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Abstract. Objects and attributes play an important role in an L-fuzzy
context. From the point of view of the L-fuzzy concepts, some of them
can be more relevant than others. Besides, the number of objects and
attributes of the L-fuzzy context is one of the most important factors
that influence in the size of the L-fuzzy concept lattice. In this paper, we
define different rankings for the objects and the attributes according to
their relevance in the L-fuzzy concept lattice and using different overlap
indexes. These rankings can be useful for the reduction of the L-fuzzy
context size.
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1 Introduction

The L-fuzzy concept analysis [15–17] is a theory that studies the information
arising from an L-fuzzy context using the L-fuzzy concepts as tools. An L-fuzzy
context is a tuple (L,X, Y,R) with L a complete lattice, X and Y sets of objects
and attributes respectively and R ∈ LX×Y a fuzzy relation between the objects
and the attributes. An L-fuzzy concept is a pair of L-fuzzy sets that can be
interpreted as a group of elements (objects) that shares some characteristics
(attributes). The set of these L-fuzzy concepts has the structure of complete
lattice.

Most of the times, not all the objects neither the attributes have the same
relevance from the point of view of the L-fuzzy concepts. Some of them hardly
play any role in the L-fuzzy concepts.

Besides, when the cardinality of this L-fuzzy concept lattice is large, the
obtained result may not be easy to handle. One of the factors that determines
the size of the L-fuzzy concept lattice is the cardinality of the lattice L. The
other is the size of the L-fuzzy context. The latter is analyzed in this paper.
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Over the past, several researchers have developed models in order to reduce
the size of this lattice. In [13], Bělohlávek and Vychodil use hedges to control the
size of the concept lattice. Also Wei and Qi [34], and Medina [27] have published
works from the point of view of the attributes for fuzzy oriented concept lattices.
Other methods to reduce the complexity of the lattice using fuzzy similarity [14]
or block relations [24] have also been developed.

In [8] we have study the possibility of aggregating rows or columns of the
L-fuzzy context. Sometimes, the L-fuzzy context values are independent and we
can use usual aggregations as weighted means [20,21], OWA operators [22,33]
and WOWA operators [31]. However, these studies are incomplete when we have
values that present dependencies among them. In these situations the use of
Choquet integrals [23] can be very useful as a tool for doing a proper analysis
without lost of information as can be seen in [8].

This paper addresses the study of the objects and attributes of the L-fuzzy
context when L = [0, 1]. We define different rankings for both sets according to
their relevance in the L-fuzzy concept lattice and using different overlap indexes.
These rankings will allow us to decide which objects and which attributes are
less relevant. They will be the candidates for the elimination.

First, we are going to remember some important results about L-Fuzzy con-
cept analysis and overlap indexes [19].

1.1 L-Fuzzy Concept Analysis

The Wille’s Formal Concept Analysis [32] extracts information from a binary
table that represents a formal context (X,Y,R) with X and Y finite sets of
objects and attributes respectively and R ⊆ X × Y . The hidden information
consists of pairs (A,B) with A ⊆ X and B ⊆ Y , called formal concepts, verifying
A∗ = B and B∗ = A, where (·)∗ is the derivation operator that associates the
attributes related to the elements of A to every object set A, and the objects
related to the attributes of B to every attribute set B. These formal concepts
can be interpreted as a group of objects A that shares the attributes of B.

In previous works [15,16] we have defined the L-fuzzy contexts (L,X, Y,R),
with L a complete lattice, X and Y sets of objects and attributes respectively
and R ∈ LX×Y a fuzzy relation between the objects and the attributes. This is
an extension of Wille’s formal contexts to the fuzzy case when we want to study
the relations between the objects and the attributes with values in a complete
lattice L, instead of binary ones.

In our case, to work with these L-fuzzy contexts, we have defined the deriva-
tion operators 1 and 2 given by means of these expressions [16,17]:

∀A ∈ LX ,∀B ∈ LY , x ∈ X, y ∈ Y :
A1(y) = inf

x∈X
{I(A(x), R(x, y))}

B2(x) = inf
y∈Y

{I(B(y), R(x, y))}

with I a fuzzy implication operator defined in (L,≤).
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The information stored in the context is visualized by means of the L-fuzzy
concepts that are pairs (A,A1) ∈ LX ×LY with A ∈ fix(ϕ), set of fixed points of
the operator ϕ, being defined from the derivation operators 1 and 2 as ϕ(A) =
(A1)2 = A12. These pairs, whose first and second components are said to be
the fuzzy extension and intension respectively, represent a group of objects that
share a group of attributes.

Using the usual order relation between fuzzy sets, that is, ∀A,C ∈ LX , A ≤
C ⇐⇒ A(x) ≤ C(x),∀x ∈ X, we define the set L = {(A,A1) | A ∈ fix(ϕ)}
with the order relation � defined as: ∀(A,A1), (C,C1) ∈ L, (A,A1) � (C,C1) if
A ≤ C (or A1 ≥ C1).

As ϕ is an order preserving operator, then the set fix(ϕ) is a complete lattice
and (L,�) is also a complete lattice that is said to be the L-fuzzy concept lattice
[15,16].

In addition, in the case of using a residuated implication (I(a, b) = sup{x |
T (a, x) ≤ b}, with T a t-norm), given A ∈ LX , (or B ∈ LY ) we can obtain the
associated L-fuzzy concept applying twice the derivation operators. In this case,
the L-fuzzy concept associated to A is (A12, A1) (or (B2, B21)). In the paper,
residuated implication of �Lukasiewicz will be used for the practical case.

Our last results are related to the use of two relations in the definition of
the L-fuzzy context [2], the study of fuzzy context sequences [3,4,6,7] or the
composition of L-fuzzy contexts [5]. We have also developed this theory in dif-
ferent areas as the treatment of incomplete information [1,10] or Mathematical
Morphology [9].

Other important works that generalize the Formal Concepts Analysis using
residuated implication operators are due to Bělohlávek [11,12] and Pollandt [28].
Moreover, extensions of Formal Concept Analysis to the interval-valued case are
in [1,29,30] and to the fuzzy property-oriented and multi-adjoint concept lattices
framework in [25,26].

1.2 Overlap Indexes

We start by recalling some basic notions about the idea of an overlap index.
Given a referential set U and L = [0, 1], let LU be the fuzzy sets of U .

Bustince [19] define an overlap index as a mapping O : LU × LU −→ [0, 1], such
that:

(i) O(A,B) = 0 if and only if in A and B have disjoint supports; that is,
A(i)B(i) = 0 for every i ∈ U , and A,B ∈ LU .

(ii) O(A,B) = O(B,A), foreveryA,B ∈ LU .
(iii) If B ⊆ C, then O(A,B) ≤ O(A,C), for every A,B,C ∈ LU .

An overlap index such that:

(iv) O(A,B) = 1 if there exists i ∈ U such that A(i) = B(i) = 1 is called a
normal overlap index.
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Examples of overlap indexes are the following ones:

(1) Zadeh’s consistency index:

OZ(A,B) =
n

max
i=1

(min(A(i), B(i)))

(2) Let M : [0, 1]2 −→ [0, 1] be a symmetric aggregation function such that
M(x, y) = 0 if and only if xy = 0. We have that:

OM,Z(A,B) =
n

max
i=1

(M(A(i), B(i)))

is a normal overlap index that generalizes the Zadeh’s index.
(3) If in the previous example, we consider a symmetric, increasing function

M : [0, 1]2 −→ [0, 1] such that M(1, 1) < 1 and M(x, y) = 0 if and only if
xy = 0, then we obtain an overlap index which is not normal. For instance,
when taking M(x, y) = (xy)p/2 with p > 0, we arrive at the overlap index:

O(A,B) =
n

max
i=1

(
(A(i), B(i))p

2

)

(4) The following is also an example of overlap index:

Oπ(A,B) =
1
n

n∑
i=1

A(i)B(i)

Remark 1. Formally, overlap indexes can be seen as generalized measures of
fuzzy intersection of considered fuzzy sets.

Let E ∈ LU be a fixed non-empty fuzzy set. Given A ⊆ U , we define:

EA(i) =

{
E(i) if i ∈ A

0 otherwise

Observe that EA is the intersection of the fuzzy set E and the crisp set A.
Now we are ready to introduce the definition of a fuzzy measure in terms of

a fuzzy set and an overlap index.

Theorem 1 [19]. If E ∈ LU is a fixed, non-empty fuzzy set, then the mapping
mO,E : U −→ [0, 1] given by:

mO,E(A) =
O(E,EA)
O(E,E)

is a fuzzy measure for every overlap index O.
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2 Ranking of Objects and Attributes Using Overlap
Indexes

As it has been explained in the introduction, it is interesting to establish a
ranking in the object and attribute sets from the point of view of the L-fuzzy
concepts. Moreover the size of an L-fuzzy context is one of the factors that
determines the size of the L-fuzzy concept lattice and its manageability. The
possible reduction of the size of the object and attribute sets is an interesting
problem of study.

So far, some of our research lines in relation to reducing the size of the L-fuzzy
context have used the method of removing rows or columns in the relation (elim-
inating objects or attributes). In [18] we removed the objects and/or attributes
of little significance, that is, that did not appear as relevant in any L-fuzzy con-
cept. To do this, we first obtained the L-fuzzy concept lattice, a quite laborious
task.

In another different field and in order to work with missing values, in [10]
infrequently appearing objects and attributes were studied. We removed them
when they did not exceed a minimum support. To do this, we defined support of
an L-fuzzy set A ∈ LZ as supp(A) =

∑
z∈Z

A1(z)/|Z|. The aim was to eliminate

some rows or columns of missing values.
This definition allow us to assign a support value to every object (or

attribute). To do this, for every xi ∈ X, i ∈ {1, ... , n}, let xi be the L-fuzzy
set defined by the characteristic function xi(xi) = 1 and xi(x) = 0, for any
x �= xi. Analogously for yj, j ∈ {1, ... ,m}.

Next, we are going to define the L-fuzzy concepts associated with the objects
and the attributes of the L-fuzzy context. To do this, we will use a residuated
implication operator for the definition of operators denoted by the subindexes 1
and 2.

Definition 1. For every xi ∈ X, i ∈ {1, ... , n}, the pair Cxi
= ((xi)12, (xi)2)

is said to be the L-fuzzy concept derived from xi. Analogously Cyj
=

((yj)2, (yj)21), j ∈ {1, ... ,m} is the L-fuzzy concept derived from yj.

These concepts are the closest to the departure sets represented by xi or yj

(study of a single object or attribute).
Then, the definitions of support of an object or an attribute are:

Definition 2. For every xi ∈ X, i ∈ {1, ... , n} and y ∈ Y :

supp(xi) =

n∑
i=1

(xi)2(y)

|Y | ,

and for every yj ∈ Y, j ∈ {1, ... , n} and x ∈ X:

supp(yj) =

n∑
j=1

(yj)1(x)

|X|
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Now, given a fuzzy set E and an overlap index O, we can use Theorem 1
to associate a fuzzy measure with every object and attribute: mO,E(xi) and
mO,E(yj) are the fuzzy measures for every xi ∈ X and yj ∈ Y .

These values establish a measure of the overlap between the L-fuzzy concepts
derived from the L-fuzzy sets xi or yj and the fuzzy set E.

We can define relations between the objects and the attributes using these
fuzzy measures:

Definition 3. For every xi, xj ∈ X, let Cxi
, Cxj

be the L-fuzzy concepts asso-
ciated with xi, xj. Let E be a fuzzy set and O an overlap index.

xi ≥O,E xj if mO,E(xi) ≥ mO,E(xj)

Analogously, yi ≥O,E yj if mO,E(yi) ≥ mO,E(yj), for every yi, yj ∈ Y .

This is a preorder relation that establishes for every fuzzy set E and overlap
index O, the Object and the Attribute Rankings associated with E and O.

The election of E and O are important points. In the case of E, it represents
the model we want to look like. Taking into account that the support of an object
can be understood as a measure or its relevance, we take E(xi) = supp(xi) for
every xi ∈ X. From the point of view of the attributes, we take E(yi) = supp(yi)
for every yi ∈ Y .

3 Reducing the Size of an L-Fuzzy Context by Means of
the Elimination of Rows or Columns

In previous section, we have define rankings of objects and attributes taking
into account different overlap indexes. These rankings order the objects (or
attributes) by means of the overlap between their derived L-fuzzy concepts and
the support of the objects (or attributes). Then, our proposal is the elimination
of those objects and attributes that are in the last positions of those rankings.

The advantage of this method over the one described in [18] is that it is
not necessary to obtain the total L-fuzzy complete lattice. In addition, we can
define a model E and eliminate the objects and attributes that do not give L-
fuzzy concepts close to this model. This fact improves the idea proposed in [7].

Furthermore, if we remove a row or column in the context, we can see that
the L-fuzzy concepts obtained from the non modified objects or attributes have
the same membership degrees.

It is not difficult to prove the following proposition:

Proposition 1. Let (L,X, Y,R) and (L,X\{x0}, Y, R̄) be L-fuzzy contexts such
that R̄(x, y) = R(x, y),∀x ∈ X\{x0},∀y ∈ Y . Consider xl ∈ X\{x0} and let Cxl

and C̄xl
be the L-fuzzy derived concepts in (L,X, Y,R) and (L,X, Y, R̄) respec-

tively. For any x ∈ X\{x0} and for any y ∈ Y , the membership degrees in both
L-fuzzy concepts are coincident.
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An analogous proposition can be proved in the case of eliminating one
attribute:

Proposition 2. Let (L,X, Y,R) and (L,X, Y \{y0}, R̄) be L-fuzzy contexts such
that R̄(x, y) = R(x, y),∀x ∈ X,∀y ∈ Y \{y0}. Consider yl ∈ Y \{y0} and let Cyl

and C̄yl
be the L-fuzzy derived concepts in (L,X, Y,R) and (L,X, Y, R̄). For any

y ∈ Y \{y0} and for any x ∈ X, the membership degrees are coincident in both
L-fuzzy concepts.

4 Practical Case

Let us see below a practical case where we will apply the results obtained in the
previous sections.

Suppose that we want to do a market survey about the consumption of soft
drinks in some of the major cities in Spain. To do this, we have an L-Fuzzy
context (L,X, Y,R) with L = {0, 0.1, 0.2, 0.3, ... 1}, the object and attribute
sets X={cola1, cola2, orangeade1, orangeade2, orangeade3, lemonade1, lemon-
ade2, lemonade3, tonic1, tonic2} (the commercial brands are avoided) and
Y={Barcelona, Bilbao, Granada, Madrid, Malaga, San Sebastian, Santander,
Sevilla, Valencia, Zaragoza} and R ∈ LX×Y the L-Fuzzy relation of Table 1 that
represents the consumption of soft drinks in the different cities.

The values of the table belong to L. For instance, R(x1, y4) =
R(cola1,Madrid) = 0.8 means that cola1 is consumed in large quantities
in Madrid, but this does not hold for tonic2 in Granada (R(x10, y3) =
R(tonic2,Granada) = 0.1).

In the rest of the section, the objects and the attributes will be denoted by
xi and yj , i, j ∈ {1 ... 10}, respectively.

Table 1. L-fuzzy context

R y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

x1 0.3 0.6 0.5 0.8 1.0 0.3 0.3 0.2 0.0 0.6

x2 0.3 0.0 0.1 0.5 0.2 0.1 0.4 0.4 0.0 0.2

x3 0.3 0.9 0.4 1.0 0.3 0.5 0.5 0.9 1.0 0.2

x4 0.9 0.6 0.5 0.2 0.0 0.0 0.9 1.0 1.0 0.3

x5 0.2 0.1 0.0 0.6 0.2 0.5 0.1 0.0 0.3 0.5

x6 0.4 0.3 0.0 0.5 0.3 0.1 0.4 0.3 0.5 0.4

x7 0.9 0.5 0.4 0.1 0.3 0.1 0.2 0.3 0.4 0.3

x8 0.5 0.3 0.5 0.4 0.1 0.1 0.2 0.5 0.2 0.2

x9 0.1 0.6 0.4 0.2 0.0 0.0 0.3 0.0 0.1 0.1

x10 0.4 0.2 0.1 0.3 0.0 0.0 0.2 0.6 0.1 1.0
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We are going to study which is the relationship among the objects and among
the attributes. After this study, we will be able to reduce the size of the L-fuzzy
context.

The construction of the whole L-fuzzy concept lattice has a high computa-
tional cost. So, for every xi, i ∈ {1 ... n} and using the �Lukasiewicz implication
operator, we can obtain its derived L-fuzzy concept Cxi

. For instance, for x3 we
have:

Cx3 = ({x1/0, x2/0, x3/1, x4/0.2, x5/0.1, x6/0.4, x7/0.1, x8/0.2, x9/0.1, x10/0.1},
{y1/0.3, y2/0.9, y3/0.4, y4/1, y5/0.3, y6/0.5, y7/0.5, y8/0.9, y9/1, y10/0.2})

We can say that Orangeade1(x3) is consumed mainly in Bilbao (y2), Madrid
(y4), Sevilla (y8), and Valencia (y9).

For every object xi, the fuzzy extension of the derived L-fuzzy concepts are:
Cx1 : {x1/1, x2/0.2, x3/0.3, x4/0, x5/0.2, x6/0.3, x7/0.3, x8/0.1, x9/0, x10/0}
Cx2 : {x1/0.8, x2/1, x3/1, x4/0.7, x5/0.6, x6/0.9, x7/0.6, x8/0.8, x9/0.6, x10/0.8}
Cx3 : {x1/0, x2/0, x3/1, x4/0.2, x5/0.1, x6/0.4, x7/0.1, x8/0.2, x9/0.1, x10/0.1}
Cx4 : {x1/0, x2/0, x3/0.4, x4/1, x5/0, x6/0.3, x7/0.3, x8/0.2, x9/0, x10/0.1}
Cx5 :{x1/0.7, x2/0.6, x3/0.7, x4/0.5, x5/1, x6/0.6, x7/0.5, x8/0.6, x9/0.5, x10/0.5}
Cx6 :{x1/0.5, x2/0.5, x3/0.8, x4/0.7, x5/0.7, x6/1, x7/0.6, x8/0.7, x9/0.6, x10/0.6}
Cx7 :{x1/0.4, x2/0.4, x3/0.4, x4/0.7, x5/0.3, x6/0.5, x7/1, x8/0.6, x9/0.2, x10/0.5}
Cx8 :{x1/0.7, x2/0.6, x3/0.8, x4/0.8, x5/0.5, x6/0.5, x7/0.7, x8/1, x9/0.5, x10/0.6}
Cx9 : {x1/0.9, x2/0.4, x3/1, x4/1, x5/0.5, x6/0.6, x7/0.9, x8/0.7, x9/1, x10/0.6}
Cx10 :{x1/0.6, x2/0.2, x3/0.2, x4/0.3, x5/0.4, x6/0.4, x7/0.3, x8/0.2, x9/0.1, x10/1}

and for the attributes:
Cy1 :{y1/1, y2/0.6, y3/0.5, y4/0.2, y5/0.1, y6/0.1, y7/0.3, y8/0.4, y9/0.5, y10/0.4}
Cy2 : {y1/0.4, y2/1, y3/0.5, y4/0.6, y5/0.4, y6/0.4, y7/0.6, y8/0.4, y9/0.4, y10/0.3}
Cy3 : {y1/0.7, y2/0.8, y3/1, y4/0.7, y5/0.5, y6/0.5, y7/0.7, y8/0.6, y9/0.5, y10/0.7}
Cy4 : {y1/0.3, y2/0.5, y3/0.4, y4/1, y5/0.3, y6/0.5, y7/0.5, y8/0.4, y9/0.2, y10/0.2}
Cy5 : {y1/0.3, y2/0.6, y3/0.5, y4/0.8, y5/1, y6/0.3, y7/0.3, y8/0.2, y9/0, y10/0.6}
Cy6 : {y1/0.7, y2/0.6, y3/0.5, y4/1, y5/0.7, y6/1, y7/0.6, y8/0.5, y9/0.7, y10/0.7}
Cy7 : {y1/0.8, y2/0.6, y3/0.6, y4/0.3, y5/0.1, y6/0.1, y7/1, y8/0.7, y9/0.6, y10/0.4}
Cy8 : {y1/0.4, y2/0.6, y3/0.5, y4/0.2, y5/0, y6/0, y7/0.6, y8/1, y9/0.5, y10/0.3}
Cy9 : {y1/0.3, y2/0.6, y3/0.4, y4/0.2, y5/0, y6/0, y7/0.5, y8/0.7, y9/1, y10/0.2}
Cy10 : {y1/0.4, y2/0.2, y3/0.1, y4/0.3, y5/0, y6/0, y7/0.2, y8/0.5, y9/0.1, y10/1}

We are now in condition of calculate the support values for the objects. The
obtained values are shown in Table 2.

Table 2. Object support values

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

supp 0.46 0.22 0.6 0.54 0.25 0.32 0.35 0.3 0.18 0.29

In Table 3 we can see the values obtained for the attributes.
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Table 3. Attribute support values

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

supp 0.43 0.41 0.2 0.46 0.24 0.17 0.35 0.42 0.36 0.38

These supports can be taken into account to study the relevance of the objects
and the attributes.

Let be U = X,Card(U) = n and E(xi) = supp(xi), for every xi ∈ X. Using
overlap index Oπ, we can calculate by Theorem 1 the associated fuzzy measure
for each object (See Table 4).

Table 4. Fuzzy measure for objects associated with Oπ and E

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

mOπ ,E 0.119 0.058 0.165 0.132 0.070 0.115 0.106 0.099 0.049 0.087

These values define a relevance ranking for the objects:

x3 ≥O,E x4 ≥O,E x1 ≥O,E x6 ≥O,E x7 ≥O,E x8 ≥O,E x10 ≥O,E x5 ≥O,E x2 ≥O,E x9

The same classification is obtained for overlap index OZ since the obtained
fuzzy measure values are those shown in Table 5.

Table 5. Fuzzy measure for objects associated with OZ and E

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

mOZ ,E 0.848 0.591 1.000 0.894 0.652 0.833 0.803 0.773 0.545 0.727

From the point of view of the attributes, with overlap index Oπ, we obtain
the values in Table 6.

And in Table 7 we show the values obtained with OZ .
The same ranking is also obtained with both overlap indexes:

y2 >O,E y8 >O,E y7, y1, y4 >O,E y3 >O,E y10 >O,E y9 >O,E y5 >O,E y6

In this case, if we consider that the size of the L-fuzzy context is large and
we choose as the fuzzy set E defined by the support (as the model we want to
look like), we can conclude that objects x9 and x2 and attributes y6 and y5 are
the candidates to be removed.
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Table 6. Fuzzy measure for attributes associated with Oπ and E

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

mOπ,E 0.119 0.157 0.106 0.119 0.041 0.035 0.119 0.123 0.085 0.097

Table 7. Fuzzy measure for attributes associated with OZ and E

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

mOZ ,E 0.869 1.000 0.820 0.869 0.508 0.475 0.869 0.885 0.738 0.787

5 Conclusions

In this work, we have seen that overlap indexes can be useful tools to analyze
the relevance of the objects and the attributes from the point of view of the L
fuzzy concepts. We define different ranking associated with the different overlap
indexes. These rankings can help us to remove some objects or attributes when
the size of the L-fuzzy context is large.

In future works, we will study how this reduction affects to the structure of
the L-fuzzy concept lattice.
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