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Edifici C- Campus de la UAB. Av. de l’Eix Central s/n.,

08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
delgado@mat.uab.cat

2 Institute for Data Science, German Aerospace Center, 07745 Jena, Germany
xavier.tibau@dlr.de

Abstract. Probabilistic classifiers output a probability of an input
being a member of each of the possible classes, given some of its feature
values, selecting most probable class as predicted class. We introduce
and compare different measures of the feature strength in probabilis-
tic confidence-weigthed classification models. For that, we follow two
approaches: one based on conditional probability tables of the classifi-
cation variable with respect to each feature, using different statistical
distances and a correction parameter, and the second one based on accu-
racy in predicting classification from evidences on each isolated feature.
On a case study, we compute these feature strength measures and rank
features attending to them, comparing results.
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1 Introduction

In machine learning and statistics, classification is the problem of identifying
to which of a set of classes or categories (sub-populations) a new observation
belongs, on the basis of a training set of data containing observations whose
classification membership is known. Any individual observation is analyzed into
a set of quantifiable properties or characteristics, termed features, from which its
category or class is to be predicted. In this work we allow features to be binary,
categorical or discrete. An algorithm that implements classification, mapping
input data to a category or class (output) is known as a classifier. A good
classifier is one that predicts that output accurately.

A common subclass of classification is probabilistic classification. Algorithms
of this nature use statistical inference to find the best class for a given instance.
Unlike other algorithms, which simply output a “best” class, probabilistic algo-
rithms output a probability of the instance being a member of each of the possible
classes. The best class is then selected as the one with the highest probability,
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and is the “predicted class” for the input. Such algorithms have advantages over
non-probabilistic classifiers. Among them, it can output a confidence value asso-
ciated with its choice and, correspondingly, it can abstain when its confidence
of choosing any particular output is too low; in this way, it allows to adapt both
sensitivity and specificity of the model depending on priorities.

Bayesian classifiers are probabilistic classification procedures that provide a
natural way of taking into account any available information about the composi-
tion of the sub-populations associated with the different groups within the overall
population. If the elements of the population are grouped into sub-populations
or classes because they have common values of they features, then it could be
natural to try to predict the values of the features or attributes for the mem-
bers of any fixed class. On the opposite, if the class is unknown, Bayes’ rule can
be used to predict the class given (some of) the feature values. The Bayesian
classifier is a probabilistic model including the class variable and the features,
and perhaps other (latent) variables as well. This model, after construction and
validation, can be used to predict (infer) the classification of any new element.
The simplest case is the naive Bayesian classifier, which makes the assumption
that the features are conditionally independent of each other given the classifi-
cation, but other models can be considered. We will assume that the considered
features, as well as the class variable, are all discrete. Although many classifica-
tion methods have been developed specially for binary classification, we do not
restrict ourselves to this scenario but extend our study to the multiclass setting.
More specifically, we consider a probabilistic classifier for class variable C with
feature variables F1, . . . , Fr.

To build effective models, data as accurate as possible is needed, but in real
life, with limited resources, obtaining accurate data could have a huge associated
cost. In this context, the need to decide on what features we focus on is clear.
At the very first steps of the process, this is solved by passing the sieve of
feature selection techniques (see Friedman et al. [2]), which attempt to shrink
the dimensionality of the dataset to improve both accuracy (e.g. by avoiding
overfitting or reducing variance), and interpretability. But later on, once the
model is build, analyzing the importance of each feature is still a matter of
importance not only because of the comments above, but because in a certain
way, a model is a simplistic approximation of reality, so knowing what features
are revealed as fundamental in a given model may be a clue about what features
we should zoom in when looking for a deeper knowledge of the phenomenon.
That is, feature strength focuses on the interpretability of the model and not
on its simplification or reduction. After feature selection and the construction of
the model of the desired dimension, it is a deeper step in the interpretation of
the model, in which it is intended to analyze the influence of the features in the
classifier.

Our goal is to introduce and compare different measures of the features
strength for classification the classifier. As far as we know, there are no prece-
dents on this type of study. There are, however, some works related in a certain
sense. Indeed, different software packages deal with the question of measure the
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strength of influence between neighboring nodes in a Bayesian network through
some kind of strength measure of the arcs among them in the Directed Acyclic
Graph (DAG). Only to mention two of them:

1. SMILE (Structural Modeling, Inference, and Learning Engine) is a fully plat-
form independent portable library of C++ classes implementing graphical
decision-theoretic methods, such as Bayesian networks, and influence dia-
grams and structural equation models. Among its tools, we find the strength
of influence tool of a directed arc, which is always calculated from the CPT
of the child node and essentially expresses some form of distance between the
probability distributions of the child node conditional on the state of the par-
ent node. With respect to this work, we introduce two families of measures of
influence features in classification, not only these which are children nodes of
the class. The first one is of the type considered in GeNIe, while the second
one is inherently different in nature.

2. Similar to the strength of influence of SMILE is the magnitude of influence
that the software Elvira computes. Paper [5] introduces the magnitude of
influence of a link (MI) of Elvira for ordinal variables. This definition has
no sense if variables are discrete but not ordered. We introduce measures of
influence named strength measures, which apply for discrete variables (ordinal
or not), and not only refer to the directed arc from a parent to a child, but
they apply to any pair of variables.

We have followed two different approaches to the problem of defining mea-
sures of the strength of a feature in a probabilistic classifier: one based on con-
ditional probability tables (CPT) of the classification variable C to the feature,
using different statistical distances, and the other based on accuracy in pre-
diction. With respect to the first one, which is the subject of Sect. 2, statistical
distances, divergences, and similar quantities have a large history and play a fun-
damental role in statistics, machine learning and associated scientific disciplines.
Statistical distances are defined in a variety of ways, by comparing probability
mass distributions in the discrete probability models context, as is the case at
hand. We will choose four of them as an example in our case study (Sect. 4).
We will assign a measure of strength to each feature, say Fi, as the “maximum
discrepancy” observed on the CPT of C conditioned to feature Fi, which is
defined as the maximum distance in the pairwise comparisons corresponding to
the conditional probability distribution of C to different fixed values of Fi.

In the second case, considered in Sect. 3, the strength measure of each feature
Fi for the classification variable is defined as the corresponding accuracy when
predicting classification from an evidence expressed exclusively in terms of Fi.
In both cases we obtain a ranking of the features in classification (in the first
case, a possible different ranking is obtained for each statistical distance that has
been considered). In Sect. 4 we apply the different measures we have introduced
in previous sections to a case study, and compare features rankings by using
both Hamming distance and the degree of consistency.
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2 Strength Measures Based on CPT

In this section we introduce some strength measures to deeply analyze to what
extent class variable C is affected by the different features in the classifier. Fix a
feature variable F . We would like to compute a measure of the effect of induced
changes in F on the conditional probability distribution of variable C. For that,
we consider evidences of the form F = a and estimate from sample probabilities
for the query variable C given the evidence, PF

a (x) = P (C = x /F = a) with
x ∈ C (C being the set of possible outcomes of variable C), if P (F = a) > 0. These
probabilities conform the Conditional Probability Table (CPT) of C conditioned
to F . We propose an approach based on a statistical distance.

Different statistical distances or divergence measures have been introduced
in the literature between two discrete probability distributions. For example,
and only to mention four of them, the Kullback-Leibler divergence, the Pear-
son chi-square distance, the Hellinger measure or the Kolmogorov distance
(see [6]). Some of them are asymmetric, provoking that changing order of
the arguments can yield substantially different values. For that, we consider
symmetrized versions of them. We denote by KL the Kullback-Leibler dis-
tance or divergence, also known as relative entropy, that is, given two dis-
crete probability distributions taking values x ∈ X , Q1 and Q2, and with
the understanding that there is not x ∈ X such that Q1(x) = Q2(x) = 0,
KL(Q1, Q2) =

∑
x∈X Q1(x)

(
log Q1(x) − log Q2(x)

)
, with the convention that

0 log(0) = 0. Note that KL(Q1, Q2) ≥ 0 although it could be +∞ (if Q2(x) = 0
for some x). Following [4], we symmetrize this distance by means of the harmonic
sum, that is, the half the harmonic mean, of the component Kullback-Leibler
divergences. Pearson chi-squared and Hellinger distances have also been sym-
metrized.

Distance name Formula

Kullback-Leibler d1(Q1, Q2) = 1/
(

1
KL(Q1, Q2)

+ 1
KL(Q2, Q1)

)

Pearson chi-squared d2(Q1, Q2) =
∑

x∈X 2 (Q1(x)−Q2(x))
2

Q1(x)+Q2(x)

Squared blended Hellinger d3(Q1, Q2) =
√∑

x∈X 2
(√

Q1(x) − √
Q2(x)

)2
Kolmogorov-Smirnov d4(Q1, Q2) = maxx∈X |Q1(x) − Q2(x)|

Note that di ≥ 0, but that if there exist x1, x2 ∈ X such that Q1(x1) = 0 and
Q2(x2) = 0, then d1(Q1, Q2) = +∞.

We introduce a strength measure for feature F based on a statistical distance
or symmetrised divergence measure d, which could be any of the previous dis-
tances d1, . . . , d4, or even another, and name it Strength Distance (SD), in this
way:

SD(F ) = max
a, b∈F

dF
a, b
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where F is the set of the possible outcomes of variable F , and dF
a, b denotes the

statistical distance between PF
a and PF

b , that is, dF
a, b = d(PF

a , PF
b ). Therefore,

we compute strength distance from pairwise comparatives through the statistical
distance or symmetrised divergence d.

Proposition 1. SD(F ) ≥ 0, and SD(F ) = 0 if and only if F and C are inde-
pendent.

Proof. SD(F ) ≥ 0 by definition. On the other hand, SD(F ) = 0 if and only if
dF

a,b = 0 for any a, b ∈ F , but this fact is equivalent to say that PF
a = PF

b for
any a, b ∈ F , which is equivalent to the independency between F and C. �

Note that although we have defined SD through the maximum, we could have
chosen any other aggregation function of the distances dF

a,b that verified Propo-
sition 1. The maximum is the least robust (jointly with the minimum) option,
since it is maximally sensitive to extreme values, which represents an advantage
if extreme values are real (not measurement errors), as in our case, where they
are of great importance to assess the strength of a feature for classification.

Because previous measure does not consider if different instantiations of a
feature variable produce different predictions for class variable C, it seems appro-
priate to introduce a correction that does take account of this fact.

Let α = #C and β(F ) = #F , where # denotes the cardinal of a finite set, and
let γ(F ) denote the number of different predictions obtained from the classifier
for C given the evidences E = {F = a}, with a varying in F , that is,

γ(F ) = #{arg max
x∈C

P (C = x /F = a), a ∈ F}.

Then, define

δ(F ) =
γ(F )

min(α, β(F ))
∈ (0, 1] ,

which is the proportion of different predictions actually obtained by the classifier
for class C among the possible we could obtain from an evidence on F . Therefore,
δ(F ) is a measure of the influence of feature F on C, and we can use it to correct
strength measure SD by introducing the Corrected Strength Distance (CSD) in
this way: CSD(F ) = SD(F ) × δ(F ), which is ≤ SD(F ). Note that as SD,
CSD(F ) ≥ 0, and CSD(F ) = 0 if and only if F and C are independent.

3 Strength Measures Based on Accuracy in Prediction

In general, after constructing the classifier from the dataset, we perform vali-
dation of the model, and once validated, we can use it for future predictions.
Validation consists of a procedure for assessing how the classifier performs in
the sense of correctly predict the query variable C from any evidence given
in terms of the features. The most elementary validation procedure is based on
splitting the dataset into two parts, training and test sets, what is known as split-
validation. Cross-validation procedure is one of the most widely used methods for
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estimating prediction error, most common forms for implementation are k-fold
cross-validation and its particular case (k = r) leave-one-out cross-validation,
We will apply leave-one-out cross-validation, from which we obtain accuracy,
defined as the success rate in prediction, that is, #{Matches}

#{V alidation set} . In addition,
for each fixed feature F , we can apply the procedure by predicting the class
outcome from single evidences on F , and estimate the accuracy in predicting
class C. We denote it by Acc(F ).

Nevertheless, this strength measure for each feature does not take into
account the following fact: if feature F were independent of class variable C,
γ(F ) = 1 since for any a ∈ F , arg maxx∈C P (C = x /F = a) = Mode(C), with
Mode(C) the most frequent class in dataset, that is, if F and C were indepen-
dent, prediction for C will always be its more likely outcome, independently of
the instantiation of F . Denote by pmode the relative frequency of this value in
the dataset, pmode ≥ 1/α. In general, Acc(F ) ≥ 1/α but if F and C were inde-
pendent, we would have Acc(F ) = pmode. Therefore, it seems natural to scale
accuracy and introduce the Relative Increment in Accuracy (RIC) (with respect
to pmode) of any feature F by

RIA(F ) =
Acc(F ) − pmode

pmode
.

Proposition 2. RIA verifies the following properties:

(a) RIA(F ) = 0 if F and C are independent, but the reciprocal is not true.
(b) −1 < c1 − c2 ≤ RIA(F ) ≤ c1 ≤ α− 1, with c1 = 1−pmode

pmode
, c2 = (c1 +1) α−1

α .

Proof

(a) If F and C are independent, the predicted class given any evidence on F
will be always the same, Mode(C). Therefore, the proportion of correct
prediction, which is Acc(F ), has to be equal to pmode by definition.

(b) First, since Acc(F ) ≤ 1, RIA(F ) ≤ 1−pmode

pmode
= c1, and c1 ≤ α − 1 due to the

fact that pmode ≥ 1/α. Secondly, since Acc(F ) ≥ 1/α, we have that

RIA(F ) ≥ 1/α − pmode

pmode
=

(1/α − 1) + (1 − pmode)
pmode

= c1 − 1 − 1/α

pmode

and c2 = 1−1/α
pmode

can be written as c2 = (c1 + 1) α−1
α if we use that by

definition of c1 we can isolate and obtain pmode = 1
c1+1 . �

Interpretation of RIA(F ) < 0 is that F is a feature that as predictor is worse
that choosing the most common class. That is, to make classification, it is worst
to use evidence on F than nothing, just the opposite that if RIA(F ) > 0, case in
which the higher the value of RIA(F ), the stronger the influence of feature F in
classification. Therefore, this measure allows to make a ranking of the features,
taking into account the strength of their influence in the classification process.
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Particular Cases:

(i) Uniform distribution of class C in the dataset. Then, pmode = 1/α and
c1 = c2 = α − 1, obtaining 0 ≤ RIA(F ) ≤ α − 1.

(ii) Binary classification (α = 2). Then, c2 = (c1 + 1)/2 and −1 < c1−1
2 ≤

RIA(F ) ≤ c1 ≤ 1.
(iii) If our situation is a combination of both, that is, binary classification and

uniform distribution of C into the database, then 0 ≤ RIA(F ) ≤ 1.

4 Case Study

We consider a dataset of 1,597 policing clarified arson-caused wildfires (for which
the alleged offenders have been identified), that has been feeding since 2008 by

Table 1. Variables in the dataset of the arson-caused wildfires.

Forest fire features Outcomes

C1 = season Spring/winter/summer/autumn

C2 = risk level High/medium/low

C3 = start time Morning/afternoon/evening

C4 = starting point Pathway/road/houses/crops/interior/forest track/others

C5 = use burned surface Agricultural/forestry/ livestock/interface/recreational

C6 = number of seats One/more

C7 = related offense Yes/no

C8 = pattern Yes/no

C9 = traces Yes/no

C10 = who denounces Guard/particular/vigilance

Arsonist characteristics Outcomes

A1 = age ≤34/35–45/46–60/>60

A2 = way of living Parents/in couple/single/others

A3 = kind of job Handwork/qualified

A4 = employment status Employee/unemployed/sporadic/retired

A5 = educational level Illiterate/elementary/middle/upper

A6 = income level High/medium/low/without incomes

A7 = sociability Yes/no

A8 = prior criminal record Yes/no

A9 = history subst. abuse Yes/no

A10 = history psychol. probl. Yes/no

A11 = stays in the scene No/remains there/remains and gives aid

A12 = distance home-scene Short/medium/long/very long

A13 = displacement means On foot/by car/all terrain/others

A14 = residence type Village/house/city/town

A15 = motivation (Class) Slight negligence/gross negligence/impulsive/profit/revenge
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the Secretary of State for Security throughout the entire Spanish territory, under
the leadership of the Prosecution Office of Environment and Urbanism of the
Spanish state, and contains information obtained from a specific questionnaire
concerning authors that have been arrested or imputed. This dataset is an update
of that considered in [1]. A total number of n = 25 categorical variables are
consigned, from which 10 refer to forest fire features, C1, . . . , C10, and the rest
to arsonist characteristics, A1, . . . , A15, and are described in Table 1.

Bayesian network classifier has been constructed from the dataset with the
restriction that directed arcs from forest fire features to arsonist characteristics
are forbidden, and is used for classification variable A15, which is author moti-
vation and has proved to be the most significant author variable (see [1]) and
forest fire features C1, . . . , C10.

All calculations, as well as the process of model construction, validation and
inference, have been carried out with R (https://cran.r-project.org). Two pack-
ages of R has been adopted: bnlearn, for network and parameter learning, and
gRain, for making inference by probability propagation.

4.1 Ranking Features by Strength Using Measures Based on CPT

The CPT of class variable A15 with respect to any of the features C1, . . . , C10,
are learned from the dataset and given in Tables 6, 7, 8, 9, 10 and 11 in the
Appendix. Fixed the evidence in terms of a feature variable and one of its values
(that is, fixing a column in a CPT), the corresponding predicted class is the most
likely, that is, that with the highest probability, which is highlighted in boldface.

Fig. 1. Learned structure (DAG) of the BN from the dataset of arson-caused wildfires.

https://cran.r-project.org
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Table 2. SD and CSD for the feature variables, using different distances.

Feature SD(Ci) δ(Ci) CSD(Ci)

d1 d2 d3 d4 d1 d2 d3 d4

C3 0.2147 0.7506 0.6430 0.3892 2/3 0.1431 0.5004 0.4287 0.2595

C4 0.4748 1.3499 0.9584 0.3603 2/5 0.1899 0.5399 0.3833 0.1441

C5 0.0205 0.0801 0.2028 0.0821 1/5 0.0041 0.0160 0.0406 0.0164

C6 0.2235 0.8069 0.6611 0.3181 2/2 0.2235 0.8069 0.6611 0.3181

C7 0.5368 1.6341 0.9956 0.4470 2/2 0.5368 1.6341 0.9956 0.4470

C8 0.2508 0.8646 0.7022 0.2597 1/2 0.1254 0.4323 0.3511 0.1299

C9 0.0561 0.2073 0.3348 0.1238 1/2 0.0281 0.1037 0.1674 0.0619

C10 0.0520 0.2041 0.3217 0.2233 2/3 0.0347 0.1361 0.2145 0.1488

Table 3. Ranking of the feature variables by SD and by CSD, using different distances,
from the strongest (top) to the weakest (bottom).

Ranking by SD Ranking by CSD

d1 d2 d3 d4 d1 d2 d3 d4

C7 C7 C7 C7 C7 C7 C7 C7

C4 C4 C4 C3 C6 C6 C6 C6

C8 C8 C8 C4 C4 C4 C3 C3

C6 C6 C6 C6 C3 C3 C4 C10

C3 C3 C3 C8 C8 C8 C8 C4

C9 C9 C9 C10 C10 C10 C10 C8

C10 C10 C10 C9 C9 C9 C9 C9

C5 C5 C5 C5 C5 C5 C5 C5

In this way we see in Table 6, for example, that regardless of the value of feature
C1, the prediction for A15 is always “slight negligence”, which is consistent with
the fact that both are independent variables, as is deduced from the fact that in
the DAG they appear as disconnected (see Fig. 1). Instead, evidences on feature
C3 can lead to predict “slight negligence” or “gross negligence”, depending on
if C3 =“morning” or “afternoon”, or C3 =“evening” (see Table 7). In Table 2
we have the values of SD and CSD for the features C3 − C10 and the four
statistical distances introduced in Sect. 2. Both are zero for C1 and C2, since
they are disconnected from A15.

Glancing at Table 3, we realize that rankings of the features do not match for
all the distances, although C7 is the number one, and C5 is always at the end of
the classification. But if we restrict ourselves to CSD, C6 is the top second for
the four considered distances, while C9 is the bottom second one.
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4.2 Ranking Features by Strength Using Measures Based
on Accuracy in Prediction

We perform leave-one-out cross-validation and the accuracy value Acc(Ci) is
obtained by dividing the number of correct predictions using as evidence the
value of Ci, by the total number of predictions (excluding blanks). Both Acc
values and RIA are recorded in Table 4. Take into account that pmode is the prob-
ability of the most likely non-missing class in the dataset, normalizing probability
after eliminating missing values. In this case, pmode = 697/1463 � 0.47642.

Finally, we compare rankings obtained from SD and CSD and that obtained
by applying RIA criterion, by using both the Hamming distance and the degree of
consistency indicator c (see [3]), as consigned in Table 5. In information theory,
the Hamming distance between two strings of equal length is the number of
positions at which the corresponding symbols are different, that is, it measures
the minimum number of substitutions required to change one string into the
other. For two measures f and g on a domain Ψ , let R = {(a, b) ∈ Ψ × Ψ :
f(a) > f(b), g(a) > g(b)} and V = {(a, b) ∈ Ψ × Ψ : f(a) > f(b), g(a) < g(b)}.
Then, the degree of consistency c of f and g is c(f, g) = |R|

|R|+|V | , where |A|
denotes the number of elements of the (finite) set A. We apply this indicator
with f and g ranking functions. We observe that Hamming distance is minimized
with CSD and distances d3 = Squared blended symmetric Hellinger distance, and

Table 4. Acc and RIA for the feature variables, which have been ranked from top to
bottom in descending order.

Feature Acc(Ci) RIA(Ci)

C7 0.4990 0.0474

C10 0.4949 0.0387

C3 0.4919 0.0316

C4 0.4846 0.0172

C6 0.4826 0.0129

C8 0.4764 0.0000

C9 0.4764 0.0000

C5 0.4764 0.0000

Table 5. Hamming distance and degree of consistency indicator c between SD and
CDS, with distance di, and RIA.

Hamming SD-RIA Hamming CSD-RIA c(SD, RIA) c(CSD, RIA)

d1 5 5 19/28 21/28

d2 5 5 19/28 21/28

d3 5 3 19/28 22/28

d4 5 3 24/28 24/28
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d4 = Kolmogorv-Smirnov, while d4 maximizes the consistency indicator, being
CSD more consistent with RIA than SD. This reinforces the hypothesis that the
correction in SD obtained multiplying by factor δ, improves it.

5 Conclusion

We introduce different measures of features strength in a probability classifier.
From them, Corrected Strength Distance (CSD), which is based on CPT of class
conditioned to each feature, seems to outperform Strength Distance (SD) since
it is more consistent with Relative Increment in Accuracy (RIA), which is a
measure based on accuracy in prediction. From the chosen distances, the best
options have been Hellinger and Kolmogorov-Smirnov, both after correction.
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Appendix: Conditional Probability Tables of Features
with Respect to Class Variable A15

Table 6. CPT of A15 conditioned to C1 (in %).

C1 → Spring Summer Autumn Winter

Pulsional 10.05 10.05 10.05 10.05

Gross negligence 31.31 31.31 31.31 31.31

Slight negligence 47.64 47.64 47.64 47.64

Profit 7.59 7.59 7.59 7.59

Revenge 3.42 3.42 3.42 3.42

Table 7. CPT of A15 conditioned to C2, and conditioned to C3 (in %).

C2 ↓ C3 ↓
High Medium Low Morning Afternoon Evening

Pulsional 10.05 10.05 10.05 11.04 7.33 25.82

Gross negligence 31.31 31.31 31.31 19.63 33.18 30.22

Slight negligence 47.64 47.64 47.64 57.06 51.07 18.13

Profit 7.59 7.59 7.59 10.43 6.44 12.09

Revenge 3.42 3.42 3.42 1.84 1.97 13.74
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Table 8. CPT of A15 conditioned to C4 (in %).

C4 → Pathway Road Houses Crops Interior F. Track Others

Pulsional 20.00 36.94 3.90 0.90 6.22 16.38 6.12

Gross negligence 24.19 16.22 32.47 35.75 33.97 26.72 35.61

Slight negligence 33.49 26.13 59.74 59.50 50.24 30.17 51.80

Profit 14.88 10.81 1.30 3.62 8.61 15.52 5.04

Revenge 7.44 9.91 2.60 0.23 0.96 11.21 1.44

Table 9. CPT of A15 conditioned to C5 (in %).

C5 → Agricultural Forestry Livestock Interface Recreational

Pulsional 6.28 12.16 11.88 13.40 10.58

Gross negligence 33.00 30.26 30.60 29.44 31.55

Slight negligence 52.51 44.30 44.61 45.96 45.88

Profit 6.13 8.96 8.81 6.96 7.92

Revenge 2.09 4.32 4.10 4.24 4.08

Table 10. CPT of A15 conditioned to C6, to C7 and to C8 (in %).

C6 ↓ C7 ↓ C8 ↓
One More Yes No Yes No

Pulsional 7.77 25.13 51.39 7.72 27.57 3.65

Gross negligence 32.31 21.99 19.44 31.92 18.48 34.95

Slight negligence 52.23 20.42 5.56 50.26 28.74 54.71

Profit 5.18 23.04 6.94 7.65 19.65 3.65

Revenge 2.51 9.42 16.67 2.45 5.57 3.04

Table 11. CPT of A15 conditioned to C9 and to C10 (in %).

C9 ↓ C10 ↓
Yes No Guard Vigilance Particular

Pulsional 6.55 12.11 11.69 12.08 8.85

Gross negligence 34.06 29.58 37.39 41.17 26.18

Slight negligence 55.68 43.30 38.26 33.09 55.41

Profit 2.40 10.61 8.69 9.22 6.65

Revenge 1.31 4.39 3.96 4.44 2.90
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