.
For an arbitrary number of clusters k > 7, label names are formed by concate-
nating the name of the data property dp and an integer number (the order of
the fuzzy datatype according to an increasing value of the smaller centroid).

If the clustering algorithm provides a unique centroid c, Datil only creates
one triangular function with parameters c − σ, c, and c + σ.

Fig. 2. Some fuzzy membership functions built from the centroids.

Input formats. Datil supports 3 possible input formats: .owl, .fdl, and .csv.

– .owl format correspond to ontologies in the standard language OWL 2. Files
can be classical ontologies but also fuzzy ontologies in Fuzzy OWL 2; in the
latter case the annotations with the fuzzy information are discarded. Datil
restricts itself to data property assertions and range restrictions. A semantic
reasoner is used to retrieve both explicit and implicit axioms.

– .fdl is the own syntax of the fuzzyDL reasoner to define fuzzy ontologies [6].
As in previous case, Datil restricts itself to data property assertions and range
restrictions and does not consider any fuzzy information (not even the degree
of truth of the assertions).

– .csv (Comma-Separated Values) format consists of large data (numbers and
text) in plain text. Each record (row) in the file contains one or more fields
(columns) separated by commas. In this case, the clustering algorithm takes
as an input all the values for a given column. Typically, the first line of the
file is special and contain the column names, which should correspond to
datatype properties from an ontology.

Output format. Datil supports 2 possible output formats: .owl, and .fdl. The
output is a fuzzy ontology with some fuzzy datatype definitions that can be
represented as OWL 2 annotations (as specified in Fuzzy OWL 2) or as fuzzyDL
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(.fdl) axioms. If the output is a .fdl file, apart from the definition of the fuzzy
datatypes, Datil adds further axioms required by fuzzyDL reasoner (functional
and range data property axioms).

If the input was an ontology (.owl or .fdl), the output is an extension with
the new elements. If the input was a .csv file, the output ontology is created
from scratch, and the user can import it later on from another ontology file.

Fig. 3. Snapshot of the main user interface of Datil.

Dependencies. Datil is implemented in Java and uses some external libraries:

– OWL API 5 [14] is an ontology API to manage OWL 2 ontologies in Java
applications and provides a common interface to interact with DL reasoners.
It can be considered as a de facto standard, as the most recent versions of
most of the semantics tools and reasoners use the OWL API to load and
process OWL 2 ontologies.

– HermiT 6 is an OWL 2 ontology reasoner [12]. It completely supports the
language and implements several optimization techniques. HermiT is imple-
mented in Java, and is accessible through several interfaces, including the
OWL API. We use it to retrieve all the data property assertions, not only
those explicitly represented in the ontology but also the implicit ones.

5 http://owlapi.sourceforge.net.
6 http://www.hermit-reasoner.com.

http://owlapi.sourceforge.net
http://www.hermit-reasoner.com
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– Java-ML (Java Machine Learning Library)7 is a collection of machine learning
algorithms and a common Java interface for those algorithms. Although Java-
ML provides an implementation of k-means, we have implemented our own
version the algorithm. However, we do use its Java data structures in all of
our clustering algorithms.

– fuzzyDL8 is a fuzzy ontology reasoner [6]. It supports a fuzzy extension of a
significant fragment of OWL 2 and supports a notable plethora of reasoning
services. The possible input formats are Fuzzy OWL 2, its own syntax in FDL
format, and a Java API. We use fuzzyDL to translate fdl fuzzy ontologies into
Fuzzy OWL 2.

Fig. 4. GUI to create a configuration file in Datil.

7 http://java-ml.sourceforge.net.
8 http://www.umbertostraccia.it/cs/software/fuzzyDL/fuzzyDL.html.

http://java-ml.sourceforge.net
http://www.umbertostraccia.it/cs/software/fuzzyDL/fuzzyDL.html
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Configuration options. Datil requires several parameters:

– The input and output formats.
– The input file. The output file is not a parameter; Datil uses the same filename

(with a different filename extension if there is a format change).
– The selected clustering algorithm.
– The number of clusters (only for k-means and fuzzy c-means) for all the

properties, or a different number for each property.
– The properties for which to learn the fuzzy datatypes.
– Use of zeros (only for .csv files): zero values can be either taken into account

or skipped (in practice, they are often used just to represent empty data).
– Use of segments (only for .csv input files), i.e., the first column can have a

special meaning classifying each row as belonging to a different category.

User interface. Figure 3 shows a snapshot of the main user interface, where
the user can configure most of the previously mentioned parameters: input and
output formats, input file, use of zeros and segments, clustering algorithm, and
global number of clusters. In case of .csv files, the user can select a folder with
several files rather than a single one. By default, Datil learns fuzzy datatypes
for all data properties with a numerical range.

It is also possible to use a configuration file to select a subset of the data
properties and/or select a different number of clusters for each of them if the
clustering algorithm is not mean-shift. Figure 4 shows how Datil supports the
creation of the file by making its syntax transparent to the user. Thanks to
the configuration file the user does not need to repeat the selection in future
executions. If the system does not find it, it runs with the default values.

4 Use Case: Semantic Lifestyle Profiling

Lifestyle can be defined as a collection of routines and behaviors shaped by the
social, economic, and environmental structure around a person. In a computa-
tional application the behaviors are represented by measurements from wearable
sensors. The lifestyle of an individual can then be modeled by the statistics of
the measurements conditioned by the elements of the surrounding structure. The
percentage of day time spent doing certain activities, the locations where a per-
son spends his time, and the amount of times or frequency with which a person
performs an activity or visits a place, are examples of data that provide a good
idea of the person’s type of lifestyle.

A model of a lifestyle can be based on matching a predefined semantic tem-
plate to the data. We propose discovering these templates blindly from the data
using machine learning techniques [9]. Semantically meaningful and interpretable
models to better understand the underlying statistics of individual lifestyle pat-
terns of people is not a trivial task because of the variability of the individuals.
Even if technology allows for a broad spectrum of sensors, it is not straight-
forward to choose the most appropriate data acquisition, data imputation and



Datil: Learning Fuzzy Ontology Datatypes 109

data fusion techniques [19]. Semantics can enhance data-driven processes and
improve accuracy and precision of recognition in human activities [10,11].

To serve application development in Ambient Intelligence scenarios ranging
from activity monitoring in smart homes to active healthy aging or lifestyle
profiling, we have developed a fuzzy ontology that allows to describe the lifestyle
of a user given its digital footprints such as wrist-born activity trackers, GPS and
mobile phone applications9. The ontology includes information such as height,
weight, locations, cholesterol, sleep, activity levels, activity energy expenditure,
heart rate, or stress levels, among many other aggregated features.

In order to populate the ontology, the only information that we have used are
real data obtained from digital traces such as sleep and activity sensors and other
wearable devices. In particular, we used 40 records of volunteers of middle age
living in the Eindhoven area (The Netherlands) [9]. These data were provided by
a private company and are confidential (little details are thus given in this paper
for privacy reasons). However, we would like to point out that this scenario is a
typical case where we do not have data about the membership to classes but we
do know the values of several data properties.

The next step is to learn some fuzzy datatypes for each of the 68 data prop-
erties and 14 day segments by using Datil. If we use k-means with k = 5 fuzzy
datatypes, we end up trying to learn 4760 fuzzy datatypes, although for some
combinations of data property and day segment there were no data. For instance,
one of the learnt fuzzy datatypes for the data property HighSkinTemperature
restricted to the day segment day AtWork is HighSkinTemperatureAtWork, defined
(in Fuzzy OWL 2 Manchester syntax) as follows:
Datatype: HighSkinTemperatureAtWork

Annotations:
fuzzyLabel "<fuzzyOwl2 fuzzyType =" datatype">

<Datatype type=" triangular" a="22.54" b="27.97" c="30.22" />
</fuzzyOwl2 >"

EquivalentTo:
(xsd:double[>= " -6.71"^^ xsd:double] and xsd:double[<= "37.97"^^ xsd:double])

Note that indeed the fuzzy datatypes add more knowledge, in the sense that
we can make new inferences. For example, two individuals with slightly different
skin temperatures at work, even if such values are different than the center
of the triangular function 27.97, would be compatible with the fuzzy datatype
HighSkinTemperatureAtWork with different degrees of truth.

To compute the categorization of a person into some lifestyle pattern, we
propose the following process:

1. Build a crisp ontology with the features of interest, using domain data scien-
tists with diet and specialists that monitor cardiac disease patients. At this
point, experts should identify lifestyle patterns like MediterranLuncher.

2. Populate it with data property assertions obtained from wearable devices.
3. Learn some fuzzy datatypes from the data property assertions using Datil.

9 https://github.com/NataliaDiaz/Ontologies.

https://github.com/NataliaDiaz/Ontologies
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4. Define some preliminary rules (concept equivalence or fuzzy subclass axioms)
with the help of an expert. Some of the concepts will have complex definitions,
being defined in terms of the learnt datatypes. For example, one can define
the concept of MediterranLuncher from the (late) time and the (high) duration
of the lunch breaks.
(define -concept MediterraneanLuncher (g-and

(some StartTimeFixedAfternoon HighStartTimeFixedAfternoon)
(some ActivityDurationFixedAfternoon HighActivityDurationFixedAfternoon)

)

5. Ask a fuzzy semantic reasoner to retrieve all the instances of each of the
defined concepts together with the degrees of membership.

6. Represent it as fuzzy concept assertions and add them to the fuzzy ontology.
7. Run a learning algorithm starting from memberships to fuzzy classes (Fuzzy

DL-Learner) to get the final rules. Final rules are complex definitions of
lifestyle pattern concepts, similar to the preliminary rules but automatically
derived from the real data.

5 Conclusions and Future Work

This paper has presented Datil, a novel tool which is able to learn fuzzy datatypes
automatically. Datil supports different input and output formats, allowing both
enriching existing fuzzy ontologies and helping in the extension of crisp ontologies
to the fuzzy case. Three well-known clustering algorithms are implemented to
compute a set of centroids from available data, and then the fuzzy datatypes
are defined after them. We have also discussed how fuzzy datatype learning has
been applied to a real-world application: semantic lifestyle profiling. In order to
characterize the lifestyle of people given their digital footprints, we start from
numerical data obtained from different sensors and use Datil to cluster them
into fuzzy datatypes interpretable by human users.

Fuzzy datatype learning is a complementary technique to other approaches
for fuzzy ontology learning. In particular, our implementation could be used
to extend Fuzzy DL-Learner, a system learning fuzzy subclass axioms. Other
ideas for future work include the implementation of more sophisticated clustering
algorithms. Last but not least, we plan to apply Datil to learn fuzzy datatypes
in some more real-world domains; this practical experience will surely provide
more ideas to extend our tool.
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Abstract. Axioms of two versions of inverse fuzzy transformation sys-
tems are introduced, and it is proved that a transformation function satis-
fies these axioms if and only if it is an upper or lower inverse lattice-valued
F-transform with respect to a fuzzy partition. Categories of inverse trans-
formation systems are introduced, and it is proved that these categories
are isomorphic to the category of spaces with fuzzy partitions.

1 Introduction

Fuzzy transform (or F -transform) is a method that is successfully used in signal
and image processing [2], compression [3,6,10,21], numerical solutions of ordi-
nary and partial differential equations [5,20,22], data analysis [12] and many
other applications. The main strategy of fuzzy transform techniques is to trans-
form an original space of functions into a special space of functions where various
computations are simpler. Inverse transformations back to the original spaces
yield either the original functions or their approximations (see, e.g., [1]). These
techniques, which were specially developed for fuzzy sets, were introduced by I.
Perfilieva in a series of papers [10–16,18] with various levels of generalization.
Originally, the notion of a fuzzy transform (or F-transform) was introduced for
real-valued functions and fuzzy sets with values in the �Lukasiewicz algebra. In
the same paper [10], a notion of F-transform that is based on a residuated lattice
in the interval [0, 1] is also introduced as a generalization of the original defi-
nition. Moreover, in paper [14], the notions of direct and inverse F-transforms
were extended to the case of Q-valued functions on a space that is defined by
Q-valued fuzzy partitions, where Q is a complete residuated lattice.

The basic strategy of the F -transform is to approximate values of real-valued
functions that are defined on a set X by values of these functions that are
calculated in the neighbourhoods of elements of a fuzzy partition that is defined
on X. Fuzzy transform can also be characterized as a method for converting
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Grant Agency of the Czech Republic.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 854, pp. 115–126, 2018.
https://doi.org/10.1007/978-3-319-91476-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91476-3_10&domain=pdf


116 J. Močkoř

complicated and huge fuzzy sets to smaller and simpler fuzzy sets. From that
point of view, a one-dimensional lattice-valued fuzzy transform can be described
as a map F : QX → QY , where X is a “large” set (the original universe of fuzzy
sets), Y is a “smaller” set (a new, simpler universe), and Q is an appropriate
complete lattice.

The ground structure for F-transform constructions is the space with a fuzzy
partition, which is represented by a set X (a domain of real- or lattice-valued
functions) and a system A = {Ay : y ∈ Y } of fuzzy sets in X, which is called a
fuzzy partition on X. In most definitions of F-transform methods, fuzzy partitions
must satisfy additional properties. The original definition of F-transform of real-
valued functions (see [13]) describes a fuzzy partition as a finite system of fuzzy
sets Ai, i = 1, . . . , n that are defined in a real interval X = [a, b] and satisfy
the following properties with respect to a finite set of real points xk, where
a = x0 < · · · < xn = b, for each k = 1, . . . , n:

1. xk ∈ core(Ak) = {x ∈ X : Ak(x) = 1},
2. SuppAk = (xk−1, xk+1),
3. Ak is continuous,
4. Ak is strictly increasing on [xk−1, xk] and strictly decreasing on [xk, xk+1],
5.

∑n
k=1 Ak(x) = 1, for each x ∈ [a, b].

The original definition of a fuzzy partition is not suitable for lattice-valued func-
tions. For that case, Perfilieva [11] introduced the notion of a lattice-valued fuzzy
partition that is defined for lattice-valued functions, which is a natural general-
ization of a fuzzy partition that is defined by a lattice-valued similarity relation.
The category SpaceFP of lattice-valued fuzzy partitions was introduced in [7],
where principal properties of that category were described. Both real-valued and
lattice-valued F-transforms are originally defined by a formula with fuzzy sets
using a given fuzzy partition. This ad hoc approach, which is often used in the
theory of fuzzy sets, alters the properties of such objects. Many basic properties
of these objects need to be derived from the specific shape of the formula that
defines them, instead of being explicitly described by axioms of the objects. In
[8], we introduced a new structure (without the notion of a fuzzy partition) that
we call a fuzzy transformation system. This structure has been proven equiv-
alent to a lattice-valued F-transform with respect to a fuzzy partition. As we
mentioned, an approximation of the original function can be derived by inverse
F-transform, which was also introduced by Perfilieva [13]. As in the case of a
direct F-transform, an inverse F-transform is also defined by an ad hoc formula
that is based on the explicit use of a fuzzy partition.

To eliminate as much as possible the explicit definition of the inverse F-
transform based on fuzzy partitions, we introduce in this article a new axiomati-
cally defined structure called inverse fuzzy transformation. This axiomatic defini-
tion focuses exclusively on the properties of the inverse transformation function
QY → QX and does not use any fuzzy partitions. We show that analogous to
the direct F-transform, the inverse transformation system is isomorphic to the
inverse F-transform with respect to a fuzzy partition.
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2 Upper and Lower F-transforms

Since Zadeh’s original paper [23] was published, the notion of a “fuzzy set” has
changed significantly and is now more general. The first important modification
concerns the value set: instead of the real-number interval I = [0, 1], more general
lattice structures Q are considered. Among these lattice structures, complete
residuated lattices play an important role, (see, e.g., [9]) and are also called
strictly two-sided commutative quantales (see [19]). Such a structure is defined
as follows: Q = (Q,∧,∨,⊗,→, 0, 1) such that (Q,∧,∨) is a complete lattice with
bottom element 0 and top element 1, (Q,⊗, 1) is a commutative monoid, and →
is a binary operation that is adjoint to ⊗, i.e.,

α ⊗ β ≤ γ iff α ≤ β → γ.

Recall that a negation of an element a in Q is defined by ¬a = a → 0. A
residuated lattice Q is called a (commutative, integral) Girard monoid [4] if, for
arbitrary a ∈ Q, it satisfies the double negation law ¬¬a = a.

For a residuated lattice Q, a Q-fuzzy set in a crisp set X is a map f : X → Q.
An F -transform, in a form that was introduced by Perfilieva [14], is based on
the so-called fuzzy partitions on the crisp set.

Definition 1 [14]. Let X be a set. A system A = {Aλ : λ ∈ Λ} of normal
Q-fuzzy sets in X is a fuzzy partition of X if {core(Aλ) : λ ∈ Λ} is a partition
of X. A pair (X,A) is called a space with a fuzzy partition.

If (X,A) is a space with a fuzzy partition, then by |A| we denote the index set
of A. The category SpaceFP of spaces with fuzzy partitions is defined in [7].

Definition 2. The category SpaceFP is defined by

1. Fuzzy partitions (X,A) as objects,
2. Morphisms (g, σ) : (X,A) → (Y,B) such that

(a) g : X → Y is a map,
(b) σ : |A| → |B| is a map such that

∀λ ∈ |A|, x ∈ X Aλ(x) ≤ Bσ(λ)(g(x)).

3. The composition of morphisms in SpaceFP is defined by (h, τ) ◦ (g, σ) =
(h ◦ g, τ ◦ σ).

If (g, σ) : (X,A) → (Y,B) is a morphism, then for any λ ∈ |A|, g(core(Aλ)) ⊆
core(Bσ(λ)), which follows from the definition.

Objects of the category SpaceFP represent ground structures for a fuzzy
transform, which was proposed by Perfilieva [13] and, in the case where it is
applied to Q-valued functions with Q-valued partitions, in [14]. Two variants of
lattice-valued fuzzy transforms are defined – lower and upper F-transforms.

Definition 3 [14]. Let (X,A) be a space with a fuzzy partition A = {Aλ : λ ∈
|A|}.
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1. An upper F-transform with respect to the space (X,A) is a function F ↑
X,A :

QX → Q|A| that is defined by

f ∈ QX , λ ∈ |A|, F ↑
X,A(f)(λ) =

∨

x∈X

(f(x) ⊗ Aλ(x)).

2. A lower F-transform with respect to the space (X,A) is a function F ↓
X,A :

QX → Q|A| that is defined by

f ∈ QX , λ ∈ |A|, F ↓
X,A(f)(λ) =

∧

x∈X

(Aλ(x) → f(x)).

In [8], we introduced upper and lower transformation systems on a set X as
special maps QX → QY and proved that these upper and lower transformation
systems are equivalent to upper or lower F-transforms, respectively, with respect
to a fuzzy partition A that is defined on X, such that |A| = Y . Moreover,
we proved that the categories of upper and lower transformation systems are
isomorphic to the category SpaceFP.

3 Axiomatic Definition of Inverse F-transforms

It is natural to ask the following question: can we reconstruct a function by its F-
transform? As expected, in general, precise reconstruction is not possible because
we lose information when passing to the F-transform. However, for any lattice-
valued F-transform F : QX → Q|A| with respect to a fuzzy partition A, there
exists an inverse lattice-valued F-transform H : Q|A| → QX such that HF (f) is
an approximation of an original function f ∈ QX . The inverse lower and upper
lattice-valued F-transforms were also defined by Perfilieva [13] and the proximity
between the original function f and the function HF (f) was investigated in [13].
In what follows, by Q, we denote a complete residuated lattice.

Definition 4. Let (X,A) be a space with a fuzzy partition A = {Aλ : λ ∈ |A|}.
1. An upper inverse F -transform with respect to (X,A) is a function H↑

X,A :
Q|A| → QX that is defined by

(∀p ∈ Q|A|, x ∈ X) H↑
X,A(p)(x) =

∧

λ∈|A|
Aλ(x) → p(λ).

2. A lower inverse F -transform with respect to (X,A) is a function H↓
X,A :

Q|A| → QX that is defined by

(∀p ∈ Q|A|, x ∈ X) H↓
X,A(p)(x) =

∨

λ∈|A|
Aλ(x) ⊗ p(λ).
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In this section, we define inverse transformation systems on a set X as maps
QY → QX that satisfy specified axioms and we prove that the only inverse
transformation systems that satisfy the axioms are upper and lower inverse F -
transforms with respect to fuzzy partitions. Moreover, we show that the cate-
gories of upper or lower inverse transformation systems are isomorphic to the
category SpaceFP of spaces with fuzzy partitions.

In what follows, we use the following notation: Let X be a set and α ∈ Q.
Then, αX ∈ QX is the constant function with value α. By χX,{x} we denote the
characteristic function X → Q of a singleton {x} in a set X. If there is no risk
of misunderstanding, instead of χX,{x} we use only χ{x}.

The notion of a lower inverse transformation system is defined as follows:

Definition 5. A system (X,Y, u, T ) is called a (Q-valued) lower inverse
transformation system if

1. X,Y are sets;
2. u : X � Y is a surjective map;
3. T : QY → QX is a map such that

(a) For each {si : i ∈ J} ⊆ QY , T (
∨

i∈j si) =
∨

i∈J T (si);
(b) For each s ∈ QY , α ∈ Q, T (αY ⊗ s) = αX ⊗ T (s);
(c) For each y ∈ Y, x ∈ X, T (χY,{y})(x) = 1 ⇔ u(x) = y.

Our goal is to prove that lower inverse transformation systems are precisely
lower inverse F-transforms, which are defined in Definition 4.

Theorem 1. Let X,Y be sets, u : X → Y a surjective map and T : QY → QX

a map. The following statements are equivalent:

(1) (X,Y, u, T ) is a lower inverse transformation system;
(2) There exists (X,A) ∈ SpaceFP such that |A| = Y , u(x) = y iff x ∈

core(Ay) and T = H↓
X,A.

Proof. For the proof of the theorem, we recall that according to [17], each
function s ∈ QY can be represented in the form

s =
∨

y∈Y

s(y)
Y

⊗ χ{y}. (1)

(1) ⇒ (2). For y ∈ Y , we set Ay = T (χ{y}) ∈ QX . Since u is a surjective
map, it follows from property (c) that A = {Ay : y ∈ Y } is a fuzzy partition in
the set X, |A| = Y and u(x) = y iff x ∈ core(Ay).We show that for each s ∈ QY ,
T (s) = H↓

X,A(s). According to Eq. (1), for each x ∈ X, we have

T (s)(x) = T (
∨

y∈Y

s(y)
Y

⊗ χ{y})(x) =
∨

y∈Y

T (s(y)
Y

⊗ χ{y})(x) =

∨

y∈Y

s(y)
X

(x) ⊗ T (χ{y})(x) =
∨

y∈Y

s(y) ⊗ Ay(x) = H↓
X,A(s)(x).
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(2) ⇒ (1). We show that (X, |A|, u,H↓
X,A) is a lower transformation system,

where u(x) = α iff x ∈ core(Aα). It is clear that H↓
X,A satisfies conditions (a)

and (b). For α ∈ |A|, we have

H↓
X,A(χ|A|,{α})(x) =

∨

β∈|A|
Aβ(x) ⊗ χ|A|,{α}(β) = Aα(x) ⊗ χ|A|,{α}(α) = Aα(x),

and H↓
X,A satisfies condition (c).

�
Any lower inverse transformation system (X,Y, u, T ) has the following prop-

erty:
(∀s ∈ QY , x ∈ X) T (s)(x) ≥ s(u(x)).

From relation (1) and properties from Definition 5, it follows that

T (s)(x) =
∨

y∈Y

s(y) ⊗ T (χY,{y})(x) ≥ s(u(x)) ⊗ T (χY,{u(x)})(x) = s(u(x)).

We introduce an upper variant of an inverse transformation system.

Definition 6. A system (X,Y,w, S) is called a (Q-valued) upper inverse
transformation system if

1. X,Y are sets,
2. w : X � Y is a surjective map,
3. S : QY → QX is a map such that

(a) For each {si : i ∈ J} ⊆ QY , S(
∧

i∈j si) =
∧

i∈J S(si);
(b) For each s ∈ QY , α ∈ Q, S(αY → s) = αX → S(s);
(c) For each x ∈ X, y ∈ Y , S(¬χY,{y})(x) = 0 ⇔ w(x) = y.

We want to show that upper inverse transformation systems are precisely
upper inverse F -transforms, which were introduced in Definition 4.

Theorem 2. Let X,Y be sets, w : X → Y a surjective map and S : QY → QX

a map. Let the double negation law hold in Q. Then, the following statements
are equivalent:

(1) (X,Y,w, S) is an upper inverse transformation system;
(2) There exists (X,A) ∈ SpaceFP such that |A| = Y , w(x) = y iff x ∈

core(Ay) and S = H↑
X,A.

Proof. For the proof of Theorem 2, we need the following representation of a
function ¬s, where s ∈ QY , which was proved in [8]:

¬s =
∧

y∈Y

s(y)
Y

→ ¬χ{y}. (2)
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(1) ⇒ (2). For y ∈ Y , we set Ay = ¬S(¬χ{y}). According to (3c), core(Ay) =
{x ∈ X : w(x) = y} and Ay is a normal fuzzy set in X. Moreover, it follows
that A = {Ay : y ∈ Y } is a fuzzy partition in X and |A| = Y . We show that
S(s) = H↑

X,A. Let s ∈ QY , x ∈ X. Then, according to (2), we have

s = ¬¬s =
∧

y∈Y

¬s(y)
Y

→ ¬χ{y},

and we obtain

S(s)(x) = S(¬¬s)(x) = S(
∧

y∈Y

¬s(y)
Y

→ ¬χ{y})(x) =

∧

y∈Y

S(¬s(y)
Y

→ ¬χ{y})(x) =
∧

y∈Y

¬s(y)
X

(x) → S(¬χ{y})(x) =

∧

y∈Y

¬s(y)
X

(x) → ¬¬S(¬χ{y})(x) =
∧

y∈Y

¬S(¬χ{y})(x) → s(y) =

∧

y∈Y

Ay(x) → s(y) = H↑
X,A(s)(x).

(2) ⇒ (1). To prove that (X, |A|, w,H↑
X,A) is an upper transformation sys-

tem, we need to prove only properties (b) and (c). The proof of the property (a)
is trivial. For α ∈ Q, s ∈ Q|A|, we have

H↑
X,A(αY → s)(x) =

∧

β∈|A|
Aβ(x) → (αY → s)(β) =

∧

β∈|A|
(Aβ(x) ⊗ α) → s(β) =

∧

β∈|A|
(α ⊗ Aβ(x)) → s(β) =

∧

β∈|A|
α → (Aβ(x) → s(y)) =

∧

β∈|A|
(α → (Aβ(x) → s(y))) =

α → (
∧

β∈|A|
(Aβ(x) → s(y)) = αX(x) → H↑

X,A(s)(x) =

(αX → H↑
X,A(s))(x),

and H↑
X,A satisfies property (b). In addition, for α ∈ |A|, x ∈ X, we have

¬H↑
X,A(¬χ|A|,{α})(x) = ¬

∧

β∈|A|
Aβ(x) → (¬χ|A|,{α})(β) =

¬
∧

β∈|A|
Aβ(x) ⊗ χ|A|,{α}(β) → 0 = ¬(Aα(x) → 0) = Aα(x).

Hence,

H↑
X,A(¬χ|A|,{α})(x) = 0 ⇔ Aα(x) = 1 ⇔ w(x) = α,
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and H↑
X,A satisfies property (c).

�
If Q satisfies the double negation law, any upper inverse transformation sys-

tem (X,Y,w, S) has the following property:

(∀s ∈ QY , x ∈ X) S(s)(x) ≤ s(w(x)).

From the above proof, it follows that

S(s)(x) =
∧

y∈Y

¬S(¬χ{y})(x) → s(y) ≤ ¬S(¬χ{w(x)})(x) → s(w(x)) =

1Q → s(w(x)) = s(w(x)).

In [8], we introduced the categories FTrans↑ and FTrans↓ of upper and
lower transformation systems and proved that these categories are isomorphic
to the category SpaceFP. We prove analogous results for the categories of upper
and lower inverse transformation systems. For any sets X,Y and a map f : X →
Y , by f→ we denote a Zadeh’s extension QX → QY of f , i.e., for t ∈ QX , y ∈ Y ,

f→(t)(y) =
∨

x∈X,f(x)=y

t(x).

Analogously, f← : QY → QX is an extension of f that is defined by

f←(s)(x) = s(f(x)),

for each s ∈ QY , x ∈ X.

Definition 7. The category ITrans↓ of lower inverse transformation systems
is defined as follows:

1. Objects are lower inverse transformation systems;
2. Morphisms (f, σ) : (X,Y, u, T ) → (X1, Y1, u1, T1) are defined as follows:

(a) f : X → X1 and σ : Y → Y1 are maps;
(b) In the diagram

QY T−−−−→ QX

σ→
⏐
⏐
�

⏐
⏐
�f→

QY1
T1−−−−→ QX1 ,

we have T1 ◦ σ→ ≥ f→ ◦ T ;
(c) Morphisms are composed component-wise.

It can be verified easily that ITrans↓ is a category.

Theorem 3. The categories SpaceFP and ITrans↓ are isomorphic.
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Proof. Let (f, σ) : (X,Y, u, T ) → (X1, Y1, u1, T1) be a morphism in ITrans↓.
Then, the functor K : ITrans↓ → SpaceFP is defined by

K(X,Y, u, T ) = (X,A = {T (χY,{y}) : y ∈ Y }), K(f, σ) = (f, σ).

From the proof of Theorem 1, it follows that (X,A) ∈ SpaceFP. We show that
(f, σ) : (X,A) → (X,A1) is a morphism in the category SpaceFP. For x ∈ X,
we have

T (χY,{y})(x) ≤
∨

x′∈X,f(x′)=f(x)

T (χY,{y})(x′) = f→T (χY,{y})(f(x)) ≤

T1 ◦ σ(χY,{y})(f(x)) = T1(χY1,{σ(y)})(f(x)).

It is clear that K is a functor. Let the functor K−1 be defined by

K−1(X,A) = (X, |A|, u,H↓
X,A)

where u : X → |A| is such that u(x) = λ ⇔ x ∈ core(Aλ). From the proof
of Theorem 1, it follows that K−1(X,A) ∈ ITrans↓. Let (f, σ) : (X,A) →
(Y,B) be a morphism in SpaceFP. Then, K−1(f, σ) = (f, σ) is a morphism
K−1(X,A) → K−1(Y,B) in ITrans↓. Let s ∈ Q|A|, y ∈ Y . Then, we have

f→H↓
X,A(s)(y) =

∨

x,f(x)=y

H↓
X,A(s)(x) =

∨

x,f(x)=y

∨

α∈|A|
Aα(x) ⊗ s(α) ≤

∨

x,f(x)=y

∨

α∈|A|
Bσ(α)(f(x)) ⊗ s(α) ≤

∨

α∈|A|
Bσ(α)(y) ⊗

∨

α′,σ(α′)=σ(α)

s(α′) ≤
∨

β∈|B|
Bβ(y) ⊗

∨

α,σ(α)=β

s(α) =

∨

β∈|B|
Bβ(y) ⊗ σ→(s)(β) = H↓

Y,Bσ→(s)(y),

and (f, σ) is a morphism in ITrans↓. From the proof of Theorem 1, it follows
directly that K.K−1 = K−1.K = id.

�
Definition 8. The category ITrans↑ of upper inverse transformation systems
is defined as follows:

1. Objects are upper inverse transformation systems;
2. Morphisms (f, σ) : (X,Y,w, S) → (X1, Y1, w1, S1) are defined as follows:

(a) f : X → X1 and σ : Y → Y1 are maps;
(b) In the diagram

QY S−−−−→ QX

σ←
	
⏐
⏐

	
⏐
⏐f←

QY1
S1−−−−→ QX1 ,

we have S ◦ σ← ≥ f← ◦ S1;
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(c) Morphisms are composed component-wise.

It is clear that ITrans↑ is a category.

Theorem 4. Let the double negation law hold in Q. Then, categories SpaceFP
and ITrans↑ are isomorphic.

Proof. The functor L : ITrans↑ → SpaceFP is defined by

L(X,Y,w, S) = (X,A), L(f, σ) = (f, σ),

where (f, σ) : (X,Y,w, S) → (X1, Y1, w1, S1) is a morphism in ITrans↑ and
(X,A) is a space with a fuzzy partition such that S = H↑

X,A. According to
Theorem 2, A = {Ay = ¬S(¬χY,{y}) : y ∈ Y }. We prove that (f, σ) : (X,A) →
(X1,A1) is a morphism in SpaceFP. For each y ∈ Y , we have

σ←(¬χY1,{σ(y)}) ≤ ¬χY,{y}.

Using that relation, for each x ∈ X we obtain

¬A1
σ(y)(f(x)) = S1(¬χY1,{σ(y)})(f(x)) = f← ◦ S1(¬χY1,{σ(y)})(x) ≤

S ◦ σ←(¬χY1,{σ(y)})(x) ≤ S(¬χY,{y})(x) = ¬Ay(x),

and it follows that Ay(x) ≤ A1
σ(y)(f(x)). Hence, L is a functor. The functor

L−1 : SpaceFP → ITrans↑ is defined by

L−1(X,A) = (X, |A|, u,H↑
X,A), L−1(f, σ) = (f, σ),

where (f, σ) : (X,A) → (Y,B) is a morphism in SpaceFP. According to Theo-
rem 2, L−1(X,A) ∈ ITrans↑ and (f, σ) : L−1(X,A) → L−1(Y,B) is a morphism
in ITrans↑. Let t ∈ Q|B|, x ∈ X. Then, we have

f←H↑
Y,B(t)(x) = H↑

Y,B(t)(f(x)) =
∧

β∈|B|
Bβ(f(x)) → t(β) ≤

∧

α∈|A|
Bσ(α)(f(x)) → t(σ(α)) ≤

∧

α∈|A|
Aα(x) → t(σ(α)) =

H↑
X,A(t.σ)(x) = H↑

X,Aσ←(t)(x).

It follows that L and L−1 are mutually inverse functors. �

4 Conclusions

The paper attempts to eliminate the ad hoc construction of the inverse F-
transform, which is frequently used in fuzzy set theory and applications. In
the paper, we investigated a lattice-valued version of the inverse F-transform,
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which was introduced by Perfilieva [13], that is based on a new ground struc-
ture, namely, spaces with fuzzy partitions, which generalizes classically defined
fuzzy partitions. We defined a new structure (X,Y, v,H), which is called a Q-
upper (or lower, respectively) inverse transformation system on X, and for these
structures, we introduced a system of natural axioms. We proved that unique
models of these structures that satisfy these axioms are lattice-valued versions
of lower and upper inverse F-transforms, which further justifies the appropriate-
ness of ad hoc formulas of inverse F-transforms. We also introduced categories
ITrans↑ and ITrans↓ of Q-upper and Q-lower inverse transformation systems
and proved that these categories are isomorphic to the category of spaces with
fuzzy partitions SpaceFP. (For lower transformation systems, this holds if the
double negation law holds in Q.)
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(eds.) Nonclassical Logic and Their Applications to Fuzzy Subsets, pp. 53–106.
Kluwer Academic Publishers, Dordrecht (1995). https://doi.org/10.1007/978-94-
011-0215-5-5

5. Khastan, A., Perfilieva, I., Alijani, Z.: A new fuzzy approximation method to
Cauchy problem by fuzzy transform. Fuzzy Sets Syst. 288, 75–95 (2016). https://
doi.org/10.1016/j.fss.2015.01.001

6. Loia, V., Tomasiello, S., Vaccaro, A.: Using fuzzy transform in multi-agent based
monitoring of smart grids. Inf. Sci. 388/389, 209–224 (2017). https://doi.org/10.
1016/j.ins.2017.01.022
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Abstract. Fuzzy techniques describe expert opinions. At first glance,
we would therefore expect that the more accurately the corresponding
membership functions describe the expert’s opinions, the better the cor-
responding results. In practice, however, contrary to these expectations,
the simplest – and not very accurate – triangular membership functions
often work the best. In this paper, on the example of the use of mem-
bership functions in F-transform techniques, we provide a possible theo-
retical explanation for this surprising empirical phenomenon.
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1 Formulation of the Problem

Practical Problem: Need to Find Trends in Observations. In many
practical situations, we analyze how a certain quantity x changes with time t.
For example, we may want to analyze how an economic characteristic changes
with time:

– we want to analyze the trends,
– we want to know what caused these trends, and
– we want to make predictions and recommendations based on this analysis.

To perform this analysis, we observe the values x(t) of the desired quantity
at different moments of time t. Often, however, the observed values themselves
do not provide a good picture of the corresponding trends, since the observed
values contain some random (noise-type) factors that prevent us from clearly
seeing the trends.

For economic characteristics such as the stock market value, on top of the
trend – in which we are interested – there are always day-by-day and even hour-
by-hour fluctuations. For physical measurements, a similar effect can be caused
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by measurement uncertainty, as a result of which the measured values x(t) differ
from the clear trend by a random measurement error – error that differs from
one measurement to another.

How can we detect the desired trend in the presence of such random noise?

F-transform Approach to Solving This Problem: A Brief Reminder.
One of the successful approach for solving the above trend-finding problem comes
from the F-transform idea; see, e.g., [13,14,16–19].

One of the ideas behind F-transform comes from the fact that what we really
want is not just a quantitative mathematical model, we want a good qualitative
understanding of the corresponding trend – and of how this trend changes with
time. For example, we want to be able to say that the stock market first somewhat
decreases, then rapidly increases, etc. In other words, we want these trends to
be described in terms of time-localized natural-language properties.

Once we selected these properties, we can use fuzzy logic techniques (see,
e.g., [1,6,9,12,15,23]) to describe these properties in computer-understandable
terms, as time-localized membership functions x1(t), . . . , xn(t). Time-localized
means that when we analyze the process x(t) on a wide time interval [T , T ]:

– the first membership function x1(t) is different from 0 only on a narrow
interval [T 1, T 1], where T 1 = T ;

– the second membership function x2(t) is different from 0 only on a narrow
interval [T 2, T 2], where T 2 ≤ T 1;

– etc.

so that the whole range [T , T ] is covered by the corresponding ranges [T i, T i].
Once we have these functions xi(t), then, as a good representation of the

original signal’s trend, it is reasonable to consider, e.g., linear combinations

xa(t) =
n∑

i=1

ci · xi(t) (1)

of these functions as the desired reconstruction for the no-noise signal.

This approach has indeed led to many successful applications.

In Many Practical Applications, Triangular Membership Functions
Work Well. Which membership functions should we use in this approach? At
first glance, since the objective of a membership function is to capture the expert
reasoning, we may expect that the more adequately these functions capture the
expert reasoning, the more adequate will be our result. From this viewpoint, we
expect complex membership functions to work the best.

Somewhat surprisingly, however, in many practical applications, the simplest
possible triangular membership functions work the best, i.e., functions of the
type

xi(t) = max
(

1 − |x − c|
w

, 0
)



Why Triangular Membership Functions in F-transform 129

that:

– linearly rise from 0 to 1 on the interval [c − w, c], and then
– linearly decrease from 1 to 0 on the interval [c, c + w].

Why? The above empirical fact needs explanation: why triangular membership
functions work so well?

What we do in this paper. In this paper, we provide a possible explanation
for this empirical phenomenon.

2 Analysis of the Problem and the Main Ideas Behind
Our Explanation

What is a Trend: Discussion. As we have mentioned earlier, we are interested
not so much in predicting the moment-by-moment values of the corresponding
quantity x(t) – these values contains random fluctuations. What we are inter-
ested in is the trend. So, to analyze this problem in precise terms, we need to
understand what we mean by a trend.

A trend may mean increasing or decreasing, decreasing fast vs. decreasing
slow, etc. In the ideal situation, in which we do not have any random fluctuations,
all these properties can be easily described in terms of the time derivative x′(t) def=
dx

dt
of the corresponding process.
From this viewpoint, understanding the trend means reconstructing the

derivative x′(t) of the observed process based on its random-fluctuation-
corrupted observed values.

What is F-transform from this Viewpoint. We are interested in the trend,
so once we have applied the F-transform technique and obtained the desired
no-boise expression (1), what we really want is to use its derivative

x′
a(t) =

n∑

i=1

ci · x′
i(t). (2)

If we denote the derivatives x′
i(t) of the membership functions by ei(t), the

formula (2) then means that we approximate the derivative e(t) def= x′(t) of the
original signal by a linear combination of the functions ei(t):

e(t) ≈ ea(t) =
n∑

i=1

ci · ei(t). (3)

In these terms, we approximate the original derivative by a function from a
linear space spanned by the functions ei(t). In this sense, selecting the functions
xi(t) means selecting the proper linear space – i.e., the proper functions ei(t).
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For Computational Convenience, It Makes Sense to Select an
Orthonormal Basis. What is important is the linear space.

Each linear space can have many possible bases. From the computational
viewpoint, it is often convenient to use orthonormal bases, i.e., bases for which:

– we have
∫

e2i (t) dt = 1 for all i, and
– we have

∫
ei(t) · ej(t) dt = 0 for all i �= j.

Thus, without losing generality, we can assume that the basis ei(t) is orthonor-
mal.
Comment. For the typically used equally spaced triangular functions on intervals
[T i, T i] = [T + (i − 1) · h, T + (i + 1) · h], for some h > 0, the corresponding
derivatives ei(t) are indeed orthogonal, i.e., we indeed have

∫
ei(t) · ej(t) dt = 0

for all i �= j, but, in general, we have

∫
e2i (t) dt = 2h ·

(
1
h

)2

=
2
h

�= 1.

However, it is easy to transform this basis into an orthonormal one without
changing the corresponding linear space: namely, it is sufficient to consider the

new functions e∗
i (t) =

√
h

2
· ei(t).

Mathematical Analysis of the Problem. Once we know the original func-
tion ea(t) and we have selected the basis ei(t), what are the parameters ci that
provide the best approximation?

We start with a tuple e
def= (e(t1), e(t2), . . .) that contains all observations

– to be more precise, numerical derivatives e(tk) =
x(tk+1) − x(tk)

tk+1 − tk
based on

these observations. Once we have an approximating function ea(t), we can form
a similar tuple based on the approximating values: ea

def= (ea(t1), ea(t2), . . .) It
is reasonable to select the coefficients ci for which the new tuple is the closest
to the original one, i.e., for which the distance

√
(ea(t1) − e(t1))2 + (ea(t2) − e(t2))2 + . . .

between the tuples ea and e is the smallest possible. Since the square z → z2

is a monotonic function, minimizing the distance is equivalent to minimize the
square of the distance, i.e., the quantity

(ea(t1) − e(t1))2 + (ea(t2) − e(t2))2 + . . .

In most practical situations, measurements are performed at regular intervals,
so this sum is proportional to the corresponding integral

∫
(ea(t) − e(t))2 dt.
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So, we want to find the values ci for which this integral attains its smallest
possible value. Since we assumed that the basis is orthonormal, the optimal
coefficients ci can be simply obtained as

ci =
∫

e(s) · ei(s) ds. (4)

Thus, the representation (3) takes the form

e(t) ≈ ea(t) =
n∑

i=1

ei(t) ·
(∫

e(s) · ei(s) ds

)
. (5)

We Want to Select the Functions ei(t) for Which the Noise has the
Least Effect on the Result. The whole purpose of this analysis is to eliminate
the noise – or at least to decrease its effect. From this viewpoint, it is reasonable
to select the functions ei(t) for which the effect of the noise on the reconstructed
signal ea(t) is as small as possible.

According to the formula (5), the function ea(t) is the sum of n values

vi(t)
def= ei(t) ·

(∫
e(s) · ei(s)

)
ds. (6)

Thus, it is desirable to make sure that the effect of noise on each of these
values vi is as small as possible.

Noise n(t) means that instead of the original function e(t), we have a noise-
infected function e(t) + n(t). If we use this noisy function instead of the original
function e(t), then, instead of the original value vi(t), we get a new value

vnew
i (t) = ei(t) ·

(∫
(e(s) + n(s)) · ei(s) ds

)
. (7)

The difference Δvi(t) = vnew
i (t) − vi(t) between the new and the original values

is thus equal to

Δvi(t) = ei(t) ·
(∫

n(s) · ei(s) ds

)
. (8)

What Noises n(t) Should We Consider? In principle, in different situations,
we can have different types of noise, with different statistical characteristics.

– In some cases, we know the probability distribution of the noise, i.e., we have
the case of probabilistic uncertainty.

– In other ases, we do now know the probabilities of different noise values; the
only information that we have is an upper bound Δ on the value of the noise:
|n(t)| ≤ Δ; see, e.g., [5,8,11,20]. In this case, e(t)+n(t) ∈ [e(t)−Δ, e(t)+Δ],
i.e., we have an interval uncertainty.

– In practice, we often have partial information about the probabilities.
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What We Do in this Paper. We show that in both extreme cases – when we
have full knowledge of the probabilities and when we do not know probabilities
– the optimal membership functions xi(t) are triangular.

The fact that the same family of membership functions is optimal in both
extreme cases explains why such membership functions are indeed often the most
efficient in applications of F-transform techniques.

3 Case of Interval Uncertainty: Precise Formulation of
The Problem and Its Solution

Analysis of the Problem. The difference Δvi(t) depends on time t and on
the noise n(t). To make sure that we reconstruct the trend correctly, it makes
sense to require that for all possible moments of time t and for all possible noises
n(t), this difference does not exceed a certain value – and this value should be
as small as possible. In other words, we would like to minimize the worst-case
value of this difference:

Jint(ei)
def= max

t,n(t)

∣∣∣∣ei(t) ·
(∫

n(s) · ei(s) ds

)∣∣∣∣ . (9)

So, we arrive at the following mathematical problem.

Definition 1. Let us assume that we are given:

– the value Δ > 0, and
– an interval [T i, T i].

We consider functions ei(t) defined on the given interval for which
∫

e2i (t) = 1.
For each such function ei(t), we define its degree of noise-dependence as the
value

Jint(ei) = max
t,n(t)

∣∣∣∣ei(t) ·
(∫

n(s) · ei(s) ds

)∣∣∣∣ , (10)

where the maximum is taken:

– over all moments of time t ∈ [T i, T i], and
– over all functions n(t) for which |n(t)| ≤ Δ for all t.

We say that the function ei(t) is optimal if its degree of noise-dependence is the
smallest possible.

Proposition 1. A function ei(t) is optimal if and only if |ei(t)| = const for
all t.

Discussion. We usually consider membership functions xi(t) which:

– first increase, and
– then decrease.
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For such functions xi(t), the derivative ei(t) = x′
i(t) is:

– first positive, and
– then negative.

Thus, for the optimal function, we:

– first have ei(t) equal to a positive constant c, and
– then equal to minus this same constant.

By integrating this piece-wise constant function, we conclude that the function
xi(t):

– first linearly increases,
– then linearly decreases with the same slope,

i.e., that xi(t) is a triangular membership function.
Thus, we have indeed explained why triangular membership functions are

often efficient in F-transform applications.

Comment. The piece-wise constant functions described above are well-known:
they are known as Haar wavelets; see, e.g., [3,7,10,22]. These functions indeed
form a basis, and often, by using this basis to approximate signals and images,
practitioners get very good results.

From this viewpoint, the use of triangular membership functions in F-
transform techniques is equivalent to using Haar wavelets to approximate the
corresponding trend. Since Haar wavelets are known to be practically efficient,
it is not surprising that F-transform techniques using triangular membership
functions are practically efficient as well.

Proof of Proposition 1. The desired objective function Jint is the largest
value of the quantity

q(t, n(t)) def=
∣∣∣∣ei(t) ·

(∫
n(s) · ei(s) ds

)∣∣∣∣ = |ei(t)| ·
∣∣∣∣
∫

n(s) · ei(s) ds

∣∣∣∣ (11)

over all possible values of t and n(t):

Jint = max
t,n(t)

q(t, n(t)). (12)

This double maximum can be equivalently described as

Jint = max
n(t)

Q(n(t)), (13)

where we denoted
Q(n(t)) def= max

t
q(t, n(t)). (14)

Once the noise function n(t) is fixed, the value

q(t, n(t)) (15)
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is proportional to |ei(t)|. Thus, the maximum of q(t, n(t)) over t is attained when
|ei(t)| is the largest:

Q(n(t)) = max
t

q(t, n(t)) =
(
max

t
|ei(t)|

)
·
∣∣∣∣
∫

n(s) · ei(s) ds

∣∣∣∣ , (16)

i.e.,
Q(n(t)) =

(
max

t
|ei(t)|

)
· F (n(t)), (17)

where we denoted

F (n(t)) def=
∣∣∣∣
∫

n(s) · ei(s) ds

∣∣∣∣ . (18)

The first factor in the formula (17) is a positive constant not depending on the
noise n(t). So, to find the largest value of Q(n(t)), we need to find the largest
possible value of F (n(t)):

Jint = max
n(t)

Q(n(t)) =
(
max

t
|ei(t)|

)
· max

n(t)
F (n(t)). (19)

The absolute value of the sum does not exceed the sum of absolute values,
so

F (n(t)) =
∣∣∣∣
∫

n(s) · ei(s) ds

∣∣∣∣ ≤
∫

|n(s) · ei(s)| ds =
∫

|n(s)| · |ei(s)| ds. (20)

For each s, we have |n(s)| ≤ Δ, hence

F (n(t)) ≤ Δ ·
∫

|ei(s)| ds. (21)

On the other hand, for n(s) = Δ · sign(ei(s)), we have

n(s) · ei(s) = Δ · sign(ei(s)) · ei(s) = Δ · |ei(s)|. (22)

Hence, for this particular noise, we have

F (n(t)) =
∣∣∣∣
∫

Δ · |ei(s)| ds

∣∣∣∣ = Δ ·
∫

|ei(s)| ds. (23)

So, the upper bound in the inequality (21) is always attained, hence

max
n(t)

F (n(t)) = Δ ·
∫

|ei(s)| ds. (24)

Substituting the expression (24) into the formula (19), we conclude that

Jint =
(
max

t
|ei(t)|

)
· Δ ·

∫
|ei(s)| ds. (25)

We want to find a function ei(t) for which this expression is the smallest
possible. To find this ei(t), it is convenient to take into account that both ei-
dependent factors in the formula (25) correspond to known norms of the function
ei(t) (see, e.g., [4]):
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– the expression max
t

|ei(t)| is the L∞-norm ‖ei‖L∞ , and

– the expression
∫ |ei(s)| ds is the L1-norm ‖ei‖L1 .

Thus, we have
Jint = Δ · ‖ei‖L∞ · ‖ei‖L1 . (26)

We consider the functions ei(t) for which
∫

e2i (t) dt = 1. This property can
also be described in terms of a standard norm: namely, it can be described as
‖ei‖L2 = 1, where

‖ei(t)‖L2
def=

√∫
e2i (t) dt. (27)

There is a known inequality connecting these three norms: Hölder’s inequality
(see, e.g., [4]):

‖f‖2L2 ≤ ‖f‖L1 · ‖f‖L∞ , (28)

for which it is known that the equality is attained if and only if |f(t)| is constant
– wherever it is different from 0.

In our case, this inequality implies that

Jint = Δ · ‖ei‖L∞ · ‖ei‖L1 ≥ Δ · ‖ei‖2L2 = Δ · 1 = Δ, (29)

and that the smallest possible value Δ is attained when |ei(t)| is constant. This
is exactly what we wanted to prove.

Comment. It should be mentioned that the ideas of this proof are similar to the
ideas from our paper [2].

4 Case of Probabilistic Uncertainty: Precise Formulation
of The Problem and Its Solution

Analysis of the Problem. We consider the case when for each moment t, we
know the probability distribution of the corresponding noise n(t). Let us select
a reasonable model.

Since we do not have any reason to assume that the characteristics of noise
change with time, it makes sense to assume that all the variables n(t) corre-
sponding to different moments t are identically distributed.

Since we do not have any reason to assume that the positive values of the
noise are more probable than the negative values, it makes sense to assume that
the distribution is symmetric, and that, as a result, its mean value is 0.

Finally, since we do not have any reason to assume that the noises n(t) and
n(t′) corresponding to different moments of time are correlated, it makes sense
to assume that these noises are independent, i.e., that we have a white noise.

Under these assumptions, the difference Δvi(t) – as expressed by the formula
(8) – is a linear combination of the large number of independent variables ni(s).
Thus, due to the Central Limit Theorem (see, e.g., [21]), we can conclude that
the difference Δvi(t) is normally distributed.
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A normal distribution is uniquely determined by its mean and variance. Since
the mean value of each ni(s) is 0, the mean of Δvi(t) is also 0. The variance of
the sum of independence random variables is equal to the sum of the variances.
Since the integral is nothing else but the limit of the sums, for the variance σ2(t)
of Δvi(t), we get the following formula:

σ2
i (t) = e2i (t) · σ2 ·

∫
e2i (s) ds, (30)

where σ characterizes the standard deviation of each noise value n(s). Since we
have transformed the vectors ei(t) into an orthonormal base, we have

∫
e2i (s) ds =

1 and thus, σ2
i (t) = σ2 · e2i (t).

This variance depends on the time t. Similarly to the interval case, it is
reasonable to minimize the worst-case value of the variance, i.e., to minimize the
value max

t
(σ2 · e2i (t)). Since σ2 is a constant, minimizing this value is equivalent

to minimizing the quantity max
t

e2i (t).
So, we arrive at the following mathematical problem.

Definition 2. Let us assume that we are given an interval [T i, T i]. We consider
functions ei(t) defined on the given interval for which

∫
e2i (t) = 1. For each such

function ei(t), we define its degree of noise-dependence as the value

Jprob(ei) = max
t

e2i (t), (31)

where the maximum is taken over all moments of time t ∈ [T i, T i]. We say that
the function ei(t) is optimal if its degree of noise-dependence is the smallest
possible.

Proposition 2. A function ei(t) is optimal if and only if |ei(t)| = const for
all t.

Comment. In the previous section, we have already shown that this implies that
the original membership function xi(t) is triangular.

Proof of Proposition 2. It is known that, in general,

∫ b

a

f(t) dt ≤ (b − a) · max
s

f(s), (32)

and that the equality happens only if f(t) = max
s

f(s) for almost all t. In par-
ticular, this means that

∫ T i

T i

e2i (t) dt ≤ (T i − T i) · max
t

e2i (t), (33)

and the equality is attained only if |ei(t)| = const.
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Since we consider orthonormalized functions ei(t), the left-hand side of the
inequality (33) is equal to 1. Thus, we can conclude that

max
t

e2i (t) ≥ 1
T i − T i

,

and the equality is attained if and only if |ei(t)| = const. So, the minimum of
the functional (31) is indeed attained when |ei(t)| = const. The proposition is
proven.
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Abstract. This paper focuses on a completion of the partially dam-
aged image. There are a variety of techniques to deal with this task. Our
contribution belongs to the group of exemplar based image inpainting
techniques which process the image what was separated to the many
small regions. The regions are called patches and the task of inpaint-
ing becomes the task of searching for the most suitable patch from the
undamaged part of the image to replace the partially damaged one. Our
novelty is in processing based on fuzzy mathematics and new filling order
prioritization function.

Keywords: Image inpainting · Fuzzy transform · Patches

1 Introduction

The image inpainting deals with region completion after object removal. The
object can be building, tourist, electric wires, inscription, etc. There are many
techniques which are based on many several principles.

The first ones were based on diffusion. Let us mention technique by Ogden
et al. [1] who proposed to use Gaussian pyramids. Important contribution in this
field was given by Bertalmio et al. [2] who established the term image inpainting.
The idea behind was to propagate change in information (authors used derivative
of Laplacian) along the edges. Some authors focus on the relation between image
processing and physics. One proposition like that is to take the image inpainting
as a problem of motion of viscous fluids [3]. The common idea behind all of the
mentioned techniques is in the assumption that pixels surrounding the damaged
area should be spread inward it and blended eventually.

Another group of techniques is known as exemplar based [4]. The new pixels
in the damaged area are not derived one-by-one from the surrounding pixels
but from bigger continuous regions known as patches. These patches are taken
from the known region of the image and their parts are used for filling in the
damaged region. Significant improvement was given by Criminisi et al. [5]. Their
technique is described more in the following text.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 854, pp. 139–150, 2018.
https://doi.org/10.1007/978-3-319-91476-3_12
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Our contribution is based on fuzzy mathematics. We propose new way of
proper patch selection which takes color and gradient to the consideration. Their
estimations are given by F-transform applied to the input image in a different
color model and gray-scale representation. Furthermore, the proposed algorithm
contains a new way of filling order prioritization.

The structure of this contribution is as follows. The preliminaries and state
of the art are given in Sect. 2. Section 3 describes the theory of F-transform. The
novel algorithm is described in Sect. 4, supported by examples in Sect. 5. The
paper is concluded in Sect. 6.

2 Preliminaries and State of the Art

Let us fix the following notation and use it throughout the paper. Image I is
a 2D function such as I : [0,M ] × [0, N ] → [0, 255], where M + 1 denotes the
image width, N + 1 denotes the image height, and [0, 255] denotes the pixel
intensity. We denote [0,M ]Z = {0, 1, 2, . . . ,M}, [0, N ]Z = {0, 1, 2, . . . , N} and
[0, 255]Z = {0, 1, 2, . . . , 255}. Image I is assumed to be partially known on the
area Φ and unknown (damaged) on the area Ω. The border between these areas
is denoted by δΩ and assumed to be unknown. The notation is illustrated in
Fig. 1.

(a) (b)

Fig. 1. (a) Two areas where image I is defined (Φ) and undefined (Ω); (b) mask S.

In exemplar based inpainting, a rectangular patch Ψ ∈ Φ is chosen to partially
fill in region Ω. We denote Ψφ(·) for a rectangular patch centered at pixel φ. If
pixel ω is unknown (belongs to δΩ ∪ Ω), then the exemplar based inpainting
consists of finding a patch from the known area, e.g., Ψφ(·), which is the most
similar to Ψω(·) according to

arg min
φ

d(Ψω, Ψφ). (1)

Let us illustrate importance of filling order. The basic strategy is onion-peel.
The patches centered at the border pixels δΩ are processed in one direction
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(a) Damaged image (b) Onion peel (c) Criminisi

Fig. 2. Illustration of the filling order importance. Onion peel way, where pixels on the
border (red) are processed one by one from left to right, leads to wrong reconstruction.
Better way is to process certain regions first to follow the structures. Figure taken
from [5]. (Color figure online)

(e.g. from left to right) one by one. After every replacement, the border δΩ is
updated. This solution leads to unsatisfying results frequently as can be seen in
Fig. 2.

A certain development was proposed in [5]. The onion peel is replaced by
a more sophisticated version. The patches from the unknown area have priori-
ties depending on their locations. The ones that are centered on the edges and
moreover contain more undamaged pixels are processed before those in the flat
regions. The authors of [5] proposed the following priority function

P (ω) = C(ω)D(ω);ω ∈ Φ,

where the constituent functions are defined as follows

C(ω) =

∑
e∈Ψω∩(Φ) C(e)

|Ψω| ,D(ω) =
|∇I⊥

ω · nω|
α

.

In the expression for C(ω), function C(e) is such that C(e) = 0;∀e ∈ Ω ∩ δΩ
and C(e) = 1;∀e ∈ Φ. Thus, the priority is based on the gradient and number
of the known pixels. Function D(ω) represents a strength of isophotes at ω. A
larger value of P at w corresponds to a higher priority of processing for patch
Ψw. An application of this technique is shown in Fig. 3.

In this paper, we propose to apply the F-transform [6] technique. This tech-
nique establishes a correspondence between an original object (image) and a set
of orthogonal projections on elements of a fuzzy partition (details are in Sect. 3).
Each projection is a feature vector of the image with respect to a partition ele-
ment. The expected advantage of our proposal is to simplify the similarity (1)
by similarity between feature vectors of the corresponding patches. We propose
to take average intensities of the color information and average gradients. The
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Fig. 3. Removing a large object from photography by Criminisi (figure taken from [5]).

details are given in the following sections. We also propose to simplify the filling
order evaluation function.

3 F-transform

The F-transform technique was used for many tasks in image processing. Let us
mention diffusion based image inpainting [7], compression [8], edge detection [9],
image fusion [10] etc.

The definition of the F-transform [6] and the notion of a fuzzy partition1

is as follows. Fuzzy sets (basic functions) A0, . . . , Am, 1 < m < M , which are
identified with their membership functions A0, . . . , Am : [0,M ] → [0, 1], establish
a fuzzy partition of [0,M ] with nodes 0 = x0 < x1 < · · · < xm = M , if the
following conditions are fulfilled:

(1) Ak : [0,M ] → [0, 1], Ak(xk) = 1;
(2) Ak(x) = 0 if x /∈ (xk−1, xk+1), k = 0, . . . ,m;
(3) Ak(x) is continuous on [0,M ];
(4) Ak(x) strictly increases on [xk−1, xk] and strictly decreases on [xk, xk+1],

where k = 1, . . . , m;
(5)

∑m
k=0 Ak(x) = 1, x ∈ [0,M ].

We say that the fuzzy partition A0, . . . , Am is an h-uniform fuzzy partition
if nodes xk = hk, k = 0, . . . ,m are equidistant, h = M/m, and two additional
properties are met:

(6) Ak(xk − x) = Ak(xk + x), x ∈ [0, h], k = 0, . . . , m;
(7) Ak(x) = Ak−1(x − h), k = 1, . . . ,m, x ∈ [xk−1, xk+1].

1 For the sake of simplicity, we consider this notion for a one dimensional function.
Extension to two dimensions is straight forward.
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Parameter h will be referred to as a radius. The radius determines width
of the basic functions therefore the number of covered pixels with respect to
particular axis. Triangular shaped generating function A and the corresponding
h-uniform fuzzy partition is as follows

A0(x) =

{
1 − (x−x1)

h1
if x ∈ [x1, x2],

0 otherwise,

Ak(x) =

⎧
⎪⎨

⎪⎩

(x−xk−1)
hk−1

if x ∈ [xk−1, xk],

1 − (x−xk)
hk

if x ∈ [xk, xk+1],
0 otherwise,

Am(x) =

{
(x−xm−1)

hm−1
if x ∈ [xm−1, xm],

0 otherwise.

We need to distinguish between damaged and undamaged regions. For that
purpose, the binary mask S is used such as

S(x, y) =

{
0 if I(x, y) ∈ Ω ∪ δΩ

1 if I(x, y) ∈ Φ.

3.1 F-Transform of Various Degrees

The F0-transform of an image is given by a corresponding matrix of compo-
nents. Let the fuzzy partition of [0,M ] and [0, N ] be given by basic functions
A0, . . . , Am : [0,M ] → [0, 1] and B0, . . . , Bn : [0, N ] → [0, 1], respectively.

We call the m × n matrix of real numbers F0
mn[I] = (F 0

kl) the (discrete)
F 0-transform of image I with respect to {A0, . . . , Am} and {B0, . . . , Bn}, if for
all k = 0, . . . , m; l = 0, . . . , n,

F 0
kl =

∑N
y=0

∑M
x=0 I(x, y)Ak(x)Bl(y)S(x, y)

∑N
y=0

∑M
x=0 Ak(x)Bl(y)S(x, y)

.

The elements F 0
kl are called the components of the F0-transform. In image

processing, the F0-transform components determine an average intensity value
of the respective area.

Let us recall the (direct) F1-transform [9]. We say that matrix F1
mn[I] =

(F 1
kl), k = 0, . . . ,m, l = 0, . . . , n is the F1-transform of I with respect to {Ak ×

Bl | k = 0, . . . ,m, l = 0, . . . , n}, and F1
kl is the corresponding F1-transform

component.
The F1-transform components of I are linear polynomials in the form of

F 1
kl(x, y) = c00kl + c10kl (x − xk) + c01kl (y − yl),
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where the coefficients are

c00kl =

∑N
y=0

∑M
x=0 I(x, y)Ak(x)Bl(y)S(x, y)

∑N
y=0

∑M
x=0 Ak(x)Bl(y)S(x, y)

,

c10kl =

∑N
y=0

∑M
x=0 I(x, y)(x − xk)Ak(x)Bl(y)S(x, y)

∑N
y=0

∑M
x=0(x − xk)2Ak(x)Bl(y)S(x, y)

,

c01kl =

∑N
y=0

∑M
x=0 I(x, y)(y − yl)Ak(x)Bl(y)S(x, y)

∑N
y=0

∑M
x=0(y − yl)2Ak(x)Bl(y)S(x, y)

.

(2)

In image processing, the F1-transform components stands for the average
intensity and the average gradients in x and y direction of the appropriate region.

4 Novel Algorithm

The proposed algorithm is partially based on the previous research published
in [11] and more deeply in [12]. The novelty and great improvement of the new
algorithm is in change of the patch comparison measure, new completion order
function, strong impact to follow the edges and extension to color images. Let
us describe the algorithm more deeply.

As previously mentioned, inpainting deals with unknown region completion.
Image I with a designated unknown region Ω (labeled by mask S) are the inputs
to this task. Region Ω must be replaced (filled in) using patches from the known
area Φ, where Φ = [0,M ] × [0, N ] \ δΩ ∪ Ω.

The known area Φ of image I is partitioned to many overlapped patches. Each
patch has a rectangular shape with a predefined size2. The number of patches q
is determined by their size. The patches Ψ i

φ(·) where i = 1, . . . , q are stored in
the database DΨ , which will be used later for the reconstruction.

The unknown area Ω is surrounded by the border δΩ. The border has sig-
nificant importance because its pixels I(x, y) ∈ δΩ give the center points of the
patches with the most known pixels inside. To achieve high quality reconstruc-
tion, it is necessary to start with regions determined by them [5]. We propose to
find the border δΩ using mathematical morphology [13]. First step is to apply
the operator erosion defined as follows

S � T = {z ∈ [0,M ] × [0, N ]|Tz ⊆ S},

where T is a structuring element and z is a translation vector. For the purpose of
border determination, we consider square-shaped structuring element of the size
3× 3. This operation is applied to the mask S thus the values of the structuring
element T must be the same like the values of the mask pixels which belong to
the damaged region Ω ∪ δΩ. The border is determined as follows

δΩ = S − (S � T ).
2 The size depends on the size and distribution of the damaged regions.
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It is crucial to prioritize filling order. Criminisi et al. [5] addressed this issue
and proposed a solution described in Sect. 2. It consists in prioritization based
on gradient and number of known pixels in the processed patch.

We propose a different way. Our idea comes from assumption that regions
with strong edges should be processed first. The difference in comparison with the
Criminisi way lays in their estimation. We propose to compute image Laplacian
in all known region Φ such as

ΔI =
∂2

∂x2
+

∂2

∂y2
.

Illustration can be seen in Fig. 4.

(a) Image I (b) Border δΩ (c) Laplacian of Φ

Fig. 4. Illustration of the border of image I and Laplacian of the respective region Φ.

The computation is fast to process and effective to find the edges. As a next
step, we use variance of Laplacian. We assume that flat regions without any
strong edges or high contrast texture have low Laplacian variance. Therefore,
the task of filling order prioritization becomes a task of searching for a pixel
(x, y) ∈ δΩ whose 3×3 region around has a maximal variance of Laplacian such
as

(x, y) : arg max
(x,y)∈δΩ

V ar(ΔI(x, y)3×3),

where V ar(ΔI(x, y)3×3) stands for variance of Laplacian in the 3 × 3 neigh-
borhood centered around pixel (x, y). Let us use ω for the chosen pixel. The
result of the reconstruction of one particular example is shown in Fig. 5.

We take the pixel ω from the border and create the patch Ψω(·), whose center
is at this pixel. Let s be the mask of the damaged (unknown) part in Ψω(·) as
shown in Fig. 6. We apply s to the each patch in the database DΨ and create a
new database Dd

Ψ , where each patch Ψd
φ(·) is partially damaged by s. The goal

is to find the closest patch Ψd
φ(·) to patch Ψω(·) from Dd

Ψ .
To measure the closeness, we propose to transform image I to the two dif-

ferent color representations. Gray-scale for gradient computation and HSL for
average color computation. The formula using them both is as follows
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Fig. 5. Reconstruction of the image in Fig. 4. a)

(a) Patch (b) Mask

Fig. 6. Patch with unknown area determined by the mask. Mask is shown with added
border.

d(Ψ1, Ψ2) =
RMSE00(Ψ1, Ψ2) + RMSE01(Ψ1, Ψ2) + RMSE10(Ψ1, Ψ2)

3
.

where coefficients Ψ00
i , Ψ01

i and Ψ10
i , i = 1, 2 are the corresponding F1-

transform coefficients in (2). Namely, Ψ00
i stands for c00 in the hue channel

of the HSL image. Coefficients Ψ01
i and Ψ10

i stands for average gradient in the
gray-scale image, therefore c01 and c10. Operator RMSE stands for round mean
square error. The patch searching process and effect of the selected measure
d(Ψ1, Ψ2) are illustrated in Fig. 7.

The number of feature vector components is determined by the radius h of
the selected generating function. The exact value of h differs from one application
to another. A smaller value of h corresponds to a larger number of components
in a feature vector and greater computation time. A larger h leads to a faster
computation but with a higher risk of a wrong assignment.

After we choose patches Ψω(·) and Ψd
φ(·), the partially known Ψω(·) can be

replaced. The patch Ψφ(·), which corresponds to Ψd
φ(·), is selected from the

database DΨ and used. The usage indicates that we must replace the unknown
part of Ψω(·) by a respective part of Ψd

φ(·). The illustration is in Fig. 8.
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(a) Ψ(ω)

(b) 42.69 (c) 37.04 (d) 23.93 (e) 22.36 (f) 7.21

Fig. 7. The damaged patch and values of the novel closeness measure to find the most
similar one. As can be seen, the lowest value belongs to option (f) so its region identified
with the damaged region of (a) is used for replacement. Result is in Fig. 8.

(a) Ψω(·) (b) Filled in Ψω(·)

Fig. 8. (a) Patch centered around the pixel from δΩ; (b) Patch filled in by appropriate
Ψd

φ(·).

5 Examples

Let us demonstrate our algorithm and compare it with another technique [5].
Figure 9 (a) is from a database used in [14]. Figure 9 (b) and (c) were chosen to
demonstrate the feature of our novel reconstruction to follow the edges. Results
can be seen in Fig. 9.

Let us magnify the details to highlight the differences in comparison with
the conventional technique. This can be seen in Fig. 10. Image in Fig. 10 (d)
demonstrates the ability of our novel algorithm to preserve and follow compli-
cated structures. The details shows better edge completion, the most visible in
the window regions, than using Criminisi technique. Images (e) and (f) shows
higher quality of the reconstruction when it comes to follow edges and patterns
as well.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. Illustration of the image inpainting by our novel algorithm and the conventional
one. (Left column) damaged images; (middle column) reconstruction using [5]; (right
column) reconstruction using the proposed algorithm. For both algorithms, the same
patch size was used.

Our current implementation of F-transform, which is used for implementation
of the proposed algorithm, is available as a part of the OpenCV framework3. The
F-transform technique is known as very fast with processing time in milliseconds
on a non high end PC. Details with analysis can be seen in [15].

3 Module fuzzy, which is included in opencv contrib available at https://github.
com/itseez/opencv contrib.

https://github.com/itseez/opencv_contrib
https://github.com/itseez/opencv_contrib
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Details of the Fig. 9. First row ( (a), (b), (c) ) are details of the reconstruction
using Criminisi [5] technique and bottom row ( (d), (e), (f) ) using our novel algorithm.

6 Conclusion

The paper describes an exemplar based inpainting algorithm using the F1-
transform technique. We propose to represent regions of image (patches) by
feature vectors composed of F1-transform components. The patches which are
partially damaged, considered as unknown, are replaced by ones taken as a
known. Important contributions presented in our technique are the patch rep-
resentation, measure used for decision of the patch similarity and filling order
evaluation.

The patch representation is composed from average color of the hue channel
in HSL image representation and average gradients in x and y direction. The
gradients are computed from the gray-scale representation of the input image.
The filling prioritization function is based on assumption that variance of Lapla-
cian of the flat regions is minimal. Our goal is to reconstruct regions with edges
or high contrast textures first. For that purpose, our prioritization is based on
maximal variance of Laplacian.

We described the benefits of our novel technique and illustrated the advan-
tages of our filling order prioritization. The technique is demonstrated on the
several images and visually compared with another one.

Acknowledgment. This work was supported by The Ministry of Education, Youth
and Sports from the National Programme of Sustainability (NPU II) project
IT4Innovations excellence in science - LQ1602.
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Abstract. In this paper, we propose a new approach to the discrete
fuzzy transform of higher degree based on the piecewise constant rep-
resentation of discrete functions and the application of the continuous
fuzzy transform. We show how a given discrete function can be recon-
structed by using the discrete higher degree fuzzy transform and how
convenient the latter is computed by the novel approach. Finally, we
illustrate and compare the proposed technique with the original discrete
fuzzy transform of higher degree.

Keywords: Continuous fuzzy transform · Discrete fuzzy transform
F-transform · Fuzzy partition

1 Introduction

The fuzzy transform (F-transform, for short) has been introduced by Perfilieva in
[10]. In this paper, Perfilieva proposed both the continuous F-transform for con-
tinuous (and later locally integrable) functions and the discrete F-transform for
discrete functions defined over sets of finite points. The continuous F-transform
has been extended to higher degrees in [11] to improve its ability to approxi-
mate functions whose domains are connected subsets of the real line. The con-
tinuous higher degree F-transform has been reformulated for discrete functions
by Holčapek and Tichý in [4]. It is well known that the F-transform consists of
two phases, namely, direct and inverse. The direct phase transforms a (locally
integrable or discrete) function into a set of its local approximations, which are
called the direct F-transform components and are determined with respect to
basic functions, i.e., fuzzy sets, that form a fuzzy partition of the domain of the
given function. On the other hand, the inverse phase provides an approximate
reconstruction of the original function from its direct fuzzy transform compo-
nents. Due to its good reconstruction ability, low computational complexity and
successful reduction of noise, the F-transform has become a popular alternative
in various fields of application, e.g., data analysis, time series analysis, image pro-
cessing, non-parametric regression, numerical solution of differential equations,
(see, e.g., [3,5,7,9,13]).

c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 854, pp. 151–162, 2018.
https://doi.org/10.1007/978-3-319-91476-3_13
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In practice, all applications of F-transform are designed in a discrete form;
therefore, the importance of discrete (higher degree) F-transform increases, when
one solves practical tasks. Besides a discretization of integral formulas used in
the computation of the continuous F-transform (see, e.g., [12]), it seems to be
reasonable to apply the discrete F-transform of higher degree in the form as
has been introduced in [4]. Recall that if p is a real function defined on a finite
set D = {ti ∈ [a, b] | i = 1, . . . , n, ti < ti+1}, then the k-th component of the
direct F-transform of degree m (m ∈ N) of p with respect to a fuzzy partition
{Ak | k = 1, . . . , �} of D is a polynomial

Fm
k [p](t) = Ck,0 + Ck,1(t − ck) + · · · + Ck,m(t − ck)m,

where ck denotes the node of the k-th basic function, and

(Ck,0, . . . , Ck,m)T =
(
XT

k AkXk

)−1
XT

k AkY (1)

with

Xk =

⎡

⎢
⎣

1 t1 − ck · · · (t1 − ck)m

...
...

...
...

1 tn − ck · · · (tn − ck)m

⎤

⎥
⎦ ,

Ak = diag{Ak(t1), . . . , Ak(tn)} and Y = (p(t1), . . . , p(tn))T . The reconstruction,
providing an approximation of the original function p, is then given by the linear
like combinations

Fm[p](ti) =
�∑

k=1

Fm
k [p](ti) · Ak(ti). (2)

One of the disadvantages of the presented approach is the setting of a fuzzy
partition to ensure the invertibility of XT

k AkXk for any k. Indeed, each setting
of a fuzzy partition has to control that the number of elements in which each
basic function gives a non-zero value is greater then or equal to m + 1. Another
disadvantage of the presented approach is the computation of the inverse matrix
in (1) for each k, if discrete functions are defined over non-uniformly distributed
elements and the nodes of a fuzzy partition do not coincide with some of them.
Obviously, these updates make the computation of discrete higher degree F-
transform more time consuming, especially, if the number of basic functions is
large, which appears in the case of higher dimensions.

The recent theory of the higher degree F-transform is mostly developed in
the continuous design [1,2,8]. Particularly, we proposed in [1] an efficient app-
roach to the computation of the direct higher degree F-transform components
based on various bases of polynomials. The aim of this paper is to introduce
a novel (alternative) approach to the computation of a discrete higher degree
F-transform with the use of benefits of the continuous design, which can over-
come the mentioned disadvantages. To justify the usefulness of our approach, we
analyze the quality of reconstruction of the original discrete function provided
by the proposed novel approach. Furthermore, we compare our novel approach
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with the original approach to the computation of discrete F-transform. For the
purpose of this paper, we restrict ourselves to discrete functions defined over inte-
gers. Nevertheless, the proposed technique can be simply modified for discrete
functions defined over sets with uniformly distributed elements.

The paper is structured as follows. The next section provides a brief intro-
duction to the continuous F-transform of higher degree. In Sect. 3, we introduce
the novel approach to the discrete higher degree F-transform and discuss the
reconstruction of discrete functions. An illustration and comparison of the novel
approach and the original approach is presented in Sect. 4. The last section is a
conclusion.

2 Preliminaries

Let N, Z, R and C denote the set of natural numbers, integers, reals and complex
numbers, respectively.

2.1 Fuzzy Partition

Fuzzy partition is a fundamental concept of the theory of F-transform of higher
degree. In this paper, we restrict our analysis to a particular type of fuzzy par-
titions, which is called a simple uniform fuzzy partition. This type of fuzzy par-
tition consists of fuzzy sets, determined by a generating function and uniformly
spread along the real line.

Definition 1. A real-valued function K : R → [0, 1] is said to be a generating
function if it is continuous, even, non-increasing on [0, 1] and vanishing outside
of (−1, 1).

Basic examples of generating functions that are frequently used in applica-
tions of F-transform are the triangle and raised cosine functions.

Example 1. The functions Ktr,Krc : R → [0, 1] defined by

Ktr(t) = max(1 − |t|, 0) and Krc(t) =

{
1
2 (1 + cos(πt)), −1 ≤ t ≤ 1;
0, otherwise,

for any t ∈ R, are called the triangle and raised cosine generating functions,
respectively.

Definition 2. Let K be a generating function, let h and r be positive real con-
stants, and let t0 ∈ R. For any k ∈ Z, let

Ak(t) = K

(
t − t0 − ck

h

)
,

where ck = kr. The set A = {Ak | k ∈ Z} is said to be a simple uniform fuzzy
partition of the real line determined by the quadruplet (K,h, r, t0) if, for any
t ∈ R, there exists k ∈ Z such that Ak(t) > 0. The parameters h, r and t0 are
called the bandwidth, shift and central node of the fuzzy partition A, respectively.
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Since the setting of the central node has no effect on the theoretical results
concerning the fuzzy transform, for the sake of simplicity, we restrict our inves-
tigation to the simple uniform fuzzy partitions with t0 = 0. Moreover, we omit
the reference to t0 = 0 in the quadruplet (K,h, r, t0) and simply write (K,h, r).

2.2 Continuous F-transform of Higher Degree

Let L2
loc(R) be a set of all complex-valued functions that are square Lebesgue

integrable on any closed subinterval of R. As we have mentioned in Introduction,
the F-transform of higher degree consists of two phases: direct and inverse. In
what follows, we briefly recall their definitions in the form presented in [1,8].

Definition 3. Let f ∈ Lloc(R), m ∈ N, and let A be a simple uniform fuzzy
partition of R determined by the triplet (K,h, r). The direct continuous fuzzy
transform of degree m (Fm-transform) of f with respect to A is the family

Fm
A [f ] = {Fm

k [f ] | k ∈ Z}
where, for any k ∈ Z,

Fm
k [f ](t) = Ck,0 + Ck,1

(
t − ck
h

)
+ . . . + Ck,m

(
t − ck
h

)m

, t ∈ [ck − h, ck + h],

such that

(Ck,0, Ck,1, . . . , Ck,m)T = (Zm)−1 · Ym,k (3)

with Zm = (Zij) is the (m + 1) × (m + 1) invertible matrix defined by

Zij =
∫ 1

−1

ti+j−2K(t) dt, i, j = 1, . . . ,m + 1,

and Ym,k = (Yk,1, . . . , Yk,m+1)T is defined by

Yk,� =
∫ 1

−1

f(h · t + ck) · t�−1K(t) dt, � = 1, . . . ,m + 1. (4)

The polynomial Fm
k [f ] is called the k-th component of the direct continuous

Fm-transform of f .

Note that the k-th component Fm
k [f ] receives the interval [ck − h, ck + h] as

its support, so Fm
k [f ](t) is not defined for t �∈ [ck − h, ck + h]. From the linearity

property that holds for the Lebesgue integral, it is easy to see that the direct
Fm-transform satisfies the linearity property, i.e.,

Fm
A [a · f + b · g] = a · Fm

A [f ] + b · Fm
A [g],

for any a, b ∈ C and f, g ∈ L2
loc(R). Moreover, the direct Fm-transform naturally

preserves polynomials up to degree m. This fact is stated in the following lemma.
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Lemma 1. Let P be a polynomial of degree n, n ∈ N, and let Fm
A [P ] = {Fm

k [P ] |
k ∈ Z} be the direct Fm-transform of P with respect to a simple uniform fuzzy
partition of R. If m ≥ n, then, for any k ∈ Z, it holds that

Fm
k [P ](t) = P (t), t ∈ [ck − h, ck + h].

Proof: See [1] or [8].

Definition 4. Let f ∈ L2
loc(R), and let A = {Ak | k ∈ Z} be a simple uniform

fuzzy partition of R determined by the triplet (K,h, r). Let the family Fm
A [f ] =

{Fm
k [f ] | k ∈ Z} be the direct Fm-transform of f with respect to A. The inverse

continuous fuzzy transform of degree m (Fm-transform) of f with respect to
Fm

A [f ] and A is defined by

f̂m
A (t) =

∑
k∈Z

Fm
k [f ](t) · Ak(t)

∑
z∈Z

Ak(t)
, t ∈ R. (5)

By the linearity property of the direct Fm-transform, one can simply demon-
strate that the inverse Fm-transform also satisfies the linearity property. Addi-
tionally, the inverse Fm-transform approximates the original function f , where
the quality of the approximation is controlled mainly by the setting of the band-
width parameter h. The details can be found in [1,8,11].

In the next part, we assume that a simple uniform fuzzy partition A deter-
mined by a triplet (K,h, r) is fixed. Moreover, if no confusion can appear, we
simply write the (direct or inverse) Fm-transform of a function f , whereas the
reference to a simple uniform fuzzy partition A determined by a triplet (K,h, r)
is omitted.

3 Higher Degree Fuzzy Transform for Discrete Functions

3.1 Novel Definitions of the Discrete Fm -transform

Let p : Z → C be a complex-valued discrete function defined on the set of all
integers.1 Note that we chose the set of integers for a simple description of our
approach, but the same idea can be applied also for an arbitrary discrete set.
Let us extend the function p to a piecewise constant function p̄ defined on the
real line R as follows. For any t ∈ R, we define

p̄(t) = p(z) if and only if t ∈ [z − 1/2, z + 1/2) .

An example of the extension of discrete function p is depicted in Fig. 1. Since
piecewise constant functions belong to the linear space L2

loc(R), the continuous
Fm-transform, which has been defined in the previous section, can be directly
applied to them.

The introduced conversion from the discrete to the continuous space is the
core of our novel approach to the higher degree fuzzy transform for discrete func-
tions. The following definition introduces the direct Fm-transform of a discrete
function.
1 Complex-valued functions are frequently used in analysis of stochastic processes or

signal processing (see [14]).
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(a) Original discrete function p

(b) Piecewise constant extension p̄

Fig. 1. The extension of a discrete function.

Definition 5. Let p : Z → C be a complex-valued discrete function, m ∈ N, and
let A be a simple uniform fuzzy partition of R determined by the triplet (K,h, r).
The direct discrete Fm-transform of p with respect to A is defined as follows:

Fm
A [p] = {Fm

k [p̄] | k ∈ Z} , (6)

where p̄ is the extension of p defined above.

By the previous definition, the components of direct discrete Fm-transform of
a function p with respect to a fuzzy partition can be simply computed using the
product of matrices introduced in Definition 3. As a consequence of our conver-
sion to the continuous case the verification of the invertibility of matrices in (1) is
no longer required. Moreover, in spite of using integrals in the computation, the
speed of the computation of the novel approach is completely comparable with
the original. Indeed, the matrix Zm in formula (3) is fixed. Moreover, assuming
that the parameters h and r of a given fuzzy partition are natural numbers, the
components of vector Ym,k = (Yk,1, . . . , Yk,m+1)T can be simply obtained as the
product Yk,� = Pk · I�, where

Pk = (p(ck − h), p(ck − h + 1), . . . , p(ck), . . . , p(ck + h − 1), p(ck + h))

and I� = (I�,1, . . . , I�,2h+1)T is determined by

I�,j =
∫ aj

aj−1

t�−1K(t) dt, j = 1, . . . , 2h + 1,
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where a0 = −1, a2h+1 = 1 and aj = −1 + 2(j−1)+1
2h , j = 1, . . . , 2h. Since the

matrix I� is independent on the choice of k and the indefinite integral of t�−1K(t)
can be found for the standard generating functions, the derivation of vector
Ym,k can be obtained in a very short time, which consequently accelerates the
computation of the direct discrete Fm-transform.

The inverse Fm-transform of a discrete function is analogously defined as in
Definition 4. The only difference is the use of Z instead of R as the domain of
reconstructed functions.

Definition 6. Let p : Z → C be a complex-valued discrete function, and let
A = {Ak | k ∈ Z} be a simple uniform fuzzy partition of R determined by the
triplet (K,h, r). Let the family Fm

A [p] = {Fm
k [p] | k ∈ Z} be the direct discrete

Fm-transform of p with respect to A. The inverse discrete Fm-transform of p
with respect to Fm

A [p] and A is determined as follows:

p̂m
A(z) =

∑
k∈Z

Fm
k [p](z) · Ak(z)

∑
k∈Z

Ak(z)
, z ∈ Z. (7)

Obviously, the direct and inverse discrete Fm-transform preserves the linear-
ity property similarly to the continuous case.

3.2 Estimation of the Reconstruction Error

Let p : Z → C be a discrete complex-valued function. We use ||c|| to denote the
size of the complex number c, i.e. ||c|| =

√
c · c̄, where c̄ is the complex conjugate

of c. Let z0 ∈ Z and δ > 0. Then, the value

ωz0(p, δ) = sup {||p̄(z0) − p̄(z0 + ε)|| | ε ∈ R, |ε| ≤ δ} , (8)

provides us a measure of how much the function values p(z) differ from each
other in a neighborhood of z0. Obviously, formula (8) imitates the definition of
modulus of continuity. If p is bounded, then we define

ω(p, δ) = sup{ωz(p, δ) | z ∈ Z}
which measures the changes in the shape of function p with respect to the param-
eter δ.

Below, we consider the quality of reconstruction of a given function by the
proposed discrete Fm-transform. First, we have to evaluate how the components
of the direct Fm-transform are locally close (i.e., close in specific neighborhoods)
to the original function.

Theorem 1. Let p : Z → C be a complex-valued discrete function. Let A =
{Ak | k ∈ Z} be a simple uniform fuzzy partition of R determined by the triplet
(K,h, r), and let Fm

A [p] be the direct discrete Fm-transform of p with respect to
A. Then, for any k ∈ Z, it holds that

||p(z) − Fm
k [p](z)|| ≤ ωz(p, 2h) · Θ(m,K),
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for any z ∈ Z such that z ∈ [ck − h, ck + h], where

Θ(m,K) =
m+1∑

j,�=1

|Vj�| ·
∫ 1

−1

|t|�−1K(t) dt

with (Vj�)j,�=1,...,m+1 = (Zm)−1.

Proof: Let k ∈ Z, and let z ∈ Z such that z ∈ [ck −h, ck +h]. Since Fm
k [c](t) = c

holds for any complex-valued constant function c, we obtain

||p(z) − Fm
k [p](z)|| = ||Fm

k [p(z)](z) − Fm
k [p](z)|| =

∣
∣
∣
∣

∣
∣
∣
∣(Ck,0 − Dk,0) + · · · + (Ck,m − Dk,m)

(
t − ck

h

)m∣
∣
∣
∣

∣
∣
∣
∣ ≤

m∑

j=0

||Ck,j − Dk,j)|| ·
∣
∣
∣
∣
t − ck

h

∣
∣
∣
∣

j

≤
m∑

j=0

||Ck,j − Dk,j ||, (9)

where we used |(t − ck)/h| ≤ 1, and (Ck,0, . . . , Ck,m) and (Dk,0, . . . , Dk,m) are
determined by

(Ck,0, . . . , Ck,m)T =(Zm)−1 · Ym,k, (10)

(Dk,0, . . . , Dk,m)T =(Zm)−1 · Wm,k (11)

with Ym,k = (Yk,j)j=1,...,m+1 and Wm,k = (Wk,j)j=1,...,m+1, which are the col-
umn matrices given by

Yk,j =
∫ 1

−1

p(z) · tj−1K(t) dt, and Wk,j =
∫ 1

−1

p(h · t + ck) · tj−1K(t) dt.

From (10) and (11), we obtain

(Ck,0 − Dk,0, . . . , Ck,m − Dk,m)T = (Zm)−1 · (Ym,k − Wm,k).

Hence, for any j = 0, . . . ,m, we find that

||Ck,j − Dk,j || ≤
m+1∑

�=1

|Vj+1�| · ||Yz� − Wz�||

=
m+1∑

�=1

|Vj+1�| ·
∫ 1

−1

||p(z) − p(h · t + ck)|| · |t|�−1K(t) dt

=
m+1∑

�=1

|Vj+1�| ·
∫ 1

−1

||p(z) − p(h · t + ck)|| · |t|�−1K(t) dt

≤ ωz(p, 2h) ·
m+1∑

�=1

|Vj+1�| ·
∫ 1

−1

|t|�−1K(t) dt,



The Discrete Fuzzy Transform of Higher Degree 159

where we used ||p(z) − p(h · t + ck)|| ≤ ωz(p, 2h). By this inequality and (9), we
obtain

||p(z) − Fm
k [p](z)|| ≤ ωz(p, 2h) ·

m∑

j=0

m+1∑

�=1

|Vj+1�| ·
∫ 1

−1

|t|�−1K(t) dt

≤ ωz(p, 2h) ·
m+1∑

j,�=1

|Vj�| ·
∫ 1

−1

|t|�−1K(t) dt

= ωz(p, 2h) · Θ(m,K),

and the proof is finished. �	
The upper bound of the error of reconstruction of a function by its inverse

discrete Fm-transform is established in the following theorem.

Theorem 2. Let p : Z → C be a complex-valued discrete function. Let A =
{Ak | k ∈ Z} be a simple uniform fuzzy partition of R determined by the triplet
(K,h, r). Let p̂m

A be the inverse discrete Fm-transform of p with respect to Fm
A [p]

and A. Then,

||p(z) − p̂m
A (z)|| ≤ ωz(p, 2h) · Θ(m,K), (12)

for any z ∈ Z, where Θ(m,K) is defined in Theorem 1.

Proof: Let Fm
A [p] = {Fm

k [p] | k ∈ Z} be the direct Fm-transform of p with respect
to A. For any z ∈ Z, we have

||p(z) − p̂m
A(z)|| =

∣
∣
∣
∣

∣
∣
∣
∣p(z) −

∑
k∈Z

Fm
k [p](z) · Ak(z)

∑
k∈Z

Ak(z)

∣
∣
∣
∣

∣
∣
∣
∣

=
∣
∣
∣
∣

∣
∣
∣
∣

∑
k∈Z

(p(z) − Fm
k [p](z)) · Ak(z)

∑
k∈Z

Ak(z)

∣
∣
∣
∣

∣
∣
∣
∣ ≤

∑
k∈Z

|p(z) − Fm
k [p](z)| · Ak(z)

∑
k∈Z

Ak(z)
.

It follows from Theorem 1 that

||p(z) − Fm
k [p](z)|| ≤ ωz(p, 2h) · Θ(m,K),

for any k ∈ Z. Consequently,

||p(z) − p̂m
A (z)|| ≤

∑
k∈Z

ωz(p, 2h) · Θ(m,K) · Ak(z)
∑

k∈Z
Ak(z)

= ωz(p, 2h) · Θ(m,K)

and the proof is finished. �	
The following corollary is a straightforward consequence of Theorem 2 in the

case that the original discrete function is bounded.

Corollary 1. Let the assumptions of Theorem 2 be satisfied. If the function p
is bounded, then

||p(z) − p̂m
A (z)|| ≤ ω(p, 2h) · Θ(m,K),

where Θ(m,K) is defined in Theorem 1.
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It is easy to see from (12) that for the bandwidth h ≤ 1/4, we obtain
ωz(p, 2h) = 0 for any z ∈ Z; hence, the reconstruction of p is ideal. Note that, in
practice, the bandwidth is chosen higher than 1/4 with respect to specific tasks.

4 Illustration Examples

In this section, we illustrate the novel approach to the discrete Fm-transform on
functions representing two time series. Particularly, we compare the inverse Fm-
transform functions obtained by the newly defined discrete Fm-transform with
that provided by the original approach presented in [4]. For the comparison, we
use the MAPE and the time-consumption in computation for both approaches.

First, we consider the time series data “Monthly closings of the Dow–
Jones industrial index, Aug. 1968–Aug. 1981” stored on the website http://
datamarket.com that form a discrete function p with the domain {1, 2, . . . , 291}.
In Fig. 2, we display the inverse discrete F2- and F5-transform of p, obtained by
the proposed approach, with respect to the simple uniform fuzzy partition deter-
mined by the triplet (Ktr, 20, 10). Note that the results obtained by the novel and
the standard approach are negligible; particularly, the differences between them
are MAPE = 2.1137 × 10−5 for the F2-transform and MAPE = 5.7637 × 10−5

for the F5-transform. In Fig. 3, we depict the newly defined inverse discrete

Fig. 2. The inverse F2- (red line) and F5-transform (dotted black line). (Color figure
online)

F3-transform of p with respect to varying fuzzy partitions A1, A2 and A3

determined by the triplets (Ktr, 20, 10), (Ktr, 10, 5) and (Ktr, 1, 1), respectively.
Among others, the results presented in Figs. 2 and 3 demonstrate the fact, which
is well-known for the continuous Fm-transform, saying that a better reconstruc-
tion of the original function may be attained either by shortening the length of
bandwidth h, if it is possible, or by enlarging the degree of the F-transform.

Below, we compare the time-consumption of the novel and the original app-
roach in computation of inverse Fm-transform. For the comparison, we choose a
long time series “Daily minimum temperatures in Melbourne, Australia, 1981–
1990” with the dimension d = 3650, stored on the website http://datamarket.
com. The both approaches to the discrete Fm-transform are programmed by

http://datamarket.com
http://datamarket.com
http://datamarket.com
http://datamarket.com
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Fig. 3. The inverse F3-transform functions (green, black and dashed red lines) with
respect to A1, A2 and A3, respectively. (Color figure online)

Matlab 2014 on the notebook with CPU Intel CoreTM i5-3320M, Ram 8Gb and
OS Windows 10. The computation time is also measured by Matlab. The consid-
ered simple uniform fuzzy partitions were determined by triplets (Ktr, h, h/2),
where h varies from 20 to 100 with the step 20. From the results depicted in
Table 1, one can see that the computational times for both approaches are low
and very similar, which is a consequence of our restriction to discrete functions
defined over uniformly distributed elements (integers). This restriction actually
enables us to optimize and speed up the algorithm of the original approach.
Moreover, one can see that the computation time depends on the size of the
bandwidth.

Table 1. Time-consumption (second) in computation of inverse Fm-transform.

Fm-transform \ Bandwidth h = 20 h = 40 h = 60 h = 80 h = 100

F0 Original 0.11479 0.07451 0.06506 0.05151 0.04940

Novel 0.11826 0.07386 0.05214 0.04461 0.04081

F1 Original 0.14210 0.08974 0.07528 0.06187 0.05556

Novel 0.14657 0.08249 0.06088 0.05216 0.04426

F2 Original 0.16912 0.09855 0.08097 0.06433 0.06021

Novel 0.16797 0.09163 0.07021 0.05520 0.04861

F3 Original 0.27800 0.16698 0.12056 0.09538 0.08498

Novel 0.28627 0.16790 0.11868 0.09233 0.07524

5 Conclusions

In this paper, we introduced a novel approach to the discrete fuzzy transform
of higher degree. We analyzed the quality of the reconstruction of an original
discrete function provided by the inverse discrete Fm-transform. We compared
the novel approach with the original one proposed in [4] on two examples of time
series. The restriction to the discrete functions defined over uniformly distributed
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elements (integers) results in similar computation times for both approaches. The
computation times are low in all tests and naturally depend on sizes of the band-
width. Intuitively, the novel approach should provide better time consumption in
computation for discrete functions defined over non-uniformly distributed values,
because, in contrast to the novel approach, the original one needs to recompute
the inverse matrices to get the respective F-transform components. A verification
of our conjecture is a subject of our future research.
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Abstract. The focus is on two spaces with a weaker structure than that
of a fuzzy topology. The first one is a fuzzy pretopological space, and the
second one is a space with an L-fuzzy partition. For a fuzzy pretopological
space, we prove that it can be determined by a Čech interior operator and
that the latter can be represented by a reflexive fuzzy relation. For a space
with an L-fuzzy partition, we show that a lattice-valued F ↓-transform is
a strong Čech-Alexandrov fuzzy interior operator. Conversely, we found
conditions that guarantee that a given L-fuzzy pretopology determines
the L-fuzzy partition and the corresponding F ↓-transform operator.

Keywords: Lattice F-transform · Fuzzy pretopological space
Fuzzy partition · Čech fuzzy interior operator

1 Introduction

This contribution is focused on various spaces with fuzzy structures and their cor-
responding operators. We deal with L-fuzzy objects (sets, relations, etc.) where
L is a complete residuated lattice [2,3] and consider L-fuzzy topological, pre-
topological spaces and spaces with L-fuzzy partitions. These spaces propose an
abstract approach to the notion of “closeness” and naturally arise in connec-
tion with applications to image and data analysis, time series, decision making,
etc. All these spaces are introduced axiomatically, i.e. with the help of structure
characterizing properties. Therefore, a natural problem is to give examples of
the proposed structure or to propose a tool which produces such a structure.
In the case of topological spaces, a tool can be an interior (closing) operator.
However, the latter is again defined axiomatically, see [4].

In this contribution, we consider two spaces with weaker structures than that
of a fuzzy topology. The first one is a fuzzy pretopological space, introduced in
[13] with the purpose to find a good candidate for the extensional topological hull
of fuzzy topological spaces. The second one is a space with an L-fuzzy partition
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 854, pp. 163–174, 2018.
https://doi.org/10.1007/978-3-319-91476-3_14
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introduced in [8] with the purpose to connect lattice-based (fuzzy) F -transforms
with L-fuzzy rough sets operators. For a fuzzy pretopological space, we prove
that it can be characterized by a Čech interior operator and that the latter
can be represented by a reflexive fuzzy relation. For a space with an L-fuzzy
partition, we show that the corresponding to the lattice-valued F ↓-transform
operator is a strong Čech-Alexandrov fuzzy interior operator. We discuss the
opposite correspondence and prove a conditional result. This result is similar,
but stronger than that proved in [9].

A deep insight into these structures from the categorical and topological
viewpoints can be found in [5,9,13].

The structure of the paper is as follows. Section 2 contains preliminary infor-
mation. In Sect. 3, we remind the notion of fuzzy pretopological space and intro-
duce the Čech fuzzy interior operator and its modifications. The relationship
between fuzzy pretopology, topology and their interior operators is discussed in
Sect. 4. In Sect. 5, we remind notions of L-fuzzy partitions and lattice-based
F -transforms. Moreover, we prove results about relational representation of
lattice-based F -transforms. Section 6 contains main results of this contribution
where we discuss the relationship between the direct F ↓-transform and L-fuzzy
pretopology. We show that every direct F ↓-transform uniquely determines a
strong Alexandrov L-fuzzy pretopological space, and that the corresponding
F ↓-operator is a strong Čech-Alexandrov fuzzy interior operator. The opposite
correspondence is discussed at the end.

2 Preliminaries

In this section, we recall some basic concepts and properties related to residuated
lattices, L-fuzzy sets, L-fuzzy relations, and L-fuzzy pretopological spaces. We
refer to [1–3] for more details about residuated lattices.

Definition 21 [1]. A residuated lattice L is an algebra (L,∧,∨, ∗,→, 0, 1)
such that

(i) (L,∧,∨, 0, 1) is a bounded lattice with the least element 0 and the greatest
element 1;

(ii) (L, ∗, 1) is a commutative monoid; and
(iii) ∀a, b, c ∈ L;

a ∗ b ≤ c ⇐⇒ a ≤ b → c.

A residuated lattice (L,∧,∨, ∗,→, 0, 1) is complete if it is complete as a lattice.
The following unary operations of negation ¬ and binarization Δ will be

used in the sequel:
¬a = a → 0,

Δ(a) =

{
1, if a = 1,
0, otherwise.
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Definition 22 [3]. A residuated lattice L is called an integral, commutative
Girard-monoid [3], if its negation is involutive, i.e.,

¬¬a = a.

In the sequel, we will be using many standard properties of residuated lattices
and complete integral commutative Girard monoids without particular references
to their source. Most (if not all of them) of them came from [1–3].

Throughout this paper, we work with some fixed complete residuated lattice
L = (L,∧,∨, ∗,→, 0, 1).

For a nonempty set X, LX denotes the collection of all L-fuzzy sets (L-
valued functions) of X. Also, for all a ∈ L, a(x) = a is a constant fuzzy set on
X. Furthermore, for all A ∈ LX , the core(A) is a set of all elements x ∈ X, such
that A(x) = 1. A fuzzy set A ∈ LX is called normal, if core(A) �= ∅. Fuzzy set
S{y} ∈ LX is called a singleton, if it has the following form

S{y}(x) =

{
1, if x = y,

0, otherwise.

The following are induced basic relations and operations of intersection ∩,
union ∪, multiplication ∗, implication → and negation ¬ on LX .

A = B ⇐⇒ (∀x)(A(x) = B(x)), A ≤ B ⇐⇒ (∀x)(A(x) ≤ B(x)),
(A ∩ B)(x) = A(x) ∧ B(x), (A ∪ B)(x) = A(x) ∨ B(x),
(A ∗ B)(x) = A(x) ∗ B(x), (A → B)(x) = A(x) → B(x),

(¬A)(x) = ¬A(x).

Under the assumption about completeness of L, we may consider an inter-
section and a union of an arbitrary family of fuzzy sets.

Definition 23. Let X be a nonempty set. A fuzzy relation R on X is a fuzzy
subset of X × X, i.e. R ∈ LX×X . A fuzzy relation R is called

(i) reflexive if ∀ x ∈ X, R(x, x) = 1,
(ii) transitive if ∀ x, y, z ∈ X, R(x, y) ∗ R(y, z) ≤ R(x, z).

A reflexive and transitive fuzzy relation R is called a fuzzy preorder.

3 Fuzzy Pretopology and Čech Interior Operator

Let a complete residuated lattice L be fixed. In this section, we remind the notion
of L-fuzzy pretopological space as it has been introduced in [13] and discuss how
it can be generated by a corresponding interior operator. Moreover, we show
that this operator can be represented by a reflexive fuzzy relation.

Definition 31 [10,13]. An L-fuzzy pretopology on X is a collection of func-
tions τX = {px : LX → L | x ∈ X} such that for all A,B ∈ LX , a ∈ L, and
x ∈ X,
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(i) px(a) = a,
(ii) px(A) ≤ A(x),
(iii) px(A ∩ B) = px(A) ∧ px(B).

The pair (X, τX) is called an L-fuzzy pretopological space. Moreover, we say
that an L-fuzzy pretopological space (X, τX) is

(iv) strong, if px(a → A) = a → px(A),
(v) Alexandrov, if px(

⋂{Aj : j ∈ J}) = ∧{px(Aj) : j ∈ J},
(vi) topological, if px(y �→ py(A)) = px(A).

Let us remark that if (X, τX) is an L-fuzzy pretopological space, px ∈ τX

and A ∈ LX , then px(A) is a degree of the property “x belongs to the interior
of A”.

Let collection of functions τX = {px : LX → L | x ∈ X} be an L-fuzzy
pretopology on X. With every A ∈ LX , we associate the fuzzy set φA ∈ LX

such that for all x ∈ X, φA(x) = px(A). Obviously, φ : LX → LX is an operator
on LX such that φ(A) = φA.

Definition 32. The map i : LX → LX is called a Čech fuzzy interior operator1,
if for every a, A ∈ LX , it fulfills

1. i(a) = a,
2. i(A) ≤ A,
3. i(A ∩ B) = i(A) ∧ i(B).

We say that a Čech fuzzy interior operator i : LX → LX is

4. strong, if for all a ∈ L, i(a → A) = a → i(A),
5. Čech-Alexandrov, if i(

⋂
j∈J Aj) =

∧
j∈J i(Aj).

It is easy to see from Definitions 31 and 32 that the following claim is valid.

Proposition 31. Collection of functions τX = {px : LX → L | x ∈ X} is an
L-fuzzy pretopology on X, if and only if the map iτ : LX → LX such that for all
x ∈ X, iτ (A)(x) = px(A), is a Čech fuzzy interior operator. Moreover, if L-fuzzy
pretopology τX = {px : LX → L | x ∈ X} is strong and Alexandrov, then the
map iτ is a strong Čech-Alexandrov interior operator.

Remark 31. In [12], a map i : LX → LX that enjoys properties 4 and 5
(named above as strong and Čech-Alexandrov) has been called an L-fuzzy lower
approximation operator. In the sequel, we will use some results from [12]
reformulated in the language of pretopological spaces.

Our next goal is to show that a fuzzy pretopology on X can be represented
by a collection of lower approximations of fuzzy sets on X with respect to a
reflexive fuzzy relation.

1 Čech interior operator differs from Kuratowski interior operator by the absence of
the idempotency.
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Theorem 31. Let (L,∧,∨, ∗,→, 0, 1) be a complete, integral, commutative,
Girard monoid. Then i : LX → LX is a strong Čech-Alexandrov fuzzy inte-
rior operator if and only if there exists a reflexive fuzzy relation Ri on X such
that for every A ∈ LX ,

i(A) = Ri(A), (1)

where Ri(A) is a lower approximation of A, given by

Ri(A)(x) =
∧

y∈X

(Ri(x, y) → A(y)). (2)

Proof: ⇒ By Remark 31, i is a fuzzy lower approximation operator. Therefore
by [12], it can be represented by the following fuzzy relation

Ri(x, y) = ¬i(¬S{y}(x)), (3)

where S{y} is a singleton, so that (1)+(2) holds true. Moreover, because interior
operator i is anti-extensive, i.e. i(A) ≤ A, then by [12], relation Ri is reflexive.

⇐ Vice versa, let (1)+(2), where Ri is an arbitrary reflexive fuzzy relation,
holds trues. In [12], it has been proved that Ri is a lower approximation operator,
i.e. enjoys properties 4 and 5. Because relation Ri is reflexive, Ri is obviously
anti-extensive. Finally, property 1 easily follows from the reflexivity of Ri, i.e.
for all x ∈ X,

Ri(a)(x) =
∧

y∈X

(Ri(x, y) → a(y)) =
∧

y∈X

(Ri(x, y) → a) =
∨

y∈X

Ri(x, y) → a = a.

��
Remark 32. On the basis of Theorem 31, we claim that a strong Čech-
Alexandrov fuzzy interior operator i can be represented by a reflexive fuzzy rela-
tion Ri (3), if i is expressed in accordance with (1)+(2).

Corollary 31. Let (L,∧,∨, ∗,→, 0, 1) be a complete, integral, commutative,
Girard monoid. Then collection of functions τX = {px : LX → L | x ∈ X}
is a strong Alexandrov L-fuzzy pretopology on X, if and only if there exists a
reflexive fuzzy relation Ri on X such that for every x ∈ X, A ∈ LX ,

px(A) = Ri(A)(x).

Proof: By Proposition 31, a strong Alexandrov L-fuzzy pretopology τX is deter-
mined by the corresponding to it strong Čech-Alexandrov fuzzy interior operator
iτ . By Theorem 31, the latter can be represented by a reflexive fuzzy relation
Ri. ��
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4 L-Fuzzy Pretopology, Topology and Their Interior
Operators

Let us remind [4,14] that an L-fuzzy topology τ on a nonempty set X is a
family of fuzzy sets in X which is closed under arbitrary suprema and finite
infima and contains all constant fuzzy sets. The fuzzy sets in τ are called open.
An L-fuzzy topology is called Alexandrov, if it is closed under arbitrary infima.
In many papers (see e.g., [8,12,14]), it has been shown that Alexandrov L-fuzzy
topology can be generated by a Kuratowski (fuzzy) interior operator, and the
latter can be represented by a fuzzy preorder (reflexive and transitive) relation.
In the majority (if not in all) of papers, this result is referred to [12] where the
proof is not given.

In the preceding section, we showed (Theorem 31 and its Corollary 31)
that any strong Alexandrov L-fuzzy pretopology can be generated by a Čech-
Alexandrov interior operator, and that the latter can be represented by a reflex-
ive fuzzy relation. In the below given theorem, we show the relationship between
the Čech and Kuratowski interior operators and fuzzy relations that are used
for their representation. We give a proof with all necessary technical details.

Theorem 41. Let (L,∧,∨, ∗,→, 0, 1) be a complete, integral, commutative,
Girard monoid and i : LX → LX a strong Čech-Alexandrov fuzzy interior oper-
ator. Then the following assertions are equivalent

(a) i is a Kuratowski (fuzzy) interior operator,
(b) the corresponding to i fuzzy relation Ri is transitive.

Proof: (a) ⇒ (b) Let a strong Čech-Alexandrov fuzzy interior operator i :
LX → LX be a Kuratowski (fuzzy) interior operator, i.e. for every A ∈ LX , it
fulfills

i(i(A)) = i(A). (4)

Let Ri be the fuzzy relation (3) that corresponds to i. Then by (1), for every
A ∈ LX ,

i(i(A)) = Ri(Ri(A)),

or after easy transformations,

i(i(A)) =
∧

y∈X

(R2(x, y) → A(y)),

where R2(x, y) =
∨

t∈X(R(x, t) ∗ R(t, y). By (4),∧
y∈X

(R2(x, y) → A(y)) =
∧

y∈X

(R(x, y) → A(y)).

Because R is reflexive and therefore, R ≤ R2, the above given equality is equal
to ∧

y∈X

(R2(x, y) → A(y)) ≥
∧

y∈X

(R(x, y) → A(y)).
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The latter is equivalent (see [2], Theorem 5.1.16) to∧
y∈X

(R(x, y) → A(y)) → (R2(x, y) → A(y)) = 1.

Therefore, for all x, y ∈ X,

R(x, y) → A(y) ≤ R2(x, y) → A(y), or

R2 ≤ R, i.e. R is transitive.
(b) ⇒ (a) The proof is similar to the given above. ��

5 L-Fuzzy Partition and Lattice-Based F -transform

The aim of this section is to remind notions of L-fuzzy partitions and lattice-
based F -transforms, [8]. Moreover, we prove results about relational representa-
tion of lattice-based F -transforms.

In the literature, several notions of fuzzy partitions have been introduced and
studied. Most of them connect this notion with a finite collection of fuzzy sets
that are defined on the set of reals R or its Cartesian product. Here we recall
the concept of fuzzy partition recently introduced in [8]. It has been used in [5]
for the construction of the category of spaces with L-fuzzy partitions.

Definition 51. A collection ΠX of normal fuzzy sets {Aξ : ξ ∈ Ξ} in X is
an L-fuzzy partition of X, if the corresponding collection of ordinary sets
{core(Aξ) : ξ ∈ Ξ } is a partition of X. A pair (X,ΠX), where ΠX is an L-valued
fuzzy partition of X, is called a space with an L-fuzzy partition.

Let ΠX = {Aξ : ξ ∈ Ξ} be an L-fuzzy partition of X. With this partition we
associate the following surjective index-function �Π : X → Ξ:

�Π(y) = ξ ⇐⇒ y ∈ core(Aξ). (5)

Then ΠX is uniquely represented by the reflexive L-fuzzy relation RΠ on X,
such that

RΠ(x, y) = Aξ(x), where �Π(y) = ξ. (6)

This claim follows from the fact that (6) uniquely specifies RΠ(x, y) for every
couple (x, y) ∈ X ×X. Let us remark that the opposite claim is not always true,
i.e. not every reflexive fuzzy relation represents an L-fuzzy partition. Below, we
give the corresponding criterion.

Proposition 51. Let R be a reflexive L-fuzzy relation on X. Then, R represents
the L-fuzzy partition ΠX of X, if and only if

1. the binary relation Δ(R) is an equivalence on X;
2. if z ∈ [y]R, where [·]R is an equivalence class of Δ(R), then R(·, y) = R(·, z).
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Let us denote RFP the family of reflexive L-fuzzy relations on X that fulfill
Proposition 51.

Definition 52. Let A ∈ LX and ΠX = {Aξ : ξ ∈ Ξ } be an L-fuzzy partition of
X. Then,

(i) the direct F ↑-transform of A with respect to L-fuzzy partition
ΠX = {Aξ : ξ ∈ Ξ } is a collection of lattice elements {F ↑

ξ (A) : ξ ∈ Ξ},
where

F ↑
ξ (A) =

∨
x∈X

(A(x) ∗ Aξ(x)),

(ii) the direct F ↓-transform of A with respect to L-fuzzy partition
ΠX = {Aξ : ξ ∈ Ξ } is a collection of lattice elements {F ↓

ξ (A) : ξ ∈ Ξ},
where

F ↓
ξ (A) =

∧
x∈X

(Aξ(x) → A(x)).

We denote by F↑[A] = {F ↑
ξ (A) : ξ ∈ Ξ}, the direct F ↑-transform of A and

F ↑
ξ (A) its ξ-th component. Similarly, F↓[A] = {F ↓

ξ (A) : ξ ∈ Ξ} and F ↓
ξ (A) are

the direct F ↓-transform of A and its ξ-th component, respectively.

Lemma 51. Let L-fuzzy partition ΠX = {Aξ : ξ ∈ Ξ } of X with the index-
function �Π be represented by fuzzy relation RΠ . Then for every A ∈ LX and

(i) for every y ∈ X,

F ↑
�Π (y)(A) =

∨
x∈X

A(x) ∗ RΠ (x, y)); (7)

(ii) for every x ∈ X,

F ↓
�Π (x)(A) =

∧
y∈X

(RT
Π (x, y) → A(y)). (8)

where RT
Π (x, y) = RΠ (y, x).

Proof:

(i) Let y ∈ X and �Π (y) = ξ. By (5), y ∈ core(Aξ) so that RΠ (x, y) = Aξ(x).
Therefore, (7) directly follows from Definition 52, part (i).

(ii) Let x ∈ X and �Π (x) = ξ. By (5), x ∈ core(Aξ) so that RT
Π (x, y) =

RΠ (y, x) = Aξ(y). Therefore, (8) directly follows from Definition 52, part
(ii). ��
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With a fuzzy partition ΠX and corresponding to it direct F ↑ and F ↓-
transforms we associate two operators F ↑

Π : LX → LX and F ↓
Π : LX → LX ,

such that for each A ∈ LX ,

F ↑
Π(A)(y) =

∨
x∈X

A(x) ∗ RΠ (x, y)), (9)

and

F ↓
Π(A)(x) =

∧
y∈X

(RT
Π (x, y) → A(y)), (10)

where fuzzy relation RΠ represents fuzzy partition ΠX in the sense of (6).
The following properties of the operators F ↑

Π : LX → LX and F ↓
Π : LX →

LX have been proved in [6,8]. All of them are formulated below for arbitrary
x, y ∈ X, a, A,Ai ∈ LX .

A ≤ F ↑
Π(A), F ↓

Π(A) ≤ A, (11)

F ↑
Π(a) = a, F↓

Π(a) = a, (12)

F ↑
Π(A ∪ B) = F ↑

Π(A) ∪ F ↑
Π(B), F ↓

Π(A ∩ B) = F ↓
Π(A) ∩ F ↑

Π(B), (13)

F ↑
Π(

⋃
i∈I

Ai) =
⋃
i∈I

F ↑
Π(Ai), F

↓
Π(

⋂
i∈I

Ai) =
⋂
i∈I

F ↑
Π(Ai), (14)

F ↑
Π(a ∗ A) = a ∗ F ↑

Π(A), F ↓
Π(a → A) = a → F ↓

Π(A). (15)

6 F ↓-Transform as a Čech Fuzzy Interior Operator

In this section, we discuss the relationship between the direct F ↓-transform and
L-fuzzy pretopology. We show that every direct F ↓-transform uniquely deter-
mines a strong Alexandrov L-fuzzy pretopological space, and that the corre-
sponding F ↓-operator is a strong Čech-Alexandrov fuzzy interior operator. We
discuss the opposite correspondence and prove a conditional result. The rela-
tionship between the direct F ↑-transform and L-fuzzy co-pretopology can be
obtained using dualities between the residuated lattice operations. We will not
discuss it in this contribution.

Proposition 61. Let (X,ΠX) be a space with an L-fuzzy partition, RΠ corre-
sponding fuzzy relation and F ↓

Π : LX → LX corresponding F ↓-operator. Then
the pair (X, τΠ) where τΠ = {F ↓

Π(·)(x) : LX → L | x ∈ X} is such that for every
A ∈ LX and x ∈ X,

F ↓
Π(A)(x) =

∧
y∈X

(RT
Π (x, y) → A(y)),

is a strong Alexandrov L-fuzzy pretopological space.
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Proof: Let ΠX = {Aξ : ξ ∈ A} be an L-fuzzy partition of X with the index-
function �Π where for every x ∈ X, the value �Π (x) determines unique partition
element A�Π (x), such that x ∈ core(A�Π (x)). For every x ∈ X, A ∈ LX , we claim
that

F ↓
Π(A)(x) = F ↓

�Π (x)(A),

where the right-hand side is the �Π (x)-th F ↓-transform component of A. Indeed,
for a particular x ∈ X, F ↓

�Π (x)(A) is computed in accordance with (8) and by

this, coincides with F ↓
Π(A)(x).

Let us verify that the collection τΠ = {F ↓
Π(·)(x) : LX → L | x ∈ X} where

for every A ∈ LX , F ↓
Π(A)(x) = F ↓

�Π (x)(A) =
∧

y∈X(RT
Π (x, y) → A(y)) is a strong

Alexandrov L-fuzzy pretopological space. This requires to verify properties (i)–
(v) from Definition 31. It is easy to see that they immediately follow from the
properties (11) – (15) of the F ↓

Π operator. ��
Corollary 61. Let (X,ΠX) be a space with an L-fuzzy partition, RΠ corre-
sponding fuzzy relation and F ↓

Π : LX → LX corresponding F ↓-operator. Then
the F ↓-operator is a strong Čech-Alexandrov fuzzy interior operator i so that for
every A ∈ LX ,

i(A) = F ↓
Π(A). (16)

Proof: The assertion easily follows from the representation (10) and Theo-
rem 31. ��

Below, we discuss under which conditions a given L-fuzzy pretopology deter-
mines an L-fuzzy partition and the corresponding to it F ↓-transform operator.
Our result has an existential form and refers to the problem of solvability of a
system of fuzzy relation equations.

Theorem 61. Let (L,∧,∨, ∗,→, 0, 1) be a complete, integral, commutative,
Girard monoid and collection of functions τX = {px : LX → L | x ∈ X} be
a strong Alexandrov L-fuzzy pretopology on X. With every A ∈ LX , we asso-
ciate fuzzy set φA ∈ LX such that for all x ∈ X, φA(x) = px(A). Assume that
the following auxiliary system∧

y∈X

(RT (x, y) → A(y)) = φA(x), A ∈ LX , (17)

of fuzzy relations equations has solution RΠ in RFP.
Then, fuzzy relation RΠ represents the L-fuzzy partition Π of X and the

F ↓-transform operator F ↓
Π such that for every x ∈ X, the value of a function

px ∈ τX at any A ∈ LX coincides with

px(A) = F ↓
Π(A)(x). (18)
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Proof: Let the assumptions be fulfilled and τX = {px : LX → L | x ∈ X} be a
strong Alexandrov L-fuzzy pretopology on X. By Proposition 31, τX determines
the strong Čech-Alexandrov fuzzy interior operator iτ : LX → LX such that
for all x ∈ X, iτ (A)(x) = px(A). With every A ∈ LX , we associate fuzzy set
φA ∈ LX such that for all x ∈ X,

φA(x) = px(A). (19)

Thence, φA = iτ (A). By Theorem 31, there exists a reflexive fuzzy relation
Rτ on X such that for every A ∈ LX , iτ (A) = Rτ (A), where Rτ (A)(x) =∧

y∈X(Rτ (x, y) → A(y)).
On the basis of the above reasoning, the following system of fuzzy relation

equations ∧
y∈X

(R(x, y) → A(y)) = φA(x), (20)

is solvable with respect to R. In particular, Rτ is one possible solution to (20). Let
Rτ denote a solution set of (20) and RT

τ the set of the corresponding transposed
fuzzy relations. By the assumption, RT

τ ∩ RFP �= ∅ so that there exists fuzzy
relation, say RΠ ∈ Rτ such that

RT
Π ∈ RT

τ ∩ RFP.

By Proposition 51, fuzzy relation RT
Π represents fuzzy partition ΠX of X in the

sense of Definition 51.
By (19) and 20, for all x ∈ X and A ∈ LX ,∧

y∈X

(RT
Π (x, y) → A(y)) = φA(x),

which by Proposition 61, is equal to F ↓
Π(A)(x), where F ↓

Π : LX → LX is the
F ↓-transform operator that corresponds to partition ΠX .

Finally, for all x ∈ X and A ∈ LX ,

px(A) = F ↓
Π(A)(x),

which confirms (18). ��

7 Conclusion

We were focused on the two spaces with fuzzy structures and their characteri-
zation by corresponding operators. The first one is a fuzzy pretopological space,
and the second one is a space with an L-fuzzy partition. We showed that
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– a fuzzy pretopology can be characterized by a Čech interior operator;
– in a complete, integral, commutative, Girard monoid, a strong Čech-
Alexandrov fuzzy interior operator can be represented by a reflexive fuzzy
relation and vice versa;

– a strong Čech-Alexandrov fuzzy interior operator represented by fuzzy rela-
tion R is a Kuratowski fuzzy interior operator if and only if R is a fuzzy
preorder;

– for a space with an L-fuzzy partition, a lattice-valued F ↓-transform is a strong
Čech-Alexandrov fuzzy interior operator;

– under certain conditions, a given L-fuzzy pretopology determines an L-fuzzy
partition and the corresponding to it F ↓-transform operator.

Acknowledgement. The work was supported by the project “LQ1602 IT4Innovations
excellence in science” and by the Grant Agency of the Czech Republic (project “New
approaches to aggregation operators in analysis and processing of data”).
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Abstract. The aim of this paper is to improve the F -transform tech-
nique based on B-splines. A modification of the F -transform of higher
degree with respect to fuzzy partitions based on B-splines is done to
extend the good approximation properties from the interval where the
Ruspini condition is fulfilled to the whole interval under consideration.
The effect of the proposed modification is characterized theoretically and
illustrated numerically.
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1 Introduction

The paper deals with the technique of fuzzy transform (F -transform or F 0-
transform) introduced in 2001 [13] (see also the key paper [10]) and generalized
to the case of higher degree in 2011 [12] by I. Perfilieva with co-authors. As it
was shown in [12], the ordinary F -transform with constant components can be
extended to the F -transform with degree-m polynomial components, m ≥ 0 (the
Fm-transform).

Properties of F -transforms significantly depend on basic functions which form
a fuzzy partition. There is a number of papers dealing with fuzzy transforms with
respect to a fuzzy partition with specially designed basic functions including
splines (see, e.g., [1,4]). We focus on Fm-transforms with respect to a spline-
based fuzzy partition introduced in [5] and further investigated in [9]. Previously
we have proved that for the composite Fm-transform w.r.t. the fuzzy partition
based on B-splines of degree 2k−1 the following approximation error estimation

∣
∣
∣f (n)(t) − (Fm[f ])(n)(t)

∣
∣
∣ = O(hr+1−n), t ∈ [â, b̂] ⊂ [a, b], (1)

holds for functions f ∈ Cr+1[a, b], where 0 ≤ n ≤ r ≤ min{2m+1, 2k−1} and h is
the parameter of the corresponding uniform crisp partition. The result O(h2m+2)
is achieved using B-splines of degree 2m + 1 (or greater), when we consider the
approximation error for functions from C2m+2([a, b]) (see also generalizations of
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 854, pp. 175–186, 2018.
https://doi.org/10.1007/978-3-319-91476-3_15
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this result for the multivariate setting [6–8]). This improves the best estimation
O(hm+1) of approximation error which is known for the Fm-transform w.r.t. an
arbitrary uniform fuzzy partition with the same parameter h.

The error estimation (1) holds on the interval where the spline-based fuzzy
partition fulfills the Ruspini condition. This interval is smaller than the initial
interval [a, b] and does not contain the first 2k−1 and the last 2k−1 subintervals
of the corresponding crisp partition. The aim of this contribution is to introduce
a technique which allows to extend good approximation properties of the Fm-
transform based on B-splines to the whole interval [a, b]. Such modification of
the proposed technique is very important for applications and allows to use the
advantages of spline-based Fm-transforms in numerical methods. Applying Fm-
transforms in numerical methods, e.g., to solve differential equations with initial
or boundary conditions, it is important to guarantee high quality of approxima-
tion on the whole interval under consideration and especially near the boundary
points.

2 Preliminaries

By [n..m] (for integers n,m with n ≤ m) we denote the set {n, n + 1, . . . ,m}.
Let Pl stand for the space of univariate polynomials of degree at most l. By ‖u‖,
where u ∈ C[a, b], we denote the usual supremum norm of u.

2.1 Generalized Fuzzy Partition

Fix an interval [a, b] ⊂ R and a positive integer N ∈ N. Let h > 0 and h′ > h/2.
Suppose that t0, . . . , tN are h-equidistant nodes s.t. a < t0 < . . . < tN < b. Let
Ei := (ti − h′, ti + h′) and Ēi be the closure of Ei. Furthermore, suppose that
⋃N

j=0 Ēj = [a, b].

Definition 1 (see, e.g., [11]). Fuzzy sets A0, . . . , AN : [a, b] → [0, 1] are said
to constitute a generalized (h, h′)-uniform fuzzy partition (FP for short) of [a, b]
if the following conditions are satisfied:

– Ai(t) > 0 if t ∈ Ei, and Ai(t) = 0 if t ∈ [a, b] \ Ei, i ∈ [0 .. N ];
– Ai is continuous on Ēi, i ∈ [0 .. N ];
–

∑N
j=0 Aj(t) > 0 for all t ∈ (a, b), i ∈ [0 .. N ];

– Ai(ti − t) = Ai(ti + t) for all t ∈ [0, h′], i ∈ [0 .. N ];
– Ai(t) = Ai+1(t + h) for all t ∈ Ēi and i ∈ [0 .. N − 1].

Then there is a function A : [−H,H] → R (called the generating function of the
partition), where H = h′/h, s.t. for all i ∈ [0 .. N ] and t ∈ Ēi, Ai(t) = A

(
t−ti

h

)

.

Furthermore, if there is an interval I ⊂ [a, b] such that
∑N

i=0 Ai(t) = 1 for all
t ∈ I, the fuzzy partition is said to fulfill the Ruspini condition on I.
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2.2 Discrete Fm -transform

Here we recall the definition of the discrete Fm-transform. We consider the
discrete transform, although the construction and related results in Sects. 3 and
4 can be extended also to the case of the integral transform. Throughout the
rest of this section, let an interval [a, b] ⊂ R and its generalized fuzzy partition
A = {A0, . . . , AN} be fixed. Fix also an integer m ≥ 0.

Let Δ = {z1, . . . , zL} ⊂ [a, b] be a discrete set of the interval [a, b] and
f : Δ → R. Denote yj = f(zj), for each j ∈ [1 .. L], and let y = (y1, y2, . . . , yL)T

be a column vector containing the values of the function f .
For each i ∈ [0 .. N ] define matrices

Xi =

⎛

⎜
⎝

1 z1 − ti . . . (z1 − ti)m

. . .
1 zL − ti . . . (zL − ti)m

⎞

⎟
⎠ , Ai = diag(Ai(z1), . . . , Ai(zL)).

Definition 2. We say that the set Δ is sufficiently dense in the fuzzy partition
A w.r.t. m if the matrix XT

i AiXi is invertible for each i ∈ [0 .. N ].

If the set Δ is sufficiently dense (in the fuzzy partition A w.r.t. m), then the
discrete direct Fm-transform can be defined:

Definition 3 [3]. The vector F→
m [f ] is the discrete direct Fm-transform of func-

tion f w.r.t. the fuzzy partition A, if the ith component F→
m,i[f ], i ∈ [0 .. N ], of

this vector is the polynomial

F→
m,i[f ](t) =

m∑

j=0

β
(i)
j (t − ti)j , t ∈ R,

where β(i) =
(

XT
i AiXi

)−1
XT

i Aiy.

One can define the inverse Fm-transform, which is applied to a tuple of poly-
nomials and is defined as a linear combination of these polynomials. Composing
the direct and inverse Fm-transforms one obtains the composite Fm-transform.
For the purposes of this paper, we define only the latter.

Definition 4. Let f : Δ → R. Suppose that the direct Fm-transform of f w.r.t.
the fuzzy partition A is F→

m [f ] = (F→
m,0[f ], . . . , F→

m,N [f ]) ∈ P
N+1
m . Then the func-

tion

Fm[f ](t) =

∑N
i=0 F→

m,i[f ](t)Ai(t)
∑N

i=0 Ai(t)
, t ∈ (a, b),

is called the (composite) Fm-transform of f w.r.t. the fuzzy partition A.
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2.3 Fuzzy Partition Based on B-splines

Central B-splines [14] are even B-splines that have 1-equidistant knots. For a
fixed degree the central B-spline is unique (up to a constant factor). The prop-
erties of B-splines and construction of a fuzzy partition using central B-spline as
the generating function are described in more details in [5].

Definition 5. The central B-spline of degree 2k − 1, denoted by φ2k−1, is the
unique piecewise polynomial function satisfying the following requirements: (1)
for each i ∈ [−k .. k − 1] the restriction of φ2k−1 to [i, i + 1] is a polynomial of
degree at most 2k − 1; (2) φ2k−1 ∈ C2k−2(R); (3) φ2k−1(t) = 0 if t /∈ (−k, k);
(4)

∫

R
φ2k−1(t) dt = 1.

Fix N, k ∈ N such that N ≥ 4k−1; let A = φ2k−1. Let an interval [a, b] be fixed;
denote h = (b − a)/N and define h-equidistant nodes ti = a + hi, i ∈ [0 .. N ].

Define the basic functions Ai(t) := A
(

t−ti
h

)

, i ∈ [k ..N − k]. Then the basic
functions Ak, . . . , AN−k form a generalized (h, hk)-uniform fuzzy partition of
[a, b] (let us denote it by A0). We refer to A0 as the FPB (FP based on B-
splines), or, more specifically, FPB(k,N). We also always implicitly assume that
its parameters satisfy N ≥ 4k − 1.

It is well-known that the composite Fm-transform is exact for polynomials
of degree ≤ m. The main advantage of the FPB is that the composite transform
is exact for polynomials of degree 2m + 1 (as long as it does not exceed the
respective spline degree).

Let the discrete set Δ consists of the basic nodes ti, i ∈ [0 .. N ] (this set is
sufficiently dense w.r.t. A0 iff m ≤ 2k − 2). Let Fm[f ] stand for the discrete
composite Fm-transform of f : Δ → R w.r.t. the fuzzy partition A0.

Theorem 1. Let r,m be non-negative integers s.t. r ≤ min {2m + 1, 2k − 1}
and m ≤ 2k − 2. Suppose that f ∈ Pr; then f(t) = Fm[f ](t) for all t ∈ [â, b̂].
Here [â, b̂] := [t2k−1, tN−2k+1] is the interval where the FPB A0 satisfies the
Ruspini condition.

3 Extended FPB and Modified F -transform

Suppose we are given a fuzzy partition A0, A1, . . . , AN of an interval [a, b]; fur-
thermore, let

∑N
j=0 Aj(t) ≤ 1 for all t ∈ [a, b]. If

∑N
j=0 Aj(t) = 1 for all t ∈ [a, b],

then the fuzzy partition fulfills the Ruspini condition on the whole interval [a, b].
Otherwise, one might introduce additional basic functions (i.e., extend the given
FP) to have the Ruspini condition fulfilled everywhere on [a, b]. When the fuzzy
partitions is FPB(k,N), there is a natural extension consisting of 2(2k − 1)
additional basic functions.

3.1 eFPB: An Extension of FPB

Throughout the rest of this section we introduce the following notation and
concepts, in addition to those described in Sect. 2.3:
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– A0: the FPB(k,N) of [a, b] consisting of the basic functions Ak, . . . , AN−k.
– ti = a + ih, with i ∈ {−2k + 1, . . . ,−2,−1, N + 1, N + 2, . . . , N + 2k − 1}:

additional nodes outside the interval [a, b].
– ã := t−2k+1 = a − (2k − 1)h and b̃ := tN+2k−1 = b + (2k − 1)h: the first and

the last of the additional nodes.
– Ai(t) = A((t−ti)/h), with i ∈ [−k+1 . . . k−1] and i ∈ [N −k+1 .. N +k−1]:

additional 2(2k − 1) basic functions extending the original FPB A0.
– A: the fuzzy partition of [a, b], formed by the basic functions A−k+1[a,b]

, . . . ,
AN+k−1[a,b]

.
– Ā: the FPB(k,N +4k −2) of the interval [ã, b̃], formed by the basic functions

A−k+1, . . . , AN+k−1.

From now on, we will refer to the fuzzy partition A as the (k,N)-eFPB of
[a, b]. Notice that A of [a, b] satisfies the Ruspini condition on the whole [a, b].
Furthermore, Ā (i.e., the FPB of [ã, b̃]) satisfies the Ruspini condition on the
interval [a, b].

We illustrate these concepts in Fig. 1. Consider [a, b] = [0, 1] and its
FPB(2, 7), i.e., the FPB based on cubic B-splines, consisting of basic functions
A2, . . . , A5 (which are plotted in Fig. 1 with blue, solid lines), with basic nodes
ti = i/7, i ∈ [0 .. 7]. This FPB is denoted by A0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Basic functions of the FPB
Additional basic functions
Basic nodes

Fig. 1. FPB A0 of [0, 1] (with blue lines) and the corresponding eFPB A (Color figure
online)

Introducing additional 6 basic functions (plotted in Fig. 1 with red, dashed
lines) yields the (2, 7)-eFPB A, which fulfills the Ruspini condition on the whole
interval [a, b].

The additional basic functions A−1, A0, A1 and A6, A7, A8 are supported in
the wider interval [ã, b̃] = [−3/7, 10/7], and A is obtained when these functions
are restricted to [a, b] = [0, 1]. However, when we view the unrestricted functions
(in Fig. 2 we depict them outside [a, b] with green dash-dot lines), they form
an FPB(2, 13) of the interval [ã, b̃] (which is denoted by Ā). In Fig. 2 we also
illustrate the additional basic nodes outside [a, b].
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Additional nodes

Fig. 2. Unrestricted basic functions of Ā (the FPB of [ã, b̃]) (Color figure online)

The reason we defined eFPB A is to obtain an analogue of Theorem 1. How-
ever, performing the usual Fm-transform w.r.t. the fuzzy partition A does not
produce this result. Moreover, when performing the discrete Fm-transform, the
partition A is unlikely to be sufficiently dense. If only the function f was defined
on the interval [ã, b̃], then we could use Ā, i.e., the FPB of [ã, b̃], instead of A, and
perform the usual Fm-transform of f with respect to Ā. Since for this partition
the Ruspini condition holds on [a, b], we would immediately obtain the desired
result. This leads to the central idea: extrapolation of f .

3.2 Extrapolation Operators

Fix a nonnegative integer M and positive reals δ, δ′. Let ε0 > 0 be such that
δε0 = b − a. Suppose that for every ε ∈ (0, ε0) there are defined linear bounded
operators Eε,1 : C[a, a+ δε] → C[a− δ′ε, a] (even though these operators depend
on δ, δ′ and M , this dependence is not reflected in the notation for the sake of
simplicity) such that the following holds:

1. Eε,1f = f for every polynomial f ∈ PM ;
2. (Eε,1f) (a) = f(a);
3. the family {Eε,1}ε is uniformly bounded, i.e., there exists a constant C� > 0

(independent of ε) such that ‖Eε,1‖ ≤ C� for all ε.

Let there be a family of operators Eε,2 : C[b−δε, b] → C[b, b+δ′ε] with analogous
properties; in fact, one can define Eε,2 via Eε,1, by taking

(Eε,2f)(b + t) = (Eε,1g)(a − t), t ∈ [0, δ′ε], (2)

where g ∈ C[a, b] is defined by g(a + t) = f(b − t), t ∈ [0, b − a]. Define an
operator Eε : C[a, b] → C[a − δ′ε, b + δ′ε] as follows:

Eεf(t) =

⎧

⎪⎨

⎪⎩

Eε,1f(t), a − δ′ε ≤ t < a,

f(t), a ≤ t ≤ b,

Eε,2f(t), b < t ≤ b + δ′ε.
(3)
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We call the operator Eε an order-M extrapolator (with parameters δ, δ′, for
functions f ∈ C[a, b]).

The parameter δ controls the length of the interval where the values of f
are used for the extrapolation; the parameter δ′ controls how far we wish to
extend the function f . The parameter ε allows to ‘scale’ the extrapolation, i.e.,
for smaller ε we consider f only in a small vicinity of a (or b) and extrapolate
its values to another small interval outside [a, b].

Remark 1. We intend to set δ′ = 2k − 1 and ε = h, then a − δ′ε = ã and Eh

maps f ∈ C[a, b] to a function f̃ ∈ C[ã, b̃].

Construction of an Order-M Extrapolator. There are several ways to define
operators Eε,1; arguably the simplest of them is to use the Lagrange interpolating
polynomial. Suppose that δ = M , δ′ = 2k − 1 and εM < b − a. Let ti = a + iε,
i ∈ [0 ..M ] (this notation is consistent with our previous use of ti in light of
Remark 1).

Fix a function f ∈ C[a, b] and denote yi = f(ti). Let p ∈ PM be the (unique)
polynomial satisfying p(ti) = yi for all i ∈ [0 ..M ], and let Eε,1(f) = p. Operators
Eε,2 and Eε are defined via (2) and (3). It is easy to check that Eε,1 possesses the
necessary properties (the norm of the operator depends on M , but not ε, thus we
have the uniform boundedness, the remaining properties follow trivially). Thus
Eε is a valid order-M extrapolator.

However, the Lagrange interpolation, combined with the equispaced points ti,
exhibits poor numerical properties: the 2-norm condition number of the matrix
used to find the polynomial (matrix TM,M in the notation below) grows expo-
nentially with M [2] and actual computations in floating point arithmetic become
difficult even for relatively small values of M .

Our preferred route is to use least squares fitting instead of interpolation. Fix
an integer R ≥ M ; set δ = R, δ′ = 2k−1 and let ε < (b−a)/R. Denote ti = a+iε,
yi = f(ti), i ≤ R, and t := (t0, t1, . . . , tR), y := f(t) = (y0, y1, . . . , yR).

Consider the following task: find a polynomial p ∈ PM which minimizes the
quantity ‖y − p(t)‖2. While p can be expressed in any basis of PM , we choose
the Chebyshev polynomial basis. Express p =

∑M
l=0 cl Tl, where Tl is the scaled

lth Chebyshev polynomial of the first kind, i.e., Tl(t) = cos(l cos−1 τ), where
τ := 2(t − t0)/ (tR − t0) − 1 ∈ [−1, 1], for all t ∈ [t0, tR].

Let c = (c0, . . . , cM )T be the vector of the unknown coefficients, then it
satisfies the normal equations TT

R,MTR,Mc = TT
R,My . Here TR,M stands for

the (R + 1) × (M + 1) matrix containing Tl(ti) as its (i, l)-th entry. The least
squares solution to this problem is c =

(

TT
R,MTR,M

)−1
TT

R,My , which gives p.
In [2, Theorem 8] authors show that for M ≤ 0.5

√
R the condition number of

TT
R,MTR,M is linear in M , thus the normal equations provide a practical way

to compute c and p(t).
We let Eε,1(f) = p. Again, it is easy to check that Eε,1 admits the necessary

properties and the corresponding Eε is a valid order-M extrapolator.
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3.3 Modification of Fm -transform

Let a (k,N)-eFPB A be fixed, with parameter h = (b − a)/N . Consider also
the respective FPB of the extended interval [ã, b̃], denoted by Ā. Fix a family of
order-M extrapolators {Eε}ε, with parameters δ > 0 and δ′ = 2k − 1. We shall
call the direct (composite) Fm-transform (w.r.t. fuzzy partition Ā of [ã, b̃]) of
the extrapolant Ehf a modified Fm-transform:

Definition 6. Let f ∈ C[a, b] and Eh be an extrapolator of the fam-
ily {Eε}ε described above. Denote f̃ = Ehf and let F→

m [f̃ ] =
(F→

m,−k+1[f̃ ], . . . , F→
m,N+k−1[f̃ ]) be the direct Fm-transform of f̃ w.r.t. Ā.

We call this vector the direct modified Fm-transform (or direct F̃m-
transform for short) of f , based on the extrapolator Eh, w.r.t. the fuzzy partition
A, and denote it by F̃→

m [f ] = (F̃→
m,−k+1[f ], . . . , F̃→

m,N+k−1[f ]).
The (composite) F̃m-transform is defined as the usual inverse Fm-transform

applied to the vector F̃→
m [f ] and denoted by F̃m[f ].

This term is justified by the fact that this transform coincides with the usual
direct Fm-transform for most entries (i.e., for all i ∈ [k ..N − k]) and we only
modify the behavior of the transformation near the endpoints of [a, b] (i.e., extend
the corresponding basic functions and the function f outside [a, b]). Since we
construct f̃ from the values of f in [a, b], one can think of F→

m [f̃ ] as a single-step
transformation of f , instead of a two-step procedure (i.e., first constructing an
extrapolant and then applying the direct Fm-transform).

Notice that the modified Fm-transform depends on the particular choice of
the family of extrapolators. For the sake of simplicity, we shall not reflect this
dependence in the notation F̃→

m .
Some immediate observations:

– F̃m is a linear operator, by the linearity of Eh and the usual Fm-transform.
– We have F→

m,i[f̃ ] = F→
m,i[f ] for all i ∈ [k ..N − k], since the corresponding

basic function Ai is supported in (ti−k, ti+k) ⊂ [a, b], where f ≡ f̃ .
– If the modified Fm-transform is based on an order-(2m+1) extrapolator and

f ∈ P2m+1, then Fm[f̃ ] ≡ f on [a, b] (assuming k to be large enough, i.e.,
k ≥ m − 1), since [a, b] is the interval where the Ruspini condition holds for
the considered FPB of [ã, b̃]. This is due to Theorem 1 and the fact that an
order-M extrapolant of any f ∈ PM coincides with f . It immediately yields
the following:

Theorem 2. Let r,m be non-negative integers s.t. r ≤ min {2m + 1, 2k − 1}.
In the discrete case we also assume m ≤ 2k − 2, so that Δ is sufficiently dense.
Assume the extrapolator order to be M ≥ 2m + 1. Then every f ∈ Pr satisfies
f(t) = F̃m[f ](t) for all t ∈ [a, b].

4 Approximation of Polynomials and Smooth Functions

Throughout this section, we fix an interval [a, b] ⊂ R, a family of order-(2k − 1)
extrapolators Eε, and use the same notation as in Sect. 3. Furthermore, Fm will
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stand for (either the integral or the discrete) Fm-transform w.r.t. A0 (unless
stated otherwise), and F̃m for the modified transform (based on Eh) w.r.t. A.

We shall sometimes use notation f(τ) ∈ Pl[τ ] to underline that the expression
f is a polynomial (of degree ≤ l) w.r.t. the variable τ . Also, by convention,
P−l := {0} for l > 0 stands for the set containing only the zero function.

We proceed by briefly sketching a claim about the usual Fm-transform of
polynomials w.r.t. the fuzzy partition A0.

Theorem 3. Let r,m be non-negative integers satisfying 2m + 1 < r ≤ 2k − 1.
Suppose that f ∈ Pr; then the difference f−Fm[f ], when restricted to the interval
[â, b̂] where A0 satisfies the Ruspini condition, is a polynomial of degree at most
r − (2m + 2).

Proof (sketch of). Express f − Fm[f ] =
∑r

l=m+1

∑N
i=0 ci,lPi,l(t)Ai(t), where

Pi,l(t) = Pl((t − ti)/h) and Pl ∈ Pl are the orthogonal basis polynomials corre-
sponding to the inner product associated with the weight function A (for precise
definitions and properties of Pl, see [9]).

Thus it suffices to show that in the interval [â, b̂] for all l the function
∑N

i=0 ci,lPi,l(t)Ai(t) is in Pr−2l. Using the fact [9, Lemma 3] that ci,l = ql(i)
for some q ∈ Pr−l, it suffices to show that for all p ∈ Pn, n ≤ 2k − 1 − l, and all
τ ∈ [0, 1] we have

∑k
i=1−k p(i) Pl (τ − i) A (τ − i) ∈ Pn−l[τ ].

By [9, Lemma 19], it is equivalent to I(τ) :=
∫ k

−k
p(x + τ)Pl(x)A(x) dx ∈

Pn−l[τ ]. Express p(x + τ) as
∑n

j=0 pj(x) qn−j(τ), where deg pj ≤ j, deg qj ≤ j.

Letting αj :=
∫ k

−k
pj(x)Pl(x)A(x) dx, we obtain that the integral I(τ) equals

to the sum
∑n

j=0 αjqn−j(τ). Moreover, αj = 0 for j ≤ l − 1 by [9, Lemma 4],
therefore I(τ) =

∑n
j=l αjqn−j(τ) ∈ Pn−l[τ ], concluding the argument. 
�

Taking into account that for f ∈ P2k−1 the modified Fm-transform, based on
order-(2k − 1) extrapolators, is equivalent to the usual Fm-transform w.r.t. the
fuzzy partition A−k+1, . . . , AN+k−1 of [ã, b̃], we can conclude from Theorems 1
and 3 that.

Theorem 4. Let r,m be non-negative integers and suppose r ≤ 2k − 1. Let
f ∈ Pr; then f − F̃m[f ] is a polynomial of degree at most r − (2m + 2).

This somewhat technical result has a consequence (which can be shown by
a simple induction on r) which becomes important when applying the modified
F -transform to solve numerically boundary value problems via the collocation
method.

Corollary 1. For every p ∈ Pr, r ≤ 2k − 1, there is a polynomial f ∈ Pr such
that F̃m[f ] = p.

Remark 2. When approximating smooth functions with their Fm-transforms, we
shall fix m, k and consider the Fm-transforms of f w.r.t. a sequence of (k,N)-
FPBs (with N → ∞). In this regime, let a sequence of FPBs be fixed and denote
by Fm

N [f ] the Fm-transform of f w.r.t. the (k,N)-FPB. For each N we can view
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Fm
N as an operator mapping C[a, b] into itself. Then it is easy to show that these

operators are uniformly bounded.

Theorem 5. Let non-negative integers r,m satisfy r ≤ min {2m + 1, 2k − 1}.
Then for all f ∈ Cr+1[a, b] it holds that

∥
∥
∥f − F̃m[f ]

∥
∥
∥ = O(hr+1).

Proof. Fix any f ∈ Cr+1[a, b] and N ≥ 4k−1. As usual, we let h = (b−a)/N and
ã = a − (2k − 1)h, b̃ = b + (2k − 1)h; furthermore, Ā stands for the FPB(k,N +
4k − 2) of [ã, b̃].

Assume r ≥ 1. Apply the rth order Taylor’s formula with the integral form of
the remainder, with a as the center of expansion. Let p ∈ Pr be the corresponding
Taylor polynomial for f , then

f(x) = p(x) +
∫ b

a

f (r+1)(t)Kt(x) dt, Kt(x) :=

{
(x−t)r

r! , t ≤ x ≤ b

0, a ≤ x < t.

Now, (f − F̃m[f ])(x) =
∫ b

a
f (r+1)(t)

(

Kt − F̃m[Kt]
)

(x) dt, by Theorem 2 and

the linearity of F̃m. Notice that the extrapolant Eh(f) is not required to be
differentiable, since Taylor’s formula is applied only to f . Hence we can upper-
bound

∥
∥
∥f − F̃m[f ]

∥
∥
∥ by

∥
∥f (r+1)

∥
∥ · supx∈[a,b]

∫ b

a

∣
∣
∣Kt(x) − F̃m[Kt](x)

∣
∣
∣ dt, or, since

Kt(x) − F̃m[Kt](x) = 0 unless |x − t| ≤ max {2kh, δh},
∥
∥
∥f − F̃m[f ]

∥
∥
∥ ≤

∥
∥
∥f (r+1)

∥
∥
∥ · h max {2k, δ} · sup

x,t∈[a,b]

∣
∣
∣Kt(x) − F̃m[Kt](x)

∣
∣
∣ . (4)

Let Fm[g] stand for the usual Fm-transform of a function g ∈ C[ã, b̃] w.r.t.
Ā. To estimate the maximum in (4), denote K̃t := Eh(Kt), then we need to
estimate the difference Kt − F̃m[Kt] = Kt −Fm[K̃t]. Even though Kt is formally
defined only in [a, b], we can naturally extend its definition to the whole [ã, b̃]:
Kt(x) = 0 for x ∈ [ã, t] and Kt(x) = (x − t)r/r! for x ∈ [t, b̃].

We recall the following fact about the ordinary Fm-transform of Kt which
follows from [9, Lemma 11]: if |x − t| > 2kh, then Kt(x) − Fm[Kt](x) = 0,
otherwise this difference is of order O(hr) (because then Kt(x) = O(hr)).
Let us show that there is a constant C0 > 0 (independent of h) such that
∣
∣
∣Kt(x) − K̃t(x)

∣
∣
∣ ≤ C0h

r for all x ∈ [ã, b̃], t ∈ [a, b]. Then, in view of Remark 2,

we get Kt − Fm[K̃t] = (Kt − Fm[Kt]) + Fm[K̃t − Kt] = O(hr). Together with
(4) this will conclude the proof.

Let δ > 0 and δ′ = 2k − 1 be the corresponding parameters of the family
{Eε}ε. By the definition of Eε, we have Kt(x) − K̃t(x) = 0 unless x < a or
x > b. There are three cases to consider: t ∈ [a, a + δh), t ∈ (b − δh, b], and
t ∈ [a + δh, b − δh]. The last case is trivial (since then K̃t ≡ Kt). In either of the
former two cases we have Kt(x) ≤ δrhr when x ∈ [a, a + δh] (in the first case)
or when x ∈ [b − δh, b] (in the second case). From the uniform boundedness of
{Eε,1}ε and {Eε,2}ε we have

max
x∈[a−δ′h,a]

∣
∣
∣K̃t(x)

∣
∣
∣ ≤ C�δ

rhr and max
x∈[b,b+δ′h]

∣
∣
∣K̃t(x)

∣
∣
∣ ≤ C�δ

rhr.
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Since Kt(x) = 0 = O(hr) for x < a and, in the second case, Kt(x) ≤ ((δ′ + δ)h)r

for x ∈ [b, b + δ′h], it suffices to take C0 = (δ′ + δ)r + C�δ
r.

When r = 0, the previous arguments fail, since Eh was defined for continuous
functions. Nevertheless, one can generalize Eh to apply them to piecewise con-
tinuous functions and similar arguments give the desired

∥
∥
∥f − F̃m[f ]

∥
∥
∥ = O(h).


�
For illustrative purposes we consider approximating f1(x) = sin2(πx) and

f2(x) = sin(exp(4x)) over the interval [0, 1] by the modified Fm-transform, for
m ∈ {0, 1} and N ∈ {

10, 102, 103, 104
}

(then h = 1/N). In these examples the
FPBs are given by cubic B-splines (i.e., we consider the (2, N)-eFPB of [0, 1]).

In each case we compute the absolute error (f − F̃m[f ])(t) at the nodes ti,
then calculate the maximum among the obtained values. The results for each
N , m and f ∈ {f1, f2} are depicted in Table 1. The numerical data support the
prediction by Theorem 5 that F̃0-transform approximates f with O(h2)-accuracy,
but F̃1-transform approximates f with O(h4)-accuracy, as both functions are
from C∞[a, b].

Table 1. Maximum absolute error at nodes

N 10 102 103 104

f1, m = 0 8.33e− 02 6.60e− 04 6.58e− 06 6.58e− 08

f1, m = 1 4.05e− 03 4.33e− 07 4.33e− 11 4.55e− 15

f2, m = 0 1.79e + 00 1.47e + 00 1.52e− 02 1.47e− 04

f2, m = 1 1.93e + 00 4.95e− 01 1.04e− 04 1.09e− 08

In Fig. 3 we also depict the function f1 and both the usual F0-transform
of f1 (w.r.t. the FPB (2, 10)) and the modified F0-transform of f1 (w.r.t. the
corresponding (2, 10)-eFPB). If t ∈ [0.3, 0.7], then F [f1](t) = F̃ [f1](t) and both
functions approximate f1; however, when t is outside this interval, then F [f1]
approximates f1 poorly, whereas F̃ [f1] is still close to the original function f1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Original function f
(Composite) F-transform of f
Modified F-transform of f
Basic nodes

Fig. 3. The function f1 and its approximation by F [f1] and F̃ [f1], for k = 2, N = 10
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5 Conclusion

The proposed modification of the spline-based F -transform technique allows us
to eliminate the main obstacle to effective use the advantages of this technique
in applications. As it was mentioned before, applications of the F -transforms in
numerically solving boundary value problems require high quality of approxima-
tion on the whole interval under consideration and especially near the boundary
points. Our future research is devoted to such applications of the modified spline-
based F -transform.
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Abstract. The paper is devoted to an application of a modified F-
transform technique based on B-splines in solving linear boundary value
problems via the collocation method. An approximate solution is sought
as a composite F -transform of a discrete function (which allows the solu-
tion to be compactly stored as the values of this discrete function). We
demonstrate the effectiveness of the described technique with numerical
examples, compare it with other methods and propose theoretical results
on the order of approximation when the fuzzy partition is based on cubic
B-splines.

Keywords: Fuzzy transform · Boundary value problem · Collocation

1 Introduction

In this paper we deal with linear two-point second-order boundary value prob-
lems (BVPs for short), subject to linear boundary conditions.

We assume that the reader is familiar with the concept of the ordinary F -
transform introduced by I. Perfilieva in 2001 [14] (see also the key paper [11]) and
its extension to the higher degree F -transform [13] with degree-m polynomial
components (the Fm-transform). We work with fuzzy transforms based on B-
splines as basic functions which form a fuzzy partition [7,8] (see also papers [3,6]
dealing with fuzzy partitions based on polynomial splines).

The idea to use F -transforms (or their higher degree counterparts) to solve
numerically differential equations is not new. For instance, in 2005 the fuzzy
transform was applied [19] to solve numerically partial differential equations;
more recently, in [5] the authors proposed numerical solutions of Cauchy prob-
lems based on fuzzy transform. F -transform based shooting method for solving
BVPs (either linear or non-linear) was discussed in [15]. In [16] the authors con-
sider numerically solving second order BVPs with Dirichlet boundary conditions
via the F -transform method and the advantages of employing this method.

In contrast to the aforementioned papers, the main idea of our proposal is
to ensure that it is the composite F -transform (i.e., the inverse transform of

c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 854, pp. 187–198, 2018.
https://doi.org/10.1007/978-3-319-91476-3_16
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the direct F -transform) which solves the BVP. This allows to exploit the good
approximation properties provided by the composite transform. The main obsta-
cle to use the spline-based fuzzy partition introduced in [7] (and generalized to
for the discrete transform in [8]) is that it does not satisfy the Ruspini condi-
tion (where the composite transform approximates the original function) on the
whole interval. To deal with this, we introduce a modification of the aforemen-
tioned fuzzy partition, as well modify the F -transform itself near the endpoints
of the interval.

To actually solve the BVP, we apply the collocation method; the proof tech-
niques are based on the scheme described in [17]. Somewhat unexpectedly, it
turns out that the ordinary F -transform already provides high approximation
order of the exact solution (and thus it is not necessary to employ higher degree
F -transforms). Even though we have considered only linear problems with lin-
ear boundary conditions, we expect that these results can be generalized to the
non-linear setting as well.

2 Preliminaries

By [n..m] (for integers n,m with n ≤ m) we denote the set {n, n + 1, . . . ,m}.
Let Pl stand for the space of univariate polynomials of degree at most l.

2.1 Fuzzy Partition Based on B-splines

Central B-splines [18] are even B-splines that have 1-equidistant knots. For a
fixed degree the central B-spline is unique (up to a constant factor). The prop-
erties of B-splines and construction of a fuzzy partition using central B-spline as
the generating function are described in more details in [8].

Definition 1. The central B-spline of degree 2k − 1, denoted by φ2k−1, is the
unique piecewise polynomial function satisfying the following requirements: (1)
for each i ∈ [−k .. k − 1] the restriction of φ2k−1 to [i, i + 1] is a polynomial of
degree at most 2k − 1; (2) φ2k−1 ∈ C2k−2(R); (3) φ2k−1(t) = 0 if t /∈ (−k, k);
(4)

∫
R

φ2k−1(t) dt = 1.

Fix N, k ∈ N such that N ≥ 4k−1; let A = φ2k−1. Let an interval [a, b] be fixed;
denote h = (b − a)/N and define h-equidistant nodes ti = a + hi, i ∈ [0 .. N ].

Define Ai(t) := A
(

t−ti
h

)
(called the basic functions), i ∈ [k ..N −k]. Then the

basic functions Ak, . . . , AN−k form a generalized (h, hk)-uniform fuzzy partition
(FP) of [a, b], as defined in, e.g., [12]. Let us denote this fuzzy partition by A0. We
refer to A0 as the FPB (fuzzy partition based on B-splines), or, more specifically,
FPB(k,N).

Recall that a fuzzy partition is said to fulfill the Ruspini condition on some
interval I ⊂ [a, b] if the basic functions sum up to 1 in this interval. In the case
of FPB, the Ruspini condition is fulfilled on [t2k−1, tN−2k+1].

Throughout the rest of this section, fix an interval [a, b] ⊂ R, positive integers
k and N , N ≥ 4k − 1, and A0 = {Ak, . . . , AN−k}, which is the FPB(k,N) of
[a, b].
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2.2 Discrete F -transform

Let Δ = {z1, . . . , zL} ⊂ [a, b] be a discrete set of the interval [a, b] and f : Δ → R.
Denote yj = f(zj), for each j ∈ [1 .. L]. The set Δ is said to be sufficiently dense
in the fuzzy partition A0 if for every basic function Ai ∈ A0 there is a discrete
point zj ∈ Δ, j ∈ [1 .. L], s.t. it belongs to the fuzzy set Ai with nonzero degree:
Ai(zj) > 0.

If the set Δ is sufficiently dense, then the discrete direct F -transform can be
defined:

Definition 2 [10]. The vector F→[f ] is the discrete direct F -transform of func-
tion f w.r.t. A0, if the ith component of this vector is

F→
i [f ] =

∑L
j=1 Ai(zj)yj

∑L
j=1 Ai(zj)

, i ∈ [k ..N − k].

One can define the inverse F -transform, which is applied to a vector in
R

N−2k+1. Composing the direct and inverse F -transforms one obtains the com-
posite F -transform. For the purposes of this paper, we define only the latter.

Definition 3. Let f : Δ → R. Suppose that the direct discrete F -transform of
f w.r.t. A0 is F→[f ] = (F→

k [f ], . . . , F→
N−k[f ]) ∈ R

N−2k+1. Then the function

F [f ](t) =
∑N−k

i=k F→
i [f ]Ai(t)

∑N−k
i=k Ai(t)

, t ∈ [a, b],

is called the (composite) F -transform of f w.r.t. A0.

The main advantage of the FPB comparing to an arbitrary fuzzy parti-
tion is that the composite Fm-transform (the generalization of the ordinary
F -transform) is exact for polynomials of degree 2m + 1 (as long as it does not
exceed the respective spline degree), as opposed to being exact for polynomials of
degree m for a general FP. In the context of the ordinary F -transform, though,
this means that the composite transform is exact for the linear polynomials,
when the FP is based on B-splines.

Theorem 1. Let the discrete set Δ consists of the basic nodes ti, i ∈ [0 .. N ].
Let F [f ] stand for the discrete F -transform of f : Δ → R w.r.t. A0. If f ∈ P1,
then f(t) = F [f ](t) for all t ∈ [t2k−1, tN−2k+1] (i.e., in the interval where the
FPB A0 satisfies the Ruspini condition).

3 Extended FPB and the Modified F -transform

The aim of this section is to briefly describe how we modify the FPB and fuzzy
transform near the endpoints of [a, b] to achieve that the Ruspini condition holds
on the whole [a, b] and an analogue of Theorem 1 also applies on the whole [a, b].
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The main drawback of the fuzzy partition FPB(k,N) is that it does not
fulfill the Ruspini condition on the whole [a, b], which proves to be a forbidding
obstacle for many applications. It can be remedied by introducing additional
basic functions, generated by the same generating function A, and restricting
them to [a, b]. Throughout the rest of this paper we introduce the following
notation and concepts, in addition to those described in Sect. 2.1.

– ti = a + ih, with i ∈ [−2k + 1 . . . − 1] and i ∈ [N + 1 .. N + 2k − 1]: additional
nodes outside the interval [a, b].

– ã := t−2k+1 = a − (2k − 1)h and b̃ := tN+2k−1 = b + (2k − 1)h: the first and
the last of the additional nodes.

– Ai(t) = A((t − ti)/h), i ∈ [−k + 1 . . . N + k − 1]: additional basic functions.
– A: the FP of [a, b], formed by the basic functions A−k+1[a,b]

, . . . , AN+k−1[a,b]
.

– Ā: the FPB(k,N +4k −2) of the interval [ã, b̃], formed by the basic functions
A−k+1, . . . , AN+k−1.

Fix also the set of basic nodes Δ = {t0, t1, . . . , tN} ⊂ [a, b] and the extended set
Δ̃ = {t−2k+2, . . . , tN+2k−2} ⊃ Δ.

From now on, we will refer to the fuzzy partition A as the (k,N)-eFPB of
[a, b]. Notice that A of [a, b] satisfies the Ruspini condition on the whole [a, b].
Furthermore, Ā (i.e., the FPB of [ã, b̃]) satisfies the Ruspini condition on the
interval [a, b].

This method, however, does not preserve the aforementioned generalization of
Theorem 1, i.e., the composite Fm-transform is not exact for p ∈ P2m+1 anymore.
The solution is to extrapolate the function f to some function f̃ : Δ̃ → R.
We require that f̃ agrees with f in [a, b] and coincides with f everywhere if
f ∈ P2k−1 (for the sake of generalization of Theorem 1, it suffices to require that
for f ∈ P2m+1; however, this stronger version has its own advantages).

In this paper, we construct f̃ in the simplest way (albeit not the most effective
nor stablest way from the viewpoint of numerical methods), by computing the
Lagrange polynomial p ∈ P2k−1 satisfying p(tj) = f(tj), j ∈ [0 .. 2k − 1], and
letting f̃(tj) = p(tj) for j < 0. The values f̃(tj) for j > N are defined similarly.

We shall call the direct (composite) F -transformation (w.r.t. Ā of [ã, b̃]) of
the extrapolant f̃ a modified F -transform of f :

Definition 4. Let f : [a, b] → R. Suppose that f̃ is constructed as described
previously. Let F→[f̃ ] = (F→

−k+1[f̃ ], . . . , F→
N+k−1[f̃ ]) be the direct F -transform

of f̃ w.r.t. Ā. We call the mapping f �→ F→[f̃ ] a modified F -transform or
F̃ -transform based on the Lagrange extrapolator w.r.t. A, and denote F̃→[f ] =
F→[f̃ ], F̃→

i [f ] = F→
i [f̃ ]. By the term composite F̃ -transform we understand the

usual inverse F -transform applied to the vector F̃→[f ].

This term is justified by the fact that this transform coincides with the usual
F -transform for most entries; since we construct f̃ from the values of f in [a, b],
one can think of F→[f̃ ] as a single-step transformation of f , instead of two-step
procedure.
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Now we have a FP which fulfills the Ruspini condition on the whole [a, b],
moreover, the F̃ -transform (and its higher-degree generalization) has the desired
analogue of Theorem 1. But it turns out that there is another, previously unrec-
ognized property of this transform, which turns out to be essential for our appli-
cations in this paper:

Proposition 1. For every p ∈ Pr, r ≤ 2k − 1, there is a polynomial f ∈ Pr

such that F̃ [f ] = p.

While its proof is somewhat lengthy, we note that for the (2, N)-eFPB we con-
sider in the next section, it suffices to prove this for k = 2. This, however,
can be checked directly by noting that F̃ [p] = p whenever deg p ≤ 1; and
F̃ [t2 + 2h2/3] = p for p(t) = t2, and F̃ [t3 + h2t] = p for p(t) = t3.

4 Collocation with Composite F̃ -transform

Let e0, e1, f ∈ C[a, b]. Define a differential operator Lu := u′′ + e1u
′ + e0u

and boundary conditions (BC) operators B1,B2, where Bju := α0,ju(a) +
α1,ju

′(a) + β0,ju(b) + β1,ju
′(b), j = 1, 2, and αi,j , βi,j are some reals. Con-

sider the corresponding linear differential equation subject to linear homoge-
neous boundary conditions (notice that there is no loss of generality in assuming
homogeneous boundary conditions):

Lu(s) = f(s), a < s < b; B1u = B2u = 0. (1)

Fix a (k,N)-eFPB of [a, b], denoted by Ah, where h = (b − a)/N . Then we
can consider the following problem: find a function g : Δ → R such that its
F̃ -transform w.r.t. Ah (which we denote by uh := F̃ [g]) satisfies the differential
equation Luh = f at the inner basic nodes (i.e., for s = ti, i ∈ [1 .. N − 1]), as
well as the boundary conditions B1uh = B2uh = 0.

When the FP is based on cubic B-splines (i.e., k = 2) and assuming that the
F̃ -transform is based on the Lagrange extrapolator, we show that the described
collocation problem is uniquely solvable (under standard requirements on the
boundary value problem (1)). Moreover, the collocation solution approximates
the exact solution u (and its first and second derivative) with order O(h2). We
also conjecture that the statement remains true for higher degree B-splines (i.e.,
for k > 2) and that the order of approximation then is O(h2k−2).

Before we proceed, let us introduce some additional notation:

– Spaces U0 and U2: let U0 be the linear space of F̃ -transforms of all discrete
functions defined on Δ w.r.t. the fuzzy partition Ah, and let U2 contain the
second derivatives of functions in U0:

U0 =
{

F̃ (g) g : Δ → R

}
, U2 = {v ∃u ∈ U0 : v ≡ u′′} .

– Operator Ph : C[a, b] → U2: the linear projector which maps every continuous
function f to the unique u ∈ U2 satisfying u(ti) = f(ti), i ∈ [1 .. N − 1] (the
fact that the operator is well-defined is shown in Proposition 2).
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In the following, ‖u‖, where u ∈ C[a, b], stands for the usual supremum norm.

Theorem 2. Let e0, e1, f ∈ C[a, b]. Suppose that the BVP (1) has a unique
solution and the problem u′′ = 0 with boundary conditions B1u = B2u = 0 has
only the trivial solution. Let N ∈ N be sufficiently large and let Ah be a (2, N)-
eFPB of [a, b]. Let Δ be as in Sect. 3; let F̃ -transform stand for the F̃ -transform
based on the Lagrange extrapolator w.r.t. Ah.

Then there is a unique function g : Δ → R such that its F̃ -transform, denoted
by uh, satisfies the following constraints:

Luh(ti) = f(ti), i ∈ [1 .. N − 1]; B1uh = B2uh = 0. (2)

Moreover, for all j ∈ {0, 1, 2} the following estimation holds:
∥
∥
∥u(j) − u

(j)
h

∥
∥
∥ = O(‖u′′ − Ph(u′′)‖) −−−→

h→0
0, (3)

where u is the unique solution of the BVP (1) and Ph is the operator intro-
duced previously. In particular, if u ∈ C4[a, b] (which is guaranteed, e.g., when
e0, e1, f ∈ C2[a, b]), then

∥
∥
∥u(j) − u

(j)
h

∥
∥
∥ = O(h2), j ∈ {0, 1, 2} . (4)

Proposition 2. Operator Ph is well-defined.

Proof. We will show that for every f ∈ C[a, b] there is a unique g : Δ → R such
that F̃ [g](a) = F̃ [g](b) = 0 and (F̃ [g])′′(ti) = f(ti), i ∈ [1 .. N − 1]. Then Phf
necessarily equals (F̃ [g])′′.

For simplicity, denote F̃→
i [g] by F̃→

i . Observe that for all i ∈ [0 .. N ]

F̃ [g](ti) = F̃→
i−1 Ai−1(ti) + F̃→

i Ai(ti) + F̃→
i+1 Ai+1(ti),

(F̃ [g])′′(ti) = F̃→
i−1 A′′

i−1(ti) + F̃→
i A′′

i (ti) + F̃→
i+1 A′′

i+1(ti).

Specifically, since A is the central cubic B-spline, Ai±1(ti) = 1/6, Ai(ti) = 2/3
and A′′

i±1(ti) = 1/h2, A′′
i (ti) = −2/h2. Hence we need to show that for every

f ∈ C[a, b] there is a unique g : Δ → R such that
⎧
⎪⎨

⎪⎩

F̃→
−1 + 4F̃→

0 + F̃→
1 = 0

F̃→
i−1 − 2F̃→

i + F̃→
i+1 = h2 f(ti), i ∈ [1 .. N − 1]

F̃→
N−1 + 4F̃→

N + F̃→
N+1 = 0.

(5)

Denote yi = g(ti), i ∈ [0 .. N ]. To find F̃→
0 and F̃→

−1, one must find y−1 :=
p(a−h) and y−2 := p(a− 2h), where p is the unique polynomial in P3 satisfying
p(ti) = yi for i ∈ [0 .. 3]. Explicit calculation yields y−1 = 4y0 − 6y1 + 4y2 − y3
and y−2 = 10y0 − 20y1 + 15y2 − 4y3. Similarly one finds also yN+1 and yN+2.
Then F̃→

i = (yi−1 + 4yi + yi+1) /6 for all i. After simplifying the system (5),
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we conclude that Ph is well-defined iff for every f there is a unique vector
y = (y0, . . . , yN )T ∈ R

N+1 s.t.
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

5y0 − 5y1 + 4y2 − y3 = 0
y0 − 2y1 + y2 = h2f(t1)
yi−2 + 2yi−1 − 6yi + 2yi+1 + yi+2 = 6h2 f(ti), i ∈ [2 .. N − 2]
yN−2 − 2yN−1 + yN = h2f(tN−1)
−yN−3 + 4yN−2 − 5yN−1 + 5yN = 0,

(6)

which is equivalent to the non-singularity of the matrix S, corresponding to the
system (6).

The rows of S, except the first and the last row, are weakly diagonally domi-
nant. The first row

(
5 −5 4 −1 0 . . . 0

)
, however, is not. Let sj stand for the jth

row of S; replace s1 with 4 s1−10s2+s3 and sN+1 with 4sN+1−10sN +sN−1,
obtaining a matrix S�. The matrix S� is non-singular, since it is a w.c.d.d. matrix
[2, Lemma 3.2]. Hence also S is non-singular. We conclude that the system (6)
is uniquely solvable, thus Ph is well-defined. �

Before we can estimate the accuracy of approximation by Ph, we need the
following technical result, whose proof we only briefly sketch.

Proposition 3. For all f ∈ C2[a, b] there is h0 > 0 s.t. f(a) − Sh(f) = O(h2)
for all h ∈ (0, h0), where

Sh(f) := (2 + ρ)f(a + h) + 6
�(b−a)/h�∑

j=2

f(a + hj)(−ρ)j−1, ρ := (2 +
√

3)−1.

Proof (sketch of). Let f1(x) = f(a) + (x − a)f ′(a) (i.e., the degree-1 Taylor
polynomial of f) and fix any C > 0.5 |f ′′(a)|. Then there is h0 > 0 such that
|f(x) − f1(x)| ≤ C(x − a)2 for all x ∈ [a, a + h0]. Introduce

Sh,1(f) := (2 + ρ)f(a + h) + 6
�h0/h�∑

j=2

f(a + hj)(−ρ)j−1,

Sh,2(g) := (2 + ρ)g(a + h) + 6
∞∑

j=2

g(a + hj)(−ρ)j−1, g ∈ P1.

It can be verified that Sh,2(g) = g(a) for all g ∈ P1, thus |Sh(f) − f(a)| is upper
bounded by |Sh(f) − Sh,1(f)| + |Sh,1(f) − Sh,1(f1)| + |Sh,1(f1) − Sh,2(f1)|.

To bound the last term, notice
∑∞

j=N ρj = ρN/(1−ρ) and
∑∞

j=N (j +1)ρj =
NρN/(1 − ρ) + ρN/(1 − ρ)2. Then the last term is upper bounded by

6
(

NρN

1 − ρ
+

ρN

(1 − ρ)2

)

|f ′(a)| h + 6
ρN

1 − ρ
|f(a)| , N := �h0/h�.

Since ρN exponentially decreases in N , this sum is of order O(N−2) = O(h2)
(with the big-O constant depending on ρ, h0 and f(a), f ′(a)). The first term is
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upper bounded similarly, by estimating each f(a+hj) with ‖f‖. For the middle
term we use |f(a + hj) − f1(a + hj)| ≤ Ch2j2, which allows to bound

|Sh,1(f) − Sh,1(f1)| ≤ Ch2

⎛

⎝(2 + ρ) + 6
∞∑

j=2

j2ρj−1

⎞

⎠ = Ch2
(
7 + 5

√
3
)

.

Since all three summands are O(h2), the claim follows. �
Proposition 4. For all v ∈ C[a, b] we have Phv −−−→

h→0
v, i.e., the operators Ph

strongly converge to the identity operator I. Furthermore, for all v ∈ C2[a, b] we
have ‖v − Phv‖ = O(h2).

Proof (sketch of). Let vh = Phv and ṽh be a piecewise linear function, joining the
points (ti, v(ti)), i ∈ [0 .. N ], with line segments. It is well known [1, Eq. 11.2.4],
that |ṽh(t) − v(t)| ≤ ω(v, h) for all t ∈ [a, b], where ω denotes the modulus of
continuity, and ‖v − ṽh‖ = O(h2) when v ∈ C2[a, b]. Moreover, v ∈ C[a, b], thus
v is also uniformly continuous, hence ω(v, h) → 0 as h → 0. We shall show that
‖vh − ṽh‖ = O(h2), then the claim will follow by the triangle inequality.

To prove this estimate, we recall that the definition of vh implies vh ≡ ṽh on
[a+h, b−h]; therefore we must prove the O(h2) bound only on the rightmost and
leftmost intervals, or, equivalently, that |v(s) − vh(s)| = O(h2) when s ∈ {a, b}
(since both functions are linear in each basic interval). Due to the symmetry,
consider only s = a.

Technical arguments (which we omit here) gives that vh(a) = −3y0/h2, where
y0 is as in (6). The value of y0 is obtained by multiplying the first row of the
inverse matrix of S with the RHS of (6); carrying out the said calculations yields

vh(a) =
(

2 +
sN−3

sN−2

)

v(t1)+6
N−3∑

j=1

v(tj+1)
sN−2−j · (−1)j

sN−2
+

2
√

3 (−1)N

sN−2
v(b−h),

where sn := (2 +
√

3)n − (2 − √
3)n. However, asymptotically sn ∼ (2 +

√
3)n

and we obtain vh(a) ∼ Sh(v), in notation from Proposition 3. This proposition
also implies vh(a) = O(h2), allowing to conclude ‖vh − ṽh‖ = O(h2). �
Proof (of Theorem 2). The hypothesis of Theorem 2 imply existence of the
Green’s function G(s, t) for the problem u′′ = 0 with boundary conditions
B1u = B2u = 0. Let u be the exact solution of the BVP (1) and v := u′′.
If we are given the second derivative vh := u′′

h of the approximate solution uh,
then uh is uniquely determined via the Green’s function:

uh(s) =
∫ b

a

G(s, t)vh(t) dt, u′
h(s) =

∫ b

a

∂G(s, t)
∂s

vh(t) dt. (7)

Define an integral operator K : C[a, b] → C[a, b] by

Kw(s) :=
∫ b

a

(

e1(s)
∂G(s, t)

∂s
+ e0(s)G(s, t)

)

w(t) dt, w ∈ C[a, b].
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This operator is compact, which together with the strong convergence of the
operators Ph (Proposition 4) implies [1, Lemma 11.1.4] that the operators PhK
converge in norm to K. Therefore for sufficiently small h the inverse operators
(I+PhK)−1 exist (where I stands for the identity operator) [1, Theorem 11.1.2]
and are uniformly bounded:

∥
∥(I + PhK)−1

∥
∥ ≤ C�, h ≤ h0. (8)

The BVP (1) is equivalent to the equation (I + K)v = f . Similarly, the
problem (2) is equivalent to the equation Ph(I+K)vh = Phf . Since Phvh = vh,
this can be simplified to

(I + PhK)vh = Phf. (9)

From (8) it follows that for h ≤ h0 there exists a unique vh ∈ U2 satisfying
(9) and the function uh ∈ U0 (which is uniquely determined by (7)) satisfies the
collocation problem.

To estimate the rate of convergence, notice (I+PhK)v = Phf + (v −Phv).
Subtracting (9) from this equality, we have (I+PhK)(v−vh) = (v−Phv), hence
‖v − vh‖ ≤ ∥

∥(I + PhK)−1
∥
∥ · ‖v − Phv‖. Now from (8) we conclude (3).

Finally, suppose u ∈ C4[a, b]. From Proposition 4, ‖v − vh‖ = O(h2). Let
Cj = maxs∈[a,b]

∫ b

a

∣
∣
∣∂jG(s,t)

∂sj

∣
∣
∣ dt, then (7) implies

∥
∥
∥u(j) − u

(j)
h

∥
∥
∥ ≤ Cj ‖v − vh‖

and the estimate (4) follows. �

5 Numerical Examples

Now we demonstrate the proposed collocation method with some examples. Even
though we considered only k = 2 in Theorem 2, we conjecture that the problem
(2) is uniquely solvable also when Ah is a (k,N)-eFPB for any k > 2 (under
certain assumptions on the BVP and its exact solution); moreover, the estimate
(4) then should be O(h2k−2). To support this hypothesis, in the examples below
we present also numerical tests with k > 2. Moreover, some examples hint at
other ways to generalize Theorem 2.

Example 1. Consider the problem from [9, Example 1]:

u′′(s) + (s2 − 6s − 1)u′(s) + (5s − s2 + 6)u(s) = es − s2 + 5s + 6 s ∈ (0, 1),

with BC u(0) + u′(0) = 2, 2u(1) − u′(1) = 2. The unique solution of this BVP
is u(s) = ses + 1. The maximum error at the nodes ti is reported in Table 1 for
various k,N . The third row is cited from [9, Table 2] (the authors there apply
an O(h4)-accurate method, which would correspond to k = 3 in our proposal).

For k = 2, we expect approximation error O(h2) due to Theorem 2. This is
consistent with the numerical data in the first row of Table 1. However, increasing
k, i.e., solving the respective system when collocating w.r.t. (k,N)-eFPB with
k ∈ {3, 4}, indicates approximation of order O(h4) and O(h6), respectively.
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Table 1. Maximum error at nodes, Example 1

N = 10 N = 20 N = 40 N = 80 N = 160

k = 2 4.11e− 03 6.95e− 04 1.42e− 04 3.22e− 05 7.69e− 06

k = 3 2.10e− 05 4.71e− 07 1.08e− 08 2.61e− 10 6.27e− 12

[9] 4.37e− 07 2.67e− 08 1.66e− 09 1.03e− 10 —

k = 4 1.72e− 07 1.31e− 09 8.02e− 12 5.39e− 14 3.94e− 16

Example 2. We consider a well-known singular BVP, namely, the Bessel’s equa-
tion of order 0:

u′′(s) +
u′(s)

s
+ u(s) = 0, s ∈ (0, 1),

with BC u′(0) = 0, u(1) = 1, whose solution is u(s) = J0(s)/J0(1) (where J0 is
the Bessel function of the first kind). This example fails to satisfy Theorem 2;
nevertheless, in numerical tests our method performs well, which suggests that
Theorem 2 could be generalized to cover certain singular BVPs. In [4, Problem 1]
this BVP was numerically solved with an O(h5)-accurate method for steps with
size h ∈ {0.1, 0.05, 0.02, 0.01}. We solve this problem with our proposed method
with k = 3 (which we conjecture to be O(h4)-accurate), with the same values of
h (which correspond in our case to N ∈ {10, 20, 50, 100}). The maximal error at
the nodes ti are displayed in Table 2; in its first row we cite the respective errors
from [4].

Table 2. Maximum error at nodes, Example 2

N = 10 N = 20 N = 50 N = 100

[4] 1.67e− 06 2.04e− 07 1.42e− 08 1.44e− 09

Proposed method 9.54e− 08 2.04e− 09 3.16e− 11 1.23e− 12

Example 3. Finally, an example which shows that any analogue of Theorem 2
for k > 2 will require stricter constraints on the smoothness of u to have better
approximation than O(h2). Consider the equation

u′′(s) + su′(s) − u(s) = ses − |s| (6 − 12s + 2s2 − 3s3
)
, s ∈ (−1, 1),

Table 3. Maximum error at nodes, Example 3

k N

25 50 100 500 1000

2 3.16e− 03 3.87e− 04 9.76e− 05 3.92e− 06 9.79e− 07

3 1.05e− 03 5.40e− 04 1.36e− 04 5.46e− 06 1.37e− 06
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with BC u(−1) = e−1 − 2, u(1) = e (the example is from [17, Problem 6]). The
unique solution of this BVP is u(s) = es − |s|3 (1 − s), which is in C2[a, b], but
its second derivative is not differentiable.

Theorem 2 applies, but not the estimate (4). Nevertheless, the numerical
results (Table 3) are consistent with the estimate O(h2) (which hints at possible
generalizations of the obtained bounds). However, when applying the proposed
method with k = 3, the error rate remains O(h2), even though generally O(h4)
is expected for sufficiently smooth u (in fact, errors for k = 3 are even larger
than those for k = 2, which could be explained by a larger constant hidden in
the big-O notation).

6 Conclusion

The proposed method allows to solve linear BVPs, obtaining a function whose F -
transform approximates the exact solution. Employing the discrete F -transform
allows to conveniently and compactly store the obtained solution and obtain
a continuous function from it with the help of inverse F -transform. Stability of
the proposed method must be further investigated. Numerical tests indicate that
the 2-norm condition number of the matrix of the linear system (6) is of order
O(h−2), but this estimate is yet to be carried out theoretically. Furthermore, the
computational complexity of the proposed method must be estimated (numerical
tests suggest that the time required to solve a BVP via the proposed method is
of order O(h−1), assuming a fixed k).

The numerical results also suggest that fuzzy partitions based on B-splines of
degree 2k − 1 could generalize Theorem 2 with the error estimate O(h2k−2) (in
the case of a sufficiently smooth solution of BVP). Generalizing our proposal to
non-linear problems is also under consideration. Furthermore, this method might
be applicable to certain singular problems. All these generalizations, however,
are likely to require substantially different proof techniques than those employed
here.

Currently the theoretical proofs heavily rely on the fact that k = 2 and
require a lot of technical explicit calculations. While it shows that the proposed
method works in the case of cubic B-splines, these methods provide little insight
in other cases. Our future work will focus on developing theoretical analysis of
the proposed method that would allow to apply it in the more general setting.
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Abstract. We extend the notion of natural extension, that gives the
least committal extension of a given assessment, from the theory of sets
of desirable gambles to that of choice functions. We give an expression of
this natural extension and characterise its existence by means of a prop-
erty called avoiding complete rejection. We prove that our notion reduces
indeed to the standard one in the case of choice functions determined by
binary comparisons, and that these are not general enough to determine
all coherent choice function. Finally, we investigate the compatibility of
the notion of natural extension with the structural assessment of indif-
ference between a set of options.

Keywords: Choice functions · Coherence · Natural extension
Sets of desirable gambles · Structural assessments

1 Introduction

Since the publication of the seminal works in [1,2], coherent choice functions
have been used widely as a model of the rational behaviour of an individual
or a group. In particular, [3] established an axiomatisation of coherent choice
functions, generalising the axioms in [4] to allow for incomparability.

In previous works [5,6], we have investigated some of the properties of coher-
ent choice functions, their connection with the models considered earlier by
Seidenfeld et al. [3] and also those particular coherent choice functions that
are related to the optimality criteria of maximality and E-admissibility. In all
those cases we took for granted that the choice function is given on the full class
of option sets, and that it is coherent. However, it is somewhat unrealistic to
assume that the subject always specifies an entire choice function: this means
that he would have to specify for every option set which are the options he
chooses, and this in a manner that is coherent in the sense that we shall discuss
later on. Rather, a subject will typically specify a choice function only partially,
by specifying the rejection of some options from some option sets. We call this
partial specification of a choice function his assessment. Such an assessment can
consist of an arbitrary amount of rejection statements; we do not rule out here
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the possibility that the subject’s assessment consists of an uncountable collection
of rejection statements.

The question we shall tackle in this paper is the following: given such an
assessment, what is the implied choice between other option sets, using only the
consequences of coherence?

To answer this question, after giving some preliminary notions in Sect. 2, we
shall define in Sect. 3 the natural extension, when it exists, as the least com-
mittal coherent choice function that ‘extends’ a given assessment. In Sect. 4 we
shall show that our notion is compatible with the eponymous notion established
in the theory of sets of desirable gambles, that correspond to choice functions
determined by binary comparisons. Then in Sect. 5 we use our work to show (i)
that a coherent choice function may not be determined as the infima of a family
of binary choice functions; and (ii) that the notion of natural extension can also
be made compatible with a structural assessment of indifference. Finally, some
additional comments are given in Sect. 6. Due to the space constraints, proofs
have been omitted.

2 Preliminary Concepts

Consider a real vector space V provided with the vector addition + and scalar
multiplication. We denote its additive identity by 0. Elements of V are intended
as abstract representation of options between which a subject can express his
preferences, by specifying choice functions. We therefore call V also the option
space. We denote by Q(V) the set of all non-empty finite subsets of V, a strict
subset of the power set P(V) of V. Elements A of Q(V) are the option sets
amongst which a subject can choose his preferred options. When it is clear what
option space V we are considering, we will also use the simpler notation Q, and
use Q0 to denote those option sets that include 0. We will assume throughout
that V is ordered by a vector ordering �. We will associate with it the strict
partial order ≺, as follows: u ≺ v ⇔ (u � v and u �= v), for all u and v in V. For
notational convenience, we let V�0 := {u ∈ V : 0 ≺ u}, V≺0 := {u ∈ V : u ≺ 0},
and V�0 := {u ∈ V : u � 0}.

Definition 1. A choice function C on an option space V is a map

C : Q → Q ∪ {∅} : A 
→ C(A) such that C(A) ⊆ A.

The idea underlying this simple definition is that a choice function C selects
the set C(A) of ‘best’ options in the option set A. Our definition resembles
the one commonly used in the literature [3,7,8], except perhaps for an also not
entirely unusual restriction to finite option sets [9–11].

Equivalently to a choice function C, we may consider its associated rejection
function R, defined by R(A) := A \ C(A) for all A in Q. It returns the options
R(A) that are rejected—not selected—by C. We collect all the rejection functions
in the set R. For technical reasons, we shall focus on rejection functions in this
paper. Moreover, we shall restrict our attention to those rejection functions that
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satisfy a number of rationality requirements; they are called coherent. For brevity,
we will commonly refer to choice functions and rejection functions as choice
models, in order to distinguish them from models of desirability (see Sect. 4).

Definition 2 (Coherent rejection function). We call a rejection function R
on V coherent if for all A, A1 and A2 in Q, all u and v in V, and all λ in R>0:

R1. R(A) �= A;
R2. if u ≺ v then u ∈ R({u, v});
R3. a. if A1 ⊆ R(A2) and A2 ⊆ A then A1 ⊆ R(A);

b. if A1 ⊆ R(A2) and A ⊆ A1 then A1 \ A ⊆ R(A2 \ A);
R4. a. if A1 ⊆ R(A2) then λA1 ⊆ R(λA2);

b. if A1 ⊆ R(A2) then A1 + {u} ⊆ R(A2 + {u}).

We collect all coherent rejection functions on V in the set R(V), often simply
denoted as R when it is clear from the context which vector space we are using.

These axioms constitute a subset of the ones introduced by Seidenfeld
et al. [3], duly translated from horse lotteries to our abstract options, which
are more general as shown in earlier work of ours [5, Sect. 3]. In this respect,
our notion of coherence is less restrictive than theirs. On the other hand, our
Axiom R2 is more restrictive than the corresponding one in [3]. This is necessary
in order to link coherent choice functions and coherent sets of desirable gambles
(see [5, Sect. 4]).

In order to be able to use choice models for conservative reasoning, as we
will do, we provide them with a partial order � having the interpretation of
‘being at most as informative as’. For any R1 and R2 in R, we let R1 � R2 ⇔
(∀A ∈ Q)(R1(A) ⊆ R2(A)). For any collection R ⊆ R of rejection functions,
the infimum inf R is the rejection function given by (inf R)(A) :=

⋂
R∈R R(A)

for every A in Q.

3 Natural Extension of Rejection Functions

We consider now a rejection function that is defined on some subset of the
class Q of all option sets, and investigate under which conditions it is possible
to extend it to a rejection function on Q that satisfies the coherence axioms.
Taking into account AxiomR4b, we can assume without loss of generality that
our assessment is made in terms of option sets that reject the option 0.

To be more specific, we assume that an assessment B is a subset of Q0. It
consists of an arbitrary collection of option sets that include 0. Its interpretation
is that 0 should be rejected from every option set B in B. We are looking for the
least informative coherent rejection function R that extends the assessment B,
by which we mean that 0 ∈ R(B) for all B in B.1

1 This is not an extension of a rejection function defined on a smaller domain B to
a bigger domain Q0. Rather, it is the extension of an assessment, where we do not
necessarily know all the rejected options in every option set B in B (except for 0).
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Definition 3 (Natural extension). Given any assessment B ⊆ Q0, the nat-
ural extension of B is the rejection function

E(B) := inf{R ∈ R : (∀B ∈ B)0 ∈ R(B)} = inf{R ∈ R : R extends B},
where we let inf ∅ be equal to idQ, the identity rejection function that maps every
option set to itself.

We can equivalently define the natural extension as a choice function instead
of a rejection function, but that turns out to be notationally more involved, which
is why we have decided to use rejection functions in this paper.

The above definition is not very useful for practical inference purposes: it does
not provide an explicit expression for E(B). To try and remedy this, consider the
special rejection function RB based on the assessment B, defined as:

RB(A) :=
{

u ∈ A : (∃A′ ∈ Q)
(
A′ ⊇ A and (∀v ∈ {u} ∪ (A′ \ A))

(
(A′ − {v}) ∩ V�0 �= ∅ or (∃B ∈ B,∃μ ∈ R>0){v} + μB � A′)

)}
(1.1)

for all A in Q. From here on, we let � be the ordering on Q defined by A1 �
A2 ⇔ (∀u1 ∈ A1)(∃u2 ∈ A2)u1 � u2.

Proposition 1. Consider B ⊆ Q0. Then RB is the least informative rejection
function that satisfies AxiomsR2–R4 and extends B.

After inspection of the rationality AxiomsR1–R4, we see that all axioms
but the first are productive, in the sense that application of these axioms allow
us to identify new rejected options within, possibly, new option sets. AxiomR1
however is a destructive one: it indicates how far our rejections can go, and where
the inferences should stop. Indeed, it requires that, within a given option set A,
not every element of A should be rejected. In other words, it requires that, for
any given option set, we should choose at least one of its elements. Therefore we
need to be careful and avoid assessments that lead to a violation of AxiomR1,
or to a complete rejection of some option set.

Definition 4 (Avoiding complete rejection). Given any assessment B ⊆
Q0, we say that B avoids complete rejection when RB satisfies AxiomR1.

To see that this notion is not trivial, consider the following example:

Example 1. As an example of an assessment that does not avoid complete
rejection, consider B := {{0, u}, {0,−u}} ⊆ Q0 for an arbitrary u in V. By
Proposition 1, RB extends B (so 0 ∈ RB({0, u}) and 0 ∈ RB({0,−u})) and
satisfies Axioms R2–R4. By Axiom R4b, from 0 ∈ RB({0,−u}) we infer that
u ∈ RB({0, u}). Using that 0 ∈ RB({0, u}), we infer that {0, u} = RB({0, u}),
contradicting AxiomR1. Therefore B does not avoid complete rejection. ♦

Theorem 1. Consider any assessment B ⊆ Q0. Then the following statements
are equivalent:
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(i) B avoids complete rejection;
(ii) There is a coherent extension of B: (∃R ∈ R)(∀B ∈ B)0 ∈ R(B);
(iii) E(B) �= idQ;
(iv) E(B) ∈ R;
(v) E(B) is the least informative rejection function that is coherent and extends

B.

When any of these equivalent statements hold, then E(B) = RB.

4 Connection with Desirability

Let us compare our discussion of natural extension with the case of binary pref-
erences and desirability. A desirability assessment B ⊆ V is usually (see for
instance Sect. 1.2 of Ref. [12], and also Ref. [13]) a set of options that the agent
finds desirable—strictly prefers to the zero option. As we did for choice functions,
we pay special attention to coherent sets of desirable options. The following is an
immediate generalisation of existing coherence definitions [12,13] from gambles
to abstract options.

Definition 5 (Coherent set of desirable options). We call a set of desirable
options D ⊆ V coherent if for all u and v in V and λ in R>0:

D1. 0 /∈ D;
D2. if 0 ≺ u then u ∈ D;
D3. if u ∈ D then λu ∈ D;
D4. if u, v ∈ D then u + v ∈ D.

We collect all coherent sets of desirable options in the set D(V), often simply
denoted as D when it is clear from the context which vector space we are using.

Any coherent set of desirable options D gives rise to a coherent rejection
function RD given by RD(A) = {u ∈ A : (∀v ∈ A)v − u /∈ D} for all A in Q.

Of course, any desirability assessment B ⊆ V can be transformed into an
assessment for rejection functions: we simply assess that 0 is rejected in the
binary choice between 0 and u, for every option u in B. The assessment based
on B is therefore given by BB := {{0, u} : u ∈ B}; clearly B and BB are in a
one-to-one correspondence: given an assessment BB that consists of an arbitrary
family of binary option sets, we retrieve B as B =

⋃
(BB \ {0}) = (

⋃ BB) \ {0}.
Given any desirability assessment B ⊆ V and any set of desirable options

D ⊆ V, we say that D extends B if B ⊆ D. Our next proposition expresses this
in terms of rejection functions.

Proposition 2. Consider any desirability assessment B ⊆ V and any set of
desirable options D ⊆ V. Then D extends B if and only if RD extends BB .
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For desirability, Axioms D2–D4 are the productive ones, while the only
destructive axiom is Axiom D1. The property for desirability that corresponds
to avoiding complete rejection for choice models is avoiding non-positivity, com-
monly formulated as (see for instance Ref. [13, Definition 1])

posi(B) ∩ V�0 = ∅ (1.2)

for the desirability assessment B ⊆ V. Here, posi stands for ‘positive hull’, and
is defined by

posi(B) :=
{ n∑

k=1

λkuk : n ∈ N, λk ∈ R>0, uk ∈ B

}

⊆ span(B) :=
{ n∑

k=1

λkuk : n ∈ N, λk ∈ R, uk ∈ B

}

⊆ V.

Theorem 1 is the equivalent for choice models of the natural extension theo-
rem for desirability. Let us state this natural extension theorem for desirability.

Theorem 2 [13, Theorem 1]. Consider any desirability assessment B ⊆ V, and
define its natural extension as

ED(B) := inf{D ∈ D : B ⊆ D}, (1.3)

where we let inf ∅ = V. Then the following statements are equivalent:

(i) B avoids non-positivity;
(ii) B is included in some coherent set of desirable options;
(iii) ED(B) �= V;
(iv) ED(B) ∈ D;
(v) ED(B) is the least informative set of desirable options that is coherent and

includes B.

When any of these equivalent statements hold, ED(B) = posi(V�0 ∪ B).

Our next result tells us that the procedure of natural extension we have
established for rejection functions is an extension of the procedure of natural
extension for coherent sets of desirable gambles considered above.

Theorem 3. Consider any desirability assessment B ⊆ V. Then B avoids non-
positivity if and only if BB avoids complete rejection, and if this is the case, then
E(BB) = RED(B).

To summarise these statements, consider the commuting diagram in Fig. 1, where
we have used the maps

ED : P(V) → D : B 
→ ED(B)
B· : P(V) → Q0 : B 
→ BB := {{0, u} : u ∈ B}
E : P(Q0) → R : B 
→ E(B)
D· : R → D : R 
→ DR := {u ∈ V : 0 ∈ R({0, u})}
R· : D → R : D 
→ RD
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B ED(B) = DE(BB )

BB E(BB) = RED(B)

ED

B· D·R·
E

Fig. 1. Commuting diagram for the case of binary assessments

Start with a desirability assessment B ⊆ V that avoids non-positivity. Taking
the natural extension for desirability commutes with taking the corresponding
assessment (for choice models), then the natural extension, and eventually going
back to the set of desirable options corresponding to this natural extension.
Furthermore, taking the natural extension of the corresponding assessment (for
choice models) commutes with taking the natural extension for desirability, and
then going to the corresponding rejection function.

5 Examples

5.1 Choice Functions That Are No Infima of Binary Choice
Functions

Many important choice functions are infima of purely binary choice models:
consider, for instance, the E-admissible or M-admissible choice functions [6]. It
is an important question whether all coherent choice functions are infima of
purely binary choice functions; if this question answered positively, this would
immediately imply a representation theorem. If this question is answered in the
negative, choice functions would constitute a theory that is more general than
sets of desirable gambles in two ways: not only because it allows for more than
binary choice, also because it is capable of expressing preferences that can never
be retrieved as an infimum of purely binary preferences.

Below we will answer this question in the negative: we will define a special
rejection function RB, based some particular assessment B ⊆ Q0, and prove that
it is no infimum of purely binary rejection functions.

Example 2. We will work with the special vector space of gambles V = L on a
binary possibility space X = {H,T}, ordered by the standard point-wise ordering
≤: for any f, g in L, we let f ≤ g ⇔ (∀x ∈ X)f(x) ≤ g(x).

We consider a single assessment B := {B}, where B consists of a gamble
and one scaled variant of it, together with 0: the assessment we consider is
B := {0, f, λf} with f a gamble and λ an element of R>0 and different from 1.
We assume that f(H) < 0 < f(T), and that λ > 1. The idea is that B consists
of 0 and two gambles that lie on the same line through 0, and on the same side
of that line; see Fig. 2 for an illustration of the assessment.
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span{f}

H

T

0

f

λf

assessment B:
option set A:

span{f} + L>0

Fig. 2. Illustration of the assessment

Note that this assessment indeed avoids complete rejection: for instance, the
coherent set of desirable options D := posi(V�0∪{f}) satisfies D∩B = {f, λf} �=
∅. Therefore, RB is a coherent rejection function. To prove that RB is no infimum
of purely binary rejection functions, we first show the intermediate result that
0 /∈ RB(A), where A := {0, f}. To prove this, assume ex absurdo that 0 ∈ RB(A),
and infer using Eq. (1.1) that then there would be some A′ ⊇ A in Q such that

(∀h ∈ {0}∪(A′ \A))
(
(A′ −{h})∩L>0 �= ∅ or (∃μ ∈ R>0){h}+μB � A′). (1.4)

At this point, remark already that A′ �= A: indeed, if ex absurdo A′ = A, then
{0}∪(A′ \A) = {0}, so we need only consider h = 0. Infer that A′ ∩L>0 = ∅ and
(∀μ ∈ R>0){0, μf, μλf} �� {0, f}, leading to a contradiction. Therefore, A′ ⊃ A.

Without loss of generality, we let A′ := {0, f, h1, . . . , hn} ⊃ A where n belongs
to N and h1, . . . , hn to L, so {0} ∪ (A′ \ A) = {0, h1, . . . , hn}.

It then follows that (max A′) ∩ {0, h1, . . . , hn} �= ∅.
Let us prove as an intermediate result that (max A′) ∩ (span{f} + L>0) = ∅.

To see this, since {0, f}∩ (span{f}+L>0) = ∅, infer that (max A′)∩ (span{f}+
L>0) ⊆ {h1, . . . , hn}, and assume ex absurdo that (max A′)∩ (span{f}+L>0) �=
∅. Let h be an element of arg max{g(T) : g ∈ (max A′)∩ (span{f}+L>0)}, then
h(T) + μλf(T) > h(T), so h + μλf ∈ {h} + μB is undominated in (maxA′) ∩
(span{f} + L>0) whence {h} + μB �� (max A′) ∩ (span{f} + L>0) for all μ in
R>0. Note that, since h belongs to span{f} + L>0, also h + μλf belongs to
span{f}+L>0 for every μ in R>0. Therefore, since an element of span{f}+L>0

can never be dominated by an element of (span{f} + L>0)
c = span{f} + L≤0,

also {h} + μB �� max A′ for all μ in R>0. We deduce that also {h} + μB ��
A′ for all μ in R>0. Since h belongs to max A′, also A′ − {h} ∩ L>0 = ∅, a
contradiction. So we have that (maxA′) ∩ (span{f} + L>0) = ∅, and therefore,
again because an element of span{f} + L>0 can never be dominated by an
element of span{f} + L≤0, also A′ ∩ (span{f} + L>0) = ∅.

Now we go back to Eq. (1.4), and consider first h = 0. Then A′ ∩ L>0 �= ∅
or (∃μ ∈ R>0)μB � A′. Since A′ ∩ (span{f} + L>0) = ∅, in particular A′ ∩
L>0 = ∅, so the only possibility left is (∃μ ∈ R>0)μB � A′, or, in other words,
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H
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λf
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(i): μ = 1
B: A:
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1
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(ii): μ = 1
λ

1
λ
B: A:

H

T

0

μf

μλf
f

hk

h�

(iii): μ /∈ { 1
λ
, 1}

μB: A:

Fig. 3. Illustration of the three different cases mentioned

{0, μf, μλf} � {0, f, h1, . . . , hn} for some μ in R>0. There are three possibilities:
if (i) μ = 1, then hi ≥ λf—and therefore, since A′ ∩ (span{f} + L>0) = ∅,
necessarily hi = λf—for some i in {1, . . . , n}; if (ii) μ = 1

λ then hj ≥ 1
λf—and

therefore, since A′ ∩ (span{f} + L>0) = ∅, necessarily hj = 1
λf—for some j

in {1, . . . , n}; and finally, if (iii) μ /∈ { 1
λ , 1}, then hk ≥ μf and h� ≥ μλf—and

therefore, since A′∩(span{f}+L>0) = ∅, necessarily hk = μf and h� = μλf—for
some k and � in {1, . . . , n}. These are illustrated in Fig. 3.

In any case, we find that {h1, . . . , hn} ∩ posi{f} �= ∅. Without loss of gen-
erality, let h1 be the unique gamble in {h1, . . . , hn} ∩ posi{f} with highest
value in T: {h1} = arg max{g(T) : g ∈ {h1, . . . , hn} ∩ posi{f}}. Then, since
h1 ∈ {0} ∪ (A′ \ A), by Eq. (1.4) we have that (A′ − {h1}) ∩ L>0 �= ∅ or
(∃μ ∈ R>0){h1} + μB � A′. Since A′ ∩ (span{f} + L>0) = ∅ and h1 ∈ posi{f},
we find in particular A′ ∩ ({h1} + L>0) = ∅, whence (A′ − {h1}) ∩ L>0 = ∅.
Therefore necessarily {h1, h1 + μf, h1 + μλf} = {h1} + μB � A′ for some μ in
R>0. Note that both h1+μf and h1+μλf belong to posi{f}, and have a value in
T that is strictly higher than h1(T). But at least one of h1+μf or h1+μλf is not
equal to f , and therefore an element of {h1, . . . , hn} ∩ posi{f}, a contradiction
with the fact that h1 ∈ arg max{g(T) : g ∈ {h1, . . . , hn} ∩ posi{f}}. Therefore
indeed 0 /∈ RB(A).

So we have found a rejection function RB such that 0 ∈ RB({0, f, λf}) but
0 /∈ RB({0, f}). However, any rejection function RD that is defined by means of
a coherent set of desirable options D satisfies that

0 ∈ RD({0, f, λf}) ⇔ 0 ∈ RD({0, f}), (1.5)

and Eq. (1.5) is preserved when taking infima of rejection functions. As a conse-
quence, RB is no infimum of purely binary rejection functions. ♦

5.2 Natural Extension and Indifference

Next we investigate if it is possible to obtain an extension of a given assessment
that takes into account not only the implications of coherence, as we did with
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the natural extension, but also some assessments of indifference between a set of
options. To see how this comes about, note that, in addition to a subject’s set of
desirable options D—the options he strictly prefers to the zero option—we can
also consider the options that he considers to be equivalent to the zero option.
We call these options indifferent. A set of indifferent options I is simply a subset
of V, but as before with desirable options, we pay special attention to coherent
sets of indifferent options.

Definition 6. A set of indifferent options I is called coherent if for all u, v in
V and λ in R:

I1. 0 ∈ I;
I2. if u ∈ V�0 ∪ V≺0 then u /∈ I;
I3. if u ∈ I then λu ∈ I;
I4. if u, v ∈ I then u + v ∈ I.

Taken together, Axioms I3 and I4 are equivalent to span(I) = I, and due to
Axiom I1, I is non-empty and therefore a linear subspace of V.

The interaction between indifferent and desirable options is subject to ratio-
nality criteria as well: they should be compatible with one another.

Definition 7. Given a set of desirable options D and a coherent set of indiffer-
ent options I, we call D compatible with I if D + I ⊆ D.

We collect all options that are indifferent to an option u ∈ V into the equiv-
alence class [u] := {v ∈ V : v − u ∈ I} = {u} + I. We also denote [u] as u/I.
Of course, [0] = {0} + I = I is a linear subspace, and the classes [u] = {u} + I
are affine subspaces of V. The set of all these equivalence classes is the quotient
space V/I := {[u] : u ∈ V} = {{u} + I : u ∈ V} = {u/I : u ∈ V}. This quotient
space is a vector space under the vector addition and the scalar multiplication.
[0] = I is the additive identity of V/I.

Definition 8. We call a rejection function R on Q(V) compatible with a coher-
ent set of indifferent options I if there is some representing rejection function
R′ on Q(V/I) such that R(A) = {u ∈ A : [u] ∈ C ′(A/I)} for all A in Q(V).

We refer to an earlier paper [6] of ours for a study of the compatibility of the
structural assessment of coherence with the theory of coherent rejection func-
tions, and to [14,15] for other works on this topic.

The natural extension under indifference, if it is coherent, is the least infor-
mative coherent rejection function that extends the assessment B ⊆ Q0(V) and
is compatible with the set of indifferent options I.

Definition 9. Given any assessment B ⊆ Q0(V) and any coherent set of indif-
ferent options I, the natural extension of B under I is the rejection function

EI(B) := inf{R ∈ R(V) : R extends B and is compatible with I},

where, as usual, we let inf ∅ = idQ(V), the identity rejection function that maps
every option set to itself.
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To help link this definition with a more constructive and explicit expression,
consider the special rejection function RB,I , defined by:

RB,I(A) := {u ∈ A : [u] ∈ RB/I(A/I)} for all A in Q(V), (1.6)

where we let B/I := {B/I : B ∈ B} ⊆ Q[0](V/I), being—loosely speaking—the
assessment B expressed in the quotient space V/I. Recall that RB, as defined
in Eq. (1.1), is relative to a given but otherwise arbitrary vector space V. Our
special rejection function RB,I uses the version RB/I on V/I instead of V.

The following is the counterpart of Proposition 1 under indifference:

Proposition 3. Consider any assessment B ⊆ Q0(V) and any coherent set of
indifferent options I ⊆ V. Then RB,I is the least informative rejection function
that satisfies AxiomsR2–R4, extends B, and is compatible with I.

Recall from our results on the (normal) natural extension from Sect. 3 that
not every assessment is extendible to a coherent rejection function: this is only
the case if the assessment avoids complete rejection. Here too, when we deal
with the natural extension under indifference, something similar occurs.

Definition 10 (Avoiding complete rejection under indifference). Given
any assessment B ⊆ Q0(V) and any coherent set of indifferent options I ⊆ V,
we say that B avoids complete rejection under I when RB,I satisfies AxiomR1.

However, and perhaps surprisingly, avoiding complete rejection under indif-
ference is sufficient for avoiding complete rejection:

Proposition 4. Consider any assessment B ⊆ Q0(V) and any coherent set if
indifferent options I ⊆ V. Then B avoids complete rejection under I if and only
if B/I avoids complete rejection, and both those equivalent conditions imply that
B avoids complete rejection.

This allows us to formulate a counterpart to Theorem1 for natural extension
under indifference:

Theorem 4. Consider any assessment B ⊆ Q0 and any coherent set of indif-
ferent options I ⊆ V. Then the following statements are equivalent:

(i) B avoids complete rejection under I;
(ii) There is some R in R(V) that extends B that is compatible with I, meaning

that (∀B ∈ B)0 ∈ R(B) and

(∀A ∈ Q(V))R(A) = {u ∈ A : [u] ∈ R(A)/I};

(iii) EI(B) �= idQ(V);
(iv) EI(B) ∈ R(V);
(v) EI(B) is the least informative rejection function that is coherent, extends B,

and is compatible with I.

When any of these equivalent statements hold, then EI(B) = RB,I .
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6 Conclusions

In this paper, we have investigated the natural extension of choice functions,
found an expression for it, and characterised the assessments that have coherent
extensions. We made the connection with binary choice, and showed how the
well-known natural extension for desirability follows from our natural extension.

As future lines of research, we would like to study the compatibility of the
notion of natural extension with other structural assessments; in this respect, we
have already investigated the compatibility with a notion of irrelevance when
modelling multivariate choice functions. It is an open problem to study whether
something similar can be made with respect to the exchangeable choice functions
we have considered in [16].

Acknowledgements. The research in this paper has been supported by project
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Abstract. We investigate the problem of approximating a coherent
lower probability on a finite space by a 2-monotone capacity that is at
the same time as close as possible while not including additional informa-
tion. We show that this can be tackled by means of a linear programming
problem, and investigate the features of the set of undominated solutions.
While our approach is based on a distance proposed by Baroni and Vicig,
we also discuss a number of alternatives. Finally, we show that our work
applies to the more general problem of approximating coherent lower
previsions.

Keywords: Coherent lower probabilities · 2-monotonicity
Coherent lower previsions · Distortion models · Total variation distance

1 Introduction

Among the many models of imprecise probabilities [1], one of the most general is
that of coherent lower previsions [2], that can be regarded as sets of expectations
with respect to a convex family of finitely additive probability measures. In
addition to its generality, it also has a clear behavioural interpretation in terms
of acceptable betting rates, as well as the epistemic interpretation in terms of
sets of probability measures. Nevertheless, coherent lower previsions (or their
restrictions to events, called coherent lower probabilities) also have a number
of drawbacks that hinder their use in practice: for instance, they have no easy
representation in terms of their extreme points in general, and they lack some
attractive mathematical properties possessed by more specific models.

One alternative that somewhat solves these issues is to work with 2-monotone
capacities, which can be easily determined by means of a finite number of extreme
points [3] and that still include as particular cases many of the imprecise proba-
bility models from the literature, such as probability intervals [4], belief functions
[5] or possibility measures [6]. It is therefore interesting to determine if we can
approximate a coherent lower probability by a 2-monotone one with a minimal
loss of information. This is the problem we are tackling in this paper.
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After giving some preliminary concepts in Sect. 2, in Sect. 3 we study the
problem of finding undominated outer approximations that minimize the dis-
tance to the original model, in the sense proposed by Baroni and Vicig [7]. In
Sect. 4, we focus on outer approximations by means of some particular subfami-
lies of 2-monotone capacities and prove that this problem has a unique solution.
A comparison with some alternative approches is given in Sect. 5. Finally, in
Sect. 6 we show that our results allow us to solve the problem of outer approx-
imating coherent lower previsions. Some additional comments are provided in
Sect. 7. Due to the space limitations, proofs of the results have been omitted.

2 Preliminary Concepts

Let X be a finite space with cardinality n, and consider a lower probability
P : P(X ) → [0, 1]. Its associated credal set is given by:

M(P ) = {P probability | P (A) ≥ P (A) ∀A ⊆ X},

Under an epistemic interpretation of uncertainty, we may regard P as a model
for the imprecise knowledge of a probability measure P , and then M(P ) would
be the set of candidates for this unknown probability measure. The notion of
coherence means that the bounds P gives for the probabilities of the different
events are tight:

Definition 1 [2]. A lower probability P : P(X ) → [0, 1] is called coherent when
M(P ) �= ∅ and P (A) = min{P (A) : P ∈ M(P )} for every A ⊆ X .

The conjugate of a coherent lower probability, given by P (A) = 1 − P (Ac) for
every A ⊆ X , is called coherent upper probability.

Coherent lower probabilities include as particular cases most of the models
of non-additive measures in the literature; they correspond moreover to balanced
games within game theory [8]. One particular case of coherent lower probabilities
are the 2-monotone capacities.

Definition 2 [9]. A coherent lower probability P : P(X ) → [0, 1] is called 2-
monotone if for every A,B ⊆ X it satisfies:

P (A ∪ B) + P (A ∩ B) ≥ P (A) + P (B). (1)

2-monotone capacities are sometimes called convex in the literature. They pos-
sess a number of interesting properties that are not always shared with coherent
lower probabilities: the extreme points of their credal set can be easily deter-
mined using the permutations of the possibility space [3]; moreover, they have
a unique extension as an expectation operator that preserves 2-monotonicity:
their Choquet integral [10].

For all these reasons, it becomes interesting in practice to approximate a
coherent lower probability P by a 2-monotone capacity Q that at the same time
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(a) does not introduce new information; and (b) is as close as possible to the
original model.

The first constraint is modelled by requiring that the credal set determined
by Q includes that of P , or in other words, that Q(E) ≤ P (E) for every E ⊆ X .
In that case, we shall say that Q is an outer approximation of P .

With respect to the second, one preliminary idea would be to use the partial
order associated with the credal set inclusion and to require Q to be undominated,
in the sense that there is no other 2-monotone capacity Q′ such that M(P ) ⊆
M(Q′) � M(Q). However, this requirement alone does not determine a unique
solution, nor does it provide us with a tool to determine the 2-monotone outer
approximations, either.

3 Approximations by Linear Programming

In order to overcome the above issues, in this paper we shall consider the outer
approximations Q of the coherent lower probability P that minimize the distance
proposed by Baroni and Vicig [7], given by

d(P ,Q) :=
∑

E⊆X
(P (E) − Q(E)). (2)

If we interpret P (E) − Q(E) as the additional imprecision introduced on E
when replacing P (E) with Q(E), then d(P ,Q) can be understood as the total
imprecision added by the outer approximation Q.

To solve the minimization problem, we determine Q through its Möbius
inverse mQ by means of the formula Q(E) =

∑
B⊆E mQ(B) for every E ⊆ X

and consider thus the following linear programming problem:

min d(P ,Q) (LP-2monot)

subject to:
∑

E⊆X
mQ(E) = 1, mQ(∅) = 0. (LP-2monot.1)

∑

{xi,xj}⊆A⊆E

mQ(A) ≥ 0, ∀E ⊆ X , ∀xi, xj ∈ E, xi �= xj . (LP-2monot.2)

mQ({xi}) ≥ 0, ∀xi ∈ X . (LP-2monot.3)
∑

A⊆E

mQ(A) ≤ P (E) ∀E �= ∅,X . (LP-2monot.4)

In fact, (LP-2monot.2) characterizes 2-monotonicity of Q via its Möbius
inverse mQ [11], while (LP-2monot.1) and (LP-2monot.3) ensure that Q is also a
coherent lower probability. Finally, (LP-2monot.4) means that Q outer approxi-
mates P . It is not difficult to check that the number of constraints in this linear
programming problem is 2n + n + 2n−2

(
n
2

)
.
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The feasible region of this linear programming problem is non-empty: it suf-
fices to take into account that the vacuous lower probability, given by Q

v
(E) = 0

for every E that is not equal to X and Q
v
(X ) = 1, is a 2-monotone outer approx-

imation of any coherent lower probability.
Moreover, the linear programming problem above has an optimal solution

by means of Weierstrass’ theorem [12]. To see this, note that (i) d(P ,Q) =∑
E⊆X (P (E) − ∑

B⊆E mQ(B)) is continuous on the variables mQ(B); (ii) the
feasible region is bounded, since by [13, Theorem 1] the values of mQ are bounded
when Q is 2-monotone; and (iii) it is closed, being a polyhedral set in R2n .

Given this, our first result tells us that any solution of the linear programming
problem is undominated:
Proposition 1. Let P be a coherent lower probability, and let Q be an opti-
mal solution of the linear programming problem (LP-2monot). Then, Q is an
undominated outer approximation of P .

Not surprisingly, (LP-2monot) may not have a unique solution:

Example 1. Consider X = {x1, x2, x3, x4} and let P be the coherent lower
probability that is the lower envelope of the probability mass functions P1 =
(0.5, 0.5, 0, 0), P2 = (0, 0, 0.5, 0.5). It is given by:

P (A) =

⎧
⎪⎨

⎪⎩

0 if |A| = 1 or A = {x1, x2}, {x3, x4}
1 if A = X
0.5 otherwise.

To see that P is not 2-monotone, note that, given A = {x1, x3} and B = {x2, x3},

P (A ∪ B) + P (A ∩ B) = 0.5 < 1 = P (A) + P (B).

To see that (LP-2monot) may have more than one solution, note that, if
Q is a 2-monotone outer approximation of P , it must satisfy Q({x1, x3}) +
Q({x2, x3}) ≤ Q({x1, x2, x3}) + Q({x3}) ≤ 0.5, whence P ({x1, x3}) +
P ({x2, x3}) − Q({x1, x3}) − Q({x2, x3}) ≥ 0.5; similarly, we obtain that
P ({x1, x4}) + P ({x2, x4}) − Q({x1, x4}) − Q({x2, x4}) ≥ 0.5, and therefore
d(P ,Q) ≥ 1 for any 2-monotone outer approximation of P . This distance is
attained by the 2-monotone capacities Q

1
, Q

2
given by

Q
1
(A) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if |A| = 1 or A = {x1, x2}, {x3, x4}
0.5 if |A| = 3
1 if A = X
0.25 otherwise.

and

Q
2
(A) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if |A| = 1 or A = {x1, x2}, {x3, x4}
0.5 if |A| = 3
1 if A = X
0.2 if A = {x1, x4}, {x2, x3}
0.3 otherwise.
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Their 2-monotonicity can easily be verified by means of Eq. (1). �

Obviously, if our initial model P is not 2-monotone, any undominated 2-
monotone capacity that outer approximates P will not agree with Q on some
event A. Interestingly, it can be checked that both models always agree on sin-
gletons:

Proposition 2. Let P be a coherent lower probability. If Q is an undominated
2-monotone capacity that outer approximates P , then Q({x}) = P ({x}) for every
x ∈ X .

As a consequence, both of them induce the same order on X . It can be checked
that this property does not extend to some particular subfamilies of 2-monotone
capacities, such as belief functions.

4 Particular Cases

In this section, we investigate the outer approximations of a coherent lower prob-
ability in some subfamilies of 2-monotone capacities associated with distortion
models. With the term distortion model we refer to a model where an initial
probability measure P0 is modified in some sense.

4.1 Pari-Mutuel Models

We begin by considering the Pari Mutuel Model [2,14,15] (PMM, for short). This
is a betting scheme originated in horse racing. It is determined by two elements:
a probability measure P0 and a distortion factor δ > 0. For every event A of
P(X ), P0(A) is interpreted as a fair price for a bet on A, and δ > 0 denotes the
loading of the house. They determine a coherent lower probability by:

P (A) = max{0, (1 + δ)P0(A) − δ} ∀A ⊆ X . (3)

The lower probability associated with a PMM is 2-monotone, as shown for
instance in [15, Sect. 2]. Moreover, in [14] it is proven that PMMs correspond to
particular instances of probability intervals [4].

Our next result gives the unique undominated outer approximation of a
coherent lower probability in terms of pari mutuel models.

Proposition 3. Let P be a coherent lower probability with conjugate upper prob-
ability P . Define the constant value δ > 0 and the probability P0 by:

δ =
n∑

i=1

P ({xi}) − 1, P0({xi}) =
P ({xi})
1 + δ

∀i = 1, . . . , n.

Denote by Q the coherent lower probability associated with the PMM (P0, δ) by
means of Eq. (3). Then, Q is the unique undominated pari mutuel model that
outer approximates P .
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4.2 ε-contamination Models

Another distortion model is the ε-contamination model, also called linear-
vacuous mixture in [2]. Given a probability measure P0 and ε ∈ (0, 1), they
determine the coherent lower probability

P (A) =

{
(1 − ε)P0(A) if A �= X .

1 if A = X .
(4)

Equivalently, P = (1 − ε)P0 + εQ
v
. The lower probability induced by such a

model is 2-monotone. This follows from the fact that it satisfies an even stronger
property: complete monotonicity, as can be deduced for instance from [10, The-
orems 5 and 11].

As with the PMM, we prove that there is only one undominated outer approx-
imation for a coherent lower probability in terms of ε-contamination models.

Proposition 4. Let P be a coherent lower probability satisfying the condition∑n
j=1 P ({xj}) > 0. Define ε ∈ (0, 1) and the probability P0 by:

ε = 1 −
n∑

j=1

P ({xj}), P0({xi}) =
P ({xi})∑n

j=1 P ({xj})
∀i = 1, . . . , n.

Denote by P ε the ε-contamination model they determine by means of Eq. (4).
Then, P ε is the unique undominated ε-contamination model that outer approxi-
mates P .

Note that the assumption
∑n

j=1 P ({xj}) > 0 in this proposition is necessary
for the existence of some outer approximation: if P ({xj}) = 0 for every xj ∈
X , any ε-contamination model that outer approximates P ε should also satisfy
P ε({xj}) = 0 for every xj ∈ X , whence

P ε({xj}) = (1 − ε)P0({xj}) = 0 ∀xj ∈ X ,

where P0 is the precise probability in the ε-contamination model. However,
since ε ∈ (0, 1), it follows that P0({xj}) = 0 for every xj ∈ X and P0(X ) =∑n

j=1 P0({xj}) = 0, a contradiction.

5 Comparison with Other Approaches

In this section, we briefly explore other alternatives to the linear programming
approach we have considered so far, in order to justify better our choice.
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5.1 Quadratic Problems

As Example 1 shows, the linear programming problem (LP-2monot) may not
have a unique solution. One way to overcome this issue is to consider, instead of
the distance given by Eq. (2), the quadratic distance given by:

d̃(P ,Q) :=
∑

E⊆X
(P (E) − Q(E))2.

It is not difficult to prove that, for any coherent lower probability P : P(X ) →
[0, 1], there is a unique 2-monotone capacity Q ≤ P that minimizes d̃(P ,Q).
From this it follows that Q is undominated in the family of outer approximations
of P by 2-monotone capacities. Note this outer approximation need not be one
of the solutions of the linear programming problem (LP-2monot).

In spite of this positive result, while in our view the distance of Baroni
and Vicig may be interpreted as the additional imprecision introduced by the
outer approximation, a similar interpretation of the quadratic distance is not
immediate; further, summing squares of differences in [0, 1] the solution of the
quadratic problem may seem closer to the original model than it actually is.

5.2 The Total Variation Distance

Another possibility would be to consider an extension of the total variation
distance [16, Chap. 4.1] to the imprecise case. Recall that given two probability
measures P1 and P2, their total variation is defined as

||P1 − P2|| = max
E⊆X

|P1(E) − P2(E)|.

This definition can be equivalently expressed as:

||P1 − P2|| =
1
2

∑

x∈X
|P1({x}) − P2({x})|.

In an imprecise framework, given two coherent lower probabilities P 1, P 2, we can
extend the definition above in a number of (not necessarily equivalent) ways:

d1(P 1, P 2) = max
E⊆X

|P 1(E) − P 2(E)|,

d2(P 1, P 2) =
1
2

∑

x∈X
|P 1({x}) − P 2({x})|,

d3(P 1, P 2) = sup
P1∈M(P 1),P2∈M(P 2)

||P1 − P2||,

and we refer to [1, Sect. 11.4] for some comments on d1 in the context of imprecise
Markov chains.

However, all these extensions may lead to outer approximations that are
dominated, and therefore cannot be considered adequate for our problem, as the
next examples show.
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Example 2. Consider a four element space and the lower probability P defined
in the following table:

A P (A) Q′
1
(A) Q′

2
(A)

{x1} 0.1 0.1 0.1
{x2} 0 0 0
{x3} 0 0 0
{x4} 0.1 0.1 0.1

{x1, x2} 0.4 0.3 0.3
{x1, x3} 0.4 0.3 0.3
{x1, x4} 0.4 0.4 0.3
{x2, x3} 0.2 0.2 0.2
{x2, x4} 0.4 0.3 0.3
{x3, x4} 0.4 0.3 0.3

{x1, x2, x3} 0.5 0.5 0.5
{x1, x2, x4} 0.6 0.6 0.6
{x1, x3, x4} 0.6 0.6 0.6
{x2, x3, x4} 0.5 0.5 0.5

X 1 1 1

Note that P is a coherent lower probability because it is the lower envelope
of the probability measures with mass functions

(0.4, 0, 0.2, 0.4), (0.3, 0.1, 0.1, 0.5), (0.3, 0.3, 0.3, 0.1), (0.1, 0.3, 0.3, 0.3)
(0.4, 0.2, 0, 0.4), (0.2, 0.2, 0.4, 0.2), (0.2, 0.4, 0.2, 0.2), (0.5, 0.1, 0.1, 0.3).

To see that it is not 2-monotone, note that, taking A = {x1, x2} and B = {x1, x3}
it holds that:

P ({x1, x2, x3}) + P ({x1}) = 0.6 < 0.8 = P ({x1, x2}) + P ({x1, x3}).

Therefore, any outer approximation Q in the class of 2-monotone lower proba-
bilities must satisfy:

Q({x1, x2}) + Q({x1, x3}) ≤ P ({x1, x2}) + P ({x1, x3}) − 0.2.

Hence, d1(P ,Q) ≥ 0.1. Also, the previous inequality is indeed an equality, which
is attained, for example, by the 2-monotone capacities Q′

1
, Q′

2
in the table above.

Thus, both Q′
1
, Q′

2
are optimal outer approximations with respect to the distance

d1, even if Q′
2

is dominated by Q′
1
. �

Example 3. Consider again the coherent lower probability from Example 1. Any
2-monotone outer approximation Q of P , undominated or not, shall satisfy
Q({xj}) = 0 for every j, and as a consequence d2(P ,Q) = 0. As for d3,
since ||P1 − P2|| = 1 for the probability measures P1 = (0.5, 0.5, 0, 0) and
P2 = (0, 0, 0.5, 0.5) from M(P ), and by definition this is the maximum value
of the total variation, we deduce that d3(P1, P2) = 1. Because M(P ) ⊂ M(Q),
also d3(P ,Q) = 1 for any 2-monotone outer approximation Q of P , even for the
‘most dominated’ vacuous lower probability Q

v
. Thus, d2, d3 do not rule out the

undominated solutions, either. �
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5.3 The Weber Set

We have already mentioned that one of the advantages of 2-monotone capaci-
ties is the existence of a simple procedure to obtain the extreme points of the
associated credal set. Let P be a 2-monotone capacity, and for any permutation
σ of {1, . . . , n}, define the precise probability Pσ by means of the constraints

Pσ({xσ(1), . . . , xσ(k)}) = P ({xσ(1), . . . , xσ(k)}) (5)

for k = 1, . . . , n. It was first proven by Shapley [3] that, if Sn denotes the set
of permutations of {1, . . . , n}, it holds that ext(M(P )) = {Pσ | σ ∈ Sn}. In
general, even when P is not 2-monotone but only coherent, we can define the
set of probabilities:

W (P ) = {Pσ | σ ∈ Sn}, (6)
where Pσ is defined as in Eq. (5). This set is called the Weber set of P , and it
holds that [17] P is 2-monotone if and only if ext(M(P )) = W (P ). Otherwise,
M(P ) is a proper subset of conv(W (P )). This implies that the lower envelope
of conv(W (P )) is a coherent lower probability that outer approximates P .

In fact, in the case of cardinality four, the lower envelope of conv(W (P )) is
indeed 2-monotone:

Proposition 5. Let P : P(X ) → [0, 1] be a coherent lower probability, where
|X | ≤ 4, and denote by Q the coherent lower probability defined by Q(E) =
min{P (E) | P ∈ conv(W (P ))} for every E ⊆ X , where W (P ) is given by
Eq. (6). Then, Q is a 2-monotone outer approximation of P .

It can be checked that the lower envelope of the Weber set is not necessarily
2-monotone for cardinalities greater than four. Moreover, even in the case of
cardinality four the lower envelope of the Weber set is not in general an undom-
inated outer approximation:

Example 4. Consider a four-element space X = {x1, x2, x3, x4}, and the lower
probability P given in the following table:

A P (A) Q(A) Q′(A)
{x1} 0.1 0.1 0.1
{x2} 0 0 0
{x3} 0 0 0
{x4} 0.3 0.3 0.3

{x1, x2} 0.1 0.1 0.1
{x1, x3} 0.3 0.2 0.3
{x1, x4} 0.6 0.5 0.5
{x2, x3} 0.3 0.2 0.2
{x2, x4} 0.4 0.3 0.4
{x3, x4} 0.4 0.3 0.4

{x1, x2, x3} 0.5 0.5 0.5
{x1, x2, x4} 0.6 0.6 0.6
{x1, x3, x4} 0.7 0.7 0.7
{x2, x3, x4} 0.6 0.6 0.6

X 1 1 1
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If we compute Q = min{P | P ∈ conv(W (P ))}, we obtain the values depicted
in the table above. However, this 2-monotone capacity is dominated by the 2-
monotone outer approximation Q′ given in the same table. �

6 Approximations of Coherent Lower Previsions

The problem considered in this paper could be generalized from coherent lower
probabilities to the richer framework of coherent lower previsions [2]: if we denote
by L(X ) the set of bounded real-valued functions on X , a coherent lower previ-
sion is a function P : L(X ) → R that satisfies

• P (f) ≥ inf f
• P (λf) = λP (f)
• P (f + g) ≥ P (f) + P (g)

for every f, g ∈ L(X ) and every λ > 0. Equivalently, P is coherent when it is
the lower envelope of a set of expectation operators with respect to a family of
probability measures on X .

The notion of 2-monotonicity has also been extended to lower previsions: P
is a 2-monotone lower prevision if and only if

P (f ∧ g) + P (f ∨ g) ≥ P (f) + P (g) ∀f, g ∈ L(X ),

where ∧ and ∨ denote the pointwise minimum and maximum. In general, a
coherent lower probability P on P(X ) may have more than one extension as a
coherent lower prevision on L(X ); however, if P is 2-monotone, then it has a
unique extension to L(X ) as a 2-monotone lower prevision: its Choquet integral
[10], that is also its least-committal or natural extension [2].

Similarly to what we have done in the rest of the paper, we could study
the problem of outer approximating a coherent lower prevision by a 2-monotone
one. Interestingly, this problem turns out to be equivalent to the one we are
considering in this paper, as our next result shows:

Theorem 1. Let P : L(X ) → R be a coherent lower prevision, and let P ′ be
its restriction to events. Then, there is a one-to-one correspondence between the
sets

{Q : L(X ) → R 2-monotone undominated outer approximation of P}
and

{Q′ : P(X ) → [0, 1] 2-monotone undominated outer approximation of P ′}.

The key in this result is that if we want to outer approximate a coherent lower
prevision, we can simply consider its restriction to events, outer approximate it
and then apply the procedure of natural extension in [2]. Figure 1 illustrates the
procedure.

Therefore, it suffices to focus on outer approximations of coherent lower prob-
abilities instead of lower previsions.
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P ′ coherent
lower probability

Q′ 2-monotone capacity
undominated outer

approximation

P coherent
lower prevision

Q 2-monotone prevision
undominated outer

approximation

P ′(A) = P (IA) Q′(A) = Q(IA)
Q(f) = (C)

∫
fdQ

′

Fig. 1. Correspondence between the 2-monotone outer approximations.

7 Conclusions

Our results allow us to conclude that we can find undominated outer approxima-
tions of a coherent lower probability that are at the same time as close as possi-
ble, in the sense of Baroni and Vicig, by means of a suitable linear programming
problem. Although the approximation is not unique in general, it is so if we focus
on some particular subfamilies of 2-monotone capacities, such as those associated
with certain distortion models. Moreover, the problem can be immediately applied
to the approximation of coherent lower previsions by 2-monotone ones.

While in our view the distance we have considered is the most meaningful for
the problem at hand and the results in Sect. 5 support this somewhat, we should
also make a more thorough comparison with other distances from the literature,
and also with the related study made in [18] about outer approximations with
possibility measures.

As other future lines of research, we would like to study in more detail the loss
of information entailed by the outer approximations, as well as the elicitation
among them when there is more than one solution. In addition, we would also
like to investigate more deeply the features of the solutions obtained by means
of the quadratic approach. Finally, it may be interesting to consider the problem
of the inner approximations of a coherent lower probability, even if they entail
removing, perhaps unjustifiedly, some imprecision from our model.

Acknowledgements. The research in this paper has been supported by project
TIN2014-59543-P. We would also like to thank Sébastien Destercke for some helpful
suggestions.
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17(3), 263–283 (1989)

12. Rudin, W.: Principles of Mathematical Analysis. McGraw Hill, New York (1976)
13. Grabisch, M., Miranda, P.: Exact bounds of the Möbius inverse of monotone set
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Abstract. We propose a model for the behaviour of Web apps in the
unreliable WWW. Web apps are described by orchestrations. An orches-
tration mimics the personal use of the Web by defining the way in which
Web services are invoked. The WWW is unreliable as poorly maintained
Web sites are prone to fail. We model this source of unreliability trough
a probabilistic approach. We assume that each site has a probability to
fail. Another source of uncertainty is the traffic congestion. This can be
observed as a non-deterministic behaviour induced by the variability in
the response times. We model non-determinism by imprecise probabili-
ties. We develop here an ex-ante normal to characterize the behaviour of
finite orchestrations in the unreliable Web. We show the existence of a
normal form under such semantics for orchestrations using asymmetric
parallelism.

Keywords: Web apps · Orchestrations · Orc
Imprecise probabilities · Normal forms

1 Introduction

The appearance of the World Wide Web [4] deeply changed our every day life
and in particular the way to interact with the world. In this paper we address
the following problem: How to give an ex-ante (before execution) meaning of our
interaction trough the Web. We model such interactions by means of orchestra-
tions. An orchestration is the sequence and conditions in which one Web service
invokes other Web services in order to realize some useful task [1]. An orches-
tration defines the flow control from a one-party perspective (in this case us)
[17]. In general, before executing a Web app (for instance to search for flight
info and get hotel reservations), we have an idea of the possible outcomes of the
execution. Orchestrations are designed to address two main issues:
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– Interacting trough the Web using big doses of parallelism. We can have several
browsers (like Mozilla, Chrome or Explorer) an try to get different pieces of
information at the same time.

– Web is unreliable. Sometimes the invoked service responds but others does
not. Perhaps those Web services are no longer maintained or simply they are
not available at this moment. A natural way to overcome unreliability is the
use of redundancy.

The causes of uncertainty depend deeply on the universe we are dealing with.
For instance, the causes of uncertainty in economy [9,12] appear to be quite dif-
ferent from those on the Web. When a basic service is invoked, a site call is
executed, the site can provide an answer returning some information or it can
fail to (broken link). Moreover, this situation is far from being stable. Usually,
based on our knowledge on the site behaviour or on external information, it
is feasible to assume a priori probability for the broken (or silent) site event.
In order to minimize the risk of calling a silent site, it is usual to issue sev-
eral calls to sites providing similar information. In such a case the answer that
arrives first is chosen. However, there is no a priori knowledge on which site will
respond first [5] because in many cases becomes too hard to get sufficient data
on the environment in order to provide precise probabilistic predictions. This
lack of precise probabilistic knowledge appears when considering an indetermin-
istic behaviour. Following [3],we propose to model non-determinism in terms of
imprecise probabilities.

The ex-ante characterization of an orchestration, although formulated in
terms of imprecise probabilities, has an obvious practical relevance. Let us con-
sider an orchestration P that guarantees the result great success with an impre-
cise probability greater than 1/3 and obtains the satisfactory result with prob-
ability greater than 3/4. Let Q be another orchestration that guarantees these
same results with imprecise probabilities that are greater than, respectively, 1/4
and 4/5. Depending on our particular circumstances we can choose in a reasoned
way which of the two processes, P or Q, is more convenient for our interests.

Besides proposing the uncertainty model we extend the bag semantics for
orchestrations proposed in [7] to deal with daemonic indeterminism through
imprecise probabilities. This allows us to generalize the previous theorem on
the existence of normal forms to a more general setting. Technically, Theorem 2
shows a normal form characterization for probabilistic orchestrations and The-
orem 3 extends this result to the non-deterministic case. We complement this
theoretical result by developing a complete example of uncertainty analysis in
our proposed model. We also sketch other possible applications of imprecise
probabilities to orchestrations. In order to make the paper self-contained we
start introducing the Orc language [14]. We also recall the bag semantics [7]
providing meaning to Orc expressions.

2 Orchestrations in Reliable Environments

An orchestration is a user-defined program that utilizes services on the Web. In
Orc [14] services are modelled by sites which have some predefined semantics.
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Typical examples of services are: an eigensolver, a search engine or a database.
A site accepts an argument and publishes a result value1. For example, a call
to a search engine, Find(s), may publish the set of sites which currently offer
service s. A site is silent if it does not publish a result. A site call can publish at
most one response. Although a site call may have a well-defined result it may be
the case that a call to the site, in an untrusted environment, fails (silence). Orc
contains a number of inbuilt sites: 0 is always silent while 1(x) always publishes
x. An orchestration which composes a number of service calls into a complex
computation can be represented by an Orc expression. An orchestrator may
utilize any service that is available on the grid. In this paper we deal only with
finite orchestrations where finite means: excluding iteration and recursion. Two
Orc expressions P and Q can be combined using the following operators [11,14]:

– Sequence P > x > Q(x): P is evaluated and, for each value v published by
P , an instance Q(v) is executed. If P publishes the stream, v1, v2, . . . vn, then
P > x > Q(x) publishes some permuted stream of the outputs of the calls
Q(v1), Q(v2), . . . , Q(vn). When the value of x is not needed we write P � Q.

– Symmetric Parallelism P | Q: P and Q are evaluated in parallel. P | Q pub-
lishes some interleaving of the streams published by P and Q.

– Asymmetric Parallelism P (x) < x < Q: P and Q are evaluated in parallel.
Some sub-expressions in P may become blocked by a dependency on x. The
first result published by Q is bound to x, the remainder of Q’s evaluation is
terminated and evaluation of the blocked residue of P is resumed.

Usually orchestrations assume some degree of redundancy. Following an example.

Example 1. Suppose that you need to send news to a group. Usually you prefer
the BBC but it is uncertain to get a result because there is a call for strike. In
such a case, you also try to get news from the CNN , News = (BBC | CNN ).
To inform the group, you send the news to Alice, but at this moment you are
uncertain about her capacity to get the email, therefore you send also the news
to Bob, Emails(x) = (Alice(x) | Bob(x)). Consider the orchestration eNews =
Emails(x) < x < News.

Let us describe the behaviour of eNews. A call to eNews spans into simulta-
neous (parallel) calls (or threads) to News and Emails(x). The call to News span
into parallel calls to BBC and CNN . The call to Emails(x) span into parallel
calls to Alice(x) and Bob(x) At this moment the call to eNews has evolved into
four simultaneous threads (the programs executing the calls) corresponding to
BBC , CNN , Alice(x) and Bob(x).

The thread corresponding to Alice(x) will remain blocked until variable x
takes a value. The same will happen with Bob(x). Eventually (at some future
time) the calls to BBC and CNN return. Assume that BBC returns first, this
value will be assigned to x. Once x has a value, threads corresponding to Alice(x)

1 The words “publishes”,“returns” and “outputs” are used interchangeably. The terms
“site” and “service” are also used interchangeably.
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and Bob(x) proceed and Alice and Bob will receive an email with the BBC news.
Another result is possible if CNN returns first. In this case Alice and Bob get
the CNN info. Note that eNews has no control about which result will appear,
therefore is a non-deterministic program. ��

To reason about a program, we need a semantics to assign meaning [6]. Bag
semantics was introduced in [7] to give a precise description of the approach taken
in Example 1. In such approach we abstract from return time. First, let us start
from the operational semantics introduced in [14]. In such a model any variable
x contains all the possible values before being used. Therefore, variables keep
a stream of values. When an orchestration E publishes a stream v1, v2, . . . , vn,
the relative ordering of the values depends on the relative response time of the
sites appearing in E. However, when we are uncertain about return times, is a
strongly desirable abstract from time. In such a case we forget about orderings
in the streams describing them as a multi-set or bag ��v1, v2, . . . , vn�� (notation
�� · �� is taken from [13]). In such a case, the “meaning” of E, denoted by [[E]], is
the bag ��v1, v2, . . . , vn�� and we write [[E]] = ��v1, v2, . . . , vn��. The fact that site
0 never returns is formalized as site 0 returns nothing, that is [[0]] = �� �� = ∅.
As the pruning operator (or parallel asymmetric composition) can give rise to
a non deterministic behaviour, we consider also the “daemonic choice” operator
� [13, p. 4] to denote non deterministic choice. Toni Hoare in [10], considers
the non-deterministic choice P � Q between processes P and Q. In such a case
P � Q denotes a process which behaves like P or Q, where the selection is done
without knowledge or control of the external environment. Such a choice is called
daemonic choice. A semantic characterization of P � Q in terms of refusal sets
can be found in [10]. In a reliable environment, a call to a site S always returns
a value and we write [[S]] = ��s��.

In the following examples we justify the use of bags and how they can be
obtained from the simple bags corresponding to site calls.

Example 2. [[BBC ]] = ��bbc�� and [[CNN ]] = ��cnn��. A call to News in the pre-
ceding Example 1 returns a bag containing two items, [[News]] = [[BBC | CNN ]] =
��bbc, cnn��. This result is consistent with the idea that in News the BBC and
the CNN are called in parallel an they return at different moments. The orches-
tration has no control on which one will return first. The bag ��bbc, cnn�� mimics
the idea that eventually we will get both results but we forget temporal infor-
mation. ��

Sometimes we want to introduce redundancy as, for example in TwiceBBC =
(BBC | BBC ). Observe that this orchestration returns ��bbc, bbc�� mimicking
the idea of getting twice the same result. Showing the need of using bags (or mul-
tisets). Sometimes we get expressions that depend on the values that a variable
gets during the execution. In such a case, the bag semantics provides a meaning
for the variable that is used to derive the meaning of the expression. Besides in
a reliable environment, asymmetric parallelism introduces indeterminism. The
following example illustrates those traits.
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Example 3. Now we face the meaning of x appearing in eNews = Emails(x) <
x < News. According to Example 2 we have [[News]] = ��bbc, cnn��. As we do
not control explicitly the return times, under some (external and uncontrolled)
circumstances, a call News returns bbc but in some other cases it returns cnn.
So, x can hold either of both values, i.e., [[x]] = ��bbc�� � ��cnn��. Assuming
[[Emails(x)]] = ��alice x, bob x��,

[[eNews]] = [[Emails(bbc)]] � [[Emails(cnn)]]
= ��alice bbc, bob bbc�� � ��alice cnn, bob cnn��

This result translates the idea that, depending on external circumstances, two
possible output streams are possible: Alice and Bob get the BBC or Alice and
Bob get the CNN. The orchestrator has no control on which one will occur. ��
Working in a similar way with the different operations the existence of a normal
form can be shown.

Theorem 1 [7]. Given an Orc expression E it holds that either [[E]] = �� ��
or there is a unique non-deterministic finite decomposition in multi-sets [[E]] =
�iMi, where elements in Mi corresponds to the possible values returned by site
calls.

3 Orchestrations and Probabilistic Information

Until now, we have considered reliable orchestrations as we were certain about
returns. In this section, we consider unreliable settings modelled with prob-
abilities. Let Δn = {(p1, . . . , pn) | pi ≥ 0, 1 ≤ i ≤ n,

∑n
i=1 pi = 1}. We

adopt from [13] the notation (prog1@p1 [] prog2@p2 [] · · · [] progn@pn) where
(p1, . . . , pn) ∈ Δn and (prog1 , . . . , progn) are sequential programs to represent a
probabilistic program that behaves like progi with probability pi.

The probabilistic choice follows two natural laws [13,15]. When the same
program prog1 appears twice, we should add the probabilities:

(prog1@p1 [] prog1@p2 [] prog3@p3 [] · · · [] progn@pn)

=
(
prog1@(p1 + p2) [] prog3@p3 [] · · · [] progn@pn

)
.

The second rule assumes distributivity in respect to the daemonic choice oper-
ator.

(
(prog1 � prog ′

1 )@p1 [] prog2@p2 [] · · · [] progn@pn

)

= (prog1@p1 [] · · · [] progn@pn) � (prog ′
1@p1 [] prog2@p2 [] · · · [] progn@pn).

Sometimes we can model a faulty uncertain behaviour by a probability dis-
tribution on the involved processes, but this is not always possible. We have two
semantic models for faulty behaviour.
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– Probabilistic information. In this case we model a faulty site as a site S return-
ing s with a probability p, and failing to return (behaves like site 0) with prob-
ability (1−p). The faulty version of S, denoted as SF is SF = (S@p [] 0@(1−
p)

)
). Moreover [[SF ]] =

(
[[S]]@p [] �� ��@(1 − p)

)
=

(��s��@p [] �� ��@(1 − p)
)
.

We identify
(��s��@1 [] �� ��@0

)
= ��s�� and

(��s��@0 [] �� ��@1
)

= �� ��. We
assume probabilistic independence on the behaviour of the sites. Two con-
secutive calls to a given site are considered independent in relation to its
probabilistic behaviour.

– No probabilistic information. In such a case, we assume indeterminism, i.e.,
[[SF ]] = [[S]] � �� ��.

When it is clear from the context that S is faulty, we denote SF shortly as S.

Example 4. Suppose that, from a user point of view, sites CNN and BBC are
unreliable, [[BBC ]] =

(��bbc��@2/3 [] �� ��@1/3
)

and [[CNN ]] =
(��cnn��@1/2 []

�� ��@1/2
)
. A precise semantics for [[News]] comes from the way in which prob-

abilities interact with parallel composition [7]. Assuming independence among
executions, the probabilistic behaviour is given in the following table:

��bbc��@2/3 �� ��@1/3
��cnn��@1/2 ��cnn, bbc��@(1/2 × 2/3) ��cnn��@(1/2 × 1/3)
�� ��@1/2 ��bbc��@(1/2 × 2/3) �� ��@(1/2 × 1/3)

Therefore [[News]] =
(��cnn, bbc��@1/3 [] ��cnn��@1/6 [] ��bbc��@1/3 [] �� ��@

1/6
)
. Different bags can represent the orchestration result. The empty bag �� ��

appears when both sites fail. This result is different form the one in Example 2
where only the bag ��cnn, bbc�� appears. ��
Probabilistic distributions are parametrized when sites are parametrized
S(x1, . . . xn):

[[S(x1, . . . xn)]] =
{ ��s(v1, . . . , vn)�� if (x1, . . . xn) = (v1, . . . vn)

�� �� if ∃i : 1 ≤ i ≤ n : xi undefined

Example 5. Suppose that Alice succeeds (or returns) with probability 4/5 and
Bob returns with probability 5/7. In the case of Alice we have:

[[Alice(x)]] =

{(��alice v��@4/5 [] �� ��@1/5
)

if x = v

�� �� if x is undefined

When x = ��cnn�� it holds [[Alice(cnn)]] =
(��alice cnn��@4/5 [] �� ��@1/5

)
.

When x is undefined, x = �� �� and [[Alice(�� ��)]] = �� ��. When it is clear
from the context, we write [[Alice(x)]] =

(��alice x��@4/5 [] �� ��@1/5
)

assum-
ing implicitly that, when x is undefined [[Alice(x)]] = �� ��. Let Emails(x) be
(Alice(x) | Bob(x)). The semantics is

(��alice x, bob x��@4/7 [] ��alice x��@8/35 [] ��bob x��@1/7 [] �� ��@2/35
)
.
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When x = ��cnn��, the semantics of Emails(cnn) is
(��alice cnn, bob cnn��@4/7 [] ��alice cnn��@8/35 [] ��bob cnn��@1/7 [] �� ��@2/35

)
,

and, when x is undefined, [[Emails(x)]] = �� �� . ��
The tools described in Examples 4 and 5 can be generalized. We can show

that when there is no asymmetric parallelism (no indeterminism) probabilistic
information can be carried out through constructors. Based on the approach
given in [7], we can shown the existence of a normal form.

Theorem 2. Let E be a finite orchestration, defined trough sequencing and par-
allel composition over n different faulty sites. Assume site i succeeds and returns
a value with probability pi. Under the bag semantics, there is a probabilistic finite
choice decomposition in multisets [[E]] = [] jMj@Fj(p), elements in Mj corre-
sponds to the possible values returned by site calls, parameter p is the success
probability vector (p1, . . . , pn), and Fj is an arithmetic expression defined on p.

4 Daemonic Choice and Imprecise Probabilities

We consider in this section the more general case of a non-deterministic orches-
tration defined on a faulty environment. In order to provide a semantic char-
acterization, we keep probabilistic information as much as possible and encode
non-deterministic choices as imprecise probabilities. In this way, the behaviour
of a non-deterministic choice on n processes P1 � P2 � · · · � Pn corresponds to
any of the possible behaviours defined by an imprecise probability choice:

{(P1@p1 [] P2@p2 [] · · · [] Pn@pn) | (p1, p2, . . . pn) ∈ Δn)}.

Consequently, we identify the meaning [[P1 � P2 � · · · � Pn]] with

{([[P1]]@p1 [] [[P2]]@p2 [] · · · [] [[Pn]]@pn) | (p1, p2, . . . pn) ∈ Δn)}.

Let us observe that in the asymmetric parallelism operation the non determin-
istic choices are restricted to the selection of an element from a multiset. The
following example attempts to grasp the relation between our approach and
imprecise probabilities.

Example 6. To assign a meaning to eNews, recall from Example 4 that

[[News]] =
(��cnn, bbc��@1/3 [] ��cnn��@1/6 [] ��bbc��@1/3 [] �� ��@1/6

)

We like to keep this probabilistic information as much as possible in [[x]]. As
[[x]] has to be some possible multisets with at most one element we translate
��cnn, bbc�� into ��cnn�� � ��bbc��. In a first approach [[x]] should be the process

((��cnn�� � ��bbc��)@1/3 [] ��cnn��@1/6 [] ��bbc��@1/3 [] �� ��@1/6
)
.
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Modelling non-determinism by imprecise probabilities

[[
(��cnn�� � ��bbc��)]] = {��cnn��@p1 [] ��bbc��@p2 | (p1, p2) ∈ Δ2}

Substituting in the previous expression, we get

[[x]] =
{(��cnn��@1

2
p1 [] ��bbc��@1

3
p1 [] �� ��@1

6
p1

[] ��cnn��@1
6
p2 [] ��bbc��@2

3
p2 [] �� ��@1

6
p2

) | (p1, p2) ∈ Δ2

}
.

Regrouping terms we get for [[x]]
{(

��cnn��@
(1

2
p1 +

1
6
p2

)
[] ��bbc��@

(1
3
p1 +

2
3
p2

)
[] �� ��@1

6

)
| (p1, p2) ∈ Δ2

}

Observe that, although the characterization of [[x]] is imprecise, we can assure
that the probability of having cnn as a result lies in the interval [1/6, 1/2] and
that the probability of bbc lies in [1/3, 2/3]. We rewrite [[x]] as:

{(��cnn��@p [] ��bbc��@q [] �� ��@1/6) | p ∈ [1/6, 1/2], q ∈ [1/3, 2/3], p + q = 5/6}
Assuming the semantics of Emails(x ) in Example 5, then [[eNews]] is

{(
[] ��alice cnn, bob cnn��@4

7
p [] ��alice cnn��@ 8

35
p [] ��bob cnn��@1

7
p

[] ��alice bbc, bob bbc��@4
7
q [] ��alice bbc��@ 8

35
q [] ��bob bbc��@1

7
q

[] �� ��@ 3
14

) | p ∈ [1/6, 1/2], q ∈ [1/3, 2/3], p + q = 5/6
}

.

The meaning [[eNews]] provides, for each possible output stream, a probability
interval. This quantitative information may be relevant in any discussion about
the appropriateness of this orchestration. ��

Our next result provides a generalization of a similar result in [7]. We are
able to include asymmetric parallelism in the bag semantics and devise a normal
form. The proof is by induction on the structure of the orchestration and uses
formalizations of the preceding ideas.

Theorem 3. Let E be a finite faulty orchestration, defined trough sequenc-
ing, parallel composition and asymmetric parallelism over n different faulty
sites. Assume that site i succeeds an returns a value with probability pi and
let p = (p1, . . . , pn). Under the bag semantics, encoding the daemonic choice
due to asymmetric parallelism into imprecise probabilities, there are multisets
M1, . . . M� and a Cartesian product of probability spaces Δm1 × · · · × Δmk

such
that

[[E]] =
{(

M1@F1(p, δ) [] · · · [] Ml@Fl(p, δ)
) | δ ∈ Δn1 × · · · × Δnk

}
.

Multiset’s elements correspond to possible values returned by site calls and for-
mulas Fj are arithmetic expressions defined on the success probability vector p
and a tuple of distributions δ.
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5 An Example of Application

In order to clarify the measurable probabilities p = (p1, . . . , pn) and the source
for imprecise probabilities δ ∈ Δn1×· · ·×Δnk

appearing in Theorem3 we analyse
the meaning on a longer orchestration.

Consider the orchestration EmailFlightHotel sending to Alice information
about flights and hotels. Three hotels are asked to give information: Hotels =
(H1 | H2 | H3) and two flight companies are contacted: Flights = (F1 | F2).
Thus,

EmailFlightHotel = Alice(f, h) < f < Flights < h < Hotels

The set of sites is {H1,H2,H3, F1, F2,Alice(f, h)}. The success probabilities are
respectively {1/2, 1/3, 1/4, 1/5, 1/6, 2/3}. Observe that

[[Hotels]] =
(��h1, h2, h3��@1/24

[] ��h1, h2��@3/24 [] ��h1, h3��@2/24 [] ��h2, h3��@1/24 []
[] ��h1��@6/24 [] ��h2��@3/24 [] ��h3��@2/24
[] �� ��@6/24

)

Note that any probability appearing in [[Hotels]] is a funcion of the success proba-
bility of H1,H2,H3 given by p = (1/2, 1/3, 1/4). For instance the 6/24 appearing
in ��h1��@6/24 is computed as 6/24 = 1/2(1−1/3)(1−1/4). To assign a meaning
to h, each multiset gets an imprecise probability on its elements. That is

��h1, h2, h3�� =
{(��h1��@p1,1 [] ��h2��@p1,2 [] ��h3��@p1,3

) | (p1,1, p1,2, p1,3) ∈ Δ3

}

��h1, h2�� =
{(��h1��@p2,1 [] ��h2��@p2,2 []

) | (p2,1, p2,2) ∈ Δ2

}

��h1, h3�� =
{(��h1��@p3,1 [] ��h3��@p3,3

) | (p3,1, p3,3) ∈ Δ2

}

��h2, h3�� =
{(��h2��@p4,2 [] ��h3��@p4,3

) | (p4,2, p4,3) ∈ Δ2

}

Define δ = (p1,1, p1,2, p1,3, p2,1, p2,2, p3,1, p3,3, p4,2, p4,3) ∈ Δ3 × Δ2 × Δ2 × Δ2,
then: [[h]] = {(��h1��@Ph1 [] ��h2��@Ph2 [] ��h3��@Ph3 [] �� ��@Ph∅ []

)} where:

Ph1 =
1
24

(p1,1 + 3p2,1 + 2p3,1 + 6) Ph2 =
1
24

(p1,2 + 3p2,2 + p4,2 + 3)

Ph3 =
1
24

(p1,3 + 2p3,3 + p4,3 + 2) Ph∅ =
6
24

Note that Phi
is a function of p and δ previously defined, that is Phi

= Fhi
(p, δ),

similarly for Ph∅ .
Working in a similar way.

[[Flights]] =
(��f1, f2��@1/30 [] ��f1��@5/30 [] ��f2��@4/30 [] �� ��@20/30

)

In this case the probabilities appearing in [[Flights]] are function of p′ =
(1/5, 1/6). There is just one bag with more than one element, then

��f1, f2�� = {(��f1��@q1,1 [] ��f2��@q1,2 | (q1,1, q1,2) ∈ Δ2

)}
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Defining δ′ = (q1,1, q1,2) ∈ Δ2. So, [[f ]] = {(��f1��@Qf1 [] ��f2��@Qf2 [] �� ��
@Qf∅)} where

Qf1 =
1
30

(q1,1 + 5), Qf2 =
1
30

(q1,2 + 4), Qf∅ =
20
30

.

Finally,

[[EmailFightHotel ]]
= {(��alice f1 h1��@P1 [] · · · [] �� ��@P∅

) | · · · }
= {(��alice f1 h1��@2

3
Qf1Ph1 [] · · · [] �� ��@1

3
Ph∅Pf∅) | · · · }

= {(��alice f1 h1��@2
3
( 1
30

q1,1 +
5
30

)( 1
24

p1,1 +
3
24

p2,1 +
2
24

p3,1 +
6
24

)
[] · · ·

[] �� ��@1
3

· 6
24

· 20
30

) | · · · }

Define p′′ as the array associated to the Alice probability of success, p′′ = (2/3).
Defining (with a small abuse of notation):

δ = (δ, δ′) = (p1,1, p1,2, p1,3, p2,1, p2,2, p3,1, p3,3, p4,2, p4,3, q1,1, q1,2)
p = (p, p′, p′′) = (1/2, 1/3, 1/4, 1/5, 1/6, 2/3)

We have got P1 as an arithmetic expression on (p, δ) like the probability expres-
sions in Theorem 3. Other cases are similar.

6 Other Applications

We consider briefly two settings to which we can extend the preceding approach.
We started from the case of fully reliable sites to include probabilistic (but
reliable) sites. We can consider the case where sites are fully reliable (response
is granted) with uncertain response time. As before we encode demonic choice
as an imprecise probability. This case, although a special case of the preceding
one, merits special attention because the empty bag cannot appear. Even if the
result is uncertain it is less uncertain than in the faulty case. Let us develop
those ideas through an example.

Example 7. Let us consider eNews introduced in Example 1. According to Exam-
ple 3 we have [[x]] = ��bbc�����cnn��. As sites always return, the only probabilities
are due to the indeterministic choice and therefore [[x]] is less ambiguous that in
Example 6,

[[x]] = {(��bbc��@p1 [] ��cnn��@p2) | (p1, p2) ∈ Δ2)}
Then [[eNews]] = {([[Emails(bbc)]]@p1 [] [[Emails(cnn)]]@p2) | (p1, p2) ∈ Δ2}. The
main difference between this example and Example 6 is that both, Alice and Bob,
will receive one newspaper for sure but is not known which one. Note that in
Example 6 both (Alice and Bob) just one (Alice or Bob) or no-one (neither Alice
nor Bob) get a newspaper. ��
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We have used probabilistic information only on site failures. However, our
approach can be extended to orchestrations having probabilistic behaviour. The
following examples provides the main ideas in this setting.

Example 8. We assume that all the sites have a reliable behaviour. Con-
sider a probabilistic site (modelled by an orchestration) infoNews =
(BBC@3/4 [] CNN@1/4) returning news form the BBC with probability 3/4 or
CNN with probability 1/4. Note that infoNews returns a result with probability
1, that is [[infoNews]] �= �� ��. Based on the previous site define otherNews =
(infoNews | DISNEY ) and finally:

pr toAlice = Alice(x ) < x < otherNews.

Clearly [[otherNews]] = (��bbc, disney��@3/4 [] ��cnn, disney��@1/4). Using
indeterminism to split bags into individual responses we get

[[x]] =
(
(��bbc�� � ��disney��)@3/4 [] (��cnn�� � ��disney��)@1/4

)

= (��bbc��@3/4 [] ��cnn��@1/4) � (��bbc��@3/4 [] ��disney��@1/4)
�(��cnn��@1/4 [] ��disney��)@3/4) � ��disney��.

Translating indeterminism into imprecise probabilities, we get

[[x]] =
{(��bbc��@3

4
(
p1 + p2

)
[] ��cnn��@1

4
(
p1 + p3

)

[] ��disney��@(
p4 +

1
4
p2 +

3
4
p3

) | (
p1, p2, p3, p4) ∈ Δ4}.

Finally,

[[pr toAlice]] =
{(��alice bbc��@3

4
(
p1 + p2

)
[] ��alice cnn��@1

4
(
p1 + p3

)

[] ��alice disney��@(
p4 +

1
4
p2 +

3
4
p3

) | (
p1, p2, p3, p4) ∈ Δ4}.

Thus, it is granted that Alice gets a result but the type of the result is uncertain.
��

7 Conclusion and Open Problems

The economist Frank Knight has made a distinction between risk and uncertainty
[12] as illustrated by the following quotation taken from [2, Chap. 11]:

Risk refers to something that can be measured by mathematical probabili-
ties. In contrast, uncertainty refers to something that cannot be measured
(using probabilities) because there are no objective standards to express
these probabilities.
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In this paper we model the uncertainty issued by the daemonic choice, repre-
sented by P � Q by the set of imprecise probabilities {(P@p1 [] Q@p2) | p1+p2 =
1}. Imprecise probabilities overcome the Knightian problem of the existence of a
unique probability. In particular we apply this approach to model the uncertain
Web. Nevertheless, in asymmetric parallelism, non determinism is limited to the
selection of an element from a multiset. It will be of interest to analyse, in the
general context of processes’ algebra, the existence of normal forms by modelling
non determinism by imprecise probabilities.

In this paper we have assumed sites with well defined return probabilities. It
could be also possible to consider sites with imprecise return probabilities. For
instance, let CNN a site with uncertain return probability in between [1/6, 1/2],
then

[[CNN ]] = {��cnn��@p [] �� ��@(1 − p) | p ∈ [1/6, 1/2]}
It seems possible to extend the normal forms to this case.

In [8] another approach was undertaken to model Web uncertainty. It is
assumed that sites can fail but the number of failures is bounded. As the failing
sites are not known, some working hypothesis should be done between the best
and the worst scenarios. It is assumed that some sites will fail trying to damage
the orchestrations as much as possible (daemons d) but others will fail trying
to minimize damage (angels a). This approach give rise to a strategic situation
analysed trough a zero-sum game (called the a-d game) [16]. It is an open topic if
there is any relation between a-d approach and imprecise probabilities approach.

A fundamental question in program design is: when a program is better than
another? Partial orders have been considered to tackle this question. Expression
P � Q points out that program Q is better than program P [10,13]. On highly
unreliable environments this question is even more crucial. Although there exists
a general approach [13], the application to the Web environment remains open.

Finally, in Theorem3 a Cartesian product of probability spaces is considered.
However there are situations where a richer correlation structure is suitable,
or where additional information could be incorporated (i.e. more complex con-
straints on the probabilities directly). For instance, consider the case of locally
congested network evolving along the time. These cases seems hard to study is
this framework.
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Abstract. A family of conditional risk measures is introduced by con-
sidering a single period financial market, relying on a notion of con-
ditioning for submodular capacities, which generalizes that introduced
by Dempster. The resulting measures are expressed as discounted con-
ditional Choquet expected values, take into account ambiguity towards
uncertainty and allow for conditioning to “null” events. We also provide
a characterisation of consistence of a partial assessment with a condi-
tional submodular coherent risk measure. The latter amounts to test the
solvability of a suitable sequence of linear systems.

Keywords: Coherent risk measure
Conditional Choquet expected value
Conditional submodular capacity

1 Introduction

An important issue in financial risk measurement is to express how risky a given
portfolio is and, so, risk measures are quantitative tools developed to determine
the capital that the owner of the portfolio should allocate to face possible losses
and to ensure their financial stability. Among the different measures we mention
the well-known Value At Risk and Expected Shortfall, which are very popular
among practitioners.

Recall that the Expected Shortfall is a coherent risk measure (see [2] for an
axiomatization and characterization of coherent risk measures), while the Value
At Risk is generally not coherent due to lack of subadditivity.

In this paper the interest is directed to those situations where the information
is partial and, so, beliefs cannot be encoded in a single probability measure,
but they are expressed through a set of probability measures. In such cases we
need to deal with ambiguity towards uncertainty. Starting from the given set
of probability measures we need to consider its envelopes that turn out to be
normalized capacities, often being submodular [supermodular].
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The starting point of this paper is the class of coherent risk measures studied
in [11] and defined through the Choquet expected value with respect to a sub-
modular [supermodular] capacity. One of the most appealing properties of these
risk measures is that they can be represented as a suitably modified worst or best
expected loss over a whole class of probabilistic models. The connection between
risk measures and imprecise probabilities has been studied, e.g., in [20,23,29].

In financial applications, as in every decision problem under uncertainty, the
arrival of new information has an impact on risk measurement, for this a notion
of conditioning for risk measures should be introduced (see, e.g., [8,24]). As is
well-known, the problem of defining a suitable notion of conditioning is crucial
also for capacities, for which a large debate is still present in the literature
[6,9,10,12,13,18,19,22,27,30].

Here, we study conditional risk measures relying on an axiomatic definition
of conditional submodular capacities (originally given for plausibility functions
in [10]) which generalizes the one introduced in [12], allowing for conditioning to
“null” events. Our notion of conditioning differs from that used in [23], the latter
being based on the Walley’s generalized Bayesian rule. The introduced condi-
tional risk measures are obtained as a discounted conditional Choquet expected
value computed with respect to a conditional submodular [supermodular]
capacity.

In real risk management problems the risk manager is only able to assess
the value of a conditional risk measure “directly” on a finite set of conditional
risks (i.e., conditional random quantities). For this we investigate the consistence
of a partial assessment with a conditional submodular coherent risk measure,
providing a characterization in terms of solvability of a suitable sequence of
linear systems.

2 Conditional Submodular Functionals

Let Ω = {ω1, . . . , ωn} be a finite set of states of the world and denote by ℘(Ω)
the power set of Ω, whose elements are interpreted as the events of interest.
Let ℘(Ω)0 = ℘(Ω) \ {∅} = {A1, . . . , A2n−1} be the set of non-impossible events,
whose enumeration is assumed to be fixed.

We recall that a (normalized) capacity (see [14,17]) on ℘(Ω) is a function
ψ : ℘(Ω) → [0, 1] such that ψ(∅) = 0, ψ(Ω) = 1 and ψ(A) ≤ ψ(B) whenever
A ⊆ B, for A,B ∈ ℘(Ω). A submodular (or 2-alternating) capacity ψ on ℘(Ω)
further satisfies, for every A1, A2 ∈ ℘(Ω),

ψ(A1 ∪ A2) + ψ(A1 ∩ A2) ≤ ψ(A1) + ψ(A2).

The dual function ϕ defined, for every A ∈ ℘(Ω), as ϕ(A) = 1 − ψ(Ac), is a
supermodular (or 2-monotone) capacity and satisfies the above inequality in the
opposite direction.

The functions ψ and ϕ on ℘(Ω) are completely singled out by the Möbius
inverse of ϕ [7,17], defined for every A ∈ ℘(Ω) as

m(A) =
∑

B⊆A

(−1)|A\B|ϕ(B).
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The function m : ℘(Ω) → R is such that m(∅) = 0,
∑

A∈℘(Ω) m(A) = 1, and, for
every A ∈ ℘(Ω),

ϕ(A) =
∑

B⊆A

m(B) and ψ(A) =
∑

B∩A �=∅
m(B).

In particular, if m is non-negative then ψ and ϕ are a plausibility and a belief
function [7,12,17,27]. Recall that submodular and supermodular capacities are
distinguished subclasses of (coherent) upper and lower probabilities [28,30].

A risk X : Ω → R is a state-contingent (possibly positive or negative) money
payoff. The set of all risks on Ω is denoted as RΩ , which is easily seen to be a lin-
ear lattice, i.e., it is closed under the pointwise operations of linear combination,
minimum and maximum, the latter denoted as ∧ and ∨.

For a risk X ∈ R
Ω , if ν is a capacity on ℘(Ω) and σ is a permutation of

{1, . . . , n} such that X(ωσ(1)) ≤ . . . ≤ X(ωσ(n)) (see [14]), the Choquet integral of
X with respect to ν is defined, denoting Eσ

i = {ωσ(i), . . . , ωσ(n)} for i = 1, . . . , n
and Eσ

n+1 = ∅, as

C

∫
X dν =

n∑

i=1

X(ωσ(i))(ν(Eσ
i ) − ν(Eσ

i+1)).

In particular, when ν reduces, respectively, to a submodular capacity ψ or
to a supermodular capacity ϕ, the Choquet integral is the maximum/minimum
of the prevision (expected value) functionals determined by the core of ϕ (see,
e.g., [14,26]), that is the set of probability measures

Pϕ = {P : P is a probability measure, ϕ ≤ P ≤ ψ},

for which it holds ϕ = min Pϕ and ψ = max Pϕ.
Given a risk X ∈ R

Ω and an event H ∈ ℘(Ω)0, a conditional risk is a
pair (X,H), usually denoted as X|H, which consists in regarding X under the
hypothesis H. In particular, a conditional event E|H ∈ ℘(Ω)×℘(Ω)0 is identified
with the conditional risk 1E |H, where 1E denotes the indicator of event E, and
an unconditional risk X ∈ R

Ω is identified with X|Ω.

Definition 1. Let H ⊆ ℘(Ω) \ {∅} be an additive class (i.e., a set of events
closed under finite unions). A function ψ : ℘(Ω) × H → [0, 1] is a conditional
submodular capacity if it satisfies the following conditions:

(i) ψ(E|H) = ψ(E ∩ H|H), for every E ∈ ℘(Ω) and H ∈ H;
(ii) ψ(·|H) is a submodular capacity on ℘(Ω), for every H ∈ H;
(iii) ψ(E ∩ F |H) = ψ(E|H) · ψ(F |E ∩ H), for every E ∩ H,H ∈ H and E,F ∈

℘(Ω).

Moreover, given a conditional submodular capacity ψ(·|·), the dual conditional
supermodular capacity ϕ(·|·) is defined for every event E|H ∈ ℘(Ω) × H as

ϕ(E|H) = 1 − ψ(Ec|H).
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Every conditional submodular capacity ψ(·|·) on ℘(Ω)×H is in bijection with
a linearly ordered class {ψ0, . . . , ψk} of (unconditional) submodular capacities
on ℘(Ω), called minimal agreeing class, such that

– ψ0(·) = ψ(·|H0
0 ) with H0

0 =
⋃

H∈H H;
– for α > 0, ψα(·) = ψ(·|Hα

0 ) with Hα
0 =

⋃{H ∈ H : ψβ(H) = 0, β =
0, . . . , α − 1} �= ∅.

The class {ψ0, . . . , ψk} is such that for every H ∈ H there is α ∈ {0, . . . , k} such
that ψα(H) > 0. Moreover, for every E|H ∈ ℘(Ω) × H, denoting with αH the
minimum index in {0, . . . , k} such that ψαH

(H) > 0, it holds that

ψ(E|H) =
ψαH

(E ∩ H)
ψαH

(H)
.

If condition (ii) in Definition 1 is reinforced by requiring that ψ(·|H) is a
plausibility function on ℘(Ω), for every H ∈ H, the resulting conditional mea-
sure is a conditional plausibility function according to [10], for which a minimal
agreeing class representation has been given in [5].

The conditional Choquet expected values induced by the dual conditional
measures ψ(·|·) and ϕ(·|·) on ℘(Ω) × H are conditional functionals defined, for
every X|H ∈ R

Ω × H, as

Ψ(X|H) = C

∫
X dψ(·|H) and Φ(X|H) = C

∫
X dϕ(·|H).

The conditional functionals Ψ(·|·) and Φ(·|·) are, respectively, submodular and
supermodular [17,28], i.e., they satisfy, for every X1,X2 ∈ R

Ω and every H ∈ H,

Ψ(X1 ∨ X2|H) + Ψ(X1 ∧ X2|H) ≤ Ψ(X1|H) + Ψ(X2|H),
Φ(X1 ∨ X2|H) + Φ(X1 ∧ X2|H) ≥ Φ(X1|H) + Φ(X2|H),

and are dual since, for every X|H ∈ R
Ω × H, it holds Ψ(−X|H) = −Φ(X|H).

The following definition allows to provide a linear expression of conditional
functionals Ψ(·|·) and Φ(·|·).
Definition 2. For every H ∈ ℘(Ω)0, the H-cut generalized upper and
lower risks corresponding to a risk X : Ω → R are the functions XU,H ,XL,H :
℘(Ω)0 → R defined, for i = 1, . . . , 2n − 1, as

XU,H(Ai) = max
ω∈Ai∩H

X(ω) and XL,H(Ai) = min
ω∈Ai∩H

X(ω),

with XU,H(Ai) = XL,H(Ai) = 0 if Ai ∩ H = ∅, also denoted as the row vectors

XU,H = (XU,H(A1), . . . , XU,H(A2n−1)),
XL,H = (XL,H(A1), . . . , XL,H(A2n−1)).

In what follows, operations between H-cut generalized upper and lower risks,
such as sum, multiplication and multiplication for a constant, are always assumed
pointwise on the elements of ℘(Ω)0.
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Proposition 1. Let ψ : ℘(Ω)×H → [0, 1] be a conditional submodular capacity
generated by the minimal agreeing class of submodular capacities {ψ0, . . . , ψk}
on ℘(Ω) with duals {ϕ0, . . . , ϕk} determining the Möbius inverses {m0, . . . ,mk},
and ϕ(·|·) the dual conditional supermodular capacity. For every risk X ∈ R

Ω and
every H ∈ H with αH ∈ {0, . . . , k} the minimum index such that ψαH

(H) > 0,
it holds

Ψ(X|H) =
1

ψαH
(H)

2n−1∑

h=1

XU,H(Ah)mαH
(Ah),

Φ(X|H) =
1

ψαH
(H)

2n−1∑

h=1

XL,H(Ah)mαH
(Ah).

Proof. By the representation of ψ(·|H) through {ψ0, . . . , ψk}, we have that

Ψ(X|H) = C

∫
X dψ(·|H)

=
1

ψαH
(H)

C

∫
X dψαH

(· ∩ H)

=
1

ψαH
(H)

n∑

i=1

X(ωσ(i))(ψαH
(Eσ

i ∩ H) − ψαH
(Eσ

i+1 ∩ H))

=
1

ψαH
(H)

2n−1∑

h=1

XU,H(Ah)mαH
(Ah),

where the last equality follows since ψαH
(Eσ

i ∩ H) − ψαH
(Eσ

i+1 ∩ H) is equal to∑
B∩Eσ

i ∩H �=∅
B∩Eσ

i+1∩H=∅
mαH

(B) and for all B in the sum it holds XU,H(B) = X(ωσ(i)).

Analogously, we have

Φ(X|H) = C

∫
X dϕ(·|H)

=
1

ψαH
(H)

C

∫
X d[ψαH

(H) − ψαH
((·)c ∩ H)]

=
1

ψαH
(H)

n∑

i=1

X(ωσ(i))(ψαH
((Eσ

i+1)
c ∩ H) − ψαH

((Eσ
i )c ∩ H))

=
1

ψαH
(H)

2n−1∑

h=1

XL,H(Ah)mαH
(Ah),

where the last equality follows since ψαH
((Eσ

i+1)
c ∩ H) − ψαH

((Eσ
i )c ∩ H) is

equal to
∑

B∩(Eσ
i+1)

c∩H �=∅
B∩(Eσ

i )c∩H=∅
mαH

(B) and for all B in the sum it holds XL,H(B) =

X(ωσ(i)).

Conditional submodular and supermodular capacities are generally not point-
wise envelopes of a class of conditional probabilities in the sense of [15]. Never-
theless, for each fixed conditioning event H ∈ H, they are pointwise envelopes
of a class of unconditional probabilities, which coincides with the core
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Pϕ(·|H) = {P : P is a probability measure on℘(Ω), ϕ(·|H) ≤ P ≤ ψ(·|H)},

i.e., ϕ(·|H) = min Pϕ(·|H) and ψ(·|H) = max Pψ(·|H). In particular, for every
X ∈ R

Ω and every H ∈ H, it holds

Ψ(X|H) = max
{∫

X dP : P ∈ Pϕ(·|H)

}
,

Φ(X|H) = min
{∫

X dP : P ∈ Pϕ(·|H)

}
,

so, locally on every H ∈ H, an upper/lower prevision (expected value) interpre-
tation can be given. This implies that, for every H ∈ H, Ψ(·|H) and Φ(·|H) are,
respectively, subadditive and superadditive [14].

Finally, for every non-negative Y ∈ R
Ω , E ∈ ℘(Ω) and E ∩ H,H ∈ H, by

Definition 1 and the properties of the Choquet integral [14], the following product
rule (that generalizes condition (iii) of Definition 1) holds

Ψ(Y 1E |H) = Ψ(1E |H) · Ψ(Y |E ∩ H).

3 Conditional Submodular Coherent Risk Measures

Let us consider a single period financial market related to the time period [0, T ],
where among the traded assets there are (infinitely divisible) default-free zero
coupon bonds with maturity T and interest rate i(0, T ). Denote with r = 1 +
i(0, T ) and r−1 the compounding and discount factors determined by the default-
free zero coupon bonds, i.e., r is the value at time T of 1 money unit at time 0,
while r−1 is the value at time 0 of 1 money unit at time T . Assume r > 0 and
Ω is finite.

In the seminal paper [2], a coherent risk measure is defined as a mapping
ρ : RΩ → R satisfying:

(i) ρ(X + αr) = ρ(X) − α, for every X ∈ R
Ω and α ∈ R;

(ii) ρ(λX) = λρ(X), for every X ∈ R
Ω and λ ≥ 0;

(iii) if X ≤ Y then ρ(X) ≥ ρ(Y ), for every X,Y ∈ R
Ω ;

(iv) ρ(X + Y ) ≤ ρ(X) + ρ(Y ), for every X,Y ∈ R
Ω .

The number ρ(X) attached to X is interpreted as the least amount that an agent
would ask at present time to bear the risk X at time T . It turns out that an
agent acts like a risk measure minimizer, since the more risky is X the higher is
the value ρ(X). In particular, a position X is desirable when ρ(X) ≤ 0, while is
not desirable otherwise.

As largely acknowledged in the literature, there is an intimate connection
between the theory of risk measures and the theory of imprecise previsions
[3,20,29]. In particular, in [11] the author introduces a class of risk mea-
sures determined by a submodular [supermodular] capacity ψ(·) [ϕ(·)] on ℘(Ω)
through the corresponding Choquet expected value Ψ(·) [Φ(·)] on R

Ω setting, for
every X ∈ R

Ω ,
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ρ(X) = Ψ(−r−1X) = −Φ(r−1X).

As in every decision problem under uncertainty, the arrival of new informa-
tion has a deep impact on risk measurement, for this a notion of conditioning for
risk measures should be introduced. Recurring to the Walley notion of condition-
ing for imprecise previsions [30], a definition of conditional risk measure has been
proposed in [23,29]. In what follows we give a definition of conditional risk mea-
sure which departs from previous proposals and allows for “null” conditioning
events.

Denote with Ψ(·|·) and Φ(·|·) the conditional Choquet expected values on
R

Ω ×H, determined by the conditional submodular and supermodular capacities
ψ(·|·) and ϕ(·|·) on ℘(Ω) × H.

Definition 3. Given r > 0, a function ρ : R
Ω × H → R is a conditional

submodular coherent risk measure if

ρ(X|H) = Ψ(−r−1X|H) = −Φ(r−1X|H).

The following proposition investigates the properties of the conditional risk
measure defined above. In particular, recall that X1,X2 ∈ R

Ω are said comono-
tonic if, for every ω, ω′ ∈ Ω, it holds

(X1(ω) − X1(ω′))(X2(ω) − X2(ω′)) ≥ 0.

Proposition 2. For every H ∈ H, it holds:

(i) ρ(·|H) is a coherent risk measure;
(ii) ρ(X1∨X2|H)+ρ(X1∧X2|H) ≤ ρ(X1|H)+ρ(X2|H), for every X1,X2 ∈ R

Ω;
(iii) ρ(X1 +X2|H) = ρ(X1|H)+ρ(X2|H), for every comonotonic X1,X2 ∈ R

Ω;
(iv) ρ(X1E |H) = (1+rρ(1Ec |H)) ·ρ(X|E ∩H), for every non-positive X ∈ R

Ω,
E ∈ ℘(Ω) and E ∩ H,H ∈ H.

Proof. The proof of (i)–(iii) follows directly by Definition 3 and the properties
of the Choquet integral [14,26]. Statement (iv) follows by the product rule for
Ψ(·|·) since Y = −r−1X is non-negative and Ψ(1E |H) = 1 + rρ(1Ec |H).

The following example describes a situation where conditional risk measures
of the type discussed above naturally arise.

Example 1. Consider an Italian insurance company interested in evaluating the
risk of premium increment in pension insurance contracts linked to the Italian
GDP, in a future time T = 1 year. Assume i(0, T ) = 2%, which implies r = 1.02.

On November 19th, 2017, the ex Prime Minister of Italy belonging to the
right party gave a campaign speech in which he mentioned a reform of the
Italian public pension system, if his coalition won the next elections. Hence, in
December 2017, the risk of premium increment in pension insurance contracts
is very influenced by uncertainty on the winning coalition of the next Italian
political elections, expected in March 2018.
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Consider the following events, which are uncertain before elections take place:

– G1 = “Italian GDP decreases in 1 year”,
– G2 = “Italian GDP has an increment ranging in 0%–0.5% in 1 year”,
– G3 = “Italian GDP increases more than 0.5% in 1 year”,
– B = “The center-right coalition wins 2018 Italian political elections and a

reform of the Italian pension system is approved in 1 year”.

The above events determine the set of states of the world Ω = {ω1, . . . , ω6},
with Gi = {ωi, ωi+3}, for i = 1, 2, 3, and B = {ω4, ω5, ω6}. Notice that, events
G1, G2, G3 form a partition of Ω. In particular, the insurance company is inter-
ested in evaluating the effect of event B, thus H = {B,Bc, Ω} is considered as
set of hypotheses.

The insurance company asks the opinion of three political observers, that
elicit a probability distribution on the set Ω. All the three experts believe that
the event B has zero probability, while they assess

G1 ∩ Bc G2 ∩ Bc G3 ∩ Bc

P 1 0.3 0.5 0.2
P 2 0.3 0.3 0.4
P 3 0.1 0.5 0.4

The class P = {P 1, P 2, P 3} of probability measures on ℘(Ω) determines the
submodular and supermodular capacities ψ0 = max P and ϕ0 = min P, whose
corresponding Möbius inverse is m0({ω3}) = m0({ωi, ωj}) = 0.2, for i �= j in
{1, 2, 3}, m0({ω1}) = 0.1, m0({ω2}) = 0.3, m0(Bc) = −0.2 and 0 otherwise.
Notice that ψ0(B) = ϕ0(B) = 0.

The complete ignorance on what would happen if the event B were true is
modelled by choosing as ψ1 and ϕ1 the pair of dual submodular and supermod-
ular capacities vacuous at B, whose corresponding Möbius inverse is such that
m1(B) = 1 and 0 otherwise.

Let us consider two contracts whose annual premium increment gives rise to
the risks

X(ω) =

⎧
⎨

⎩

e500 if ω ∈ G1,
−e300 if ω ∈ G2,
−e600 if ω ∈ G3,

and Y (ω) =

⎧
⎨

⎩

e200 if ω ∈ G1,
e200 if ω ∈ G2,
−e800 if ω ∈ G3.

After simple computations we have that

ρ(X|Bc) = e333.33, ρ(Y |Bc) = e196.08, ρ(X|B) = e588.24, ρ(Y |B) = e784.31.

This shows that, even though under both hypotheses Bc and B the two positions
are not desirable, under hypothesis Bc position Y is less risky, while under
hypothesis B position X is less risky.
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4 Consistence of a Conditional Risk Measure Assessment

The previous section has shown that, once a conditional submodular [supermod-
ular] capacity ψ(·|·) [ϕ(·|·)] on ℘(Ω) × H is fixed, the corresponding conditional
Choquet expected value Ψ(·|·) [Φ(·|·)] on R

Ω × H is completely determined and,
so, the corresponding conditional submodular coherent risk measure ρ(·|·) on
R

Ω × H, up to the choice of the compounding factor r, which is an exogenous
market parameter.

Nevertheless, in many real situations, the risk manager is only able to assess
the value of a conditional risk measure “directly” on a finite set of conditional
risks C = {Xi|Hi}i∈I ⊆ R

Ω × ℘(Ω).
Since a conditional risk measure is intended as a normative model regulating

the activity of a risk manager, given ρ : C → R, the primary issue is to determine
its consistence with a conditional risk measure of reference.

Definition 4. Given r > 0, an assessment ρ : C → R is consistent with a con-
ditional submodular coherent risk measure, if there is a conditional submodular
capacity ψ(·|·) on ℘(Ω) × H, determining the conditional functionals Ψ(·|·) and
Φ(·|·) on ℘(Ω) × H, such that, for every i ∈ I,

ρ(Xi|Hi) = Ψ(−r−1Xi|Hi) = −Φ(r−1Xi|Hi),

where H is the additive set obtained closing {Hi}i∈I under finite unions.

The following theorem provides a characterization of consistence.

Theorem 1. Given r > 0, the following statements are equivalent:

(i) the assessment ρ : C → R is consistent with a conditional submodular coher-
ent risk measure;

(ii) there exists a minimal agreeing class {ψ0, . . . , ψk} of submodular capacities
on ℘(Ω) whose Möbius inverses {m0, . . . ,mk} solve the sequence of linear
systems S0, . . . ,Sk with

Sα :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n−1∑
h=1

[(−r−1Xi)U,Hi − ρ(Xi|Hi) · (1Hi
)U,Hα

0 ](Ah)mα(Ah) = 0, ∀ i ∈ Iα,

mα({ω}) ≥ 0, ∀ω ∈ Ω,∑
{ω,ω′}⊆B⊆A

mα(B) ≥ 0,∀A ∩ Hα
0 �= ∅ and ∀ω, ω′ ∈ A,ω �= ω′,

2n−1∑
h=1

mα(Ah) = 1,
∑

B∩A �=∅
mα(B) = 0, ∀A ∩ Hα

0 = ∅,

with I0 = I, Iα = {i ∈ I : ψβ(Hi) = 0, β = 0, . . . , α − 1}, for α > 0, and
Hα

0 =
⋃

h∈Iα
Hh.
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Proof. Let H be the additive set obtained closing {Hi}i∈I with respect to finite
unions. By the bijection between conditional submodular capacities ψ(·|·) and
minimal agreeing classes {ψ0, . . . , ψk}, the assessment ρ(·|·) on C is consistent
with a conditional submodular coherent risk measure if and only if we can solve
the following sequence of systems S∗

0 , . . . ,S∗
k with

S∗
α :

⎧
⎨

⎩

c
∫

(−rXi) dψα(· ∩ Hi) − ρ(Xi|Hi) · ψα(Hi) = 0,∀ i ∈ Iα,
ψα is a submodular capacity on ℘(Ω),
ψα(A) = 0, ∀A ∩ Hα

0 = ∅,

where Iα and Hα
0 are defined as in statement (ii). Finally, by our Proposition 1,

and Proposition 1 and Corollary 2 in [7], every system S∗
α has solution if and

only if the corresponding system Sα has solution.

The previous theorem offers an operative tool to build a minimal agreeing
class by solving the sequence of systems S0, . . . ,Sk, as shown in the following
example.

Example 2. Let Ω = {ω1, ω2, ω3}, H = {ω1, ω2}, K = {ω1, ω3}, and r = 1.1. Let
X ∈ R

Ω be defined as X(ω1) = e2200, X(ω2) = −e2200 and X(ω3) = e1100,
and consider the assessment ρ(X|H) = e2000 and ρ(X|K) = −e1400. To avoid
cumbersome notation, let us denote xα

i = mα({ωi}), xα
ij = mα({ωi, ωj}), and

xα
123 = mα(Ω).

It holds that H = {H,K,Ω} and H0
0 = Ω, so, the first system in the sequence

is

S0 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−4000x0
1 − 4000x0

13 = 0,
−600x0

1 + 400x0
3 − 600x0

12 + 400x0
13 + 400x0

23 + 400x0
123 = 0,

x0
i ≥ 0, for i = 1, 2, 3,

x0
ij ≥ 0, for i, j = 1, 2, 3, i �= j,

x0
123 + x0

ij ≥ 0, for i, j = 1, 2, 3, i �= j,
x0
1 + x0

2 + x0
3 + x0

12 + x0
13 + x0

23 + x0
123 = 1,

for which a solution is x0
2 = 1 and 0 otherwise, determining the Möbius inverse

m0 and the corresponding submodular capacity ψ0.
Then, we have that H1

0 = K, so, the second system in the sequence is

S1 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−600x1
1 + 400x1

3 − 600x1
12 + 400x1

13 + 400x1
23 + 400x1

123 = 0,
x1

i ≥ 0, for i = 1, 2, 3,
x1

ij ≥ 0, for i, j = 1, 2, 3, i �= j,
x1
123 + x1

ij ≥ 0, for i, j = 1, 2, 3, i �= j,
x1
1 + x1

2 + x1
3 + x1

12 + x1
13 + x1

23 + x1
123 = 1,

x1
2 + x1

12 + x1
23 + x1

123 = 0,

for which a solution is x1
1 = 2

5 , x1
13 = 3

5 and 0 otherwise, determining the Möbius
inverse m1 and the corresponding submodular capacity ψ1.

A simple verification shows that {ψ0, ψ1} is a minimal agreeing class on ℘(Ω),
determining a conditional submodular capacity ψ(·|·) on ℘(Ω)×H such that the
corresponding conditional Choquet expected value Ψ(·|·) on R

Ω × H satisfies

ρ(X|H) = Ψ(−r−1X|H) and ρ(X|K) = Ψ(−r−1X|K).
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5 Conclusions

By considering a single period financial market we introduce a specific family of
conditional coherent risk measures, obtained through the Choquet integral with
respect to a conditional submodular capacity. We further deal with the problem
of consistence with a conditional submodular coherent risk measure by providing
a characterization in terms of solvability of a suitable sequence of linear systems.

The introduced conditional risk measures are based on an axiomatic defini-
tion of conditioning for submodular capacities, however, since different notions
of conditioning can be chosen, a future aim is to make a comparison of the result-
ing properties of the conditional risk measures by varying the adopted notion of
conditioning (also referring to results in [20,21,23,29]).

Another aspect to address is the extension of the present model in the mul-
tiperiod setting that should also take into account the uncertainty on the time
value of money. This requires to consider entire cash flow processes rather than
total amounts at terminal dates as risky objects. In this extension the properties
of time consistence should be considered and compared with the other existing
in literature (see, e.g., [1,4,16,25]).
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Abstract. Hahn’s celebrated embedding theorem asserts that linearly
ordered Abelian groups embed in the lexicographic product of real groups
[13]. In this paper the partial-lexicographic product construction is intro-
duced, a class of residuated monoids, namely, group-like FLe-chains
which possess finitely many idempotents are embedded into finite partial-
lexicographic products of linearly ordered Abelian groups, that is, Hahn’s
theorem is extended to this residuated monoid class. As a side-result, the
finite strong standard completeness of the logic IULfp is announced.
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1 Introduction and Preliminaries

Hahn’s structure theorem states that linearly ordered Abelian groups can be
embedded in the lexicographic product of real groups [13]. Conrad, Harvey, and
Holland generalized Hahn’s theorem for lattice-ordered Abelian groups [10]. We
extend Hahn’s theorem to a class of linearly ordered, commutative residuated
monoids. The price for not having inverses will be that the embedding is done
into partial-lexicographic products, to be introduced in this paper, and not into
lexicographic ones. Very surprisingly, even in our residuated monoid setting,
real groups1 occasionally equipped with a top element, or both with a top and
a bottom element serve as basic building blocks.

Ward and Dilworth introduced residuated lattices in the 30’s of the last cen-
tury to investigate ideal theory of commutative rings with unit [28]. Examples
of residuated lattices include Boolean algebras, Heyting algebras [24], comple-
mented semigroups [6], bricks [4], residuation groupoids [7], semiclans [5], Bezout
monoids [3], BL-algebras [14], MV-algebras [8], lattice-ordered groups; several
other algebraic structures can be rendered as residuated lattices.
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1 Real groups are very specific in the class of residuated lattices.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 854, pp. 253–264, 2018.
https://doi.org/10.1007/978-3-319-91476-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91476-3_21&domain=pdf


254 S. Jenei

Residuated lattices2 are algebraic models of substructural logics [12]. Such
logics are meant to be logics, which, when formulated as Gentzen-style sys-
tems, lack some of the traditional trio of structural rules, namely: contraction,
weakening, or exchange. In residuated lattices the monoidal operation is not nec-
essarily commutative, and the maximum (if exists) may differ from the unit of
the monoid. Residuated lattices with an additional constant in their signature
are called FL-algebras3. FL-algebras are algebraic models of the Full Lambek
calculus FL, hence their name. By adding the commutativity of the monoid, we
obtain the algebraic models of FLe (Full Lambek calculus with exchange), that
is, the exchange rule corresponds to commutativity. For example, the integrality
of the monoid4 corresponds to the weakening rule; thus, integral commutative
residuated lattices5 are the algebraic models of FLew (Full Lambek calculus
with exchange and weakening).

The notion of residuated lattices is of huge generality, and establishing a
structure theorem or a classification requires further assumptions. Hölder’s the-
orem, which states the embeddability of Archimedean, naturally and linearly
ordered semigroups into the additive semigroup of the real numbers, is a precur-
sor in this topic [16]. Aczél did not assume isotonicity of the semigroup operation
but assumed the universe to be an interval of real numbers and also found in [1,
page 256] that the cancellative property6 is sufficient and necessary for the exis-
tence of an order-isomorphism to a subsemigroup of the additive semigroup of the
real numbers [1, page 268]. Clifford’s contribution [9] asserts that Archimedean,
naturally and linearly ordered semigroups in which the cancellation law does not
hold embedded into either the real numbers in the interval [0, 1] with the usual
ordering and ab = max(a + b, 1) or the real numbers in the interval [0, 1] and
the symbol ∞ with the usual ordering and ab = a + b if a + b ≤ 1 and ab = ∞
if a + b > 1 (see also [11, Theorem 2 in Sect. 2 of Chapter XI]). Clifford also
showed that by dropping the Archimedean property, every naturally and linearly
ordered, commutative semigroup is uniquely expressible by his ordinal sum con-
struction as a linearly ordered set of ordinally irreducible semigroups of this
kind. Mostert and Shields have dropped the linear order assumption and gave
a complete description of topological semigroups over compact manifolds with
connected, regular boundary in [26] by using a subclass of compact connected Lie
groups and via classifying semigroups on arcs such that one endpoint is an iden-
tity for the semigroup, and the other is a zero. They classified such semigroups as
ordinal sums7 of three basic multiplications which an arc may possess. The word
‘topological’, refers to the continuity of the semigroup operation with respect to
the topology. In the next related classification result, the property of topological
2 In the more general modern terminology.
3 FL-algebras are also called pointed residuated lattices or pointed residuated lattice-

ordered monoids.
4 Integrality means that the unit element of the multiplication is the greatest element

of the underlying universe.
5 Also called FLew-algebras.
6 He called it reducible.
7 In the sense of Clifford.
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connectedness of the underlying universe was dropped whereas the continuity
condition was somewhat strengthened: Under the assumption of divisibility8,
residuated chains were classified as ordinal sums9 of linearly ordered Wajsberg
hoops [2]. Postulating the divisibility condition proved to be sufficient for the
classification of commutative, integral, prelinear residuated monoids over arbi-
trary lattices, see [23], where the authors introduced the notion of poset sum10

of hoops and proved that commutative11 GBL-algebras embed into the poset
sum of a family of MV-chains, thus extending the Conrad-Harvey-Holland the-
orem to commutative GBL-algebras. A structural representation of absorbent-
continuous12, group-like FLe-algebras over complete and weakly real chains13

has been given in [21,22].
The class of FLew-chains is of huge generality. For example, every commu-

tative integral monoid on a finite chain belongs to this class, and commutative
integral monoids on finite chains seem to be very far from being described struc-
turally in a satisfactory manner. It has been shown in [20, Theorem 3.1] that
any FLew-chain embeds into a densely-ordered FLew-chain14. Further, by [18,
Theorem 3], any densely-ordered FLew-chain embeds into a densely-ordered,
involutive FLew-chain. These suggest that the classification of densely-ordered,
involutive FLew-chains is of the same difficulty as the classification of commuta-
tive integral monoids on finite chains; a hopeless task at present. Therefore, it is
very surprising that when considering the even more general class of involutive
FLe-chains (without w and the densely-ordered assumption), the additionally
postulated t = f condition with the assumption on the number of idempotent
elements results in such a strong structural description, which uses only linearly
ordered Abelian groups (Theorem 3).

The naturally ordered15 condition has been assumed in all previous results.
Non-integral residuated structures, and consequently, substructural logics with-
out the weakening rule, are far less understood at present. Our study concerns
group-like FLe-chains; a contribution to non-integral residuated structures with-
out postulating the naturally ordered condition.

Group-like FLe-chains are linearly ordered, involutive, commutative, resid-
uated lattices such that the unit of the monoidal operation coincides with the
constant which defines the involution (see Definition 1). The latest postulate
forces the structure to resemble linearly ordered Abelian groups in several ways:

8 Divisibility is the dual notion of being naturally ordered. For residuated integral
monoids, divisibility is equivalent to the continuity of the semigroup operation in
the order topology provided that the underlying chain is densely-ordered.

9 In the sense of Aglianò-Montagna.
10 A common generalization of ordinal sums and direct products.
11 It was proved for a wider class of algebras.
12 Absorbent continuity is a weakened version of the naturally ordered property.
13 Weakly real chains are densely-ordered chains with two additional properties.
14 A stronger statement was proved there for at most countable algebras. However, the

part of the proof, which is about the densification step does not use this assumption.
15 Or its dual notion, divisibility.
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Firstly, like lattice-ordered Abelian groups, if an involutive FLe-algebra is
conic16 then the monoidal operation of it can be recovered from its restrictions
to the positive and negative cones of the algebra, and more importantly, for
complete, densely-ordered, group-like FLe-chains the monoidal operation can be
recovered from its restriction solely to its positive cone (see [19, Theorem 1]).

Secondly, as we shall claim in Theorem 1, group-like FLe-chains can be char-
acterized as generalizations of linearly ordered Abelian groups, roughly, by just
weakening their cancellative property.

Thirdly, in quest for establishing a structural description for group-like FLe-
chains, similar to that of Hahn’s, two variants of the so-called partial-lexico-
graphic product construction (Definition 4, Theorem 2) along with two related
decompositions (Lemma 2) will be introduced. Using them, the structure of
group-like FLe-chains with finitely many idempotents can be described by iterat-
ing finitely many times the type I and type II variants of the partial-lexicographic
product construction: Each group-like FLe-chain which possesses finitely many
idempotents can be embedded into such a finite partial-lexicographic product of
linearly ordered Abelian groups (Theorem 3). A corollary of this representation
theorem is the extension of the embedding theorem of linearly ordered Abelian
groups by Hahn to group-like FLe-chains with finitely many idempotents, see
Corollary 1. Another side-result is the finite strong standard completeness of the
logic IULfp, see Corollary 3.

Definition 1. An FLe-algebra is a structure (X,∧,∨, ∗◦,→∗◦, t, f) such that
(X,∧,∨) is a lattice17, (X,≤, ∗◦, t) is a commutative, residuated18 monoid19,
and f is an arbitrary constant. One defines x′ = x→∗◦ f and calls an FLe-algebra
involutive if (x′)′ = x holds. We call an FLe-algebra group-like if it is involutive
and t = f .20 Denote its positive cone by X+.

2 Results

In our investigations a crucial role will be played by the τ function.

Definition 2. (τ) For an involutive FLe-algebra (X,∧,∨, ∗◦,→∗◦, t, f), for x ∈
X, define τ(x) to be the greatest element of Stabx = {u ∈ X | u ∗◦ x = x}. Since

16 That is, all elements are comparable with the unit element of the monoidal operation.
17 Sometimes the lattice operators are replaced by their induced ordering ≤ in the

signature, in particular, if an FLe-chain is considered, that is, if the ordering is
linear.

18 That is, there exists a binary operation →∗◦ such that x ∗◦ y ≤ z if and only if
x→∗◦ z ≥ y; this equivalence is called residuation condition or adjointness condition,
(∗◦,→∗◦) is called an adjoint pair. Equivalently, for any x, z, the set {v | x∗◦v ≤ z} has
its greatest element, and x→∗◦z is defined as this element: x→∗◦z := max{v | x∗◦v ≤ z}.

19 We use the word monoid to mean semigroup with unit element.
20 Lattice-ordered Abelian groups equipped with x →∗◦ y := y ∗◦ x−1 and f := t are

group-like FLe-algebras.
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t is the unit element of ∗◦, Stabx is nonempty. Since ∗◦ is residuated, the greatest
element of Stabx exists, and it holds true that

τ(x) ∗◦ x = x and τ(x) = x →∗◦ x ≥ t. (1)

Lemma 1. (τ-lemma). Let (X,∧,∨, ∗◦,→∗◦, t, f) be a group-like FLe-chain.

1. The τ value of any expression equals the maximum of the τ -values of its
variables21.

2.1 Group-Like FLe-algebras Vs. Partially Ordered Abelian Groups

The notion of group-like FLe-algebras is defined with respect to the very general
notion of residuated lattices by adding further postulates (such as commutativity,
an extra constant f , involutivity, and the t = f property). The following theorem
relates group-like FLe-algebras to (in the setting of residuated lattices, very
specific) lattice-ordered Abelian groups, thus picturing their precise interrelation.
In addition, Theorem 1 is also used in the basic step of the induction in the proof
of Theorem 3.

Theorem 1. For a group-like FLe-algebra (X,∧,∨, ∗◦,→∗◦, t, f) the following
statements are equivalent:

1. Each element of X has inverse given by x−1 = x′, and hence (X,∧,∨, ∗◦, t) is
a lattice-ordered Abelian group,

2. ∗◦ is cancellative,
3. τ(x) = t for all x ∈ X.
4. The only idempotent element in the positive cone of X is t.

2.2 Construction of Involutive FLe-algebras

We start with a notation.

Definition 3. Let (X,≤) be a chain (a linearly ordered set). For x ∈ X define

x↓ =

⎧
⎪⎪⎨

⎪⎪⎩

z if there exists X � z < x such that there is no element in X
between z and x,

x if for any X � z < x there exists v ∈ X such that z < v < x
holds.

We define x↑ dually.

We introduce a construction, called partial-lexicographic product with three
slightly different variations in Definition 4. Roughly, only a subalgebra is used
as a first component of a lexicographic product and the rest of the algebra
is left unchanged (hence the adjective ‘partial’). This results in an involutive
FLe-algebra, which is group-like provided that the second component of the lex-
icographic product is so, see Theorem 2. The type 0 construction is of technical
nature, type I and type II constructions will play a key role in Theorem 3.
Let Γ denote the lexicographic product.
21 We set max(∅) = t.



258 S. Jenei

Definition 4. Let X = (X,∧X ,∨X , ∗,→∗, tX , fX) be a group-like FLe-algebra
and Y = (Y,∧Y ,∨Y , �,→�, tY , fY ) be an involutive FLe-algebra, with residual
complement ′∗ and ′� , respectively.

(0) Add a new element ⊥ to Y as a bottom element, and extend � by ⊥ � y =
y � ⊥ = ⊥ for y ∈ Y ∪ {⊥}.
Let X1 = (X1,∧X ,∨X , ∗,→∗, tX , fX) be a prime22, cancellative subalgebra
of X (in the sense of Theorem 1, it is a linearly ordered group)23. We define

XΓ(X1,Y) =
(
XΓ (X1,Y ),≤, ∗◦,→∗◦, (tX , tY ), (fX , fY )

)
,

where
XΓ (X1,Y ) = (X1 × Y ) ∪ ((X \ X1) × {⊥}) ,

≤ is the restriction of the lexicographical order of ≤X and ≤Y ∪{⊥} to
XΓ (X1,Y ), ∗◦ is defined coordinatewise, and the operation →∗◦ is given by

(x1, y1) →∗◦ (x2, y2) = ((x1, y1) ∗◦ (x2, y2)′)′,

where

(x, y)′ =

{
(x′∗ , y′� ) if x ∈ X1

(x′∗ ,⊥) if x �∈ X1

.

Call XΓ(X1,Y) the (type 0) partial-lexicographic product of X, X1, and Y .
1. Add a new element � to Y as a top element, and extend � by � � y = y � � =

� for y ∈ Y ∪ {�}, then add a new element ⊥ to Y ∪ {�} as a bottom
element, and extend ′� by ⊥′� = �, �′� = ⊥ and � by ⊥ � y = y � ⊥ = ⊥ for
y ∈ Y ∪ {�,⊥}.
Let X1 = (X1,∧X ,∨X , ∗,→∗, tX , fX) be a cancellative subalgebra of X (in
the sense of Theorem 1, it is a linearly ordered group). We define

XΓ(X1,Y�⊥) =
(
XΓ (X1,Y �⊥),≤, ∗◦,→∗◦, (tX , tY ), (fX , fY )

)
,

where

XΓ (X1,Y �⊥) = (X1 × (Y ∪ {�,⊥})) ∪ ((X \ X1) × {⊥}) ,

≤ is the restriction of the lexicographical order of ≤X and ≤Y ∪{
,⊥} to
XΓ (X1,Y �⊥), ∗◦ is defined coordinatewise, and the operation →∗◦ is given by

(x1, y1) →∗◦ (x2, y2) = ((x1, y1) ∗◦ (x2, y2)′)′,

where

(x, y)′ =

{
(x′∗ , y′� ) if x ∈ X1

(x′∗ ,⊥) if x �∈ X1

.

Call XΓ(X1,Y�⊥) the (type I) partial-lexicographic product of X,X1, and Y .

22 We mean that (X \ X1) ∗ (X \ X1) ⊆ X \ X1 holds.
23 We remark that the only choice for X1 is Xτ=t, see Definition 5.
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2. Add a new element � to Y as a top element, and extend � by � � y = y � � =
� for y ∈ Y ∪ {�}.
Let X1 = (X1,∧,∨, ∗,→∗, tX , fX) be a linearly ordered, discretely
embedded24, prime, cancellative subalgebra of X (in the sense of Theorem 1,
it is a discrete linearly ordered group)25.
We define

XΓ(X1,Y�) =
(
XΓ (X1,Y �),≤, ∗◦,→∗◦, (tX , tY ), (fX , fY )

)
,

where
XΓ (X1,Y �) = (X1 × (Y ∪ {�})) ∪ ((X \ X1) × {�}) ,

≤ is the restriction of the lexicographical order of ≤X and ≤Y ∪{
} to
XΓ (X1,Y �), ∗◦ is defined coordinatewise, and the operation →∗◦ is given by

(x1, y1) →∗◦ (x2, y2) = ((x1, y1) ∗◦ (x2, y2)′)′,

where

(x, y)′ =

⎧
⎪⎨

⎪⎩

((x′∗ ),�) if x �∈ X1 and y = �
(x′∗ , y′� ) if x ∈ X1 and y ∈ Y

((x′∗ )↓,�) if x ∈ X1 and y = �
. (2)

Call XΓ(X1,Y�) the (type II) partial-lexicographic product of X,X1, and Y .

Theorem 2. XΓ(X1,Y), XΓ(X1,Y�⊥), and XΓ(X1,Y�) are involutive FLe-
algebras with the same rank26 as that of Y. In particular, if Y is group-like
then so are XΓ(X1,Y), XΓ(X1,Y�⊥), and XΓ(X1,Y�).

2.3 Decomposition of Group-Like FLe-algebras

We introduce two decompositions of group-like FLe-chains in Lemma 2 under
the assumption that there exists the second smallest idempotent of the positive
cone of the algebra. The decompositions are the ‘inverse operations’ of the type
I and type II constructions of the previous section. We ‘isolate’ a homomorphic
image of a subalgebra in the decompositions, which is always a linearly ordered
Abelian group. When we ‘factorize’ only this subalgebra and leave the rest of the
original algebra unchanged, for the ‘remaining’ algebra it holds true that its set
of positive idempotents is order-isomorphic to the set of positive idempotents of
the original algebra deprived of its least element. In addition, the original algebra
can be reconstructed as a partial lexicographic product using these components.

24 We mean that for x ∈ X1, it holds true that x /∈ {x↑, x↓} ⊂ X1 (↓ and ↑ are
computed in X).

25 Just like at item (0), the only choice for X1 is Xτ=t, provided that it is discrete, see
Definition 5.

26 The rank of an involutive FLe-algebra is positive if t > f , negative if t < f , and 0 if
t = f .
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Definition 5. For a group-like FLe-chain (X,∧,∨, ∗◦,→∗◦, t, f), for u ≥ t and
◦ ∈ {<,=,≥} denote

Xτ ◦ u = {x ∈ X : τ(x) ◦ u}.

Proposition 1. Let X = (X,≤, ∗◦,→∗◦, t, f) be a group-like FLe-chain. Let u ≥ t
be idempotent. Then Xτ<u ∪ {t}, Xτ=u ∪ {t}, Xτ≥u ∪ {t} are nonempty subuni-
verses.

The respective subalgebras of X will be denoted by Xτ<u, Xτ=u, and Xτ≥u.

Definition 6. Let X = (X,≤, ∗◦,→∗◦, t, f) be a group-like FLe-chain such that
there exists u, the smallest idempotent strictly above t. For x ∈ Xτ<u let

�[x] =
{∨

z∈[x] z in case u �= t↑
x↑ in case u = t↑

and ⊥[x] =
{∧

z∈[x] z in case u �= t↑
x↓ in case u = t↑

.

Denote

XT
τ≥u = {�[v] | v ∈ Xτ<u},

XGap1
τ≥u = {x ∈ Xτ≥u | x↓ < x, x ∗◦ u′ = x↓}.

– Let

XG
[τ≥u] = {{x, x↓} | x ∈ XGap1

τ≥u },

XE
[τ≥u] = {{�[v],⊥[v]} | v ∈ Xτ<u},

XEG
[τ≥u] = XE

[τ≥u] ∪ XG
[τ≥u].

For x ∈ Xτ≥u, let

[x] =
{

p if x ∈ p ∈ XEG
[τ≥u]

{x} otherwise
,

X[τ≥u] = {[x] | x ∈ Xτ≥u}.

Letting x ∈ p and y ∈ q, over X[τ≥u] define

p ≤1 q iff x ≤ y,

p ∗◦1 q = [x ∗◦ y], (3)

p →∗◦1 q = [x →∗◦ y] (4)

p′∗◦1

= [x′], (5)

– Let

XTG
τ≥u = XT

τ≥u ∪ XGap1
τ≥u
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and over XTG
τ≥u define

′◦ : z �→ (z↓)′,

where for x ∈ Xτ≥u,

x↓ =

⎧
⎪⎪⎨

⎪⎪⎩

z if there exists Xτ≥u � z < x such that there is
no element in Xτ≥u between z and x,

x if for any Xτ≥u � z < x there exists v ∈ Xτ≥u

such that z < v < x holds.

Clearly,

x↓ =
{

x↓ if x ∈ Xτ≥u \ XT
τ≥u

⊥[v] if x = �[v] ∈ XT
τ≥u

.

Define x↑ dually.

Lemma 2 constitutes the tool to manage the induction step in Theorem 3, the
main theorem of the paper.

Lemma 2. (Decompositions). Let X = (X,≤, ∗◦,→∗◦, t, f) be a group-like
FLe-chain such that there exists u, the smallest idempotent above t and u �= t↑.

1. Assume that u′ is idempotent.
(a) XEG

[τ≥u] = (XEG
[τ≥u],≤1, ∗◦1, [u]) is a linearly ordered Abelian group with

inverse operation ′� , and
XE

[τ≥u] = (XE
[τ≥u],≤1, ∗◦1, [u]) is its subgroup.

(b) X[τ≥u] = (X[τ≥u],≤∗◦1 , ∗◦1,→∗◦1 , [u], [u]) is a group-like FLe-chain with
involution ′� and
XEG

[τ≥u] (qua group-like FLe-chain) is a cancellative subalgebra of it. The
set of positive idempotents of X[τ≥u] is order-isomorphic to the set of
positive idempotents of X deprived of u.

(c) X embeds into (X[τ≥u])Γ(XEG
[τ≥u],[t][τ<u]

�⊥).
2. Assume that u′ is not idempotent.

(a) XTG
τ≥u = (XTG

τ≥u,≤, ∗◦, u) is a linearly and discretely embedded Abelian
group with inverse operation ′◦ , and XT

τ≥u = (XT
τ≥u,≤, ∗◦, u) is its sub-

group.
(b) XTG

τ≥u (qua group-like FLe-chain) is a cancellative, discrete, prime subal-
gebra of the group-like FLe-chain Xτ≥u. The set of positive idempotents of
Xτ≥u is order-isomorphic to the set of positive idempotents of X deprived
of t.

(c) X embeds into (Xτ≥u)Γ(XT G
τ≥u,[t][τ<u]

�).

The following theorem, the main theorem of the paper, asserts that any
group-like FLe-chain which has finitely many idempotents is a subalgebra of a
group-like FLe-chain, which is built by iterating finitely many times the type
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I and the type II partial-lexicographic product constructions of Definition 4
using only linearly ordered Abelian groups, as building blocks. Hahn’s embedding
theorem states that linearly ordered Abelian groups can be embedded in the
lexicographic product of real groups. We assert in Corollary 1 that group-like
FLe-chains with a finite number of idempotents can be embedded in the partial-
lexicographic product of linearly ordered groups.

Theorem 3. If X is a group-like FLe-chain, which has only n ∈ N idempotents
in its positive cone then there exist linearly ordered Abelian groups Gi (i ∈
{1, 2, . . . , n}), H1 ≤ G1, Hi ≤ Γ(Hi−1,Gi) (i ∈ {2, . . . , n − 1}), and a binary
sequence ι ∈ {�⊥,�}{2,...,n} such that X embeds into Xn, where X1 := G1 and
Xi := Xi−1Γ(Hi−1,Gi

ιi ) (i ∈ {2, . . . , n}).27

Definition 7. We say that a group-like FLe-chain X is represented as a finite
partial-lexicographic product (of linearly ordered Abelian groups G1 . . . ,Gn),
if X arises via finitely many iterations of the type I and type II constructions
using the linearly ordered Abelian groups G1 . . . ,Gn in the way it is described
in Theorem 3. Note that linearly ordered Abelian groups are exactly the inde-
composable algebras with respect to the type I and type II partial-lexicographic
product constructions.

Using the terminology above, we may rephrase Theorem 3: Every group-like
FLe-chain, which has only finitely many idempotents in its positive cone embeds
into a finite partial-lexicographic product of linearly ordered Abelian groups.
By Hahn’s embedding theorem, every linearly ordered Abelian group can be
embedded in the lexicographic product of real groups. Therefore, it follows that

Corollary 1 (Hahn-type embedding). Group-like FLe-chains with a finite
number of idempotents embed in the finite partial-lexicographic product of lexi-
cographic products of real groups.

We remark that lexicographic products can be used instead of partial-
lexicographic products if the less ambitious goal of embedding only the monoidal
reduct is aimed at. By observing that as a monoid, XΓ(X1,Y�) embeds into
XΓ(X1,Y�⊥), which, in turn, embeds into Γ(X
⊥,Y
⊥), one obtains the follow-
ing.

Corollary 2 (Lexicographical embedding of the monoid reduct). The
monoid reduct of any group-like FLe-chain with a finite number of idempotents
embeds in the lexicographic product of the ‘extended’ additive group of the reals28.

An immediate consequence of Lemma 1 is.

Proposition 2. Any finitely generated group-like FLe-chain has only a finite
number of idempotents.
27 In the spirit of Theorem 1 we identify linearly ordered Abelian groups by cancellative,

group-like FLe-chains here.
28 R extended by  and ⊥, just like Y in item (1) of Definition 4.
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The logic IUL was introduced in [25]. Its standard completeness has been left as
an open problem. Based on Theorem 3 and Proposition 2 we are able to prove
the strong standard completeness of a somewhat simpler logic IULfp, which is
defined as the logic IUL extended by the axiom t ⇔ f .

By relying on Proposition 2 and Theorem 3, we can prove.

Corollary 3. The logic IULfp is finitely strongly standard complete.
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Abstract. In this paper we provide a characterization of strict coher-
ence in terms of the logical consistency of suitably defined formulas in
fuzzy-modal logics for probabilistic reasoning. As a direct consequence
of our characterization, we also show the decidability for the problem of
checking the strict coherence of rational-valued books on classical events.
Further, we introduce a fuzzy modal logic that captures Carnap-regular
probability functions, that is normalized and finitely additive measures
which maps to 0 only the impossible event.

Keywords: Modal logics · Probabilistic logics · Fuzzy logics
Strict coherence · Decidability · Carnap-regular measures

1 Introduction and Motivation

Modal expansions of �Lukasiewicz propositional fuzzy logics for probabilistic rea-
soning have been firstly introduced in 1995 by Hájek et al. [11] and then further
generalized and extended (see [7] for an overview). The very basic idea which
lies at the ground of a fuzzy-modal approach to uncertainty (and probability in
particular) is to consider formulas of the form U(ϕ) to be read “the formula ϕ
is uncertain” and provide axioms for U in such a way that the truth-degree of
the modal formula U(ϕ) becomes the uncertain degree of ϕ. Specific axioms for
the modality U can be provided so as to cope with the peculiar measure we are
interested in. Thus, for instance, U can be axiomatized to behave as a probability
function by imposing normalization and finite additivity [11,12], but alternative
axiomatizations capturing more general uncertainty measures are also feasible
[7]. We shall recall the basic notions and results about fuzzy-modal logics for
probability in the following Sect. 2.

Besides their intrinsic theoretical interest, fuzzy probabilistic modal logics
have been successfully employed in the last years to provide a purely logical
characterization of de Finetti’s foundation of subjective probability theory (see
for instance [5,9]). Let us recall that given a finite set E = {ϕ1, . . . , ϕn} of
events (i.e., formulas of classical propositional logic) a book β is a map from
c© Springer International Publishing AG, part of Springer Nature 2018
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E to the real unit interval [0, 1]. The value that a book assigns to any event,
can hence be regarded as the selling price that a bookmaker decides and that a
gambler accepts to pay in order to participate in a precisely defined game (see
[3,6] for further details) where the events ϕi’s are uncertain and in which, when
the uncertainty about the events is resolved by a possible world w, the gambler
wins, on each event ϕi, 1 provided that ϕi holds in w, or 0 otherwise. Thus, a
book is said to be coherent if there is no strategy which the gambler can perform
in order to make the bookmaker incur in a sure loss, i.e., a loss in every possible
world.

Formally, let E = {ϕ1, . . . , ϕn} be a finite set of events (i.e., formulas of
classical propositional logic) and let β : E → [0, 1] be a book. Then β is coherent
if for every choice of positive or negative stakes σ1, . . . , σn ∈ R, there exists a
classical valuation w : E → {0, 1} such that the balance of the game in w is not
negative, i.e.,

n∑

i=1

σi(βi − w(ϕi)) ≥ 0.

The celebrated de Finetti theorem states that a book is coherent if and only
if there exists a probability function on the algebra BE spanned by the events
in E which extends the book β [3].

De Finetti’s coherence guards bookmakers against the possibility of sure
loss by simultaneously barring them from what they should reasonably aim to,
namely making profit. The condition of strict coherence has been put forward
as a natural reaction to this rather odd feature [8,15,17]. Indeed, a book β is
strictly coherent if every possibility of loss is paired with a possibility of gain.
The following example aims at clarifying the difference between coherence and
strict coherence.

Example 1. Consider the usual coin tossing game in which events are h, “the
coin lands head” and t, “the coin lands tail”, together with the following books
β1 and β2:

1. β1(h) = 1, β1(t) = 0,
2. β2(h) = 1/3, β2(t) = 2/3.

It is easy to check that both β1 and β2 are coherent. Indeed, modulo de Finetti’s
theorem, one can easily find two probability measures μ1 and μ2 on B{h,t} such
that μi extends βi. The notable difference between β1 and β2 can be observed
by computing the balance for the corresponding games. Imagine in fact that
gambler’s stakes for h and t are, respectively, σh and σt for both β1 and β2.
Thus, given a valuation v : {h, t} → {0, 1}, the total balance for β1 is1

B1 = σh(1 − v(h)) + σt(0 − v(t)) = v(t)(σh − σt),

while for β2, the balance equals
1 In the computation we used the fact that h = ¬t, whence 1 − v(h) = v(¬h) = v(t).
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B2 = σh(1/3 − v(h)) + σt(2/3 − v(t)).

Now, although the bookmaker will never incur in a sure loss, the gambler has a
betting strategy on β1 (for instance σh = 0 and σt = −1) which makes B1 < 0
if v(t) = 1 and B1 = 0 if v(t) = 0 (and hence v(h) = 1). Vice versa, for every
betting strategy σh, σt on β2 if the valuation v mapping h �→ 0 and t �→ 1,
B2 < 0, then the other one v′ = 1 − v makes B2 > 0. Therefore, β2 is strictly
coherent.

The following result strengths de Finetti’s theorem to the specific case of
strictly coherent books in terms of Carnap-regular probability functions, i.e.,
those normalized and finitely additive maps μ from Boolean algebras to the real
unit interval [0, 1] which further satisfy the following quasi-equation: if μ(ϕ) = 0,
then ϕ = ⊥. In other words, the only event which a Carnap-regular probability
function maps to 0 is the impossible event.

Theorem 1 ([8]). Let E = {ϕ1, . . . , ϕn} be a finite set of classical formulas
and let β : E → [0, 1] be a book. Then β is strictly coherent iff there exists a
Carnap-regular probability function μ : BE → [0, 1] such that μ(ϕi) = β(ϕi).

Recall that if B is a finite Boolean algebra with atoms α1, . . . , αm, then a prob-
ability function μ is Carnap-regular iff μ(αi) > 0 for all j = 1, . . . ,m.

In this paper we provide a logical characterization of rational-valued and
strictly coherent books in terms of the satisfiability of a modal formula of a
fuzzy modal probabilistic logic. Further, we introduce a modal fuzzy logic that
captures, on the semantics side, all Carnap-regular probability measures on finite
Boolean algebras. As a consequence of the logical characterization of strict coher-
ence, we obtain the decidability for the problem of checking the strict coherence
for a rational-valued book on classical events.

This paper is organized as follows: In the next section we will recall the basics
of fuzzy modal logics for probabilistic reasoning and we will show that the main
formalisms we shall use in this paper does not enjoy single model completeness
property, that is, the is not a single model with respect to which our modal
fuzzy logic is complete. In Sect. 3 we prove a first logical characterization for
strict coherence. In the same section we will also show that it can be decided if a
rational-valued book is strictly coherent or not. Section 4 is devoted to axiomatize
a fuzzy modal logic for Carnap-regular probability functions and we will further
exhibit a second characterization for strictly coherent books. We end this short
paper with Sect. 5 where we will discuss our future work on the present subject.

2 Preliminaries

Let us start this section by recalling some logical preliminaries about the logic
FP (C, �L) [11] and some of its expansions. We assume the reader to be familiar
with propositional �Lukasiewicz logic, �L. Otherwise, we suggest to consult [2,4,
12,16].
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Syntax. The syntax of FP (C, �L) comprises a countable (finite or infinite) set
of propositional variables V ar = {p1, p2, . . .}, connectives ∧,∨,¬,⊥ of classi-
cal logic C and ⊕,¬,⊥ of �Lukasiewicz language, plus the unary modality P .
Formulas belong to two classes:

(EF): The class of formulas from C. They are inductively defined as usual, and
will be used to denote events. The class of those formulas will be denoted by
E (for events).

(MF): The class of modal formulas is defined inductively: for every formula
ϕ ∈ E, Pϕ is an atomic modal formula, ⊥ is also an atomic modal formula.
Compound formulas are defined from the atomic ones and using the con-
nectives of �L. We will denote by MF the class of modal formulas. Note that
connectives appearing in the scope of the modal operator P are from classical
logic language, while those outside are from propositional �Lukasiewicz logic
�L.

Remark 1. As argued in [7] �Lukasiewicz logic (�L in symbols) can be regarded as
the minimal propositional framework which allows to properly axiomatize the
modality P as a probability function. This fact is witnessed by the presence,
in �L, of the binary connective ⊕ which behaves, on [0, 1], as a truncated sum:
x ⊕ y = min{1, x + y}. Thus, by ⊕ we can write an axiom (axiom (P3) below)
which ensures P to be additive.

Semantics. The semantics for FP (C, �L) is constituted by a set of measured
Kripke frames. Those are triples of the form M = (W, e, μ) where W is a
nonempty set of possible worlds, e : V ar × W → {0, 1} is such that, for every
w ∈ W , e(·, w) → {0, 1} is a classical valuation, and μ is a finitely additive
probability function defined on the Boolean algebra BW of μ-measurable sets of
the form {fϕ : w ∈ W �→ e(ϕ,w) ∈ {0, 1} | ϕ ∈ E}.

Given a formula φ of FP (C, �L), a measured Kripke frame M = (W, e, μ) and
a world w ∈ W , the truth-value of φ in M at w (denoted ‖φ‖M,w) is inductively
defined as follows:

– If φ ∈ E, ‖φ‖M,e = e(w, φ);
– If φ = Pϕ, then ‖Pϕ‖M,w = μ(fϕ);
– If φ is a compound modal formula, ‖φ‖M,w is computed by truth-functionality

from its atomic modal subformulas and using the truth-functions of �Lukasie-
wicz connectives.

Notice that, if Φ is modal, its truth-value in a measured Kripke frame M is
independent of the chosen world w. Hence we will denote it by ‖Φ‖M without
danger of confusion.

We shall henceforth say that a measured Kripke frame M models a modal
formula Φ (and we write M |= Φ), if ‖Φ‖M = 1. If Γ is a set of modal formulas,
M |= Γ means that M |= γ for all γ ∈ Γ .

A measured Kripke frame M = (W, e, μ) is said to be rational-valued (or
Q-valued for short) if μ takes value in the rational unit interval [0, 1] ∩ Q.
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2.1 A Complete Axiomatization for Fuzzy Probabilistic Logics

In this section we will recall basic notions and results about the fuzzy modal
logic FP (C, �L), its semantics and expansions.

Definition 1. The logic FP (C, �L) is axiomatized by the following axioms and
rules:

(C) All axioms and rules of classical propositional logic restricted to formulas
in E.

(�L) All axioms and rules of �Lukasiewicz propositional logic restricted to formu-
las in MF.

(P) The following axioms for the modality P:
(P1) ¬P⊥,
(P2) P (¬ϕ) ↔ ¬Pϕ,
(P3) P (ϕ ∨ ψ) ↔ [(P (ϕ) → P (ϕ ∧ ψ)) → P (ψ)].

(N) The necessitation rule for P: ϕ  P (ϕ).

The notion of proof in FP (C, �L) is defined as usual. Given a set of modal formulas
Γ and a modal formula Φ, we shall henceforth write Γ  Φ to denote that Φ is
provable from Γ in FP (C, �L).

Theorem 2 ([11]). The logic FP (C, �L) is sound and complete with respect to
the class of measured Kripke frames. In particular, for every finite set of modal
formulas Γ ∪ {Φ}, Γ  Φ if and only if for every measured Kripke frame M , if
M |= Γ , then M |= Φ.

Recalling what we stated in Remark 1 above, any expansion L of �L is suitable for
axiomatizing P as a (finitely additive) probability function. We will be henceforth
concerned with the logics R�L [10] and R�LΔ [5] (as outer logic for probability).
These logics respectively are the expansion of �L obtained by expanding its lan-
guage with countably many unary connectives δn (for n ∈ N \ {0}) (R�L) and
the Baaz-Monteiro unary connective Δ [1] (for R�LΔ). Taking into account the
following formulas,

(D1) : n.δnϕ ↔ ϕ (D2) : ¬δnϕ ⊕ (n − 1).¬δnϕ
(Δ1) : Δ(ϕ → ψ) → (Δϕ → Δψ) (Δ2) : Δϕ ∨ ¬Δψ
(Δ3) : Δϕ → ϕ (Δ4) : Δϕ → ΔΔϕ
(Δ5) : Δ(ϕ ∨ ψ) ↔ (Δϕ ∨ Δψ) (ΔN) : ϕ  Δϕ,

the logic R�L is �L + {(D1), (D2)} and R�LΔ is R�L + {(Δ1) − (Δ6), (ΔN)}.

Remark 2.(1) It was observed in [10] that in R�L one can define rational truth-
constants by means of the following stipulation: for every pair of mutually
prime positive integers n,m with n < m, let n/m be a shorthand for the
R�L formula n.δm(�). Then, for every [0, 1]-valued evaluation e of R�L, one
can easily prove that e(n/m) = n/m.
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(2) The standard semantics of Δ provided by any [0, 1]-valued evaluation e of
R�LΔ is as follows: for every formula ϕ, e(Δϕ) = 1 iff e(ϕ) = 1 and e(Δϕ) =
0 otherwise. Therefore, one can define in R�LΔ a further operator (usually
denoted by ∇) which is dual to Δ: for every formula ϕ, ∇ϕ = ¬Δ¬ϕ.
Thus, every [0, 1]-valued evaluation e maps ∇ϕ into 1 iff e(ϕ) > 0, while
e(∇ϕ) = 0 if e(ϕ) = 0 (see for instance [5] for further details).

Notation 1. In what follows, we will denote by FP (Ck, �L) the logic axiomatized
as in Definition 1 where the classical logic language contains only k propositional
variables. Furthermore, for any expansion L of �L, FP (Ck,L) will denote the logic
obtained from FP (Ck, �L) by replacing, in Definition 1, the axioms scheme (�L)
by axioms and rules from L.

Notice that for any schematic extension L of �L, the notion of measured Kripke
frame for FP (C,L) (or FP (Ck,L)) remains the same with only necessary modi-
fication regarding the evaluation of compound modal formulas. Furthermore the
following holds.

Theorem 3. For any schematic extension L of �L, FP (C,L) and FP (Ck,L)
are sound and complete with respect to the class of measured Kripke frames.

A measured Kripke frame M = (W, e, μ) is called a normal frame if W is a
nonempty set of classical evaluations and for each ϕ ∈ E and w ∈ W , e(ϕ,w) =
w(ϕ) [13]. The notion of normal Q-valued Kripke frame is defined accordingly.
If (W, e, μ) is normal, we shall usually omit e from the signature. Furthermore
it is easy to see that for every modal formula Φ and for every measured Kripke
frame M there exists a normal frame M ′ such that ‖Φ‖M = ‖Φ‖M ′ . Thus, in
particular, Theorems 2 and 3 hold for the class of normal frames.

In the rest of this section we will always consider a finite language for events
and therefore we will be mainly concerned with a modal logic of the form
FP (Ck,L) for k > 0.

Let us end this section proving the following result.

Proposition 1. There is not a unique Q-valued measured Kripke frame with
respect to which FP (Ck, R�L) is complete.

Proof. Assume, by way of contradiction, that there is a unique Q-valued Kripke
frame M0 such that, for every finite set of modal formulas Γ ∪ {Φ} such that
Γ � Φ, then M0 |= Γ , implies M0 �|= Φ. Modulo Theorem3, the absurd hypothesis
can be equivalently stated in the following way: there is a Q-valued measured
Kripke frame M0 such that, for every modal formula Φ, M0 |= Φ if and only if
M |= Φ for every Q-valued measured Kripke frame.

Without loss of generality we can assume M0 to be a Q-valued normal model
(W0, μ0). Further, we can assume W0 to be the finite set of all valuations on the
k variable of events of FP (Ck, R�L), whence μ0 is defined on free k-generated
Boolean algebra BW0 (which coincides with the Boolean algebra of all subsets
of W0). For each i = 1, . . . , 2k, let

αi =
k∧

j=1

p∗
j (1)
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(for p∗
j ∈ {pj ,¬pj}) and consider the formula

Ψ =
2k∧

i=1

(P (αi) ↔ μ0(αi)).

The formula Φ is clearly true in M0, while any other probability function μ �= μ0

defined on BW0 determines a normal Q-valued frame M = (W0, μ) in which Ψ
is clearly false. This settles the claim. �

3 A Logical Characterization of Strict Coherence

In this section we are going to characterize the strict coherence of a Q-valued
book in terms of the logical consistency of a modal formula of FP (Ck, R�LΔ).
Further, we will show that the problem of establishing the strict coherence of a
Q-valued book is decidable.

Theorem 4. Let E = {ϕ1, . . . , ϕn} be a finite set of classical formulas and let
β : E → [0, 1] be a Q-valued book. Then β is strictly coherent if and only if
there exists a k ∈ N and a modal formula Tβ of FP (Ck, R�LΔ) such that Tβ is
consistent.

Proof. Let V ar be the set of variables occurring in the formulas ϕ1, . . . , ϕn of
E , let k = |V ar| and let, for all i = 1, . . . , 2k, αi be defined as in (1) in the proof
of Proposition 1. Consider the formula:

Tβ =

(
n∧

i=1

P (ϕi) ↔ β(ϕi)

)
∧

⎛

⎝
2k∧

j=1

∇P (αj)

⎞

⎠ .

Now, we prove that β si strictly coherent iff Tβ is consistent, i.e., it has a model.
In particular we are going to show the following claim:

Claim 1. Let M = (W,μ) be a measured Kripke frame. Then M |= Tβ iff
μ(fϕi

) = β(ϕi) and μ is Carnap-regular.

Proof (of Claim 1). Assume M |= Tβ . Then, in particular M |= ∧n
i=1 P (ϕi) ↔

β(ϕi) and this is true iff, for all i = 1, . . . , n, ‖P (ϕi)‖M = β(ϕi), i.e., μ(fϕi
) =

β(ϕi). Furthermore, M |= ∧2k

j=1 ∇P (αj) iff (recalling Remark 2(2)) μ(fαj
) > 0

iff μ is Carnap-regular. �
Therefore the theorem holds due to Claim 1 and Theorem 1 plus observing that
BW = BE . �
An immediate consequence of the above result and [5, Theorem 7] which shows
that the SAT problem for FP (Ck, R�LΔ) is NP-complete, is the decidability for
strictly coherent books.

In what follows we denote by SE the set of Q-valued strictly coherent books
on the finite set of events E .



272 T. Flaminio

Corollary 1. For every finite set E of events, SE is decidable.

Proof. Theorem 4 characterizes the strict coherence of a Q-valued book β : E →
[0, 1] as the satisfiability, in FP (Ck, R�LΔ), of the formula Tβ . Thus SE is decid-
able since the SAT problem for FP (Ck, R�LΔ) is decidable as well. �

Remark 3. Notice that the formula Tβ whose satisfiability in FP (Ck, R�LΔ)
is equivalent to the strict coherence of β has exponential length in β. Thus,
although the satisfiability problem for the modal logic FP (Ck, R�LΔ) is NP-
complete, the upper bound for strict coherence provided by the above procedure
is set, up to now, at EXPTIME.

4 A Modal Logic for Carnap-Regular Probabilities

In this section we are going to strengthen the logic FP (Ck, R�LΔ) in order to
capture exactly those probability functions which are Carnap-regular. Precisely,
and since Carnap regular measures are not ensured to exist for every Boolean
algebra (see for instance [14]), we need first to fix a finite language (i.e., a finite
set of propositional variables) for events. Although this constraint might seem
to be restrictive, it does not prevent us to prove the main result of this section,
namely Theorem 5 below.

In the following definition we adopt a notation which has been already used
in the previous sections, namely, letting p1, . . . , pk the variables of Ck we put,
for all j = 1, . . . , 2k

αj =
k∧

i=1

p∗
i

where, for each i = 1, . . . , k, p∗
i stands for either pi or ¬pi.

Definition 2. For each k > 0, the logic FR(Ck, R�LΔ) is the axiomatic exten-
sion of FP (Ck, R�LΔ) given by the following modal axioms for P :

(R)
∧2k

j=1 ∇P (αj).

A Carnap Kripke frame is a measured Kripke frame (W, e, μ) in which μ is a
Carnap-regular measure.

Theorem 5. The logic FR(Ck, R�LΔ) is sound and complete with respect to the
class of Carnap Kripke frames.

Proof. In the light of Theorem3 we only need to prove that the added regularity
axiom (R) selects, among all measured Kripke frames, only those with a Carnap-
regular measure μ. Indeed, as we already proved in Claim 1, a measured Kripke
frame M = (W, e, μ) satisfies (R) iff μ is Carnap-regular. This settles the claim.

�
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Finally, the strict coherence of a Q-valued book β : E → [0, 1] can be char-
acterized in FR(Ck, R�LΔ) by a slightly less complex formula than Tβ (recall
Theorem 4). Let

T−
β =

n∧

i=1

P (ϕi) ↔ β(ϕi).

Then the following easily holds taking into account the proof of Theorem4 and
the axiomatization of FR(Ck, R�LΔ).

Corollary 2. Let E = {ϕ1, . . . , ϕn} a set of formulas on k propositional vari-
ables. Then a Q-valued book β : E → [0, 1] is strictly coherent if and only if T−

β

is consistent in FR(Ck, R�LΔ).

Remark 4. In Remark 3, due to the exponential length of Tβ , we set the upper
bound for the complexity of SE at EXPTIME. Vice versa, Corollary 2 above,
provides a characterization of SE in terms of a formula, T−

β , which is polynomial
in β. However, since the axiomatization of FR(Ck, R�LΔ) includes an axiom (that
we denoted by (R)) whose length is exponential in k, the procedure that checks
SE via Corollary 2 does not lower the upper bound for the problem of checking
strict coherence from EXPTIME.

5 Conclusions and Future Work

Fuzzy modal logics for uncertain reasoning have been quite intensively stud-
ied and in the last years have been also successfully applied to characterize de
Finetti’s foundations of subjective probability theory (see for instance [5,9] and
[7, Sect. 6]). This paper contributes to deepen the investigation on the aforemen-
tioned modal logics as suitable formalizations for the foundations of probabilistic
reasoning. The side effect of the present investigation, is also to show that these
logics are modular and manageable formalisms.

Several interesting problems regarding fuzzy modal logics remain open. First
of all, although Proposition 1 shows that FP (Ck, R�L) does not enjoy the single
model completeness property, this is unknown for FP (Ck, �L). Second, and in
our opinion more interesting, is the open problem of providing an NP-algorithm
that checks strict coherence. Indeed, the solution of this second problem would
immediately show that SE is NP-complete (see [8, Sect. 7]). However, providing
an NP-algorithm for that problem seems far from being trivial (recall Remarks 3
and 4).

In our future work we will mainly focus on the latter problem which appar-
ently needs deep mathematical, and in particular geometric techniques to be
solved.
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Abstract. In this paper our aim is to explore a new look at formal
systems of fuzzy logics using the framework of (fuzzy) formal concept
analysis (FCA). Let L be an extension of MTL complete with respect
to a given L-chain. We investigate two possible approaches. The first
one is to consider fuzzy formal contexts arising from L where attributes
are identified with L-formulas and objects with L-evaluations: every L-
evaluation (object) satisfies a formula (attribute) to a given degree, and
vice-versa. The corresponding fuzzy concept lattices are shown to be
isomorphic to quotients of the Lindenbaum algebra of L. The second
one, following an idea in a previous paper by two of the authors for the
particular case of Gödel fuzzy logic, is to use a result by Ganter and Wille
in order to interpret the (lattice reduct of the) Lindenbaum algebra of
L-formulas as a (classical) concept lattice of a given context.

Keywords: Mathematical fuzzy logics · MTL · Concept lattices
FCA · �Lukasiewicz logic

1 Introduction

In this paper our aim is to explore a new look at formal systems of fuzzy logics
using the framework of (fuzzy) formal concept analysis (FCA).

The possibility of connecting descriptions of real-world contexts with power-
ful formal instruments is what makes (fuzzy) FCA a promising framework, merg-
ing the intuitions of intended semantics with the advantages of formal semantics.
In the case of classical logic, a first attempt has been done in [8].

To build a bridge between systems of fuzzy logic and FCA, we explore
two possible approaches. In the first one, given a fuzzy logic L we consider
fuzzy FCA tables where attributes are described by formulas of the logic L,
while L-evaluations play the role of objects: every object (L-evaluation) satisfies
attributes (formulas) to a given degree, and vice-versa, every attribute (formula)
is satisfied to a given extent by objects (evaluations).
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The second one is, following the idea in [5] for the particular case of Gödel
fuzzy logic [12], is to use Ganter and Wille’s result [10, Theorem 3] in order to
interpret the lattice reduct of the Lindenbaum algebra of L-formulas as a lattice
of the set of formal concepts of a given context. Then, in order to endow the
lattice of concepts with a structure of L-algebra, suitable operations on formal
concepts have to be defined.

The paper is structured as follows. After this brief introduction, we recall
some background notions in Sect. 2, in Sect. 3 we introduce concept lattices of
formulas and evaluations, and in Sect. 4 we recall the construction of [5]. Both
approaches will be used to obtain formal concepts for formulas of the 3-valued
�Lukasiewicz logic.

2 Preliminaries

2.1 Basic Notions on Formal Concept Analysis

We recollect the basic definitions and facts about formal concept analysis needed
in this work. For further details on this topics we refer the reader to [10].

Recall that an element j of a distributive lattice H is called a join-irreducible
if j is not the bottom of H and if whenever j = a�b, then j = a or j = b,
for a, b ∈ L. Meet-irreducible elements are defined dually. Given a lattice H =
(H,�,�, 1), we denote by J(H) the set of its join-irreducible elements, and by
M(H) the set of its meet-irreducible elements.

Let G and M be arbitrary sets of objects and attributes, respectively, and let
I ⊆ G × M be an arbitrary binary relation. Then, the triple K = (G,M, I) is
called a formal context. For g ∈ G and m ∈ M , we interpret (g,m) ∈ I as “the
object g has attribute m”. For A ⊆ G and B ⊆ M , a Galois connection between
the powersets of G and M is defined through the following operators:

A∗ = {m ∈ M | ∀g ∈ A : gIm} B◦ = {g ∈ G | ∀m ∈ B : gIm}
Every pair (A,B) such that A∗ = B and B◦ = A is called a formal concept.

A and B are the extent and the intent of the concept, respectively. Given a
context K, the set B(K) of all formal concepts of K is partially ordered by
(A1, B1) ≤ (A2, B2) if and only if A1 ⊆ A2 (or, equivalently, B2 ⊆ B1). The
basic theorem on concept lattices [10, Theorem 3] states that the set of formal
concepts of the context K is a complete lattice (B(K),�,�), called concept lattice,
where meet and join are defined by:

�

j∈J

(Aj , Bj) =

⎛
⎝⋂

j∈J

Aj ,

⎛
⎝⋃

j∈J

Bj

⎞
⎠

◦∗⎞
⎠ ,

⊔
j∈J

(Aj , Bj) =

⎛
⎝

⎛
⎝⋃

j∈J

Aj

⎞
⎠

∗◦

,
⋂
j∈J

Bj

⎞
⎠ ,

(1)

for a set J of indexes. The following proposition is fundamental for our purposes.
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Proposition 1 ([10, Proposition 12]). For every finite lattice H there is
(up to isomorphisms) a unique context KH , with L ∼= B(KH):

KH := (J(H),M(H),≤).

The context KH is called the standard context of the lattice H.
Since H is finite, J(H) is finite as well. Hence, the concept (J(H), ∅) is the

top element of B(KH). We denote it by 
G, emphasizing the fact that the join-
irreducible elements of L are the objects of our context. Analogously, the concept
(∅,M(H)) is the bottom element of B(KH), and we denote it by ⊥M .

2.2 On t-Norm Based Fuzzy Logics

In this paper we investigate logical systems based on left continuous t-norms,
that are binary, commutative, associative and monotonically non-decreasing
operations over [0, 1] that have 1 as unit element. A t-norm operator � is
used to interpret a conjunction connective, while its corresponding implica-
tion connective → is modelled by the residuum of �, that is, defined by
x → y = max{z | x � z ≤ y} for all x, y, z ∈ [0, 1]. It has been shown that
the necessary and sufficient condition for a t-norm � to have a residuum (i.e.
satisfying the condition x � y ≤ z iff x ≤ y → z for all x, y, z ∈ [0, 1]) is the
left-continuity �.

In [7] the authors introduce MTL, the logic of all left-continuos t-norms and
their residua [13]. MTL encompasses the Basic fuzzy Logic BL of Hájek [12],
which is the logic of continuous t-norms and their residua. For axiomatisations
of MTL and BL, we refer the reader to [7] and [12] respectively.

Other relevant t-norm based fuzzy logics can be obtained as schematic exten-
sions of MTL or BL. Gödel logic G is the schematic extension of BL obtained by
adding the idempotency axiom, ϕ → (ϕ�ϕ). �Lukasiewicz logic �L is the schematic
extension of BL obtained by adding the double negation axiom ¬¬ϕ → ϕ. Adding
ϕ � ϕ ↔ ϕ � ϕ � ϕ to �L we obtain the 3-valued �Lukasiewicz logic �L3.

Our interest in �L3 is given by the recent paper [6], where authors characterize
this logic as the logic of prototypes and counterexamples. Gödel logic will be used
as a stepping stone for developing the methodology to be applied to the case of
�L3.

Each schematic extension L of MTL determines a subvariety V(L) of the vari-
ety of MTL algebras MTL, that is the class of algebras A = (A,∧,∨,�,→,⊥,
)
of type (2, 2, 2, 2, 0, 0) such that (A,∧,∨,⊥,
) is a bounded lattice, with top 

and bottom ⊥, (A,�,
) is a commutative monoid, satisfying the residuation
equivalence, x � y ≤ z if and only if x ≤ y → z, and the prelinearity equation
(x → y) ∨ (y → x) = 
1. Negation is usually defined as ¬x = x → ⊥.

The notion of logical consequence for a logic L relative to a class A ⊆ V(L)
is defined as follows: for any set of formulas T ∪ {ϕ}, ϕ is a logical consequence

1 MTL algebras are commutative integral bounded residuated lattices satisfying pre-
linearity [9].
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of T , written T |=A ϕ, whenever for all algebra A ∈ A and each evaluation e of
formulas on A, if e(ψ) = 1 for all ψ ∈ T , then e(ϕ) = 1 as well.

Given a logic L, two formulas ϕ and ψ are logically equivalent, in symbols
ϕ ≡L ψ, if and only if ϕ ↔ ψ is a L-tautology, that is, if |=V(L) ϕ ↔ ψ.
The Lindenbaum Algebra Lind(L) of L is the algebra whose elements are the
equivalence classes of formulas of L, with respect to ≡L. The free k-generated
algebra Fk(V(L)) in V(L) is the subalgebra of the Lindenbaum algebra Lind(L)
of the formulas over the first k variables. Combinatorial representations of Fk(G)
and Fk(MV3), where G = V(G) and MV3 = V(�L3), can be found in [1].

3 The Concept Lattice of Formulas and Evaluations

Suppose L is an axiomatic extension of MTL that is complete with respect to a
given L-chain M , that is, |=V(L) = |=M . In what follow, we will denote by L the
set of propositional L-formulas built from a finite set of propositional variables V ,
and by Ω the set of truth-evaluations of propositinal variables into the L-chain
M , that is, Ω = {e : V → M}. Of course, every evaluation of variables uniquely
extends to an evaluation of any propositional formula using the truth-functions
interpreting the connectives.

In our FCA-based analysis of the notion of consequence in the logic L, we
will consider attributes described as propositional formulas from L, and objects
as evaluations from Ω. In this setting, a formal context will be specified by a
triple

K = (Ω0,L0, R),

where Ω0 ⊆ Ω and L0 ⊆ L are finite sets, and R : Ω0 × L0 → M is a M -valued
fuzzy relation defined as R(e, ϕ) = e(ϕ).

In this way, each attribute or formula ϕ ∈ L0 determines a fuzzy set of
objects ϕ∗ : Ω0 → M , with ϕ∗(e) = R(e, ϕ), for all e ∈ Ω0, and vice-versa,
each object or evaluation e ∈ Ω0 determines a fuzzy set of attributes e◦ : L0 →
M , with e◦(ϕ) = R(e, ϕ), for all ϕ ∈ L0. More than that, following Pollandt
[14] and Bělohlávek’s [2] models of FCA, this correspondence is extended to a
Galois connection between fuzzy sets of formulas and fuzzy sets of evaluations
as follows.

Definition 1. Let F ∈ F(L0) be a fuzzy subset of formulas (fuzzy theory) and
let E ∈ F(Ω0) be a fuzzy set of evaluations. Define:

– F ∗ is the fuzzy subset of Ω0 defined as F ∗(e) = infϕ∈L0 F (ϕ) → R(e, ϕ), for
all e ∈ Ω0,

– E◦ is the fuzzy subset of L0 defined as E◦(ϕ) = infe∈Ω0 E(e) → R(e, ϕ), for
all ϕ ∈ L0.

A pair (E,F ) is a logic fuzzy concept if F ∗ = E and E◦ = F .

In other words, F ∗ is the fuzzy set of models of the fuzzy theory F , and E◦ is
the fuzzy set of formulas satisfied by the fuzzy set of evaluations E. Moreover,
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as it is known, ∗◦ is a closure operation on the set F(L0) of M -valued fuzzy sets
of formulas, hence F ≤ F ∗◦. Actually the mapping ∗◦ : F(L0) → F(L0), defined
by

F ∗◦(ϕ) = inf
e∈Ω0

[ inf
ψ∈L0

F (ψ) → e(ψ)] → e(ϕ)

can be considered as a graded logical consequence relation, that it is even a bit
more general than the one central to the so-called graded approach to fuzzy logic,
developed by authors like J. A. Goguen, J. Pavelka, V. Nóvak and G. Gerla, as
discussed e.g. in [11].

In what follows, we will denote by C(K) = (C(K),�) the lattice of fuzzy
concepts induced by a context K, where the ordering � is defined as

(E,F ) � (E′, F ′) iff E ≤ E′ and F ≥ F ′,

and the meet and join operations are defined as:

(E,F )�(E′, F ′) = (E∩E′, (F ∪F ′)∗◦), (E,F )�(E′, F ′) = ((E∪E′)◦∗, F ∩F ′),

where ∩ and ∪ denote intersection and union of fuzzy sets, defined with the min
and max operations respectively.

This lattice is bounded and the bottom element is the concept ⊥K = (∅,L0),
while the top element is 
K = (Ω0, TΩ0), where TΩ0 if the fuzzy set of formulas
defined by TΩ0(ψ) = infe∈Ω0 e(ψ).

Let us see how it looks like the fuzzy concept in C(K) induced by (the crisp
set of) a single formula ϕ ∈ L0, i.e. the pair (ϕ∗, ϕ∗◦), where for the sake of
a simpler notation we have used ϕ∗ for {ϕ}∗ and ϕ∗◦ for ({ϕ}∗)◦. An easy
computation shows that:

– ϕ∗(e) = R(e, ϕ) = e(ϕ), for all e ∈ Ω0;
– ϕ∗◦(ψ) = infe∈Ω0 R(e, ϕ) → R(e, ψ) = infe∈Ω0 e(ϕ → ψ), for all ψ ∈ L0.

Further, if we consider a finite set of formulas or theory T , using the same
notation convention as above, the corresponding concept (T ∗, T ∗◦) is as follows,
where

∧
T denotes the ∧-conjunction of all the formulas in T , i.e.

∧
T =

∧
ϕ∈T ϕ:

– T ∗(e) = infϕ∈T R(e, ϕ) = infϕ∈T e(ϕ) = e(
∧

T ), for all e ∈ Ω0;
– T ∗◦(ψ) = infe∈Ω0 T ∗(e) → R(e, ψ) = infe∈Ω0 e(

∧
T → ψ), for all ψ ∈ L0.

Note that, as discussed above, T ∗◦ accounts for a certain notion of graded
consequence from T , in the sense that T ∗◦(ψ) provides the degree in which ψ is
implied by T , relative to the set of interpretations Ω0. It is a graded consequence
that resembles Pavelka’s notion of truth degree of a formula in a theory (see e.g.
[11,12]), although they do not coincide. It is also related to the so-called degree
preserving logic |=≤

L companion of L, see e.g. [4]. Indeed, it is easy to check the
following lemma.

Lemma 1. For any ψ ∈ L0, T ∗◦(ψ) = 1 iff e(
∧

T → ψ) = 1 for all e ∈ Ω0.
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Therefore, when Ω0 = Ω, T ∗◦(ψ) = 1 holds if, and only if, infϕ∈T e(ϕ) ≤
e(ψ), i.e. iff T |=≤

L ψ. That is, the core of T ∗◦ is nothing but the set of conse-
quences of T (restricted to L0) under the degree preserving logic companion of
L.

Lemma 2. T ∗◦
1 = T ∗◦

2 iff
∧

T1 and
∧

T2 are logically equivalent relative to Ω0,
i.e. e(

∧
T1) = e(

∧
T2) for every evaluation e ∈ Ω0.

Proof. The direction right-to-left is trivial. As for the converse, if T ∗◦
1 = T ∗◦

2 ,
then in particular, for all χ, T ∗◦

1 (χ) = 1 iff T ∗◦
2 (χ) = 1. Take χ =

∧
T1. Since

T ∗◦
1 (

∧
T1) = 1, then T ∗◦

2 (
∧

T1) = 1 as well, and by Lemma 1 this happens iff for
all e ∈ Ω0, e(

∧
T2) ≤ e(

∧
T1). Analogously, if we take χ =

∧
T2, we would get

that, for all e ∈ Ω0, e(
∧

T1) ≤ e(
∧

T2). ��
Notice again that in case Ω0 = Ω, then T ∗◦

1 = T ∗◦
2 iff

∧
T1 and

∧
T2 are logically

equivalent in the usual sense.
The set Ccg(K) of concepts of the form (T ∗, T ∗◦), with T ⊆ L0 a finite

(crisp) set of formulas, is in fact what is known as the set of crisply generated
concepts in the fuzzy concept lattice C(K) [3]. As already mentioned, for the
purpose of building concepts, we can always replace a finite theory T by the ∧-
conjunction of its formulas

∧
T . Indeed, for every concept of the form (T ∗, T ∗◦)

with T a finite set of formulas, there is always a formula ϕ (e.g.
∧

T ) such that
(T ∗, T ∗◦) = (ϕ∗, ϕ∗◦). Thus Ccg(K) = {(ϕ∗, ϕ∗◦) | ϕ ∈ L0} and we can safely
restrict ourselves to deal with concepts induced by a single formula.

The lattice operations in C(K) over concepts from Ccg(K) take the following
form.

Lemma 3. For any ϕ,ψ ∈ L,

(ϕ∗, ϕ∗◦) � (ψ∗, ψ∗◦) = ((ϕ ∧ ψ)∗, (ϕ ∧ ψ)∗◦), (2)
(ϕ∗, ϕ∗◦) � (ψ∗, ψ∗◦) = ((ϕ ∨ ψ)∗, (ϕ ∨ ψ)∗◦). (3)

Proof. By definition, (ϕ∗, ϕ∗◦) � (ψ∗, ψ∗◦) = (ϕ∗ ∩ ψ∗, (ϕ∗ ∩ ψ∗)◦), but since
(ϕ∗ ∩ ψ∗)(e) = min(ϕ∗(e), ψ∗(e)) = min(e(ϕ), e(ψ)) = e(ϕ ∧ ψ) = (ϕ ∧ ψ)∗(e),
we have (ϕ∗ ∩ ψ∗, (ϕ∗ ∩ ψ∗)◦) = ((ϕ ∧ ψ)∗, (ϕ ∧ ψ)∗◦).

Analogously, by definition (ϕ∗, ϕ∗◦)�(ψ∗, ψ∗◦) = ((ϕ∗∪ψ∗)◦∗, ϕ∗◦∩ψ∗◦), but
(ϕ∗◦ ∩ψ∗◦)(χ) = min(infe e(ϕ → χ), infe e(ψ → χ)) = infe min(e(ϕ → χ), e(ψ →
χ)) = infe e(ϕ ∨ ψ → χ) = (ϕ ∨ ψ)∗◦(χ). Therefore ((ϕ∗ ∪ ψ∗)◦∗, ϕ∗◦ ∩ ψ∗◦) =
((ϕ∗ ∪ ψ∗)◦∗, (ϕ ∨ ψ)∗◦) = ((ϕ ∨ ψ)∗, (ϕ ∨ ψ)∗◦). ��

As it proven in [3], Ccg(K) is indeed a �-subsemilattice of C(K) in the
general case. Indeed, notice that the � operation is closed in Ccg(K), since the
concept induced by the conjunction

∧
T of a set of formulas T ⊆ L0, even if

∧
T

does not belong to L0, is the same concept induced by the crisp set of formulas
T , and hence it belongs to Ccg(K). However, this is not the case for a disjunction
of a set of formulas. However, if we can guarantee that the concept induced by
a disjunction also belongs to Ccg(K), then Ccg(K) is actually a sublattice of
C(K).
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Lemma 4. If L0 is closed by ∨ (modulo logical equivalence) then � is closed in
Ccg(K), and Ccg(K) = (Ccg(K),�,�,
K ,⊥k) is a sublattice of C(K).

In the following we will assume L0 = L to avoid any problem. In such a
case, we can also enrich the lattice Ccg(K) with some further operations in a
natural way so to come up with a residuated lattice structure, inherited from
the L-algebras.

Definition 2. We define the following two operations on fuzzy concepts from
Ccg(K). For any ϕ,ψ ∈ L, let us define:

(ϕ∗, ϕ∗◦) � (ψ∗, ψ∗◦) = ((ϕ � ψ)∗, (ϕ � ψ)∗◦), (4)
(ϕ∗, ϕ∗◦) ⇒ (ψ∗, ψ∗◦) = ((ϕ → ψ)∗, (ϕ → ψ)∗◦). (5)

It is easy to check that � and ⇒ endow the lattice Ccg(K) with a structure
of residuated lattice, in particular with the structure of a L-algebra.

Proposition 2. Ccg(K) = (Ccg(K),�,�,�,⇒,
K ,⊥K) is an L-algebra that
is isomorphic to the quotient algebra L/≡Ω0 , where ϕ ≡Ω0 ψ iff e(ϕ) = e(ψ) for
all e ∈ Ω0.

Proof. Elements of L/≡Ω0 are equivalence classes of formulas from L, according
to the congruence relation ≡Ω0 . Given a formula ϕ ∈ L, let us denote by [ϕ]
its equivalence class. Since the class of L-algebras is a variety, it is closed under
quotients, hence L/ ≡Ω0 is an L-algebra as well. Now consider the mapping
λ : L/ ≡Ω0→ Ccg(K) defined by λ([ϕ]) = (ϕ∗, ϕ∗◦). It is easy to check that
this mapping is one-to-one thanks to Lemma 2, and moreover it is an algebraic
homomorphism with respect to the operations involved: λ([ϕ] ∧ [ψ])) = λ([ϕ]) �
λ([ψ]), etc. Therefore, Ccg(K) is an L-algebra as well, isomorphic to L/≡Ω0 . ��
Corollary 1. If Ω0 = Ω, then Ccg(K) is isomorphic to the Lindenbaum algebra
Lind(L) = L/≡L.

3.1 An Example: The Case of �L3

In this section, we provide an example of the construction of the concept lattice
of formulas and evaluations for the �Lukasiewicz 3-valued logic �L3.

Let L0 = {ϕ1, ϕ2, . . . , ϕ12} be the set of all �L3-formulas (up to logical equiv-
alence) on one variable x, where2

ϕ1 = x2 ∧ (¬x)2 = ⊥, ϕ2 = (¬x)2, ϕ3 = x ∧ ¬x,

ϕ4 = x2, ϕ5 = ¬x, ϕ6 = (x ∨ ¬x)2,

ϕ7 = ¬x2 ∧ ¬(¬x)2, ϕ8 = x, ϕ9 = ¬x2,

ϕ10 = x ∨ ¬x, ϕ11 = ¬(¬x)2, ϕ12 = ¬x2 ∨ ¬(¬x)2 = 
.

Further, let us consider all possible 3-valued evaluations on the variable x as
the set of objects: Ω0 = {e0, e1, e2}, where e0(x) = 0, e1(x) = 1

2 , e2(x) = 1. The
following table shows the values of each formula of L0 under each evaluation.
2 We use ϕ2 as a shorcut for ϕ � ϕ.
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ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11 ϕ12

e0(·) 0 1 0 0 1 1 0 0 1 1 0 1
e1(·) 0 0 1/2 0 1/2 0 1 1/2 1 1/2 1 1
e2(·) 0 0 0 1 0 1 0 0 0 1 1 1

As described before in this section, the triple K = {Ω0,L0, R}, where R :
Ω0 × L0 → {0, 1

2 , 1} is a 3-valued fuzzy relation defined as R(e, ϕ) = e(ϕ),
identifies a formal context.

First of all, we aim at obtaining all the concepts induced by a single formula.
For instance, consider the formula ϕ8 = x. Then, ϕ∗

8(e0) = e0(ϕ8) = 0, ϕ∗
8(e1) =

1
2 , and ϕ∗

8(e2) = 1. We denote the fuzzy set of objects (evaluations) ϕ∗
8 by the

tuple (0, 1
2 , 1). Let us compute the fuzzy set of attributes (formulas) ϕ∗◦

8 :

ϕ∗◦
8 (ϕ1) = inf

e∈Ω0
e(ϕ8 → ϕ1) = 0, ϕ∗◦

8 (ϕ2) = inf
e∈Ω0

e(ϕ8 → ϕ2) = 0,

ϕ∗◦
8 (ϕ3) = inf

e∈Ω0
e(ϕ8 → ϕ3) = 0, ϕ∗◦

8 (ϕ4) = inf
e∈Ω0

e(ϕ8 → ϕ4) = 1/2,

ϕ∗◦
8 (ϕ5) = inf

e∈Ω0
e(ϕ8 → ϕ5) = 0, ϕ∗◦

8 (ϕ6) = inf
e∈Ω0

e(ϕ8 → ϕ6) = 1/2,

ϕ∗◦
8 (ϕ7) = inf

e∈Ω0
e(ϕ8 → ϕ7) = 0, ϕ∗◦

8 (ϕ8) = inf
e∈Ω0

e(ϕ8 → ϕ8) = 1,

ϕ∗◦
8 (ϕ9) = inf

e∈Ω0
e(ϕ8 → ϕ9) = 0, ϕ∗◦

8 (ϕ10) = inf
e∈Ω0

e(ϕ8 → ϕ10) = 1,

ϕ∗◦
8 (ϕ11) = inf

e∈Ω0
e(ϕ8 → ϕ11) = 1, ϕ∗◦

8 (ϕ12) = inf
e∈Ω0

e(ϕ8 → ϕ12) = 1.

We indicate the value of ϕ∗◦
8 by the tuple (0, 0, 0, 1

2 , 0, 1
2 , 0, 1, 0, 1, 1, 1). The pair

(ϕ∗
8, ϕ

∗◦
8 ) is the formal concept induced by the furmula ϕ8. In the same way, we

can compute all the formal concepts induced by single formulas of L0, obtaining:

(ϕ∗
1, ϕ

∗◦
1 ) = ((0, 0, 0), (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) ,

(ϕ∗
2, ϕ

∗◦
2 ) = ((1, 0, 0), (0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1)) ,

(ϕ∗
3, ϕ

∗◦
3 ) = ((0, 1/2, 0), (1/2, 1/2, 1, 1/2, 1, 1/2, 1, 1, 1, 1, 1, 1)) ,

(ϕ∗
4, ϕ

∗◦
4 ) = ((0, 0, 1), (0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1)) ,

(ϕ∗
5, ϕ

∗◦
5 ) = ((1, 1/2, 0), (0, 1/2, 0, 0, 1, 1/2, 0, 0, 1, 1, 0, 1)) ,

(ϕ∗
6, ϕ

∗◦
6 ) = ((1, 0, 1), (0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1)) ,

(ϕ∗
7, ϕ

∗◦
7 ) = ((0, 1, 0), (0, 0, 1/2, 0, 1/2, 0, 1, 1/2, 1, 1/2, 1, 1)) ,

(ϕ∗
8, ϕ

∗◦
8 ) = ((0, 1/2, 1), (0, 0, 0, 1/2, 0, 1/2, 0, 1, 0, 1, 1, 1)) ,

(ϕ∗
9, ϕ

∗◦
9 ) = ((1, 1, 0), (0, 0, 0, 0, 1/2, 0, 0, 0, 1, 1/2, 0, 1)) ,

(ϕ∗
10, ϕ

∗◦
10) = ((1, 1/2, 1), (0, 0, 0, 0, 0, 1/2, 0, 0, 0, 1, 0, 1)) ,

(ϕ∗
11, ϕ

∗◦
11) = ((0, 1, 1), (0, 0, 0, 0, 0, 0, 0, 1/2, 0, 1/2, 1, 1)) ,

(ϕ∗
12, ϕ

∗◦
12) = ((1, 1, 1), (0, 0, 0, 0, 0, 0, 0, 0, 0, 1/2, 0, 1)) .

Note that all the formal concepts above are precisely all the crisply gen-
erated concepts. Indeed, the concept generated by {ψ1, . . . , ψk} ⊆ L0 coin-
cides with the concept generated by the single formula

∧
i=1,...,k ψi, which
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is logically equivalent to a formula of L0. We also observe that ϕ∗◦
12 =

(infe∈Ω0 e(ϕ1), . . . , infe∈Ω0 e(ϕ12)) = TΩ0 �= ∅.
As described in the previous part of the section, we can endow the set Ccg(K)

with the operations defined in (2)–(5). We obtain in this way an algebra Ccg(K)
of crisply generated concepts of L0 which is isomorphic to the free 1-generated �L3

algebra, depicted in Fig. 1, via the isomorphism λ that associates each formula
ϕ ∈ L0 with the concept (ϕ∗, ϕ∗◦).

ϕ12

ϕ9 ϕ10 ϕ11

ϕ5 ϕ6 ϕ7 ϕ8

ϕ2 ϕ3 ϕ4

ϕ1

Fig. 1. The Lindenbaum-Tarski algebra of �L3 over one generator.

Consider now the set of objects (evaluations) ΩB = {e0, e2} ⊆ Ω0. Again,
the triple KB = {ΩB ,L0, RB}, where RB : ΩB × L0 → {0, 1

2 , 1} is a 3-valued
fuzzy relation defined as R(e, ϕ) = e(ϕ), identifies a formal context. Actually,
the fuzzy relation RB is in fact a crisp relation, since the evaluation e0 and e2
only evaluate x to either 0 or 1. In this new setting, we can compute all the
formal concepts induced by single formulas of L0, obtaining:

(ϕ∗
1, ϕ

∗◦
1 ) = (ϕ∗

3, ϕ
∗◦
3 ) = (ϕ∗

7, ϕ
∗◦
7 ) = ((0, 0), (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) ,

(ϕ∗
4, ϕ

∗◦
4 ) = (ϕ∗

8, ϕ
∗◦
8 ) = (ϕ∗

11, ϕ
∗◦
11) = ((0, 1), (0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1)) ,

(ϕ∗
2, ϕ

∗◦
2 ) = (ϕ∗

5, ϕ
∗◦
5 ) = (ϕ∗

9, ϕ
∗◦
9 ) = ((1, 0), (0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1)) ,

(ϕ∗
6, ϕ

∗◦
6 ) = (ϕ∗

10, ϕ
∗◦
10) = (ϕ∗

12, ϕ
∗◦
12) = ((1, 1), (0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1)) ,

which, in fact, they turn out to be classical concepts. Not surprisingly, endowing
this set of concepts Ccg(KB) with the operations defined in (2)–(5) we obtain an
algebra of concepts which is isomorphic to the free 1-generated Boolean algebra.
Such algebra is obtained as a quotient of Ccg(K). As it is easily seen using
Proposition 2, this holds in general, that is, an algebra of concepts Ccg(K′),
with K ′ = {Ω′

0,L0, R} and Ω′
0 ⊆ Ω0 is a quotient of the algebra Ccg(K).

4 The Natural Concept Lattice of a Logic

In this section we recall the construction of concept lattices applied in [5] to
characterize formal concept lattices associated to Gödel algebras.
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Proposition 1 states that for every finite lattice H there is always a canonical
way to build the standard context KH , whose concept lattice B(KH) is isomor-
phic to H. Let A = (A,∧,∨,→,
,⊥) be a finite algebra in a variety V ⊆ MTL,
and let CA = B((J(A),M(A),≤)) be the concept lattice of its standard context.
Then, the lattice CA = (CA,�,�,
G,⊥M ), is isomorphic to the lattice reduct
of A.

Pushing further this approach, when V is a locally finite variety the k-
generated free algebras Fk(V) are finite, and hence we can apply to them the
above construction. As the elements of Fk(V) are equivalence classes of logical
formulas in k variables, this amount to associate every logical formula to its
natural formal concept.

For some cases it is possible to extend the lattice isomorphism to a full
isomorphism of algebras by defining suitable operations between the formal con-
cepts. In [5] the authors use this methodology to obtain formal concepts for
every Gödel logic formula. This is possible because in Gödel algebras lattice and
monoidal conjunctions coincide, and hence it is natural to define an implication
operator between concepts by using the residum of the concepts meet.

Comparing to Sect. 3.1, in the next subsection we apply the above sketched
construction to F1(V(�L3)).

4.1 Constructing the Concept Lattice of the Logic �L3

Consider the set L0 = {ϕ1, ϕ2, . . . , ϕ12} of all �L3-fomulas (up to logical equiv-
alence) on one variable x. The formulas of L0 are exhibited in Fig. 1. Let
H = (L0,≤) be the lattice reduct of the free 1-generated �L3 algebra F1 depicted
in Fig. 1. The sets of join irreducible elements and meet irreducible elements
of L are J(H) = {ϕ2, ϕ3, ϕ4, ϕ7}, and M(H) = {ϕ6, ϕ9, ϕ10, ϕ11}, respectively.
By Proposition 1, we can identify J(H) and M(H) with the set of objects and
attributes, respectively, of a standard context KH = (J(H),M(H),≤). The fol-
lowing table shows the relation ≤

≤ ϕ6 ϕ9 ϕ10 ϕ11

ϕ2 × × ×
ϕ3 × × ×
ϕ4 × × ×
ϕ7 × ×

The corresponding standard context lattice is depicted in Fig. 2. Clearly, by
Proposition 1, it is isomophic to the lattice reduct of the free 1-generated �L3

algebra of Fig. 1, via a lattice isomorphim f defined as follows. For each ϕ ∈ L0,
let Jϕ be the maximal subset of J(H) such that ϕ =

∨
Jϕ, and Mϕ be the

maximal subset of M(H) such that ϕ =
∧

Mϕ. Then the map f associates each
ϕ ∈ L0 with the formal concept (Jϕ,Mϕ) ∈ KH .

To extend the above defined lattice isomorphism to an algebraic isomorphism
between F1(�L3) and the concept lattice of the standard context KH , it is neces-
sary to define a proper monoidal conjunction between concepts of KH . Of course,
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(ϕ2ϕ3ϕ4ϕ7, ∅)

(ϕ2ϕ3ϕ7, ϕ9) (ϕ2ϕ3ϕ4, ϕ10) (ϕ3ϕ4ϕ7, ϕ11)

(ϕ2ϕ3, ϕ9ϕ10) (ϕ2ϕ4, ϕ6ϕ10) (ϕ3ϕ7, ϕ9ϕ11) (ϕ3ϕ4, ϕ10ϕ11)

(ϕ2, ϕ6ϕ9ϕ10) (ϕ3, ϕ9ϕ10ϕ11) (ϕ4, ϕ6ϕ10ϕ11)

(∅, ϕ6ϕ9ϕ10ϕ11)

Fig. 2. The concept lattice associated with the lattice reduct of F1

an obvious way to define such an operation is through the isomorphism f , that
is, for each pair of concepts (E,F ), (E′, F ′) ∈ KH , to define (E,F ) ⊗ (E′, F ′) =
(Jϕ�ψ,Mϕ�ψ), where f−1((E,F )) = ϕ and f−1((E′, F ′)) = ψ. However, this
does not shed any light on how the operation works on the elements of the con-
cepts. To have a much better insight in the operation seems not to be an easy
task, even in the case of locally finite subvarieties of MTL (such as �L3), and it
will be faced in some future paper.

5 Conclusions and Further Developments

To obtain a direct relation between a formal concept and a fuzzy logic formula,
in this work we have explored two ways to obtain concept lattices isomorphic to
Lindenbaum algebras of many-valued logics. The first approach naturally gives
the desired isomorphism between the concept lattice and the algebra of formulas,
while to complete the second approach additional research has to be done.

To depict the two constructions we have chosen the logic �L3. In [6], �L3 has
been characterized as a logic of prototypes and counterexamples. The construc-
tion of possible worlds in [6] gives a lattice of functions Ω

Ωn
0

0 very similar to the
concept lattice of our first approach in Sect. 3.1. Hence, putting together the
characterization of [6] with the constructions presented here, it will be ideally
possible to build a formal concept semantics of prototypes and counterxamples
for the logic �L3.
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Abstract. Droughts are initiated by a lack of precipitation over a large
area and a long period of time. In order to be able to estimate the pos-
sible impacts of droughts, it is important to identify and characterise
these events. Describing a drought is, however, not such an easy task
as it represents a spatio-temporal phenomenon, with no clear start and
ending, trailing from one place to another. This study tries to objec-
tively identify droughts in space and time by applying operators from
mathematical morphology. On the basis of the identified droughts, OWA
operators are employed to characterise the events in order to aid farmers,
water managers, etc. in coping with these events.

Keywords: Mathematical morphology · Droughts · Spatio-temporal
OWA operators

1 Introduction

Droughts can entail severe socio-economic damage such as crop failure, shortage
in water and energy supply. Eventually, famines and severe conflicts can be
caused by major drought events. Although it is relatively easy in the field to
tell whether or not one is experiencing a drought, identifying a drought event is
a quite difficult task. Droughts can last for several months or even years, they
have no clear starting and ending point, they can start at one place and move
to another place, and their intensity can change with place and time.

Commonly, four types of droughts are distinguished [1]. A deficiency in pre-
cipitation over a large area and a prolonged time period is the primary cause
of a drought [2] and is regarded as a meteorological drought. The combination
with high evaporation rates can result in a large period of low soil moisture and,
hence, lead to an agricultural drought as crops become affected. In a later stage,
the recharge to aquifers and rivers may be reduced and a hydrological drought
develops. When water demands cannot be met by the water supply systems and
economic activities and ecosystems seriously suffer, a socio-economic drought is
experienced.
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Although scientific literature w.r.t. drought characterisation shows that
efforts have already been made to try to quantitatively characterise droughts,
capturing all aspects of a drought still remains a difficult task. Andreadis et al. [3]
were among the first to introduce a spatial identification procedure in which the
fact that droughts can merge or break up at subsequent time steps is acknowl-
edged. Lloyd-Hughes [4] continued on this identification procedure and extended
it to the space-time domain.

Furthermore, in order to determine whether a location is dry, one generally
relies upon a drought index on the basis of which a threshold is set. A value below
the threshold then indicates that drought conditions are met. The standardised
precipitation index [5] or the Palmer drought severity index [6] are examples of
two commonly used drought indices. However, all drought indices have their own
advantages and shortcomings [7,8] and applications of these indices will on their
turn also suffer from these shortcomings. In this respect and to overcome incon-
sistencies between different drought indices, Sheffield and Wood [8,9] suggested
to use percentile values of a drought variable as a basis for drought characteri-
sation. By using percentile values, a fair comparison between values at different
locations is possible.

Besides, soil moisture appears to be a fine candidate to be used as drought
variable [7,9]. Soil moisture is a key variable in the hydrological cycle as it con-
trols the majority of processes in the hydrological cycle, e.g. evaporation, runoff,
infiltration and drainage. It furthermore reflects the impact of meteorological
variables such as temperature and radiation. Soil moisture values in the top
layer of the soil are also related to short-term precipitation, soil moisture values
in the root zone indicate the amount of water that is available for plant growth
and soil moisture values in the deep soil layers reflect the amount of water that
is available for rivers and aquifers.

In this study, we attempt to identify and characterise droughts by taking into
account their spatio-temporal nature, such that the phenomenon can be better
understood. In order to objectively identify droughts in space and time, math-
ematical morphological operators [10] will be applied to a 30-year daily time
series of spatially distributed soil moisture data over Australia. Applications
and extensions of mathematical morphology w.r.t. image filtering, image seg-
mentation, etc. have already been reported in the processing of remote sensing
data [11] and medical image analysis [12]. Some three-dimensional applications
of mathematical morphology have also been described in literature. Peters II
and Nichols [13] and Paris and Sillon [14] applied operators from mathematical
morphology to image sequences. Pierre et al. [15] tried to unravel the three-
dimensional complexity of the soil structure and Mao et al. [16] employed mor-
phological filtering to extract information regarding geologic bodies.

Section 2 first elaborates on the data and the study region chosen for this
study. Section 3 then explains the data preprocessing, the selection of the thresh-
old and the application of mathematical morphology for drought identification.
Section 4 further elaborates on the determined drought characteristics. Section 5
formulates the conclusions and perspectives for future research.
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2 Data and Study Region

In order to be able to identify drought events in space and time, a long time
series of historical data is required. Ideally, such time series should be available at
large scales in order to also capture the spatial characteristics of the events. With
the emergence of satellite remote sensing data in the late seventies, obtaining
information at a high temporal and spatial resolution has become easier. The
Global Land Evaporation Amsterdam Model (GLEAM) [17] benefits from the
use of satellite-derived observations to estimate terrestrial evaporation and soil
moisture. The data set used in this study (the GLEAM v3.0a data set [18]) spans
a period of 35 years (from 1/1/1980 till 31/12/2014) of global daily root-zone soil
moisture values at a 0.25◦ resolution. The soil consists of soil particles and voids
in between them. As the soil gets wet by infiltration of precipitation, the voids
get filled with water. The soil moisture value θ of a soil expresses the amount of
water in the soil relative to the total soil volume:

θ =
volume of water
total soil volume

. (1)

The amount of voids in the soil is expressed by the porosity η:

η =
volume of voids
total soil volume

. (2)

Further, we will make use of relative soil moisture values, which are defined
as θ

η , and reflects the fraction of pores that are filled with water. A relative soil
moisture value of 1 hence indicates that all the voids of the soil are filled with
water.

From this GLEAM data set, daily data covering Australia were selected. It is
well known that Australia contains large areas of arid and semi-arid land and is
vulnerable to the effects of climate change, in particular to the expected drying
trend for the next 50–100 years [19]. Already now, substantial agricultural areas
are affected by periodic droughts.

Unlike in many other drought characterization studies, it was decided not
to convert the daily values to monthly values as these daily values will allow
for the detection of drought periods lasting less than one month. As pointed
out by Byun and Wilhite [20], an affected drought region can return to normal
conditions with only one day’s rainfall. In order to be able to calculate spatial
characteristics on the data set, the selected GLEAM data set was reprojected
to the Lambert Azimuthal Equal Area coordinate system, resulting in a pixel
resolution of 27.442 km × 29.079 km.

3 Data Pre-processing and Drought Identification

3.1 Selection of the Threshold for Defining a Drought

Identifying droughts directly on the basis of the soil moisture values is not appro-
priate, as the same soil moisture value can indicate a rather dry soil for one soil
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type whereas for another soil type it can indicate a relatively moist soil. There-
fore, one has to resort to a variable with an unambiguous interpretation. Sheffield
and Wood [8,9] introduced the idea of using a percentile level of a drought vari-
able as threshold for defining a drought. This idea is also used in this study.
A percentile value of 10%, reflecting that one is facing drought conditions in
10% of the time, is chosen for each pixel. This value can also be regarded as
the value that separates moderate from severe and more extreme droughts [3].
Furthermore, as to allow the soil moisture values of the neighbouring locations
to take part in the threshold for the pixel at hand, and to establish a smoother
transition between the relative soil moisture values at the thresholds for neigh-
bouring pixels, a 3 × 3-neighbourhood was identified around the pixel at hand.
The relative soil moisture value at the threshold for this pixel is then determined
on the basis of the empirical cumulative distribution function of all soil moisture
values observed at all time steps within the neighbourhood. This idea can be
extended easily when one aims at taking into account larger neighbourhoods
such as regions with the same land cover type.

3.2 Delineation of Droughts Through Mathematical Morphology

After selecting only those pixels with a value below the 10th percentile value,
a time series of binary maps indicating which locations possibly belong to a
drought are obtained (see Fig. 1 for an example of such a map). It is clear that
applying the threshold results in a scattered pattern, showing isolated single
pixels indicated as dry and larger dry regions containing pixels that are denoted
as not dry. This also occurs in the time dimension. Pixels can be indicated as dry
at one time step, whereas at subsequent time steps, they are denoted as not dry,
followed by being dry in the time steps thereafter. Hence, a processing procedure
is required in order to smooth these irregularities away. A method well suited for
this purpose is mathematical morphology [10], which aims at simplifying images
by retaining the essential shape characteristics and removing irrelevancies [21].

By using the basic operators from mathematical morphology, i.e. erosion and
dilation, the salt and pepper noise, i.e. the holes within the larger events and the
smaller droughts, can be filled or removed, respectively. To apply these operators,
a structuring element is first determined whose size influences the size of the
droughts that will be removed and the holes that will be filled. As a drought has
a spatio-temporal character, it is chosen to employ a structuring element that
has space-time dimensions. To this end, the thresholded maps of the time series
are placed one after the other, and a three-dimensional structuring element is
applied to this series. Different sizes of structuring elements were employed of
which the smallest a 3 × 3 × 3- and the largest a 7 × 7 × 7-box, of which the
first two dimensions indicate the spatial size of the structuring element and the
third dimension indicates the number of time steps that is taken into account.
It should be noted that other choices could be made one could for instance opt
to take into account more time steps resulting in a structuring element of size
3 × 3 × 7. Future research will encompass drought identification with a more
diverse set of structuring elements.
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Fig. 1. Possible drought locations after thresholding a percentile map

Consider the space E of all pixels at all time steps, of which the spatio-
temporal series of dry-denoted pixels A is a subset. With each point x of the
space E, a structuring element B(x), e.g. a box, is associated. The erosion ε and
dilation δ of A are then given by:

ε(A) = {x | B(x) ⊆ A} (3)
δ(A) = {x | B(x) ∩ A �= ∅}. (4)

The compositions γ = δ ◦ ε and φ = ε ◦ δ are called the morphological opening
and closing respectively. By first applying a morphological opening followed by
a morphological closing, an open-close filter is created and the salt and pepper
noise is removed.

Figure 2 illustrates a resulting map after applying an open-close filter to
the thresholded time series (see Fig. 1 for an example of a map from this time
series) and with the 3 × 3 × 3-box structuring element. Different colors are used
to illustrate the different droughts. This figure clearly shows that at the given
time step, the green-coloured drought is not spatially contiguous. However, as in
former or later time steps, the currently isolated green parts merge, these parts
belong to the same event. Events smaller than the size of the chosen structuring
element will not be identified. By using the dilation operator it is possible that
pixels that were originally denoted as not dry, i.e. their value is higher than the
imposed threshold, will become part of the identified drought. By enlarging the
size of the structuring element to e.g. a 5×5×5-box, fewer drought events will be
identified of which none will be smaller than the size of this enlarged structuring
element.

When applying a 7×7×7-structuring element to the thresholded time series,
it was noted that for the date given in Fig. 1, no single drought event was obtained
(data not shown), not even a part of the larger green drought of Fig. 2. The reason
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Fig. 2. Resulting droughts after application of an open-close filter to the scattered map
of Fig. 1 (Color figure online)

herefore is that the larger 7× 7× 7-structuring element does not fit between the
salt noise. After applying the erosion operator in the first step of the open-close
filter, none of the pixels is still indicated as dry. This result is not desirable
as from Fig. 1 it is clear that a quite large contiguous area, apart from some
isolated pixels, is dry. This area is larger than the 7 × 7 × 7-structuring element
and should hence be identified. This can be dealt with by gradually eliminating
the noise components by using an open-close filter iteratively, starting from a
small-sized structuring element in the first iteration and by gradually enlarging
the structuring element to the desired size in the different iterations. Such a
filter is called an alternating sequential filter (ASF) [22] and has already been
applied to filter images for which the elimination of large noise components with
an open-close filter destroys the original image too much [23,24]:

ASFi = (φi ◦ γi) ◦ (φi−1 ◦ γi−1) ◦ . . . ◦ (φ1 ◦ γ1), (5)

with i representing the i-th iteration, γ1 and φ1 representing the opening, respec-
tively closing operator with the smallest structuring element. ASF1 hence corre-
sponds to the open-close filter applied in the previous paragraph. In this study
larger ASF filters were also applied in order to compare the results of directly
applying a larger-sized structuring element to the results of gradually enlarging
the structuring element. ASF2, with a 3 × 3 × 3- and a 5 × 5 × 5-structuring
element, and ASF3 with a 3 × 3 × 3-, a 5 × 5 × 5- and a 7 × 7 × 7-structuring
element were applied to the time series. Figure 3 illustrates the obtained results
after applying ASF2 and ASF3. It can be seen that the larger drought (green-
coloured in Fig. 2) also appears in the result after applying ASF3. This favours
the application of an ASF-filter instead of directly applying an open-close filter
with a larger structuring element. The splitted drought, purple-coloured in the
top panel of Fig. 3, is identified by ASF2, however, its parts are too small to
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be identified by ASF3. Furthermore, it is noticed that these parts turn out to
belong to an event different from the larger drought (green-coloured in Figs. 2
and 3), whereas after application of the open-close filter, they result to be part
of this larger drought (green-coloured in Fig. 2). Table 1 lists the number of com-
pleted drought events obtained for different sizes of the structuring element.
As is expected, the larger the structuring element, the smaller the number of
droughts identified.
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Fig. 3. Delineated droughts after application of an alternating sequential filter with a
3 × 3 × 3- and 5 × 5 × 5-structuring element (top panel) and a 3 × 3 × 3-, a 5 × 5 × 5-
and a 7 × 7 × 7-structuring element. (Color figure online)
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Table 1. Number of completed drought events for different sizes of neighbourhoods
and the structuring element

Size of the structuring element Number of droughts

3 × 3 × 3 1866

ASF2 348

ASF3 118

4 Drought Characteristics

For each of the identified droughts, characteristics reflecting their temporal and
spatial component and their intensity level can be determined. The temporal
component of a drought is naturally given by its duration. With respect to the
spatial component and the intensity level, a characteristic that summarizes the
affected area and the intensity of the event is needed. The maximal area covered
by the drought could characterise the affected area. However, it might be more
informative to aggregate the τ largest daily areal extents. In order to be in line
with the size of the structuring elements that were used in the previous section,
it was chosen to aggregate as many largest daily areas as the length τ of the
structuring element in the time dimension. Similarly, w.r.t the intensity, the τ
smallest daily percentile values were aggregated. An ordered-weighted-averaging
(OWA) operator [25] was used to aggregate the respective values. An OWA
operator F : Rn → R of arity n has a weighting vector W = (w1, w2, . . . , wn)T

associated with it, for which wi ∈ [0, 1] and
∑n

i=1 wi = 1, and takes the following
form:

F (a1, a2, . . . , an) =
n∑

i=1

wibi, (6)

with bj the j-th largest element of {a1, a2, . . . , an}.
In the current study, it was chosen to give more weight to the larger daily

areal extents, therefore, an orness of 0.75 was used. Similarly, an orness of 0.25
was used for the intensity level meaning that more weight was given to the
smaller percentile values. The method of Fullér and Majlender [26] was used to
obtain weights corresponding to these orness-values ensuring that the dispersion
of the weights is maximal. Table 2 lists these weights for OWA operators of arity
3, 5 and 7.

Figure 4 shows the histograms of the obtained duration, affected area and
intensity, for the different droughts obtained after applying the open-close fil-
ter with a 3 × 3 × 3-structuring element, ASF2 and ASF3. It can be seen that
the longest droughts become shorter when larger structuring elements are used.
Similarly, the largest affected area becomes smaller when larger structuring ele-
ments are used. This is due to the fact that in order to retain a drought event
with a large structuring element, the structuring element has to fit entirely, in
space and time, within the thresholded time series. This also holds for the tails
of the droughts, resulting in longer and larger major droughts when smaller
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Table 2. Weights used by the OWA operators of different arities corresponding to the
length τ of the structuring element B(x) in the time dimension.

orness = 0.75 orness = 0.25

Length τ of B(x) 3 5 7 3 5 7

w1 0.6162 0.4594 0.3637 w1 0.1162 0.0477 0.0279

w2 0.2676 0.2608 0.2390 w2 0.2676 0.0840 0.0429

w3 0.1162 0.1480 0.1556 w3 0.6162 0.1480 0.0659

w4 - 0.0840 0.1012 w4 - 0.2608 0.1012

w5 - 0.0477 0.0659 w5 - 0.4594 0.1556

w6 - - 0.0429 w6 - - 0.2390

w7 - - 0.0279 w7 - - 0.3637
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Fig. 4. Histograms of the characteristics of the different droughts identified after apply-
ing an open-close filter (left panels), ASF2 (middle panels) or ASF3 (right panels) to
the time series of thresholded images. Neighbourhoods used for thresholding the images
are 3 × 3. Please note the different scaling of the axes.



296 H. Vernieuwe et al.

structuring elements are used. Regarding the identified drought intensities, it
can be seen that the highest intensity values become smaller, i.e. only the more
intense droughts are obtained, for larger structuring elements. Depending on
the goal of the end-user, e.g. water managers, insurance companies, govern-
ments, farmers, etc. one might opt to use other sizes of structuring elements to
identify droughts. Furthermore, the spatial resolution of the data set might also
influence the size of the structuring element. On the basis of the identified and
characterised droughts, all recorded historical droughts can then be queried such
that end-users can relate a possible current drought to historical ones in order
to better cope with the event and take appropriate measures. Furthermore, the
characteristics can serve as a basis for a probabilistic model such that probabil-
ities of occurrence of droughts can be calculated, as will be explored in future
research.

5 Conclusions

It was shown that operators from mathematical morphology can serve as a basis
to objectively identify drought events in space and time. Therefore, a time series
of spatially distributed soil moisture was used on which first a threshold corre-
sponding to the 10% percentile of a 3×3-neighbourhood was set. Operators from
mathematical morphology were then applied to this spatio-temporal data set to
identify drought events. Similarly as noticed in image filtering of images with a
high level of noise, it was observed that by applying an alternating sequential
filter, drought events speckled with salt noise are better identified compared to
directly applying an open-close filter with larger structuring elements. Further-
more, characteristics reflecting the spatio-temporal extent and the intensity of
the identified droughts were determined using OWA operators. These character-
istics can serve as a basis for end-users to better cope with future drought events
and take appropriate measures.
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Abstract. On the one hand, a user vocabulary is often used by soft-
computing-based approaches to generate a linguistic and subjective
description of numerical and categorical data. On the other hand, knowl-
edge extraction strategies (as e.g. association rules discovery or cluster-
ing) may be applied to help the user understand the inner structure of
the data. To apply knowledge extraction techniques on subjective and
linguistic rewritings of the data, one first has to address the question of
defining a dedicated distance metric. Many knowledge extraction tech-
niques indeed rely on the use of a distance metric, whose properties have
a strong impact on the relevance of the extracted knowledge. In this
paper, we propose a measure that computes the dissimilarity between
two items rewritten according to a user vocabulary.

Keywords: Fuzzy partition · Data personalization
Dissimilarity measure

1 Introduction

Helping users extract and understand the content of a raw data set is a cru-
cial task in data mining. Most of the datasets contain the description of items
on attributes that are generally of a numerical or a categorical nature. It is
cognitively difficult for an end-user to browse and analyze a large collection of
numerical and categorical data, and it is moreover, technically speaking, almost
impossible to generate an interpretable graphical view of a set of data described
on more than 3 dimensions. To overcome these difficulties, soft-computing-based
approaches of data management leverage a user vocabulary to turn numerical
and categorical variables (i.e. attributes) into linguistic variables. Once rewrit-
ten according to the user vocabulary, concise and easily interpretable views of
the data may be generated to give the user an insight into the content of the
dataset [1]. In addition, data mining techniques, as clustering algorithms for
instance, may be used to discover the inner structure of the data, whose descrip-
tion also constitutes valuable knowledge [2]. Many data mining techniques rely
on a distance measure to determine the similarity of two items. In this work,
we address the question of computing the distance between two items rewritten
according to a user vocabulary formalized by means of strong fuzzy partitions.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 854, pp. 301–312, 2018.
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This question of a distance measure at the partition level has been notably stud-
ied by Guillaume et al. [3], but the measure they proposed sometimes leads to
questionable results as we will see in Sect. 2.4.

We propose in this paper a new dissimilarity measure at the partition level
that somehow reconsiders the indistinguishability relation introduced by the use
of a fuzzy vocabulary for the sake of a better interpretability of the generated
results. The final objective is to use the proposed dissimilarity measure to build
clusters of data rewritten according to a user vocabulary instead of considering
their numerical and categorical values. Motivation for that are manifold. First,
the indistinguishability area defined by the cores of the fuzzy sets will reduce the
number of distinct rewritings to consider, thus making it possible to handle larger
datasets. Second, translating numerical and categorical values into linguistic
terms allows for the conception of graphical views representing the obtained
clusters on many dimensions at the same time [1], which cannot be envisaged on
numerical/categorical data. And third, starting with a rewriting step of the data
is a way to personalize the data-to-knowledge translation process and to make
it more easily interpretable for end-users. But the relevance of the structure
built by a clustering highly depends on the properties of its underlying distance
measure.

In this paper, we focus on the definition of dissimilarity measures at the
fuzzy partition level and the study of their properties. Their use by a clustering
process will be the next step. The rest of the document is structured as follows.
In Sect. 2, preliminary notions regarding fuzzy-set-based vocabularies and dis-
similarity measures at the partition level are recalled. Sections 3.1 and 3.2 detail
our proposed dissimilarity measures, respectively for numerical and categorical
domains.

Motivating Example

To illustrate the motivation for a new dissimilarity measure, let us consider
the vocabulary, i.e. fuzzy partition, illustrated in Fig. 1 that turns the mileage
of a car into a linguistic variable that may take the values {veryLow, low,
medium, high, veryHigh}. In the situation illustrated by Fig. 1, a dissimilar-
ity measure at the partition level has to be able to capture the fact that t1 is
closer to t3 than to t6 because the linguistic value that describes t1, namely
low mileage, is closer to medium mileage than to veryHigh mileage, this case
being well covered by the measure defined in [3]. However, contrary to [3], we
argue that the indistinguishability relation should be limited to the core of the
fuzzy sets (as e.g. between t3 and t4), and that it appears more natural and
interpretable to consider t3 as closer to t2 than to t5 even if these last two
points satisfy the linguistic value medium mileage at the same degree (in this
case µmedium(t2) = µmedium(t5) = 0.7). This expected behavior is all the more
important if the considered task is to build groups of items having close linguistic
rewritings. Using a dissimilarity measure that is more appropriate to compare
rewritten data, we expect that more meaningful groups of items will be obtained
especially by avoiding grouping tuples that are significantly different.
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Fig. 1. Distance computation at the partition level between numerical values

Even if meaningful fuzzy partitions may be built on categorical attributes,
using a dedicated graphical interface as ReqFlex for instance [4] (Fig. 2), distance
measures between categories or discrete fuzzy sets are generally reduced to a
Boolean test of equality. A second contribution of this paper is to propose a
measure to compute the dissimilarity between two categorical values that takes
into account the structure of its underlying user vocabulary. The idea is to
consider that discrete fuzzy sets sharing some categories should be considered as
somewhat semantically related. By doing so, one may infer a weak partial order
on discrete fuzzy sets defined on top of a categorical attribute. Thus, categorical
values taken from these two sets should be considered closer to each other than
categorical values taken from two sets having an empty intersection. To illustrate
this proposal, let us consider a possible fuzzy vocabulary describing different car
brands according to their relative reliability reputation (Fig. 2). Then, we argue
that the brand Chrysler, characterized as a fully moderatelyReliable brand, should
be considered as closer to VW, a reliable brand, than Daewoo, that belongs to
the set of poorlyReliable brands, because moderatelyReliable brands and reliable
brands have in this case much more in common than with poorlyReliable brands.
Obviously, the relevance of this interpretation of semantic closeness is context-
dependent, and most of all depends on the point-of-view expressed by the user
through the definition of his/her vocabulary.
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Fig. 2. Example of a subjective vocabulary on a categorical attribute
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2 Preliminary Notions

Let D : {t1, t2, . . . , tm} be a set of m items to analyze. Each item is initially
defined by the values it takes on n attributes {A1, A2, . . . , An} that may be of a
numerical or categorical type. More formally, if one denotes by Xi the definition
domain of attribute Ai then t ∈ X1 × X2 × . . . × Xn. One denotes by t.A the
value taken by item t on attribute A.

2.1 Fuzzy-Set-Based User Vocabulary

We consider that a vocabulary composed of Fuzzy Partitions (FP) is defined
on the attributes {A1, A2, . . . , An}. Such a vocabulary, denoted by V =
{V1, . . . , Vn}, formally consists of a set of linguistic variables, associated with
each attribute: Vj is a triple 〈Ai, {vi,1, . . . , vi,qi}, {li,1, . . . , li,qi}〉 where qi denotes
the number of modalities associated with attribute Ai, the vi’s denote their
respective membership functions defined on domain Xi and the li’s their respec-
tive linguistic labels, generally adjectives of the natural language. For instance,
an attribute Ai describing prices may be associated with qi = 3 modalities,
in turn associated with the labels li,1 = ‘cheap’, li,2 = ‘reasonable’ and li,3 =
‘expensive’.

It is assumed that for all attributes, each value may be completely rewritten
in terms of V : ∀y ∈ Dj ,

∑qj
s=1 vjs(y) = 1. Moreover, it is assumed that the

partitions defined on numerical attributes form a strong FP [5], which leads to
the constraint that y can partially satisfy up to two adjacent modalities. Figures 1
and 2 are examples of such partitions defined on a numerical and a categorical
attribute respectively.

2.2 Item Rewriting Vector

Initially defined in a numerical and categorical space, an item may be rewritten
using the linguistic terms from the user vocabulary. The result of such a rewriting
step is called an item rewriting vector.

Definition 1. One denotes by Rt the rewriting vector of an item t wrt. a user
vocabulary V, this vector being the concatenation of the satisfaction degrees
obtained by t on the different terms that compose V. Such a vector is represented
in the following way:

Rt = 〈µv1,1(t), µv1,2(t), . . . , µv1,q1
(t), . . . , µvn,1(t), µv1,n(t), . . . , µv1,qn

(t)〉.

We also denote by RAi
t the part of the whole rewriting vector Rt that concerns

the attribute Ai, RAi
t = 〈µvi,1(t.Ai), µvi,2(t.Ai), . . . , µvi,qi

(t.Ai)〉.
Example 1. Table 1 shows the data (attribute values and rewriting vectors from
Fig. 1) that have to be considered when computing a dissimilarity at the FP
level.
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Table 1. Items from Fig. 1 and their rewriting vector

t t.mileage Rmileage
t t t.mileage Rmileage

t

t1 50K 〈0, 1, 0, 0, 0〉 t2 70K 〈0, 0.3, 0.7, 0, 0〉
t3 74K 〈0, 0, 1, 0, 0〉 t4 80K 〈0, 0, 1, 0, 0〉
t5 90K 〈0, 0, 0.7, 0.3, 0〉 t6 134K 〈0, 0, 0, 0, 1〉

2.3 Properties of a Dissimilarity Measure at the Partition Level

When it comes to defining a dissimilarity that takes into account fuzzy sets,
then three types of comparison may be envisaged [6]: (1) between two points
that belong to a same fuzzy set, (2) between a point and a fuzzy set and, (3)
between two fuzzy sets [7]. As shown in [3], (that is, to the best of our knowledge,
the only existing approach addressing the question of a distance calculation at
the fuzzy partition level) the measure we have to define has, in some sense, to
combine these three types of fuzzy distances.

In fine, we aim at computing the dissimilarity between two items wrt. the
considered vocabulary V. This measure obviously relies on the aggregation of
dissimilarities computed on each considered dimension. On a given dimension
Ai, the dissimilarity at the partition level of two items, say t and t′, has to
combine the dissimilarity between the two numerical/categorical values (t.Ai

and t′.Ai) and between their rewriting wrt. V: RAi
t and RAi

t′ . The expected
behavior of the function to build is that the farther t.Ai and t′.Ai, the higher
the returned dissimilarity value. But, this function also has to take into account
the indistinguishability relation embedded in the definition of a fuzzy subset,
which means that the dissimilarity between RAi

t and RAi

t′ should be 0 if t.Ai and
t′.Ai fall in the core of a same partition element.

On any dimension involved in a rewriting vector, the function to define has
to fulfil the following properties to constitute a dissimilarity:

– positiveness: d(t, t′) ≥ 0,
– identity of indiscernibles: a property that is generally defined in the following

way d(t, t′) = 0 ⇔ t = t′ but extended as follows in our particular context
d(t, t′) = 0 ⇔ Rt = R′

t to capture the indistinguishability relation embedded
in the FP,

– symmetry: d(t, t′) = d(t′, t).

A dissimilarity that also satisfies the triangle inequality: d(t, t′) ≤ d(t, t′′) +
d(t′′, t′), is called a semi-distance.

2.4 Behavior of Existing Approaches

In this subsection, we show that the existing approaches (a dedicated one [3]
and a naive one) to the computation of a dissimilarity degree at the FP level
lead, in some particular cases, to results difficult to understand and interpret.
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A Generic Dissimilarity Measure. Whatever the type of the attribute Ai

concerned, numerical or categorical, a way to compute the dissimilarity of two
items t and t′, or more precisely their rewriting vectors RAi

t and RAi

t′ , is to
simply compare one-by-one the respective membership degrees of t and t′ on
the different terms of the vocabulary. Such a dissimilarity measure, denoted by
di1(t, t

′) may be formalized as follows:

di1(t, t
′) =

1
qi

qi∑

j=1

|µvi,j
(t) − µvi,j

(t′)|.

The main advantage of this basic strategy is that it can be applied to both
numerical and categorical attributes. However it suffers from the fact that it does
not take into account the structure of the concerned FP. It indeed considers at
the same distance of 1 any pair of values falling in the core of two distinct
partition elements, whatever the position of these elements in the partition. In
the example illustrated in Fig. 1, dmile.

1 (t1, t3) = dmile.
1 (t3, t6) = dmile.

1 (t1, t6) = 1.

A Pseudo-Metric at the FP-Level. In [3], the authors address the question
of distance calculation at the FP level, but for numerical attributes only. They
especially define a pseudo-metric for the case of strong FP. This metric relies
on a strict discretization of the universe of the concerned attribute as shown
in Fig. 3 that form crisp areas denoted {I1, I2, . . . , Iqi}. Then, to compute the
distance between two points on a given attribute Ai, their position within this
discretization is first computed using the following function:

P (t) = I(t) − µvi,I(t)(t),

where I(t) is the index of the area (I(t) ∈ {I1, I2, . . . , Iqi}) in which t is located.
Then, the dissimilarity is quantified by the function di2(t, t

′):

di2(t, t
′) =

|P (t) − P (t′)|
qi − 1

.

Example 2. To illustre how dissimilarity degrees are computed using the measure
d2, let us consider the points t2, t4 and t5 from Fig. 1. Then, these points are
assigned to the following areas: I(t2) = I(t4) = 3 and I(t5) = 4. Considering that
µvmedium

(t2) = 0.7 and µvhigh
(t5) = 0.3, we thus obtain the following distance

degrees:

– dmile.
2 (t2, t4) = |2.3−2|

4 = 0.075,
– dmile.

2 (t4, t5) = |2−3.7|
4 = 0.425,

– dmile.
2 (t2, t5) = |2.3−3.7|

4 = 0.35.

The metric d2 handles well the distance between the partition elements to
which the two points belong. If one goes back to the situation illustrated in
Fig. 1, then d2(t1, t3) < d2(t1, t6). However, despite the fact that the core of a
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Fig. 3. Discretization of a numerical domain used by the metric d2

partition element introduces an area of indistinguishability, it appears desirable
to take into account the position of the points within the indistinguishability
area when computing a distance with points outside this area. For the sake
of understandability and interpretability, but also to improve the relevance of
the data mining task that relies on a distance calculation, it indeed appears
relevant and desirable to consider t4 (Fig. 1) closer to t5 than to t2. However,
in this particular case, as t2 and t4 fall in the same area according to the crisp
discretization suggested in [3] (I(t2) = I(t4) = 3), then d2(t2, t4) < d2(t4, t5),
which, we think, is highly questionable.

3 A Dissimilarity at the FP Level

In this section, we propose a measure to compute the dissimilarity between two
points that combines their respective position at the partition level as well as
their value dissimilarity. In this sense, the proposed measure is inspired from
works done in the context of distance calculation in image processing, and espe-
cially the fuzzy geodesic distance suggested in [8].

Definition 2. We denote by d∗(t, t′) the global dissimilarity to determine
between t and t′ taking into account the structure of the FPs that form the vocab-
ulary V. d∗(t, t′) relies on the aggregation of dissimilarity degrees on the different
considered dimensions, we thus denote by di∗(t, t

′) the dissimilarity between t and
t′ on attribute Ai:

d∗(t, t′) =
1
n

n∑

i=1

di∗(t, t
′). (1)

The functions di∗’s are defined in such a way that they return a dissimilarity
degree in the unit interval, hence the co-domain of d∗(t, t′) is also [0, 1]. In the
rest of this section, we provide definitions of di∗(t, t

′), first when the concerned
attribute is of a numerical type associated with strong FPs (Sect. 3.1), then
when it concerns a categorical attribute associated with a discrete fuzzy partition
(Sect. 3.2).
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3.1 For Numerical Attributes

We first address the question of computing the distance at the FP level between
two points t and t′ when the concerned attribute is of a numerical nature. To
compute the distance between two values wrt. a strong FP, we consider the
path formed by the boundaries of the partition elements that are above the line
y = 0.5. As illustrated in Fig. 4, this path corresponds to the union of the convex
hulls of each partition element. We denote by Li this path for the partition Vi and
|Li| its length. A first strategy to define the limits of this path is to consider the
minimum and maximum values present in the data on the concerned attribute.
This strategy being very sensitive to extremum values, we propose a second one
leveraging the fact that all the values inside the core of a partition element are
indistinguishable. We thus consider that all the values fully satisfying the first
(resp. last) element of the partition are at the same distance wrt. a point taken
outside the core of this element. This allows us to consider that the path Li

starts with the right bound of the core of the first partition element and ends
with the left bound of the core of the last element (See. Fig. 4). So every value
inside the core of the first (resp. last) element of the partition is treated as the
right (resp. left) bound of the core of the element in the dissimilarity calculation.

µ

0

1

A

Fig. 4. Hull of a strong FP

To compute the dissimilarity between two points wrt. a strong FP, we then
distinguish between two cases. When the two values to compare fall in the core
of a same modality, then we assume their distance to be equal to 0 so as to
satisfy the indistinguishability relation introduced by the different fuzzy sets. In
all other cases, the distance between two values corresponds to the length of the
path following Li between these two values. Such a path between two values,
say t and t′1, is denoted by Li(t, t′) as illustrated in Fig. 5.

Definition 3. Let Ai be a numerical attribute, Vi its FP and Li its upper delim-
iting path. Then di∗1

(t, t′) is defined as follows:

1 For the sake of simplicity, t and t′ are used instead of t.Ai and t′.Ai respectively to
lighten the notation.
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Fig. 5. Path between two values t and t′

di∗1
(t, t′) =

{
0 if ∃v ∈ Vi, st. µv(t) = µv(t′) = 1,
|Li(t,t

′)|
|Li| otherwise.

(2)

Proposition 1. The proposed definition of di∗ when Ai is numerical is a dis-
similarity.

Proof. The dissimilarity between two values t and t′ wrt. a strong FP being
computed as the ratio between two path lengths, then the obtained dissimilar-
ity degree is obviously positive and symmetrical. About the identity of indis-
cernibles, that should be interpreted in our case as the identity of indistin-
guishables, the conditional definition of di∗(t, t

′) is used to guarantee such an
indistinguishability relation between values inside the core of a fuzzy set. If
µv(t) = µv(t′) = 1 and due to the structural properties of the strong FP used
on numerical attributes then di∗(t, t

′) = 0 ⇔ RAi
t = RAi

t′ .

Remark 1. The satisfaction of the identity of indistinguishables is in opposition
with the triangle inequality. Indeed, considering a partition element v and three
points t, t′ and t′′ such that µv(t) = µv(t′) = 1, µv(t′′) < 1 and t ≤ t′ < t′′

(resp. t′′ < t ≤ t′), then di∗(t, t
′) = 0 and di∗(t, t

′′) ≥ di∗(t
′, t′′) (resp. di∗(t, t

′′) ≤
di∗(t

′, t′′)). Thus, one observes that di∗(t, t
′′) > di∗(t, t

′) + di∗(t
′, t′′) which violates

the triangle inequality property. The triangle inequality is however satisfied if
there is no situation of indistinguishability between the three values considered.

Example 3. If one goes back to the situation depicted in Fig. 1 and Table 1, then
the proposed definition of di∗(t, t

′) leads to the expected behavior as shown by
the dissimilarity matrix Table 2.

3.2 For Categorical Attributes

Contrary to numerical attributes, categorical ones are generally defined on non-
ordered domains. Hence, no explicit distance can be directly defined for a cate-
gorical attribute.
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Table 2. Distance matrix between the items detailed in Table 1

t1 t2 t3 t4 t5 t6

t1 0 0.18 0.22 0.27 0.36 0.76

t2 0.18 0 0.04 0.09 0.18 0.58

t3 0.22 0.04 0 0 0.15 0.55

t4 0.27 0.09 0 0 0.09 0.5

t5 0.36 0.18 0.15 0.1 0 0.4

t6 0.76 0.58 0.55 0.49 0.4 0

The question of computing a distance between categorical values has already
largely been addressed, especially by the data mining community [9,10]. Most
of the proposed measures rely on contextual information, structural properties
(considering clusters of data for instance) or correlations with other dimensions
than the concerned categorical one [11,12]. The seldom measures that only make
use of the concerned categorical attribute deduce links between categorical values
if their frequency of appearing is close [13,14]. So, to the best of our knowledge,
the dissimilarity defined in this section is the first one that addresses the question
of comparing categorical values according to a discrete FP.

By defining a fuzzy-set-based vocabulary on a categorical attribute, the user
expresses a subjective point-of-view about the way the categories have to be
interpreted. A discrete fuzzy set gathers categories that define, combined all
together, a “semantic concept”. Categories regrouped in a same fuzzy partition
element can be discriminated according to their respective membership degree
within the set. When the user gradually assigns a categorical value to two differ-
ent partition elements, we consider that he/she creates a semantic link between
the two fuzzy-sets concerned. The idea behind the dissimilarity we propose for
categorical attributes is to deduce, not an order, but semantical links between
partition elements based on their intersections. These links are used in the pro-
posed dissimilarity measure to compute a distance between two categorical val-
ues that belong to two different partition elements. The relevance of the links
deduced between fuzzy sets based on their intersections obviously depends on
the concerned applicative context and the semantics of point-of-view expressed
by the user in his/her vocabulary.

Principles and Properties of the Proposed Dissimilarity. Let t and t′

be two categorical values satisfying the fuzzy terms v and v′ respectively (v and
v′ may be identical) from an FP Vj . The principle of the dissimilarity measure
is to combine the membership of t and t′ to their respective partition elements
(i.e. v and v′) and the semantic closeness of v and v′. In other words, the more
t and t′ belong to a “semantically” close partition elements, the closer they are.

This semantic closeness between two elements from an FP is denoted by
CJ(v, v′) and may be defined by means of the Jaccard index that quantifies the
proportion of elements v and v′ share.
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CJ (v, v′) =
∑

x∈D min(µv(x), µv′(x))
∑

x∈D max(µv(x), µv′(x))
.

Definition 4. For a categorical attribute Ai, the measure di∗ is defined as fol-
lows:

di∗(t, t
′) = 1 − max

j,k=1..qi

(µvi,j

(t), µvi,k
(t′), CJ (vi,j , vi,k)), (3)

where the product t-norm 
 is used in our case for aggregating µvi,j
(t), µvi,k

(t′)
and CJ (vi,j , vi,k) to introduce compensation between the aggregated criteria.

Proposition 2. di∗ as defined in Eq. 3 is a dissimilarity.

Proof. The definition of di∗ when the concerned attribute Ai is categorical is
obviously positive as both µvi,j

(t), µvi,k
(t′) and CJ(v, v′) are defined in the

unit interval.The Jaccard index and the product t-norm being symmetric, their
combination in di∗ is so as well. di∗(t, t

′) = 0 iff. µvi,j
(t) = 1, µvi,k

(t′) = 1
and CJ(v, v′) = 1. Due to the constraints imposed on the FP (Sect. 2.1) and
especially the fact that each item is completely rewritten by V then µvi,j

(t) = 1
(resp. µvi,k

(t′) = 1) and CJ(v, v′) = 1 implies v = v′ and Ri
t = Ri

t′ .

Remark 2. We consider that it would be artificial and senseless to introduce a
notion of transitivity in the definition of di∗. It would indeed be debatable to
consider that a value belonging to a partition element vi is somewhat similar to
a value belonging to an element vj because vi has a non-empty intersection with
vk that itself has a non-empty intersection with vj , especially if vi and vj have
an empty intersection.

Example 4. Table 3 gives some dissimilarities computed between different car
brands wrt. the FP illustrated in Fig. 2.

Table 3. Dissimilarity matrix for some car brands according to the FP Fig. 2

VW Mercedes AUDI Ford Peugeot Daewoo

VW 0 0 0.2 0.4 0.8 1

Mercedes 0 0 0.2 0.4 0.8 1

AUDI 0.2 0.2 0 0.4 0.8 1

Ford 0.4 0.4 0.4 0 0.8 1

Peugeot 0.8 0.8 0.8 0.8 0 0.75

Daewoo 1 1 1 1 0.75 0
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4 Conclusion and Perspectives

The rewriting of data according to a fuzzy user vocabulary makes it possible
to personalize a data-to-knowledge process. In order to be able to apply data
mining tools on linguistic and subjective representations of the data, it is first
necessary to address the question of quantifying the dissimilarity between two
such representations. We thus provide in this paper a dissimilarity measure that
takes into account the structure of the fuzzy partitions that form the user vocab-
ulary. We show on some examples that the proposed dissimilarities return rele-
vant results and better discriminate the compared values without sacrificing the
indistinguishability relation introduced by the use of fuzzy partition elements.

The next step is obviously to show that the use of this dissimilarity by a
clustering algorithm leads to more meaningful and relevant results thanks to a
better discrimination of the compared items.
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Raúl Pérez-Fernández1, Irene Dı́az2(B),
Susana Montes3, and Bernard De Baets1

1 KERMIT, Department of Data Analysis and Mathematical Modelling,
Ghent University, Coupure links 653, 9000 Gent, Belgium

{raul.perezfernandez,bernard.debaets}@ugent.be
2 Department of Computer Science, University of Oviedo, Oviedo, Spain

sirene@uniovi.es
3 Department of Statistics O.R. and Mathematics Didactics,

University of Oviedo, Oviedo, Spain
montes@uniovi.es

Abstract. A common problem in social choice theory concerns the
aggregation of the rankings expressed by several voters. Two different set-
tings are often discussed depending on whether the aggregate is assumed
to be a latent true ranking that voters try to identify or a compromise
ranking that (partially) satisfies most of the voters. In a previous work,
we introduced the notion of monotonicity of a profile of rankings and
used it for statistically testing the existence of this latent true ranking.
In this paper, we consider different extensions of this property to the
case in which voters provide rankings with ties.

Keywords: Social choice · Monotonicity · Ranking · Signature

1 Introduction

The aggregation of the rankings expressed by several voters is a classical problem
in social choice theory that can be traced back to the 18-th century. Arrow [1]
pointed out that “each individual has two orderings, one which governs him in his
everyday actions, and one which would be relevant under some ideal conditions
and which is in some sense truer than the first ordering. It is the latter which
is considered relevant to social choice, and it is assumed that there is complete
unanimity with regard to the truer individual ordering”. From this reflection,
one could conclude that there are two different settings for the aggregation of
rankings: there exists a latent true ranking that voters try to identify, the goal
of the aggregation being to identify said true ranking, or, contrarily, voters have
conflicting opinions, the goal of the aggregation being to agree on a compromise
ranking. In [2], we described a statistical test for testing the existence of a latent
true ranking based on the notion of monotonicity of a profile of rankings.

Unfortunately, since the monotonicity of a profile of rankings with ties has
not been defined, the aforementioned statistical test cannot be used in case the
c© Springer International Publishing AG, part of Springer Nature 2018
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rankings provided by the voters contain ties. This is a typical problem in real-life
problems where voters might consider that two or more candidates are equally
suitable [3]. Some existing methods for the aggregation of rankings, such as
the method of Kemeny [4] and the method of Schulze [5], are explicitly defined
to aggregate rankings with ties. Others, such as the Borda count [6], need to
be adapted [7]. In the case of our statistical test, we will see that there is an
immediate extension of the property of monotonicity, but we will also propose
other extensions based on the notions of signature and ordered signature that
might play an interesting role when using real-life data.

The remainder of the paper is structured as follows. In Sect. 2, we recall the
notion of monotonicity of a profile of rankings. The natural generalization of this
notion to rankings with ties is provided in Sect. 3. In Sect. 4, we introduce the
notions of signature and ordered signature and discuss their relation with the
property of monotonicity of a profile of rankings with ties. We end with some
conclusions and open problems in Sect. 5.

2 Monotonicity of a Profile of Rankings Without Ties

We consider the problem where several voters express their preferences on a set
C of k candidates. In particular, each of the r voters expresses a ranking �j on
C , i.e., the asymmetric part of a total order relation �j on C . The set of all
possible rankings on C is denoted by L(C ).

Each ranking � on C defines an order relation �≥� on L(C ) according to how
far two rankings in L(C ) are from � in terms of reversals1. For any �i,�j∈ L(C ),
the fact that (�i,�j) ∈ �≥� is denoted by �i �≥� �j .

Definition 1. Let C be a set of k candidates and � be a ranking on C . The
order relation �≥� on L(C ) is defined as

�≥� =
{

(�i,�j) ∈ L(C )2
∣∣∣∣

(∀(ai1 , ai2) ∈ C 2
)

(
(ai1 � ai2 ∧ ai1 �j ai2) ⇒ ai1 �i ai2

)
}
.

Figure 1 displays the Hasse diagram of the order relation �≥� on L(C ) for the
set of candidates C = {a, b, c} and the ranking a � b � c.

In [2], we described a statistical test for testing the existence of a latent true
ranking. This test requires the given profile of rankings to be (close to being)
monotone, i.e., it requires the frequencies with which each ranking is expressed
by the voters to be (close to being) decreasing on the Hasse diagram of the
order relation �≥�0 , for some �0 ∈ L(C ). This ‘closeness to being monotone’ was
used for determining whether the hypothesis of existence of a latent true ranking
should or should not be rejected. For more details, we refer to [2].

1 A reversal is a switch of consecutive elements in a ranking. The minimum number of
reversals needed for changing a given ranking into another one is measured by the
Kendall distance function [8].
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a � b � c

a � c � b b � a � c

c � a � b b � c � a

c � b � a

Fig. 1. Hasse diagram of the order relation �≥� on L(C ) for the ranking a � b � c.

3 Monotonicity of a Profile of Rankings with Ties

In real-life problems, voters might consider that two or more candidates are
equally suitable, and, thus, express a tie between these candidates. In this case,
every voter should be allowed to provide a weak order relation �j on C , i.e.,
a complete and transitive relation on C that might not be antisymmetric. Any
weak order relation � can be written as the union of two relations � and ∼,
where � (called a ranking with ties) represents the antisymmetric part of � and
∼ represents the symmetric part of �. Note that ∼ is an equivalence relation,
and, thus, partitions C into equivalence classes. The set of all rankings with ties
on C is denoted by L∗(C ). As a ranking is a particular case of a ranking with
ties, it obviously holds that L(C ) ⊆ L∗(C ).

In case the voters express rankings with ties instead of rankings, the relation
�≥� needs to be extended to L∗(C ). Note that, for a ranking with ties �i, the
conditions ai1 �i ai2 and ai2 ��i ai1 are no longer equivalent. Therefore, the
former unique condition for rankings (without ties) now needs to be divided in
two parts.

Proposition 1. Let C be a set of k candidates and � be a ranking on C . The
relation �≥� defined as2

�≥� =

⎧⎪⎪⎨
⎪⎪⎩

(�i,�j) ∈ L∗(C )2

∣∣∣∣∣∣∣∣

(∀(ai1 , ai2) ∈ C 2
)

⎛
⎝ (ai1 � ai2 ∧ ai1 �j ai2) ⇒ (ai1 �i ai2)

∧
(ai1 � ai2 ∧ ai2 �i ai1) ⇒ (ai2 �j ai1)

⎞
⎠

⎫⎪⎪⎬
⎪⎪⎭

is an order relation on L∗(C ).

2 For any ranking � on C , the restriction of the relation �≥� on L∗(C ) to L(C )
coincides with the relation �≥� on L(C ). Therefore, the use of the same notation is
justified.
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Figure 2 displays the Hasse diagram of the order relation �≥� on L∗(C ) for
the set of candidates C = {a, b, c} and the ranking a � b � c. Note that this
Hasse diagram coincides with the one used by Kemeny [4] for defining a distance
function on L∗(C ).

a � b � c

a � b ∼ c a ∼ b � c

a � c � b b � a � c

a ∼ c � b a ∼ b ∼ c b � a ∼ c

c � a � b b � c � a

c � a ∼ b b ∼ c � a

c � b � a

Fig. 2. Hasse diagram of the order relation �≥� on L∗(C ) for the ranking a � b � c.

The statistical test introduced in [2] might also be extended by requiring the
frequencies with which each ranking with ties is expressed by the voters to be
(close to being) decreasing on the Hasse diagram of the order relation �≥�0 , for
some �0∈ L(C ).

Unfortunately, the inclination of voters towards expressing ties between can-
didates might prevent the frequencies from being decreasing on the Hasse dia-
gram of the order relation �≥�0 (for any �0∈ L(C )). For instance, the fact that
the ranking with ties a ∼ b ∼ c in Fig. 2 would appear with the highest fre-
quency in a given profile of rankings with ties will make the frequencies with
which each ranking with ties is expressed to be far from being decreasing on
the Hasse diagram of the order relation �≥�0 , for any �0∈ L(C ). Nevertheless,
this might not be due to the absence of a true latent ranking, but due to the
indecision of some of the voters. In particular, the frequencies with which the



Monotonicity of a Profile of Rankings with Ties 317

ranking with ties a ∼ b ∼ c is expressed might be higher than that of a � b � c,
even though the latter is the true latent ranking.

4 Signatures and Ordered Signatures

In this section, we study the notions of signature and ordered signature that will
help to deal with the aforementioned problem.

Definition 2. Let C be a set of k candidates.

(i) The signature S of a ranking with ties � on C , denoted by S (�), is a
vector where the i-th component equals the size of the i-th equivalence class
in �.

(ii) The ordered signature O of a ranking with ties � on C , denoted by O(�), is a
vector where the i-th component equals the size of the i-th largest equivalence
class in �.

The set of all the signatures on C is denoted by S(C ) and the set of all the
ordered signatures on C is denoted by O(C ).

Remark 1. Each signature S ∈ S(C ) leads to a unique ordered signature O ∈
O(C ) by ordering the numbers in S in a decreasing manner. Note that the
lengths of S and O coincide. The fact that a signature S leads to an ordered
signature O is denoted by S � O.

Example 1. Consider the set of candidates C = {a, b, c}. The signature of the
ranking with ties a � b � c is the vector (1, 1, 1) and its ordered signature is
(1, 1, 1). Therefore, it holds that

S (a � b � c) = O(a � b � c) = (1, 1, 1).

Analogously, the signature of the ranking with ties a � b ∼ c is the vector (1, 2)
and its ordered signature is (2, 1). Therefore, it holds that

S (a � b ∼ c) = (1, 2) and O(a � b ∼ c) = (2, 1).

In general, the set of all signatures on C is given by:

S(C ) = {(1, 1, 1), (1, 2), (2, 1), (3)}.
Analogously, the set of all ordered signatures on C is given by:

O(C ) = {(1, 1, 1), (2, 1), (3)}.
These (ordered) signatures can be used for defining two natural order rela-

tions on L∗(C ). In the first order relation, only couples of rankings with ties
belonging to �≥� and that have the same signature are considered to be com-
parable, while, in the second order relation, only couples of rankings with ties
belonging to �≥� and that have the same ordered signature are considered to be
comparable.
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Proposition 2. Let C be a set of k candidates and � be a ranking on C . The
relation �≥S

� defined as

�≥S

� = �≥� ∩ {(�i,�j) ∈ L∗(C )2 | S (�i) = S (�j)},
is an order relation on L∗(C ).

Proposition 3. Let C be a set of k candidates and � be a ranking on C . The
relation �≥O

� defined as

�≥O

� = �≥� ∩ {(�i,�j) ∈ L∗(C )2 | O(�i) = O(�j)},
is an order relation on L∗(C ).

Figures 3 and 4 display the Hasse diagram of the order relations �≥S

� and �≥O

�
on L∗(C ) for the set of candidates C = {a, b, c} and the ranking a � b � c. Note
that we use dashed lines for separating sets of incomparable rankings with ties.

a � b � c a � b ∼ c a ∼ b � c

a � c � b b � a � c

a ∼ c � b

a ∼ b ∼ c

b � a ∼ c

c � a � b b � c � a

c � a ∼ b b ∼ c � a

c � b � a

Fig. 3. Hasse diagram of the order relation �≥S

� on L∗(C ) for the ranking a � b � c.

Obviously, there exists an immediate connection between the three relations.

Proposition 4. Let C be a set of k candidates and � be a ranking on C . The
following statement holds:

�≥S

� ⊆ �≥O

� ⊆ �≥�.

Consider the relation �S on S(C ), where ‘S1 �S S2’ represents that the
length of the signature S1 equals the length of the signature S2 plus one and,
at the same time, the signature S2 can be obtained by merging two consecutive
components of S1. For instance, the signature (1, 2) is obtained by merging the
last two components of the signature (1, 1, 1), therefore (1, 1, 1) �S (1, 2). We
consider its pre-order closure3 for defining a natural order relation on S(C ).
3 The pre-order closure of a relation R is the smallest reflexive and transitive relation

containing R [9].
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a � b � c a � b ∼ c a ∼ b � c

a � c � b b � a � c

a ∼ c � b a ∼ b ∼ cb � a ∼ c

c � a � b b � c � a

c � a ∼ b b ∼ c � ac � b � a

Fig. 4. Hasse diagram of the order relation �≥O

� on L∗(C ) for the ranking a � b � c.

(2, 1)

(1, 1, 1)

(3)

(1, 2)

(3, 1)

(2, 1, 1)

(4)

(2, 2)

(1, 2, 1)

(1, 1, 1, 1)

(1, 1, 2)

(1, 3)

Fig. 5. Hasse diagram of the order relation ≥S on S(C ) for a set C of three (left) and
of four (right) candidates.

Proposition 5. Let C be a set of k candidates. The relation ≥S, defined as the
pre-order closure of �S, is an order relation on S(C ).

Analogously, a natural order relation can be defined for ordered signatures.
Consider the relation �O on O(C ), where ‘O1 �O O2’ represents that there
exist two signatures S1,S2 ∈ S(C ) such that S1 � O1, S2 � O2 and S1 �S

S2. For instance, for the ordered signatures (2, 1) and (1, 1, 1), it holds that
(1, 2) � (2, 1), (1, 1, 1) � (1, 1, 1) and (1, 1, 1) �S (1, 2). Therefore, it holds that
(1, 1, 1) �O (2, 1). This relation is used for defining a natural order relation on
O(C ).

Proposition 6. Let C be a set of k candidates. The relation ≥O, defined as the
pre-order closure of �O, is an order relation on O(C ).

Figures 5 and 6 display the Hasse diagram of the order relations ≥S and ≥O

on S(C ) for a set C of three and of four candidates.
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(2, 1)

(1, 1, 1)

(3)

(3, 1)

(2, 1, 1)

(4)

(2, 2)

(1, 1, 1, 1)

Fig. 6. Hasse diagram of the order relation ≥O on O(C ) for a set C of three (left) and
of four (right) candidates.

These order relations on the set of (ordered) signatures can be used for defin-
ing four natural order relations on L∗(C ), where only couples of rankings with
ties belonging to �≥� and satisfying these additional requirements are considered
comparable elements.

Proposition 7. Let C be a set of k candidates and � be a ranking on C . The
relations defined as

�≥S↓
� = �≥� ∩ {(�i,�j) ∈ L∗(C )2 | S (�i) ≥S S (�j)},

�≥S↑
� = �≥� ∩ {(�i,�j) ∈ L∗(C )2 | S (�j) ≥S S (�i)},

�≥O↓
� = �≥� ∩ {(�i,�j) ∈ L∗(C )2 | O(�i) ≥O O(�j)},

�≥O↑
� = �≥� ∩ {(�i,�j) ∈ L∗(C )2 | O(�j) ≥O O(�i)},

are four order relations on L∗(C ).

For instance, we illustrate in Fig. 7 the Hasse diagram of the order relation
�≥O↓

� on L∗(C ) for the set of candidates C = {a, b, c} and the ranking a � b � c.
The fact that the frequencies of the rankings with ties are decreasing on the
Hasse diagram of �≥O↓

� (and not on that of �≥�) would imply that voters do not
express ties between candidates as often as they express strict preferences.

All different relations between the seven order relations are described in
Fig. 8. One can see that �≥� contains the other six order relations, whereas �≥S

�
is contained in the other six order relations.

The statistical test introduced in [2] might now be extended by requiring the
frequencies with which each ranking is expressed to be (close to being) decreasing
on the Hasse diagram of one of the seven different order relations. Obviously,
since �≥S

� is contained in the other six order relations, decreasingness w.r.t. �≥S

�
will be the closest to being satisfied, and, thus, the most unlikely of leading
to a rejection of the hypothesis of existence of a latent true ranking. Different
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a � b � c

a � b ∼ c a ∼ b � c

a � c � b b � a � c

a ∼ c � b

a ∼ b ∼ c

b � a ∼ c

c � a � b b � c � a

c � a ∼ b b ∼ c � a

c � b � a

Fig. 7. Hasse diagram of the order relation �≥O↓
� on L∗(C ) for the ranking a � b � c.

conclusions concerning the tendency of voters towards expressing ties can be
drawn from the results of the test by selecting different order relations among
the seven ones defined in this manuscript.

�≥�

�≥O↑
� �≥O↓

�

�≥S↑
� �≥O

� �≥S↓
�

�≥S

�

Fig. 8. Hasse diagram of the order relation ⊆ on the set of all order relations on L∗(C )
defined in this section.
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5 Conclusions and Open Problems

In this paper, we have generalized the notion of monotonicity of a profile of
rankings to rankings with ties. In the future, we will aim at adapting a previously-
proposed statistical test for the existence of a true latent ranking based on
the property of monotonicity of a profile of rankings to the setting in which
rankings with ties are provided. We have conjectured that, in real-life data, the
inclination of voters towards expressing ties between candidates might play a
big role in the rejection of the test, and, thus, we have proposed six alternative
definitions of monotonicity of a profile of rankings with ties based on the notions
of signature and ordered signature. A thorough study on the influence of the
chosen notion of monotonicity (and especially that of the least restrictive one
�≥S

�) in the statistical test is yet to be addressed. Moreover, in this paper, we
have restricted the results of the aggregation of the rankings with ties given by
the voters to be a ranking without ties. The case in which the result of this
aggregation is also allowed to be a ranking with ties will be analysed in the near
future.
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3. Pérez-Fernández, R., Alonso, P., Dı́az, I., Montes, S., De Baets, B.: Monotonicity-
based consensus states for the monometric rationalisation of ranking rules and how
they are affected by ties. Int. J. Approximate Reason. 91, 131–151 (2017)

4. Kemeny, J.G.: Mathematics without numbers. Daedalus 88(4), 577–591 (1959)
5. Schulze, M.: A new monotonic, clone-independent, reversal symmetric, and

condorcet-consistent single-winner election method. Soc. Choice Welfare 36, 267–
303 (2011)
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Abstract. In continuation of the research in Alcantud and Dı́az [1], we
investigate the relationships between consistency axioms in the frame-
work of fuzzy choice functions. In order to help disclose the role of a
t-norm in such analyses, we start to study the situation that arises when
we use other t-norms instead. We conclude that unless we impose fur-
ther structure on the domain of application for the choices, the use of
the �Lukasiewicz t-norm as a replacement for the minimum t-norm does
not guarantee a better performance.

Keywords: Choice function · Fuzzy choice function
Fuzzy arrow axiom · Consistency · Triangular norm

1 Introduction

The notion of fuzzy choice function has been thoroughly studied from many
perspectives since their introduction in economics by Dasgupta and Deb [5].
Georgescu [7] is a monograph on the topic which refers to a successful notion
that extends Banerjee’s [4] previous concept by the fuzzification of the available
domain. It has also been studied by Alcantud and Dı́az [1], Georgescu [8] (ratio-
nality indicators of a fuzzy choice function), Martinetti et al. [9,10], Wang [11]
(congruence conditions of fuzzy choice functions), Wang et al. [12], Wu and
Zhao [13], et cetera.

By reference to the standard crisp analysis, the choice functions that can be
derived from fuzzy relations by some reasonable procedure are called rational
fuzzy choice functions. Alternatively, their consistency can be verified in terms
of rationality axioms. And more generally, rationality indicators can be used as
a proxy of their closeness to being rational.

It is therefore important to have a precise knowledge about various forms
that rationality axioms can adopt. In particular, their relationships with different

c© Springer International Publishing AG, part of Springer Nature 2018
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specifications of the underlying fuzzy concepts like implications, is a natural field
for investigation.

Alcantud and Dı́az [1] introduce some consistency axioms and then inves-
tigate some relationships between these and other known axioms. All these
axiomatic conditions depend upon the choice of a t-norm that defines the logical
implications. As a first analysis of this issue as well as a new research programme
for sequential application of fuzzy choice functions, [1] concentrates on the case
of the minimum t-norm. The structure of the feasible domain of choice situ-
ations is another important ingredient in the design and consequences of the
consistency axioms. However the most prominent formulations are the subject
of a complete analysis in [1].

The current state of matters does not reveal the role of the t-norm in the
aforementioned analyses. We start to study the situation that arises when we
use other t-norms instead. In this regard we perform a partial investigation of
the relevant case of the �Lukasiewicz t-norm. We conclude that unless we impose
further structure on the domain of application for the choices, the application
of the �Lukasiewicz t-norm to define implications is of no avail.

This paper is organized as follows. Section 2 gives basic concepts and defines
the rationality axioms that we need to analyze. Section 3 contains our (negative)
results. Section 4 gives a preliminary research summary of a more specialized
analysis where the structural restriction on the domain of choice is tightened.
We conclude in Sect. 5.

2 Background and Definitions

A basic notion that we need in the fuzzy analysis of choices is the following (cf.,
Georgescu [7, Definition 5.13]):

Definition 1. Let X be a non-empty set. Let B denote a non empty set of
non-zero fuzzy subsets of X. A fuzzy choice function on (X,B) is a function
C : B → F(X) verifying the following two conditions:

– C(S) ⊆ S,
– C(S) is non-zero (that is to say, C(S)(x) ≤ S(x) for all x ∈ X).

for each S ∈ B.

For the purpose of studying the salient characteristics of these ideas we usu-
ally impose properties on the structure of the domain of choices B. As explained
in [1], two basic options come to mind. The first one is Definition 2 below, pro-
posed by Georgescu [7, Subsect. 5.2]. The second one is Definition 3 below, pro-
posed by Martinetti et al. [9]. Since we wanted to consider the most general
possible situation, in this contribution we work under Definition 3.

Definition 2. We say that a fuzzy choice function C satisfies

– (H1) if all S and C(S) are normal fuzzy sets, i.e. if ∃x ∈ X such that
C(S)(x) = 1.



Consistency Properties for Fuzzy Choice Functions 325

– (H2) if B contains all the non-empty crisp finite subsets of X, i.e. if B con-
tains f [X] = {[x1, . . . , xn] : n ≥ 1, x1, . . . , xn ∈ X}.

Definition 3. We say that a fuzzy choice function C satisfies

– (WH1) if for all S ∈ B, there exists an element x ∈ X such that S(x) > 0
and C(S)(x) = S(x).

– (WH2) if B contains {x}, {x, y} and {x, y, z} for all x, y, z ∈ X.

Implications are used in many consistency properties and therefore, their
definition in the fuzzy choice context are a recurrent issue. They are functions
I : [0, 1] × [0, 1] → [0, 1] that must extend the classical definition of implication:
I(0, 0) = I(0, 1) = I(1, 1) = 0 and I(1, 0) = 0. There is an extensive literature
on the study of other properties that implications can satisfy and the character-
ization of the families of operators obtained in each case (see for example, [2,3]).
Many of the definitions of fuzzy implication are based on triangular norms.

Triangular norms (t-norms for short) play a key role in fuzzy logic. They are
used to model conjunction.
A t-norm is a binary operation ∗ on [0, 1] that is commutative, associative, mono-
tone and has 1 as neutral element. The most popular t-norm is the minimum.
It is also the greatest t-norm. Another two important t-norms are the product,
denoted a ∗P b and the �Lukasiewicz operator, a ∗L b = max(a + b − 1, 0).

Given a t-norm ∗, the implication I : [0, 1] × [0, 1] → [0, 1] based on ∗, is
defined as follows:

I(a, b) = sup{z ∈ [0, 1] | a ∗ z ≤ b}, for any a, b ∈ [0, 1].

And the equality of two values a and b in [0, 1], denoted E(a, b) is defined as
follows E(a, b) = min(I(a, b), I(b, a)).

Both definitions are extended to the fuzzy sets context using the minimum:
given S, T ⊆ X,

I(S, T ) = min
x∈X

I(S(x), T (x)) E(S, T ) = min(I(S, T ), I(T, S)).

Observe that since we only consider finite sets, the previous minimums are well
defined.

Triangular conorms (t-conorms) are the dual operators of the t-norms and
they are used to define disjunction in the fuzzy context. A t-conorm is a binary
operation on [0, 1] that is commutative, associative, monotone and has 0 as
neutral element. The most popular t-conorm is the maximum.

Let us now recap the definitions of some consistency properties of choice. We
address the reader to Alcantud and Dı́az [1] for motivation and interpretations.

Definition 4. A fuzzy choice function C satisfies the Fuzzy Arrow Axiom FAA,
if for any S, T ∈ B and x ∈ X we have

I(S, T ) ∗ S(x) ∗ C(T )(x) ≤ E(S ∩ C(T ), C(S)).
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Definition 5. A fuzzy choice function C satisfies the Fuzzy Chernoff condition
FCH, if for any S, T ∈ B and x ∈ X we have

I(S, T ) ≤ I(S ∩ C(T ), C(S)).

Definition 6. A fuzzy choice function C satisfies the Fuzzy Binariness property
FB, if for any S ∈ B we have

S(x) ∗
∧

y∈X

(S(y) →L C({x, y})(x)) ≤ C(S)(x), for all x ∈ X.

Definition 7. A fuzzy choice function C satisfies the Fuzzy Concordance prop-
erty FC, if for any S1, S2, T ∈ B, the following holds true:

E(S1 ∪ S2, T ) ≤ I(C(S1) ∩ C(S2), C(T )).

Definition 8. A fuzzy choice function C satisfies the Fuzzy Superset property
FSUP, if for all S, T ∈ B the following holds true:

I(S, T ) ∗ I(C(T ), C(S)) ≤ E(C(T ), C(S)).

3 Connection Between Consistency Properties

In this contribution we extend the analysis in Alcantud and Dı́az [1]. We assume
the classical Zadeh’s definitions of the union and intersection of fuzzy sets, i.e.
for any S and T fuzzy sets defined on the universe X,

(S ∩ T )(x) = min(S(x), T (x)) for all x ∈ X

(S ∪ T )(x) = max(S(x), T (x)) for all x ∈ X.

Moreover, we define implication using the �Lukasiewicz t-norm, i.e.

x →L y = min(1, 1 − x + y).

Thus for any S and T fuzzy sets defined on the universe X, the degree of inclusion
corresponding to the �Lukasiewicz t-norm is

I(S, T ) =
⋂

x∈X

S(x) →L T (x) = min(min
x∈X

(1 − S(x) + T (x)), 1).

It follows from this expression that for two fuzzy sets S and T defined on the
same universe X their degree of equality using the �Lukasiewicz t-norm is

E(S, T ) =
⋂

x∈X

(1 − |S(x) − T (x)|).

In [1] the following relationships among consistency properties were estab-
lished, when both the minimum t-norm (in order to define implications) and
conditions WH1 and WH2 hold true:
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FSUP

�

FAA

�

FC

=⇒
{
FCH

FB

Our aim is to study if these relationships still hold when fuzzy implication
and equality are defined through the �Lukasiewicz operator. Unfortunately we
are led to conclude that not only the false implications remain false (cf., Coun-
terexamples 3 and 4 below), but also the implications that hold true under the
definitions with the minimum t-norm now become false too (cf., Counterexam-
ples 1 and 2 below).

Under the assumptions of [1], the Fuzzy Arrow Axiom implies both the fuzzy
Chernoff condition and the fuzzy Binariness property. However under the current
assumptions where the �Lukasiewicz t-norm replaces the minimum for the purpose
of defining implications, these consequences no longer holds:

Fact 1. The Fuzzy Arrow Axiom does not imply the fuzzy Chernoff condition.

Counterexample 1. Let X = {x, y, z} and B = {X,T, S, {x, y}, {x, z},
{y, z}, {x}, {y}, {z}}, where T and S are defined in Table 1. Consider the fuzzy
choice function C also defined in this table. Such choice function satisfies
the Fuzzy Arrow Axiom. Conditions WH1 and WH2 are also satisfied, but C
does not satisfy the fuzzy Chernoff condition because I(S, T ) = 0.7 ≮ 0.6 =
I(C(T ) ∩ S,C(S)).

Table 1. Feasible subsets and choice function corresponding to Counterexample 1.

S T C(S) C(T ) C([x, y]) C([x, z]) C([y, z]) C(X)

x 0.9 0.6 0.9 0.6 1 1 0 1

y 0.9 0.9 0.5 0.9 0.5 0 1 0.5

z 0.5 0.6 0.5 0.5 0 0.5 0.5 0.5

Fact 2. The Fuzzy Arrow Axiom does not imply fuzzy Binariness condition.

Counterexample 2. Consider X = {x, y} and B = {X,S, {x}, {y}}, where
S is defined in Table 2. This choice function satisfies the Fuzzy Arrow Axiom.
Conditions WH1 and WH2 are also satisfied, but C does not satisfy the fuzzy
Binariness condition:

S(x) ∗L
∧

y∈X(S(y) →L C({x, y})(x)) = 0.9 ∗L ((0.9 →L 1) ∧ (0.7 →L 0.7))
= 0.9 ∗L 1 = 0.9 ≮ 0.8 = C(S)(x).
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Table 2. Feasible subsets and choice function corresponding to Counterexample 2.

S C(S) C(X)

x 0.9 0.8 1

y 0.7 0.7 0.7

Fact 3. Condition FAA does not imply FSUP under hypothesis WH1 and
WH2 when the �Lukasiewicz t-norm is considered.

Counterexample 3. In order to check that FAA does not imply FSUP it
suffices to check the counterexample provided in [1] for the minimum t-norm.
We reproduce it here for the sake of completeness (cf., Table 3). In that example
the set X contains three elements, X = {x, y, z}. Using the �Lukasiewicz t-norm,
the set B = {X,T, S, {x, y}, {x, z}, {y, z}, {x}, {y}, {z}} satisfies the fuzzy Arrow
Axiom but it does not satisfy the superset property: I(S, T ) = 1, I(C(T ), C(S)) =
1 and E(C(S), C(T )) = 1 − |0.9 − 0.7| = 0.8, then

I(S, T ) ∗L I(C(T ), C(S)) = 1 ≮ 0.8 = E(C(S), C(T )).

Table 3. Feasible subsets and choice function corresponding to Counterexample 3.

T S C(T ) C(S) C([x, y]) C([x, z]) C([y, z]) C(X)

x 0.9 0.9 0.7 0.9 1 0.7 0 0.7

y 0.7 0.6 0.6 0.6 0.6 0 0.6 0.6

z 0.7 0.7 0.7 0.7 0 1 1 1

In order to prove that the fuzzy Arrow Axiom does not imply the fuzzy
Concordance property in the current setting, we can also benefit from the cor-
responding counterexample given in [1]:

Fact 4. FAA does not imply FC under conditions WH1 and WH2 when the
�Lukasiewicz t-norm is considered to define implication and equality.

Counterexample 4. We reproduce the choice setting provided in [1] for the
minimum t-norm in Table 4, for the sake of completeness. In that example the
set X contains three elements, X = {x, y, z}.

Using the �Lukasiewicz t-norm,
B = {X,T, S1, S2, {x, y}, {x, z}, {y, z}, {x}, {y}, {z}} satisfies the fuzzy Arrow
Axiom but it does not satisfy the fuzzy Concordance property: I(S, T ) = 1,
I(C(T ), C(S)) = 1 and E(C(S), C(T )) = 1 − |0.9 − 0.7| = 0.8, thus

I(S, T ) ∗L I(C(T ), C(S)) = 1 ≮ 0.8 = E(C(S), C(T )).
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Table 4. Feasible subsets and choice function corresponding to Counterexample 4.

T S1 S2 C(X) C(T ) C(S1) C(S2) C([x, y]) C([x, z]) C([y, z])

x 0.9 0.9 0.6 0.5 0.5 0.9 0.6 0.6 0.5 0

y 0.9 0.6 0.9 0.5 0.5 0.6 0.9 1 0 0.5

z 0.5 0.5 0.5 1 0.5 0.5 0.5 0 1 1

4 Open Problems

When the minimum t-norm is used to define implication and equality between
two fuzzy sets, some properties that are not true under conditions WH1 and
WH2, do hold under the more stringent conditions H1 and H2. For example,
when both the minimum t-norm (in order to define implications) and conditions
H1 and H2 hold true, Alcantud and Dı́az [1] establish the following relationships:

FAA ⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

FCH
FSUP
Fγ
FB

We observe that we can prove more implications among consistency prop-
erties under conditions H1 and H2 than under the milder conditions WH1 and
WH2.

In the light of the results obtained in the previous section, conditions WH1
and WH2 are clearly insufficient to provide relationships when we consider the
implication defined by the �Lukasiewicz t-norm. The question that naturally arises
is if we can obtain positive results under conditions H1 and H2.

The first implication we have studied under H1 and H2 is whether Fuzzy
Arrow Axiom guarantees Fuzzy Chernoff Condition in the context of the
�Lukasiewicz implicator. Unfortunately, the result we have obtained is negative.

Fact 5. FAA does not imply FC even under conditions H1 and H2 when the
definitions of implication and equality are based on the �Lukasiewicz t-norm.

Counterexample 5. As a counterexample, we consider the set X = {x, y, z}
and the choice set B = {X,S, T, {x, y}, {x, z}, {y, z}} where S and T are defined
in Table 5. Using the �Lukasiewicz t-norm, one can check that the set B satis-
fies the fuzzy Arrow Axiom but it does not satisfy the fuzzy Chernoff condition:
I(S, T ) = 0.8 and I(S ∩ C(T ), C(S)) = 0.75, thus

I(S, T ) = 0.8 ≮ 0.75 = I(S ∩ C(T ), C(S)).
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Table 5. Feasible subsets and choice function corresponding to Counterexample 5.

T S C(T ) C(S) C([x, y]) C([x, z]) C([y, z]) C(X)

x 1 0.7 1 0.7 1 1 0 1

y 0.8 1 0.75 1 0.75 0 1 0.75

z 0.75 0.75 0.75 0.5 0 0.75 0.5 0.75

5 Conclusions

Alcantud and Dı́az [1] established a number of relationships among some con-
sistency properties of fuzzy choice functions in a concrete setting. However the
results in this paper lead us to conjecture that when we use the �Lukasiewicz
t-norms to define logical implications, those axioms are independent from each
other. Therefore the hypothesis that we can advance is that the role of the t-norm
is crucial in the analysis of consistency axioms.

In the future we intend to complete this inspection with a full investigation
of the case in Sect. 4. By doing so we will check whether our conjecture is true.
In order to fully reveal the role of the t-norm in the study of the rationality
axioms of fuzzy choice functions, other cases should be looked into carefully.
The ultimate goal is to answer the general question, which exact families of
t-norms ensure the relationships among consistency properties in Sect. 3?

We shall also investigate the framework of the sequential application of fuzzy
choice functions with the �Lukasiewicz and other t-norms. The inspiration for
this approach lies in the research programme posed by [1] and previous research
in the crisp case like Garćıa-Sanz and Alcantud [6] and the references therein.
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Abstract. Measuring the information provided by the observation of
events has been a challenge for seventy years, since the simultaneous
inception of entropy by Claude Shannon and Norbert Wiener in 1948.
Various definitions have been proposed, depending on the context, the
point of view and the chosen knowledge representation. We show here
that one of the most important common feature in the choice of an
entropy is its behavior with regard to the refinement of information and
we analyse various definitions of monotonicity.

Keywords: Entropy · Monotonicity · Refinement of information
Measure of fuzziness · Intuitionistic entropy measure

1 Introduction

Measuring the information provided by the observation of events has been a chal-
lenge for seventy years, since the simultaneous inception of entropy by Shannon
[16] and Wiener [18] in 1948. Various definitions have been proposed since then,
depending on the context, the point of view and the chosen knowledge repre-
sentation. They have been called entropies or measures of information in the
original probabilistic framework. Their extension to other frameworks such as
fuzzy knowledge representation or its generalizations have given rise to the study
of other aspects of information, for instance fuzziness or specificity. They have
often been constructed by analogy with the probabilistic case, which may look
artificial, but their properties go far beyond a simple analogy.

Continuing the analysis proposed in [5], we will show in the sequel that they
have in common a property of monotonicity, based on an order supporting the
differences of context, point of view or knowledge representation and expressing
a refinement of the tool to perform observations.

Additivity and recursivity were among the main axioms underlying the def-
inition of entropy by Shannon [16], and they imply an increase of the entropy
resulting from the refinement of information acquired on an event through obser-
vations. Later on, Renyi [15] introduced the first of a long list of generalizations

A homage to Claude Shannon and Norbert Wiener for the 70th anniversary of their
inception of entropy.
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of Shannon entropy, still satisfying a property of additivity. It is worth men-
tioning Mugur-Schächter’s work [14] on the general relativity of descriptions.
She considers that any process of knowledge extraction is associated with epis-
temic operators called a delimitator and a view, representing the influence of
the context and the observation tool on the considered event. A refinement of
information results from a change in the observation tool. In his generalized
information theory, Kampé de Fériet [10,11] takes into account observers and
also requests a monotonicity of information with respect to an order on events.

In Sect. 2, we introduce entropy measures and their monotonicity according
to three different forms associated with different visions of the refinement of
information. In Sect. 3, we illustrate these visions on a sample of classic entropy
measures, namely Shannon and weighted entropies, measures of fuzziness, simi-
larity relation-based entropy measures and we develop the same visions on several
entropies proposed in the framework of Atanassov intuitionistic fuzzy sets. We
present conclusions and perspectives in Sect. 4.

Given the number of entropy measures introduced in the literature, we choose
to study in more details a class of measures in the framework of Atanassov
intuitionistic fuzzy sets. Future developments will review other classes.

2 Monotonicity of Entropy Measures

The evaluation of information is a complex problem, dealing with the form and
the content of a piece of information. Information theory do not pretend to
evaluate all aspects, and it provides an evaluation of the decrease of uncertainty
after an observation of events by means of entropies.

Given the amount of data available in the numerical world, which is cover-
ing all aspects of modern life, evaluating information is a major issue. All tools
enabling the user to compare two pieces of information, to evaluate the infor-
mation available in a given environment, to make diagnosis or prediction on
the basis of information provided by observations or data, to aggregate chunks
of information, are useful. Unfortunately, there are many such tools and it is
difficult to see their common features. This is why we propose to analyse mea-
sures of information and to revisit classic approaches of information evaluation in
order to focus on monotonicity which we consider the most natural and relevant
property requested from such a tool.

Let us consider a set of objects or events that represent the real world. In
this paper, for the sake of simplicity, we only consider finite sets, but this work
could be generalised to non-countable sets. We consider a σ-algebra B defined
on a finite universe U . We use the notation proposed in the seminal paper by
Aczél and Daróczy on the so-called inset entropy [2] to formalize the available
information on the set of objects or events and taking into account the context,
the point of view and the chosen knowledge representation.

For any integer n, we note: Xn = {(x1, . . . , xn) | xi ∈ B,∀i = 1, . . . , n},
Pn = {(p1, . . . , pn) | pi ∈ [0, 1]}, pi being associated with xi through a function
p : B → [0, 1], a particular case being a probability distribution defined on
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(U,B), Wn = {(wx1 , . . . , wxn
) | wxi

∈ R+,∀i = 1, . . . , n}, a family of n-tuples of
weights1 associated with n-tuples of B through a function f : B → R+n, such
that f(x1, . . . , xn) = (wx1 , . . . , wxn

).
Similarly to the definition of inset entropy [2], we introduce an entropy

measure as a sequence of mappings En : Xn × Pn × Wn → R+ satisfying
several properties among a long list for instance available in [1] or in [12].

We claim that the most significant properties to characterize an entropy
measure are relative to a form of monotonicity with respect to a refinement of
information which can take various forms, depending on a chosen order. Such a
monotonicity corresponds to the natural idea that the more details, precision,
certainty we obtain from the observation of objects or events, or equivalently the
more refined information we have on them, the bigger the amount of information
we have on these objects or events.

To use a metaphor, we can consider that we are facing a picture of an object
providing some amount of information on it. We can first improve the light on
the object before taking another picture in order to decrease the fuzziness of
the details, or take another picture with a higher resolution, which gives more
information on the object according to an increase of the precision, both cases
corresponding to a monotonicity described in Sect. 2.1. We can also select a part
of the object and make several pictures of this part, in a form of weak recursivity
described in Sect. 2.2. We can finally partition the object into different parts and,
for each of them, make more pictures providing a bigger amount of information
on the object, in a form of weak additivity presented in Sect. 2.3.

We present these three forms of monotonicity which can be adapted to the
knowledge representation we choose, as highlighted in the next sections.

In the sequel, for the sake of simplicity, we choose the notation
⎛
⎝

x1, . . . , xn

p1, . . . , pn
wx1 , . . . , wxn

⎞
⎠

rather than ((x1, . . . , xn), (p1, . . . , pn), (wx1 , . . . , wxn
)) to represent an element

of Xn × Pn × Wn, according to the notation used in [2].

2.1 Partial Order

The first form of monotonicity, noted O-monotonicity, is based on some par-
tial order ≺ on

⋃
n

Xn×Pn×Wn, describing a more precise, detailed or reliable

observation of the objects or events and it can be written as follows:

En

⎛
⎝

x1, . . . , xn

p1, . . . , pn
w1, . . . , wn

⎞
⎠ ≤ En

⎛
⎝

x′
1, . . . , x′

n

p′
1, . . . , p′

n

w′
1, . . . , w′

n

⎞
⎠

1 In the following, for the sake of simplicity, wxi will be denoted wi when the meaning
of i is clear.
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if
⎛
⎝

x1, . . . , xn

p1, . . . , pn
w1, . . . , wn

⎞
⎠ ≺

⎛
⎝

x′
1, . . . , x′

n

p′
1, . . . , p′

n

w′
1, . . . , w′

n

⎞
⎠

Examples of monotonicity can be based on the following partial orders:
⎛
⎝

x1, . . . , xn

p1, . . . , pn
w1, . . . , wn

⎞
⎠ ≺

⎛
⎝

x1, . . . , xn

p1, . . . , pn
w′

1, . . . , w′
n

⎞
⎠

if and only if, ∀i one of the following conditions (O1), called sharpness in [7],
or (O2) is satisfied:

(O1) – w′
i ≤ wi ⇔ w′

i ≥ 1
2 ;

– w′
i ≥ wi ⇔ w′

i < 1
2 .

(O2) w′
i ≥ wi.

Other examples will be studied later.

2.2 Weak Recursivity

The second form of monotonicity, noted R-monotonicity, is based on a decrease
of the coarseness of a partition of the universe of discourse, corresponding to a
property of weak recursivity defined as follows:

En

⎛
⎝

x1, x2, . . . , xn

p1, p2, . . . , pn
wx1 , wx2 , . . . , wxn

⎞
⎠ ≥ En−1

⎛
⎝

x1 ∪ x2, x3, . . . , xn

p1 + p2, p3, . . . , pn
wx1∪x2 wx3 , . . . , wxn

⎞
⎠

A particular case of weak recursivity is what we call the ψ-recursivity, defined
as:

En

⎛
⎝

x1, x2, . . . , xn

p1, p2, . . . , pn
wx1 , wx2 . . . , wxn

⎞
⎠ =

En−1

⎛
⎝

x1 ∪ x2, x3 . . . , xn

p1 + p2, p3 . . . , pn
wx1∪x2 , wx3 . . . , wxn

⎞
⎠ + ψ

⎛
⎝

x1, x2

p1, p2
wx1 , wx2

⎞
⎠ E2

⎛
⎝

x1, x2
p1

p1+p2
, p2
p1+p2

wx1 , wx2

⎞
⎠

for a function ψ : X2 × P2 × W2 → R+.
The classic property of recursivity corresponds to:

ψ0

⎛
⎝

x1, x2

p1, p2
wx1 , wx2

⎞
⎠ = p1 + p2,

where the weights are not taken into account.
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2.3 Weak Additivity

The third form of monotonicity, noted A-monotonicity, is based on the consid-
eration of a secondary finite universe U ′ and a σ-algebra B′ on U ′ providing more
details on the observed phenomenon or object, through additional observations.

Similarly to the situation on U , we consider for any integer m

– X ′
m = {(x′

1, . . . , x
′
m) | x′

i ∈ B′, ∀i};
– P ′

m = {(p′
1, . . . , p

′
m) | p′

i ∈ [0, 1]}, p′
i being associated with x′

i through a
function p′ : B′ → [0, 1];

– W ′
m = {(w′

1, . . . , w
′
m) | w′

i ∈ R+;∀i}, a family of m-tuples of weights associ-
ated with m-tuples of elements of B′ through a function f ′ : B′ → R+, such
that f ′(x′

i) = w′
i.

We further suppose that there exist two combination operators � and ◦
enabling us to equip the cartesian product of U × U ′ with similar distributions:

– Pn � P ′
m = {(p1 � p′

1, . . . , pi � p′
j , . . .) | pi � p′

j ∈ [0, 1]}, pi � p′
j being associated

with (xi, x
′
j) for any i and j through a function p � p′,

– Wn ◦ W ′
m = {(w1,1, . . . , wi,j , . . .) | wi,j ∈ R+, ∀i, j}, is defined through a

function f ◦ f ′ : B × B′ → R+, such that: f ◦ f ′(x1, x
′
j) = wi,j for all

i = 1, . . . , n and j = 1, . . . ,m.

Such a refinement leads to a property of weak additivity stating the fol-
lowing:

En×m

⎛
⎝

(x1, x
′
1), . . . , (xn, x′

m)
p1 � p′

1, . . . , pn � p′
m

w1 ◦ w′
1, w1 ◦ w′

2, . . . , wn ◦ w′
m

⎞
⎠ ≥

max

⎡
⎣En

⎛
⎝

x1, . . . , xn

p1, . . . , pn
w1, . . . , wn

⎞
⎠ , Em

⎛
⎝

x1, . . . , xm

p1, . . . , pm
w′

1, . . . , w′
m

⎞
⎠

⎤
⎦

The classic additivity property stands in the case where U and U ′ are
independent universes, p and p′ being probability distributions on (U,B) and
(U ′, B′), weights generally not being taken into account. It yields:

En×m

⎛
⎝

(x1, x
′
1), (x1, x

′
2), . . . , (xi, x

′
j), . . . , (xn, x′

m)
p1 � p′

1, p1 � p′
2, . . . , pi � p′

j , . . . , pn � p′
m

wx1,x′
1
, wx1,x′

2
, . . . , wxi,x′

j
, . . . , wxn,x′

m

⎞
⎠ =

En

⎛
⎝

x1, . . . , xn

p1, . . . , pn
wx1 , . . . , wxn

⎞
⎠ + Em

⎛
⎝

x′
1, . . . , x′

m

p′
1, . . . , p′

m

wx′
1
, . . . , wx′

m

⎞
⎠
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3 Diverse Entropy Measures

3.1 Shannon and Weighted Entropies

It is well-known that the classic Shannon entropy defined as:

ES
n (p) = −

n∑
i=1

pi log pi

is additive and recursive and then R-monotonous and A-monotonous. Its gen-
eralization to the case where weights are associated with events to represent a
cost or an importance is a weighted entropy defined as follows [8]:

Ew
n

⎛
⎝

x1, x2, . . . , xn

p1, p2, . . . , pn
w1, w2, . . . , wn

⎞
⎠ = −

∑
i

wi pi log pi.

It is O-monotonous with regard to the partial order (O2).
The weighted entropy is also recursive, and then R-monotonous when con-

sidering

wx1∪x2 =
(p1w1 + p2w2)

(p1 + p2)
.

3.2 Measure of Fuzziness

Shortly after the weighted entropy, another entropy measure was introduced
by De Luca and Termini in a non-probabilistic framework [7] by analogy with
the Shannon entropy. It is a measure of fuzziness, in the case where f is the
membership function of a fuzzy set on U :

EDLT
n

⎛
⎝

x1, x2, . . . , xn

p1, p2, . . . , pn
w1, w2, . . . , wn

⎞
⎠ = −

∑
i

wi log wi −
∑
i

(1 − wi) log(1 − wi).

A major property of this quantity is its O-monotonicity with respect to the
above mentioned partial order (O1) defining the sharpness.

It can further be observed that, in the case where the weights are possibil-
ity degrees, ie. max(w1, . . . , wn) = 1, this measure of fuzziness is also weakly
recursive and then R-monotonous:

EDLT
n

⎛
⎝

x1, x2, . . . , xn

p1, p2, . . . , pn
w1, w2, . . . , wn

⎞
⎠ ≥ EDLT

n−1

⎛
⎝

x1 ∪ x2, x3, . . . , xn

p1 + p2, p3, . . . , pn
max(w1, w2), w3, . . . , wn

⎞
⎠
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3.3 Entropy Measures Under Similarity Relations

We consider a similarity relation S on U = {x1, . . . , xn}, reflexive, symmetric
and min-transitive. Yager [19] defines the following entropy measure:

En

⎛
⎝

x1, x2, . . . , xn

p1, p2, . . . , pn
S1, S2, . . . , Sn

⎞
⎠ = −

∑
xi∈U

pi log Si

with Si =
∑
xj∈U

pj S(xi, xj) for all i = 1, . . . n.

The similarity reflects a point of view on the n events, expliciting to which
extent they are similar with regard to a given criterion. If we consider two dif-
ferent points of view, symbolised by two similarity relations S and S′. We can
show that this entropy measure is O-monotonous with respect to the order (O3):

⎛
⎝

x1, . . . , xn

p1, . . . , pn
S1, . . . , Sn

⎞
⎠ ≤

⎛
⎝

x1, . . . , xn

p1, . . . , pn
S

′
1, . . . , S

′
n

⎞
⎠

if and only if similarities S and S′ satisfy:

(O3) S ≺ S′ ⇔ S(xi, xj) ≤ S′(xi, xj) ∀i, j.

This entropy measure is also A-monotonous, if we define a joint similarity
relation S × S′ on the cartesian product U × U ′ as follows, for two similarity
relations S defined on U and S′ defined on U ′:

S × S′((xi, yj), (xk, yl)) = min
(
S(xi, xk), S′(yj , yl)

)

for any xi and xk in U , any yj and yl in U ′.

3.4 Intuitionistic Entropy Measures

In this section, we consider the setting of the Atanassov intuitionistic fuzzy sets
(AIFS) where several entropy measures have been introduced [9,17]. First of all,
some basics of AIFS are recalled.

Let X be a universe, an Atanassov intuitionistic fuzzy set (AIFS) A of X is
defined [3] by:

A = {(x, μA(x), νA(x))|x ∈ X}
with μ : X → [0, 1], ν : X → [0, 1] and 0 ≤ μA(x) + νA(x) ≤ 1, ∀x ∈ X.
Here, μA(x) and νA(x) represent respectively the membership degree and the
non-membership degree of x in A. Given an intuitionistic fuzzy set A of X, the
hesitancy lying on the membership of x to A is the intuitionistic index of x to
A defined for all x ∈ X as πA(x) = 1 − (μA(x) + νA(x)).

The inclusion of AIFS is defined as: A ⊆ B if and only if μA(x) ≤ μB(x) and
νA(x) ≥ νB(x), ∀x ∈ X.
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The union of two AIFS A and B is defined as the AIFS A ∪ B such that
μA∪B(x) = max(μA(x), μB(x)) and νA∪B(x) = min(νA(x), νB(x)), ∀x ∈ X.
The intersection of two AIFS A and B is defined as the AIFS A ∩ B such that
μA∩B(x) = min(μA(x), μB(x)) and νA∩B(x) = max(νA(x), νB(x)), ∀x ∈ X.

A classical representation of an AIFS uses a 3D-representation as for instance,
in [17]. It leads us to propose the representation of an AIFS as a complex
number from C: for all x ∈ X, wA(x) = μA(x) + iνA(x). Here, we have
μA(x) = Re(wA(x)), νA(x) = Im(wA(x)), μA(x) is the real part of wA and
νA(x) is its imaginary part.

An AIFS is a point in the region under the line y = 1−x such that x ∈ [0, 1]
and y ∈ [0, 1].

Definitions of Entropy Measures for AIFS. Several works in AIFS theory
have proposed the definition for an entropy of an intuitionistic fuzzy set A.

These forms can be represented in the model introduced in Sect. 2 if we
extend the definition of Wn to complex numbers:

Wn = {(wx1 , . . . , wxn
) | wxi

∈ C,∀i = 1, . . . , n}.

There exists various definitions of entropy measures in the AIFS settings [9].
In our setting, entropy measures of an Atanassov intuitionistic fuzzy set are
summarised as:

EIFS
n

⎛
⎝

x1, . . . , xn

p1, . . . , pn
wA(x1) . . . , wA(xn).

⎞
⎠ .

For instance, the entropy measure given in [17] is defined as:

ES
n

⎛
⎝

x1, . . . , xn

p1, . . . , pn
wA(x1) . . . , wA(xn)

⎞
⎠ = 1 − 1

2n

n∑
i=1

|μA(xi) − νA(xi)|

with μA(x) = Re(wA(x)), and νA(x) = Im(wA(x)).
In [9], the following entropy measure is also introduced:

EG
n

⎛
⎝

x1, . . . , xn

p1, . . . , pn
wA(x1) . . . , wA(xn)

⎞
⎠ =

1
2n

n∑
i=1

(
1 − |μA(xi) − νA(xi)|

)
(1 + πA(xi))

with μA(x) = Re(wA(x)), νA(x) = Im(wA(x)) and πA(x) = 1 − Re(wA(x)) −
Im(wA(x)).

Another way to define an entropy measure is presented in [6] where the
definition is based on extensions of the Hamming distance and the Euclidian
distance to AIFS. For instance, the following entropy measure is proposed:

EB
n

⎛
⎝

x1, . . . , xn

p1, . . . , pn
wA(x1) . . . , wA(xn)

⎞
⎠ =

n∑
i=1

πA(xi)

with πA(x) = 1 − Re(wA(x)) − Im(wA(x)).
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Entropy Measures for AIFS and Monotonicity. In [9], it is recalled that,
in the AIFS setting, a monotonicity property for an entropy measure could be
ensured by definition. The authors present several definitions that lie on the
definition of a partial order on Wn and the concept of less fuzzy than. The
following three definitions of partial order could be used.

(O4)
A is less fuzzy than B if
μA(x) ≤ μB(x) and νA(x) ≥ νB(x) for μB(x) ≤ νB(x),∀x ∈ X,
or μA(x) ≥ μB(x) and νA(x) ≤ νB(x) for μB(x) ≥ νB(x),∀x ∈ X.

(O5)
A is less fuzzy than B if
A ⊆ B for μB(x) ≤ νB(x),∀x ∈ X,
or B ⊆ A for μB(x) ≥ νB(x),∀x ∈ X;

and

(O6)
A is less fuzzy than B if
μA(x) ≤ μB(x) and νA(x) ≤ νB(x),∀x ∈ X,

O-monotonicity. It is easy to see that (O4), (O5), and (O6) enable the definition
of O-monotonicities. In [6], it is stated that these definitions of monotonicity
produces particular forms of EIFS :

– ES
n satisfies the monotonicity based on (O4);

– EG
n satisfies the monotonicity based on (O5);

– EB
n satisfies the monotonicity based on (O6).

R-monotonicity. If we consider ES
n , this measure satisfies the R-monotonicity if

we have

ES
n

⎛
⎝

x1, . . . , xn

p1, . . . , pn
wA(x1) . . . , wA(xn)

⎞
⎠ ≥ ES

n−1

⎛
⎝

x1 ∪ x2, x3, . . . , xn

p1 + p2, p3, . . . , pn
wA(x1) ∪ wA(x2), wA(x3), . . . , wA(xn)

⎞
⎠

with wA(x1) ∪ wA(x2) the union of the two AIFS wA(x1) and wA(x2).
Hereafter, to simplify the notations, we denote these two measures ES

n and
ES

n−1 respectively.
It can be shown that we have:

ES
n − ES

n−1 =
1

2(n − 1)
( 1
n

n∑
i=1

|μA(xi) − νA(xi)|
+|max(μA(x1), μA(x2)) − min(νA(x1), νA(x2))|
−|μA(x1) − νA(x1)| − |μA(x2) − νA(x2)|

)
.

and thus ES
n satisfies the R-monotonicity if

|max(μA(x1), μA(x2)) − min(νA(x1), νA(x2))| ≥
|μA(x1) − νA(x1)| + |μA(x2) − νA(x2)|

This inequality is not satisfied for any AIFS. For instance, the inequality is
not satisfied with wA(x1) = 0.1 + 0.9i and wA(x2) = 0.2 + 0.7i.
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It is different if we consider EB
n . This measure satisfies the R-monotonicity

if

EB
n

⎛
⎝

x1, . . . , xn

p1, . . . , pn
wA(x1), . . . , wA(xn)

⎞
⎠ ≥ EB

n−1

⎛
⎝

x1 ∪ x2, x3, . . . , xn

p1 + p2, p3, . . . , pn
wA(x1) ∪ wA(x2), wA(x3), . . . , wA(xn)

⎞
⎠ .

Hereafter, for the sake of simplicity, we denote these two measures EB
n and EB

n−1

respectively.
We have

EB
n − EB

n−1 = 1 − μA(x1) − νA(x1) + 1 − μA(x2) − νA(x2)
−1 + max(μA(x1), μA(x2) + min(νA(x1), νA(x2))

= 1 + (max(μA(x1), μA(x2) − μA(x1) − μA(x2))
(min(νA(x1), νA(x2)) − νA(x1) − νA(x2))

and thus

EB
n − EB

n−1 = 1 − min(μA(x1), μA(x2) − max(νA(x1), νA(x2))
= πA(x1 ∩ x2).

As a consequence, we have EB
n −EB

n−1 ≥ 0 and EB
n satisfies the R-monotonicity.

4 Conclusion

Entropy and measures of information have been extensively studied for 70 years.
Extensions to fuzzy sets, intuitionistic fuzzy sets and other representation models
of uncertainty and imprecision have been proposed in many papers. These exten-
sions are often only based on a formal analogy between the introduced quantities
and classic entropies, in spite of the fact that their purpose is different, entropies
measuring the decrease of uncertainty resulting from the occurrence of an event,
while fuzzy set related measures evaluate the imprecision of events.

General approaches have been proposed to compare and organize all these
quantities, pointing out diverse so-called fundamental properties for instance in
[1,12] and showing that a particular quantity satisfies or does not satisty them.
Attempts have also been done to exhibit classes of quantities with a similar
behavior with regard to sets of properties [4].

In this paper, we highlight the common property of monotonicity of entropy
measures with regard to a refinement of information, showing that the main
differences between these quantities come from the diversity of orders defining
such a refinement. This paper is not intended to provide a review of all entropy
measures existing in the literature, but to clarify the concept of refinement of
information and the underlying monotonicity, and to illustrate this paradigm by
classic examples in a sample of knowledge representation environments, namely
the classic probabilistic one, the fuzzy one, the similarity-based one and the
intuitionistic fuzzy framework.
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In the future, we propose to extend this study to so-called relative entropy
measures enabling to compare two sets of observations, for instance divergences
or relative entropies as the most popular [13].

We will also analyse the use of such measures to evaluate the quality of infor-
mation obtained from numerical media, selecting the most appropriate knowl-
edge representation and the relevant definition of refinement of information for
a given context.
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Abstract. In this work we deal with a particular type of hesitant fuzzy
set, in the case where membership values can appear multiple times and
are ordered. They are called ordered ordinary fuzzy multisets. Some oper-
ations between them are introduced by means of an extension principle.
In particular, the divergence measures between two of these multisets
are defined and we have studied in detail the local family of divergences.
Finally, these measures are related to the ones given for ordinary fuzzy
sets.

Keywords: Divergence measure · Hesitant set
Ordered ordinary fuzzy multiset · Aggregation function

1 Introduction

The comparison of two sets is a very important tool in many areas. This can be
done using different approaches. In some cases we want to measure the equality
degree and in others the difference degree. A study of measures of comparison
was given by Bouchon-Meunier et al. [2]. Since then more measures for comparing
fuzzy sets have been introduced (see [1,10,17,18,21,22]). Recently, a review of
the measures based on the differences was proposed by Couso et al. [4]. The
more usual measures of comparison are dissimilarities [11]. But distances are also
considered in some papers. In both cases, the main difference is the axiom related
to the proximity; that is, some kind of triangular inequality axiom. A good
alternative, in some cases where they are not appropriate, are the divergence
measures. They were introduced in [14] as a way to compare two fuzzy sets.
A deep study about these measures in the most general case can be found in
[9]. Because of their utility, they were also studied as a tool to compare two
intuitionistic fuzzy sets [12,13].

Another way to deal with imprecision is by means of hesitant fuzzy sets, first
introduced by Torra [16], which expand on an idea first advanced by Grattan-
Guinness more than two decades earlier [6], where an element can have multiple
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membership values. In a common intuitive interpretation of the hesitant fuzzy
sets, each membership value is regarded as an independent verdict on member-
ship that one particular “expert” or “decision maker” (DM) has produced. A
realistic scenario occurs when the number of experts is fixed and it may be possi-
ble to link the membership values to the expert that has produced it. But in such
a situation, the hesitant fuzzy sets cannot be a good model, as it should be pos-
sible for a membership value to appear more than once. This need for repeated
membership values was already acknowledged by Torra in his original descrip-
tion of hesitant fuzzy sets and is referred to as the hesitant fuzzy multisets
(HFM’s). On the other hand, if we want to treat the experts as being distinguish-
able, which seems sensible for comparison purposes, then such n-tuples should
be ordered. In this framework, the ordered ordinary fuzzy multisets appear
from the hesitant fuzzy sets. Here, we have tried to introduce the divergence
measures between them as a way to compare two sets. The definition and study
of this concept is the main goal of this work.

This paper is organized as follows. Section 2 gives the basic concepts. Section 3
studies the ordered ordinary fuzzy multisets. Section 4 is devoted to divergence
measures between two of these multisets and the case of local divergence mea-
sures is characterized. We conclude in Sect. 5.

2 Basic Concepts

In the definitions that follow, we assume that there is always a finite axiomatic
reference set or universe (also called the universe of discourse), which we
will denote by X, and that fuzzy sets are defined by associating each element
in the universe with a membership function whose precise definition depends on
the particular flavor of fuzzy sets we are dealing with.

Definition 1 ([20]). Let X be the universe. An ordinary fuzzy set is a func-
tion μ : X → [0, 1].

Mainly for notational convenience, it will also be useful to give a name to
the family of all the ordinary fuzzy sets over a universe. Thus, given a universe
X, the family of all the ordinary fuzzy sets over X is called the ordinary fuzzy
power set over X and it is denoted by F (X).

In this set we can consider the two classical operations of union and inter-
section as follows:

– The union of A and B is the ordinary fuzzy set on X with the following
membership function: μA∪B(x) = s(μA(x), μB(x)), for any x ∈ X, where s is
any t-conorm (see [7])

– The intersection of A and B is the ordinary fuzzy set on X with the following
membership function: μA∩B(x) = t(μA(x), μB(x)), for any x ∈ X, where t is
any t-norm (see [7])

for any A,B ∈ F (X). A general study about fuzzy sets can be found in [5,8].
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In many applications of fuzzy sets, the need arises to measure how similar or
different two fuzzy sets are. Ideally, such measures must take into account the
level of fuzziness and there are now many proposals in the literature that tackle
this problem. In his recent book about hesitant fuzzy sets, Xu mentions many
of the existing approaches [19]. In this work, we shall focus on the divergence
measure originally proposed by Montes et al. [14] for the ordinary fuzzy sets,
which was later extended to the intuitionistic case [12,13]. We will start by
recalling the definition of divergence for the ordinary fuzzy sets.

Definition 2. Let X be the universe. A map D : F (X) × F (X) → R is a
divergence measure if for all A,B ∈ F (X) the following three conditions are
met:

1. D(A,B) = D(B,A)
2. D(A,A) = 0
3. max{D(A ∪ C,B ∪ C),D(A ∩ C,B ∩ C)} ≤ D(A,B), ∀C ∈ F (X)

The first two conditions are completely straightforward. A measure of the
difference between two sets should obviously be symmetric and should be zero
when the two sets being compared are the same. The third one is a bit less
intuitive; basically, the more similar two sets become, the smaller the measure of
their difference should be and this can be formalized through the use of a third
non-empty set that dilutes the difference between the original sets. Note that we
also expect such a measure to be non-negative, but this can be deduced from the
third and second conditions (by making C the empty set), and consequently it
can be left out of the definition. It should also be noted that the third condition
in the previous definition is actually a compact form of what can be (and often
is) expressed as two separate conditions: the divergence between A and B being
an upper bound for the divergence of both the unions and the intersections with
any third set C. It is also important to note that the third condition depends on
how the intersection and union operations are defined, and these operations can
be based on a pair of a t-norm and a t-conorm different from the standard ones,
so the definition above is actually a family of definitions in the more general case
(see [9]).

Among all the possible divergence measures that adhere to the definition
above, it is often useful to single out those that exhibit the additional property
that a change in the membership values for one element in the universe results in
a change in the measure value that will only depend on the membership values
for that element. Divergence measures that behave in this way are referred to as
being “local” and the formal definition is as follows:

Definition 3. Let X be the universe. A divergence measure D : F (X) ×
F (X) → R is a local divergence measure if ∀A,B ∈ F (X) and ∀x ∈ X
there is a function hx : [0, 1] × [0, 1] → R such that:

D(A,B) − D(A ∪ {x}, B ∪ {x}) = hx(μA(x), μB(x))

where {x} is the ordinary fuzzy set such that μ{x}(x) = 1 and μ{x}(x′) = 0 for
any other x′ �= x.
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In general, the function hx can be different for each element x in the universe
X [9], although the assumption that there is one common function h, indepen-
dent of x, is usually made in most of the existing literature [14]. In that case,
we refer to such a function as the characteristic function of the local diver-
gence measure. Intuitively, hx uses the two membership values to measure the
contribution to the divergence of a particular element of the universe.

A powerful characterization of the local divergence measures is given by the
following theorem:

Theorem 1 (Representation Theorem). Let X be the universe. A diver-
gence measure D : F (X) × F (X) → R is a local divergence measure if and
only if ∀A,B ∈ F (X) and ∀x ∈ X there is a function hx : [0, 1] × [0, 1] → R

such that:

D(A,B) =
∑

x∈X

hx(μA(x), μB(x))

And hx fulfills the conditions:

(i) hx(u, v) = hx(v, u), ∀u, v ∈ [0, 1];
(ii) hx(u, u) = 0, ∀u ∈ [0, 1];
(iii) hx(u,w) ≥ hx(u, v), ∀u, v, w ∈ [0, 1] with u ≤ v ≤ w;
(iv) hx(u,w) ≥ hx(v, w), ∀u, v, w ∈ [0, 1] with u ≤ v ≤ w.

After stating these definitions, the problem that we need to tackle is how
to build specific examples of divergence measures. A first idea consists in gen-
eralizing similar concepts of distance and dissimilarity from classical set the-
ory. For example, the Hamming distance between two crisp sets A and B
over a finite universe X can be defined as the count of the different mem-
bers between A and B (basically, the cardinality of their union minus that
of their intersection). This can be generalized to two ordinary fuzzy sets as
DHamming(A,B) =

∑
xi∈X |μA(xi) − μB(xi)|. It is obvious that the Hamming

distance thus defined is a local divergence for ordinary fuzzy sets with the char-
acteristic function hHamming(x, y) = |x−y|. However, we can find in [9] examples
of divergence measures which are neither dissimilarities nor distances.

An extension of the fuzzy sets was proposed by Torra in 2010 under the name
hesitant fuzzy set theory [16]. The hesitant theoretical framework broadens
the range of the membership functions to encompass any subset of the [0, 1]
interval. This leads to the following formal definition:

Definition 4. Let X be the universe. A hesitant fuzzy set A on X is defined
by a membership function μA : X → P([0, 1]), where P([0, 1]) is the family of all
the subsets of the real closed interval [0, 1].

In the next section we will explain how they are useful and what sort of
real-life problems they attempt to model. Before that, we only have to intro-
duce the idea of aggregation function. It can be proved [8] that the min and
max functions are the only t-norm and t-conorm that fulfill the more restrictive
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property of idempotency (t(a, a) = a). But if we do not impose associativity, we
can define a more general form of operation on the real unit interval [0, 1] called
an aggregation operation. The aggregation operations on [0, 1] can be further
extended to any real interval [a, b] [3] and we will refer to them as aggregation
functions in the general case.

Definition 5. Given a closed real interval I = [a, b] (a, b ∈ R, a < b), a func-
tion f : In → I is an aggregation function if it satisfies the following three
conditions [3]:

1. f(a, . . . , a) = a (lower boundary condition)
2. f(b, . . . , b) = b (upper boundary condition)
3. xi ≤ yi(i = 1, . . . , n) =⇒ f(x1, . . . , xn) ≤ f(y1, . . . , yn) (monotonicity)

Aggregation functions such as the arithmetic mean can usually be extended
to the whole real line, in the form of R

n → R functions, so we may also use
the term “aggregation function” for such extensions, under the assumption that
they fulfill the boundary conditions when their domain is restricted to a closed
real interval.

3 Ordered Ordinary Fuzzy Multisets

In the case of the hesitant fuzzy sets, we have to be particularly careful about
their interpretation. In a typical hesitant element like {0.2, 0.3}, we might be
misled into thinking of the hesitancy as a lack of precision about the actual
value, but that sort of situation would be better modeled through an interval-
valued fuzzy set with a membership of [0.2, 0.3] or the equivalent intuitionistic
fuzzy set with membership (0.2, 0.7). The important thing in a typical hesitant
fuzzy set is that the different membership values do not represent an interval,
but distinct possible values, even widely differing ones [15]. In a common intu-
itive interpretation of the hesitant fuzzy sets, each membership value is regarded
as an independent verdict on membership that one particular “expert” or “deci-
sion maker” (DM) has produced. In this view, a hesitant membership value of
{0.2, 0.3} would be regarded as the result of an expert considering that the set
has a membership value of 0.2 and a second expert considering that the set has
a membership value of 0.3. These “experts” can be human individuals or, more
often, simply different criteria or methodologies that produce fuzzy membership
values for a common phenomenon. Note that if the experts evaluate different
phenomena, then it would make more sense to use separate fuzzy sets.

A problem with the experts’ interpretation when we consider the hesitant
membership value as simply a subset of [0, 1] is that these experts should be
indistinguishable and even the number of experts involved is subject to variation.
A more realistic scenario occurs when the number of experts is fixed and it may
be possible to link the membership values to the expert that has produced it.
In such a situation, the typical hesitant fuzzy sets cannot be a good model. On
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the one hand, it should be possible for a membership value to appear more than
once. If both the first and the second expert produce a membership value of 0.2,
then the hesitant membership value should be something like (0.2, 0.2), which is
a pair (an n-tuple for the general case with n experts) rather than a subset. As we
commented in the Introduction, this need for repeated membership values was
already considered by Torra in [16]. On the other hand, if we want to treat the
experts as being distinguishable, which seems sensible for comparison purposes,
then such n-tuples should be ordered, so that (0.1, 0.2) is different from (0.2, 0.1)
as a membership value. We will refer to these ordered vector-like membership
values as ordered fuzzy multisets.

From this discussion, we can see that there are four distinct cases in the
experts’ model.

1. If the experts produce unrelated values for different phenomena, then the
values for each expert should be treated as independent fuzzy sets, as
there is no link between them.

2. If the experts produce related values that account for one phenomenon and
there is a fixed number of them producing a membership value for each ele-
ment in the universe, then we can model the problem with ordered fuzzy
multisets.

3. If the experts produce related values that account for one phenomenon and
there is a fixed number of them producing a membership value for each ele-
ment in the universe and they are indistinguishable (as if in a secret vote;
we cannot know which expert produced which value for one element, but we
can know that n experts chose the same value) then the problem should be
modeled using hesitant fuzzy multisets.

4. If the experts produce related values that account for one phenomenon and
there is a variable or unknown number of them producing membership val-
ues for each element in the universe and they are indistinguishable then the
problem should be modeled using hesitant fuzzy sets.

There has been little or no research so far concerning the ordered fuzzy
multisets; they are pretty straightforward if we consider them as a Cartesian
product, which may explain the scant interest such mathematical constructions
have elicited. Now, we will present some formal definitions.

Thus, we need to define a special type of hesitant fuzzy set where membership
values can appear multiple times and are labeled with a coordinate index. We can
do this easily by replicating the notion of a fuzzy set over the various dimensions
of the Cartesian product of real intervals [0, 1]n:

Definition 6. Let X be the universe. An n-dimensional ordered ordinary
fuzzy multiset (OOFM) A on X is a function μA : X → [0, 1]n.

With this definition, each restriction of μA to the i-th coordinate in the image
set is an ordinary fuzzy set. These n ordinary fuzzy sets, denoted by A1, . . . , An,
can be referred to as the fuzzy coordinates of A.
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As in the ordinary fuzzy sets, we will usually differentiate between the OOFM
A = (A1, . . . , An) and its membership function μA = (μA1 , . . . , μAn

), although
there is no formal difference between the “sets” and the “membership functions”.

The family of all the possible n-dimensional ordered ordinary fuzzy multisets
on X is called the n-dimensional ordered ordinary fuzzy power multiset
of X, which we will denote by Fn(X).

The usual fuzzy set operations such as complement, union and intersection
can be carried over to the [0, 1]n space coordinatewise in a straightforward way.
We can express this as a relatively trivial extension principle:

Definition 7 (OOFM Extension Principle). Given a reference universe X
and an additional reference set Y and a function f : F (X) → Y , for a natural
number n > 1 we can define a function f̃ : Fn(X) → Y n by:

f̃(A1, . . . , An) = (f(A1), . . . , f(An))

If the image set Y is also F (X), then the Cartesian product [F (X)]n can be
identified with Fn(X) in an obvious way.

A more general form of the principle can be stated for multivariate functions,
so that a function f : [F (X)]m → Y , with m > 1 being natural number, can
be similarly extended to a function f̃ : [Fn(X)]m → Y n. In particular, we will
often be using the two-dimensional (m = 2) OOFM Extension Principle.

The complement, intersection and union can then be defined by means of
this OOFM Extension Principle (in its two-dimensional form, for the union and
intersection). For the sake of completeness, we are going to define them explicitly:

Definition 8. Let n be a natural number and let Ã ∈ Fn(X) be an n-
dimensional OOFM. Let c : [0, 1] → [0, 1] be a function that defines an ordinary
fuzzy complement (c(x) := 1 − x in the standard case) on the family of ordinary
fuzzy sets F (X) such that given A ∈ F (X), its complement Ac is defined by
the relation μAc(x) = c(μA(x)). Then the c-based complement of Ã is the
n-dimensional OOFM Ãc defined by a membership function μÃc : X → [0, 1]n

such that μÃc
i
(x) = c(μÃi

(x)).
If c(x) = 1 − x, then the c-based complement is referred to as the standard

complement of Fn(X).

Definition 9. Let n be a natural number and let Ã, B̃ ∈ Fn(X) be two n-
dimensional OOFM’s. Let t : [0, 1] → [0, 1] be a t-norm that defines an ordinary
fuzzy intersection on the family of ordinary fuzzy sets F (X) such that given
A,B ∈ F (X), their intersection A ∩ B is defined by the relation μA∩B(x) =
t(μA(x), μB(x)). Then the t-based intersection of Ã and B̃ is the n-dimen-
sional OOFM Ã ∩ B̃ defined by a membership function μÃ∩B̃ : X → [0, 1]n such
that μ(Ã∩B̃)i

(x) = t(μÃi
(x), μB̃i

(x)).
If t(x, y) = min{x, y}, then the t-based intersection is referred to as the stan-

dard intersection of Fn(X).
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The definition for the union is completely analogous:

Definition 10. Let n be a natural number and let Ã, B̃ ∈ Fn(X) be two n-
dimensional OOFM’s. Let s : [0, 1] → [0, 1] be a t-conorm that defines an ordi-
nary fuzzy union on the family of ordinary fuzzy sets F (X) such that given
A,B ∈ F (X), their union A ∩ B is defined by the relation μA∪B(x) = s(μA(x),
μB(x)). Then the s-based union of Ã and B̃ is the n-dimensional OOFM Ã∪B̃
defined by a membership function μÃ∪B̃ : X → [0, 1]n such that μ(Ã∪B̃)i

(x) =
s(μÃi

(x), μB̃i
(x)).

If s(x, y) = max{x, y}, then the s-based union is referred to as the standard
union of Fn(X).

As these operations have been defined in terms of the ones for the ordinary
fuzzy sets, the properties of the latter are replicated in an obvious way. In partic-
ular, the intersection and union are commutative and associative and the identity
element is the OOFM I : X → [0, 1]n defined by the unity membership function
μI(x) = (1, . . . , 1) ∀x ∈ X for the intersection and the OOFM ∅ : X → [0, 1]n

defined by the null membership function μ∅(x) = (0, . . . , 0) ∀x ∈ X for the
union. As in the case of the ordinary fuzzy sets, the union and intersection are
idempotent and distributive if and only if the t-norm and t-conorm considered
are the standard ones.

4 Measures of Divergence Between OOFMs

For the OOFM’s, we can define a vector form of divergence by applying the
two-dimensional OOFM Extension Principle. This allows extending the existing
notion of divergence to a multidimensional arrangement in a straightforward
way. We will use the term “multidivergence” for this concept as it is a vector,
rather than a real number like the divergence measures.

Definition 11. Let X be the universe. A map Dn : Fn(X) × Fn(X) → R
n

is an n-dimensional ordered ordinary fuzzy multidivergence measure if
for all A,B ∈ Fn(X) the following three conditions are met:

1. Dn(A,B) = Dn(B,A)
2. Dn(A,A) = (0, . . . , 0)
3. max{Dn

i (A ∪ C,B ∪ C),Dn
i (A ∩ C,B ∩ C)} ≤ Dn

i (A,B), ∀C ∈ Fn(X) and
∀i ∈ [1, . . . , n], where Dn

i is the i-th component function of Dn.

The simplest cases of ordered ordinary multidivergence measures will be those
where the image by the i-th component function of the multidivergence depends
upon the i-th component of the OOFM’s A and B only. We will refer to such
multidivergence measures as “pure” or “Cartesian”, as opposed to the general
case where the various coordinates in the domain get mixed up in the resulting
vector, which we will call “mixed multidivergences”.
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Definition 12. Let X be the universe. An n-dimensional ordered ordinary mul-
tidivergence measure Dn : Fn(X) × Fn(X) → R

n is called a pure ordered
ordinary multidivergence measure if each component function Dn

i : Fn(X) ×
Fn(X) → R is a function of the i-th coordinate fuzzy sets only. Formally, for
any A,B ∈ Fn(X) there exist n functions φi : F (X) × F (X) → R such that
Dn

i (A,B) = φi(Ai, Bi).

In the case of pure ordered ordinary multidivergence measures, Definition 11
means that each dimension can be treated as an ordinary divergence measure.
We can sum this up in a proposition:

Proposition 1. Given a universe X and an n-dimensional pure ordered ordi-
nary fuzzy multidivergence measure Dn defined over Fn(X) such that for any
x ∈ X and any pair A,B ∈ Fn(X), Dn is decomposed as Dn(A,B)(x) =
(Dn

1 (A1, B1) (x), . . . , Dn
n(An, Bn)(x)), each component function Dn

i is a diver-
gence measure.

Such pure ordered ordinary fuzzy multidivergence measures can be con-
structed by simply combining several ordinary divergences through a Carte-
sian product. So, for example, we can take a Hamming-style divergence or a
Euclidean-style divergence, both defined on F (X), and construct with either of
them a pure ordered fuzzy multidivergence on F 2(X).

Example 1. Let X = {a, b} be a universe made up of two elements. If we take
two of its 2-dimensional ordered ordinary fuzzy multisets A and B defined by
μA(a) = (0.2, 0.3), μA(b) = (0.7, 0.9), μB(a) = (0.5, 0.4) and μB(b) = (0.1, 0.2),
then the Hamming multidivergence D2

Hamming would be given by:

D2
Hamming(A,B) =

[
DHamming(A1, B1)
DHamming(A2, B2)

]

=
[
DHamming((0.2, 0.7), (0.5, 0.1))
DHamming((0.3, 0.9), (0.4, 0.2))

]
=

[
0.9
0.8

]

Just as it was done with the ordinary fuzzy divergence measures, we can
refer to an ordered ordinary multidivergence measure as being local when the
variation in the divergence between two pairs of fuzzy sets that is triggered by
varying the membership value for one element of the universe can be expressed
through a characteristic function:

Definition 13. Let X be the universe. An n-dimensional ordered ordinary mul-
tidivergence measure Dn : Fn(X)×Fn(X) → R

n is said to be local if for every
x ∈ X there is a function hn

x : [0, 1]n × [0, 1]n → R
n such that:

Dn
i (A,B) − Dn

i (A ∪ {x}, B ∪ {x}) = hn
xi

(μA(x), μB(x)) (i = 1, . . . , n)

where {x} is the n-dimensional ordered ordinary fuzzy set such that μ{x}(x) =
{1, . . . , 1} and μ{x}(y) = {0, . . . , 0} for any other y �= x.
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Local multidivergences are very closely related to the local fuzzy divergence
measures, as we can see:

Proposition 2. Let X be the universe and let Fn(X) be its n-dimensional
ordered ordinary fuzzy power multiset. If an n-dimensional ordered ordinary mul-
tidivergence measure Dn : Fn(X) × Fn(X) → R

n is both pure and local, then
each one of the n component functions Dn

i is a local fuzzy divergence measure.

When the multidivergence is pure, as each coordinate is a local divergence
itself, we can apply the representation Theorem 1, leading to a multi-dimensional
version:

Theorem 2 (Local Multidivergence Representation Theorem). Let X
be the universe. An n-dimensional pure ordered ordinary multidivergence mea-
sure Dn : Fn(X) ×Fn(X) → R

n is a local multidivergence measure if
and only if ∀A,B ∈ Fn(X) and for every x ∈ X there are n functions
hn
xi

: [0, 1] × [0, 1] → R (with i = 1, . . . , n) such that:

Dn
i (A,B) =

∑

x∈X

hn
xi

(μAi
(x), μBi

(x))

And all the hxi
fulfill the conditions:

(i) hxi
(u, v) = hxi

(v, u), ∀u, v ∈ [0, 1];
(ii) hxi

(u, u) = 0, ∀u ∈ [0, 1];
(iii) hxi

(u,w) ≥ hxi
(u, v), ∀u, v, w ∈ [0, 1] with u ≤ v ≤ w;

(iv) hxi
(u,w) ≥ hxi

(v, w), ∀u, v, w ∈ [0, 1] with u ≤ v ≤ w.

Up to this point, we have simply combined ordinary fuzzy sets into a multi-
dimensional vector arrangement. The multidivergence measures as vector quan-
tities are not really useful when we want to quantify or compare how close or
distant different ordered fuzzy multisets are from one another. Even if we can
rely on the product order or a lexicographic order in some simple cases, ide-
ally we would rather arrive at a single real number as the useful divergence
measure. This can be done by simply applying an aggregation function to the
multidivergence. This idea leads to the definition below:

Definition 14. Given a universe X, an n-dimensional ordered ordinary fuzzy
multidivergence measure Dn defined over Fn(X) and an aggregation function
f : Rn → R, the f-aggregated ordered ordinary fuzzy divergence measure
is the function D∗n

f : Fn(X) × Fn(X) → R defined by the f aggregation of the
components of Dn:

D∗n
f (A,B) := f(Dn

1 (A,B), . . . ,Dn
n(A,B))

Example 2. In our previous example, we arrived at a Hamming-style multidiver-
gence made up of two values. If we use the arithmetic mean as our aggregation
function, we can turn the Hamming 2-multidivergence (0.9, 0.8) into the Ham-
ming arithmetic-mean-aggregated ordered ordinary fuzzy divergence value of
0.85.
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5 Conclusions

In this work we have considered the classical hesitant fuzzy sets to define the
ordered ordinary fuzzy multisets, which can be more useful in some particular
cases in decision making. An interesting tool in this area, a measure for compar-
ing two multisets, was also defined and studied in detail, in particular the case
of local multidivergences.

In the future we would like to be able to relate the OOFM’s with the hesitant
fuzzy multisets and thereby extend the idea of divergence measure to these
multisets.

Acknowledgment. Authors acknowledge financial support by the Spanish Ministry
under Projects TIN2014-59543-P and TIN2017-87600-P.

References

1. Anthony, M., Hammer, P.L.: A Boolean measure of similarity. Discrete Appl. Math.
154(16), 2242–2246 (2006)

2. Bouchon-Meunier, B., Rifqi, M., Bothorel, S.: Towards general measures of com-
parison of objects. Fuzzy Sets Syst. 84, 143–153 (1996)

3. Beliakov, G., Bustince, H., Calvo, T.: A Practical Guide to Averaging Functions.
Studies in Fuzziness and Soft Computing, vol. 329. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-319-24753-3. ISBN 978-3-319-24751-9

4. Couso, I., Garrido, L., Sánchez, L.: Similarity and dissimilarity measures between
fuzzy sets: a formal relational study. Inf. Sci. 229, 122–141 (2013)

5. Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. Kluwer Academic Publishers,
Massachusetts (2000)

6. Grattan-Guinness, I.: Fuzzy membership mapped onto intervals and many-valued
quantities. Math. Logic Q. 22–1, 149–160 (1976)

7. Klement, P., Mesiar, R., Pap, E.: Triangular Norms. Trends in Logic, vol. 8.
Springer, Heidelberg (2000). https://doi.org/10.1007/978-94-015-9540-7

8. Klir, G.J., Folger, T.A.: Fuzzy Sets Uncertainty and Information. Prentice-Hall,
Englewood Cliffs (1988)
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Abstract. The aggregation of binary relations is a common topic in
many fields of application such as social choice and cluster analysis. In
this paper, we discuss how the median procedure – probably the most
common method for aggregating binary relations – fits in the framework
of penalty-based data aggregation.

Keywords: Aggregation · Penalty function · Binary relation · Median

1 Introduction

The use of penalty functions has been a common approach in data aggregation
since Yager introduced the concept in 1993 [1]. Intuitively, a penalty function
measures the disagreement of a list of objects with a consensus object. The result
of the aggregation is thus considered to be the consensus object(s) that minimizes
the penalty w.r.t. the list of objects to be aggregated. Unfortunately, in contrast
with the initial ideas proposed by Yager, the use of penalty functions in data
aggregation is nowadays mostly confined to the aggregation of real numbers [2,3].
In a recent paper [4], we pointed out that the aggregation on other structures
different than the set of real numbers also obeys some similar laws, and proposed
a more general definition of a penalty function based on the compatibility with
a betweenness relation.

For instance, the aggregation of binary relations is a long-standing problem
in many fields of application. The aggregation of linear order relations (and
rankings) [5], weak order relations [6] and tournament relations [7] is a common
topic in social choice theory, and the aggregation of equivalence relations [8] is of
interest to the field of cluster analysis. One common approach for the aggregation
of all these types of binary relations is the median procedure [9], in which the
result of the aggregation is the binary relation that minimizes the symmetric
difference distance to the list of binary relations to be aggregated. In this paper,
we will demonstrate that the median procedure is indeed a case of penalty-based
aggregation of binary relations.

c© Springer International Publishing AG, part of Springer Nature 2018
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The remainder of the paper is structured as follows. First, we recall some
preliminary notions on betweenness relations and penalty functions in Sect. 2.
In Sect. 3, we discuss some structural properties of the set of binary relations on
a finite set. In Sect. 4, the median procedure for aggregating binary relations is
discussed, whereas we prove that this median procedure is a prominent example
of penalty-based aggregation of binary relations in Sect. 5. We round up with
some conclusions in Sect. 6.

2 Preliminaries

The notion of an element lying in between two other elements is a common topic
in mathematics dating back to the foundations of geometry. In the following, we
provide a definition requiring a minimal set of axioms [10]. Further additional
axioms have been proposed concerning different types of transitivity [11–13].

Definition 1. A ternary relation B on a set X is called a betweenness relation
if it satisfies the following three properties:

(i) Symmetry in the end points: for any x, y, z ∈ X, it holds that

(x, y, z) ∈ B ⇔ (z, y, x) ∈ B .

(ii) Closure: for any x, y, z ∈ X, it holds that
(
(x, y, z) ∈ B ∧ (x, z, y) ∈ B

)
⇔ y = z .

(iii) End-point transitivity: for any o, x, y, z ∈ X, it holds that
(
(o, x, y) ∈ B ∧ (o, y, z) ∈ B

)
⇒ (o, x, z) ∈ B .

In a partially ordered set or in a metric space, we naturally have an associated
betweenness relation [4].

Definition 2. Consider an order relation ≤ on a set X. The betweenness rela-
tion induced by ≤ is the ternary relation B≤ on X defined as

B≤ =
{
(x, y, z) ∈ X3 | (x = y) ∨ (y = z) ∨ (x ≤ y ≤ z) ∨ (z ≤ y ≤ x)

}
.

Definition 3. Consider a distance function d on a set X. The betweenness rela-
tion induced by d is the ternary relation Bd on X defined as

Bd =
{
(x, y, z) ∈ X3 | d(x, z) = d(x, y) + d(y, z)

}
.

Any betweenness relation on a set X is easily extended to Xn by the so-called
product betweenness relation.

Definition 4. Consider n ∈ N and a betweenness relation B on a set X. The
product betweenness relation is the ternary relation B(n) on Xn defined as

B(n) =
{
(x,y, z) ∈ (Xn)3 | (∀i ∈ {1, . . . , n})((xi, yi, zi) ∈ B)

}
.
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Since Yager proposed for the first time the use of penalty functions in the
field of data aggregation [1], the definition of a penalty function has suffered
many changes (see, for instance, [3,14] or the recent survey [2]). Nevertheless,
these penalty functions have mainly been used for aggregating real numbers. In
the following, we consider the definition given in [4] that allows to deal with
aggregation on structures equipped with a betweenness relation (e.g. partially
ordered sets and metric spaces).

Definition 5. Consider n ∈ N, a set X and a betweenness relation B on Xn.
A function P : X × Xn → R

+ is called a penalty function (compatible with B)
if the following four properties hold:

(P1) P (y;x) ≥ 0, for any y ∈ X and any x ∈ Xn;
(P2) P (y;x) = 0 if and only if x = (y, . . . , y);
(P3) The set of minimizers of P (·;x) is non-empty, for any x ∈ Xn.
(P4) P (y;x) ≤ P (y;x′), for any y ∈ X and any x,x′ ∈ Xn such that ((y, . . . , y),

x,x′) ∈ B.

Remark 1. Two additional desirable properties for a penalty function are:

(P5) P (y;x) ≤ P (y′;x), for any y, y′ ∈ X, any x ∈ Xn and any minimizer z ∈ X
of P (·;x) such that ((z, . . . , z), (y, . . . , y), (y′, . . . , y′)) ∈ B;

(P6) P (y;x) = P (z;x), for any y ∈ X, any x ∈ Xn and any two minimizers
z, z′ ∈ X of P (·;x) such that ((z, . . . , z), (y, . . . , y), (z′, . . . , z′)) ∈ B.

A penalty function is then used for determining the result of an aggregation
process: we select as the aggregate the value(s) that minimizes the penalty given
the list of objects to be aggregated.

Definition 6. Consider n ∈ N, a set X, a betweenness relation B on Xn and a
penalty function P : X × Xn → R

+ compatible with B. The function f : Xn →
P(X) such that f(x) equals the set of minimizers of P (·;x), for any x ∈ Xn, is
called the penalty-based function associated with P .

Note that penalty-based functions are not aggregation functions in the most
classical sense [15] since they do not need to fulfill the monotonicity property
(an interesting discussion on this topic is addressed in [3]). Actually, one should
note that when we no longer deal with the aggregation of elements in a partially
ordered set, the property of monotonicity might not even be definable.

3 Binary Relations

Throughout the rest of this paper, we consider a fixed finite set X. A binary
relation (on X) is a set of couples (x, y) ∈ X2 or, equivalently, a subset of X2. We
denote the set of all binary relations by B. For a binary relation R it is common
to write xRy instead of (x, y) ∈ R. A binary relation R is said to be included in
another binary relation S, denoted by R ⊆ S, if, for any x, y ∈ X, xRy implies



362 R. Pérez-Fernández and B. De Baets

that xSy. The union of two binary relations R and S, denoted by R ∪ S, is the
binary relation defined as R ∪ S = {(x, y) ∈ X2 | xRy ∨ xSy}. Similarly, the
intersection of two binary relations R and S, denoted by R ∩ S, is the binary
relation defined as R ∩ S = {(x, y) ∈ X2 | xRy ∧ xSy}. The set difference of
two binary relations R and S, denoted by R\S, is the binary relation defined
as R\S = {(x, y) ∈ X2 | xRy ∧ xScy}. Finally, the symmetric difference of two
binary relations R and S, denoted by RΔS, is the binary relation defined as
RΔS = (R\S) ∪ (S\R), or, equivalently, as RΔS = (R ∪ S)\(R ∩ S).

The symmetric difference is commonly used for defining a natural distance
function on the set of binary relations. For any two binary relations R and S,
the symmetric difference distance between R and S is given by:

dΔ(R,S) = |RΔS| = |R ∪ S| − |R ∩ S| ,

where |T | denotes the number of couples in a given binary relation T .
Note that the set of binary relations is then equipped with a natural distance

function dΔ and with a natural order ⊆. Thus, two natural betweenness relations
arise:

B⊆ =
{
(R,R′, R′′) ∈ B3 | R = R′ ∨ R′ = R′′ ∨ R ⊆ R′ ⊆ R′′ ∨ R′′ ⊆ R′ ⊆ R

}
,

BdΔ
=

{
(R,R′, R′′) ∈ B3 | dΔ(R,R′′) = dΔ(R,R′) + dΔ(R′, R′′)

}
.

It is easy to verify that B⊆ ⊂ BdΔ
.

Remark 2. An interesting observation is that, if R ⊆ R′′ (or R′′ ⊆ R), then
(R,R′, R′′) ∈ B⊆ holds if and only if (R,R′, R′′) ∈ BdΔ

holds (for any R′ ∈ B).

Several properties of binary relations are interesting to be studied. A binary
relation R is called:

(i) reflexive, if, for any x ∈ X, it holds that xRx;
(ii) symmetric, if, for any x, y ∈ X, it holds that xRy implies that yRx;
(iii) antisymmetric, if, for any x, y ∈ X, it holds that xRy and yRx imply that

x = y;
(iv) transitive, if, for any x, y, z ∈ X, it holds that xRy and yRz imply that

xRz;
(v) complete, if, for any x, y ∈ X, either xRy or yRx holds.

Some specific types of binary relations have attracted the attention of the scien-
tific community. In the following, we highlight:

(i) A linear order relation is an antisymmetric, transitive and complete (thus
reflexive)1 binary relation. The set of all linear order relations is denoted
by L.

1 The irreflexive part of a linear order relation is often called a ranking. Since the
(ir)reflexivity of a relation does not usually play a role in the aggregation process,
both linear order relations and rankings are often used interchangeably.
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(ii) A weak order relation is a transitive and complete (thus reflexive) binary
relation. The set of all weak order relations is denoted by W.

(iii) A tournament relation is an antisymmetric and complete (thus reflexive)2

binary relation. The set of all tournament relations is denoted by T .
(iv) An equivalence relation is a reflexive, symmetric and transitive binary rela-

tion. The set of all equivalence relations is denoted by E .

4 The Median Procedure

The median procedure [9] is a common technique for aggregating binary rela-
tions. In general, a binary relation R is said to be a median of a list (Ri)n

i=1 of
n binary relations if

n∑

i=1

dΔ(R,Ri) = min
R′∈B

n∑

i=1

dΔ(R′, Ri) . (1)

It is known that if n is an odd number the median R of any list (Ri)n
i=1 of n

binary relations is unique and given by:

R =
{
(x, y) ∈ X2 | n+1

2 ≤ |{i ∈ {1, . . . , n} | xRiy}|
}

. (2)

If n is an even number, the median does not need to be unique. However, it is
known that the medians of any list (Ri)n

i=1 of n binary relations are all those
binary relations R that satisfy that (R,R,R) ∈ B⊆ where:

R =
{
(x, y) ∈ X2 | n

2 < |{i ∈ {1, . . . , n} | xRiy}|
}

,

R =
{
(x, y) ∈ X2 | n

2 ≤ |{i ∈ {1, . . . , n} | xRiy}|
}

. (3)

Interestingly, the median procedure is also used in the aggregation of special
types of binary relations. Consider a subset S of the set of all binary relations
B. A binary relation R ∈ S is said to be an S-median of the list (Ri)n

i=1 of n
binary relations in S if

n∑

i=1

dΔ(R,Ri) = min
R′∈S

n∑

i=1

dΔ(R′, Ri) .

Unfortunately, unlike the computation of the median3, the computation of other
S-medians is not trivial. Many studies have analysed the complexity of com-
puting different types of S-medians (mainly concerning subsets S defined by
properties of binary relations such as reflexivity, symmetry, antisymmetry, tran-
sitivity and completeness) [16], probably the cases in which S ∈ {L,W, T , E}
being the most prominent examples [8,17].

2 The term tournament relation is sometimes used for referring to the irreflexive part
of what we call a tournament relation in this paper.

3 Note that the notions of B-median and median are equivalent.
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The method of Kemeny [5], probably one of the most common methods
for aggregating linear order relations, selects as the aggregate of a given list
of linear order relations the linear order relation(s) that minimizes the sum
of Kendall distances [18]. Since the Kendall distance between two linear order
relations is half of their symmetric difference distance, it is immediate to see
that the method of Kemeny actually amounts to identifying the L-medians.
The method of Kemeny is also considered for aggregating weak order relations
by selecting as the aggregate of a given list of weak order relations the weak
order relation(s) that minimizes the sum of Kemeny distances [5]. Since the
Kemeny distance between two weak order relations coincides with the symmetric
difference distance between the strict parts of these weak order relations, it is
immediate to see the link between W-medians and the method of Kemeny for
weak order relations.

5 The Median Procedure as an Example of Penalty-Based
Aggregation of Binary Relations

Consider a subset S of the set of all binary relations B, and consider the problem
of aggregating a list (Ri)n

i=1 of n binary relations in S. The function P : S×Sn →
R

+, defined as

P (R, (R1, . . . , Rn)) =
n∑

i=1

dΔ(R,Ri)

=
∑

(x,y)∈X2

|{i ∈ {1, . . . , n} | (xRy ∧ xRc
iy) ∨ (xRcy ∧ xRiy)}| .

(4)

trivially satisfies conditions (P1) and (P2) of a penalty function.
For any list (Ri)n

i=1 of n binary relations in S, the set of minimizers of
P (·; (R1, . . . , Rn)) obviously is non-empty (since P (R; (R1, . . . , Rn)) is an integer
number for all R ∈ S and, moreover, S is a finite set). Thus, condition (P3) of
a penalty function is satisfied.

Consider now any R ∈ S and any (Ri)n
i=1, (R

′
i)

n
i=1 ∈ Sn such that

((R, . . . , R), (Ri)n
i=1, (R

′
i)

n
i=1) ∈ B

(n)
dΔ

. By definition of the product between-
ness relation, it follows that (R,Ri, R

′
i) ∈ BdΔ

for any i ∈ {1, . . . , n}. There-
fore, it holds that dΔ(R,Ri) = dΔ(R,R′

i) − dΔ(Ri, R
′
i) ≤ dΔ(R,R′

i) (for any
i ∈ {1, . . . , n}), and, thus,

P (R, (R1, . . . , Rn)) =
n∑

i=1

dΔ(R,Ri) ≤
n∑

i=1

dΔ(R,R′
i) = P (R, (R′

1, . . . , R
′
n)) .

We conclude that P satisfies condition (P4) of a penalty function, and, thus, is
a penalty function compatible with B

(n)
dΔ

. Note that, since B⊆ ⊆ BdΔ
, it also

holds that P is a penalty function compatible with B
(n)
⊆ .
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Unfortunately, the desirable conditions (P5) and (P6) might not be satisfied
in general for any S (for instance, we proved in [4] these conditions to fail for
the case in which S is the set of all rankings).

Fortunately, in the general case of binary relations (with no extra prop-
erties required) both conditions (P5) and (P6) are fulfilled. Consider any
R,R′ ∈ B, any (Ri)n

i=1 ∈ Bn and any minimizer S ∈ B of P (·; (Ri)n
i=1) such

that ((S, . . . , S), (R, . . . , R), (R′, . . . , R′)) ∈ B
(n)
dΔ

. First, since S is a minimizer of
P (·; (Ri)n

i=1), it trivially follows from Eq. (4) that

|{i ∈ {1, . . . , n} | (xSy ∧ xRc
iy) ∨ (xScy ∧ xRiy)}|

≤ |{i ∈ {1, . . . , n} | (xS′y ∧ xRc
iy) ∨ (xS′cy ∧ xRiy)}| ,

for any (x, y) ∈ X2 and any S′ ∈ B. Second, since ((S, . . . , S), (R, . . . , R),
(R′, . . . , R′)) ∈ B

(n)
dΔ

, it holds that any couple (x, y) satisfying both that
(x, y) ∈ S and (x, y) ∈ R′ also needs to satisfy that (x, y) ∈ R.

Combining the last two statements, we conclude that P (R, (R1, . . . , Rn)) ≤
P (R′, (R1, . . . , Rn)), i.e., condition (P5) is satisfied. Finally, condition (P6) fol-
lows straightforwardly after considering the characterization of the minimizers
of P (·; (Ri)n

i=1) given by Eq. (2) (if n is an odd number) or Eq. (3) (if n is an even
number). Again, since B⊆ ⊆ BdΔ

, conditions (P5) and (P6) are also satisfied for
the betweenness relation B

(n)
⊆ .

6 Conclusions

In this paper, we have discussed some prominent examples of aggregation of
(families of) binary relations, and proved that the commonly-used median pro-
cedure turns out to be an example of penalty-based data aggregation. Moreover,
two desirable properties of a penalty function are proved to hold in case the
aggregation of binary relations (and not a particular family of binary relations)
is considered. Unfortunately, these two properties are known to fail for the aggre-
gation of some families of binary relations, e.g., for the aggregation of rankings.
Future research concerns the study of the impact of replacing dΔ by another
distance function in Eq. (1). Certainly, this has been a popular study subject in
the field of social choice theory for the particular setting of rankings [19–22]. To
the best of our knowledge, the literature is sparser for the more general setting
of binary relations.
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Abstract. We look at different approaches to learning the weights of the
weighted arithmetic mean such that the median residual or sum of the
smallest half of squared residuals is minimized. The more general problem
of multivariate regression has been well studied in statistical literature,
however in the case of aggregation functions we have the restriction on
the weights and the domain is also usually restricted so that ‘outliers’
may not be arbitrarily large. A number of algorithms are compared in
terms of accuracy and speed. Our results can be extended to other aggre-
gation functions.
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1 Introduction

In the application of aggregation functions, a key problem is how to determine
the weights or function parameters that give the best fit with respect to some
penalty or objective to an observed dataset. The learned parameters can then
be used either for data analysis or in the prediction of new values.

A standard approach is to use programming methods such that the sum of
residuals is optimized [1–4], e.g. for a weighted arithmetic mean with respect
to an unknown n-dimensional vector of weights w, and an observed dataset
consisting of m input-output pairs (xi, yi),xi ∈ [0, 1]n, yi ∈ [0, 1], we have
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Minimize
w

m∑

i=1

|ri|p (1)

s.t. ri =

⎛

⎝
n∑

j=1

wjxij

⎞

⎠ − yi, i = 1, . . . ,m,

n∑

j=1

wj = 1, wj ≥ 0, j = 1, . . . , n.

For p = 2 we are minimizing the sum of squared residuals or least squares
(LS), which can be solved as a quadratic programming problem, while for p = 1,
we have the least absolute deviation (LAD), which can be solved using linear
programming methods by introducing two decision variables for each observed
instance and setting ri = r+i − r−

i and r+i , r−
i ≥ 0.

The LAD approach should be less susceptible to outliers, however as has been
well observed in statistical literature [5], leverage points can still exert influence
if the residual associated with outliers is significantly larger than residuals asso-
ciated with other points.

For example, consider the 2-variate data depicted in blue in Fig. 1(a).
When fitting using Eq. (1) and p = 1 (LAD1), we obtain the weighting vector

w = (0.300, 0.700) with a total fitting error of 4.9 × 10−4. Using p = 2 (LS), we
also obtain a good result with the same weighting vector (to 3 d.p.) and error
2.8 × 10−8.

However suppose we introduce outlying points at x = (0, 1), y = 0. These
are indicated by the red point depicted in Fig. 1(a). With the introduction of
a single outlier, the LS results in w = (0.740, 0.260), the penalty or objective
value increasing to 1.3 × 10−1 (note that these weights reverse the importance
allocated to each variable). The outlier effect on the LS method is illustrated
visually in Fig. 1(b)–(c). With the single outlier, the weights determined by LAD
are almost unchanged (when evaluated to 3 d.p.), the error increasing to 7.0 ×
10−1. However when we introduce 2 outliers (at the same point), the LS continues
to allocate more weight to the first variable, w = (0.841, 0.159) with overall
penalty 2.2 × 10−1 and, at this point, the LAD fitting results in the vector
w = (1, 0), i.e. interpolating the two outliers, because the sum of the residuals
when fitting to these points is 1.4, which is less than the error that would result
if the original model’s weighting vector w = (0.7, 0.3) were used.

In the 80s, this problem for standard linear regression prompted Rousseeuw
and others [5,7,8] to consider optimizing with respect to the median residual
(least median of squares or LMS) or the sum of the smallest 50% of residuals

(least trimmed squares or LTS) instead, i.e. minimizing
∣∣r(k)

∣∣p or
k∑

i=1

|r(k)|p where

k = �m/2� and |r(i)| indicates the i-th smallest residual.

1 All fitting performed in R [6] with details available at http://aggregationfunctions.
wordpress.com.

http://aggregationfunctions.wordpress.com
http://aggregationfunctions.wordpress.com
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Fig. 1. (a) Randomly generated data (uniformly over [0, 1]2) in blue and an outlying
point in red shown as projection onto the 2-dimensional plane. (b)–(c) Data from (a)
with a well fitting weighted mean (b) and a weighted mean affected by the outlier in
red (c), both determined using least squares fitting. In the latter case a single outlier
pulls the function towards the outlying point and in 3-dimensional space. (Color figure
online)

In [5], Rousseeuw notes that the breakdown point, i.e. the percentage of data
that can be arbitrarily large before a reliable result is obtained, is ((m/2) − n +
2)/m.

Rousseeuw’s method involves sampling n points (or n+1 in the case of stan-
dard regression requiring an intercept), solving the exact interpolation problem,
then checking the residuals. After multiple iterations, the weighting vector that
minimizes the objective function of the residuals is taken as the approximate
solution. The number of samples can be chosen such that the probability of a
‘good’ solution appearing in one of the samples is high. An underlying assump-
tion then is that there exists a sample of n points that are representative enough
of the non-outlier dataset. Rousseeuw also has investigated the reliability in
terms of estimating accuracy assuming normally distributed error.

In the case of weighted means, solving the interpolation problem for n points
could result in negative weights if the data contains noise, and depending on
the granularity at which data is collected, real data is likely to include subsets
of observed points resulting in singular matrices and hence be unsolvable. It
is noted in [9] that minimizing the median residual has a relationship to the
infinity norm (L∞), i.e. the problem can be expressed as a mixed integer program
where the maximum residual is minimized for a subset consisting of half of the
data (which theoretically could be implemented using binary variables indicating
whether a datum is included or not). Of course, for any reasonable sized dataset
this quickly becomes infeasible, however we can still look to use the minimization
of the maximum residual as the basis of a number of approximation algorithms.
Furthermore, it should be noted that with computing power and the availability
of general-purpose solvers, many real applications would have the luxury of being
able to spend a little extra computing time if high accuracy is needed, so a range
of approaches are practically feasible.
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In this contribution, we introduce and investigate a number of algorithms that
aim to find the best approximation to the weights of a weighted arithmetic mean
that minimize the LMS and LTS fitting criteria. We test the algorithms against
synthetic data to determine whether their respective performance is dependent
on factors such as the number of outliers, the structure of the outliers, and the
variable parameters of each algorithm. In Sect. 2 we give a brief overview of
aggregation functions (of which the weighted arithmetic mean is an archetypical
example) and the data-fitting problem. In Sect. 3 a number of algorithms are
presented and compared with numerical experiments. Some concluding remarks
are provided in the final section.

2 Preliminiaries

We are concerned with the modelling of data with aggregation functions
[1,3,4,10,11], a class of multi-variate functions A : [0, 1]n → [0, 1] satisfying
monotonicity in each argument and boundary conditions A(0, . . . , 0) = 0 and
A(1, . . . , 1) = 1.

Although a broad definition, in the context of machine learning, the mono-
tonicity of aggregation functions ensures a degree of robustness and conceptual
reliability in the obtained model (provided monotonicity makes sense in the
application), while the boundary conditions to some extent ensure that the scale
of the output can be interpreted over a similar scale to the inputs. In particular,

we will focus on use of the weighted arithmetic mean, WAM(x) =
n∑

j=1

wixi,

with w = (w1, w2, . . . , wn) an n-dimensional weighting vector that satisfies∑n
i=1 wi = 1 and wi ≥ 0,∀i.
The weighted arithmetic mean is said to be averaging, i.e. for all x ∈ [0, 1]n,

min(x) ≤ WAM(x) ≤ max(x).
There are countless families of aggregation functions with various interesting

properties, including those that are averaging and defined with respect to weight-
ing vectors. While we focus on the simplest family, most of our results would be
easily extended to the cases of OWA operators, weighted quasi-arithmetic means
and the Choquet integral to name a few. We note too that other intervals can
be considered, however we will contain ourselves to [0, 1] here.

How to fit weighted arithmetic means to data based on least absolute devi-
ation has been addressed in [2,12–14]. We recall that Eq. (1) can be used as the
basis for finding the best fitting aggregation function, while further requirements
on the weights may also be desired (see, e.g. the summaries and references in
[1]).

More complicated aggregation functions can be fit to data using more or
less the same approach. Ordered weighted averaging (OWA) functions merely
require each of the input vectors to be sorted, while the fitting can be performed
on weighted quasi-arithmetic means by transforming the inputs and outputs
(although this can result in residuals being over- or under-estimated, see [15]).
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3 Least Median of Squares (LMS) and Least Trimmed
Squares (LTS) Fitting for the Weighted Arithmetic
Mean

The difficult aspect of solving Eq. (1) with respect to the LMS or LTS is deter-
mining the subset S ⊂ {1, . . . , m} such that |S| = �m/2� and there exists an
observation k with |rk| ≥ |ri|,∀ i ∈ S and |rk| ≤ |ri|,∀i 
∈ S.

Once we have S, the LMS problem could be solved by finding the maximum
error z = |rk| using the following linear program

Minimize
w

z (2)

s.t. z ≥
⎛

⎝
n∑

j=1

wjxij

⎞

⎠ − yi, z ≥ yi −
⎛

⎝
n∑

j=1

wjxij

⎞

⎠ , i = 1, . . . , m,

n∑

j=1

wj = 1, wj ≥ 0, j = 1, . . . , n,

z ≥ 0.

This requires only n + 1 decision variables and 2m + 1 linear constraints if
all decision variables are assumed to be positive. The LTS is solved merely by
solving Eq. (1) on the given subset. We first describe our experimental setup
before testing multiple approaches.

3.1 Random Test Data

We considered two simple data creation methods, differing in the outliers gen-
erated in order to detect whether certain LMS or LTS approaches are more
susceptible to their structure and distribution throughout the data.

We generated random 5-dimensional vectors such that one or two of the
variables held most of the importance (to ensure the potential for high residuals).
A random integer q between 400 and 600 was selected for each test, then each
wj calculated as wj = jq/100 − (j − 1)q/100 before being normalized so that the
vectors added to 1. The non-outlier data were generated with xi drawn randomly
from the unit hypercube (with uniform probability) and y-values calculated using

yi =
n∑

j=1

wjxj . Guassian noise was then added with standard deviation σ = 0.05.

Outliers were generated according to two methods. The first method assumes
these values are just extra noisy values that follow the same model. Increasing
the number of outliers present would not be expected to have a drastic impact
on the fitted weighting vectors. The second method strategically positions the
values so that the importance of the highest weight should be brought down and
the fitted weighting vector would not represent the non-outlier data very well
(See Fig. 2).
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rand.data.1. x and y values were determined in the same way as for the non-
outlier data, however with σ = 0.1 and an extra 0.3 added to the y value in
the same direction as the noise, i.e. these data points are at least 6 standard
deviations (with respect to the noise of non-outlying values) away from values
calculated using the model w. Values outside the unit interval were discarded
and redrawn.

rand.data.2. x values are centered according to the generating weighting vector
w with the weights squared and divided by the maximum w2

j before Gaussian
noise is added with σ = 0.005. The y values are set to 0 with Guassian noise
added σ = 0.1 and negative values made positive.

Fig. 2. Structure of random data generated for experiments using (a) rand.data.1 -
data randomly distributed at least 6 standard deviations away from the generating
function points, and (b) rand.data.2 - data distributed near y = 0, close to the corner
of the hypercube corresponding to the dimension allocated the highest importance. This
data is for the special case of 1 dimension - in our experiments we used 5-dimensional
x vectors. Lines indicate 3 standard deviations (with respect to Gaussian noise of
non-outlier data) either side of the generating function.

3.2 Algorithms Based on Random Sampling

We first tested 4 approaches based on Rousseeuw’s approach [5,7,8] where we
randomly sample sets of n inputs and use them to estimate the weights. In
each case, we assume an input dataset consisting of m observed n-dimensional
x inputs and the corresponding y values.

LMS1/LTS1. The weighting vector is initialized at (1/n, 1/n, . . . , 1/n) and
objective value at m. For each of Q iterations, n observed instances are sam-
pled and the corresponding matrix is solved2 to give the hyperplane through
those sampled points. If all weights are positive, the squared residual values
between this hyperplane and all m points is calculated and the objective value
determined (median residual for LMS, mean of smallest 50% of residuals for
LTS). If this objective is lower than the current best, the weighting vector

2 Achieved in R using solve(), provided the matrix is non-singular. In the event of
singular matrices, the particular iteration contributed nothing to the output.
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and best objective value are updated. The iteration is skipped if any of the
weights are negative. After Q iterations, the current best weighting vector
(not necessarily normalized) and square root of the objective are given as
output.

LMS2/LTS2. Same setup as for the LMS1/LTS1 approach, however residuals
are still calculated for weighting vectors that include negative values. After
Q iterations, the residuals are re-calculated and all inputs with values lower
than or equal to the median residual are allocated to the inclusion set S. For
LMS, The fitting method of Eq. (2) is then used to find the final weighting
vector and the corresponding median residual is then calculated. For LTS, the
least squares fitting approach is used on S and then the corresponding root
mean squared error of the smallest 50% of residuals according to the resulting
weighting vector is calculated. In other words, the method of sampling and
solving the system of n points is used to make a best guess at S and then
exact fitting approaches are used on S.

LMS3/LTS3. As with previous approaches, subsets of n observations are ran-
domly sampled in each iteration, however rather than solving the linear sys-
tem, a weighting vector is found by optimizing with respect to the n points
(which will always result in appropriate weighting vectors). LMS3a, LTS3a
optimize with respect to the maximum error, LMS3b, LTS3b optimize with
respect to the least squares criterion and LMS3c and LTS3c optimize with
respect to the least absolute deviation. For each iteration, the weighting vec-
tor that minimizes the LMS or LTS objective is checked and stored if better
than the current best. As with LMS2/LTS2, the best performing vector with
respect to the objective is then used to establish the subset S and either the
maximum error or least squares are minimized for S.

LMS4/LTS4. Same as LMS3a and LTS3b, however drawing 2n random obser-
vations.

In each of these methods, thousands of iterations can be used to sample the
observations and find the best performing weight vector.

Experiments. To observe the effect of increasing iterations and to compare
the approaches, these methods were tested for varying values of Q, and vary-
ing number of outliers. In each experiment, 100 non-outlier instances were gen-
erated along with 99 outliers, then each method was tested for each setting
of Q = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 200, 500, 1000, 2000}, incorporat-
ing progressively more of the outliers in 10s, i.e. 10, 20, 30, . . . , 90 and 99. There
were 100 random datasets generated using each of rand.data.1 and rand.data.2.

Influence of Outliers. Firstly, we are interested in the performance for the
highest number of iterations in terms of whether the outliers influenced the
weighting vector obtained. In each experiment, the outliers were deemed to have
affected the output if the maximum error of the non-outlier data calculated was
greater than the minimum error for the outliers.
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In the case of data generated by rand.data.1, with the exception of one
instance for LMS4, only LMS1 and LTS1 resulted in weighting vectors that were
influenced by outliers with increasing frequency as more outliers were included.
Table 1 shows the proportion of the 100 experiments where this occurred for each
setting of the number of outliers.

Table 1. Prop. of fitted w influenced by outliers for LMS1 and LTS1 using rand.data.1

Outliers 10 20 30 40 50 60 70 80 90 99

LMS1 0.01 0 0.01 0.02 0.01 0.02 0.08 0.18 0.24 0.31

LTS1 0 0 0.01 0.01 0.02 0.05 0.07 0.16 0.18 0.32

The main reason these methods may be more susceptible to bad fitting is
because an iteration is essentially wasted if the sample generates any negative
weights.

For the data generated by rand.data.2, the proportion of tests where the
methods resulted in weighting vectors affected by outliers was much higher.
We show only LMS1/LTS1, LMS2/LTS2 and LMS3a/LTS3b to give an indica-
tion of the performance (all LMS3/LTS3 and LMS4/LTS4 results were similar)
(Table 2).

Table 2. Prop. of fitted w influenced by outliers for LMS1 and LTS1 with rand.data.2

Outliers 10 20 30 40 50 60 70 80 90 99

LMS1 0 0 0 0.01 0.09 0.43 0.82 0.99 1 1

LTS1 0 0 0 0 0.10 0.31 0.76 0.96 0.99 1

LMS2 0 0 1 0 1 0.17 0.81 1 1 1

LTS2 0 0 0 0 0 0.19 0.67 0.96 1 1

LMS3a 0 0 0.02 0.12 0.28 0.58 0.88 0.99 1 1

LTS3b 0.01 0.01 0.05 0.14 0.31 0.60 0.84 0.98 1 1

For these results, it is not easy to determine whether the outliers exert an
influence due to a ‘bad fit’ or because the objective is actually minimized by
using the outliers. For example, where there were 50 outliers present, LMS1 had
9 instances where the resulting model was influenced by the outliers, however in
4 of those cases an unaffected model with a better objective was achieved using
LMS3a. Conversely, of the 28 affected models using LMS3a, for 4 of these, there
was an unaffected model with better error using LMS1. We can infer that the
error rate in the presence of this many outliers with this structure in the data
can be similar for affected and unaffected models.
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Influence of Iterations. Our next question is how many iterations are required
to achieve a good level of accuracy. For these particular data generation methods,
all methods except for LMS1/LTS1 actually achieved a reasonable accuracy once
the number of iterations was above 15, with only marginal improvements after
100. This is not overly surprising, since with these datasets and approaches, if the
5 sampled points happen to be non-outliers then the sampling should identify the
plane closest to the non-outlying set and the final step should obtain the optimal
error measure. The best methods overall for varying number of outliers were
those that used LAD on the random subsets. Figure 3 shows the improvement
from 5 to 100 iterations for all methods except for LTS1/LMS1 on both datasets
with 50 outliers. LTS1 and LMS1 were not comparable to the remaining methods
until the number of iterations was above 500 and at 2000 performed worst overall.

(a) LMS
data 1

(b) LMS
data 2

(c) LTS
data 1

(d) LTS
data 2

Fig. 3. Average error measures performance over 100 tests with 50 outliers present
using rand.data.1 (data 1) and rand.data 2 (data 2). Red = LMS2/LTS2, Blue =
LMS3a/LTS3a, Green = LMS3b/LTS3b, Yellow = LMS3c/LTS3b and Grey = LMS4/
LTS4. (Color figure online)

Running Time. Lastly we can comment on the time taken to execute the algo-
rithms, which increased close to linearly with the number of iterations. Table 3
shows average times for each of the methods. The LMS3b/LTS3b methods were
the slowest, since implementation of LAD requires two extra decision variables
for each observation.

3.3 General-Purpose Optimization

We can also look to whether general-purpose solvers can achieve a better trade-off
between accuracy and time. We consider two multivariate optimization methods:
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Table 3. Time taken on average (in seconds) to run each method with 100 non-outlier
and 50 outlier data.

Iterations LMS LTS

1 2 3a 3b 3c 4 1 2 3a 3b 3c 4

100 0.003 0.047 0.081 0.103 0.065 0.088 0.003 0.049 0.065 0.102 0.081 0.075

500 0.013 0.228 0.392 0.461 0.307 0.419 0.014 0.242 0.308 0.471 0.401 0.317

1000 0.028 0.449 0.765 0.917 0.596 0.821 0.029 0.453 0.602 0.929 0.774 0.617

2000 0.056 0.882 1.523 1.820 1.173 1.625 0.059 0.888 1.198 1.839 1.539 1.231

the derivative basedL-BFGS-Bmethod (Broyden-Fletcher-Goldfarb-Shannowith
lower and upper box constraints [16]) and the derivative-free COBYLA method
(Powell’s method of constrained optimization by linear approximations [17]).

LMS5/LTS5. L-BFGS-B only allows for box constraints, so we define an objec-
tive function that first normalizes the weighting vector and then calculates
the median residual or least trimmed squares. The L-BFGS-B method is then
used to optimize with respect to this function. Multiple random-start itera-
tions can be used since the result of L-BFGS-B depends on the initial setting
for w.

LMS6/LTS6. COBYLA allows for the constraint on the weighting vector to be
imposed via two inequality constraints. Multiple random-start iterations can
also be employed here.

Experiments. Numerical experiments were conducted with the same setup as
for the random sampling techniques. For 100 random test datasets, we compared
LMS5/LTS5 and LMS6/LTS6 with LMS3b/LTS3b. The same settings were used
for increasing the number of outliers, while for number of random starts we tested
{1, 3, 5, 10, 20, 50, 100}. For the comparison we set the number of iterations to
100 times the number of random starts for the general methods (as this was
anticipated to be comparable in terms of time taken).

Influence of Outliers. For rand.data.1, for the highest number of random
starts and iterations tested, LMS5 and LMS6 were influenced by outliers only
for high number of outliers present. For 90 outliers, 2 and 1 instance respectively
were influenced, while for 99 outliers, this rose to 33 and 8 respectively. In fact,
even for 20 random starts, it was still only these two methods that were sus-
ceptible. For rand.data.2, all methods were similarly susceptible to outliers. For
50 outliers, the LMS methods had between 24 and 26 tests affected by outliers,
while for LTS this was 30–31. Where there was 30 outliers, each method only
had one instance where the outliers affected the result.

Influence of Number of Random Starts. As the methods were similarly
affected by outliers, we can consider the accuracy in terms of median residual and
least trimmed squares values obtained with respect to increases in the number
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of random starts (or iterations for LMS3b/LTS3b). The general optimization
methods were more inaccurate where the number of random starts was below
50, however beyond this the methods were comparable.

Running Time. The time taken to run LMS3b/LTS3b was comparable to
LMS6 and LTS5, i.e. LMS used with the derivative-free COBYLA method and
LTS with L-BFGS-B, however LMS with L-BFGS-B and LTS with COBYLA
took considerably longer. This makes some sense given that once the non-outlier
data are found, the LTS problem is essentially a smooth quadratic problem while
for LMS there are points of discontinuity in the optimization function. Table 4
shows the average results, showing LMS6 and LTS3b to be slightly faster overall
over these tests although not significantly.

Table 4. Time taken on average to run general-purpose solvers (LMS5/LTS5,
LMS6/LTS6) compared with LMS3b/LTS3b for data generated by rand.data.1 with
10 outliers. Iterations* indicates number of random starts for general-purpose solvers
and number of iterations divided by 100 for LMS3b/LTS3b, i.e. 20 represents 2000.

Iterations* LMS LTS

3b 5 6 3b 5 6

1 0.087 0.428 0.073 0.084 0.093 0.256

3 0.250 1.399 0.229 0.252 0.266 0.774

5 0.416 2.289 0.380 0.418 0.460 1.371

10 0.825 4.542 0.771 0.838 0.912 2.630

20 1.651 9.145 1.547 1.666 1.808 5.249

50 4.124 22.436 3.805 4.170 4.563 13.408

100 8.245 45.162 7.649 8.350 9.049 26.902

4 Conclusions and Future Work

We have tested various approaches to LMS and LTS fitting of the weighted
arithmetic mean. Overall we found that random sampling techniques were fairly
competitive with general purpose solvers, however in the latter case there could
be improvements made by fine-tuning some of the parameters or altering the
objective functions slightly to make them smoother. We did investigate peeling
methods, i.e. removing outer points based on the initial optimization, however
these were not competitive for the techniques we have shown results for.

We can recommend the LMS3b or LMS6 approaches for fitting to the median
residual and LTS3b or LTS5 for fitting with respect to least trimmed squares,
although there is much more to investigate.

The techniques could be extended to other aggregation functions with some
additional problems arising in some cases, e.g., in the case of the Choquet inte-
gral, a random sample of observations, even if 2n are taken, would not necessarily



378 G. Beliakov et al.

cover all orderings and hence all simplexes over which the Choquet integral needs
to be defined. It also has many additional constraints.
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Abstract. A common problem in food science concerns the assessment
of the quality of food samples. Typically, a group of panellists is trained
exhaustively on how to identify different quality indicators in order to
provide absolute information, in the form of scores, for each given food
sample. Unfortunately, this training is expensive and time-consuming.
For this very reason, it is quite common to search for additional infor-
mation provided by untrained panellists. However, untrained panellists
usually provide relative information, in the form of rankings, for the food
samples. In this paper, we discuss how both scores and rankings can be
combined in order to improve the quality of the assessment.

Keywords: Consensus evaluation · Absolute information
Relative information

1 Introduction

We consider the problem in which several panellists are asked to score a food
sample on a given ordinal scale, the goal being to reach a consensus evaluation of
the sample. This problem commonly appears in food science, for instance, when
identifying the degree of spoilage [1,2] or when evaluating the appearence [3,4] of
a given sample. Unfortunately, training and (subsequently) collecting informa-
tion from panellists usually carries big expenses. For this reason, there usually
is a limited amount of data available to reach a consensus evaluation. It is thus
quite common to invoke untrained panellists and to gather some additional infor-
mation [5]. However, untrained panellists are obviously not as skilled as trained
panellists, and might be unable to accurately evaluate a given sample. Since it
is a conceptually easier task, untrained panellists are then just asked to rank
different samples according to their personal appreciation. In this paper, we pro-
pose to combine both types of information in order to improve the quality of the
assessment. Moreover, we illustrate our proposal by discussing an experiment
concerning the freshness of raw Atlantic salmon (Salmo salar) [6].

The remainder of the paper is organized as follows. In Sect. 2, we recall the
well-known notions of median and Kemeny median. Section 3 is devoted to the
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introduction of a method for reaching a consensus evaluation of the given sam-
ples while combining both scoring and ranking information. We end with some
conclusions in Sect. 4.

2 Preliminaries

2.1 Obtaining a Consensus Vector of Scores

We consider the setting where nT trained panellists are asked to assign a score
on a k-point scale to each (food) sample in a set X = {x1, . . . , xn} of n (food)
samples. The goal is to agree on the consensus score that should be assigned to
each of the samples based on the scores provided by the trained panellists. For
any i ∈ {1, . . . , nT }, we denote by si the vector of scores assigned by the i-th
panellist. The scale we use throughout this paper is shown in Fig. 1.

1 2 3 4 5

Spoiled
Neither spoiled

nor fresh Fresh

Fig. 1. Example of a 5-point scale, where the extreme scores of “1” and “5” represent
spoiled and fresh, respectively, and the intermediate score of “3” represents a neutral
response of neither spoiled nor fresh.

A common method for determining the consensus vector of scores is based
on the minimization of a distance, i.e., the consensus vector of scores s∗ should
satisfy

s∗ = arg min
s∈{1,...,k}n

nT∑

i=1

d(s, si) ,

where d is a fixed distance function on the set of vectors of scores. Note that
there can be multiple minimizers s∗.

One could note that several examples of this procedure are commonly used
in practice. For instance, when we consider the sum of zero-one distances1 over
all components, the preceding method amounts to identifying the mode(s). Simi-
larly, when we consider the sum of �1-distances2, the preceding method amounts
to identifying the median(s), and, when we consider the sum of �2-distances3,
it amounts to identifying the mean(s). One could note that the latter method
presumes the existence of a certain notion of distance between labels, something
that is not advisable in case the considered scale is defined by abstract words [7].
1 The zero-one distance function is defined as d0(s, s

′) = 0 if s = s′ and d0(s, s
′) = 1

otherwise.
2 The �1-distance function is defined as d1(s, s

′) = |s − s′|.
3 The �2-distance function is defined as d2(s, s

′) = (s − s′)2.
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Example 1. Consider the set of n = 4 samples X = {x1, x2, x3, x4} and the
vectors of scores on the fixed 5-point scale provided by nT = 10 trained panellists
shown in Table 1. Note that these data come from a real-life dataset concerning
an experiment on raw Atlantic salmon (Salmo salar) [6].

Table 1. The scores assigned to samples x1, x2, x3 and x4 by the trained panellists.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

x1 5 4 5 2 3 3 5 5 2 4

x2 5 2 1 2 4 2 5 4 3 3

x3 2 1 5 2 2 4 3 2 2 2

x4 3 1 2 1 2 2 2 3 3 1

For each of the 625 possible vectors of scores, we compute the sum of �1-
distances to the vectors of scores provided by the trained panellists. We conclude
that the vector of scores that minimizes this value is s∗ = (4, 3, 2, 2). As expected,
this vector coincides with the one obtained by identifying the median for each
of the samples. �

2.2 Obtaining a Consensus Ranking

We consider the setting where nU untrained panellists are asked to rank all
the samples on the considered set X = {x1, . . . , xn} of n samples. Untrained
panellists are asked to provide a complete ranking of the samples, however, they
are allowed to express ties in case they consider two or more samples to be
equally suitable. The goal is to agree on the consensus ranking that should be
assigned to each of the samples based on the scores provided by the trained
panellists. For any i ∈ {1, . . . , nU}, we denote by �i the ranking assigned by the
i-th panellist, which can be split into the usual symmetric ∼i and antisymmetric
≺i parts. We denote by W the set of all rankings (with ties) on X.

A common method for determining the consensus ranking is due to
Kemeny [8] in which a consensus ranking �∗ is one that satisfies

�∗= arg min
�∈W

nU∑

i=1

K(�,�i) ,

where K(�1,�2) denotes the Kemeny distance between two rankings �1 and
�2. We recall that the Kemeny distance4 between two rankings is computed as
follows. For each pair of samples {xu, xv}, if both rankings agree on the order
of the samples, we write down 0; if, in one ranking, xu is ranked above xv (or
xv is ranked above xu) and, in the other ranking, xu and xv are tied, we write
4 When the rankings contain no ties, the Kemeny distance is equal to the double of

the Kendall distance [9].
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down 1; and, if, in one ranking, xu is ranked above xv and, in the other ranking,
xv is ranked above xu, we write down 2. After writing down the numbers for all
n(n − 1)/2 possible pairs, the Kemeny distance between the two rankings equals
the sum of these numbers.

Example 2. Consider the same set of n = 4 samples X = {x1, x2, x3, x4} of
Example 1, and the rankings provided by nU = 28 untrained panellists shown
in Table 2. Note that these data also come from the experiment on raw Atlantic
salmon (Salmo salar) in [6].

Table 2. The rankings expressed by the untrained panellists.

i �i i �i

1 x2 ∼ x4 ≺ x3 ∼ x2 15 x2 ≺ x1 ≺ x4 ≺ x3

2 x4 ≺ x3 ≺ x2 ≺ x1 16 x4 ≺ x3 ∼ x2 ≺ x1

3 x4 ≺ x2 ≺ x3 ∼ x1 17 x4 ≺ x3 ∼ x2 ≺ x1

4 x1 ≺ x4 ≺ x3 ≺ x2 18 x4 ≺ x3 ∼ x2 ≺ x1

5 x1 ∼ x4 ≺ x3 ≺ x2 19 x2 ≺ x4 ≺ x3 ≺ x1

6 x4 ≺ x3 ∼ x1 ∼ x2 20 x4 ≺ x3 ≺ x2 ≺ x1

7 x4 ∼ x3 ≺ x1 ∼ x2 21 x1 ∼ x4 ≺ x3 ∼ x2

8 x4 ≺ x1 ∼ x2 ≺ x2 22 x1 ∼ x2 ≺ x3 ≺ x4

9 x1 ≺ x3 ∼ x2 ≺ x4 23 x4 ≺ x3 ≺ x2 ≺ x1

10 x2 ≺ x4 ≺ x1 ≺ x3 24 x4 ≺ x1 ≺ x2 ≺ x3

11 x4 ≺ x2 ≺ x3 ≺ x1 25 x4 ≺ x2 ≺ x3 ≺ x1

12 x4 ≺ x1 ≺ x3 ∼ x2 26 x1 ≺ x4 ≺ x3 ≺ x2

13 x2 ∼ x4 ∼ x3 ≺ x1 27 x4 ≺ x2 ≺ x3 ≺ x1

14 x2 ≺ x4 ≺ x1 ≺ x3 28 x4 ≺ x2 ≺ x3 ≺ x1

For each of the 75 possible rankings, we compute the sum of Kemeny dis-
tances to the rankings provided by the untrained panellists. We conclude that
the ranking that minimizes this value is �∗= x4 ≺ x3 ∼ x2 ≺ x1. �

3 Combining Scores and Rankings

We now consider the setting where nT trained panellists each have assigned a
score to each of the n samples in X and nU untrained panellists each have ranked
the n samples in X. The goal is to combine both types of information in order to
improve the quality of the assessment of the consensus vector of scores and/or
ranking. We propose to consider a combination of the median and the Kemeny
median.
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3.1 Improving the Quality of the Assessment of a Consensus
Vector of Scores

To compute the ‘distance’5 between each possible vector of scores s and the
rankings provided by the untrained panellists, we define the set θs of all possible
rankings that do not contradict s, as follows:

θs =
{

�∈ W ∣∣(∀i, j ∈ {1, . . . , n})
(
s(i) < s(j) ⇒ xi ≺ xj

)}
. (1)

Note that the set θs is always non-empty.
Incorporating the rankings provided by the untrained panellists into the vec-

tors of scores provided by the trained panellists requires defining a cost function.
Thus, we define a convex combination of the ‘distances’ associated with the vec-
tors of scores provided by the trained panellists and the rankings provided by
the untrained panellists, as follows:

Cα(s) =
α

BT

nT∑

i=1

d1(s, si) +
(1 − α)

BU
min

� ∈ θs

nU∑

i=1

K(�,�i) . (2)

where BT = nT ·n·(k−1) and BU = nU ·n·(n−1) are normalizing constants, and
α ∈ [0, 1] is a parameter that controls the influence of the scoring and ranking
information. In particular, larger values of α give more importance to the trained
panellists, whereas smaller values of α give more importance to the untrained
panellists.

Finally, we consider the consensus vector(s) of scores to be the minimizer(s)
of Eq. (2) for a fixed α, as follows:

s∗
α = arg min

s∈{1,...,k}n

Cα(s) . (3)

Note that there can be multiple minimizers s∗
α for the same α.

Example 3. We continue with the data from Examples 1 and 2. To determine
the consensus score that should be assigned to each of these samples, we consider
the problem defined by Eq. (3) by computing Cα(s) for each of the 625 vectors
of scores. For simplicity, we show one computation for the vector of scores s =
(4, 3, 2, 2), which was determined as the consensus vector of scores in Example 1,
with

∑10
i=1 d1(s, si) = 34. The distances associated with the vectors of scores are

bounded by the upper bound BT = 10 · 4 · 4 = 160, whereas the distances
associated with the rankings are bounded by the upper bound BU = 28 · 4 · 3 =
336. Now, we consider the set θs of all possible rankings that do not contradict
s. Since the score of x1 is the largest, x1 is ranked above the other samples.
Similarly, x2 is ranked above x3 and x4. Since the scores of x3 and x4 are equal,

5 Note that we write the word ‘distance’ between quotation marks since we are compar-
ing objects of a different nature, and, thus, we are lacking the semantics associated
with the mathematical formalization of a distance (metric).
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any of the following cases applies: x3 is ranked above x4, x3 and x4 are tied, and
x4 is ranked above x3, as follows:

θ(4,3,2,2) =

⎧
⎨

⎩

x4 ≺ x3 ≺ x2 ≺ x1 ,
x3 ∼ x4 ≺ x2 ≺ x1 ,
x3 ≺ x4 ≺ x2 ≺ x1

⎫
⎬

⎭ .

We compute the sum of the Kemeny distances between each �∈ θs and the
rankings provided by the untrained panellists. The results are summarized in
Table 3.

Table 3. Sum of Kemeny distances between each ranking � that does not contradict
s = (4, 3, 2, 2) and the rankings provided by the untrained panellists.

�
∑28

i=1 K(�, �i)

x4 ≺ x3 ≺ x2 ≺ x1 109

x3 ∼ x4 ≺ x2 ≺ x1 129

x3 ≺ x4 ≺ x2 ≺ x1 153

Finally, we select the ranking that minimizes the sum of Kemeny distances
among those in θs and compute Cα(s) as follows:

Cα(s) =
α

160

10∑

i=1

d1(s, si) +
(1 − α)

336
min

⎛

⎝

∑28
i=1 K(x4 ≺ x3 ≺ x2 ≺ x1,�i) ,∑28
i=1 K(x3 ∼ x4 ≺ x2 ≺ x1,�i) ,∑28
i=1 K(x3 ≺ x4 ≺ x2 ≺ x1,�i)

⎞

⎠

=
109
336

− 6016
53760

α .

After computing Cα(s) for each of the 625 possible vectors of scores s, we illus-
trate in Fig. 2 all the s∗

α that minimize Cα(s) for at least one value of α ∈ [0, 1].
One should note that, for α = 0, there will always be multiple minimizers s∗

0

associated with all vectors of scores that are not contradicted by the Kemeny
median. Since we know from Example 2 that �∗= x4 ≺ x3 ∼ x2 ≺ x1 is the
Kemeny median, we illustrate (in black) all the vectors of scores s∗

0 that are
not contradicted by this �∗. These vectors of scores form a fan-shaped pattern
starting at α = 0 since, at the left end, they all result in the same value C0(s),
and, at the right end, they result in (mostly) different values C1(s).

Since we do not intend to rely only on the rankings provided by the untrained
panellists, we ignore the minimizers for α = 0. The obtained minimizers s∗

α are
summarized as follows:

s∗
α =

⎧
⎪⎨

⎪⎩

{(4, 2, 2, 2)} , if 0 < α < 50
71 ,

{(4, 2, 2, 2) , (4, 3, 2, 2)} , if α = 50
71 ,

{(4, 3, 2, 2)} , if α > 50
71 .

(4)
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Fig. 2. Illustration of the vectors of scores s∗
α that minimize Cα(s) for α ∈ [0, 1].

We deduce based on the vectors of scores provided by the trained panellists that
x2 is ranked at a better position than x3 and x4, since the former is assigned a
higher score than the former in the consensus vector of scores for large values
of α. However, incorporating the rankings provided by the untrained panellists
hints that these samples are similar. �

3.2 Improving the Quality of the Assessment of a Consensus
Ranking

To compute the ‘distance’ between each possible ranking � and the vectors of
scores provided by the trained panellists, we define the set ϕ� of all possible
vectors of scores that do not contradict �, as follows:

ϕ� =
{
s ∈ {1, . . . , k}n

∣∣(∀i, j ∈ {1, . . . , n})
(
xi � xj ⇒ s(i) ≤ s(j)

)}
. (5)

Note that the set ϕ≺ is always non-empty.
The convex combination of the ‘distances’ associated with the vectors of

scores provided by the trained panellists and the rankings provided by the
untrained panellists is now defined as follows:

Dα(�) =
α

BT
min
s∈ ϕ�

nT∑

i=1

d1(s, si) +
(1 − α)

BU

nU∑

i=1

K(�,�i) . (6)

Finally, we consider the consensus ranking(s) to be the minimizer(s) of Eq. (6)
for a fixed α, as follows:

�∗
α= arg min

�∈W
Dα(�) . (7)

Note that there can be multiple minimizers �∗
α for the same α.
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Since α ∈ [0, 1] can take infinite values, it will be impossible to com-
pute s∗

α (resp. �∗
α) for each α. Therefore, bearing in mind that, for any fixed

vector of scores s (resp. ranking �), the corresponding f(α) := Cα(s) (resp.
g(α) := Dα(�)) can be visualized as a line, we can compare the lines of each
possible pair of vectors of scores (resp. rankings). When comparing two lines,
we distinguish three cases: there are no points of intersection, there is exactly
one point of intersection, or both lines coincide. These facts can then be used to
analytically compute s∗

α and �∗
α as a function of α.

Example 4. We continue with the data from Example 3. To determine the con-
sensus ranking of the samples, we consider the problem defined by Eq. (7) by
computing Dα(�) for each of the 75 rankings. For simplicity, we show one com-
putation for the ranking �= x4 ≺ x3 ∼ x2 ≺ x1, which was determined as the
consensus ranking in Example 2, with

∑28
i=1 K(�,�i) = 99. Now, we consider

the set ϕ� of all possible vectors of scores that do not contradict �.

ϕx4≺x3∼x2≺x1 =
{
s ∈ {1, . . . , 5}4 | s(4) ≤ s(3) = s(2) ≤ s(1)

}
.

We compute the sum of the �1-distances between each s ∈ ϕ� and the vectors
of scores provided by the untrained panellists. We note that the vector of scores
among those in ϕ� that minimizes the sum of the �1-distances is (4, 2, 2, 2) with
∑10

i=1 d1(s, si) = 36. Finally, we obtain:

Dα(�) =
113
336

− 5984
53760

α .

After computing Dα(�) for each of the 75 possible rankings �, we illustrate
in Fig. 3 all the �∗

α that minimize Dα(�) for at least one value of α ∈ [0, 1].
One should note that, for α = 1, there will always be multiple minimizers s∗

1

associated with all rankings that are not contradicted by the median. Since
we know from Example 1 that s∗ = (4, 3, 2, 2) is the median, we illustrate all
the rankings �∗

1 that are not contradicted by this s∗. These rankings form a
fan-shaped pattern starting at α = 1 since, at the right end, they all result in
the same value D1(�), and, at the left end, they result in (mostly) different
values D0(�).

Since we do not intend to rely only on the scores provided by the trained
panellists, we ignore the minimizers for α = 1. The obtained minimizers �∗

α are
summarized as follows:

s∗
α =

⎧
⎪⎪⎨

⎪⎪⎩

{x4 ≺ x3 ∼ x2 ≺ x1} , if α < 50
71 ,{

x4 ≺ x3 ∼ x2 ≺ x1

x4 ≺ x3 ≺ x2 ≺ x1

}
, if α = 50

71 ,

{x4 ≺ x3 ≺ x2 ≺ x1} , if 50
71 < α < 1 .

(8)

We deduce based on the rankings provided by the untrained panellists that x2

and x3 are similar. However, incorporating the vectors of scores provided by the
trained panellists hints that sample x2 might be ranked above sample x3. �
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Fig. 3. Illustration of the rankings �∗
α that minimize Dα(�) for α ∈ [0, 1].

3.3 Discussion

A deeper analysis of the results of the preceding subsections shows that both
trained and untrained panellists agree that samples x1 and x4 are, respectively,
the best and worst samples in X = {x1, x2, x3, x4}. However, there is a disagree-
ment with regard to samples x2 and x3. While trained panellists considered sam-
ple x2 to be better than sample x3, untrained panellists did not see significant
differences between both samples. Thus, as can be concluded from both Eqs. (4)
and (8), samples x2 and x3 result to be similar (s∗(3) = s∗(2) and x3 ∼∗ x2)
for smaller values of α (i.e., in case more importance is given to the untrained
panellists), whereas sample x2 results to be better than sample x3 (s∗(3) < s∗(2)
and x3 ≺∗ x2) for larger values of α (i.e., in case more importance is given to
the trained panellists).

4 Conclusions

In this paper, we have discussed how to combine absolute and relative infor-
mation in order to improve the quality of the assessment of food samples. In
particular, we have proposed a method based on a convex combination of the
distances associated with the median and the Kemeny median. We have illus-
trated the use of this method using real-life examples, where the freshness of
Atlantic salmon was studied, and showed the influence of combining scores and
rankings on obtaining the consensus vector of scores and consensus ranking.
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Abstract. In the field of medical imaging, ground truth is often gath-
ered from groups of experts, whose outputs are generally heterogeneous.
This procedure raises questions on how to compare the results obtained
by automatic algorithms to multiple ground truth items. Secondarily, it
raises questions on the meaning of the divergences between experts. In
this work, we focus on the case of immunohistochemistry image segmen-
tation and analysis. We propose measures to quantify the divergence in
groups of ground truth images, and we observe their behaviour. These
measures are based upon fusion techniques for binary images, which is
a common example of non-monotone data fusion process. Our measures
can be used not only in this specific field of medical imagery, but also
in any task related to meta-quality evaluation for image processing, e.g.
ground truth validation or expert rating.

Keywords: Data fusion · Twofold Consensus Ground Truth
Meta-analysis · Medical imagery · Immunohistochemistry (IHC)

1 Introduction

Data fusion pursues rather different goals in very disparate contexts. An com-
mon goal is to produce a reduced (compact) representation of a certain amount
of data objects. Whichever specific technique the fusion is based upon, and
whichever data objects are to be fused, reduction is the main goal in most fusion
processes. However, fusion can lead the way to some other subsidiary goals just
as interesting as reduction. For example, the result of a fusion process can be
used as starting point to study the data to be processed, including its individ-
ual and group characteristics. Otherwise said, it can be used for data analysis,
specifically to generate metadata (data about data).

The application of data fusion techniques to produce metadata is certainly
not novel; in this regard, a relevant example is the standard deviation. The
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 854, pp. 389–400, 2018.
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Fig. 1. Subimages extracted from Immunohistochemistry (IHC) images. The upper row
displays regions without artifacts affected by tau protein, while the lower row displays
artifacts or regions in which the presence of such protein is evident.

arithmetic mean can be seen as procedure to fuse scalar data into a compact
representation with minimal loss of information, such loss being measured as the
sum of the squared distance to the original values. At the same time, it is also a
key to compute the standard deviation, which is a dispersion measurement. Even
when dealing with non-Gaussian distribution of values, the standard deviation
is used as a feature in data meta-analysis. We believe that principles similar
to those by the mean and standard deviation can be ported to scenarios in
which monotonicity plays no role. That is, we believe that fusion of non-standard
data can also be taken as starting point to produce metadata in non-motonote
universes.

In this work we elaborate on images in the context of neurology and neu-
ropathology. This work is part of a research effort on immunohistochemistry
(IHC) images for the measurement of deposits of tau protein in patients affected
by Progressive Supranuclear Palsy (PSP). In this research effort, expert neu-
ropathologists analyze microscope images of brain tissue and perform manual
labelling of the areas affected by tau protein (see Fig. 1). Such binary labelling is
further used to perform quantitative measurements with interest for posthumous
analysis and disease profiling. Since this process is extremely time-consuming,
automatic segmentation methods are being proposed to alleviate the workload
of the pathologists. These methods shall be designed to produce results similar
to those by expert humans. A key problem found in the evaluation and tuning
of such automatic methods is the fact that pathologists often feature severe dif-
ferences of opinion and/or precision. From a computational point of view, they
generate different binary images which shall be taken as ground truth (that is,
perfect solutions) for automatic segmentation algorithms. Of course, the multi-
plicity of ground truth solutions severely hinder the evaluation (and training) of
such algorithms. Understanding and evaluating set-based or multivalued ground
truth is hence a priority for our applied developments.
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We propose to fuse the binary images produced by neuropathologists using
the Twofold Consensus Ground Truth (TCGT, [4]). Our approach is rather dif-
ferent to that by other binary image fusion techniques (e.g. [2,9]), in the sense
that we avoid the statistical counting of visual items, and rather focus on the spa-
tial interpretation of coincidences and divergences. The TCGT takes as input a
set of binary images and yields a set-valued consensus based on the coincidences
and divergences in the input images. The resulting set allows for a compact rep-
resentation of the input set of images, and also for the quantification of some
of its characteristics. In this regard, we attempt to quantify two facets of the
ground truth images. Firstly, we intend to quantify heterogeneity of the set of
ground truth images, since it could be related to the difficulties faced by neu-
ropathologists in the labelling of the original image. Secondly, we aim to evaluate
the dissimilarity (degree of coincidence and divergence) of a ground truth image
w.r.t. a group og ground truth images. In a sense, the first question relates to
the group dispersion or heterogeneity, while the second one relates to the one-
to-many dissimilarity of the images. Note that, although initially designed to
elaborate on binary edge images, the TCGT can be ported to scenarios in which
binary images hold different semantics.

The remainder of this work is organized as follows. In Sect. 2 we introduce
the idea of weak and strong consensus, together with the Twofold Consensus
Ground Truth. The usefulness of this concept is explained in Sect. 3, in which
we develop the application for the meta analysis of IHC ground truth. Finally,
Sect. 4 features some conclusions and future lines of research.

2 Twofold Consensus Ground Truth

2.1 Preliminary Notations

In this work we consider images to have some fixed dimensions M × N , so that
Ω = {1, . . . ,M}×{1, . . . ,N} represents the set of positions in an image. The set
of all binary images is denoted B, and can be dually seen as the set of mappings
Ω �→ {0, 1}, or as the power set ℘(Ω). Individual binary images will be referred
to with upper case (e.g. E, I), while bold-faced upper case is reserved for sets
of images (e.g. A = {A1, . . . , An}).

In this work we consider positive information in binary images to be rep-
resented by 1’s, while negative information takes 0’s. When it comes to the
processing of binary images, we can use a dual signal-logical interpretation of
this fact. Hence, apart from image-oriented operators, we use the classical set-
theoretic operations on binary images, namely intersection (∧), union (∨), and
inclusion (⊆, ⊂). The symbols ∩ and ∪ are reserved for the intersection and
union of sets of images, respectively. According to the reference works on binary
image morphology [1,8], the dilation of a binary image A by some structuring
element K is given by DK(A) = {c ∈ Ω | c = a + b for some a ∈ A and b ∈ K}.
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2.2 Strong and Weak Consensus on Binary Images

Binary images are a very common format to express the output of image process-
ing tasks, despite being barely useful to represent visual information in human
terms. This holds, for example, for object recognition or binary segmentation.
The nature and shape of the information in a binary image can greatly diverge
from task to task, examples being regions (for object recognition or salient region
identification), lines (for boundary detection), points (for critical point detec-
tion), etc. In many of such cases there is a need to combine different images,
either to fuse ground truth images [9] or to fusion different candidate images
generated by different algorithms. In [4] we present a technique for binary image
fusion, namely the Twofold Consensus Ground Truth (TCGT). Due to the vari-
able understanding of the term consensus, our technique narrows down its goals
to three facts, enunciated as follows:

G1. Preserving discordances: The consensus should represent non-unanimous
features in the images.

G2. Highlighting agreement: The consensus must point out those aspects on
which the original images agree, either positively (features appearing at all
images) or negatively (those appearing at none).

G3. Keeping original images as perfect: As long the input images are the only
source of ground truth, the result of the fusion must somehow include them.
This guarantees that any automatic method performing exactly as a the
sources (probably, humans) is evaluated as perfect.

The TCGT is supported by two different consensus operators, namely the
strong and weak consensus.

Definition 1. The strong consensus image of a set of binary images I =
{I1, . . . , Ik} is the binary image sT (I) defined as

sT (I) = DT (I1) ∧ DT (I2) ∧ . . . ∧ DT (Ik) , (1)

where DT (Ii) denotes the dilation of image Ii using the structuring element T .

Definition 2. The weak consensus image of a set of binary images I =
{I1, . . . , Ik} is the binary image wT (I) defined as

wT (I) = DT (I1) ∨ DT (I2) ∨ . . . ∨ DT (Ik), (2)

where DT (Ii) denotes the dilation of image Ii using the structuring element T .

The strong and weak consensus of a set of images materialize as the tightest
and loosest agreement that can be reached given a set of binary images I. In
this sense, they resemble the upper and lower bounds of interval-valued data,
or the boundaries of rough sets [6]. Note that their result is influenced by a
structuring element T . This element is used, in the present context, to consider
the variable position of the same objects when delineated by different experts.
The characteristics of T must fit the conditions of the specific problem. For
example, if we consider a spatial tolerance of 7 pixels, T might be a disk with
radius 7. If the task allows for no tolerance at all, then a radius 1 disk can be
used to perform no dilation in the generation of the strong and weak consensus.
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2.3 The Twofold-Consensus Ground Truth

From goals G1-G3, is evident that the consensus must be expressed as a set
or multivalued object. Otherwise, it could not allocate the different images we
attempt to fuse (as required in G3). The consensus shall not be an image in
℘(Ω), but a subspace in ℘(Ω). We seek the set of images which (a) contain all
of the positive information in which all ground truth images agree on and (b)
does not include positive information not featured by any ground truth image.

Definition 3. The consensus of a set of binary images I is the set of images
cT (I) defined as

cT (I) = {B ∈ B | B ⊆ wT (I) and sT (I) ⊆ DT (B)}. (3)

The consensus set satisfies some practical properties, which we review in
Sect. 2.4. Also, it has some interesting theoretical properties:

(i) For any I ∈ ℘(B), it holds that I ⊆ cT (I). This guarantees goal G3.
(ii) For any I ∈ ℘(B), it holds that cT (I) = cT ({sT (I), wT (I)}).
(iii) For any I ∈ ℘(B), it holds that cT (I) = cT (cT (I)).
(iv) For any I ∈ ℘(B) and B ∈ B, it holds that B ∈ cT (I) if and only if

cT (I) = cT (I ∪ {B}). Hence, the information in images within the set does
not exceed that in the set itself.

(v) For any I ∈ ℘(B), cT (I) defines a connected subspace of B, i.e., for any
B1, B2 ∈ cT (I), there exists a sequence of images B∗

1 , . . . , B∗
r in cT (I), so

that B∗
1 = B1, B∗

r = B2, and two consecutive images B∗
i and B∗

i+1 only
differ in one pixel.

2.4 Visual Properties of the Set Consensus

The set cT (I), which we refer to as TCGT in the remainder of this work, has
interesting visual properties related to the information in the images in I.

The first property is that of information combination. This property refers to
the ability to combine information from different ground truth images, meaning
that the resulting set selectively picks information from each image. An example
can be found in Fig. 2. Considering the original image in Fig. 2(a), two humans
have created the ground truth images S1 and S2 in Figs. 2(b)–(c). The strong and
weak consensus of the set of images are included in Figs. 2(d)–(e). The candidate
image in Fig. 2(f), which is a selective combination of the images S1 and S2,
actually belongs to their TCGT (i.e., D ∈ cT ({S1, S2})). This illustrates how the
TCGT is able to implicitly produce derived information from the combination
of divergent solutions. Otherwise said, images which are not in the original set,
but similar to (or composed of parts of) them, are included in the TCGT.

Although the example in Fig. 2 is intentionally simplistic, we can observe
that, in the definition of the set-valued consensus, we construct something much
more powerful than a closed list of images. There is an actual, yet implicit,
knowledge construction process.
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(a) Original image (b) Solution S1 (c) Solution S2

(d) sT ({S1, S2}) (e) wT ({S1, S2}) (f) Candidate D

Fig. 2. Example of information fusion using the Twofold Consensus Ground Truth.
We have (a) an image, (b, c) two hand-made segmentations from it, (d, e) the strong
and weak consensus images and (f) a candidate image. The candidate image belongs to
cT ({S1, S2}), although it does not match any of the original images. The structuring
element T used for the dilation is a disk of radius 5.

The example in Fig. 2 involves the presence or absence of information in a
binary image. However, it is also interesting to analyze the alterations in such
information, may they be due to contamination, errors or simple interpretation.
Regarding this, an interesting property of the TCGT is the smart tolerance for
spatial displacements.

The TCGT of a set of images includes images containing objects that do
not coincide exactly with those delineated by humans in the generation of
the ground truth. Moreover, it implicitly discriminates variations as accept-
able/unacceptable not only based upon their magnitude (how different), but
also upon their congruence of that variation with the existing variations in the
original images in I. That is, the acceptance of an object depends upon the
amount of spatial variation, but also upon its direction.

Figure 3 includes a binary image with two ground truth solutions (images S1

and S2 in Fig. 3(b)). Note that only the boundaries of the regions are drawn, so
that they can be comfortably compared. In order for an image to be part of the
TCGT, the object it features must be in between those of S1 and S2. Any image
featuring a circle-like region will belong to the TCGT of {S1, S2} as long as its
boundaries are confined between those of S1 and S2. Hence, it is not only the
fact that distorted solutions (in this case, reduced or enlarged circles) do belong
to the TCGT. That distortion is not only measured in terms of distance to the
existing solutions, but also in terms of congruency w.r.t. the divergences already
existing in the TCGT. In this case, a solution created as a slight enlargement of
the circle in S2 (as Et1), or a slight decrease of S1 (as Et2) are not included in
the TCGT. However, greater distortions can be considered within the TCGT,
as long as still confined in between the limits of S1 and S2.
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(a) Original Im. (b) S1, S2 (c) sT ({S1, S2}) (d) wT ({S1, S2}) (e) Et1,Et2

Fig. 3. Example of information fusion based on strong and weak consensus images.
We have (a) an image, (b) two hand-made solutions and (c,d) the strong and weak
consensus images, respectively. The candidates in (e) are Et1, a slight shrink of S1, and
Et2, a slight enlargment of S2. We find Et1 /∈ cT ({S1, S2}) and Et2 /∈ cT ({S1, S2}).
In figures (b) and (e) only the limits of the regions are included, for an easier visual
inspection. The structuring element for the dilation is a disk of radius 3.

3 Heterogeneity Measurement in Immunohistochemistry
Imagery

3.1 Imaging in Immunochemistry

Immunohistochemistry (IHC) is an imaging method for studying the localization
of antigens in tissue sections (e.g., brain tissue) using antibodies. Different anti-
bodies can be used to demonstrate normal anatomy, protein aggregates, or to
indicate pathological conditions such as apoptotic cells. In the images in Fig. 1
antibodies are used against Tau, a protein normally localized in the axon of
neuron cells that can be pathologically deposited in some neurodegenerative dis-
eases such as Progressive Supranuclear Palsy. The final stage of the tissue is
that in which the regions affected by Tau protein take a distinctive color. The
measurement and analysis of these images relates, hence, to the localization of
pixel clusters with the visual characteristics of the affected regions.

3.2 Heterogeneity Measurement in IHC Imagery

IHC imaging is a costly technique, specially in terms of the time consumed by
experts. Depending on the expected output of the IHC image analysis, experts
can take hours analyzing and labelling visible artefacts in one image. As an
example, the images from which the patches in Fig. 4 are taken contain around
5 megapixels, and often feature hundreds of size-variable tau-affected regions.
A detailed analysis of these images cannot be tackled in less than few hours
by an expert neuropathologist. Hence, it is very interesting to create automatic
procedures that can measure the amount of tau protein visible in IHC images.
That is, to create algorithms to replace humans in IHC image analysis.

The first problem encountered to design specific image processing algorithms
for IHC is the absence of a large number of reliably-labelled ground truth images.
The reason for this absence is the amount of time required to generate them,
which forces the neuropathologists to perform semi-quantitative analyses based
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on quick visual inspection (e.g. mildly affected or very affected). This absence of
ground truth images leads to a dual problem in the context of image processing.
Firstly, the absence of the ground truth makes the segmentation task to be
as poorly defined as replicating the labelling a human would perform. Secondly,
there is very few data the results of the algorithm can be tested against. In these
conditions, any training or comparison effort tends to be overinfluenced by the
specific conditions of the ground truth.

We intend to overcome the lack of ground truth by requiring pathologists to
label small, randomly selected subregions within some images. This would cut
down the amount of time required from the experts, and would give partial, yet
reliable, data about the expected results. Also, this brings a subsidiary problem:
different pathologists produce very different label maps for the same image.
A significant part of the tau-affected artifacts is homogeneously identified as
positive detections. But, there is also a large margin for heterogeneity, especially
related to (a) the margins of the artifacts and (b) the interpretation of some
unclear regions/artifacts. As the size or number of subregions is increased, a
new source of heterogeneous decisions appears: (c) lack of attention or tedium.
As a result, we have highly variable results by each expert, which is in fact a
typical case of multi-valued ground truth.

Problems with multiple ground truth are not unseen in literature, and solu-
tions range from ground truth fusion [2] to performance measure fusion [5]. For
example, for the present problem we can compare the results by an algorithm
to each image labelled by pathologists, then fuse those results to get an aggre-
gated or average performance of an algorithm. However, our goals in this work
are different, and root back to the reasons why heterogeneity appears. Ques-
tions we face when divergent solutions are produced are: Should we consider all
the images in the dataset as equally important, regardless of how heterogeneous
their ground truth images are? What does it mean, having a ground truth set
with very high (alternatively, low) heterogeneity? Could we measure how well
a ground truth fits in a set of ground truth images? Moreover, could we learn
to discard those ground truth solutions that are too different from other ground
truth images? We intend to use the TCGT to quantify the heterogeneity of a
set-valued ground truth; also, to measure the dissimilarity of an ground truth
image w.r.t. a set of ground truth images.

We propose to use the TCGT for the generation of metadata about a IHC
imagery dataset. Firstly, we want to measure the heterogeneity of a set of solu-
tions. Normally, these measures are constructed from the analysis of one-to-one
distances. However, we can also exploit the fact that the TCGT explicitly mate-
rializes the coincidences and divergences in a set of binary images.

Definition 4. Let I = {Ii, . . . , In} be a set of binary images. The heterogeneity
of I is given by

HT (I) = 1 − |sT (I)|
|wT (I)|

where wT and sT are the weak and strong consensus, as in Sect. 2, and | · | is the
number of featured (1-valued) pixels in an image.
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Definition 4 has one major problem: The use of a quotient makes the measure
oblivious of the number of pixels in which divergence of opinion exists. Let an
extreme case be that in which I is a set such that I1, . . . , In−1 contain one (same)
featured pixels and In contains one (extra) featured pixel. We have H(I) = 0.5,
despite the very subtle difference between images. This problem is partially due
to the orientation of the consensus towards the featured information (assuming
it is more important than the non-featured one). In this case, two pixels are
more important that all of the remaining ones. Still, it feels confusing that a
difference of one pixel in one image can have such great impact in the output
yielded by the heterogeneity measure.

We propose an alternative version of the heterogeneity measure that solves
the aforementioned problem.

Definition 5. Let I = {Ii, . . . , In} be a set of binary images. The scaled het-
erogeneity of I is given by

H∗
T (I) =

|wT (I) \ sT (I)|
|Ω|

where wT and sT are the weak and strong consensus, as in Sect. 2.

There is a list of differences between H and H∗. The most important one
is probably the reference for scaling, since they both map to [0, 1] (ignoring the
undefined case with wT ((I)) = ∅). However, they also feature some coincidences.
If all images in I are equal, then HT (I) = H∗

T (I) = 0. Also, they both reach
maximum values when sT (I) = ∅, although a further analysis of such cases
sheds light on a significant difference. In case of HT , HT (I) = 1 if and only if
sT (I) = wT (I) = ∅, except (again) for the undefined case in which all images
in I are empty. However, for H∗

T , the maximum heterogeneity is reached when
sT (I) = ∅ and wT (I) = Ω.

In our interpretation, the dissimilarity of an image w.r.t. a set of images can
be put in terms of the heterogeneity of a set. In fact, to the variation of the
heterogeneity when a set is altered.

Definition 6. Let I = {Ii, . . . , In} be a set of binary images, and let B ∈ B be
any binary image. The dissimilarity of B w.r.t. I is given by

δT (B, I) = HT ({B} ∪ I) − HT (I),

where HT is a heterogeneity measure, as in Definition 4.

The dissimilarity measure δT is affected by special cases similar to those
generating unexpected outputs of HT . Hence, we also present the scaled dissim-
ilarity δ∗

T .

Definition 7. Let I = {Ii, . . . , In} be a set of binary images, and let B ∈ B be
any binary image. The scaled dissimilarity of B w.r.t. I is given by

δ∗
T (B, I) = H∗

T ({B} ∪ I) − H∗
T (I) ,

where HT is a heterogeneity measure, as in Definition 5.



398 C. Lopez-Molina et al.

Su
bi
m
ag

e
A

Su
bi
m
ag

e
B

Su
bi
m
ag

e
C

Su
bi
m
ag

e
D

(a) I1 (b) I2 (c) I3 (d) I4

Fig. 4. Hand-labelled images produced by four neuropathologists on four of the subim-
ages in Fig. 1. Neuropathologists have been told to be mark the tau-affected areas
conservatively (column (a)), normally (columns (b, c)), or generously (column (d)).

3.3 Case Study: Measurement of Tau Protein

It is certainly complicated to know whether metadata is faithful to the actual
facts or not [3,7]. Given the limited amount of space available in the present
work, we intend to do a small experiment to see whether the measures capture
pathologists’ proneness to label more or less regions. Specifically, we induce a
certain bias on neuropathologists, and we check whether our measures are able
to detect and quantify it.

In order to complete our experiment we have requested four different neu-
ropathologists to label the four leftmost subimages in Fig. 1. One of the neu-
ropathologists was requested to label the area with tau protein in a conservative
manner, two other were requested to act normally, and the fourth was requested
to label the featured areas in a generous manner. In this way, we expect to have
two extreme ground truth images and two solutions that lie somewhere in the
middle. Of course, pathologists do not take any kind of suggestion on how to
perform their work in a normal situation, neither they have bias on the analysis.
However, it is, in our opinion, a legitimate way to produce binary images whose
behaviour in terms of heterogeneity and dissimilarity is predictable.
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Table 1. Results obtained in the quantification of heterogeneity and dissimilarity of
the sets displayed in Fig. 4. For each subimage, I refers to all of the ground truth
solutions for each image, while Ii−j refers to the images in columns from i to j, both
included. The structuring element T (which is a circle with radius 5) is ommitted from
the formulation in order to ease the interpretation of the table.

(a) Results using heterogeneity and dissimilarity

Subimage H(I) H(I2−4) H(I1−3) H(I2−3) δ(I1, I2−3) δ(I1, I2−4)

Subimg. A .758 .669 .484 .271 .213 .089

Subimg. B .643 .424 .536 .235 .301 .219

Subimg. C .747 .485 .636 .258 .377 .262

Subimg. D .815 .639 .683 .367 .316 .177

Total .741 .554 .585 .283 .302 .187

(b) Results using scaled heterogeneity and dissimilarity

Subimage H∗(I) H∗(I2−4) H∗(I1−3) H∗(I2−3) δ∗(I1, I2−3) δ∗(I1, I2−4)

Subimg. A .272 .239 .082 .044 .038 .033

Subimg. B .236 .154 .153 .066 .087 .082

Subimg. C .249 .162 .147 .060 .087 .087

Subimg. D .154 .120 .076 .040 .036 .034

Total .228 .169 .114 .053 .062 .059

The images produced for the experiments are included in Fig. 4. Each row
in the figure corresponds to one of the four leftmost images in Fig. 1, while each
column corresponds to one of the instructions given to the pathologists. Specif-
ically, the leftmost column is the most conservative inspection of the images,
while the rightmost column contains the images in which the neuropathologists
was proner to label tau protein.

We have used the measures presented in Sect. 3.2, as recap in Table 1. The
standing assumption of our experiment is that images generated under extreme
biases should be identified as such by inspecting the values yielded by our mea-
sures. Table 1 displays the values gathered in different evaluations for the image
sets at each of the rows of Fig. 4.

From the results in Table 1, we can confirm that our measures actually behave
according to the semantics of the images. For example, in terms of heterogeneity,
the values yielded by H or H∗ suffer a severe increase when the set I includes
the images I1 or I4, compared to when it does not. For both H and H∗ the het-
erogeneity of I2−3 is significantly increased by adding the images I1 or I4, which
play the role of extreme cases. This holds for all subimages and heterogeneity
measures. In Table 1 we also observe that δT and δ∗

T identify the outlying images
I1 and I4 w.r.t. the neutral images I2 and I3.

It is relevant to mention that, considering the very small size of the exper-
iment, results shall be put to the test in a more complete scenario. Still, it
is rather complicated to find input for metadata evaluation, and typically one



400 C. Lopez-Molina et al.

must rely on either experiment-driven data (as in this case), or on questionable
assumptions on the way in which ground truth data was generated.

4 Conclusions

In this work we have tackled the problem of multiple ground truth in medical
imagery, specifically in immunohistochemistry imagery of brain tissue. We have
questioned the reasons on the divergences between experts when required to label
such images, and proposed four different measures to quantify the heterogeneity
in a set of images, as well as the 1-to-n dissimilarity of images. In order to do
so, we have applied the notions and developments of the Twofold Consensus
Ground Truth (TCGT), a set-valued operator created for binary image fusion.
This application intends to illustrate how fusion operators in can be used for
purposes other than information aggregation or compression. In our example,
the twofold consensus ground truth is used not only to fusion hand-labelled IHC
images, but also to analyze the heterogeneity in a set of them, as well as to
create one-to-many or many-to-many dissimilarity measures.

Despite the innovative nature of the application, we consider that our work
has a solid, context-agnostic mathematical background. However, it requires
more comprehensive experimental validation, considering the oriented nature
of this research. Hence, the design and analysis of such a experimental setup is
a key future line of research.
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Universidade Federal do Rio Grande do Norte Campus Universitário,

Natal 59072-970, Brazil
bedregal@dimap.ufrn.br

Abstract. Pre-aggregation function (PAF) is an important concept that
has emerged in the context of directional monotonicity functions. Such
functions satisfy the same boundary conditions of an aggregation func-
tions, but it is not required the monotone increasingness in all the
domain, just in some fixed directions. On the other hand, penalty func-
tions is another important concept for decision making applications, since
they can provide a measure of deviation from the consensus value given
by averaging aggregation functions, or a penalty for not having such con-
sensus. This paper studies penalty-based functions defined by PAFs. We
analyse some properties (e.g.: idempotency, averaging behavior and shift-
invariance), providing a characterization of idempotent penalty-based
PAFs and a weak characterization of averaging penalty-based PAFs. The
use of penalty-based PAFs in spatial/tonal filters is outlined.
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1 Introduction

Aggregation functions are very important for dealing with some computation
problems, such as fuzzy rule based systems and classification systems [20–23]
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and decision making [2,15]. Averaging aggregation functions, for example, are
a useful class of aggregation functions, since they provide output values that
are bounded by the minimum and the maximum of the inputs, so represent-
ing a consensus value of the inputs. Examples of such functions are quasi-
arithmetic means, medians, OWA functions, Choquet integral, Sugeno integral,
CC-integrals, which appear in the literature in applications such as preference
aggregation, aggregation of expert opinions, judgements, fuzzy-rule based classi-
fication systems, as properly discussed by Beliakov et al. [5] and Lucca et al. [22].

Observe that aggregation functions are defined considering the monotone
increasingness. However, this property may not be required in many applica-
tions (see [6,20,26]). Examples of useful functions that are not monotonic are
some statistical tools, such as the mode. Wilkin and Beliakov [26] introduced the
notion of weak monotonicity, aiming at extending the standard concept of mono-
tonicity, where the monotonicity of functions is required only along the direction
of the first quadrant diagonal. Generalizing the concept of weak monotonicity,
Bustince et al. [6] introduced the notion of directional monotonicity, allowing
the monotonicity property along (some) fixed ray.

Then, Lucca et al. [20] used this concept in order to define pre-aggregation func-
tions (PAFs), which satisfy the same boundary conditions of an aggregation func-
tions, but may be just directional monotonic. Pre-aggregation functions play an
important role in the context of fuzzy rule based classification systems, where gen-
eralization of the Choquet integral presented excellent results (see, e.g., [20,23]).
In particular, some family of non-averaging pre-aggregation functions derived
from the Choquet integral are appearing as promising tools proved to be stat-
ically equivalent or superior to the best state-of-the-art methods (such as, e.g.,
FURIA [19]). See also [11], for other properties and construction methods of PAFs.

On the other hand, penalty functions [8] have been discussed in the literature
for its application in decision making (see, e.g., [7,15]). They provide a measure
of deviation from the consensus value given by averaging aggregation functions,
or a penalty for not having a consensus. In fact, there exist some advantages
in expressing averaging functions based on penalty functions. They have an
intuitive interpretation, namely, the cost related to the disagreement among the
output and the input data, and, in some cases, they can be defined in a simple
and intuitive way, whereas the associated averaging functions sometimes can
not be given in well-defined forms. Examples of functions that minimize some
penalty functions, called P-functions, are the weighted arithmetic and geometric
means, the median and the mode [26].

This paper enlarges the knowledge about penalty functions in context of
PAFs, which is important for many applications, e.g., in image processing, fil-
tering and smoothing [27]. For that, the objectives of the paper are: (i) to analyse
the properties of idempotency, the averaging behavior and shift-invariance (in
Sect. 3); (ii) to provide a characterization of idempotent penalty-based PAFs and
a weak characterization of averaging penalty-based PAFs (in Sect. 4) (iii) to out-
line the use of penalty-based PAFs in spatial/tonal filters (in Sect. 5). Section 2
presents basic concepts used in the paper.
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2 Preliminary Concepts

We denote by I a closed subinterval of the extended real line, i.e., I = [a, b] ⊆ R.

Definition 1. A function F : I → R is said to be quasi-convex if for every x, y ∈
I and for every λ ∈ [0, 1] the inequality F (λx + (1 − λ)y) ≤ max{F (x), F (y)}
holds.

Definition 2. A function F : I → R is lower semicontinueous at x0 ∈ I if
lim inf

x→x0
F (x) ≥ F (x0).

Definition 3 [25]. A function A : [0, 1]n → [0, 1] is an aggregation function
whenever the following conditions hold, for all (x1, . . . , xn) ∈ [0, 1]n:

(A1) A is increasing in each argument: for each i ∈ {1, . . . , n}, if xi ≤ y, then
A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn);

(A2) A satisfies the boundary conditions: A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

Definition 4. An aggregation function A : [0, 1]n → [0, 1] is said to be aver-
aging if it is bounded by the minimum and maximum of its arguments, that is,
for all (x1, . . . , xn) ∈ [0, 1]n, it holds that: min{x1, . . . , xn} ≤ A(x1, . . . , xn) ≤
max{x1, . . . , xn}.

Due to the monotonicity of aggregation functions, the averaging behavior is
equivalent to the idempotency property.

Definition 5 [6]. Let r = (r1, . . . , rn) be a real n-dimensional vector such that
r �= 0. A function F : [0, 1]n → [0, 1] is said to be r-increasing if, for all
(x1, . . . , xn) ∈ [0, 1]n and c > 0 such that (x1 + cr1, . . . , xn + crn) ∈ [0, 1]n,
it holds that

F (x1 + cr1, . . . , xn + crn) ≥ F (x1, . . . , xn).

Similarly, one defines an r-decreasing function.

Pre-aggregation functions, the key concept in this work, were introduced by
Lucca et al. [20] aiming at applications on fuzzy-rule based classification systems.

Definition 6 [11,20]. A function PA : [0, 1]n → [0, 1] is said to be an n-ary
pre-aggregation function if it satisfies (A2) and:

(PA) PA is directionally increasing for some vector r ∈ Rn, r �= 0, that is, it is
r-increasing.

PA is said an r-pre-aggregation function.

Similarly to Definition 4, one can define averaging pre-aggregation functions.
Observe that all pre-aggregation functions that are averaging are also idempo-
tent. However the converse does not hold. See Remark 2 in Sect. 3.

Of particular relevance is the notion of shift invariance [24] (which is also
called difference scale invariance [17]). A constant change in every input should
result in a corresponding change of the output. In [11], we have modified this
concept to consider whenever this change in the output is in the same direction
of the related change in the output or in the opposite direction.
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Definition 7. Consider r = (r1, . . . , rn), r �= 0, and i ∈ {1, . . . , n} such that
ri �= 0. A function F : [0, 1]n → [0, 1] is (r, i)-shift invariant (stable for transla-
tions in the direction i of the vector r) if:

∀c > 0,x ∈ [0, 1]n : x1 + cr1, . . . , xn + crn ∈ [0, 1] ⇒
F (x1 + cr1, . . . , xn + crn) = F (x1, . . . , xn) + cri.

Whenever r1 = . . . = rn = r �= 0 and it holds that:

∀c > 0,x ∈ [0, 1]n : x1 + cr, . . . , xn + cr ∈ [0, 1] ⇒
F (x1 + cr, . . . , xn + cr) = F (x1, . . . , xn) + cr,

then F is said to be shift invariant (stable for translations in all directions of the
vector r).

Note that the concept of shift invariance is equivalent to the notion of shift
invariance in the works by Lázaro et al. [24] and Calvo et al. [9].

Proposition 1. Consider r = (r1, . . . , rn), r �= 0, and i ∈ {1, . . . , n} such that
ri �= 0. Whenever a function F : [0, 1]n → [0, 1] is (r, i)-shift invariant and
ri > 0 (ri < 0) then F is r-increasing (non r-increasing).

Proof. It is immediate.

Remark 1. Observe that the converse of Proposition 1 does not hold. For exam-
ple, the (0, 1)-increasing function F : [0, 1]2 → [0, 1] defined by F (x, y) =
x − (max{0, x − y})2, introduced in [20], is not ((0, 1), 2)-shift invariant. In fact,
for c = 0.4, one has that F (0.6+0.4·0, 0.5+0.4·1) = 0.6, but F (0.6, 0.5)+0.4·1 =
0.99 �= 0.6. Also, the (0,−1)-increasing function F ′ : [0, 1]2 → [0, 1] defined by
F ′(x, y) = 1−F (x, y), is not ((0,−1), 2)-shift invariant. For c = 0.4, it holds that:
1 − F (0.6 + 0.4 · 0, 0.5 + 0.4 · 1) = 0.4, but (1 − F (0.6, 0.5)) − 0.4 · 1 = 0.01 �= 0.4.

3 PAFs Based on Penalty Functions

There exist various slightly different definitions of penalty functions in the liter-
ature (see [8] and the references therein). Analysing the discussion presented by
Bustince et al. in [8], we decided to adopt the following definition.

Definition 8 [8, Definition 4.1]. For any closed interval I ⊆ R, the function
P : I

n+1 → R+ is a penalty function if and only if there exists c ∈ R+ such that:

(P1) P (x, y) ≥ c, for all x ∈ I
n,y ∈ I;

(P2) P (x, y) = c if and only if xi = y, for all i = 1 . . . n, and
(P3) P is quasi-convex lower semi-continuous in y, for each x ∈ I

n.
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Definition 9 [8, Definition 4.2]. Let P : I
n+1 → R+ be a penalty function.

The function FP : I
n → I is said a P -function, if, for each x ∈ I

n:

FP (x) =
a + b

2
, (1)

where [a, b] = cl(Minz(P (x, ·))), and Minz(P (x, ·)) is the set of minimizers of
P (x, ·), that is,

Minz(P (x, ·)) = {y ∈ I | P (x, y) ≤ P (x, z), for each z ∈ I},

and cl(S) is the closure of S ⊆ I.

One can think of P as describing the dissimilarity or disagreement between
the inputs in x and the value y. It follows that the P -function FP is a function
that minimizes the chosen dissimilarity. Observe that the properties of quasi
convexity and lower semicontinuity of a penalty function P imply that the set
of minimizers of P (x , ·) is either a singleton or an interval (see [8, Remark 4.2]).

In [8], Bustince et al. have proved the following important result, which
relates the idempotency property to P -functions:

Theorem 1 [8, Theorem 4.1]. A function F : I
n → I is a P -function, for some

penalty function P : I
n+1 → R+, if and only if F is idempotent.

Thus, any idempotent function F may be represented by a P -function FP :
I
n → I (i.e., ∀x ∈ I

n : F (x ) = FP (x )), for a certain penalty function P .
In what follows, we consider penalty functions defined on I = [0, 1].
Theorem 1 may be adapted for the context of PAFs:

Theorem 2 [Idempotency & Directional Monotonicity]. Consider r =
(r1, . . . , rn) ∈ R

n, r �= 0. A function F : [0, 1]n → [0, 1] is an r-pre-aggregation
P -function, for some penalty function P : [0, 1]n+1 → [0, 1], if and only if F is
idempotent and r-increasing.

Proof. (⇒) It is immediate, following from Theorem1 and Definition 6. (⇐)
Since F is idempotent, it satisfies (A2), and, by Theorem1, F is a P -function,
for some penalty function P . Thus, by Definition 6, F is an r -pre-aggregation
P -function, for some penalty function P .

Theorem 3 [Idempotency & Shift Invariancy]. Consider r = (r1, . . . , rn)
∈ R

n, r �= 0, such that there exists i ∈ {1, . . . , n} with ri > 0. If a function
F : [0, 1]n → [0, 1] is idempotent and (r, i)-shift invariant, then F is an r-pre-
aggregation P -function, for some penalty function P : [0, 1]n+1 → [0, 1].

Proof. By Proposition 1, since F is (r , i)-shift invariant then F is r -increasing.
The result follows from Theorem 2.
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Example 1. Consider r = (r1, . . . , rn) ∈ R
n, r �= 0 , an idempotent r -increasing

function F : [0, 1]n → [0, 1], and let PF : [0, 1]n+1 → R+ be a penalty function,
defined, for all x ∈ [0, 1]n and y ∈ [0, 1] by:

PF (x1, . . . , xn, y) =
{

c if xi = y for each i
| F (x1, . . . , xn) − y | +c + ε otherwise, (2)

where ε > 0 and c ≥ 0, which was introduced in [8, Proof of Theorem 4.1]. Since
the set of minimizers of PF (x , ·) is the singleton {F (x )}, one has that

F (x1, . . . , xn) = arg min
y

PF (x1, . . . , xn, y), (3)

that is, F is an r -pre-aggregation PF -function.

Remark 2. Observe that, unlike aggregation functions, idempotency and aver-
aging are not equivalent properties for PAFs, due to the lack of the monotonicity
in some directions of the function’s domain. Notice, however, that any averaging
PAF is idempotent. For example, consider the mode, which could be defined,
for all x ∈ [0, 1]n, as Mode(x ) = {xi ∈ x | xi appears most often in x and i =
1, . . . , n}, which, however, would not be a well-defined function of signature
[0, 1]n → [0, 1]. Then, for the purpose of this paper, we consider the definition
of the mode by a pair of well-defined functions of signature [0, 1]n → [0, 1],
as defined in Remark 2, which can be expressed by the pair of functions
(Modemin,Modemax), where Modemin : [0, 1]n → [0, 1] and Modemax : [0, 1]n →
[0, 1] are defined, respectively, by the least and the greatest values that appear
most often in the input vector. For r > 0, Modemin and Modemax are obviously
averaging and idempotent (r, . . . , r)-PAFs. On the other hand, idempotency does
not imply in the averaging behaviour of PAFs. For example, for r > 0, consider
the (r, r)-PAF F : [0, 1]2 → [0, 1], defined, for all x, y ∈ [0, 1], by:

F (x, y) =
{

x if x = y
1 otherwise.

It is immediate that F is idempotent. However, F is not averaging, since for any
x, y �= 1 such that x �= y, it holds that F (x, y) = 1 � max{x, y}.

Corollary 1 [Averaging & Directional Monotonicity]. Consider r =
(r1, . . . , rn) ∈ R

n, r �= 0. If a function A : [0, 1]n → [0, 1] is averaging and
r-increasing then A is an r-pre-aggregation P -function, for some penalty func-
tion P : [0, 1]n+1 → [0, 1].

Proof. Since A is an averaging r -increasing function, then, from Remark 2, it is
idempotent. The result follows from Theorem 2. ��
Corollary 2 [Averaging & Shift Invariancy]. Consider r = (r1, . . . , rn) ∈
R

n, with r �= 0, such that there exists i ∈ {1, . . . , n} with ri > 0. If a function
A : [0, 1]n → [0, 1] is averaging and (r, i)-shift invariant then A is an r-pre-
aggregation P -function, for some penalty function P : [0, 1]n+1 → [0, 1].

Proof. It follows from Theorem 3 and Corollary 1. ��
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4 Characterization of PAFs Based on Penalty Functions

In the following, we provide characterizations of (averaging/idempotent) PAFs
based on penalty functions.

Lemma 1 [8, Lemma 4.1]. Let F : [0, 1]n → [0, 1] be an idempotent function.
Then there is a penalty function P : [0, 1]n+1 → [0, 1] such that F is a P -function
and, for each x ∈ [0, 1]n, P has just one minimizer, that is, Minz(P (x, ·)) is a
degenerate interval.

Proposition 2. Consider r = (r1, . . . , rn) ∈ R
n, r �= 0. If a function A :

[0, 1]n → [0, 1] is idempotent and r-increasing then A is a P -function for some
penalty function P : [0, 1]n+1 → [0, 1] satisfying:

∀x ∈ [0, 1]n, c > 0 :
x + cr ∈ [0, 1]n ⇒ cl(Minz(P (x, ·))) ≤KM cl(Minz(P (x + cr, ·))), (4)

where ≤KM is the Kulisch-Miranker interval order [12] restricted to II =
{[x, y]|0 ≤ x ≤ y ≤ 1}, defined, for all [x, y], [x′, y′] ∈ II, by

[x, y] ≤KM [x′, y′] ⇔ x ≤ x′ and y ≤ y′. (5)

Proof. Let A : [0, 1]n → [0, 1] be an idempotent and r -increasing function. By
Theorem 2, A is a P -function, for some penalty function P : [0, 1]2 → [0, 1].
By Lemma 1, the set of minimizers of such penalty function P is a degenerate
interval. Now, consider x ∈ [0, 1]n such that x + cr ∈ [0, 1]n, for all c > 0. By
Lemma 1, one has that

Minz(P (x , ·)) = [a, a],Minz(P (x + cr , ·)) = [a′, a′],

for some a, a′ ∈ [0, 1]. Then, since A is r -increasing, one has that, A(x ) ≤
A(x+cr) and, thus, by Eq. (1), one has that a = a+a

2 ≤ a′+a′
2 = a′. It follows that

Minz(P (x , ·)) ≤KM Minz(P (x + cr , ·)), and, thus, cl(Minz(P (x , ·))) ≤KM

cl(Minz(P (x + cr , ·))). Thus, P satisfies (4). ��
Proposition 3. Consider r = (r1, . . . , rn) ∈ R

n, r �= 0. If F : [0, 1]n → [0, 1] is
a P -function for some penalty function P : [0, 1]n+1 → [0, 1] satisfying (4) then
F is an idempotent r-increasing function.

Proof. Consider r = (r1, . . . , rn) ∈ R
n, r �= 0. Denote

[a, b] = cl(Minz(P (x , ·))), [a′, b′] = cl(Minz(P (x + cr , ·))),
for x ,x + cr ∈ [0, 1]n+1 and c > 0, and suppose that F is a P -function for
some penalty function P satisfying (4). For all x ∈ [0, 1]n and c > 0 such that
x + cr ∈ [0, 1]n, it holds that [a, b] ≤KM [a′, b′], i.e., a ≤ a′ and b ≤ b′. By Eq.
(1), F (x ) = a+b

2 ≤ a′+b′
2 = F (x + cr). Thus, F is r -increasing. It is immediate

that F is idempotent. ��
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Theorem 4 [Characterization of idempotent pre-aggregation P-
functions]. Consider r = (r1, . . . , rn) ∈ R

n, r �= 0. A function F : [0, 1]n →
[0, 1] is an idempotent r-pre-aggregation function if and only if F is a P -function
for some penalty function P : [0, 1]n+1 → [0, 1] satisfying (4).

Proof. (⇒) It follows from Proposition 2. (⇐) It follows from Proposition 3,
since F is idempotent, and, then, it satisfies (A2). ��
Corollary 3. Consider r = (r1, . . . , rn) ∈ R

n, r �= 0. If A : [0, 1]n → [0, 1] is
an averaging r-pre-aggregation function then A is a P -function for some penalty
function P satisfying (4).

Theorem 5 [Weak characterization of averaging pre-aggregation P -
functions]. Consider r = (r1, . . . , rn) ∈ R

n, r �= 0 and let A : [0, 1]n → [0, 1]
be an averaging function. A is r-pre-aggregation function if and only if A is a
P -function for some penalty function P satisfying (4).

Proof. It follows from Theorem 4 and Corollary 3. ��
Example 2. The penalty-based function presented in [8, Example 4.2], when
restricted to [0, 1], may be defined by a PAF. Consider a weight vector W =

(w1, . . . , wn), where
n∑

i=1

wi = 1, and the vector r = (r1, . . . , rn) ∈ Rn, such that

r �= 0 and
∑n

i=1 ri ≥ 0. Let F : [0, 1]n → [0, 1] be a function such that: (i)

F (x1, . . . , xn) =
n∑

i=1

wixi ⇔ x1 = . . . = xn; (ii) F is r -increasing; (iii) F is

averaging. By Corollary 1, F is an r -pre-aggregation P -function, with penalty
function PF : [0, 1]n+1 → R+, defined, for all x ∈ [0, 1]n and y ∈ [0, 1], by:

PF (x1, . . . , xn, y) =

⎧⎨
⎩

| y − F (x1, . . . , xn) | if y =
n∑

i=1

wixi,

1 otherwise.

See [8, Example 4.2] to see the proof that PF is a penalty function. The set of
minimizers of PF (x , ·) is {∑n

i=1 wixi}, and, then,
∑n

i=1 wixi = arg min
y

PF (x , y).

Whenever x1 = . . . = xn, it holds that F (x ) = arg min
y

PF (x , y).

5 Pre-aggregation Penalty-Based Functions in Image
Processing

The following results may be interesting for applying pre-aggregation penalty-
based functions in image processing (as suggested in [26, Sect. 4.3]).

Theorem 6. Consider r = (r, . . . , r) ∈ R
n, r �= 0, and g : [0, 1] → [0, 1]. Let fk :

[0, 1]n → [0, 1] be r-shift invariant functions, for k ∈ {1, . . . , n}, and F : [0, 1]n →
[0, 1] be a P -function, for the penalty function P : [0, 1]n+1 → R

+ defined on the
terms g(xi−fi(x1, . . . , xn))(xi−y)2, for all x1, . . . , xn, xi−fi(x1, . . . , xn) ∈ [0, 1],
and i = 1, . . . , n. Then: (i) F is r-shift invariant; (ii) If r > 0 then F is r-
increasing.
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Proof. To prove (i), since F is a P -function, define, according to Definition 9,
for all x1, . . . , xn, xi − fi(x1, . . . , xn) ∈ [0, 1], and i = 1, . . . , n:

F (x1, . . . , xn) = (6)
arg min

y
P (g(x1 − f1(x1, . . . , xn))(x1 − y)2, . . . ,

g(xn − fn(x1, . . . , xn))(xn − y)2, y).

Since, for all k ∈ {1, . . . , n}, fk is r -shift invariant, then, for all x1 + cr, . . . , xn +
cr, xi + cr − fi(x1 + cr, . . . , xn + cr) ∈ [0, 1], with c > 0, it follows that:

F (x1 + cr, . . . , xn + cr)
= arg min

y
P (g(x1 + cr − f1(x1 + cr, . . . , xn + cr))(x1 + cr − y)2,

. . . , g(xn + cr − fn(x1 + cr, . . . , xn + cr))(xn + cr − y)2, y) by Eq. (6)
= arg min

y
P (g(x1 + cr − f1(x1, . . . , xn) − cr)(x1 + cr − y)2,

. . . , g(xn + cr − fn(x1, . . . , xn) − cr)(xn + cr − y)2, y)
= arg min

y
P (g(x1 − f1(x1, . . . , xn))(x1 + cr − y)2,

. . . , g(xn − fn(x1, . . . , xn))(xn + cr − y)2, y)
= F (x1, . . . , xn) + cr.

and, then, F is r -shift invariant. The proof of (ii) follows from Proposition 1. ��
Theorem 7. Consider r = (r, . . . , r) ∈ R

n, with r > 0, and g : [0, 1] → [0, 1].
Let fk : [0, 1]n → [0, 1] be r-shift invariant functions, for k ∈ {1, . . . , n}. Let
F : [0, 1]n → [0, 1] be a P -function, for a penalty function P : [0, 1]n+1 →
R

+ defined on the terms g(xi − fi(x1, . . . , xn))(xi − y)2, for all x1, . . . , xn, xi −
fi(x1, . . . , xn) ∈ [0, 1]n, and i = 1, . . . , n. Then F is an r-PAF.

Proof. By Theorem 6(ii), F is r -increasing. By Theorem 1, since F is a P -
function, then F is idempotent. Thus, conditions (A2) hold, and, then, F is
an r -PAF. ��
Remark 3. In Theorem 7, notice that, for each k ∈ {1, . . . , n}, fk is an r -PAF.
Then:

F (0, . . . , 0)
= arg min

y
P (g(0 − f1(0, . . . , 0))(0 − y)2, . . . , g(0 − fn(0, . . . , 0))(0 − y)2, y)

= arg min
y

P (w1y
2, . . . , wny2, y),

for wi=g(0 − fi(0, . . . , 0) ∈ [0, 1], i = 1, . . . , n. Since P is a penalty function,
then, if y = 0, there exists c ∈ R

+ such that P (0, . . . , 0, 0) = c ∈ R, with
P (x1, . . . , xn, y) ≥ c, for all (x1, . . . , xn, y) ∈ [0, 1]n+1. Thus:

F (0, . . . , 0) = arg min
y

P (w1y
2, . . . , wny2, y) = 0.
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On the other hand, since, for each k ∈ {1, . . . , n}, fk is an r -PAF, then:

F (1, . . . , 1)
= arg min

y
P (g(1 − f1(1, . . . , 1))(1 − y)2, . . . , g(1 − fn(1, . . . , 1))(1 − y)2, y)

= arg min
y

P (v1(1 − y)2, . . . , vn(1 − y)2, y)

for vi = g(1 − fi(1, . . . , 1)) ∈ [0, 1], i = 1, . . . , n

Again, since P is a penalty function, then, whenever y = 1, there exists
c ∈ R

+ such that P (0, . . . , 0, 0) = c ∈ R, with P (x1, . . . , xn, y) ≥ c, for
all (x1, . . . , xn, y) ∈ [0, 1]n+1. Therefore, one concludes that F (1, . . . , 1) =
arg min

y
P (v(1 − y)2, . . . , v(1 − y)2, y) = 1. So, F satisfies the boundary con-

ditions of a PAF.

Corollary 4. Consider r = (r, . . . , r) ∈ R
n, with r > 0, and g : [0, 1] → [0, 1].

Let fk : [0, 1]n → [0, 1] be r-increasing functions that may be not r-shift
invariant. Let F : [0, 1]n → [0, 1] be a P -function, for some penalty function
P : [0, 1]n+1 → R

+ defined on the terms g(xi − fi(x1, . . . , xn))(xi − y)2, for all
x1, . . . , xn, xi − fi(x1, . . . , xn) ∈ [0, 1]n, and i = 1, . . . , n. Then F is an r-pre-
aggregation function.

5.1 Spatial/Tonal Filters

In this section, we discuss the ideas presented in [5, Sect. 7.8] considering the
more generalized point of view of pre-aggregation functions. For that, we gen-
eralize the definition of the filter function, in order to be possible to use our
theorems.

In image processing, spatial-tonal filters are used to preserve edges within
images when performing some tasks, e.g., the filtering, denoising or smoothing
processes [18] (see, e.g., the weighted mode filter [16] and the Gauss bilateral
filter [28]). Those filters are implemented in discrete form over a finite set of
pixels that assume finite values in [0, 1], defined by the family of averaging and
idempotent functions F k

W,g : [0, 1]n+1 → [0, 1], given, for all x ∈ [0, 1]n and
xk ∈ [0, 1], with k = 1, . . . , n, by:

F k
W,g(x , xk) =

∑n
i=1 g(| xi − xk |)xi∑n
i=1 g(| xi − xk |) ,

where g : [0, 1] → [0, 1], W = {w1, . . . , wn} is a vector of weights (which are
obtained by nonlinear and nonconvex functions of the locations of the pixels,
which, in general, are constant), xi is the intensity of the pixel i, and xk is
the intensity of pixel k to be filtered/smoothed/denoised, taking its new value
as x̄k = F k

W,g(x , xk). In [5], it was shown that F k
W,g are nonlinear and non

monotonic. Since they are idempotent, by Theorem1, they and can be expressed
as P-based functions, for the family of penalty functions PFk

W,g
: [0, 1]n+1 → [0, 1],

defined, for all x ∈ [0, 1]n and y, xk ∈ [0, 1], by:
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PFk
W,g

(x , y) =
n∑

i=1

wig(| xi − xk |)(xi − y)2, (7)

with k = 1, . . . , n. In applications of image-filtering, the penalty minimizes the
mean squared error between the filtered image and the noisy source image (see,
e.g., [14]).

Now, consider r = (r, . . . , r), with r > 0, and the family of projec-
tion functions projk : [0, 1]n → [0, 1], defined, for all x ∈ [0, 1]n, by
projk(x1, . . . , xk, . . . , xn) = xk. Then, Eq. (7) can be written as:

PFk
W,g

(x , y) =
n∑

i=1

wig(| xi − projk(xi, . . . , xn) |)(xi − y)2, (8)

with k = 1, . . . , n. It is immediate that projk are r -shift-invariant, and, then, by
Theorem 7, the filter functions F k

W,g are r -pre-aggregation functions.
Equation (8) is generalized, considering r -shift invariant functions Fk :

[0, 1]n → [0, 1], with k = 1, . . . , n, and replacing projk by Fk in the scaling
function g, obtaining:

PFk
W,g

(x , y) =
n∑

i=1

wig(| xi − fk(xi, . . . , xn) |)(xi − y)2.

Here, again, by Theorem 7, the filter functions F k
W,g are r -pre-aggregation func-

tion.
Whenever Fk are all r -increasing, even if they are not r -shift invariant, then,

by Corollary 4, the filter functions F k
W,g are r -pre-aggregation function. This

generalization means that one may adopt r -pre-aggregation (which may be r -
shift invariant or not) of the vector x , which allows to deal with the possibility
that xk is itself an outlier within the local region of the image, as suggested in
[5]. Thus, one can use, e.g., the median, the mode (defined by either Modemin

or Modemax) or the shorth for the functions Fk.

6 Conclusion

This paper study PAFs in the context of penalty functions, which is important
for many applications, e.g., in image processing. We also showed the relation
between the idempotency, averaging, shift invariance concepts concerning PAFs,
presenting a characterization of idempotent PAFs based on penalty functions
and a weak characterization of averaging PAFs based on penalty functions. We
also outlined the use of penalty-based PAFs is spatial/tonal filters. Future work
is concerned with the study of pre-aggregation P-functions on interval data [1],
in a fuzzy interval approach [3,4,10,13].
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Radlinského 11, Bratislava, Slovakia

mesiar@math.sk
4 Institute for Research and Applications of Fuzzy Modelling,
University of Ostrava, 30. dubna 22, Ostrava, Czech Republic

Abstract. A tendency in the theory of aggregation functions is the gen-
eralization of the monotonicity condition. In this work, we examine the
latest developments in terms of different generalizations. In particular,
we discuss strengthened ordered directional monotonicity, its relation to
other types of monotonicity, such as directional and ordered directional
monotonicity and the main properties of the class of functions that are
strengthened ordered directionally monotone. We also study some con-
struction methods for such functions and provide a characterization of
usual monotonicity in terms of these notions of monotonicity.
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1 Introduction

The problem of finding a single representative number for a set of values is
common to every field that handles real data. There exist several works in the
literature addressing this issue prior to the introduction of the theory of aggre-
gation functions per se. That is the case, for example, of triangular norms [12],
copulas [17] and Choquet integrals [7]. According to [13], the inception of the
theory of aggregation functions as an independent theory dates back to 1988 [10]
and it was not until 2001 that the first monograph on the subject came out [6].
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An aggregation function, in the classical sense, is a function A : [0, 1]n → [0, 1]
such that A(0) = 0, A(1) = 1 and it is increasing with respect to every argument
(the standard partial order on [0, 1]n). Since its appearence, the aggregation the-
ory has been extended to new domains beside real numbers [18] and aggregation
functions have been applied in diverse real world problems [8,9,14].

In addition to the extension of aggregation operators to be able to deal with
more general scales than numbers, such as lattices, a relevant trend in the the-
ory of aggregation functions is the relaxation of the monotonicity condition.
Monotonicity with respect to every argument may lead to exclude from the
framework of aggregation functions mappings that are valid to provide a repre-
sentative value from a set of numerical values. Examples of such functions are
the mode operator, or the Lehmer mean [3], among others (see [2]).

On the account of broadening the framework of functions that are sound
for fusing data, some generalizations of monotonicity have emerged [1]. One of
the most significant forms of monotonicity is that of directional monotonicity,
introduced in [5], which, similar to the concept of directional derivatives, deals
with monotonicity along a ray in R

n. This type of monotonicity generalizes the
formerly presented notion of weak monotonicity [19], which is the particular case
of restricting directional monotonicity to the ray (1, 1, . . . , 1). The fact that the
ray of increasingness could be any vector in R

n permits to select functions that
adjust better to particular problems or applications. Nevertheless, that direction
is the same for all the points in the domain.

Recently, influenced by the concept of OWA operator [20], the concept of
ordered directional (OD) monotonicity has been introduced [4]. The direction
of increasingness or decreasingness for ordered directionally monotone function
varies depending on the point of the domain that is being considered. Specifi-
cally, the ray of increasingness (decreasingness) varies according to the relative
size of the inputs, as long as a fixed comonotonicity requirement is satisfied.
Directionally and ordered directionally monotone functions have yielded good
results in classification problems [11] and in the field of image processing [15].

In this work, we discuss the notion of strengthened ordered directional (SOD)
monotonicity [16], a concept based on ordered directional monotonicity, for
whose definition no comonotonicity condition is required. This relaxation makes
the family of strengthened ordered directionally monotone functions a proper
subset of the class of ordered directionally monotone functions, meaning that
if a function is strengthened ordered directionally monotone, then it is ordered
directionally monotone, but not contrarily. Furthermore, we address some rele-
vant properties of the three forms of monotonicity, i.e., directional, ordered direc-
tional and strengthened ordered directional monotonicity, and we point out some
links and differences among them. We also expose some construction methods for
functions that are monotone in each of the discussed senses and we characterize
classical monotonicity with regard to its various generalizations.

This work is organized as follows. We start the next section with some
remarks about the notation that is used throughout the paper, as well as recall-
ing some preliminary notions and basic definitions. In Sect. 3 we present the
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definition of the latest generalization of monotonicity in the literature regarding
directional monotonicity; the concept of strengthened ordered directional mono-
tonicity. We also study the class of SOD functions and we expose a scheme of the
points that trivially satisfy the conditions for each of the types of monotonicity.
In Sect. 4 we discuss some relevant properties of the different notions of mono-
tonicity, as well as the relations that exist among them. In Sect. 5 we present
various construction methods for functions that are monotone in each sense. We
finish this work with a characterization of the usual condition of monotonic-
ity in terms of the different generalizations, in Sect. 5, followed by some brief
concluding remarks.

2 Preliminaries

Let n ∈ N, with n ≥ 2. We refer as x = (x1, . . . , xn) ∈ [0, 1]n to points in the
unit hypercube and as −→r = (r1, . . . , rn) ∈ R

n to vectors connoting a direction
in R

n.
The notion of monotonicity is highly related to the concept of order. In this

work we consider the usual partial order of [0, 1]n, i.e., given x,y ∈ [0, 1]n,we
say x ≤ y if xi ≤ yi for every i ∈ {1, . . . , n}.

Like in the case of OD monotone functions, the points of the domain whose
components are decreasingly ordered play an important role in the framework
of SOD monotone functions. We use the following notation for the set of these
points: Let H ⊂ R

n, then we set H(≥) = {(h1, . . . , hn) ∈ H | h1 ≥ · · · ≥ hn}
and H(≤), H(>), H(<),H(=) accordingly.

In order to impose that some points’ components are decreasingly ordered,
it is common to use permutations. Let Sn be the set of all permutations of n
elements, σ ∈ Sn and x ∈ [0, 1]n, we denote by xσ the tuple (xσ(1), . . . , xσ(n)).
Note that for x, y ∈ R

n, it holds that x ∈ [0, 1]n if and only if xσ ∈ [0, 1]n.
Moreover, for x,y ∈ [0, 1]n and σ ∈ Sn, it holds that (x + y)σ = xσ + yσ, and
x ·y = xσ ·yσ, where x ·y denotes the scalar product given by x ·y =

∑n
i=1 xiyi.

The notion of directional monotonicity, or monotonicity along a ray −→r , was
introduced in [5], generalizing the notion of monotonicity for functions from
[0, 1]n to [0, 1].

Definition 1. Let F : [0, 1]n → [0, 1] and −→r ∈ R
n, we say that F is −→r -

increasing (decreasing), if for all c > 0 and x ∈ [0, 1]n such that x+c−→r ∈ [0, 1]n,
it holds that F (x + c−→r ) ≥ F (x) (F (x + c−→r ) ≤ F (x)).

Directional monotonicity generalizes weak monotonicity, introduced in [19],
which is the particular case of considering as direction the vector

−→
1 = (1, . . . , 1).

OD monotonicity was presented in [4]. The direction of increasingness of
functions that are OD −→r -increasing varies in terms of the relative sizes of the
input.

Definition 2. Let F : [0, 1]n → [0, 1] and −→r ∈ R
n, we say that F is ordered

directionally, OD, −→r -increasing (decreasing), if for all c > 0, σ ∈ Sn and x ∈
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[0, 1]n, it holds that if xσ, xσ + c−→r ∈ [0, 1]n(≥), then F (x + c−→r σ−1) ≥ F (x)
(F (x + c−→r σ−1) ≤ F (x)).

3 The Class of Strengthened Ordered Directionally
Monotone Functions

The concept of SOD monotonicity has been more recently introduced in [16]. It
is based on OD monotonicity, in fact the difference between both concepts is that
SOD monotone functions are not asked to satisfy the condition of comonotonicity
between xσ and xσ + c−→r .

Definition 3. Let F : [0, 1]n → [0, 1] and −→r ∈ R
n, we say that F is strengthened

ordered directionally, SOD, −→r -increasing (decreasing), if for all c > 0, σ ∈ Sn

and x ∈ [0, 1]n, it holds that if xσ ∈ [0, 1]n(≥) and xσ + c−→r ∈ [0, 1]n, then
F (x + c−→r σ−1) ≥ F (x) (F (x + c−→r σ−1) ≤ F (x)).

If a function is simultaneously (OD, SOD) −→r -increasing and (OD, SOD)−→r -decreasing, we say that the function is (OD, SOD) −→r -constant.

Remark 1. The notation (OD, SOD) −→r -increasing refers to directional (−→r -
increasing), ordered directional (OD −→r -increasing) and strengthened ordered
directional (SOD −→r -increasing) monotonicity.

The case of −→r =
−→
0 is trivial for the three notions of monotonicity. In fact,

every function is (OD, SOD)
−→
0 -constant.

An OD monotone function F is required to satisfy the inequality F (x +
c−→r σ−1) ≥ F (x) for points that satisfy the comonotonicity condition xσ, xσ +
c−→r ∈ [0, 1]n(≥), whereas a SOD monotone function F is required to satisfy the
same inequality for points that satisfy that condition and for points that do not.
Therefore, SOD −→r -increasingness implies OD −→r -increasingness. However, the
converse statement does not hold.

One of the particularities of each notion of monotonicity is the set of points
that satisfy the monotonicity conditions trivially. On the one hand, in the case
of directional monotonicity, i.e., −→r -increasing functions, the points that trivially
satisfy the conditions are those x ∈ [0, 1]n such that x+c−→r �∈ [0, 1]n for all c > 0.
On the other hand, for a function F that is OD (SOD) −→r -increasing, such set
of points is formed by those x ∈ [0, 1]n such that if σ ∈ Sn with xσ ∈ [0, 1]n(≥),
then xσ + c−→r �∈ [0, 1]n(≥) (xσ + c−→r �∈ [0, 1]n) for all c > 0.

For the case n = 2, we show in Table 1 the relation of directions (given in
terms of the angle that they form with respect to the non-negative horizon-
tal axis) and points that, for each notion of monotonicity, trivially satisfy the
conditions.
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Table 1. Directions (in terms of their angle α w.r.t. the non-negative horizontal axis)
and points that trivially satisfy the monotonicity conditions for directional, ordered
directional and strengthened ordered directional monotonicity

Directions −→r
such that

D monotonicity
x ∈ [0, 1]2 such that

OD monotonicity
x ∈ [0, 1]2 such that

SOD monotonicity
x ∈ [0, 1]2 such that

α = 0 x1 = 1 x1 = 1 or x2 = 1 x1 = 1 or x2 = 1

0 < α ≤ π
4

x1 = 1 or x2 = 1
π
4

< α < π
2

x1 = 1 or x2 = 1
or x1 = x2

α = π
2

x2 = 1 x1 = x2 x1 = x2 = 1
π
2

< α < π x1 = 0 or x2 = 1 x1 = x2 = 1 or x1 = x2 = 0

α = π x1 = 0 x1 = x2 = 0

π < α < 5π
4

x1 = 0 or x2 = 0 x1 = 0 or x2 = 0
or x1 = x2

x1 = 0 or x2 = 0

5π
4

≤ α < 3π
2

x1 = 0 or x2 = 0

α = 3π
2

x2 = 0
3π
2

< α < 2π x1 = 1 or x2 = 0 x1 = 0 or x1 = 1
or x2 = 0 or x2 = 1

x1 = 0 or x1 = 1
or x2 = 0 or x2 = 1

4 Properties and Connections of the Different Notions
of Monotonicity

We use the following notation to refer to the set of vectors for which a function is
increasing (and constant) according to the three different notions of monotonicity
with which we deal in this paper. Let F : [0, 1]n → [0, 1], thus we set

D↑(F ) = {−→r ∈ R
n | F is −→r -increasing },

C(F ) = {−→r ∈ R
n | F is −→r -constant },

and the remaining sets of directions D↑
OD(F ), D↑

SOD(F ), COD(F ) and CSOD(F )
accordingly.

We derive from the definition the first relation among these sets of directions.

Proposition 1. Let F : [0, 1]n → [0, 1]. Then the following items hold:

(i) C(F ) ⊆ D↑(F ), COD(F ) ⊆ D↑
OD(F ) and CSOD(F ) ⊆ D↑

SOD(F );
(ii) CSOD(F ) ⊆ COD(F );
(iii) D↑

SOD(F ) ⊆ D↑
OD(F ).

The following two results are also obtained from the definition of the different
notions of monotonicity.

Proposition 2. Let F : [0, 1]n → [0, 1] and −→r ∈ R
n be such that r1 ≥ . . . ≥ rn.

Then F is SOD −→r -increasing (decreasing) if and only if F is OD −→r -increasing
(decreasing). Moreover, F is SOD −→r -constant if and only if F is OD −→r -constant.
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Proposition 3. Let F : [0, 1]n → [0, 1] be a (OD, SOD) −→r -increasing function
and let ϕ : [0, 1] → [0, 1] be an increasing (decreasing) function. Then, the com-
position ϕ ◦ F : [0, 1]n → [0, 1] is (OD, SOD) −→r -increasing (decreasing).

The vectors’ magnitude has no influence whatsoever in the qualification of
such vectors as directions of (OD, SOD) increasingness. Therefore, it is possible
to limit the set of directions to normalized vectors, i.e., vectors of norm 1, as it
is shown in the next Proposition.

Proposition 4. Let F : [0, 1]n → [0, 1] and k > 0. Then, F is (OD, SOD) −→r -
increasing (decreasing) if and only if F is (OD, SOD) (k−→r )-increasing (decreas-
ing).

The following result reveals a difference between the classes of direction-
ally and ordered directionally monotone functions and the class of strengthened
ordered directionally monotone functions.

Proposition 5. Let F : [0, 1]n → [0, 1]. F is (OD) −→r -increasing if and only if
(OD) F is (−−→r )-decreasing.

Proof. Case of directional monotonicity:
Let F be −→r -increasing and let x ∈ [0, 1]n and c > 0 such that x − c−→r ∈ [0, 1]n.
Set y = x − c−→r . Thus,

F (x + c(−−→r )) = F (y) ≤ F (y + c−→r ) = F (x),

hence F is (−−→r )-decreasing. Similarly, one can show the converse statement.
Case of ordered directional monotonicity:

Let F be OD −→r -increasing and let x ∈ [0, 1]n, c > 0 and σ ∈ Sn such that
xσ and xσ + c(−−→r ) ∈ [0, 1]n(≥). Set y = x + c(−−→r )σ−1 . Thus, it holds that
yσ = xσ + c(−−→r ) ∈ [0, 1]n(≥) and yσ + c−→r = xσ ∈ [0, 1]n(≥). Now, since F is OD
−→r -increasing, it holds that

F (x + c(−−→r )σ−1) = F (y) ≤ F (y + c−→r σ−1) = F (x),

therefore F is OD (−−→r )-decreasing. The converse is analogous.

In [16] it is shown that Proposition 5 does not generally hold for SOD
monotonicity, which indicates that whereas the results for (ordered) directional
increasingness can be readily extended to (ordered) directional decreasingness, it
is not generally the case for the results of SOD monotonicity. This fact is patent
in the upcoming results on duality (Sect. 5).

The next three theorems concern the directions of (OD, SOD) increasingness
for functions with some known directions of (OD, SOD) increasingness. The first
one, regarding directional monotonicity can be found in [5]; the second, about
ordered directional monotonicity, in [4]; and the third, regarding strengthened
ordered directional monotonicity, in [16].
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Theorem 1 ([5]). Let −→r ,−→s ∈ R
n and a, b ≥ 0, with a + b > 0. Let x ∈ [0, 1]n,

c > 0, and assume that if x and x + c(a−→r + b−→s ) ∈ [0, 1]n, then either x + ca−→r
or x+ cb−→s ∈ [0, 1]n. Then, if a function F : [0, 1]n → [0, 1] is both −→r -increasing
and −→s -increasing, then F is also (a−→r + b−→s )-increasing.

Theorem 2 ([4]). Let −→r ,−→s ∈ R
n and a, b ≥ 0, with a + b > 0. Let x ∈ [0, 1]n,

c > 0, σ ∈ Sn and assume that if xσ and xσ +c(a−→r +b−→s ) ∈ [0, 1]n(≥), then either
x+ca−→r or x+cb−→s ∈ [0, 1]n(≥). Then, if a function F : [0, 1]n → [0, 1] is both OD
−→r -increasing and OD −→s -increasing, then F is also OD (a−→r + b−→s )-increasing.

Theorem 3 ([16]). Let −→r ,−→s ∈ R
n and a, b ≥ 0, with a+ b > 0. Let x ∈ [0, 1]n,

c > 0, σ ∈ Sn and assume that if xσ ∈ [0, 1]n(≥) and xσ + c(a−→r + b−→s ) ∈ [0, 1]n,
then either x+ca−→r or x+cb−→s ∈ [0, 1]n. Then, if a function F : [0, 1]n → [0, 1] is
both SOD −→r -increasing and SOD −→s -increasing, then F is also SOD (a−→r +b−→s )-
increasing.

Therefore if a function F is (OD, SOD) increasing in two directions −→r and−→s , under the assumptions of the preceding theorems, it is also (OD, SOD)
increasing in the direction resulting from a positive linear combination of −→r and−→s .

5 Construction Methods

In this Section we show how to construct (ordered, strengthened ordered) direc-
tionally monotone functions from functions that have the same type of mono-
tonicity. First, we present some results that establish the relation of a function
and its dual according to these generalizations of monotonicity.

Proposition 6. Let F : [0, 1]n → [0, 1] and F c : [0, 1]n → [0, 1] be given by
F c(x) = 1 − F (x). Let −→r ∈ R

n. Then, F is (OD, SOD) −→r -increasing if and
only if F c is (OD, SOD) −→r -decreasing.

Proof. Case of directional monotonicity:
Let c > 0 and x, x + c−→r ∈ [0, 1]n, then F (x) ≤ F (x + c−→r ) if and only if
F c(x) = 1 − F (x) ≥ 1 − F (x + c−→r ) = F c(x + c−→r ). The cases of OD and SOD
monotonicity are straightforward.

As a consequence, the fact that (F c)c = F yields the following result.

Corollary 1. Let F : [0, 1]n → [0, 1] and F c : [0, 1]n → [0, 1] be given by F c(x) =
1 − F (x). Let −→r ∈ R

n. Then, F is (OD, SOD) −→r -constant if and only if both
F and F c are (OD, SOD) −→r -increasing. Additionally, the following equalities
hold:

(i) C(F ) = C(F c);
(ii) COD(F ) = COD(F c);
(iii) CSOD(F ) = CSOD(F c).
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Under the conditions of Proposition 6, it is clear that F is (OD) −→r -increasing
if and only if F c is (OD) (−−→r )-increasing. However, that statement is not gen-
erally so for SOD monotonicity.

Proposition 6 and the next result provide the relation of a function and its
dual in terms of the directions for which each is (ordered, strengthened ordered)
directionally monotone.

Proposition 7. Let F : [0, 1]n → [0, 1], G : [0, 1]n → [0, 1], defined by G(x) =
F (1 − x), and −→r ∈ R

n. Let −→r d = (rn, . . . , r1). Then

(i) F is −→r -increasing if and only if G is (−−→r )-increasing; and
(ii) F is OD (SOD) −→r -increasing if and only if G is OD (SOD) (−−→r ) d-

increasing.

Proof. (i) It is straightforward.
(ii) Case of ordered directional monotonicity:

Let F be OD −→r -increasing and let x ∈ [0, 1]n. Let σ ∈ Sn and c > 0 such
that xσ ∈ [0, 1]n(≥) and xσ + c(−−→r ) d ∈ [0, 1]n(≥).
Set y = 1−x and τ ∈ Sn such that τ(i) = σ(n− i+1) for all i ∈ {1, . . . , n}.
Thus, one can verify that τ−1(i) = n − σ−1(i) + 1, and that (−→r d)σ−1 =−→r τ−1 . Besides, we have that yτ ∈ [0, 1]n(≥) and yτ + c−→r ∈ [0, 1]n(≥). Now,
since F is OD −→r -increasing, it holds that

G
(
x + c

(−−→r d
)
σ−1

)
= F (y + c−→r τ−1) ≥ F (y) = G(x),

therefore G is OD (−−→r ) d-increasing.
The converse is straight since − (−−→r d

) d = −→r .
Similarly, one can show the case of strengthened ordered directional mono-

tonicity.

Recall that given a function F : [0, 1]n → [0, 1], we can define its dual F d by
F d(x) = 1 − F (1 − x).

Corollary 2. Let F : [0, 1]n → [0, 1] and F d : [0, 1]n → [0, 1] be its dual function.
Then, for −→r ∈ R

n, it holds that

(i) F is −→r -increasing if and only if F d is −→r -increasing;
(ii) F is OD −→r -increasing if and only if F d is OD −→r d-increasing;
(iii) F is SOD −→r -increasing if and only if F d is SOD (−−→r ) d-decreasing.

At this point, we expose how a(n) (ordered, strengthened ordered) direction-
ally monotone function can be constructed from a set of n functions with the
same type of monotonicity.

Theorem 4. Let −→r ∈ R
n and Fi : [0, 1]n → [0, 1], 1 ≤ i ≤ m, be m (OD, SOD)−→r -increasing functions. Let H : [0, 1]n → [0, 1] be an aggregation function. Then

the function H (F1, . . . , Fm) : [0, 1]n → [0, 1], given by H (F1, . . . , Fm) (x) =
H(F1(x), . . . , Fm(x)), is (OD, SOD) −→r -increasing.

In particular, the convex combination of m (OD, SOD) directionally mono-
tone functions is a function with the same kind of monotonicity.
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6 Characterization of Monotonicity in Terms of Its
Different Generalizations

The following theorem gives a characterization of the usual condition of increas-
ingness in terms of the different forms of monotonicity discussed in this paper.
This result has acquired its present form along with the introduction of the dif-
ferent notions of monotonicity. In [5], one can find the proof of the equivalence of
the first two items. the third item was added in [4], and one can find its current
presentation in [16].

Theorem 5 ([16]). Let F : [0, 1]n → [0, 1] and (−→e 1, . . . ,
−→e n) be the canonical

basis of Rn. The following are equivalent:

(i) F is increasing;
(ii) F is −→e i-increasing for every i ∈ {1, . . . , n};
(iii) F is OD −→e i-increasing for every i ∈ {1, . . . , n};
(iv) F is SOD −→e i-increasing for every i ∈ {1, . . . , n}.

As a consequence, we have another characterization of usual monotonicity, in
terms of vectors for which all the components are positive instead of canonical
vectors.

Corollary 3. Let F : [0, 1]n → [0, 1]. The following are equivalent:

(i) F is increasing;
(ii) F is OD −→r − increasing for every −→r ∈ (R+)n;
(iii) F is SOD −→r − increasing for every −→r ∈ (R+)n.

Another interesting result is the characterization of weak monotonicity in
terms of the other generalizations of monotonicity. Weak monotonicity is a
particular case of directional monotonicity which only considers the vector−→
1 = (1, . . . , 1) as a direction.

Theorem 6. Let F : [0, 1]n → [0, 1]. The following are equivalent:

(i) F is weakly increasing;
(ii) F is

−→
1 -increasing;

(iii) F is OD
−→
1 -increasing;

(iv) F is SOD
−→
1 -increasing.

Proof. (i) and (ii) are equivalent by the definition of weak monotonicity and
Proposition 2 yields that (iii) and (iv) are also equivalent.

Let us show that (ii) and (iii) are equivalent. Assume that F is
−→
1 -increasing

and let x ∈ [0, 1], σ ∈ Sn and c > 0 such that xσ ∈ [0, 1]n(≥) and xσ + c
−→
1 ∈

[0, 1]n(≥). Since F is
−→
1 -increasing, it holds that F (x + c

−→
1 σ−1) = F (x + c

−→
1 ) ≥

F (x).
The converse implication is analogous.
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7 Conclusions

We have presented the concept of strengthened ordered directional monotonic-
ity, the latest generalization of monotonicity in the literature. We have also
discussed some of the main properties and the links among the different state-
of-the-art weaker forms of monotonicity, namely, weak monotonicity, directional
monotonicity, ordered directional monotonicity and strengthened ordered direc-
tional monotonicity. Moreover, we have highlighted some construction methods
for classes of functions that are monotone according to the discussed types of
monotonicity and we have provided a characterization of the usual condition
of monotonicity in terms of directional, ordered directional and strengthened
ordered directional monotonicity.
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Abstract. In this work we study the usage of different families of fusion
functions for combining classifiers in a multiple classifier system of One-
vs-One (OVO) classifiers. OVO is a decomposition strategy used to deal
with multi-class classification problems, where the original multi-class
problem is divided into as many problems as pair of classes. In a mul-
tiple classifier system, classifiers coming from different paradigms such
as support vector machines, rule induction algorithms or decision trees
are combined. In the literature, several works have addressed the usage
of classifier selection methods for these kinds of systems, where the best
classifier for each pair of classes is selected. In this work, we look at the
problem from a different perspective aiming at analyzing the behavior
of different families of fusion functions to combine the classifiers. In fact,
a multiple classifier system of OVO classifiers can be seen as a multi-
expert decision making problem. In this context, for the fusion functions
depending on weights or fuzzy measures, we propose to obtain these
parameters from data. Backed-up by a thorough experimental analysis
we show that the fusion function to be considered is a key factor in the
system. Moreover, those based on weights or fuzzy measures can allow
one to better model the aggregation problem.

Keywords: Aggregations · Fusion functions · Classification
One-vs-One · Multiple classifier system

1 Introduction

In Machine Learning, classification consists in learning a classifier from labeled
data capable of assigning the correct label to new patterns. Among classification
problems, two different scenarios can be considered depending on the number of
classes to be distinguished: binary (two-class) and multi-class problems. Multi-
class classification is usually more difficult because the establishment of the
decision boundaries become more complex. One possible solution to cope with
c© Springer International Publishing AG, part of Springer Nature 2018
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this difficulty is the usage of decomposition strategies [20], which divide the
original multi-class problem into easier to solve binary problems. Evidently, this
simplification in the learning phase come at a cost in the combination phase,
where the outputs of all the classifiers that were learned for each new sub-
problem needs to be combined.

One of the most commonly employed decomposition strategy is One-vs-One
(OVO). In OVO, as many new sub-problems as possible pairs of classes are cre-
ated and each one is addressed by an independent base classifier. New instances
are classified by being submitted to all the base classifiers, whose outputs are
combined. One important advantage of this technique is that it usually performs
better even when the underlying classifier is able to address the multi-class prob-
lem directly [12].

In this work, we focus on the OVO strategy, and more specifically on the
combination phase of Multiple Classifier Systems (MCSs) formed of OVO clas-
sifiers. A MCSs is a set formed of classifiers coming from different learning
paradigms [17]. In the case of OVO, the idea is that different classifiers may
suit better the classification of each pair of classes. For this reason, several pre-
vious works have considered the selection of the best classifier for each pair of
classes in the MCS [19,22]. In this work, our aim is to look at this problem
as a multi-expert decision making problem, where we have the different experts
(types of classifiers) and their preference matrices for the considered alternatives
(classes). In this context, we want to study the influence of the fusion function
considered to combine the matrices from the different experts into a single one
in the classification performance.

In the last decades, the study of aggregation functions has grown significantly,
since the necessity of fusing or aggregating quantitative information arises in
almost every application [3,4,6,16]. However, in the last years, new extensions
of aggregation functions have been proposed, which are able to model the inter-
action among data in a better way even though classical properties of aggregation
functions, such as monotonicity, are not satisfied [21,23]. From a broad point of
view, these extensions are called fusion functions [5].

One of the prominent examples of fusion functions that are able to model the
importance of the inputs or the interactions among them is the discrete Cho-
quet integral [8] and its extensions (Choquet-like preaggregation functions) [21],
which are based on fuzzy measures. In this work, we propose to construct these
measures directly from the knowledge that we can extract from the experts
(classifiers) using the training data.

In order to perform this study, we use twenty eight datasets from KEEL [2]
and we consider the usage of non-parametric statistical tests to analyze the
results obtained [14]. Since we are dealing with multiple classes datasets we will
not only consider accuracy measure to evaluate the results, but we will also
make use of other measures that give more focus to the correct classification of
all classes, such as the average accuracy and the geometric mean. We will develop
a hierarchical study, where we consider intra- and inter-family comparisons, to
analyze usage of different fusion functions.
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The structure of the paper is as follows. In Sect. 2, recall the different fusion
functions considered in this work. Section 3 contains an introduction to the
decomposition of multi-class problems, the OVO strategy and the MCSs formed
of OVO classifiers. In Sect. 4, we describe in detail the experimental framework
considered for this study, including how to set up the parameters of the parame-
terizable fusion functions. Section 5 contains the analysis of the results obtained.
Finally, in Sect. 6 we draw the conclusions.

2 Fusion Functions

In recent literature, aggregation of quantitative information has been faced by
the use of aggregation functions. An aggregation function is defined as a mapping
f : [0, 1]n → [0, 1] (the interval [0, 1] can be extended to any other interval) such
that f(0, . . . , 0) = 0, f(1, . . . , 1) = 1 satisfying the monotonicity property, i.e.,
if xi ≤ yi for all i ∈ {1, . . . , n}, then f(x1, . . . , xn) ≤ f(y1, . . . , yn) [3,4,6,16].
According to [3,4], the main classes of aggregation functions are the following:
averaging, conjunctive, disjunctive and mixed. In this work we mainly (but not
only) focus on averaging functions, those which are bounded by the minimum
and maximum of inputs.

However, in the last two years the monotonicity property of aggregation
functions has been dropped or generalized to new types of monotonicity (see
for example [5]). From these studies, new concepts such as preaggregation func-
tions [21] or internal fusion functions [23] have been defined. Since in this paper
we model data aggregation from a very broad point of view and we use sev-
eral non-monotone functions, we have used the more general definition of fusion
function (see [5]).

In order to classify the big number of fusion functions considered in this work,
we have established a classification based on the necessity of defining weights or
measures associated to them. Basically we have considered: unweighted fusion
functions, weighted fusion functions and measure-based fusion functions.

Unweighted Fusion Functions. In this subsection we consider classical aggre-
gation functions:

– The arithmetic mean AM(x1, . . . , xn) = 1
n (x1, . . . , xn);

– The median MED(x1, . . . , xn) =

{
1
2

(
x(k) + x(k+1)

)
if n = 2k is even,

x(k) if n = 2k − 1 is odd,
where x(k) stands for the k-th largest (smallest) element of x1, . . . , xn;

– The geometric mean GM(x1, . . . , xn) = (
∏n

i=1 xi)
1
n ;

– The harmonic mean HM(x1, . . . , xn) = n
(∑n

i=1
1
xi

)−1

.

Weighted Fusion Functions. In this subsection we consider fusion functions
whose behaviour is modeled by a weighting vector. This means that not every
input is equally important for the calculation of the fused value, a fact that
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clearly allows the incorporation of certain outside information to the fusion pro-
cess. We will consider a weighting vectors w = (w1, . . . , wn) satisfying wi ∈ [0, 1]
and

∑n
i=1 wi = 1 [3,4].

The weighted fusion functions considered, which in fact are weighted aggre-
gation functions, are:

– The weighted arithmetic mean WAM(x1, . . . , xn) =
∑n

i=1 wixi;
– The ordered weighted averaging OWA(x1, . . . , xn) =

∑n
i=1 wix(i), where (.)

is a permutation such that x(1) ≥ · · · ≥ x(n).

Measure-Based Fusion Functions. In this subsection we consider a set of
fusion functions that are based on fuzzy measures. Unlike the case of weighted
fusion functions, which allow one to model the importance of each individual
input, the use of fuzzy measures allows one to model more general interactions
among inputs. In this sense, the importance is given to collections (groups or
coalitions) of inputs. Obviously, the construction of the fuzzy measure is the key
point for this family of fusion functions.

Definition 1. Let N = {1, . . . , n}. A discrete fuzzy measure is a set function
m : 2N → [0, 1] which is monotonic, i.e., m(S) ≤ m(T ) whenever S ⊆ T and
satisfies m(∅) = 0 and m(N ) = 1.

We start mentioning the Choquet integral, which is a prominent example of
measure-based averaging operator. We start considering a permutation σ such
that xσ(1) ≤ · · · ≤ xσ(n) with the convention xσ(0) = 0:

– The discrete Choquet integral

Ch(x1, . . . , xn) =
n∑

i=1

(xσ(i) − xσ(i−1)) ∗ m({σ(i), . . . ,σ(n)})

As we have mentioned before, in [21] a new type of operator, called pre-
aggregation function, was given. One of the easiest ways to construct pre-
aggregation is by changing certain operations in the Choquet integral. We have
considered the following pre-aggregation functions:

– The Choquet-based operator based on minimum t-norm

ChM (x1, . . . , xn) =
n∑

i=1

min{xσ(i) − xσ(i−1),m({σ(i), . . . ,σ(n)})};

– The Choquet-based operator based on Lukasiewicz t-norm

ChL(x1, . . . , xn) =
n∑

i=1

max{0, xσ(i) − xσ(i−1) + m({σ(i), . . . ,σ(n)} − 1)}.
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3 One-vs-One Decomposition of Multi-class Problems
and Multiple Classifier Systems

In this section we introduce classification problems, and more specifically, the
One-vs-One (OVO) strategy to deal with multi-class classification problems and
multiple classifier systems aimed at improving classification performance by the
combination of several classifiers.

In Machine Learning a classification problem consists in learning a system
(classifier) capable of predicting the desired output (label) for each input pattern.
Formally, the objective is to find a mapping function A

i → C where a1, . . . , ai ∈
A are the i features that characterize each input example x1, . . . , xn and each
input example has associated a desired output yj ∈ C = {c1, . . . , cm}. The
classifier is expected to generalize well to examples from the problem that has
not been considered in training, that is, it should have a good generalization
ability.

A classification problem is said to be a multi-class problem when the number
of classes is greater than two (|C| > 2). These problems are considered to be more
difficult than binary classification problems since the classification boundaries
are usually more complex and there is a greater overlapping among classes. This
is why decomposition strategies [20] came up, to deal with multi-class problems
by dividing the original problem into easier to solve binary class classification
problems. Therefore, a binary classifier is learned for each new problem, known as
base learners, and the outputs of these classifiers are combined when classifying a
new unlabeled example. These strategies have proved to be not only useful when
working with classifiers that only support binary problems (such as Support
Vector Machines, SVMs [25]), but also when considering classifiers with inherent
multi-class support. In these cases, the final performance of can also be improved
if the problem is decomposed [12].

3.1 The One-vs-One Strategy

The OVO strategy is among the most commonly employed decomposition strate-
gies. In this strategy, an m-class problem is divided into as many problems as
possible pair of classes, generating m(m − 1)/2 sub-problems that are faced by
independent base classifiers. In each sub-problem, only the examples belonging to
a pair of classes are considered, while discarding the rest of them. Then, to clas-
sify a new example, it is submitted to all the classifiers whose outputs needs to
be combined to decide the final class label. In order to perform the combination,
all the outputs are usually stored in a score-matrix (Eq. 1) where each position
rij , rji ∈ [0, 1] corresponds to the confidence degree of the classifier distinguish-
ing classes {Ci, Cj}. Since most of the classifiers provide confidence estimates
based on probabilities, usually rji is computed as rji = 1 − rij . However, if this
is not the case, as it occurs with fuzzy rule-based classification systems [10], the
score-matrix should be normalized so that rij + rji = 1 [10].
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R =

⎛
⎜⎜⎜⎝

− r12 · · · r1m
r21 − · · · r2m
...

...
rm1 rm2 · · · −

⎞
⎟⎟⎟⎠ (1)

Finally, the outputs of the base classifiers are combined for each row (class)
and the predicted class label is assigned to the one achieving the greatest total
confidence. In the literature, several combination strategies have been developed
for this purpose. A thorough review was performed in [12] and several extended
combinations have been developed by considering the usage of classifier selec-
tion and weighting mechanism [11,13]. In this work, we consider the Weighted
Voting (WV) [18] strategy as it has shown to be a robust yet simple method. In
this method, each base classifier votes for both classes based on the confidences
provided for the pair of classes. Finally, the class having the largest value is given
as output.

Class = arg max
i=1,...,m

∑
1≤j �=i≤m

rij . (2)

3.2 Combining Several OVO in a Multiple Classifier Systems

The OVO strategy can be seen as a ensemble model [12]. Ensembles refer to the
combination of classifiers aiming at improving the results of single classifiers.
This term is usually considered to describe the combination of minor variants of
the same classifiers. Otherwise, multiple classifier systems (MCSs) is a broader
category also including those combinations considering the hybridization of dif-
ferent classification models [17].

Recently, several works have considered the hybridization of OVO ensembles
(where the same base classifier is used for each sub-problem, e.g., SVMs) with
MCSs. That is, to construct several OVO ensembles with different classifiers (for
example, one using SVMs, another using a rule induction method and the other
using Decision Trees) and to combine the outputs of all the OVO ensembles to
make the final decision.

In previous works, the authors have focused on dynamically or statically
selecting the best classifier for distinguishing each pair of classes [19,22]. How-
ever, in this work we aim to look at the problem from a different perspective
so as to test the usage of different fusion functions in the combination of the
different classifiers.

Once all the OVO classifiers from the MCS have been trained (assuming that
we have three different classifiers and a four class problem we would have 3·4·(4−
1)/2 classifiers), a new instance is classified by submitting it to all the classifiers.
As a result, instead of obtaining a single score-matrix, we would obtain as many
score-matrices as classifiers considered (three in our example). The problem is
how to combine these score-matrices into a single one in which we can apply
the WV strategy to classify the example. This is why we can understand the
problem as a multi-expert decision making problem. Our proposal in this work
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is to combine the different score-matrices by the usage of fusion function. Our aim
is to study how the usage of different fusion functions affects the performance
of the MCS. In order to do so, we will consider the different fusion functions
reviewed in the previous section and we will propose different mechanism to
assign the weights or create the fuzzy measures in the functions requiring these
parameters. More details on how these parameters are obtained are given in
Sect. 4.2.

4 Experimental Framework

4.1 Datasets, Performance Measures, Statistical Tests and
Algorithms

In order to carry out the experimental study, we use twenty-eight numerical
datasets selected from the KEEL dataset repository [2], whose main features are
introduced in Table 1.

Table 1. Summary of the features of the datasets used in the experimental study.

Dataset #Ex. #Atr. #Clas. Dataset #Ex. #Atr. #Clas.

autos 159 25 6 nursery 1296 8 5

balance 625 4 3 pageblocks 548 10 5

car 1728 6 4 penbased 1100 16 10

cleveland 297 13 5 satimage 643 36 7

contraceptive 1473 9 3 segment 2310 19 7

dermatology 358 34 6 shuttle 2175 9 7

ecoli 336 7 8 splice 319 60 3

flare 1066 11 6 tae 151 5 3

glass 214 9 7 thyroid 720 21 3

hayes-roth 132 4 3 vehicle 846 18 4

iris 150 4 3 vowel 990 13 11

led7digit 500 7 10 wine 178 13 3

lymphography 148 18 4 yeast 1484 8 10

newthyroid 215 5 3 zoo 101 16 7

The result for each method and dataset is obtained using a 5 fold cross-
validation scheme. Moreover, in order to properly analyze the results obtained,
we have applied non-parametric statistical tests [14]. More specifically, we use
the Wilcoxon test to compare a pair of methods, whereas the Friedman aligned
ranks test is considered to compare a group of methods in order to detect whether
statistical differences exist. In such a case, the Holm post-hoc test is performed
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to find the algorithms that reject the null hypothesis of equivalence against the
selected control method.

Given that we are dealing with multi-class problems, we have considered
three different performance measures to analyze the results obtained: Accuracy
rate (Acc), that is, the ratio of correctly classified examples; Average Accuracy
Rate (AvgAcc), which refers to the average of the ratio of correctly classified
examples per class; Geometric Mean (GM), the geometric mean of the ratio of
correctly classified examples per class. Hence, Acc gives us a global measure of
quality of the algorithm, whereas AvgAcc and GM are more focused on properly
measuring whether all the classes of the problem are being properly classified or
not (being the GM much more restrictive than AvgAcc).

Regarding the classification algorithms considered to form our MCS of OVO
classifiers, we have considered the following ones (which were also considered in
our previous works on the topic [11–13]): Support Vector Machine (SVM) [25],
C4.5 decision tree [24], k−Nearest Neighbors (kNN) [1], Repeated Incremental
Pruning to Produce Error Reduction (Ripper) [9], Positive Definite Fuzzy Clas-
sifier (PDFC) [7].

These classifiers were trained using the parameters shown in Table 2. These
values are common for all problems, and they were selected according to the
recommendation of the corresponding authors, which is also the default setting of
the parameters included in KEEL1 software [2] used to develop our experiments.
We treat nominal attributes in SVM and PDFC as scalars to fit the data into
the systems using a polynomial kernel.

Table 2. Parameter specification for the base learners employed in the
experimentation.

Algorithm Parameters

SVMPoly C=1.0, Tolerance parameter= 0.001, Epsilon=1.0E-12, Kernel type=
Polynomial, Polynomial degree= 1
Fit logistic models=True

SVMPuk C=100.0, Tolerance parameter= 0.001, Epsilon=1.0E-12, Kernel Type=
Puk, PukKernel ω =1.0, PukKernel σ =1.0
Fit logistic models=True

C4.5 Prune=True, Confidence level= 0.2, Minimum number of item-sets per
leaf= 2

3NN k = 3, Distance metric=HVDM

Ripper Size of growing subset= 66%, Repetitions of the optimization stage=2

PDFC C=100.0, Tolerance parameter= 0.001, Epsilon=1.0E-12, Kernel
type=Polynomial, Polynomial degree= 1, PDRF type=Gaussian

We should notice that score-matrices should store the confidences obtained
from the classifiers. Since not all the classifiers provide confidences straightfor-
wardly, we detail how they have been obtained hereafter.
1 http://www.keel.es.

http://www.keel.es
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– SVM – Probability estimates from the SVM.
– C4.5 – Accuracy of the leaf making the prediction (correctly classified train

examples divided by the total number of covered train instances).

– kNN – Distance-based confidence estimation. Confidence =
∑k

l=1
el
dl∑k

l=1
1
dl

where

dl is the distance between the input pattern and the lth neighbor and el = 1
if the neighbor l is from the class and 0 otherwise.

– Ripper – Accuracy of the rule used in the prediction (computed as in C4.5
considering rules instead of leafs).

– PDFC – The prediction of the classifier, that is, confidence equal to 1 is
given for the predicted class.

4.2 Estimation of the Parameters for the Fusion Functions

Hereafter, we present the way in which the parameters required for some of the
fusion functions are estimated.

Weight Calculation. For the weighted arithmetic mean we need to set the
weights for each input (classifier, e.g., SVM, 3NN, . . . ). We set each weight
as the normalized accuracy of each method in the training dataset, that is,
wi = Acci∑n

j=1 Accj
for all i ∈ {1, . . . , n}.

Moreover, we have used two different versions for weighted fusion functions:
a global and a local approach. In the global approach, we set one weight per
classifier. However, in the local approach, each classifier gets a weight for each
individual problem (accuracy over the pair of classes).

The calculation of the weights for OWA operators is done by means of increas-
ing fuzzy quantifiers (see [26]), which are given by wi = Q

(
i
n

) − Q
(
i−1
n

)
for all

i ∈ {1, . . . , n}. In this work we have considered 3 different fuzzy quantifiers
yielding three OWA operators : ’at least half’ (OWA alh) with a = 0, b = 0.5;
’as many as possible’ (OWA amap) with a = 0.5, b = 1; and ’most of them’
(OWA mot) with a = 0.3, b = 0.8.

Fuzzy Measure Values. For the measure-based fusion functions, we need to
build a fuzzy measure m : 2N → [0, 1] with N = {1, . . . , n}, being n the number
of classifiers considered. We will start by considering the uniform fuzzy measure
mU which is given by mU (A) = |A|

n for every A ⊆ N . It is clear that the Choquet
integral with respect to a uniform measure is nothing but the arithmetic mean.

However, in order to capture the interactions among classifiers by means of
the fuzzy measure, we will take the individual accuracy of each classifier as well
as the accuracy of each possible combination of classifiers. We will denote these
accuracies as AccA, for all A ⊆ N . Now, for each level of the fuzzy measure (all
the elements of the fuzzy measure with the same cardinality), we calculate the
arithmetic mean of accuracies in the corresponding level, namely MeanAcci for
every i ∈ {1, . . . , n}. Finally, the value of the fuzzy measure for each A ⊆ N will
be given by

m(A) = mU (A)(1 + AccA − MeanAcc|A|). (3)
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Taking this expression into account, the accuracies of classifiers that are better
than the average accuracy in the same level will be increased and those that are
worse will be decreased with respect to the uniform measure. In a similar way
as in the previous calculation of weights, we will consider a global and a local
approach for each measure-based fusion functions.

Notice that we cannot guarantee the monotonicity of m for every possible
value of Acc and MeanAcc. To correct it, and based on the monotonicity verifica-
tion given in [15], we use a top-down monotonicity correction: we start from the
top level of the measure (m(N ) and we evaluate the measure values of the level
above (m(A) where |A| = n − 1). If we find some A such that m(A) > m(N ),
then we set m(A) = m(N ). Once the n − 1-th level is verified (w.r.t. the n-
th level), we check the n − 2-th level w.r.t. the n − 1-th level. We repeat the
procedure until the whole measure satisfies the monotonicity criterion.

5 Experimental Study

On the one hand, Table 3 shows the accuracy (Acc), the average accuracy per
class (AvgAcc) and the geometric mean of each class accuracy (GM) obtained in
testing using the different fusion functions to combine the OVO score-matrices
in the MCS. The best result in each performance measure is underlined

Table 3. Average test results over all datasets obtained with the different fusion func-
tions for each performance measure

Family Fusion Acc AvgAcc GM

Unweighted AM 0.8544 0.7911 0.6240

MED 0.8580 0.7951 0.6332

GM 0.8285 0.7535 0.5588

HM 0.8252 0.7515 0.5610

Weighted WAM 0.8544 0.7916 0.6308

WAM local 0.8481 0.7893 0.6344

OWA alh 0.8573 0.7996 0.6448

OWA amap 0.8496 0.7815 0.6073

OWA mot 0.8554 0.7921 0.6254

Choquet Ch 0.8552 0.7940 0.6305

Ch local 0.8541 0.7924 0.6334

ChL 0.8487 0.7789 0.6087

ChL local 0.8502 0.7803 0.6088

ChM 0.8548 0.7939 0.6395

ChM local 0.8556 0.7964 0.6397

On the other hand, Fig. 1 summarizes the statistical study carried out for
each performance measure in order to analyze which is the best performer fusion
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AM 35,71 AM 35,77 AM 38,55
MED 30,73 MED 29,14 MED 31,7
GM 76,75 GM 79,55 GM 77,93
HM 82,8 HM 81,54 HM 77,82

WAM 68,82 WAM 68,04 WAM 66,05
WAM_local 73,09 39,38 WAM_local 75,79 41,63 WAM_local 69,09 45,66
OWA_alh 58,5 39,95 OWA_alh 54,3 36,48 OWA_alh 48,52 37,5
OWA_amap 87,95 48,18 OWA_amap 89,7 49,39 OWA_amap 102,02 44,34
OWA_mot 64,14 OWA_mot 64,68 OWA_mot 66,82

Ch 69,09 Ch 61,3 Ch 75,68
Ch_local 71,63 Ch_local 70,2 Ch_local 75,89
ChL 120,43 ChL 124,63 ChL 118,46
ChL_local 107,34 ChL_local 119,57 ChL_local 115,89
ChM 73,75 ChM 69,84 ChM 61,11
ChM_local 64,77 ChM_local 61,46 ChM_local 59,96

egarevAycaruccA  Accuracy Geometric MeanU
nw

eighted
W

eighted
Choquet

Fig. 1. Hierarchical statistical study comparing the fusion functions in each family
and the best performers of each family for each performance measure using Friedman
Aligned ranks test.

function in each case. In order to create this figure, for each performance mea-
sure, we have confronted the functions in each family following Friedman Aligned
ranks test. Then, the best performers of each family are compared in the final
stage that gives us the best fusion function. In each comparison, we show the
ranks obtained by each method (the lower the better) and we remark in bold-
face the ranks when the post-hoc test shows that there exist significant differ-
ences (with α = 0.1) in favor of the winning method.

Finally, we have completed our statistical analysis by comparing the arith-
metic mean (AM, which the most commonly considered function) with the win-
ner of each intra-family comparison. These comparisons are presented in Table 4,
where the p-values obtained for each comparison between AM and the corre-
sponding fusion function are presented. Statistically significant differences are
presented in bold-face.

Table 4. Wilcoxon’s tests comparing AM vs the best fusion function in each perfor-
mance measure.

Perf. measure Unweighted Weighted Choquet

Acc MED OWA alh ChM local

0.0152 0.0298 0.7610

AvgAcc MED OWA alh Ch

0.0194 0.0126 0.0994

GM MED OWA alh ChM local

0.0169 0.0036 0.0400
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Attending at these results, we can observe the following facts.

– Analyzing the results for each family, first, among unweighted functions
AM and MED are the best performing ones. Interestingly, MED is statis-
tically outperforming AM following the Wilcoxon test in all the three per-
formance measures. Looking at weighted functions it is interesting to note
that OWA alh is the best performing one, even though statistical differences
only exist with respect to OWA amap. This is possibly due to the fact that
the corresponding weighting function acts as an average of the three most
competitive classifiers. In this case, obtaining the weights from data (WAM
and its local version) has result in worse results than establishing a predefined
weights. Finally, regarding fuzzy measure-based functions, pre-aggregations
considering the minimum are constantly the best in almost all cases, showing
its robustness independently of the measure considered (although no statis-
tical differences are found).
One would expect better performance in the cases where the parameters have
been obtained from data, i.e., weighted and measure-based functions. Even
though no significant differences are found with respect to WAM and Cho-
quet, in the future our aim is to focus on this functions and try to better
model the parameters in order to make the more competitive. In fact, Cho-
quet can recover any OWA operator and hence, intuitively, one should be able
to obtain a fuzzy measure leading to at least the same behavior as any OWA
(and probably better).

– Finally, looking at Table 4 one can observe that the most commonly con-
sidered fusion function in ensembles and MCSs need not be the performing
one. AM is statistically outperformed by MED and OWA alh in all cases
and by Choquet in the cases of AvgAcc and GM. Hence, there is margin for
improvement by considering different fusion functions.

6 Conclusions

In this work, we have considered an MCSs formed of OVO classifiers and looked
at the combination phase as a multi-expert decision making problem. Conse-
quently, we have developed a thorough empirical study in order to analyze the
behavior of different families of fusion functions. We have also proposed differ-
ent ways to obtain the parameters of weighted and fuzzy measure-based fusion
functions from data. Even though one could expect better performance from
these kind of fusion functions, OWAs with specific weights are the ones with
the best results. Since OWAs are a particular case of some fuzzy measure-based
functions, this fact encourages us to further study different ways of building the
fuzzy measures in order to improve the quality of their results.
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Abstract. We discuss the origin of the notion of similarity, basic con-
cepts connected with it and some methods of representing this concep-
tion in mathematical setting. We present a framework of recognition that
is based on multi-aspects similarity. The framework is implemented in
form of a network of comparators, that processes similarity expressed in
terms of fuzzy sets. Our approach introduces a new standard to the field
of similarity computing and processing.
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1 Introduction

The notion of similarity was present in the scientific discourse at least as long
as there were the ideas of ancient philosophers. In Plato’s The Republic, simi-
larity was invoked to advocate arguments on how the State functions and what
is its nature. Aristotle put similarity as one of the pillars of his theory of how
human behavior is learned, and one of his laws stated that the experience or
recall of an object (a situation) will evoke a recall of something similar to that
object (situation) [2]. These views gave rise to a theory called associationism
which states that people perform complex psychological actions through the act
of association between similar mental states they experienced in the past. The
main proponents of this stance were members of the school of British Empiricism,
so philosophers like David Hume, John Locke or John Stuart Mill. According to
Hume, for one example, similarity, besides contiguity of time and space as well as
cause and effect, was one of the principles by which ideas are connected. Associa-
tionism also affected the first psychologists, like the pioneer of this field of study,
William James, who saw similarity at the root of mental associations. On the
other hand, there were people who regarded similarity as much of a troublesome
idea. Bertrand Russell held that if we accept it, we must also accept the existence
of at least one universal – a mind-independent characteristic with which we may
describe multiple things and, which he believed, does not exist. Quine went even
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further and called similarity logically repugnant as it cannot be explicated in
terms of more basic notions. Although the concept served to establish important
philosophical dependencies and inflamed disputes across the years, the formal
definition was given to it only at the beginning of the 20th century, thanks to
thinkers like Rudolf Carnap, Hans Wallach or Roger Shepard. We may divide
these definitions into two groups: mathematical and non-mathematical.

Non-mathematical definitions stemmed mainly from psychology. Wertheimer
in his classical article from 1923 formed the Factor of Similarity which gave
the notion a descriptive specification. His law assumed that objects which are
grouped together in the process of cognition are in fact similar. This has been
further enhanced by behaviorists like Pavlov who viewed similarity between two
stimuli as their relative distance on sensory dimensions. It was until the begin-
ning of the second half of the 20th century, however, that associationism began
to be slowly discarded and new ideas came into the scene. Wallach’s On Psy-
chological Similarity marked a new era in thinking about the titular concept.
In his work, the author juxtaposed older views on the topic with his perceived
similarity conception in which people decide which features to select and which
to ignore when judging resemblance of two stimuli. He also showed experiments
when such decisions were based on the context in which stimuli were presented,
and included external features, independent of the structure of a stimulus (like
a potential use) into similarity judgment.

Mathematical definitions for most of the time were based on geometrical
understanding of similarity. Carnap set all binary, reflexive and symmetric rela-
tions to be equivalent to the notion. This understanding was later adopted by
psychologists (see [3] for more references) and similarity was treated as a metric
defined in the set of objects being compared. The distance from one point to
another defined the level of their difference. Thus, it was possible to quantita-
tively state that objects a and b resemble each other more than objects c and d
or that objects e and f are approximately identical since their dissimilarity does
not exceed some threshold t.

Both of the aforementioned accounts, whether strictly mathematical or not,
if they drew on geometrical understanding, were later deemed as inappropriate.
It was mainly due to Nelson Goodman’s criticism who, as Quine, had very little
opinion on the concept of similarity and treated it as devoid of any explanatory
power. His main argument was that for any three objects it is always possible
to state that any two of them are more similar to each other than to the third
one. After Wallach, he used this observation to argue that there can be no
similarity metric that is context-independent, thus, voicing against models of
similarity of his time. This critique was later partially backed by the works
of Amos Tversky and most notably, his famous paper Features of Similarity
which introduced new formal view on similarity and provided psychological data
against geometrical stance [16]. Tversky showed how people’s judgments often
violate each of the metric’s axioms with symmetry being almost impossible to
keep as corresponding to our behavior. His model, which we shall discuss in
detail farther in the text, did not address all the philosophical remarks made by
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Goodman or Quine though – the context was still overlooked. Gentner tried to
account for the lack of that information and created a conception of relational
similarity which he expressed in terms of unary predicates. Nevertheless, in this
work we will be considering Tversky’s breakthrough formulation as not only is
it consistent with psychological evidence but is also very robust in terms of its
use in computer science.

The work is constructed as follows. In the second section we lay out basic
definitions of concepts that underlie the paper as a whole. Next section describes
the similarity concept as well as selected methods of expressing it. Section four
contains a detailed description of the recognition framework based on a similar-
ity fuzzy relation and presents its implementation in the form of a network of
comparators. The last section provides a summary and some comments about
the methodology of the framework.

2 Preliminaries

The basic element that was under the scope of interest of ancient philosophers,
just like it is now of modern researchers of artificial intelligence, is a compound
object. The structure of a compound object is formulated by utilizing the notion
of ontology which comes from philosophy, but now it is also frequently found in
the field of artificial intelligence (AI). The formal definition that we will use in
here was introduced in 2001 in [15]. It states that ontology is a system marked
as O = {C,R,Hc, rel, A, L}, which specifies the structure of concepts, relation-
ships between them as well as theory defined on a model. C is understood as the
set of all concepts of the model and a singular concept is equated with a group
of objects with common characteristics. Then, R is a set of named connections
between concepts [1], Hc – a collection of taxonomic relationships between con-
cepts, rel – defined, non-taxonomic relationships between concepts, A – a set of
axioms, and L – a lexicon defining the meaning of concepts (including relations).
L is a set of the form {Lc, Lr, F , G}, where Lc stands for the lexicon defini-
tions for concepts, Lr – the lexicon of definitions for the set of relationships, F
– references to concepts, G – references to relationships.

In the simplest sense, ontology is as a set of concepts connected with one
another through named relationships. If we group specific concepts into more
general entities, then we can make use of the resulting hierarchies in defin-
ing mereologic relations – that is descriptions of dependencies between parts
of objects. The literature described many other interesting applications of ontol-
ogy in computer science, most notably in pattern recognition, image analysis
or modeling situational awareness by AI systems. The main problem there, is
to understand the structure of an object and, on the basis of the results of
perception, discover the similarities. In the literature there are some convergent
approaches which treat about interactive granular computing [10]. In the context
of this work, ontology is used as a set of concepts describing objects, the struc-
ture of this set, and its relations. It is used for designating reducts of features
as well as describing features to which they are compared, and hence becomes a
necessary tool for recognition and identification processes.
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In general, objects can be divided into two groups: compound objects (Xc)
and simple objects (Xs). A simple object is any element of the real world that
has its representation capable of being expressed by the adopted ontology (O).
In addition, the following properties arise from their ontological representation:

1. Objects always belong to a certain class or a fixed number of classes in ontol-
ogy. A single object may belong to several classes.

2. An object has a property within a class. Features may vary by class.
3. An object may be in relation to other objects in the same ontology.

A compound object is composed of other objects defined by means of ontology
(connects them) and creates a new entity. A compound object has its specifi-
cation, which describes the structure, relations and connections between sub-
objects. Compound objects satisfy the following additional properties:

1. We can extract from them a minimum of two objects that can be independent
entities.

2. Component objects are interrelated with ontology through the formal defini-
tion of relationship.

3 Similarity Concept

In some sense, similarity can be seen as a relationship that comes from identity.
Identity is an intuitive equality of objects, with the intuition formalized as the
equality of attributes of entities that are compared. It is thus the supreme form
of similarity. Rules for determining the identity of objects have been already
proposed in the 17th century by Gottfried Wilhelm Leibniz who called them
‘identity of indiscernibles’. They are as follows:

∀x∀y[∀P (Px ↔ Py) → x = y] : x, y ∈ U (1)

and
∀x∀y[x �= y → ¬∀P (Px ↔ Py)] : x, y ∈ U, (2)

where x and y are objects and P is a property. Formula (1) means that for any
objects x and y from the universe U , if they have exactly the same values of all
properties, these objects are identical in the space in question. Similarly, formula
(2) means that for any object x and y, if x is not identical to y, then in the space
U there must exist at least one discriminatory characteristic for the two.

Intuitively, similarity is a certain kind of incomplete identity. Two similar
objects are those that are primarily comparable and for which a degree of simi-
larity can be obtained. The latter is feasible only if these objects have common
or distinguishing features that we understand as descriptive attributes attaining
different values. Thus, comparing similar objects’ attributes gives the possibility
of determining the degree of their similarity. It is commonly understood that
the statement a is similar to b means that one object resembles the other or is
almost the same. These statements are, of course, very imprecise, but it is cer-
tainly possible to map them using appropriate modelling techniques (e.g. fuzzy
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sets [4]). By following this intuition, one can determine when two objects fail
to fulfill the definition of identity, but if that happens, there is very little left
to be fulfilled. The first option then is to use so-called quantitative approach.
We are dealing with a set of attributes describing both objects, where most of
the attributes of these objects are equal, although there is at least one attribute
for which equality does not hold. These objects are almost certainly identical
in colloquial speech, but from the strict point of view they are only similar to
a certain degree. The second approach is not limited to examining attributes
that characterize identities and it focuses on the remaining attributes. These
attributes do not meet the condition of identity, but one can try to determine
the degree of similarity for them. This is called a qualitative approach. It may
involve a situation in which no identities are found on any attribute, and yet
these objects are judged similar to a certain degree.

The scale of similarity is most often the interval [0, 1], where 0 means a
total lack of similarity and 1 is interpreted as indiscernibility between given
attributes, and thus, according to the principle of Leibniz, as an absolute identity.
Similarity and the very comparison operation are indispensable elements of the
world around us, and in many cases, they are necessary to determine the state of
an object. In practice, it is weight, size, capacity, duration or other characteristic
of objects that is determined. Each of these elements requires knowledge of a
certain reference concept, by means of which one can specify a given object’s
parameter, e.g. a kilogram, a liter, a second, etc. In spite of the introduction of
reference values, the feature of the object can be expressed in a countable way.
At the same time, objects have common reference points for all.

One can distinguish several types of approaches to defining similarities, and
we shall discuss a selected few shortly.

3.1 Selected Methods of Expressing Similarities

In the literature, the problem of similarity is quite widespread, but it is usually
not the main research point, but merely a means to achieve other goals. In most
cases similarity is equated with the distance in a certain space of features. In
this case, the metric is considered in the form:

d : X × X → [0,+∞), (3)

which satisfies the following properties ∀x, y, z ∈ X:

1. d(x, y) = 0 ⇔ x = y
2. d(x, y) = d(y, x)
3. d(x, y) ≤ d(x, z) + d(z, y)

There are various metrics that suit the type of space and the problem that is
to be solved. This solution allows one to convert the problem of determining
similarity between objects to the problem of distance measurement in a coordi-
nate system determined by features. This is a relatively common approach, but
not always sufficient to solve complex problems. It should be noted that there
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are very strong constraints associated with the metric. In the case of a generally
understood similarity, the condition of symmetry is often not possible to be met,
not to mention the condition of transitivity. Therefore, there is a need for other
approaches as well. The common element of many solutions is the use of feature
vectors. We will try to stress out throughout this paper that the essence of the
problem lies in how these vectors are constructed and how they can adapt to
new situations.

The next step in evolution related to methods of implementing similarity
involves approaches based on ontological relationships between objects and con-
cepts [17]. In this context, individual ontological concepts are treated as features
that contribute to comparing objects. The set of these features constitutes an
input into the process of determining the minimum set of essential features. This
process comes down to the designation of a kind of reduction of features simi-
lar to information reducts encountered in data mining [11], i.e. a minimum set
of attributes that uniquely identify or classify a given object. There are many
reducts that consist of different features and selecting the best reduct is based
on domain knowledge about the problem, information about the implementa-
tion and many other factors. Ontology and reduct ensure the proper design of
a feature vector, however, they do not directly support the method of calculat-
ing similarity. Therefore, after the selection of features, we use other methods
described earlier, or come up with dedicated methods based on the comparison
of ontology. These methods are very complicated and depend on the construction
of a particular ontology.

Another approach that replaced distance thinking was the contrast model
created by Amos Tversky on the basis of study on how people perceive similarity
[16]. In this model, not only the common features, but also distinguishing features
of objects play an important role. Consequently, the model also examines aspects
of reducing similarity between objects and determines their impact on the value
of its degree. The common formula of the similarity function in the proposed
contrast model is:

sim(x, y) = θf(X ∩ Y ) − αf(X − Y ) − βf(Y − X) : θ, α, β ≥ 0, (4)

where X and Y are sets of features describing object x and y respectively, X ∩Y
determines common features for x and y, X −Y determines feature existing in x
and not existing in y, Y − X determines features not existing in x, and existing
in y. Function f is a scale factor, while θ, α and β are parameters of the model. It
is easy to see that for α = 0 and β = 0 the model is limited to common features
of objects. On the other hand for parameters θ = 0 and α = 1, β = 1 we get:

− sim(x, y) = f(X − Y ) + f(Y − X), (5)

which is a dissimilarity [7].
From the point of view of modeling similarity, it is important to be able to

deal with imprecision of the description and its effect on the result. Another
method of representing object similarities involves fuzzy sets [6], as the fuzzy
relation is an ideal tool for such purposes. It is defined on the Cartesian product
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of two crisp sets [4] which in this case include elements for which similarity
is determined. There are many similarity measures based on fuzzy sets in the
literature. The usual approach is based on the analysis of common features of
objects, i.e. those at the intersection of sets A ∩ B or complement, in the form:

sim(x, y) = 1 − μ(x, y), (6)

where μ(x, y) is the membership function of a relation designating the degree
of difference between two objects. The same approach can be used in building
similarity functions, which will be used for the purposes of calculation degrees
for individual features or distilling full feature vector. An important aspect of
this method is its ability to obtain the results in terms of fuzzy sets.

Slightly different methods can be used when comparing object’s structures
or their topological relationships. In cases like these, apart from attributes and
their values, constraints related to the location of the object in space or the
internal structure of the object are imposed. This kind of similarity can also
be expressed by means of methods described above, but only on a case-by-case
basis. This is why certain standardized methods that deal with such problems
have been sought, c.f. rough mereology or near sets [8,9].

The main idea behind rough mereology is to examine an extent to which an
object is a part of another object using a properly selected function of rough
inclusion. A typical example of the inclusion function, and at the same time an
instance of asymmetrical measure of similarity that is based on multiplicity of
common components, is the following formula [9]:

sim(X,Y ) = μ(X,Y ) =
card(X ∩ Y )

card(X)
, card(X) �= 0, (7)

where X is a set of sub-objects included in the object x, and Y is a set of
ingredients of object y. The rough inclusion function provides a method for
comparing parts of objects, their quantities, types or other relationships in the
ontological hierarchy. Therefore, it can be interpreted as a measure of similarity
that takes into account structural dependencies of objects.

In this paper, structural similarity is calculated on the basis of sum of similar-
ities between sub-components of a fixed structure object. The sub-components
are extracted by means of decomposition. We treat their similarity values as
additive, and multiply by respective weighting factors. Consequently, arising
similarity function is based on the knowledge of composition of a given object
and the significance of each component. To define the relationship between an
object and its parts, we use functions which state how to construct it from its
underlying constituents. Then, these functions and the modeled dependencies are
applied to similarities which in consequence allows to interpret the outcome as
a similarity value referred to the main object. An example of similarity function
of this kind can be as follows:

sim(x, y) =
w1sim(x1, y1) + w2sim(x2, y2) + ... + wnsim(xn, yn)

(w1 + w2 + ... + wn)
(8)
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where xi are sub-objects of x, and yi are sub-objects of y for i = 1, ..., n.
To summarize, there is a handful of methods of processing and defining sim-

ilarities. Many of them are related to specific cases of use, where use is subject
to special considerations. It is worth pointing out that the methods listed here
were chosen from among many other equally useful techniques (e.g. similarity
and processing graphs [12]). At the same time, an universal approach that is pro-
posed in this paper, combines the majority of methods described in this section
and makes the comparison of similarity results easier. In addition, it considers
different possible cases and establishes proper methodologies and facilitations
for them.

4 Recognition Framework

There are many ways to implement object recognition solutions. The method
considered in this paper is based on multi-similarity calculations, gathering many
aspects of similarity between pairs of objects and synthesizing them to get global
similarity snapshot. Objects belonging to multi-dimensional space are described
by similarity values between input and reference objects measured on a given
set of features. The result of a recognition is thus a similarity vector which
represents the closeness between input object and reference points in the domain
space. Further in the text, units responsible for single-feature calculations will
be called comparators, and networks allowing processing input objects through
the layers of multiple comparators will be called comparator networks.

The compound objects comparator (COC) is a construct denoted as comref

and can be expressed in the following form:

μref
com : X × 2ref → [0, 1]ref , (9)

where X ⊆ U is the set of input objects to be compared and ref is the set of
reference objects that we infer the similarity from. [0, 1]ref denotes the space of
vectors v of dimension |ref |, where each i-th coordinate v[i] ∈ [0, 1] corresponds
to an element yi ∈ ref , ref = {y1, ..., y|ref |}. We will further call ref a reference
set, while each Y ⊆ ref will be referred to as a reference subset. Additionally,
a(x) will be the function that provides a representation of object x ∈ X with
respect to an attribute a corresponding to some feature. This representation is
then used by the comparator while processing x. Similarly, each reference object
y ∈ Y is processed using its representation a(y) for a given attribute a. If we are
given an ordering on elements of the reference set ref , i.e, ref = {y1, . . . , y|ref |}
we can represent the function corresponding to the COC as:

μref
com(x, Y ) = Sh(F (v)). (10)

We shall now elaborate on subsequent components of this expression. Let’s start
with v which is the proximity vector defined as:

v [i] =

{
0 yi /∈ Y

sim(x, yi) yi ∈ Y
(11)
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Note that when Y is a proper subset of ref the positions in v corresponding
to yi /∈ Y are filled with zeros. Non-zero elements of v determine the degree of
similarity between the object x in question and each element of reference subset
Y . In general, the value of similarity sim(x, y) is calculated by the means of fuzzy
relation [4] but in reality it is a combination of three mechanisms expressed in
the following formula of similarity:

sim(x, yi) =

{
0 : ExcrefRulesi

(x) = 1 ∨ yi /∈ Y

th(μ(x, yi)) : otherwise
(12)

This formula also needs explication which is the following: Y is the reference
subset; th is a threshold function given as

th(z) =
{

0
z : z<p

z≥p
, p ∈ [0, 1]. (13)

with p corresponding to the lowest similarity acceptable by a single comparator
and set independently for each one of them; μ is the basic similarity function
defined by the means of traditional fuzzy relation between two objects x and yi;
i is the index of the coordinate of proximity vector for which the similarity is
derived; ExcrefRulesi

, i.e

ExcrefRulesi
(x) = max

|Rulesi|
j=1 {rj(x)}, x ∈ X (14)

is a function associated with exception rules in the form of:

rj : X → {0, 1}, (15)

where j is an index of a rule (its id number) in the set Rulesi.
The second element of COC, F , is a function responsible for filtering the

result before applying the Sh function. Typically, F is based on combination of
some standard, idempotent functions such as min, max, top, or simply identity.
It introduces competitiveness between reference objects which distinguishes this
mechanism from threshold function defined inside sim(x, y).

Finally, Sh, called a sharpening function is a mapping that satisfies three
basic conditions:

∀i ∈ {1, ..., |ref |} : (v[i] = 0) ⇒ (Sh(v)[i] = 0), (16)

which ensures keeping the zero values to prevent getting artificially high results;

∀i ∈ {1, ..., |ref |} : (v[i] = max
|ref |
j=1 (v[j])) ⇒ (Sh(v)[i] = v[i]), (17)

which ensures keeping the maximum value so that the best result retained its
original properties;

∀i, j ∈ {1, ..., |ref |} : (v[i] < v[j]) ⇒ (Sh(v)[i] < Sh(v)[j]), (18)

which ensures strong monotonicity with purpose to increase the difference
between the average and the best results.
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If we take a wider look at the COC we may notice that if all the notions
introduced above are composed, it can be expressed as:

μref
com(x, Y ) = Sh(F (〈sim(x, y1), . . . , sim(x, y|ref |)〉)) (19)

Network of Comparators (NoC) can play different roles depending on their
settings. They can serve as multi-stage classifiers whose purpose is to limit the
reference set of objects and identify the most probable candidate to be the final
result. The scenario of processing in such networks is to compute relatively simple
features at the first layers and to filter out the reference objects to only those
that are the most promising in the final perspective. Particular comparators can
be also specialized in recognition of different features based on the nature of sub-
objects. The idea is that the similarity of parts of objects can help in resolving the
similarity of the whole objects. From the mathematical perspective a comparator
network can be interpreted as a calculation of a function:

μrefout

net : X → [0, 1]|refout|, (20)

which takes the input object x ∈ X as an argument and refout is a reference set
for the network’s output layer. The target set of μrefout

net is the space of proximity
vectors. In this way we get the value of the network’s function:

μref
net(x) = 〈SIM(x, y1), ..., SIM(x, y|ref |)〉, (21)

where SIM(x, yi) is the value of global similarity established by the network
for input object x and reference object yi. Global similarity depends on partial
(local) similarities calculated by the elements of the network (unit comparators).
Through the application of aggregation (in a sense of consensus reaching [5]) and
translation procedures at subsequent layers of the network these local similarities
ultimately lead to the global one. Particular constituents of the network have
been described in detail in previous publications [14]. Figure 1 shows an example
of the NoC with all possible elements, interactions between them, and signal
granule arising around the input object x.

The models for COC and NoC are functions, and both of them return results
which are vectors. Fortunately, there is a simple method for converting these
proximity vectors into type I fuzzy sets [4] which allows using fuzzy sets machin-
ery in their further processing and interpretation. Note that individual vector
coordinates define similarity of a particular pair of objects (x, y), where x ∈ X
and y ∈ Y ⊆ ref . Since these values reflect the degree of memberships to the
fuzzy set, we actually deal with a fuzzy relation, which is also a fuzzy set. Con-
sequently, the result described in functional terms can be converted to a fuzzy
set notation in the following way:

R(x, y) = {((x, yi), v [i]) : i = 1, ..., |ref |}, (22)

where v [i] is the i’th coordinate of the proximity vector, which simultaneously
fulfills the condition of the fuzzy relation in the form:

μ : X × ref → [0, 1] (23)
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Fig. 1. General scheme of a comparator network in UML-like representation. Notation:
comji – comparators, Tj – translators. Symbols: oval – comparator, thick vertical line
– aggregator, rhombus – translator, encircled cross – projection module.

This method is also consistent with the definition of similarity function of the
COC and global similarity in the NoC. The form of formula (23) is equivalent
to Zadeh’s notation:

R =
v [1]

(x, y1)
+

v [2]
(x, y2)

+ ... +
v [|ref |]

(x, y|ref |)
(24)

5 Summary

We analyzed how similarity was perceived and understood over the centuries,
and made a brief review of the philosophical currents in search of this notion
and its use in formulating concepts. We gathered several approaches to represent
similarity and showed methods of processing it. Finally, we described the NoC
approach as one which introduces new standards into the field of computing
similarity and represents one of the main frameworks for building similarity
based recognition systems. This framework provides the ability to build large
and complex logical structures that use fuzzy sets as a communication language
and express similarity between objects. It is worth noting that even though the
method bases on established patterns, it is possible to perform dynamic search of
the object space and approximate the optimal solution adequately. By selecting
an appropriate defuzzification method, it is also possible to obtain results from
the outside of the reference set. Few practical applications have been described
in previous publications [13].

Further research should be focused on development of the NoC framework
in a defuzzification aspect. Particularly, it is valuable to consider an extension
of the catalog of network components with a new element responsible for the
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defuzzification of the NoC. This could significantly broaden the circle of tar-
geted uses of the method. The second field of future research should encompass
creating a framework for tuning aggregators and selecting the best one to use in
a particular case. Either way, there is still much space to optimize NoCs further.
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Abstract. In practice, we may obtain data which is set-valued due to the limi-
tation of acquisition means or the requirement of practical problems. In this paper,
we focus on how to reduce set-valued decision information systems under the
disjunctive semantics. First, a new relation to measure the degree of similarity
between two set-valued objects is defined, which overcomes the limitations of the
existing measure methods. Second, an attribute reduction algorithm for set-valued
decision information systems is proposed. At last, the experimental results
demonstrate that the proposed method can simplify set-valued decision infor-
mation systems and achieve higher classification accuracy than existing methods.

Keywords: Set-valued decision information system � Rough set
Attribute reduction � Uncertainty

1 Introduction

With the development of information technology, the means of data acquisition
becomes more and more diverse. Meanwhile, the cost of data storage is getting lower
and lower. These make it possible to acquire and store large amount of data, which
stimulate the urgent need for automatic data processing. In many real world problems,
data uncertainty is pervasive. In the past few years, it can be found that more attention
has been paid to uncertain data. Rough set theory [1] is a powerful tool for dealing with
uncertainty. Generally, the data processed by rough set theory is complete, accurate and
atomic. However, the data in many real problems may be incomplete, inaccurate or
non-atomic due to the limitation of acquisition means or the requirement of practical
problems. It has become an important issue how to process incomplete data,
interval-valued data and set-valued data.

A set-valued information system is that the value for an object on an attribute is not
an exact value, but a set containing all possible values. For the processing of set-valued
information system, a number of related researches have been studied. Orlowska and
Pawlak [3, 4] investigated set-valued information system considering non-deterministic
information and introduced the concept of a non-deterministic information system.
Sakai et al. [5, 6] set up the theoretical foundations and algorithmic background for
adapting rough set methods for the purposes of the analysis of non-deterministic
information systems. Yao [7, 8] proposed a number of set-based computation methods
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based on set-based information system. In addition, some new relations for set-valued
information system and their corresponding attribute reduction methods were proposed.
And then, Zhang et al. proposed the concept of set-valued information system and a
similarity relation [11, 12]. A tolerance relation was defined and the largest tolerance
class was used to divide the universe in that paper. Qian et al. [13] proposed a dominant
relation for set-valued information system and a corresponding attribute reduction
method. Dai and Tian [14] gave a fuzzy relation, that was used to measure the degree of
similarity between two set-valued objects. Wang [15] pointed out that the family of
reducts defined by Dai need not be a subset of the family of reducts defined within the
standard rough set model for set-valued information system. Bao and Yang [16] pro-
posed a d-dominance relation and a corresponding attribute reduction approach. Two
types of fuzzy rough approximations, and two corresponding relative positive domain
reductions were proposed by Wei et al. [17]. Moreover, some researchers transformed
incomplete information systems into set-valued information systems to achieve
reduction. Lipski [9, 10] discussed set-valued information systems from the view of
incomplete information systems under the case of missing values. And as a special case
of set values, incomplete information is probabilistically dealt with by some authors
[18, 19] in the case of missing values.

It is an important issue how to define a binary relation dealing with set-valued
information systems by rough set theory. Generally, there are two different semantic
interpretations of set-valued data, namely, the conjunctive semantics and the disjunc-
tive semantics [2]. Many different definitions have been proposed for these two
semantic interpretations. However, we find that they are not appropriate when dealing
with the set-valued data under the disjunctive semantics. For this reason, we developed
a new approach based on probability, which can characterize the relation between two
set-valued objects more reasonable under the disjunctive semantics. Then, an attribute
reduction algorithm based on keeping positive domain for set-valued decision infor-
mation systems was proposed and some experiments were conducted to prove the effect
of the algorithm.

The study is structured as follows: In Sect. 2, some basic concepts of set-valued
information system are reviewed. A new approach based on probability is proposed to
measure the degree of the similarity between two set-valued objects under the dis-
junctive semantics in Sect. 3. In Sect. 4, we put forward an attribute reduction algo-
rithm for set-valued decision information system. In Sect. 5, the experimental results
and relative analysis are presented. Section 6 concludes the paper.

2 Preliminaries

In this section, some basic concepts about set-valued information system will be
reviewed.

Definition 1 [12]. An information system is defined as U;A;V ;Fð Þ, where U is a
non-empty finite set of objects called the universe. A is a non-empty finite set of
attributes. V is a union of attribute domains V ¼ [ a2AVað Þ, Va is a set including all
possible values for a 2 A. F : U � A ! V is a function that assigns particular values
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from attribute domain to objects. For 8a 2 A, x 2 U, F a; xð Þ 2 Va, F a; xð Þ is the value
of a for x. If for any a and x, F a; xð Þ is a single value, then the information system is
called a single-valued information system. Otherwise, it is called a set-valued infor-
mation system.

There are two different semantic interpretations for set-valued information system
[2]. The one is conjunctive semantics, the other is disjunctive semantics. Under the
conjunctive semantics, a set value represents all the values of an object to an attribute,
and all the values in the set are true. Under the disjunctive semantics, a set value
represents all possible values of an object to an attribute, but there is only one true
value in the set. For example, for x 2 U and a 2 A, where a means the languages that x
can speak. Let a xð Þ ¼ {English, Chinese, French}. If a xð Þ is interpreted conjunctively,
it means x can speak English, Chinese, and French. If a xð Þ is interpreted disjunctively,
it means x can speak only one of English, Chinese, and French. We mainly study
set-valued information system under the disjunctive semantics in this paper. In the
following, a set-valued information system is under the disjunctive semantics if not
otherwise specified.

To characterize the relation between two objects in a set-valued information sys-
tem, many relations have been developed. Here we cite two important definitions of
them.

Definition 2 [10]. Let S ¼ U;A;V ;Fð Þ be a set-valued information system. For
8b 2 A, a tolerance relation can be defined as follows:

R\
b ¼ x; yð Þ 2 U j b xð Þ \ b yð Þ 6¼ £f g: ð1Þ

Then, for B�A, a tolerance relation can be defined as follows:

R\
B ¼ x; yð Þ 2 U j 8b 2 B; b xð Þ \ b yð Þ 6¼ £f g ¼ \

b2B
R\
b : ð2Þ

It is obvious that R\
B is reflexive and symmetric, but not necessarily transitive.

Dai et al. [14] defined a fuzzy relation, then the fuzzy relation is used to measure
the similarity between set-valued objects.

Definition 3. Let S ¼ U;A;V ;Fð Þ be a set-valued information system. For 8b 2 A, a
fuzzy relation fRb can be defined as follows:

leRb
x; yð Þ ¼ b xð Þ \ b yð Þj j

b xð Þ [ b yð Þj j : ð3Þ

Thus, for B�A, a fuzzy relation can be defined as follows:

leRB
x; yð Þ ¼ inf

b2B
leRb

x; yð Þ: ð4Þ

The above two definitions are not reasonable in some real problems. For example,
let a xð Þ ¼ {English, Chinese, French}, a yð Þ ¼ {German, Japanese, English,
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Chinese}, and a zð Þ ¼ {English, Chinese, French}. According to Definition 2, y; zð Þ 2
R\
a because c yð Þ \ c zð Þ ¼ {English, Chinese} is not empty. That is to say, y and z are

indiscernible with respect to the tolerance relation. In other words, y and z speak the
same language. However, they may speak different languages. For example, y can only
speak English and z can only speak French. By Definition 3, we know that
leRa

x; zð Þ ¼ 1. Thus, x and z are indiscernible with respect to the fuzzy relation. It

means that x and z speak the same language. However, they may speak different
language either. For example, x can only speak English and z can only speak French.

From this example, we find that two objects under the disjunctive semantics sat-
isfied the existing relations only denote that they have possibility to be similar.
Therefore, a new relation, which can describe the relation between two set-valued
objects under the disjunctive semantics, should be defined.

3 A New Similarity Relation Based on Probability

As the analysis in Sect. 2, the existing methods may get unreasonable results under the
disjunctive semantics. In order to solve this problem, a similarity relation based on
probability is proposed in this section.

Definition 4. Let S ¼ U;A;V ;Fð Þ be a set-valued information system. For 8b 2 A, the
similarity between x and y on b is defined as follows.

lRb
x; yð Þ ¼

b xð Þ \ b yð Þj j
b xð Þj j � b yð Þj j ; x 6¼ y
1; x ¼ y

�
: ð5Þ

From the view of probability, lRb
x; yð Þ is the possibility that x and y take the same

value. For B�A, the similarity relation RB between x and y on B can be defined as
follows:

lRB
x; yð Þ ¼

Y
b2B

lRb
x; yð Þ: ð6Þ

There are some important properties of the similarity relation defined above:

(1) RB is reflective.

Proof. Since lRb
x; xð Þ ¼ 1, then lRB

x; yð Þ ¼ 1, we know that RB is reflective.

(2) RB is symmetric.

Proof. Since lRb
y; xð Þ ¼ b yð Þ \ b xð Þj j

b yð Þj j � b xð Þj j ¼ b xð Þ \ b yð Þj j
b xð Þj j � b yð Þj j ¼ lRb

x; yð Þ, then lRB
y; xð Þ ¼ lRB

x; yð Þ,
we know that RB is symmetric.

For the same example used before, according to Definition 4, the similarity between
x and y is lRa

x; yð Þ ¼ 1
6, and the similarity between x and z is lRa

x; zð Þ ¼ 1
3. That is to

say, the probability of x and y speaking the same language is 1
6, and the probability of x
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and z speaking the same language is 1
3. Comparing to the existing definitions, the

definition we proposed gives a more reasonable and meaningful description between
two objects with set values.

Definition 5. Let S ¼ U;A;V ;Fð Þ be a set-valued information system, for B�A,
x 2 U, the d similarity class of x with respect to B can be defined as follows:

dB xð Þ ¼ y 2 UjlRB
x; yð Þ� d

� �
0� d� 1ð Þ; ð7Þ

where d is a threshold. We can use d to control the size of the information granules
generated by B. Specifically, the bigger the d, the smaller size of the information
granules generated by B.

Theorem 1. Let S ¼ U;A;V ;Fð Þ be a set-valued information system, B and B0 be two
subsets of A, d be a threshold. For x 2 U, if B � B0, then dB xð Þ� dB0 xð Þ.
Proof. Let B0 ¼ b1; b2; . . .; bnf g, B ¼ B0 [ bnþ 1; bnþ 2; . . .; bnþmf g. 8x 2 U, 8y 2 U.
Then:

lRB0 x; yð Þ ¼
Y

b2B0 lRb
x; yð Þ ¼ lRb1

x; yð Þ � lRb2
x; yð Þ � . . . � lRbn

x; yð Þ
lRB

x; yð Þ ¼
Y

b2B lRb
x; yð Þ

¼ lRb1
x; yð Þ � lRb2

x; yð Þ � . . . � lRbnþ 1
x; yð Þ � . . . � lRbnþm

x; yð Þ
¼ lRB0 x; yð Þ � lRbnþ 1

x; yð Þ � . . . � lRbnþm
x; yð Þ

Because 8b 2 A, lRb
x; yð Þ 2 0; 1½ 	, there must be lRB

x; yð Þ� lRB0 x; yð Þ.
Suppose 8x 2 dB xð Þ, there exist lRB

x; yð Þ � d, then d � lRB
x; yð Þ � lRB0 x; yð Þ, that

is to say, x 2 dB0 xð Þ. Therefore, dB xð Þ� dB0 xð Þ.
Theorem 1 shows that the number of the elements in the similarity class will be

changed with the variation of condition attribute set. The smaller the condition attribute
set is, the more elements will be in the similarity class.

Theorem 2. Let S ¼ U;A;V ;Fð Þ be a set-valued information system, B be a subset of
A, d1 and d2 be two thresholds. For x 2 U, if d1 � d2, then d1B xð Þ � d2B xð Þ.
Proof. Suppose 8x 2 d2B xð Þ, that is to say, lRB

x; yð Þ� d2. Because d1 � d2, then there
must be lRB

x; yð Þ� d1, it can be inferred that x 2 d1B xð Þ. Therefore, d1B xð Þ � d2B xð Þ.
Theorem 2 indicates that we can control the elements in the similarity class by the

threshold. The smaller the threshold is, the more elements will be in the similarity class.

Definition 6. Let S ¼ U;A;V ;Fð Þ be a set-valued information system, B be a subset of
A. Given an arbitrary set X�U, the d-upper approximation Bd Xð Þ and the d-lower
approximation Bd Xð Þ of X with respect to B are:

Bd Xð Þ ¼ x 2 U j dB xð Þ \X 6¼ £f g; ð8Þ
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Bd Xð Þ ¼ x 2 U j dB xð Þ�Xf g ð9Þ

where Bd Xð Þ contains all the objects that can be classified into X definitely, and
Bd Xð Þ contains all the objects that can be classified into X approximately.

Theorem 3. Let S ¼ U;A;V ;Fð Þ be a set-valued information system, B and B0 be two
subsets of A, d be a threshold. For X �U, if B � B0, then Bd Xð Þ�B0

d Xð Þ, and
Bd Xð Þ � B0

d Xð Þ.
Proof. The proof comes directly from Theorem 1, and hence it is omitted here.

Theorem 3 shows that the number of the elements in the upper and lower
approximation sets will be changed with the variation of the condition attribute set. The
smaller the condition attribute set is, the more elements will be in the d-upper
approximation set and less in the d-lower approximation set.

Theorem 4. Let S ¼ U;A;V ;Fð Þ be a set-valued information system, B be a subset of
A, d1 and d2 be two thresholds. For X�U, if d1 � d2, then Bd1 Xð Þ � Bd2 Xð Þ, and
Bd1 Xð Þ�Bd2 Xð Þ.
Proof. The proof comes directly from Theorem 2, and hence it is omitted here.

Theorem 4 indicates that we can control the elements in the upper and lower
approximation sets by changing the threshold. The smaller the threshold is, the more
elements will be in the d-upper approximation set and less in the d-lower approxi-
mation set.

4 Attribute Reduction of Set-Valued Decision Information
System

Generally, most of decision information systems have some redundant attributes. These
redundant attributes, on the one hand, waste storage space and reduce the efficiency of
data processing. On the other hand, they may be our interference to make correct and
concise decisions. Next, we will discuss how to reduce a set-valued decision infor-
mation system.

Definition 7. Let S ¼ U;C [D;V ;Fð Þ be a set-valued decision information system,
where U is a non-empty finite set of objects called the universe. C is a set of condition
attribute, D is a decision attribute, F is a function that assigns particular values from
attribute domain to objects. U=D ¼ d1; d2; . . .; dmf g is a division of U. For B�C, the
positive domain of D with respect to B is defined as:

POSBðDÞ ¼
[m
i¼1

BdðdiÞ; ð10Þ

and the negative domain of D with respect to B is:
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NEGB Dð Þ ¼ U 
 POSB Dð Þ; ð11Þ

where POSB Dð Þ is the set of objects in U that can be classified into D definitely.
NEGB Dð Þ is the set of objects in U that can not be classified into D definitely.

Theorem 5. Let S ¼ U;C [D;V ;Fð Þ be a set-valued decision information system, B
and B0 be two subsets of C. If B0 �B, then POSB0 Dð Þ�POSB Dð Þ.
Proof. If x 2 POSB0 Dð Þ, there exist di 2 U=D such that dB0 xð Þ� di. According to
Theorem 1, we have dB xð Þ� dB0 xð Þ. So, dB xð Þ� di, that is x 2 POSB Dð Þ. Thus,
POSB0 Dð Þ�POSB Dð Þ.

Theorem 5 shows that the positive domain of D with respect to an attribute subset,
is also a subset of the positive domain of D with respect to all the attributes. That
means, if some attributes are deleted from a set-valued decision information system, the
positive domain may decrease or remain unchanged. If the positive domain remains
unchanged after an attribute is deleted, it means this attribute is redundant for keeping
the positive domain. In other words, removing redundant attributes does not affect the
correct classification ability of the system.

Definition 8. Let S ¼ U;C [D;V ;Fð Þ be a set-valued decision information system.
For 8a 2 C, a is reducible in C with respect to D if POSC
 af g Dð Þ ¼ POSC Dð Þ.
Otherwise, a is irreducible in C with respect to D.

Definition 9. Let S ¼ U;C [D;V ;Fð Þ be a set-valued decision information system,
and B be a subset of C. B is a reduction of C with respect to D if:

(1) POSB Dð Þ ¼ POSC Dð Þ, and
(2) 8a 2 B ; POSB
 af g Dð Þ 6¼ POSB Dð Þ:

According to Definitions 8 and 9, it is obvious that B, the reduction of C, has the
same classification ability as C, and deleting any attributes from B will decrease the
correct classification ability of the system. To obtain a reduction of a set-valued
decision information system, we can develop the following algorithm.

Algorithm 1: Attribute Reduction of set-valued decision 
information system
Require: A set-valued decision information system S
Ensure: A reduction B
1: Let =B C
2: for each condition attribute a C∈ do:
3: if { } ( ) ( )= CB aPOS D POS D− then:
4: Eliminate a from B
5: end if
6: end for

For a given set-valued decision information system, Algorithm 1 check each
attribute by the conditions stated in Definition 9. If the conditions are satisfied, then the
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attribute will be deleted. Otherwise it will be retained. Finally, we can get a reduction of
the set-valued decision information system.

The following example illustrates how to form a reduction using Algorithm 1.

Example 1. For the set-valued decision information system S shown in Table 1, we
can compute the reduction of S as follow.

Let, d ¼ 1=16, we have:

dC x1ð Þ ¼ x1f g ; dC x2ð Þ ¼ x2; x8f g
dC x3ð Þ ¼ x3; x4; x8f g ; dC x4ð Þ ¼ x3; x4f g
dC x5ð Þ ¼ x5; x6f g ; dC x6ð Þ ¼ x5; x6f g
dC x7ð Þ ¼ x7f g ; dC x8ð Þ ¼ x2; x3; x8f g
U=D ¼ x1; x7f g; x3; x4f g; x2; x5; x6; x8f gf g
POSC Dð Þ ¼ x1; x2; x3; x4; x5; x6; x7; x8f g

After a1 is deleted, we have:

dC
a1 x1ð Þ ¼ x1f g ; dC
a1 x2ð Þ ¼ x2; x3; x8f g
dC
a1 x3ð Þ ¼ x2; x3; x4; x8f g ; dC
a1 x4ð Þ ¼ x3; x4; x7f g
dC
a1 x5ð Þ ¼ x5; x6f g ; dC
a1 x6ð Þ ¼ x5; x6f g
dC
a1 x7ð Þ ¼ x4; x7f g; dC
a1 x8ð Þ ¼ x2; x3; x8f ga3
POSC
a1 Dð Þ ¼ x1; x5; x6f g

It can be found that the positive domain has changed after a1 is deleted. So, a1 is
irreducible. Likewise, a2, a3, a4 and a5 are all irreducible. Then, the reduction is
a1; a2; a3; a4; a5f g. Let, it can be found that a1; and a5 are irreducible, but and a4 are

reducible. Then, the reduction is a1; a2; a5f g. According to the above analysis, we can
get different reducts by changing the value of d.

Table 1. A set-valued decision information system

Objects a1 a2 a3 a4 a5 d

x1 {2} {1,2} {1} {2,3} {1} 1
x2 {1,2} {3} {1,2} {2} {1,2} 3
x3 {1} {2,3} {2} {1,2} {1,2} 2
x4 {1} {2} {2} {2} {1} 2
x5 {3} {2} {1,2} {1} {3} 3
x6 {1,3} {2} {1,2} {1,2} {2,3} 3
x7 {2} {1,2,3} {1,2} {2} {1,3} 1
x8 {1} {3} {2} {2} {2} 3
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5 Experimental Results

The experiments in this section are to demonstrate the effectiveness of the method
proposed in this paper. There are five groups of data sets used in the experiments and
the information of all datasets is shown in Table 2.

In the experiments, we first reduce the five data sets using the tolerance relation, the
fuzzy relation and the similarity relation proposed in this paper respectively, then J48
and SMO were used to make comparisons on classification accuracy with the reduction
results. The reduction results gotten by different relations are shown in Table 3, and the
classification accuracy comparisons are shown as Figs. 1 and 2:

Table 2. Data description

Source of datasets Datasets Number of attributes Number of samples

weka vote 17 435
weka breast-cancer 10 286
UCI annealing 33 798
UCI audiology 70 200
UCI zoo 17 17

Table 3. Attribute numbers after reduction

Dataset Tolerance relation Fuzzy relation Similarity relation

vote 15 15 16
breast-cancer 9 9 9
annealing 9 10 14
audiology 21 22 63
zoo 13 13 14
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Fig. 1. Comparison of classification accuracy by J48
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It is known that only one or two attributes were removed by attribute reduction in
vote and breast-cancer from Table 2, and the classification accuracy gotten by the
proposed method and the existing methods has no obvious difference on these two
datasets. In other three datasets, the results on attribute reduction are significant. By
comparison, the method proposed in this paper retains more attributes than the existing
methods. On the other hand, the classification accuracy gotten by the proposed method
is almost the same as the classification accuracy of the original data, and is obviously
higher than the classification accuracy of the other methods. According to the exper-
imental results, we can draw the conclusion that the method proposed in this paper
maintains more attributes than the existing methods, but it ensures that the classification
accuracy of the system does not change significantly. Although the existing methods
remove more attributes, the classification accuracy of the system is also greatly
decreased. That means the existing methods remove some useful attributes, and it is
unacceptable in some practical problems.

6 Conclusions

A lot of different methods were proposed to deal with set-valued information system.
However, they are not appropriate when dealing with the set-valued data under the
disjunctive semantics. To address this problem, a similarity relation based on proba-
bility was defined to describe the relation between two set-valued objects. Then, a
corresponding attribute reduction algorithm based on keeping positive domain was
proposed. In the end, a group of experiments were conducted to demonstrate the
effectiveness of the proposed methods. The experimental results indicate that the
existing methods can get a smaller reduction, but they may remove some useful
attributes, thus reduce the classification accuracy of the system significantly. The
proposed method retains more attributes, but all these attributes are useful, and it can
always get the classification accuracy close to the original data. Because the threshold
has an important influence on the classification accuracy when we used the proposed
methods, it will be our future work how to choose an appropriate threshold.
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Fig. 2. Comparison of classification accuracy by SMO
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Abstract. We present an extension to the methods and algorithms
for approximation of similarity known as Networks of Comparators. By
interpreting the output of the network in terms of discrete fuzzy set we
make it possible to employ various defuzzyfication techniques for the pur-
pose of establishing a unique value of the output of comparator network.
We illustrate the advantages of this approach using two examples.

Keywords: Comparators · Similarity · Approximation
Defuzzyfication · Decision rules

1 Introduction

There are many ways to implement object recognition solutions. The method
considered in this paper is based on multi-similarity calculations, gathering
many aspects of the similarity between pairs of objects. The objects belong
to multi-dimensional space and are described by the similarity values between
input objects and reference objects, measured on the given set of features. From
this perspective it is a kind of approximation of an input object by the objects
belonging to the reference set. The result of this approximation is in a form
of proximity vector expressed by similarity, which shows the closeness between
input object and reference points in the domain space. The units responsible for
single-feature calculations are called comparators. The network-like structure
allowing to process input objects through the layers of multiple comparators
will be called Network of Comparators (NoC) or Comparator Network.

Comparator networks can play different roles depending on their types. They
can serve as multi-stage classifiers whose purpose is to limit the reference set of
objects and identify the most probable candidate to be a final result. Another
type of NoCs specializes in recognition of different features based on the nature of
sub-objects. The idea is that the similarity of parts of objects can help resolving
the similarity of the whole objects.
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In this paper we move a step further with making the output of a comparator
network interpretable. Insofar the proximity vector was interpreted case by case
depending on the problem. We want to make the procedure of using NoC’s
output more regulated by introducing a special overlay for Defuzzyfication of
its results. First of all, we make an observation that the collection (vector) of
similarity values returned by the network can be converted into of a discrete
fuzzy set. By applying Defuzzyfication to this set we may construct the final,
single outcome.

The default strategy used this far in NoC-based computations comprises
of taking the element with the highest similarity value as final answer can be
viewed as an application of the Maximum defuzzyfication rule. There is nothing,
however, that forbids us from applying another defuzzyfication principle at this
stage. In some cases it may be desirable for this outcome to not just be selected
among the existing elements of reference set, but constructed (combined) as a
new object on the basis of existing ones that are relevant. With more sophisti-
cated defuzzyfication this is doable.

As an important example of aggregation task for a network of comparators we
discuss the case where the final reference set consists of prototype decision rules.
The overall goal of the network is to provide a decision value that is best suited
for the case under consideration and reflects the structure of similarity provided
by the network. Decision rules are traditionally regarded as a convenient and
capable decision support model. There exist several established approaches to
applying decision rules learned from training data to classification of newly pro-
vided, previously unseen objects. Various voting and conflict resolution schemes
make it possible to improve both applicability and effectiveness of decision rule
collections.

With a network of comparators that output a vector of similarity with respect
to a set of decision rules we are capable to go even further. Since the network
provides us with the vector of similarities between the investigated object and the
rules we may treat this as a framework for constructing a rule-based classification
(decision-making) ensemble. Each particular rule that has a non-zero similarity
to investigated object is a component of this ensemble. Such rule can be viewed as
a localized, potentially weak classifier. By making use of similarity values that
comparator network provided us with we can now generate the final answer.
Thanks to the fact that the process of comparator network construction can be
parameterized and tweaked it is possible to factor-in the requirements for the
properties of output similarity vector.

The article begins with explanation of the concept and operation of NoC in
Sect. 2 followed by explanation of the interpretation of NoC output by means of
defuzzyfication in Sect. 3. We follow up with illustrative case study of rule-based
classification with use of comparators in Sect. 4. Section 5 concludes the paper
and provides some ideas about future research in this area.
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2 Networks of Comparators

Networks of Comparators (NoC) were previously described in [7,11]. Generally, it
is an approach to reasoning about compound objects based on their multi-aspect
similarity. In some sense it models analogy between objects and their relation. It
is well suited for dealing with situations that involve information granularity (see
[14]). A major advantage of the NoC approach is that the network architecture
and settings can be discovered (learned) from data as described in [9,10]. The
existing implementations of comparator networks have proven their worth is
several real-life applications (see [7,8]).

NoCs may be of different kind depending on their architecture and intended
use. They can serve as multi-stage classifiers whose purpose is to limit the refer-
ence set of objects and identify the most probable candidate to be a final result.
The scenario of processing in such networks is to compute relatively simple fea-
tures at the first layers and to filter out the reference objects to only those that
are the most promising in the final perspective. This kind of network is called
homogeneous and it was described in detail in [7].

Second type of network is called heterogeneous and it specializes in recog-
nition of different features based on the nature of sub-objects. The idea is that
the similarity of parts of objects can help in resolving the similarity of the whole
objects. It is connected with special structures called composition rules which
are responsible for translating similarity of parts into similarity of whole objects.
Sometimes the knowledge about parts only is not enough for strict description
of a bigger object, but it brings us closer to the solution in the form of an
approximation.

The operation of a NoC can be interpreted as a calculation of a function:

µrefout

net : X → [0, 1]|refout|, (1)

which takes the input object x ∈ X as an argument and refout is a reference set
for the network’s output layer. The target set (codomain) of µrefout

net is the space
of proximity vectors. As in the previous situation, the proximity vector from the
target space will be denoted by v . Such a vector encapsulates information about
similarities between a given input object x and objects from the reference set
ref . Similarly to the case of a single comparator, by ordering the reference set,
i.e. taking ref = {y1, . . . , y|ref |}, we get the value network’s function of:

µref
net(x) = 〈SIM(x, y1), . . . , SIM(x, y|ref |)〉, (2)

where SIM(x, yi) is the value of global similarity established by the network for
an input object x and a reference object yi. Global similarity depends on partial
(local) similarities calculated by the elements of the network: layers, compara-
tors, local aggregators, transaltors, projection modules and global aggregators.

Each NoC is composed of three types of layers: input, intermediate (hid-
den/internal) and output. A given network may have several internal layers.
Layer consists of comparators that are grouped together by the common pur-
pose of processing a particular piece of information (attributes) about the object
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in question. Each layer contains a set of comparators working in parallel and
a specific translating/aggregating mechanism. The translating and aggregating
mechanisms are necessary to facilitate the flow of information (similarity vec-
tors) between layers. As sets of comparators in a particular layer correspond
to a specific combination of attributes, the output of the previous layer has to
be aggregated and translated to fit the requirements. This is done by elements
called translators and aggregators, respectively. The translator converts com-
parator outputs to information about reference objects that would be useful for
the next layer. The role of the aggregator is to choose the most likely outputs
of the translator, in case there was any non-uniqueness in assigning information
about input objects to comparators. The operation of a layer in the NoC can be
represented as a mapping:

µref
layer : X → [0, 1]refl , (3)

where x ∈ X is an input object and refl is the reference set for the layer.
Within a given layer only the local reference sets associated with compara-

tors in that layer are used to establish (local) similarities. However, through
aggregation and translation these local similarities become the material for syn-
thesis of the output similarity and reference set for the layer. This synthesis is
based on a translation matrix, as described in [12]. Function (3) is created as a
superposition of comparator’s function

µref
com : X × 2ref → [0, 1]ref , (4)

with local (layer) aggregation function and translation. Local translation oper-
ation is responsible for filtering the locally aggregated results.

The input and internal (hidden) layers in the comparator network contain
comparators with function (4) together with translators and local aggregators.
Local aggregators are a mandatory part of the network responsible for the syn-
thesis of the results obtained by comparators. Aggregators are functions that
operate on partial results of comparators. In the simplest case the network only
needs a single global aggregator in the output layer. However, in the other network
architectures it is included in other layers as well, in form of a local aggregator.
The local aggregator processes partial results of the network at the level of a
given layer. The aggregator’s operation depends on the type of reference objects
and the output of comparators. It can be represented as:

frefl
agg : [0, 1]ref1 × . . . × [0, 1]refk → [0, 1]refl , (5)

where k is the number of comparators in a given layer l, i.e., the number of
inputs in the aggregating unit (local aggregator). refl is the output (resulting)
reference set for layer l composed by means of the composition rules from the
reference sets refi (i = 1, . . . , k) used by comparators in layer l.

The translator is a network component associated with the adaptation of
results of one layer to the context of another layer (the one to be fed with).
In other words, this element expresses the results of the previous layer (their
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reference objects) in reference objects of the current one. It uses reference objects
of the next layer, taking into account the relationships between the objects of
both layers. The translator is defined by means of the translation matrix:

Mrefk
refl

= [mij ], (6)

where i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} for m and n denoting cardinality of refk
and refl, respectively. The matrix Mrefk

refl
defines the mapping of objects in the

set refk onto objects in the set refl. In practice refk is just a union of reference
sets for all comparators in a given layer and refl is the target reference set.
Values in the matrix are within [0, 1].

The Projection Module appears in selected layers whenever there is a need for
selecting a subset of coordinates (project the vector onto subspace) in proximity
vector that will be further used in calculations. The selection of a particular
coordinate may be based on its value (above/below threshold) and/or on the
limitations regarding the number of coordinates that can be preserved. For the
i-th coordinate in the proximity vector the projection can be the following:

µproj(v[i]) =

{
v [i] projection(v [i]) = 1
0 projection(v [i]) = 0

(7)

where i ∈ {1, . . . , |ref |} and projection(a) for a ∈ [0, 1] is a function of the form:

projection : [0, 1] → {0, 1}, (8)

The function projection is the actual selecting mechanism. It decides whether
a given coordinate is set at 0 or not. This function can be defined as a threshold,
maximum, ranking function, etc.

The global aggregator is a compulsory element of the output layer. Unlike
local aggregators, which process results within a single layer, the global one
may process values resulting from all layers at the same time. In the simplified,
homogeneous case, when all layers use exactly the same reference set, the global
aggregator may be expressed by:

µrefout
agg :

(
[0, 1]ref

)m → [0, 1]refout , (9)

where m is the number of all comparators in the networks, i.e. the number of
inputs to the global aggregator.

In the more complicated, heterogeneous case, the sets in subsequent layers
and comparators may differ. In this case the aggregator constructs the resulting
(global) reference set refout in such a way that every element y ∈ refout is
decomposed into y1 in reference set ref1, y2 in reference set ref2 and so on,
up to ym in reference set refm. For a given input object x ∈ X the value of
similarity between x and each element of in ref1, . . . , refm is known, as this is
the output of the corresponding comparator. To obtain the aggregated result we
use:

µrefout
agg : [0, 1]|ref1| × . . . × [0, 1]|refm| → [0, 1]refout (10)



472 �L. Sosnowski and M. Szczuka

Note, that formula (10) is similar to the one for local aggregator (5). The essen-
tial difference is in the fact that the local aggregator is limited to a subset of
comparators contained in a given layer, while the global one looks at all com-
parators in the network.

With all the definitions of units the comparator network can be expressed as
a composition of mappings in subsequent layers:

µrefout

net (x) = µrefout

layer−out(µ
refk−1
layer−int . . . (µ

ref1
layer−in(x)) . . .), (11)

where refi stands for the reference set corresponding to layer i and refout is the
reference set for the network as a whole.

To sum up, the result of the operation of NoC is an intentionally sparse
vector of similarity values with respect to the output reference set. In the next
section we advocate how this vector can be converted to a final, single answer.

3 Comparator Network Interpretation via Defuzzyfication

Defuzzyfication process in fuzzy sets entails converting a fuzzy grade into a crisp
output with some kind of (possibly convoluted) mapping. In general, it can be
denoted as f(A) : A → Z, where A is a fuzzy set and Z is a support of set
A (elements with non-zero membership value). What is important is that the
crisp result z ∈ Z belongs to the support of A, but does not have to be among
elements for which we know membership values.

In both theoretical and practical considerations the mapping f may be very
varied and application-specific (see [3,15,16]). Below we list four most typical
that are of use in our approach:

1. Center of Gravity (CoG) method, also frequently called Center of Area or
Centroid method that can be expressed as z∗ =

∫
Z
µA(z)zdz∫

Z
µA(z)dz

for Type II fuzzy

sets or z∗ =
∑N

k=1 µA(zk)zkdz∑N
k=1 µA(zk)dz

for standard (Type I) fuzzy sets. This is a very
popular method although there are some computational problems for more
complex membership functions µA(z).

2. Max-membership takes all elements in output fuzzy set that have the highest
membership value. It can be denoted as z∗ = arg maxZ µA(z). This method
was previously the most commonly used in the NoCs. This method can return
more than one result and hence it is often extended to Smallest Max, Largest
Max or Mean of Maxima in order to narrow it down. It is noteworthy that
Mean of Maxima has a possibility to choose the result from outside of the set
of considered elements.

3. Center of Sums is a modification of the first one (CoG). It considers the fuzzy
set (membership) to be a composition of several fuzzy sets (memberships).
It then defuzzyfies each component using CoG and combines them into final
result taking an average weighted and normalized using the area of component
sets.
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4. Weighted Average method is quite easy to implement and use but requires the
membership function to be symmetric on output set. If symmetry is assured
it can be expressed as z∗ =

∑
Z µA(z)z∑
Z µA(z) .

The model of NoC present in previous section provides its outputs by means
of functions, vectors, etc. The final result of processing NoC is a sparse vector, as
shown in formula (2), called proximity vector. In order to apply defuzzyfication
techniques we need first to unambiguously convert the result to a fuzzy set.
Taking this step makes it possible to move between models in an easy and
precise way. It should be noted that individual coordinates of the proximity
vector define the similarity of a particular pair of objects (x, y), where x ∈ X
and y ∈ Y ⊆ ref . These values reflect the degree of memberships of the fuzzy
set we are constructing. At the same time each coordinate is parameterized by
a pair of objects and so it can be treated as a fuzzy relation, which is itself a
fuzzy set (over Cartesian product of X × ref).

The result described proximity vector can be converted to fuzzy set notation
in the following way:

R(x, y) = {((x, yi), v [i]) : i = 1..|ref |}, (12)

where v [i] is i’th coordinate of proximity vector, which simultaneously fulfills
the condition of the membership function of the fuzzy relation in the form:

µ : X × ref → [0, 1] (13)

This is also consistent with the definition of the similarity function of the com-
parator and NoC.

The formula (12) can be also made compatible with the Zadeh’s notation by
taking:

R =
v [1]

(x, y1)
+

v [2]
(x, y2)

+ . . . +
v [|ref |]

(x, y|ref |)
(14)

In addition, this method is reversible, that means that one can take a fuzzy
set membership and reconstruct a proximity vector. It is noteworthy, that we
do not need to know the algebraic form of the membership function formula to
make conversion, we just need the knowledge about reference objects and their
similarity.

The natural next step is to build the membership function as an explicit
formula. This allows to use wide spectrum of computational methods developed
for fuzzy sets. So, the overall form of the NoC’s defuzzyfication layer is provided
by the formula:

fdef : [0, 1]|refout| → Z (15)

where Z is the support of a fuzzy set approximated by the NoC.
Full NoC model after being extended by the defuzzyfication function is of the
form:

µrefout

netdef
: X → Z (16)

and can be rewritten as:
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fdef (µrefout

net (x)) = z (17)

where z ∈ Z. Note, that the final, crisp result z doesn’t have to be an element
of the refout, but ref+

out ⊆ Z, where refout ⊆ ref+
out. ref

+
out consists of only

these reference objects for which the similarity value in the proximity vector is
positive.

Fig. 1. Scheme of the NoC for recognition real numbers. Notation: SignMCOC – com-
parator for signs, IntMCOC – comparator for integer parts, DistMCOC - comparator
for distance.

To better illustrate the nature of this operation we present a simple example.
The task is to identify a real number through comparison to integer numbers
that make reference set. Let us assume that the refout = {−100,−99, . . . −
1, 0, 1, . . . , 99, 100}. Our NoC consists of three layers and three comparators (two
in the first layer and one in the second one) denoted as: SignMCOC, IntMCOC,
DistMCOC. The architecture of the network is shown in Fig. 1. All aggregators
use arithmetic average (mean) and translations are implemented with identity
and projection module is TOP 5 for the output layer. Input object is x = 10.34.
The more detailed description of particular comparators is provided in Table 1
together with similarity measures applied inside.

Table 1. Comparators used in the NoC for recognizing numbers

Comparator Description

SignMCOC Comparator of signs using nominal scale. Returns 1 only if
both signs are equal

IntMCOC Comparator of integer parts of two numbers. Uses
µ(x, y) = |x−y|

span
, where span is maximum possible difference

DistMCOC Comparator using a distance to determine similarity. Uses
the same measure like IntMCOC

The result after processing x in our NoC is: v = 〈0, . . . , 0, 0.9883, 0.9933,
0.9983, 0.9967, 0.9917, 0, . . . , 0〉, where 0.9883, 0.9933, 0.9983, 0.9967, 0.9917 cor-
respond to reference objects 8, 9, 10, 11, 12, respectively. All others were elimi-
nated by the projection module because their similarity did not made the TOP 5.
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Next, the resulting proximity vector is converted to Zadeh’s notation:

R =
0.9883

(10.34, 8)
+

0.9933
(10.34, 9)

+
0.9983

(10.34, 10)
+

0.9967
(10.34, 11)

+
0.9917

(10.34, 12)

Next we are looking for a triangular fuzzy sets by designating two straight
lines passing through two points each. We have five points returned by NoC:
(8, 0.9883), (9, 0.9933), (10, 0.9983), (11, 0.9967), (12, 0.9917). We take first two
and input into the general formula for linear function y = ax + b to derive its
coefficients. We get a couple of simple equations:{

0.9883 = 8a + b

0.9933 = 9a + b
(18)

In the same way we take last two (reference) points and derive another formula
for a line going through them. Finally we get the following two lines: y = 0.005x+
0.9483 and y = −0.005x + 1.0517. The intersection of these two corresponds to
value 1 on the Y axis. This is a maximum possible value for membership of
a fuzzy set and in our case there is only one such point. By using the Max-
membership defuzzyfication we get a final crisp result as a value on the X axis
corresponding to the maximum. By simple substitution we can find that the
result is indeed the 10.34 we were looking for.

4 Illustrative Example

Previously we have shown how the output of the NoC can be taken as a special
kind of a fuzzy set and then defuzzyfied to get a single, meaningful outcome.
The situation becomes more intricate when the elements of refout are themselves
objects with structure and semantics. In our example these are decision rules.

The overall goal is now to construct a decision support system that uses deci-
sion rules to establish the decision value and employs the NoC for the purpose
of selecting applicable rules and combining their recommendations. Rules them-
selves are obtained from the outside source, such as algorithms and methods
originating in rough sets. There are several data analytics tools that can be used
for this purpose, for details consult the overview in [4].

In order to keep the example simple and straightforward we make assumption
that the rules we use are in a simplest form. A decision rule is a formula:

(a1(x) ∈ A1) ∧ (a2(x) ∈ A2) ∧ . . . ∧ (ak(x) ∈ Ak) ⇒ (d = v),

where x ∈ X is an input data object, a1, . . . , ak are attributes, A1, . . . , Ak are
attribute values (value sets), and d is the decision attribute. Sub-formulæ ai(x) ∈
Ai are referred to as descriptors or selectors. In our case we assume that all
descriptors are simple, i.e., ∀i|Ai| = 1 and the take form ai(x) = vi.

As mentioned before, we assume that we have acquired a set of decision
rules for our data set. These rules are all put into the output reference set, so
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that refout = {r1, . . . , rm}. Now, when we need to establish decision (classify) a
previously unseen object from X we usually match it against the rules that we
have and then from their output try to figure out the ultimate answer. There
are two fundamental problems with such simplistic approach. First of all, the
incomplete coverage problem, i.e., there may be no rule in our set that exactly
matches the object we want to classify. Secondly, we may encounter a conflict,
i.e., there are two or more rules that match the new object but they point
at different decision values. The two issues with rule-based classifiers have been
extensively studied and discussed in literature. There exist numerous approaches
to both partial rule matching and rule conflict resolution. In the context of rough
sets one can consult [1] for approaches to these problems.

In our example both the coverage- (matching) and conflict-related issues can
be addressed by making use of the values of similarity (1) outputted by the NoC.
The coverage issue is fairly easy to deal with once we have the NoC’s similarity
vector for our rule set:

µref
net(x) = 〈SIM(x, r1), . . . , SIM(x, rk)〉,

where k = |refout|. Depending on the overall strategy we can use a “winner
takes all” approach and establish decision value using only the rule ri that has
the highest value of similarity. In the unlikely event that there are several con-
flicting rules with the same similarity to the investigated object we would apply
one of conflict resolution methods discussed later in this section. Another, poten-
tially more flexible and extensible strategy is to select a subset of rules that are
sufficiently similar to the investigated new object x. The selection can be based
on the cutoff value for similarity. All rules that are sufficiently similar (above
threshold) qualify and form a local ensemble classification model. The cutoff
value can be set arbitrary or learned from the data in parallel to NoC’s training.
If finding the right threshold proves problematic or if the resulting rule subsets
are too large one can resort to simpler schemes. For instance, we can decide to
include only the rules with similarity value greater than the average or just a
pre-set number of them.

It is worth mentioning that in comparison with “traditional” methods for
dealing with partial matching and incomplete coverage in rule-based systems
the approach based on NoC has some clear advantages. Typically, when new
object has no exactly matching rule the solution is to take a rule or rules that
provide the closest match. The closeness is usually established in an arbitrary
way. Either the rule that has the highest ratio of exactly matched descriptors is
chosen or the rule which descriptors are the closest to the investigated object in
terms of distance in the attribute-value space. Both such simple strategies can
be implemented with help of NoC, but the NoC has also an added quality. Since
we train the NoC, the resulting similarity values it outputs may be much more
relevant and better suited for the decision support task at hand.

The second of the rule-related issues, the potential existence of conflicting
rules that match the object can as well be addressed using the output of NoC.
For starters, as explained in previous paragraphs, the similarities provided by
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NoC make it possible to restrict the subset of rules that will be used to determine
the decision. Rules that are chosen to take part in classification of the new object
x can be viewed as on the one hand an ensemble classifier and on the other hand
as a localized decision model.

With the subset of rules and the associated values of similarity we perform the
defuzzyfication of NoC in the manner reflecting the general scheme presented in
Sect. 3. In the context of rules this step ca be viewed as a special case of election
scenario. The elements (members) of the rule-based ensemble cast votes and the
mode of vote tallying is tantamount to processing of the output proximity vector.
There exists an extensive literature on application of various election schemes in
the context of recognition, classification and decision support (see [2,5,6]). Some
of the most popular and/or most useful of them have already been studied in
the context of processing the results from NoC, see [8]. These include: plurality
voting, Borda count, Copeland’s method, approval voting, weighted voting and
range voting.

In the case of a reference set consisting of decision rules with similarities,
attached there are many strategies for establishing values that may be applied by
the NoC. The already mentioned “winner takes all” approach corresponds to the
plurality voting strategy and can be trivially implemented using the Largest Max
defuzzyfication. Implementation of another popular scheme – weighted voting –
is also straightforward. The final decision is chosen by taking the value that has
the highest total of similarities for rules pointing at this particular outcome.
Note, that that just as in case of our previous example, the resulting compound
classifier may not be equivalent to any rule existing in the output reference set.

5 Summary

In this paper we presented a new step for processing results returned by a Net-
work of Classifiers. We adapted a standardized defuzzyfication procedure thereby
introducing a new level of interpretation of results. It makes NoC method even
more capable of recognizing compound objects. What is important, we did not
change any assumptions about NoC, and the processing flow remains unaltered.
All previously reported results concerning NoC applications remain valid.

This article contains two examples. The first, very simple one is meant to
give better understanding the idea. The second, based on rules-based classifi-
cation outlines the possible field of application. In our example in Sect. 4 we
have considered only the simplest setting for both rules and NoC. In a real-life
scenario we can expect that both the rules and the ways of their application will
be much more complex, possibly multi-stage. It is conceivable that for a given
decision support task and set of decision rules we may be willing to train several
NoCs in such a way that at the end we will have multiple values for each rule
in reference set and object, a feature that reflects the multitude of ways we can
understand and approximate similarity.
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The immediate next step in our work will be focused on preparing the
implementation of the defuzzyfication overlay. It will complement the existing
comparators-lib software library [13]. Once the new methods and algorithms are
implemented it will be possible to extend the area of NoC’s applicability to more
types of compound objects, in particular time series.
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Abstract. We discuss two interpretations of missing attribute values,
lost values and “do not care” conditions. Both interpretations may be
used for data mining based on characteristic sets. On the other hand,
maximal consistent blocks were originally defined for incomplete data
sets with “do not care” conditions, using only lower and upper approx-
imations. We extended definitions of maximal consistent blocks to both
interpretations while using probabilistic approximations, a generalization
of lower and upper approximations. Our main objective is to compare
approximations based on characteristic sets with approximations based
on maximal consistent blocks in terms of an error rate.
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Maximal consistent blocks · Rough set theory
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1 Introduction

In this paper we discuss incomplete data sets with two interpretations of missing
attribute values, lost values and “do not care” conditions, introduced in [5]. Lost
values are, e.g., erased or forgotten. During mining data sets with lost values, we
try to use only existing attribute values. “Do not care” conditions are usually
results of a refusal to answer a question. During mining incomplete data with
“do not care” conditions we assume that a missing attribute value may be any
value from the attribute domain.

For data mining, we use probabilistic approximations, a generalization of
lower and upper approximations known from rough set theory. A probabilistic
approximation is defined by using an additional parameter, denoted by α and
interpreted as a probability. Lower approximations are probabilistic approxima-
tions with α = 1, upper approximations are probabilistic approximations with α
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only slightly greater than zero. Such approximations, restricted to complete data
sets, i.e., data sets without missing attribute values, were extensively studied in
[8,13–20]. Probabilistic approximations were generalized to incomplete data sets
in [7].

For mining incomplete data we apply two different ideas, characteristic sets
and maximal consistent blocks. Characteristic sets were introduced for data with
lost values and “do not care” conditions in [5], while maximal consistent blocks
were introduced only to “do not care” conditions in [10]. Additionally, in [10] only
lower and upper approximations were considered. Note that some algorithms for
determining maximal consistent blocks, restricted to data with only “do not
care” conditions, were discussed in [11,12]. We have extended the definition of
maximal consistent blocks to incomplete data sets with missing attribute values
interpreted as lost values and “do not care” conditions in [1]. In this paper we
also applied probabilistic approximations to both characteristic sets and maximal
consistent blocks.

Our previous experiments, based on only three types of probabilistic approx-
imations: lower (α = 1), middle (α = 0.5) and upper (α = 0.001), have shown
that middle approximations are most promising [1]. Therefore, in our current
experiments we used the entire spectrum of probabilistic approximations, with
α = 1, α = 0.001 and any α from 0.1 to 0.9, with an increment equal to 0.1.

Our main objective is to compare approximations based on characteristic sets
with approximations based on maximal consistent blocks in terms of an error
rate measured by stratified ten-fold cross validation. Our secondary objective is
to compare two interpretations of missing attribute values, lost values and “do
not care” conditions, again, in terms of an error rate.

2 Incomplete Data Sets

Table 1 presents an example of the incomplete data set. Lost values and “do not
care” conditions are denoted by symbols of “?” and “*”, respectively. The set of
all cases will be denoted by U . In our example, U = {1, 2, 3, 4, 5, 6, 7}. The set
of all cases with the same decision value is called a concept. For example, the set
{1, 2, 3, 4} is a concept. We say that a(x) = v if an attribute a has value v for
a case x. For example, Temperature(1) = high.

For completely specified data sets, for an attribute-value pair (a, v), a block
of (a, v), denoted by [(a, v)], is defined as follows

[(a, v)] = {x|x ∈ U, a(x) = v}.

For incomplete decision tables the definition of a block of an attribute-value
pair was modified in [5,6] in the following way

– If for an attribute a and a case x we have a(x) = ?, the case x should not be
included in any blocks [(a, v)] for all values v of attribute a,

– If for an attribute a and a case x we have a(x) = ∗, the case x should be
included in blocks [(a, v)] for all specified values v of attribute a.
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Table 1. An incomplete data set

Case Attributes Decision

Temperature Wind Humidity Trip

1 High * Low Yes

2 * Medium * Yes

3 Medium ? * Yes

4 ? High * Yes

5 Medium Low High No

6 High * ? No

7 * High High No

For our example from Table 1, all blocks of attribute-value pairs are

[(Temperature,medium)] = {2, 3, 5, 7},
[(Temperature, high)] = {1, 2, 6, 7},
[(Wind, low)] = {1, 5, 6},
[(Wind,medium)] = {1, 2, 6},
[(Wind, high)] = {1, 4, 6, 7},
[(Humidity, low)] = {1, 2, 3, 4},
[(Humidity, high)] = {2, 3, 4, 5, 7}.

3 Characteristic Sets and Maximal Consistent Blocks

The characteristic set KB(x) is defined as the intersection of the sets K(x, a),
for all a ∈ B, where x ∈ U , B is a subset of the set A of all attributes and the
set K(x, a) is defined as follows:

– If a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x),

– If a(x) = ? or a(x) = ∗, then K(x, a) = U .

For the data set from Table 1 and B = A, the characteristic sets are
KA(1) = {1, 2},
KA(2) = {1, 2, 6},
KA(3) = {2, 3, 5, 7},
KA(4) = {1, 4, 6, 7},
KA(5) = {5},
KA(6) = {1, 2, 6, 7},
KA(7) = {4, 7}.

A binary relation R(B) on U , defined for x, y ∈ U in the following way

(x, y) ∈ R(B) if and only if y ∈ KB(x)
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will be called the characteristic relation. In our example R(A) = {(1, 1), (1, 2),
(2, 1), (2, 2), (2, 6), (3, 2), (3, 3), (3, 5), (3, 7), (4, 1), (4, 4), (4, 6), (4, 7), (5,
5), (6, 1), (6, 2), (6, 6), (6, 7), (7, 4), (7, 7)}.

We quote some definitions from [9]. Let X be a subset of U . The set X is
B-consistent if (x, y) ∈ R(B) for any x, y ∈ X. If there does not exist a B-
consistent subset Y of U such that X is a proper subset of Y , the set X is called
a maximal B-consistent block. The set of all maximal B- consistent blocks will
be denoted by C (B). In our example, C (A) = {{1, 2}, {2, 6}, {3}, {4, 7}, {5}}.

Let B ⊆ A and Y ∈ C (B). The set of all maximal B-consistent blocks which
include an element x of the set U , i.e. the set

{Y |Y ∈ C (B), x ∈ Y }
will be denoted by Cx(B).

For data sets in which all missing attribute values are “do not care” condi-
tions, an idea of a maximal consistent block of B was defined in [9]. Note that
in our definition, the maximal consistent blocks of B are defined for arbitrary
interpretations of missing attribute values. For Table 1, the maximal A-consistent
blocks Cx(A) are

C1(A) = {{1, 2}},
C2(A) = {{1, 2}, {2, 6}},
C3(A) = {{3}},
C4(A) = {{4, 7}},
C5(A) = {{5}},
C6(A) = {{2, 6}},
C7(A) = {{4, 7}}.

4 Probabilistic Approximations

In this section we will discuss two types of probabilistic approximations: based
on characteristic sets and on maximal consistent blocks.

4.1 Probabilistic Approximations Based on Characteristic Sets

Three kinds of probabilistic approximations, called singleton, subset and concept,
were introduced in [2]. It was proved in [3] that the differences between all
three probabilistic approximations, in terms of an error rate computed as a
result of ten-fold cross validation, are insignificant. In this paper we restrict
our attention only to concept probabilistic approximations, for simplicity calling
them probabilistic approximations based on characteristic sets.

A probabilistic approximation based on characteristic sets of the set X with
the threshold α, 0 < α ≤ 1, denoted by apprCS

α (X), is defined as follows

∪{KA(x) | x ∈ X, Pr(X|KA(x)) ≥ α}.
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Table 2. Conditional probabilities Pr([(Trip, yes)]|KA(x))

x 1 2 3 4

KA(x) {1, 2} {1, 2, 6} {2, 3, 5, 7} {1, 4, 6, 7}
Pr({1, 2, 3, 4} | KA(x)) 1 0.667 0.5 0.5

Table 3. Conditional probabilities Pr([(Trip, no)]|KA(x))

x 5 6 7

KA(x) {5} {1, 2, 6, 7} {4, 7}
Pr({5, 6, 7} | KA(x)) 1 0.5 0.5

For Table 1 and both concepts {1, 2, 3, 4} and {5, 6, 7}, all conditional
probabilities Pr(X|KA(x)), where X is a concept, are presented in Tables 2
and 3.

All distinct probabilistic approximations based on characteristic sets are

apprCS
0.5 ({1, 2, 3, 4}) = U,

apprCS
0.667({1, 2, 3, 4}) = {1, 2, 6},

apprCS
1 ({1, 2, 3, 4}) = {1, 2},

apprCS
0.5 ({5, 6, 7}) = {1, 2, 4, 5, 6, 7},

apprCS
1 ({5, 6, 7}) = {5}.

4.2 Probabilistic Approximations Based on Maximal Consistent
Blocks

By analogy with the definition of a probabilistic approximation based on char-
acteristic sets, we may define a probabilistic approximation as follows:

A probabilistic approximation based on maximal consistent blocks of the set
X with the threshold α, 0 < α ≤ 1, and denoted by apprMCB

α (X) is defined as
follows

∪{Y | Y ∈ Cx(A), x ∈ X, Pr(X|Y ) ≥ α}.

All conditional probabilities Pr(X|Y ), where X is a concept and Y ∈ C (A),
are presented in Table 4.
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Table 4. Conditional probabilities Pr(X|Y )

Y {1,2} {2, 6} {3} {4, 7} {5}
Pr({1, 2, 3, 4} | Y ) 1 0.5 1 0.5 0

Pr({5, 6, 7} | Y ) 0 0.5 0 0.5 1

All distinct probabilistic approximations based on maximal consistent blocks
are

apprMCB
0.5 ({1, 2, 3, 4}) = {1, 2, 3, 4, 6, 7},

apprMCB
1 ({1, 2, 3, 4}) = {1, 2, 3},

apprMCB
0.5 ({5, 6, 7}) = {2, 4, 5, 6, 7},

apprMCB
1 ({5, 6, 7}) = {5}.

Fig. 1. Error rate for the bankruptcy
data set

Fig. 2. Error rate for the breast cancer
data set

Fig. 3. Error rate for the echocardiog-
raphy data set

Fig. 4. Error rate for the hepatitis data
set
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Fig. 5. Error rate for the image seg-
mentation data set

Fig. 6. Error rate for the iris data set

Fig. 7. Error rate for the lymphography
data set

Fig. 8. Error rate for the wine recogni-
tion data set

5 Experiments

We conducted our experiments on eight data sets obtained from the Machine
Learning Repository, University of California at Irvine. Originally, these data sets
were completely specified. However, we randomly replaced 35% of the existing,
specified attribute values by question marks, indicating lost values. Then we
created new data sets with “do not care” conditions by replacing question marks
with asterisks.

Our data mining was based on rule induction technique. For this purpose
we used the MLEM2 (Modified Learning from Examples Module, version 2)
system [4]. The MLEM2 system does not need any pre-processing in the form of
discretization or handling missing attribute values.

In our experiments we used four approaches for mining incomplete data based
on characteristic sets and maximal consistent blocks and on lost values and “do
not care” conditions. Results of our experiments are presented in Figs. 1, 2, 3, 4,
5, 6, 7 and 8. In these figures, “CS” means a characteristic set, “MCB” means
a maximal consistent block, “?” means a lost value and “*” means a “do not
care” condition.

To compare these four approaches we applied the Friedman rank sum test
combined with multiple comparisons, with a 5% level of significance. The Fried-
man test is nonparametric, i.e., no assumptions about normal distribution etc.
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are necessary. This test, conducted in the MS Excel environment, was applied
for our eight data sets. In general, for all eight data sets the hypothesis H0 that
all four approaches are equivalent was rejected. However, for one data set (wine
recognition) the post-hoc test (distribution-free multiple comparisons based on
Friedman rank sums) shows that the differences between all four approaches
are statistically insignificant. For remaining seven data sets results of statistical
analysis are presented in Table 5.

Table 5. Results of statistical analysis

Data set The best approaches The worst approaches

Bankruptcy CS?, MCB? CS*, MCB*

Breast cancer MCB? CS?, CS*, MCB*

Echocardiogram CS*, MCB* CS?, MCB?

Hepatitis CS* CS?, MCB?

Image recognition CS? CS*

Iris CS?, MCB? CS*, MCB*

Lymphography MCB? CS?, CS*, MCB*

Our results, presented in Figs. 1, 2, 3, 4, 5, 6, 7 and 8, show that for one
of the four approaches used for mining incomplete data sets, for probabilistic
approximations based on maximal consistent blocks and lost values, the error
rate does not depend on the choice of the parameter α. It is caused by the fact
that for our data sets, with exception of two data sets: breast cancer and iris,
all maximal consistent blocks are singletons (sets with just one element). For
the breast cancer data set there is only one maximal consistent block different
from a singleton (it contains two cases, 12 and 21, both belong to the same
concept). On the other hand, for the iris data set there are only two maximal
consistent blocks with more cases than one, the first is {6, 16, 45}, all three
cases are members of the same concept, the second one is {125, 145}, and again,
both cases are members of the same concept. Note, that this approach is quite
successful, it is the best or one of the two best approaches when applied to four
out of eight data sets used for experiments.

6 Conclusions

In our experiments we compared four approaches to mining incomplete data sets,
combining two interpretations of missing attribute values, lost values and “do
not care” conditions, with two types of probabilistic approximations, based on
characteristic sets and maximal consistent blocks. As follows from our results,
presented in Table 5, there are significant differences between all four approaches,
depending on a data set. Therefore, for an incomplete data set, the best approach
to mining should be chosen by trying all four approaches.
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Abstract. Rule induction based on neighborhood rough sets is described
in information tables with continuous values. An indiscernible range that
a value has in an attribute is determined by a threshold on that attribute.
The indiscernibility relation is derived from using the indiscernible range.
First, lower and upper approximations are described in complete infor-
mation tables by directly using the indiscernibility relation. Rules are
obtained from the approximations. To improve the applicability of rules,
a series of rules is put into one rule expressed with an interval value,
which is called a combined rule. Second, these are addressed in incom-
plete information tables. Incomplete information is expressed by a set of
values or an interval value. The indiscernibility relations are constructed
from two viewpoints: certainty and possibility. Consequently, we obtain
four types of approximations: certain lower, certain upper, possible lower,
and possible upper approximations. Using these approximations, rough
sets are expressed by interval sets. From these approximations we obtain
four types of combined rules: certain and consistent, certain and incon-
sistent, possible and consistent, and possible and inconsistent ones. These
combined rules have greater applicability than single rules that individual
objects support.

Keywords: Neighborhood rough sets · Rule induction
Incomplete information · Indiscernibility relation
Lower and upper approximations · Continuous values

1 Introduction

Rough sets, constructed by Pawlak [12], are used as an effective method for data
mining. The framework is usually applied to information tables with nominal
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attributes and creates fruitful results in various fields. However, we are frequently
faced with attributes taking continuous values, when we describe properties of
an object in our daily life. Therefore, we describe rough sets in information tables
with continuous values.

Ways how to deal with attributes taking continuous values are broadly clas-
sified into two approaches. One is to discretize a continuous domain by dividing
it into a collection of disjunctive intervals. Objects included in an interval are
regarded as indistinguishable. From this indistinguishability the indiscernibility
relation is derived [1]. Results strongly depend on how discretization is made.
Especially, objects that are located in the proximity of the boundary of intervals
are strongly affected by discretization. This leads to that results abruptly change
by a little alteration of discretization. The other is a way using neighborhood [7].
In this approach when the distance of an object to another one on an attribute
is less than or equal to a given threshold, two objects are regarded as indistin-
guishable on the attribute. Results gradually change as the threshold changes.
So, we use the latter approach.

Rules are induced from lower and upper approximations. Concretely speak-
ing, when objects o and o′ are included in the approximations, let single rules
ai = 3.60 → aj = v and ai = 3.73 → aj = v be induced, where objects o and
o′ are characterized by values 3.60 and 3.73 of attribute ai and the set approxi-
mated is specified by value v of attribute aj . For example, value 3.66 of attribute
ai is not indiscernible with 3.60 and 3.73 under the threshold 0.05. Therefore,
we cannot say anything from these rules for a rule supported by an object with
value 3.66 of attribute ai. This means that the rules are short of applicability.
To improve such applicability, we consider a combined rule that is derived from
a series of single rules supported by individual objects.

In addition, we are frequently confronted with incomplete information in
daily life. We cannot sufficiently utilize information obtained from our daily life
unless we deal with incomplete information. We express incomplete information
in a partial value or an interval value. The interval value contains a missing value
that means unknown as a special case. Most of authors fix the indiscernibility of
an object with incomplete information with another object [3,14–16], as was done
by Kryszkiewicz [4]. However, object o characterized by a value with incomplete
information has two possibilities. One possibility is that the object o may have
the same value as another one o′; namely, the two objects may be indiscernible.
The other possibility is that o may have a different value from o′; namely, the
two objects may be discernible. To fix the indiscernibility is to take into account
only one of the two possibilities. Therefore, this treatment creates poor results
and induces information loss [9,13]. We do not fix the indiscernibility of objects
with incomplete information and simultaneously deal with both possibilities.
This can be realized by dealing with objects having incomplete information from
viewpoints of certainty and possibility [10], as was done by Lipski in the field of
incomplete databases [5,6].

We have three approaches from the viewpoints of certainty and possibil-
ity. One is based on possible world semantics. This way creates possible tables.
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Unfortunately, infinite possible tables can be derived from an information table
with continuous values. Another way uses possible classes obtained from the
indiscernibility relation [8]. The number of possible classes grows exponentially,
as the number of values with incomplete information increases, although this
difficulty can be avoided by using minimum and maximum possible classes in
the case of nominal attributes [10]. The other directly uses the indiscernibility
relation [11]. The way has no problem of computational complexity. Therefore,
we use this way.

The paper is organized as follows. In Sect. 2, an approach directly using
indiscernibility relations is addressed in complete information tables. In Sect. 3,
we develop the approach in incomplete information tables. This is described from
two viewpoints of certainty and possibility. In Sect. 4, conclusions are addressed.

2 Rough Sets by Indiscernibility Relations in Complete
Information Systems with Continuous Values

A data set is represented as a two-dimensional table, called an information table.
In the information table, each row and each column represent an object and
an attribute, respectively. A mathematical model of an information table with
complete information is called a complete information system. The complete
information system is a triplet expressed by (U,AT, {D(ai) | ai ∈ AT}). U is a
non-empty finite set of objects, which is called the universe. AT is a non-empty
finite set of attributes such that ai : U → D(ai) for every ai ∈ AT where D(ai)
is the domain of attribute ai. Binary relation Rai

expressing indiscernibility of
objects on attribute ai ∈ AT is called the indiscernibility relation for ai:

Rai
= {(o, o′) ∈ U × U | |ai(o) − ai(o′)| ≤ δai

}, (1)

where ai(o) is the value for attribute ai of object o and δai
is a threshold that

denotes a range in which ai(o) is indiscernible with ai(o′). From the indiscerni-
bility relation, indiscernible class [o]ai

for object o is obtained:

[o]ai
= {o′ | (o, o′) ∈ Rai

}. (2)

Directly using indiscernibility relation Rai
, lower approximation apr

ai
(O) and

upper approximation aprai
(O) for ai of set O of objects are:

apr
ai

(O) = {o | ∀o′ ∈ U (o, o′) �∈ Rai
∨ o′ ∈ O}, (3)

aprai
(O) = {o | ∃o′ ∈ U (o, o′) ∈ Rai

∧ o′ ∈ O}. (4)

Proposition 1. If δ1ai
≤ δ2ai

, then aprδ1
ai

(O) ⊇ aprδ2
ai

(O) and aprδ1
ai

(O) ⊆
aprδ2

ai
(O), where aprδ1

ai
(O) and aprδ1

ai
(O) are lower and upper approximations

under threshold δ1ai
and aprδ2

ai
(O) and aprδ2

ai
(O) are lower and upper approxi-

mations under threshold δ2ai
.
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For object o in the lower approximation of O, all objects with which o is indis-
cernible are included in O; namely, [o]ai

⊆ O. On the other hand, for an object
in the upper approximation of O, some objects with which o is indiscernible are
in O; namely, [o]ai

∩ O �= ∅. Thus, apr
ai

(O) ⊆ aprai
(O).

Rules are induced from lower and upper approximations. When O is char-
acterized by value x of attribute aj , objects o ∈ apr

ai
(O) and o ∈ aprai

(O)
consistently and inconsistently support a single rule ai = ai(o) → aj = x,
respectively. The degree of consistency, called accuracy, is |[o]ai

∩ O|/|O|.
Since attribute ai has a continuous domain, the antecedent part of single rules

that individual objects support is usually different. We obtain lots of single rules,
but the single rule is short of applicability. For example, let two values ai(o) and
ai(o′) be 3.65 and 3.75 for objects o and o′ in apr

ai
(O). When O is characterized

by value x of attribute aj , o and o′ support single rules ai = 3.65 → aj = x
and ai = 3.75 → aj = x, respectively. By using these rules, we can say that a
object having value 3.68 of ai, indiscernible with 3.65 under δai

= 0.03, supports
ai = 3.68 → aj = x. However, we cannot at all say for a rule supported by an
object with value 3.70 discernible with 3.65 and 3.75. This shows that a single
rule is short of applicability.

To improve the applicability of rules, we combine multiple single rules into
one rule, which is called a combined rule. Let objects in U be aligned in ascend-
ing order of ai(o) and be attached the serial superscript with 1 to NU where
|U | = NU . apr

ai
(O) and aprai

(O) consist of collections of objects with serial
superscripts. For example, apr

ai
(O) = {· · · , oh, oh+1, · · · , ok−1, ok, · · · } (h ≤ k).

Let ol in apr
ai

(O) support a single rule ai = ai(ol) → aj = x. Then, sin-
gle rules derived from collection (oh, oh+1, · · · , ok−1, ok) can be put into one
combined rule ai = [ai(oh), ai(ok)] → aj = x. Next, when aj is a numerical
attribute, O is characterized by an interval value. The interval value has the
lower bound and the upper bound that are existing values of attribute. Let, the
objects be aligned in ascending order of values of aj and be attached the serial
superscript with 1 to NU . For example, using the ordered objects, O is specified
like O = {o | aj(o) ≥ aj(om) ∧ aj(o) ≤ aj(on)} with m ≤ n. In the case, the
combined rlue, derived from collection (oh, oh+1, · · · , ok−1, ok), is expressed with
ai = [ai(oh), ai(ok)] → aj = [ai(om), ai(on)]. The accuracy of the combined rule
is minh≤s≤k |[os]ai

∩ O|/|O|.
Proposition 2. Let r and r be sets of combined rules obtained from apr

ai
(O)

and aprai
(O), respectively. If (ai = [l, u] → w) ∈ r, then ∃l′ ≤ l,∃u′ ≥ u (ai =

[l′, u′] → w) ∈ r, where O is characterized by w.

Example 1. Information tables are depicted in Fig. 1. T0 is the original infor-
mation table. U is {o1, o2, · · · , o18, o19}. T1, T2, and T3 are derived from T0,
where objects are aligned in ascending order of values of attributes a1, a2, and
a3, respectively.
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T0
U a1 a2 a3 a4

1 3.11 2.98 3.02 b
2 2.94 3.65 3.44 b
3 2.33 3.69 3.28 f
4 4.78 2.98 3.52 a
5 3.42 2.35 2.67 b
6 3.03 4.52 4.07 c
7 2.81 2.95 2.91 c
8 4.36 3.11 3.49 a
9 3.22 4.63 4.21 b
10 3.07 3.78 3.57 c
11 2.97 3.98 3.68 b
12 2.63 4.81 4.16 c
13 3.91 3.71 3.77 a
14 3.12 2.78 2.88 b
15 3.05 3.29 3.22 c
16 2.95 3.65 3.44 b
17 2.89 3.51 3.32 c
18 2.45 3.96 3.51 f
19 3.86 3.44 3.57 b

T1
U a1 a2 a3 a4

3 2.33 3.69 3.28 f
18 2.45 3.96 3.51 f
12 2.63 4.81 4.16 c
7 2.81 2.95 2.91 c
17 2.89 3.51 3.32 c
2 2.94 3.65 3.44 b
16 2.95 3.65 3.44 b
11 2.97 3.98 3.68 b
6 3.03 4.52 4.07 c
15 3.05 3.29 3.22 c
10 3.07 3.78 3.57 c
1 3.11 2.98 3.02 b
14 3.12 2.78 2.88 b
9 3.22 4.63 4.21 b
5 3.42 2.35 2.67 b
19 3.86 3.44 3.57 b
13 3.91 3.71 3.77 a
8 4.36 3.11 3.49 a
4 4.78 2.98 3.52 a

T2
U a1 a2 a3 a4

5 3.42 2.35 2.67 b
14 3.12 2.78 2.88 b
7 2.81 2.95 2.91 c
1 3.11 2.98 3.02 b
4 4.78 2.98 3.52 a
8 4.36 3.11 3.49 a
15 3.05 3.29 3.22 c
19 3.86 3.44 3.57 b
17 2.89 3.51 3.32 c
2 2.94 3.65 3.44 b
16 2.95 3.65 3.44 b
3 2.33 3.69 3.28 f
13 3.91 3.71 3.77 a
10 3.07 3.78 3.57 c
18 2.45 3.96 3.51 f
11 2.97 3.98 3.68 b
6 3.03 4.52 4.07 c
9 3.22 4.63 4.21 b
12 2.63 4.81 4.16 c

T3
U a1 a2 a3 a4

5 3.42 2.35 2.67 b
14 3.12 2.78 2.88 b
7 2.81 2.95 2.91 c
1 3.11 2.98 3.02 b
15 3.05 3.29 3.22 c
3 2.33 3.69 3.28 f
17 2.89 3.51 3.32 c
2 2.94 3.65 3.44 b
16 2.95 3.65 3.44 b
8 4.36 3.11 3.49 a
18 2.45 3.96 3.51 f
4 4.78 2.98 3.52 a
19 3.86 3.44 3.57 b
10 3.07 3.78 3.57 c
11 2.97 3.98 3.68 b
13 3.91 3.71 3.77 a
6 3.03 4.52 4.07 c
12 2.63 4.81 4.16 c
9 3.22 4.63 4.21 b

Fig. 1. T0 is the original information table. T1, T2, T3 are derived from T0 by aligning
objects in ascending order of values of attributes a1, a2, and a3, respectively.

Let threshold δa1 be 0.05. Indiscernibility relation Ra1 is:

Ra1 = {(o1, o1), (o1, o10), (o1, o14), (o2, o2), (o2, o11), (o2, o16), (o2, o17), (o3, o3),
(o4, o4), (o5, o5), (o6, o6), (o6, o10), (o6, o15), (o7, o7), (o8, o8), (o9, o9),
(o10, o1), (o10, o6), (o10, o10), (o10, o14), (o10, o15), (o11, o2), (o11, o11),
(o11, o16), (o12, o12), (o13, o13), (o13, o19), (o14, o1), (o14, o10), (o14, o14),
(o15, o6), (o15, o10), (o15, o15), (o16, o2), (o16, o11), (o16, o16), (o17, o2),
(o17, o17), (o18, o18), (o19, o13), (o19, o19)}

When O is characterized by value b of attribute a4,O = {o1, o2, o5, o9, o11, o14,
o16, o19}. Let O be approximated by objects that are characterized by attributes
a1 with continuous values. Using formulas (3) and (4), lower and upper approx-
imations are:

apr
a1

(O) = {o5, o9, o11, o16},

apra1
(O) = {o1, o2, o5, o9, o10, o11, o13, o14, o16, o17, o19}.

Information table T1 where objects are aligned in ascending order of values of
attribute a1 is derived from information table T0. The above approximations
are described as follows:
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apr
a1

(O) = {o7, o8, o14, o15},

apra1
(O) = {o5, o6, o7, o8, o11, o12, o13, o14, o15, o16, o17},

where

o5 = o17, o6 = o2, o7 = o16, o8 = o11, o11 = o10, o12 = o1,

o13 = o14, o14 = o9, o15 = o5, o16 = o19, o17 = o13.

From the lower approximation, consistent combined rules are

a1 = [2.95, 2.97] → a4 = b, a1 = [3.22, 3.42] → a4 = b,

from collections {o7, o8} and {o14, o15}, respectively, where a1(o7) = 2.95, a1

(o8) = 2.97, a1(o14) = 3.22, and a1(o15) = 3.42. From the upper approximation,
inconsistent combined rules are

a1 = [2.89, 2.97] → a4 = b, a1 = [3.07, 3.91] → a4 = b,

from collections {o5, o6, o7, o8} and {o11, o12, o13, o14, o15, o16, o17}, respectively,
where a1(o5) = 2.89, a1(o11) = 3.07, and a1(o17) = 3.91.

Next, we consider the case where O is characterized by a3 with a continuous
domain. Information table T3 where the objects are aligned in ascending order
of values of a3 is derived from T0. Using lower bound a3(o5) = a3(o15) = 3.22
and upper bound a3(o10) = a3(o8) = 3.49, O = {o5, o6, o7, o8, o9, o10} =
{o2, o3, o8, o15, o16, o17}. We approximate O by attribute a2. Information table
T2 where the objects are aligned in ascending order of values of a2 is derived
from T0. Let δa2 be 0.05. Indiscernibility relation Ra2 is:

Ra2 = {(o1, o1), (o1, o4), (o1, o7), (o1, o8), (o2, o2), (o2, o3), (o2, o16), (o3, o2),
(o3, o3), (o3, o13), (o3, o16), (o4, o1), (o4, o4), (o4, o7), (o4, o8), (o5, o5),
(o6, o6), (o7, o1), (o7, o4), (o7, o7), (o8, o8), (o9, o9), (o10, o10), (o11, o11),
(o11, o18), (o12, o12), (o13, o3), (o13, o13), (o14, o14), (o15, o15), (o16, o2),
(o16, o3), (o16, o16), (o17, o17), (o18, o11), (o18, o18), (o19, o19)}.

Using formulas (3) and (4), lower and upper approximations are:

apr
a2

(O) = {o2, o8, o15, o16, o17}, apra2
(O) = {o1, o2, o3, o4, o8, o13, o15, o16, o17}.

Using information table T2 where objects are aligned in ascending order of values
of attribute a1, the above approximations are described as follows:

apr
a2

(O) = {o6, o7, o9, o10, o11}, apra2
(O) = {o4, o5, o6, o7, o9, o10, o11, o12, o13},

From the lower approximation, consistent combined rules are

a2 = [3.11, 3.29] → a3 = [3.22, 3.49], a2 = [3.51, 3.65] → a3 = [3.22, 3.49],
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where a2(o6) = 3.11, a2(o7) = 3.29, a2(o9) = 3.51, and a2(o11) = 3.65. From
the upper approximation, inconsistent combined rules are

a2 = [2.98, 3.29] → a3 = [3, 22, 3.49], a2 = [3.51, 3.71] → a3 = [3.22, 3.49],

where a2(o4) = 2.98 and a2(o13) = 3.71.
For formulas on sets A and B of attributes,

RA = ∩ai∈ARai
, (5)

[o]A = {o′ | (o, o′) ∈ RA} = ∩ai∈A[o]ai
, (6)

apr
A
(O) = {o | ∀o′ ∈ U (o, o′) �∈ RA ∨ o′ ∈ O}, (7)

aprA(O) = {o | ∃o′ ∈ U (o, o′) ∈ RA ∧ o′ ∈ O}. (8)

3 Rough Sets by Indiscernibility Relations in Incomplete
Information Systems with Continuous Domains

An information table with incomplete information is called an incomplete infor-
mation system. In incomplete information systems, ai : U → sai

for every
ai ∈ AT where sai

is a set of values over domain D(ai) of attribute ai or an
interval on D(ai). Single value v with v ∈ ai(o) or v ⊆ ai(o) is a possible value
that may be the actual one as the value of attribute ai in object o. The possible
value is the actual one if ai(o) is a single value.

The indiscernibility relation for ai in an incomplete information system is
expressed by using two relations CRai

and PRai
from viewpoints of certainty

and possibility. CRai
is a certain indiscernibility relation. When objects (o, o′) is

an element of CRai
, o is surely indiscernible with o′. PRai

is a possible indiscerni-
bility relation. When objects (o, o′) is an element of PRai

, o may be indiscernible
with o′.

CRai
= {(o, o′) | o = o′ ∨ (∀u ∈ ai(o)∀v ∈ ai(o′)|u − v| ≤ δai

)}, (9)
PRai

= {(o, o′) | o = o′ ∨ (∃u ∈ ai(o)∃v ∈ ai(o′)|u − v| ≤ δai
)}. (10)

The certain and possible indiscernibility relations are reflexive, symmetric,
but are not transitive. We have three patterns. One case is that a pair of objects
are not in both certain and possible indiscernibility relations, which means that
they are discernible. Another is that they are not in the certain indiscernibility
relation, but in the possible one, which means that they are discernible and indis-
cernible. The other is that they are in both certain and possible indiscernibility
relations, which means that they are indiscernible.

We can derive not the actual, but certain and possible approximations from
the viewpoint of certainty and possibility, as Lipski obtained in query processing
under incomplete information [5,6]. We cannot definitely obtain whether or not
an object belongs to approximations, but we can know whether or not the object
certainly and/or possibly belongs to approximations. Therefore, we show certain
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approximations (resp. possible approximations) whose object certainly (resp.
possibly) belongs to the actual approximations.

Let O be a set of objects. According to [11], certain lower approximation
Capr

ai
(O) and possible one Papr

ai
(O) for ai are:

Capr
ai

(O) = {o | ∀o′ ∈ U (o, o′) �∈ PRai
∨ o′ ∈ O}, (11)

Papr
ai

(O) = {o | ∀o′ ∈ U (o, o′) �∈ CRai
∨ o′ ∈ O}. (12)

Similarly, Certain upper approximation Caprai
(O) and possible one Paprai

(O)
are:

Caprai
(O) = {o | ∃o′ ∈ U (o, o′) ∈ CRai

∧ o′ ∈ O}, (13)
Paprai

(O) = {o | ∃o′ ∈ U (o, o′) ∈ PRai
∧ o′ ∈ O}. (14)

As with the case of nominal attributes [11], the following proposition holds.

Proposition 3. Capr
ai

(O) ⊆ Papr
ai

(O) ⊆ O ⊆ Caprai
(O) ⊆ Paprai

(O).

Using four approximations denoted by formulae (11)–(14), lower and upper
approximations are expressed by interval sets, as is described in [11]1, as follows:

apr•
ai

(O) = [Capr
ai

(O), Papr
ai

(O)], (15)

apr•
ai

(O) = [Caprai
(O), Paprai

(O)]. (16)

Certain and possible approximations are the lower and upper bounds of the
actual approximation.

When objects in O are characterized by attribute aj with incomplete infor-
mation, O is specified by using an element in domain D(aj). In the case where
O is specified by value x in D(aj) of nominal attribute aj with incomplete infor-
mation, four approximations: certain lower, possible lower, certain upper, and
possible upper ones, are:

Capr
ai

(O) = {o | ∀o′ ∈ U (o, o′) �∈ PRai
∨ o′ ∈ COaj=x}, (17)

Papr
ai

(O) = {o | ∀o′ ∈ U (o, o′) �∈ CRai
∨ o′ ∈ POaj=x}, (18)

Caprai
(O) = {o | ∃o′ ∈ U (o, o′) ∈ CRai

∧ o′ ∈ COaj=x}, (19)
Paprai

(O) = {o | ∃o′ ∈ U (o, o′) ∈ PRai
∧ o′ ∈ POaj=x}, (20)

where

COaj=x = {o ∈ O | aj(o) = x}, (21)
POaj=x = {o ∈ O | aj(o) ⊇ x}. (22)

Now, O is characterized by value x of aj . For rule induction, we can say as
follows:
1 Hu and Yao also say that approximations describes by an interval set in information
tables with incomplete information [2].
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– o ∈ Capr
ai

(O) certainly and consistently supports rule ai = ai(o) → aj(o) =
x.

– o ∈ Caprai
(O) certainly and inconsistently supports rule ai = ai(o) →

aj(o) = x.
– o ∈ Papr

ai
(O) possibly and consistently supports ai = ai(o) → aj(o) = x.

– o ∈ Paprai
(O) possibly and inconsistently supports ai = ai(o) → aj(o) = x.

We create combined rules from them.
Let UC

ai
and U I

ai
be sets of objects having complete information and incom-

plete information for ai. o ∈ UC
ai

is aligned in ascending order of ai(o) and
is attached the serial superscript with 1 to NC

i
where |UC

ai
| = NC

i . Objects
o ∈ (Capr

ai
(O) ∩ UC

ai
), o ∈ (Caprai

(O) ∩ UC
ai

), o ∈ (Papr
ai

(O) ∩ UC
ai

),
and o ∈ (Paprai

(O) ∩ UC
ai

) are aligned in ascending order of ai(o). And
then they are expressed by a sequence of collections of objects with a serial
superscript like {· · · , oh, oh+1, · · · , ok−1, ok, · · · } (h ≤ k). From collection
(oh, oh+1, · · · , ok−1, ok), four types of combined rules expressed with ai = [l, u] →
aj = x are derived. For a certain and consistent combined rule,

l = min(ai(oh),min
CL

e) and u = max(ai(ok),max
CL

e),

CL =

⎧
⎨

⎩

e < ai(ok+1), for h = 1 ∧ k �= NC
i

ai(oh−1) < e < ai(ok+1), for h �= 1 ∧ k �= NC
i

ai(oh−1) < e, for h �= 1 ∧ k = NC
i

with e ∈ ai(o′) ∧ o′ ∈ (Capr
ai

(O) ∩ U I
ai

). (23)

For a certain and inconsistent combined rule,

l = min(ai(oh),min
CU

e) and u = max(ai(ok),max
CU

e),

CU =

⎧
⎨

⎩

e < ai(ok+1), for h = 1 ∧ k �= NC
i

ai(oh−1) < e < ai(ok+1), for h �= 1 ∧ k �= NC
i

ai(oh−1) < e, for h �= 1 ∧ k = NC
i

with e ∈ ai(o′) ∧ o′ ∈ (Caprai
(O) ∩ U I

ai
). (24)

For a possible and consistent combined rule,

l = min(ai(oh),min
PL

e) and u = max(ai(ok),max
PL

e),

PL =

⎧
⎨

⎩

e < ai(ok+1), for h = 1 ∧ k �= NC
i

ai(oh−1) < e < ai(ok+1), for h �= 1 ∧ k �= NC
i

ai(oh−1) < e, for h �= 1 ∧ k = NC
i

with e ∈ ai(o′) ∧ o′ ∈ (Papr
ai

(O) ∩ U I
ai

). (25)
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For a possible and inconsistent combined rule,

l = min(ai(oh),min
PU

e) and u = max(ai(ok),max
PU

e),

PU =

⎧
⎨

⎩

e < ai(ok+1), for h = 1 ∧ k �= NC
i

ai(oh−1) < e < ai(ok+1), for h �= 1 ∧ k �= NC
i

ai(oh−1) < e, for h �= 1 ∧ k = NC
i

with e ∈ ai(o′) ∧ o′ ∈ (Paprai
(O) ∩ U I

ai
). (26)

Proposition 4. Let Cr and Pr be sets of combined rules obtained from
Capr

ai
(O) and Papr

ai
(O), respectively. In the case where O is character-

ized by value x of attribute aj , if (ai = [l, u] → aj = x) ∈ Cr, then
∃l′ ≤ l,∃u′ ≥ u (ai = [l′, u′] → aj = x) ∈ Pr.

Proposition 5. Let Cr and Pr be sets of combined rules obtained from
Caprai

(O) and Paprai
(O), respectively. In the case where O is character-

ized by value x of attribute aj , if (ai = [l, u] → aj = x) ∈ Cr, then
∃l′ ≤ l,∃u′ ≥ u (ai = [l′, u′] → aj = x) ∈ Pr.

Proposition 6. Let Cr and Cr be sets of combined rules obtained from
Capr

ai
(O) and Caprai

(O), respectively. In the case where O is character-
ized by value x of attribute aj , if (ai = [l, u] → aj = x) ∈ Cr, then
∃l′ ≤ l,∃u′ ≥ u (ai = [l′, u′] → aj = x) ∈ Cr.

Proposition 7. Let Pr and Pr be sets of combined rules obtained from
Papr

ai
(O) and Paprai

(O), respectively. In the case where O is character-
ized by value x of attribute aj , if (ai = [l, u] → aj = x) ∈ Pr, then
∃l′ ≤ l,∃u′ ≥ u (ai = [l′, u′] → aj = x) ∈ Pr.

The four types of combined rules are obtained from the following incomplete
information table IT in Fig. 2. In the information table O is characterized by
nominal attribute a4 with incomplete information and O is approximated by
numerical attribute a1 with incomplete information.

Last, we describe the case where o ∈ O is characterized by numerical attribute
aj with incomplete information. o ∈ UC

aj
is aligned in ascending order of aj(o)

and is attached with the serial superscript with 1 to NC
j where |UC

aj
| = NC

j . We
specify O by aj(om) ∈ UC

aj
and aj(on) ∈ UC

aj
with m ≤ n.

Capr
ai

(O) = {o | ∀o′ ∈ U (o, o′) �∈ PRai
∨ o′ ∈ CO[aj(om),aj(on)]}, (27)

Papr
ai

(O) = {o | ∀o′ ∈ U (o, o′) �∈ CRai
∨ o′ ∈ PO[aj(om),aj(on)]}, (28)

Caprai
(O) = {o | ∃o′ ∈ U (o, o′) ∈ CRai

∧ o′ ∈ CO[aj(om),aj(on)]}, (29)
Paprai

(O) = {o | ∃o′ ∈ U (o, o′) ∈ PRai
∧ o′ ∈ PO[aj(om),aj(on)]}, (30)

where

CO[aj(om),aj(on)] = {o ∈ O | aj(o) ⊆ [aj(om), aj(on)]}, (31)
PO[aj(om),aj(on)] = {o ∈ O | aj(o) ∩ [aj(om), aj(on)] �= ∅}. (32)
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IT
U a1 a2 a3 a4
1 {3.06, 3.11} 2.98 [3.02, 3.17] {b, c}
2 2.94 {3.64, 3.65} 3.44 b
3 2.33 [3.69, 3.72] 3.28 f
4 4.78 [2.98, 3.12] 3.52 a
5 3.42 2.35 2.67 b
6 3.03 4.52 4.07 c
7 2.81 2.95 2.91 c
8 4.36 3.11 3.49 a
9 {2.97, 3.22} 4.63 4.21 b
10 3.07 3.78 3.57 c
11 [2.96, 2.97] 3.98 3.68 b
12 2.63 4.81 4.16 c
13 3.91 3.71 3.77 a
14 3.12 2.78 2.88 b
15 3.05 3.29 3.22 c
16 2.95 {3.35, 3.65} 3.44 b
17 [2.89, 2.92] 3.51 [3.32, 3.40] {b, c}
18 [2.45, 2.55] 3.96 {3.49, 3.51} f
19 [3.86, 3.92] 3.44 3.57 {a, b}

Fig. 2. Information table with incomplete information.

o ∈ UC
aj

is aligned in ascending order of aj(o) and is attached the serial super-
script with 1 to NC

j . Now, O is specified by attribute values aj(om) and aj(on)
with om ∈ UC

aj
and on ∈ UC

aj
. o ∈ UC

ai
is aligned in ascending order of ai(o) is

attached the serial superscript with 1 to NC
i . Also, four types of combined rules

with ai = [l, u] → aj = [aj(om), aj(on)] are obtained: certain and consistent,
certain and inconsistent, possible and consistent, and possible and inconsistent
combined rules.

These types of combined rules are obtained in incomplete information table
IT in Fig. 2. In the information table O is characterized by numerical attribute
a3 with incomplete information and O is approximated on numerical attribute
a2 with incomplete information.

4 Conclusions

We have described rough sets and rule induction from them in information tables
with continuous values. First, we have dealt with complete information tables.
Rough sets are obtained from directly using indiscernibility relations. Individ-
ual objects that belongs to the rough sets support single rules. The single rules
are short of applicability. To improve the applicability of rules, we have com-
bined single rules derived from the rough sets. Combined rules are expressed
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by using intervals. Second, we have dealt with incomplete information tables.
Incomplete information is depicted with a disjunctive set of values or an interval
of values. We have dealt with it from viewpoints of certainty and possibility, as
was introduced by Lipski in the field of incomplete databases. As a result, four
types approximations: certain lower, certain upper, possible lower, and possible
upper approximations are obtained, as is so in incomplete information tables
with nominal attributes. From these approximations, we have derived four types
of combined rules: certain and consistent, certain and inconsistent, possible and
consistent, and possible and inconsistent combined rules. Combined rules are
more applicable than single ones.
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Abstract. We describe a recruitment support system aiming to help
recruiters in finding candidates who are likely to be interested in a given
job offer. We present the architecture of that system and explain roles
of its main modules. We also give examples of analytical processes sup-
ported by the system. In the paper, we focus on a data processing chain
that utilizes domain knowledge for the extraction of meaningful features
representing pairs of candidates and offers. Moreover, we discuss the
usage of a word2vec model for finding concise vector representations of
the offers, based on their short textual descriptions. Finally, we present
results of an empirical evaluation of our system.

Keywords: Recommender systems · Feature engineering
Word2vec model · Similarity of job offers · Scoring models

1 Introduction

In recent years, the e-recruitment industry is thriving with an estimated aver-
age yearly growth rate of 9% in Europe and the United States. It is expected
that in the U.S. alone, its turnover will surpass US$10 billion by 2020 [1]. With
the growing value of the industry inevitably comes growing competition among
recruitment companies. In order to achieve a competitive advantage in this mar-
ket, companies invest resources into intelligent systems for data analysis and
exploration. One of numerous applications of such systems is in the area of
automatic recommendation of suitable job candidates.
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tional Programme, Sub-programme 2.3.2, Innovation Voucher. Under the project:
POIR.02.03.02-14-0009/15 European Fund of Regional Development. Data used in
this study was provided by the Toolbox for HR company.
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In a typical Recruitment Process Outsourcing company (RPO) operating
in this industry, sourcers (i.e. people responsible for finding job applicants and
convincing them to participate in a recruitment process) contact hundreds of
potential candidates in order to find only several who are willing to change their
current employer. The success rate is particularly small when the position which
the sourcer is proposing requires specialized professional skills and expertise.
In such cases, RPO companies are often forced to search for applicants outside
a local employment market, which as a consequence, lowers the chances for a
successful recruitment even further, since selected candidates need to take into
account the necessity of a relocation. Moreover, people who are contacted many
times with propositions of unsuitable job offers quickly loose their interest in the
correspondence and become more difficult to recruit in future.

One way to improve the efficiency of sourcers and shorten the overall time
needed for a single recruitment process is by using a system which provides rec-
ommendations regarding the potential candidates. Such recommendations may
take a form of scores assigned to pairs of known candidate profiles and descrip-
tions of job offers. Apart from measuring the suitability of applicants to a given
position, the scores may express different factors influencing chances of a suc-
cessful recruitment, such as the likeliness that a person will consider changing
his current job or agree on a relocation to a different country. Using these scores,
sourcers could modify the order in which they contact the candidates, thus they
would find good applicants faster and significantly limit the number of unneces-
sary emails to people that are unlikely to be interested in changing their current
job. Unfortunately, even though there were several attempts at constructing such
a system, to our best knowledge, none of them was successful in practice.

In this paper, we describe a recruitment support system (RSS) designed
for the purpose of management, analysis and automatic scoring of candidate
profiles browsed by sourcers. The system has been deployed in a RPO company
operating in Warsaw, Poland, namely Toolbox for HR. This company specializes
in recruiting technology teams for fast-growing startups, as well as Fortune 500
companies. Recruiters at Toolbox for HR source tech candidates in over 100
countries and place them in 30 cities globally while reviewing over 1000 profiles
every week. We discuss an architecture of the RSS software and explain purpose
of modules which we designed. We also give examples of analytic processes which
can be conducted using the system. Finally, we present results of an empirical
study that demonstrates benefits which the system brings to the sourcers and
the company.

2 Related Works

The problem of measuring suitability of job applicants has been in a scope of
research since the first Internet job boards appeared in the 1990s. One of the
most commonly taken approach can be positioned in the area of recommender
systems [2]. Typically, recommender systems predict preferences of users with
regard to a set of items of services. They become increasingly popular in a variety
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of areas, such as selecting movies and music, finding interesting books or research
articles, or choosing good restaurants [3].

Researchers designing recommender systems often classify them into two
main approaches, namely content-based filtering and collaborative filtering [4].
The content-based methods predict preferences regarding a set of items based
on their similarity to items which a user has preferred in the past (i.e. to a
user’s preference profile). In the collaborative filtering, items are recommended
to a user based on preferences of similar users. Therefore, in the first case, pref-
erence profiles of users need to be compared to descriptions of items and in
the latter case, the similarity between users’ profiles has to be determined [5].
In many practical applications hybrid methods are used, where the concepts
of content-based and collaborative filtering are applied simultaneously [6]. The
system described in this paper can be seen as an example of this particular
approach. In our case, a user corresponds to a job offer, whereas the items are
candidate profiles. Examples of different recommender systems designed for the
purpose of human resource matching and on-line recruitment can be found in
[7–9].

One of the most important aspects of any recommender system is the under-
lying method of measuring the similarity. Depending on the utilized approach,
the system needs to evaluate similarity between items or users’ preference pro-
files. In either case, the selection of an appropriate similarity measure is crucial
for the task. Numerous measures found their practical use in recommender sys-
tems, however, due to a sparsity and high-dimensional nature of typical pref-
erence data, the most common choices are Jaccard and cosine similarity [10].
Among other popular measures, there are Pearson correlation and the standard
Euclidean distance (treated as a dissimilarity measure).

Moreover, many researchers notice a need for adaptation of the similarity to
a particular data domain. This can be achieved by either constructing a cus-
tom similarity measure using expert knowledge or employing methods capable
of learning the appropriate similarity from available data [11]. As an example of
such methods, one can give the rule-based similarity model [12] or the networks
of comparators [13]. Alternatively, instead of learning the measure for the con-
sidered problem, it is possible to learn a better representation of the data and
evaluate the similarity in a standard way. This approach, may require construct-
ing new features to represent items or users. The feature engineering methods
have been widely studied in this context [14,15].

Learning a meaningful representation of items in a recommender system can
be particularly difficult in situations when they correspond to some complex
objects. For instance, in our case the system needs to be able to evaluate the
similarity between different job offers and score the suitability of candidates
in that context. Positions for the recruitment are usually described by a short
text and a small set of categorical features, such as the city and country of
the employer. One way to represent this type of data is to combine the available
features and a bag-of-words representation of the text [12]. A different possibility,
utilized in the presented system, is to compute embeddings of the texts and the
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categorical feature values into a relatively low-dimensional vector space. It can
be done using techniques such as the word2vec [16] and its extensions [17] or the
neural probabilistic language model [18].

3 Architecture of the System

In order to facilitate advanced data analytics on recruitment processes, one needs
to have an environment allowing for convenient processing and managing infor-
mation about candidates and job offers. Such environment has to provide a
robust access to data, support automation of the data processing chain and allow
execution of compound data transformation operations. In this section, we show
how those objectives are achieved in the system deployed at Toolbox for HR.

The applicant tracking system deployed at Toolbox for HR is built around
a data acquisition and storage module called FERMI. This module was devel-
oped by an external company in order to facilitate collecting information about
potential job candidates from Internet CV databases and professional network-
ing sites. Its main functionality is to provide sourcers with convenient means
for accessing and sharing profiles of potential job candidates. It also enables
managing the recruitment process at each of its stages.

We extended FERMI by three different modules aimed at intelligent analysis
of data collected by the sourcers:

– BIZON1 – a browser plug-in which, when enabled, automatically downloads
HTMLs of profile pages browsed by sourcers,

– SILO – a centralized service for storing raw HTMLs, along with additional
meta-data related to the currently investigated profile and a recruitment pro-
cess (e.g. ID of the job offer),

– FARM – a relational database containing data extracted from collected pro-
files, dictionary data manually prepared by domain experts (e.g. lists of pos-
sible country names with synonyms, names of different universities with com-
mon abbreviations, a list of normalized skill names, etc.) and any additional
data that can be an output of analytic processes.

Additionally, the modules are supported by scripts responsible for process-
ing the raw HTML data, extracting relevant information and augmenting it with
matched elements from the auxiliary data tables stored in FARM (i.e. from the
dictionaries and analytic tables). There are also dedicated scripts for combin-
ing data stored in different FARM tables (e.g. joining candidate profiles with
corresponding recruitment processes and auxiliary data) and constructing infor-
mation or decision systems in a tabular format. The auxiliary scripts can also
perform analytical tasks, such as constructing and serializing scoring models,
finding similar job offers or candidate profiles. They are arranged in an extensi-
ble script library stored in a repository and can be used on-demand basis.

1 BIZON is a name of a popular Polish combine harvester. https://en.wikipedia.org/
wiki/Bizon (company).

https://en.wikipedia.org/wiki/Bizon_(company)
https://en.wikipedia.org/wiki/Bizon_(company)
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Fig. 1. The architecture and data flow in the described recruitment support system.

Data flow in the system, depicted in Fig. 1, can be described as linear, incre-
mental and buffered. A relevant website, visited using a browser with the BIZON
plug-in (the websites are initially filtered using a manually created list of irrele-
vant domains), is downloaded and stored in the SILO server. Then, information
from the website is extracted and augmented using scripts and the auxiliary
data from FARM. Finally, the processed data is archived in FARM’s database
where it can be used for further analysis and constructing scoring models. The
whole operation is incremental, since new websites are processed independently
from the websites already stored in the system. However, for efficiency reasons,
all computations can be conducted in chunks of buffered websites, whose size is
dependent on parameter settings.

The BIZON plug-in is an extension of Google Chrome. It has been uploaded
to Chrome Web Store and can be installed in a standard way on any computer
operating in the company’s domain. It uses WebNavigation API provided by
Chrome to analyze each page opening request. If the website passes through
the excluded domain filter, it downloads the HTML code which is then stored
in SILO. Apart from the raw code, SILO stores additional meta-data, such as
a browser ID, website address and ID of the recruitment process. The SILO
application works in a frame of the client-server architecture of Google App
Engine platform. It uses a server operating in Google Cloud in order to secure
the communication scalability, regardless of the number of BIZON plug-ins which
are working in parallel.

The raw data stored in SILO needs to be transformed into a relational form
and augmented by additional information from external sources. Only then it
can be utilized for the construction of scoring models and verification of hypoth-
esis describing phenomena related to recruitment processes. The required data
transformation consists of several phases:

– fetch requests – obtaining information about new websites visited by sourcers;
communication with the Google Cloud Datastore NoSQL database, the con-
tent of which is systematically updated by the SILO application,

– parse requests – unprocessed websites are parsed; relevant information is
extracted (e.g. home city, current position, education, employment history,
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courses and certifications, etc.) and stored in a consistent form as informa-
tion chunks,

– information chunks processing – emerging information chunks are the basis for
creating new entries in the relational database representing the new applicant
profiles,

– enhance content – values of the new entries in the database are corrected
(e.g. misprints in textual fields) and augmented using the dictionary data
(e.g. if the name of a university is recognized, the system automatically adds
information about the corresponding country and city of studies); data is
standardized and entity naming inconsistencies are reduced,

– fetch FERMI data – the data corresponding to applicants and recruitment
processes from FERMI database is fetched and matched with the correspond-
ing entries in FARM; the relational representation of the new pairs of appli-
cant profiles and recruitment processes is completed.

All these phases were implemented as extensible elements of the FARM module.
They operate in the frame of Google App Engine Flexible platform. Planned
executions of each phase are scheduled using the App Engine Cron service.

4 Feature Engineering

After storing the augmented representations of the data in FARM, it is possi-
ble to run analytic processes defined in the script library. Processes, such as a
construction and deployment of a profile scoring model, often require extracting
additional characteristics describing the pairs of profiles and recruitment pro-
cesses. Values of additional features which were defined in a cooperation with
recruiters and sourcers working at Toolbox for HR can be computed using a
dedicated script. In total, we defined 374 features which can be categorized
into three groups:

1. Features of job offers.
2. Relations between candidates and offers.
3. Features of candidates.

The first group contains characteristics of particular job offers. The features
in this group are computed based only on information which can be revealed
to potential candidates in the initial contact email. They need to be computed
only once for a given offer. The group includes features such as the company
name, proposed position type, recruitment country and city. We also store a
short textual description of the offer, which we embed into a vector space using
a word2vec model [16].

The second group contains auxiliary features that express how a given offer
fits to a given candidate. Exemplary features from this group include an indica-
tor whether a candidate speaks the required language, a geographical distance
between candidate’s city and the city from the offer, or a Jaccard similarity value
between a short description of the candidate and the description of the offer.
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Since information covered by those characteristics is relative to particular can-
didates and offers, it needs to be computed for every single candidate-offer pair.

The third group corresponds to features of individual candidates. It can be
further divided into five subgroups representing different aspects of professional
experience: employment history (e.g. number of jobs, average time between
switching jobs), skills (e.g. number of certifications, keywords from a list of
skills), education (e.g. academic degree, date of the latest education entry), place
of residence (e.g. country’s GDP, population) and current status (e.g. current
employment length, if a candidate has an open code repository). All these fea-
tures need to be computed only once for a given profile stored in SILO and can
be joined with any job offer. However, after some time the profiles may become
outdated and sourcers may have to update them using the BIZON module.

5 Example of an Analytic Process in a Recruitment
Support System

The main goal of any applicant tracking software is to support recruiters and
sourcers in conducting recruitment processes. The RSS described in the previ-
ous section enable conducting advanced analysis on historical data collected by
sourcers in order to improve efficiency of new recruitments. An exemplary ana-
lytical process may consider a problem of identifying historical job offers which
are similar to an offer from a new recruitment campaign, finding related candi-
date profiles, constructing a scoring model and providing scores for new profiles
selected by sourcers. In our case, such a process is divided into several phases
conducted in a sequence:

1. Processing of a new job offer. A recruiter uploads a textual description of
a new job offer to the system along with some basic meta-data. The descrip-
tion is standardized (e.g. stop words are removed, common abbreviations are
disambiguated), key phrases (from a predefined list) are identified and the
text is divided into a list of terms. A word2vec model, trained on descriptions
of historical offers, is used to compute an embedding of the offer into a vector
space. This vector is stored in a corresponding FARM table.

2. Fetching relevant profiles. The computed embedding is compared to
embeddings of other offers. The closest k offers are selected and represen-
tations of profiles marked as relevant to those offers by sourcers are fetched
from FARM (i.e. profiles of people that were contacted in the corresponding
recruitment processes).

3. Constructing a scoring model. The retrieved data is transformed into a
tabular format and (if necessary) augmented using the auxiliary tables from
FARM. A scoring model is constructed using a predefined script from the
library. Alternatively, a new script can be written and added to the library
by a data analyst. Popular scripting languages can be used, e.g. R or Python.
The model should take the data table as an input and output scores in a
key-value format. After the construction, the model is serialized and stored
in a repository.
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4. Computing profile scores. The profiles fetched in the phase 2 are updated
– values of features which depend on a particular job offer are recomputed
to reflect the new offer (e.g. if a candidate lives in the same city/country
where the job is offered, if a candidate natively speaks the required language,
etc.). The updated data corresponding to new candidate-offer pairs becomes
an input to a scoring model created for the given offer. The results are pre-
sented to a user as a sorted list of candidates with assigned scores and stored
in FARM (along with the computed representations of new candidate-offer
pairs). Alternatively, on a request from a sourcer, a completely new can-
didate profile may undergo processing described in Sect. 3 and be assessed
by the model.

The architecture of the developed system is flexible and allows to perform
different types of data analysis. For instance, a data analyst can easily use it
to explore historical data in a search for meaningful dependencies, perform a
selection of the most important features or visualize the data for sourcers and
recruiters in hope for providing them with useful insights.

6 Experimental Evaluation

We conducted a series of experiments aiming at measuring the performance of the
modules described in Sect. 3 in a typical recruitment support task described in
Sect. 5. We deployed the modules and asked a group of sourcers to use BIZON
in order to feed the FARM database with data. We tracked each profile they
contacted between November and December 2017. In total, we collected data on
2288 profiles corresponding to 76 job offers. Each pair in the data was labeled by
a tag expressing whether a candidate was interested in the offer and underwent
a prescreen procedure. It is worth to notice that the distribution of classes in our
data was highly imbalanced, with only about 4% of cases from the positive class.
This reflects a typical success rate of sourceres (usually, only a small fraction of
contacted candidates is interested in the proposed job offer).

In the first part of the experiment, we checked how the embeddings of
offers constructed using the word2vec model reflect their similarity perceived
by domain experts. We used the standard skip-gram model with the noise-
contrastive training [19], implemented in TensorFlow, to train the model on
available textual descriptions of historical offers. The texts were divided into
terms and common stop-words were removed. Different embedding sizes were
tried, between 5 and 100, but since the number of distinct terms was relatively
low (much less than 1000), the final size was set to 12. The embeddings of offers
were created from the embeddings of individual terms by averaging vectors cor-
responding to keywords terms occurring in the descriptions.

In order to measure how well the embeddings reflect similarities between
different job offers in our data, we asked experts to manually divide them
into categories. They assigned each offer to one of 10 groups (e.g. BACKEND,
BIG DATA). We performed leave-one-out classification using 1-NN algorithm in
the embedding space to predict the category of a give offer based on a category of



How to Match Jobs and Candidates 511

−600 −400 −200 0 200 400 600

−5
00

0
50

0

tSNE[,1]

tS
N
E[
,2
]

java_server_dev.

frontend_developer_html_css

frontend_developer

community_manager

pm_europe_big_companies+unicorns

php_developer
frontend_developer_javascript

senior_ui_ux_designerux_designerbackend_developer
growth_eng

frontend_developer

scala_backend_engineer

front_end_ui_uxbackend_developer

site_lead
frontendsite_reliability_engineer

backend_developer

ios_developer
ios

devops

android_developer

fixer_engineer

vc_product_manager_research_eu

dpi_engineer

qa_engineer

product_owner

frontend_developer

backend_developer

ios

senior_data_engineer

_ground_software_engineer

sdet_channel_engineer

qa

data_scientist

frontend_developer

ember.js

devops

frontend_developer_javascript_react_es

brand_manager

frontend_developer

backend

ios_engineer

ios_developer_objectivec_swift

fullstack_developer_java_javascrip
devops

data_scientist

android
backend_engineer_search

customer_success_specialist_eu

data_engineer

senior_backend_engineer

iam_api_manautomation_support_
finance_manager

content_acquisition_planning
acquisition_directorbrand_director

business_intelligence_analyst_warsaw

data_engineer

_manager_texttospeech

solution_architect

c++

velopment_engineer_tts_engine_sdk

recruiter

product_owner
head_marketing

automated_qa

sourcer_junior_recruiter

adtechvp_product_managment_sar

software_manager

hr_manager

sdk_developer

mission_operation_specialistmission_operation_manager
customer_service_manager

office_manager

Fig. 2. A visualization of job offers from our data using tSNE technique. The labels
correspond to concatenated first few keywords. The colors on the plot correspond to
different categories of the offered positions, which were manually assigned by experts.
(Color figure online)

the closest neighbor. The average accuracy of predictions was 71% which seems
reasonably good considering the relatively high number of categories. Addition-
ally, we visualized the embeddings in a two-dimensional space using the tSNE
technique. Figure 2 shows the resulting plot.

In the second part of the experiment, we measured the performance of our
profile scoring module. We divided our dataset into chunks corresponding to
different offers. For each chunk, we constructed three prediction models using all
remaining chunks as the training data and test the performance on the selected
chunk. In this paper, we call this method leave-one-offer-out, due to the analogy
with the standard leave-one-out technique. It is important to note, however,
that using a different validation schema, such as the leave-one-out or 10-fold
cross-validation, would not reflect a typical deployment scenario of the discussed
system and would be likely to produce over-optimistic performance estimations.
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For instance, in our case, AUC obtained in a leave-one-out test was nearly 20%
higher than the result of the leave-one-offer-out test.

In the test, we compared three models, namely k-NN, decision trees built
with the recursive partitioning algorithm and a boosting model constructed using
XGBoost library [20]. All models were constructed in R environment. Param-
eters of the models were tuned during the training by a grid search. For k-
NN, an Euclidean distance with the k parameter between 11 and 19 was used.
The decision trees were constructed with the complexity parameter in a set
{0.001, 0.01, 0.1} and the gini index was used as the cut evaluation criteria. The
XGBoost model was using decision trees with the maximal depth set to 6 and
the L1 regularization with alpha set to 0.1. The number of iterations was fixed
to 100 but different values of the learning rate from a set {0.001, 0.01, 0.1, 0.3}
were tried. All other parameters were set to their defaults. Table 1 shows results
obtained by the tested models. Due to the imbalanced distribution of labels in
the data, we evaluated the results using four different measures, namely preci-
sion, recall, F1-score and area under the ROC curve (AUC).

Additionally, in order to check the impact of the retrieval of relevant training
data, we repeated this experiment with enabled filtering based on the similarity
of the offers. At each step of the leave-one-offer-out evaluation, the training
data was filtered before the construction of a scoring model. Only the data
corresponding to K most similar offers to the one that is tested was used to
train the scoring model. In the experiments, the value of K was set to 38 which
is half of the number of all offers in the data.

Table 1. Comparison of the performance of different scoring models. The values in the
column ‘experts’ were computed based on actual responses to emails sent by sourceres.
We assume that Recall of the experts is 1.0. The columns marked as ‘filtered’ give the
results for the models constructed on training data filtered with regard to the similarity
of offers (computed in the offer embedding space).

Model
measure

k-NN all k-NN
filtered

rpart tree
all

rpart tree
filtered

XGBoost
all

XGBoost
filtered

Experts

Precision 0.064 0.055 0.086 0.125 0.118 0.163 0.041

Recall 0.284 0.168 0.147 0.179 0.116 0.158 1.000

F1-score 0.104 0.082 0.109 0.147 0.116 0.160 0.079

AUC 0.551 0.559 0.520 0.615 0.613 0.641 –

The results show that the best performance was achieved by XGBoost which
received the highest values of F1-score and AUC among the tested models. Inter-
estingly, filtering of the training data increased results of both tree-based models
but at the same time, it slightly degraded the performance of k-NN. To provide
a baseline to those results, we investigate the success rate of human sourceres. If
we assume that they sent the offer to all potentially relevant candidates which
they could find, their recall would be 1.0 (in practice, it does not need to be true).
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We can estimate the precision of sourceres by taking the percentage of positive
examples in our dataset and thus, we can compute their F1-score. The result of
sourceres is shown in the last column of Table 1. The fact that F1-score achieved
by XGBoost is over two times greater than that of humans clearly shows the
benefits which our system can bring to the company.

7 Conclusions

In the paper, we described a recruitment support system aiming to help recruiters
in finding candidates who are likely to be interested in a given job offer. We pre-
sented its architecture and explained roles of its main modules. We also presented
a data flow schema and gave examples of analytical processes supported by the
system. In our example, the system is used to create vector representations of
job offers and candidate-offer pairs. The textual descriptions of offers are trans-
formed into vectors using a word2vec model. Then, for a set of new candidate-
offer pairs, the system finds examples of cases from similar recruitment processes.
It uses them as a training set to compute a scoring model dedicated to the new
cases. Our empirical evaluation of the system’s performance revealed that its
results can be significantly more precise than the judgment of human sourceres.

Nevertheless, our work on the described RSS is by no means complete. Our
data acquisition modules are successively storing more and more examples of
candidate-offer pairs from a constantly growing number of recruitment processes.
We believe that with a sufficient amount of good quality data, we will be able
to construct even more reliable scoring models. We are also planning to deploy
models based on the deep learning approach and check whether they can bring
benefits to our system. Finally, our team is working on further automation of the
analytic processes, and at the same time, incorporating more expert knowledge
to the system. We hope that in this way, we will make the system even more
appealing to its users and help to find a right career path to thousands of people
who are looking for their dream jobs.
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Abstract. We introduce a new approach to empirical evaluation of the
accuracy of the select statement results produced by a relational approxi-
mate query engine. We emphasize the meaning of a similarity of approx-
imate and exact outcomes of queries from the perspective of practical
applicability of approximate query processing solutions. We propose how
to design the similarity-based procedure that lets us compare approxi-
mate and exact versions of the results of complex queries. We not only
offer a measure of the accuracy of query results, but also describe the
results of research on users intuition regarding the properties of such
a measure, as well as perception query results as similar. The study is
supported by theoretical and empirical analyses of different similarity
functions and the case study of the investigative analytics over data sets
related to network intrusion detection.

Keywords: Approximate Database Engines
Approximate Query Accuracy · Query Result Similarity
Data Granulation and Summarization

1 Introduction

When assessing the classic database engines, their performance is primarily taken
into account, which is verified using some previously defined measures. Sample
measures can be found, for example, in the benchmark for assessing the perfor-
mance of TPC-DS decision support systems, prepared by the well-known TPC
(Transaction Processing Performance Council) organization [1]. Before starting
any assessment, it is necessary to design an appropriate schema, develop proce-
dures that load data according to the rules and prepare a pool of representative
queries. In the case of approximate engines [2], in addition to the performance
aspect, there is also another aspect of the assessment - the accuracy of query
results. Here one should consider two questions: what to test and which assess-
ment measure to use. The answer to the first question is quite obvious - one
should perform queries in the approximate engine and compare the obtained
results with the results of the same queries obtained on real data. We present
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the proposal for the answer to the second question in the context of summary-
based engines, together with research into user intuitions regarding the property
of such a measure and the perception of query results as similar.

The focus here is on the measure of the accuracy of analytical query results.
The motivation is to aid analysts struggling with the summaries of huge quanti-
ties of detailed data, who are the key users of approximate engines. The process
of selecting the measure was two-fold. On the one hand, mathematical properties
were taken into account, on the other hand, it was remembered that the measure-
ment of the accuracy of the query result will be information for the future user,
hence it should be intuitive first of all. It is difficult because different groups of
people have different, often unarticulated, expectations towards the measure of
the accuracy of query results, which, among other things, is shown in the article.
It should be emphasized that all comparisons concerned the engine testing stage,
not its final operation, hence the focus was on using only the measure of accu-
racy, and not, for example, on determining the confidence intervals important
at the stage of operation.

This paper presents a new approach to empirical evaluation of the accuracy of
the select statement results produced by a relational approximate query engine,
emphasizing the meaning of a similarity of approximate and exact outcomes of
SQL queries from the perspective of practical applicability of approximate query
processing solutions. We propose designing a similarity-based procedure that lets
us compare approximate and exact versions of the results of complex queries,
simultaneously presenting the results of survey of users intuition regarding the
properties of such a measure, as well as perception query results as similar.

The paper is organized as follows. Section 2 provides a proposal for measuring
the accuracy of the results of analytical queries. Section 3 presents the process of
selecting the proper measure, together with results of survey on users intuition
regarding the properties of such a measure. Section 4 presents results of survey
on perception query results as similar. In Sect. 5 are conclusions.

2 Similarity of Analytical Queries

The result of any SELECT is a table, which can be denoted as R = (T,A), where
T is a set of tuples, and A is a set of attributes. The analytical queries considered
in this article are understood as classical queries with the GROUP BY clause,
in which the elements of A are S columns reflecting summary functions, and G
columns used in the GROUP BY clause. The G columns used in the GROUP BY
clause are always treated as categorical attributes, while S columns are treated
as numerical or categorical, according to the rules presented below.

When comparing the results of analytical queries, three types of values should
be considered, corresponding to three groups compatible with business intuitions
in analytics [3]: (1) numerical values corresponding to the measures of the fact
table, constituting arguments of any summary functions - will be called mea-
sures, according to the naming in [4], (2) values describing the dimensions of
the analysis, which should be treated as categorical, e.g. keys from dimensions
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placed in the fact table that are the basis for creating groups in the GROUP BY
clause - will be called categorical dimensions, (3) values describing the dimen-
sions of the analysis, which can be treated as categorical or numerical depending
on the context in which they are used in the query, e.g. timestamp - will be called
linear dimensions. The following principles of comparison have been adopted: (i)
group labels defined in the GROUP BY clause are treated within a given query
as categorical attributes, (ii) if the argument of the summary function is a value
from the group 1 (measures) or 3 (linear dimensions), within the given query
these are treated as numerical attributes, (iii) if the argument of the summary
function is a value from the group 2 (categorical dimensions), within the given
query these are treated as categorical attributes.

The analytical query may contain WHERE and HAVING clauses imposing
conditions for rows and groups, as well as the ORDER BY clause frequently used
with the LIMIT directive, which is a limitation of the number of displayed rows.
It is assumed that the ORDER BY clause will be treated as a new summary
function added to the S. In the general case, T may be a subset of the original
rows, G may be a set of columns for which PRIMARY KEY constraints were
applied, and S all other columns.

Let R = (T,A) be the result of the Q query obtained on the real data, and
˜R = ( ˜T ,A) be the result of the Q query obtained on the approximate data.
We need to determine to what extent T and ˜T tuples can be matched on G
columns and, for matched tuples, determine how their values in S are similar.
The Jaccard index [5] is used as a measure of matching the set of tuples T and
˜T : J(T, ˜T ) = |T ∩ ˜T |/|T ∪ ˜T |, where the sum and intersection of the tuple sets is
understood as the sum and intersection of the truncation of the tuple sets to the
set of G columns present in the GROUP BY clause. For simplicity of notation,
no additional marks have been added to denote truncation. While constructing
the final measure of accuracy of query results, the given formula was enriched
with the similarity ratio of matched tuples. A pair of tuples t ∈ T and ˜t ∈ ˜T are
called matched, if for every g belonging to the set of columns G appearing in
the clause GROUP BY, g(t) = g(˜t). Finally, this measure takes the form:

Q(R, ˜R) =
∑

t∈T,t̃∈T̃ :g(t)=g(t̃) Q(t,t̃)

|T ∪ T̃ | (1)

where Q(t,˜t), which is a measure of the accuracy of a single row, is given by:

Q(t,˜t) = MINa∈SQa(f(t), f(˜t)) (2)

in which Qa(f(t), f(˜t)), which is a measure of the accuracy of a single value (in
the case of an analytical query it is the value of the summary function f), for
the numerical values is as follows:

Qa(f(t), f(˜t)) =

{

1 − |f(t)−f(t̃)|
|f(t)|+|f(t̃)| for f(t) �= 0 ∨ f(˜t) �= 0

1 otherwise
(3)

taking into account formula 4 for the NULL pseudo-value:
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Qa(f(t), f(˜t)) =
{

1 for f(t) is null ∧ f(˜t) is null
0 otherwise

(4)

and for categorical values is as follows:

Qa(f(t), f(˜t)) =
{

1 for f(t) = f(˜t)
0 otherwise

(5)

The choice of such a strict measure in the case of categorical columns is
dictated primarily by the expectations of the business user, for whom even the
smallest difference in value in the categorical column can be crucial for the
decision-making process. Values for categorical columns, which are certain labels
or categories must be accurate, in contrast to numeric columns, for which the
order of magnitude is often more important than the specific value.

Figure 1 presents an example of calculating the accuracy of a query result
using measure 1 for a query with one column in the GROUP BY clause, while in
[4] there is an analogous example for a query with more than one column in the
GROUP BY clause. The net traffic dataset is described in [6]. At the beginning,
for each element from the set S for each tuple from the intersection of the
truncation of the set of tuples T and ˜T to the set of columns G, Qa(f(t), f(˜t))
is calculated. Then, the minimum function of individual tuple components is
used to compare whole tuples. It was considered that the minimum would be
a better choice than the product or the arithmetic mean, because it guarantees
the invariability of the result in the case of duplication of the same expression
in the SELECT list. The total result of the comparison of tuples is divided by
the number of all tuples belonging to the sum of the truncation of the sets of
tuples T and ˜T to the set of columns G. Therefore, in the result of the query
performed on the approximate data some groups present in the result of the
query performed on the real data are missing, or there are extra groups, then
the final accuracy deteriorates in the eyes of business users. If an ORDER BY
clause appears in the query, it is treated as a new summary function added to
the set S. An example of calculation of the accuracy of the query result with the
ORDER BY clause can be found in [7].

Both for groups that do not occur in real data and occur in approximate
data (called false presence), as well as for groups that occur in real data, and
do not occur in approximate data (called false absence), Q(t,˜t) = 0 due to the
fact that the suggested measure of the accuracy of query results returns 0 if and
only if exactly one of f(t) and f(˜t) is equal to 0 (for count(*)) or NULL (for
other summary functions).

3 Selecting the Accuracy Measure of Query Results

The measure 1 proposed in the previous section is of course not the only possible
measure of the accuracy of query results. An alternative approach, including any
queries, is shown in [8]. Another source of inspiration is [9], which is a review of
similarity measures for probabilistic distributions represented using histograms.
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Fig. 1. Example of calculating the accuracy of a query result.

Nevertheless, no reference has been made to the reception of results of a given
measure by end users. It focused only on its mathematical properties.

Looking for a measure of the accuracy of query results, the focus was on the
comfort of its reception by the engine users. It was assumed that both the set
of accepted properties of the measure and the final result of the measurement
should be consistent with the intuition of users. Basing on previous practical
experience, it was assumed that primarily business analysts and field experts
will be the users of the approximate engine, as well as all other people who
for some reason will work with data. In view of the above, it was decided to
refer to the opinions of various groups of actual and potential users of such an
engine. Since it was assumed from the very beginning that the basic building
block for the accuracy measure of the query results will be the comparison of
two corresponding atomic values, all research has focused only on this aspect. In
addition, due to the assumption of absolute treatment of categorical attributes,
the focus was only on numerical results.

The search process began with creating a list of properties that such a mea-
sure should or could possess. To begin with, referring to the common understand-
ing of the similarity function, it was assumed that the obtained value will belong
to the interval [0, 1]. It was also assumed that the accuracy calculated with the
use of this measure must be monotonically increasing in relation to the generally
perceived perception of people who will use the engine in the future. Additionally,
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Table 1. Considered properties of measure.

Property name Property specification

Identity Q(x, y,N) = 1 ↔ x = y

Symmetry Q(x, y,N) = Q(y, x,N)

Strong zero y �= 0 → Q(0, y,N) = 0

N-monotonicity N1 < N2 → Q(x, y,N1) < Q(x, y,N2)

Complementarity Q(x, y,N) = Q(x′, y′, N)

Maximum error limN→∞Q(x,N,N) = 0
where z′ is a score of complementary query
(for count(*) it is assumed z′ = N − z)

Big data: limN→∞Q(x, y,N) =

{
(a) some kind of function f(x, y)

(b) some kind of constant value

by supporting preliminary analyses of selected applications, a handful of possible
properties was formulated that could potentially be of interest to users. Those
properties are displayed in Table 1.

In theory, each of these properties could be accepted or rejected. The identity
of indistinguishable elements is the property of many similarity measures and its
adoption seems quite intuitive, however, as argued in [10], the human perception
of the same stimuli differs depending on their specifics. In the case of query
results, some doubts may arise, particularly whether different results can not be
considered as equal. While in the case of 1 and 10 it is rather obvious, in the
case of 1000000001 and 1000000010 it is not obvious at all. Symmetry, another
frequently accepted property of similarity, is also not entirely obvious. Will the
overestimation of the result by the approximate engine be received identically as
underestimate by the same value? Strong zero property clearly depends on the
context. In same situations, the difference between 0 and 1 is exactly the same
as the difference between 1 and 2, in others the difference is huge. Considering it
in terms of existence and non-existence, the first case is infinitely worse than the
second. N-monotonicity means that the error between 1 and 5 is more significant
when the number of all rows is 10 than when it is 100. In other words, the
measure would have to depend on N. The opposite of N-monotonicity would
be invariability understood as independence from N. Complementarity is a very
specific property when comparing query results. Accepting this property would
mean that the accuracy of the counting query at N equal to, for example, 1000
would be the same for 990 and 999 as for 10 (1000−990) and for 1 (1000−999).
This is quite problematic, because on the one hand 990 may seem more similar
to 999 than 10 to 1, but, on the other hand, the rejection of this property would
mean that the implementation of a complementary query (with NOT condition)
may give a different accuracy than the initial query, and yet the answer to both
of these queries brings equivalent information from the point of view of a decision
making process. Maximum error property allows to distribute the value of the
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Table 2. Six measures selected for further analysis.

Measure 1 Q(x, y) =

{
1 − |x−y|

|x|+|y| for x �= 0 ∨ y �= 0

1 otherwise

Measure 2 Q(x, y,N) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
1

MIN( x
y

,
y
x

)
+ 1

MIN( N−y
N−x

,N−x
N−y

)

for x �= 0 ∧ y �= 0

1 for x = 0 ∧ y = 0

0 for x = 0 � y = 0

Measure 3 Q(x, y,N) = 1 − |x−y|
max(x,N−x)

Measure 4 Q(x, y,N) = 1 − log(|x−y|+1)
log(max(x,N−x)+1)

Measure 5 Q(x, y,N) = 1 − |log(x+1)−log(y+1)|
log(N+1)

Measure 6 Q(x, y) =

⎧⎪⎨
⎪⎩

MIN(x
y
, y

x
) for x �= 0 ∧ y �= 0

1 for x = 0 ∧ y = 0

0 for x = 0 � y = 0

similarity function over the entire interval [0,1]. Big data property emphasizes
the problem of selecting a measure. With small N the case is relatively simple.
But such cases are usually not considered for approximate engines. For N at
the level of terabytes or petabytes the constant convergence measure practically
ceases to distinguish the results. On the other hand, measures with non-trivial
(functional) convergence tend to take a more severe treatment of small results
than large ones, which may or may not cause some discomfort to the engine user.

Due to the aforementioned aspect of the users comfort, we did not accept or
reject any of the above properties arbitrarily. Three groups of people were con-
sulted - internal experts developing an approximate engine, possessing strong
mathematical and analytical skills, real engine users who are experts in detect-
ing network attacks and potential users of such a system - students of Infor-
mation Management Faculty at the Polish-Japanese Academy of Information
Technology.

The question for internal experts was asked directly, that is, each of them
received a list of suggested properties with a brief explanation of their conse-
quences for the process of assessing the accuracy of query results and was asked
to indicate whether the measure of the accuracy of query results should consider
the given property or not. Opinions were divided into three groups: definitely
not (which was given (with) value 0), yes/no (which was given the value 1) and
deciding yes (which was given the value 2). The summarized results of internal
experts were presented in Table 3, from which it can be read that the most impor-
tant properties for this group are the Identity and Maximum error properties,
while the most undesirable is Strong zero property.

Before referring to the intuition of potential users of the approximate engine,
it was decided to propose several measures of accuracy of the results of count(*)
queries and prepare a survey on this basis. Many different similarity measures
have been tested, trying to soften and sharpen them, and to get a compromise
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Table 3. On the left summary opinions of internal experts regarding the properties of
measures. On the right summary intuitions regarding the properties of the measure-
ments of potential users of the approximate engine. 39 out of 42 respondents completed
the survey in accordance with the instructions.

Internal experts opinions Students opinions

Property Yes No Yes % Property Yes No Yes%

Identity 6 0 100% Identity 20 19 51.28%

Symmetry 2 4 33.33% Symmetry 16 23 41.03%

Strong zero 0 6 0% Strong zero 13 26 33.33%

N-monotonicity 3 3 50% N-monotonicity 16 23 41.03%

Complementarity 4 2 66.67% Complementarity 0 39 0%

Maximum error 6 0 100% Maximum error 39 0 100%

Big data 4 2 66.67% Big data - - -

between the measure that distinguishes the results of a wide range of queries
even at large N , and on the other hand did not give the impression of favoring
higher results at the expense of smaller ones. Six measures selected for further
analysis are displayed in Table 2.

Forty-two students of the last year of the first-degree studies at the Informa-
tion Technology Faculty were asked to complete a survey identifying intuitions
regarding the properties of the measures. These students were considered a very
good sample group of potential users of the approximate engine. The survey
contained the real and approximate results, the difference module, the ratio and
the proposed accuracy calculated in accordance with the six measures - the soft-
ened version of the measure 1 (1 − |x−y|

|x|+|y|+1 ), the measures 3–6, and the test
measure, the value of which was different from all previous ones. Respondents
were asked to select for each pair of results level of the accuracy consistent
with their intuition. Among the given pairs of results were those that allowed to
check the intuition of almost all of the previously presented properties. Summary
of respondents’ intuitions regarding the properties of measures is presented in
Table 3. It is clearly visible that all respondents indicated intuitively the property
of the maximum error, but no one indicated the property of complementarity. It
can be presumed, therefore, that the intuition of these two properties is firmly
established. It is clearly visible that the property of complementarity, despite a
very good logical justification, is completely unintuitive for potential users.

The last group to consult and collect opinions about the property of the
measure were real engine users who were experts in detecting network threats.
For this group, in contrast to the other two, the Strong zero property is extremely
important. It turned out that from the point of view of network traffic diagnostics
it is very important to match the actual results with approximate results to
detect existence or non-existence of a network attack. This distinction is more
important than the nominal number of attacks. Identity and non-trivial Big data
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Table 4. Properties of measures 1–6.

Property M 1 M 2 M 3 M 4 M 5 M 6

Identity + + + + + +

Symmetry + + − − + +

Strong zero + + − − − +

N-monotonicity − + + + + −
Complementarity − + + + − −
Maximum error + + + + + +

Big data Q(x, y) 2x
x+y

for x � y 1 1 1 x
y
for x � y

properties were also desirable for this group. The remaining properties were not
negated, but they were also not mentioned as important.

Taking all this into consideration, it was decided that the measure of the
accuracy of query results must have the following properties: Identity, Strong
zero, Maximum error, non-trivial Big data property (dependent on x and y).
The other three properties (Symmetry, N-monotonicity and Complementarity)
were considered possible but not necessary.

Table 4 presents whether the proposed measures possess several pre-defined
properties. It can be read from the table that Measure 2 (harmonic measure)
fulfills all properties and has a non-trivial Big data property - with N → ∞ the
accuracy of the query result still depends on x and y.

The basic disadvantage of the harmonic measure is its complexity and unin-
tuitive for the business user. However, it can be easily proved that the harmonic
measure is asymptotically equal to a much simpler measure 1, i.e.:

Q(x, y,N) =
2

1
MIN( x

y , yx ) + 1
MIN(N−y

N−x ,N−x
N−y )

→N→∞
2x

y

1 + x
y

Measure 1 has no N-monotonicity and Complementarity properties, which
were not indicated as necessary properties.

4 Intuitions About the Similarity of Query Results

Since it was assumed from the very beginning that the measurement of the
accuracy of the query result should be intuitive to the user, the question was
asked concerning the feeling about the similarity of numbers in general and the
similarity of the query results in particular. Information on the perception and
discrimination of the cardinality of numerical sets can be found in the neurobio-
logical literature, e.g. [11,12], in which two important aspects are emphasized -
distance effect and size effect. The distance effect meaning that two numerosities
are easier to discriminate when the distance between them is larger. The size
effect, on the other hand, meaning that for a given distance comparison is easier
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Fig. 2. Relationship between the ratios and the differences between the real and
approximate results for the medium version of the survey.

when numerosities are smaller. Both effects point to the fact that it is easier for
people to distinguish small cardinality than large. The research was conducted
both on non-symbolic sets (sets of dots) and on symbolic sets (numbers). It was
noticed that in symbolic sets, and such are numerical query results, the distance
and size effects are less pronounced, but they are still there [11]. It could there-
fore be assumed that the larger the numbers, the greater the differences between
them will be accepted, while with small numbers even small deviations will be
treated sharply.

We decided to conduct another survey to see how potential engine users will
judge the degree of similarity between real and approximate outcomes based on
their absolute difference and ratio. As part of this research, the number of pairs
of potential query results obtained on real and approximate data was reduced
to 25. Respondents were asked to organize the obtained pairs of results from the
most similar (marked by number 1) to the least similar ones (marked by number
25). They were to choose a similarity criterion basing on own intuition. A group
of respondents, consisting of 110 students of the second-degree studies at the
Information Technology Faculty of the Polish-Japanese Academy of Information
Technology, was divided into three subgroups. The first subgroup, composed of
34 people, rated small results (in the order of 102), the second subgroup of 38
people, rated average results (104), and the third subgroup of 38 people rated
high results (106).

Figure 2 presents the relationship between the ratios and the differences
between the real and approximate results for the medium version of the sur-
vey. In the small and large versions, the ratios are almost identical, and the
differences are respectively smaller in the small version and larger in the large
version. Points that were determined as the specific validation test were marked
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Table 5. Survey results.

Questionnaire Small Medium Large In total

Number of respondents 33 38 38 109

Number of accepted surveys 22 (67%) 24 (63%) 20 (53%) 66

The number of results close to the difference 8 8 8 24

The number of results close to the ratio 9 7 6 22

Number of unspecified results 5 9 6 20

with larger squares. If the respondent had not kept monotonicity within these
points, his survey was rejected because it was considered insufficiently credible.

At the stage of processing survey results, order numbers were assigned to
pairs of query results sorted according to |x− y|, where x is the result obtained
on real data, and y is the result obtained on approximate data. The pair of
results with the smallest difference in each group was individually assigned 1,
while the pair of results with the largest difference was assigned to 25. The same
was done by sorting the results according to the proportion described by the
MIN(x

y ,
y
x ) formula (omitting the situation of the query result equal to 0, which

was not in the surveys). In this case, the pair of results with the largest quotient
in each group were individually assigned 1, while the pair of results with the
smallest quotient was assigned 25. Then, for each survey that positively passed
the above validation test, the distance L1 of its ranking was calculated from
the difference and the proportion. Due to the fact that respondents sometimes
replicated ordinal numbers - deliberately or as a result of a mistake - it was
decided to use standardized figures for the sum of all the numbers used.

The main goal of the research was to determine if the intuitions of users are
closer to the difference or ratio. It was assumed that the result is close to the
difference if the distance between the result and the difference is less than 0.2.
An analogous assumption was made for ratios. Table 5 presents the obtained
results. It can be noticed that the intuition of about one-third of respondents
who passed the validation test is close to the difference, the intuition of one-
third of the respondents is close to the ratio, and the intuition of the remaining
respondents deviates from both the difference and the proportion.

Before doing the test, differences in the assessment of small and large results
were expected, i.e. it was predicted that with small results respondents would
more often approach the difference, and with large the ratio. However, this was
not confirmed by the analyzed surveys. Analyzing the results, however, it is
worth noting that if the larger numbers were assessed, fewer users would pass the
validation test, which means that the higher the numbers, the less systematized
the accuracy evaluation and the more dependent on the moment of assessment.
This observation is consistent with the distance and size effects cited earlier.
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5 Conclusions

This paper presents a new approach to empirical evaluation of the accuracy of
the select statement results produced by a relational approximate query engine,
emphasizing the meaning of a similarity of approximate and exact outcomes of
SQL queries from the perspective of practical applicability of approximate query
processing solutions. We propose how to design a similarity-based procedure that
lets us compare approximate and exact versions of the results of complex queries.
Additionally we collected and presented the results of survey on users intuition
regarding the considered aspects of similarity.

The surveys clearly show that the intuitions of users about the measure of
the accuracy of query results are very different, both in terms of the property of
measure and the similarity of approximate and actual results. A very strongly
established property of the measure is the maximum error, while a very poorly
established property is complementarity. Strong zero property is absolutely nec-
essary for some people, while others reject it. Symmetry and N-monotonicity are
important for about one third of users, Identity for more than half.

When it comes to the similarity of numbers, the intuitions of about one
third of users are close to the ratios, about one third are close to the difference,
while the intuitions of the remaining third part of users are away from both the
difference and the ratio. Perhaps this group is guided by a linear combination of
difference and ratio, but it is also not excluded that this is the result of incorrect
calculations. Determining this would require further research.
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B. (eds.) IJCRS 2017. LNCS (LNAI), vol. 10313, pp. 623–643. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-60837-2 50
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Abstract. Card sorting was used to gather information about facial
similarity judgments. A group of raters put a set of facial photos into an
unrestricted number of different piles according to each rater’s judgment
of similarity. This paper proposes a linear model for 3-way analysis of
similarity. An overall rating function is a weighted linear combination
of ratings from individual raters. A pair of photos is considered to be
similar, dissimilar, or divided, respectively, if the overall rating function
is greater than or equal to a certain threshold, is less than or equal
to another threshold, or is between the two thresholds. The proposed
framework for 3-way analysis of similarity is complementary to studies
of similarity based on features of photos.

Keywords: Similarity · Three-way decision · Card sorting
Linear model

1 Introduction

A basic idea of three-way decisions (3WD) is thinking and problem solving in
threes [15]. According to a trisecting-and-acting model of 3WD, we divide a
whole into three parts and devise strategies to process the three parts [14,15].
While each part captures a particular aspect of the whole or consists of elements
of particular interest, their integration reflects the whole. By thinking in threes,
3WD may provide a simplification of processing the whole through processing
three parts. The theory of 3WD has been applied in many fields [6–9,13,16].

In a previous paper [3], we presented some preliminary results on applying
the 3WD theory to a card sorting problem. Card sorting has been successfully
applied to gain insight about the structure of information in different contexts [1,
2,10,11]. For our card sorting problem, we have a set of facial photos and a group
of raters. Each rater was instructed to sort similar photos into the same pile. A
pair of photos is similar if both photos are sorted into the same pile. A pair of
photos is dissimilar if the photos are sorted into different piles. An analysis of
rating results shows that there is a large variance amongst raters in terms of the
number of piles and the sizes of those piles (see Fig. 1).

To arrive at an overall rating of similarity of photos by combining judgments
from individual raters, it seems unrealistic to consider only two values for each
c© Springer International Publishing AG, part of Springer Nature 2018
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rater, i.e., similar or dissimilar. Following the philosophy of 3WD, we take three
values: a pair of photos is considered to be similar if the group agrees on their
similarity at or above a certain degree and to be dissimilar if the group agrees
on their similarity at or below another degree; otherwise, the pair is considered
to be divided or undecided.

In our earlier paper [3], we only considered a simple function to synthesize
ratings from a group of raters. The main objective of the current study is to
propose a general 3-way framework for analyzing facial similarity. We suggest
and study a more general function for pooling together individual ratings, in
order to arrive at an overall 3-way rating of similar, dissimilar, and divided. The
results of such a 3-way analysis would be useful for an in-depth understanding
of and further applications of group ratings.

The purpose of this work is to understand what, if any, differences can be
reliably extracted from the card sorting data so that raters who may define
similarity in different ways can be identified, classified, and perhaps quantified.
Three-way classification of similarity may be viewed as a first step towards a
more comprehensive model of similarity analysis.

Once we have a 3-way classification, we can attempt to extract features that
contribute to the similarity and dissimilarity of photos. A more in-depth analy-
sis of undecided photos may also reveal possible reasons that raters are divided.
Similarity analysis based on card sorting by people is complementary to sim-
ilarity analysis based on photo features. It will be interesting to compare and
integrate the two types of approaches. For example, based on photo features, we
may be able to ask raters to sort a sample set of photos, rather than the entire
set. Alternatively, card sorting by people may provide insights into the design
of a feature-based similarity measure. Results from the present study serves as
a basis for these future investigations on similarity.

2 A Simple Linear Model of Three-Way Analysis

A group of raters (N = 25) were asked to sort a set of facial photographs
(M = 356) into an unrestricted number of piles based on how they judged
similarity of the photos. Through this activity, each rater contributed to the
assessment of the similarity amongst the photos. It is not possible for any rater
to directly consider the similarity of all

(
356
2

)
= 63, 190 pairs of photos. Data

about which comparisons were made directly (between the photo being sorted
and the top photo on each pile) and which indirectly was not recorded. Therefore,
a means of analysing the similarity judgements is sought in order to reduce the
number of photos under consideration in further studies. If there is more than one
strategy being used by different raters to judge similarity, we seek to focus our
efforts to understand these different strategies on the photos about which there
is possibly disagreement, those photo pairs whose similarity score is between the
two thresholds, α and β.

An algorithmic approach such as Eigenfaces, popularized by Turk and Pent-
land [12], provides a feature-based calculation of facial similarity. In contrast, our
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card sorting approach to similarity attempts to understand the human percep-
tion of facial similarity. Ideally, the piles made by each rater represent equivalence
classes. More pragmatically, the boundaries between the piles are likely not so
clear. Intuitively, the larger the pile the more difficult it is to maintain the same
high threshold for inclusion of photos in that pile.

Raters were instructed to not create any pile with only a single photo, because
such a pile conveys no similarity information, only that such a photo is unre-
lated to all others. A small number of piles with single photos were removed
from further consideration. Also, during data entry, a small number of photos
were not recorded. Therefore, not all raters made judgements based on all 356
photographs. Table 1 presents the total number of photos considered by each
rater.

The stimuli used in the card sorting activity combined two sets of facial
photos: one set of 178 Caucasian male subjects and the other set of 178 First
Nations male subjects. All photos are identified by a 4 digit code, which is a
departure from earlier publications describing the card sorting study (see Hept-
ing et al. [4,5]). The first digit indicates the stimulus set (1: Caucasian, 2: First
Nations) followed by 3 digits to indicate the sequence number in that stimulus
set (0–177).

Let us begin with an expression for the similarity, S, of two photos A and B,
according to a rater, r, who has made nr piles P1, . . . , Pnr

. For each rater, we
can obtain a binary interpretation of similarity in terms of piles, namely, photos
in the same pile are similar and photos in different piles are dissimilar.

Let P denotes the set of photos. Formally, we define a function sr : P ×P −→
{0, 1} for rater r as follows:

sr(A,B) =

{
1, A and B are in the same pile,
0, A and B are in two different piles.

(1)

In order to obtain an overall evaluation of similarity, we can synthesize ratings
from all raters. A simple fusion function is a summation of ratings of individual
raters, that is,

S(A,B) =
1
N

N∑

r=1

sr(A,B). (2)

It is simply the average of the similarity values given by individual raters. We
have 0 ≤ S(A,B) ≤ 1, S(A,B) = 0 if all raters put A and B in different piles,
and S(A,B) = 1 if all raters put A and B in the same pile.

Raters may provide different classifications of photos, in terms of piles. It
seems reasonable to expect that a pair of photos is similar if a majority of raters
view the pair as similar and dissimilar if a majority of raters view the pair as
dissimilar. If the raters are divided in the middle, we introduce the case of divided
ratings. In this way, we have a 3-way interpretation of similarity. Given a pair of
thresholds (α, β) with 0 ≤ β < α ≤ 1, a 3-way rating of similarity is given by:
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Table 1. The number of photos, Mr, that each rater considered. As described in Sect. 2,
every rater may not have considered all 356 photos. The photo identifiers listed in the
third column are as described in Sect. 2. Of the photos not considered, only 2133 and
1067 appear more than once (respectively 3 times and 2 times).

Rater Mr: number of photos considered Identifiers of photos not considered

1 356

2 356

3 356

4 356

5 356

6 352 1063, 2043, 2095, 2170

7 353 1085, 2007, 2131

8 354 1164, 2001

9 356

10 356

11 352 1067, 2002, 2005, 2036

12 356

13 356

14 355 2133

15 350 1018, 1050, 1067, 2055, 2133, 2157

16 356

17 356

18 356

19 356

20 356

21 355 2133

22 356

23 356

24 356

25 355 2175

S(A,B) =

⎧
⎪⎨

⎪⎩

Dissimilar, S(A,B) ≤ β,

Similar, S(A,B) ≥ α,

Divided, β < S(A,B) < α.

(3)

The pair of thresholds reflect our confidence in deciding similarity and dissim-
ilarity. When α approaches 1, we become more confident about similarity, and
when β approaches 0, we become more confident about dissimilarity. In previous
studies, we used β = 0.4 and α = 0.6.



532 D. H. Hepting et al.

3 A Generalized Linear Model of 3-Way Analysis

This section looks at the large variance amongst individual raters and suggests a
linear function for combining ratings. The linear function takes into consideration
the variance amongst the raters.

3.1 Variance of Raters

From the card sorting data, we have two important observations: that the num-
bers of piles made by different raters are very different (see Fig. 1(a)), and that
the sizes of piles made by each rater differ to a large extent (See Fig. 1(b)).
The expected inverse relationship between Fig. 1(a) and (b) holds in general. In
Fig. 1(c), the histogram of the sizes of piles for all raters illustrates that small pile
sizes clearly predominate. It suggests that similarity judgments from different
raters are of different strengths.

3.2 A Linear Function of Fusion

The analysis of last subsection show two types of variance amongst raters, one
is the number of piles and the other is the sizes of piles. These two types of
difference affect the strength of similarity. The simple linear function (2) does
not reflect these differences. Accordingly, we introduce a generalized linear model
to account for both. More specifically, we propose the following linear function:

S(A,B) =
1
N

N∑

r=1

wr · sr(A,B). (4)

The weights, wr, reflect the differences of individual raters. The similarity func-
tion sr is generalised as sr : P × P −→ [0, 1], from the set {0, 1} to the closed
unit interval [0, 1]. The values 0 and 1 indicate full dissimilarity and full similar-
ity, respectively. A value between 0 and 1 indicates partial similarity and partial
dissimilarity. The generalised function sr reflects the differences in pile size.

For the weights, we assume that a rater who made more of piles, and con-
sequently, with smaller pile sizes is more informative and confident in assessing
similarity. This rater’s judgements should be assigned a larger weight. For the
similarity function, we assume that pairs in a pile of smaller size are more similar
than pairs in piles of larger size. These two assumptions are in fact two different
forms of an underlying assumption that, when deciding different piles, a rater
implicitly uses a threshold on a perceived degree of similarity. A pair of photos
is put into the same pile if the similarity is above the threshold.

3.3 Determining the Weights

Without considering the number of photos in each of the piles that a rater made,
a first attempt to quantify the differences between raters can be made by looking
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Fig. 1. Raters and the piles they made, organized by increasing number of piles. In
(a), the number of piles made by each rater is plotted on the vertical axis. In (b), the
sizes of the piles made by each rater is summarized with a boxplot, where the median
pile size for each rater is indicated by the bold line. The expected inverse relationship
between number of piles and sizes of piles per rater holds in general, but with plenty of
variability. In (c), the histogram summarizes the sizes of piles for all raters and small
pile sizes clearly predominate.

at the number of piles, nr, made by rater r. We assume that the more piles made
by a rater, the more reliable the rater’s ratings. This suggests that any positive
monotonic increasing function of nr will serve the purpose.

A very simple weighting function, based on the number of piles that each
rater made, is given by:
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w1r = 1 − 1
nr

. (5)

The function has the minimum value of 0 when nr = 1, that is, the rater does
not do any rating by putting all photo into one pile. As the number of piles
increases, the weight increases and approaches 1. The maximum value of 1−1/M
is achieved when nr = M , where M is the number of photos. In this case, each
pile only contain a single photo. The rater considers a photo to be only self-
similar and all non-identical photos are pair-wise dissimilar. Although the two
extreme cases are theoretically interesting, they normally will not happen in real
ratings.

We can also directly use the number of piles as weights for the raters. By
normalisation, we have the following weighting function:

w2r =
nr

max
1≤i≤N

(ni)
, (6)

where N is the number of raters. The maximum weight of 1 is assigned to a rater
who produces the largest number of piles. A rater who produces the least num-
ber of piles is assigned the minimum weight of min1≤i≤N (ni)/max1≤i≤N (ni).
Like Eq. (5), the theoretical minimum value is 1/max1≤i≤N (ni), which may not
actually happen in real rating. In contrast, the maximum weight of 1 is actually
realizable.

The two weighting formulas (5) and (6) do not consider the sizes of different
piles. In general, we can design a weighting formula by considering detailed
information about similarity ratings. One can look at the ratio of the number of
photo pairs rated similar by a rater over the number of all possible pairs. Raters
who made fewer, larger piles will have a larger number of similar pairs than raters
who made more, smaller piles. That is, any positive decreasing transformation
of the ratio may serve as a weighting formula. A possible formula is given by:

w3r = 1 −

nr∑

i=1

(|Pi|
2

)

(
Mr

2

) , (7)

where Mr is number of photos that rater r actually considered when rating
similarity. This formula has the same value as the formula given by Eq. (5) for
the two extreme cases. More specifically, the minimum weight 0 is obtained if a
rater only has one pile. The maximum weight of 1 is obtained when a rater puts
each photo as a separate pile. In general, the fewer the similar pairs, the closer
to 1 will be the weight.

For our data set of 356 photos and 25 raters, Fig. 2 summarizes the weights
obtained from the three formulas. It can be observed that the three formulae
behave similarly: the weights generally increase as the number of piles increases.
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Fig. 2. Plots of the three weighting functions, from Eqs. 5, 6, and 7.

3.4 Determining the Individual Similarity Values

For a specific rater, we can generalize the binary similarity function (1) by taking
the sizes of the different piles into consideration.

Let k1, . . . , knr
denote the sizes of the nr piles, P1, . . . , Pnr

, made by rater r.
We assume that the strength of similarity for a pair photos depends on the size
of pile into which the pair is sorted. More specifically, the larger the pile, the
weaker the degree of similarity. If we assume that the degree of similarity is 1 for
pairs in a smallest pile, the similarity will decrease as the size of a pile increases.
This immediately leads to the following generalised similarity measure: for two
photos A and B,

s1r(A,B) =

⎧
⎪⎨

⎪⎩

min
1≤i≤nr

(ki)

kj
, A and B are in the same pile Pj ,

0, A and B are in two different piles.
(8)
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It can be seen that s1r has the maximum value of 1 for pairs in a smallest pile
and increases as the pile increases. The binary similarity defined by Eq. (1) is a
special case. When k1 = . . . = knr

, that is, all piles given by rater r are of the
same size, we have sr(A,B) = 1 if A and B are in the same pile and sr(A,B) = 0
if A and B are in different piles.

Formula (8) uses the size of a pile. When studying similarity, we consider
the number of pairs produced by a pile. Alternatively, we can use the following
pair-based similarity measure: for two photos A and B,

s2r(A,B) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
1≤i≤nr

(
ki
2

)

(kj2 )
, A and B are in the same pile Pj ,

0, A and B are in two different piles.

(9)

Again, the maximum similarity value is assigned to a pair from a smallest pile.
However, similarity value of Eq. (9) will decrease faster than the value of Eq. (8)
when the size of a pile increases. Their minimum values are normally different.

Once we introduce weighting formulas for individual raters and generalize
similarity value into unit interval [0, 1], we can form different linear models as
defined by Eq. (4). Furthermore, we can immediately apply Eq. (3) to obtain
3-way division of similarity, dissimilarity, and divided. An important question is
how to interpret and determine a pair of thresholds in a general linear model,
which will be a topic of a future paper.

4 Conclusion

Three-way analysis of facial similarity offers a new viewpoint for interpretation.
While the similarity or the dissimilarity of a pair of photos is the result of a
large degree of agreement of a group of raters, the divided judgment is the
result of disagreement. This 3-way classification provides an effective method
for dealing with uncertainty involved in facial similarity judgments. This study
only considers the step of 3-way division of similarity. As future research, we
plan to investigate each of these three divisions with pairwise comparisons in
order to obtain a better understanding of facial similarity. Furthermore, it will
be interesting to combine the similarity analysis based on human perception
with that based on feature calculation to create a more comprehensive model.
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Abstract. This paper proposes a method for empirical comparison of
distances for agglomerative hierarchical clustering based on rough set-
based approximation. When a set of target is given, a level of clus-
tering tree where one branch includes all the targets can be traced
with the number of elements included. The pair (#clustersofalevel,
#elementsofacluster) can be viewed as indices-pair for a given clus-
tering tree.

Keywords: Agglomerative hierarchical clustering · Distances
Empirical comparison

1 Introduction

Introduction of a hospital information system enables us to store all the clinical
information and to apply machine learning and data mining methods to those
data [1,7,8]. For example, ordinary statistical methods are applied for hospital
management [13,14], temporal data mining are applied for capturing behavior
of medical staff and for analyzing disease progression [3,9,11].

Clinical plans can be also extracted from histories of executed clinical actions.
Iwata and Tsumoto proposed a construction of clinical pathway from histories
of executed nursing orders [6,12].

In these analysis, clustering methods play an important roles because clus-
tering results will capture not only rediscovery of medical knowledge but also
some new discovery which are unexpected to domain experts.

In most cases, euclidean distance was used for clustering. However, many
types of clustering distances have been proposed [2], and it is not clear whether

c© Springer International Publishing AG, part of Springer Nature 2018
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which clustering distances is suitable for construction of a nursing pathway. Also,
it is not easy to determine which clustering is better.

This paper proposes a method for empirical comparison of distances for
agglomerative hierarchical clustering based on rough set-based approximation.
The key point is that a clustering result are represented as a tree. Thus, if a
set of target items a given, we can trace the level where all the target items
are included in one group. The number of clusters at the level with the number
of items included in that level can be used as indices. For example, let us con-
sider the case when the number of target items is 7. If one cluster method will
generate a tree where one group includes only all the attributes with total two
clusters, let us describe the pair (2, 7/7). Then, if another clustering method has
(5, 20/7), we can say that the former clustering method is better than the latter
one with respect to the targets.

In this paper six distances and seven clustering methods were compared by
using the above pair. The target items are based on nursing cares necessary for
surgical operation of cataracta. Empirical results show that euclidean distance
is the best for obtaining a suitable clinical pathway for all clustering methods.

The paper is organized as follows. Section 2 gives research background, where
an example of a clinical pathway is shown. Section 3 defines a metric pair
obtained from a given clustering tree and a given target concept. Section 4 shows
an algorithm for empirical comparison. Section 5 shows experimental evaluation
in which the above proposed method was applied to the data of cataract opera-
tion. Finally, Sect. 6 concludes this paper.

2 Background

2.1 Clinical Pathway

A clinical pathway for a disease describes a schedule of medical care, which
is optimized during the hospitalization [4,15]. It is very important for efficient
clinical process management, but usually its construction is manually acquired
from doctors or nurses, according to their experiences. Let us give an example.
Figure 1 shows a clinical pathway on cataracta used in Shimane University hospi-
tal. The hospitalization period consists of three periods: preoperation, operation
and post-operation periods. The preoperation date is denoted by −1 day, and
operation date is by 0 day.

The pathway will be executed as follows. For the preoperation date, body
temperature (BT), pulse rate (PR) and blood pressure (BP) are checked and
preoperation instruction will be given. For operation date, BT, PR and BP are
checked, and the symptoms of nausea, vomitting and eye pain are inspected.
Then, during postoperation period, in addition to nursing orders for the opera-
tion date, coaching will be applied. Finally, if the status of a patient is stable,
the patient will be discharged five days after the operation.
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2.2 Clinical Pathway Construction

This subsection summarizes methods for clinical pathway construction [5,6,10,
12]. Tsumoto and Iwata firstly introduces combination of agglomerative hierar-
chical clustering and feature selection method for its construction [5,6] (Fig. 2.)
Clustering is applied to data on executed nursing orders where rows and columns
give nursing orders and date of hospitalization. Then, grouping of nursing actions
is extracted. Such groups can be used as classification labels, and information
gain is calculated for each attribute. Then, attribute will be grouped by the val-
ues of the gains. Since attributes are each date of hospitalization, such grouping
of attributes corresponds to clinical schedule (Fig. 4.)

It is notable that the above second step (calculation of information gain) is
actually a kind of grouping. Thus, clustering for attributes (attribute clustering)
can be applied for this purpose. Tsumoto et al. introduces combination of sample
clustering and attribute clustering, called dual clustering [12] and obtains the
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same performance as the former approach [6]. Tsumoto et al. generalize the
approach [10] with combination of data decomposition and dual clustering.

The method consists of the following five steps (Fig. 3): first, histories of
nursing orders are extracted from hospital information system. Second, orders
are classified into several groups by using clustering on the principal components
(sample clustering). Third, feature selection method is applied and the dataset
is decomposed into subtables. The second and the third process will be repeated
until the clustering results are converged.

Figure 4 shows the pathway generated by the above construction algorithm
shown in Fig. 3 The induced results show that coaching and wash, whose chrono-
logical characteristics are similar to the orders indispensable to the treatment
of glaucoma, were not included in the existing pathway. Furthermore, coach-
ing and wash should be treated as postoperation follow-up and routine process,
respectively.

The results show that the method is able to construct a clinical pathway
for this disease. Furthermore, the temporal intervals suggested the optimal and
maximum length of stay.

The above approaches are based on Ward’s method [2] with Euclidean dis-
tance. However, there exist many types of clustering even for agglomerative
types, such as complete-linkage, average-linkage. It is not well known which type
of clustering method and which type of distance give the best performance.

3 Definition

Definition 1 (Clustering Tree). A clustering tree T (D, strategy,metric) is
obtained by applying an agglomerative hierarchical clustering with a given strat-
egy and a metric to a dataset D. For example, T (D,ward, euclidean) is a clus-
tering tree of D obtained by Ward’s method with euclidean distance.
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Definition 2 (Representation of Clustering Tree: List form). Let
us a Dataset consist of n examples. A clustering tree T consists of
(level, data partition), such as:

T = {(1, {a1, a2, · · · , an}), (2, {a1, a2}, · · · ), · · · , (k, {a1}, {a2}, · · · .{an})}

It is notable that all the sets of a partition are single, whose number of the
partition is n.

For example, Let us consider a clustering tree shown in Fig. 5, consisting of
10 examples.

T = {(1, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}),
(2, {1, 2, 3, 4, 5, 6, 7}, {8, 9, 10}),

(3, {1, 2, 3, 4}, {5, 6, 7}, {8, 9, 10}),
(4, {1, 2, 3}, {4}, {5, 6}, {7}, {8, 9}, {10}),

(5, {1, 2}, {3}, {4}, {5, 6}, {7}, {8}, {9}, {10}),
(6, {1}, {2}, {3}, {4, }, {5}, {6}, {7}, {8}, {9}, {10})}

It is notable that this structure is not the same as a dendrogram obtained
by a given agglomerative hierarchical clustering method. In the case of Fig. 5,
corresponding dendrogram may be like Fig. 6, where vertical branch shows the
strength of the fusion. A dendrogram shows how two or more examples are
grouped according to the value of dissimilarities. Here, we focus on how data
are partitioned. Thus, we look down the dendrogram from the top level of the
tree. Accurate distance values are ignored, but the structure of the dendrogram
is conserved.
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{1,2,3,4,5,6,7,8,9,10}

{1,2,3,4,5,6,7} {8,9,10}

{1,2,3,4} {5,6,7}

{8,9} {10}

{8} {9}

{5,6} {7}

{6}{5}

{1,2,3} {4}

{1,2} {3}

{2}{1}

Fig. 5. Example of clustering tree

Definition 3 (Metric pair). A metric pair of a clustering tree
T (D,Strategy,Metric) with a target concept C is defined as:

(
Par(l),

|min(C ⊆ S|)
|C|

)

where l is the level of min(C ⊆ S) and Par(l) denotes the number of a partition
of the level l.

Example 1. Let us consider a clustering tree shown in Fig. 5, consisting of 10
examples. Each horizontal level shows the data partition. For example, the sec-
ond level has two partitions: {1, 2, 3, 4, 5, 6, 7} and {8, 9, 10}. Let a targe concept
have {1, 2, 3, 4}. Then, we can find this set at the third level where are composed
of 4 clusters. Then, the metric pair is given as (3, 4/4). If we take {1, 2, 3, 4, 5}
as a target concept, {1, 2, 3, 4, 5, 6, 7} in the second level is a super set, and since
no other small super set is not found, the pair is obtained as (2, 7/4).

4 Algorithm for Clustering Tree

A matching pair can be obtained after a clustering tree is calculated from an
original dendrogram. Figure 7 shows an algorithm for a clustering tree. At each
hiearchical level, first compare the data partition at the level with a target set.
If a target set is found at this level, the value of l is equal to this level. Then,
the system checks the lower hierarchical level. If any partition is not equal to
the target set at any level, the value of l is equal to 1.

Let us illustrate how the method works. From the dendrogram, the following
clustering tree is obtained.
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{1,2,3,4,5,6,7,8,9,10}

{1,2,3,4,5,6,7} {8,9,10}

{1,2,3,4} {5,6,7}

{8,9} {10}

{8} {9}

{5,6} {7}

{6}{5}

{1,2,3} {4}

{1,2} {3}

{2}{1}

Fig. 6. Example of dendrogram

[(2, {BP,BT/PR,Eye symptoms,NauseaV omitting, Pain,Coaching,Wash},
{Preoperation Instruction, Shampoo,BS(Ward), Nerve,Others,
Psychological, Shower,Bath, SPO2, Skin/Nail, (Ns)V italSign,

(Ns)BT/PR,DM, (Ns)BP,Guidance,
Fall prevention, Fall prevention(Bed)}),

(3, {BP,BT/PR},
{Eye symptoms,NauseaV omitting, Pain,Coaching,Wash},

{PreoperationInstruction, Shampoo,BS(Ward), Nerve,Others,
Psychological, Shower,Bath, SPO2, Skin/Nail, (Ns)V italSign,

(Ns)BT/PR,DM, (Ns)BP,Guidance,
Fall prevention, Fall prevention(Bed)}),

(4, {BP,BT/PR},
{Eyesymptoms,NauseaV omitting, Pain, }

{Coaching,Wash},
{Preoperation Instruction, Shampoo,BS(Ward), Nerve,Others,
Psychological, Shower,Bath, SPO2, Skin/Nail, (Ns)V italSign,

(Ns)BT/PR,DM, (Ns)BP,Guidance,
Fall prevention, Fall prevention(Bed)}),

(5, {BP,BT/PR},
{Eyesymptoms,NauseaV omitting, Pain}

{Coaching,Wash},
{Preoperation Instruction}

{Shampoo,BS(Ward), Nerve,Others,
Psychological, Shower,Bath, SPO2, Skin/Nail, (Ns)V italSign,

(Ns)BT/PR,DM, (Ns)BP,Guidance,
Fall prevention, Fall prevention(Bed)}), .....]
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Set the hierarchical level to i

Include i into the 
candidate list 

A  Partition?
⊆ Target Set ?

yes

Output the
candidate
list No

Obtain the partition list

i:=i+1

A  Partition?
= Target Set ?

yes

No

Fig. 7. Algorithm

The target set is {BP,BT/PR,Eye symptoms,NauseaV omitting, Pain,
Coaching,Wash} Then, first, the level is set to 2 (l = 2). P (2) is equal to 2.
Since the first element of data partition is exactly equal to the target set, this
level will include into the candidate list. Then, set l = 3. since {BP,BT/PR} is
separate from the target set, the condition fails and the process is stopped. Since
the candidate list is {3}, P (3) = 3. The target set is equal to the first element,
so the second element of the pair is 7/7.

If the target set is {Eye Symptoms,Nausea/V omitting, Pain}, the second
element of the data partition is a superset of the target set, not only the level,
but also the second level satisfies the condition. Since this partition is observed
in lower levels, the candidate list is equal to {3, 4, 5, 6 . . .}. The minimum value
of the level is equal to 3, and P (3) = 3. And the second element of the pair is
equal to 3/3.

4.1 How to Compare Metric Pairs

Comparison of metric pairs is two-fold (Fig. 9). First, the numbers of partition
P (l) are compared. The smaller pairs are better. Then, secondly, the matched
pairs are compared. The pairs whose value is close to 1.0 are better.

5 Experimental Results

Cases of cataracta, lenticular diseases with operation of both eyes and without
other operations (DPC code: 020110xx97x0x1), who were admitted to Shimane
University Hospital, were extracted from the hospital information system. We
selected 65 out of 134 cases where the pathway acquired manually from doctors
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and nurses was applied an completed and applied the clinical pathway construc-
tion algorithm with the following combinations of strategy and clustering dissim-
ilarities. Methods are Ward method, Single Linkage, Complete Linkage, Average
Linkage, Mcquittybmethod, Median method and Centroid method. Clustering
dissimilarities are Euclidean, Mahalanobis, Manhattan, Chebyshev, Minkowski
and Canberra.

Table 1 shows the metric pairs obtained by each strategy and dissimilarity,
where seven nursing orders are selected as a target.

Since (2, 7/7) will give the best form of a clinical pathway [6] for this dataset,
we can estimate the best combination of a method and a distance. The best
ones are: Ward method with Euclidean, Manhattan and Minkowski distance,
Single Linkage with Euclidean and Minkowski, Average Linkage with Euclidean,
Manhattan and Minkowski, Mcquitty method with Euclidean, Manhattan and
Minkowski, Median method with Euclidean, Manhattan and Minkowski and
Centroid method with Euclidean, Manhattan and Minkowski.
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Compare the first pair P(i)
with the target pair P(j)

Include P(i) into the 
candidate list

P(i) < P(j) ?

yes

Output the 
candidate
list

No

List {P(i)} is empty?

No
yes

Fig. 9. Empirical comparison of metric pairs

Table 1. Empirical comparison of clustering distances

Euclidean Mahalanobis Manhattan Chebyshev Minkowski Canberra

Ward (2,7/7) (3,23/7) (2,7/7) (2,8/7) (2,7/7) (8,7/7)

Single Linkage (2,7/7) (2,24/7) (1,25/7) (1,25/7) (2,7/7) (11,7/7)

Complete Linkage (2,7/7) (1,25/7) (2,7/7) (1,25/7) (2,7/7) (9,7/7)

Average Linkage (2,7/7) (3,23/7) (2,7/7) (1,25/7) (2,7/7) (5,7/7)

Mcquitty (2,7/7) (3,23/7) (2,7/7) (1,25/7) (2,7/7) (8,7/7)

Median (2,7/7) (3,23/7) (2,7/7) (1,25/7) (2,7/7) (9,7/7)

Centroid (2,7/7) (1,25/7) (2,7/7) (1,25/7) (3,7/7) (9/7/7)

6 Conclusion

This paper proposes a method for empirical comparison of distances for agglom-
erative hierarchical clustering based on rough set-based approximation. The key
point is that a clustering result are represented as a tree. Thus, if a set of target
items a given, we can trace the level where all the target items are included in
one group. The number of clusters at the level with the number of items included
in that level can be used as indices. Six distances and seven clustering methods
were compared by using the above pair. The target items are based on nursing
cares necessary for surgical operation of cataracta. Empirical results show that
euclidean distance is the best for obtaining a suitable clinical pathway for all
clustering methods.

Acknowledgements. This research is supported by Grant-in-Aid for Scientific
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Abstract. Missing values occurrence is an inherent part of collecting data sets
in real world’s problems. This issue, causes lots of ambiguities in data analysis
while processing data sets. Therefore, implementing methods which can handle
missing data issues are critical in many fields, in order to providing accurate,
efficient and valid analysis.
In this paper, we proposed a novel preprocessing approach that estimates and

imputes missing values in datasets by using LOLIMOT and FSVM/FSVR
algorithms, which are state-of-the-art algorithms. Classification accuracy, is a
scale for comparing precision and efficiency of presented approach with some
other well-known methods. Obtained results, show that proposed approach is the
most accurate one.

Keywords: Missing data � Imputation
Local linear neuro-fuzzy model (LOLIMOT)
Fuzzy support vector machine (FSVM)
Fuzzy support vector regression (FSVR)

1 Introduction

Nowadays, knowledge discovery is growing up significantly in social, economic and
medical application fields. In medical research, diagnosis is usually based on previous
patient’s information. The diagnosis accuracy of patient’s disease like diabetes, breast
cancer and others, is greatly depending on expert’s experiences [1]. One important
issue that is often regarded by many different researchers is missing data occurrence. In
practice, it is possible that an analyst cannot have all response variables for any reason,
which is called missingness in response. Therefore, missing information draw a
statistician’s attention to itself. Missing data may cause a lot of problems in processing
and analyzing data in data sets. Clearly, inferences that are discovered from complete
data are more accurate than the incomplete data, especially when missing rate is high.
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Since the incomplete data are an inherent part of studies and leads a lot of critical
conditions, most of researchers are looking for techniques which reduce effects of the
missing values in data analysis. Usually, detection of missing data in data sets, is easy
and these missing data appears as a null or wrong data. In addition, estimating the
missing values in variables which have a dependency with the other variables, is
critical. In these cases, estimation of missing values is based on substantial relationship
between corresponding variables. Rational solution for dealing with missing data,
depends on how the data has missed.

Missing data can be handled by three different kinds of methods [2]:

• Using of deletion methods. In these techniques, a record of data, which contains
missing values will be deleted from data set. Eliminating the record of missing data
may cause small data sample size.

• Using of means and modes in each feature that contains missing values. Imputing
missing values by means, is common in numerical data and also, mode imputation
is utilized in nominal data sets.

• Missing value imputation with machine learning and data mining methods.
Machine learning imputation techniques seem to be more accurate than the tradi-
tional methods [3].

This paper presents a novel preprocessing approach with usage of two
state-of-the-art imputation methods based on Local Linear Neuro-Fuzzy (LLNF) and
FSVM/FSVR algorithms. The quality of data will improve by applying these efficient
imputation methods in incomplete data sets. Then the imputed and completed data is
fed to MLP classifier algorithm for comparing imputation accuracy.

The rest of this paper is divided into following sections. Section 2 is completely
considering the background study of imputation methods and a review of MLP clas-
sifiers. Subsequently, Sect. 3 presents the neuro-fuzzy model and FSVM/FSVR.
Evaluation of proposed preprocessing method and usage of two mentioned algorithms
is along with in Sect. 4. Eventually, results are shown in Sect. 5 and the conclusion is
provided to be described in section.

2 Literature Review

This section presents a brief summary of missing concepts, missing value handling
methods, including some statistic and machine learning techniques.

2.1 Missing Data

Date sets can contain missing values which are distributed in all over them. Missing
data mechanisms and structures in multivariate data samples are grouped in three
modes:

• Missing At Random (MAR). When the distribution of missing values, just
depends on known values and not depend on attributes which have missing values.
In this case missingness is unavoidable [6].
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• Missing Completely At Random (MCAR). Missing data mechanism is called
missing completely at random if the distribution of missing values is independent
with other attributes, neither known attributes nor missing values [6].

• Missing Not At Random (MNAR). MNAR occurs when the distribution of
missing values can depend on the attributes with missing value [7].

This study, only considers the MCAR structure in data. In missing concepts,
missing data patterns could be introduced which shows the missing locations among
variables of data sets. Figure 1 depicts different types of missing data patterns. The
yellow areas indicate the missing data in the data set.

2.2 Missing Value Imputation

One of the known approaches for analyzing and handling missing data are imputation-
based methods. In these particular methods, missing values have been filled or imputed
by an estimated value, rather than eliminating missing data. Imputation methods appear
in a wide range, from simple methods to the most complex ones, but the most important
advantage of all imputation techniques is that they may not reduce the sample size [31].

2.3 Missing Value Handling Techniques

Due to analyzing and evaluating the proposed novel models in missing data problems,
section below contains a brief look at missing data treating methods as follows:

Deletion methods or Ignore Missing. Excluding all missing units from the data set
that can lead to biases and small sample size [8, 11].
Most Common (MC) Value Imputation. Uses the most common value of attributes
for imputing missing values, it combines with the mean imputation method for numeric
and continuous attributes [8–10, 12].
Event Covering (EC). EC includes 3 steps:

• Detecting statistical interdependency from data patterns.
• Clustering data based on detected interdependency.

Fig. 1. Different types of missing data patterns [4]
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• interpret the data patterns for each identified cluster [8].
Singular Value Decomposition Imputation (SVD). Firstly, missing values are esti-
mated with EM algorithm, then SVD will be computed. Ultimately SVD obtains a set
of mutually orthogonal expression patterns that can be linearly combined to approxi-
mate the values of every features in the data set [8].
Bayesian Principal Component Analysis (BPCA). BPCA consists of three basic
steps:

• Principal component (PC) regression
• Bayesian estimation
• A repetitive algorithm like EM [8, 13].

EM Algorithm (EM). EM algorithm is based on an irregular idea formulated to deal
with incomplete data. It is named EM, because expected value in each iteration of
algorithm, calculates and then a maximization performs [14].

2.4 Data Mining Techniques to Implement a Missing Value Estimator

K-Nearest Neighbor Imputation (KNNI). The missing values are imputed with
k-nearest neighbors based on a similarity measure between units. In numerical attri-
butes, it is computed the average and in nominal attributes, the most common unit in
neighbors has been chosen [8, 11, 15].

Weighted Imputation with K-Nearest Neighbor (WKNNI). In this method
weighted mean of these K nearest neighbors is imputed with missing values. Weights
have inverse relation with neighborhood distances [8, 12, 15].

K-means Clustering Imputation (KMI). All the units are clustered with the k-means
algorithm and missing values are estimated based on the cluster that belongs to it
[8, 12].

Fuzzy K-means Clustering Imputation (FKMI). Data points cannot assign to a
specific cluster and each of them belongs to all K clusters with different membership
degree. Membership degree is a number between 0 and 1 [8].

3 The Proposed Approach

In this section, the proposed approach and used methods are described. The main novel
approach of the study is the type of data preprocessing and modeling. A single model is
built for each feature that contains missing values. Data set is preprocessed by elimi-
nating records and features which contain missing values, except a feature that has
missing values and will be modeled and imputed. Then this modeling approach will be
continued until the missing values imputation is completed.

3.1 Data Preparing and Preprocessing

This section, demonstrates data preparing and preprocessing for two methods (LOLI-
MOT and FSVM/FSVR).
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Preparing Data Set. Assume a single missing value that is placed in a row and a
particular feature for preparing data set these steps are done.

• If the feature contains numerical value, the data preprocessing begins to apply into
the models.

• If the feature type is categorical, the values have to convert into numerical values
first. In order to do that, a number must be considered for each specified category.
But it should be noted that the gained numeric models must replace with missing
categorical values and estimated values should be assigned to its own category
based on pre-determined threshold at the end.

Preparing Train Data and Test Data. Then, in the next step of data pre-processing:

• If we have enough complete records of data in data set, it is divided to train and test
data. At most 2/3 of data is considered as train data and the other part is considered
as test data.

• The records which contain missing values are moved to test data part, so depends on
data set size, the test data can contain both missing data records and some com-
pleted data records.

Data Preprocessing. After preparing data set, data preprocessing is done.

• In this step, all samples that contain missing value, except the sample intended for
imputation, are deleted manually or by a generated code.

• In the case which is considered for imputation, if there is more than one variable
with missing values, those variables are omitted too.

The model is prepared to estimate the missing values.

3.2 Applied Methods

Local Linear Neuro-Fuzzy Model. The main approach in local linear neuro-fuzzy
models are dividing the input space into several sub-partitions which are simpler and
linear with validation functions in order to determine the valid area for each LLM.
A local linear neuro-fuzzy model structure is displayed in Fig. 2. Each local linear
model (LLM) is assigned to a neuron. A validity function is assigned to per neuron.

Fig. 2. A local linear neuro-fuzzy model structure [21]
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The local output of each local linear model is calculated by the weighted sum of the
inputs in their valid region. Then the overall output is calculated through the sum of all
local outputs for all neurons in the model, Eq. 1.

ŷ ¼
XM
i¼1

wi0 þwi1u1 þwi2u2 þ � � � þwipup
� �

UiðuÞ ð1Þ

Фi(u) or validity functions are very similar to the basic RBF functions. Validity
functions on input vectors are normalized and are defined as Eq. 2.

XM

i¼1
UiðuÞ ¼ 1 ð2Þ

Validity functions are usually normalized Gaussian functions. If these Gaussian
functions also have orthogonal mode, then it is defined as Eq. 3.

UiðuÞ ¼ liðuÞPM
j¼1 ljðuÞ

ð3Þ

Where lðuÞ defined in Eq. 4:

liðuÞ ¼ exp � 1
2

u1 � ci1ð Þ2
r2i1

þ � � � þ up � cip
� �2

r2ip

 ! !
ð4Þ

To create a local linear neuro-fuzzy model it will need 3 kinds of parameters.
Weight w, Center coordinate Cij and standard deviation rij [18, 19, 21].

1 u1ð1Þ u2ð1Þ � � � upð1Þ
1 u1ð2Þ u2ð2Þ � � � upð2Þ
..
. ..

. ..
. ..

.

1 u1ðNÞ u2ðNÞ � � � upðNÞ

2
6664

3
7775 ð5Þ

The regression matrices for all LLMs i = 1, 2, …, M are the same because Xi is
independent of i. The output of each neuron is calculated as Eq. 6.

ŷ
i
¼ Xiwi ð6Þ

As previously mentioned, the output of each LLM is valid in a specific region that
the corresponding validity function is close to 1. This action is done by minimizing the
loss function for each neuron, Eq. 7.

Ii ¼
XN

j¼1
UiðuðjÞÞe2ðjÞ ð7Þ
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According to the matrix below, Eq. 8:

Q
i
¼

Uiðuð1ÞÞ 0 � � � 0
0 Uiðuð1ÞÞ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Uiðuð1ÞÞ

2
6664

3
7775 ð8Þ

Optimized weight parameters are calculated as Eq. 9:

ŵi ¼ XT
i Qi

Xi

� �T
XT
i Qi

y ð9Þ

LLNF Non-linear Parameters Estimation. The center coordinate Cij and standard
deviation rij are related parameters to the validity functions. The input space that has
been partitioned into three rectangular areas by taking 3 validity function is displayed
in Fig. 3 Using the normal Gaussian validity functions makes center coordinate Cij
present center of the rectangle and standard deviations rij specifies a rectangular
extends in all dimensions. In order to make the relationship between validity functions
standard deviations with rectangles extends, the relationship is considered as follows
[21], Eq. 10.

rij ¼ kr � Dij ð10Þ

Determining the validity function parameters is a nonlinear optimization problem.
There are many techniques to determine these parameters, such as network partitioning,
clustering the input space and etc. [22].

Local Linear Model Tree Algorithm (LOLIMOT). LOLIMOT is an incremental
tree-constructional algorithm that divides the input space by axis-orthogonal splits. At
each iteration of the algorithm, a new law or local linear model (LLM) is added to the
overall model and validity functions which correspond to the current partition of the
input space are calculated and model weight parameters are obtained by using the least

Fig. 3. Partitioning the input space into three rectangular areas [20]
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square technique. The only parameter that must be pre-specified is a proportional factor
between rectangles extends and standard deviation. This parameter is usually consid-
ered to be equal to 1/3 [23].

LOLIMOT Algorithm. LOLIMOT algorithm contains an external loop for calculating
non-linear parameters and an inner loop for calculating weight parameter by applying
the local estimation approach [20].

1. Start with a basic model: Create validity functions for partitioning the space and
estimating the LLM parameters using the least square algorithm. M is the number of
elementary LLMs. If there is no pre-existing partition on the input space, M is set to
1 and starts working with one LLM (because validity function covers whole input
space with Ф1(u), use global linear model).

2. Choose the worst LLM: Calculate a local loss function for every i = 1, …, M local
linear models. It can be calculated by using the model’s weighted square error.
Choose the worst LLM according to efficiencies and consider i as the index for the
worst LLM. This can be done through max (Ii) equation.

3. Check all the dimensions: Consider the worst LLM for optimization. The
hyper-rectangle of this LLM is split into two halves with an axis-orthogonal split.
Try division in all dimensions. Then for each division in each dimension dim = 1,
…, P do following steps:

• Construct l membership functions for both hyper-rectangle.
• Construct all the validity functions.
• Estimate the parameters for new generated LLMs.
• Calculate the loss function for the overall model.

4. Choose the best division: The best division in the previous step is selected. The
validity function and new LLMs will be constructed and the number of LLM or
neurons is incremented to M = M + 1.

5. Test the threshold condition: If the threshold is met, then stop, else go to step 2
(Fig. 4).

Fig. 4. Operational steps for 4 step LOLIMOT algorithm on a two-dimensional input space [20]
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Support Vector Machine (SVM). SVM is one of the supervised methods that provide
mapping function from training data, this mapping function can be a classification or
regression function. In fact, SVM is a mathematical entity for maximizing a specified
math function. For Adjusting SVM learning, considering that there is some unknown
and non-linear dependency y = f(x), between the input vector of x with high dimension
and a nominal output of y is important [25]. The main idea behind the SVM algorithm
needs to use four essential concepts:

Separating the hyperplanes. This rule is about drawing a line between clusters. After
separating clusters of data, prediction of unknown elements would be easy because the
element would be definitely on one side of the separating line, Fig. 5.

The equation of the separating line can be modified with Eq. 11.

WiXi þ b ¼ 0 ð11Þ

It is considered that data set is like xi; yiji ¼ 1; 2; . . .; nf g that xi 2 Rd, yi 2
þ 1;�1f g and b is bias parameter (Figs. 6 and 7).

Fig. 5. Separating data classes by hyperplane [26]

Fig. 6. Existence of multiple separating hyperplanes [26]

Fig. 7. Choosing a separating hyperplane with maximum margin [26, 37]
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Choosing the best margin allows risks or errors between margins. The aim of SVM
is finding the maximum margin, Eq. 12.

maxðd1 þ d2Þ ! max
2
Wk k

� �
ð12Þ

Equations 11 and 12 can lead to Eq. 13 as below [34–38].

min wk k�! wk k ¼ WTWmin
1
2
WTW ð13Þ

The soft margin. Many of data sets are not separable with a single straight line. Its
causes the SVM dealing with errors and allows falling wrong elements on the
wrong side of the separating line. Consequently, for carrying out this issue SVM
can add a soft margin without affecting on its final results, Fig. 8.

In addition, we don’t want to allow many wrong classified elements. Describing
soft margin has to provide a parameter for the user to determine how many samples can
break separating hyperplane rule and how far from that margin they can be located. It’s
obvious the tradeoff between both maximum margin and have a correct classification of
samples will be complex [17].

In this case, according to Fig. 8, slack variables (ni) can use in goal function,
Eq. 14. C

P
i ni Specifies maximum errors [34–38].

F xð Þ ¼ min
1
2

Wk k2 þC
X

i
ni ð14Þ

With constraints:

S ¼ i j0\ai\Cf g

Fig. 8. Soft margin, allowing presence of faulty data among classified data [26, 39]
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The kernel function. Sometimes there are inseparable data set and there is no single
point that can separate two classes and even there isn’t any separating soft margin [27],
Fig. 9.

Kernel function can solve this problem by adding an additional dimension to the
data. For obtaining new dimension, values of the main function are squared. Kernel
functions, map data from a lower dimension to a higher dimension by selecting a
suitable function. Thus, data set would be separable in a higher dimension space which
is called feature space. The feature space in Fig. 9 converted to higher dimension by
kernel function in Fig. 10.

With kernel functions variable x maps to u xð Þ; Fig. 11.

Fig. 9. Linear, non-separable data set [26]

Fig. 10. Non-separable data set with augmenting new dimension [26]

Fig. 11. Mapping data from input space to feature space [40]
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It’s provable that there is at least one kernel function for each data set which can
separate data sets linearly. Although mapping data to a higher dimension can make
some problems like increasing the number of values and possible solutions.
Data mapping into excessive higher space causes special boundaries shown in Fig. 12,
[34–36].

Support Vector Regression (SVR). Support Vector Regression had been used for
recognizing patterns, then it has been developed for dealing with non-linear regression
problems [28]. SVR model is based on non-linear mapping of main x data to a higher
dimension feature space. In fact, SVR is a way of function estimating that maps an
input object to a real number base on training data [29]. In SVR, estimating errors are
using instead of SVM’s margin. Vapnik’s epsilon error function determines a
e-cylinder [6]. If predicted values were in the cylinder, the error would be zero, but for
all out of cylinder, the error would be equal to difference between predicted value and
cylinder e radius, Fig. 13, [16, 24].

Vapnik’s linear loss function with e sensitive range defined as Eq. 15, [29].

E x; y; fð Þ ¼ y� f x;wð Þj je¼
0 for y� f x;wð Þj j � e;
y� f x;wð Þj j � e if y� f x;wð Þj j[ e

�
ð15Þ

If SVR algorithm considered soft margin, the Eq. 15, with ni the slack variabale
would be as Eq. 16.

Fig. 12. Transferring training data to the higher dimension [26]

Fig. 13. Support Vector Regression [30]
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y� f x;wð Þj j � eþ ni ; ni � 0 ð16Þ

Fuzzy Membership. Fuzziness should be used in systems which their information is
not precise and certain. A model of a vague phenomenon might be presented as a fuzzy
relation that introduced by ‘Lotfi zadeh’. A membership function for a fuzzy set ‘A’,
with x statistical population, is s_i:x! [0,1]. While each xi element mapped to a value
between 0 and 1. This value is called fuzzy membership, which calculates the amount
of element’s membership in a fuzzy set [31–33].

Fuzzy Support Vector Methods. Support vector technologies are strong tools for
classification and regression, but there are some restrictions in this theory. In SVM,
each training element belongs to just one class. In many applications, some of the input
points are not assigned to a specific class. Also, some points, are meaningless due to
noises and it is better to ignore them. Considering fuzzy membership for support vector
methods make them able to reduce the impacts of noises and outlier data [32, 33].

It can be mentioned that in many real-world applications, training data have dif-
ferent effects, also some of them are more important in classification problems.
Therefore, in classification algorithms, meaningful training data, must be classified
correctly and classifying or not classifying of some of those points like noises, is not
important [41, 42].

In standard SV algorithms, the importance of number of errors for all training
elements is considered the same, while it should not be like that. The importance of
each element can be calculated with fuzzy logic in training phase, and then instead of
hard decision in decision phase, a soft decision can be gained [41, 43].

Local Outlier Factor (LOF). One of the algorithms for determining outlier points is
LOF. This algorithm by comparing local density of an element with local density of its
neighbors, can specify areas with same densities or specify elements which have
natural lower density. Thus, this algorithm is able to determine outliers in a data set and
fuzzy membership of each element is calculated according to that. In this paper, fuzzy
membership of each element is calculated with LOF algorithm [44].

4 Experimental Study

Each applied data set has missing values naturally, therefore our goal is to estimate
missing values based on 14 missing value imputation methods. 12 of these methods are
based on Luengo et al. study. They have been developed a tool called “KEEL” in order
to impute and classify incomplete datasets. Our proposed approach is implemented
with 2 mentioned methods and also, has been compared with those 12 methods [8].

This section of study, describes the experiments which had been performed for our
study. First of all, the incomplete units are imputed in data sets with imputation
methods and secondly, the result data sets that are completed are fed to MLP neural
network as a classifier. Finally, the classification error on each completed data set
which had been imputed by an individual imputation method is compared. This section
also included the graphical analysis of these different imputation methods.
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4.1 Data Sets

Seven individual data sets had been selected from UCI repository in order to experi-
ment study. The properties of these applied data sets are described in detail in Table 1.

In Table 2, used parameters with their amount, is shown for each algorithm.
Determined parameters in Table 2, had best results on used data sets.

4.2 Graphical Analysis of the Classification

Accuracy of All Applied Methods. Two applied algorithms are compared with 12
other algorithms which are mentioned in previous sections. These figures depict results
of all compared methods and indicate rate of correctly classified in each dataset. As
which have been shown in figures it is obvious that suggested algorithms have higher
range of accuracy based on these datasets Figs. 14, 15, 16, 17, 18, 19 and 20. Also,
Figs. 21, 22, 23 and 24 show the differences between the target data and the predicted
data by the used methods, i.e., LOLIMOT and FSVM/FSVR, on Wisconsin data set.

Table 1. Properties of seven chosen individual data sets from UCI repository

Data set #Records #Features #Samples #Classes %Missing
values

#Records with
missing value

Cleveland 303 13 3939 5 0.14% 6
CRX 689 16 11024 2 0.61% 37
Post-Operative 90 9 810 3 0.37 30
Wisconsin 699 10 6990 2 0.23% 16
Breast 286 10 2860 2 0.31% 9
Autos 205 26 5330 6 1.11% 52
Mushroom 8124 23 186852 2 1.33% 2438

Table 2. Considered methods in experimental study
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Fig. 15. Classification accuracy of different
methods on Cleveland dataset

Fig. 14. Classification accuracy of different
methods on Autos dataset.

Fig. 16. Classification accuracy of different
methods on Mushroom dataset.

Fig. 17. Classification accuracy of different
methods on Breast dataset

Fig. 18. Classification accuracy of different
methods on Wisconsin dataset

Fig. 19. Classification accuracy of different
methods on CRX dataset
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5 Conclusion

Although our proposed approach enforces computational burdens, it delivers high
accuracy results. Thus, this approach can be recommended in those studies, that
computational complexities can be disregarded.

According to obtained results, it has been recognized that used algorithms in
missing data imputation, can model the train data and also predict test data with high
precision and high accuracy. LOLIMOT can gain more accuracy by applying divide
and conquer strategy and local linear models in order to solve a nonlinear problem. The

Fig. 20. Classification accuracy of different
methods on Post-operative dataset

Fig. 21. Target test data and simulated test data
by FSVM/FSVR

Fig. 22. Target train data and simulated train
data by LOLIMOT

Fig. 23. Target train data and simulated train
data FSVM/FSVR

Fig. 24. Target test data and simulated test data by LOLIMOT
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main reason for precise results of FSVM/FSVR is the usage of fuzzy membership in
modelling train data. In addition, finding out a better initializing substantial parameters
will result in less computation time. Therefore, finding techniques to indicate better
initial parameters can help for better sufficiency. Also, using appropriate preprocessing
on different datasets will cause higher authenticity in results. As a suggestion, to
indicate better initial parameters and find more appropriate kernel functions, usage of
meta-heuristics methods can be useful.
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Abstract. This paper presents two modifications of the method of synthesis
and optimization of rule bases (RB) of fuzzy systems (FS) for decision making
and control of complex technical objects under conditions of uncertainty. To
illustrate the advantages of the proposed method, the development of the RB of
Mamdani type fuzzy controller (FC) for the automatic control system (ACS) of
the reactor temperature of the experimental specialized pyrolysis plant (SPP) is
carried out. The efficiency of the presented method of synthesis and optimization
of the FS RB is investigated and its comparison with the other existing methods
is carried out on the basis of this FC. Analysis of simulation results confirms the
high efficiency of the proposed by the authors method of synthesis and reduction
of the FS RB.

Keywords: Fuzzy controller � Rule base � Synthesis � Optimization
Pyrolysis reactor � Fuzzy control � Decision making systems

1 Introduction

Automation of control and decision making processes in the complex industrial sys-
tems gives the opportunity to substantially increase and improve their energy, eco-
nomic and operational indicators [1, 2]. Among the main components of such industrial
systems can be considered the electric and hydraulic drives, marine and land vehicles,
industrial and mobile robots, floating structures, pyrolysis and thermoacoustic plants
for utilization of secondary energy resources, etc., that are, in turn, complex techno-
logical objects with nonstationary and nonlinear parameters [3–5]. Also, such tech-
nological objects can operate in the conditions of uncertainty, which include uncertain
parametric and coordinate disturbances, as well as uncertain changes of operating
characteristics and modes. When creating decision making and control systems for
these technological objects, it is advisable to use advanced effective approaches based
on intelligent technologies and soft computing techniques [6–8]. Fuzzy logic is one of
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the most efficient soft computing approach which is widely used for designing of
decision making and control systems for the complex nonlinear and nonstationary
industrial objects, that operate in the conditions of uncertainty [9–11]. One of the main
features of fuzzy control and decision making systems is that they are developed
predominantly on the basis of expert assessments, and their efficiency essentially
depends on the qualifications and experience of the developers (experts) as well as of a
number of subjective factors [12, 13]. Therefore, for the development of highly
effective control and decision making systems based on fuzzy logic it is expedient to
create and apply effective methods and algorithms for fuzzy systems designing, that
will reduce the influence of subjective factors on the design process as well as increase
in general the quality indicators of control and decision making processes in the
conditions of uncertainty.

2 Problem Statement and Related Works

Many successful examples of development and application of fuzzy control and
decision making systems in such areas as: technological processes automation, tech-
nical and medical diagnostics, financial management, pattern recognition, etc., are
presented in literature [14–16]. Also, quite many studies are devoted to synthesis, as
well as structural and parametric optimization of fuzzy systems in order to obtain their
best possible performance [11, 15, 17–19]. Works on parametric optimization are given
in [19–23], in particular, on optimization of parameters of linguistic terms membership
functions (LTMF) [20, 22], preliminary coefficients [23], weights of fuzzy rules [21],
etc. In turn, methods and approaches of fuzzy systems structural optimization are
presented in papers [11, 20, 21, 24–31]. Among them the selection of defuzzification
methods [11, 21], reduction of the rule bases [25, 26] based on combining rule ante-
cedents [25], rule base interpolation [27], linguistic 3-tuple representation [28], evo-
lutionary algorithms [29, 30], multi-objective optimization [31] and other. For
successful structural-parametric optimization of fuzzy control and decision making
systems it is necessary to have a proper rule base, the compilation of which in some
cases in the absence of sufficient experience of experts and in the presence of sub-
stantial uncertainty can be a serious problem.

Thus, the main purpose of this work is development and research of the synthesis
and optimization method of the rule bases of Mamdani type fuzzy control and decision
making systems for their quality indicators and efficiency increasing.

3 Synthesis and Optimization of the Fuzzy Systems Rule
Bases

At the synthesis of a Mamdani type fuzzy system the vector of input variables X and
output variable Y are selected at the initial stage [11]. Thus, the vector X in the general
form can be represented as follows
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X ¼ Xif g; i ¼ 1; . . .; nf g; ð1Þ

where i is a number of FS input variable; n is a total number of FS input variables.
After that, the choice of the number of linguistic terms mi for each i-th input

variable of the vector X (i = 1, …, n) and linguistic terms k for the output variable Y of
the FS is performed [13]. Also, the types and parameters of the linguistic terms
membership functions for each input and output variables of the FS are previously
selected.

The total number of rules s of the FS RB is determined by the number of all
possible combinations of the linguistic terms of the FS input variables X and calculated
as follows [13, 21]

s ¼
Yn
i¼1

mi: ð2Þ

In turn, each r-th rule of the RB is a linguistic statement

21IF “ ” AND “ ” AND … AND “ ”  
... AND… AND “ ” THEN “ ”,

i

n

X a X b X d
X e Y z

= = = …
= =

ð3Þ

where a, b, d, e, z are the corresponding values of linguistic terms.
The consequents for each r-th rule of the RB (r = 1,…, s) are selected from a set of

possible consequents of rules, that consists of all k linguistic terms of the FS output
variable Y.

The task of synthesis and optimization of the FS RB is to find such a vector of RB
consequents Z, at which the required quality indicators of the FS will be sufficient [20].
In turn, the vector of RB consequents Z in general form can be represented as follows

Z ¼ Zrf g; r ¼ 1; . . .; sf g: ð4Þ

In many cases, at the synthesis of the FS RB, the vector of consequents Z is
determined on the basis of experts knowledge [11, 21]. At the same time, if the FS
quality indicators for this vector of RB consequents are not sufficient, then further
parametric adjustment and optimization of the FS can be carried out.

Another approach to the synthesis of the FS RB is the automatic generation of the
RB, which is used in the software package FuzzyTECH [32, 33]. In this software
package the “Rule Block Wizard” allows to formulate a rule base on the basis of the
analysis of the effect of each input variable from the vector X on the output variable
Y. In this case, the task of the expert is to assess the degree of influence of each input
variable on the output, which can be: “Very Negative”, “Negative”, “Not at All”,
“Positive” or “Very Positive” [33]. Based on this information the “Rule Block Wizard”
generates the RB and vector of its consequents Z in the automatic mode. If for the
generated RB the quality indicators are not sufficient, then the vector of its consequents
Z can be further adjusted by the expert in the manual mode.
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These two approaches are basically used if there is no full information about the
system and specific numerical value of the goal function I can not be calculated.

The proposed by the authors method can be applied in cases, when the goal
function I is defined and can be calculated. It provides an iterative search of the optimal
vector of the RB consequents Z at which the goal function I of the processes of control
and/or decision making will be optimal (I = Iopt). The search of the optimal vector of
the RB consequents Z is carried out by means of a sequential search of the consequents
of each rule of the FS RB.

In turn, this method has two modified versions: the first one is used for further
optimization of the FS RB, which is previously synthesized on the basis of the
experience of experts; the second one - for the synthesis of the FS RB in the automatic
mode in the absence or non-use of any experts knowledge.

The first modification of this method consists of the following steps.

Step 1. Method initialization. The preliminary synthesis of the FS RB on the basis
of expert knowledge and the choice of the goal function I is carried out at the given
stage. Synthesis of the structure of the FS RB is carried out on the basis of the
previously selected linguistic terms of the input variables X, and the set of possible
consequents for each rule is determined on the basis of previously selected lin-
guistic terms of the output variable Y. In turn, the initial vector of the RB conse-
quents Z is determined on the basis of the usage of experts knowledge and
experience and is set in FS RB. Also, at this step, the type of the goal function I is
selected for further optimization or efficiency evaluation of the control or decision
making process on the basis of the FS.
Step 2. Transition to the 1st rule of the FS RB. The transition to the 1st rule of the
RB is carried out at this stage to initiate the iterative procedures for finding the
optimal vector of the RB consequents Z.
Step 3. Checking of the Checklist. All vectors of the RB consequents Z, for which
the goal function I has been already calculated during the implementation of the
method, as well as the corresponding values of the goal function I are entered to the
Checklist. If the current vector of the RB consequents Z is already placed in the
Checklist, then the transition is carried out to Step 6, and in the opposite case the
transition is performed to Step 4.
Step 4. Calculation of the value of the goal function for the FS with the current
vector of the RB consequents. The calculation of the value of the goal function I for
the FS with the current vector of the RB consequents Z as well as recording of this
information to the Checklist is carried out at this stage.
Step 5. Checking of the completion of the previous optimization process of the
current rule. The optimization calculations for the current r-th rule are considered
complete if the values of the goal function I for each consequent from the set of all
k possible consequents for this rule has been calculated. If the checking has given a
positive result, then the transition to Step 7 is carried out. In the opposite case the
transition to Step 6 is performed.
Step 6. Setting of the next consequent from the set of possible consequents in the
current rule. After that, the transition to Step 3 is carried out.
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Step 7. Choosing of the consequent for which the value of the goal function is the
smallest. The choice of the consequent, for which the value of the goal function I is
the smallest among obtained at the optimization calculations for the current r-th
rule, and its fixation in this rule is carried out at this stage.
Step 8. Checking of the completion of the RB optimization. Optimization of the RB
is considered to be complete, if all the s rules of this FS RB have been optimized in
the previous steps of the method implementation. If the checking has given a
positive result, then the transition to Step 10 is carried out. In the opposite case the
transition to Step 9 is performed.
Step 9. Transition to the next rule of the FS RB. After that, the transition to Step 3 is
carried out.
Step 10. Completion of the optimization process of the FS RB. After that, the
re-implementation of the proposed method or parametric optimization of the FS and
its realization can be carried out for its further application in the decision making
and control processes.

The Checklist and its checking at Step 3 is used to avoid recurring calculations of
the goal function I for the FS with the same vector of the RB consequents Z. This
allows to get rid of unnecessary iterations, the number of which is equal to s – 1.

Thus, the proposed method in this modification allows implementing further
optimization of the FS RB, that is previously synthesized on the basis of expert
knowledge, to minimize the value of the goal function I of the decision making and
control processes. The total number of iterations smax of this modification of the
method is

smax ¼ ks� s� 1ð Þ: ð5Þ

At the absence of any experts knowledge for the FS RB synthesis in the automatic
mode the second modification of this method can be applied, which differs from the
first by the following steps.

The preliminary synthesis of the FS RB structure is carried out on the basis of the
previously selected linguistic terms of the input variables X and the set of possible
consequents for each rule is determined based on the previously selected linguistic
terms of the output variable Y at Step 1. The initial vector of the RB consequents Z, in
turn, is determined randomly and is set in the FS. Furthermore, the maximum number
of iterations at the implementation of the method smax is set at this stage. The type of
the goal function I of the decision making or control process on the basis of the FS is
also selected at this step.

The RB optimization is considered complete if the optimal value of the goal
function is achieved (I = Iopt) or if the maximum number of iterations smax, previously
set at Step 1, is carried out at Step 8. If the checking, carried out at this stage, has given
a positive result, then the transition to Step 10 is performed. In the opposite case, the
transition to Step 9 is carried out. In the case, when all of the s rules of this FS RB have
been optimized at the previous steps of the method, and the checking at Step 8 does not
give a positive result, then the transition to Step 2 is carried out, and iterative
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procedures for finding the optimal vector of the RB consequents Z continue again,
starting from the 1st rule of the RB.

Other steps at this method implementation are the same in both modifications.
Thus, in the second modification of the proposed method the consistent iterative

procedures for optimizing the rules of the RB from the 1st to the s-th can be carried out
l times before finding the optimal vector of the RB consequents Z, at which I = Iopt, or
performing the maximum number of iterations smax, that is set by the operator at Step 1.
In this case, the total number of iterations for this modification of the method may be
slightly larger than for the first modification.

To study the effectiveness of the proposed method and to compare it with the other
existing (presented) methods, the design of the RB of Mamdani type fuzzy controller
for the automatic control system of the reactor temperature of the experimental spe-
cialized pyrolysis plant [34] is carried out in this paper.

4 Synthesis and Optimization of the Fuzzy Controller RB
for the Reactor ACS of the SPP

The operating volume of the pyrolysis reactor and the maximum power of the gas
burner of this experimental SPP [34] are 100 L and 25 kW, respectively. The math-
ematical model of this pyrolysis reactor as a temperature control object can be repre-
sented as a transfer function WR(s) [35]

WR sð Þ ¼ TR sð Þ
PH sð Þ ¼

kRe�ss

T1sþ 1ð Þ T2sþ 1ð Þn ; ð6Þ

where TR(s) is the image of the reactor heating temperature TR (t); PH(s) is the image of
the gas burner heat power PH(t), which is the control action of the temperature ACS;
kR, s, T1, T2, n are the gain, time delay, time constants and order of the inertial link of
the transfer function of the SPP reactor, respectively.

The functional structure of the PD-fuzzy-controller for the temperature ACS of the
SPP reactor is presented in Fig. 1.

Fig. 1. Functional structure of the PD-FC for the temperature control of SPP reactor
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The following notations are accepted in Fig. 1: TB is the tuning block of the
RB; LB is the limiting block; uS is the reactor temperature set signal; uF, uTS, uDF, uFC
are the output signals of the functional converter, temperature sensor, defuzzification
block and FC, respectively; eT, deT/dt are the temperature control error and rate of its
change; kP, kD are the FC preliminary coefficients; ku is the normalizing coefficient of
the output signal. The given FC provides control of the temperature modes of the SPP
pyrolysis reactor on the basis of feedforward and feedback. The functional converter
implements the dependency uF = f(uS) = f(TS), which corresponds to the inverse static
characteristic of the open-loop control system of the reactor temperature.

In this case, the vector of the FC input variables X consists of temperature control
error eT, and rate of its change deT/dt.

The signal uDF acts as the output variable Y. In turn, for each input and output
variables, 5 linguistic terms (m1 = 5; m2 = 5; k = 5) of the triangular type (with
parameters in relative units) are chosen: BN (−1.5; −1; −0.5) – big negative; SN (−1;
−0.5; 0) – small negative; Z (−0.5; 0; 0.5) – zero; SP (0; 0.5; 1) – small positive; BP
(0.5; 1; 1.5) – big positive.

Thus, the total number of the RB rules s of the PD-FC according to formula (2) is
equal to 25. Each r-th rule of the given RB (r = 1,…, 25) is a linguistic statement

IF “εT = a” AND “
εTd
dt

= b” THEN “uDF = z”. ð7Þ

The consequents for each r-th rule of the RB (r = 1,…, 25), in this case, are chosen
from the set of possible consequents of rules, that consists of 5 linguistic terms (BN;
SN; Z; SP; BP) of output FC variable uDF. The vector of the RB consequents Z of the
given FC is presented by the expression (4). The gravity center method of defuzzifi-
cation is chosen for the given FC.

In turn, the synthesis of FC RB of the reactor ACS in this work is carried out in
several ways: (a) on the basis of experts knowledge, (b) on the basis of automatic
generation of rules in the software package FuzzyTECH and (c) with the help of two
modifications of proposed by the authors method.

The FC RBs developed on the basis of the experts knowledge and automatic
generation of rules in the software package FuzzyTECH are given in Table 1.

Table 1. FC rule bases developed on the basis of: experts knowledge/automatic generation in
the program FuzzyTECH

Rate of error change, deT/dt
BN SN Z SP BP

Error, eT BN BN BN BN BN/SN SN/Z
SN BN SN SN SN/Z Z
Z BN SN Z SP BP
SP SP/Z SP/Z SP SP BP
BP Z SP BP BP BP
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At the development of the FC RB on the basis of the first and second modifications
of the proposed method, in this case, the goal function I is represented by the equation

I t;Zð Þ ¼ 1
tmax

Ztmax

0

ETð Þ2 þ k1
dET

dt

� �2

þ k2
d2ET

dt2

� �2
" #

dt; ð8Þ

where tmax is the total time of the transient of the reactor temperature ACS; k1, k2 are
the weights; ET is the deviation of the real transient characteristic of the ACS TR(t,
Z) from the desired transient characteristic of the ACS reference model (RM) TD(t)

ET ¼ TD tð Þ � TR t;Zð Þ: ð9Þ

The RM, in turn, has the transfer function of the aperiodic link of the second order
with the set time constant.

The simulation of transients of the reactor temperature ACS is carried out at all
possible operation modes (at various types of input and disturbing influences) for
efficient optimization of all the rules of the RB, in particular, at calculating the value of
the goal function (8) on each iteration in the process of the method implementation.

At the development of the FC RB on the basis of the first modification of the
proposed method in its Step 1 the initial vector of the RB consequents Z is determined
on the basis of the experts knowledge as in the RB, that is given in Table 1. The further
optimization of the FC RB is carried out by an iterative search on the basis of Steps 2–
10 of the first modification of the proposed method. The total number of iterations,
calculated by the formula (5), in this case is 101.

At the development of the FC RB on the basis of the second modification of the
proposed method in its first step the initial vector of the RB consequents Z is deter-
mined randomly. The maximum number of iterations of the method is set smax = 350 in
order to perform iterative procedures of the RB rules optimization from the 1st to the
25th at least l = 3 times. The synthesis of the FC RB is carried out by an iterative
search on the basis of Steps 2–10 of the second modification of the proposed method.

The characters of change of the goal function (8) value in the process of FC RB
iterative optimization and synthesis on the basis of first (a) and second (a) modifications
of the proposed method are presented in Fig. 2.

Fig. 2. Goal function value in the processes of FC RB iterative optimization on the basis of the
proposed method: (a) 1st modification; (b) 2nd modification
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The FC RBs developed on the basis of first and second modifications of the
proposed method are presented in Table 2.

The characteristic surfaces of the FC with RBs, developed on the basis of automatic
generation in the program FuzzyTECH (a) and 2 modification of the proposed method
(b), are presented in Fig. 3.

The comparative analysis of the goal function values I at simulation of the reactor
temperature ACS based on FC with developed RBs in all possible operation modes is
presented in Table 3.

Table 2. FC rule bases developed on the basis of 1/2 modifications of the proposed method

Rate of error change, deT/dt
BN SN Z SP BP

Error, eT BN BN BN BN BN Z/SN
SN BN BN SN/BN SN Z/SN
Z BN SN Z SP BP
SP Z/SP SP SP/BP BP BP
BP Z/SP BP BP BP BP

Fig. 3. Characteristic surfaces of the FC developed on the basis of: (a) automatic generation in
FuzzyTECH; (b) second modification of the proposed method

Table 3. Comparative analysis of the goal function values for the reactor temperature ACS
based on FC with developed RB

ACS based on FC with developed RB I

On the basis of experts knowledge 6.568∙104

On the basis of automatic generation in FuzzyTECH 6.867∙104

On the basis of first modification of the proposed method 6.483∙104

On the basis of second modification of the proposed method 6.474∙104
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The results of computer simulation in the form of transients of the reactor initial
heating for the temperature ACS on the basis of FC with developed RBs are presented
in Fig. 4.

As can be seen from Table 3 and Fig. 4 the smallest values of the goal function
I and the best quality indicators of control have temperature ACSs on the basis of FCs
with the RBs, developed using the first and second modifications of the proposed by
the authors method, that confirms its high efficiency. In addition, for further increasing
of the quality indicators of this ACS after the synthesis and optimization of the RB with
the help of the proposed method, the further structural and parametric optimization of
its FC [17–20] can be carried out, in particular, optimization of the parameters of the
LTMF, preliminary coefficients, etc.

5 Conclusions

In this work the authors developed two modifications of the method of automatic
synthesis and optimization of the RBs of FSs, that can be used for automation of
decision making and control processes in the complex industrial systems under con-
ditions of uncertainty. The proposed method gives the opportunity to implement further
optimization of the FS RB, which has been previously developed on the basis of
experts knowledge, in order to increase its efficiency as well as to synthesize the FS RB
in automatic mode at the absence of any experts knowledge.

It is advisable to use the developed by the authors method for the synthesis and
optimization of the RBs of the decision making and management FSs in the following
cases: (a) in the presence of incomplete experts knowledge, (b) in the absence of any
knowledge of experts and (c) at a sufficiently large number of rules in the FS RB.

Fig. 4. Transients at TS = 700 °C of SPP reactor’s heating temperature for ACS with FC RB
developed on the basis of: 1 experts knowledge; 2 automatic generation in FuzzyTECH; 3 first
modification of the proposed method; 4 second modification of the proposed method
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To study the effectiveness of the developed method of synthesis and optimization
of the FS RB as well as to compare it with the other existing methods the development
of the RB of Mamdani type FC for the ACS of the reactor temperature of the SPP is
carried out in this work. The analysis of the results of computer simulation shows that
the lowest value of the goal function and the best quality indicators of the ACS of the
reactor temperature based on the FC can be achieved with the RBs, developed by the
proposed by the authors method, which confirms its high efficiency.

In further research it is planned to apply the proposed method of the RB synthesis
and optimization in conjunction with gradient, evolutionary and multi-agent methods
of parameters optimization for the complex structural and parametric optimization of
the decision making and control FS under conditions of uncertainty.
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Abstract. Decision making with complete and accurate information is
ideal but infrequent. Unfortunately, in most cases the available infor-
mation is vague, imprecise, uncertain or unknown. The theory of soft
sets provides an appropriate framework for decision making that may be
used to deal with uncertain decisions. The aim of this paper is to propose
and analyze an effective algorithm for multiple attribute decision-making
based on soft set theory in an incomplete information environment, when
the distribution of incomplete data is unknown. This procedure provides
an accurate solution through a combinatorial study of possible cases
in the unknown data. Our theoretical development is complemented by
practical examples that show the feasibility and implementability of this
algorithm. Moreover, we review recent research on decision making from
the standpoint of the theory of soft sets under incomplete information.

Keywords: Soft sets · Decision making · Incomplete information
Choice value · Combinatorics

1 Introduction

The aim of this paper is to propose an effective algorithm that facilitates a mul-
tiple attribute decision-making based on the theory of soft sets under incomplete
information, under the general assumption that the distribution of the incom-
plete data is unknown. Han et al. [16], Qin et al. [26] and Zou and Xiao [37] laid
the foundation of soft-set based decision making under incomplete information.
Here we follow a novel and different approach.

Complete and accurate information is ideal for decision making, but this
situation is rarely met in practice. In most cases the available information is
vague, imprecise, uncertain or unknown.
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Motivated by these concerns, Zadeh [35] marked the beginning of fuzzy sets
theory. At its core, partial membership allows that imprecise information about
more complex situations can be faithfylly represented and correctly handled.
Many extensions of fuzzy sets broaden their scope (v., [4,10] for definitions and
relationships). Relatedly, Molodtsov initiated the concept of soft set theory [25],
whereas Aktaş and Çağman [1], Ali et al. [9], Maji et al. [24], Sezgin and Atagün
[29] and Feng et al. [15] are further essential references. Concerning extensions
of soft sets, Maji et al. [22] introduced fuzzy soft sets (v., [2,3,8,20] for decision
making criteria in this model), and Wang et al. [30] introduced hesitant fuzzy
soft sets. Ma et al. [21] provided a review of decision making methods based on
hybrid soft set models.

Maji et al. [23] provides a criteria for selecting an object in a soft set scenario,
which consists of maximization of the choice values of the problem. Applications
of extended soft set theory include rule mining (Herawan and Deris [18]), data
mining processes (Qin et al. [27]), international trade (Xiao et al. [31]), and
medical diagnosis (cf., e.g., [7,11,12,17,34]). Recent advances in this field include
the parameter reduction problem in soft set based decision making (cf., [36]).

Zou and Xiao [37] observed that in the process of collecting data, the prac-
titioner often encounters unknown, missing or inexistent data, which suggests
the concept of incomplete soft sets (v., Han et al. [16], Qin et al. [26], Lin et
al. [19] and Alcantud and Santos-Garćıa [5,6] for additional analyses). Deng and
Wang [14] extended this notion to incomplete fuzzy soft sets in order to predict
unknown data in fuzzy soft sets.1

However, there are situations where there is perfect uncertainty about the
real value of missing data, or we are sure that the alternatives or attributes
are independent. In those cases we cannot presume that averages, probabilities
or any other specific evaluations produce reliable estimations as in previous
solutions. To deal with these situations Alcantud and Santos-Garćıa [6] presented
a completely redesigned approach to soft set based decision making problems
under incomplete information. It relies on the classical Laplacian argument of
probability theory and consequently it suggests to examine all completed tables
arising from the original incomplete table. All these tables are then evaluated
as is standard, i.e., by their respective choice values (cf., [23]). The alternatives
are ultimately ranked according to the number or proportion of tables where
they are choice value maximizers. The computational costs of this procedure
are examined in [6]. The conclusion is that with a large number of missing
values, the problem cannot be efficiently solved by bruteforce. Hence in [5] these
authors propose two modified algorithms that permit to tackle problems where
the number of unknown values is larger.

In this paper we produce an exact solution to that problem based on the
application of combinatorics. We provide an algorithm that implements the
mathematical solution. The computational performance of the algorithm is then
compared with prior solutions in the literature.

1 Although Yang et al. [32] showed some weaknesses of this approach, Deng and Chen
[13] successfully resolved these conflicting issues.
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The remainder of this paper is organized as follows. Section 2 briefly states
some terminology and definitions from soft set theory. Then we review the rele-
vant antecedents, define the technical notions that we need, and recall the dom-
ination sieve for incomplete soft sets. Section 3 shows the steps in the proposed
algorithm, as well as a fully developed example that proves the feasibility and
implementability of our proposal. Finally, Sect. 4 concludes the paper.

2 Definitions and Notation

2.1 Definitions: Soft Sets and Incomplete Soft Sets

In this section, we first introduce the standard definitions for complete and
incomplete soft sets. There is a fixed universe U of objects, options or alterna-
tives, and there is a universal set E of parameters, characteristics or attributes.

Definition 1 (Molodtsov [25]). A pair (F,A) is a soft set over U when A ⊆ E
and F : A −→ P(U), where P(U) denotes the set of all subsets of U .

Definition 2 (Han et al. [16]). A pair (F,A) is an incomplete soft set over U
when A ⊆ E and F : A −→ {0, 1, ∗}U , where {0, 1, ∗}U is the set of all functions
from U to {0, 1, ∗}.

The ∗ symbol in the previous definition represents an unknown data. In other
words, if the membership of an element u in the subset of U approximated by e is
unknown, then F (e)(u) = ∗. Of course, as in standard soft sets, if an object u is
(resp. is not) an element of the subset of U approximated by e, then F (e)(u) = 1
(resp., F (e)(u) = 0). Thus any soft set can be regarded as an incomplete soft
set in a natural way.

Henceforth we assume U = {u1, u2, . . . uN} and A = {e1, e2, . . . eM}. Yao [33]
explained that under this finiteness assumption, soft sets can be represented
either by matrices or in tabular form. Rows correspond to the options, and
columns correspond to the parameters. The same is true for incomplete soft sets.
Suppose that T = (tij)N×M is the N ×M matrix associated with the incomplete
soft set (F,A). Then element tij is either one or zero or ∗, depending on whether
object i verifies property j, does not verify it, or it is unknown whether i verifies
property j, respectively.

Concerning the choice decision mechanism for soft sets, we agree with existing
literature in that choice values should be used. As to incomplete soft sets, our
proposal is original in that it does not discard any of the possible filled tables or
completed soft sets.

2.2 Previous Literature

Table 1 summarizes the main previous approaches to our problem.
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Table 1. Summary of research studies about incomplete soft set based decision making.
The indexes are named as in the original papers.

Methodology and references Indexes

Weight-average of all possible
choice values of objects

di, di−p, ci(0), ci(1)

Weights of each choice value
given by distribution of the
other objects

Original approach [37]

Data filling based on
association between
parameters

Qi

Choice: choice values for
completed set

It presumes that objects are
cross-related

Inspired by above
approach [26]

Elicitation criterions for
incomplete soft sets
generated by restricted
intersection

-

This problem is related
although different [16]

Elimination of dominated
options

Random sample, thus
results depend on
sample [5]†

s2i

Choice mechanism: choice
values

Laplacian argument: equal
probability to all completed
tables. Suitable when there is
no guarantee that objects are
related to each other

Brute force, thus
computationally
costly [6]

si

2.3 Notation and Fundamentals of Our Algorithm

From the input matrix T we calculate the number of ones and unknown values
for every object in the soft set. These are fundamental elements for the analysis
of the optimal solution in a fully uncertain environment.

Let v1 be the vector of numbers of 1’s (ones values) by rows in T , i.e.,
v1 = (v11 , . . . v

1
N ), where v1i is the number of ones in object i. Observe that if

ci(0) is i’s choice value if all missing data are replaced with 0, then v1i = ci(0) =
|{ej ∈ A : F (ej)(ui) = 1}|.
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The maximum value in vector v1 is c0 = max{ci(0) : i = 1, . . . , N} =
max{v1i : i = 1, . . . , N}.

Let v∗ be the vector of numbers of ∗’s (unknown values) by rows in T , i.e.,
v∗ = (v∗

1 , . . . v
∗
N ), where v∗

i is the number of unknown values in object i. This
means v∗

i = |{ej ∈ A : F (ej)(ui) = ∗}|. We let m∗ denote the maximum value
in vector v∗, i.e., m∗ = max{v∗

i : i = 1, . . . , N}.
Observe that if ci(1) is i’s choice value when all missing data are replaced

with 1, then ci(1) = ci(0) + v∗
i for each i.

The number of unknown values is M∗ =
∑N

i=1 v
∗
i . A simple combinatorial

analysis shows that the number of combinations of unknown choice values is:

M c =
N∏

i=1

(v∗
i + 1).

Example 1 below illustrates these notions.

2.4 Domination Sieve

In order to gain efficiency, our algorithm performs a pre-screening by removing
the objects whose choice values can never be maximal. Put shortly, we eliminate
dominated alternatives defined as follows:

Definition 3 (Alcantud and Santos-Garćıa [6]). Let (F,A) be an incom-
plete soft set over U . Option i dominates option k if and only if ck(1) < ci(0).

Hence in order to check if an option i dominates an option k one needs to
verify if ck(0) + v∗

k < ci(0). Intuitively, no matter how we complete the soft set,
option i has a choice value that is strictly higher than the choice value of option j.
Therefore dominated options should be rejected in any choice-valued approach.

In order to simplify our problem we compute the maximum value c0 = 3 of
the choice values v1i = ci(0) for every i. If c0 is greater than the choice value ck(1)
of object uk, then object uk can be dropped from the initial matrix because its
choice value can never be maximum in any posible completed soft set. In this
way, by reducing the number of rows in the matrix form of an incomplete soft
set, there are less missing data, which reduces runtime and improves final results.

After dominated options are sieved out, we apply the remaining steps to the
new trimmed matrix. To simplify the notation, this reduced matrix is also called
T . Its objects and features will be reappointed N (also number of rows of T )
and M (also number of columns of T ), respectively.

Example 1. Let T = (tij) be the following 5 × 4 initial matrix, which represents
an incomplete soft set over a universe of 5 objects with 4 relevant characteristics
for evaluation of the alternatives:

T =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 1 0
1 1 ∗ 0
1 ∗ ∗ 0
1 ∗ 0 0
0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠
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It is easy to compute that v1 = (3, 2, 1, 1, 0), v∗ = (0, 1, 2, 1, 0) therefore
m1 = 3, m∗ = 2, M∗ = 4, and M c = 12.

We calculate the maximum value c0 of all choice values ci(0). Observe that
c4(0) + v∗

4 = 1 + 1 < c1(0) = c0 = 3 and c5(0) + v∗
5 = 0 + 0 < c1(0) = c0 = 3.

Thus c0 is unattainable for the choice values ci(1) of objects u4 and u5, and
these objects can be safely removed from the initial matrix (see Table 2, where
the relevant items are underlined). Observe that no matter how the table is
completed, the choice values of options u4 and u5 will be smaller than the choice
value of u1.

Table 2. Tabular representation of the soft set in Example 1, and noteworthy associ-
ated indices.

e1 e2 e3 e4 v1i = ci(0) ci(1) v∗
i

u1 1 1 1 0 c0 = 3 3 0

u2 1 1 ∗ 0 2 3 1

u3 1 ∗ ∗ 0 1 3 2

(u4) 1 ∗ 0 0 1 2 1

(u5) 0 0 0 0 0 0 0

After removing objects u4 and u5, the new sieved matrix is:

T (sieved) =

⎛

⎝
1 1 1 0
1 1 ∗ 0
1 ∗ ∗ 0

⎞

⎠

For the new trimmed matrix the vector of numbers of one values v1 and the
vector of numbers of unknown values v∗ are:

v1 = ( 3, 2, 1 ); v∗ = ( 0, 1, 2 )

which can be drawn from the corresponding columns in Table 2. And now it is
immediate to compute m1 = 3, m∗ = 2.

Moreover M∗ = 3 (number of unknown values) and M c = 6 (number of
combinations of unknown choice values). This means that the four unknown
values of the initial matrix T become three values for the new sieve matrix T ,
while the number of feasible states (in terms of configurations of choice values)
is halved. These states are:

(1) the choice values can be 3 for option u1, 2 for u2 and 1 for u3. This fact
happens in exactly one completed table.

(2) the choice values can be 3 for option u1, 2 for u2 and 2 for u3. This fact
happens in exactly two completed tables.

(3) the choice values can be 3 for option u1, 2 for u2 and 3 for u3. This fact
happens in exactly one completed table.
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(4) the choice values can be 3 for option u1, 3 for u2 and 1 for u3. This fact
happens in exactly one completed table.

(5) the choice values can be 3 for option u1, 3 for u2 and 2 for u3. This fact
happens in exactly two completed tables.

(6) the choice values can be 3 for option u1, 3 for u2 and 3 for u3. This fact
happens in exactly one completed table.

We can represent the completed soft sets for cases (1), (2) and (3) as follows:

e1 e2 e3 e4 e1 e2 e3 e4 e1 e2 e3 e4 e1 e2 e3 e4

u1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

u2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

u3 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 0

And the completed soft sets for cases (4), (5) and (6) are represented as

e1 e2 e3 e4 e1 e2 e3 e4 e1 e2 e3 e4 e1 e2 e3 e4

u1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

u2 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

u3 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 0

3 Algorithm: Incomplete Soft Sets for Decision Making
Problem

3.1 The Main Elements of the Algorithm

Our algorithm computes the number of tables that produce every possible config-
uration of choice values. Under the Laplacian assumption that they are equally
probable, it chooses the alternative that is best in the highest proportion of com-
pleted soft sets. However our algorithm does not compute them explicitly as in
Example 1, but instead we use a combinatorial analysis in order to define several
auxiliary matrices corresponding to possible values and probabilities for each of
the objects that we actually use. Let PV1 (resp., PPV1) be the (N × (m∗ + 1))-
matrices of potential values (resp., proportion by rows of potential values) for
each object. For computational purposes, the rows with a number of elements less
than m∗ + 1 are filled up with zero values. Its elements are calculated according
to the following formulas:

PV1(i, j) = v1i + j − 1; PPV1(i, j) =

(
v∗
i
j

)

2v∗
i
,
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where i varies from 1 to N and j varies from 1 to v∗
i + 1.2 These matrices are

shown in Example 2.

Example 2. According to the data of Example 1, now we calculate matrices PV1

and PPV1:

PV1 =

⎛

⎝
3 0 0
2 3 0
1 2 3

⎞

⎠ , PPV1 =

⎛

⎝
1.00 0 0
0.50 0.50 0
0.25 0.50 0.25

⎞

⎠ .

Hence for example, the fact PV1(1, 1) = 3 and PPV1(1, 1) = 1 means that in
100% of the 8 filled tables, the choice value of u1 is 3. The fact PV1(2, 2) = 3
and PPV1(2, 2) = 0.5 means that in 50% of the 8 filled tables, the choice value
of u2 is 3. And PV1(3, 2) = 2 and PPV1(3, 2) = 0.5 means that in 50% of all
filled tables, the choice value of u3 is 2.

It is well-known that if two events A and B are independent then their joint
probability equals the product of their probabilities, i.e., P(A∩B) = P(A) P(B).
Because choice values are independent events, with probability 1 ·0.5 ·0.5 = 0.25
the choice values of u1, u2 and u3 are 3, 3, and 2, respectively. And in that case,
both u1 and u2 are optimal because they are choice value maximizers.

After calculating the auxiliary matrices PV1 and PPV1, we analyze all fea-
sible combinations of decision values. As shown in Example 2, we know the
probabilities for each of the possible events. Computationally, we build all pos-
sible different vectors CV with N rows, in which each element will be a non-zero
element of each row in PV1 matrix. That is, the element CVi for each object i
has a value between ci(0) and ci(0) + v∗

i .
For this particular case, we now calculate the probabilities of occurrences

from matrix PPV1. The joint probability XP is the product of all the individual
probabilities. When the choice value of that particular case is maximal (may be
several maximal), we add that probability XP to the decision values matrix DV .

We repeat the process for all possible vectors CV . The final decision of our
Algorithm will consist of the object(s) with greater DV values.

Figure 1 shows a flowchart for the proposal of a decision making procedure
under incomplete information that we have described throughout this section.

Example 3. According to the data of Example 1 and 2, now we calculate final
matrices CV , XP , and DV . In particular we obtain

DV =

⎛

⎝
1.00
0.50
0.25

⎞

⎠

which we interpret as follows. In 100% of the randomly filled tables, option 1
achieves the maximum choice value. In 50% of the randomly filled tables, option 2
2 As usual,

(
n
k

)
or “n choose k” returns the binomial coefficient, i.e., the number of

combinations of n items taken k at a time, defined as
n!

(n − k)!k!
.
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Step 1 Input incomplete soft-set matrix T

Step 2 Calculate c0 = max1≤i≤k ci(0)

Step 3
Remove each row i in T
that verifies ci(1) < c0

Step 4
Compute PV1 (potential val-
ues) and PPV1 (proportion
by rows of potential values)

Step 5 CV (choice values), XP (joint prob-
ability), and DV (decision values)

Step 6
Decision is any object ul such
that DVl = maxi=1,...,N DVi

Fig. 1. Step by step procedure for decision making under incompleteness.

achieves the maximum choice value. And in 25% of the randomly filled tables,
option 3 achieves the maximum choice value. We recall that ties may happen,
which explains why this figures sum up over 100%.

Table 3 contains the elements that produce our solution. In view of our argu-
ments, option 1 should be selected.

Table 3. Combinations of choice values and their respective probabilities in Example 1.

Choice value Probability Optimal solutions

u1 u2 u3

3 2 1 1/8 u1

3 2 2 1/4 u1

3 2 3 1/8 u1, u3

3 3 1 1/8 u1, u2

3 3 2 1/4 u1, u2

3 3 3 1/8 u1, u2, u3

3.2 Decision of the Algorithm

Intuitively, our practical implementation of the ideas above is based on the fol-
lowing arguments. According to Laplace’s principle of indifference in probability
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theory, under complete ignorance we must assume that in all tables ∗’s are
replaced in equiprobable manner with either 0 or 1. Hence the best we can do
is consider in each of these cases that the objects should be selected accord-
ing to soft-set based decision making procedures. Consequently we should opt
for any object that is optimal in the highest proportion of cases with the com-
pleted information. The number of possible cases is exponential on the number
of unknown values, however we only need to consider completed soft sets which
are equivalent for purposes of decision making.

To do this we note that for any object i, if it has multiple unknown char-
acteristics that are completed, we are only interested in the number, not in the
order, of 1’s assigned to these unknown values. Thus, the calculation is reduced
to a combinatorial analysis in each object.

In accordance with this idea, we endorse the following algorithm for the
problems where both U and A are finite:

Algorithm 1. Incomplete Soft Sets Algorithm for Making Decision
1: Input an incomplete soft set (F,E) with k objects and l parameters in a matrix

form, where tij ∈ {0, 1, ∗} denotes a cell (i, j).

2: Calculate c0 = max1≤i≤k ci(0) from the incomplete matrix, where ci(0) is the choice
value for i if all missing data are assumed to be 0.

3: Remove each row i from the incomplete matrix that verifies ci(1) < c0, where ci(1)
is the choice value for i if all missing data are assumed to be 1.

4: From the new reduced matrix, calculate the auxiliary matrices PV1 (matrix of
potential values) and PPV1 (matrix of proportion by rows of potential values).

5: Compute the following matrices: choice values CV , joint probability XP , and deci-
sion values DV .

6: The result of the decision is any object ul such that DVl = maxi=1,...,N DVi.

4 Discussion and Conclusions

The works of Han et al. [16], Qin et al. [26] and Zou and Xiao [37] present inter-
esting approaches to incomplete soft set based decision making. These authors
used averages, probabilities or other specific evaluations in order to estimate the
real value of missing data in a general way and afterwards, they made a decision
based on the complementary data.

In this paper we look at the problem from an altogether different perspec-
tive. Rather than filling the incomplete data table (see also Khan et al. [28]),
we propose a combinatorial study through all possible filled tables that can be
produced from the original incomplete table. Then the alternatives are ranked
by the proportion of filled tables where they achieve the highest choice value. In
other words, a final indicator for each of the objects by our algorithm is defined
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as the value of this ratio. And our decision making procedure consists of select-
ing alternatives that maximize this indicator. A classical Laplacian argument
from probability theory justifies our research method. In general there is perfect
uncertainty about the real value of missing data. Therefore, we cannot support
the idea that other aspects would let us faithfully estimate these unknown values.
Under Laplace’s principle of indifference, due to our complete ignorance we are
entitled to assume that all possible tables where the missing data are replaced
with either 0 or 1 are equiprobable.

Our novel approach meets the following targets: (1) We do not need to assume
any cross-relations among options. (2) We do not attempt to fill the tables with
hypothesized values. (3) We adopt a Laplacian position and make use of combi-
natorics. (4) A unique, computationally tractable solution is provided.

An example illustrates the detailed implementation process of our approach
and shows evidence of its potential applications in decision-making problems
with incomplete information.

In practice, problems where all parameters describing compared options are
equally important rarely exist. Our algorithm has been tightly designed for the
exclusive purpose of decision making, hence the introduction of weighted param-
eters would not be trivial and as such deserves a separate analysis. Domination
sieve is simple to read in that instance, though.
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Abstract. This work is devoted to the analysis and selection of the most
rational model of the university/IT-company cooperation (UIC) using intelligent
decision support systems (DSSs) in the conditions of input information uncer-
tainty. The modification of a two-cascade method for reconfiguration of the
fuzzy DSS’s rule bases is described in details for situations when the volume of
input data can be changed. Authors propose an additional observer procedure for
checking the fuzzy rule consequents before their final correction. The modified
method provides (a) structural reduction of the rule antecedents, (b) correction of
the corresponding consequents in an interactive mode and (c) avoiding the
results’ deformation in the decision making process with variable structure of
input data. Special attention is paid to the hierarchically organized DSSs (with
variable input vector and discrete logic output) and to design of the web-oriented
instrumental tool (WOTFS-1). The simulation results confirm the efficiency and
expediency of using (a) the software WOTFS-1 and (b) modified method of
fuzzy rule base’s antecedent-consequent reconfiguration for the efficient selec-
tion of the rational model of academia-industry cooperation.

Keywords: Fuzzy logic � Linguistic term � Rule base � Reconfiguration
Decision support system � University-industry cooperation

1 Introduction

To implement multidimensional fuzzy dependencies, it is expedient to use a hierar-
chical approach in the synthesis of DSS for automation of decision-making processes
based on fuzzy logic output. In the process of developing fuzzy DSS there is a problem
of the sharp increase in the rules bases (RBs) at increasing the dimension of the input
vector and the number of corresponding linguistic terms (LTs). At present there is a
sufficient number of publications [2, 3, 22] on the development and optimization of
fuzzy DSSs, including for solving multi-criteria problems in conditions of uncertainty.
However, a further solution is required for the methods and technologies of the
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synthesis of hierarchical DSSs based on fuzzy models with variable structure of the
input vector, in particular, taking into account the input information from experts and a
person, who is a decision maker (DM) and whose estimates are fuzzy [29–32]. It
should be noted that the development of fuzzy DSSs to increase the efficiency of
decision-making in the conditions of multi-criteria and a priori informational uncer-
tainty, in particular, with the variable structure of the input coordinate’s vector, is one
of the perspective directions for the creation of intelligent information systems [27].

2 Related Works and Problem Statement

One of the problems of DSSs synthesis based on fuzzy logic output is the complexity
of making decisions with variable structure of the input data of the system. This is due
to the need to develop approaches to correcting fuzzy RBs in the decision-making
process in a priori information uncertainty, in particular when a DM is not able to
evaluate and insert specific input coordinates into the system [7, 25, 26, 34, 38].

In fuzzy modeling, Mamdani’s algorithm is used most often, according to which
the antecedents and the consequents of the rules of fuzzy RBs are given by fuzzy sets
(linguistic terms) such as “Low”, “Medium”, “High”, etc. [10, 11, 15–17, 21].

The process of determining the most important input coordinates and the experts’
formation of their estimates significantly influences the structure of the hierarchically
organized DSS, in particular on the dimensionality of the RBs [9, 14]. Previous studies
[18–20, 33, 35–37] show that the decision-making results undergo significant defor-
mation in the application of fuzzy DSSs (with a fixed structure of the knowledge base)
under the conditions of the variable structure of the input vector. This is due to the fact
that the values of the input coordinates, which do not participate in the simulation of
DSSs and a consequent with zero value, due to the corresponding fuzzy rules nega-
tively affect the result. Consequently, the change in the dimension of the input vector in
the interactive modes of fuzzy DSSs requires the development of effective methods for
the reconfiguration and correction of fuzzy RBs [23, 28].

Among the well-known approaches to correction of fuzzy RBs is the use of
weighting coefficients for fuzzy rules [24, 29]. Changing the vector of weighting
coefficients for the corresponding rules of fuzzy knowledge bases can reduce the
influence of input parameters, which, by the choice of a DM in some situations may not
participate in the decision making process, on the result of the system. In addition, there
is an approach to the correction of RBs, which consists of identifying non-essential
parameters of the model. The number of rules is significantly reduced, which allows to
increase the sensitivity of the system to change the values of input signals.

The limited properties of the considered approaches and methods of correction of
RBs do not allow them to be used directly to optimize the fuzzy hierarchical DSSs with
variable structure of the input vector [9, 11, 33].

The purpose of this paper is to increase the efficiency of the processes of
multi-criteria decision-making in fuzzy hierarchical DSSs with discrete logical output
under the condition of the variable structure of the input vector and in the formation of
incoming information with a high level of uncertainty (with the application of DSS for
choosing a cooperation model within the “University – IT-company” consortium).
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3 Structure of Fuzzy DSS for Choosing the UIC Model

The problem of choosing one of the models of cooperation between an IT-company
and a department (faculty) of the university is relevant today, especially at the
beginning of their cooperation and under conditions of a possible change in the
direction of joint research. Previous studies and analysis of successful cooperation
experience within different types of consortia [1, 4, 8, 9] show that the solution to the
task of choosing a model of cooperation between the university and the IT-Company
today is to select one of four alternatives m ¼ 4ð Þ, such as alternative solution variants
di; i ¼ 1. . .mð Þ, where the solution variant d1 corresponds the model A1; variant d2 -
model A2; variant d3 - model B; variant d4 - model C.

The authors developed a fuzzy DSS for choosing a model for cooperation between
universities and IT-companies y ¼ d�; d� 2 d; d ¼ d1; d2; d3; d4f gð Þ in terms of pre-
viously proposed and defined indicators (input coordinates). DSS includes 11 fuzzy
subsystems and has 27 input coordinates X ¼ xj

� �
; j ¼ 1; . . .; 27 and one output y,

which are interconnected by the fuzzy dependencies yk ¼ fk x1; x2; . . .; x27ð Þ; k 2
1; 2; . . .; 11f g of the appropriate RBs of the 11 subsystems, where f is the functional

dependence of the output coordinate yk to the inputs x1; x2; . . .; x27 in the form of a
fuzzy RBs [9, 14, 33].

The structure of the corresponding fuzzy DSS provides the choice of one of the four
basic (system) solutions (y 2 A1;A2;B;Cf g), since 4 LTs were used to describe the
output variable y. This structure provides the possibility of choosing additional (pro-
gram) A1 ORð ÞA2;A1 ORð ÞB;A1 ORð ÞC;A2 ORð ÞB;A2 ORð ÞC;B ORð ÞCf g solutions, in
the case where exponents of the degrees of membership ld

�
X�ð Þ, for example, of two

system solutions are of the same value. Program solutions can also be formed for
possible (in similar cases) combinations with 3 and 4 system solutions.

To estimate the input X ¼ xj
� �

; j ¼ 1; . . .; 27, 3 LTs with a triangular form of
membership function (MF), in particular “low - L”, “medium - M” and “high - H”, are
chosen. We should represent some of the above-mentioned coordinates: x4 - level of IT
experience of students of the university department; x5 - participation of students in
international exchange programs; x6 - the level of student co-work with IT-companies;
x7 - students’ success in studying. Subsequently, the pre-developed RBs of all sub-
systems are transformed into a matrixes of knowledge by a combination of rules for the
source LT of the corresponding consequent, for example, for the 2nd y2 ¼
f2 x4; x5; x6; x7ð Þ fuzzy subsystem y2 2 L; LM;M;HM;Hf g (Table 1) [14].

When user inserts the data Xð2Þ� ¼ x�4; x
�
5; x

�
6; x

�
7

� �
to the inputs of the second

subsystem, its output result y�2 is generated based on the corresponding LTs:

y�2 2 LT ð2Þ
j LT ð2Þ

j 2 L; LM;M;HM;Hf g; j ¼ 1; . . .; 5
���n o

. The output of the second

subsystem y�2 is transferred in the form of the accumulated LT to the RB of the next (in
terms of the hierarchy) subsystem y8 ¼ f8 y1; y2ð Þ.

Implementation of the procedure of fuzzy logical output in more details is repre-
sented in researches [9, 14, 31, 33].
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4 Antecedent-Consequent Method of Rules Bases Correction
of Fuzzy DSS for Choosing the Rational UIC Model

In the process of decision making using fuzzy hierarchical DSSs with a variable
structure of the input vector, it is necessary to apply effective approaches for recon-
figuring (correction) of fuzzy RBs. This is due to the fact that the values of input
coordinates that cannot be estimated at the time of decision making are uncertain and
due to the corresponding fuzzy rules negatively affect the result y. The limited prop-
erties of existing approaches of reduction of the RBs do not allow them to be used
directly to optimize fuzzy hierarchical DSSs with a variable structure of the input
vector [29].

To solve this problem, the authors propose: (a) to use the two-stage method of fuzzy
RBs correction, which allows for correction of RBs (antecedents and consequents of
rules) in hierarchically-organized DSSs with variable structure of the input data vector
Nð Þ [9, 11, 13, 14, 20, 33]; (b) to modify this two-stage method by introducing
embedded preliminary procedure for additional verification of the consequents before
the start of their correction.

Let’s discuss the implementation of the first multi-step cascade of the considered
two-stage method, which is responsible for correcting the rules’ antecedents, for the
case when the DM is not able to evaluate some specific input coordinates NNEð Þ.

Step 1. Assessment of the general characteristics of each particular subsystem
(dimensionality of input coordinates and rules structure).

Table 1. Partial set of rules of knowledge matrix for subsystem y2 ¼ f2 x4; x5; x6; x7ð Þ

Number of rule 
and combination

Coordinates of Subsystem ( )2 2 4 5 6 7, , ,=y f x x x x

4x 5x 6x 7x 2y
1 1,1 L L L L

L…                        …                              …
55 1,8 H L L L
5 2,1 L L M M

LM …                      …                              …
64 2,19 H M L L
9 3,1 L L H H

M …                        …                              …
73 3,31 H H L L
18 4,1 L M H H

HM…                        …                              …
79 4,18 H H H L
54 5,1 M H H H

H …                        …                              …
81 5,5 H H H H
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Step 2. Checking the state of the input coordinates. If DM is not able to evaluate the
value of any of the input coordinates of a particular subsystem, then the output of this
subsystem will automatically be excluded from further consideration.

Step 3. Assigning to all LT LT j
i ; i 2 1; . . .;Nf g; j 2 1; . . .;Kf g� �

the i-th input
coordinate of the j-th rule (K- number of rules in a particular subsystem) of the
corresponding numerical values. For example, for three LTs: LT j

i ¼ 1 if LT j
i ¼ L;

LT j
i ¼ 2 if LT j

i ¼ M; LT j
i ¼ 3 if LT j

i ¼ H. In the case, for example, for five LTs:
LT j

i ¼ 1 if LT j
i ¼ L; LT j

i ¼ 1:5 if LT j
i ¼ LM; LT j

i ¼ 2 if LT j
i ¼ M; LT j

i ¼
2:5 if LT j

i ¼ HM; LT j
i ¼ 3 if LT j

i ¼ H:
Step 4. Correction of the antecedents of the rules based on the analysis of the inputs

of the coordinates, which DM has no opportunity to evaluate NNEð Þ. In this case, all
LTs LT j

i ; i 2 1; . . .;Nf g; j 2 1; . . .;Kf g� �
, for which the input coordinates cannot be

assessed xi ¼ NE, are assigned a zero numerical value LT j
i ¼ 0. This means that in the

future, the corresponding LT will not influence the decision-making process.
Step 5. Of all the rules that have the same antecedents after correcting them (step 4),

there is only one rule, the first in the list in the RB.
Step 6. Formation of a reduced RB with corrected antecedents.
Second cascade [9, 11, 13, 14, 20, 33], which is responsible for correction of the

rules’ consequents (in the reconfigured RB [28] by the first cascade), can be modified
on the step 3 by introducing embedded preliminary procedure for additional verifica-
tion of the consequents before the start of their correction. In this case, the modified
second cascade consists of the next steps:

Step 1. Processing of the information on the reduced RB, checking the presence of
the LTs with the assigned zero numerical value LT j

i ¼ 0.
Step 2. Processing of corrected antecedents of the rules. In this case, the numerical

values of the antecedents for each j-th rule (first cascade, step 3, step 4) of the reduced
RB are added. Next, the amount is divided by the number of input coordinates that the
DM has the ability to evaluate Ne ¼ N � NNEð Þ, for each j-th rule:

Resultj ¼
XN
i¼1

LT j
i

,
Ne: ð1Þ

Step 3. Using the proposed preliminary procedure which is based on the proposi-
tion: if the existing numerical value (LT j

i ¼ 1 for L; LT j
i ¼ 1:5 for LM; LT j

i ¼
2 for M; LT j

i ¼ 2:5 for HM; LT j
i ¼ 3 for H) of the j-th rule consequent corre-

sponds (is equal to) the calculated value of the result (1), then there is no need to make
a correction of the consequent (step 4) of the corresponding j-th rule and in this case we
need to go over to the next jþ 1ð Þ-th rule’s consequent correction. This avoids the
process of overwriting the value of the program variable (in our case, the value of the
consequent of the j-th rule) at the physical level (in RAM). The appropriate procedure
for additional verification of the consequents before the beginning of their correction
allows increasing the speed of the proposed correction method of fuzzy RBs and
reducing its energy intensity by eliminating the process of allocating additional RAM
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when modifying the consequent. If the existing numerical value of the j-th rule con-
sequent does not correspond to the value of the generated result (1), then it is necessary
to correct this consequent (step 4).

Step 4. Determining the new linguistic term LTResult � L;LM;M;HM;Hf g for the
j-th rule consequent, using of the value of the calculation result (1) and the scale:

Resultj 2 L 2 1; 1:5½ Þ; LM 2 1:5; 2½ Þ;M 2 2; 2:5½ Þ;HM 2 2:5; 3½ Þ;H 2 3; 3½ �f g;
j 2 1; . . .;Kf g:

Step 5. Correcting of the consequent according to the formation of the corre-
sponding modified LTs at the step 4.

Step 6. Formation of reconfigurable RB based on corrected fuzzy rules.
Introduction of additional verification of the consequents before their correction is a

necessary procedure for increasing the speed and decreasing the energy intensity of the
antecedent-consequent method of reconfiguring fuzzy RBs developed by the authors.
This procedure is especially relevant and useful in using the proposed method of
correction of the RBs in the subsystems of DSSs with a large dimension of the vector of
the input coordinates (N � 5). This is due to the fact that in the RBs of such subsystems
the number of rules is considerably larger compared to other subsystems, which in turn
leads to increased energy intensity and slow performance when correcting consequents
of rules (second cascade) without the need for additional verification.

Consider the application of an antecedent-consequent method of fuzzy RBs cor-
rection using an example of a second subsystem y2 ¼ f2 x4; x5; x6; x7ð Þ of the developed
DSS for choosing a cooperation model. If, for example, DM is not able to evaluate at
the moment two input coordinates x5 ¼ NE, x7 ¼ NE, then when implementing the first
cascade, the initial RB (Table 1) is transformed into a reduced RB [28, 37, 38].

From the results of the implementation of the first cascade, it is seen that the
number of rules decreased from 81 to 9. But since the initial values of the consequents
of the relevant rules do not correspond to the actual expert estimates, the implemen-
tation of the second cascade for the correction of consequents is necessary. After
realization of the second cascade, the RB has the final corrected form [9, 33].

Table 2 shows some actual set of input coordinates for the second subsystem,
which characterize different types of actual situations [13, 19].

Table 2. Some actual sets of the second subsystem y2 ¼ f2 x4; x5; x6; x7ð Þ

Input 
coord. 

Actual sets of input coordinates
I II III IV V

…

XIV XV
4x (L,M,H) NE NE NE NE (L,M,H) (L,M,H)

5x (L,M,H) NE NE NE (L,M,H) (L,M,H) (L,M,H)

6x (L,M,H) NE (L,M,H) (L,M,H) NE NE (L,M,H)

7x (L,M,H) (L,M,H) NE (L,M,H) NE (L,M,H) NE 
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After applying the first cascade of the method of fuzzy RBs correction, the RB of
the second subsystem is transformed into a reduced RB by number of rules (Table 3).

The scheme of the application of the antecedent-consequent method of fuzzy RBs
correction for the second subsystem y2 ¼ f2 x4; x5; x6; x7ð Þ on the actual sets of II-XV
input data (Tables 2, 3) is presented in Fig. 1.

The corresponding scheme (Fig. 1) shows exactly which rules are subject to cor-
rection for various types of input data sets. For example, rules with numbers 3, 12, 19,
20, 30, 38, 46, 48, 55, 56, 64, 66, 75 (Table 3) are subject to correction for the current
set of input data XIV. In particular, for the rules with numbers 3, 19, 55 the modified
consequent corresponds LT “LM”, and for the rule No. 75 - “H”. In this current set of
XIV, this made it possible to increase the speed of the proposed method of correction of

Table 3. Reduced RB of the second subsystem in accordance with the actual sets

Actual 
sets

Function of output coor-
dinate

Amount 
of rules Number of rules

I ( )2 2 4 5 6 7, , ,Iy f x x x x= 81 1,2,…,81 

II ( )2 2 7
IIy f x= 3 1,2,3 

…                                    …                                      …

XV ( )2 2 4 5 6, ,XIVy f x x x= 27 1,4,7,10,13,16,19,22,25,28,31,34,37,40,
43,46,49,52,55,58,61,64,67,70,73,76,79

Fig. 1. The implementation scheme of consequents correction
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fuzzy RBs by 19% and reduce the energy intensity by 8% [13, 14, 20]. The application
of the proposed preliminary procedure for additional verification of the consequents
before the start of their correction (for the second subsystem in the actual set XIV)
allowed avoiding the need for correction of 14 rules (1, 2, 10, 11, 21, 28, 29, 37, 39, 47,
57, 65, 73, 74) from 27 (Table 3). The main conception of the proposed preliminary
procedure is described in step 3 of the second cascade.

On all the actual sets of input data of the second subsystem, the number of reduced
rules, after the application of the first cascade, is 174 (Table 3, Fig. 1). At the same
time, after applying the procedure for additional verification of the consequents before
the start of their correction for the method of the correction of fuzzy RBs proposed by
the authors, the number of rules, for which the consequent correction needs to be done,
decreased from 174 to 99.

The comparative analysis shows that without the application of the proposed
method of RBs correction, in particular for the second subsystem (x5 ¼ NE, x7 ¼ NE),
there is a deformation of results, since the output of the unmodified subsystem cor-

responds LT M for which ly
�
2 Xð2Þ�� � ¼ max

j¼1;5
lLT

ð2Þ
j 60; 0; 90; 0ð Þ 2 0; 0:1; 0:8; 0; 0f g

� �
.

At the same time, the result of the DSS yð Þ for choosing a cooperation model deforms
to some extent, recommending the choice of a rational model A2 [31, 33].

When applying the proposed method with x5 ¼ NE, x7 ¼ NE, the output signal of
the second subsystem remains unchanged and corresponds LT HM, for which

ly
�
2 Xð2Þ�� � ¼ max

j¼1;5
lLT

ð2Þ
j 60; 80; 90; 45ð Þ 2 0; 0:1; 0:4; 0:6; 0:2f g

� �
. In this case, the

result of the DSS yð Þ coincides with the result for a complete set of input data – the
rational cooperation model B [9, 14, 31, 33].

The proposed method of two-stage correction of fuzzy RBs in case of change in the
dimension of the input vector, allows in interactive mode to perform automatic cor-
rection of fuzzy rules without changing the structure of DSS, which provides an
increase in the efficiency and speed of DSS for decision-making in various situations.

5 Design of Fuzzy DSS for Decision Making About Most
Rational UIC-Model Based on Developed Web-Oriented
Tool

To enhance the effectiveness of the design of DSSs of this class, the authors have
developed specialized software and a tool WOTFS-1 (Fig. 2), which has web orien-
tation. The use of WOTFS-1 prevents the formation of the structure of the DSS on
choosing a model of cooperation and obtaining an effective result: (a) operatively
(including in the absence of time for decision-making), (b) at any given time in the
presence of the Internet and (c) without local linking to expert data/knowledge. This
feature is important because the ability to evaluate and select a model for collaboration
for DM (heads of structural subdivisions of universities and IT-companies) without any
restrictions of the time and place of access to DSS is a priority [12, 24].
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A fragmentary (demonstration) structure (3 subsystems: y1 ¼ f1 x1; x2; x3ð Þ,
y2 ¼ f2 x4; x5; x6; x7ð Þ, y8 ¼ f8 y1; y2ð Þ) of a fuzzy hierarchical DSS with a discrete
logical output for choosing a cooperation model also is presented in Fig. 2.

All data/knowledge from experts are stored on the server side of the web-oriented
tool. This avoids making mistakes and increases the system’s protection against pos-
sible external influences. In addition, the independent global servers provide access to
the management of the process of DSSs development (linguistic variables, terms,
knowledge bases, etc.) with the limited rights (for example, only for experts). In this
way, the expert and client can be in different places and work on creating a DSS and its
subsequent testing at different times, which will significantly save time on design and
technical resources [10]. The author’s web-oriented tool WOTFS-1 is intended for the
development of fuzzy hierarchical DSSs with discrete logical output, which allows
obtaining the resulting evaluation in the form of a linguistic term, which in turn
corresponds to the cooperation model, since for DM it’s a more understandable result.

The developed WOTFS-1 tool allows you to develop in real time, without local-
ization of data, your own fuzzy hierarchical DSS with discrete logical output for
various purposes, in particular, for solving logistic problems [13, 33], assessing
innovation and investment projects [5–7], choosing a cooperation model within a
consortium “University – IT-company” [9], optimization in control systems [10, 21]
and others. The developed tool is user-friendly and adapted to modern visualization
means.

6 Conclusions

The results of the testing of the developed DSS for choosing a model of cooperation
within the consortium “University – IT-company” with different variants of the size of
the input vector confirm the effectiveness of the proposed two-stage (antecedent-
consequent) method of correction of fuzzy RBs and its invariance with respect to (a) the
limits on the number of subsystems and (b) the number of input variables of DSS,
(c) the number of fuzzy rules and (d) the number of LTs for evaluating input and output
coordinates. The application of the procedure for additional verification of the conse-
quents before the beginning of their correction has allowed to increase the speed of the

Fig. 2. WOTFS-1 for design of fuzzy DSS: a – inputs and LTs, b – hierarchical structure
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developed by the authors method of the reconfiguration of fuzzy RBs by 8–22% and
reduce the energy intensity by 3–12% (depending on the degree of uncertainty of the
input information and the size of the current set of input data).

The author’s approach and the tool WOTFS-1 can be widely used for implemen-
tation of the decision-making processes under uncertainty, in particular when selecting
partners for investment objectives in the marine business [33], when choosing coop-
eration models within academic-industry consortia [9, 14], while optimizing and
planning routes [13, 19] etc.
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Abstract. The paper refers to the problem of decision making and choosing
appropriate ways for decreasing the level of input information uncertainty
related to absence or unavailability some values of mixed data sets. Approaches
to addressing missing data and evaluating their performance are discussed. The
generalized strategy to managing data with missing values is proposed. The
study based on real pregnancy-related records of 186 patients from 12 to 42
weeks of gestation. Three missing data techniques: complete ignoring, case
deletion, and random forest (RF) missing data imputation were applied to the
medical data of various types, under a missing completely at random assumption
for solving classification task and softening the negative impact of input
information uncertainty. The efficiency of approaches to deal with missingness
was evaluated. Results demonstrated that case deletion and ignoring missing
values were the less suitable to handle mixed types of missing data and sug-
gested RF imputation as a useful approach for imputing complex pregnancy-
related data sets with missing data.

Keywords: Missing data � Case deletion � Imputation � Classification
Gestation course data

1 Introduction

Missing data is a well-known problem in medicine, particularly for research using
routinely collected clinical health records. In many instances, while analyzing and
classifying medical data, there is a shortage of clinical health records of patients with
target disease, and most of these records are incomplete. The fact is that medical data
are represented by a large number of different health screening records, involving a
personal and family health history, results of physical examinations, laboratory tests
and often include samples with many lost or unknown elements. Missing values may
occur by reasons of human errors and misinterpretation during data gathering, equip-
ment failures, loss of data, and troubles in reading a hand-written text, lack of avail-
ability due to privacy, legal requirements, and a host of other factors. In these datasets,
uncertainty rises from data unavailability, and the adequacy of the interpretation of
such data can be questionable.
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There exist many techniques for managing datasets with missing values, but there is
no all-purpose theoretical solution suited for any given data. Various ways and different
models may be practiced for mixed data with missing items, but the problem becomes
if it is possible to find a right approach so far as the wrong choice can hardly lead us to
any meaningful results [1].

The primary objective of this study is to provide medical researchers with a gen-
eralized strategy for handling mixed datasets with missing values, taking into account
the missing data mechanisms, their types, initial volume and proportion of missing
data.

The motivation for this paper was a research focusing on neonatal hypoxia to be a
result of a wide variety the causes. In [2] we noted that identification of the risk factors
related to this disease is a challenging task due to the informal nature, missingness, and
a wide space of the input data. The diagnosis of fetal hypoxia is based on the infor-
mation provided by series of pregnancy-related examination, a thorough antenatal
screening, ultrasonography observations, interview of the patient and a case history
assessment. To set up a profile of pregnant women with a high risk of hypoxia in the
newborn, on the previous research we ignored records with missing data. However, in
order to obtain better results for classifying and prediction a more detailed study of this
question is needed.

The paper is organized as follows: Sect. 2 provides some background on types of
missing data, and reviews the main approaches to addressing mostly missing data
imputation methods; Sect. 3 presents a generalized strategy for handling data with
missing values and describes some performance indicators; Sect. 4 describes a case
study that compares various approaches to handling missing data; and Sect. 5 sum-
marizes the main conclusions.

2 Background and Related Work

Imputation is the usual approach for decreasing the level of input information uncer-
tainty and dealing with missing or incomplete data. These days, the most common
method is multiple imputation proposed by Rubin [3]. Since the first issue the studies
on missing data imputation is not decreasing, on the contrary, the researchers have been
developing new and improved methods to cope with missingness. Whereas many
statistical methods have been developed for imputing missing data, many of them are
weak dealing with complex or mixed data sets. Mixed datasets (i.e., data having both
nominal and categorical variables) are often a big challenge for performing imputation
[4]. For these reasons, there has been much interest in using machine learning methods
for missing data imputation.

The authors of the study [5] developed a two-stage machine learning algorithm,
called ensemble of classifiers, for the classification of data containing missing values,
without imputation, in real time, to predict the patient’s condition in the intensive care
unit. In [6, 7] authors analyzed the efficiency of a multiple imputation technique with a
broad range machine learning (ML) algorithms including k-nearest neighbor (kNN),
decision tree (C4.5) and rule induction (CN2) for recovery missing or unavailable
values. When working with data containing missing values, some researchers [6, 8, 9]
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use special approaches to restore missing values, for example, substitution through
average, maximum likelihood methods using the expectation maximization (EM) al-
gorithm. The results of the study [10] showed that the application of the naive Bayesian
algorithm is most suitable for the classification of data containing missing values. In
[11], the EM algorithm was employed to impute missing data. Authors [12] developed
stochastic EM algorithm for obtaining the maximum likelihood estimates of model
parameters and mixing proportions. In many cases, EM algorithms showed an excellent
power and accuracy of data imputation. A new technique for filling missing values and
performing implementation of large datasets classification was proposed in [4]. It is
grounded on multilevel cost-sensitive SVM-based algorithms, and imputation method
based on expected maximization relied on multiple regression. The study [13] dis-
covered the multiple imputation for categorical and continuous variables using
stochastic regression. The authors leveraged this approach to recovery data that missing
completely at random and compared the performance of different categorical imputa-
tion approaches with the improved continuous method for categorical items. As a
result, they recommend a multiple imputation through stochastic regression for cate-
gorical data that are missing completely at random. A novel imputation approach
dealing with missingness for classifying and prediction of medical records is discussed
in [14].

A fertile area for research can be imputation method based on the random forest
(RF) [15, 16]. RF imputation is an ML technique which does not rely on distributional
assumptions and can adjust nonlinearities and uncertainties in interactions [17]. It is
widely used in medical studies. We assume that RF may be useful in multiple impu-
tation of pregnancy-related data sets where there are large numbers of different clinical
variables per patient.

2.1 Classes of Missing Data

Missingness and unavailability of some values in data can be due to a lack of docu-
mentation, equipment failures, data-entry errors, refusal of answering some questions,
etc. Understanding mechanisms of missing data is a crucial point for choosing an
efficient technique to manage data with missing items.

The types of missing data, depending on the mechanism of their occurrence,
according to [9, 18], are defined as follows.

• Missing completely at random (MCAR) – the absence of values in the data, as well
as the probability of missingness, does not depend on any conditions.

• Missing at random (MAR) – the conditional probability of missingness depends
only on observed variables. If there is a variable y is missing and there is another
variable x, we can define the data as missing at random when Pr(y missing | y,
x) = Pr(y missing | x).

• Not missing at random (NMAR) – the probability of missingness depends on
variables that are incomplete.

In the rest of the paper, we follow the notations used in [18]. Let Y = (yij) denote a
data set without missing values, where yij is the value of variable Yj for subject i.
Missing data indicator matrix M = (Mij) defines the pattern of missing data, where
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Mi = 0 if the value in the observation yij exists and Mi = 1 if yij is missing. The
mechanism of missing data is characterized by a conditional distribution f(M jY;/Þ,
where / denotes the unknown values. If missingness does not depend on the data values
Y, the condition f(M jY;/Þ ¼ fðM j/Þ is satisfied then the absence of data does not
depend on the data values, and the data fall into category MCAR. That is, if for all Y;/

fðM jY;/Þ ¼ fðM j/Þ: ð1Þ

It can be said that missing data mechanism is MAR if for all Ymis;/ data miss-
ingness depends only on the components Yobs, that are observed, and not on the items
that are missing, that is, if

fðM jY;/Þ ¼ fðM jYobs;/Þ; ð2Þ

where Yobs denote the observed components of Y, and Ymis the missing components.
It can be said that missing data mechanism is NMAR if either of the above two

classifications is not met.
Suppose that the distribution (yi, Mi) does not depend on the absence of the value in

the observation, so the probability of missingness does not depend on the values of Y
or M for other missing values.

fðY;M j h;/Þ ¼ fðY j hÞfðM jY;/Þ ¼
Yn
i¼1

fðyi j hÞ
Yn
i¼1

fðMi j yi;/Þ; ð3Þ

where fðyi j 0Þ denotes the density of yi indexed by unknown parameters h. fðMi j yi;/Þ
is the density of a Bernoulli distribution for the binary indicator Mi with probability
PrðMi ¼ 1jyi;/Þ that yi is missing. Thus, if the absence does not depend on Y, i.e. if
PrðMi ¼ 1jyi;/Þ ¼ / it does not depend on yij, then the data missingness are MCAR
or MAR. Otherwise, the probability depends on yij and the data are NMAR.

2.2 Methods for Handling Missing Data

There are different ways to processing missing data: delete the records with missing
values, leave them as is, or perform imputation. The main missing data techniques are
classified under three headings (Fig. 1):

• Discarding missing values or case deletion and dealing with only complete sets;
• Imputation of missing data and their further use in shared data collection, i.e.,

complete cases and incomplete cases with imputed values;
• Analysis the full, incomplete data set utilizing model-based likelihood methods.

This technique does not impute any data but uses available datasets to compute
maximum likelihood estimates.

For making a decision concerning managing data with missing items, it is necessary
to take into account the data type (continuous, ordinal, nominal, etc.), the data miss-
ingness mechanisms, size of initial datasets and proportion of missing data, method of
further analysis, and missing data imputation method.
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Our recommendations for choice of missing data handling approach are summa-
rized in the next section.

3 The Decision Process Governing Strategy for Handling
Missing Data and Evaluation Criteria

3.1 Generalized Strategy for Handling Data with Missing Values

In view of the above, a generalized strategy for handling data with missing values
considering the different missing data mechanisms, the type of the data, and missing
data handling method can be defined as a five-stage process (Fig. 2).

At the first stage, a qualitative assessment of the missing data is carried out. The
types of input data are fixed subject to a specific level of measurement (numerical
(continuous or discrete), categorical (ordinal or nominal)) and depending on the
mechanism of their occurrence (MCAR, MAR, NMAR) which is determined by for-
mulas (1)–(3).

As a first approximation, for missing data containing only numerical type, all
methods described above can be applied. For categorical variables, the case deletion or
imputation based on machine learning algorithms is recommended.

At the second stage, the missing data in each class is quantitatively evaluated. It is
necessary to choose between imputing data and discarding missing values. Usually, if
there is no specific goal, for all practical purposes, records with more than 50% missing
items should be removed [20] regardless of their type and significance for further
analysis.
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Fig. 1. The main techniques for dealing with missing data (adapted from [19])
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For datasets with only numerical type the following results for multiple imputation
methods, taking into account the number of missing data and the absence mechanism
are given [21]:

Under MCAR conditions (when there are up to 50% of the missing values), all
methods show a minimal deviation from the complete dataset.

Under MAR conditions (when there are up to 50% of the missing values), only
multiple imputation is acceptable. When data is being missing at random are verging
towards 50%, then multiple imputation is still possible, but the standard errors will
increase a lot, and it will be difficult to draw conclusions.

Under NMAR conditions with 50% missing values, there’s nothing will get done
well, none of the methods show satisfactory results. At 25% of the missing values, the
use of multiple imputations with a 7.8-fold imputation is recommended.

For datasets containing only categorical data with their missingness from 5% to
50%, the imputation using machine learning algorithms is justified [22].

At the third stage, the question of choosing the method for dealing with the missing
data should be adjusted.

Model-based likelihood methods work well with MAR data. As it recorded in [23],
almost all techniques discussed above show good results for MAR and MCAR data.
The case deletion can be used for all data type with any mechanism of missingness.
However, it is not recommended to utilize the listwise deletion for MAR or NMAR
data. For continuous NMAR data, an imputation with logistic regression is applicable,
but case deletion shows poor performance for NMAR data [24]. The general rule for
handling NMAR data is that in the majority of cases the same methods suitable for
MAR can be applied but with a mandatory responsiveness assessment [25]. In [26] it a
multiple imputation and maximum likelihood methods for NMAR data are
recommended.

The fourth stage depends on the method being chosen on the previous phase and
includes checking the datasets reduction after case deletion or procedures of respon-
siveness assessment after finishing imputation. After case deletion, the proportion of
initial and remaining data should be estimated.
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Fig. 2. Generalized strategy for handling mixed datasets with missing values
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For classification task, the data set reduction range should be carefully evaluated for
each subset of classes. It stems from the fact that applying this approach can lead to
imbalance and skewness of the data sets with further complications in subsequent
analysis.

For data sets with two classes of the output variable, the probability of a particular
class value is optimal only if the expected probability of the value of this class is less
than or equal to the expected probability of the second class value [27], i.e., only when

ð1� pÞc10 þ pc11 �ð1� pÞc00 þ pc01 ð4Þ

under p ¼ Pðj ¼ 1 j xÞ, where P is estimated probability, p – optimal probability, c00 –
true-positive cases, c01 – false-positive cases, c10 – false-negative cases, c11 –

true-negative cases, j – current class of observation x.
If this inequality is actually an equality, the probability of any class is optimal. The

threshold for making optimal decisions is p’ such that

ð1� p0Þc10 þ p0c11 ¼ ð1� p0Þc00 þ p0c01 ð5Þ

Hence, the probability of a specific class value is optimal only if it is satisfied
p� p0. The threshold can be computed as follows

p0 ¼ c10 � c00
c10 � c00 þ c01 � c11

ð6Þ

If the missing data are MCAR and the result set after case deletion provides
adequate power for tests of hypotheses, then case deletion is quite sufficient.

If condition (5) is not fulfilled, then it is necessary to return to the previous stage
and apply a multiple imputation or model-based likelihood methods.

At the fifth stage, it is necessary to conduct performance evaluation and assess the
efficiency of missing data method.

3.2 Accuracy Metrics and Measuring the Efficiency of Missing Data
Imputation

The efficiency of methods for handle missing data can be assessed using the following
performance indicators:

1. Classification error rate (CER). For two class output variable, the CER is computed
as follows

CER ¼ c01 þ c10
c00 þ c01 þ c10 þ c11

ð7Þ

2. Root mean square error (RMSE). RMSE estimates standard deviation between
imputed and true values. We will assume that ~xi denotes an imputed version of the
i-th attribute, and x̂i denotes the true value of the same variable.
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

x̂i � ~xið Þ2

n

vuuut ð8Þ

3. Predictive accuracy (PAC). Given that the i-th value of the variable is missing, its
imputed version ~xi should be close to x̂i (true value). Pearson’s Correlation between
~xi and x̂i is a good measure of imputation efficiency and is defined as follows

PAC � r ¼
PN

n¼1 ð~xi;n � ~xiÞðx̂i;n � x̂iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1 ð~xi;n � ~xiÞ2ðx̂i;n � x̂iÞ2

q ð9Þ

where ~xi;n and x̂i;n denotes, respectively, the n-th value of ~xi and x̂i; �~xi and �̂xi
contains, respectively, N values including ~xi and x̂i. A good imputation method will
have a correlation coefficient close to 1.

4. Distributional accuracy (DAC). The distance between the empirical distribution
function for both imputed and true values can be used as a measure to maintaining
the distribution of true values. Empirical distribution functions Fx̂i for cases with
true values and F~xi for cases with imputed values

Fx̂iðxÞ ¼
1
N

XN
n¼1

Iðx̂i;n � xÞ ð10Þ

F~xiðxÞ ¼
1
N

XN
n¼1

Ið~xi;n � xÞ ð11Þ

where I is an indicator function. The distance between these functions can be
determined using the Kolmogorov-Smirnov distance DKS and is given by formula

DAC � DKS ¼ max
n

ðjjFx̂iðxnÞ � F~xiðxnÞjjÞ ð12Þ

where the values of xn are both true and imputed values of the variable xi. A good
imputation method gives us a small distance value.

As it mentioned in [19], the CER is one of the most significant accuracy metrics
due to the fact that the primary task of imputation in this study is to solve the problem
of classifying data with missing values, and the imputation is a secondary task that
helps to solve this problem.
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4 Case Study

4.1 Data Properties

The study is conducted on real sets of pregnancy data, containing missing values. Our
focus in this paper is on case-control studies. The experiments were performed using
186 datasets (medical records), six input variables and one output variable. Variables,
selected at the first stage of the study [2], are presented by the results of clinical and
laboratory tests of pregnant women and fetus at different terms of pregnancy. Table 1
shows data on the patient’s gestation course and the diagnosis of a newborn.

Variable “ID” is the patient’s ID and is not used for further data analysis, “ESR2” –
erythrocyte sedimentation rate (ESR) at 21 weeks of gestation; “ESR3” – ESR index at
38 weeks of gestation, “prothrombin_index” – blood prothrombin index; “verti-
cal_amniotic_size” – amniotic fluid index; “placenta_maturity” – maturation of the
placenta at 30 to 38 weeks; “placenta_thickness” – placenta thickness at 30 to 38 weeks
of gestation; and variable “newborn_diagnosis.” Information on these variables and
percentage of missing data in pregnancy-related health records [2] is presented in
Table 2.

Table 1. Fragment of the data set used in the experiment

ID ESR2 ESR3 Prothrombin
index

Vertical
amniotic
size

Placenta
maturity

Placenta
thickness

Newborn
diagnosis

51 43 42 5 146 1 29 Pathology
52 69 46 5 70 3 35 Pathology
56 12 17 6 235 1 36 Pathology
78 55 26 5 64 1 33 Pathology
95 25 47 5 58 3 87 Norm
143 41 37 5 65 3 34 Norm
144 35 22 5 125 1 38 Norm
145 40 40 5 124 2 42 Norm
… … … … … … … …

Table 2. Percentage of missing data for gestation course variables

Variable Missing data, %

ESR at 21 weeks of gestation 8, 1
ESR at 30 weeks of gestation 19, 4
Prothrombin index 31, 2
Amniotic fluid index at 30 to 38 weeks of gestation 37, 6
Maturation of the placenta at 30 to 38 weeks of gestation 21, 5
Placenta thickness at 30 to 38 weeks of gestation 21, 5
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It can be seen from the table that the indicator of the vertical size of the amniotic
fluid on the ultrasound examination at 30–38 weeks of gestation has the most missing
data. However, it does not exceed the boundary of 50%. Some variables contain a large
number of missing data as well, but the missing elements do not have a systematic
picture. All data in the dataset are MCAR. Possible reasons for their missingness are
randomness or human factor (loss of biological material, unavailability of physical
examinations results and laboratory tests, lack of survey data, i.e., missing data are not
related to other data and patient characteristics).

A qualitative assessment of the gestation course data revealed that all missing data
are MCAR, type of input variables “ESR2”, “ESR3”, “vertical_amniotic_size”, and
“placenta_thickness” is continuous, type of input variables “blood_prothrombin_
index” and “placenta_maturity” is ordinal, and type of output variable “diagnosis of
newborn” is nominal. Data analysis was performed with the missing value analysis
(MVA) module in SPSS.

4.2 Experiments and Results

Having regard to data types, mechanism of their missingness and missing data per-
centage range there are at least two approaches; they are case deletion and machine
learning imputation. As an ML technique, an imputation based on Random Forest
algorithm was employed. For classification purposes the experiment with ML impu-
tation was performed in the following manner.

First, we split a full dataset into two sub-datasets: containing only records without
missing values and containing only records with missing values. For each complete
sub-dataset (records without missing data) a set of decision trees were constructed. For
each incomplete sub-dataset (records with missing data) the missing values were
imputed. Then all records were combined to form a completed dataset without any
missing values, and classification procedure was performed on the new full data set.
Random Forest algorithm was applied both for imputing missed data and for classi-
fication. Finally, the classification accuracy was evaluated by applying the corre-
sponding classification model, and the classification error rates were analyzed.

Main phase of the experiment has been performed with classifiers from the WEKA
tool [28]. The results of the classification error estimation for ignored, deleted and
imputed missing data is summarized in Table 3.

Ignoring missing values do not facilitate further data analysis and shows the worst
result of the classification error rate. After deleting cases with missing values, the data
set became 30% of the original volume. For initially small dataset, this reduction is

Table 3. CER for datasets where data with missed values were ignored, for data without
missing values (after case deletion), and on imputed data

Approach Classification error rate

Ignoring missing values 0.62
Case deletion 0.53
Random forest imputation 0.39
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significant and affects the sensitivity estimate. Case deletion shows average results and
can be applied with sufficient amounts of input data or low percentage of records
containing missing values. The ML imputation based on RF provides a significant
improvement compared with the case deletion and ignoring missingness.

As expected, the classification error rates demonstrate that classification on imputed
data is more accurate than classification on missing data or classification on data
containing only complete cases. Therefore, we conclude that in these conditions, for
mixed datasets (i.e., data having both numerical and categorical variables) with
amounts of missing values up to 37.6%, imputation improves the classification.

5 Conclusions and Future Work

There is increasing demand for handling missing data as the numerous databases
contain missing values. The missing data is an ongoing issue for clinical health records,
but so far there is no universal approach performing best results in different situations.

The primary objective of this study was to formulate general strategy and guide-
lines for medical researchers in choosing among multiple approaches for handling
missing data subject to various combinations of data types, mechanisms of missing-
ness, number of missing values, and further analytical task.

The main contributions of the paper are as follows. In this study, we presented a
unified approach for decision support concerning managing mixed datasets with
missing items. We applied our technique to clinical health records containing missing
data to examine its impact on the missing data model selection and subsequently
classification. The study was carried out based on the proposed strategy using a real
data set with missing values. Following the proposed strategy, three methods such as
ignoring missing values, deleting cases with missing values, and missing data impu-
tation using the Random Forest algorithm were applied.

It is still premature to draw any conclusions about the operational suitability this
methodological approach and further studies are needed to understand the relationships
between different aspects in more detail. However, our results suggest that under
various missing data conditions task of model selecting is much-simplified. Our
research has been done on a limited number of datasets, and sole missing data
imputation method has been tested, so further research required to confirm obtained
results.

References

1. Magnani, M.: Techniques for dealing with missing data in knowledge discovery tasks, 15
(01), 2007 (2004). http://magnanim.web.cs.unibo.it/index.html

2. Skarga-Bandurova, I., Biloborodova, T.: Exploratory data analysis to identifying meaningful
factors of hypoxic fetal injuries. Inf. Model. 44(1216), 122–135 (2016). Herald of the NTU
“KhPI”. NTU “KhPI”, Kharkov. https://doi.org/10.20998/2411-0558.2016.44.09

3. Rubin, D.B.: Multiple Imputation for Nonresponse in Surveys, vol. 81. Wiley, Hoboken
(2004)

618 I. Skarga-Bandurova et al.

http://magnanim.web.cs.unibo.it/index.html
https://doi.org/10.20998/2411-0558.2016.44.09


4. Razzaghi, T., Roderick, O., Safro, I., Marko, N.: Multilevel weighted support vector
machine for classification on healthcare data with missing values. PLoS ONE 11(5),
e0155119 (2016)

5. Conroy, B., Eshelman, L., Potes, C., Xu-Wilson, M.: A dynamic ensemble approach to
robust classification in the presence of missing data. Mach. Learn. 102(3), 443–463 (2016).
https://doi.org/10.1007/s10994-015-5530-z

6. Batista, G.E.A.P.A., Monard, M.C.: An analysis of four missing data treatment methods for
supervised learning. Appl. Artif. Intell.: Int. J. 17(5–6), 519–533 (2003)

7. Schmitt, P., Mandel, J., Guedj, M.: A comparison of six methods for missing data
imputation. J. Biom. Biostat. 6(224), 1 (2015). https://doi.org/10.4172/2155-6180.1000224

8. Ibrahim, J.G., Molenberghs, G.: Missing data methods in longitudinal studies: a review. Test
18(1), 1–43 (2009)

9. He, Y.: Missing data analysis using multiple imputation. Circ.: Cardiovasc. Qual. Outcomes
3(1), 98–105 (2010)

10. Oba, S., Sato, M., Takemasa, I., Monden, M., Matsubara, K., Ishii, S.: A Bayesian missing
value estimation method for gene expression profile data. Bioinformatics 19, 2088–2096
(2003). https://doi.org/10.1093/bioinformatics/btg287

11. Calikli, G., Bener, A.: An algorithmic approach to missing data problem in modeling human
aspects in software development. In: Proceedings of 9th International Conference on
Predictive Models in Software Engineering, p. 10. ACM, New York (2013)

12. Fu, Y.Z.: Stochastic EM algorithm of a finite mixture model from hurdle Poisson distribution
with missing responses. Commun. Stat.-Theory Methods 45(20), 5918–5932 (2016)

13. Finch, W.H.: Imputation methods for missing categorical questionnaire data: a comparison
of approaches. J. Data Sci. 8, 361–378 (2010)

14. Yelipea, U.R., Porikab, S., Gollaa M.: An efficient approach for imputation and classification
of medical data values using class-based clustering of medical records. Comput. Electr. Eng.
In Press. https://doi.org/10.1016/j.compeleceng.2017.11.030

15. Tang, F., Ishwaran, H.: Random forest missing data algorithms. Stat. Anal. Data Min.: ASA
Data Sci. J. 10, 363–377 (2017). https://doi.org/10.1002/sam.11348

16. Breiman, L., Cutler, A.: Manual on Setting Up, Using, and Understanding Random Forests
V3.1. University of California, Berkeley (2002). http://oz.berkeley.edu/users/breiman/
Using_random_forests_V3.1.pdf

17. Shah, A.D., Bartlett, J.W., Carpenter, J., Nicholas, O., Hemingway, H.: Comparison of
random forest and parametric imputation models for imputing missing data using MICE: a
CALIBER study. Am. J.Epidemiol. 179(6), 764–774 (2014)

18. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data. Wiley, Hoboken (2014)
19. García-Laencina, P.J., Morales-Sánchez, J., Verdú-Monedero, R., Larrey-Ruiz, J., Sancho-

Gómez, J.L., Figueiras-Vidal, A.R.: Classification with incomplete data. In: Handbook of
Research on Machine Learning Applications and Trends: Algorithms, Methods, and
Techniques: Algorithms, Methods, and Techniques, pp. 147–175 (2009)

20. Hair, J.F., et al.: Multivariate Data Analysis. Prentice Hall, Upper Saddle River (2016)
21. Scheffer, J.: Dealing with missing data. Res. Lett. Inf. Math. Sci. 3, 153–160 (2002)
22. Farhangfar, A., Kurgan, L., Dy, J.: Impact of imputation of missing values on classification

error for discrete data. Pattern Recognit. 41(12), 3692–3705 (2008)
23. Peugh, J.L., Enders, C.K.: Missing data in educational research: a review of reporting

practices and suggestions for improvement. Rev. Educ. Res. 74(4), 525–556 (2004)
24. Huisman, M.: Imputation of missing network data: some simple procedures. J. Soc. Struct.

10(1), 1–29 (2009)

Strategy to Managing Mixed Datasets with Missing Items 619

http://dx.doi.org/10.1007/s10994-015-5530-z
http://dx.doi.org/10.4172/2155-6180.1000224
http://dx.doi.org/10.1093/bioinformatics/btg287
http://dx.doi.org/10.1016/j.compeleceng.2017.11.030
http://dx.doi.org/10.1002/sam.11348
http://oz.berkeley.edu/users/breiman/Using_random_forests_V3.1.pdf
http://oz.berkeley.edu/users/breiman/Using_random_forests_V3.1.pdf


25. Doidge, J.C.: Responsiveness-informed multiple imputation and inverse probability-
weighting in cohort studies with missing data that are non-monotone or not missing at
random. Stat. Methods Med. Res., 1–15 (2016). https://doi.org/10.1177/0962280216628902

26. Cheema, J.R.: Some general guidelines for choosing missing data handling methods in
educational research. J. Modern Appl. Stat. Methods 13(2), 53–75 (2014)

27. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 973–978.
Lawrence Erlbaum Associates Ltd. (2001)

28. Frank, E., Hall, M.A., Witten, I.H.: The WEKA Workbench. Online Appendix for “Data
Mining: Practical Machine Learning Tools and Techniques”, 4 edn. Morgan Kaufmann
(2016)

620 I. Skarga-Bandurova et al.

http://dx.doi.org/10.1177/0962280216628902


Predicting Opponent Moves
for Improving Hearthstone AI

Alexander Dockhorn(B) , Max Frick , Ünal Akkaya , and Rudolf Kruse
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Abstract. Games pose many interesting questions for the development
of artificial intelligence agents. Especially popular are methods that guide
the decision-making process of an autonomous agent, which is tasked to
play a certain game. In previous studies, the heuristic search method
Monte Carlo Tree Search (MCTS) was successfully applied to a wide
range of games. Results showed that this method can often reach playing
capabilities on par with humans or even better. However, the character-
istics of collectible card games such as the online game Hearthstone make
it infeasible to apply MCTS directly. Uncertainty in the opponent’s hand
cards, the card draw, and random card effects considerably restrict the
simulation depth of MCTS. We show that knowledge gathered from a
database of human replays help to overcome this problem by predicting
multiple card distributions. Those predictions can be used to increase the
simulation depth of MCTS. For this purpose, we calculate bigram-rates
of frequently co-occurring cards to predict multiple sets of hand cards
for our opponent. Those predictions can be used to create an ensemble of
MCTS agents, which work under the assumption of differing card distri-
butions and perform simulations according to their assigned distribution.
The proposed ensemble approach outperforms other agents on the game
Hearthstone, including various types of MCTS. Our case study shows
that uncertainty can be handled effectively using predictions of sufficient
accuracy, ultimately, improving the MCTS guided decision-making pro-
cess. The resulting decision-making based on such an MCTS ensemble
proved to be less prone to errors by uncertainty and opens up a new class
of MCTS algorithms.

Keywords: Hearthstone · Monte Carlo Tree Search
Knowledge-base · Ensemble · Uncertainty · Bigrams

1 Introduction

Computational intelligence in games is a thriving research topic, with a growing
demand from the video game industry. Especially, applications in video games
make it possible to quickly compare agents, and their related methods, by let-
ting them play against each other. The development of artificial intelligence (AI)
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Fig. 1. Elements of the Hearthstone game board: (1) weapon slot (2) hero (bottom:
player, top: opponent) (3) opponent’s minions, (4) player’s minions, (5) hero power,
(6) hand cards, (7) mana, (8) decks, (9) history

agents for games often involves solving decision-making tasks, for which heuris-
tic search processes, such as Monte Carlo Tree Search (MCTS) are frequently
used [2].

Recent studies showed that the actual skill-level of an MCTS agent is depen-
dent on the quality of performed simulations during the search [7]. This is espe-
cially hard in the context of collectible card games, such as the online game
Hearthstone, where the set of playable card-combinations is extremely large.
Even more critical is the high amount of uncertainty involved in the game.
Game-mechanics such as the random card-draw, the unknown hand cards of
our opponent, as well as random card effects hinder the accuracy of performed
simulations and restrict the simulation depth.

In the context of a 2-player card game, the prediction of our opponent’s
moves, his hand-cards, as well as the cards in his deck largely influence which
moves the player needs to consider. In this work we create a knowledge-base
of frequently played card combinations from a database of human player game
replays. During a game the knowledge-base is used to predict the opponent deck
based on previously played cards. From the estimated deck we sample multiple
hand card sets for our opponent. An ensemble of MCTS procedures is initialized
based on the hand card samples. The ensemble’s best result will be returned as
final outcome of the decision-making process.

The developed agent is exemplary for uncertainty handling in MCTS agents.
The result of the simulation is less prone to wrong assumptions, due to the
included knowledge-base and the search on an ensemble of MCTS procedures
Our results indicate that the prediction-based ensemble improves the playing
capabilities of our developed agent.

The remainder of this paper is structured as follows: In Sect. 2 we review
the game Hearthstone: Heroes of Warcraft and previous research efforts on the
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development of Hearthstone AIs. Section 3 covers the Flat Monte Carlo and the
Monte Carlo Tree Search algorithm. Additionally, we shortly review recently
used agents found in the literature in Sect. 4. In Sect. 5 we first discuss our
approach to learn frequent card combinations from a large database of replays.
We further introduce our roll-out policy, which includes the prediction of our
opponent’s cards based on our knowledge database. The influence of the new
rollout policy and general parameters of MCTS is tested in Sect. 6 followed by a
detailed discussion of our results. Finally, in Sect. 7 we highlight the implications
of our work and summarize our suggestions for further improvements.

2 Hearthstone: Heroes of Warcraft

Hearthstone is a turn-based digital collectible card game developed and pub-
lished by Blizzard Entertainment [1]. Players compete in one versus one duels
choosing a self-constructed deck and one out of nine available heroes. In these
matches players try to beat their opponents by reducing the opponent’s health
from 30 to 0. This can be achieved by playing cards from the hand onto the
game board at the cost of mana. Played cards can be used to inflict damage to
the enemies hero or to destroy cards on his side of the game board. The amount
of mana available to the player increases every turn (up to a maximum of 10),
which also increases the complexity of later turns. At the beginning of a turn
the player also draws a new card until his deck is empty. If no cards remain
he receives fatigue-damage, which is steadily increasing from turn to turn. The
standard game board is shown in Fig. 1.

A deck is a self-constructed set of 30 cards, which can be chosen from more
than 1000 cards currently included in the game. Each card brings unique effects
to influence the current game board. Additionally, heroes can use class-specific
hero-powers and cards.

Cards can be of the type minion, spell, or weapon. Figure 2 shows one example
of each card type. Minion cards assist and fight on behalf of the hero. They
usually have an attack-, health-, and mana cost-value, as well as additional
abilities or a special minion type. Once played, they can attack the enemies side
of the board every consecutive turn to inflict damage on either enemy minions
or the opponent’s hero. Attacking also reduces its own health points by the
attack points of the defender. In case a minion’s health drops to zero or less,
it is removed from the board and put into the player’s graveyard. Spell cards
can be cast using mana to activate various abilities and are discarded after use.
They can have a wide range of effects, such as raising a minion’s attack, inflicting
damage to a hero or minion, etc. Secrets, which are a special kind of spell, can be
played without immediately activating their effect. Given a certain event a secret
will be activated and for example destroy an attacking minion. Once activated,
the secret is removed from the board. Weapon cards are directly attached to the
player’s hero and also enable him to attack. Their durability value limits the
number of attacks till the weapon breaks. Only one weapon can be equipped at
the same time.
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Fig. 2. General card types: cards include (1) mana cost, (2) attack damage, (3)
health/durability, (4) and special effects.

Hearthstone decks often contain multiple cards which act in synergy, e.g.
pirate minion cards of the same type buff each other. Generated decks can be
categorized in the three major categories: Aggro, Mid-range, and Control. Aggro
decks build on purely offensive strategies, which often include a lot of minions.
Control decks try to win on the long run by denying the opponent from executing
his strategy and dominating the game situation. Mid-range decks are in-between
Aggro and Control decks. They try to counter early attacks to dominate the game
board with high cost minions during the mid of the game.

Game length and branching factor can be dependent on the decks being
played by both players. The possibility of making multiple moves per turn and
the enormous amount of possible decks make Hearthstone a challenging problem
for AI research.

3 Flat Monte Carlo and Monte Carlo Tree Search
(MCTS)

MCTS is a heuristic search algorithm commonly used in a wide range of computer
game AIs [2]. Its exploration of the game tree consists of four major steps (1)
selecting a node, (2) expanding the node with any legal move, (3) simulating
(random) playouts called rollout, (4) determining the final value of the playout
and propagate it back along the path to the root node. Those four phases are
commonly grouped into tree policy (selection and expansion) and default policy
(simulation and back-propagation). Moves under consideration can be evaluated
by repeatedly simulating games to approximate the players chances of winning
the game after executing this move. This can either be done by counting the
number of won simulated games or rating any intermediate simulated game-
state using a scoring function. The number of simulations as well as the quality
of the playout are crucial in determining an accurate estimate of the chances of
success. Finally, the node with the highest success-rate is played.
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Using a random selection and expansion as tree policy can lead the agent to
lose a lot of time on the simulation of unpromising nodes. For example if nodes
are known, of which the first wins in 80% of the computed simulations and the
second in only 10% it would likely be more useful to further analyse the subtree
of the first node. This can increase confidence in the approximated chances of
winning the game after picking the node. Nevertheless, it would be possible that
more simulations on the second node would uncover new and more promising
paths. We might also expand a new node, which was not considered yet, that
would be even better than the previous nodes. Therefore, the UCB formula (see
Eq. (1)) [12], which balances exploration and exploitation, can be used during
the selection step.

R(s′)
︸ ︷︷ ︸

Exploitation

+ C

√

log2(V (s))
V (s′)

︸ ︷︷ ︸

Exploration

(1)

where s′ is a child node of s, R(s′) is the average success after choosing node
s′, and V (s) counts the number of visits of state s during previous episodes.
The constant C balances both parts of the equation. Using the UCB as a tree
policy, the search tree is known to converge to the minimax tree as the number
of simulation grows to infinity [12].

4 Previous Work and the Hearthstone AI Competition

Hearthstone is closed source. Thanks to the efforts of an active community,
multiple simulators exist as part of the HearthSim project [10].

This work uses a simulator called Sabberstone [5], which tries to remodel
each part of the game as close as possible. The C#-programming interface allows
researchers to implement algorithms in this rich test environment. Sabberstone
currently implements 98% of cards included in the game. Therefore, to the best
of our knowledge, Sabberstone represents the most complete simulator currently
available. In the future, researchers will be able to directly compare their results
in the Hearthstone AI competition [8].

Metastone is another simulator, which was frequently used for research
projects in the past [6]. It already includes a greedy optimization agent, which
uses a scoring function to choose the best sequence of moves for the current turn.
The scoring heuristic takes each player’s minions, their number of hand cards,
and current health points into account. Each minion receives a score, which is
determined by weighting the minion’s attack and health values, as well as tak-
ing typical abilities, such as taunt, into account. The proposed scoring function
results in an aggressive play-style, which heavily relies on reducing the opponent’s
health, as well as achieving minion dominance on the game board. Other heuristics
were developed for the AAIA’17 Data Mining Challenge [11], which inspired mul-
tiple research papers on the development of winner-prediction models. Very good
results were achieved by Neural Network based methods, which achieved about
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80% prediction accuracy of mid-game game-states. Therefore, more enhanced
search heuristics than the one provided by Metastone are possible [9].

Metastone also includes an implementation of a Flat Monte Carlo agent,
which we use in our evaluation. Based on Metastone, two MCTS agents were
developed [13,14], which both performed well against the random and Flat Monte
Carlo agent. However, no comparable data is available.

Another well-received work was done on next card prediction [3]. A bag-of-
words of card-co-occurrence bi-grams was used for training a prediction system
for the next upcoming card. Prediction rates of up to 95% were recorded during
the evaluation. The high prediction accuracies inspired our work on enhance-
ments for MCTS.

5 Enhancing MCTS by the Prediction of Opponent
Hand Cards

Hearthstone players deduce the best move under the effect of multiple sources
of uncertainty. Throughout the game the current game-state cannot be fully
accessed by the player. During the player’s move it is unknown which card will
be drawn next, which cards our opponent currently holds in his hand, and which
cards are contained in the opponent’s deck. Even if the game-state would be fully
accessible, players need to anticipate their opponent s next move(s) for laying
out their own strategy. Nevertheless, players can elicit different levels of skill,
which is suggesting that those tasks can at least be partially handled.

Applying MCTS will have to face the same sources of uncertainty. In this
work we predict our opponent’s move from a database of frequently co-occurring
cards. Predicting our opponent’s move increases the accuracy of performed sim-
ulations and let us reduce the number of necessary simulations without loss of
quality [7]. Ultimately, this increases the skill level of the MCTS agent with only
limited overhead during the simulation.

5.1 Bigram Extraction

Building up a knowledge-base of card-co-occurrences was done by analysing a
total of 544.628 replays by human players. The dataset was obtained from an
openly available database of replays [4]. On this website players are able to
upload replays of past games for statistical tracking. Our knowledge-base is
based on replays from June 2016 to October 2017. Each replay consists of the
players deck as well as a history of moves for the recorded game. Additionally,
decks in the replay file are classified in deck categories such as “pirate warrior”
or “token paladin”, each consisting of cards which exploit certain card synergies.
The amount of games per hero class are summarized in Table 1.

For each card we determined the number of co-occurrences with other cards.
Three types of co-occurrences were differentiated
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– isolated: cards need to be played at the same turn
– successive: cards need to be played in successive turns
– combined: isolated and successive counts are added

We further studied the influence of taking the games result into account on
the final system skill level. For this purpose we either counted only co-occurrences
for moves of the winning player, the losing player, or both. The co-occurrence
database was stored as compressed .json-file and can be accessed during the
simulation phase for to determine likely cards for the next turn.

Table 1. Game statistics

Hero Avg. length Avg. actions #games

Hunter 393.213 12.927 42.740

Druid 433.383 15.889 72.867

Warrior 428.505 14.757 77.526

Priest 525.571 17.156 53.133

Mage 506.471 18.920 63.887

Shaman 443.933 14.706 76.092

Paladin 459.677 14.561 56.395

Rogue 436.423 17.103 58.541

Warlock 449.750 15.681 43.447

All 452.932 15.786 544.628

5.2 MCTS Enhancement

In this work we extend MCTS for creating an agent for Hearthstone. In our
adaptations of MCTS we aim for widening the prediction to the next 3 turns
determined by consecutive MCTS searches. Extending the simulation can only
be allowed by the knowledge-base. The full algorithm is described below. For
an easier understanding we recommend comparing the described process with
Fig. 3.

Phase 1: During our MCTS simulation we use the current state of the game
board as the initial root node. Each action, such as playing a card, attack with
a minion, etc., advances the state of the game and represents another node. The
next node is selected based on UCT selection using the Metastone score and
the visit count of the node (see Eq. (1)). Each transition consists of exactly one
move. A player’s turn is made of multiple moves and ends with an end-turn
move.
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End-Turn Best End-Turn game state

Path 1 Path 2 Path 3

Fig. 3. MCTS with prediction

A simulation uses a greedy selection of moves
based on the Metastone scoring function.
The last move of a simulation consists of an
end-turn move. The final score after ending
the player’s turn is back-propagated along
the simulation path.

Phase 2: After a number of simulations
we pick the best n nodes and use the
game-state of their best leaf node (end-turn
node) for further simulations of the oppo-
nent player in phase 2. Based on his pre-
viously played cards we determine a likely
deck (out of 20 pre-implemented samples). A
set of hand-cards is determined using the bi-
gram database. For this we use all previously
played cards to determine their most proba-
ble follow-up card. Out of all follow-up cards
we randomly sample the opponent’s hand
cards to approximate the real set of hand-
cards. Using MCTS we determine the best
sequence our opponent can play all resulting
in a end-turn move and a final game-board.

Phase 3: In phase 3, we determine the best
follow-up turn for each of the returned game-
states to rate the resulting game-board.
Once more, this is done using MCTS. The
scores are back-propagated all the way to
our node-rating in Phase 1. Finally, the best
rated node will be picked for execution.

Even if this process turns out to be computationally expensive, the thorough
simulation of our opponent assures a high quality prediction during phase 2.
Deeper simulations can be created by stacking phase 2 and 3 multiple times,
before back-propagating the final game-board scores. Nevertheless, we chose a
depth of 3, because of the limited prediction accuracy for follow-up turns. Simu-
lating deeper playthroughs would accumulate more uncertainty, due to unknown
card-draws on both sides. It turned out to be more effective to increase the num-
ber of simulations for a better approximation of the game-state score after a few
moves. The number of simulations can be adjusted to fit the 75 seconds time
limit of the game.
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6 Evaluation

6.1 Experimental Setup

During our evaluation we tested the proposed agent against multiple other agents
mentioned in the literature or in previous implementations. We included a ran-
dom agent (random) as general baseline without any planning capabilities. Flat
Monte Carlo (flatMC) was implemented as a basic search strategy. MCTS with-
out further prediction of the opponent’s hand cards (plainMCTS) was imple-
mented to test the influence of our bigram prediction. Full observation MCTS
(foMCTS) was used to compare our AI versus an optimal prediction of oppo-
nent’s hand cards. Here, we simulate the optimal prediction by providing the AI
with the actual hand cards during the current game-state. Finally, an exhaustive
search (exh. s.), which is implemented by the Sabberstone framework, allowed us
to choose the best of all possible move sequences for the players turn. However,
the method is not allowed to simulate the opponent’s turn.

Our proposed MCTS algorithm with prediction of our opponent’s hand cards
(predMCTS) was tested against each of the described agents. Therefore, we used
three by Sabberstone pre-implemented decks for representing the possible deck
types and play-styles in Hearthstone. The “Aggro Pirate Warrior” deck (Aggro)
consists of low cost pirate minions, offensive weapons, and spell cards of the
warrior class. In contrast, the “Mid-Range Jade Shaman” deck (Mid-Range) is
made of multiply minion buffs and damaging spells. The third deck-type (Con-
trol) is represented by the “Reno Kazaku’s Mage” deck, which is mainly based
on spell damage, and destroying or taking over control of enemy minions.

For each combination of player deck, opponent deck, and opponent agent we
simulated at least 100 games. The multiple random factors of hearthstone lead
us to simulate more games for the comparison of predMCTS versus plainMCTS
and foMCTS to get stable results. Winning percentages for each match-up are
summarized in Table 2.

6.2 Discussion

Reviewing the results in Table 2 indicates the advantages of the implemented
AI approach. Looking at all the match-ups in which both agents play the same
deck, it becomes clear that our proposed agent is able to beat them in all cases
except one. In general the agent performs best when playing the Mid-Range
deck. Playing the Aggro deck also leads to very good results. The results of
the Control deck against other decks are worse than the results of both other
decks, which might be due to the deck being generally worse than the other two
variants.

Both random and flat Monte Carlo consistently lose in most match-ups, while
the remaining opponents are able to win games more often. It is not surprising
that nearly all games (≈98%) are won against the random player. Games against
the flat Monte Carlo agent show a promising success rate of ≈81% on average.
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Table 2. Winning chances of predMCTS using various decks against other agents. 100
games were simulated against the Random, flatMC, and exhaustive search agent. Up to
500 games were simulated against predMCTS and foMCTS, because bigger variances
were observed during the simulation process. Columns in which both agents play the
same deck are highlighted in gray.

Wins in % Aggro Mid Control

Random 95 100 100
flatMC 81 73 94
plainMCTS 59 47 58
foMCTS 46 36 60
exh.s. 65 47 70

(a) predMCTS Aggro Deck

Wins in % Aggro Mid Control

Random 99 98 100
flatMC 88 85 99
plainMCTS 71 55 76
foMCTS 59 50 76
exh.s. 62 70 85

(b) predMCTS Mid-Range Deck

Wins in % Aggro Mid Control

Random 97 97 100
flatMC 73 54 89
plainMCTS 36 31 68
foMCTS 41 16 51
exh.s. 45 20 61

(c) predMCTS Control Deck

The plainMCTS agent was beaten in most games while playing the Mid-
Range or the Aggro deck. However, our AI performs worse in the match-ups
where it uses the Control deck against other deck types. Nevertheless, we
achieved a win-rate of 68% in cases where both agents play the control deck.
The overall win-rate is ≈56%. This result and the better performance in the
other match-ups where both agents play the same deck shows that the improved
prediction of the opponent move results in a better overall performance.

The only agent that has beaten our proposed approach in more than 50%
of simulated games is the foMCTS agent. Our overall win-rate is ≈48%. This
is not surprising due to the fact, that the foMCTS receives full information of
the players hand cards. Therefore, our results indicate that precise knowledge
can increase the performance of the MCTS algorithm by a large degree. For this
reason, we are motivated to even further increase the performance of our card
prediction algorithm. The advantage of knowing the true hand cards is a bit
unfair and impractical in a legal game situation.

Our proposed approach was able to beat exhaustive search in 6 out of 9
match-ups. The overall win-rate is ≈58%.

Generally, the player playing the control deck performs worse in most match-
ups. This could be due to two possible reasons. First, short-term prediction is
not suitable for playing a control deck, because the used deck is in need of long-
term planning. Therefore, the implemented approaches may not perform very
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well. A planning horizon of more than three turns may increase the play-strength
on this deck-type. Another reason may be Metastone’s scoring function, which
puts more weight on the current game-board, than on the remaining utility
of the hand cards effects. Playing a spell that kills all the opponent’s minions
can be played for immediate effect or kept for a later situation. For example
killing just one minion would be a waste, if another card could yield the same
effect. Either improving Metastone’s scoring function or implementing a deck
dependent scoring function may increase the play-strength for this deck.

7 Conclusions and Future Works

In this work we proposed a method for handling uncertainty in MCTS. Our
method involves the creation of a knowledge-base, which is used to initialize
an ensemble of MCTS procedures. Our current sampling approach is based on
bi-grams, but can theoretically be exchanged by any probabilistic or heuristic
sampling. The resulting decision-making based on such an ensemble proofed to
be less prone to uncertainty at the cost of a marginally increased computation
time. Our sampling based ensemble opens up a new class of MCTS algorithms,
which in its current version already outperforms other agents based on MCTS.

We evaluated our approach based on the collectible online card game Hearth-
stone. Bigrams, which are fast to process and cheap in memory consumption,
are learned from a database game replays. The simulation phase is guided by
sampling multiple hand card sets for the opponent player based on the gathered
knowledge-base. Due to this sampling multiple game situations are considered
during the decision-making phase. This enables our agent to choose better moves
than comparable agents depending on the current state of the game. The pro-
posed agent was able to consistently beat those agents in multiple game setups.

Our tests using an MCTS agent with full information on the current game-
state show that a perfect prediction would yield slightly better results in some
match-ups, suggesting that improving the prediction accuracy would even fur-
ther increase the play-strength. In the future we plan to further analyse the
capabilities of partially informed MCTS agent ensembles.

In the context of creating a Hearthstone AI, we plan to further extend the
opponent card and deck prediction. For this purpose, we would like to incorpo-
rate other sources of knowledge, such as a deck database of current meta-decks.
Further adaptations need to be made for detecting commonly played decks and
inferring the opponent’s strategy. In this work we limited our deck database
to 20 commonly played decks and the deck strategies Aggro, Mid-Range, and
Control. This can be further extended by focusing on deck dependent core-
mechanics, such as strong board clears, discarding cards, or buffing minions.
Detecting which core-mechanic the deck relies on would further improve the
opponent prediction. Also, updates of cards or additions of new cards can dras-
tically change the meta-game. Hence, gathered knowledge needs to be frequently
revised to stay up to date with currently played strategies. Further work will be
put into better scoring functions, which are based on those core-mechanics.
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Abstract. The growing use of Information Technology in automated
negotiation leads to an urgent need to find alternatives to traditional
protocols. New tools from fields such as Artificial Intelligence (AI) should
be considered in the process of developing novel protocols, in order to
make the negotiation process simpler, faster and more realistic. This
paper proposes a new framework based on both argumentation and Case-
Based Reasoning (CBR) as means of guiding the negotiation process to
a settlement. This paper proposes a new generic domain-independent
framework that overcomes the limits of domain-dependent frameworks.
The proposed framework was tested in tourism domain using real data.

Keywords: Negotiation · Argumentation
Argumentation-based negotiation · Case-based reasoning · CBR

1 Introduction

Conflicts resolve techniques are very useful to overcome misunderstanding caused
by the differences in the opinions, beliefs, and goals of different parties. Negotia-
tion has been one of the most used techniques [1–3]. Further, with the growth of
Artificial Intelligence (AI) techniques and their huge success in the last decades,
the automation of negotiation where software agents negotiate on behalf of
humans was the interest of many researchers [4,5]. Automated negotiation gives
software agents with conflicting positions a way to find a beneficial settlement [6].

From a similar perspective, argumentation is another way to reach an agree-
ment between parties that have opposing positions and cannot agree on one
decision or action. Back in the mid of nineties, Multi-Agent Systems (MAS)
gained a significant attention from several researchers. The argumentation tech-
niques have been used to facilitate the interaction between autonomous agents
of MAS that are able to make their own decisions based on their mental states
(e.g. preferences, intentions, goals etc.) [7].

While negotiating and arguing, one can refer to his past experiences uncon-
sciously. Case-based reasoning (CBR) is based on the idea that similar problems
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 854, pp. 633–644, 2018.
https://doi.org/10.1007/978-3-319-91476-3_52
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have similar solutions. Thus, its integration in a MAS where agents are in con-
flict will increase the probability of reaching an agreement [8]. Several researchers
proposed to combine these disciplines, namely CBR, argumentation and negoti-
ation. In the literature, several works proposed partial combinations such as [9–
12] where argumentation and negotiation have been combined. Moreover, CBR
and argumentation have been combined in [8,13] while other works gathered
negotiation and CBR [14,15]. Thus, numerous research works were dedicated
to partial combinations of these disciplines with object to improve the conflict
solving process between different parties. For that reason, we believe that the
total combination of the three fields would be more beneficial. However, only
few works proposed a total combination of the three domains.

In early ninetees, Sycara proposed the PERSUADER system [16] which is
a mediator between a company and its trade union. CBR was used to retrieve
past cases representing the arguments used in the past in order to make better
negotiation scenarios. Moreover, CBR can help the system to negotiate with an
unknown agent based on past experiences with similar agents. But, this proposal
is highly domain specific and the negotiation is only ensured by the mediator.
Soh et al. [17], proposed another framework where a set of agents collaborate
in order to track as many targets as possible. Each agent owns a case-base
and a CBR manager which ensures the use of past cases to negotiate in new
situations. More recently, in [18] a MAS where agents are able to negotiate
through argumentation and use CBR to reach conclusions is presented. The
system is for e-commerce domain and used to help users to buy products. CBR
was used to reduce system’s complexity and hence, users will get the results of the
sites selling their desired product more rapidly. However, these frameworks are
very domain specific and cannot be easily adapted to other domains. No generic
framework has been proposed in the literature that combines CBR, negotiation
and argumentation which leads us to the main purpose of this paper which
is providing a generic framework for an argumentation-based negotiation using
CBR. This work combines the three fields (i.e. negotiation, argumentation and
CBR) in a domain independent framework by proposing a generic architecture
that defines the basis of the environment and a state machine protocol that
specifies the rules of interaction between two argumentative negotiator agents
that interact following a set of dialogue games. This framework is called GANC
for Generic Argumentation-based Negotiation using CBR.

This paper is organized as follows: Sect. 2 is dedicated to define our new generic
argumentation-based negotiation using CBR framework by highlighting its archi-
tecture, its main components and the protocol followed by agents in the negoti-
ation process. Section 3 concerns the conducted experiments and the results and
Sect. 4 concerns the conclusion of our work and our future perspectives.

2 A New Framework for Argumentation-Based
Negotiation Using CBR

This section details our new generic framework for argumentation-based nego-
tiation using CBR (so called GANC for Generic framework for Argumentation-
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based Negotiation using CBR). Figure 1 illustrates the GANC framework archi-
tecture for two agents (A and B).

2.1 GANC Architecture

The GANC architecture is domain-independent and its main components are as
follows:

– Agents: they are self-motivated entities that can enter and leave a dialogue
at any time. These argumentative negotiator agents are not only able to
interpret and evaluate incoming locutions from the counter parties, but are
also able to evaluate the incoming arguments, update their mental states,
generate a set of arguments and propose the appropriate one. Each agent has
her own preferences. Based on these preferences, she will accept or reject an
offer and generates a proposal. Offers will be proposed in a decreasing order
from the best offer to the least favorite one. Indeed, a set of rules that govern
the movements (e.g. accept, reject) of an agent are defined. In argumentation
theory, each agent has a position that represents its mental state regarding
a giving issue. Similarly, an agent has a position regarding a negotiation
issue. This position includes her preferences in the form of a set of features,
the problem and its offer. Agents follow an argumentation-based negotiation
protocol detailed in Sect. 2.2.

– CBR: each argumentative negotiator agent has two CBR: (i) domain CBR
that operates over previous negotiation cases that can be used as arguments
in future negotiation situations and (ii) argument CBR that operates over
past arguments used by agents. Similar cases are generated by compar-
ing the current situation’s premises and values with cases’ premises in the
case-base. This similarity is determined using the normalized Euclidean dis-
tance between premises. Proposals and arguments are the main knowledge
exchanged between agents. The choice of an argument is so important since
it can influence the course of the negotiation process. Later on in this paper,

Commitment Store 

Agent A Agent B 

The end 

Accept  
or
withdraw 

A ack 

New round 

Agree or 
Reject 

A ack 

Agree or 
Reject 

Domain CBR Domain CBR 

Argument CBR 
Argument CBR 

Accept  
or
withdraw 

Fig. 1. The proposed architecture of the GANC framework
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the structure of the arguments, their types and the way agents use them
are discussed. In this framework, agents negotiate through the exchange of
arguments. CBR is used to select the appropriate argument that can be sent
in a given situation and as a warehouse that stores all past negotiation and
argumentation cases which make agents able to take advantage of their past
experiences.

– Commitment store: it is a particular agent that does not enter in the negotia-
tion process and holds all the information about the negotiation process such
as the counter party proposal, the exchanged arguments and all information
that concerns the dialogue between the agents. Therefore, an agent queries
the commitment store in order to get information about the dialogue (e.g.
the offer sent by the opponent).

– Locutions: agents have the possibility to send their proposals, accept an offer,
refuse an offer by withdrawing the dialogue and to attack, agree or reject an
argument. The agreement or the reject of an argument triggers the start of
a new round where agents switch roles, the opponent becomes the proponent
and vice-versa.

2.2 Argumentation-Based Negotiation (ABN) Protocol Used in
GANC

In this section, we discuss the protocol followed by agents during their negotia-
tion process. Several protocols were proposed in negotiation and argumentation
communities [19–21]. In negotiation, one of the most used protocols is alter-
nating offers protocol [20]. In argumentation, the protocol can be defined in an
explicit way (e.g. finite state machine) or in an implicit way in the agent’s spec-
ification [21]. In the GANC framework, the protocol is presented explicitly in a
finite state machine format because it is explicit and easily accessible. Agents
will follow the alternating offers protocol and exchange offers in an alternating
way. The possible moves that an agent can do are presented in Fig. 2 that depicts
the ABN protocol used in GANC.

Exchanged Locutions. Agents use locutions in order to negotiate and interact
between each other. As some examples, we can mention:

– Propose: an agent will enter to the dialogue only if she has an offer to propose
to its opponent. With this move an agent will send her proposal to the com-
mitment store that will be checked by the other agent. An agent generates a
proposal based on her preferences.

– Assert: if an agent receives a “why” locution she has to assert her proposal
by supporting it with an argument. After asserting, the agent will wait for
the other agent’s response that can either be: attack, accept, reject or agree.

– Attack: Using this locution, an agent can attack the other agent’s supporting
argument if she is not convinced or to counter-attack a received attack.

– Accept: in our framework an agent accepts a proposal in two cases: (i) if the
proposal is the agent’s current preferred value. (ii) If the argument respects
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the agent’s conditions such as the number of similar premises between agent’s
premises characterizing her offer and the premises sent by the opponent in
his argument and based on the number of the received distinguished premises
that exists in her CBR (these premises were once a reason to choose a given
offer). As an example, an agent can accept the other agent’s proposal if their
positions are characterized by two common premises with the same value.
These conditions differ from agent to another based on their flexibility and
how much they are open minded. In case if a counter-example argument
is received, the agent will immediately accept the offer since this kind of
argument has the highest power of convincing. In GANC framework, based
on agents’ acceptance conditions we can classify agents into three types: a
tolerant agent, a medium strict agent and a very strict agent.

– Agree: this means that an agent agrees with the opponent’s argument and
believes that her offer is not the best. If the opponent agrees on the argument
then a new round will start where he will be the proposing agent.

– Reject: an agent sends this locution if she has no more arguments to present
and she still does not accept the counter party’s offer. After this locution a
new round will start.

– Withdraw: an agent can withdraw the dialogue at any time. The cause of a
withdraw can be that an agent does not have any proposals or she does not
accept the other agent’s proposal neither the argument supporting that offer.

Followed Rules. The dialogue between agents is governed by a set of standard
rules as follows:

– A rejected offer or argument cannot be proposed a second time in the same
dialogue.

– A new round starts only if one of the agents responds by agree or reject and
the other agent accepts that and does not withdraw.

– An agent is free to quit the dialogue: (i) if she can’t generate any positions
and still refuses its opponent’s offer, (ii) if she refuses the offer and refuses to
negotiate, (iii) if she receives an invitation to negotiate but she has no offers.

– At each round, only one offer will be discussed and there will be rounds as
long as no agreement is reached and the agents still have offers to propose. At
each round one agent plays the role of opponent and the other of proponent
and then they switch roles in the next round.

– The negotiation ends if one of the agents withdraws the dialogue, if an agree-
ment is reached or if agents exposed all their offers and still no agreement is
reached.

At the end of a dialogue, there are two possible outcomes: an agreement or not.
Agents follow an alternating offers protocol in form of a finite state machine
inspired from the one in [22,23]. We modified it in order to make it suitable for
a negotiation context.
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Followed Protocol. Figure 2 depicts the proposed protocol in a finite state
machine that presents a round in the negotiation where only one issue is dis-
cussed. Every time one of the agents responds by agree or reject, a new round
will be started and agents will be back to the state Enter but with updated
beliefs. It will be rounds as long as no agreement is reached and agents still have
offers to propose. For the sake of clarity, the withdraw moves were not presented
but an agent can withdraw the dialogue at any step.

Fig. 2. Proposed argumentation-based negotiation protocol used in GANC (dotted
lines indicate wait states and solid lines are send states).

An agent can enter the dialogue only if she has an offer to propose. Thus,
agents start by sending their offers and then two different scenarios will happen
according to the agent’s role.

1. The agent is a proponent: after proposing, the agent will move to the central
state where she will wait for a response from the opponent. If it is an accept,
then the negotiation will end with an agreement on the current offer of the
proponent but if it is a challenge then the agent has to assert her offer by a
support argument. After asserting, the proposing agent will wait for a reply.
If the agent’s support argument was attacked, then the two agents will enter
in a series of attacks and counter attacks until the opponent accepts the offer
or one of them agrees, rejects or has nothing to say about the argument and
thus a new round will be started.
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2. The agent is an opponent: after proposing; the agent will query the commit-
ment store to get the counter party’s offer. In this stage, the agent can either
accept the offer or challenge it by sending a “why” locution. Same thing, when
the opponent receives an assert she can accept the offer, agrees or rejects the
argument or attack it. In case of attack, agents will argue until one of them
agrees or rejects with the other argument or if the opponent accepts the offer.

2.3 How to Use Arguments in GANC?

An argument is an additional information used by agents to backup their pro-
posals and attacks. It is composed of the agent’s promoted value (i.e. offer) and
a support set that can be:

– Premises: a set of features that the agent used to generate this argument.
– Negotiation cases: a list of old negotiations similar to the current scenario.
– Distinguishing premises: premises that the other party did not take into con-

sideration and can affect their preferences.
– Counter example: arguments that contain same premises as the ones pre-

sented by the other party but can give another outcome.

Agents choose their argument’s support set based on the type of argument
they desire to send. Two types exist in our framework namely:

– Support argument: is an argument that supports and explains a proposal.
More specifically it is the knowledge used to generate an argument such as
previous negotiation and argumentation experiences or agent’s premises that
defines her proposal.

– Attack argument: used to attack an incoming argument. It can contain dis-
tinguishing premises or counter examples.

Agents choose the type of argument to send based on the last locution they
received. In other words, if an agent is asked to assert her proposal then, she will
need an explanatory argument to explain her offer and thus, a support argument
will be sent. Otherwise, if the agent’s offer or last argument is attacked then she
will send a counter attack to defend her position and the offer she proposes.

The argument state changes according to the opponent’s response. An argu-
ment can have the state acceptable if the other agent accepts that argument, it
can be in the state rejected if it was rejected or undecided if the opponent said
nothing about it and couldn’t neither accept it nor reject it. The structure of an
argument will be better explained in an illustrative example.

2.4 Illustrative Example

To illustrate the GANC framework, we propose to instantiate it in a simplified
example in the tourism domain. In our example, two agents are negotiating over a
holiday destination. Each one, agent 1 and agent 2 has three cases in her case base
(see Fig. 3). Agent 1 has two preferences, Maldives and Singapore whilst agent
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2 prefers Bali and Kuala Lampur. The negotiation starts when agent 1 proposes
Maldives as a destination to agent 2. Since Maldives is not the current preferred
offer to agent 2 she has to ask “why” in order to get explanations and arguments.
Thus, agent 1 explains her choice by sending an “assert” locution explaining that
Maldives is characterized by its hot weather and the availability of three stars
hotels with all inclusive pension. However, according to agent 2’s case base, the
Maldives has hotels with only housing pension. Therefore, she sends an attack
containing her argument to agent 1. Hence, agent 1 send a counter example
mentioning that according to her experiences, there are hotels with all inclusive
pension. Since the counter example is the most convincing argument in our
framework and since the only drawback to agent 2 is the pension of the hotel,
she accepts the Maldives as a destination. At the end of this negotiation, agent
2 will add a new case to her case-base. The new case is (Maldives; Pension: All
inclusive, Nb stars: 3, Weather: hot, Month: august), that contains “Maldives”
as a conclusion and four premises. The new case will be used as an argument in
future negotiation scenarios.

Hotel Pension Season Destinatio
n

3* b&b June Cancun
3* All inclusive August Maldives
4* housing July Madrid

weather Pension Season Destinati
on

warm b&b August Singapore
cloudy B&b June NY
hot housing August Maldives

Old negotiation cases Old negotiation cases 

Agent 1 
Agent 2 

Offers: 
Maldives: (hot, 3* and all inclusive) 
Singapore (warm and 4*)

Offers: 
Bali: (hot and 3*) 
Kuala Lampour (hot and 4*)  

(1): Propose (Maldives) 
(2): Why (Maldives) 

(3): Assert (Maldives; hot , 3* and all inclusive) 

(4): Attack (Maldives; housing) 

(5): Attack (Maldives; All inclusive, august and 3*) 

(6): Accept (Maldives) 

Fig. 3. Bilateral negotiation over travel destination

3 Experimental Study

3.1 Experimental Protocol

In what follows, we explain the experimental protocol by defining the environ-
ment of implementation, the data and the experiments that we conducted.

Experiments Environment and Data. All the framework is implemented
on the platform Magentix2 [23] using eclipse Luna. Magentix2 is a multi-agent
platform that presents argumentative agents that have their own strategies and
tactics and interact following a state machine protocol. We modified these agents
as well as their strategies and the followed protocol to make their behavior suit-
able for a negotiation context. Thus, we propose new negotiator argumentative
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agents based on Magentix2 argumentative agents. For instance, we tested the
GANC framework with two agents. In order to implement the framework, we
used the Java language. The old argumentation and negotiation experiences (i.e.
case bases) are stored in files acceded by the two CBRs.

In order to test the GANC framework, experiments were conducted in the
tourism domain where two agents negotiate over a destination. To the best of
our knowledge there is no database containing real arguments or real negotiation
offers available. Due to this lack of data, we constructed our own database from
real data provided by the tourism ministry of Tunisia and collected from many
websites such as Trivago1, HolidayWeather2, Bandsintown3 and eDreams4.

Our database concerns all information that can influence one’s choice of
a destination. Therefore, data contains information about available hotels and
everything that concerns the accommodation (e.g. rooms’ prices per night). It
also contains the price of means of transport whether it is a bus for destinations
in Tunisia or plane for international destinations. Other important features that
characterize countries in the world such as their safety rank, their health and
hygiene rank and in general their global rank are taken into consideration. These
ranks are important in the choice of a holiday destination and were collected from
The Travel and Tourism Competitiveness Report 2017 published by the World
Economic Forum. We also collected information about concerts and festivals
planned in a given holiday period in the destination country and information
about its general weather. Moreover, data was collected based on few assump-
tions. We assume that agents negotiate over a holiday in high season time (i.e.
June, July, August) and that the plane tickets are for 10 days duration from the
1st to the 10th of each month. Hotels availability and prices are collected for one
night in the first weekend of each month for one person.

The final database contains 505 lines about 126 destinations that are char-
acterized by 29 features cited before (e.g. safety rank, plane ticket’s price and
the weather). The database is available on line5.

Protocol. Tests are carried on negotiation scenarios that last 3 rounds. At each
round an agent plays the role of an opponent and the other of a proponent and
at the end of the round they switch roles to negotiate over the next offer.

In order to highlight the importance of CBR as well as the importance of
the exchanged arguments we conducted 120 different experiences in 4 different
possible scenarios. Firstly, we supposed that agents are tolerant and thus, they
accept an offer if one of the premises characterizing this offer is one of the agent’s
preferred premises. Let us illustrate this in an example, if we suppose that an
agent proposes Djerba for three reasons: hot weather, cheap and holiday period

1 https://www.trivago.fr/.
2 http://www.holiday-weather.com/.
3 https://news.bandsintown.com/home.
4 https://www.edreams.fr/.
5 https://drive.google.com/drive/folders/1vLTId4KkfkAwq8A64fqo50TkRbxA1821?

usp=sharing.

https://www.trivago.fr/
http://www.holiday-weather.com/
https://news.bandsintown.com/home
https://www.edreams.fr/
https://drive.google.com/drive/folders/1vLTId4KkfkAwq8A64fqo50TkRbxA1821?usp=sharing
https://drive.google.com/drive/folders/1vLTId4KkfkAwq8A64fqo50TkRbxA1821?usp=sharing


642 R. Bouslama et al.

in June and the opponent agent’s premises that characterize her choice are hot
weather, a given set of means of transport and a set of restaurants then she
will accept Djerba as a destination. In the case of tolerant agents, we made 40
runs. First ten runs are done using 10 cases available in the case-base of agents’
CBR. Second ten runs are done using 50 cases, the third ten runs are done using
case-base with 100 cases and the last ten runs are done using case-base with 500
cases.

Same experiments are conducted using medium strict agents that accept an
offer only if there are more than 2 similar premises. Same for highly strict agents
that only accept an offer if it is characterized by all agent’s preferred premises
(i.e. all three premises of each agent are the same).

3.2 Experimental Results

The importance of CBR was highlighted by Conducting these experiments. The
first impact was on time that decreases from period nearby 18 s to 10 s. Agents
negotiate through the exchange of arguments which make the existence of argu-
ments primary. Therefore in Fig. 4 we can see that in case agents have zero
cases in their case base then no agreement is reached. Thus, agents must have
arguments at the beginning of a negotiation. The second impact that was high-
lighted on Fig. 4 is the number of agreements. Agreement is the goal of each
agent starting a negotiation and thus, it makes it an important factor to evalu-
ate a negotiation. In the case where agents have only 10 cases in their case-bases,
only 10 agreements were reached from 30 negotiation scenarios in each type of
agents. The bigger the number of cases is, the higher the probability of reach-
ing an agreement. Negotiation seems to be more successful when the number of
cases is more than 100 (see Fig. 4). Thus, negotiation is easier and more beneficial
when agents are more experienced.
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Fig. 4. Number of agreements

Another important feature that influenced the negotiation is the agent type
(i.e. tolerant, strict and very strict). In fact, the negotiation process is longer
when agents are very strict due to the difficulty of convincing such agent and
consequently, the number of agreement decreases.
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4 Conclusion

This paper proposes a generic domain-independent framework for argumen-
tation-based negotiation using CBR. GANC is generic thanks to its domain-
independent architecture, the structure of the arguments (i.e. attributes- values)
and the fact that all domain-dependent information can be instantiated in the
domain CBR only by instantiating a set of premises, their values and the out-
come. We claim that argumentation presents additional information exchanged
by agents that facilitate the negotiation between them and helps to find a set-
tlement. The CBR gives agents the possibility to take advantage of their past
experiences and thus, better decisions can be made. Experiments proved that
this combination of the three fields (i.e. argumentation, negotiation and CBR)
is beneficial and makes the automated negotiation better in terms of time and
the reached agreements. Moreover, a benchmark was constructed. It contains
information about several travel destinations.

Even though in this paper we focus on bilateral negotiation, we believe, that
this work can be the basis for many future works. We plan to extend the GANC
framework to support multilateral and multi-issues negotiations. We also plan
to take into consideration the uncertainty in such environments and to add the
possibility of learning opponent’s tactics and the way they reason as well as the
moves that they usually apt to in similar situations using CBR.
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Abstract. In order to represent texts preserving their semantics, in
earlier work we proposed the WAPO-Structure, which is an intermedi-
ate form of representation that allows related terms to remain together.
This intermediate form can be visualized through a tag cloud, which in
turn serves as a textual navigation and retrieval tool. WAPO-Structures
were obtained through a modification of the APriori algorithm, which
spends a lot of processing time computing frequent sequences, for which
it must perform numerous readings on the text until finding the frequent
sequences of maximal level.

In this paper we present an alternative method for the generation of
the WAPO-Structure from the inverted indexes of the text. This method
saves processing time in texts for which an inverted index is already
computed.

Keywords: Inverted indexes · Implications · Primary rules
Content representation · Text processing · Semantics
Frequent sequences · Text retrieval

1 Introduction

One of the main problems of information management in textual databases is
the amount of unstructured text that is difficult to recover, due to the way of
processing it. Many retrieval systems perform only syntactic text processing,
which means that much of the content identification capability is lost in the
retrieved text.

Frequent ordered itemsets preserve the semantics of the text since they allow
related terms to remain ordered and united. This is achieved through the APO
(Ordered APriori)-Structure [9], which represents the text through an interme-
diate form facilitating its processing, representing the content of the information
and allowing greater precision and recall with the query results.

The WAPO-Structure introduces weights into the APO-Structure, so that
the ordered sets can be visualized through a tag cloud with different font sizes.
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In this way, the tag cloud works as an assistant for the query formulation and
as a tool for exploring the contents of the database.

There are many methods to obtain the WAPO-Structure, such as all those
for obtaining frequent itemsets [1,2,11] with slight modifications. But if the
inverted indexes [4] are available, the processing time is considerably reduced,
since it does not have to perform repeated readings on the database to calculate
support values.

Hipp et al. [6] compare several of the algorithms in terms of performance
for obtaining frequent itemsets, verifying that all have a similar behavior with
respect to the execution time, although spending different time depending on
tasks. While some of the algorithms compared use most of the time to determine
the support of the candidate itemsets below level four, the Apriori algorithm
finds the greatest difficulty in calculating support for itemsets of level four or
higher.

In previous work [8,9] we obtained the WAPO-Structure from a modification
of the Apriori algorithm [1]. In this paper, we propose its generation from a
complete inverted index which is more advantageous as the level of the itemsets
increases. With the Apriori algorithm, each time we add an item to an itemset,
a new reading of the database is required, while with the inverted indexes, the
maximum level itemsets are located in a single reading.

To the better understanding of the terminology used in this paper, we estab-
lish some previous concept definitions in Table 1.

Table 1. Concept definitions

Expression Definition

Term A word or group of words

Mono-term Single word

Item An individual article or unit, especially one that is part of a list,
collection, or set

Sequence Ordered list of items

This paper is organized as follows. Section 2 defines APO-Structure and
WAPO-Structure. Section 3 gives the definition of Full Inverted Index. Section 4
explains the method for obtaining the WAPO-Structure from a complete inverted
index. Section 5 illustrates this process with a practical example and, finally, we
end with a brief discussion and conclusions in Sect. 6.

2 APO-Structure and WAPO-Structure

The lack of structure in textual attributes complicates their automatic process-
ing. In [8,9] we see how the APO and WAPO Structures provide the mathe-
matical structure to obtain the semantics inherent to the text, facilitating the
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processing. These semantics are achieved by allowing the frequently related terms
to remain together.

The complete process is carried out in five steps: Selecting the textual
attribute, syntactic preprocessing, semantic preprocessing, structure generation
and displaying of the structure.

The WAPO-Structure provides weight into the APO-Structure.

2.1 APO-Structure [9]

Definition 1. AP-Seq (AP-Sequences)
Let X = {x1, x2, . . . , xn} be a referential set of items and R a sequence of

frequent itemsets. R is then an AP-Seq if and only if:

1.

∀Z = (z1, z2, . . . , zk) ∈ R ⇒
{

(z1, z2, . . . , zk−1) ∈ R
(z2, z3, . . . , zk) ∈ R

∀k ∈ [2, n] (1)

2. ∃ Y ∈ R such that:

card(Y ) = maxZ∈R (card(Z)) and � Y ′ ∈ R | card(Y ′) = card(Y ) (2)
∀Z ∈ R =⇒ Z ⊆ Y (3)

The sequence Y with higher order is the spanning sequence of R, R = g(Y ),
in other works g(Y ) is the AP-Seq with spanning sequence Y , being the cardinal
of Y the level of g(Y ).

Example 1. Let X = {intelligence, online, measure, test, partner}.
Let R = {<intelligence, test, partner>,<intelligence, test>,
<test, partner>,<intelligence>,<test>,<partner>}.
Then, R is an AP-Seq with spanning sequence Y = <intelligence, test,

partner>. All the other sequences are included in it with the same order position
between the terms.

Definition 2. APO-Structure
Let X = {x1, . . . , xn} be a referential set of items and S = {A,B, . . .} a set

of frequent item-seqs with a cardinal higher than or equal to one and A,B, . . .
AP-Seqs such as:

∀ A,B ∈ S; A � B,B � A and B �= A

An APO-Structure generated by S, E = g(A,B, . . .), is the set of AP-Seqs
whose spanning sequences are A,B, . . .
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2.2 WAPO-Structure [9]

Definition 3. Frequent weighted item-seq of an AP-Seq
Let R=g(Y) be an AP-Seq with a referential set of items X. It is said that

α̃t ⊆ Y is a frequent weighted item-seq from Y if:

α̃t = [αt, ωt]. (4)

where αt is a frequent term sequence and ωt is its weight or frequency.

WAPO-Structures are structures composed of weighted AP-Seqs which are
AP-Seq composed of weighted item-seqs.

Definition 4. WAPO-Structure
Let X = {x1, x2, . . . , xn} be a referential set of items and S̃ = {Ã, B̃, . . .} a

set of frequent weighted item-seqs with a cardinal higher than or equal to one,
and Ã, B̃, . . . weighted AP-Seqs such as:

∀ A,B ∈ S; A � B, B � A and B �= A. (5)

A WAPO-Structure generated by S̃, Ẽ = g(Ã, B̃, . . .) is the set of AP-Seqs
whose spanning sequences are Ã, B̃, . . .

Note 1. We express the spanning sequence Ã as well as g̃(A).

Example 2. Let us suppose a database containing tuples in Table 2.

Table 2. Tuples in the Example 2

n Item-seqs

1 <intelligence, test, online, measure>

2 <measure, intelligence, test>

3 <measure, online>

Setting a support of 2 in terms of absolute frequency to consider an item-seq
to be frequent, we obtain the following structures:

APO − Structure : g(<intelligence, test>,<online>,<measure>)
= (<intelligence, test>,<intelligence>,<test>,

<online>,<measure>)
WAPO − Structure : g̃(<intelligence, test>,<online>,<measure>)

= (<intelligence, test>, 2), (<intelligence>, 2),
(<test>, 2), (<online>, 2), (<measure>, 3)
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3 Complete Inverted Index

The inverted indexes are widely used in information retrieval [3,7], as well as
for other applications [5,10]. In this work we use the definitions given in [4], to
understand them, some notations are established in Table 3.

Table 3. Notations

Symbol Definition
∑

Finite non-empty alphabet
∑∗ Set of all items on

∑

λ Empty word
∑+ ∑∗ −{λ}
S Finite set of text words S ⊆ ∑+

Sub(S) Set of sub-strings in S

Note 2. If ω = xyz for the terms x, y, z ∈ ∑∗ ⇒ y is a subterm of ω, x is a
prefix of ω and z is a suffix of ω.

Definition 5. Complete Inverted Index [4]
Given a finite alphabet

∑
, a set of terms k ⊆ ∑+ and a set of texts S ⊆ ∑+,

a complete inverted index for (
∑

, k, S) is an abstract data type that implements
the following functions:

1. find:
∑+ → k∪{λ}, where find(ω) is the largest prefix x of ω with x ∈ k∪{λ}

and x occurs in S, that is, x is a subset of terms of a text in S.
2. freq: k → N, where freq(ω) is the number of times that ω occurs is a subset

of terms of a text in S.
3. locations: k → 2N×N , where locations(ω) is the number of ordered pairs

indicating the number of the text in which ω occurs and its position within
the text.

Definition 6. Rule of S [4]
A rule of S (rS) is a production x →s γxβ where x ∈ sub(S), γ, β ∈ ∑∗ that

occurs each time that x is preceded by γ and followed by β in S.

Definition 7. Primary rule of S [4]
tS : x →s γxβ is a primary rule of S if it is a rule S and γ and β are sets

of terms of the highest possible order, that is, � δ, τ ∈ ∑∗ with δ, τ �= λ such as
x →s δγxβτ be a rule of S.

Definition 8. Implication of x in S [4]
If x →s γxβ is a primary rule of S, then γxβ is called implication of x in S

and is denoted impS(x): P (S) = {impS(x) : x ∈ sub(S)}
The members of P (S) are called subsets of primary terms of S.



652 Ú. Torres-Parejo et al.

4 Obtaining the WAPO-Structure Through Complete
Inverted Indexes

It is possible to obtain the WAPO-Structure from the APO-Structure through
inverted indexes mainly in two ways:

The first is through the Apriori algorithm, in a similar way as the AprioriTid
and AprioriHybrid algorithms work [1], with a slight modification to introduce
order and weight into the itemsets.

These algorithms construct iteratively the set of frequent terms, using the
frequent itemsets found in a step to build the candidate itemsets and check if
they are frequent in the next step.

In the first step, the support of elementary items or items of level 1 is cal-
culated and determines which of these items are considered frequent according
to the minimum support. In each subsequent step, it starts with a “seed” set
consisting of itemsets found in the previous step combined with each other to
generate the candidate itemsets deciding which of these are, in turn, frequent.

To do this, the Apriori algorithm requires at each step to re-read data, but
the AprioriTid has the property that it is not necessary to go through the entire
database to calculate the support of the candidate itemsets after the first step.
For this purpose, a codification of the candidate itemsets found in the previous
step is created, before deciding whether they are frequent in the subsequent step.
In successive steps, the size of this coding is becoming much smaller than that
of the database, saving a lot of reading effort.

This coding is the one that we can perform through the inverted index,
to later apply the Apriori algorithm, just instead of going through the entire
database at each step, only the inverted indexes are read, which indicate the
ordered positions of each term in the text, discarding those that do not corre-
spond with a frequent itemset for the later step.

The second way is the one proposed in this article and consists of identifying
the implications of x1

i with the spanning sets of the APO-Structure, being x1
i

each of the frequent itemsets of level equal to 1. Obviously, we would have to
identify those implications that, in turn, were frequent.

To do this, the primary rules of x1
i (tuples containing the term in question)

are previously obtained and the maximals are selected, storing the frequent ones.
Those not frequent are divided into sub-rules, deciding which of these are, in
turn, frequent. Once the set of all the frequent rules is obtained, we eliminate
the redundant and not maximal ones and the remaining rules are what we will
call “frequent implications of x1

i ”, identifying them with the spanning sets of the
APO-Structure.

Finally, we use the function freq to obtain the weight of the item-seqs in the
APO-Structure and generate the WAPO-Structure.

Next, we define the set of frequent implications of x in S, where all the
frequent implications of x1

i are stored for identifying them with the spanning
sets of the APO-Structure.
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Definition 9. Set of frequent implications of x in S
Let P (S) = {impS(x) : x ∈ sub(S)} be the set of all the implications in

S, we call Pf(S) the set of all the frequent implications in S, then Pfx1
i
(S) =

{impjS(x1
i ) : x ∈ sub(S)} with x1

i = frequent itemset of level 1 and j each of the
frequent implications of the itemset i.

Definition 10. Correspondence between frequent implications and the
spanning sets of the APO-Structure

Let E = g(A,B, . . . ,K, . . .) be the APO-Structure generated by the sets
A,B, . . . , K, . . . , then:

A = imp1S(x1
1), B = imp2S(x1

1), . . . ,K = imp1S(x1
2), . . . removing redundan-

cies.

The following algorithm specifies the process in more detail. For its applica-
tion it is necessary to have the complete inverted index for all the terms of the
base of texts S.

Algorithm

1. Identify frequent mono-terms according to support:
ωi = x1

i i ∈ S

If freq(ωi) > support ⇒ ωi is frequent (denoted as ωf
i )

2. Calculate the primary rules of ωf
i :

If ωf
i ∈ tj and tj=maximal tuple in S

⇒ tj primary rule of ωi (denoted as rk)
3. Remove redundancies
4. Check if the rules obtained are frequent:

If freq(rk) > support ⇒ rk frequent rule (denoted as rfk )
5. Store the frequent rules in the set of frequent implications:

Input rfk en Pf(S)
6. Split non-frequent rules into sub-rules:

If freq(rk) < support ⇒ rk no frequent rule (denoted as rfk )

∀ (rfk ) = {i1, . . . , in} non-frequent rule of S ⇒
{ii, . . . , in−1} y {i2, . . . , in} rule of S.

7. Go back to step 4.
8. Remove redundancies in Pf(S)
9. Identify each of the frequent implications in Pf(S) with the spanning sets of

the APO-Structure.

5 Example of How to Obtain APO-Structure
and WAPO-Structure Through Implications

Let us suppose we obtain the item-seqs listed in Table 4 from a database after
cleaning the text.

The function locations(ω) for all mono-terms is presented in Table 5 and
the image of the function freq(ω) in Table 6.
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Table 4. Item-seqs after text cleaning

ni Item-seqs(i)

1 <pink, yellow, blue>

2 <green, pink, yellow>

3 <green, blue>

4 <orange, pink, yellow, blue>

5 <green, pink>

6 <yellow, green>

7 <green, pink, yellow>

Table 5. locations(ω)

Term n1 n2 n3 n4 n5 n6 n7

pink (1,1) (2,2) (4,2) (5,2) (7,2)

yellow (1,2) (2,3) (4,3) (6,1) (7,3)

blue (1,3) (3,2) (4,4)

green (2,1) (3,1) (5,1) (6,2) (7,1)

orange (4,1)

Table 6. freq(ω)

ωi Locations(ωi) Fωi

pink {(1,1), (2,2), (4,2), (5,2), (7,2)} 5

yellow {(1,2), (2,3), (4,3), (6,1), (7,3)} 5

blue {(1,3), (3,2), (4,4)} 3

green {(2,1), (3,1), (5,1), (6,2), (7,1)} 5

orange {(4,1)} 1

Let us consider a minimum support for an item-seq to be frequent greater
or equal than an absolute frequency of 2. In the current example the frequent
item-seqs of cardinality 1 are the mono-terms <pink>, <yellow>, <blue> and
<green>.

We compute the implications for each of these frequent item-seqs of cardinal-
ity 1. To do it first, it is necessary to compute their rules. The rules for item-seq
<pink> along with each rule frequency are shown in Table 7, where ri represents
the rule i and freqi represents its frequency.

Then, the primary rules are identified. We select only maximal rules. Rule
r4 it is not a primary rule, as it is contained in rule r2. Rule r1 it is neither a
primary rule as it is contained in rule r3.
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Table 7. Rules for item-seq <pink>

i ri(<pink>) freqi(ri(<pink>))

1 <pink, yellow, blue> 2

2 <green, pink, yellow> 2

3 <orange, pink, yellow, blue> 1

4 <green, pink> 3

Table 8. Primary rules for item-seq <pink>

i ti(<pink>) freqi(ti(<pink>))

1 <green, pink, yellow> 2

2 <orange, pink, yellow, blue> 1

Table 9. Subrules for (t2)

i r′
i(<t2>) freqi(r

′
i(<t2>))

1 <orange, pink, yellow> 1

2 <pink, yellow, blue> 2

Table 10. Subrules for (r′
1)

i r′′
i (<r′

1>) freqi(r
′′
i (<r′

1>))

1 <orange, pink> 1

2 <pink, yellow> 4

Table 8 shows the primary rules for item-seq <pink>, where ti represents the
primary rule i and freqi its frequency. Of these primary rules, only t1 is frequent
regarding the support, so we store it in the set of frequent implications Pf(S).

Since t2 is not frequent, it is divided into two sub-rules that we can see in
Table 9, where r′

i represents the sub-rule i and freqi its frequency. In this case, r′
2

is frequent and comes from a non-frequent primary rule, so r′
2 becomes a frequent

primary rule (since there is no frequent higher-order rule) and it is stored in the
set of frequent implications Pf(S).

Since r′
1 is not frequent, it is divided into two sub-rules r′′

i (see Table 10). The
rule r′′

2 is frequent and it is stored in Pf(S), however it is not a primary rule since
there is another maximal rule in Pf(S) containing it, so it will be removed from
this set. The r′′

1 rule is not frequent, so the operations of dividing into sub-rules,
checking the frequencies and storing the frequent rules would be repeated.

Finally, two frequent implications for <pink> in Pf(S) have been obtained.
They are shown in Table 11.
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The same procedure is applied for the item-seqs <yellow>, <blue> and
<green>, obtaining their frequent implications. They are shown in Tables 12,
13 and 14.

Table 11. Frequent implications for <pink>

i impi(<pink>) freqi(impi(<pink>))

1 <green, pink, yellow> 2

2 <pink, yellow, blue> 2

Table 12. Frequent implications for <yellow>

i impi(<yellow>) freqi(impi(<yellow>))

1 <pink, yellow, blue> 2

2 <green, pink, yellow> 2

Table 13. Frequent implications for <blue>

i impi(<blue>) freqi(impi(<blue>))

1 <pink, yellow, blue> 2

In total we have determined the next implications:

– impS(x1
1) = imp(<pink>) ⇒ imp1(x1

1) = <pink, yellow, blue> and
imp2(x1

1) = <green, pink, yellow>
– impS(x1

2) = imp(<yellow>) ⇒ imp1(x1
2) = <pink, yellow, blue> and

imp2(x1
2) = <green, pink, yellow>

– impS(x1
3) = imp(<blue>) ⇒ imp1(x1

3) = <pink, yellow, blue>
– impS(x1

4) = imp(<green>) ⇒ imp1(x1
4) = <green, pink, yellow>

When duplicate implications are removed, two implications remain:
imp1(x1

1) = <pink, yellow, blue> and imp2(x1
1) = <green, pink, yellow>

These implications will be used as the maximal itemseqs in the APO-
Structure, which has cardinal 2.

Let E be an APO-Structure, with spanning sequences A and B:
E = g(A,B) ⇒ A = imp1(x1

1) and B = imp2(x1
1)

E = g(<pink, yellow, blue>,<green, pink, yellow>)
E = (<pink, yellow, blue>,<green, pink, yellow>,<pink, yellow>,
<yellow, blue>,<green, pink>,<pink>,<yellow>,<blue> and
<green>)
In order to compute the weight for the WAPO-Structure, we use the function

freq(ωi) with i = item-seq ∈ APO-Structure. The resulting WAPO-Structure is
the following:
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Table 14. Frequent implications for <green>

i impi(<green>) freqi(impi(<green>))

1 <green, pink, yellow> 2

Ẽ = g((<pink, yellow, blue>, 2), (<green, pink, yellow>, 2))
Ẽ = ((<pink, yellow, blue>, 2), (<green, pink, yellow>, 2),
(<pink, yellow>, 4), (<yellow, blue>, 2), (<green, pink>, 3)
(<pink>, 5), (<yellow>, 5), (<blue>, 3) and (<green>, 5))

6 Conclusions

The inverted index helps us to identify the primary rules of the frequent terms
and the frequent sub-rules of the non-frequent primary rules. The set consisting
of all frequent maximal rules is called “the set of frequent implications”. Each
of the rules in this set corresponds to a spanning set of the APO-Structure,
so we have the WAPO-Structure from these frequent implications and their
frequencies.

The biggest drawback of this method is that when there are many maxi-
mal non-frequent item-seqs, a lot of time is lost in the decomposition of these
sequences until finding the level in which they are frequent, in order to find the
frequent implications. This drawback makes the method more appropriate in
a text in which many large repeated sequences are found. In other case, it is
preferable to use the Apriori algorithm, which according to Hipp et al. [6] finds
the greatest difficulty in calculating support for itemsets of level four or higher
and is best known for its ease and simplicity of implementation.

In short, the method proposed in this paper saves reading time by not having
to go through the database repeatedly to get the frequent item-seqs as the Apriori
algorithm method [1] does. Its application is recommended in databases where
most of the frequent sequences are long, but the Apriori algorithm works better
in other cases, depending on the characteristics of the text.

Acknowledgements. This work has been partially supported by the “Plan Andaluz
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Abstract. One of the most prominent scenarios for capturing implicit
knowledge from heterogeneous data sources concerns the geospatial data
domain. In this scenario, ontologies play a key role for managing the
totality of geospatial concepts, categories and relations at different res-
olutions. However, the manual development of geographic ontologies
implies an exhausting work due to the rapid growth of the data avail-
able on the Internet. In order to address this challenge, the present work
describes a semi-automatic approach to build and expand a geographic
ontology by integrating the information provided by diverse spatial data
sources. The generated ontology can be used as a knowledge resource
in a Geographic Information Retrieval system. As a main novelty, the
use of OWL 2 as an ontology language allowed us to model and infer
new spatial relationships, regarding the use of other less expressive lan-
guages such as RDF or OWL 1. Two different spatial ontologies were
generated for two specific geographic regions by applying the proposed
approach, and the evaluation results showed their suitability to be used
as geographic-knowledge resources in Geographic Information Retrieval
contexts.

Keywords: Spatial ontologies · Spatial data sources · OWL 2
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1 Introduction and Background

In recent years, research on applications for capturing implicit knowledge from
heterogeneous data sources in different real-world scenarios has been intensified.
One of the most prominent scenarios concerns the geospatial data domain, in
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which ontologies deals with the totality of geospatial concepts, categories, rela-
tions and processes and with their interrelations at different resolutions [1–5].
However, the manual development of geographic ontologies implies an exhaust-
ing work due to the rapid growth of the data available on the Internet, thus
facilitating the possible occurrence of human mistakes.

In the related literature there are several works that address the problem of
the semi-automatic generation of geographic ontologies from Spatial DataBases
(SDB) [5–8] and from sources that are not SDB [9,10]. Baglioni et al. [6] and
Lima et al. [7] define mapping rules between generic databases and ontologies
without modeling table restrictions on the generated ontology. They model the
geometric information of the spatial objects by using classes such as Point, Line
and Polygon, instead of using their Minimum Bounding Rectangles (MBR)1,
which allows to represent the geometry more accurately and thus be able to
identify new spatial relations between them. During the GeoKnow EU project
(2013–2015)2 [8], a spatial ontology based on RDF3 triplets was generated from
different SDB and RDF data sources. Hasani et al. [5] describe an approach
to integrate spatial data from different SDB into an OWL4 ontology, facing a
high semantic heterogeneity presented in these sources. This method consid-
ers only SDB as data sources and no new knowledge is generated from them.
Finally, regarding approaches that integrate spatial data from sources that are
not SDB, Hahmann and Burghardt [9] propose an integration method based on
RDF triplets from LinkedGeoData5 and Geonames6, but focusing on residen-
tial areas exclusively. More recently, Zaila and Montesi [10] present GeoNW, a
spatial ontology generated from three data sources such as GeoNames, Word-
Net7 and Wikipedia, although only GeoNames is really used as a spatial data
source, since the other two are used to improve the information extracted from
GeoNames.

In order to address the challenge of developing spatial ontologies, the present
work describes a semi-automatic approach to build and expand a geographic
ontology by integrating the information provided by diverse data sources, some of
them publicly available on the Internet, such as GeoNames and OpenStreetMap
(OSM)8. Thus, the generated ontology could be used as a knowledge resource in a
Geographic Information Retrieval (GIR) system. The proposed approach starts

1 MBR is an expression of the maximum extents of a 2-dimensional object (e.g. point,
line, polygon). MBRs are frequently used as an indication of the general position of
a geographic feature.

2 http://geoknow.eu.
3 http://www.w3.org/TR/rdf-concepts.
4 http://www.w3.org/OWL.
5 http://linkedgeodata.org.
6 http://www.geonames.org. GeoNames is an open access geographic database that

contains more than eight million place names from all countries in the world.
7 http://wordnet.princeton.edu.
8 http://www.openstreetmap.org. OSM is a collaborative project inspired by

Wikipedia that emerged to create an editable and free world map where, instead
of editing articles as in Wikipedia, users edit geographic entities.

http://geoknow.eu
http://www.w3.org/TR/rdf-concepts
http://www.w3.org/OWL
http://linkedgeodata.org
http://www.geonames.org
http://wordnet.princeton.edu
http://www.openstreetmap.org
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from a preliminary ontology generated manually, which is then automatically
extended from the information provided by these sources. Besides, the proposed
method also allows the integration of data provided by a SDB, which should
be normalized in First Normal Form (1NF) at least and it could be related to
any geographic area of interest. Finally, new spatial relations are automatically
generated, considering all the spatial objects managed by the ontology. The main
contributions are: (i) the description of a semi-automatic method to build an
OWL 2 ontology by integrating spatial data provided by heterogeneous resources;
(ii) the use of OWL 2 as an ontology language has allowed modeling and infer
new spatial relationships, regarding the use of other languages such as RDF
or OWL 1; (iii) the public availability of two spatial ontologies coded in OWL
2 that are related to the geographic areas of Marianao (Cuba) and Acapulco
(Mexico). In this sense, several experiments and an in-depth evaluation were
performed for demonstration purposes.

The remainder of this paper is organized as follows: the proposed method to
build and expand a spatial ontology is described in Sect. 2. Section 3 presents
the results and observations obtained for the case study. The paper concludes
with a summary and outlook in Sect. 4.

2 Proposed Approach

The proposed method has been designed to generate a geographic ontology
through a semi-automatic process from different sources, with the aim that this
geographic-knowledge resource can be used to improve performance in the GIR
context. The Semantic Web language selected to build the ontology was OWL 29,
which is considered a more expressive language than OWL 1 or RDF, due to the
differences between their object property characteristics [11]. For instance, while
OWL 1 allows assertions that an object property is symmetric or transitive, it
is impossible to assert that the property is reflexive, irreflexive or asymmetric
[12]. Therefore, such expressiveness in the spatial domain enables to define more
assertions in the generated ontology.

The proposed approach starts from a preliminary ontology generated man-
ually, which is automatically enriched from the information provided by
Geonames, OSM and any SDB, through several knowledge-extension processes
supported by Protégé10 as an ontology editor. It should be noted that the
knowledge-extension processes are guided by a Geographical Area of Interest
(GAI) specified by the user, so the extraction tasks of concepts, axioms and
individuals from these sources, and some procedures for the similarity resolution
depend on this GAI. Finally, within the last phase, the gathered information
already integrated into the ontology is used for automatic generation of spatial
relationships. Figure 1 shows the overview of the proposed approach.

In the preliminary ontology, several common concepts, properties and spatial
relationships of the geographical domain are manually represented. The construc-
9 http://www.w3.org/TR/owl2-overview.

10 http://protege.stanford.edu.

http://www.w3.org/TR/owl2-overview
http://protege.stanford.edu
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Fig. 1. Overview of the proposed approach

tion process was carried out using GeoNames Ontology11 as a reference source.
Other concepts and properties from OSM, as well as object properties commonly
used in related work [13,14] such as isNorthOf, contains, overlap or intersects,
were also represented in the preliminary ontology. Finally, the spatial relations
were modeled in a similar way as described in Halimi et al. [15] and Tasic and
Porter [16], taking advantage of the high expressiveness that OWL 2 provides
with regard to the spatial data integration based on RDF triplets, as explained
above. It is noteworthy that all the features of the spatial data sources consid-
ered have been represented as a datatype property in the preliminary ontology.
In this sense, a new string datatype property named WKT 12 (Well Known Text)
was defined in order to model the geometric information of the spatial objects.
This property will enable to represent semantically the geometric fields that SDB
usually manage and, therefore, all the geometric information provided by data
sources such as GeoNames or OSM. In the GIR context, this is an important
aspect regarding the use of the generated ontology because the possible spatial
relations between spatial objects will be able to be automatically generated from
the WKT property. Figure 2 shows the spatial concepts taxonomy formalized for
the preliminary ontology.

2.1 Expansion Processes

As shown in Fig. 1, different expansion processes are carried out to extend the
preliminary ontology. These processes are guided by a specific GAI, so only
the data related to that geographical area are automatically extracted from the
information sources.

During the first expansion process, all classes related to the GAI and their
OWL annotations are extracted from GeoNames and integrated into the tax-
onomy of the preliminary ontology. Then, the geographical objects related to
the GAI, as well as their properties, are also extracted and integrated, consid-
ering the relationships with the classes previously represented on the prelimi-
nary ontology. Moreover, spatial relationships between the geographical objects
11 http://www.geonames.org/ontology/ontology v3.1.rdf.
12 http://www.opengeospatial.org/standards/wkt-crs.

http://www.geonames.org/ontology/ontology_v3.1.rdf
http://www.opengeospatial.org/standards/wkt-crs
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Fig. 2. Spatial concepts taxonomy for the preliminary ontology

(not explicitly represented in GeoNames) are automatically inferred from the
extracted information. For instance, contains and inside are spatial relations
included and semantically formalized as object properties in the extended ontol-
ogy. Two main issues were addressed regarding the expansion process from
GeoNames. On the one hand, we found spatial objects without a defined MBR
property. For these cases, the WKT property was automatically generated from
the geographical coordinates of the point that represents the spatial object, with
the aim of modeling its geometry. On the other hand, we found similar spatial
objects. Since GeoNames is a resource built collaboratively, typographic errors
may appear in place names. For this reason, a method to identify similar objects
is performed during this process. It is based on the assumption that two spatial
objects are similar if the spatial distance among their nearest geographical points
is smaller than 1 Km and their names or alternative names are syntactically sim-
ilar according to the Damerau-Levenshtein function [17]. The similar objects are
formalized as equivalent individuals in the extended ontology (SameIndividual
in OWL 2).

Once the preliminary ontology is extended with the information provided by
GeoNames, new spatial data are automatically extracted and inferred from OSM
during the second expansion process:

– Individuals related to the GAI. Moreover, similar classes that identify any
of those individuals are defined as equivalent classes in the ontology. For
instance, the class Route from OSM is defined as a equivalent class of the
class Road from GeoNames.

– Descriptions for each class. The descriptions are short texts that describe the
OSM classes, and they are stored as OWL annotations in the ontology.

– Hierarchical relations between classes. The hierarchical relations are estab-
lished between classes semantically related. For instance, the first time that
a spatial object belonging to the Building class from OSM is identified, then
such class is added to the ontology and it is also established as a subclass of
the Spot class from GeoNames.

– Axioms of equivalence between individuals. They are considered when a spa-
tial object meets the similarity conditions of all the individuals belonging to
the class. For instance, when a spatial object that belongs to the Natural class
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from OSM is identified, then the similarity conditions with all of the individ-
uals belonging to the Hypsographic and Vegetation classes from GeoNames
are checked.

As in the first expansion process, the similarity issue is addressed at the
level of classes and individuals by applying a similar procedure to that used for
GeoNames. Furthermore, the WKT property is automatically generated from
the geographical points that OSM provides for each spatial object. In this sense,
OSM allows generating the geometry of spatial objects with more precision than
GeoNames because OSM provides functionalities to access the geographical coor-
dinates of them. This process is supported by the use of the osm4j Java library13

developed for working with OSM data.
The data source used for the third expansion process is a SDB, whose only

requirement is that it should be normalized in First Normal Form (1NF) at least.
Thus, the aim of this process is to extract all the spatial data from the SDB
and integrate them into the ontology previously extended with the information
provided by GeoNames and OSM, avoiding the possible similarity of individuals
and classes. Several issues are addressed in this process:

– Each table from the SDB becomes a new class with the same name in
the ontology. First, an automatic search procedure based on the Damerau-
Levenshtein function is performed to find existing classes with a similar name.
Second, since the proposed method is semi-automatic, the end user decides if
the new class is equivalent to any of the candidate ones provided. If so, the
class is defined as a equivalent class in the ontology or a new class is added
otherwise.

– The attributes of each table are mapped as new data properties, except those
representing the geometry and the name of the spatial object (they are already
included in the preliminary ontology).

– The use of the WKT property (string type) to model the geometry field of the
SDB in the ontology. This alternative of representing the geometry field of
any SDB as a string format can be considered an advantage for the majority
of the tools that manage ontologies, due to the flexibility and easy understand
that such format provides for automatically generating spatial relations.

– Relationships between tables are modeled with functional relationships such
as isPartOf or isWholeOf, that are defined previously during the construction
of the preliminary ontology. Thus, for instance, if there are two tables named
Continents and Countries, and Countries has the primary key of Continents
as a foreign key, then a new object property is defined in the ontology with
the name Countries-isPartOf-Continents.

– Four integrity constraints that usually support relational database managers
(max cardinality, not null, unique and primary key) are also modeled in the
ontology. All the data properties from the SDB are restricted with maximum
cardinality 1. Then, as described in Mogotlane and Dombeu [18], for each
not null attribute A of each table T, the minimum cardinality of the data

13 http://jaryard.com/projects/osm4j/.

http://jaryard.com/projects/osm4j/
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property representing A in the class corresponding to T, is set to 1. Moreover,
the attributes that constitute the unique constraint for each table T are
identified, thus avoiding instances from T with same values in the unique
field. This was made possible through the use of the Disjoint Data Properties
axiom provided by OWL 2. Finally, the possible existence of two instances
from the same class with identical values for the primary key field is avoided
by using the Has Key axiom provided by OWL 2.

2.2 Generation of New Spatial Relationships

The aim of the last phase of the proposed approach is to infer new spatial
relationships between the existing objects in the ontology previously extended
during the expansion processes. First, this process automatically identifies all the
pairs of individuals that are related by the spatial object properties defined in the
preliminary ontology. The spatial object properties are organized in four groups
within the taxonomy defined for the preliminary ontology: directional (isEastOf,
isNorthOf, isSouthOf, isWestOf ), mereological (isPartOf, isWholeOf ), proximity
(isFarOf, isNearOf ) and topological (contains, crosses, disjoint, equal, inside,
intersects, overlap, touches). Specifically, the existence of several spatial object
properties is verified for each pair of spatial objects in order to infer new spatial
relationships between them.

Second, once the spatial object properties are verified for each pair of spatial
objects, then the ontology is updated with the new information inferred, only
in the case that new spatial relationships have been identified. For instance, if
two spatial objects O1 and O2 are related by the disjoint relationship, and O2
is related to another spatial object O3 by the same relationship, then, since the
disjoint relationship is defined as symmetric and transitive in the preliminary
ontology, this process updates the ontological information by adding three new
spatial relationships: O1 is disjoint from O3, O2 is disjoint from O1, and O3
is disjoint from O2. For the specific case of the directional spatial relationships,
the centroid of the two spatial objects is calculated. Then, the four directional
relationships (isEastOf, isNorthOf, isSouthOf, isWestOf ) are calculated from the
comparison of the coordinates of the centroids.

The inference of new spatial relationships was supported by the use of the
Esri Java Geometry Library14. This library includes methods for spatial opera-
tions and topological relationships, and it allows creating simple geometries from
supported formats like WKT.

3 Experiments and Evaluation

In this section, we present the case study carried out in order to show the appli-
cability of the proposed approach. Due to the exponential growth of the gen-
erated ontology, we have focused on two different GAI like Marianao (Cuba)

14 http://github.com/Esri/geometry-api-java.

http://github.com/Esri/geometry-api-java
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and Acapulco (Mexico), although the proposed approach is designed to process
information related to any geographical region. Marianao is one of the 15 munic-
ipalities in the city of Havana, with a population of around 137,000 inhabitants15

and a geographic area of 22 km2. Acapulco is the largest city in Mexico, with a
population of around 735,000 inhabitants16 and a geographic area of 1,880.6 km2.

The construction process of the preliminary ontology is independent of the
GAI to be considered, so an OWL 2-coded ontology was obtained as a result
of this initial phase with a total of 15 classes, 14 taxonomical relationships,
21 object properties (non-taxonomic relationships among defined classes) and
44 datatype properties with 80 annotations. Once the preliminary ontology was
generated, the proposed approach was applied for both GAI. Only for the GAI of
Marianao, a SDB with information about toponyms of Cuba was generated from
the Spatial Data Infrastructure of the Republic of Cuba (IDERC)17 and it was
also used as a data source. Specifically, the spatial data were obtained from the
GeoServer service18. Table 1 shows the enrichment of the ontological information
during each phase of the proposed approach for different object properties and
semantic relations, and for both GAI, Marianao (M) and Acapulco (A).

Table 1. Enrichment of the ontological information for each expansion process and
both geographic areas, Marianao (M) and Acapulco (A)

Preliminar

ontology

Expansion processes Generation of

spatial relationsGeoNames OSM SDB

M A M A M M A

Classes 15 667 667 697 693 721 721 693

EquivalentClasses 0 0 0 1 1 12 12 1

SubClassOf relations 14 682 682 744 732 951 951 732

Individuals 0 47 536 2,367 1,890 4,662 4,662 1,890

ObjectPropertyAssertions 0 264 2,398 264 2,398 264 27,763,887 14,618,863

DataPropertyAssertions 0 1,316 15,008 23,220 26,540 26,008 26,017 26,780

SameIndividuals 0 1 7 13,115 634 13,321 13,321 634

Annotations 80 748 748 770 764 770 770 764

As shown in Table 1, the enrichment of information achieved in the prelim-
inary ontology is relevant. It should be noted, for instance, the great increase
produced in the total number of Individuals, reaching 4,662 and 1,890 new indi-
viduals for Marianao and Acapulco, respectively. The enrichment of individuals
produced by the spatial data sources goes from 47 to 2,367 (+2,320) by OSM,
and from 2,367 to 4,662 (+2,295) by SDB, in the case of Marianao. In the case
of Acapulco, the enrichment of individuals achieved was +1,354 (from 536 to

15 http://population.city/cuba/marianao.
16 http://population.city/mexico/acapulco-de-juarez.
17 http://www.iderc.cu.
18 http://www.iderc.cu/geoserver/web.

http://population.city/cuba/marianao
http://population.city/mexico/acapulco-de-juarez
http://www.iderc.cu
http://www.iderc.cu/geoserver/web
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1,890). Another noteworthy improvement occurred with regard to the seman-
tic relations established between individuals connected by an object property
(ObjectPropertyAssertions), with a total increase of more than 27.7 million and
14.6 million for Marianao and Acapulco, respectively. Finally, there was also a
notable increase (+26,017 and +26,780 respectively) with regard to the semantic
relations established between individuals connected by a data property (Dat-
aPropertyAssertions). These results acquire a special relevance if the generated
ontologies were used as a source of knowledge in any GIR system related to the
geographic areas considered.

The evaluation of the preliminary ontology was performed by using the OOPS
tool19 [19], which considers 6 dimensions to analyze: consistency, completeness,
conciseness, structural dimension, functional dimension and usability-profiling
dimension. No errors were detected in any of the indicators supported by OOPS.
Then, we carried out the evaluation of both expanded ontologies: OntoMarianao
and OntoAcapulco.

Since another spatial ontology related to the geographic area of Marianao was
not available in order to make a feasible comparison, we decided to apply the
task-based approach proposed by Raad and Cruz [20] to evaluate OntoMarianao.
Such approach measures to what extent an ontology helps improve the results
of a particular task (GIR in this case). Therefore, 50 queries were performed
on the ontology with the aim of retrieving information regarding spatial objects
related to the area, obtaining satisfactory results. The results were formalized
by using the triplet <source, object id, object name>, where source refers to the
information source from which the spatial object was obtained (G for Geonames,
O for OSM and S for SDB). For instance, for the query “hydrographic resources
in Marianao”, hydrographic and their descendants were the classes involved and
some of the information retrieved was: <G, 3547581, Arroyo Marinero> <G,
3545352, Arroyo Paila> <G, 3746220, Presa Teresita> <O, 288952829, Rı́o
Orengo> <O, 223205922, Rı́o Almendares> <O, 288923290, Rı́o Quibú>...

Regarding the evaluation of the ontology generated for the geographic area of
Acapulco (OntoAcapulco), we could perform a comparison with other ontology
designed for tourism applications (TurismoAcapulco), which was built from the
geographic domain ontology KaabOntology [21]. The evaluation results obtained
for both ontologies by using the 6 dimensions supported by OOPS are shown in
Table 2 (Consistency, Conciseness, Structural Dimension, Functional Dimension
and Usability-Profiling Dimension) and Table 3 (Completeness). For the Com-
pleteness dimension, the same object properties and semantic relations used in
Table 1 were considered.

As shown in Table 2, no errors were detected during the evaluation of the
OntoAcapulco ontology for the Consistency and Functional dimensions. Besides,
less and minor errors were detected for the Conciseness, Structural and Usability-
Profiling dimensions with regard to the TurismoAcapulco ontology. Finally, the
evaluation results shown in Table 3 reveal a greater enrichment of knowledge

19 OOPS! (OntOlogy Pitfall Scanner!). http://oops.linkeddata.es.

http://oops.linkeddata.es
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Table 2. Evaluation and comparison of the spatial ontologies TurismoAcapulco and
OntoAcapulco with regard to several OOPS dimensions

Dimension TurismoAcapulco OntoAcapulco

Consistency Error P24 (using recursive
definitions) in element
Ontology1173811255.owl#Playas

No errors

Conciseness Error P03. Classified as a critical
error

Error P02 (creating synonyms as
classes). Classified as a minor
error

Structural
Dimension

Errors P03, P11 (4 issues) P13 (5
issues) and P24

Error P30 (equivalent classes not
explicitly declared)

Functional
Dimension

Error P04 in element
Ontology1173811255.owl#
TurismoAcapulco

No errors

Usability-
Profiling
Dimension

Errors P08 (141 issues), P11 (4
issues), P13 (5 issues), P22 and
P41

Errors P02 and P22 (using
different naming conventions in
the ontology). Classified as minor
errors

Table 3. Evaluation and comparison of the spatial ontologies TurismoAcapulco and
OntoAcapulco with regard to the Completeness dimension of OOPS

Completeness dimension TurismoAcapulco OntoAcapulco

Classes 102 694

EquivalentClasses 0 1

SubClassOf relations 107 735

Individuals 434 1,910

ObjectPropertyAssertions 4 14,618,863

DataPropertyAssertions 2,428 26,780

SameIndividuals 0 601

Annotations 27 765

achieved by the ontology generated by the proposed approach, regarding all the
object properties and semantic relations considered.

4 Conclusions and Further Work

We presented an approach to semi-automatically generate a semantic enriched
geospatial ontology coded in OWL 2 from heterogeneous spatial data sources.
The generated OWL2-coded ontology conceptualizes the place names of any
geographical area of interest, and it gives the user a greater expressive power
and a semantic view of the geographical data of that area, due to the greater
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expressiveness that OWL 2 provides in comparison to other ontology languages
such as OWL 1 or RDF. Using an ontology evaluation tool and a collection
of queries, we could perform an evaluation of the suitability of two generated
spatial ontologies for the geographic regions of Marianao (Cuba) and Acapulco
(Mexico). Based on the experiments and evaluations carried out, we conclude
that modeling spatial relationships using OWL 2 and modeling the geometry of
the spatial objects as a datatype property of string type (WKT property) can be
considered an advantage regarding other related work.

Our future directions include the application of the proposed approach to
generate spatial ontologies from other wider geographical regions, as well as the
investigation of how to exploit and evaluate the generated ontologies within GIR
systems.
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State Research Agency (AEI) of the Spanish Ministry of Economy and Competition
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Abstract. Many companies/corporations are interested in the opinion
that users share about them in different social media. Sentiment analy-
sis provides us with a powerful tool to discern the polarity of the opin-
ion about a particular object or service, which makes it an important
research field nowadays. In this paper we present a method to perform
the sentiment analysis of a sentence through its syntactic analysis, by
generating a code in Prolog from the parse tree of the sentence, which is
automatically generated using natural language processing tools. This is
a preliminary work, which provides encouraging results.

Keywords: Aspect extraction · Sentiment analysis · Parse tree
Natural language processing

1 Introduction

Over the last couple of decades the habit of on-line shopping has become increas-
ingly more popular and with it, the availability of costumer reviews on prod-
ucts and services. Nowadays, with the boom of social networks and specialized
forums, the numbers have escalated drastically. Because of that, the develop-
ment of tools that allow for an automated analysis of all this information has
become a matter of interest among researchers [3,4,9]. The goal of this analysis
is to be able to decide if a particular item is good or bad from the perspective
of the buyer writing the review, which motivates the emphasis in what is called
sentiment analysis, that is, deciding if the reviewer has a positive or a negative
opinion about it. First attempts approached the subject from the perspective
of language analysis of the whole comment [2,5], while some authors emphasize
the value given to some aspect of the item, like the waiting time in a restaurant
or the life of the battery in a laptop [1,8,10].

In this work we want to set the framework for a tool that combine both
perspectives. While still acknowledging the relevance of the aspect analysis and
focusing on it, we will resort to the grammatical analysis of the sentences to find
both, the relevant aspect the review refers to and the opinion of the reviewer
about it.

c© Springer International Publishing AG, part of Springer Nature 2018
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More precisely, we implement an application that generates a code in Prolog,
which in turn will perform the sentiment analysis of the review. This applica-
tion uses the Python Natural Language Toolkit (NLTK) [6], with an appropriate
grammar, to create the facts and rules needed in Prolog. Our goal is to imple-
ment a completely autonomous system. Here we present a preliminary work,
showing the general scheme of the system that we propose, together with some
basic working examples.

The paper is organized as follows. First, in Sect. 2 we give a detailed descrip-
tion of the proposed method. Next, in Sect. 3 we show some examples of the
Prolog code generated and the output that they provide. Finally, we present the
conclusions and discuss the next steps to follow in Sect. 4.

2 Our Approach

As mentioned in the introduction, we propose a method for sentiment analysis
that uses additional information, coming from a simplified syntactic analysis
of the comment which is being studied, in order to improve its aspect based
analysis.

On the one hand, this method processes the sentences through a syntactic
analysis based on a grammar and translates it into a new structure which, in
turn, goes through a second analysis that will allow us to identify the prevalent
aspect and select its polarity. To perform the syntax analysis, several options are
available. We have chosen the Natural Language Toolkit (NLTK ) which allows
an easy implementation in Python of applications to process data extracted from
everyday speech. Among other features, such as providing easy-to-use interfaces
to on-line lexical resources, this software provides a collection of text processing
libraries for tokenization, parsing, semantic reasoning, etc. We are interested in
the syntactic analysis of the sentences, that is, we want to find the parse tree
associated to the sentence, which we can obtain in a relatively easy way using
the NLTK.

On the other hand, each aspect must be labeled. We follow the classification
proposed in [7], which uses the labels: positive, negative, neutral and conflict. In
this first approach, we shall focus on comments which fall into the first three cat-
egories, while the classification of comments tagged as conflict will be addressed
in follow up works. In order to assign a label to a comment, we use Prolog to
process the parse tree obtained in the first step with the NLTK. Prolog is a
programing language developed in the early ’70s in the Aix-Marseille Univer-
sity by students Alain Colmerauer and Philippe Roussel. It was the fruit of
a project, whose goal was algorithmic classification of natural languages, with
both students being tasked with processing natural language. This makes Prolog
a most fitting choice for our purpose. It looks for all possible combinations of
logic solutions based on a system defined by facts and rules. In our case, the
facts correspond to words from our grammar found in the lexical productions,
while the rules are those of our grammar.

Figure 1 shows a diagram describing how our method works. It is made up
of three parts:
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Fig. 1. Scheme of our approach.

1. Preliminary processing: the different structures that will be needed are
defined. Specifically, we obtain the parse tree associated to the sentence being
studied and define the facts and rules to be used with Prolog. These tasks are
carried out by modules 1 and 2 respectively.

2. Generating the final code: a code in Prolog is automatically generated using
the system of facts and rules to classify the sentence fed as input. This is
done by Module 3.

3. Computing the output: the Prolog code generated in the previous step per-
forms the sentiment analysis of the input (Module 4).

The system needs two inputs: the sentence to be analyzed and the definition
of a grammar that is adequate for the input language. This grammar will, in
turn, be used by the NLTK to generate the parse tree, in Module 1, which is
described in detail in Sect. 2.1. The provided grammar will be used to generate,
automatically, a system of facts and rules by Module 2, as described in Sect. 2.2.

Next, Module 3 gets the outputs from Module 1 and Module 2 as inputs and
creates a Prolog code to carry out the sentiment analysis (Sect. 2.3). It should be
pointed out that this code, the output of Module 3, is already Module 4, which
will provide us with the final output.

The rest of this section is devoted to a detailed description of each module.
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2.1 Computing the Parse Tree

Thanks to Python and NLTK we have been able to perform a syntactic analysis
of the input sentence to obtain its associated parse tree. To do this, a grammar
must be defined. For this preliminary work we have specified a simplified gram-
mar, shown below, which has allowed us to complete the first tests in simple
sentences, with satisfactory results.

Rule 1) S − > NP VP
Rule 2) NP − > noun
Rule 3) NP − > pronoun
Rule 4) NP − > determinant noun
Rule 5) NP − > determinant adjective noun
Rule 6) VP − > verb adjective
Rule 7) VP − > verb not adjective
Rule 8) VP − > verb NP
Rule 9) VP − > verb not verb NP

The grammar consists only of the basic rules to process simple sentences.
We have used low-case tags to identify the lexical productions, and capital case
tags to identify non-final symbols, that is, symbols which must be solved using a
different rule. This grammar uses a big amount of symbols which lead to lexical
productions. The consequence of this is a simpler parse tree, and therefore, an
ease of the task to be performed by the following modules.

In addition to these rules, we have to include lexical productions to identify
words as noun, adjective, etc.

noun − > ‘service’ | ‘thing’ | ‘food’ | ‘price’
adjective − > ‘quick’ | ‘good’ | ‘right’ | ‘decent’

Figure 2 shows the parse tree associated to the sentence: “Service was quick”.
NLTK generates the parse tree according to its own structure. We, then, trans-
form it into a different structure that will make the following steps easier. For
instance, we can represent the structure associated to the sentence used as input
in the previous example.

(‘S’, (‘NP’, ‘noun’, ‘service’), (‘VP’, (‘’, ‘verb’, ‘was’), (‘’, ‘adjective’, ‘quick’)))

The output of this module is a tuple where the first component is the identifier
of the rule and the rest are, either a new tree or leaf. The new tree has the same
structure that we have just described, whilst the leaf represents the rule that
has been used. Finally, the last symbol is the word that is being represented. For
instance, (NP, noun, service) is a leaf that stands for the rule “NP -> noun”.
We can see here the relation to the one shown in Fig. 2. From now on we will
refer to this tuple as Syntactic Tuple.
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Fig. 2. Parse tree obtained for “Service was quick”.

2.2 Calculating the Facts and the Rules

To generate the system of facts and rules that will be used in our Prolog code we
have implemented in Module 2 an algorithm to transform each rule in the grammar
given as input into either a fact or a rule. This is the most delicate part of our
approach. Albeit it has worked as desired for the grammar described in Sect. 2.1,
it must be thoroughly revised in order to adapt it to more complex grammars.

The first step consists in obtaining the facts from the lexical productions.
These facts will be used to tag each word with the labels negative, neutral or
positive. Thinking on how it should work for some specific words, we want to
define them using a structure that generalizes examples like verbSA(was,neutral),
adjectiveSA(quick,positive), adjectiveSA(bad, negative), etc. It would be desirable
that the system had a priory all the words that may be used in the input sentence
already labeled and, furthermore, that this dictionary can be easily expanded.

Table 1. From grammar rule NP to Prolog fact or rule (Rules from 2 to 5).

Grammar Prolog

NP − > noun np(n,[N ],[[N ]])

NP − > pronoun np(p,[P ],[[P ]])

NP − > determinant noun np(d n,[ , N ],[[N ]])

NP − > determinant adjective noun np(d a n,[ , A,N ],[[N,S]]) :- adjectiveSA(A,S)

Each rule in the given grammar must be automatically translated into a
Prolog fact or rule. We shall describe the process that we have followed to achieve
this through examples to clarify each step. Table 1 shows how the rules NP
(Rules from 2 to 5) are adapted. In general, we follow these steps:

1. The identifier of the rule, given in lower case, is used as predicate, np in this
example.

2. Each predicate has a label (first argument) that is used to identify the gram-
mar rule in the Prolog fact or rule. This label is formed by combining the first
letter of each component of the outcome of the grammar rule in an ordered
way, separated by the character ‘ ’. In this example there has not been coin-
cidences in the labels, but for further works, it is necessary to design some
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rule to deal with duplicated labels, since they must be unique. Table 1 shows
the labels generated for the rules NP : n, p, d n y d a n respectively.

3. The second argument of the fact is a list with as many elements as different
consequents has the rule in the grammar and they represent each of the words
in the parse tree associated to this rule.

4. The third argument is used to generate the output (to solve the rule). In
the example shown in this table, the fact returns the noun or pronoun for
rules 2 to 4, and the pair [noun,word] for rule 5, where word is the label
describing the sentiment associated to noun (negative, neutral or positive
in this case) since it is accompanied by an adjective in the structure. We
use a fact, adjectiveSA, to get the label. The rules of the input grammar that
include some word subject to polarization use a fact from a lexical production
to get the label that corresponds with this polarization.

We have followed a similar process to classify the rules V P of the grammar
(Rules from 6 to 9). For each of this rules, we introduce a Prolog rule that
evaluates each instance of it. This rule has also a label, a list with as many
elements as the consequent of the corresponding rule from the grammar and an
output list. As an example, the rule “VP − > verb adjective” translates into de
Prolog rule:

vp(v a, [V,A], [[S]]) :−verbSA(V, V 1), adjectiveSA(A,A1), solutionSA(V 1, A1, S).

This rule evaluates the adjective and the verb through the predicates verbSA
and adjectiveSA to generate the output using the fact solutionSA, which returns
negative, neutral or positive from the values of A1 and V 1, as illustrated in
Table 2.

Table 2. Obtaining the calificative word.

V 1 A1 S

negative negative positive

negative positive negative

positive negative negative

positive positive positive

X neutral X

neutral X X

The Prolog rule

vp(v np, [V,B|NP ],NP1) :−verbSA(V, ),np(B,NP,NP1),

solves the rule “VP − > verb NP” (Rule 8). Again, this rule is defined
following the same structure as previous ones, with a label, an input list and an
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output list. It uses the predicate verbSA and invokes a rule of type NP (tagged
as np) which provides the solution NP1. Rules 7 and 9 are solved in a similar
way to rules 6 and 8 respectively. We skip the details for the sake of brevity.

Finally, the initial rule of the grammar, “S − > NP VP” is processed using
the predicates np and vp that correspond to the labels A and B. It translates
into the Prolog rule

phrase([A|NP ], [B|V P ], S, S1) :−np(A,NP, S), vp(B, V P, S1).

The rule phrase, has four inputs:

1. First, a list with the label of the rule NP followed by all the words in the
sentence.

2. The second argument is another list, with the same structure as that of the
first argument, but related to V P .

3. Third argument stores the evaluation of NP
4. Fourth argument sotres the evaluation of V P .

To conclude, we want to point out that the structure based on facts and
rules used in Prolog naturally fits that of the grammar, which makes of Prolog
a very appropriate tool for the processing of this kind of data.

2.3 Generating the Prolog Program

To conclude this section, we take a look to the structure of the Prolog codes
generated by Module 3. They use the rule prhase described in Sect. 2.2 together
with an extension to generate the final output. As an example, the generated
rule that solves the sentences “Service was quick” is the following:

phrase([n, service], [v a, was, quick], S1, S2), aggregateSA(two, S1, S2, S), write(S).

It uses the rule phrase and the fact aggregateSA, joined through the Prolog
conjuction ‘,’. The predicate phrase has already been described. The predicate
aggregateSA combines the outputs of prhase to produce S. It has a similar struc-
ture to that of the previous ones: uses a label, two lists to combine and an output
list. In this stage, only two facts have been necessary:

1. aggregateSA(two, [[N ]], [[W ]], [[N,W ]]).: Combines a noun N with a descrip-
tive word W in the output (last parameter).

2. aggregateSA(new, [[N1]], [[N2,W ]], [[N1,W ], [B,C]]).: Combines a noun N1
with a descriptive word W which is already combined with another noun N2.
For instance, in the sentence “The food was of bad quality” the word food
would be combined with the label negative, which is already assigned to “bad
quality”.

This has been possible due to the simplicity of the sentences selected for
the test, as will be described in the following section. In future research, the
definition of a system of rules and facts that would be able to correctly process
complex sentences will be a priority.



678 J. Moreno-Garcia and J. Rosado

3 Tests: Some Examples

The algorithm described in the previous section has been tested on
five sentences selected from the url “http://alt.qcri.org/semeval2014/task4/
index.php?id=data-and-tools”. This address corresponds to a web page which
provides datasets in order to test programs whose goal is the aspect term extrac-
tion, aspect term polarity, aspect category detection and aspect category polar-
ity. These datasets consist of customer reviews, to which human-made comments
have been added in order to identify the key terms in the sentences and their
polarity. We have chosen the following sentences, belonging to the dataset

Restaurants trial data
Service was quick
The food was of bad quality
The music is not good
The price is right
I did not like the chicken

This set is sufficient to test all the rules of the grammar discussed in Sect. 2.1.
We want to emphasize that Module 2 generates all the facts and rules that will
be used with all the test sentences, since they are created from the grammar
itself, which is the same for all sentences.

Next, we present the outputs that our code has yielded for each of the sen-
tences.

Service was quick
This is a short and simple sentence. It has a noun, a verb and an adjective.

There is only one word in the subject (service) and only one adjective, which
refers to that word (quick). When the sentence is processed with the NLTK
in Module 1 the output is a single parse tree, shown in Fig. 2. This tree is
represented by the tuple:

(‘S’, (‘NP’, ‘noun’, ‘Service’), (‘VP’, (‘’, ‘verb’, ’was’), (‘’, ‘adjective’, ‘quick’)))

The parse tree is generated by using the grammar rules:

S − > NP VP
NP − > noun
VP − > verb adjective

together with the lexical productions:

noun − > service
verb − > was
adjective − > quick

Using the facts and rules described in Sect. 4, which we have obtained from
Module 2 and the syntactic tuple provided by Module 1 Module 3 generates the
Prolog code:

p :−phrase([n, service], [v a, was, quick], S1, S2), aggregateSA(two, S1, S2, S), write(S).
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When we run it, the output that we get is S = [[service, positive]], which
shows that the polarity of the term service is positive. The sentence has been
properly analyzed and the proposed scheme has worked correctly.

Fig. 3. Parse tree obtained for “The price is right”.

The price is right

This sentence is similar to the previous one, but in this case the subject is of
the form determinant noun. Figure 3 shows the parse tree yielded by our code,
which, in this case presents two levels. The tuple that will be passed to module
three is the following:

(’S’, (’NP’, (”, ’determinant’, ’The’), (”, ’noun’, ’price’)), (’VP’, (”, ’verb’,
’is’), (”, ’adjective’, ’right’)))

and the Prolog code:

p :- phrase([d n, the, price],[v a, is, right],S1,S2),aggregateSA(two,S1,S2,S),
write(S).

The output it provides is S = [[price, positive]] which shows that the polarity
of the term price is positive in this case.

Fig. 4. Parse tree obtained for “The music is not good”.
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The music is not good

This sentence exhibits a negative sentiment about the key term in the subject,
due to the effect of the adverb not on the adjective good.

This is captured by the parse tree, which in this case has three levels. It is
shown in Fig. 4. The corresponding syntactic tuple is:

(’S’, (’NP’, (”, ’determinant’, ’The’), (”, ’noun’, ’music’)), (’VP’, (”, ’verb’,
’is’), (”, ’not’, ’not’), (”, ’adjective’, ’good’)))

and the Prolog code generate by our program is:

p :- phrase([d n, the,music],[v no a, is, no, good], S1, S2), aggregateSA(two,
S1, S2, S), write(S).

It gives the output S = [[music, negative]], which shows the negative polarity
of the term music.

Fig. 5. Parse tree obtained for “The food was a bad quality”.

The food was of bad quality

This sentence also shows a negative feeling about the subject, which comes from
an adjective + noun structure. In this case, the adjective bad gives its negative
polarity to the noun that it accompanies, which was initially neutral. Then the
polarity of the noun in the verb phrase carries over to the noun in the noun
phrase.

Figure 5 shows the resulting parse tree, which uses more rules than previous
examples. The syntactic tuple generated by Module 1 is:

(’S’, (’NP’, (”, ’determinant’, ’The’), (”, ’noun’, ’food’)), (’VP’, (”, ’verb’,
’was’), (’NP’, (”, ’determinant’, ’a’), (”, ’adjective’, ’bad’), (”, ’noun’, ’qual-
ity’))))

while Module 3 provides the Prolog code:

p :- phrase([d n, the, food], [v np,was, d a n, a, bad, quality], S1, S2), aggre-
gateSA(new,S1,S2,S), write(S).
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Fig. 6. Parse tree obtained for “I did not like the chicken”.

Its output is S = [[food, negative], [quality, negative]], which assigns the
polarity negative to the terms quality and food.

I did not like the chicken

The last sentence in our set displays a negative verb form, made of three words
(did not like). This will test some rules in our grammar that had not yet been
used.

Figure 6 shows the generated parse tree. It has four levels due to the com-
plexity of the sentence, which requires the use of a larger amount of rules from
the grammar. This tree can be described with the tuple:

(’S’, (’NP’, ’pronoun’, ’I’), (’VP’, (”, ’verb’, ’did’), (”, ’not’, ’not’), (”, ’verb’,
’like’), (’NP’, (”, ’determinant’, ’the’), (”, ’noun’, ’chicken’))))

The corresponding Prolog code is:

p :- phrase([p, i], [v no v np, did, no, like, d n, the, chicken], ,S2), write(S2).

which gives the output S = [[chicken, negative]]. This shows the negative
feel about the term chicken due to the verb like (positive) being in negative
form.

4 Conclusions and Future Works

This paper presents our first approach to the problem of sentiment analysis
through the syntactic analysis of the sentence. We have proposed an algorithm
that can be used to process any sentence which can be formed in accordance
with the provided grammar. Furthermore, we have used Python together with
NLTK and Prolog to do the tests.

The results are promising since our design solves correctly the cases that we
study and shows flexibility to be adapted to more complex sentences.

As future research, we contemplate the following:

– Obtaining a large set of basic facts since they are the basis upon which the
polarity of the terms is computed.

– To improve some aspects of our design. Namely, how facts and rules are
computed in Module 3 and the way the different results are combined.
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– To carry out more experiments with more powerful grammar that allows the
processing of more complex sentences.

Acknowledgements. Supported by the project TIN2015-64776-C3-3-R of the Science
and Innovation Ministry of Spain, co-funded by the European Regional Development
Fund (ERDF).
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Abstract. In a recent work some of the authors have developed an argu-
mentative approach for discovering relevant opinions in Twitter discus-
sions with probabilistic valued relationships. Given a Twitter discussion,
the system builds an argument graph where each node denotes a tweet
and each edge denotes a criticism relationship between a pair of tweets of
the discussion. Relationships between tweets are associated with a proba-
bility value, indicating the uncertainty on whether they actually hold. In
this work we introduce and investigate a natural extension of the repre-
sentation model, referred as probabilistic author-centered model. In this
model, tweets by a same author are grouped, describing his/her opinion
in the discussion, and are represented with a single node in the graph,
while edges stand for criticism relationships between author’s opinions.
In this new model, interactions between authors can give rise to circu-
lar criticism relationships, and the probability of one opinion criticizing
another is evaluated from the criticism probabilities among the individ-
ual tweets in both opinions.

Keywords: Twitter discussions
Probabilistic author-centered model · Argumentation

1 Introduction

In a recent work [2], an argumentative approach has been proposed for discov-
ering relevant opinions in Twitter with probabilistic valued relationships.

Argumentation-based reasoning models aim at reflecting how humans make
use of conflicting information to construct and analyze arguments. An argu-
ment is an entity that represents some grounds to believe in a certain statement
and that can be in conflict with arguments establishing contradictory claims.
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The most commonly used general argumentation framework is Dung’s abstract
argumentation model [8].

In abstract argumentation, a graph is used to represent a set of arguments
and counterarguments. Each node is an argument and each edge denotes an
attack between arguments. Different kinds of semantics for abstract argumenta-
tion frameworks have been proposed that highlight different aspects of argumen-
tation (for reviews see e.g. [4,5,16]). Usually, semantics for abstract argumen-
tation frameworks are given in terms of sets of extensions, which are suitable
consistent sets of arguments. For a specific extension, an argument is either
accepted or rejected and, usually, there is a set of extensions that is consistent
with the semantic context.

The analysis of Twitter by means of argumentation frameworks has also been
explored by Grosse et al. [13] with the aim of detecting conflicting elements in
an opinion tree to avoid potentially inconsistent information. Moreover, in order
to mine arguments from Twitter, Bosc et al. [6] proposed a binary classification
mechanism (argument-tweet vs. non argument) and Dusmanu et al. [10] applied
supervised classification to identify arguments on Twitter and evaluated facts
recognition and source identification for argument mining.

Given a Twitter discussion, i.e. a set of tweets generated from a root tweet,
the system developed in [2] builds a weighted argument graph where each node
denotes a tweet, each edge denotes a criticism relationship between a pair of
tweets of the discussion and the weight of nodes models the social relevance of
tweets from data obtained from Twitter. In Twitter, a tweet always answers or
refers to previous tweets in the discussion, so the obtained underlying argument
graph is acyclic. Moreover, when constructing relationships between tweets from
informal descriptions expressed in natural language with other attributes such
as emoticons, jargon, onomatopoeia and abbreviations, it is often evident that
there is uncertainty about whether some of the criticism relationships actually
hold. So, to take into account this fact in the model, each edge of an argument
graph is associated with a probability value, quantifying such uncertainty on crit-
icism relationships between pairs of tweets. The solution of a weighted argument
graph for a Twitter discussion is computed by means of the reasoning system we
developed in [1], where the graph is mapped to a valued abstract argumentation
framework (VAF) [3] and the so-called ideal semantics [9] is used to evaluate the
set of socially accepted tweets in a discussion from the weights assigned to the
tweets and the criticism relationships between them.

In this work we introduce a natural extension of our previous representation
model for Twitter discussions [2], that will be called probabilistic author-centered
model. In this new model, tweets within a discussion are grouped by authors,
such that tweets of a same author describe his/her opinion in the discussion
that is represented by a single node in the graph, and criticism relationships
denote controversies between the opinions of Twitter users in the discussion. In
this model, the interactions between authors can give rise to circular criticism
relationships, and the probability of one opinion criticizing another is evaluated
from the individual probabilities of criticism among the tweets that compose
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both opinions. So, the underlying argument graph can contain cycles and a model
for the aggregation of probabilities has to be proposed. Moreover, to compute
the set of accepted authors’ opinions in a discussion, we also extend our previous
reasoning system [1] which is based on the acceptance of tweets of a discussion
and not on its authors. This new representation and reasoning model can be
of special relevance for assessing Twitter discussions in fields where identifying
groups of authors whose opinions are globally compatible or consistent is of
particular interest.

The rest of the paper is organized as follows. In Sect. 2, we recall from [2]
the formal graph structure to model Twitter discussions. Then, in Sect. 3, we
describe the author-centered model for representing discussions in Twitter and,
in Sect. 4, we formalize the probabilistic weighting scheme of criticism relation-
ships between authors’ opinions. Finally, in Sect. 5 we define the reasoning sys-
tem to compute the sets of accepted and rejected opinions and, in Sect. 6, we
conclude.

2 Twitter Discussion Graph

In this section, we introduce a simplified computational structure of the one
proposed in [2] to represent a Twitter discussion with probabilistic valued rela-
tionships, that will be called probabilistic discussion graph. In such a graph, each
node will denote a tweet, each edge will denote an answer relationship between
a pair of tweets of the discussion, and each edge will be attached a probability
value, indicating the probability that a criticism relationships between the pair
of tweets actually holds. We provide more formal definitions next.

Definition 1 (Twitter Discussion). A Twitter discussion Γ is a non-empty set
of tweets. A tweet t ∈ Γ is a triple t = (m,a, f), where m is the up to 140
characters long message of the tweet, a is the author’s identifier of the tweet and
f ∈ N is the number of followers of the author, according to its temporal instant
generation during the discussion. Moreover, if t1 and t2 are tweets from different
authors, We say that t1 answers t2 iff t1 is a reply to the tweet t2 or t1 mentions
(refers to) tweet t2.

Definition 2 (Discussion Graph). The Discussion Graph (DisG) for a Twitter
discussion Γ is the directed graph (T,E) such that for every tweet in Γ there is
a node in T and if tweet t1 answers tweet t2 there is a directed edge (t1, t2) in
E. Only the nodes and edges obtained by applying this process belong to T and
E, respectively.

Definition 3 (Probabilistic Discussion Graph). A probabilistic discussion graph
(PDisG) for a Twitter discussion Γ is a triple 〈T,E, P 〉, where

– (T,E) is the DisG graph for Γ and
– P is a labeling function P : E → [0, 1] that attaches a probability value p ∈

[0, 1] to every edge (t1, t2) ∈ E, meant as the degree of belief that tweet t1 is a
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criticism to tweet t2, i.e. that the message of t1 does not agree with the claim
expressed in the message of t2. So, p = 1 means that it is fully believed that
tweet t1 disagrees with the claim expressed in tweet t2, while p = 0 means that
it is fully believed that tweet t1 agrees with the claim expressed in tweet t2.

Given a PDisG 〈T,E, P 〉 for a Twitter discussion Γ and two tweets t1, t2 ∈ Γ ,
we will say that t1 criticizes t2, written t1 � t2, iff t1 answers t2 and the degree
of belief that the message of tweet t1 is a criticism to the message of tweet t2 is
greater than zero. In other words, t1 � t2 iff (t1, t2) ∈ E and P (t1, t2) > 0.

In Twitter, every tweet in a discussion can reply at most one tweet, but can
mention many tweets, and all of them are prior in the discussion. So, every tweet
can answer (and criticize) many prior tweets, either from a same author or from
different ones. Given a tweet t1, we consider the set of tweets {t1a1

, . . . , t1an
}

that t1 is answering to as those tweets including (i) the tweet that t1 is replying
to, and (ii) all the other previous tweets in the discussion by authors mentioned
by t1.

To check whether a tweet t1 does not agree with the claim expressed in one of
its answered tweets t1ai

, the system uses an automatic labeling system based on
Support Vector Machines (SVM). The description of the method we used to train
the SVM can be found in [2]. The SVM model is built from a set of 582 pairs of
tweets (answers) obtained from a discussion set on Spanish politics, and manually
labeled with the most probable label: criticism or not criticism. To build the SVM
model, for each pair of tweets (t1, t1ai

) we consider different attributes from the
tweets of the pair: attributes that count the number of occurrences of relevant
words in the tweets and attributes that have to be computed from the message.
In particular, for each tweet, we have considered regular words and stop-words,
the number of images, the number of URLs mentioned in the tweet, the number
of positive and negative emoticons and the sentiment expressed by the tweet.
We use LibSVM [7] to train a probabilistic SVM model, that is, a labeling
function that assigns a probability value p for each possible label to each answer
(t1, t1ai

). The probability estimates can be obtained by using Platt’s likelihood
method [15]. LibSVM uses the same Platt’s method but algorithmically improved
[14]. With our SVM model for Spanish politics discussions, we obtain an accuracy
of 75% over our training set of tweet pairs. This SVM model, obtained from such
small data set, may not be good enough to be used in a final system, but one
can always consider training a SVM model with a larger data set.

In Fig. 1 we show the PDisG for a Twitter discussion1 from the political
domain obtained by our discussion retrieval system. Each tweet is represented
as a node and each criticism relationship between tweets is represented as an
edge (answers with probability values greater than zero). The root tweet of the
discussion is labeled with 0 and the other tweets are labeled with consecutive
identifiers according to their generation order. The discussion has a simple struc-
ture. The root tweet starts the discussion (node 0), the reply (node 1) criticizes

1 The discussion URL is
https://twitter.com/jordievole/status/574324656905281538.

https://twitter.com/jordievole/status/574324656905281538
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Fig. 1. Tweet-based model for a Twitter discussion. (Color figure online)

the root tweet and the rest of tweets within the discussion criticize mainly node
0 and node 1. The discussion contains 32 tweets of 14 different authors, and
81 criticizes relations between tweets. Nodes are colored in blue scale, where
the darkness of the color is directly proportional to the number of followers of
the authors of the tweets with respect to the maximum value in the discus-
sion. Notice that the graph does not contain cycles, since a tweet only answers
previous tweets in the discussion.

3 Author-Centered Model

As we have already pointed out, our goal is to introduce and investigate an
author-centered model of Twitter discussions with probabilistic valued relation-
ships. To this end, we group tweets by authors and we consider that criticism
relationships between tweets denote controversies at the level of authors.

In this work we consider discussions in which every author’s opinion is consis-
tent, discussions in which authors are not self-referenced and do not contradict
themselves. That is, for each author ai and each pair of tweets t1 = (m1, ai, f1)
and t2 = (m2, ai, f2), we assume that messages m1 and m2 do not express neither
conflicting nor inconsistent information. Next we define what we will understand
by the opinion and the number of followers of an author in a Twitter discussion
Γ (with authors’ identifiers {a1, . . . , an}):

– The opinion of an author ai in the discussion Γ , denoted Tai
, is the set of

tweets of ai in Γ , i.e. Tai
= {(m,ai, f) ∈ Γ}.

– The number of followers of an author ai in Γ , denoted fai
∈ N, is the mode of

the set {f | (m,ai, f) ∈ Γ}, which provides us with the most frequent number
of followers of the author during the discussion.
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Given a Twitter discussion, we notice that, in fact, every author ai can be
uniquely represented by his/her opinion Tai

. So, we shall refer to both terms
indistinctly. Next we define the probabilistic author graph for a given discussion.

Definition 4 (Probabilistic Author Graph). Let Γ be a Twitter discussion with
authors’ identifiers {a1, . . . , an} and let 〈T,E, P 〉 be the PDisG for Γ . The prob-
abilistic author graph (ADisG) for Γ is a triple 〈T , E ,P〉, where

– the set of nodes T is the set of authors’ opinions {Ta1 , . . . , Tan
}, i.e. a node

for each author.
– the set of edges E is the set of answers between different authors in the discus-

sion; i.e. there is an edge (Tai
, Taj

) ∈ E, with ai �= aj, iff there is (t1, t2) ∈ E
such that t1 ∈ Tai

and t2 ∈ Taj
.

– P is a probabilistic weighting scheme, i.e. a map P : E → [0, 1] assigning to
every edge (Tai

, Taj
) ∈ E a probability value in [0, 1], that expresses a degree

of belief with which the author ai actually criticizes the author aj. For each
edge (Tai

, Taj
) ∈ E, the value P(Tai

, Taj
) is meant to be computed from the

set of individual probabilities that tweets in Tai
criticize tweets in Taj

, i.e.
from the set

{P (t1, t2) | (t1, t2) ∈ E, t1 ∈ Tai
and t2 ∈ Taj

}.

Note that an author can answer several authors in a discussion, and thus criticize
several authors. However, if an author criticizes the opinion of another through
several tweets, the set of discrepancies is represented with a single edge in E
and with a single probability value, denoting the global belief that one opinion
criticizes the other.

The ADisG graph shows discrepancies between authors only if there is some
(explicit) criticism relationship between the tweets of the authors, and thus,
indirect criticism relations between authors have not been considered yet in our
model. For instance, consider a Twitter discussion with tweets t1 = (m1, a1, f1),
t2 = (m2, a2, f2) and t3 = (m3, a3, f3), with a1 �= a2 �= a3. Suppose that t1 � t2
and t3 � t1 i.e. {(t1, t2), (t3, t1)} ⊆ E, P (t1, t2) > 0 and P (t3, t1) > 0. In our
current approach, we restrict ourselves to consider that t3 � t2 iff t3 answers
(replies or mentions) t2. The reason is that the information contained in a typical
tweet, written in natural language and with possibly other attributes, almost
never allows us to consider a sound way to assess an indirect criticism relation
between two tweets t and t′ if t′ does not directly reply or mention t.

In the next section we introduce three different probabilistic weighting
schemes.

4 Probabilistic Weighting Schemes

In our approach, each node of an ADisG graph denotes an author’s opinion, and
relationships between nodes are mined from the prevailing sentiment among the
aggregated tweets of the opinions. To be more precise, let Γ be a Twitter discus-
sion and let 〈T , E ,P〉 be the probabilistic author graph (ADisG) for Γ . Suppose
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further we have two authors’ opinions or sets of authors’ tweets Ta, Tb ∈ T , with
(Ta, Tb) ∈ E . Our aim is to define a probabilistic weighting scheme P : E → [0, 1]
for edges in E , by combining in an appropriate form the individual probabilities
values {P (t1, t2) | t1 ∈ Ta and t2 ∈ Tb}, where we consider P (t1, t2) = 0 for pairs
of tweets such that (t1, t2) �∈ E. As we will see, the addition of zero values to
this set will be harmless.

In the rest of this section we define three possible probabilistic weighting
schemes P, depending on the semantics assumed for the criticism relationship
between the authors’ opinions Ta and Tb.

4.1 Skeptical Scheme

A skeptical notion of criticism between Ta and Tb can be defined as follows: Ta

criticizes Tb, written Ta � Tb, when every tweet in Tb is attacked by some tweet
in Ta, i.e. for all t ∈ Tb, there is t′ ∈ Ta such that t′ � t. In logical terms, we
can define Ta � Tb by the following clause:

Ta � Tb :=
∧

t∈Tb

(
∨

t′∈Ta

t′ � t

)

Assuming independence of all the t′ � t’s, which is a reasonable assumption in
our context,2 we can easily compute the probability of Ta � Tb as

P(Ta � Tb) =
∏

t∈Tb

(
⊕

t′∈Ta

P (t′, t)

)
,

where ⊕ corresponds to the probabilistic sum operation x ⊕ y = x + y − x ·
y. Observe that 0 is a neutral element for ⊕ (i.e. x ⊕ 0 = x), and so having
probability values such that P (t′, t) = 0 does not affect the computation of
P(Ta � Tb). Analogously for the next schemes.

4.2 Credulous Scheme

On the other hand, a credulous notion of criticism between Ta and Tb can be
defined as follows: Ta criticizes Tb, written Ta �c Tb, when there is at least one
tweet t ∈ Tb that is attacked by a tweet t′ ∈ Ta, i.e. when there are t ∈ Tb and
t′ ∈ Ta such that t′ � t. In logical terms, Ta �c Tb can be now expressed by the
following clause:

Ta �c Tb :=
∨

t∈Tb

(
∨

t′∈Ta

t′ � t

)
.

2 This is because in our probabilistic model the label P (t1, t2) assigned to an edge
(t1, t2) is based only on the information inside the tweets t1 and t2 and not on other
answers from the same authors.
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Again, assuming independence of all the t′ � t’s, we can easily compute the
probability of Ta � Tb as

P(Ta �c Tb) =
⊕

t′∈Ta,t∈Tb

P (t′, t).

4.3 Intermediate Scheme

A more flexible definition of when Ta criticizes Tb is to stipulate that this holds
when for most of the tweets t ∈ Tb there is a tweet t′ ∈ Ta such that t � t′. We
denote this notion of attack as Ta �most Tb.

The question is how we interpret the quantifier most. A first option is to
understand most as a proportion of at least r, for some r ≥ 0.5 to be chosen. For
any set X, let us define most(X) = {S ⊆ X | |S|

|X| ≥ r}. Then we can express
Ta �most Tb as follows:

Ta �most Tb :=
∨

S∈most(Tb)

Ta � S.

But we can simplify a bit this expression. Indeed, since if S ⊂ R then (Ta �
S) ∨ (Ta � R) = Ta � S, we can write

Ta �most Tb :=
∨

S∈Min(most(Tb))

Ta � S,

where Min(most(X)) denotes the minimal subsets of X with a proportion of at
least r. Then, we can compute:

P(Ta �most Tb) = P(
∨

{Ta � S : S ∈ Min(most(Tb))}).

This can be computationally expensive. However, we can provide a lower approx-
imation taking into account that for any probability we have P (A ∪ B) ≥
max(P (A), P (B)):

P∗(Ta �most Tb) = max{P(Ta � S) : S ∈ Min(most(Tb))}.

Interestingly enough, there is a simple procedure to compute P∗:
(i) compute, for all t ∈ Tb, the probabilities P(Ta � t) =

⊕
t′∈Ta

P (t′, t);
(ii) rank them, from higher to lower: P (Ta � t1) ≥ P (Ta � t2) ≥ . . .;
(iii) let k be the smallest index such that k

|Tb| ≥ r.

Then, we have P∗(Ta �most Tb) =
∏k

i=1 P (Ta � ti).
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5 Mining the Set of Consistent Opinions

Once we have introduced the author-centered model of discussions in Twitter,
the next key component is the definition of the reasoning system to compute the
set of accepted authors’ opinions. To this end, we have extended the reasoning
system developed in [1] to deal here with ADisG graphs. The approach, described
in the rest of the section, consists of mapping an ADisG graph, with a partic-
ular probabilistic weighting scheme, to a valued abstract argumentation frame-
work (VAF) and considering the ideal semantics to compute the (unique) set
of consistent authors’ opinions of the discussion. Bench-Capon’s valued abstract
argumentation [3] is an extension of abstract argumentation with a valuation
function Val for arguments taking values on a set R equipped with a (possibly
partial) preference relation Valpref. Ideal semantics [9] guarantees that all opin-
ions in the solution are consistent and that the solution is maximal in the sense
that it contains all acceptable arguments.

5.1 The Argumentation-Based Reasoning System

Given an ADisG for a Twitter discussion with a given probabilistic weighting
scheme, we build a corresponding VAF where arguments represent authors’ opin-
ions and attacks between arguments represent discrepancies between authors’
opinions according to an uncertainty threshold α, which characterizes how much
uncertainty on probability values we are ready to tolerate.

Definition 5 (VAF for an ADisG). Let Γ be a Twitter discussion with authors
identifiers {a1, . . . , an} and let α ∈ [0, 1] be a threshold on the probability values.
If G =〈T , E ,P〉 is the ADisG graph for Γ with probabilistic weighting scheme P,
the Valued Argumentation Framework for G relative to the threshold α, written
VAF(G,α), is the tuple VAF(G,α) = 〈T , attacks, R,Val,Valpref〉, where

– each node (or author’s opinion) Tai
in T results in an argument,

– attacks is an irreflexive binary relation on T and it is defined according to
the threshold α as follows: attacks = {(Tai

, Taj
) ∈ E | P(Tai

, Taj
) ≥ α},

– R is a non-empty set of relevance values,
– Valpref ⊆ R × R is an order relation (transitive, irreflexive and asymmetric)

on the set of relevance values R.
– Val : T → R is a valuation function that assigns relevance values to authors’

opinions or arguments,

An important element of our approach is the use of an uncertainty threshold α.
It represents the maximum probability value under which we would be prepared
to disregard criticism relationships between authors’ opinions. So, the attacks
relation is interpreted as follows: the opinion of the author ai is in disagreement
with the opinion of the author aj with at least a probability value α, according
to the probabilistic weighting scheme P.

Given such a VAF(G,α) = 〈T , attacks, R, V al, V alpref〉, a defeat relation
(or effective attack relation) between arguments (authors’ opinions) is defined
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according to the valuation function Val and the preference relation Valpref as
follows:

defeats = {(Tai
, Taj

) ∈ attacks | (Val(Taj
),Val(Tai

)) �∈ Valpref}.

As we have already pointed out, we consider the ideal semantics for comput-
ing the set of consistent authors’ opinions of a discussion. The ideal semantics
for valued argumentation is defined through the ideal extension (solution) which
guarantees that the set of tweets in the solution is the maximal set of tweets that
is consistent, in the sense that there are no defeaters among them, and all the
tweets outside the solution are defeated by a tweet within the solution. That is,
if a tweet outside the solution defeats a tweet within the solution, it is, in turn,
defeated by another tweet within the solution. In other words, the solution is the
biggest consistent set of tweets that defeats any defeater outside the solution.
In [9] the authors prove that the ideal extension is unique.

Formally, given a VAF(G,α) = 〈T , attacks, R, V al, V alpref〉, a set of argu-
ments S ⊆ T is conflict-free iff for all Tai

, Taj
∈ S, (Tai

, Taj
) �∈ defeats. Given a

conflict-free set of arguments S ⊆ T , S is maximally admissible iff

(i) for all Ta1 �∈ S, S ∪ {Ta1} is not conflict-free and
(ii) for all Ta1 �∈ S and Ta2 ∈ S, if (Ta1 , Ta2) ∈ defeats, there exists Ta3 ∈ S

such that (Ta3 , Ta1) ∈ defeats.

Accordingly, we define what the solution of a discussion Γ is as follows.

Definition 6 (Solution of a discussion). Given the ADisG graph G =〈T , E ,P〉
for a discussion Γ and a probabilistic weighting scheme P, the set of accepted
authors’ opinions of Γ for given a threshold α, or solution of Γ , is the largest
admissible conflict-free set of authors’ opinions S ⊆ {Ta1 , . . . , Tan

} in the inter-
section of all maximally admissible conflict-free sets in the valued argumentation
framework VAF(G,α).

5.2 Implementation and Analysis of Results

As for the implementation purposes, we have instantiated the set of relevance
values R to the set of natural numbers N, and the preference relation Valpref
to the natural order on N. We have also instantiated the valuation function V al
to the function followers : T → N, with followers(Tai

) = log10(fai
+ 1)�,

where fai
∈ N is the number of followers of the author ai computed as the mode

of the set {f | (m,ai, f) ∈ Tai
} (i.e. the most frequent number of followers of

the author during the discussion). This function allows us to quantify authors’
relevance from the orders of magnitude of authors’ followers, since we want to
consider that one author is more relevant than another only if the number of
followers is at least ten times bigger for the first author.

To implement the reasoning system, we have used the Answer Set Program-
ming (ASP) approach of the argumentation system ASPARTIX [11]. Actually,
we have extended ASPARTIX to deal with VAFs, as the current implementation
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only works with non-valued arguments. To develop such extension we have mod-
ified the manifold ASP program described in [12] to incorporate the valuation
function for arguments and the preference relation.

The author-centered approach allows us to perform an analysis of results
different from the tweet-based approach proposed in [1]. Aggregating the infor-
mation by author allows us to identify the set of authors whose opinions are
consistent or in agreement in the discussion, the authors involved in a circu-
lar argumentative discussion, and the most controversial authors. That is, for
instance, we can look for the authors who receive the greatest number of crit-
icisms, the authors who participate in the greatest number of cycles, or the
authors that generate the longest argumentative chains.

Figure 2 shows the solution for an ADisG graph instance for the discussion
of Fig. 1. To build the ADisG graph, we have used the intermediate probabilistic
weighting scheme P∗(Tai

�most Taj
) with the proportion parameter r = 0.6.3

To find the solution for the ADisG graph (the set of accepted opinions of the
discussion according to Definition 6), we have used the uncertainty threshold
α = 0.6 and the above followers valuation function for estimating the authors’
relevance in Twitter. According to it, the authors of the discussion are stratified
in five levels denoting their relevance, namely: level 0 (lowest level): {11}, level
1: {5, 6, 7, 13}, level 2: {0, 1, 3, 4, 8, 9, 10}, level 3: {12} and level 4: {2}.

The nodes colored in blue are the accepted authors (authors’ opinions in the
solution) and the nodes colored in gray are the rejected ones, where the darkness
of the color is directly proportional to the value of the followers function of
each author. The edges colored in black are the answers between authors that
cannot be classified as attacks, since the criticism probabilities are below the
threshold α = 0.6, while the edges colored in red are attacks between authors;
i.e. answers with a criticism probability of at least the threshold α = 0.6. For
attack edges, the darkness of the color is directly proportional to the criticism
probability with respect to the maximum value. With r = 0.6 and α = 0.6, 11
answers between authors do not give rise to attacks. The ADisG graph has 13

Fig. 2. Author-centered model and its solution. (Color figure online)

3 We plan to implement the other weighting schemes in the near future.
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cycles considering all answers among authors, and Authors 8 and 2 seem to be
the most controversial ones.

The solution contains 11 of the 14 authors and only 3 are rejected (Authors
8, 10 and 11). On the one hand, Author 2 is the owner of the root tweet of the
conversation (node 0 in the tweet-based model of Fig. 1), and a total of four other
authors (4, 9, 10 and 12) attack him, but he in turn does not reply later to the
rest of tweets of the conversation. So, Author 2 is not involved in any cycle in the
ADisG graph. Because the weight of Author 2 is greater than the one of any of his
attacking authors, Author 2 belongs to the solution of the graph. With respect
to the four attackers of Author 2, two of them (4 and 12) are also in the solution,
since Author 12 does not defeat Author 2 and his weight is greater than the one
of any of his attacking authors. On the other hand, Author 12 defeats Author 8
and this allows Authors 3, 4 and 9 to be in the solution, while in turn, accepting
Author 3 causes Author 10 to be rejected. When analyzing the cycles of the
graph, we obtain that Author 8 is involved in a total of 8 cycles, considering
only attacks answers among authors, and almost all authors involved in cycles
with Author 8 are in the solution (0, 6, 13 , 9 and 12). Thus, Author 8 produces
a lot of circular discussions, but the weight of Author 12 is high enough to make
Author 8 lose the discussion. Observe that in the ideal semantics, authors with a
same weight that form a cycle are not accepted if none of the authors in the cycle
is attacked by other authors outside of the cycle and accepted in the solution.
Hence, in this discussion with high controversy around Author 8 (with a high
number of cycles), we end up accepting many of these authors’ opinions. Finally,
as Authors 1, 5 and 7 only attack Author 8, all of them are also in the solution,
while Author 11 is rejected, since it is defeated by Author 12.

6 Conclusions and Future Work

In this paper we have introduced first ideas on a probabilistic author-centered
approach to analyze the set of accepted authors’ opinions in Twitter discussions.
We model discussions with a graph, where nodes represent whole sets of tweets of
a single author, and thus representing his opinion, and edges represent criticism
relationships between authors. Then, using valued abstract argumentation and
ideal semantics, we compute the set of winning authors in the discussion. By
comparing the set of accepted opinions with the rejected ones, we can detect the
degree of polarization between both sets.

As future work, we plan to extend the author-centered model to also con-
sider support relationships between tweets and also to explore more credulous
acceptability semantics.



A Probabilistic Author-Centered Model for Twitter Discussions 695

References
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Abstract. The large amounts and growing of unstructured texts, available in
Internet and other scenarios, are becoming a very valuable resource of infor-
mation and knowledge. The present work describes a concept-based text anal-
ysis approach, based on the use of a knowledge graph for structuring the texts
content and a query language for retrieving relevant information and obtaining
knowledge from the knowledge graph automatically generated. In the querying
process, a semantic analysis method is applied for searching and integrating the
conceptual structures from the knowledge graph, which is supported by a dis-
ambiguation algorithm and WordNet. The applicability of the proposed
approach was evaluated in the analysis of scientific articles from a Systematic
Literature Review and the results were contrasted with the conclusions obtained
by the authors of this review.
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1 Introduction and Background

The large amounts and growing of unstructured texts, available in Internet and other
information-centric application scenarios, are becoming a very valuable resource of
information and knowledge. The effective processing and analysis of those text data
sources to obtain the relevant information and knowledge has been an important
challenge, due to this, the problem of text mining has gained increasing attention in
recent years [2]. In order to address this challenge, the text data has been treated and
processed using different representation levels, in most applications as bag-of-words or
vector-space model, such as in information retrieval system. However, the information
retrieval systems have traditionally focused more on facilitating information access
rather than analyzing information to discover patterns and knowledge, which is the
primary goal of text mining and the concept-based text analysis as specific task. In this
sense, the graph-based text representation is emerging as a promising direction toward
analyzing and exploiting the text structure [13], for example, the conceptual structure
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underlying. The use of graph-based text representation avoids the loss of structural and
semantic information and reduced the text data scattering ratio. Once a text is repre-
sented as a graph, a variety of tools for graph analysis can be applied to perform
quantitative and qualitive analysis of concepts, detecting closely contextually related
concepts, identifying the key concepts that produce meaning, and perform integration
of several text contents.

The useful of graph models in different text processing task, such as: topic labeling
and detection [7, 12], text clustering [1], information retrieval [15, 18], text recom-
mendation [5], and representation of linguistic information [24], have been reported.
Several graph models applied to text representation, features and construction methods,
have been reviewed in [7, 8, 11, 30]. However, the Concept Maps (CM) [23] is another
graph model used to obtain the conceptual structure of a text [19, 25, 31], but very little
exploited in the computational analysis of texts content. The CM is a graph-based
knowledge representation, composed of concepts and labeled relationship between
them that form propositions. The CM is a very useful and intuitive knowledge rep-
resentation for capturing, representing and organizing the most significant of a topic
and a set of conceptual meanings through of propositional structures [23]. Text ana-
lytics methods for extracting meaningful keywords and concepts facilitate content
analysis, applying various technologies for capturing, processing, analyzing, and
visualizing the immense volume, and variety of unstructured data from multiple textual
sources [27]. Through CM, the large bodies of text are reduced to a relatively small
number of concepts and relationship between them, so that a large corpus can be easily
managed and understood via automatic concept mapping.

In this work, a Concept-Based Text Analysis Model (CTAM) is proposed. CTAM
is based on the use of CM for structuring the texts content and a query language to
retrieve relevant information and obtain knowledge from the constructed CM. CTAM
is composed of two fundamental processes: automatic concept mapping, and concept
maps querying. In the first process, a CM is automatically constructed from each text
included in the texts collection to be analyzed, using a method based on the reported in
[25]. The generated CM are stored in a CM repository (CMR). In the second process,
an improved version of CMQL (Concept Maps Query Language) [28] is proposed for
querying the CMR. CMQL provides the formalization of a set of different types of
queries (union, intersection, sub-map, and extension) for exploring and mining a CMR
from different perspectives, and offers more diversity of queries than the reported in
[30]. In the search and integration tasks included in the query processing of CMQL,
only syntactic aspects have been considered in the similarity analysis of the concepts.
This constitutes a weakness due to the knowledge in CM is expressed in natural
language, and several problems can be emerged due to the possible ambiguity of the
concepts. For example, the not retrieval of useful and interesting information associated
to concepts that are not syntactically similar to the included ones in the query, although
they can be semantically similar, and the obtain of not appropriate results in the
integration of associated information to semantically different concepts. To solve this
weakness a semantic analysis method was included in this proposed approach, which is
supported in a disambiguation algorithm and WordNet [20]. The word sense disam-
biguation in unstructured texts has been broadly studied, but there are few works
approaching this problem in the CM context [6, 29]. The method reported in [29]
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improve the disambiguation results respect the reported in [6], through the use of
heuristics based on domain (according to [4]), context and gloss and extending the
context analysis process of the CM with other relations from WordNet. Nevertheless,
the sequential application of these heuristics constitutes a limitation because the sense
of the concept was determined according one of them and not taking advantage of the
combination of the results obtained from each one. In this sense, a new disambiguation
algorithm, based on [29], in which the results obtained for each heuristic are combined
(inspired in [21]) to determine the more appropriate sense of the concept is also
proposed.

The applicability of the CTAM was evaluated through the development of a case of
study, in which 11 scientific articles from the Systematic Literature Review (SLR) re-
ported in [9], were analyzed. The SLR is a means of identifying, evaluating and
interpreting all available research relevant to a particular research question, or topic
area, or phenomenon of interest [16]. The proposed CTAM offers a new approach of
computational support to the analysis phase in the SLR context. In this case of study,
different queries were carried out for analyzing the conceptual contents of those articles
and to identifying relevant information that facilitated to obtain answer to the research
questions outlined in that review. The results obtained were contrasted with the results
and conclusions obtained by the authors of the reported review [9].

The rest of the paper is organized as follows: Sect. 2 describes the proposed
Concept-Based Text Analysis Model and the defined processes; Sect. 3 presents the
results of the developed case of study and the analysis carried out; and conclusions
arrived and future works are given in Sect. 4.

2 Concept-Based Texts Analysis Model

CTAM is based on the use of the CM, which are automatically constructed from the
texts included in a text collection and stored in a CMR, and the use of different types of
queries defined in CMQL [28]. CMQL is applied to retrieve relevant information and
obtain knowledge from the CMR. In this sense, two processes were defined: automatic
concept mapping, and concept maps querying. Besides, a semantic analysis method to
be applied for searching and integrating information in query processing from CMR,
supported by a disambiguation algorithm and WordNet, was include in the last one
process. An overview of the proposed approach is shown in Fig. 1.

Fig. 1. Graphic overview of the proposed CTAM
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2.1 Automatic Concept Mapping from Texts

In the proposed model, the automatic concept mapping is the process in which a CM is
automatically constructed from each text included in the texts collection, which are
stored in a CMR. This process is carried out through a method based on [25]. The
method is conceived in three phases: preprocessing, concepts extraction, and rela-
tionships extraction. In the preprocessing, the text is segmented into sentences, and
Freeling is used for obtaining the syntactic and grammatical information from the
sentences. Next, several tasks are performed on each sentence, such as: tokens
extraction, the morpho-syntactic and dependency analysis and the identification of
named entities.

The concepts extraction phase is based on the identification of simple words or
phrases (set of words), that by their composition can constitute a concept, through a set
of lexical-syntactic patterns that have been defined for English and Spanish language
[25]. The identification of concepts from external knowledge source, such as ontolo-
gies, is also included. A concept extracted list is obtained as result. The relationships
extraction phase allows identifying explicit and implicit links between the previously
extracted concepts using the information contained in the text, as well as that repre-
sented in an external knowledge source. The explicit relationships are extracted from
each sentence using some lexical-syntactic patterns defined for this purpose [25]. The
taxonomic relationships (implicit relationships) are extracted from BabelNet [22], and
applying the string matching technic [14]. Other implicit relationships are extracted
evaluating the proximity between two concepts in the text, according to [26]. The
extraction of implicit relationships allows linking concepts that are not in the same
sentence, which can be a useful information in contextual analysis task. Next, a refining
process for eliminating redundancies or inconsistencies resulting from the application
of lexical-syntactic patterns is performed. Finally, the concepts and propositions
extracted are integrated in a CM. The combined use of the lexical-syntactic patterns for
extracting the concepts and relationship between them, the identification of explicit and
implicit links between the concepts and the use external knowledge sources allows to
achieve a broad coverage of the textual content in the automatic construction of its
conceptual representation (CM).

2.2 Concept Maps Querying Process

The CM mining process for retrieving relevant information and knowledge from the
CMR is carried out through several types of queries defined in CMQL [28]. Through
the different types of queries the system can retrieve information about concepts and
propositions, with the results being shown by means of a CM or knowledge graph
which is automatically constructed. The knowledge is produced when the captured
concepts from different textual sources are integrated as part of the query results. The
definition of the queries in CMQL is based on several mechanisms to filter and inte-
grate concepts and propositional structures. This allows obtaining automatically dif-
ferent knowledge views from the CMR. In each query processing, the concepts and
propositions including in the search source (set of selected CM) are processed as
independent elements and, at the same time, they can be integrated through a semantic
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analysis process within the queries execution process (described below). Among the
defined queries are: union (CMUnion), intersection (CMInter), and projection
(CMProj).

The union query allows retrieve the knowledge graph that represents the concepts
and the relationships between them extracted from a text collection, as a semantically
integrated view of the concepts included in these different texts. The intersection query
allows retrieve the knowledge graph that represents the common concepts included in
the texts and the extracted relationships between them, which are represented in a
certain amount of CM from the search source, according to the user interest. The
minimum percent of CM in which a concept should be represented in the search source
is defined as support value (SV). This numeric value is specified by the user when it
executes the query. The projection queries allow retrieve the knowledge graph that
represents the related concepts to a set of interest concepts (previously defined by the
user) and the relationship between them from the search source of the query, consid-
ering different approaches and a maximum depth of R in the integrated graph of the
search source. Three specifications of projection queries were included in this model to
obtain different knowledge graph views: (1) considering only input link to the interest
concept c; (2) considering only output link from c; and (3) combining both types of
links. The first two types of queries are very useful to analyze the authority or centrality
levels of c with respect to other related concepts. This is a new approach to the
application of Kleinberg’s concepts [17] in the conceptual analysis of textual contents.
In the case of R = 0 (when SV is not specified by the user), it is assumed that the
interest of the user is to identify if the any interesting concepts are included in the
search source and if there are any relationship between them.

A refinement of the mathematical formalization of the queries in CMQL is pre-
sented in Table 2. This formalization allows to obtain an abstract model, independent
of the implementation language of the queries and the storage format of the CM. Before
describing the queries, let us consider the following symbolism in Table 1.

Table 1. Symbolism for mathematical formalization of the queries

Symbols Definitions

SS Set of CM {CM1, CM2, …, CMn} defined as the search source of a query
CMq Concept map obtained as a result of a query q/q = {U, I, Proj}
IC Set of interest concepts defined by the user (needed in projection query)
P Set of propositions p = (co; cd; lp)
co Origen concept in a proposition p
cd Destiny concept in a proposition p
lp Linked phrase used for labeled the relationship between two concepts
R Path length between two concepts in a CM

INCR
CM cð Þ Set of concepts included in all the paths of length R from the concept c in a

CM, considering input link to c (relative to the authority level of c)

OUTCR
CM cð Þ Set of concepts included in all paths of length R from the concept c in a CM,

considering output link from c (relative to the centrality or hub level of c).

700 W. Hojas-Mazo et al.



In CMQL [28], the information is recovered through identifying syntactic equiv-
alency between the concepts included in the query and the contents in the search
source, and the associated semantics to these concepts is not considered. The same
thing happens in the process of integration that is carried out as part of the queries
processing. Nevertheless, the concepts and propositions in the CMR can be subjected
to ambiguity in many cases, because they are expressed in natural language and the
ambiguity is an inherent characteristic of the language. Therefore, the effectiveness in
the CM querying process can be limited if a semantic analysis task is not included the
queries processing; being the identification of the most rational sense of the concepts an
important aspect. In the following section, the semantic analysis method that has been
proposed in the CTAM is described.

2.3 Semantic Analysis in the Querying Process

The proposed semantic analysis method is based on a process of semantic extension of
concepts, and a set of rules in the integration, search and retrieval tasks included in the
CMR querying. In this method, the semantic information associated to the concepts is
captured from WordNet and a concept sense disambiguation algorithm is used for
reducing the ambiguity that may emerged. The semantic extension is applied to all
concepts included in a CMR and is defined as the process of associating to one concept
other synonym terms identified in WordNet. Initially, the synsets in which each concept
appears in WordNet are recovered, and then are classified in: ambiguous - AC - (those
having more than one associated synsets), not ambiguous - NA - (only one associated
synset) or unknown - UC - (not associated synset). Next, a disambiguation algorithm is
applied to identify the most appropriated sense (or senses) for the ambiguous concepts.
This algorithm, based on [29], improves the disambiguation results, fundamentally
through combining the results obtained for each heuristic for determining the sense of
the concept. This method is inspired in [21]. After applying the disambiguation
algorithm, the lists of ambiguous and not ambiguous concepts are updated and each
one of those concepts are extended with the terms included in their associated synset.
The algorithm is defined as follows (Table 3):

Table 2. Mathematical formalization of Concept Maps Query Language

Queries Mathematical formalization

CMUnion CMUnion(SS) = ([ CMi | CMi 2 SS), = (CU, PU) where CU= | n > 1 and PU= |
n > 1.

CMInter CMInterSV(SS) = (\ CMi | CMi 2 SS), CMI= (CI, PI) where CI= | n > 1 and
PI= | (n > 1, pj 2 PI, and co, cd 2CI)

CMProj CMProjR(SS, IC) � CMUnion(SS) and is defined as:
1. CMProjR, IN (SS, IC) = CMProj = (CProj, PProj) where CProj| (c 2 IC,
CMU= CMUnion(SS)), and PP= |(pj = (co; cd; lp) and co, cd2CProj

2. CMProjR, OUT (SS, IC) = (CProj, PProj) where CProj | (c 2 IC,
CMU= CMUnion(SS)), and PProj= | (pj = (co; cd; lp) and co, cd2CProj

3. CMProjR(SS, IC) = CMProj = CMProjR, IN (SS, IC) [ CMProjR, OUT (SS, IC)
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The semantic integration task is aimed at explicitly integrating propositional
structures (initially disconnected) through the unification of concepts (in a unique node)
represented in different CM and it is applied when the query is performed on more than
one CM. The concepts unification process is carried out through the identification of
synonymous concepts in the selected CM as the search source of the query, and using
several rules (R). Considering that S(ci) is the set of synsets s associated to a concept ci
and c1 and c2 are two concepts included in different CM, then c1 and c2 are unified if:

Table 3. Concept sense disambiguation algorithm
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• R1: (c1, c22 NAC) ^ (S (c1) = S (c2)); or
• R2: (c1, c22 AC) ^ (9 s’| s’2 S(c1)^ s’2 S (c2)); or
• R3: ((c12 NAC ^ c22 AC) _ (c12 AC ^ c22 NAC)) ^ (9 s’| s’2 S (c1) ^ s’ 2 S(c2));

or
• R4: (c1, c22 UC) ^ (c1 = c2); (fundamentally included for unifying not included

concepts in WordNet, for example named entities)

As result, if R4 was triggered or the labels of c1 and c2 (in the case of other
triggered rules) the same label of these concepts is used for representing the unified
concept in the query results. In other cases, the label used for representing the unified
concept is constructed with the labels of both concepts separated by a comma and
enclosed in [ ] (ex. [c1, c2]). Finally, the synset associated to the unified concept is
decided according to: (1) if R1 was triggered, then the synset is the same to the c1 or c2;
(2) if R2 was triggered, then the synsets are the common ones between the associated to
c1 and c2; (3) if R3 was triggered, then the synset is the one associated to the ci2 NAC.

The semantic analysis is also considered in the proposed retrieval model, specifi-
cally in the projection queries (Q). In the process of query specification, the definition
of one or more interesting concepts (CQ) by the user is required, besides defining the
search source (SS) selecting a set of CM from the CMR. The selected CM are inte-
grated through a union query as internal task in the query processing. Therefore, SS can
be formally defined by the tuple (Css, Pss), where Css is the set of concepts and Pss is the
set of propositions, included in the selected CM. Several rules were defined for
identifying if a concept cj /cj 2 Css is retrieved or not, from a concept ci2 CQ, where
syntactic and semantic analysis are combined. These rules are described below and are
executed following the same order in which they appear. However, it is possible to
parameterize the combination of the analysis type considered, according to: using the
syntactic analysis, using the semantic analysis, or combining both analyses. Being a
concept a/a 2 CQ, a concept b/b 2 Css, T(ci) the set of words included in the label of ci,
and ST(ci) the set of synonym terms included in S(ci). The concept b is retrieved from
SS if: (R1) a � b (syntactically equivalent); or (R2) a 2 T(b); or (R3) a 2 ST(b).

3 Applicability of CTAM: Case of Study

The evaluation of the proposed model turns out complex because a method for this
purpose has not been identified. Nevertheless, in this section we present the case of
study carried out in order to show the applicability of CTAM in the SLR context [16].
Much of the SLR processes requires high time-consuming, and several manual tasks
[3], implying a great effort when mixing evidence from multiple studies and synthe-
sizing evidence across studies, fundamentally in the analysis phase. On the other hand,
some barriers (most of them affects the analysis phase) have been identified for carried
out this type of review, such as [3]: lack of support for data extraction and analysis,
difficulties of summarizing and aggregating data (especially qualitative data), diffi-
culties of mixing evidence from multiple studies, difficulties for synthesizing evidence
across studies, among others. Precisely, the proposed approach contributes to reduce
the time consumption and the negative effects of some of those barriers. In order to

A Concept-Based Text Analysis Approach Using Knowledge Graphs 703



demonstrate the applicability of our approach, a real SLR reported in [9] was selected.
In this review, 11 scientific articles from 1820 primary studies were selected as the
most relevant evidences to be analyzed.

The case of study was carried out using a collection with 11 texts, which were
constructed using the abstract, introduction and conclusions from those articles ana-
lyzed in [9], in a similar way as the reported in [10]. Those texts have an average of 822
words and 33 sentences. Two different queries from CMQL were executed to analyze
the content included in those texts and to identify relevant information that facilitated to
give answer to the research questions reported in [9]. Specifically, the CMInter and
CMProj were selected for supporting this analysis phase. Through of CMInter queries,
relevant concepts and relationship between them from the texts can be retrieved,
mixing evidence from these multiple studies and synthesizing the contents. In this
sense, several SV for exploring the evidences, such as: 80% (Q1), 70% (Q2), 60% (Q3)
and 50% (Q4), were used in the CMInter queries. Through of CMProj queries, relevant
and useful information for answering the research questions can be retrieved, selecting
some identified keywords in these questions as interest concepts.

According the definition of CTAM, initially the concept mapping process was
carried out and a CM was automatically constructed from each text. Next, four CMInter
queries with the different SV mentioned were executed on the constructed CMR. The
domain specific concepts (DSC) and the generic contextual terms (GCT) identified as
relevant keywords in [9] were used to measure the precision, recall and F-measure of
retrieved concepts. The results are shown in Table 4, in which the measures were
evaluated for the keywords sets: DSC, GCT and DSC + GCT. In Fig. 2, the resultant
CM of the CMInter (SV = 50%) query is shown. The size of concepts represents the
frequency in CMR, therefore [software system, software] and [dependability, relia-
bility] are the most relevant retrieved concepts. The strong relation indicates that the
concepts [framework, model] and ‘ISO’ are contextually related, suggesting further
analysis by the reviewer. In this example, the results of the proposed semantic analysis
method are also illustrated, through the integration of some syntactically different
concepts, for example: ‘framework’-‘model’ and ‘dependability’-‘reliability’, because a
synonymy relationship was automatically identified among them. This can help
reviewers to quickly know the terminologies used in the articles to refer at the same
concept.

In addition, the CMProj1 query was executed using the constructed CMR as search
source and ‘standard’ as the interest concept. The result is shown in Fig. 3. The

Table 4. Results in the keywords identification task using CMInter queries

Precision Recall F-measure
DSC GCT DSC + GCT DSC GCT DSC + GCT DSC GCT DSC + GCT

Q1 100 0 100 37.5 0 16.7 54.5 0 28.6
Q2 80 20 100 37.5 10 22.2 51.1 13.3 36.4
Q3 57.1 28.6 85.7 37.5 20 27.8 45.3 23.5 42
Q4 62.5 25 87.5 37.5 20 27.8 46.9 22.2 42.2
Ave. 74.9 18.4 93.3 37.5 12.5 16.8 49.5 14.8 37.3
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objective of this query is to obtain useful information for answering one of the research
questions answered in [9]: “Which software reliability models have been developed by
following the recommendations in International Standards?”. In this question, ‘stan-
dard’ is one of the most relevant terms on which is necessary to retrieve information.

Through the selected query it is possible to retrieve those strongly related concepts
with the term ‘standard’, including concepts associated to ‘reliability models’ and
‘International Standards’. The Fig. 3 shows several retrieved concepts that they rep-
resent different international standards, such as: ISO, ECSS, IEEE, SQuaRE, COSMIC
and Space Standardization, most of them (66,6%) were also identified in the manual
analysis carried out by Febrero et al. [9]; although all of them are represented in Fig. 3.
The analysis of the evidences to answer the research question can be enriched applying
others CMProj queries, for example, increasing the R value and using others interest
concepts, such as: ‘reliability’. As the results of this case of study, several beneficial
aspects of the application of CTAM to the exploration, interpretation, and decision-
making in the analysis phase of primary studies in a SLR were emerged, such as:
obtaining the relevant concepts from the articles that should be reviewed; quickly
knowing the terminologies associated to the concepts include in the different articles;
assisting reviewers to know which concepts are contextually related to keywords from
the research questions; facilitating the qualitative data (concepts and relationship
between them) mining and its analysis; and mixing evidences from multiple studies.

Fig. 2. Result of the CMInter query (SV = 50%)

Fig. 3. Result of the CMProj1 query using standard as interest concept
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4 Conclusions and Future Works

This paper presented a new concept-based text analysis approach, based on the use of
CM to represent the conceptual structure underlying of the texts content and an
improvement version of CMQL, to retrieve relevant information and obtain knowledge
from the conceptual structure represented. On the other hand, the resulting CM from
each query provides in CMQL constitutes conceptual and summarized representation
views of the content included in the texts. The integration of the proposed semantic
analysis method, supported in WordNet and the use of a disambiguation algorithm, to
the query processing defined in CMQL allowed improve the results of search and
information integration. The results of the case of study carried out to evaluate the
applicability of the proposed approach demonstrated several benefits to the conceptual
exploration, interpretation, and decision-making in the review of primary studies car-
ried out in a SLR. In future works, others graph operations will be considered to extend
the proposed model and increasing the results of the concept-based texts analysis
through the automatic detection of frequent patters and topics from the CMR.
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Abstract. Cluster ensemble has emerged as a powerful technique for
combining multiple clustering results. However, existing cluster ensem-
ble approaches are usually restricted to two-way clustering, and they also
cannot flexibility provide two-way or three-way clustering result accord-
ingly. The main objective of this paper is to propose a general cluster
ensemble framework for both two-way decision clustering and three-way
decision. A cluster is represented by three regions such as the positive
region, boundary region and negative region. The three-way representa-
tion intuitively shows which objects are fringe to the cluster. In this work,
the number of ensemble members is increased gradually in each decision
(iteration), it is different from the existing cluster ensemble methods in
which all available ensemble members join the computing at one deci-
sion. It can be ended at a three-way decision final clusters or choose to
go on until all the objects are assigned to the positive or negative region
of the cluster determinately. The experimental results show that the pro-
posed gradual three-way decision cluster ensemble approach is effective
for reducing the running time and not sacrificing the accuracy.

Keywords: Cluster ensemble · Three-way decisions · Gradual decision

1 Introduction

Cluster ensemble has emerged as an important elaboration of the clustering
problem [7,8]. Generally speaking, every clustering ensemble method is made up
of two steps: (1) generating multiple different clusterings of the data set, also
called generation step, and (2) combining these clusterings to obtain a single
new clustering, also called consensus step.

From the review of existing studies, we can identify an issue that have not
been resolved satisfactorily. That is, they are typically based on two-way (i.e.,
binary) decisions. A cluster is described by a single set, where every member
plays the same role in the cluster. In other words, objects belong to the cluster if
they are in the set, otherwise they do not. In this way, it is impossible to indicate
which members are fringe members of the cluster through the existing informa-
tion; in fact, these objects deferred waiting for further information. Therefore,
c© Springer International Publishing AG, part of Springer Nature 2018
J. Medina et al. (Eds.): IPMU 2018, CCIS 854, pp. 711–723, 2018.
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Lingras et al. [1,4,5] use an interval set to represent a cluster. Considering to
store and compute expediently, Yu [12,13] introduced a framework of three-way
cluster analysis (TWC), where a cluster is represented by a pair of sets. Then,
the universe is divided into three regions by two sets, namely, positive, boundary
and negative regions. The three-way representation brings more insight into the
interpretation of cluster. Objects in the positive region certainly belong to the
cluster and objects in the negative region definitively do not belong to the clus-
ter based on the already existing information. Objects in the boundary region
can not be decided certainly, they might belong to the cluster or not belong to
the cluster. They are fringe members, and we need further information to make
decisions.

Thus, in this paper, we propose a general framework of gradual three-way
cluster ensemble which is suitable for both hard clustering and soft clustering,
meanwhile the framework is suitable for both two-way clustering and three-way
clustering. In this framework, objects in the boundary region are clustered grad-
ually by the new incremental ensemble members until satisfying the stop condi-
tions. Besides, we present a novel efficient algorithm to obtain the final consensus
clustering result. We define cluster cores to reflect the minimal granularity dis-
tribution structure agreed by all the ensemble members, thus the original data
set can be seen as the union of a set of cores and no-cores instead of objects.
The experimental results show that the proposed method is efficient; it uses less
resources (ensemble members), the clustering process is quickly while it does not
sacrifice the accuracy in comparison to other approaches.

The remainder is organized as follows. Section 2 introduces the framework
of gradual three-way decision cluster ensemble. Section 3 presents the gradual
three-way decision cluster ensemble algorithm. Section 4 reports experimental
results based on an artificial data set and a number of public domain standard
data sets. Conclusions are provided in Sect. 5.

2 Framework of Gradual Three-Way Decision Cluster
Ensemble

First, let’s review the framework of three-way cluster analysis [12,13]. Let U =
{x1, · · · ,xn, · · · ,xN} be a finite set. xn is an object which has D attributes,
namely, xn = (x1

n, · · · , xd
n, · · · , xD

n ). xd
n denotes the value of the d-th attribute

of the object xn, where n ∈ {1, · · · , N}, and d ∈ {1, · · · ,D}. In the three-
way representation, a cluster is representation by a pair of sets, namely, Ck =
(POS(Ck),BND(Ck)). The objects in POS(Ck) definitely belong to the cluster
Ck, objects in NEG(Ck) = U − POS(Ck) − BND(Ck) definitely do not belong
to Ck, and objects in BND(Ck) might or might not belong to the cluster.

As Yao [11] had pointed out that we can produce the three-way decision
rules by building an evaluation function based on a pair of thresholds (α, β),
α ≥ β. Although evaluations based on a total order are restrictive, they have a
computational advantage. One can obtain the three regions by simply comparing
the evaluation value with a pair of thresholds. In the cluster analysis, we usually
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choose the similarity between an object x and a cluster Ck as the evaluation
function, then we get the following three-way decision rules:

RulePOS : if Sim(x, Ck) ≥ α, xn ∈ POS(Ck);
RuleBND : if β < Sim(x, Ck) < α, xn ∈ BND(Ck);
RuleNEG : if Sim(x, Ck) ≤ β, xn ∈ NEG(Ck).

(1)

If the clustering result has K clusters, the result scheme of three-way
clustering is represented as: C = {(POS(C1), BND(C1)), · · · , (POS(Ck),
BND(Ck)), · · · , (POS(CK),BND(CK))}.

Second, we review some concepts about cluster ensemble. Figure 1 depicts our
previous proposed cluster ensemble framework based on three-way decisions [14].
Set Us be the family of H samples, namely, Us = {U1, U2, · · · , Uh, · · · , UH},
where Uh ⊆ U , and h ∈ {1, · · · ,H}. Let Φ be a clusterer selection function from
a sample to a clustering. Usually, Φ is composed by a set of clustering algorithms
and denoted as Φ = {Φ1, · · · , Φl, · · · , ΦL}, and a clusterer Φl is selected randomly
or according to a priori knowledge of the data set. Then, the clustering result of a
clusterer Φl is called a clustering, also called an ensemble member, denoted by Ph.
Let P = {Ph|Φl(Uh) → Ph} be the set of clusterings, where h ∈ {1, · · · ,H}, l ∈
{1, · · · , L}.

Fig. 1. The framework of three-way decision cluster ensemble

Assume that Kh is the number of clusters of the clustering Ph, where Ph

is described as: Ph = {C1
h, · · · , Ck

h , · · · , CKh

h }. So far, different clusterings are
obtained through the generation step. Actually, the sampling is not a prerequi-
site; in other words, for h ∈ {1, · · · ,H}, we can simply set Uh = U . In the consen-
sus step, the labeling clusterings are combined into a single labeling clustering
P ∗ using a consensus function F : F (P1, P2, · · · , PH′) → P ∗. Here, H ′ ≤ H,
because when combining clusterings into a final clustering, we may combine all
ensemble members or some of the ensemble members.

The consensus clustering, namely the final result P ∗, is represented
as: P ∗ = {C1, · · · , Ck, · · · , CK } = {(POS(C1

h),BND(C1
h)), · · · , (POS(Ck

h),
BND(Ck

h)), · · · , (POS(CK
h ),BND(CK

h ))}.
Then, we propose a novel framework of gradual three-way decision cluster

ensemble, inspired by the idea of sequential decision making [9,10]. It is shown
in Fig. 2, abbreviated as the GTWD-CE Model.
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The main differences between the new model and the existing models con-
clude three issues. First, the clustering processing is designed as an iteration
step, we can obtain the two-way or three-way results in the first clustering (deci-
sion); if some objects cannot be assigned to one cluster definitively, then the
model goes to the sequential decision with the different ensemble members. Sec-
ond, the number of ensemble members H is not constant any more; that is, all
of available ensemble members join the computing in other models, but some
of ensemble members join the first decision and some join the next decision
if needed in the proposed model. Third, the clustering processing is based on
cluster cores instead of based on objects; which makes the model efficiently.

Fig. 2. GTWD-CE: the framework of gradual three-way decision cluster ensemble
model

Now, let us explain the notations appeared in Fig. 2. As we have mentioned,
we neglect the study of sampling in this work. So, the input data set is denoted
by U simply. The time of iterations (decisions) is counted by i; we initialize it
to 1 and set the maximal time to I.

The function of CEi(Φ, hi) means choosing hi ensemble members from the
set of all possible ensemble members (clusterings) Φ. The diversity of ensemble
members has been proved to be a key factor to improve the quality of the con-
sensus clustering. In fact, the feedback information from the current decision can
help the next choice of members, which will be our future work. In this paper,
we just choose members randomly, and the amount of members is specific. That
is, H = |Φ| and

∑
hi ≤ H.

The function of CC(h1, U) is to obtain cluster cores from U , it divides objects
into two kinds of objects such as core objects or no-core objects, the detail
will be described in Sect. 3.1. Then, the initial three-way decision clustering
algorithm, Algorithm 1, assigns objects into two subsets DEDi and UNDi, and
U = DEDi ∪ UNDi. All objects in positive regions compose DEDi, which
means they are decided into one cluster definitively. All objects in boundary
regions compose UNDi, which means they are not certainly decided into any
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clusters in the current clustering/decision. Objects in UNDi might include core
objects or no-core objects.

In fact, after Algorithm 1, we really have a consensus clustering result. The
result is represented by three-way representations. Of course, if the underlying
structure of the original data set is unambiguous, all of the boundary regions
are empty. Otherwise, there exist some boundary (fringe) objects, namely,
UND �= ∅. If we still need to make further decision on these fringe objects,
the strategy of gradual decisions starts to work. The model goes to the func-
tion MD(hi, UNDi−1), which makes further decisions on objects in UNDi−1 by
choosing new cluster ensemble members. The gradual strategy goes on accord-
ingly. When i = I and UNDi−1 �= ∅, the function SD(hi, UNDi−1) is invoked.
SD(hi, UNDi−1) means do a special decision on the UNDi−1 in order to obtain
a finial two-way clustering result. In Sect. 3, we will give the specific strategies
for these functions. We need to note that, MD runs based on cluster cores not
based on objects as other methods.

The framework is a general cluster ensemble model. It is not only can repre-
sent soft clustering, but can also represent hard clustering. If we need two-way
clustering (hard clustering) result, we just make the model run on; if we need
three-way (soft clustering) result, we keep the boundary regions not empty. Fur-
thermore, the model shows intuitively which objects are fringe in difference from
others, and one can develop soft or hard clustering ensemble algorithms based
on this framework.

3 Gradual Three-Way Decision Cluster Ensemble
Algorithm

In this section, we will introduce the functions in Sect. 2. They are just instances
for realizing the model and compose a practical gradual three-way decision clus-
ter ensemble algorithm, shorted by GTWD-CE Algorithm.

3.1 Cluster Core

A cluster core is a subset of objects. A cluster core appears in all the clusterings
and reflects the fundamental structure agreed by all clusterings, and a cluster
core can not be divided into the smaller subset.

Definition 1. Let A ⊆ U , A is called a cluster core if and only if it satis-
fies: (C1) for every clustering Ph, there exists a k ∈ [1,Kh] such that A =⋂

h∈[1,H]

POS(Ck
h); (C2) if A is a cluster core, B ⊂ A, B is not a cluster core.

Condition (C1) denotes that a cluster core is the intersection of clusters in all
clusterings/ensemble members; Condition (C2) denotes that the cluster core is
the maximal intersection of these clusters. When a set of objects satisfy these
two conditions, we call it a cluster core.
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According to Definition 1, we can obtain cluster cores. Here is an example.
Supposing there is a U = {x1,x2,x3,x4,x5,x6,x7,x8,x9}, and there are three
different clusterings, namely P1, P2 and P3. The details are shown as follows.

P1 = {({x1,x2}, ∅), ({x3,x4}, {x7}), ({x5,x6}, {x7}), ({x8,x9}, ∅)},
P2 = {({x1,x2}, ∅), ({x3,x4}, {x5,x6,x7}), ({x8,x9}, {x5,x6,x7, })},
P3 = {({x1,x2}, {x7}), ({x3,x4,x5,x6,x8,x9}, {x7})}.

Then, we have three cluster cores, that is, Core = {Core1 = {x1,x2},
Core2 = {x3,x4}, Core3 = {x8,x9}}. That is to say we just need these three
cores and three no-core objects for consensus clustering. In this example, the
size of computing is reduced from 9 to 6.

3.2 Initial Three-Way Decision Clustering Algorithm

Now, we need to define an appropriate evaluation function in order to obtain
the three regions of a cluster. The relationships between cluster cores, between
no-core object and cluster core, between no-core objects are defined as evalua-
tion functions used in our framework. The evaluation values for acceptance and
rejection are defined by a pair of thresholds α, β.

Definition 2. The relationship between two cores, Corei and Corej, is defined
by the following equation:

BCC(i, j) = CountCommon(Ti, Tj)/h. (2)

Ti and Tj be the cluster mark sequence of Corei and Corej respectively, and
CountCommon(Ti, Tj) means the number of common marks at the correspond-
ing place in Ti and Tj . h is the number of clusterings (ensemble members).
BCCZ×Z = [BCC(i, j)] denotes the matrix of relationship between clusters.

Definition 3. For xi and Corej, xi is a no-core object, the relationship between
xi and Corej is defined by the following equation:

BCC(i, j) = CountCommon(Ti, Tj)/h, (3)

Ti denotes the cluster mark sequence of xi, and Tj denotes the cluster mark
sequence of Corej . BCC|Core|×Z = [BCC(i, j)] denotes the matrix of relation-
ships between no-core objects and cluster cores.

Definition 4. For no-core objects xi and xj, the relationship between them is
defined by the following equation:

BCC(i, j) = |J |/h, (4)

J = {h | xi,xj ∈ POS(Ck
h) ∪ BND(Ck

h), 1 ≤ h ≤ H}, and k = 1, 2, · · · ,Kh.
BCC(i, j) means the number of times of xi and xj occur in the both upper
bounds of clusters. BCC|Core|×|Core| = [BCC(i, j)] denotes the matrix of the
relationship between no-core objects.
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Definition 5. For two clusters Cz and Cl, the relationship between two clusters
is defined as:

S(Cz, Cl) = 1
|Cz|·|Cl|

(
∑

Coreu∈POS(Cz)

Corev∈POS(Cl)

BCC(u,v) + γ

( ∑
Coreu∈POS(Cz)

Corev∈BND(Cl)

BCC(u,v)

+
∑

Coreu∈BND(Cz)

Corev∈POS(Cl)

BCC(u,v)+
∑

Coreu∈BND(Cz)

Corev∈BND(Cl)

BCC(u,v)

))
.

(5)

Suppose the current no-core object is xn and the cluster is Cl. Cl may contain
cluster cores and no-core objects. Their relationship is shown as follows.

Definition 6. For a no-core object xn and a cluster Cl, the relationship between
no-core object and cluster is defined as:

S(xn, Cl) = 1
|Cl| ·

(
∑

Coreu∈POS(Cl)
BCC(n,u)+

∑
xm∈POS(Cl)

BCC(n,m)

+ γ
( ∑

Coreu∈BND(Cl)
BCC(n,u)+

∑
xm∈BND(Cl)

BCC(n,m)

))
.

(6)

To obtain clustering in cluster cores, we can use Eq. (5) to calculate the
relationship between clusters. When we need to confirm which clusters no-core
objects belong to, we can calculate the relationship between no-core objects and
clusters according to Eq. (6).

We can obtain cluster cores Core and no-core objects Core according to
Sect. 3.1; and build the corresponding matrices according to Definitions 2 to 4;
then classify cluster cores into big cores and small cores. Furthermore, we ini-
tialize every core as a positive region of a cluster, and set the boundary of this
cluster to empty. The initial three-way decision clustering algorithm is described
in Algorithm 1.

3.3 Strategy of Decision for Pending Data

After running Algorithm1, the model gets P ∗
1 and UND =

K∪
k=1

BND(Ck). Then,

the model meets two conditions: whether UNDi is ∅ and whether Goon is true.
When UNDi is ∅, there are no objects need to decide; thus the processing will
be end. Goon is an interactive parameter determined by human. That is to say,
when UNDi �= ∅ and the user hopes to get further clustering result, then the
gradual three-way decision processing will continue.

During the gradual three-way decision processing, namely, i ≥ 2, the function
Ei = CEi(φ, hi) will be called again to obtain the new hi ensemble members. The
number of new ensemble members in the ith decision (clustering) does not require
complete equal to the number of ensemble members in the the previous decisions.
Then, the model moves to the function MD(Ei, UNDi−1). Algorithm 2 describes
how to cluster the pending objects.
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Algorithm 1. IC Algorithm: initial three-way decision clustering
Input: Core, Core and K.
Output: The result of initial clustering.

1 Obtain a matrix of big cores, where the element records the times of the corresponding two
cluster cores divided into the same cluster;

2 Find the connected subgraph of the matrix and set the number of subgraphs be SK; and
Noise = ∅.

3 if SK ≥ K then go to Line 7;//K is the real number of clusters
4 else the none-zero elements of matrix subtract 1, update the matrix, go to Line 2;
5 for each small core Corez do
6 compute the relationships S between Corez and other big cores;
7 if all relationship values S are no more than β then set Corez be a noise set and go to

Line 19;

8 A = {m|S ≥ α} ;
9 if cluster cores in A belong to the same cluster then

10 assign Corez to the positive region of the cluster;

11 else
12 assign Corez to the boundary region of those clusters;

13 B = {m|β < S < α} ;
14 for Corez ∈ B do
15 assign Corez to the boundary region of the corresponding clusters;

16 for each no-core object xn do
17 compute the relationships between xn and a cluster;

18 A = {Cl|S(xn, Cl) ≥ α} ;
19 if |A| = 1 then assign xn to the positive region of the cluster in the A;
20 if |A| > 1 then

21 B = {Cl|max(S(xn, Cl), Cl ∈ A} ;
22 if |B| = 1 then xn belongs to the positive region of the cluster in the B;
23 else xn belongs to the boundary region of these clusters in the B;

24 if |A| = 0 then

25 C = {Cl|β ≤ S(xn, Cl) < α};
26 if C 	= ∅ then xn belongs to the boundary region of these clusters in the C;
27 else Noise = Noise ∪ xn;

28 Transfer cores to corresponding objects and obtain a clustering result P ∗
1 = UND1 ∪ DED1;

DED1 = ∪POS(Ck), and UND1 = ∪BND(Ck) ∪ Noise.

Algorithm 2. Making decision algorithm
Input: P ∗

i−1 = UNDi−1 ∪ DEDi−1, Ei;

Output: The result of clustering P ∗
i .

1 Obtain the cluster mark sequences of cores;
2 for every xa ∈ UNDi−1 do

3 for every POS(Ck) ∈ P∗
i−1 do calculate S(xa,POS(Ck)) according to Eq. 7;

4 Get A = {Ck | S(xa,POS(Ck)) ≥ α};
5 if |A| = 1 then assign xa to the positive region of the cluster in A;
6 elseif |A| > 1 then assign xa to the boundary region of these clusters in A;
7 else

8 Get B = { Ck
∣∣∣ β < S(xa,POS(Ck)) < α};

9 if B 	= ∅ then assign xa to the boundary region of these clusters in B;
10 else union objects in xa into Noise;

11 Output the updated clustering result P ∗
i .



Gradual Three-Way Decision Cluster Ensemble Approach 719

Definition 7. For xa ∈ UNDi−1, xb ∈ POS(Ck), i.e., xb ∈ Ck, and Ck ∈
P ∗

i−1, the relationship between xa and Ck is defined by the following equation:

S(xa,POS(Ck)) = 1
Nk

Nk∑

b=1

CountCommon(T[xa],T[xb])
hi

. (7)

Nk = |POS(Ck)|, T [xa] and T [xb] denote the cluster mark sequence of xa and
xb respectively. hi denotes the amount of the ensemble members.

Set A = {Ck | S(xa,POS(Ck) ≥ α} be the set of clusters whose relationship
with xa are no less than α.

Now, there exists three cases: Case I: If there only exists one cluster whose
relationship with xa is no less than α, namely, |A| = 1, assign xa to the positive
region of the cluster in A; Case II: If there exists multiple clusters whose rela-
tionship with xa are no less than α, namely, |A| > 1, which means xa has strong
relationships with these clusters, assign xa to the boundary region of these clus-
ters in A; Case III: If the relationship between xa and each cluster is less than
α, namely, |A| = 0. Suppose B = {Ck

∣
∣ β < S(xa,POS(Ck)) < α}. Now there

exists two subcases: (1) If B �= ∅, xa belongs to the boundary region of these
clusters in B; (2) If B = ∅, which means the relationship between xa and each
cluster is less than β, we regard xa is a noise point.

3.4 Strategy for Two-Way Decision

During the gradual decision process, the model decides whether i is bigger than I
in each decision. The two-way decision function SD(hi, UNDi−1), Algorithm 3,
will be invoked when the number of iterations beyond the threshold.

Algorithm 3. Special decision: two-way decision clustering
Input: P ∗

i−1 = UNDi−1 ∪ DEDi−1, Ei, i = I;

Output: The result of clustering P ∗
I .

1 Obtain the cluster mark sequences of cores;
2 for every xa ∈ UNDi−1 do

3 for every POS(Ck) ∈ P∗
i−1 do calculate S(xa,POS(Ck)) according to Eq. 7;

4 Set the maximal one in S(xa,POS(Ck)) be max;

5 Get D = { Ck
∣∣∣ S(xa,POS(Ck)) = max};

6 if max < β then union objects of xa into Noise;
7 elseif |D| = 1 then assign objects of xa to the positive region of the clusters in D;
8 elseif |D| > 1 then assign objects of xa to the positive region of these clusters in D;

9 Output the updated clustering result P ∗
i .

Similarly, Algorithm 3 obtains the cluster mark sequences of cores as Algo-
rithm 2, and it gets the maximal value max in the relationships S(xa,POS(Ck)).
We set D = {Ck

∣
∣ S(xa,POS(Ck)) = max} be the set of clusters whose relation-

ship with xa are equal to the maximum.
Now there exist two cases: Case I: If max < β, which means the maximal

relationship between xa and each cluster is less than β, we regard objects in
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xa as noise points; Case II: If max ≥ β, now there exists two subcases: (1) If
|D| = 1, assign objects in xa to the positive region of the cluster in D; (2) If
|D| > 1, assign objects in xa to the positive region of any one cluster in D.

4 Experimental Results

In our experimental framework, we use some of the popular clustering algorithms
as ensemble members (clusterers), such as K-means, K-Medoids [3] and RK-
Means [5]. We can randomly choose the clustering algorithms as clusterers, or
choose an appropriate clustering algorithm according to the prior knowledge.
The focus of this paper is the consensus step. Therefore, for each generation step,
the conventional K-means algorithm is selected as clusterer Φ in all experiments
unless noted otherwise. There are 4 ensemble members for the initial decision of
each experiment, i.e. h1 = 4, and the number of clusters of ensemble members
is K, unless noted otherwise.

For the experiments described in the following, the results are always aver-
aged over 10 runs, and the standard deviation variances are also reported in
results. The quality of the final clustering is evaluated by the accuracy. Due to
the uncertainty associated with objects in boundary regions, the accuracy rate
is computed based on positive regions.

Test 1: Results of Each Decision. In order to show the gradual decision
(clustering) process intuitively, we conduct the experiment on an artificial data
AD, and record the result of each decision.
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Fig. 3. The results in the gradual decision process
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Figure 3a, b and c are the three-way decision results in the process. Fig. 3d
is the final two-way decision result and it is just the original data set. As we can
see, our model can discover the underlying structure of the data set, and the
data in the fringe are classified gradually during the process.

Figure 3a shows that most of the data has been divided definitely. There are
6 ones in BND(C1, C3), the boundary regions of C1 and C3, and there are 3 data
points in BND(C2, C3). These points are left to defer decision. In other words,
they are put into the boundary region of corresponding clusters and waiting for
the next decision. From Fig. 3b, we see that two data points in the boundary
region between C1 and C3 are divided definitely after the second decision; from
Fig. 3c, we see that two data points in the boundary region between C2 and C3

are classified after the third decision. Finally, the two-way decision function is
used and all the remaining data points are assigned into the specific categories.

Test 2: Results of Comparison Experiments. Table 1 gives a summary of
data sets used in our experiments, where “No” denotes serial number of data sets.
N , D and K means the number of objects, the number of attributes, the number
of ground-truth clusters, respectively. “Distribution” denotes the distribution of
clusters in every data set. Take the first data set as an example, Letter AB has
two clusters, “766-789” means its first cluster has 766 objects and the second
cluster has 789 objects. The first 7 data sets are UCI data sets [2] and the last
three ones are artificial data sets. We compared the proposed method with the
method presented by Mok et al. [6]. Table 2 shows the results on accuracy and
computing time, and time in seconds (s). We record two computing time in Mok
Algorithm, the actual computational time is recorded by Time2 and the time
when the algorithm just obtains the best result is Time1. We record results of
the first decision and the final decision in the proposed method.

Table 1. Datasets

No Data set, U N D K Distribution

1 Letter AB 1555 16 2 766-789

2 Image segmentation 2310 19 7 330-330-330-330-330-330-330

3 Pedigits123 3342 16 3 1055-1143-1144

4 Pendigits1469 4398 16 4 1055-1056-1144-1143

5 Pendigits1234 4486 16 4 1055-1143-1144-1144

6 Waveform21 5000 21 3 1647-1657-1696

7 Landsat 6435 36 6 626-703-707-

8 AD5 10000 2 5 2000-2000-2000-2000-2000

9 AD6 15000 2 5 3000-3000-3000-3000-3000

10 AD7 15000 3 5 3000-3000-3000-3000-3000

The results in Table 2 show that the proposed approach is significantly better
on both accuracy and computational time. The reason is that the proposed
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Table 2. The results of GTWD-CE algorithm and compared algorithm

U The first decision The final decision Mok Algorithm [6]

Accuracy Time(s) Accuracy Time (s) Accuracy Time1 (s) Time2 (s)

1 0.85± 0.00 0.06± 0.02 0.85± 0.00 0.07± 0.02 0.51± 0.00 0.46± 0.11 0.56± 0.14

2 0.53± 0.03 0.12± 0.03 0.54± 0.02 0.14± 0.04 0.51± 0.00 0.26± 0.07 0.85± 0.10

3 0.77± 0.09 0.26± 0.07 0.79± 0.09 0.27± 0.05 0.56± 0.18 0.60± 0.19 1.70± 0.68

4 0.88± 0.01 0.28± 0.04 0.88± 0.01 0.30± 0.05 0.59± 0.00 2.10± 0.37 2.41± 0.49

5 0.83± 0.01 0.28± 0.06 0.84± 0.01 0.63± 0.07 0.34± 0.03 0.89± 0.26 2.40± 0.47

6 0.39± 0.00 0.40± 0.11 0.39± 0.00 0.42± 0.13 0.36± 0.02 1.21± 0.42 2.94± 0.48

7 0.68± 0.00 0.30± 0.04 0.68± 0.00 0.32± 0.06 0.68± 0.00 1.36± 1.01 3.82± 1.71

8 0.81± 0.00 1.20± 0.54 0.82± 0.00 1.37± 0.56 0.73± 0.01 5.77± 1.05 9.23± 0.87

9 0.98± 0.01 1.90± 0.54 0.99± 0.01 2.11± 0.36 0.98± 0.01 16.78± 1.45 19.84± 2.10

10 0.99± 0.00 1.91± 2.69 0.99± 0.00 2.13± 3.31 0.71± 0.02 12.09± 3.02 20.02± 1.33

method is mainly based on cores not based on objects as the existing methods.
The improvement of accuracy just prove the model is effective for clustering
because the novel ideas are applied to the model such as the gradual decision
and three-way decisions.

5 Conclusion

Cluster ensembles can combine the outcomes of several clusterings to a single
clustering. This paper proposed a model of gradual three-way decision cluster
ensemble. In the model, the number of ensemble members is increased gradually
in each decision (iteration), which is different from the existing cluster ensemble
methods. Meantime, the proposed three-way representation for a cluster, objects
in the positive region or in the negative region are definitively do or not belong
to the cluster respectively. Objects in the boundary region are fringe members
and need defer decisions. The representation can describe both hard clustering
and soft clustering. To enhance the performance of the proposed method, this
paper proposed the concept of cluster core, which reflects the minimal granularity
distribution structure agreed by all the ensemble members. Thus, the computing
of the proposed algorithms are based on cores instead of on objects as other
methods, which makes them high-efficiency. Besides, this paper introduced in
detail how to implement the functions in the model. The compared experimental
results show that the strategy of gradual three-way decisions is good at consensus
clustering. Developing an efficient sampling method is the future work.
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Abstract. We present a framework for studying sequential three-way
classifications based on a sequence of description spaces and a sequence
of evaluation functions. In each stage, a pair of a description space and
an evaluation function is used for a three-way classification. A set of
objects is classified into three regions. The positive region contains pos-
itive instances of a given class, the negative region contains negative
instances, and the boundary region contains those objects that cannot
be classified as positive or negative instances due to insufficient infor-
mation. By using finer description spaces and finer evaluations, we may
be able to make definite classifications for those objects in the boundary
region in multiple steps, which gives a sequential three-way classification.
We examine four particular modes of sequential three-way classifications
with respect to multiple levels of granularity, probabilistic rough set the-
ory, multiple models of classification, and ensemble classifications.

Keywords: Sequential · Three-way decision · Classification

1 Introduction

In designing a classification model, we consider two components, namely, a
description scheme of objects and an evaluation function of objects based on
their descriptions. A description space of a specific format includes all the possi-
ble descriptions. An evaluation function evaluates the descriptions and indicates
the degree to which a description leads to a positive instance of the given class.

In a two-way classification model, an object is classified as either a positive
or negative instance. If the evaluation value of its description is high enough,
then the object is classified as a positive instance; otherwise, it is classified as
a negative instance. Accordingly, there are two regions: the positive region of
those objects classified as positive instances and the negative region of those
objects classified as negative instances. One threshold on the evaluation values
is used for classification. However, when the information about objects involves
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uncertainty, we may not be able to classify them with confidence as positive or
negative instances. In other words, either action may lead to a large error rate.

To resolve the difficulty in dealing with uncertainty, a three-way classification
model applies a pair of thresholds on the evaluation function. If the evaluation
value of an object is high enough (i.e., higher than or equal to one threshold),
then it is classified as a positive instance. If its evaluation value is low enough
(i.e., lower than or equal to the other threshold), then it is classified as a negative
instance. If the evaluation value is between the two thresholds, a third option is
used. The object is neither classified as a positive instance nor a negative one.
Instead, a non-commitment decision is made about its classification. The third
boundary region consists of those objects that cannot be definitely classified.

Although the boundary region offers a solution to make reasonable clas-
sifications on some objects with insufficient information, it introduces non-
classification of some objects. A sequential three-way classification model offers
an approach to refine the boundary region when more information is available
about these objects. Such information may enable us to refine the description
space and the evaluation function. Consequently, one may be able to classify the
objects in the boundary region as positive or negative instances. This process
involves a sequence of description spaces from coarser to finer and a sequence of
evaluation functions. A pair of a description space and an evaluation function
is applied in each stage of a sequential three-way classification to classify a set
of objects in the boundary region from the previous stage. A sequential three-
way classification provides an approach to gradually reducing non-commitment
about the classification when more information is available. In sequential three-
way classifications, an earlier stage involving less detailed information leads
to a quick classification on some objects. This may reduce the cost of the
classification.

In this paper, we present a framework of sequential three-way classifications
by considering two sequences, that is, a sequence of description spaces and a
sequence of evaluation functions. We examine four modes of sequential three-
way classifications with respect to multiple levels of granularity, probabilistic
rough set theory, multiple models of classification, and ensemble classifications.

2 A Framework of Sequential Three-Way Classifications

A three-way classification model provides a third option to meet the challenge
of information uncertainty. As more information is obtained gradually, we have
a general formulation of sequential three-way classifications.

2.1 Two-Way Classifications v.s. Three-Way Classifications

A classification problem involves classifying a universe of objects into different
groups or classes. Based on the available information, the objects can be formally
described in various formats. Suppose U is a universe of objects to be classified
and DES is a description space that includes all possible descriptions of objects
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in a certain format, such as all possible logic formulas that are considered to
describe the objects. With respect to a specific class, an evaluation function
Eval : DES → [0, 1] is used to evaluate the descriptions and accordingly, the
objects with those descriptions are classified. We assume that a greater evalu-
ation value indicates a greater probability or confidence of an object with the
description to be in the given class. In the ideal case with perfect knowledge,
the evaluation function maps each object under the description into either 0 or
1. An object is classified to be in the given class if its value is 1, and classified
to be not in the class if its value is 0. However, due to incomplete information,
a description may be mapped to a value between 0 and 1. This leads to uncer-
tainty about the classification of the corresponding objects. In order to classify
these objects, it is necessary to specify thresholds on the evaluation values and
classify the objects with a tolerance level of error.

A two-way classification model applies one threshold γ ∈ [0, 1] to cut the
evaluation values into two parts. Let Des(x) ∈ DES denote the description of an
object x ∈ U . If its evaluation value Eval(Des(x)) is high enough (i.e., above or
equal to the threshold γ), then x is considered as a positive instance, that is, x
is classified to be in the given class C; otherwise, x is considered as a negative
instance and classified to be not in C. Accordingly, we can obtain two disjoint
positive POS and negative NEG regions as:

POS(U) = {x ∈ U | Eval(Des(x)) ≥ γ},

NEG(U) = {x ∈ U | Eval(Des(x)) < γ}. (1)

The positive region contains the objects classified as positive instances and the
negative region contains those classified as negative instances.

The determination of the threshold γ plays an important role in a two-way
classification model. It reflects our confidence or the precision of the classifica-
tion. However, one threshold cannot lead to a reasonable classification in some
cases. If we choose a higher threshold (e.g., γ = 0.9), an object is more likely to
be classified as a negative instance even though its evaluation value is intuitively
high enough (e.g., the evaluation value is 0.8). Similarly, a lower threshold tends
to classify more objects as positive instances even though their evaluation values
are actually very low. The difficulty in determining one optimal and meaningful
threshold is also related to the classification of those objects whose evaluation
values are around the middle point 0.5. The available information for these
objects is not sufficient enough to indicate whether they belong to the class
or not. Thus, it is unreasonable to simply classify them as positive or negative
instances.

A three-way classification model solves this problem by using a pair of thresh-
olds to cut the evaluation values. It divides U into three pairwise disjoint positive
POS, negative NEG, and boundary BND regions:

POS(U) = {x ∈ U | Eval(Des(x)) ≥ α},

NEG(U) = {x ∈ U | Eval(Des(x)) ≤ β},

BND(U) = {x ∈ U | β < Eval(Des(x)) < α}, (2)
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where (α, β) is a pair of thresholds with 0 ≤ β < α ≤ 1. The computation and
interpretation of the two thresholds have been discussed by researchers [4,5,18].
In this paper, we assume the two thresholds are given. If Eval(Des(x)) is strong
enough to indicate that x belongs to the given class (i.e., Eval(Des(x)) ≥ α),
then x is put into the positive region. If Eval(Des(x)) is strong enough to indicate
that x does not belong to the given class (i.e., Eval(Des(x)) ≤ β), then x is put
into the negative region. Otherwise, we do not have enough information about
x and are uncertain about its classification. Consequently, x is put into the
boundary region. The actions associated with the three regions are:

(A) If x ∈ POS(U), then accept x ∈ C,

(R) If x ∈ NEG(U), then reject x ∈ C,

(N) If x ∈ BND(U), then neither accept nor reject x ∈ C.

That is, we accept the objects in POS(U) to be in the given class C, reject
those in NEG(U), and make a non-commitment decision on those in BND(U).
While a two-way classification model forces us to make a definite classification
(i.e., either accepting or rejecting) on those objects with uncertain and insuffi-
cient information, the boundary region and the non-commitment choice of the
classification provide a way to reflect such uncertainty.

2.2 Sequential Three-Way Classifications

The three-way classification discussed in the last section can be iteratively con-
ducted by applying a sequence of evaluation functions on a sequence of descrip-
tion spaces. When more detailed information is obtained, a description space
may be refined to include the new details. Accordingly, a sequence of description
spaces can be formed from coarser to finer by gradually adding more informa-
tion. On the other hand, the more detailed information may give us more insights
into the problem and enable us to specify a more meaningful and comprehensive
evaluation function. Hence, a sequence of evaluation functions can be obtained.
A new evaluation function on a finer description space may enable us to classify
an object in the previous boundary region as a positive or negative instance.

Suppose we have the following sequence of n pairs of description spaces and
evaluation functions from coarser to finer:

(DES1, Eval1) � (DES2, Eval2) � · · · � (DESn, Evaln). (3)

The description space DESi(1 ≤ i ≤ n) contains all the possible descriptions
of objects in a certain format. The evaluation function Evali : DESi → [0, 1]
gives the evaluation values of each description. The relationship (DESi, Evali) �
(DESi+1, Evali+1) means that (DESi+1, Evali+1) is finer than (DESi, Evali) (or,
equivalently, (DESi, Evali) is coarser than (DESi+1, Evali+1)) in the sense that
(DESi+1, Evali+1) is obtained based on more available information. However,
the two pairs may not be necessarily different if the extra information does not
enable us to refine the pair. It is also possible that either the description space



728 Y. Yao et al.

or the evaluation function is refined and the other stays the same. An n-stage
sequential three-way classification can be constructed by using these pairs one
by one from coarser to finer. Let Ui be the set of objects to be classified in the
ith stage and Desi(x) ∈ DESi be the description of an object x in the description
space DESi. Given a universe U of objects, the three regions in the ith stage of
an n-stage sequential three-way classification are constructed as: let U1 = U and
Ui = BNDi−1(Ui−1)(1 < i ≤ n),

POSi(Ui) = {x ∈ Ui | Evali(Desi(x)) ≥ αi},

NEGi(Ui) = {x ∈ Ui | Evali(Desi(x)) ≤ βi},

BNDi(Ui) = {x ∈ Ui | βi < Evali(Desi(x)) < αi}. (4)

The corresponding actions are given by:

(Ai) If x ∈ POSi(Ui), then accept x ∈ C,

(Ri) If x ∈ NEGi(Ui), then reject x ∈ C,

(Ni) If x ∈ BNDi(Ui), then defer the classification on x to the next stage.

The pair of thresholds (αi, βi) is used in the ith stage which satisfies 0 ≤ βi <
αi ≤ 1. It is reasonable to assume that we are more biased towards a deferment
decision in an earlier stage where limited information is available [19]. This
assumption leads to the following relationships of all the thresholds used:

0 ≤ β1 ≤ β2 ≤ · · · ≤ βn < αn ≤ αn−1 ≤ · · · ≤ α1 ≤ 1. (5)

In an earlier stage, the pair of thresholds is more restrictive, that is, α is more
closer to 1 and β is more closer to 0. Consequently, an object is more likely to be
classified into the boundary region, which indicates a more conservative opinion
due to limited information. Another assumption in the above sequential three-
way classification is that we do not go back to update the definite classifications
made in earlier stages, although those classifications may be inappropriate when
finer description space and evaluation function are available in some stage later
on. Consequently, in each stage, we only focus on refining the boundary region
constructed in the previous stage.

The whole process of the above n-stage sequential three-way classification is
illustrated in Fig. 1. In each stage, we adopt a finer pair of a description space
and an evaluation function, and attempt to make definite classifications on the
objects in the boundary region constructed in the previous stage.

If the boundary region in the last stage BNDn(Un) is the empty set, we finally
arrive at a two-way classification of all the objects in U . Otherwise, those objects
in BNDn(Un) are finally associated with a non-commitment decision about their
classifications. All available information in the whole process is not sufficient for
determining them to be in the given class or not.

3 Four Modes of Sequential Three-Way Classifications

A sequence of pairs of a description space and an evaluation function from coarser
to finer is a basis for constructing a sequential three-way classification. The



Modes of Sequential Three-Way Classifications 729

Fig. 1. An n-stage sequential three-way classification model

coarser description spaces and evaluation functions are due to less sufficient or
more uncertain information in different stages. The information uncertainty is
caused by different reasons in different contexts. In this section, we examine four
specific modes of sequential three-way classifications.

3.1 Mode 1: Multiple Levels of Granularity

Granular computing deals with the philosophy, methodology and mechanism
of structured thinking, structured problems solving and structured information
processing [16]. It is based on a set of granular structures which provide multi-
ple views of a particular application. Each granular structure involves multiple
levels of granules in a specific view. Within one granular structure, a higher
level granule is much coarser and contains more abstract description of objects.
A lower level granule is much finer and offers more concrete description with
more details. As we move from higher levels to lower levels, a granular structure
naturally gives a sequence of description spaces from coarser to finer.

The construction of sequential three-way decisions in granular computing is
examined in [17] with three main components, namely, multiple levels of gran-
ularity, multiple descriptions of objects, and three-way decisions at a particular
level. Suppose there are n levels of granularity labelled by indices {1, 2, · · · , n}
with 1 representing the highest and coarsest level and n the lowest and finest.
Let DESi denote the description space in the ith level of granularity. We can get
a sequence of description spaces from coarser to finer as:

DES1 � DES2 � · · · � DESn. (6)
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While this sequence of description spaces is widely considered by majority stud-
ies, the sequence of evaluation functions is not explicitly discussed. One may
simply use the same evaluation function in each level or specify different eval-
uation functions depending on a particular application. An n-stage sequential
three-way classification can be constructed by conducting a one-step three-way
classification in the corresponding level.

In a sequential three-way classification with multiple levels of granularity,
uncertainty is gradually reduced as we move from higher levels of granularity
to lower levels that contain more detailed descriptions of objects. For example,
in order to make a classification of reading or not reading a paper, a reader
may look at the title first and try to make a definite classification. The title
alone gives a very broad and coarse description of the paper and may not be
sufficient to lead to a definite classification. In this case, the reader may want to
examine the abstract and conclusions that provide more details and more finer
description of the paper. If they are still not sufficient for a definite classifica-
tion, the reader may seek for more information in the headings of sections and
subsections, paragraphs and so on. In this process, by gradually obtaining more
information, uncertainty is reduced and a definite classification is more likely to
be made. The sequential three-way classifications with multiple levels of granu-
larity have been discussed with respect to many practical applications, such as
face recognition [8,9] and multi-class statistical recognition [14].

3.2 Mode 2: Probabilistic Rough Set Theory

In rough set theory [11], a set of objects is described by a set of attributes.
By using a subset of attributes, we may only be able to make definite classifi-
cations for some objects. For those objects with identical values on the subset
of attributes but different classifications, we cannot make a definite classifica-
tion. By adding more attributes, we can refine the description of these objects
gradually, which may enable us to distinguish them. This process leads to the
construction of sequential three-way classifications.

Suppose a universe of objects U is described by a set of attributes AT . By
focusing on a subset of attributes A ⊆ AT , we can construct a description space
DESA by listing all the logic formulas in the following format:

∧

a∈A

(a = va), (7)

where va is a value in the domain of attribute a. That is, DESA contains all the
formulas that involve only logic conjunction with each attribute in A appearing
exactly once. Given a description or formula p ∈ DESA, the set of objects satis-
fying it is denoted as m(p). Given a class X ⊆ U , if a large portion of m(p) is
included in X, then p is used as a description of positive instances, that is, all
objects satisfying p will be classified as positive instances. If a large portion of
m(p) is not included in X, then p is used as a description of negative instances.
Otherwise, p cannot be used to classify objects with respect to the class X.
Formally, the three regions are constructed as follows:
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POS(U) =
⋃

{m(p) ⊆ U | p ∈ DESA, P r(X|m(p)) ≥ α},

NEG(U) =
⋃

{m(p) ⊆ U | p ∈ DESA, P r(X|m(p)) ≤ β},

BND(U) =
⋃

{m(p) ⊆ U | p ∈ DESA, β < Pr(X|m(p)) < α}, (8)

where Pr(X|m(p)) = |X∩m(p)|
|m(p)| and the two thresholds satisfy 0 ≤ β < α ≤ 1.

The three regions are called three-way probabilistic approximations of X in
probabilistic rough set theory [18].

A sequential three-way classification can be formed by gradually considering
more attributes to refine the description space. Suppose we have the following
sequence of subsets of attributes:

A1 ⊂ A2 ⊂ · · · ⊂ An, (9)

where A1 �= ∅, An ⊆ AT and Ai is a proper subset of Ai+1(1 ≤ i < n). We get
the following sequence of description spaces from coarser to finer:

DESA1 � DESA2 � · · · � DESAn
. (10)

A description space DESAi+1 is considered to be finer than DESAi
in the sense

that its formulas involve more attributes which may induce smaller and finer sets
of objects satisfying these formulas. These finer sets of objects may enable us to
transfer some objects in the boundary region into the positive or negative region
and, accordingly, make a definite classification. We can construct a sequential
three-way classification with respect to a given class X in n stages. The regions
in the ith stage are:

POSi(Ui) =
⋃

{m(p) ⊆ Ui | p ∈ DESAi
, P r(X|m(p)) ≥ αi},

NEGi(Ui) =
⋃

{m(p) ⊆ Ui | p ∈ DESAi
, P r(X|m(p)) ≤ βi},

BNDi(Ui) =
⋃

{m(p) ⊆ Ui | p ∈ DESAi
, βi < Pr(X|m(p)) < αi}, (11)

where U1 = U and Ui = BNDi−1(Ui−1)(1 < i ≤ n). This provides an approach
to constructing sequential three-way approximations in probabilistic rough set
theory.

In sequential three-way classifications with probabilistic rough set theory, the
uncertainty is reduced by increasing the number of attributes to form the for-
mulas in a description space. A small number of attributes gives a quick definite
classification for some objects (i.e., those in the positive and negative regions)
and involves large degree of uncertainty for others (i.e., those in the boundary
region). By adding more attributes, we are able to distinguish more objects,
reduce the uncertainty for their descriptions and make definite classifications.

3.3 Mode 3: Multiple Models of Classification

Model selection is a fundamental issue in various fields, such as ecology [1],
statistics [2], biology [3], economics [7], and social sciences [15]. The main task
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of model selection is to select one single (or a few) optimal model from a set of
candidate models that can solve a problem. For a given classification problem,
there may exist multiple candidate models that differ in complexity, cost, effi-
ciency and etc. The selection of these models requires a consideration of tradeoffs
between the processing cost and the quality or accuracy of classification results.

A reasonable preference of the models is necessary in model selection.
Occam’s razor or the principle of parsimony, which gives preferences to sim-
pler models, is widely adopted and argued by researchers in various fields [6].
A simpler classification model uses smaller and simpler description space and
an evaluation function with less parameters. In general, it may be able to give
a quick classification with a less processing cost. The classification results may
have a large error rate due to the limited information used by the model. In
contrast, a more complex model may be able to give more accurate classifica-
tion results with a lower error rate. A larger processing cost may be introduced
due to the larger and more complicated description space and extra parameters
used in the evaluation function. In the selection of multiple candidate models of
classification, we aim at finding a simplest model that can induce satisfactory
classification results with a required level of accuracy.

In many classification models, all objects are treated the same way. On the
other hand, typical instances of a class usually can be easily and correctly clas-
sified by a simpler model. It is not quite advantageous to use a more complex
model. If some instances cannot be classified by a simpler model with a required
level of accuracy, a more complex model is necessary. In order to balance the
processing cost and the accuracy of results, we suggest to adopt the sequential
three-way classifications by applying a sequence of classification models from
simpler to more complex. If the classification results given by a simpler model
are accurate enough, we will classify the objects according to it. Otherwise, a
more complex model in the sequence will be applied to get more accurate classifi-
cation results. Accordingly, a simpler model is adopted whenever its classification
results are satisfactory, which has a lower processing cost.

Suppose we have a sequence of classification models from simpler to more
complex as:

M1 � M2 � · · · � Mn. (12)

A classification model is considered to be more complex if its descriptions of
objects involve more details or the evaluation function is more complex and
costs more to compute. Let DESi(1 ≤ i ≤ n) denote the description space in
model Mi and Evali denote the evaluation function. Given a universe U of
objects to be classified, the models are applied one by one from M1 to Mn. In
the ith stage where Mi is applied, the positive, negative and boundary regions
are constructed as: let U1 = U and Ui = BNDi−1(Ui−1)(1 < i ≤ n),

POSi(Ui) = {x ∈ Ui | Evali(Desi(x)) ≥ αi},

NEGi(Ui) = {x ∈ Ui | Evali(Desi(x)) ≤ βi},

BNDi(Ui) = {x ∈ Ui | βi < Evali(Desi(x)) < αi}, (13)
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where Desi(x) is the description of an object x in the description space DESi

and (αi, βi) is a pair of thresholds used in the ith stage. One may use a pair of
thresholds in a model to control the desired accuracy of classification results. If
an object is classified as a positive or negative instance in the ith stage, model
Mi is adopted to classify the object. Otherwise, the model Mi+1 is applied in
the next stage. In this way, we use the simplest model in the sequence that gives
a desired level of classification accuracy with a minimal processing cost.

3.4 Mode 4: Sequential Ensemble Classifications

Ensemble classification [10,12,13] involves the synthesis of classification results
from multiple classification models called a committee. These classification
results may be combined by using various ensemble techniques, such as majority
voting and weighted average. If there is a large degree of conflict between the
classification results from different models, one may have difficulties in combining
them into a definite classification. In this case, one may continue with another
round of ensemble classification which involves a larger committee with more
classification models. This can be iteratively conducted until a general agree-
ment on a definite classification can be made by the committee. The process
results in a sequential ensemble classification involving multiple committees.

Suppose we have a sequence of committees from smaller to larger:

C1 ⊆ C2 ⊆ · · · ⊆ Cn, (14)

where Ci(1 ≤ i ≤ n) is a set of classification models. The committee Ci is used
in the ith stage. Given an object x in a universe U , each model in Ci computes
its classification result of x independently. It should be noted that the models
in Ci may use different descriptions of objects and evaluation functions to make
the classification. Their individual results are synthesized by using a function.
Although there are various functions to do the synthesis, in our discussion, we
assume the values of the function evaluate the degree to which the objects are
positive instances after the synthesis of the results. Thus, we call it the evaluation
function used by the committee Ci and denote it as EvalCi

. Accordingly, the three
regions in the ith stage of a sequential ensemble classification are constructed
as: let U1 = U and Ui = BNDi−1(Ui−1)(1 < i ≤ n),

POSi(Ui) = {x ∈ Ui | EvalCi
(x) ≥ αi},

NEGi(Ui) = {x ∈ Ui | EvalCi
(x) ≤ βi},

BNDi(Ui) = {x ∈ Ui | βi < EvalCi
(x) < αi}, (15)

where (αi, βi) is a pair of thresholds used in the ith stage. If the synthesized result
of the ensemble classification in the ith stage strongly suggests x to be a positive
instance (i.e., EvalCi

(x) ≥ αi), then x is classified as a positive instance. If the
synthesized result strongly suggests x to be a negative instance (i.e., EvalCi

(x) ≤
βi), then x is classified as a negative instance. Otherwise, the classification of x
is delayed in the next stage where a larger committee with more classification
models is used.
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The results of a sequential ensemble classification are affected by the choice
of the initial committee, that is, C1 in the formulation. In order to avoid an easy
agreement in the committee, one should include various classification approaches
in order to capture different aspects and views of the data set. Moreover, one
should also select a reasonable and meaningful size of C1 to start with. A small
size may result in an easy agreement and a large size may not be able to take
the advantage of quick decisions in the earlier stages of a sequential approach.
The determination of the initial committee is an important issue to be solved.

The sequential ensemble classifications can be generalized with any occasion
involving group decision makings. A group of experts may give different opinions
of the decisions on a set of objects or entities. These opinions may enable us to
make a definite decision on some objects, but not on others. In the latter case,
more experts can be engaged until definite decisions can be made on all the
objects. One may take the review process of a paper as an example. If a decision
of accepting or rejecting the paper can be made by a group of reviewers (e.g.,
majority of the reviewers strongly accept or reject the paper), then the paper is
put into the positive or negative region and a corresponding action can be taken.
Otherwise, if a definite decision cannot be made due to large degree of conflict
among the opinions from the reviewers (e.g., some reviewers strongly accept the
paper and a similar number of reviewers strongly reject the paper), the editor
may want to find more reviewers, collect more opinions from different people
and try to arrive at a definite decision on the paper.

4 Conclusions

We present a general framework of sequential three-way classifications and,
within it, examine four modes. Based on a description space and an evaluation
function, a three-way classification model classifies a set of objects into three
regions, namely, the positive, negative and boundary regions. While the objects
in the positive and negative regions are definitely classified, those in the boundary
regions are not. The two sequences of description spaces and evaluation func-
tions from coarser to finer are the basis of a sequential three-way classification.
By adopting a finer description space and a finer evaluation function, we may
reduce the uncertainty about the boundary region and arrive at definite classifi-
cations. Four modes of sequential three-way classifications demonstrate different
causes of uncertainty. While current research on granular computing and proba-
bilistic rough sets mainly focuses on the sequence of description spaces, current
research on model selection and ensemble classifications mainly focuses on the
sequence of evaluation functions. An examination of both sequences in all these
four modes may be a direction for future work. Another direction may be a
more detailed exploration of the presented framework and the experiments with
respect to specific applications.
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Abstract. A three-way approximation of shadowed sets maps the mem-
bership grades of all objects into a three-value set with a pair of thresh-
olds. The game-theoretic shadowed sets (GTSS) determine and interpret
a pair of thresholds of three-way approximations based on a principle
of tradeoff with games. GTSS formulate competitive games between the
elevation and reduction errors. The players start from the initial thresh-
olds (1,0) and perform the certain strategies to change the thresholds
in the game. The games are repeated with the updated thresholds to
gradually reach the suitable thresholds. However, starting from a pair
of randomly selected non-(1,0) thresholds is not examined in GTSS. We
propose a game approach to make it possible for GTSS starting from
a pair of randomly selected thresholds and then determine the strate-
gies associated with them. In particular, given a pair of randomly chosen
initial thresholds, we use a game mechanism to determine the change
directions that players prefer to make on the initial thresholds. The pro-
posed approach supplements the GTSS, and can be added in the game
formulation and repetition learning phases. We explain the game formu-
lation, equilibrium analysis, and the determination of strategies in this
paper. An example demonstrates how the proposed approach can sup-
plement GTSS to obtain the thresholds of three-way approximations of
shadowed sets when starting from randomly selected thresholds.

Keywords: Game-theoretic shadowed sets
Three-way approximations of shadowed sets · Game theory
Three-way approximations

1 Introduction

A generalized framework of three-way approximations of fuzzy sets maps the
membership grades of the objects in U to a set of three values {n,m,p} [13,15].
A shadowed set proposed by Pedrycz is constructed from a fuzzy set μA and
maps the membership grades μA(x) of all objects in U to the set {0, [0, 1], 1}
based on a pair of thresholds (α, β) [7]. The interval set [0, 1] represents the
uncertainty [7]. We may use a value σ with 0 < σ < 1 to represent the uncertainty
in the shadowed sets to obtain a three-way approximation of shadowed sets, i.e.,
c© Springer International Publishing AG, part of Springer Nature 2018
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T : U → {0, σ, 1}. Therefore, a three-way approximation of shadowed sets can
be viewed as a special case of the generalized three-way approximations of fuzzy
sets, in which n = 0, m = σ, and p = 1 [13]. A three-way approximation of
shadowed sets is defined by the membership grades of objects and a pair of
thresholds (α, β) while 0 ≤ β ≤ α ≤ 1. The membership grade μA(x) of an
object x indicates the degree of the concept A is applicable to x [7,15]. The
elevation and reduction operations change the original membership grades to 1,
0, or σ. These operations produce the elevation and reduction errors which show
the difference between the original membership grades and the corresponding
elevated or reduced values [3].

One of the fundamental issues of applying the three-way approximations of
shadowed sets is the determination and interpretation of the pair of thresholds
(α, β) [13]. Yao, Wang and Deng introduce a general optimization-based frame-
work for interpreting and determining the thresholds [13]. Three principles, i.e., a
principle of uncertainty invariance, a principle of minimum distance, and a prin-
ciple of least cost are summarized [13]. Pedrycz uses symmetric (α, 1−α) model
and then computes α by minimizing the difference between the shadowed area
and the sum of the elevated and reduced area [8]. Tahayori et al. propose ana-
lytical formulas to calculate thresholds when constructing shadowed sets [11].
Grzegorzewski explores the nearest interval approximation of a fuzzy number
based on a distance measure [5]. He also proposes an algorithm for fuzzy num-
ber approximation that bridge the interval and trapezoidal approximation [6].
Deng and Yao propose a decision-theoretic approach to calculate thresholds by
minimizing decision costs, which obtain the thresholds according to the princi-
ple of least cost [3,13]. The error-based (α, β) = (0.75, 0.25) model is derived by
considering a loss function satisfying additional properties [3]. Game-theoretic
shadowed sets (GTSS) determine and interpret the pair of thresholds of three-
way approximations according to a principle of tradeoff with games [16].

GTSS gradually reach a balanced threshold pair by repeatedly formulating
competitive games between the elevation and reduction errors and finding the
tradeoff between these errors [16]. Two game players, the elevation errors and
reduction errors, start from the initial thresholds (α, β) = (1, 0). The strategies
performed by two players are decreasing α and increasing β. Players compete
with each other to reach a tradeoff among multiple strategy profiles. The games
are repeated with the updated thresholds until the thresholds corresponding to
the equilibrium satisfy the stop conditions. In fact, setting the initial thresholds
as (α, β) = (1, 0) is a very special case. What if the game players start from
a pair of randomly chosen thresholds? In this case, how can we determine the
strategies performed by two players?

In this paper we formulate a game to solve these problems. Given a pair of
randomly chosen initial thresholds, we use a game mechanism to determine the
change directions that players prefer to make on these initial thresholds. The
game players are elevation errors and reduction errors. The strategies of each
player are the possible change directions of two initial thresholds. The equilib-
rium of the game is a strategy profile on which two players reach a compromise
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on how to change the initial thresholds. The proposed approach supplements
the game-theoretic shadowed set model, and can be added in the game formula-
tion and repetition learning phases. This paper explains the game formulation,
equilibrium analysis, and strategy determination in detail. We use an example to
show how the proposed approach can supplement GTSS to obtain the thresholds
of shadowed sets from a perspective of tradeoff.

2 Background Knowledge

We briefly introduce the background concepts about three-way approximations
of shadowed sets and game-theoretic shadowed sets.

2.1 Three-Way Approximations of Shadowed Sets

A three-way approximation of fuzzy sets in the universe U maps the membership
grades of all objects in U to a three-value set {n,m,p} based on a pair of
thresholds (α, β) while 0 ≤ β ≤ α ≤ 1 [3,13],

T(α,β)(μA(x)) =

⎧
⎪⎨

⎪⎩

p, μA(x) ≥ α,

m, β < μA(x) < α,

n, μA(x) ≤ β.

(1)

A three-way approximations of shadowed sets can be viewed as a special case
of, in which n = 0, m = σ, and p = 1 [13]. That is, a three-way approximation of
shadowed sets maps the membership grades of all objects in U to a three-value
set {0, σ, 1}. The membership grades greater than or equal to α are elevated to
1; the membership grades between α and σ are reduced to σ; the membership
grades between σ and β are elevated to σ; the membership grades less than or
equal to β are reduced to 0. The three-way approximations of shadowed sets
use two operations, elevation operation and reduction operation, to change the
original membership grades. The elevated areas or elevation errors, and reduced
areas or reduction errors are produced, as the dotted areas and lined areas shown
in the Fig. 1(a). Figure 1(b) shows a three-way approximation of shadowed sets
after applying the elevation and reduction operations on the membership grades
of all objects.

The single value σ represents a situation in which we are far more confi-
dent about including an element or excluding an element in the concept A. It
shows the most uncertainty in determining elements whose membership grades
are around σ. There are different approaches to select the value of σ. Catta-
neo and Ciucci use 0.5 to replace the membership grades of the elements in
the shadows [1,2]. Deng and Yao use the mean value of the membership grades
to represent the shadows [4]. We use σ = 0.5 to represent a situation of com-
pletely uncertainty in this paper. Because 0.5 is in the unit interval, and it is
far from either the full membership grade 1 or the null membership grade 0.
The vagueness is localized in the shadowed area as opposed to fuzzy sets where
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Elevation operation

Reduction operation

Elevated area

Reduced area

Fig. 1. A three-way approximation of shadowed sets

the vagueness is spread across the entire universe [8]. Shadowed sets have been
applied in different research areas, such as granular computing [10,12], image
processing [7], clustering analysis [9,14].

If the membership grades are defined by a continuous function, the elevation
and reduction errors can be calculated as,

E(α,β)(μA) =
∫ xm

xα

(1 − μA(x))dx +
∫ xσ

xβ

(σ − μA(x))dx, (2)

R(α,β)(μA) =
∫ xβ

0

μA(x)dx +
∫ xα

xσ

(μA(x) − σ)dx. (3)

For discrete universe of discourse, we have collection of membership values
instead of continuous functions.

No matter which thresholds change and how they change, the elevation errors
and reduction errors always change in opposite directions. The decrease of one
type of errors inevitably brings the increase of the other type of errors. The
balanced shadowed set based three-way approximations are expected to repre-
sent a tradeoff between the elevation and reduction errors. The game-theoretic
shadowed sets are proposed to find a tradeoff between errors by formulating
competitive games.

2.2 Game-Theoretic Shadowed Sets

Game-theoretic shadowed sets (GTSS) use game mechanism to formulate com-
petitive games between the elevation and the reduction errors. The game players
are the elevation and reduction errors which are denoted by E and R.

The set of strategy profiles S is made up of the possible strategies or
actions performed by two involved players. GTSS use (α, β) = (1, 0) as the
initial threshold values. All the strategies or actions performed by both play-
ers are the changes of the initial thresholds. The player E performs increas-
ing β and the player R performs decreasing α. The strategy set of player E is
SE = {β no change, β increases cE , β increases 2 × cE , ...}. The strategy set of
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player R is SR = {α no change, α decreases cR, α decreases 2 × cR, ...}. cE and
cR denote the quantities that E and R use to change the thresholds, respectively.
cE and cR can be any values that satisfy 0 < cE , cR ≤ 0.1.

The payoffs of players E and R are denoted as uE and uR, respectively. The
payoff uE is defined as a constant C minus the elevation errors shown in Eq. (2).
Similarly, the payoff uR is defined by the constant C minus the reduction errors
shown in Eq. (3).

The involved players are trying to maximize their own payoffs in the com-
petitive games. The balanced solution or game equilibrium is a strategy profile
from which both players benefit. The game equilibrium represents both players
reach a compromise or tradeoff on the conflict. The strategy profile (si, tj) is a
Nash equilibrium, if for players E and R, si and tj are the best responses to
each other.

GTSS compare the payoffs of both players under the initial thresholds and
under the thresholds corresponding to the current equilibrium. The stop condi-
tion is set as both players lose their payoffs or the gain of one player’s payoff is
less than the loss of the other player’s payoff.

GTSS attempt to obtain more suitable thresholds with the repetition of
thresholds modification. Assuming that the initial thresholds are (α, β), and
the thresholds corresponding to the equilibrium are (α∗, β∗). The formulation of
the subsequent games depends on if the thresholds (α∗, β∗) satisfy the selected
stop conditions. If the thresholds (α∗, β∗) do not satisfy the stop condition, the
games are repeated with (α∗, β∗) as the updated thresholds. If the thresholds
(α∗, β∗) satisfy the stop condition, the repetition of games is terminated. The
thresholds (α, β) are used as the result thresholds.

3 Formulating a Game to Determine the Strategies

In this section, we discuss how to use a game mechanism to determine the
strategies for both players in GTSS, given a pair of randomly selected initial
thresholds. The game formulation, payoff table, equilibrium analysis, and the
determination of strategies are discussed in detail.

3.1 Game Formulation

In the game formulation, we define three elements contained in a game G =
{O,S, u}. O is a set of game players, S is a set of strategy profiles, and u is a set
of payoffs. The game players are the elevation errors and the reduction errors
which are denoted by E and R, respective, i.e., O = {E,R}.

Strategies. The set of strategy profiles S is made up of the possible strategies
or actions performed by two players E and R. The set of strategy profiles is
S = SE ×SR, where SE = {s1, s2, ..., sk1} is a set of possible strategies for player
E, and SR = {t1, t2, ..., tk2} is a set of possible strategies for player R. k1 and k2
denote the numbers of strategies performed by the players E and R, respectively.
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All the strategies or actions performed by both players are the changes to the
initial thresholds (α, β). Assuming that the randomly selected initial thresholds
are (α, β) with 0 ≤ β ≤ 0.5 ≤ α ≤ 1, there are five possible changes that can
be made on (α, β), i.e., (α, β) no change, increasing α, decreasing α, increasing
β, decreasing β. The strategy sets of two players are the same, and they contain
five possible strategies (k1 = k2 = 5 and si = ti, i = 1, 2, ..., 5),

SE = SR = {no change, α ↑ c, α ↓ c, β ↑ c, β ↓ c}. (4)

c denotes a constant value showing the rate of change made on thresholds, and we
set 0 < c < 0.1. The up arrow ↑ denotes increasing a value and the down arrow
↓ denotes decreasing a value. Please note that the above equation is a general
strategy set for a pair of initial thresholds. Sometimes, in order to grantee the
constraint 0 ≤ β ≤ σ ≤ α ≤ 1, some strategies in the set may not work. For
example, if the initial thresholds (α, β) = (1, 0), both players can not increase
α and decrease β because α has the maximal value 1 and β has the minimal
value 0. The strategy sets of players contain three strategies, i.e., SE = SR =
{no change, α ↓ c, β ↑ c}.

Payoffs. The payoff set is u = {uE , uR}, and uE and uR denote the payoffs
of players E and R, respectively. Given a strategy profile p = (s, t) with player
E performing s and player R performing t, the payoffs of E and R are uE(s, t)
and uR(s, t). The strategies s and t performed by E and R are the changes
of thresholds (α, β). The payoffs uE(s, t) and uR(s, t) are in fact the functions
of thresholds (α, β). The thresholds (α, β) are determined by the strategies s
and t. That means (α, β) are the result caused by the strategies s and t. The
payoff functions uE(α, β) and uR(α, β) are defined by the elevation errors and
the reduction errors, respectively. Since we are interested in measuring profits
or payoffs in the game-theoretic analysis, we use a constant value C minus the
elevation or reduction errors as corresponding payoff functions,

uE(α, β) = C − E(α,β)(μA),
uR(α, β) = C − R(α,β)(μA). (5)

E(α,β)(μA) is the elevation error defined in Eq. (2). R(α,β)(μA) is the reduction
error defined in Eq. (3). The constant value C is defined as the area covered by the
function y = 1, i.e., C =

∫

x
1dx. Please note that the values of thresholds (α, β)

in the payoff functions uE(α, β) and uR(α, β) are determined by the strategies
performed by both players. The payoff of each player depends on the strategies
or actions performed by both game players. The strategy performed by one game
player can influence the payoff of the other player.

Payoff Table. We use payoff tables to represent the two-player games. Table 1
shows the payoff table of the formulated game in which the strategy set contains
five strategies. The constant c is omitted in the payoff table. ↑ and ↓ represent
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Table 1. The payoff table of the formulated game

R

No change α ↑ α ↓ β ↑ β ↓

No change

〈
uE(α, β),

uR(α, β)
〉

〈
uE(α ↑, β),

uR(α ↑, β)
〉

〈
uE(α ↓, β),

uR(α ↓, β)
〉

〈
uE(α, β ↑),
uR(α, β ↑)〉

〈
uE(α, β ↓),
uR(α, β ↓)〉

α ↑
〈
uE(α ↑, β),

uR(α ↑, β)
〉

〈
uE(α ↑↑, β),

uR(α ↑↑, β)
〉

〈
uE(α ↑, β),

uR(α ↑, β)
〉

〈
uE(α ↑, β ↑),
uR(α ↑, β ↑)〉

〈
uE(α ↑, β ↓),
uR(α ↑, β ↓)〉

E α ↓
〈
uE(α ↓, β),

uR(α ↓, β)
〉

〈
uE(α, β),

uR(α, β)
〉

〈
uE(α ↓↓, β),

uR(α ↓↓, β)
〉

〈
uE(α ↓, β ↑),
uR(α ↓, β ↑)〉

〈
uE(α ↓, β ↓),
uR(α ↓, β ↓)〉

β ↑
〈
uE(α, β ↑),
uR(α, β ↑)〉

〈
uE(α ↑, β ↑),
uR(α ↑, β ↑)〉

〈
uE(α ↓, β ↑),
uR(α ↓, β ↑)〉

〈
uE(α, β ↑↑),
uR(α, β ↑↑)〉

〈
uE(α, β),

uR(α, β)
〉

β ↓
〈
uE(α, β ↓),
uR(α, β ↓)〉

〈
uE(α ↑, β ↓),
uR(α ↑, β ↓)〉

〈
uE(α ↓, β ↓),
uR(α ↓, β ↓)〉

〈
uE(α, β),

uR(α, β)
〉

〈
uE(α, β ↓↓),
uR(α, β ↓↓)〉

thresholds increase or decrease c. ↑↑ and ↓↓ represent the thresholds increase or
decrease 2×c. The threshold values in each cell are determined by the strategies
performed by two players. For example, let’s look at the cell on the second row
and second column in Table 1. Assuming the initial thresholds are (α, β). The
player E performs the strategy of increasing α by c and R performs increasing
α by c. The strategy profile is (α ↑, α ↑). The threshold values affected by
both players are (α ↑↑, β). When we set initial values as (α, β) = (0.6, 0.5) and
c = 0.05, the threshold values of the cell on the second row and second column
would be (0.7, 0.5).

3.2 Equilibrium Analysis

The pure strategy equilibrium is used as the solution to the formulated game
shown in Table 1. The game equilibrium represents both players reach a compro-
mise on how to change the initial thresholds. The strategy profile (si, tj) ∈ S =
SE × SR is a Nash equilibrium if for E and R, si and tj are the best responses
to each other, this is,

∀sk ∈ SE , uE(si, tj) � uE(sk, tj), where si, sk ∈ SE and k 	= i, tj ∈ SR,

∀tl ∈ SR, uR(si, tj) � uR(si, tl), where tj , tl ∈ SR and l 	= j, si ∈ SE . (6)

This equation can be interpreted as a strategy profile such that no player would
like to change his strategy or they would loss benefit if deriving from this strategy
profile, provided this player has the knowledge of the other player’s strategies.

3.3 The Determination of Strategies

We are able to determine the strategies of both players based on the equilibrium
of the game. Assuming that the strategy profile (si, tj) is the equilibrium. si and
tj are the changes made on the thresholds, and si, tj ∈ {no change, α ↑, α ↓, β ↑,
β ↓}. The player E will change the thresholds as the strategy si shows. Similarly,
and R will change the thresholds as the strategy tj shows. For example, if the
equilibrium is (α ↑, β ↓), i.e., E chooses to increase α and R chooses to decrease
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β. The strategy set of E would be SE = {no change, α ↑ cE , α ↑ 2cE}. The
strategy set of R would be SR = {no change, β ↓ cR, β ↓ 2cR} The constants cE

and cR denote the quantities that players E and R use to change the thresholds,
respectively [16]. cE and cR can be any values that satisfy 0 < cE , cR ≤ 0.1
When setting cE = cR = 0.05, we have SE = {α no change, α ↑ 0.05, α ↑ 0.1},
and SR = {β no change, β ↓ 0.05, β ↓ 0.1}.

3.4 Using the Proposed Approach in GTSS

The proposed approach to determining the strategies supplements the game-
theoretic shadowed set model. Figure 2 shows the flow chart of the game-theoretic
shadowed sets, and the two steps inside the dashed line rectangle are the main
different part to the original GTSS model. The revised GTSS are able to

Start

Define game players 

Define payoff functions

Select the initial thresholds 

Set strategies for players 

Build payoff table

Analyze equilibrium

Satisfy stop condition?

End

N

Y

Formulate a game to 
determine strategies

Equilibrium is same to 
the initial thersholds?

Y

update 
thresholds 

N

Fig. 2. The flow chart of game-theoretic shadowed sets

randomly select the initial thresholds (α, β). We use the proposed approach to
formulate a game and analyze the equilibrium, and then determine the strate-
gies of both players. If the strategy profile corresponding to the equilibrium is
(no change,no change) or the strategies of two player cancel out each other,
such as (α ↑, α ↓), we will terminate the search process; otherwise, we set the
strategies of players according to the equilibrium. Assuming that the strategy
sets of two players are SE = {s1, s2, ...} and SR = {t1, t2, ...}. Next, we define
the payoff functions, build the payoff table, and analyze the equilibrium. The
thresholds corresponding to the equilibrium are (α∗, β∗). The formulation of the
subsequent games depends on if the thresholds (α∗, β∗) satisfy the selected stop
conditions.
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– If the thresholds (α∗, β∗) do not satisfy the stop conditions, we will update the
thresholds in the subsequent games. It means that changing the thresholds
by the current strategy sets is able to improve the payoffs of both players.
Both players agree on the changes of the thresholds. In this case, we keep
the strategy sets same and update the thresholds. The thresholds of the new
game will be set as (α∗, β∗), and the strategy sets of both players are same to
those used in the old games, i.e., SE = {s1, s2, ...} and SR = {t1, t2, ...}. The
strategy sets SE and SR are the changes to the updated thresholds (α∗, β∗).

– If the thresholds (α∗, β∗) satisfy the stop conditions, it means (α∗, β∗) are not
able to improve the payoffs of both players, and the changes of the thresholds
caused by the current strategy sets are not expected. In this case, we may
start from the initial thresholds of the current game and use the proposed
approach to formulate a game to try other possible strategy sets.

4 Experiment

We present a demonstrative example in this section. The example shows how
to obtain a three-way approximation of shadowed sets using game-theoretic
shadowed set approach, especially starting from a pair of randomly selected
thresholds. The example uses the Gaussian membership function to define the
membership grades of objects in the universe U ,

μA(x) = e
−(x−c)2

2θ2 , where θ = 3, c = 10. (7)

The curve of this Gaussian membership function is shown in Fig. 3. The universe
of the objects is formed by a finite set of the objects randomly selected according
to the uniform distribution. The range of x is 0 to 20, i.e., x ∈ [0, 20]. We set σ
as 0.5 to represent the uncertainty.

Fig. 3. Gaussian membership
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Game-theoretic shadowed sets (GTSS) aim to determine the suitable thresh-
olds of three-way approximations of shadowed sets. The elevation and reduction
errors are two game players, i.e., O = {E,R}. The constant C in the payoff
function is the area covered by the function y = 1, i.e., C =

∫ 20

0
1dx = 20. The

payoff functions of two players are defined as,

uE(α, β) = 20 − E(α,β)(μA),
uR(α, β) = 20 − R(α,β)(μA). (8)

The initial thresholds are set as (α, β) = (0.6, 0.5). First, we formulate a game
to determine the strategies for both players. The threshold β gets the maximal
value 0.5, and both players only are allowed to decrease β. The strategies are
SE = SR = {no change, α ↑, α ↓, β ↓}. The payoff table is a 4× 4 matrix. We set
c = 0.05 and the thresholds decrease or increase 0.05 in each action. The payoffs
of players are calculated according to Eq. (8) and the payoff table with the payoff
values are shown in Table 2. We analyze the equilibrium of Table 2 according to
Eq. (6). The equilibrium is (α ↑, β ↓), which means player E increases α and R
decreases β, as the cell at the second row and fourth column shown in Table 2.

Table 2. The payoff table of the game for choosing the strategies

R

No change α ↑ α ↓ β ↓
No change

〈
19.1081, 18.1592

〉 〈
19.2939, 18.0973

〉 〈
18.8972, 18.1964

〉 〈
19.0951, 18.4052

〉

α ↑ 〈
19.2939, 18.0973

〉 〈
19.4569, 18.0095

〉 〈
19.1081, 18.1592

〉 〈
19.2808,18.3432

〉

E
α ↓ 〈

18.8972, 18.1964
〉 〈

19.1081, 18.1592
〉 〈

18.6579, 18.2090
〉 〈

18.8842, 18.4424
〉

β ↓ 〈
19.0951, 18.4052

〉 〈
19.2808, 18.3432

〉 〈
18.8842, 18.4424

〉 〈
19.0545, 18.6345

〉

When the initial thresholds (α, β) = (0.6, 0.5), two players agree to make
changes on thresholds by E increasing α and R decreasing β. The con-
stant change steps are cE = cR = 0.05. The strategy set of E is SE =
{α no change, α ↑ 0.05, α ↑ 0.1}. The strategy set of R is SR = {β no change, β ↓
0.05, β ↓ 0.1}. The payoff table with the payoff values are shown in Table 3.

We analyze the equilibria of the game shown in Table 3. The strategy profile
(α ↑ 0.1, β ↓ 0.1) is the equilibrium of the payoff table shown in Table 3.

Table 3. The possible strategy profiles in the payoff table

R

β β ↓ 0.05 β ↓ 0.1

α
〈
19.1081, 18.1592

〉 〈
19.0951, 18.4052

〉 〈
19.0545, 18.6345

〉

E α ↑ 0.05
〈
19.2939, 18.0973

〉 〈
19.2808, 18.3432

〉 〈
19.2402, 18.5726

〉

α ↑ 0.1
〈
19.4569, 18.0059

〉 〈
19.4438, 18.2554

〉 〈
19.4032,18.4848

〉



746 Y. Zhang and J. T. Yao

The player E’s payoff increases from 19.1081 to 19.4032, and player R’s pay-
off increases from 18.1592 to 18.4848 when the thresholds change from (0.6, 0.5)
to (0.7, 0.4).

The stop condition is both players lose their payoffs or the gain of one player’s
payoff is less than the loss of the other player’s payoff in the current game. The
games are repeated three times until the stop condition is satisfied. Table 4 shows
the three repeated game formulations.

Table 4. The repetition of games

Initial (α, β) Strategies Result (α, β) Payoffs Changes

1 (0.6, 0.5) (α ↑, β ↓) (0.7, 0.4) <19.4032, 18.4848> (+0.2951, +0.3256)

2 (0.7, 0.4) (α ↑, β ↓) (0.8, 0.3) <19.4875, 18.6334> (+0.0843, +0.1486)

3 (0.8, 0.3) (α ↑, β ↓) (0.9, 0.2) <19.3062, 18.5532> (−0.1813, −0.0802)

The second column shows the initial thresholds. The third column shows the
strategy sets of both players, and the player E performs the first action and
the player R performs the second action. The forth column shows the thresholds
corresponding to the game equilibrium. The fifth column shows the payoffs of two
players. The sixth column shows the changes of two payoffs when the thresholds
change from the initial pair to the result pair.

Now we get thresholds (α, β) = (0.8, 0.3). Continuing to update the thresh-
olds can not improve the players’ payoffs as the third game shown. We need to
change the strategies of players. In other words, we may use the proposed app-
roach to choose the other strategies that are different from the previous strategies
(E increases α and R decreases β). We formulate a game with players E and R
having five strategies as shown in Eq. (4). This game aims to test if both players
agree to change the thresholds (α, β) = (0.8, 0.3) in other directions. The equi-
librium of this formulated game is (β ↑, β ↓). The changes made by two players
on the thresholds cancel out each other. We terminate the game repetition and
the thresholds (α, β) = (0.8, 0.3) are the final result. This result is different to
that we obtained when setting (α, β) = (1, 0) as the initial thresholds in [16].

5 Conclusion

The game-theoretic shadowed sets determine and interpret the thresholds of the
three-way approximations of shadowed sets according to a principle of trade-
off with games. GTSS formulate competitive games between the elevation and
reduction errors to obtain a tradeoff between these errors. A repetition learning
mechanism is adopted to modify the thresholds to reach the balanced thresholds
gradually. The limit of GTSS lies in both players start from the fixed initial
threshold pair (1, 0) and the strategies of players are also fixed. The proposed
approach formulates a game to determine the strategies of both players when
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GTSS start from a pair of randomly chosen thresholds. The players are eleva-
tion and reduction errors. The strategies are the possible changes that can be
made on the initial thresholds. The equilibrium of the game indicates the change
directions that two players agree to make on the initial thresholds. Moreover,
when a pair of thresholds satisfy the stop conditions after a series of game rep-
etition, the proposed game can be used to examine if it is possible to change
these thresholds in other directions. The proposed game approach supplements
and extends the game-theoretic shadowed set model.
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Abstract. Decision Tree Learning is one of the most popular machine
learning techniques. A common problem with this approach is the inabil-
ity to properly manage uncertainty and inconsistency in the underlying
datasets. In this work we propose two generalized Decision Tree Learn-
ing models based on the notion of Orthopair: the first method allows the
induced classifiers to abstain on certain instances, while the second one
works with unlabeled outputs, thus enabling semi-supervised learning.

Keywords: Orthopair · Three-way decision · Decision tree · Entropy

1 Introduction

Machine Learning has been, in the recent years, one of the most popular research
areas in the Computer Science literature, with a variety of proposed models
based on different ideas and assumptions (e.g. neural networks, Support Vec-
tor Machines, ...). Among these, Decision Tree Learning, both as a standalone
technique and as a foundation for more sophisticated ones (e.g. boosting), has
been one of the more popular approaches, thanks to its efficiency and the inter-
pretability of the induced models. However, one of the major problems of this
approach (and, more in general, of Machine Learning techniques) is the inability
to properly represent and cope with information that is uncertain and/or incon-
sistent. To deal with this information flaws different approaches exist (Fuzzy
Set Theory and Rough Set Theory among the others) but their application to
traditional Machine Learning approaches have not yet been fully explored.

In this paper, we propose two algorithms, based on Decision Tree Learning
and the notion of Orthopair, to properly include uncertainty considerations in
the induction of the models. The rest of the paper is organized as follows. In
Sect. 2 we provide an introduction to Orthopairs and Orthopartitions focusing,
in particular, on uncertainty measures for Orthopartitions. In Sect. 3, we propose
two techniques to apply Orthopartitions to Decision Tree Learning. In particular:
in Sect. 3.1 we propose an approach to Three-Way Decision Tree Learning, while
in Sect. 3.2 we propose an approach to semi-supervised learning using Decision
Trees. We notice that our methods are different from the soft decision trees in
sense of [5]. Indeed, the “soft” part in soft decision trees regards the way to take
a decision, which is still dichotomous. On the contrary, we allow to abstain from
a decision, thus we have three possible outcomes.
c© Springer International Publishing AG, part of Springer Nature 2018
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https://doi.org/10.1007/978-3-319-91476-3_61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91476-3_61&domain=pdf
http://orcid.org/0000-0002-8083-7809


Three-Way and Semi-supervised Decision Tree Learning 749

2 Orthopartitions: Basic Definitions

In this section, we give the basic definitions of orthopairs and introduce the
notion of orthopartition.

2.1 Introduction to Orthopairs

An orthopair on a universe X is a pair of sets (P,N) such that P ∩N = ∅. Since
not necessarily P and N cover the universe, we can define also the set Bnd =
X \ (P ∪ N). Interesting connections with different uncertainty representation
frameworks can be put forward (see [1]). We denote with O(X) the set of all
orthopairs definable on the universe X. We can define a variety of orderings, and
associated algebraic operations, on O(X). For the purposes of this paper we will
consider the so-called truth ordering ≤t defined as:

O1 ≤t O2 iff P1 ⊆ P2 and N2 ⊆ N1

along with the associated join, meet and negation operations:

O1 �t O2 = (P1 ∩ P2, N1 ∪ N2)
O1 �t O2 = (P1 ∪ P2, N1 ∩ N2)

¬O = (N,P )

We say that a set S is consistent with an orthopair O if it holds that

x ∈ P → x ∈ S and x ∈ N → x /∈ S.

That is, all the positive elements and none of the negative ones of the orthopair
are in S, and S can contain also some element in the boundary. We say that two
orthopairs O1, O2 are disjoint if the followings hold:

(Ax O1) P1 ∩ P2 = ∅;
(Ax O2) P1 ∩ Bnd2 = ∅ and Bnd1 ∩ P2 = ∅.

We notice that it is not required that N1 ∩ N2 = ∅.

Example 1. Let us consider the universe U = {1, 2, . . . , 10}. The two orthopairs
O1 = ({1, 2}, {9, 10}) and O2 = ({9}, {1, 2}) are disjoint.

2.2 Orthopartitions

The notion of disjoint orthopairs is used in the following to generalize the concept
of a partition to an orthopartition. Intuitively, an orthopartition represents an
incomplete state of knowledge regarding an underlying, unknown, partition.

Definition 1. An orthopartition is a set O = {O1, ..., On} of orthopairs such
that the following axioms hold:
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(Ax O1) ∀Oi, Oj ∈ O Oi, Oj are disjoint;
(Ax O2)

⋂
i Ni = ∅;

(Ax O3) ∀x ∈ U (∃Oi s.t. x ∈ Bndi) → (∃Oj with i = j s.t. x ∈ Bndj);

The rationale behind the axioms is that we suppose that the orthopairs in the
collection are mutually exclusive (axiom 1) and that the uncertain elements
cannot be only in one of these orthopairs (axiom 3). The axiom 2 expresses a
kind of coverage of the universe.

Example 2. Let us consider the two orthopairs O1 and O2 in Example 1. They are
disjoint but they do not form an orhopartition since 10 ∈ Bnd2 and 10 ∈ Bnd1.
On the other hand, if we also consider O3 = (∅, {1, 2, 9}), then the collection
{O1, O2, O3} is an orthopartition of U .

Definition 2. We say that a partition π is consistent with an orthopartition O
iff ∀Oi ∈ O, ∃Si ∈ π s.t. S is consistent with Oi and the Sis are all disjoint. We
denote as ΠO = {π|π is consistent with O} the set of all partitions consistent
with O.

Entropy for Orthopartitions. Given the definition of an orthopartition we
can give a generalization of the concept of logical entropy, given by Ellerman in
[2] for classical partitions. At first we recall the classical definition: h(π) = dit(π)

|U |2
with π a partition and dit(π) = {(u, u′) ∈ U × U |u, u′ belongs to two different
blocks of π}.

Definition 3. Given an orthopartition O, we define a lower entropy, an upper
entropy and a mean entropy respectively as:

h∗ = min{h(π)|π ∈ ΠO} (1a)
h∗ = max{h(π)|π ∈ ΠO} (1b)

∧
h =

h∗(O) + h∗(O)
2

(1c)

Moreover, also the Shannon entropy can be generalized to orthopartitions. At
first, let us associate with an orthopartition O the set of probability distributions
compatible with O:

PO = {〈p1, ..., pn〉|pi ∈ [
|Pi|
|U | ,

|Pi ∪ Bndi|
|U | ] and

n∑

i=1

pi = 1} (2)

Then, we recall the classical definition of Shannon entropy, for a probability
distribution p = 〈p1, ..., pn〉, HS(p) =

∑n
i=1 pi log2(

1
pi

) and use it to define the
lower, upper and mean Shannon entropies as:

HS∗ = min{HS(p)|p ∈ PO} (3a)
H∗

S = max{HS(p)|p ∈ PO} (3b)
∧

HS =
H∗

S(O) + HS∗(O)
2

(3c)
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Remark 1. In the rest of this work, only the mean entropies
∧
h and

∧
HS will be

used.

Mutual Information for Orthopartitions. In order to provide a measure of
the similarity of two orthopartitions, we can provide a generalized definition of
mutual information.

Given two orthopartitions O1,O2 we define a new meet orthopartition as:

O1 ∧ O2 = {Oi1 �t Oj2|Oi1 ∈ O1 and Oj2 ∈ O2}
to which we can associate the set of consistent partitions according to definition
2. This set corresponds also to the meet of the partitions consistent with O1 and
O2: ΠO1∧O2 = {π∧pσ|π is consistent with O1 and σ is consistent with O2},
where π ∧p σ is the standard meet on partitions: for π = {A1, . . . Am} and
σ = {B1, . . . Bn}, then π ∧p σ = {Ai ∩ Bj |i = 1, . . . , m; j = 1, . . . , n}.

Now, the generalized versions of the classical mutual information based on
Shannon Entropy and the one proposed by Ellerman in [2] are respectively:

I(O1,O2) =
∧

HS(O1) +
∧

HS(O2) −
∧

HS(O1 ∧ O2) (4a)

m(O1,O2) =
∧
h(O1) +

∧
h(O2) −

∧
h(O1 ∧ O2) (4b)

3 Decision Tree Learning

In this section, we are going to introduce two applications of orthopartitions and
generalized mutual information to Decision Tree Learning.

Decision Tree Learning is a popular approach in Machine Learning, in which
the learned model is represented as a Decision Tree. Let D = {x1, ..., xd} ⊆ U
be a dataset over feature set A = {a1, ..., al}.

The classical algorithms for Decision Tree induction (ID3 [6], C4.5 [7]) are
based on the top-down greedy algorithm1.

Input: Dataset D
Output: Decision Tree built on D

1 For each feature a compute the mutual information Ia w.r.t. D ;
2 Select feature amax with maximum mutual information value and create a

decision node on amax (split attribute);
3 Recur on the subsets of D determined by the values of amax;

Algorithm 1: Decision Tree Induction

We can extend the Decision Tree Learning to the case of orthopartitions in
two different ways:
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– In the first generalization, orthopartitions are used to allow induction of
Three-way Decision Trees (based on Three-way Decisions, outlined by Yao
in [9], and similar in spirit to Three-way Decision Trees proposed by Liu et
al. in [4]);

– In the second generalization, orthopartitions are used to allow a form of semi-
supervised learning in the context of Decision Tree Learning.

3.1 Three-Way Decision Tree Learning

As regards the first approach, let D = {x1, ..., x|D|} ⊆ X be a given dataset with
a set of features {a1, ..., am} and a single classification feature C.

We will first consider, for simplicity, that only two classifications are possible,
that is ∀x ∈ D, C(x) ∈ {P,N}, furthermore we will suppose that any learned
model h can classify the instances in three possible ways, that is ∀x ∈ X, h(x) ∈
{P,N,Bnd}, where the Bnd decision corresponds to a decision of abstaining from
judgement.

Let us define two costs ε, α ∈ R+, which represent, respectively, the cost
associated with a classification error and the cost corresponding to an abstention
and let us suppose that α < ε (otherwise abstaining would not be a meaningful
decision). Each feature a, with possible values va

1 , ..., va
k , of dataset D (and,

thus, each decision node in a corresponding induced Decision Tree) naturally
determines an orthopartition on the basis of ε and α.

Let Da
i = {x ∈ D|va(x) = va

i } be the set of instances that have value va
i for

feature a. If we associate to Da
i the classification

Ca
i = argmaxj∈{P,N}{|{x ∈ Da

i |C(x) = j}|}
we can compute the expected classification error cost as:

E(Da
i |Ca

i ) = ε ∗ minj∈{P,N}{|{x ∈ Da
i |C(x) = j}|} (5)

Similarly we can compute the expected abstention error cost as:

E(Da
i |Bnd) = α|Da

i | (6)

Thus, if E(Da
i |Ca

i ) ≤ E(Da
i |Bnd), that is the cost associated with a classification

error is less than the cost that we would incur if we were to abstain, we assign
to the instances in Da

i the label Ca
i (that is, h(x) = Ca

i ); otherwise we assign to
the instances in Da

i the label Bnd.
It is evident that this process of assigning labels determines an orthopair

Oa = (Pa, Na) and, thus, an orthopartition Oa = {Oa,¬Oa}, where:

Pa =
⋃

{Da
i |Ca

i = P} and Na =
⋃

{Da
i |Ca

i = N}.

We can thus, for each feature a, compute the mutual information m between
Oa and the currently examined dataset D and choose the split attribute as the
feature a which gives the greatest value of mutual information.
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This process can be synthetically described by the following algorithm:

Input: Dataset D, error cost ε, abstention cost α
Output: Three-way Decision Tree built on D

1 For each feature a compute the corresponding orthopartition Oa using
ε, α;

2 For each orthopartition Oa compute the mutual information m(D,Oa);
3 Select as split attribute the feature amax which gives the greatest mutual

information value;
4 Recur on the subsets of D determined by amax;

Algorithm 2: Three-way Decision Tree construction

The algorithm is illustrated by the following example.

Example 3. Let us consider the dataset given in Table 1.

Table 1. Dataset on weather conditions.

Temperature Outlook Humidity Windy Do sport?

Hot Sunny High False No

Hot Sunny High True No

Hot Sunny High False Yes

Cool Rain Normal False Yes

Cool Overcast Normal True Yes

Mild Sunny High False No

Cool Sunny Normal False Yes

Mild Rain Normal False Yes

Mild Sunny Normal True Yes

Mild Overcast High True Yes

Hot Overcast Normal False Yes

Mild Rain High True No

Cool Rain Normal True No

Mild Rain Normal False Yes

Let us suppose that ε = 1 and α = 0.4, thus we get

Temperature No Yes H Shannon Error cost Abstention cost

Hot 2 2 1 2 1.6

Mild 2 4 0.92 2 2.4

Cool 1 3 0.81 1 1.6
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Outlook No Yes H Shannon Error cost Abstention cost

Sunny 3 3 1 3 2.4

Overcast 0 3 0 0 2.4

Rain 2 3 0.97 2 2

Humidity No Yes H Shannon Error cost Abstention cost

High 4 3 0.98 3 2.8

Normal 1 6 0.59 1 2.8

Windy No Yes H Shannon Error cost Abstention cost

False 2 6 0.81 2 3.2

Normal 3 3 1 3 2.4

Comparing the Three-Way Decision Tree Learning algorithm with the ID3
algorithm (thus using Information Gain (IG) as split criterion) we obtain the
following values (Table 2):

Table 2. Mutual Information values according to Eq. (4a) and standard Information
Gain in ID3.

Feature I IG

Temperature 14
196

0.03

Outlook 24
196

0.165

Humidity 25
196

0.155

Windy 24
196

0.05

Thus, at the first step, our algorithm will select Humidity as the split
attribute, while ID3 would select Outlook. The two complete trees will result
as in Figs. 1 and 2.

It is easy to see that our algorithm produces a better tree from the point of
view of the total error cost: our algorithm incurs a cost of 0.8 while the ID3 -
constructed tree incurs a cost of 1.

This approach can be extended to consider more than two classes, let C =
{C1, ..., Cn} be the set of the possible classifications.

In order to extend this approach we have to consider multiple possible absten-
tion decisions. We denote the decision of establishing that a certain instance x
belongs to one of the classes Ci, Ci+1, ..., Ci+k but we abstain to precisely decide
which one as Bndi,i+1,...,i+k, with {i, i + 1, ..., i + k} ⊆ {1, ..., n}.

By extending decisions in this way the abstention cost can no longer be a
constant value α.
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Outlook

Humidity

Temperature

Windy

N (0/1) N (1/1)

N (0/1)

P (2/0)

P (3/0) Windy

P (3/0) P (0/2)

sunny

high

hot

true false

mild

normal

overcast rainy

false true

Fig. 1. Decision Tree constructed via the ID3 algorithm (choosing negative classifica-
tion in case of indecision)

Humidity

Outlook

Temperature

Windy

N (0/1) ⊥(1/1)

N (0/1)

P (1/0) N (0/1)

Outlook

P (2/0) P (2/0) Windy

P (3/0) N (0/1)

high

sunny

hot

true false

mild

overcast rainy

normal

sunny overcast rainy

false true

Fig. 2. Decision Tree constructed via the Three-way Decision Tree algorithm

Proposition 1. If the abstention cost α is a constant, then choosing decision
Bndi,i+1,...,i+k is always costlier than choosing decision Bnd1,...,n.

Proof. ε ∗ |{x ∈ Da
i |C(x) /∈ {i, i + 1, ..., i + k}}| +

α ∗ |{x ∈ Da
i |C(x) ∈ {i, i + 1, ..., i + k}}| ≥ α ∗ |Da

i |.
The solution is to define α as a function α : {1, ..., |A|} → R+ such that,

given A,B ⊆ C, it holds |A| ≤ |B| → α(|A|) ≤ α(|B|).
Remark 2. Note that, since in general every subset of classes should be consid-
ered, the complexity of choosing the split attribute is exponential in the number
of features |A|, thus, without using heuristics to limit the search space, this
approach is applicable only if A is small.
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3.2 Semi-supervised Decision Tree Learning

As regards the second approach, let D be a dataset. The classification, in this
case, could be missing for some of the instances, that is ∀x ∈ D, C(x) ∈
{P,N,⊥} where ⊥ represents a missing classification.

Such a dataset directly represents an orthopartition and we can naturally
generalize the classical induction algorithm by considering the mutual informa-
tion as defined for orthopartitions. For each feature a, with values va

1 , ..., va
k , let

us denote with Da
i the (sub)-orthopartition containing the instances x ∈ D such

that va(x) = va
i .

We can associate to each of these orthopartitions Da
i the entropy

∧
h(Da

i ) and
then compute the information gain as:

IG(D, a) =
∧
h(D) −

∑

va
i

|{x : va(x) = va
i }|

|D|
∧
h(Da

i ) (7)

Thus, the learning process can be described by the following algorithm:

Input: Dataset D
Output: Decision Tree built on D

1 For each feature a compute the information gain IG(D, a);
2 Select as split attribute the feature amax which gives the highest information

gain;
3 Recur on the (sub)-orthopartitions of D determined by the values of a;

Algorithm 3: Semi-supervised Decision Tree Learning

We illustrate the algorithm with the following example (Table 3).

Table 3. Dataset on weather conditions with missing decisions.

Temperature Outlook Humidity Windy Do sport?

Hot Sunny High False No

Hot Sunny High True No

Hot Sunny High False Yes

Cool Rain Normal False ⊥
Cool Overcast Normal True Yes

Mild Sunny High False No

Cool Sunny Normal False ⊥
Mild Rain Normal False Yes

Mild Sunny Normal True Yes

Mild Overcast High True ⊥
Hot Overcast Normal False Yes

Mild Rain High True ⊥
Cool Rain Normal True No

Mild Rain Normal False Yes
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Example 4. Consider the following dataset D:

The dataset has a value of h∗ = 20
49 , h∗ = 1

2 ,
∧
h = 89

196 . We obtain the following
values of entropies:

Temperature h∗ h∗ ∧
h

hot 1
2

1
2

1
2

mild 5
18

1
2

7
18

cool 3
8

1
2

7
16

Outlook h∗ h∗ ∧
h

sunny 4
9

1
2

17
36

overcast 0 4
9

2
9

rain 8
25

12
25

10
25

Humidity h∗ h∗ ∧
h

high 5
18

1
2

7
18

normal 7
32

15
32

11
16

Windy h∗ h∗ ∧
h

false 3
8

1
2

7
16

normal 4
9

1
2

17
36

Obtaining the following values of information gain: Thus, the algorithm

Feature Information gain

Temperature 0.024

Outlook 0.064

Humidity −0.066

Windy 0.004

would select feature Outlook as split attribute.
The complete tree would result as follows in Fig. 3, where a label (P,N,Bnd)

in the leaf nodes should be interpreted as the number of positive, negative and
unknown classifications in Table 3.

The decision given on the leaf nodes can be given with a majority criterion,
or by combining this approach with the Three-way Decision Tree approach pre-
viously described. In the latter case, the formula for the expected classification
error is modified to take into account the unlabeled instances:

E(Da
i |Ca

i ) = ε ∗ minj∈{P,N}{|{x ∈ Da
i |C(x) = j}|}+

ε

2
∗ |{|{x ∈ Da

i |C(x) = ⊥}| (8)

We can extend this approach to the multi-class case: if the set of possible clas-
sifications is C = {C1, ..., Cn} then each instance is assigned a label in 2C , where
if |C(x)| > 1 it means that the exact classification of instance x is unknown.

This approach represents a direct generalization of the one considering only
two classes since it determines an orthopartition and we can thus apply the
Algorithm 3 described above.
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Outlook

Humidity

Temperature

N (0/1/0) Windy

N (0/1/0) ⊥ (1/1/0)

P (1/0/1)

P (2/0/1) Temperature

P (2/0/1) N (0/1/1)

sunny

high

mild hot

true false

normal

overcast rainy

mild cool

Fig. 3. Decision Tree constructed via the semi-supervised Decision Tree algorithm and
the labeling criterion given for Three-Way Decision Trees (with ε = 1 and α = 0.4).

4 Conclusions

In this work, we proposed two techniques to incorporate uncertainty and incon-
sistency management in Decision Tree Learning, a traditional and popular
Machine Learning approach. The first proposed technique allows the induced
models to abstain from judgment on certain instances, thus enabling a trade-off
between error and this possibility of abstention. It is similar in spirit to the app-
roach developed in [4]. However, our method is a standalone one with a native
uncertainty handling since it builds its own decision tree. The algorithm by Liu
et al. requires the construction of a decision tree with ID3 to be subsequently
modified in order to classify some elements in the boundary region according
to a decision theoretic rough set approach. The second technique, on the other
hand, harnesses the correspondence between orthopartitions and datasets with
missing classifications to enable semi-supervised learning using Decision Trees.
We then showed the application of the two proposed algorithms on two simple
datasets. However a number of issues remain to be considered:

– The first, and most important one, is to test the effective applicability of the
proposed techniques on real datasets, comparing them with existing Machine
Learning techniques;

– As regards the Three-Way Decision Tree Learning algorithm, and specifically
its extension to the multi-class case, it is of interest a study of sensible heuris-
tics, in order to reduce the complexity of choosing the split attributes, which
in the general case, as argued previously, is exponential in the number of
features;

– Studying the applicability of the proposed techniques as a basis for more
sophisticated Machine Learning techniques, in a similar way as classical Deci-
sion Trees are used to support boosting [8] or Random Forests [3].
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S�lowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS
(LNAI), vol. 7413, pp. 1–17. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32115-3 1

https://doi.org/10.1007/978-3-319-25783-9_35
https://doi.org/10.1007/978-3-319-25783-9_35
https://doi.org/10.1007/978-3-7908-1777-5_6
https://doi.org/10.1007/978-0-387-21579-2_9
https://doi.org/10.1007/978-0-387-21579-2_9
https://doi.org/10.1007/978-3-642-32115-3_1
https://doi.org/10.1007/978-3-642-32115-3_1


Author Index

Abdelkhalek, Raoua I-395
Abellán, Joaquín III-739
Agrawal, Utkarsh I-329
Akkaya, Ünal II-621
Alcalde, Cristina I-537
Alcantud, José Carlos R. II-323, II-583, III-3
Alghamdi, Wajdi III-691
Alkhoury, Sami I-86
Alonso, Jose M. I-3
Alonso, Pedro II-344
Alsinet, Teresa II-683
Amblard, Cécile I-86
Amor, Nahla Ben II-633
Amro, Rita N. I-511
Anderson, Derek T. I-115
Antoine, Violaine II-51
Argelich, Josep II-683
Arioua, Mounir III-469
Aşıcı, Emel I-319
Asmuss, Svetlana II-175, II-187
Assumani, Budagwa I-562
Ayachi, Raouia II-633

Baca Ruíz, Luis G. I-699, III-16
Bach Tobji, Mohamed Anis I-407
Bäck, Thomas III-480
Baczyński, Michał I-611, I-673
Bahri, Oumayma III-260
Barghout, Lauren III-453
Barrenechea, Edurne II-416
Bartkowiak, Marcin I-453
Bedregal, Benjamín II-403, III-429
Béjar, Ramón II-683
Bel, Alicia III-74
Belgrave, Danielle III-691
Beliakov, Gleb II-367
Belyakov, Stanislav I-501
Ben Ayed, Safa I-370
Ben Yaghlane, Boutheina I-407
Benadjimi, Noussaiba I-749
Benítez-Caballero, M. José I-549
Bentkowska, Urszula I-661, III-391
Bergmans, Dennis III-404
Betremieux, Isabelle I-562

Bettiche, Mehdi III-629
Biloborodova, Tetiana II-608
Bin Amer, Hadeel Hatim II-528
Bisson, Gilles I-86
Bobillo, Fernando II-100
Bock, Christian I-431
Bodjanova, Slavka I-160
Boeckling, Toon III-517, III-529
Boer, Arjen-Kars III-150
Borzová, Jana I-219
Bouchon-Meunier, Bernadette II-332
Boudet, Laurence III-74
Boukhris, Imen I-395
Bouslama, Rihab II-633
Bousnina, Fatma Ezzahra I-407
Bozhenyuk, Alexander I-501
Brabant, Quentin I-253
Bronselaer, Antoon III-517, III-529
Burda, Michal III-165, III-175
Burguillo, Juan Carlos III-284
Burusco, Ana I-537
Bustince, Humberto I-266, I-479, II-403,

II-416, II-427
Bustos-Tellez, Camilo Alejandro I-790

Cabañas, Rafael III-616
Cabrera, Inma P. I-596
Cadenas, Jose M. II-75
Calado, Pável III-748
Calvo Sánchez, Tomasa I-207
Campagner, Andrea II-748
Campaña, Jesús R. I-289, II-3, II-647
Campión, María J. III-3
Candeal, Juan C. III-3
Cano, Andrés III-616
Cano, José R. III-739
Cao, Nhung III-28, III-175, III-187
Capel, M. I. I-52
Cariou, Stéphane I-562
Carrera, Diana III-678
Carvalho, André III-748
Carvalho, Joao Paulo III-748
Cascón, José Manuel III-99
Castellano, Javier G. III-739



Castiello, Ciro I-3
Castillon, François III-74
Castro, Jorge II-226
Casula, Olivier III-74
Catalán, Raquel G. III-3
Çaylı, Gül Deniz I-310
Chądzyńska-Krasowska, Agnieszka II-515
Chaignaud, Mathilde I-562
Chan, Tak-Ming III-150
Chebbah, Mouna I-407, I-418
Chehibi, Manel I-418
Chen, Jesse Xi III-715
Chen, Peipei III-150
Ciebiera, Krzysztof II-503
Ciucci, Davide II-748
Clark, Patrick G. II-480
Cobo, Manuel J. III-667
Codara, Pietro II-275
Coletti, Giulianella II-239
Colla, Davide I-74
Cordero, Pablo I-585, I-596
Cornejo, M. Eugenia III-541
Couceiro, Miguel I-253
Cravero, Fiorella III-211
Cubillo, Susana I-723

Daňková, Martina III-199
de Andrés Calle, Rocio III-99
De Baets, Bernard II-287, II-313, II-359,

II-379, II-389
de Cooman, Gert II-201
de la Iglesia Campos, Manuel II-696
de la Torre, Juan Carlos III-272, III-284
De Maere, Geert I-687
De Miguel, Laura II-416
De Mol, Robin I-278
de Saint-Cyr, Florence Dupin III-86
de Souza Sampaio Filho, Antonio Carlos

I-777
De Tré, Guy I-278, III-517, III-529
de Vargas, Rogério R. III-429
Decký, Marián I-151
Delgado Calvo-Flores, Miguel III-16
Delgado, Miguel I-289, I-699, II-647
Delgado, Rosario I-357
Deng, Xiaofei II-724
Detyniecki, Marcin I-100
Dhama, Saransh I-511
Di Caprio, Debora III-299
di Forti, Marta III-691

Díaz, Irene II-313, II-344
Díaz, Mónica Fátima III-211
Díaz, Susana II-323
Díaz-Rodríguez, Natalia II-100
Dimuro, Graçaliz Pereira I-479, II-403
Dinu, Anca I-171
Dinu, Liviu P. I-171
Dockhorn, Alexander II-621
Dolný, Aleš III-175
Domínguez, Enrique III-417
Dorronsoro, Bernabé III-223, III-272,

III-284
Drewniak, Michał II-503
Du, Xiaoxiao I-115
Du, Yizhuo I-467
Dubois, Didier I-253, I-710
Duong, Toan Ngoc II-301
Duran, Jeronimo III-137
Dusserre, Gilles III-111
Dyachenko, Yuriy II-608
Dyczkowski, Krzysztof III-381

Ebrahimnejad, Ali III-310, III-319
Elouedi, Zied I-370, I-383, I-395
Enciso, Manuel I-585
Esteva, Francesc II-275, II-683
Eyoh, Imo I-687

Falkman, Göran III-248
Fanlo, Jean-Louis I-562
Fargier, Hélène III-578
Fazlikhani, Fatemeh II-551
Fernández, Javier I-266, I-479
Fernandez-Bassso, Carlos II-15
Fernández-Olivares, Juan III-642
Fernandez-Peralta, Raquel I-636
Figueroa-García, Juan Carlos I-790
Flaminio, Tommaso II-265
Földesi, Péter I-523
Foorthuis, Ralph II-26
Franco, Camilo III-441
Franzoi, Laura I-171
Freddo, Ricardo III-429
Frick, Max II-621
Fuchs, Caro III-150
Fuster-Parra, Pilar I-207

Gabarro, Joaquim II-226
Gagolewski, Marek II-367
Gaigne, Frédéric III-74

762 Author Index



Galafassi, Cristiano III-429
Galar, Mikel II-427
Galindo, Cipriano III-504
Galindo, Pedro L. III-272
Gao, Cheng II-480
García-Cascales, María Socorro III-469
García-Sánchez, Pablo III-236, III-342
García-Sanz, M. D. III-52
García-Valdez, Mario III-342
Garibaldi, Jonathan M. I-329
Garrido, M. Carmen II-75
Gass, Sidnei L. B. III-429
Godo, Lluis II-275, II-683
Gómez, Daniel III-441
Gómez-Olmedo, Manuel III-616
González-Artega, Teresa III-99
Gonzalez-Jimenez, Javier III-504
Grivet Sébert, Arnaud I-62
Grzegorzewski, Przemysław III-40
Grzymala-Busse, Jerzy W. II-480
Guada, Carely III-441
Guerrero, José I-195
Guerrero-González, Antonio III-469
Guillaume, Romain III-86, III-578
Gutiérrez-Batista, Karel II-3

Hadjali, Allel I-407, I-749
Halčinová, Lenka I-219
Hara, Keitarou II-490
Harispe, Sébastien I-297, III-111
Harmati, István Á. I-490
Hatwágner, Miklós F. I-490
Havens, Timothy C. I-115, I-329
Heines, Serge III-404
Hepting, Daryl H. II-528
Hernández-Varela, Pablo I-723
Herrera, Francisco III-63, III-137
Herrera-Viedma, Enrique III-667
Hidouci, Walid I-749
Hirano, Shoji II-538
Hojas-Mazo, Wenny II-696
Holčapek, Michal II-151, III-603, III-703
Hommersom, Arjen III-565
Hryniewicz, Olgierd I-453
Hu, Jun II-455
Hu, Mengjun II-724
Huang, Siyu II-455
Hudec, Samuel I-140
Hudelot, Céline II-88
Huitzil, Ignacio II-100

Ibrahim, Omar A. I-467
Imoussaten, Abdelhak I-297, III-111
Induráin, Esteban III-3
Islam, Muhammad Aminul I-115
Iwata, Haruko II-538

James, Simon II-367
Janaqi, Stefan I-562
Janiš, Vladimír II-344
Janusz, Andrzej II-503
Jenei, Sándor II-253
Jiménez, Celina I-52
John, Robert I-687
Jurio, Aranzazu II-427

Kacprzyk, Janusz II-63, III-553
Kaczmarek-Majer, Katarzyna I-453
Kalina, Martin I-160
Karlsson, Alexander III-248
Kaymak, Uzay III-150
Keller, James I-467
Kimura, Tomohiro II-538
Knyazeva, Margarita I-501
Kobza, Vladimír II-344
Kóczy, László T. I-490, I-511, I-523
Kokainis, Martins II-175, II-187
Kolesárová, Anna I-244
Kondratenko, Galyna II-596
Kondratenko, Yuriy P. II-570, II-596
Korobko, Oleksiy V. II-570
Kosheleva, Olga II-127
Kowalczyk, Wojtek III-480, III-492
Kozlov, Oleksiy V. II-570
Kreinovich, Vladik II-127
Krichen, Saoussen III-354
Krídlo, Ondrej I-574
Król, Anna I-661
Kruse, Rudolf II-621
Kuiper, Ivo III-404

L’Héritier, Cécile III-111
Labroche, Nicolas II-51
Laengle, Sigifredo III-667
Lafuente, Julio II-416
Lamata, María T. III-330
Lara, Lucero III-342
Laugel, Thibault I-100
Lefevre, Eric I-370, I-383
Lermanda-Senoceaín, Tomás I-27
Lesot, Marie-Jeanne I-100

Author Index 763



Liao, Huchang III-63
Lieto, Antonio I-74
Limam, Olfa III-354
Liu, Hua-Wen I-611
Liu, Manxia III-565
Llamazares, I. III-52
Lobo, David III-541
Lopez-Molina, Carlos I-266, II-389
López-Rubio, Ezequiel III-417
Lozano, Jose A. III-678
Lu, Xudong III-150
Lucas, Peter J. F. III-565
Lucca, Giancarlo II-403
Luque-Baena, Rafael Marcos III-417

Machanje, Daniel I-762
Magdalena, Luis I-16
Manrique, M. A. III-52
Mansilla, Luis I-699
Mantas, Carlos J. III-739
Marco-Detchart, Cedric I-266
Marinescu, Julien I-86
Marsala, Christophe I-100, I-762, II-332
Martin, Arnaud I-418
Martin-Bautista, Maria J. II-3, II-15
Martínez, María Jimena III-211
Martínez-Araneda, Claudia I-27
Mas, M. I-649
Masegosa, Andrés R. III-616
Massanet, Sebastia I-623, I-636
Mathiason, Gunnar III-248
Medina, Jesús I-549, III-541
Mencar, Corrado I-3
Mensa, Enrico I-74
Merelo Guervós, Juan Julian III-236, III-342
Merigó, José M. III-667
Mesiar, Radko I-151, I-244, II-403, II-416
Miñana, Juan-José I-195, I-231
Miranda, Enrique II-201, II-214
Mirshahi, Soheyla III-28
Miś, Katarzyna I-673
Močkoř, Jiří II-115
Molina-Cabello, Miguel A. III-417
Monroy, Javier III-504
Montero, Javier III-441
Montes, Ignacio II-214
Montes, Rosana III-137
Montes, Susana II-313, II-323, II-344
Montmain, Jacky I-297
Montreer, Pascale I-562

Mora, Angel I-585
Mora, Antonio Miguel III-236
Moral, Serafín III-591, III-616, III-739
Morales, Jeovani III-137
Moreno, Francisco-Angel III-504
Moreno-Garcia, Juan II-671
Motakefi, Pegah II-551
Motameni, Homayun III-310
Mouffok, Moncef Zakaria III-629
Mroczek, Teresa II-480
Mueller, Nadine III-124
Muhanna, Muhanna I-511
Murinová, Petra III-165
Murray, Robin III-691
Murtagh, Fionn III-691

Nakata, Michinori II-490
Nesmachnow, Sergio III-223
Nguyen, Linh II-151
Nielandt, Joachim III-517
Nielsen, Jon III-441
Novák, Vilém I-736

Ojeda-Aciego, Manuel I-574, I-596
Olivas, José A. I-443, II-696
Orero, Joseph I-762

Pagola, Miguel I-266
Pasi, Gabriella I-342
Paternain, Daniel II-427
Pavliska, Viktor III-165
Pedram, Mir Mohsen II-551
Pegalajar Cuéllar, Manuel III-16
Pegalajar Jiménez, María del Carmen III-16
Pegalajar, M. C. I-52
Pegalajar, María Carmen I-699
Pȩkala, Barbara III-391
Peláez-Moreno, Carmen I-596
Pelta, David A. III-330, III-657
Perea-Ortega, José M. II-659
Pereira-Fariña, M. I-40
Pérez, Raúl III-642
Pérez-Fernández, Raúl II-313, II-359, II-379
Perfilieva, Irina II-163
Petiot, Guillaume I-183
Petturiti, Davide II-239
Picard, Frédéric I-562
Pierrard, Régis II-88
Pijnenburg, Mark III-492
Pinar, Anthony J. I-329

764 Author Index



Pivert, Olivier II-301
Poli, Jean-Philippe I-62, II-88, III-74
Ponzoni, Ignacio III-211
Prade, Henri I-253, I-710
Pu, Ida III-691
Puebla-Martínez, Manuel E. II-659

Radicioni, Daniele P. I-74
Ramírez-Poussa, Eloísa I-549
Ramos-Soto, A. I-40
Rasmussen, Jesper III-441
Reformat, Marek Z. III-715
Renard, Xavier I-100
Rico, Agnès I-253, I-710
Ricoux, Philippe I-562
Riera, Juan Vicente I-623
Riesgo, Ángel II-344
Rodríguez, J. Tinguaro III-441
Rodriguez-Fraile, Gonzalo I-52
Roig, Benoît III-111
Romdhane, Lotfi Ben II-39
Romero, Francisco P. I-443, II-659, II-696
Rosado, Jesús II-671
Rosete, Alejandro III-330
Rozenberg, Igor I-501
Rubio-Manzano, Clemente I-27
Rueda Delgado, Ramón III-16
Ruiz, M. Dolores II-15
Ruiz, Patricia III-272, III-284
Ruiz-Aguilera, D. I-649
Ruiz-Sarmiento, Jose-Raul III-504
Runkler, Thomas A. I-127
Russini, Alexandre III-429
Rutkowska, Aleksandra I-453

Sader, Marc II-379
Sakai, Hiroshi II-490
Salem, Mohammed III-236
Salhaoui, Marouane III-469
Saminger-Platz, Susanne I-244
Sanchez Ruiz de Gordoa, Javier II-389
Sanchez, J. R. I-52
Sánchez-Marañón, Manuel I-699
Santana, Roberto III-678
Santos-Arteaga, Francisco Javier III-299
Santos-García, Gustavo II-583
Sanz, José Antonio II-403
Sbai, Ines III-354
Scharnhorst, Volkher III-150

Schnattinger, Klemens III-124
Schustik, Santiago III-211
Segura-Muros, JoséÁ. III-642
Segura-Navarrete, Alejandra I-27
Serna, Maria II-226
Serrano-Guerrero, Jesus I-443
Sesma-Sara, Mikel II-416
Sgarro, Andrea I-171
Shalaeva, Vera I-86
Shao, Rui II-455
Shili, Hechmi II-39
Sidenko, Ievgen II-596
Simón-Cuevas, Alfredo II-659, II-696
Singh, Anand P. II-163
Sirol, Sabine I-562
Skarga-Bandurova, Inna II-608
Skirzyński, Julian II-443
Škorupová, Nicole III-603
Ślęzak, Dominik II-503
Smits, Grégory II-301
Soria, Daniele I-329
Sosnowski, Łukasz II-443, II-467
Špirková, Jana I-140
Stachowiak, Anna III-381
Stahl, Daniel III-691
Ståhl, Niclas III-248
Stamate, Daniel III-691
Stawicki, Sebastian II-503
Stella, Fabio III-565
Stencel, Krzysztof II-503
Štěpnička, Martin III-175, III-187
Straccia, Umberto II-100
Stupňanová, Andrea I-151
Sugeno, Michio III-727
Šupina, Jaroslav I-219
Sutton-Charani, Nicolas I-297
Szczuka, Marcin II-467
Szmidt, Eulalia III-553

Talbi, El-Ghazali III-260
Taniguchi, Tadanari III-727
Tanscheit, Ricardo I-777
Tenjo-García, Jhoan Sebastian I-790
Tibau, Xavier-Andoni I-357
Tiwari, S. P. II-163
Torrens, Joan I-623, I-649
Torres, Marina III-657
Torres-Blanc, Carmen I-723
Torres-Parejo, Úrsula I-289, II-647

Author Index 765



Trabelsi, Asma I-383
Tsumoto, Shusaku II-538
Tüű-Szabó, Boldizsár I-523

Uriz, Mikel II-427

Valero, Óscar I-195, I-207, I-231
Valota, Diego II-275
Valverde-Albacete, Francisco J. I-596
Van Camp, Arthur II-201
van Loon, Saskia III-150
van Mook, Walther III-404
van Stein, Bas III-480
Vanderfeesten, Irene III-404
Vantaggi, Barbara II-239
Vellasco, Marley M. B. R. I-777
Verdegay, José L. III-319, III-330, III-657
Verhoest, Niko E. C. II-287
Vernieuwe, Hilde II-287
Vicig, Paolo II-214
Vidal-Castro, Christian I-27
Vila, Maria-Amparo I-289, II-3, II-647
Villa, Cristina II-75

Viviani, Marco I-342
Vlašánek, Pavel II-139

Wagner, Christian I-115, I-329
Walterscheid, Heike III-124
Wang, Guoyin II-711
Wang, Hao III-480
Wang, Wanru III-667
Wilbik, Anna III-150, III-404
Wójtowicz, Andrzej III-381
Wu, Xingli III-63

Yager, Ronald R. III-715
Yao, JingTao II-736
Yao, Yiyu II-528, II-724
Yu, Dejian III-667
Yu, Hong II-711

Zadrożny, Sławomir II-63
Zakaria, Chahnez III-629
Zapata, Hugo I-479
Zelaya-Huerta, Victoria II-389
Zermeño, Noe III-137
Zhang, Yan II-736
Żywica, Patryk III-369, III-381

766 Author Index


	Preface
	Organization
	Contents – Part II
	Fuzzy Methods in Data Mining and Knowledge Discovery
	Fuzzy Analysis of Sentiment Terms for Topic Detection Process in Social Networks
	1 Introduction
	2 Overview of Our Topic Detection Approach
	2.1 Syntactic Preprocessing
	2.2 Semantic Preprocessing
	2.3 Hierarchical Clustering
	2.4 Cluster Labeling

	3 Sentiment Influence in Topic Detection
	3.1 SentiWordNet 3.0
	3.2 SenticNet 3
	3.3 Flexible Treatment of Sentiment Terms

	4 Experiments
	4.1 Data Sets
	4.2 Evaluation
	4.3 Results and Discussion

	5 Conclusions
	References

	Fuzzy Association Rules Mining Using Spark
	1 Introduction
	2 Preliminary Concepts and Related Work
	3 Fuzzy Association Rules
	4 BDFARE Algorithm
	5 Experiments and Results
	5.1 Results

	6 Conclusions and Future Research
	References

	A Typology of Data Anomalies
	Abstract
	1 Introduction
	2 Related Work
	3 Typology of Anomalies
	4 Discussion
	5 Conclusion
	References

	IF-CLARANS: Intuitionistic Fuzzy Algorithm for Big Data Clustering
	1 Introduction
	2 Preliminaries
	2.1 Original Fuzzy C-Means (FCM)
	2.2 Intuitionistic Fuzzy Sets (IFSs)

	3 The Proposed Algorithm
	3.1 Our Contribution
	3.2 CLARANS Algorithm
	3.3 Intuitionistic Fuzzy CLARANS (IF-CLARANS)
	3.4 Estimating the Maximum Number of Neighbors Examined

	4 Experimental Results
	4.1 Experimental Environments
	4.2 The Comparison of Clustering Quality

	5 Conclusion
	References

	Semi-supervised Fuzzy c-Means Variants: A Study on Noisy Label Supervision
	1 Introduction
	2 Semi-supervised Clustering Algorithms
	3 Mapping Function
	4 Experiments
	4.1 Experimental Settings
	4.2 Choice of Parameters
	4.3 Comparative Experiments

	5 Conclusion
	References

	Towards a Hierarchical Extension of Contextual Bipolar Queries
	1 Introduction
	2 Bipolar Fuzzy Queries
	3 Contextual Bipolar Queries
	4 Hierarchical Contextual Bipolar Queries
	5 Concluding Remarks
	References

	Towards an App Based on FIWARE Architecture and Data Mining with Imperfect Data
	1 Introduction
	2 Developing a Social Application from Smartphone Sensors
	3 Intelligent Data Analysis Module and Data Preprocessing
	3.1 Data Collection and Preprocessing
	3.2 Data Mining

	4 Preliminary Evaluation of the IDA Process
	4.1 Dataset Description
	4.2 Parameter Configuration
	4.3 Preliminary Results
	4.4 Building the IDA Module

	5 Conclusion and Future Works
	References

	A Fuzzy Close Algorithm for Mining Fuzzy Association Rules
	1 Introduction
	2 Related Works
	2.1 Fuzzy Association Rule Mining
	2.2 The Close Algorithm

	3 Fuzzified Close Algorithm
	3.1 Fuzzy Sets
	3.2 Formal Concept Analysis
	3.3 Fuzzy Closure Operator
	3.4 Support and Confidence
	3.5 Algorithm Description
	3.6 Example

	4 Experimental Results
	4.1 Datasets
	4.2 Results and Discussion

	5 Conclusion
	References

	Datil: Learning Fuzzy Ontology Datatypes
	1 Introduction
	2 Background
	2.1 Fuzzy Ontologies
	2.2 Clustering

	3 The Datil System
	4 Use Case: Semantic Lifestyle Profiling
	5 Conclusions and Future Work
	References

	Fuzzy Transforms: Theory and Applications to Data Analysis and Image Processing
	Axiomatic of Inverse Lattice-Valued F-transform
	1 Introduction
	2 Upper and Lower F-transforms
	3 Axiomatic Definition of Inverse F-transforms
	4 Conclusions
	References

	Why Triangular Membership Functions are Often Efficient in F-transform Applications: Relation to Probabilistic and Interval Uncertainty and to Haar Wavelets
	1 Formulation of the Problem
	2 Analysis of the Problem and the Main Ideas Behind Our Explanation
	3 Case of Interval Uncertainty: Precise Formulation of The Problem and Its Solution
	4 Case of Probabilistic Uncertainty: Precise Formulation of The Problem and Its Solution
	References

	Enhanced F-transform Exemplar Based Image Inpainting
	1 Introduction
	2 Preliminaries and State of the Art
	3 F-transform
	3.1 F-Transform of Various Degrees

	4 Novel Algorithm
	5 Examples
	6 Conclusion
	References

	A Novel Approach to the Discrete Fuzzy Transform of Higher Degree
	1 Introduction
	2 Preliminaries
	2.1 Fuzzy Partition
	2.2 Continuous F-transform of Higher Degree

	3 Higher Degree Fuzzy Transform for Discrete Functions
	3.1 Novel Definitions of the Discrete Fm-transform
	3.2 Estimation of the Reconstruction Error

	4 Illustration Examples
	5 Conclusions
	References

	Lattice-Valued F-Transforms as Interior Operators of L-Fuzzy Pretopological Spaces
	1 Introduction
	2 Preliminaries
	3 Fuzzy Pretopology and Čech Interior Operator
	4 L-Fuzzy Pretopology, Topology and Their Interior Operators
	5 L-Fuzzy Partition and Lattice-Based F-transform
	6 F"3223379 -Transform as a Čech Fuzzy Interior Operator
	7 Conclusion
	References

	Modified F-transform Based on B-splines
	1 Introduction
	2 Preliminaries
	2.1 Generalized Fuzzy Partition
	2.2 Discrete  Fm-transform
	2.3 Fuzzy Partition Based on B-splines

	3 Extended FPB and Modified F-transform
	3.1 eFPB: An Extension of FPB
	3.2 Extrapolation Operators
	3.3 Modification of Fm-transform

	4 Approximation of Polynomials and Smooth Functions
	5 Conclusion
	References

	Collocation Method for Linear BVPs via B-spline Based Fuzzy Transform
	1 Introduction
	2 Preliminaries
	2.1 Fuzzy Partition Based on B-splines
	2.2 Discrete F-transform

	3 Extended FPB and the Modified F-transform
	4 Collocation with Composite  -transform
	5 Numerical Examples
	6 Conclusion
	References

	Imprecise Probabilities: Foundations and Applications
	Natural Extension of Choice Functions
	1 Introduction
	2 Preliminary Concepts
	3 Natural Extension of Rejection Functions
	4 Connection with Desirability
	5 Examples
	5.1 Choice Functions That Are No Infima of Binary Choice Functions
	5.2 Natural Extension and Indifference

	6 Conclusions
	References

	Approximations of Coherent Lower Probabilities by 2-monotone Capacities
	1 Introduction
	2 Preliminary Concepts
	3 Approximations by Linear Programming
	4 Particular Cases
	4.1 Pari-Mutuel Models
	4.2 -contamination Models

	5 Comparison with Other Approaches
	5.1 Quadratic Problems
	5.2 The Total Variation Distance
	5.3 The Weber Set

	6 Approximations of Coherent Lower Previsions
	7 Conclusions
	References

	Web Apps and Imprecise Probabilitites
	1 Introduction
	2 Orchestrations in Reliable Environments
	3 Orchestrations and Probabilistic Information
	4 Daemonic Choice and Imprecise Probabilities
	5 An Example of Application
	6 Other Applications
	7 Conclusion and Open Problems
	References

	Conditional Submodular Coherent Risk Measures
	1 Introduction
	2 Conditional Submodular Functionals
	3 Conditional Submodular Coherent Risk Measures
	4 Consistence of a Conditional Risk Measure Assessment
	5 Conclusions
	References

	Mathematical Fuzzy Logic and Mathematical Morphology
	On the Structure of Group-Like FLe-chains
	1 Introduction and Preliminaries
	2 Results
	2.1 Group-Like FLe-algebras Vs. Partially Ordered Abelian Groups
	2.2 Construction of Involutive FLe-algebras
	2.3 Decomposition of Group-Like FLe-algebras

	References

	Logics for Strict Coherence and Carnap-Regular Probability Functions
	1 Introduction and Motivation
	2 Preliminaries
	2.1 A Complete Axiomatization for Fuzzy Probabilistic Logics

	3 A Logical Characterization of Strict Coherence
	4 A Modal Logic for Carnap-Regular Probabilities
	5 Conclusions and Future Work
	References

	Connecting Systems of Mathematical Fuzzy Logic with Fuzzy Concept Lattices
	1 Introduction
	2 Preliminaries
	2.1 Basic Notions on Formal Concept Analysis
	2.2 On t-Norm Based Fuzzy Logics

	3 The Concept Lattice of Formulas and Evaluations
	3.1 An Example: The Case of Ł3

	4 The Natural Concept Lattice of a Logic
	4.1 Constructing the Concept Lattice of the Logic Ł3

	5 Conclusions and Further Developments
	References

	Spatio-Temporal Drought Identification Through Mathematical Morphology
	1 Introduction
	2 Data and Study Region
	3 Data Pre-processing and Drought Identification
	3.1 Selection of the Threshold for Defining a Drought
	3.2 Delineation of Droughts Through Mathematical Morphology

	4 Drought Characteristics
	5 Conclusions
	References

	Measures of Comparison and Entropies for Fuzzy Sets and Their Extensions
	On Dissimilarity Measures at the Fuzzy Partition Level
	1 Introduction
	2 Preliminary Notions
	2.1 Fuzzy-Set-Based User Vocabulary
	2.2 Item Rewriting Vector
	2.3 Properties of a Dissimilarity Measure at the Partition Level
	2.4 Behavior of Existing Approaches

	3 A Dissimilarity at the FP Level
	3.1 For Numerical Attributes
	3.2 For Categorical Attributes

	4 Conclusion and Perspectives
	References

	Monotonicity of a Profile of Rankings with Ties
	1 Introduction
	2 Monotonicity of a Profile of Rankings Without Ties
	3 Monotonicity of a Profile of Rankings with Ties
	4 Signatures and Ordered Signatures
	5 Conclusions and Open Problems
	References

	Consistency Properties for Fuzzy Choice Functions: An Analysis with the Łukasiewicz t-norm
	1 Introduction
	2 Background and Definitions
	3 Connection Between Consistency Properties
	4 Open Problems
	5 Conclusions
	References

	Entropy and Monotonicity
	1 Introduction
	2 Monotonicity of Entropy Measures
	2.1 Partial Order
	2.2 Weak Recursivity
	2.3 Weak Additivity

	3 Diverse Entropy Measures
	3.1 Shannon and Weighted Entropies
	3.2 Measure of Fuzziness
	3.3 Entropy Measures Under Similarity Relations
	3.4 Intuitionistic Entropy Measures

	4 Conclusion
	References

	On the Problem of Comparing Ordered Ordinary Fuzzy Multisets
	1 Introduction
	2 Basic Concepts
	3 Ordered Ordinary Fuzzy Multisets
	4 Measures of Divergence Between OOFMs
	5 Conclusions
	References

	New Trends in Data Aggregation
	The Median Procedure as an Example of Penalty-Based Aggregation of Binary Relations
	1 Introduction
	2 Preliminaries
	3 Binary Relations
	4 The Median Procedure
	5 The Median Procedure as an Example of Penalty-Based Aggregation of Binary Relations
	6 Conclusions
	References

	Least Median of Squares (LMS) and Least Trimmed Squares (LTS) Fitting for the Weighted Arithmetic Mean
	1 Introduction
	2 Preliminiaries
	3 Least Median of Squares (LMS) and Least Trimmed Squares (LTS) Fitting for the Weighted Arithmetic Mean
	3.1 Random Test Data
	3.2 Algorithms Based on Random Sampling
	3.3 General-Purpose Optimization

	4 Conclusions and Future Work
	References

	Combining Absolute and Relative Information in Studies on Food Quality
	1 Introduction
	2 Preliminaries
	2.1 Obtaining a Consensus Vector of Scores
	2.2 Obtaining a Consensus Ranking

	3 Combining Scores and Rankings
	3.1 Improving the Quality of the Assessment of a Consensus Vector of Scores
	3.2 Improving the Quality of the Assessment of a Consensus Ranking
	3.3 Discussion

	4 Conclusions
	References

	Twofold Binary Image Consensus for Medical Imaging Meta-Analysis
	1 Introduction
	2 Twofold Consensus Ground Truth
	2.1 Preliminary Notations
	2.2 Strong and Weak Consensus on Binary Images
	2.3 The Twofold-Consensus Ground Truth
	2.4 Visual Properties of the Set Consensus

	3 Heterogeneity Measurement in Immunohistochemistry Imagery
	3.1 Imaging in Immunochemistry
	3.2 Heterogeneity Measurement in IHC Imagery
	3.3 Case Study: Measurement of Tau Protein

	4 Conclusions
	References

	Pre-aggregation Functions and Generalized Forms of Monotonicity
	Penalty-Based Functions Defined by Pre-aggregation Functions
	1 Introduction
	2 Preliminary Concepts
	3 PAFs Based on Penalty Functions
	4 Characterization of PAFs Based on Penalty Functions
	5 Pre-aggregation Penalty-Based Functions in Image Processing
	5.1 Spatial/Tonal Filters

	6 Conclusion
	References

	Strengthened Ordered Directional and Other Generalizations of Monotonicity for Aggregation Functions
	1 Introduction
	2 Preliminaries
	3 The Class of Strengthened Ordered Directionally Monotone Functions
	4 Properties and Connections of the Different Notions of Monotonicity
	5 Construction Methods
	6 Characterization of Monotonicity in Terms of Its Different Generalizations
	7 Conclusions
	References

	A Study of Different Families of Fusion Functions for Combining Classifiers in the One-vs-One Strategy
	1 Introduction
	2 Fusion Functions
	3 One-vs-One Decomposition of Multi-class Problems and Multiple Classifier Systems
	3.1 The One-vs-One Strategy
	3.2 Combining Several OVO in a Multiple Classifier Systems

	4 Experimental Framework
	4.1 Datasets, Performance Measures, Statistical Tests and Algorithms
	4.2 Estimation of the Parameters for the Fusion Functions

	5 Experimental Study
	6 Conclusions
	References

	Rough and Fuzzy Similarity Modelling Tools
	Object [Re]Cognition with Similarity
	1 Introduction
	2 Preliminaries
	3 Similarity Concept
	3.1 Selected Methods of Expressing Similarities

	4 Recognition Framework
	5 Summary
	References

	Attribute Reduction of Set-Valued Decision Information System
	Abstract
	1 Introduction
	2 Preliminaries
	3 A New Similarity Relation Based on Probability
	4 Attribute Reduction of Set-Valued Decision Information System
	5 Experimental Results
	6 Conclusions
	Acknowledgments
	References

	Defuzzyfication in Interpretation of Comparator Networks
	1 Introduction
	2 Networks of Comparators
	3 Comparator Network Interpretation via Defuzzyfication
	4 Illustrative Example
	5 Summary
	References

	A Comparison of Characteristic Sets and Generalized Maximal Consistent Blocks in Mining Incomplete Data
	1 Introduction
	2 Incomplete Data Sets
	3 Characteristic Sets and Maximal Consistent Blocks
	4 Probabilistic Approximations
	4.1 Probabilistic Approximations Based on Characteristic Sets
	4.2 Probabilistic Approximations Based on Maximal Consistent Blocks

	5 Experiments
	6 Conclusions
	References

	Rules Induced from Rough Sets in Information Tables with Continuous Values
	1 Introduction
	2 Rough Sets by Indiscernibility Relations in Complete Information Systems with Continuous Values
	3 Rough Sets by Indiscernibility Relations in Incomplete Information Systems with Continuous Domains
	4 Conclusions
	References

	How to Match Jobs and Candidates - A Recruitment Support System Based on Feature Engineering and Advanced Analytics
	1 Introduction
	2 Related Works
	3 Architecture of the System
	4 Feature Engineering
	5 Example of an Analytic Process in a Recruitment Support System
	6 Experimental Evaluation
	7 Conclusions
	References

	Similarity-Based Accuracy Measures for Approximate Query Results
	1 Introduction
	2 Similarity of Analytical Queries
	3 Selecting the Accuracy Measure of Query Results
	4 Intuitions About the Similarity of Query Results
	5 Conclusions
	References

	A Linear Model for Three-Way Analysis of Facial Similarity
	1 Introduction
	2 A Simple Linear Model of Three-Way Analysis
	3 A Generalized Linear Model of 3-Way Analysis
	3.1 Variance of Raters
	3.2 A Linear Function of Fusion
	3.3 Determining the Weights
	3.4 Determining the Individual Similarity Values

	4 Conclusion
	References

	Empirical Comparison of Distances for Agglomerative Hierarchical Clustering
	1 Introduction
	2 Background
	2.1 Clinical Pathway
	2.2 Clinical Pathway Construction

	3 Definition
	4 Algorithm for Clustering Tree
	4.1 How to Compare Metric Pairs

	5 Experimental Results
	6 Conclusion
	References

	Soft Computing for Decision Making in Uncertainty
	Missing Data Imputation by LOLIMOT and FSVM/FSVR Algorithms with a Novel Approach: A Comparative Study
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Missing Data
	2.2 Missing Value Imputation
	2.3 Missing Value Handling Techniques
	2.4 Data Mining Techniques to Implement a Missing Value Estimator

	3 The Proposed Approach
	3.1 Data Preparing and Preprocessing
	3.2 Applied Methods

	4 Experimental Study
	4.1 Data Sets
	4.2 Graphical Analysis of the Classification

	5 Conclusion
	References

	Two Modifications of the Automatic Rule Base Synthesis for Fuzzy Control and Decision Making Systems
	Abstract
	1 Introduction
	2 Problem Statement and Related Works
	3 Synthesis and Optimization of the Fuzzy Systems Rule Bases
	4 Synthesis and Optimization of the Fuzzy Controller RB for the Reactor ACS of the SPP
	5 Conclusions
	Acknowledgment
	References

	Decision Making Under Incompleteness Based on Soft Set Theory
	1 Introduction
	2 Definitions and Notation
	2.1 Definitions: Soft Sets and Incomplete Soft Sets
	2.2 Previous Literature
	2.3 Notation and Fundamentals of Our Algorithm
	2.4 Domination Sieve

	3 Algorithm: Incomplete Soft Sets for Decision Making Problem
	3.1 The Main Elements of the Algorithm
	3.2 Decision of the Algorithm

	4 Discussion and Conclusions
	References

	Intelligent Decision Support System for Selecting the University-Industry Cooperation Model Using Modified Antecedent-Consequent Method
	Abstract
	1 Introduction
	2 Related Works and Problem Statement
	3 Structure of Fuzzy DSS for Choosing the UIC Model
	4 Antecedent-Consequent Method of Rules Bases Correction of Fuzzy DSS for Choosing the Rational UIC Model
	5 Design of Fuzzy DSS for Decision Making About Most Rational UIC-Model Based on Developed Web-Oriented Tool
	6 Conclusions
	Acknowledgments
	References

	Strategy to Managing Mixed Datasets with Missing Items
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Classes of Missing Data
	2.2 Methods for Handling Missing Data

	3 The Decision Process Governing Strategy for Handling Missing Data and Evaluation Criteria
	3.1 Generalized Strategy for Handling Data with Missing Values
	3.2 Accuracy Metrics and Measuring the Efficiency of Missing Data Imputation

	4 Case Study
	4.1 Data Properties
	4.2 Experiments and Results

	5 Conclusions and Future Work
	References

	Predicting Opponent Moves for Improving Hearthstone AI
	1 Introduction
	2 Hearthstone: Heroes of Warcraft
	3 Flat Monte Carlo and Monte Carlo Tree Search (MCTS)
	4 Previous Work and the Hearthstone AI Competition
	5 Enhancing MCTS by the Prediction of Opponent Hand Cards
	5.1 Bigram Extraction
	5.2 MCTS Enhancement

	6 Evaluation
	6.1 Experimental Setup
	6.2 Discussion

	7 Conclusions and Future Works
	References

	A New Generic Framework for Argumentation-Based Negotiation Using Case-Based Reasoning
	1 Introduction
	2 A New Framework for Argumentation-Based Negotiation Using CBR
	2.1 GANC Architecture
	2.2 Argumentation-Based Negotiation (ABN) Protocol Used in GANC
	2.3 How to Use Arguments in GANC?
	2.4 Illustrative Example

	3 Experimental Study
	3.1 Experimental Protocol
	3.2 Experimental Results

	4 Conclusion
	References

	Soft Computing in Information Retrieval and Sentiment Analysis
	Obtaining WAPO-Structure Through Inverted Indexes
	1 Introduction
	2 APO-Structure and WAPO-Structure
	2.1 APO-Structure torres2
	2.2 WAPO-Structure torres2

	3 Complete Inverted Index
	4 Obtaining the WAPO-Structure Through Complete Inverted Indexes
	5 Example of How to Obtain APO-Structure and WAPO-Structure Through Implications
	6 Conclusions
	References

	Automatic Expansion of Spatial Ontologies for Geographic Information Retrieval
	1 Introduction and Background
	2 Proposed Approach
	2.1 Expansion Processes
	2.2 Generation of New Spatial Relationships

	3 Experiments and Evaluation
	4 Conclusions and Further Work
	References

	Using Syntactic Analysis to Enhance Aspect Based Sentiment Analysis
	1 Introduction
	2 Our Approach
	2.1 Computing the Parse Tree
	2.2 Calculating the Facts and the Rules
	2.3 Generating the Prolog Program

	3 Tests: Some Examples
	4 Conclusions and Future Works
	References

	A Probabilistic Author-Centered Model for Twitter Discussions
	1 Introduction
	2 Twitter Discussion Graph
	3 Author-Centered Model
	4 Probabilistic Weighting Schemes
	4.1 Skeptical Scheme
	4.2 Credulous Scheme
	4.3 Intermediate Scheme

	5 Mining the Set of Consistent Opinions
	5.1 The Argumentation-Based Reasoning System
	5.2 Implementation and Analysis of Results

	6 Conclusions and Future Work
	References

	A Concept-Based Text Analysis Approach Using Knowledge Graph
	Abstract
	1 Introduction and Background
	2 Concept-Based Texts Analysis Model
	2.1 Automatic Concept Mapping from Texts
	2.2 Concept Maps Querying Process
	2.3 Semantic Analysis in the Querying Process

	3 Applicability of CTAM: Case of Study
	4 Conclusions and Future Works
	Acknowledgments
	References

	Tri-partitions and Uncertainty
	An Efficient Gradual Three-Way Decision Cluster Ensemble Approach
	1 Introduction
	2 Framework of Gradual Three-Way Decision Cluster Ensemble
	3 Gradual Three-Way Decision Cluster Ensemble Algorithm
	3.1 Cluster Core
	3.2 Initial Three-Way Decision Clustering Algorithm
	3.3 Strategy of Decision for Pending Data
	3.4 Strategy for Two-Way Decision

	4 Experimental Results
	5 Conclusion
	References

	Modes of Sequential Three-Way Classifications
	1 Introduction
	2 A Framework of Sequential Three-Way Classifications
	2.1 Two-Way Classifications v.s. Three-Way Classifications
	2.2 Sequential Three-Way Classifications

	3 Four Modes of Sequential Three-Way Classifications
	3.1 Mode 1: Multiple Levels of Granularity
	3.2 Mode 2: Probabilistic Rough Set Theory
	3.3 Mode 3: Multiple Models of Classification
	3.4 Mode 4: Sequential Ensemble Classifications

	4 Conclusions
	References

	Determining Strategies in Game-Theoretic Shadowed Sets
	1 Introduction
	2 Background Knowledge
	2.1 Three-Way Approximations of Shadowed Sets
	2.2 Game-Theoretic Shadowed Sets

	3 Formulating a Game to Determine the Strategies
	3.1 Game Formulation
	3.2 Equilibrium Analysis
	3.3 The Determination of Strategies
	3.4 Using the Proposed Approach in GTSS

	4 Experiment
	5 Conclusion
	References

	Three-Way and Semi-supervised Decision Tree Learning Based on Orthopartitions
	1 Introduction
	2 Orthopartitions: Basic Definitions
	2.1 Introduction to Orthopairs
	2.2 Orthopartitions

	3 Decision Tree Learning
	3.1 Three-Way Decision Tree Learning
	3.2 Semi-supervised Decision Tree Learning

	4 Conclusions
	References

	Author Index



