
On the Interaction of Functional
and Inclusion Dependencies
with Independence Atoms

Miika Hannula(B) and Sebastian Link

Department of Computer Science, The University of Auckland,
Auckland, New Zealand

{m.hannula,s.link}@auckland.ac.nz

Abstract. Infamously, the finite and unrestricted implication problems
for the classes of (i) functional and inclusion dependencies together,
and (ii) embedded multivalued dependencies alone are each undecidable.
Famously, the restriction of (i) to functional and unary inclusion depen-
dencies in combination with the restriction of (ii) to multivalued depen-
dencies yield implication problems that are still different in the finite
and unrestricted case, but each are finitely axiomatizable and decidable
in low-degree polynomial time. An important embedded tractable frag-
ment of embedded multivalued dependencies are independence atoms.
These stipulate independence between two attribute sets in the sense
that for every two tuples there is a third tuple that agrees with the first
tuple on the first attribute set and with the second tuple on the sec-
ond attribute set. Our main results show that finite and unrestricted
implication deviate for the combined class of independence atoms, unary
functional and unary inclusion dependencies, but both are axiomatizable
and decidable in low-degree polynomial time. This combined class adds
arbitrary independence atoms to unary keys and unary foreign keys,
which frequently occur in practice as surrogate keys and references to
them.

Keywords: Functional dependency · Inclusion dependency
Independence atom · Implication problem

1 Introduction

Databases represent information about some domain of the real world. For
this purpose, data dependencies provide the main mechanism for enforcing the
semantics of the given application domain within a database system. As such,
data dependencies are essential for most data management tasks, including
database design, query and update processing, as well as data cleaning, exchange,
and integration. The usability of a class C of data dependencies for these tasks
depends critically on the computational properties of its associated implication

The authors were supported by the Marsden Fund grant 3711702.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 353–369, 2018.
https://doi.org/10.1007/978-3-319-91458-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91458-9_21&domain=pdf

354 M. Hannula and S. Link

problem. The implication problem for C is to decide whether for a given finite set
Σ ∪ {ϕ} of data dependencies from C, Σ implies ϕ, i.e. whether every database
that satisfies all the elements of Σ also satisfies ϕ. If we require databases to
be finite, then we speak of the finite implication problem, and otherwise of the
unrestricted implication problem. While the importance of data dependencies
continues to hold for new data models, the focus of this article is on the implica-
tion problems for important classes of data dependencies in the relational model
of data. In this context, data dependency theory is deep and rich [37]. Our sub-
mission is from the area of database theory, on which DASFAA’s call for paper
has solicited original contributions.

Functional and inclusion dependencies constitute the most commonly used
classes of data dependencies in practice. In particular, functional dependencies
(FDs) are more expressive than keys, and inclusion dependencies (INDs) are
more expressive than foreign keys, thereby capturing Codd’s principles of entity
and referential integrity, respectively, on the logical level. An FD R : X → Y
with attribute subsets X,Y on relation schema R expresses that the values on
attributes in Y are uniquely determined by the values on attributes in X. In
particular, R : X → R expresses that X is a key for R. An inclusion dependency
(IND) R[A1, . . . , An] ⊆ R′[B1, . . . , Bn], with attribute sequences A1, . . . , An on
R and B1, . . . , Bn on R′, expresses that for each tuple t over R there is some
tuple t′ over R′ such that for all i = 1, . . . , n, t(Ai) = t′(Bi) holds. If n = 1 we
call the IND unary (UIND).

A fundamental result in dependency theory is that the unrestricted and finite
implication problems for the combined class of FDs and INDs differ and each
is undecidable [10,32,33]. Interestingly, for the expressive sub-class of FDs and
UINDs, the unrestricted and finite implication problems still differ but each are
axiomatizable and decidable in low-degree polynomial time [12].

Another important expressive class of data dependencies are embedded mul-
tivalued dependencies (EMVDs). An EMVD R : X → Y ⊥Z with attribute
subsets X,Y,Z of R expresses that the projection r[XY Z] of a relation r over R
on the set union XY Z is the join r[XY] �� r[XZ] of its projections on XY and
XZ. Another fundamental result in dependency theory is that the unrestricted
and finite implication problems for EMVDs differ, each is not finitely axioma-
tizable [36] and each is undecidable [23,24]. An important fragment of EMVDs
are multivalued dependencies (MVDs), which are a class of full dependencies in
which XY Z covers the full underlying set R of attributes. In fact, MVDs are
the basis for Fagin’s fourth normal form [13]. For the combined class of FDs,
MVDs, and UINDs, finite implication is axiomatizable and decidable in cubic
time, while unrestricted implication is axiomatizable and decidable in almost
linear time [12,26].

Independence atoms (IAs) constitute an expressive subclass of EMVDs and
FDs. An IA X⊥Y with attribute subsets X,Y of R expresses that X ∩ Y is
constant (i.e., the FD ∅ → X ∩Y holds) and that the EMVD ∅ → X \Y ⊥Y \X
holds. The latter expresses that the projection of a relation r on XY equals
the cartesian product of its projections on X and Y , i.e., r[XY] = r[X] × r[Y].

On the Interaction of Functional and Inclusion Dependencies 355

For disjoint X and Y , the independence atoms X⊥Y thus form a subclass of
EMVDs. For the class of IAs, the finite and unrestricted implication problems
coincide, they are finitely axiomatizable and decidable in low-degree polynomial
time [27].

Given the usefulness of EMVDs, FDs, and INDs for data management, given
their computational barriers, and given the attractiveness of IAs as a tractable
fragment of EMVDs, it is a natural question to ask how IAs, FDs, and INDs
interact. Our article helps address the current gap in the existing rich theory
of relational data dependencies. Adding further to the challenge it is important
to note that IAs still form an embedded fragment of EMVDs, in contrast to
MVDs which are a class of full dependencies. Somewhat surprisingly, already the
interaction of IAs with just keys is intricate [19,20]. For example, unrestricted
implication is finitely axiomatizable but finite implication is not for keys and
unary IAs (those with singleton attribute sets), while the finite and unrestricted
implication problems coincide and enjoy a finite axiomatization for IAs and
unary keys (those with a singleton attribute set). In contrast, the extension of
INDs with IAs, although being more expressive than the class of INDs alone,
does not add further complexity to the latter. For INDs and IAs taken together
both implication problems still coincide and are finitely axiomatizable, PSPACE-
complete, and fixed-parameter tractable in their arity [9,21].

Examples. We few examples will illustrate how knowledge about IAs advances
data management. FDs and INDs do not require further motivation but the
more we know about the interaction of IAs with FDs and INDs, the more we
can advance data management.

Our first example is query processing. In particular, we show how the validity
of independence atoms is intrinsically linked to the optimization of the famous
division operator. The operator πXY (R) ÷ πY (R) returns all those X-values x
such that for every Y -value y there is some tuple t with t(X) = x and t(Y) = y
[11]. The ability of the division operator to express universal quantification makes
it very powerful for expressing natural queries. The following result establishes
the intrinsic link.

Theorem 1. For all relations r over R, πXY (R)(r) ÷ πY (R)(r) = πX(R)(r) if
and only if r satisfies X⊥Y .

Proof. The division operator is defined as follows:

πXY (R)(r)÷πY (R)(r) = πX(R)(r)−πX((πX(R)(r)×πY (R)(r))−πXY (R)(r)),

and r satisfies X⊥Y if and only if πX(R)(r) × πY (R)(r) = πXY (R)(r). The
result follows directly.

In particular, the validity of an IA reduces the quadratic complexity of the
division operator to a linear complexity of a simple projection [28]. The reduction
in complexity also applies to the expression complexity of a query. Suppose we
would like to return those entities x that occur together with all entities y (for

356 M. Hannula and S. Link

example, suppliers that supply all products), then we need to express the division
operator πX,Y (R) ÷ πY (R) in SQL by double-negation as in:

SELECT R0.X FROM R AS R0
WHERE NOT EXISTS

SELECT ∗ FROM R AS R1
WHERE NOT EXISTS

SELECT ∗ FROM R AS R2
WHERE R2.X = R1.X AND

R2.Y = R0.Y ;

where R.X is short for
∧

A∈X R.A, and R2.X = R1.X (R2.Y = R0.Y) for∧
A∈X R2.A = R1.A (

∧
B∈Y R2.B = R1.B). However, if a query optimizer can

notice that the IA X⊥Y is implied by the enforced set Σ of constraints, then
the query can be rewritten into

SELECT X
FROM R ;

Our second example is database security. More specifically, the aim of infer-
ence control is to protect private data under inferences that clever attacks may
use to circumvent access limitations [7]. For example, the combination of a par-
ticular patient name (say Jack) together with a particular medical examination
(say angiogram) may be considered a secret, while access to the patient name
and access to the medical examination in isolation may not be a secret. How-
ever, in some given context such as a procedure to diagnose some condition, all
patients may need to undergo all examinations. That is, the information about
the patient is independent of the information about the examination. Now, if
the secret (Jack, angiogram) must not be revealed to an unauthorized user that
can query the data source, then this user must not learn both: that Jack is a
patient undergoing the diagnosis of the condition, and that angiogram is a med-
ical examination that is part of the process for diagnosing the condition. Being
able to understand the interaction of independence atoms with other database
constraints can therefore help us to protect secrets under clever inference attacks.

Our final example is data profiling. Here we would like to demonstrate that
independence atoms do occur in real-world data sets. For that purpose, we have
mined some well-known publicly available data sets that have been used for
the mining of other classes of data dependencies before [34]. We report the
basic characteristics of these data sets in the form of their numbers of rows and
columns, and list the number of maximal IAs and the maximum arity of those
found. Here, an IA X⊥Y is maximal in a given set of IAs if there is no other
IA V ⊥W in the set such that V ⊆ X and W ⊆ Y holds. The arity of an IA is
defined as the total number of attribute occurrences.

On the Interaction of Functional and Inclusion Dependencies 357

Data set Number of columns Number of rows Number of IAs Maximum arity

Bridges 13 108 4 3

Echocardiogram 13 132 5 4

Adult 14 48,842 9 3

Hepatitis 20 155 855 6

Horse 27 368 112 3

Table 1. Subclasses of FD+IND+IA. We write “ui” and “fi” for unrestricted and finite
implication, respectively.

Class ui = fi Complexity: ui/fi Finite axiomatization: ui/fi

FD Yes [4] Linear time [5] Yes (2-ary) [4]

IND Yes [9] PSPACE-complete [9] Yes (2-ary) [9]

IA Yes [15,27,35] Cubic time [15,27] Yes (2-ary) [15,27,35]

IND+IA Yes PSPACE-complete [21] Yes (3-ary) [21]

FD+IA, FD+UIA No [20] ?/? ?/no

FD+IND No [10,32] Undecidable/undecidable [10,32] No/no [10,32]

FD+UIND No [12] Cubic time/cubic time [12] Yes/no (infinite) [12]

UFD+UIND No [12] Linear time/linear time [12] Yes /no (infinite) [12]

UFD+UIND+IA No Cubic time/cubic time Yes /no (infinite)

It should be stressed that the usefulness of these IAs is not restricted to
those that are semantically meaningful. For example, the optimizations for the
division operator also apply to IAs that “accidentally” hold on a given data set.

1.1 Contributions

In this article we make the following contributions.

(1) We illustrate the relevance of independence atoms for data management,
such as their intrinsic link to the optimization of the division operator, more
precise cardinality estimations for choosing better query plans, and database
security. Moreover, we show that they occur in real-world data sets.

(2) For the combined class of FDs and IAs, finite and unrestricted implication
differ [19,20]. We show that finite implication is not finitely axiomatizable,
already for binary FDs (those with a two-element attribute set on the left-
hand side) and unary IAs. For the combined class of IAs and unary FDs,
we show that finite and unrestricted implication coincide and establish a
finite axiomatization. Hence, the situation for the combined class of FDs
and IAs is more intricate than for the combined class of FDs and MVDs,
where finite and unrestricted implication coincide, which enjoy an elegant
finite axiomatization [6], and for which implication can be decided in almost
linear time [14].

358 M. Hannula and S. Link

(3) For the combined class of IAs, unary FDs, and UINDs, we establish axiom-
atizations for their finite and unrestricted implication problems, and show
that both are decidable in low-degree polynomial time. This is analogous to
the results for the combined class of FDs, MVDs, and UINDs. To the best of
our knowledge, the class of IAs, unary FDs, and UINDs is only the second
known class for which the finite and unrestricted implication differ but both
are decidable in low-degree polynomial time. The class is practically relevant
as it covers arbitrary IAs on top of unary keys and unary foreign keys, and
already unary keys and unary foreign keys occur readily in practice [12].
The significant difference to FDs, MVDs, and UINDs is the more intricate
interaction between FDs and IAs in comparison to FDs and MVDs. Note
that unary FDs and INDs frequently occur in practice as surrogate keys and
foreign keys that reference them. For example, 6 out of 8 keys are unary
and 8 out of 9 foreign keys are unary in the TPC-H benchmark, while 20
out of 32 keys are unary and 44 and out 46 foreign keys are unary in the
TPC-E benchmark1. The ability to reason efficiently about IAs, UFDs, and
UINDs is good news for data management. Finally, trading in restrictions
of the arity on INDs and FDs for restrictions on the arity of IAs cannot be
successful: Finite implication for unary IAs and binary FDs is not finitely
axiomatizable, see (2).

(4) For the combined class of IAs and FDs we establish tractable conditions suffi-
cient for non-interaction in both the finite and unrestricted cases. Instances of
the finite or unrestricted implication problems that meet the non-interaction
conditions can therefore be decided efficiently by using already known algo-
rithms for the sole class of IAs and the sole class of FDs. The decidability of
the finite and unrestricted implication problems for IAs and FDs are both
still open.

Organization. In Sect. 2 we present all the necessary definitions for the article.
Section 3 addresses the combined class of FDs and IAs. In Sect. 4 we focus on the
combination of UFDs, UINDs, and IAs, and establish axiomatizations for their
finite and unrestricted implication problems. Section 5 identifies polynomial-time
criteria for the non-interaction between INDs and IAs, and also between FDs
and IAs. Finally, in Sect. 6 we discuss the computational complexity of the impli-
cation problems. Due to lack of space we refer the reader to Appendix for any
remaining proofs. The appendix can be found in [22].

2 Preliminaries

We denote by A,B,C, . . . attributes and by X,Y,Z, . . . either sets or sequences
of attributes. For two sets (sequences) X and Y , we write XY for their union
(concatenation). Similarly, we may write A instead of the single element set or
sequence that consists of A. The size of a set (or length of a sequence) X is
written as |X|.
1 http://www.tpc.org.

http://www.tpc.org

On the Interaction of Functional and Inclusion Dependencies 359

A relation schema consists of attributes A, each equipped with a set of
domain values denoted by Dom(A). By database schema we denote a pairwise
disjoint sequence of relations schemata. Given a relation schema R, a tuple over R
is a function that maps each attribute A from R to Dom(A). A relation r over R
is then a non-empty set of tuples over R, and a database d over R = (R1, . . . , Rn)
is a sequence (r1, . . . , rn) where each ri is a relation over Ri

2. We sometimes write
r[R] to denote that r is a relation over R, and similarly we may write d[R]. A
relation is called finite if the underlying set of tuples is finite, and a database
is finite if it is a sequence of finite relations. For a tuple t and a relation r over
R and a subset (or subsequence) X of R, t(X) is the restriction of t to X, and
r(X) is the set of all restrictions t(X) where t ∈ r.

Next we define the syntax and semantics of functional and inclusion depen-
dencies and independence atoms.

Functional Dependency. Let X and Y be two sets of attributes from a relation
schema R. Then R : X → Y is a functional dependency that is satisfied by a
database d = (r[R]) iff for all t, t′ ∈ r, t(X) = t′(X) implies t(Y) = t′(Y).

Inclusion Dependency. Let A1, . . . , An and B1, . . . , Bn be two sequences
of distinct attributes from relation schemata R and R′, respectively. Then
R[A1 . . . An] ⊆ R′[B1 . . . Bn] is an inclusion dependency that is satisfied by
a database d = (r[R], r′[R′]) iff for all t ∈ ri there is t′ ∈ rj such that
t(A1) = t′(B1), . . . , t(An) = t′(Bn).

Independence Atom. Let X and Y be two (not necessarily disjoint) attribute
sets from a shared relation schema R. Then R : X⊥Y is an independence atom
that is satisfied by a database d = (r[R]) iff for all tuples t, t ∈ r there is a tuple
t′′ ∈ r such that t′′(X) = t(X) and t′′(Y) = t′(Y). A disjoint independence atom
(DIA) is an IA X⊥Y where X ∩ Y is empty.

Regarding all the aforementioned dependencies, if the relation schema R is
not needed in the context, we will drop it from the syntax. E.g., we will write
X⊥Y instead of R : X⊥Y .

We say that an IND is k-ary if it is of the form A1 . . . Ak ⊆ B1 . . . Bk. An
IA X⊥Y and an FD X → Y are called k-ary if max{|X|, |Y |} = k. A class
of dependencies is called k-ary if it contains at most k-ary dependencies. Most
of the subclasses that we consider are only unary, so we add “U” to a class
name to denote its unary subclass. For instance, UIND denotes the class of all
unary INDs. In general, for k ≥ 2, we add “k” to a class name to denote its
k-ary subclass. We use “+” to denote unions of classes, e.g., IND+IA denotes
the class of all inclusion dependencies and independence atoms.

2 We exclude empty relations from our definition. This is a practical assumption with
no effect when single relation schemata are considered only. However, on multiple
relations it has an effect, e.g., the rule UI3 in Table 2 becomes unsound.

360 M. Hannula and S. Link

Notice that the semantic condition for IAs X⊥Y holds only if the values of
the common attributes of X and Y are constant. In other words, the following
holds:

* d |= R : X⊥X, if for all s, s′ ∈ r it holds that s(X) = s′(X).

Hence, we also call unary FDs of the form ∅ → A and unary IAs of the form
A⊥A constancy atoms (CAs).

The restriction of a dependency σ to a set of attributes R, written σ � R, is
X ∩ R → Y ∩ R for an FD σ of the form X → Y , and X ∩ R⊥Y ∩ R for an IA σ
of the form X⊥Y . If σ is an IND of the form A1 . . . An ⊆ B1 . . . Bn and i1, . . . , ik
lists {i = 1, . . . , n : Ai ∈ R and Bi ∈ R}, then σ � R = Ai1 . . . Aik ⊆ Bi1 . . . Bik .
For a set of dependencies Σ, the restriction of Σ to R, written Σ � R, is the set of
all σ � R for σ ∈ Σ. For attributes A and B from R, we denote by σ(R : A �→ B)
the dependencies obtained from σ by replacing any number of occurrences of A
with B.

A set of axioms σ and rules of the form σ1, . . . , σn ⇒ σ is called an axioma-
tization. A rule is called n-ary if its antecedent part has n conjuncts. An axiom-
atization consisting of at most n-ary rules is called n-ary. A deduction from a
set of dependencies Σ by an axiomatization R is a sequence of dependencies
(σ1, . . . , σn) where each σi is either an element of Σ, an axiom, or follows from
σ1, . . . , σi−1 by an application of a rule in R. In such an occasion we write
Σ
R σ, or simply Σ
 σ if R is known.

Given a finite set of database dependencies Σ ∪{σ}, the (finite) unrestricted
implication problem is to decide whether all (finite) databases that satisfy Σ
also satisfy σ, written Σ |= σ (Σ |=fin σ). An axiomatization R is sound for
the unrestricted implication problem of a class of dependencies C if for all finite
sets Σ ∪ {σ} of dependencies from C, Σ
R σ ⇒ Σ |= σ; it is complete if
Σ |= σ ⇒ Σ
R σ. Soundness and completeness for finite implication are defined
analogously.

Some of our proofs use the chase algorithm that was invented in the late 70s
[3,31]. For a detailed exposition of this technique we refer the reader to [2].

Axiomatizations. Tables 2 and 3 present the axiomatizations considered in
this article. In Table 2, the axiomatization I := {I1, . . . , I5} is sound and com-
plete for independence atoms alone [20,27]. The rules F1,F2,F3 form the Arm-
strong axiomatization for functional dependencies [4], and the rules FI1 and
FI2 describe simple interaction between independence atoms and functional
dependencies. Table 3 depicts the sound and complete axiomatization of inclu-
sion dependencies introduced in [8,9]. Table 2 presents rules describing interac-
tion between inclusion dependencies and independence atoms [21].

We leave it to the reader to check the soundness of the axiom systems in
Tables 2 and 3. The proof does not include anything unexpected; we only note
that soundness of UI3 follows only if databases are not allowed to contain empty
relations.

On the Interaction of Functional and Inclusion Dependencies 361

Theorem 2. The axiomatization A ∪ B ∪ C is sound for the unrestricted and
finite implication problems of FD+IND+IA.

Lastly, we note that, for notational clarity only, we will restrict attention to
the uni-relational case in all our proofs. That is, we will consider only those cases
where databases consist of a single relation.

3 IAs+FDs

First we consider the interaction between FDs and IAs. Already keys and IAs
combined form a somewhat intricate class: Their finite and unrestricted implica-
tion problems differ and the former lacks a finite axiomatization [20]. In Sect. 3.1
we extend these results to the classes FD+IA and 2FD+UIA. However, the inter-
action between unary FDs and IAs is less involved. In Sect. 3.2 we show that for
UFD+IA unrestricted and finite implication coincide and the axiomatization A∗

given in Table 2 forms a sound and complete axiomatization.

3.1 Implication Problem for FDs and IAs

The following theorem enables us to separate the finite and unrestricted impli-
cation problems for FD+IA as well as for FD+UIA.

Theorem 3 [19]. The unrestricted and finite implication problems for keys and
UIAs differ.

Table 2. Axiomatizations A for FDs and IAs and C for IAs and INDs. We define
I := {I1, . . . , I5} and A∗ := A \ {I5, F3}.

∅⊥X

X⊥Y

Y ⊥X
(trivial independence, I1) (symmetry, I2)

X⊥Y Z

X⊥Y

X⊥Y XY ⊥Z

X⊥Y Z
(decomposition, I3) (exchange, I4)

X⊥Y Z⊥Z

X⊥Y Z XY → Y
(weak composition, I5) (reflexivity, F1)

X → Y Y → Z

X → Z

X → Y

XZ → Y Z
(transitivity, F2) (augmentation, F3)

X⊥Y X → Y

∅ → Y

X⊥Y Z Z → V

X⊥Y ZV
(constancy, FI1) (composition, FI2)

Axiomatization A

R[X] ⊆ R′[Z] R[Y] ⊆ R′[W] R′[Z⊥W]
R[XY] ⊆ R′[ZW]

(concatenation, UI1)

R[XY] ⊆ R′[ZW] R′[ZW] ⊆ R[XY] R′[Z⊥W]
R[X⊥Y]

(transfer, UI2)

R[X] ⊆ R′[Y] R′ : Y ⊥Y

R′[Y] ⊆ R[X]
(symmetry, UI3)

R[X] ⊆ R′[Y] R′ : Y ⊥Y

R : X⊥X
(constancy, UI4)

R[A] ⊆ R′[C] R[B] ⊆ R′[C] R′ : C⊥C σ

σ(R : A �→ B)
(equality, UI5)

Axiomatization C

362 M. Hannula and S. Link

Table 3. Axiomatization B for INDs

R[X] ⊆ R[X]

R[X] ⊆ R′[Y] R′[Y] ⊆ R′′[Z]

R[X] ⊆ R′′[Z]

R[A1 . . . An] ⊆ R′[B1 . . . Bn]

R[Ai1 . . . Aim] ⊆ R′[Bi1 . . . Bim]
(∗)

(reflexivity, U1) (transitivity, U2) (projection and permutation, U3)

(∗) ij are pairwise distinct and from {1, . . . , n}

This theorem was proved by showing that Σ |=fin σ and Σ �|= σ, for Σ :=
{A⊥B,C⊥D,BC → AD,AD → BC} and σ := AB → CD. In [19] it was
shown that this counterexample can be extended to a non-axiomatizability
results for finite implication of keys and IAs. By an analogous line of reason-
ing this results carries over to the class of FDs and IAs, as well (see Appendix).

Theorem 4. The finite implication problem for FD+IA (2FD+UIA) is not
finitely axiomatizable.

The implicit assumption in the above theorem is that an axiomatization must
be attribute-bounded, meaning that it may not introduce new attributes [10]. It is
easy to see that with this prerequisite finite axiomatization entails decidability.
Contrarily, there are finite axiomatizations for undecidable implication problems
that do not adhere to this assumption [16–18,33].

To the best of our knowledge, decidability is open for both FD+IA and
FD+UIA with respect to their finite and unrestricted implication problems. It is
worth noting here that the unrestricted (finite) implication problem for FD+UIA
is as hard as that for FD+IA. For this, we demonstrate a simple reduction from
the latter to the former. Let Σ ∪ {σ} be a set of FDs and IAs, and let Σ′

denote the set of FDs and IAs where each IA of the form X⊥Y is replaced with
dependencies from {A⊥B,X → A,A → X,Y → B,B → Y } where A and B
are fresh attributes. If σ is an FD, then Σ (finitely) implies σ iff Σ′ (finitely)
implies σ. Also, if σ is of the form X⊥Y , then we have Σ |= σ iff Σ′′ |= σ′,
where

Σ′′ := Σ′ ∪ {X → A,A → X,Y → B,B → Y },

σ′ := A⊥B, and A and B are fresh attributes.

3.2 Implication for UFDs and IAs

Next we turn to the class UFD+IA. Extending the scope and methods from [20],
which presented a finite axiomatization for unary keys and IAs, we show that
the axiomatization A∗ (see Table 2) is sound and complete for UFD+IA in both
with respect to finite and unrestricted implication. Hence, compared to UIAs
and FDs, the interaction between IAs and UFDs is relatively tame. Combined,
however, these two may entail new restrictions to column sizes. For instance, in
the finite A → B1, A → B2, and B1⊥B2 imply |r(B1)| · |r(B2)| ≤ |r(A)|. The
proof of the following completeness theorem is obtained by a chase-based model
construction (see Appendix).

On the Interaction of Functional and Inclusion Dependencies 363

Theorem 5. The axiomatization A∗ is sound and complete for the unrestricted
and finite implication problems of UFD+IA.

As the same axiomatization characterizes both finite and unrestricted impli-
cation, we obtain the following corollary.

Corollary 1. The finite and unrestricted implication problems coincide for
UFD+IA.

4 IAs+UFDs+UINDs

Next we turn attention to the combined class of FDs, INDs, and IAs. In the
previous section we noticed that the finite implication problem for binary FDs
and unary IAs is not finitely axiomatizable. On the other hand, both the finite
and unrestricted implication problems for unary FDs and binary INDs are unde-
cidable [32]. Hence, in this section we restrict to unary FDs and unary INDs, a
class for which the two implication problems already deviate [12]. It turns out
that the combination UFD+UIND+IA can be axiomatized with respect to both
problems. However, in the finite case the axiomatization is infinite as one needs
to add so-called cycle rules for UFDs and UINDs.

An axiomatization for unrestricted implication follows from results in
Sect. 3.2 and [12]. For the proof, see Appendix.

Theorem 6. The axiomatization A∗ ∪ {U1,U2,UI3,UI4} is sound and com-
plete for the unrestricted implication problem of UFD+UIND+IA.

For finite implication a complete axiomatization of UFD+UIND+IA is found
by extending A∗ ∪ {U1,U2,UI3,UI4} with the so-called cycle rules [12] (see
Table 2) and by removing UI3,UI4 which become redundant. However, the com-
pleteness proof is now more involved and proved in two steps. We will combine
the chase-based approach of the proof of Theorem 5 with the graph-theoretic
approach from [12]. The latter method was used to prove a complete axiomati-
zation for the finite implication problem of UIND+FD. For the graph-theoretic
approach, we commence by introducing multigraphs with two sorts of edges: red
ones which encode UFDs and black ones which encode UINDs.

Table 4. Cycle rules for finite implication

A1 → A2 A2 ⊇ A3 . . . A2n−1 → A2n A2n ⊇ A1

A1 ← A2 A2 ⊆ A3 . . . A2n−1 ← A2n A2n ⊆ A1

(cycle rule for n, Cn)

Definition 1 [12]. For each set Σ of UINDs and UFDs over R, let G(Σ) be the
multigraph that consists of nodes R, red directed edges (A,B), for A → B ∈ Σ,
and black directed edges (A,B), for B ⊆ A ∈ Σ. If G(Σ) has red (black) directed
edges from A to B and vice versa, then these edges are replaced with an undirected
edge between A and B.

364 M. Hannula and S. Link

Given a multigraph G(Σ), we first topologically sort its strongly connected
components which form a directed acyclic graph [25]. That is, each compo-
nent is assigned a unique scc-number, greater than the scc-numbers of all its
descendants. For an attribute A, denote by scc(A) the scc-number of the com-
ponent node A belongs to. Note that scc(A) ≥ scc(B) if (A,B) is an edge in
G(Σ). Denote also by scci the set of attributes A with scc(A) = i, and let
scc≤i :=

⋃
j≤i sccj and define scc≥i, scc<i, and scc>i analogously. The following

lemma is a simple consequence of the definition.3

Lemma 1 [12]. Let Σ be a set of UFDs and UINDs, closed under {F1,F2,U1,
U2} ∪ {Ck : k ∈ N}. Then every node in G(Σ) has a red and a black self-loop.
The red (black) subgraph of G(Σ) is transitively closed. The subgraphs induced
by the strongly connected components of G(Σ) are undirected. In each strongly
connected component, the red (black) subset of undirected edges forms a collection
of node-disjoint cliques. Note that the red and black partitions of nodes could be
different.

We now apply this graphical approach to earlier techniques presented in this
paper. Theorem 7 shows completeness of the axiomatization A∗∪{U1,U2}∪{Cn :
n ∈ N} for the finite implication problem of UFD+UIND+IA by using the
relation generated in Lemma 2. The proof of this lemma describes an incremental
modification of the base relation, taken from the proof of Theorem 5, that is
shown to reflect a growing number of inclusion dependencies in its composition.
This is achieved by an inductive re-organization of the column values according
to the underlying scc-numbering while at the same time maintaining the integrity
of the UFD and IA dependencies in the base relation. The proof of the theorem
and the lemma can be found in Appendix.

Lemma 2. Let Σ be a set of UFDs, UINDs, and IAs over R, partitioned respec-
tively to ΣUFD, ΣUIND, and ΣIA. Assume that ΣUFD∪ΣUIND contains all UFDs
and UINDs derivable from Σ by A∗ ∪ {U1,U2} ∪ {Ck : k ∈ N}, and assume that
we have assigned an scc-numbering to G(ΣUFD ∪ ΣUIND). Let E be either the
empty set or a single attribute, and let R′ := {B ∈ R : E → B �∈ Σ}. Then there
exists a finite relation r and tuples t0, t1 ∈ r such that:

(i) Σ
 X⊥Y if X,Y ⊆ R′ and for some t ∈ r, t(X) = t0(X) and t(Y) =
t1(Y);

(ii) r |= ΣUFD ∪ ΣIA;
(iii) r(A) is (strictly) included in r(B) if scc(A) is (strictly) less than scc(B).

Theorem 7. The axiomatization A∗ ∪ {U1,U2} ∪ {Cn : n ∈ N} is sound and
complete for the finite implication problem of UFD+UIND+IA.

3 Lemma 1 is a reformulation of Lemma 4.2. in [12] where the same claim is proved for
a set of FDs and UINDs that is closed under {F1, F2, F3, U1, U2} ∪ {Ck : k ∈ N}.
We may omit F3 here since, when restricting attention to UFDs, F3 is not needed
in the proof.

On the Interaction of Functional and Inclusion Dependencies 365

5 Polynomial-Time Conditions for Non-interaction

The interaction-freeness between the class FD+IND has been well-studied in the
literature [29,30]. Here, we examine the frontiers for tractable reasoning about
the class FD+IA in both the finite and unrestricted cases. For IND+IA these
questions have been studied in [21]. The idea is to establish sufficient criteria
for the non-interaction between IAs and FDs. There is a trade-off between the
simplicity and generality of such criteria. While simple criteria may be easier to
apply, more general criteria allow us to establish non-interaction in more cases.
Our focus here is on generality, and the criteria are driven by the corresponding
inference rules. We define non-interaction between two classes as follows.

Definition 2. Let Σ0 and Σ1 be two sets of dependencies from classes C0 and C1,
respectively. We say that Σ0, Σ1 have no interaction with respect to unrestricted
(finite) implication if

– for σ from C0, σ is (finitely) implied by Σ0 iff σ is (finitely) implied by Σ0∪Σ1.
– for σ from C1, σ is (finitely) implied by Σ1 iff σ is (finitely) implied by Σ0∪Σ1.

Let us now define two syntactic criteria for describing non-interaction. We say
that an IA X⊥Y splits an FD U → V if both (X \ Y) ∩ U and (Y \ X) ∩ U
are non-empty. An IA X⊥Y splits an IND Z ⊆ W if both X ∩ W and Y ∩ W
are non-empty. Furthermore, X⊥Y intersects U → V if XY ∩ U is non-empty.
Notice that both these concepts give rise to possible interaction between two
different classes. We show that lacking splits implies non-interaction for FD+IA
in the unrestricted case. Non-interaction for FD+IA in the finite is guaranteed
by the stronger condition defined in terms of lacking intersections.

For IND+IA lack of splits entail non-interaction [21].

Theorem 8 [21]. Let ΣIND and ΣIA be respectively sets of INDs and IAs. If no
IA in ΣIA splits any IND in ΣIND, then ΣIND and ΣIA have no interaction with
respect to unrestricted (finite) implication.

We proceed with the non-interaction results for FD+IA. The proofs are located
in Appendix. For unrestricted implication the idea is to first apply the below
polynomial-time algorithm which transforms an assumption set Σ to an equiva-
lent set Σ∗. The set Σ∗ is such that it has no interaction between FDs and IAs
provided that none of its FDs split any IAs.

For a set of FDs Σ, let us denote by Cl(Σ,X) the closure set of all
attributes A for which Σ |= X → A. This set can be computed in linear time
by the Beeri-Bernstein algorithm [5]. The non-interaction condition for unre-
stricted implication is now formulated using Σ∗

IA = {X1⊥Y1, . . . , Xn⊥Yn} and
Σ∗

FD = ΣFD ∪ {∅ → Z} where Z,XiYi are computed using the following algo-
rithm that takes an FD set ΣFD and an IA set ΣIA = {U1⊥V1, . . . , Un⊥Vn} as
an input.

366 M. Hannula and S. Link

Algorithm 1. Algorithm for computing Z,Xi, Yi

Require: ΣFD and ΣIA = {Ui⊥Vi | i = 1, . . . , n}
Ensure: Z and Σ∗

IA = {Xi⊥Yi | i = 1, . . . , n}
1: Initialize: V ← ∅, Xi ← Ui, Yi ← Vi

2: repeat
3: Z ← V
4: for i = 1, . . . , n do
5: Xi ← Cl(ΣFD, XiV)
6: Yi ← Cl(ΣFD, YiV)
7: V ← V ∪ (Xi ∩ Yi)

8: until Z=V

From the construction we obtain that Σ∗
FD ∪ Σ∗

IA is equivalent to ΣFD ∪ ΣIA

and that

(1) for Z1⊥Z2 ∈ Σ∗
IA and i = 1, 2, Σ∗

FD |= Zi → X implies X ⊆ Zi;
(2) Σ∗

FD ∪ Σ∗
IA |= ∅ → A iff A ∈ Z.

Recall that the closure set C(ΣFD,X) can be computed in linear time by the
Beeri-Bernstein algorithm. Now, at stage 5 (or stage 6) the computation of the
closure set is resumed whenever V introduces attributes that are new to Xi (Yi).
Since the number of the closures considered is 2|ΣIA|, we obtain a quadratic
time bound for the computation of Z,Xi, Yi.

Theorem 9. Let ΣFD and ΣIA be respectively sets of FDs and IAs, and let Σ∗
FD

and Σ∗
IA be obtained from ΣFD and ΣIA by Algorithm 1. Then the following holds:

– if no IA in Σ∗
IA splits any FD in Σ∗

FD, then Σ∗
FD and Σ∗

IA have no interaction
with respect to unrestricted implication;

– if no IA in ΣIA intersects any FD in ΣFD, then ΣFD and ΣIA have no inter-
action with respect to finite implication.

To illustrate the necessity for a stronger condition in the finite case, recall
from Sect. 3.1 that AB → CD is finitely implied by {A⊥B,C⊥D,BC →
AD,AD → BC}, and notice that AB → CD is not finitely implied by
{BC → AD,AD → BC}. However, Algorithm 1 does not produce any fresh
assumptions, and neither A⊥B nor C⊥D splits any FD assumption. Therefore,
lack of splits is not sufficient for non-interaction in the finite case.

6 Complexity Results

Next we examine the computational complexity of the discussed implication
problems. We show that both implication problems for UFD+UIND+IA can be
solved in low-degree polynomial time, even though the problems differ from one
another. The associated decision procedures, found in Appendix, transform the
implication problems first to graphs, as earlier in this paper, and subsequently

On the Interaction of Functional and Inclusion Dependencies 367

modify them according to appropriate inference rules. The only difference with
finite implication is that an application of the cycle rules is included in the
process. The implication problem then reduces, for UFDs and UINDs, to reach-
ability in the graph, and for IAs, to an IA-implication instance which reflects
the topology of the graph. Consequently, the stated time bounds follow.

Theorem 10. Let ΣUFD, ΣUIND, ΣIA be respectively sets of UFDs, UINDs, and
IAs over a relation schema R. The unrestricted and finite implication problems
for σ by ΣUFD ∪ ΣUIND ∪ ΣIA can be decided in time:

– O(|ΣIA| · |ΣUFD| + |ΣUIND|) if σ is an UFD or UIND;
– O(|ΣIA| · (|ΣUFD| + |R|2) + |ΣUIND|) if σ is a IA.

7 Conclusion and Outlook

In view of the infeasibility of EMVDs and of FDs and INDs combined, the class
of FDs, MVDs and unary INDs is important as it is low-degree PTIME decidable
in the finite and unrestricted cases. As independence atoms form an important
tractable embedded sub-class of EMVDs, we have delineated axiomatizability
and tractability frontiers for sub-classes of FDs, INDs, and IAs. The most inter-
esting class is that of IAs, unary FDs and unary INDs, for which finite and
unrestricted implication differ but each is axiomatisable and decidable in low-
degree polynomial time. The results form a basis for the advancement of several
data processing tasks, including cardinality estimation, database security, and
query optimization.

Even though research on dependency theory has been rich and deep, there
are many problems that warrant future research. Theoretically, the decidability
remains open for both independence atoms and functional dependencies as well
as unary independence atoms and functional dependencies, both in the finite
and unrestricted case. This line of research should also be investigated in the
probabilistic setting of conditional independencies, fundamental to multivariate
statistics and machine learning. Practically, implementations and experimental
evaluations of the algorithms can complement the findings in the research. Of
direct practical use for data profiling would be algorithms that compute the set
of IAs that hold on a given relation, as would algorithms to mine notions of
approximate IAs [1].

References

1. Abedjan, Z., Golab, L., Naumann, F.: Profiling relational data: a survey. VLDB J.
24(4), 557–581 (2015)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

3. Aho, A.V., Beeri, C., Ullman, J.D.: The theory of joins in relational databases.
ACM Trans. Database Syst. 4(3), 297–314 (1979)

368 M. Hannula and S. Link

4. Armstrong, W.W.: Dependency structures of data base relationships. In: Proceed-
ings of IFIP World Computer Congress, pp. 580–583 (1974)

5. Beeri, C., Bernstein, P.A.: Computational problems related to the design of normal
form relational schemas. ACM Trans. Database Syst. 4(1), 30–59 (1979)

6. Beeri, C., Fagin, R., Howard, J.H.: A complete axiomatization for functional and
multivalued dependenciesin database relations. In: SIGMOD, pp. 47–61 (1977)

7. Biskup, J., Bonatti, P.A.: Controlled query evaluation for enforcing confidentiality
in complete information systems. Int. J. Inf. Sec. 3(1), 14–27 (2004)

8. Casanova, M.A., Fagin, R., Papadimitriou, C.H.: Inclusion dependencies and their
interaction with functional dependencies. In: PODS, pp. 171–176 (1982)

9. Casanova, M.A., Fagin, R., Papadimitriou, C.H.: Inclusion dependencies and their
interaction with functional dependencies. J. Comput. Syst. Sci. 28(1), 29–59 (1984)

10. Chandra, A.K., Vardi, M.Y.: The implication problem for functional and inclusion
dependencies is undecidable. SIAM J. Comput. 14(3), 671–677 (1985)

11. Codd, E.F.: Relational completeness of data base sublanguages. In: Rustin, R.
(ed.) Database Systems, pp. 65–98. Prentice Hall and IBM Research Report RJ
987, San Jose (1972)

12. Cosmadakis, S.S., Kanellakis, P.C., Vardi, M.Y.: Polynomial-time implication
problems for unary inclusion dependencies. J. ACM 37(1), 15–46 (1990)

13. Fagin, R.: Multivalued dependencies and a new normal form for relational
databases. ACM Trans. Database Syst. 2, 262–278 (1977)

14. Galil, Z.: An almost linear-time algorithm for computing a dependency basis in a
relational database. J. ACM 29(1), 96–102 (1982)

15. Geiger, D., Paz, A., Pearl, J.: Axioms and algorithms for inferences involving prob-
abilistic independence. Inf. Comput. 91(1), 128–141 (1991)

16. Hannula, M.: Reasoning about embedded dependencies using inclusion dependen-
cies. In: LPAR-20, pp. 16–30 (2015)

17. Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence
and inclusion dependencies. In: FoIKS, pp. 211–229 (2014)

18. Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence
and inclusion dependencies. Inf. Comput. 249, 121–137 (2016)

19. Hannula, M., Kontinen, J., Link, S.: On independence atoms and keys. In: CIKM,
pp. 1229–1238 (2014)

20. Hannula, M., Kontinen, J., Link, S.: On the finite and general implication problems
of independence atoms and keys. J. Comput. Syst. Sci. 82(5), 856–877 (2016)

21. Hannula, M., Kontinen, J., Link, S.: On the interaction of inclusion dependencies
with independence atoms. In: LPAR-21, pp. 212–226 (2017)

22. Hannula, M., Link, S.: On the interaction of functional and inclusion dependen-
cies with independence atoms. Report CDMTCS-518. Centre for Discrete Math-
ematics and Theoretical Computer Science, University of Auckland, Auckland,
New Zealand, February 2018

23. Herrmann, C.: On the undecidability of implications between embedded multival-
ued database dependencies. Inf. Comput. 122(2), 221–235 (1995)

24. Herrmann, C.: Corrigendum to on the undecidability of implications between
embedded multivalued database dependencies. Inf. Comput. 204(12), 1847–1851
(2006)

25. Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5(11), 558–562
(1962)

26. Kanellakis, P.C.: Elements of relational database theory. In: Handbook of Theo-
retical Computer Science, pp. 1073–1156 (1990)

On the Interaction of Functional and Inclusion Dependencies 369

27. Kontinen, J., Link, S., Väänänen, J.A.: Independence in database relations. In:
WoLLIC, pp. 179–193 (2013)

28. Leinders, D., Van den Bussche, J.: On the complexity of division and set joins in
the relational algebra. In: PODS, pp. 76–83 (2005)

29. Levene, M., Loizou, G.: How to prevent interaction of functional and inclusion
dependencies. Inf. Process. Lett. 71(3–4), 115–125 (1999)

30. Levene, M., Loizou, G.: Guaranteeing no interaction between functional dependen-
cies and tree-like inclusion dependencies. Theor. Comput. Sci. 254(1–2), 683–690
(2001)

31. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.
ACM Trans. Database Syst. 4(4), 455–469 (1979)

32. Mitchell, J.C.: The implication problem for functional and inclusion dependencies.
Inf. Control 56(3), 154–173 (1983)

33. Mitchell, J.C.: Inference rules for functional and inclusion dependencies. In: PODS,
pp. 58–69 (1983)

34. Papenbrock, T., Ehrlich, J., Marten, J., Neubert, T., Rudolph, J.-P., Schönberg,
M., Zwiener, J., Naumann, F.: Functional dependency discovery: an experimental
evaluation of seven algorithms. PVLDB 8(10), 1082–1093 (2015)

35. Paredaens, J.: The interaction of integrity constraints in an information system. J.
Comput. Syst. Sci. 20(3), 310–329 (1980)

36. Parker Jr., D.S., Parsaye-Ghomi, K.: Inferences involving embedded multivalued
dependencies and transitive dependencies. In: SIGMOD, pp. 52–57 (1980)

37. Thalheim, B.: Dependencies in Relational Databases. Teubner, Stuttgart (1991)

	On the Interaction of Functional and Inclusion Dependencies with Independence Atoms
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	3 IAs+FDs
	3.1 Implication Problem for FDs and IAs
	3.2 Implication for UFDs and IAs

	4 IAs+UFDs+UINDs
	5 Polynomial-Time Conditions for Non-interaction
	6 Complexity Results
	7 Conclusion and Outlook
	References

