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Abstract. In recent years, multi-view clustering has become a hot
research topic due to the increasing amount of multi-view data. Among
existing multi-view clustering methods, proximity-based method is a typ-
ical class and achieves much success. Usually, these methods need prox-
imity matrices as inputs, which can be constructed by some nearest-
neighbors-based approaches. However, in this way, neither the intra-view
cluster structure nor the inter-view correlation is considered in construct-
ing proximity matrices. To address this issue, we propose a novel method,
named multi-view proximity learning. By introducing the idea of repre-
sentative, our model can consider both the relations between data objects
and the cluster structure within individual views. Besides, the spectral-
embedding-based scheme is adopted for modeling the correlations across
different views, i.e. the view consistency and complement properties.
Extensive experiments on both synthetic and real-world datasets demon-
strate the effectiveness of our method.
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1 Introduction

Recently, multi-view data, whose data features are collected from multiple het-
erogenous but related views, have arisen in a number of fields [1–8], such as
pattern recognition, data mining, natural language processing, etc. For instance,
a web page can be described in two views, one contains the words occurring in
the page and the other contains the words occurring in the hyperlinks point-
ing to that page [4]. Another example is the multilingual document, which is
available in several languages such that each language is taken as a separate
view [5]. In these fields, data clustering is a basic but widely used technique [9].
Considering clustering the multi-view data, it is difficult to produce good results
by using only one view of feature, since usually each view only provides par-
tial information [10]. Therefore, it is necessary to properly combine information
from all views together to improve the clustering performance. This leads to the
emergence of multi-view clustering.
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Proximity-based method is a kind of typical method for multi-view cluster-
ing. These methods integrate the information from different views by making
use of the predefined proximity matrices together. One of the most straight-
forward scheme for view integration is weighted combination, which combines
the proximity matrices from all views together by weighted addition via an
adaptive weighting parameter for each view [11,12]. Besides, some other useful
methods are developed. In [13,14], co-training based approaches are adopted to
share information among views, which improves the proximity matrices to fit
multi-view data. Co-regularized approaches are also effective approaches to view
integration [15,16]. Wang et al. propose a method which considers the neighbor-
hood consistency of different views [17], while Xia et al. consider the low-rank
and sparse properties of proximity matrices [18].

Despite the success of the aforementioned proximity-based methods, they suf-
fer from some common problems. First, proximity matrices are needed as inputs
for these methods, while usually data features are given rather than proxim-
ity matrices. In this case, some nearest-neighbors-based methods are applied
on data features to construct proximity matrices, such as k-nearest neighbors,
Gaussian proximity [19] and self-tuned Gaussian [20]. However, these proximity
construction methods do not consider the underlying cluster structures, such
that the constructed proximities may not exhibit good properties for clustering.
Moreover, these methods only consider separately the information in individual
views, leading to the loss of the inter-view correlations.

In order to address these problems, we propose a new multi-view proximity
learning (MVPL) method for multi-view clustering. In the multi-view proximity
learning, both the relations between data objects in individual views and the
correlations across different views are considered. For the intra-view relations, a
novel idea of data representative is adopted, such that the cluster structure is
also taken into account during the learning process. Besides, spectral-embedding-
based scheme is designed for modeling the inter-view correlations, such that both
the view consistency and complement properties can be utilized for improving
the clustering performance. Accordingly, an objective function is designed and
an alternative iteration scheme is proposed to optimize the objective. Extensive
experiments conducted on both synthetic and real-world datasets demonstrate
the effectiveness of the proposed model.

2 The Proposed Model

In order to address the proximity learning problem for multi-view data, our
model should consider two parts. One is the intra-view learning quality, which
means that the learning process should consider the relations between data
objects within each view. Inspired by [21], the proposed model discovers these
relations based on the idea of representative. It can transform the original view
feature into a more suitable representation for proximity learning, by which the
cluster structures are also considered. In particular, in each view, each feature
vector has a dedicated representative that is very similar to itself, and represen-
tatives of data objects with higher proximity should be similar to each other.
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Fig. 1. Illustration of the main idea of our method. In this simple example, the dataset
contains a document view and an image view.

The other part is to model the correlations across different views, such that both
the view consistency and complement properties can be utilized for improving
clustering performance. The view consistency property implies that the proxim-
ities learnt from different views will reach a certain degree of consistency, while
the view complement property implies that one view will provide complementary
information for the other views. Accordingly, a well-designed inter-view criterion
function is proposed based on spectral embedding. For clarity, Fig. 1 illustrates
the main idea of our method by a two-view example. From the figure, we find
that the data representatives are determined by both view features and learnt
proximities. Similarly, the learnt proximities are derived from intra-view data
representatives and further mutually affected in a inter-view manner by spectral
embedding. In what follows, we will introduce the model in detail.

2.1 The Objective Function

Given a dataset containing n objects whose features are collected from m views,
the features in the v-th view are represented by matrix Xv = [xv

1,x
v
2, . . . ,x

v
n] ∈

R
dv×n, where dv is the dimensionality of the v-th view and xv

i is the feature
vector for the i-th object in the v-th view. The goal of the multi-view proximity
learning is to learn a proximity set {S1, S2, . . . , Sm}, where Sv = [sv

ij ]n×n is the
proximity matrix for the v-th view with sv

ij representing the proximity between
the i-th and j-th objects in the v-th view. According to the discussion above,
the learning process should consider both intra-view and inter-view criteria.

Intra-view Criterion. In order to discover the relations between data objects
in individual views, we introduce the idea of data representatives, which are bet-
ter representations with clearer cluster structures for data objects. Intuitively in
this process, original data point is moved to a better position for clustering
according to its relations with other data points. We use Uv = [uv

1,u
v
2, . . . ,u

v
n] ∈

R
dv×n to denote the representative matrix where uv

i is the representative for fea-
ture vector xv

i in the v-th view. Treating the original feature as important basis
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for learning representative, uv
i should not be far from xv

i , otherwise the topologi-
cal structure will be destroyed. Besides, the learning of representative should also
consider the proximities between objects. If two data objects have higher proxim-
ity in one view then their representatives should be relatively closer. Similarly,
the proximity learning should consider the relations between data representa-
tives. If two data representatives uv

i and uv
j are close in the v-th view, then sv

ij

should be relatively large. In other words, the learning processes of represen-
tatives and proximities are mutually affected by each other. According to the
above discussion, the intra-view criterion is defined as follows,

Φv(Uv, Sv) =
1
n

n∑

i=1

‖xv
i − uv

i ‖22 +
α

n2

⎛

⎝
n∑

i=1

n∑

j=1

sv
ij‖uv

i − uv
j ‖22 + β‖Sv‖2F

⎞

⎠

s.t.
n∑

j=1

sv
ij = 1, sv

ij ≥ 0,∀i, j

(1)

where ‖ · ‖2 is the L2 norm of vector, ‖ · ‖2F is the Frobenius norm of matrix and
α, β > 0 are trade-off parameters. In our paper, the probabilistic proximities are
used. Therefore constraint

∑n
j=1 sv

ij = 1 and sv
ij ≥ 0 should be introduced. The

term β‖Sv‖2F is adopted for controlling the sparsity of learnt proximity. If β is
large, the learnt proximity matrix will be relatively dense, while a smaller β will
make the matrix sparser.

Inter-view Criterion. The inter-view criterion considers both the view consis-
tency and view complement properties. We design such criterion by introducing
the concept of spectral embedding. Spectral embedding is a low-dimensional
representation of data object, which is obtained through spectral decomposi-
tion on specific matrix. In our model, spectral embedding is the representation
integrating information from all views. By denoting the embedding matrix as
F = [f1, f2, . . . , fn] ∈ R

c×n with fi being the c-dimensional spectral embedding
of the i-th data object, the relation between F and the learnt proximity Sv can
be modeled by

1
2n2

n∑

i=1

n∑

j=1

sv
ij‖fi − fj‖22 s.t. FFT = I (2)

where I is the identity matrix. Here FFT = I is a widely used constraint for
weakening the relations between the features of embedding, which makes F a
better representation [19]. If the distance between fi and fj is small, it implies
that i-th and j-th data objects may have higher proximity in all views. If the
value of (2) is smaller, the learnt proximity of the v-th view is more consis-
tent with the spectral embedding F . Since the spectral embedding F carries
information from all views, the high consistency between F and Sv implies that
information of other views is transferred to the v-th view, which reflects the
view complement property. Moreover, proximities from different views can reach
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a certain degree of consistency through F . Here F is regarded as a medium for
inter-view interactions, which reflects the view consistency property. Considering
all views together, we get the inter-view criterion as follows,

Ψ({Sv}, F ) =
1

2n2

m∑

v=1

n∑

i=1

n∑

j=1

sv
ij‖fi − fj‖22 s.t. FFT = I (3)

which models the inter-view correlations through the spectral embedding.

The Overall Objective Function According to the discussion above, we can
use Φv(Uv, Sv) to measure the intra-view learning quality and Ψ({Sv}, F ) to
measure the inter-view consistency and complement properties. By integrating
them together, we can get the overall objective function as follows,

min
{Uv},{Sv},F

m∑

v=1

Φv(Uv, Sv) + γΨ({Sv}, F )

s.t.
n∑

j=1

sv
ij = 1, sv

ij ≥ 0,∀i, j, v, FFT = I

(4)

where γ > 0 is the trade-off parameter balancing the intra-view criterion and the
inter-view criterion. By minimizing the objective function (4), both the learning
quality of proximities in all views and the interactions between different views are
considered, such that suitable proximities for multi-view data can be obtained.
Following the convention of spectral clustering, the dimensionality of spectral
embedding can be set as the predefined number of clusters [19].

2.2 Determination of Parameter β

In the proposed model, three parameters are needed as inputs for proximity
learning. Parameter α is adopted to control the distances between data features
and data representatives, while parameter γ is adopted for controlling the view
consistency. Both parameters should be determined according to the properties
of datasets. In comparison, β is adopted for controlling the sparsity of learnt
proximities, which has less variability. Therefore, it is necessary to design a
method for determining its value more easily.

Inspired by [22], we propose a method based on k-nearest neighbors to
determine β. It also induces a method for constructing single-view proximity,
which will be used in our experiments. Considering data feature in certain view,
whose data matrix is X = [x1, . . . ,xn] ∈ R

d×n (here we ignore the super-
script specifying view index for simplicity), we can learn the proximity vector
wi = [wi1, wi2, . . . , win]T associated with xi by solving the following model

min
wi

1
2

∥∥∥∥wi +
dx

i

2βi

∥∥∥∥
2

2

s.t. wi
T1 = 1,wi ≥ 0, (5)
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where βi > 0 is the sparsity parameter, 1 is the all-one vector and wi ≥ 0 means
all elements of vector wi are not less than 0. We assume the original distance
vector as d̂x

i = [d̂xi1, d̂
x
i2, . . . , d̂

x
in]T , where d̂xii is set as a very large number (i.e.

ignoring xi itself) and ∀j �= i, d̂xij = ‖xi − xj‖22. The distance vector dx
i in (5)

is defined by dx
i = [dxi1, d

x
i2, . . . , d

x
in]T , which is the sorted vector of d̂x

i such that
dxi1 ≤ dxi2 ≤ · · · ≤ dxin. In the model, the parameter βi determines the number of
nonzero elements in the proximity information vector wi. If βi = 0, there will be
only one nonzero element in the vector, corresponding to the nearest neighbor of
object xi. If βi → ∞, all elements will be nonzero except the one corresponding
to xi. Aiming to solve problem (5), we write down its Lagrangian function as

L(wi, η, μi) =
1
2

∥∥∥∥wi +
dx

i

2βi

∥∥∥∥
2

2

− η
(
wi

T1 − 1
) − μT

i wi (6)

where η and μi ≥ 0 are Lagrangian multipliers. According to the KKT condition,
the optimal solution of wi is given by

wij = max
(

− dxij
2βi

+ η, 0
)

. (7)

If there are exactly k nonzero elements in the vector wi, we get the value of
Lagrangian multiplier η = 1

k + 1
2kβi

∑k
j=1 dxij [22]. These k nonzero elements of

wi correspond to the k-nearest neighbors of xi and the elements of wi satisfy
∀1 ≤ j ≤ k,wij > 0 and ∀j ≥ k + 1, wij = 0. According to the constraint
wi

T1 = 1, the sparsity parameter βi can be set as

βi =
k

2
dxi,k+1 − 1

2

k∑

j=1

dxij , (8)

such that the resulting wi will have exactly k nonzero elements. Considering all
data objects, the sparsity parameter β can be set as the average of βi, which is
given by

β =
1
n

n∑

i=1

⎛

⎝k

2
dxi,k+1 − 1

2

k∑

j=1

dxij

⎞

⎠ . (9)

Using the method above, we can determine the sparsity parameter according
to the number of neighbors k, which is much easier to tune. Furthermore, the
single-view weighted k-nearest neighbors proximity can be constructed after k
is determined. For multi-view data, since different views may have different dis-
tance distributions, it is more reasonable to use different sparsity parameters for
different views. Therefore, the modified intra-view criterion function is given by

Φ̃v(Uv, Sv) =
1
n

n∑

i=1

‖xv
i − uv

i ‖22 +
α

n2

⎛

⎝
n∑

i=1

n∑

j=1

sv
ij‖uv

i − uv
j ‖22 + βv‖Sv‖2F

⎞

⎠

(10)
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where βv > 0 is the sparsity parameter for the v-th view determined by the
aforementioned method via the number of neighbors k. Finally, our objective is
given by

min
Uv,Sv,F

m∑

v=1

Φ̃v(Uv, Sv) + γΨ({Sv}, F )

s.t.
n∑

j=1

sv
ij = 1, sv

ij ≥ 0,∀i, j, v, FFT = I.

(11)

Although more sparsity parameters are introduced to control the model in (11)
compared with (4), they can be determined via the same number of nearest
neighbors k.

2.3 Optimization

In this subsection, the alternative iteration scheme is used to solve problem (11).

Update Uv . When Sv and F are fixed, the subproblem with respect to Uv is
given by

min
Uv

1
n

n∑

i=1

‖xv
i − uv

i ‖22 +
α

n2

n∑

i=1

n∑

j=1

sv
ij‖uv

i − uv
j ‖22. (12)

In order to rewrite the subproblem into matrix form, we introduce the property
[19] as

Tr
(
HLGHT

)
=

1
2

n∑

i=1

n∑

j=1

gij‖hi − hj‖22 (13)

where Tr(·) is the trace operator for matrix, G = {gij} ∈ R
a×a and H =

[h1,h2, . . . ,ha] ∈ R
b×a. LG is the unnormalized Laplacian matrix of G defined

by LG = DG −G, where DG is the degree matrix of G. Using the property (13),
the subproblem can be transformed as

min
Uv

‖Xv − Uv‖2F +
2α

n
tr

(
UvLv

SUvT
)

(14)

where Lv
S is the unnormalized Laplacian matrix of (Sv + SvT )/2. Setting the

derivative with respect to Uv to zero, we find that Uv satisfies the equation as
follows

Uv

(
I +

2α

n
Lv

S

)
= Xv, (15)

which can be solved by matrix inversion. Besides, the problem is essentially a
least-square problem, which can also be solved in many efficient ways.
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Update Sv . When Uv and F are fixed, the subproblem with respect to Sv is
given by

min
Sv

n∑

i=1

n∑

j=1

sv
ij‖uv

i − uv
j ‖22 + βv

n∑

i=1

n∑

j=1

sv
ij

2 +
γ

2α

n∑

i=1

n∑

j=1

sv
ij‖fi − fj‖22

s.t.
n∑

j=1

sv
ij = 1, sv

ij ≥ 0,∀i, j, v.

(16)

By denoting dv
ij = ‖uv

i − uv
j ‖22 + γ

2α‖fi − fj‖22, dv
i = [dv

i1, d
v
i2, . . . , d

v
in]T and

sv
i = [sv

i1, s
v
i2, . . . , s

v
in]T , we translate the problem into vector form as follows

min
svi

∥∥∥∥s
v
i +

dv
i

2βv

∥∥∥∥
2

2

s.t. sv
i

T1 = 1, sv
i ≥ 0,

(17)

which is equivalent to computing the Euclidean projection of point −dv
i /(2βv)

onto the probability simplex. The problem has a unique solution, which can be
solved by using the method proposed in [23].

Update F. When Uv and Sv are fixed, the subproblem with respect to F is to
solve a trace minimization problem as

min
FFT=I

Tr(FLSFT ) (18)

where LS =
∑m

v=1 Lv
S . The optimal F is a matrix formed by the c eigenvectors

of LS corresponding to the c smallest eigenvalues.
By alternatively update Uv, Sv and F , the objective value will decrease and

finally converge as the iteration goes, from which the solution of problem (11)
can be obtained. The optimization algorithm is summarized in Algorithm 1.
After learning the proximity matrices, the spectral clustering is applied on the
proximity matrices to obtain the clustering results.

3 Experiment

In this section, extensive experiments are conducted to demonstrate the effec-
tiveness of the proposed method on one synthetic dataset and four real-world
datasets. On the synthetic dataset, we will show how the proposed method works.
While on the real-world datasets, parameter analysis, convergence analysis and
comparison experiments will be conducted. The code of our method and the
testing datasets are available on dropbox1.

1 The code is available on https://www.dropbox.com/s/tj5zc7yry0ing3l/MVPL
PCode.zip?dl=0 and the password for decompression is “DASFAA2018”.

https://www.dropbox.com/s/tj5zc7yry0ing3l/MVPL_PCode.zip?dl=0
https://www.dropbox.com/s/tj5zc7yry0ing3l/MVPL_PCode.zip?dl=0


Multi-view Proximity Learning for Clustering 415

Algorithm 1. Multi-view proximity learning
Input: Data matrices of m views {X1, X2 . . . , Xm}, parameters α, γ and k, number

of clusters c.
1: Initialize representative matrix Uv as Xv.
2: Initialize Sv and determine βv by the strategy in Section 2.2.
3: Initialize F by solving Eq. (18).
4: repeat
5: Update Uv, ∀v by solving Eq. (15).
6: Update Sv, ∀v by solving Eq. (17).
7: Update F by solving Eq. (18).
8: until Convergence or reaching the maximum number of iterations.
Output: Proximity matrices {S1, S2, . . . , Sm}.
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Fig. 2. Synthetic experiment. In the figures, points in the first class are in blue while
those in the second class are in red. Green lines are edges representing the proximities
between data objects, i.e., if the proximity between two data objects in certain view is
larger than zero then there is an edge between them. (Color figure online)

3.1 Synthetic Experiment

A synthetic dataset consisting of two views, namely Two-Gaussian and Two-
moon, is used for demonstrating how the proposed method works. Figure 2(a)
and (d) plot the original data points in both views with edges representing
the initial proximities learnt by the method introduced in Sect. 2.2. In order to
show the significance of considering inter-view criterion, a variant of our method,
called SVPL, is introduced by setting γ = 0. It is a single-view proximity learning
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method which considers only the intra-view criterion. Figure 2(b) and (e) show
the results of SVPL, where points denote the learnt representatives. From the
subfigures, we find that SVPL transforms the original data view into a more
suitable state for clustering based on representatives. It is essentially equivalent
to making the data points move in such a manner that the intra-class connections
are stronger and the inter-class connections are weaker. However, the learnt
proximity is not good enough since there are still edges between the two clusters.
Therefore, we need to consider the inter-view information. Figure 2(c) and (f)
show the results of MVPL, where points denote representatives learnt by MVPL.
From these two subfigures, we find that there are no edges between clusters in
both views. This implies that much better proximities are learnt by considering
both the intra-view and the inter-view criterion. The comparison results confirm
the significance of considering inter-view criterion.

3.2 Real-World Datasets and Evaluation Measures

In this subsection, we will first introduce the four real-world datasets used in
experiments.

1. Handwritten numeral dataset
Multiple features (Mfeat) dataset is a handwritten numeral dataset from UCI
machine learning repository [24]. The dataset contains handwritten digits
from 0 to 9 and each category has 200 objects. In our experiment, we use
three kinds of feature to represent images, namely 216 profile correlations, 76
Fourier coefficients and 47 Zernike moments, where each kind of features is
regarded as a view.

2. Multi-source news dataset
3Sources dataset2 is a multi-source news dataset consisting of news collected
from three sources, namely BBC, Guardian and Reuters. Although the origi-
nal dataset contains 984 news articles covering 416 distinct news stories, there
are only 169 stories reported by all three medias. In our experiment, we only
use these 169 news objects so that each object has three views of features.

3. Object image datasets
Caltech101 [25] is an image dataset consisting of 101 categories of images
for object recognition problem. Following the previous work [26], two sub-
sets are selected to generate two datasets for experimental purpose. The first
subset is called Caltech101-7, containing 1474 images from 7 widely used cate-
gories. The second one is a larger subset called Caltech101-20, which contains
2386 images of 20 categories. Three kinds of features are extracted from the
images to generate three views, namely 1984-dimensional HOG feature, 512-
dimensional GIST feature and 928-dimensional LBP feature.

The statistic of the four real-world datasets is shown in Table 1.
In order to evaluate the clustering performance of the proposed method and

the compared methods, three widely used measures are adopted in our exper-
iments, namely accuracy (ACC), normalized mutual information (NMI) and
2 http://mlg.ucd.ie/datasets/3sources.html.

http://mlg.ucd.ie/datasets/3sources.html
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Table 1. Statistic of the four real-world datasets.

Mfeat 3Sources Caltech101-7 Caltech101-20

View1 fac(216) BBC(3560) hog(1984) hog(1984)

View2 fou(76) Guardian(3631) gist(512) gist(512)

View3 zer(47) Reuters(3068) lbp(928) lbp(928)

# of objects 2000 169 1474 2386

# of classes 10 6 7 20

purity (PUR). For each measure, higher value indicates better performance [17].
In comparison experiments, following [21], the average rank of the performance
obtained by each method is also reported across all datasets.

3.3 Parameter Analysis

In this subsection, parameter analysis is conducted to show the effect of the
three parameters α, γ and k. The first parameter to be analyzed is k, which
determines the value of βv. By fixing α = 1 and γ = 0.001, we tune the value
of k in range [5, 70] with step 5. The performance in terms of all three measures
on the four datasets are reported in Fig. 3. From the figure, we find that the
method performs not so well when k is too small due to the failure of preserving
the neighborhood structures. As the value of k increases, the performance will
gradually increase. After reaching the highest point (often around k = 30), the
value of curve will gradually decrease. Although the method may perform not so
well with relatively larger k, it produces acceptable results. The main reason is
that by introducing the idea of representative, which transforms the original data
into a more suitable state for proximity learning, the negative impact caused by
the noisy neighbors will be alleviated.
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Fig. 3. Parameter analysis on number of neighbors k.

Next we analyze the effect of α and γ by setting k = 30. According to the
properties of datasets, different ranges of γ are used for different datasets while
the same range of α is used for all datasets. The experimental results are shown
in Figs. 4, 5, 6 and 7 respectively. From the figures, we find our method has
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Fig. 4. Parameter analysis on α and γ on Mfeat.
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Fig. 5. Parameter analysis on α and γ on 3Sources.
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Fig. 6. Parameter analysis on α and γ on Caltech101-7.

2 4 6 8
10-4

0.2

0.4

0.6

0.8

1

0.55

0.6

0.65

0.7

(a) ACC

2 4 6 8
10-4

0.2

0.4

0.6

0.8

1 0.54

0.56

0.58

0.6

0.62

0.64

0.66

(b) NMI

2 4 6 8
10-4

0.2

0.4

0.6

0.8

1 0.7

0.72

0.74

0.76

0.78

0.8

(c) PUR

Fig. 7. Parameter analysis on α and γ on Caltech101-20.

similar performance with similar γ/α. What is more, the value of α should not
be set too large since it may lead to information loss in terms of topological
structure. In practice, user can select the value of α in [0.5, 1] and the value of
γ from {0.01, 0.001, 0.0001} by which satisfactory performance can be obtained.
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Fig. 8. Convergence analysis of optimization.

3.4 Convergence Analysis

In this subsection, convergence analysis is conducted to explore the convergence
property of the proposed iterative algorithm by setting α = 1, γ = 0.001 and
k = 30. Figure 8 plots the log value of objective as a function of iteration step.
From the subfigures, we find that the log values of objective decrease rapidly
during the iterations on all four datasets. Usually, the algorithm will converge
within 30 times of iteration.

3.5 Comparison Experiment

In this subsection, we compare the proposed MVPL method with several state-
of-the-art algorithms. Two types of clustering methods are used for comparison,
namely the traditional single-view clustering methods and the multi-view clus-
tering methods. For the single-view methods, three representative algorithms are
selected, namely k-means (KM) [27], normalized cut (NCut) [19] and robust con-
tinuous clustering (RCC) [21]. These single-view methods operate on each indi-
vidual views from which the best results are reported. For multi-view clustering
methods, five state-of-the-art algorithms are used, namely multi-view k-means
(MVKM) [28], multi-view spectral clustering (MVSC) [12], co-training multi-
view clustering (CoTrn) [13], co-regularized multi-view clustering (CoReg) [15]
and multi-view learning with adaptive neighbors (MLAN) [29]. Following [13], for
the methods that generate multiple view-specific clustering results (i.e. CoTrn,
CoReg and MVPL), prior knowledge is used to select the most informative view
for comparison purpose. For all the spectral-clustering-like compared methods,
we use the method mentioned in Sect. 2.2 to construct the proximity matrices,
which is shown to be a good method for proximity construction [30]. And the
sparsity of the proximity matrices is determined by the number of neighbors k.
We will tune k in the range of [10, 50] to select the best proximity according to
the three measures for all the methods. For all spectral-clustering-like methods
and k-means-like methods, we set the number of clusters c as the ground-truth
number. Besides, for all the methods involving k-means, we run each algorithm
50 times in the same parameter setting and select the results with the smallest
objective as the result for this setting. For all the methods, the best parameters
are tuned as suggested by the authors.
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Table 2. Clustering results in terms of ACC on all datasets.

Method Mfeat Caltech101-7 Caltech101-20 3Sources Rank

KM 0.729 0.463 0.466 0.527 8.5

NCut 0.753 0.646 0.486 0.746 5.0

RCC 0.779 0.761 0.597 0.420 4.6

MVKM 0.738 0.754 0.516 0.775 4.0

MVSC 0.834 0.556 0.445 0.645 6.8

CoTrn 0.833 0.588 0.473 0.734 5.5

CoReg 0.844 0.586 0.497 0.675 4.8

MLAN 0.750 0.707 0.475 0.757 5.0

MVPL 0.970 0.926 0.719 0.781 1.0

Table 3. Clustering results in terms of NMI on all datasets.

Method Mfeat Caltech101-7 Caltech101-20 3Sources Rank

KM 0.685 0.459 0.582 0.506 7.8

NCut 0.742 0.521 0.564 0.679 6.0

RCC 0.790 0.621 0.588 0.344 5.5

MVKM 0.650 0.616 0.619 0.587 5.3

MVSC 0.819 0.473 0.551 0.619 6.3

CoTrn 0.846 0.555 0.597 0.696 2.8

CoReg 0.830 0.489 0.596 0.690 4.3

MLAN 0.815 0.544 0.464 0.613 6.3

MVPL 0.932 0.789 0.677 0.720 1.0

Table 4. Clustering results in terms of PUR on all datasets.

Method Mfeat Caltech101-7 Caltech101-20 3Sources Rank

KM 0.729 0.875 0.786 0.757 7.3

NCut 0.774 0.891 0.783 0.834 5.3

RCC 0.836 0.876 0.866 0.716 4.8

MVKM 0.738 0.899 0.810 0.781 4.8

MVSC 0.834 0.868 0.764 0.811 6.0

CoTrn 0.857 0.896 0.803 0.846 2.3

CoReg 0.844 0.860 0.788 0.811 5

MLAN 0.778 0.857 0.665 0.793 7.8

MVPL 0.970 0.929 0.803 0.840 2.0

The comparison results obtained by all the methods on the four real-world
datasets in terms of ACC, NMI and PUR are reported in Tables 2, 3 and 4 respec-
tively. In the tables, the best performance among all the methods is highlighted
in bold. From the tables, we find that the proposed MVPL method outperforms
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all the other methods on ACC and NMI. In particular, our method has achieved
on average 14% percent improvement in terms of ACC and 12% improvement in
terms of NMI on all the datasets. For PUR, although our method cannot reach
the highest PUR on all the datasets, it still ranks the first on average. Over-
all, the comparison results have demonstrated the effectiveness of the proposed
method.

4 Conclusion

In this paper, we propose a novel proximity learning method for multi-view clus-
tering, called multi-view proximity learning. Through the method, proximities
between data objects with multiple views of features can be obtained, which are
suitable for multi-view clustering. Accordingly, our method adopts two criteria
to fulfill the task, namely intra-view criterion and inter-view criterion. For the
intra-view part, we not only make use of the relations between data objects but
also take cluster structures into account within individual views. For the inter-
view part, we model the correlations between views based on spectral embed-
ding, which utilizes the view consistency and complement properties such that
the learning performance is improved. Extensive experiments conducted on both
synthetic and real-world datasets demonstrate the effectiveness of our method.
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