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Abstract. Multi-view learning attempts to generate a classifier with
a better performance by exploiting relationship among multiple views.
Existing approaches often focus on learning the consistency and/or com-
plementarity among different views. However, not all consistent or com-
plementary information is useful for learning, instead, only class-specific
discriminative information is essential. In this paper, we propose a new
robust multi-view learning algorithm, called DICS, by exploring the
Discriminative and non-discriminative Information existing in Common
and view-Specific parts among different views via joint non-negative
matrix factorization. The basic idea is to learn a latent common subspace
and view-specific subspaces, and more importantly, discriminative and
non-discriminative information from all subspaces are further extracted
to support a better classification. Empirical extensive experiments on
seven real-world data sets have demonstrated the effectiveness of DICS,
and show its superiority over many state-of-the-art algorithms.
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1 Introduction

Many real-world entities are often represented with different views such as web
pages [1,33], multi-lingual news [2,8,16] and neuroimaging [22–24]. Consistency
and complementarity, as the bridges to link all views together, are the two main
assumptions in current multi-view learning [30]. The consistency assumption sug-
gests that there is consistent information shared by all views [3,18,31]. Appar-
ently, it is insufficient to exploit multi-view data using only consistent informa-
tion since each view also contains complementary knowledge that other views
do not have [1,9,19]. Therefore, investigating the complementarity of views is
another important paradigm to learn multi-view data.

However, a question comes to our mind: whether the derived consistent and
(or) complementary information really always support a better classification
performance? Our answer is: no, since empirical pre-experiments indicate that
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prediction performance on multi-view data can be even worse than using single-
view data in some real-world data sets. The main reason is that the consistent or
complementary information does not learn discriminative information directly.
The classifier constructed by multi-view data may give an even worse classifica-
tion performance if the learned consistent and (or) complementary information
contains no clear discriminative information.

Fig. 1. Illustration of extracting discriminative information from multi-view data via
joint non-negative matrix factorization. Each view of the data matrix is a superposition
of four different parts: common discriminative part, common non-discriminative part,
specific discriminative part and specific non-discriminative part.

In this paper, towards robust multi-view learning, we examine both discrim-
inative and non-discriminative information existing in the consistent and com-
plementary parts, and use only discriminative information for learning. Follow-
ing this idea, we propose a new multi-view learning algorithm, called DICS,
by exploring the Discriminative and non-discriminative Information existing in
Common and view-Specific parts among different views via joint non-negative
matrix factorization (NMF). Specifically, as usual, multi-view data is factorized
into common part shared across views and view-specific parts existing within
each view. Beyond, for both common part and each view-specific part, they
are further factorized into two parts (discriminative part and non-discriminative
part). To better obtain the discriminative parts, a supervised constraint is added
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to guide the joint NMF factorization. For illustration, Fig. 1 gives a simple exam-
ple to illustrate the decomposition. Here, each view of data is factorized into four
parts: the common discriminative, common non-discriminative, specific discrim-
inative and specific non-discriminative part, respectively. To find the optimal
decomposition, we follow the block coordinate descent (BCD) framework [14]
to solve the objective function of DICS. Finally, only the derived discrimina-
tive parts from common part and view-specific parts are used to construct a
classifier. Experimental results show that DICS allows extracting discriminative
information as well as discarding non-discriminative information effectively, and
supports a gained classification performance, which outperforms many state-of-
the-art algorithms on seven real-world data sets.

2 Related Work

The most simplest way to deal with multi-view data is to concatenate all fea-
ture vectors of different views into one single long feature vector. However, such
method ignores the relationships among multiple views and may suffer from the
curse of dimensionality. To present, many advanced multi-view learning algo-
rithms have been proposed, which can be broadly categorized into two types:
The first category aims to exploit the consistency, and the second one focuses
on exploiting the complementarity among multiple views.

Studies in exploiting consistency generally seek a common representation on
which all views have minimum disagreement. For instance, Canonical Correlation
Analysis (CCA) related algorithms [3,6,11,12,26] project two or more views into
latent subspaces by maximizing the correlations among projected views. Spec-
tral methods [5,16,20,29,33] use weighted summation to merge graph Laplacian
matrices from different views into one optimal graph for further clustering or
embedding. Matrix factorization based methods [8,18,27] jointly factorize multi-
view data into one common centroid representation by minimizing the overall
reconstruction loss of different views. In addition, multiple kernel learning (MKL)
[7] can also be considered as exploiting the consistency across different views,
where each view is mapped into a new space (e.g. kernel Hilbert space) using
kernel trick, and then combines all kernel matrices into one unified kernel by
minimizing a pre-defined objective function.

Another paradigm of multi-view learning is to explicitly preserve comple-
mentary information of different views. Co-training style algorithms [1,15,28,32]
treat each view as complementarity. Generally speaking, it iteratively trains two
classifiers on two different views, and each classifier generates its complementary
information to help the other classifier to train in the next iteration. Beyond, the
Co-EM algorithm [21] can be considered as a probabilistic version of co-training.
Subspace related methods are also adopted to learn the complementarity. For
instance, [9,10,13,19,25] learn one shared latent factor and view-specific latent
factors to simultaneously capture the consistency and complementarity.

In summary, most existing multi-view learning algorithms mainly focus
on learning consistency and complementarity from multi-view data. However,
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discriminative information existing in consistency and complementarity is not
fully investigated, which is actually the direct factor to dominate the learning
performance.

3 The Proposed Method

3.1 Preliminaries

Given a non-negative matrix X ∈ R
m×n
+ , where each column represents a data

point. NMF aims to approximately factorize the data matrix into two non-
negative matrix W ∈ R

m×k
+ and H ∈ R

n×k
+ , so that,

min
W,H

||X − WHT ||2F
s.t. W,H ≥ 0

(1)

where || · ||F denotes the Frobenius norm. Note that the original data matrix is
a linear combination of all column vectors in W with weights of corresponding
column vectors in H. Therefore, W and H are often called the basis matrix and
the coefficient matrix respectively.

For multi-view data, NMF-based approaches often take either W or H as a
common factor. One of the representative formulation is as follows.

min
W,H

nv∑

v=1

||X(v) − W(v)HT ||2F + Φ(W,H)

s.t. W,H ≥ 0

(2)

where nv denotes the number of views, and W(v) denotes the basis matrices cor-
responding to different views. H denotes the common coefficient matrix shared
across views, and Φ(·) are some regularization terms on W and H. It assumes
that different views of one identical object are generated from distinct subspaces,
and all views share with one centroid latent representation. This paradigm con-
siders the consistency shared by all views, however, it ignores the complementary
knowledge existing in each view.

3.2 Discriminant Learning on Multi-view Data

As multiple views have their commonality and distinctiveness, we first decom-
pose the multi-view data into two parts: common part and view-specific parts,
like many existing approaches [9,10,13,19]. Formally, let WC represents the
common subspace shared by all views and W(v)

S represents the distinct subspace
corresponding to each specific view. Therefore, each view of data matrix can be
written as X(v) = WCHT

C+W(v)
S H(v)T

S . To derive the common and view-specific
information, we thus can formulate our objective function as follows.

min
W,H

nv∑

v=1

∣∣∣∣

∣∣∣∣X
(v) −

[
WC W(v)

S

] [
HT

C

H(v)T
S

] ∣∣∣∣

∣∣∣∣
2

F

+ Φ(W,H)

s.t. W,H ≥ 0

(3)
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To learn the discriminative information existing in multi-view data, we fur-
ther leverage the available label information to guide joint matrix factorization
in a supervised way. Specifically, we first divide the common part and each
view-specific part into the discriminative part and the non-discriminative part,
respectively. Namely,

W̃ =
[
WCD WCN W(v)

SD W(v)
SN

]
(4)

H̃ =
[
HCD HCN H(v)

SD H(v)
SN

]
(5)

where WCD and WCN indicate the common discriminative as well as the non-
discriminative part of matrix W̃, respectively. Similarly, W(v)

SD and W(v)
SN indicate

the view-specific parts. It is the same for H̃.
Afterwards, we impose the supervised constraint on the latent coefficient

matrix H. Here, it is worth noting that we only add the constraint on the dis-
criminative part of H to derive discriminability. In addition, we should notice
that the discriminative information not only exists in the common part, but also
in each view-specific part. Therefore, the objective function is further reformu-
lated as follows.

min
W,H,B

nv∑

v=1

∣∣∣∣X(v) − W̃H̃T
∣∣∣∣2

F
+ Φ(W,H)

+ γ

∣∣∣∣

∣∣∣∣Y −
[
BCD B(v)

SD

] [
HT

CD

H(v)T
SD

] ∣∣∣∣

∣∣∣∣
2

F

s.t. W,H ≥ 0, ||(W)·,i||2 = 1

(6)

where Y ∈ R
c×n is the label matrix, c is the number of classes, and n is the

number of data instances. yi,j = 1 if the instance j belong to class i and 0 other-
wise. B = [BCD B(v)

SD] ∈ R
c×(k1+k3) is a linear projection matrix which maps the

latent representation into label space. Subscript “C” and “S” represent “com-
mon” and “specific” respectively. “D” and “N” represent “discriminative” and
“non-discriminative” respectively. For example, WCD denotes the common dis-
criminative subspace. We normalize each column vector of W to ensure a unique
solution. The supervised regularization term is imposed on HD = [HCD H(v)

SD]
to make the derived patterns discriminative.

3.3 Regularization Terms

To further enhance the discriminative power of latent subspaces, we impose a �1,1

norm constraint on WD as ||WT
DWD||1,1, where WD = [WCD W(v)

SD]. This term
can be factorized into two parts: ||WT

DWD||1,1 =
∑

i w
T
DiwDi +

∑
i�=j w

T
DiwDj .

The first term is used to prevent overfitting. The second term encourages basis
vectors to be as orthogonal as possible, which reduces the redundancy of discrim-
inative bases. At last, we impose a �1,1 norm constraint on HD, which encourages
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the discriminative coefficients to be sparse. The reason is that data points of dif-
ferent classes should not possess identical latent concepts (i.e. basis vectors).
It is reasonable that a latent concept only appears in a certain class but not
in the others. With such intuition, a discriminative latent representation vector
hDi should be sparse in the elements which are corresponding to the latent con-
cepts that hDi doesn’t posses. Finally, putting all terms together, the objective
function of DICS is formulated as follows.

min
W,H,B

nv∑

v=1

∣∣∣∣X(v) − W̃H̃T
∣∣∣∣2

F
+ α

∣∣∣∣WT
DWD

∣∣∣∣
1,1

+ β
∣∣∣∣HD

∣∣∣∣
1,1

+ γ

∣∣∣∣

∣∣∣∣Y −
[
BCD B(v)

SD

] [
HT

CD

H(v)T
SD

] ∣∣∣∣

∣∣∣∣
2

F

s.t. W,H ≥ 0, ||(W)·,i||2 = 1

(7)

where α, β, γ are non-negative parameters to balance the regularization terms.

3.4 Optimization

The objective function Eq. (7) is not convex over both variables W and H. There-
fore, it is impractical to find the global optimum. We follow the general BCD
framework to divide the objective function Eq. (7) into several convex subprob-
lems corresponding to each column of W and H, then solve each subproblem
successively by fixing the others. In this way, the global convergence and local
minimum solutions can be obtained [4].

Firstly, we represent WHT as the sum of rank-1 outer products. We can
equivalently reformulate the objective function Eq. (7) as follows.

f(W,H,B) =
nv∑

v=1

∣∣∣∣

∣∣∣∣X
(v) −

k1∑

i=1

wCDihT
CDi −

k2∑

i=1

wCNihT
CNi−

k3∑

i=1

w(v)
SDih

(v)T
SDi −

k4∑

i=1

w(v)
SNih

(v)T
SNi

∣∣∣∣

∣∣∣∣
2

F

+

α(
k1∑

i=1

k1∑

j=1

wT
CDiwCDj +

k3∑

i=1

k3∑

j=1

w(v)T
SDi w

(v)
SDj+

2
k1∑

i=1

k3∑

j=1

wT
CDiw

(v)
SDj) + β11×n(

k1∑

i=1

hCDi +
k3∑

i=1

h(v)
SDi)

γ

∣∣∣∣

∣∣∣∣Y −
k1∑

i=1

bCDihT
CDi −

k3∑

i=1

b(v)
SDih

(v)T
SDi

∣∣∣∣

∣∣∣∣
2

F

(8)

where wCDi, wCNi, w(v)
SDi, w(v)

SNi, hCDi, hCNi, h(v)
SDi, h(v)

SNi are the i-th column
vectors of WCD, WCN, W(v)

SD, W(v)
SN , HCD, HCN, H(v)

SD, H(v)
SN respectively. 11×n

is a row vector of length n with all elements 1.
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By fixing all column vectors except the one we want to update, we can obtain
the convex subproblem respect to it, then solve it based on the BCD framework.
Note that we use [·]+ to denote max(0, ·), which projects the negative value
to the boundary of feasible region of zero. Finally, we give the update rules as
follows.

wCDi = wCDi +
[∑nv

v=1(R
(v)hCDi − α(WCD1k1×1 + W(v)

SD1k3×1))
nv(hT

CDihCDi + α)

]

+
(9)

wCNi = wCNi +
[∑nv

v=1 R
(v)hCNi

nv(hT
CNihCNi)

]

+
(10)

w(v)
SDi = w(v)

SDi +
[R(v)h(v)

SDi − α(WCD1k1×1 + W(v)
SD1k3×1)

h(v)T
SDi h

(v)
SDi + α

]

+
(11)

w(v)
SNi = w(v)

SNi +
[ R(v)h(v)

SNi

h(v)T
SNi h

(v)
SNi

]

+
(12)

hCDi = hCDi +
[∑nv

v=1(R
(v)TwCDi − β

21n×1 + γQ(v)TbCDi)
nv(wT

CDiwCDi + γbT
CDibCDi)

]

+
(13)

hCNi = hCNi +
[∑nv

v=1 R
(v)TwCNi

nv(wT
CNiwCNi)

]

+
(14)

h(v)
SDi = h(v)

SDi +
[R(v)Tw(v)

SDi − β
21n×1 + γQ(v)Tb(v)

SD

w(v)T
SDi w

(v)
SDi + γb(v)T

SDi b
(v)
SDi

]

+
(15)

h(v)
SNi = h(v)

SNi +
[R(v)Tw(v)

SNi

w(v)T
SNi w

(v)
SNi

]

+
(16)

where R(v) and Q(v) are

R(v) = X(v) − WCDHT
CD − WCNHT

CN − W(v)
SDH

(v)T
SD − W(v)

SNH
(v)T
SN (17)

Q(v) = Y − BCDHT
CD − B(v)

SDH
(v)T
SD (18)
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Note that we extract the common factors R(v) and Q(v) from the equations
just for saving the writing space. However, it is not efficient for implementation,
since the computation orders i.e. (WHT )hi and W(HThi) largely affect the
computational complexity. The former takes mn(k +1) multiply operations, the
later takes (m+n)k multiply operations. Obviously the later form is much more
efficient in implementation.

In addition, when the other variables are fixed, the projection matrices BCD

and B(v)
SD can be solved in a closed form as follows.

BCD =
∑nv

v=1(Y − B(v)
SDH

(v)T
SD )

nv
HCD(HT

CDHCD + λI)−1 (19)

B(v)
SD = (Y − BCDHT

CD)H(v)
SD(H(v)T

SD H(v)
SD + λI)−1 (20)

where I is the identity matrix, λ is a small positive number.

Initialization. Since the NMF objective function is non-convex and has many
local minima, a proper initialization is beneficial to improve learning perfor-
mance. We develop a heuristic approach to initialize the basis matrix. DICS
encourages the discriminative bases to achieve a degree of orthogonality, thus
we try to initialize them as orthogonal as possible. To initialize WC, we first
calculate the mean of multi-view data, i.e. X̄ = 1

nv

∑nv

v X(v). Afterwards, we
clustering X̄ into k1 + k2 clusters and obtain the corresponding centroids. Then
we compute the pairwise linear correlation coefficients between each pair of cen-
troids, and sort them in an ascending order. At last, we select k1 centroids
corresponding to the top k1 correlation coefficients to initialize WCD, and use
the rest k2 centroids to initialize WCN. It is same to initialize each W(v)

S by
replacing X̄ with X(v).

Time Complexity. The computational complexity of DICS is the same as
solving standard NMF problem via hierarchical alternating least squares (HALS)
algorithm under the BCD framework [14]. It is O(

∑
v mvnk) in the multi-view

case, where mv is the dimension of the v-view feature. Finally, the pseudocode
of DICS is given in Algorithm1.

4 Experiment

In this section, we first experimentally evaluate the proposed algorithm DICS
in classification task on seven real world multi-view data sets. Then we empiri-
cally investigate that whether the extracted discriminative information from the
common and the view-specific parts are really helpful for improving the learning
performance. At last, the sensitivity of parameters and the convergence of DICS
are analyzed.
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Algorithm 1. DICS Algorithm
Input:

Multi-view data matrices X(1),X(2), ...,X(nv), label matrix Y, parameters α, β, γ,
number of latent factors k1, k2, k3, k4.

Output:
Basis matrices W = {WCD,WCN,W

(v)
SD ,W

(v)
SN},

Coefficient matrices H = {HCD,HCN,H
(v)
SD,H

(v)
SN},

Projection matrices B = {BCD,B
(v)
SD}.

1: Initialize W, H, and B.
2: repeat
3: Update each column of WCD using Eq. (9)
4: Update each column of WCN using Eq. (10)
5: for v = 1 to nv do
6: Update each column of W

(v)
SD using Eq. (11)

7: end for
8: for v = 1 to nv do
9: Update each column of W

(v)
SN using Eq. (12)

10: end for
11: Update each column of HCD using Eq. (13)
12: Update each column of HCN using Eq. (14)
13: for v = 1 to nv do
14: Update each column of H

(v)
SD using Eq. (15)

15: end for
16: for v = 1 to nv do
17: Update each column of H

(v)
SN using Eq. (16)

18: end for
19: Update BCD using Eq. (19)
20: for v = 1 to nv do
21: Update B

(v)
SD using Eq. (20)

22: end for
23: until convergence or max no. iterations reached;

4.1 Data Sets

Four popular real-world multi-view data sets are used in the experiment, includ-
ing WebKB, Reuters, YaleFace and BBC, where the WebKB data set can be
further divided into four sub data sets, namely Cornell, Texas, Washington,
Wisconsin. Therefore, finally seven data sets are used to evaluate the perfor-
mance of the proposed algorithm in this study. The statistics of data sets are
summarized in Table 1.

4.2 Selection of Comparison Algorithms

We compare DICS algorithm with several single-view and multi-view algorithms
to demonstrate its effectiveness. For fair comparison, the source codes of all com-
paring algorithms are directly downloaded from the author’s website or requested
from the author by email. The parameters of all algorithms are selected within
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Table 1. Statistics of the data sets

Data sets Data size # of views # of classes # of dimensions

Reutersa 1200 5 6 2000 for all

Cornella 195 2 5 1703/585

Texasa 187 2 5 1703/561

Washingtona 230 2 5 1703/690

Winsconsina 265 2 5 1703/795

YaleFaceb 256 2 8 2016 for all

BBCc 685 4 5 4659/4633/4665/4684
a http://lig-membres.imag.fr/grimal/data.html
b http://vision.ucsd.edu/∼iskwak/ExtYaleDatabase/ExtYaleB.html
c http://mlg.ucd.ie/datasets/segment.html

the range that the author suggested, which are listed in the following. Also, the
source code of our proposed DICS algorithm can be acquired from Dropbox1.

– KNN. We use the KNN algorithm (Set k = 1) as the baseline algorithm since
all NMF-based algorithms can be regarded as a preprocessing before KNN.
We apply KNN on all single views and report the best performance on the
view. Also we apply the KNN algorithm on the concatenated feature vector
(i.e. KNNcat).

– NMF. We apply the standard NMF algorithm on each of the single view
data and the concatenated feature vector (i.e. NMFcat), as another baseline
algorithm.

– SSNMF. This is a supervised NMF variant proposed in [17], which incorpo-
rates a linear classifier to encode the supervised information. We select the
regularization parameter λ within the range of [0.5:0.5:3].

– GNMF 2. This is a manifold regularized version of NMF [2], which preserves
the local similarity by imposing a graph Laplacian regularization. We use the
normalized dot product (cosine similarity) to construct the affinity graph,
and select the regularization parameter λ within the set of {100, 101, 102,
103, 104}.

– multiNMF 3. This is a well-known multi-view NMF algorithm proposed in
[18]. We select the regularization parameter λ within the set of {10−3, 10−2,
10−1, 100}.

– MVCC 4. MVCC incorporates the local manifold regularization for multi-view
learning [27]. We set parameter α to 100, and select β and γ within the set
of {50, 100, 200, 500, 1000}.

– MCL. This is a semi-supervised multi-view NMF variant with graph regular-
ized constraint [8]. We select parameter α within the range of [100:50:250],

1 https://www.dropbox.com/s/guohn1zhq073x9f/DICS.zip?dl=0.
2 http://www.cad.zju.edu.cn/home/dengcai/Data/GNMF.html.
3 http://jialu.cs.illinois.edu.
4 https://github.com/vast-wang/Clustering.git.

http://lig-membres.imag.fr/grimal/data.html
http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html
http://mlg.ucd.ie/datasets/segment.html
https://www.dropbox.com/s/guohn1zhq073x9f/DICS.zip?dl=0
http://www.cad.zju.edu.cn/home/dengcai/Data/GNMF.html
http://jialu.cs.illinois.edu
https://github.com/vast-wang/Clustering.git
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β within the set of {0.01, 0.02, 0.03}, and set gamma to 0.005 as author
suggested.

– DICS. This is the proposed algorithm. We select parameters: α, β and γ
within the set of {10−2, 10−1, 100, 101, 102}.

4.3 Classification on Real-World Data Sets

For DICS and all comparing algorithms, we first perform a five-folds cross vali-
dation to select the parameters, then we run ten times 10-folds cross validation
with the selected parameters to obtain the final average classification accuracy
and standard deviation. For all comparing NMF-based methods, we don’t fix
the number of latent factors k a global constant number, considering different
algorithms may prefer different ks. Thus, we select k within the range of [5:5:100]
for each algorithm. As for DICS, we need to set the number of four latent fac-
tors k1, k2, k3, k4 respectively. To avoid searching too large parameter space,
we first select ki(i = 1, 2, 3, 4) within the range of [5:5:20], then we select the
regularization parameters by fixing all ki.

For classification, we first obtain latent representations from different NMF-
based approaches, then we use KNN(k = 1) for classification. Specifically, for
unsupervised algorithms including NMF, GNMF, multiNMF, MCL and MVCC,
we first apply algorithms on the data sets to obtain the latent representations H,
then we use H for further training and testing. For supervised method like DICS,
we first obtain the discriminative basis WD on training data, then we use the
Moore-Penrose Pseudoinverse of WD as projection matrix to obtain new data
representation, namely X̃(v) = (WT

DWD)−1WT
DX

(v). Then we concatenate X̃(v)

as the input for KNN.
Table 2 summarizes the classification results of different multi-view learning

algorithms, where the numbers in the parentheses of the table denote the stan-
dard deviation. The best result on each data set is highlighted in boldface. As
we can see from the results, the proposed DICS outperforms the other com-
parison algorithms on all seven data sets. DICS is slightly better than other
algorithms on Reuters, YaleFace and BBC. But it achieves remarkably promis-
ing performance on four WebKB sub data sets, where it outperforms the second
best algorithm up to 9.01% on Texas especially. The amazing result may result
from twofold: (a) DICS not only explores the common and the view-specific
information, but more importantly, the discriminative information existing in
these parts is further extracted, which thus supports a gained prediction per-
formance. (b) By filtering out the non-discriminative information from common
part and view-specific parts, and adding the supervised constraints on encoding
coefficients, the extracted discriminative information is much more effective for
classification.

4.4 Empirical Study of DICS Algorithm

DICS assumes that multi-view data can be decomposed into the common part
and the view-specific parts, and only the discriminative information in them
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Table 2. Multi-view classification performance on real-world data sets

Method ACC (%)

Reuters Cornell Texas Washington Wisconsin YaleFace BBC

KNN 43.3 (0.5) 61.6 (1.4) 66.4 (1.2) 74.4 (1.3) 60.2 (1.4) 89.1 (1.1) 36.7 (0.6)

KNNcat 37.3 (0.5) 62.5 (1.5) 65.5 (1.1) 70.4 (0.7) 61.7 (1.4) 74.9 (1.1) 22.7 (1.0)

NMF 59.2 (1.1) 64.0 (2.9) 72.8 (3.5) 74.5 (1.0) 74.9 (2.1) 93.3 (0.7) 69.8 (1.9)

NMFcat 59.6 (0.9) 65.9 (1.9) 73.7 (2.1) 75.3 (2.5) 77.1 (1.7) 92.5 (1.4) 87.9 (1.4)

SSNMF 64.0 (0.7) 66.5 (2.5) 69.3 (2.6) 73.4 (1.1) 73.9 (2.6) 93.8 (0.8) 81.6 (0.7)

GNMF 50.0 (1.0) 49.0 (2.0) 59.8 (1.8) 58.2 (2.0) 67.0 (1.8) 14.9 (1.3) 46.6 (1.7)

multiNMF 61.1 (0.8) 54.7 (1.4) 67.4 (2.8) 59.0 (2.8) 61.5 (2.8) 90.7 (1.2) 89.3 (1.4)

MCL 64.4 (0.8) 69.9 (2.2) 70.0 (2.5) 74.7 (2.1) 79.6 (2.4) 90.0 (0.2) 90.0 (0.8)

MVCC 55.0 (1.5) 64.9 (1.7) 71.0 (3.4) 70.8 (2.8) 76.4 (2.7) 29.5 (3.6) 70.2 (9.6)

DICS 66.9 (1.6) 75.5 (2.3) 82.7 (2.0) 78.7 (1.3) 84.3 (1.1) 94.1 (1.0) 91.9 (0.7)

is essential. To verify this assumption, we first construct the following sub-
spaces: WD = [WCD W(v)

SD], WN = [WCN W(v)
SN ], WC = [WCD WCN] and

WS = [W(v)
SD W(v)

SN ], denoting as the “Discriminative”, “Non-discriminative”,
“Common” and “Specific” subspace. Afterwards, we project the original data
onto these subspaces to obtain the corresponding components of data. We
perform classification on each component, and the results are given in Fig. 2.
The classification performance of the “Common” part is much worse than the
“Specific” part, which suggests that only using the consistent information of
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Fig. 2. Classification accuracy of DICS on different extracted components of multi-view
data.
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multi-view data is not enough to capture the whole discriminative information.
Also, performance on the “Discriminative” part is better than all other parts
in all data sets except Reuters. It suggests that extracting the discriminative
information from the common as well as the view-specific parts, and discarding
the non-discriminative parts do help improve the learning performance.

4.5 Parameter Study

There are three regularization parameters in DICS, i.e. α, β and γ. α controls the
orthogonality degree of discriminative bases WD, β controls the degree of spar-
sity of discriminative latent representation HD, and γ balances the importance
of supervised regularization term. To investigate how these parameters affect the
final classification accuracy, we vary one parameter at a time within the set of
{10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103}, and fix the others to 10−3. Figure 3
shows the variation trend of classification accuracy over different parameters
on four typical data sets. The classification accuracy is relatively stable when
α and β are less than 1, then drops sharply after α and β are increasing. As
for parameter γ, the classification accuracy on BBC largely increases after γ is
greater than 10−2, and has become steady after γ is greater than 1. It is similar
to other data sets except YaleFace, classification accuracy on YaleFace starts to
decrease after γ is greater than 1. Based on the observation, we suggest selecting
parameters α and β within a small range of [0 1], and simply set the parameter
γ = 1 for practical use.
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Fig. 3. Classification accuracy curve w.r.t. parameters α, β and γ.

4.6 Convergence Analysis

Though the original problem Eq. (7) is non-convex, the derived updating rules
can achieve optimal minimum for each subproblem, the original problem Eq. (7)
will eventually converge to a local minimum solution. In order to empirically
investigate the convergence property of DICS, we plot the convergence curve
and the corresponding classification accuracy curve on four typical data sets
(see Fig. 4). From all four plots, we can observe that the objective values drop
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sharply and meanwhile the classification accuracies increase rapidly within about
the first 10 iterations. After that, convergence curves and the accuracy curves
begin to grow/decrease mildly, then it converges eventually. Usually, DICS will
converge in no more than 50 iterations, while the corresponding classification
accuracy becomes stable.

Fig. 4. Convergence and the corresponding classification accuracy curve of DICS on
four typical data sets.

5 Conclusion

In this paper, we propose a novel multi-view learning algorithm, called DICS,
by exploiting the discriminative information existing in multi-view data. To this
end, a joint non-negative matrix factorization is employed to factorize multi-
view data into a common part and view-specific parts. Beyond, the discrimina-
tive and non-discriminative information in these parts are further extracted in
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a supervised way. In contrast to existing multi-view learning approaches focus-
ing on consistent and (or) complementary information, our new approach, offers
an intuitive and effective way to improve classification performance based on
the direct discriminative information. The high discriminative power of derived
distinct patterns, further demonstrates the effectiveness of DICS on seven multi-
view real-world data sets. Although DICS has several desirable properties, it has
its own drawbacks. One limitation is that tuning ki in DICS is quite trouble-
some, since inferring the subspace dimensionality is still an open problem for all
NMF-based algorithms. We simply tune ki via model selection with traditional
strategy. However, once we set proper ki for each subspace, the promising results
can be obtained as we have demonstrated.
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