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Preface

It is our great pleasure to present the proceedings of the 23rd International Conference
on Database Systems for Advanced Applications (DASFAA). DASFAA 2018 is an
annual international database conference, which showcases state-of-the-art R&D
activities in database systems and their applications. It provides a forum for technical
presentations and discussions among database researchers, developers, and users from
academia, business, and industry.

DASFAA 2018 was held on the Gold Coast, Australia, during May 21–24, 2018.
The Gold Coast is a coastal city in the state of Queensland, 66 km (41 mi) from the
state capital Brisbane. With a population of 638,090 (2016), the Gold Coast is the sixth
largest city in Australia. It is a major tourist destination with its sunny subtropical
climate and has become widely known for its surfing beaches, high-rise-dominated
skyline, theme parks, nightlife, and rainforest hinterland. It is also the major film
production hub for Queensland. The Gold Coast will host the 2018 Commonwealth
Games.

This year we introduced a Senior Program Committee (SPC) at DASFAA. The SPC
comprised 12 distinguished leaders in the area of database systems and advanced
applications: Amr El Abbadi, UC Santa Barbara, USA; K. Selcuk Candan, Arizona
State University, USA; Lei Chen, Hong Kong University of Science and Technology,
Hong Kong; Chengfei Liu, Swinburne University of Technology, Australia; Nikos
Mamoulis, University of Ioannina/University of Hong Kong, Hong Kong; Kyuseok
Shim, Seoul National University, Korea; Michalis Vazirgiannis, Ecole Polytechnique
Paris, France; Xiaokui Xiao, Nanyang Technological University, Singapore; Xiaochun
Yang, Northeastern University, China; Jeffrey Xu Yu, Chinese University of Hong
Kong, Hong Kong; Xiaofang Zhou, University of Queensland, Australia; and Aoying
Zhou, East China Normal University, China. We are grateful for the role played by the
SPC and acknowledge that the SPC provided a significant level of support and expert
advice in the efficient paper-reviewing process that resulted in an excellent selection of
papers.

We received 360 submissions, each of which was assigned to at least three Program
Committee (PC) members and one SPC member. The thoughtful discussion on each
paper by the PC with facilitation and meta-review provided by the SPC resulted in the
selection of 83 full research papers (acceptance ration of 23%). In addition, we
included 21 short papers, six industry papers, and eight demo papers in the program.
This year the dominant topics for the selected papers included learning models, graph
and network data processing, and social network analysis, followed by text and data
mining, recommendation, data quality and crowd sourcing, and trajectory and stream
data. Selected papers also included topics relating to network embedding, sequence and
temporal data processing, RDF and knowledge graphs, security and privacy, medical
data mining, query processing and optimization, search and information retrieval,
multimedia data processing, and distributed computing. Last but not least, the



conference program included keynote presentations by Dr. C. Mohan (IBM Almaden
Research Center, San Jose, USA), Prof. Xuemin Lin (UNSW, Sydney, Australia), and
Prof. Yongsheng Gao (Griffith University, Brisbane, Australia).

Four workshops were selected by the workshop co-chairs to be held in conjunction
with DASFAA 2018: the 5th International Workshop on Big Data Management and
Service (BDMS 2018); the 5th International Symposium on Semantic Computing and
Personalization (SeCoP 2018); the Second International Workshop on Graph Data
Management and Analysis (GDMA 2018); and the Third Workshop on Big Data
Quality Management (BDQM 2018). The workshop papers are included in a separate
volume of the proceedings also published by Springer in its Lecture Notes in Computer
Science series.

We are grateful to the general chairs, Yanchun Zhang, Victoria University, and Rao
Kotagiri, University of Melbourne, all SPC members, PC members and external
reviewers who contributed their time and expertise to the DASFAA 2018 paper
reviewing process. We would like to thank all the members of the Organizing Com-
mittee, and many volunteers, for their great support in the conference organization.
Special thanks go to the DASFAA 2018 local Organizing Committee chair, Junhu
Wang (Griffith University), for his tireless work before and during the conference.
Many thanks to the authors who submitted their papers to the conference. Lastly we
acknowledge the generous financial support from Griffith University, Destination Gold
Coast, and Springer.

March 2018 Shazia Sadiq
Jian Pei

Yannis Manolopoulos
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Abstract. Personalized medicine (PM) aiming at tailoring medical
treatment to individual patient is critical in guiding precision prescrip-
tion. An important challenge for PM is comorbidity due to the complex
interrelation of diseases, medications and individual characteristics of the
patient. To address this, we study the problem of PM for comorbidity
and propose a neural network framework Deep Personalized Prescrip-
tion for Comorbidity (PPC). PPC exploits multi-source information from
massive electronic medical records (EMRs), such as demographic infor-
mation and laboratory indicators, to support personalized prescription.
Patient-level, disease-level and drug-level representations are simultane-
ously learned and fused with a trilinear method to achieve personalized
prescription for comorbidity. Experiments on a publicly real world EMRs
dataset demonstrate PPC outperforms state-of-the-art works.

Keywords: Personalized prescription · Deep learning
Multi-source fusion · Comorbidity

1 Introduction

Restricted by the traditional care delivery models, many doctors still prescribe
therapies based on their own experience and population averages, which causes
inefficient care for significant portions of patients [1]. As reported from the litera-
ture, 75% patients on average take ineffective cancer drugs and 70% patients take
ineffective Alzheimer’s drugs [2]. Personalized medicine (PM) which tailors the
medical treatment to individual patient is promising to guide precision prescrip-
tion [3]. An extremely important challenge for PM is comorbidity. Comorbidity
stands for two or more complex disease conditions in the same patient and has
complex interrelation of diseases, medications and individual characteristics of
the patient [4,5]. Some researches show comorbidity is reported in 35% to 80% of
all ill people [6,7]. In the United States, about 80% of medicare costs are caused
by patients with 4 or more chronic diseases [8]. Recently with the availability of
massive electronic medical records (EMRs), exploring the healthcare data has
great potential to support intelligent personalized prescription for comorbidity.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 3–19, 2018.
https://doi.org/10.1007/978-3-319-91458-9_1
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Researches about prescription based on EMRs are mainly divided into
pattern-based and model-based approaches. Pattern-based methods recommend
prescriptions by measuring the similarities among records of patients [9,10].
These methods are challenging to learn the relation of patients’ information (e.g.,
disease, demographic information, lab information, etc) and medications. Model-
based methods include decision-theoretic methods [11] and statistical methods
[12]. But these methods only focus on one specific disease. Recently, two deep
models are proposed to learn a nonlinear mapping from multiple diseases to
multiple drugs based on EMRs [13,14], and achieve significant improvements.
Without considering patient-specific information, these deep methods recom-
mend constant-treatment for patients with same diseases. However, it is not in
line with real situations. As shown in Table 1, the two patients are with the same
diseases. Due to the different physiologic states, they take different treatments.

Table 1. The difference and intersection treatments of two patients with same diseases.

Diagnosis Intersection treatments Difference treatments

Pure hypercholesterolemia,

Intermediate coronary syndrome,

Hypertension NOS, Coronary

atherosclerosis of native coronary

artery

Meperidine, Neostigmine,

Phenylephrine HCl, Ranitidine,

Oxycodone-Acetaminophen,

Metoclopramide, Calcium

Gluconate, Glycopyrrolate,

Magnesium Sulfate, Milk of

Magnesia, Nitroglycerin, Aspirin

EC, Acetaminophen, Sucralfate,

Bisacodyl, Docusate Sodium,

Potassium Chloride, Furosemide,

Morphine Sulfate, Aspirin,

Metoprolol

Propofol, Vancomycin HCl,

Ibuprofen, Midazolam HCl,

Chlorpheniramine Maleate,

Hydrochlorothiazide, Hespan,

Nitroprusside Sodium,

Ondansetron, Diphenhydramine

HCl

CefazoLIN, Insulin Human

Regular, Propofol, Docusate

Sodium, Dextrose 50%, Insulin,

Simvastatin, Sodium Chloride

0.9% Flush

There are two important issues remained in the aforementioned methods. (1)
Non-personalized medicine. Existing methods for comorbidity ignore massive
individual characteristics of the patient, such as demographic and laboratory
information, which fail to recommend patient-specific prescription. (2) Lack of
medical knowledge. Medical knowledge can guide us to learn a more effective
and interpretable model. Furthermore, learning different “weights” of multiple
diseases for comorbidity patients is also a difficult issue [15].

To tackle these issues, we integrate multi-source patient-specific informa-
tion to learn patient-level representation. The representations and severities of
multiple diseases are learned by employing medical knowledge and attention
mechanism. The main contributions of this paper can be summarized as follows:

– To obtain the interdependencies among diseases, medications and individual
characteristics of the patient, we design a deep learning model to integrate
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multi-source information to learn the patient-level, disease-level and drug-
level representations simultaneously, and fuse them with a trilinear method.
(for comorbidity challenge)

– Patient-level representation is learned based on multiple patient-specific
information, such as demographic and laboratory information (for issue 1).
Disease-level representation is obtained by medical ontologies, where an atten-
tion mechanism is used to learn the different severities of multiple diseases
(for issue 2).

– We evaluate our method over a real world EMRs MIMIC-3 and show that it
outperforms state-of-the-art approaches for prescription.

The rest of this paper is organized as follows. We summarize the related work
in Sect. 2. The proposed method is presented in Sect. 3. Experimental results and
analysis are introduced in Sect. 4. We conclude our work in Sect. 5.

2 Related Work

Computational methods that leverage EMRs to support healthcare begin to draw
attention in recent years. To learn good representations of diagnosis and pre-
scription, several models from the fields, such as image processing and machine
translation, are also leveraged to represent medical ontology.

Diagnosis is first handled by neural networks in 1989 [16]. Recently, deep
models such as multi-layer perceptron (MLP) and recurrent neural networks
(RNN) are applied to diagnose life-threatening diseases. Lipton et al. are the
first to apply long short-term memory (LSTM) [17] to multi-label diagnoses,
which takes the clinical variables as input to predict the diagnosis in intensive
care unit setting [18]. A gated recurrent unit (GRU) [19] model is used to early
detect heart failure with the row value of patients’ records [20]. However, for the
distinct tasks and different input, these methods can not be directly applied to
prescription.

Prescription settled by pattern-based methods is to identify the treatments
based on the similarities among records of patients [9,10,21]. As for model-based
studies, Cheerla and Gevaert [12] use SVM to recommend proper treatments for
pan-cancer patients with microRNA. Concurrently, Bajor and Lasko use a GRU
model to predict the total medications for multiple diagnosis records of a patient
to check the EMRs records [13]. However, the disease representations learned by
Bajor et al. are not well aligned to the medical knowledge [13]. Zhang et al. also
design a deep learning model LEAP to predict safe prescription with the input
of multiple diseases [14]. Bajor’s method and LEAP are established as state-
of-the-art approaches, but they ignore the patient-specific information. These
approaches are not effective for personalized prescription in comorbidity for: (1)
due to the complex and abstruse correlation among multiple diseases, it is hard
to measure their similarities; (2) ignoring the individual information of patients,
the methods may recommend the same medications for patients with the same
disease. As shown in Fig. 1, it is not in line with the real situation.
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Neural Attention Model is designed for solving neural machine transla-
tion tasks which cause a bottleneck by using a fixed-length vector to represent a
sentence [22]. To predict a target word, attention model automatically focuses on
the related words in the source sentence. Recently, it is applied to image process-
ing [23], dialog systems [24], machine translation [22] and popularity prediction
[25]. Retain [26] is the pioneer work to apply attention mechanism to healthcare,
which considers the historical visit records of patients in a reverse time to learn
attentions of different visits.

Distributed Representation for language is proposed to predict the neigh-
bors of a word using a simple neural network such as Skip-gram and Continu-
ous Bag-of-Words (CBOW) [27]. In medical domain, Riccardo et al. propose an
unsupervised method to learn the patients representations using a three-layer
stack of denoising autoencoders [28]. To improve the interpretation of repre-
sentations, GRAM employs an attention mechanism based on the hierarchical
medical ontology to learn the representation of diseases and drugs [29]. However,
GRAM overlooks the severity of diseases when the patients suffer from multiple
diseases. Indeed, these works mainly focus on learning representation instead of
prescription.

This paper extends prescription methods in a number of important dimen-
sions, including: (1) a deep learning model to learn the patient-level, disease-
level, drug-level representations simultaneously from multi-source information
of EMRs to achieve patient-specific prescription for comorbidity, and (2) an
effective representation of comorbidity learned by hierarchical disease ontologies
and a neural attention model.

3 Personalized Prescription for Comorbidity

In this section, we first define the notations of medical ontology and EMRs
data, followed by an overview of our approach. Then we introduce the detailed
components of learning disease, patient and drug representations, and a fusion
method to integrate these representations for personalized prescription.

3.1 Preliminaries

Considering a set of N patients P = {p1, p2, ..., pn, ..., pN}, a patient pn is specified
by his or her patient-specific information Pn (demographic and laboratory infor-
mation), diagnosis information Dn and medication information Yn, where Pn =
{pagen , pheartraten , ...},Dn = {dn1 , dn2 , ..., dni , ..., dnI }, Yn = {yn

1 , yn
2 , ..., yn

k , ..., yn
K}. dni

denotes the i-th disease in Dn and yn
k ∈ {0, 1} denotes whether a medication in

the k-th medicine class treated for the patient pn. G is a directed acyclic graph
(DAG) of disease (coded in ICD-9) ontology1. We only focus on three main lev-
els of ICD-9 ontology (1-digit nodes, 3-digit nodes and leaf-nodes) in this paper
to ensure good generalization. Also, the three levels are often used to identify

1 http://bioportal.bioontology.org/ontologies/ICD9CM.

http://bioportal.bioontology.org/ontologies/ICD9CM
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Fig. 1. General framework of PPC.

pharmacological subgroups. There is a hyponymy relation between the high level
and low level nodes in G, where the leaf-node ci1 (in level-1) represents the i-th
disease dni , and the non-leaf nodes ci2 (in level-2), ci3 (in level-3) show a concept
generalized from their child-nodes. Inspired by [29], each node in the three levels
is associated with a basic embedding, where eij represents the basic embedding
of node cij in j-th level.

PROBLEM DEFINITION (Personalized Prescription for Comorbidity.)
For a patient pn, given his or her patient-specific information Pn and diseases

Dn, where Pn = {pagen , pheartraten , ...},Dn = {dn1 , dn2 , ..., dnI }, the problem is to
predict the personalized treatment Yn (Yn = {yn

1 , yn
2 , ..., yn

K}) for the patient.

3.2 Algorithm Overview

As shown in Fig. 1, our approach is a deep learning model which includes three
main components: C1: learning to represent the diagnosis, C2: learning to rep-
resent the patient, C3: fusing representations with a trilinear method.

PPC employs the hierarchical structure of disease ontology in knowledge
graph G to learn a interpretable representation of disease dni . It first finds a path
from the leaf-node ci1 to the highest level node ci3 in G. Then, PPC concatenates
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the basic embedding vectors eij ∈ R
m (j = 1, 2, 3) of the three nodes as the

representation êi ∈ R
3m of disease dni . Combing the information of ancestors

and children helps to learn a robust and comprehensive representation. Due to
the patients in comorbidity have more than two diseases, playing more attention
on severity diseases is beneficial to alleviate the symptoms. We use attention
mechanism [22] to learn the different severities of diseases and represent the
diagnosis of the patient as a single embedding dn. Simultaneously, we learn
the patient representation using a 2-layer MLP with the input Pn, and the
medication representation mk (k = 1, 2, ...,K) is learned by a 1-layer MLP.
To learn the interdependencies among diseases, medications and the patient,
a trilinear fusion method is adapted to integrate the three representations to
predict the personalized treatments for comorbidity.

3.3 C1: Learning to Represent the Diagnosis

Diagnostic information in EMRs consists of the patients’ diseases. Medical ontol-
ogy in this paper is used to facilitate the representation of the diagnosis. We first
concatenate the three basic embeddings into a single embedding êi ∈ R

3m:

êi = [ei1,ei2,ei3], (1)

ei1 = Wemb1ci1, ei2 = Wemb2ci2, ei3 = Wemb3ci3,

where êi is the embedding of disease dni , cij ∈ R
D is the one-hot representation

of node cij (j = 1, 2, 3), Wemb1, Wemb2 and Wemb3 ∈ R
m×D are the embedding

matrixes corresponding to ci1, ci2 and ci3 respectively.
Then, we use the convex combination of multiple diseases to represent the

diagnosis of the patient:

dn =
I∑

i=1

αiêi,
I∑

i=1

αi = 1, αi ≥ 0 for dni ∈ Dn, (2)

where I is the number of diseases in Dn. αi is the attention weight of the disease
dni , which also indicates the severity of dni for the patient. The scalar αi is
generated as follows,

αi =
exp(f(êi))
I∑

j=1

exp(f(êj))

. (3)

Using a 1-layer GRU and a 1-layer MLP, we obtain f(êi) as follows,

(g1, ...,gi, ..,gI) = GRU(ê1, ..., êi, ..., êI), (4)

hi = wT
k gi + bk, (5)
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f(êi) = tanh(wi[h1, h2, ..., hI ]T + bi), for i = 1, 2, ..., I, (6)

where gi ∈ R
p is the hidden layer of GRU2. hi is the hidden layer of MLP and

wk ∈ R
p, bk, wi ∈ R

I , bi are parameters to learn. The GRU layer learns the
attentions of diseases separately, while the MLP learns the attentions of diseases
jointly.

The final representation of diseases dn ∈ R
m can also be calculated by Cn ∈

R
3D×I as shown in Eq. (8), where α ∈ R

I is the attention vector. As shown
in Eq. (9), Wemb ∈ R

m×3D is the concatenation embedding matrix of disease
ontologies in the three levels. Overall, we represent the diagnosis of patients by
employing the hierarchical structure of disease ontologies in knowledge graph G
and learning different severities of multiple diseases.

dn = Wemb(Cnα) (7)

Cn = [ĉ1, ĉ2, ..., ĉI ], where ĉi = [ci1, ci2, ci3], i = 1, 2, ..., I (8)

Wemb = [Wemb1,Wemb2,Wemb3]. (9)

3.4 C2: Learning to Represent the Patient

Demographic and laboratory information belongs to patient-specific indicators.
Demographic information consists of age, gender, height, weight, language, eth-
nicity, etc. Laboratory indicators include blood pressure, temperature, blood
oxygen saturation, etc. The patient-specific information is important to the
design of therapeutic regimen and dosage.

The demographic information is denoted as E:

E = {Eage, Eheight, ..., Eweight},

and the laboratory indicators are denoted as L:

L = {Lblood−pressure, Ltemperature, ..., Lph}.

Each element in E and L indicates a variable of Pn. Let p̂n be the intermediate
representation of patients where the discrete variables are represented as one-hot
codes, and the continuous variables keep invariant.

We use a 2-layer MLP to learn the patient representation:

hz = f(Wzp̂n + bz), (10)

pn = f(Wuhz + bu), (11)

where Wz and bz are the parameters of first layer, Wu and bu are parameters
of second layer, f is the activation function ReLUs, and pn ∈ R

n is the final
representation of the patient.
2 We have also examined LSTM and other activation functions to learn to represent

diagnosis, but they have less efficiency and worse performance.
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3.5 C3: Fusing Representations with Trilinear Method

We propose a trilinear fusion method to integrate different sources of informa-
tion. The input of the trilinear fusion method consists of three types of variables:
diagnosis Cn, patient-specific information pn and candidate medications mk

(k = 1, 2, ...,K), where mk ∈ R
K is the one-hot representation of the medicine.

Cn is the concatenation of one-hot representations of diseases as shown in Eq. (8).
The trilinear fusion method characterizes such a specific treatment event by con-
sidering the interdependencies among medications, the patient and diagnosis.
Assume hk,n is the index of the probability of the medication mk recommended
for the patient pn, and the probability is shown in Eq. (13). The trilinear method
is described as follows,

hk,n = (Wemb(Cnα))T(Wmmk � Wlpn), (12)

where � denotes the element-wise multiplication and α, Wemb, Wm ∈ R
m×K ,

Wl ∈ R
m×n are parameters to learn. To predict whether to recommend drug

mk for patient pn, we use a sigmoid function to predict the probability of rec-
ommending mk as follows:

fk,n =
1

1 + e−hk,n
. (13)

3.6 Objective Optimization

To solve this multi-label problem, we optimize the loss function of the K labels
simultaneously:

Loss =
1
N

1
K

N∑

n=1

K∑

k=1

l(fk(Cn,mk,pn), yk,n), (14)

l(fk,n(Cn,mk,pn), yk,n) = −(1 − yk,n) ∗ log(1 − fk,n) − yk,n ∗ log(fk,n), (15)

where l(fk,n(Cn,mk,pn), yk,n) is the cross-entropy loss, N is the number of
patients in training set. If we believe the solutions with small parameters are
more general, we may optionally add a l1-penalty term, which will often make
the parameters be nonzero in only a few states to prevent overfitting3.

4 Experiment

In this section, we conduct experiments to evaluate our proposed method. We
first report the dataset and models for comparison, followed by quantitative
and qualitative measurements. Quantitative measurements include the common
multi-label metrics and mean Jaccard. Qualitative measurements focus on how
well the presented method solves the issues mentioned in Sect. 1, such as person-
alized prescription analysis, the interpretable representation of diseases analysis
and the effect of the diseases’ severities learned by attention mechanism.
3 We have examined both l1-norm and l2-norm, and find their performance are similar.
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4.1 Dataset Description

The experiments are conducted on a public EMRs dataset MIMIC-3 [30].
MIMIC-3 contains 43K patients in critical care units during 2001 and 2012.
There are 6,695 distinct diseases and 4,127 drugs in MIMIC-3. The median
number of diseases of each record is 9 (Q1–Q3:6–15). Following the procedure
adopted in [13], we extract the top 1,000 most medications and top 2,000 most
diseases (ICD-9 codes) in the first 24 h after the admission of patients. Because
the patient states always change after 24 h and the first 24 h are the most critical
time of the patient. These medications and diseases cover 85.4% of all medication
records and 95.3% of all disease records. The medications in patient’s diagnosis
records are coded in NDC4. To obtain the hierarchical information of medica-
tions, we map the medication code from NDC into the third level of ATC5 using
the public tool6. ATC is another medication code which is hierarchically struc-
tured by anatomic and therapeutic classes. Finally, we obtain 180 ATC codes,
which is also the number of labels in our multi-label classification task.

For learning the patient representation, we choose 8 demographic features:
gender, age, weight, height, religion, language, marital status and ethnicity and
11 clinical variables (followed by the physician’s suggestion): diastolic blood
pressure, Glascow coma scale, blood glucose, systolic blood pressure fraction
of inspired O2, heart rate, pH, respiratory rate, blood oxygen saturation, body
temperature, and urine output. These variables are first rescaled to z-scores,
then rescaled to [0,1]. We extract the results of clinical variables in the first 24 h
after the patients admitted to the intensive care unit. We further fill the miss-
ing values by sampling them from the clinically normal interval as defined by
clinical physicians. It is reasonable because clinicians often think the variables
are norm and do not measure them [18]. For good generalization, we remove the
records with more than 10 missing variables. Finally, we obtain 39,260 patients,
and randomly divide the dataset for training, validation and testing by the ratio
of 80/10/10.

We use the common metrics of multi-label, which contains micro under the
ROC curve (micro-AUC), macro under the ROC curve (macro-AUC), label rank-
ing average precision score and label ranking loss to promise fair and honest
evaluation [31,32]. Also, we use mean Jaccard to measure the combination of
recommended drugs as [14]. Initial PPC and PPC are our proposed methods,
while the others are baselines. We describe these methods in detail as follows:

– Popularity-20 (POP-20): This is a patten-based method, which considers
the top-k most frequent medications prescribed for each disease as predictions.
We set K to be 20 for its best performance on validation dataset.

– Random Forest (RF): This is a classical machine learning method for
multi-label problem. To reduce the massive computation, we use scalar to
represent the different diseases, and train the model with 180 independent

4 http://www.fda.gov/Drugs/DevelopmentApprovalProcess/.
5 http://www.whocc.no/atc/structure and principles/.
6 https://www.nlm.nih.gov/research/umls/rxnorm/.

http://www.fda.gov/Drugs/DevelopmentApprovalProcess/
http://www.whocc.no/atc/structure and principles/
https://www.nlm.nih.gov/research/umls/rxnorm/
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forests, each forest is trained with the total diseases and predict one of the
180 treatments.

– LM [13]: This is a non-personalized prescription method, which uses a 3-
level-MLP to recommend treatments for patients. The goal of LM is to check
the errors and omissions in EMRs. The input is historical diseases of the
patient in the EMRs records. The output is a single vector which is used to
predict the medications treated for the historical diseases of the patient. To
test the performance of LM, we use the current diseases of a patient as input
and predict the medications for current diseases.

– LG [13]: This model is with the same setting as LM. But it uses a GRU
model instead of MLP.

– LEAP [14]: LEAP uses a MLP framework to train a multi-label model
which uses multiple diseases to predict multiple medications and considers
the dependence of medications.

– Knowledge-based LM (LMK): We extend LM by incorporating hierar-
chical structure of disease ontology. The results of LMK can be utilized to
test the effectiveness of considering medical ontology.

– Personalized-infor-based LM (LMKF): We further extend LMK by con-
catenating demographic information of patients, clinical measurements and
diseases together as input. The results of LMKF can be used to verify the
benefit of considering the patient-specific information.

– initial-PPC (i-PPC): It is with the same setting as our model, except using
GRAM [29] to learn the representation of diseases.

– PPC: This is the model proposed in this paper. We aim at comparing it
with other methods to demonstrate its advantages in multi-aspects. The basic
embeddings ei,j of i-PPC and PPC are both randomly initialized.

The main goals of this section is to answer the following core questions, which
guide the design of the experiments.

1. Prediction Accuracy: Can patient-specific information support more accu-
rate prescription than other non-personalized prescription? (for issue 1)

2. Ablation Study: What is the contribution of each factor (diagnosis, patient,
medicine information) to PPC?

3. Embedding Analysis: Does medical knowledge help to learn a better rep-
resentation? (for issue 2)

4. Attention Analysis: How well does PPC learn the different severities among
diseases?

4.2 Prediction Accuracy

Table 2 shows the performance of aforementioned methods on MIMIC-3. LMK
outperforms LM by 2%–5.8%. This result shows combing medical knowledge to
learn representations of diseases is significant to improve the accuracy of pre-
scription. LMKF outperforms LMK by 0.1%–2.4%, which verifies the precision
treatment is benefit from patient-specific information. Moreover, PPC consis-
tently outperforms other baselines. For non-personalized deep models, such as
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LEAP, LG and LM, PPC achieves 0.7%–4.1% improvement, because patient-
specific information can help to prescribe more effective medications by identi-
fying different physiologic states and characteristics of patients. It also outper-
forms LMKF by 0.2%–4.2% because the trilinear fusion method endows PPC
with ability of learning rich and integrated representations based on different
sources of information. Compared to i-PPC, PPC also achieves better improve-
ments, because learning the different severities can help PPC pay more attention
to important diseases.

Table 2. Performance comparisons on test sets for comorbidity prescription (%).

Method Micro-AUC Macro-AUC Label ranking
avg. precision

Label ranking
loss

Jaccard

POP-20 76.2 55.8 52.7 40.8 37.8

RF 88.3 71.8 60.2 9.8 38.5

LM 89.2 73.2 62.8 9.4 36.6

LG 91.7 77.3 67.0 7.8 39.3

LEAP 92.0 78.9 67.5 7.6 40.8

LMK 92.1 79.0 68.2 7.4 40.1

LMKF 92.2 81.4 68.3 7.1 40.5

i-PPC 92.7 81.0 68.6 7.0 41.3

PPC 93.1 83.0 69.9 6.90 44.7

As for the other baselines, POP-20 is not effective due to its incapability
of learning relation between multiple diseases and medications. RF works poor
than deep models, because it fails to learn high-level representations of diseases.

4.3 Ablation Study

We conduct ablation study here to verify the contributions of the three types of
information employed in this study. More specifically, we denote PPC-m, PPC-
d and PPC-p as the variants of PPC by removing medical information, diag-
nosis information, and patient-specific information respectively. As the results
presented in Table 3, all the information makes a positive contribution to pre-
cision treatment, where the contribution of diagnosis information is the most
significant.

4.4 Embedding Analysis

To evaluate the effectiveness of disease representations learned by PPC, we use
t-SNE [33] to visualize the final embeddings of 2000 diseases in our experiments.
As shown in Fig. 2, different colors correspond to different categories of diseases
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Table 3. Factor contribution analysis for PPC (%).

Method Micro-AUC Macro-AUC Label ranking
avg. precision

Label ranking
loss

Jaccard

PPC-m 92.9 82.7 68.5 7.3 44.1

PPC-d 89.5 70.8 61.1 9.8 37.7

PPC-p 92.3 81.3 68.6 7.1 43.2

PPC 93.1 83.0 69.9 6.90 44.7

in the highest level of G. The names of the categories are represented aside the
color-bar. The result shows that the embeddings of diseases in different categories
can be roughly separated. In addition, we randomly select two impact point sets
in Fig. 2, where the blue digits indicate the leaf-ICD-9 codes. The result shows
that the codes are indeed related to their neighbors. However, the most related
codes are not with the shortest distance because of the insufficient data. In
deed, training the embeddings always need sufficient data, for example, training
Skip-gram requires large amount of documents.

4.5 Attention Analysis

The attentions of the diseases can be explained intuitively using a randomly
chosen case. Case 1: a patient with 13 diseases and 39 drugs. As mentioned
in Sect. 1, learning different “weights” of multiple diseases is still a significant
problem to be well addressed. In this section, we validate the availability of
diseases’ attentions using the domain knowledge and the amount of medications.

Analysis Based on the Domain Knowledge: As verified by a doctor, this is
a patient with two main diseases: Parkinson and Chronic airway obstruction.
More specifically, the patient is with diseases and symptoms such as: Parkinson,
Chronic airway obstruction, depression, constipation, eye infections, esophagitis,
indigestion, pneumonia, respiratory failure and congestive heart failures. About
1/3 of Parkinson patients suffer from severe depression and may cause constipa-
tion, abnormal gastrointestinal motility, and some eye diseases. Therefore, part
of these symptoms and diseases may be caused by Parkinson’s disease. In addi-
tion, Parkinson’s patients are difficult to clean up the sputum, who easily infect
pneumonia. Chronic airway obstruction which is unrelated to Parkinson’s dis-
ease, may cause pulmonary heart disease and lung inflammation. Thus in this
case, the patient also suffer from pneumonia, respiratory failure and congestive
heart failure. Overall, Parkinson’s disease and Chronic airway obstruction are
the main diseases in this case and most of the other diseases are complications.
As shown in Fig. 3, Parkinson’s disease achieves the most attention (α = 0.12),
while Chronic airway obstruction obtains the third (α = 0.094).

Analysis Based on the Amount of Medications: As shown in Fig. 4, to validate
our results, we choose level-1 ATC codes to represent the medications. The
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infectious and parasitic
neoplasms
endocrine, metabolic etc
Blood/blood-forming organs
mental disorders
nervous system
sense organs
circulatory system
respiratory system
digestive system
genitourinary system
complications
Skin/subcutaneous tissue
Musculoskeletal sys etc
congenital anomalies
perinatal conditions etc
symptoms, signs conditions
injury and poisoning
external causes of injury
supplemental classification

Neutropenia, unspecified
Drug induced neutropenia

Neutropenia

Acquired hemolytic 
anemia, unspecifiedOther specified aplastic anemias (drug, infection etc)

Other specified aplastic anemias

Basilar artery Occlusion

Multiple and bilateral Occlusion
Atherosclerosis of 
the extremities with
intermittent claudication Other venous embolism and thrombosis (other specified veins)

Atherosclerosis Of renal artery

Other venous embolism and thrombosis 

Fig. 2. The visualization (t-SNE, 2-D) of diseases’ embeddings learned by PPC. Dif-
ferent colors correspond to different categories of disease in the highest level of G. The
name of categories are represented aside the color-bar. The blue digits indicate the
leaf-ICD-9 codes (diseases) of two randomly point sets. (Color figure online)

Fig. 3. Attentions learned from a comorbidity patient. Each rectangle represents a dis-
ease of this patient. The different color shades shows the volume of the attention of
the disease. (DHF: Diastolic heart failure Acute on chronic, UPE: Unspecified pleu-
ral effusion, CHF: Congestive heart failure, PD: Parkinson’s disease, HYPS: Hypos-
molality and/or hyponatremia, HYPO: Hyperpotassemia, LLR: Lymphoid leukemia
in remission, AU: Anemia, unspecified, POU: Pneumonia, organism unspecified, EH:
Essential hypertension, UAFA: Upper arm and forearm Other cellulitis and abscess,
CAO: Chronic airway obstruction, ARF: Acute respiratory failure.)

Fig. 4. Distribution of the number of drugs in this case. Abscissa represents the highest
level of drug codes (ATC) of this case. The descriptions of partial codes are: A: Ali-
mentary tract and metabolism, R: Respiratory system, J: Antiinfectives for systemic
use, B: Blood and blood forming organs. C: Cardiovascular system.
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largest amount of the drugs is mainly targeted for disease of Alimentary tract
and metabolism (A). As mentioned before, Parkinson is most likely to cause
gastrointestinal disease and constipation. So that these drugs are prescribed for
symptom of Parkinson. The second largest amount of the drug is for respira-
tory system (R), such as Chronic airway obstruction and Pneumonia. These
results also explain that the main diseases are Parkinson and Chronic airway
obstruction, which is in line with our experiment results.

Table 4. Prescriptions for two patients with same diseases.

Diagnosis Methods Recommended treatments

Secondary malignant
neoplasm of brain and spine,
breast malignancy, Other
convulsions, Secondary
malignant neoplasm of lung,
Hypertension Cerebral edema

PPCp1 B05C, B05X, A10A, C08C, A02B,
N03A, N02A, N02B, C02D, A12C,
A06A, C03A, C03C

LEAPp1 B05C, B05X, A02B, N03A, N02A,
N02B, A12C, A06A

LGp1 B05C, B05X, A10A, A02B, N02A,
N02B, A12C, A06A

PPCp2 B05C, B05X, A10A, C08C, A02B,
N03A, A04A, N02A, N02B, C02D,
A12C, A06A

LEAPp2 B05C, B05X, A02B, N03A, N02A,
N02B, A12C, A06A

LGp2 B05C, B05X, A10A, A02B, N02A,
N02B, A12C, A06A

4.6 Personalized Prescription Analysis

With the subjectively examining performance on 30 randomly selected cases,
we find the favorably performs of PPC comparing against other baselines. We
choose one of these cases for analysis. In Fig. 5, we show 2 patients with same
diseases, where the diseases and mediations recommend by 3 prescription meth-
ods are shown in Table 4. For the first patient, PPCp1 recommends a set of
medications with 78.6% coverage, where pi (i = 1, 2) represents the i-th patient.
The recommendation coverage of LEAPp1 and LGp1 are both 42.9%. For the
second patient, PPCp2 recommends a set of medications with 100% coverage.
In contrast, the coverage of LEAPp2 and LGp2 are 88.9% and 77.8%. The case
is also the evidence of patient-specific medications. Due to the different phys-
iologic states of patients, the mediations which the patients need are changed.
In this case, the first patient is with systolic blood pressure 142 mmHg, while
the second patient is 117 mmHg. Considering the patient-specific information,
PPC recommends the drugs for p1 with C08C, C02D, C03A, C03C, which tar-
gets hypertension. For p2, these drugs were largely reduced. However, as shown
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Fig. 5. Medication predictions confidence of two patients with same diseases. ATC
codes on abscissa axis represents the prescriptions of doctors, where the hight of the
bar indicates the prediction confidence of the three methods. We predict the medicine
with the confidence >=0.5.

in Table 4, LEAP and LG that only consider diseases for prescription always
recommend the same drugs for the patients with same diseases and ignore the
hypertension states of the patients.

5 Conclusion

In order to solve the challenge and issues of personalized prescription for comor-
bidity, we propose an end-to-end deep learning model PPC. PPC integrates dif-
ferent sources of information to jointly learn representations of patients, diseases
and medications and fuses them with a trilinear method to realize personalized
prescription. Multiple patient-specific information is exploited to learn patient-
level representation, and medical knowledge is combined to learn disease-level
representation where an attention mechanism is used to learn different severities
of comorbidity. Exploiting multi-source patient-specific information, PPC can
recommend customized treatments which may be different for patients even hav-
ing same diseases but different physiologic states, which achieves better results.
Furthermore, PPC learns a good representation of disease and discriminates dif-
ferent severities of multiple diseases of comorbidity patients well. In the future,
we will study how to solve the scalability issue for fuller set of medications.
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Abstract. Estimating health care cost of patients provides promising
opportunities for better management and treatment to medical providers
and patients. Existing clinical approaches only focus on patient’s demo-
graphics and historical diagnoses but ignore ample information from clin-
ical records. In this paper, we formulate the problem of patient’s cost
profile estimation and use Electronic Medical Records (EMRs) to model
patient visit for better estimating future health care cost. The perfor-
mance of traditional learning based methods suffered from the sparseness
and high dimensionality of EMR dataset. To address these challenges,
we propose Patient Visit Probabilistic Generative Model (PVPGM) to
describe a patient’s historical visits in EMR. With the help of PVPGM,
we can not only learn a latent patient condition in a low dimensional
space from sparse and missing data but also hierarchically organize the
high dimensional EMR features. The model finally estimates the patient’s
health care cost through combining the effects learned both from the
latent patient condition and the generative process of medical procedure.
We evaluate the proposed model on a large collection of real-world EMR
dataset with 836,033 medical visits from over 50,000 patients. Experi-
mental results demonstrate the effectiveness of our model.

Keywords: Electronic medical records · Cost profile estimation
Health care data mining · Probabilistic generative model

1 Introduction

The growth rate of health care cost is an alarming problem in many countries
all over the world. The cost of health care in the United States is steadily rising,
making it the most expensive in the world1. Studies show that advanced analytics
1 https://www.cms.gov/.
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can help slow this upward trend [12], among which accurate estimation of health
care cost serves as the first step. In clinical practice, a more expensive treatment
regimen at the onset of diseases could lower the patient’s total cost in the next
10 years. Doctors need to predict the future cost of a patient in order to give
a more reasonable and economical treatment. For health insurance companies,
there is a significant need to look beyond applicants’ future cost, especially for
those with chronic diseases.

Therefore, it is important to estimate patient’s health care cost aiming at
better management and treatment for both medical providers and patients. Tra-
ditionally, previous approaches in this field are mainly based on demographics
and diagnosis data. The Diagnosis-Related Groups (DRGs) classifies patients
into groups by their age, sex and history diagnosis to infer patient’s current
problem and their potential health care cost [1,7,10]. Moturu et al. [21] utilized
different classification algorithms to predict future high cost patients. Recently,
with the development of health informatics, a large amount of data from medi-
cal institute become available. These Electronic Medical Records (EMR) docu-
ment patient visits, including demographic information (birth date, gender, etc.),
diagnosis (historic and current), treatment (medication and surgery), laboratory
results and clinical notes, providing an opportunity for researchers to develop
data-driven models for health care data analysis.

In this paper, we study the problem of estimating future health care cost
of a patient from his history data in EMR. More specifically, given a series of
hospital visit data of a patient, the goal of this study is to estimate the high
cost risk of future visits. This approach could help doctors identify potential
high cost patients in the near future, who could be enrolled in case-management
or enroll-management program and get early intervention. The health insurance
companies can also benefit from them to develop personalized contracts. How-
ever, there are some obstacles for making analysis on EMR due to its intricate
nature. Generally speaking, there are two aspects of challenges:

Sparse and Missing Data. There are thousands of possible items in the clin-
ical laboratory, only a few of them could be done in each patient visit. Even
for a certain kind of disease, a patient can take a small bundle of medical tests
in hundreds of related tests, leading to a highly sparse dataset. There are 566
different medical test features in our dataset, but each patient visit only con-
tains 13.92 medical tests (2.46%) on average. 70.37% of the 836,033 patient visits
have less than 10 medical tests. The sparse dataset will make it difficult in con-
structing the model and definitely deteriorate learning performance. In clinical
trails, Wood et al. [26] proposed multiple imputation methods to handle miss-
ing data, but little statistical imputation could handle our highly sparse dataset
with guaranteed bias.

Confounding Effect and High Dimensionality. Confounding arises when
a variable (confounder) is not connecting the exposure with the outcome but
associated with them [22]. Using EMRs often has confounding effects [20]. For
medical cost prediction problems, risk score features based on DRGs and indica-
tors of chronic conditions can be extracted [8]. However, a spurious association
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may be generated when we study on a small bundle of risk factors and the
high cost risk of patients. On the other hand, there are 746 different features in
our EMR dataset containing detailed information of patient visits. But model-
ing of the high dimensional features without domain knowledge is still an open
question.

To address these challenges, we propose the Patient Visit Probabilistic Gen-
erative Model (PVPGM) to describe the generative process of the high dimen-
sional features of a patient visit. For handling sparse and missing data, PVPGM
learns a latent patient condition in a low dimensional space from the sparse
and missing medical test data. For handling the confounding effect and high
dimensionality, PVPGM hierarchically organizes the high dimensional features
of a patient visit including demographic information, diagnosis, treatment and
laboratory results, and then describes the generative process by logistic func-
tions. With the help of such a generative model, we can predict the high cost
risk of a patient as well as expose the risk factors. To the best of our knowl-
edge, it is the first paper to study the cost prediction problem in EMR data
mining. We evaluate the proposed model on a large collection of the real-world
electronic medical records from a famous cardiovascular hospital in China and
the experiment results demonstrate the effectiveness of our model.

To summarize, our work contributes on the following aspects:

– We study the problem of estimating patients’ cost, which has been found
widespread application prospect. To the best of our knowledge, no previous
work has studied this problem in machine learning perspective.

– We propose a probabilistic generative model, PVPGM, to solve this problem.
Our model aims at addressing two common challenges in EMR data mining:
it first projects the high dimensional sparse data into a low dimensional space
and then models the features of a patient visit from electronic medical records
to estimate the patient’s cost profile.

– We evaluate our proposed model on a large scale real-world dataset, including
836,033 medical visits from over 50,000 patients. Experimental results show
that our model outperforms baseline methods significantly.

2 Problem Definition

In this section, we introduce and define related concepts and formulate our cost
profile estimation problem.

2.1 Definition

As we mentioned in the above section, our model jointly describes patient visits
in the generative process. Formally, we define a patient visit for a patient first.

Definition 1 (Patient Visit). A patient visit n for a patient is defined as a set
sn = {x, ι, d, t, c, τ}, where x = {(ml, rl)} is the medical test set of (item, result)
pairs, demographical information ι, diagnosis d, medical treatment t, health care
cost c and time stamp τ .
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Fig. 1. Patient visit probabilistic generative model

A patient visit is the behavior and corresponding record of the inpatient or
outpatient documented by hospital information system. We organize all possible
information in a clinical record that EMR provides to us. A patient may visit a
hospital multiple times, so we use a patient visit sequence S = (si) to represent
a patient where τi < τj if i < j. Then we define the concept of patient condition
as below.

Definition 2 (Patient Condition). The patient condition ψ = (ι, θ) denotes one
particular patient’s current condition, which is defined as a pair of demographical
information ι and intrinsic condition θ.

The patient condition for one patient visit includes the extrinsic condition
(the demographic information such as age, gender) and intrinsic one. θ is a latent
low dimensional probability vector learned from patient’s medical test. Each
dimension of the latent intrinsic condition denotes the weight of the generative
distribution since we adopt a mixture of the generative process to the medical
tests. Similar to the above, we further define a condition sequence Ψ = (ψi) for
a particular patient to describe the development of his/her disease, where ψi is
earlier than ψj if i < j. Furthermore, we define the concept related to our object
problem as follows.

Definition 3 (Cost Profile). The cost profile is the description of one patient’s
health care cost sequence C = (ci). For a particular patient visit i, the m-period
cost profile is the average cost of the future m patient visits:

CP (i,m) =
1
m

m−1∑

k=0

ci+k
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Table 1. Variable descriptions

Notation Description

N The number of all patient visits

L The number of medical tests

K The number of latent variables

D The number of different diagnoses

ι The demographical information of the patient on patient visit n, which
indicates patient’s current extrinsic condition

θ The latent variable of mixture generative process of medical tests, which
indicates patient’s current intrinsic condition

d The diagnose code vector of patient visit n

Ω The coefficient matrix (ωT
1 , ..., ωT

D)T of multinomial logistic regression to
generate d from patient condition ι and θ

t The treatment vector of patient visit n, including medication and surgery

λ The distribution parameter for each treatments

c The label node indicating whether the STCP of patient visit n is in the
high group

η The coefficient for cost c

z The distribution of medical test l w.r.t. patient visit n

m The type of medical test l

r The result of medical test l w.r.t. patient visit n

μ, σ The parameters for Gaussian distributions to sample continuous medical
tests r

ϕ The parameter for multinomial distribution to sample categorical medical
tests r

The cost profile of patient visit i includes two aspects: short-term description
STCP = CP (i, 1) and m periods long-term description LTCP (m) = CP (i,m).
Based on the above definitions, we further define our prediction task as follows.

2.2 Cost Profile Estimation Problem

The problem we address is to forecast cost profile based on the patient visit
sequence. The input of cost profile estimation includes a set of patients V = {vn}
and a patient visit sequence Sn(τ0) = (..., si0−1, si0) for each patient vn where
τi0 ≤ τ0 < τi0+1. Our goal of cost profile estimation is for each patient vn and
i0 + 1 patient visit, determining if STCPn is in the high group. The threshold
will be tuned to verify the robustness of our approach.
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3 Model

In this section, we describe our proposed Patient Visit Probabilistic Generative
Model, PVPGM to estimate the cost profile of a patient. The model includes
the generative process of patient visit and patient condition so as to produce the
unknown condition of next period and corresponding cost profile.

3.1 Assumptions

With the support of our clinical experts, we have the following assumptions
based on the medical insights.

Assumption 1. The health care cost of patients with non-communicable disease
(NCD) mainly depends on the progression of disease.

Non-communicable diseases (NCDs) tend to be of long duration, generally slow
progression such as cardiovascular disease (CVD) and diabetes mellitus2. Our
problem focuses on NCDs whose health care cost of inpatient and outpatient
is more predictable than other diseases such as surgery injuries. We can learn
patient condition from medical tests to infer the progression of disease and make
a more accurate prediction about patient’s future cost.

Assumption 2. A diagnosis is made by obtaining patient condition and physi-
cians give out the treatment based on the diagnosis.

In order to make a diagnose, physicians analyze patient’s extrinsic and intrinsic
condition from inquiry and medical tests based on their own experience. Then,
the corresponding treatment is given and the health care cost is incurred.

3.2 Patient Visit Probabilistic Generative Model

Based on the assumptions, we propose our Patient Visit Probabilistic Generative
Model, PVPGM, as shown in Fig. 1. Table 1 describes the variables of our model.

According to our problem definition, we have a patient visit sequence S(τ0) =
(..., si0−1, si0) for each patient. We use cn to denote whether STCP of patient
visit n is in the high group. cn = 1 represents the positive result and cn = −1 is
the negative result. Our target is to map the input visit sequence to the label of
patient visit i0 + 1, i.e., f : S(τ0) �→ ci0+1. We can build a classification model
to map the sequence to a target label. In order to handle the challenges of our
dataset, in each time slice, PVPGM models the medical procedure and extracts
low dimensional features from the sparse medical tests.

Medical Procedure. The right part of each time slice in Fig. 1 represents the
generative process of medical procedure. Assumption 2 describes our intuitive
insights. According to the model, for each patient visit n, the diagnose dn is

2 http://www.who.int.

http://www.who.int
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generated from a multinomial logistic regression Ω based on the patient condition
ψn = (ιn , θn ). We concatenate ψn to a condition vector

ϑn = ιn

⊕
θn = (ιn1, ..., ιnI , θn1, ..., θnK)

Then the treatment t is generated from a dn -specific multinomial distribution
λdn

. Finally c is generated from logistic regression based on the treatment.

Mixture Generative Process for Medical Tests. To extract low dimen-
sional latent feature θ from the sparse medical tests dataset, we use the hierar-
chical generative architecture which is similar to the Latent Dirichlet Allocation
(LDA) model [2]. Left part of our model shown in Fig. 1 denotes the design.
Marginalized out z, we have

p(rn,l|θn, μl, σ, Φl) =
K∑

k=1

θn,k · p(rn,l|μl,k, σk, ϕl,k) =
K∑

k=1

θn,k · Πl,k(rn,l) (1)

1 foreach patient visit n do
2 Draw a diagnosis dn from multinomial logistic regression based on

patient condition ψ = (ι, θ), i.e., dn ∼ multi(softmax(Ω · (ι
⊕

θ)));
3 foreach treatment i do
4 Draw a treatment tn,i from dn-specific multinomial distribution,

i.e., tn,i ∼ multi(λdn
);

5 end
6 Draw the cost cn from the treatment η i.e.,

cn ∼ multi(sigmoid(ηT · tn ));
7 foreach medical test l do
8 Draw a hidden pattern k = zn,l from multinomial distribution, i.e.,

zn,l ∼ multi(θn);
9 Draw rn,l from mixture distribution Πl,k which is shown in Eq. (2);

10 end
11 end

Algorithm 1. Probabilistic generative process

Unlike LDA, there are two kinds of generative target r: numerical and cate-
gorical. Similar to Liu et at. [19], we generate numerical variables from Gaussian
distributions and categorical variable from multinomial distributions. Thus the
k-specific distribution Πl,k is defined as

Πl,k(rn,l) = p(rn,l|μl,k, σk, ϕl,k)

=

⎧
⎪⎨

⎪⎩

1

(2πσ2
k)

1
2
e
− (rn,l−μl,k)2

2σ2
k rn,l is numerical.

ϕl,k,rn,l
rn,l is caterorical.

(2)
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Input: a feature matrix X, learning rate α, weight decay term α′

Output: parameter configuration Ξ

1 Calculate λ according to Eq. (13);
2 Initialize θ, Ω, η, μ, σ, ϕ randomly according to the constrains of Eq. (17);
3 repeat

4 Calculate p(i)(k|n, l) according to Eq. (7);
5 Update θ, ϕ, μ, σ according to Eq. (8)-(11);
6 Update η according to Eq. (14);
7 Calculate p(dn = d|θn , Ω) according to Eq. (15);
8 Update Ω according to Eq. (16);

9 until convergence;

Algorithm 2. Learning algorithm

The whole generative process is shown in Algorithm 1. We define

Ξ = {θ, Ω,λ, η, μ, σ, ϕ} (3)

as our parameter configuration. By adopting the chain rule of probability, the
log-likelihood objective function can be obtained as follows:

O(Ξ) =
∑

n

log p(rn , dn, tn , cn|Ξ)

=
∑

n

∑

l1

I(n, l1) log(
K∑

k=1

θn,k · 1
(2πσ2

k)
1
2
e
− (rn,l1

−μl1,k)2

2σ2
k )

+
∑

n

∑

l2

I(n, l2) log(
K∑

k=1

θn,k · ϕl2,k,rn,l2
)

+
∑

n

(cn log
1

1 + e−ηT ·tn
+ (1 − cn) log (

e−ηT ·tn

1 + e−ηT ·tn
))

+
∑

n

∑

t

log λdn,tn,t
+

∑

n

log
eωT

dn
·ϑn

∑
j eωT

j ·ϑn

(4)

where l1 denotes the continuous medical tests and l2 denotes the categorical
tests.

I(n, l) =

{
0 rn,l is missing.
1 rn,l is not missing.

is an indicator function of our dataset.

3.3 Model Learning

From the above, we show the maximum-likelihood estimation problem of
PVPGM as follows:
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Ξ∗ = arg max
Ξ

O(Ξ)

s.t.
∑

k

θn,k = 1,
∑

x

φl,k,x = 1,
∑

t

λd,t = 1
(5)

In this paper, we use iterative approximation method to learn the parameters
because Eq. (5) does not have the closed-form solution. This algorithm separates
the objective function into two parts and maximizes them iteratively. For the
first part, we fix the parameters of medical procedure {Ω,λ, η} and learn the
remaining mixture generative process. We have

O1(θ, ϕ, μ, σ) =
∑

n

∑

l1

I(n, l1) log(
K∑

k=1

θn,k · 1
(2πσ2

k)
1
2
e
− (rn,l1

−μl1,k)2

2σ2
k )

+
∑

n

∑

l2

I(n, l2) log(
K∑

k=1

θn,k · ϕl2,k,rn,l2
)

(6)

We can adopt Eq. (7) to get the lower bound of Eq. (6) by Jensen’s inequality,
then maximize and update the lower bound iteratively to generate the global
maximum. We have the following update functions.

p(i)(k|n, l) =
θ
(i)
n,k · Πl,k(rn,l)

∑K
k′=1 θ

(i)
n,k′ · Πl,k′(rn,l)

(7)

μ
(i+1)
l1,k =

∑
n I(n, l1)p(i)(k|n, l1)rn,l1∑

n I(n, l1)p(i)(k|n, l1)
(8)

σ
(i+1)
k

2
=

∑
n

∑
l1

I(n, l1)p(i)(k|n, l1)(rn,l1 − μ
(i+1)
l1,k )2

∑
n I(n, l1)p(i)(k|n, l1)

(9)

ϕ
(i+1)
k,l2,r =

∑
n I(n, l2)1r(rn,l2)p

(i)(k|n, l2)∑
n

∑
r I(n, l2)1r(rn,l2)p(i)(k|n, l2)

(10)

θ
(i+1)
n,k =

∑
l1

I(n, l1)p(i)(k|n, l1) +
∑

l2
I(n, l2)p(i)(k|n, l2)∑

l1
I(n, l1) +

∑
l2

I(n, l2)
(11)

where 1x(y) indicates whether x is equal to y.
For the second part, we fix the parameters of mixture generative process

{θ,ϕ, μ, σ} and learn the medical procedure. We have

O2(Ω,λ, η) =
∑

n

(cn log
1

1 + e−ηT ·tn
+ (1 − cn) log (

e−ηT ·tn

1 + e−ηT ·tn
))

+
∑

n

∑

t

log λdn,tn,t
+

∑

n

log
eωT

dn
·ϑn

∑
j eωT

j ·ϑn

(12)

We have closed-form solution for λd,t:

λd,t =
∑

n

∑
t′ 1d(dn)1t(tn,t′)∑

t

∑
n

∑
t′ 1d(dn)1t(tn,t′)

(13)
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We adopt gradient ascent algorithm to update the remaining parameters of
O2 iteratively. Following are the update functions.

η
(i+1)
t = η

(i)
t + α

∑

n

(cn − sigmoid(η(i)T · tn ))tn,t (14)

p(dn = d|θn , Ω) =
∑

n

eω
(i)
d

T ·ϑn

∑D
d′=1 eω

(i)
d′

T ·ϑn

(15)

ω
(i+1)
d,k = ω

(i)
d,k + α(

∑

n

(1d(dn) − p(dn = d|θn , Ω))θn,k + α′ω(i)
d,k) (16)

where α is the learning rate with the gradient and α′ is the weight decay term.
Algorithm 2 summarizes the learning algorithm.

3.4 Cost Profile Estimation

With the generative model above, a patient’s diagnose code d, treatment t and
health care cost c can be generated from his condition ψ in a certain patient visit
n. In order to estimate cost profile of this patient, we learn the sequence of his
history condition. Figure 2 shows the procedure of our cost estimation. Instead
of directly producing ci0+1 (or equivalently si0+1), we first learn a probabilistic
graphical model which hierarchically organizes patients’ medical features. Then
the condition vectors for different time slices of one patient can be used to predict
the condition of next visit. Finally ci0+1 can be drawn from the inference of
probabilistic graph.

Fig. 2. The procedure of cost estimation

With the model parameters and patient condition vector ϑn for each time
slice, we assume the patient condition sequence Ψ = (ψi) has Markov property.
So we can learn the transition matrix by solving the following optimization
problem

X∗ = arg min
X

∑

i≤i0

‖ψi − Xψi−1‖ (17)

where τi0 ≤ τ0 is the last patient visit before τ0.
Then we can calculate next condition vector by ψi0+1 = Xψi0 and generate

the corresponding cost profile.
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4 Experiments

In this section, we comprehensively evaluate our PVPGM model on a real-world
dataset and compared it with multiple state-of-the-art methods. Firstly, we intro-
duce the experiment setup, including the description of our EMR dataset, evalu-
ation metrics and baseline models. Then we present the experimental result and
illustrate the effectiveness of our proposed approach. We also discuss the effect
of some important parameter values in this section.

4.1 Experiment Setup

We use a collection of real medical records from a leading hospital in cardio-
vascular medicine, cardiovascular surgery and geriatrics in Beijing. Our dataset
is described in Table 2. It contains over 836,033 patient visits from over 50,624
patients. Each record consists of 566 medical tests with 96 demographical infor-
mation and 102 treatment columns. On average each EMR record contains 13.92
different medical tests (2.46% of all medical tests), which indicates our dataset
has a serious problem with feature sparsity.

Table 2. Description of EMR dataset

Items Numbers

#patient visits 836,033

#patients 50,624

#demographics 96

#treatments 102

#medical tests 566

Sparse ratio of medical tests 2.46%

Time span Jan 2003 to Dec 2015

We randomly picked 80% of the patients as training set and the rest for test-
ing, then adopt 5-fold cross validation during training. We evaluate the proposed
model in terms of precision, recall and F-Measure. In order to better evaluate
the classifier on imbalanced data, we also compare the ROC curve with dif-
ferent baseline methods to validate its effectiveness. These metrics are widely
used in data mining studies. Receiver Operating Characteristic (ROC) curve
is extensively adopted to evaluate the imbalanced dataset especially in clinical
practice [9].

4.2 Baseline Methods

We select the following methods as baselines for the cost estimation problem
and compare our proposed method with them:
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– DTC. Decision Tree Classifier (DTC) [3] learns simple decision rules inferred
from the data features, which will generate a data-driven model similar to
the rule-based DRGs models. Diagnosis-Related Group (DRG) is a widely
used classification model to estimate patient’s health care cost [1,7] as we
mentioned in Sect. 1. We adopt DTC to illustrate the effectiveness of DRGs.

– NI+SVM. Normal Imputation (NI) is employed on our dataset. In med-
ical tests, it is reasonable that doctors would not check the irrelevant or
unnecessary medical lab tests when they are in the reference range. Normal
imputation is a widely used method in clinical practice [26]. We treat medical
records as features and LIBSVM [5] is employed as the classification model
for health care cost estimation.

– ALS+SVM. Alternative Least Square (ALS) collaborative filtering [13] is
an algorithm based imputation method. ASL features are employed as the
input of SVM classification model.

– PGM. A traditional probabilistic generative model is used as classification
model. It is a part of PVPGM and has the same architecture with the medical
procedure mentioned in Sect. 3.2. We employ gradient descent algorithm to
learn the parameters in PGM [16] and set the learning rate parameter as 0.1.

– PGM+PCA. PCA [11] converts high dimensional data into a set of principal
components. We adopt PCA to solve the data sparsity problem and employ
it as the input of our PGM classifier.

(a) Precision (b) Recall (c) F-measure

Fig. 3. Model comparison on precision, recall and F-measure

(a) 10% (b) 15% (c) 20%

Fig. 4. Model comparison on ROC for cost threshold 10%, 15%, 20%
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4.3 Performance Comparison

We now compare the performance with baseline models to evaluate the effec-
tiveness of our model in the health care cost estimation. We set the threshold of
the high group for patient’s health care cost to the top 10%, 15% and 20%. We
also empirically set the compression parameter of latent variables (dimension of
latent variable/origin) as 0.05.

Figure 3 shows the results of precision, recall and F-measure of different mod-
els with the cost threshold as 10%. Figure 4 demonstrates the ROC curves on
different cost thresholds of health care cost estimation task. From these results,
we can see that PVPGM achieves the best aggregate performance in all the three
thresholds. Generally, PVPGM models the medical procedure and lab tests of
a patient visit at the same time, which captures the dependence and constraint
between medical features and latent condition variable of patients. It improves
the precision without lowering recall, thus results in the best F1 score.

DTC is used to simulate DRGs model to learn decision rules from patient’s
demographics and diagnosis. NI+SVM and ALS+SVM adopt the rule-based
or statistical method to impute missing data in medical test. Compared with
DTC, NI+SVM and ALS+SVM include patient’s condition information and get
a better performance. However, noise is introduced in such imputation methods
and they also suffer from high dimensionality and feature sparsity.

Fig. 5. The effect of compression parameter in PVPGM

Unlike above methods, PGM models the medical procedure of patient visit
with a graph-based method. Such traditional probabilistic graphical model
adopts domain knowledge from the medical field to reduce the parameter space,
which improves the precision without hurting the recall substantially compared
with DTC. However, PGM+PCA does not improve the overall performance
because the sparse modeling and classification process are separated into two
steps. While our PVPGM learns the patient’s hidden condition and features
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from the medical process at the same time. Such integrating methods estimate
the parameters better and outperform all the baselines.

4.4 Sensitivity Analysis

We also investigate the impact of the latent variable dimensionality. In this study,
our PVPGM embeds high dimensional and sparse medical tests into a low dimen-
sional space representing patient’s hidden condition. So we focus on the com-
pression parameter of latent variable dimensionality (latent variables/origin).
Figure 5 displays the F-measure of PVPGM to the compression parameter. We
can see that the overall performance of our model does not change much in
terms of the dimensionality of latent variables when the cost threshold is set as
15% or 20%. Lower dimension is better for 10% cost probably because a larger
latent space will increase the number of training parameters and thus hurt the
generalization of the classifier. There is also a trade-off between effectiveness and
training time. So in our experiment, we choose the compression parameter as
0.05.

5 Related Work

In this section, we review related work about cost estimation problem using
EMR dataset in health care data mining and sparse modeling problem using
probabilistic graphical models.

Cost Estimation Problem in EMR Data Mining. Recently modeling elec-
tronic medical records for prediction has attracted the interests of researchers
from various areas. There is a long stream of studies for clinical problems in
machine learning perspective [23,27]. Various medical models are developed
based on the specific clinical problems such as patient phenotype identifica-
tion [18,24], potential complications of diseases [6,29] and risk profiling [17]. For
health care cost estimation problem, current studies mainly focus on statistical
and economic models [1,21] but few researchers in this domain adopt medical
test features from EMR dataset. To the best of our knowledge, none of the
previous work estimates cost profile of a patient from a medical model.

Probabilistic Graphical Models in Sparse Modeling. Due to the inter-
pretability and good generalization ability, lots of papers in health care adopt
probabilistic generative models to analyze EMR dataset. Liu et al. [18] employ
the generative model to capture the relationship of medical events. Some stud-
ies [4,28] design dynamic latent variables to model patient’s behavior over time.
Sparse modeling is an important problem in machine learning tasks. Lee et
al. [15] and Zhang et al. [37] extensively study the sparse coding problem. Prob-
abilistic graphical models are widely adopted in sparse modeling. The most
important applications include probabilistic topic models [30–35]. Sparse condi-
tional random field [39], sparse generalized linear models [14] and sparse factor
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models [29,36] utilize probabilistic graphical structure to solve the sparse prob-
lem. CNN based solution [25] and considering syntactic similarity issues [38] are
also good ways to address data sparsity. Inspired by the medical assumptions,
we describe a distribution over the observed patient visit by recovering latent
random variables from a probabilistic graphical structure.

6 Conclusion

In this paper, we study the problem of using a large volume of electronic med-
ical records to estimate the cost profile of a patient. We propose Patient Visit
Probabilistic Generative Model (PVPGM) to model patient visit for better esti-
mating future health care cost. Our model learns the latent patient condition
from the sparse dataset and integrates it into the generative process of medical
procedure. We validate our model on a large collection of real-world electronic
medical records from a famous cardiovascular hospital in China and the experi-
ment results show the effectiveness of our model.

For the future work, we will continuously work with our medical group to
reveal the explanations of our model. The mixture generative process of high
dimensional medical tests can be regarded as clusters of lab items, which may
help mine the possible medical phenotypes. The sensitivity of demographics can
reveal a lot of risk factors on health economics. Our estimation architecture can
also be used for the intelligent diagnosis or personalized treatment.
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Abstract. Clinical Pathway (CP) represents the best practice of treat-
ment process management for inpatients with specific diagnosis, and a
treatment process can be divided into several stages, usually in units
of days. With the explosion of medical data, CP analysis is receiving
increasing attention, which provides important support for CP design
and optimization. However, these data-driven researches often suffer from
the high complexity of medical data, so that a proper representation of
medical features is necessary. Most of existing representation learning
methods in healthcare domain focus on outpatient data, which get weak
performance and interpretability when adopted for CP analysis. In this
paper, we propose a new representation, RoMCP, which can capture both
diagnosis information and temporal relations between days. The learned
diagnosis embedding grasps the key factors of the disease, and each day
embedding is determined by the diagnosis together with the preorder
days. We evaluate RoMCP on real-world dataset with 538K inpatient
visits for several typical CP analysis tasks. Our method demonstrates
significant improvement on performance and interpretation.

1 Introduction

With the significant improvement of living standards, the conflict between the
quality healthcare demand and the financial pressure by governments is rising.
Clinical Pathway (CP) is one of the most important tools to manage inpatient’s1

treatment process with better therapeutic effect and less economical cost. CP
refers to a set of defined treatment activities during the healthcare process. In
populous China, more than one thousand diseases have been managed by CPs for
standardized treatment and regulated expenditure. Table 1 shows an example of
Chinese CP about Intracerebral Hemorrhage (ICH). At present, most of CPs are
designed by domain experts based on the clinical guidelines and their clinical
experiences. However, these static CPs can be hardly adopted in practice for
hospitals with different resources and patients under various conditions.

1 A patient who stays in a hospital while receiving medical care or treatment. In
general, it takes up more resources and cost compared to outpatients.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 37–52, 2018.
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During the past decade, large amounts of healthcare data, covering patients’
whole treatment process, have been accumulated. Data-driven methods that dis-
cover and analyze execution careflows from the historical data are becoming an
important support for CP (re)design and application. Faced with the complex
medical data, the representation of medical features strongly affects the perfor-
mance of these CP analysis methods. Process mining technologies pay attention
to the temporal information in data [29]. They regard each treatment process as
an event sequence (medical activities with timestamps), and extract the process
model from massive sequences. The resultant models can be also used for con-
formance checking and enhancement. However, because of the high dimension
of medical data, process mining methods usually generate spaghetti-like graph
models which are difficult for understanding and executing. Another common
representation of medical data for CP-related tasks is conducted through aggre-
gation way. Each treatment process is mapped to a vector space by summing
over the number of each medical activity. Various statistical models for CP, such
as topic modeling and clustering, are performed on the aggregation represen-
tation. This representation always ignores temporal information, however, this
ignored information is critical in CP.

Table 1. The National CP of ICH released by Ministry of Health of China.

Examination: (1) Blood, Urine, Stool routine examination (2) Hepatorenal
function, Electrolyte, Blood glucose, Blood lipids, Cardiac enzymes, Coagulation
function, Infectious Disease screening (3) Brain CT, Chest X-ray, ECG

Medication: Mannitol, Glycerol fructose, Furosemidum, Antihypertensive drugs,
Antibacterial drugs, Laxative, Electrolyte drugs

Stage1 (Day1) Long term medical order:
(1) Neurology nursing routine (2) Level I care (3) Normal diet
(4) Keep the bed (5) Observing vital signs

Temporary medical order:
(1) Blood, Urine, Stool routine examination (2) Hepatorenal
function, Electrolyte, Blood glucose, Blood lipids, Cardiac
enzymes, Coagulation function, Infectious disease screening (3)
Brain CT, Chest X-ray, ECG (4) when necessary: Brain MRI,
CTA, MRA or DSA

Stage2 (Day2) Long term medical order:
(1) Neurology nursing routine (2) Level I care (3) Normal diet
(4) Keep the bed (5) Observing vital signs (6) Basic drugs

Temporary medical order:
(1) Re-examination for abnormal laboratory values (2) when
necessary : Re-examination CT

... ......

Stage6 (Day8–14) Long term medical order:
(1) Discharge with drugs
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Recently, inspired by word2vec [22,23], medical concept embedding has been
widely studied. It achieved significant performance improvement for various
healthcare tasks. However, most of these methods focused on the outpatients,
rather than the inpatients. We would face with the following challenges when
adopt these methods on inpatients:

– Semi-temporality. For an inpatient, one visit represents a treatment process
for a diagnosis that composed by several stages (usually counted in days). The
medical activities between different stages are in sequence, while the medi-
cal activities in one stage are unordered2. In general, the temporal relation
between stages for inpatient is stronger than that between visits for outpa-
tient3.

– Numerical sensitivity. The dosage of medications, the count of procedures
and the quantity of medical consumables are crucial for inpatient treatment.
Most of existing representations for outpatient ignore the numeric feature.

– Interpretability. The interpretability of the representation is important in
healthcare domain. Thus, an inpatient-oriented representation is essential for
CP analysis.

By taking into account all challenges mentioned above, we propose a three-
layer neural network to learn the representations of medical features for CP
analysis (RoMCP). The key principle of RoMCP is regarding one visit as a day-
level sequence around its disease (corresponding to a diagnosis code). It stems
from the view of CP that each diagnosis contains a set of core activities and
each hospitalized day of a visit is based on both the diagnosis and the preorder
days. Thus, in our method we first map the medical activities in one day to a
fixed-length vector. We use the normalized real value of each activity for the
input layer, instead of the one-hot coding (one if the activity happened and zero
otherwise) which is common in previous methods. Inspired by doc2vec [17], we
then map each diagnosis to a unique vector and use the temporal information
between days to derive the representation. It means that given a visit with several
days, the diagnosis vector and day vectors are concatenated to predict the next
day. Each diagnosis vector is shared across all the visits that have the same
diagnosis. It plays a role like a memory that remember the important topics of
the diagnosis. Both disease vectors and day vectors are fed by stochastic gradient
descent.

To summarize, we make the following primary contributions:

– In this paper, the representation learning of medical features for CP analysis
is investigated. A concise three-layer network RoMCP is brought forward to
address this issue, without any expert knowledge.

2 Doctors usually make a prescription with multiple events together. There is no strict
temporal relations between these events.

3 Outpatient contains several visits. It is common that the events between sequential
visits are quite different, due to the different diagnosis.
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– RoMCP incorporates both diagnosis information and temporal information
effectively into the embedding process. In particular, each diagnosis is mapped
to a diagnosis embedding that can capture the key topics of the diagnosis;
each day embedding is derived from the combination of the disease embedding
and the preorder days’ embeddings.

– We evaluate our approach on real-world data through three typical CP analy-
sis tasks, and the experimental results show that our method outperforms the
baselines. We also validate the interpretability of the learned representation
in a case study with medical expert.

The remainders are organized as follows: In Sect. 2, we briefly discuss some
related work. Then, details about our method are presented in Sect. 3. In Sect. 4,
we demonstrate the experimental results conducted on a real world dataset.
Finally, we conclude our study and prospect our future work in Sect. 5.

2 Related Work

In this section, we first discuss some related work on CP analysis, and then
review some relevant studies about representation learning in healthcare.

2.1 CP Analysis

CP can be seen as a process management in healthcare. It defines the most
common actions that represent best practice for most patients most of the time.
Recently, various researches have been conducted on CP analysis. They can be
divided into two categories:

Process mining, which focuses on discovering and verifying the tempo-
ral relation between medical activities. Traditional process mining technologies,
such as Heuristic Miner, Fuzzy Miner and Hidden Markov models, were used
to extract the execution process from medical log data [21,26,27]. In [3–5,29],
researchers adopted the discovered process model for anomalies detection. How-
ever, due to the complexity and diversity of treatment behaviors in CPs are
far higher than that of common business processes, these methods can hardly
generate interpretable results without prior knowledge from medical experts [28].

Topic modeling, which can effectively identify different clinical phenotypes
based on aggregation features of medical data. In [14–16], Huang et al. incorpo-
rated LDA and its variants into the clinical pattern discovery. In [30–32], LDA
and process mining was combined to generate topic-based CP models. However,
they weakened the temporal relations among medical activities.

2.2 Representation Learning in Healthcare

In the past few years, word embedding has achieved remarkable results in text
mining [22,23]. The basic principle is that words with similar contexts should
have similar meanings. Inspired by this idea, many research efforts are attracted
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to the representation learning of medical features for various healthcare appli-
cations. According to the date type, the related work can be classified into two
categories:

Medical Free-text, including medical articles, doctor’s advice and so on.
Follow the idea of word2vec, a medical term was represented by its adjacent
terms [11,12].

Structured Longitudinal Medical Data, such as Electronic Health
Record (EHR) and claims data. It contains various treatment information over
time. In [11,18,24], the medical events that happened in a short period of time
were treated as the context in word2vec. The learned embeddings were useful
across medical informatics tasks, such as heart failure prediction and readmis-
sion prediction. Instead of using the relative positions of medical events in time-
line, Zhu et al. [34] adopted the actual timestamps in Electronic Health Record
(EHR) for window size selection that acute condition medical concepts were
assigned short context and vice versa. They used a convolutional neural network
(CNN) framework to measure the patient similarities. However, these methods
take a simple randomized policy for the medical events with the same times-
tamp. If the sizes of these events are imbalanced, the context would be varies
widely. Considering the semi-temporality of medical data, Choi et al. proposed
Med2Vec [7], which learned both medical code and visit representations with
high interpretability from EHR datasets. They incorporated medical ontology
to enhance the representation performance in [8]. There are also many studies
leverage recurrent neural networks (RNN) to learn medical representation for
various prediction problems, like risk [25], heart failure [9,10], diagnosis [19,20]
and medication category [6]. Among all of the above studies about representa-
tion learning, [7] is the most related work to ours. While it differs from our work
in several aspects:

– We are dealing with inpatient from the perspective of CP, whose temporal
relation between days are stronger than that between visits of outpatient.

– The work in [7] put the diagnosis codes (represent the disease) of each visit
together with the medication and procedure codes. While we regard the diag-
nosis as an independent vector, because the diagnosis has a global impact on
all days for an inpatient.

– We take the numeric feature into account, instead of using the one-hot input.

3 Methodology

In this section, we start by introducing some definitions of CP and the related
notations. Then we give a brief review of word2vec. Finally, we describe our
RoMCP for representation learning of medical features.

3.1 Preliminary

Definition 1 (Visit). A visit for an inpatient refers to a treatment process from
admission to discharge. We denote the set of visits as V = {V1, V2, . . . , VN},
where N is the size of visits in our dataset.
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Definition 2 (Diagnosis). Each visit has a diagnosis4. We define all the diag-
nosis in our dataset as G = {g1, g2, . . . , g|G|} with size |G|. The diagnosis of visit
Vn is denoted as g(n) ∈ G.
Definition 3 (Day). From the viewpoint of CP, a visit can be divided into
several stages. In most cases, the stages are defined by days. We also use day
as the basic unit in this study. Thus, a visit is composed by a day sequence
{dn,1, dn,2, . . . , dn,Tn

}, where Tn is the size of day in Vn. We denote the day set
in our dataset as D with size |D| =

∑N
n=1 Tn.

Definition 4 (Activity). Each day contains a set of medical activities. We
define all the unique activities in the entire dataset as A = {a1, a2, . . . , a|A|}
with size |A|. Each day dn,t, containing a subset of medical activities (dn,t ⊆ A),
is denoted by a real-valued vector xn,t ∈ R

|A|. The i-element of xn,t represents
the normalized value of ai in dn,t.

3.2 Brief Review of Word2vec

Word2vec assumes that a word can be represented by the context words. It
contains two models: continuous bag-of-word (CBOW) and Skip-gram model.

Given a word sequence {wi−k, . . . , wi−1, wi, wi+1, . . . , wi+k}, the objective of
CBOW is to maximize the following average log probability:

1
T

T∑

i=1

logP (wi|wi−k, . . . , wi−1, wi+1, . . . , wi+k) (1)

where T is the corpus size, k is the size of the context window, and wi is the
target word. The conditional probability is defined by the softmax function as
follows:

P (wi|wi−k, . . . , wi−1, wi+1, . . . , wi+k) =
exp(νi · νk)∑

w∈W exp(νw · νk)
(2)

where W is the vocabulary, νi is the embedding of the target word wi, and νk is
the average of all the context word embeddings.

For skip-gram model, the target word is used to predict the context words.
Both of the two models ignore the word order in the context.

3.3 RoMCP

Our proposed method aims to learning the CP-oriented representation of medical
features. Figure 1 shows the framework of RoMCP, and two types of embeddings
can be found in it:

4 Some visits may have more than one diagnosis. While for CP, we only concern the
first diagnosis, which largely determines the treatment strategy.
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– Diagnosis Embedding. A CP is designed for a specific diagnosis. We map
each diagnosis to a vector of dimension p that represents the most important
treatment topics.

– Day Embedding. CP for inpatient is a day-based management strategy for
treatment process. Therefore, we would like to map each day of dimension
|A| to a vector of dimension q.

Fig. 1. The overview of RoMCP. Each day is derived from the diagnosis embedding
together with the preorder days’ embeddings.

Inspired by word2vec [22] and doc2vec [17], we use both diagnosis information
and temporal relation between days to learn the representation. Formally, given
the context window size w, we try to learn the two embeddings by maximizing
the probability as follow:

L =
1
N

N∑

n=1

1
Tn

Tn∑

t=1

P (Ed(dn,t) | Eg(g(n)), Ed(dn,t−w), . . . , Ed(dn,t−1)) (3)

where Eg and Ed refers to the embedding function for diagnosis and day respec-
tively.

Specifically, suppose that the set of diagnosis G are mapped to the matrix
G ∈ R

|G|×p, so that Eg(g(n)) for diagnosis g(n) is represented by a row in G:

Eg(g(n)) = ReLU(G[I(g(n))]) (4)

where G[i] is the i-th row in G, I(g(n)) is the index of g(n) in G, and ReLU is
the rectified linear unit defined as ReLU(s) = max(0, s).

For day embedding, we convert a day dn,t represented by real value vector
xn,t to a vector with dimension q as follows:

Ed(dn,t) = ReLU(Wd · xn,t + bd) (5)

where Wd ∈ R
q×|A| is the weight matrix, bd ∈ R

q is the bias vector.
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To predict a target day dn,t, we concatenate the diagnosis embedding
Eg(g(n)) and the preorder days’ embedding Ed(dn,t−w), . . . , Ed(dn,t−1) that
within the context window. Similar to Med2Vec [7], we employ a binary vec-
tor yn,t ∈ {0, 1}|A| (the i-th element is 1 if dn,t contains ai) as the predict label
for dn,t, which shows better performance than xn,t and Ed(dn,t). Therefore, a
softmax classifier is used to produce the prediction result:

ŷn,t = Softmax(Ws · Concat[Eg(g(n)), Ed(dn,t−w), . . . , Ed(dn,t−1)] + bs) (6)

where Ws ∈ R
|A|×(p+q∗w) and bs ∈ R

|A| is the weight matrix and bias vector for
softmax.

Cross entropy between the label vector yn,t and our prediction vector ŷn,t
is used as the objective function. That is, Eq. 3 is achieved by minimizing the
follow loss:

L = − 1
N

N∑

n=1

1
Tn

Tn∑

t=2

(y�
n,t logŷn,t + (1 − yn,t)�log(1 − ŷn,t)) (7)

It is worth mentioning that we predict each day in a visit without the first day.
Because the first day, corresponding to inpatients’ admission, usually contains
some activities that used to make a definite diagnosis by doctors. These activities
are strongly related to the individuals, so that it is unreasonable to predict
them by only diagnosis information. For other days (except the first day) whose
preorder days’ size less than the window size w, we use zero vector to complete
the Concat operation in Eq. 6. For example, given dn,2 with w = 3, the Eq. 6
would be ŷn,2 = Softmax(Ws · Concat[Eg(g(n)),0,0, Ed(dn,1)] + bs).

To summarize, there are 5 categories parameters to be learned, including G,
Wd, bd, Ws and bs. We train the network by back-propagation and stochastic
gradient descent. The computational complexity is as follows:

O(|D||A|(p + qw)) (8)

4 Experiments

In this section, experiments demonstrate the effectiveness and efficiency of the
proposed method in medical feature representation for different CP analysis
tasks. We begin with the description of dataset and the experimental setting.
Then we describe the three CP analysis tasks for evaluation, and show the
detailed results. Finally, we give a computational complexity discussion and
a case study. The source code is available at https://github.com/wuyuxiaobi/
RoMCP.

4.1 Dataset

We use a real-world claims data in the experiments, and the detail statistics are
summarized in Table 2. It was collected from the New Rural Cooperative Medical

https://github.com/wuyuxiaobi/RoMCP
https://github.com/wuyuxiaobi/RoMCP
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System (NRCMS) [18] of a Chinese city, which covers the medicare of 2 million
rural residents. The data consists of 538,945 visits, and each of them corresponds
to a diagnosis code that follows the ICD-105. There are totally 4,496,230 recorded
days in these visits. Here, a recorded day refers to a day in a visit that has at
least one medical activity claim record. Therefore, the size of recorded days of a
visit may be not equal to its length-of-stay (LOS, the actual hospitalized days
of a visit from admission to discharge). The day sequence discussed in Sect. 3
refers the recorded days. We excluded the visits that meet the following criteria:
(1) a visit has less than two recorded days; (2) a visit whose size of recorded
days is less than half of the LOS. In the following discussion, we use day to refer
to recorded day.

Table 2. Statistics of our dataset

# of visits 538,945 # of medical codes 4,216

# of days 4,496,230 # of disease codes 7,232

Avg. # of activities per day 14.32 Avg. of length of stay 8.75

Max. # of activities per day 182 Max. of length of stay 360

4.2 Baseline Methods

To demonstrate the performance of our proposed model for representation learn-
ing, we compared it with the following methods:

– Raw vector model (RVM). Each day is represented by a vector that
concatenating the real-value vector of activity (xn,t) and the one-hot vector
of diagnosis (with dimension 7,232). It can be seen as the baseline without
any embedding method.

– Stacked autoencoder (SAE). We first train a three-layer stacked autoen-
coder [2] for each day by minimizing the reconstruction error of the raw vector
that mentioned in RVM. Then the learned representation is used as the initial
value for further representation learning by incorporating temporal relations
(similar to Eqs. 6 and 7, without our diagnosis embedding).

– Med2Vec. Med2Vec is a skip-gram based algorithm for representation learn-
ing of medical features, which takes both code-level and visit-level informa-
tion into account. Since in Med2Vec the visits are temporally ordered and
the medical codes within a visit are unordered, we use the day concept in
our dataset as the visit concept in Med2Vec to train the day representation.
In addition, Med2Vec takes binary vector as the input, so that we fed it by
concatenating the binary vector of activity (yn,t) and the one-hot vector of
diagnosis for each day.

5 It refers to the 10th revision of the International Statistical Classification of Diseases
and Related Health Problems that listed by the World Health Organization. In our
dataset, an Chinese version is used for NRCMS.
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4.3 Experimental Setting

We randomly divided the dataset into training, validation and testing set in
a 0.7:0.1:0.2 ratio. The validation set is used to tune the hyper-parameters:
diagnosis embedding size p ∈ {100, 150, 200, 250, 300}, day embedding size
q ∈ {100, 150, 200, 250, 300}, context window size w ∈ {1, 2, 3, 4}, regularization
coefficient L2 ∈ {0.1, 0.01, 0.001, 0.0001}, and dropout rate ε ∈ {0.0, 0.2, 0.5, 0.8}.
The optimal value selected for RoMCP training is p = 150, q = 200, w = 2,
L2 = 0.001, and ε = 0.2. For the compared methods, we use the same parame-
ters (without p). Specially, Med2Vec is a skip-gram model that the window size
is half of ours. All the methods are implemented with TensorFlow 1.3.06. We
train each models for 10 epochs, and Adadelta [33] with a mini-batch of 1,024
days is used.

4.4 Evaluation

An important evaluation criteria for representation learning method is that if the
learned low-dimensional embedding can capture the core structures underlying
the high-dimensional input data, which are useful for different machine learning
tasks. Therefore, we designed three typical CP analysis tasks with quantitative
measurements to evaluate the representation quality.

– Diagnosis Clustering. This task aims to evaluate the capability of diag-
nosis embedding for capturing key topics of the disease. We use the hierar-
chy of ICD-10 to group the 7,232 diagnosis into 432 categories (e.g. I63.902
is mapped to I63). It is worth mentioning that the diagnosis embedding of
compared methods can be extracted from the weight matrix (the part corre-
sponded to diagnosis vector) between input layer and day embedding [7]. We
apply K-means for the clustering (implemented by scikit-learn 0.19.07), and
take normalized mutual information (NMI) as the measurement [1].

– Next Day Recommendation. CP provides activity recommendation for
next day. In RoMCP and SAE, we mimic the prediction procedure to train
the representation. Thus, the prediction results can be used to evaluate the
recommendation performance. Specifically, given the target next day dn,t, we
calculate Recall@k for the correctly predicted medical activities in top k of
ŷd,t as the measurement.

Recall@k =
|An,t|

min(k, |dn,t|) (9)

where |dn,t| refers to the number of medical activities that actually occurred
in dn,t, An,t is the intersection between dn,t and the top k of ŷd,t. In the
experiments, we vary k from 5 to 30. In addition, a variance of Recall@k

with adaptive k, which is denoted as Recall@A = |An,t|
|dn,t| , is also used as the

measurement.

6 https://www.tensorflow.org/.
7 http://scikit-learn.org/stable/.

https://www.tensorflow.org/
http://scikit-learn.org/stable/
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Since Med2Vec is a skip-gram model, we use the learned representation to
train another next day prediction model for this task. Similarly, for RVM, we
use the raw vector to train the prediction model.

– LOS Prediction. LOS is one of the most important indicators for inpa-
tients management. Patients with long LOS stand for higher expenditure,
longer beds occupancy and lower resource turnover ratio [13]. In this experi-
ment, given the beginning 1/2/3 days of a visit, we train a logistic regression
(implemented by scikit-learn 0.19.0) to predict that whether the inpatient
would be discharged in one week. Area Under the ROC Curve (AUC) is used
to measure the binary classification.

4.5 Results

Diagnosis Clustering. Table 3 reports the clustering performance for all the
methods excepts RVM, which has no diagnosis embedding. We can observe that
our proposed method, RoMCP outperforms the baselines. SAE achieves the sim-
ilar performance to RoMCP, and Med2Vec shows the weakest conformity. The
significant performance gap between Med2Vec and the other two methods may
stem from the different utilization of daily temporal relations. RoMCP and SAE
use the exact ordering of days to train the representation, while Med2Vec is a
skip-gram model that only considering the context window. Therefore, RoMCP
and SAE can fully take all the temporal information into consideration. In addi-
tion, Med2Vec takes binary vector as the input, which ignores the importance
of the numerical features for disease.

Next Day Recommendation. Table 4 shows the experimental results with
Recall@k measurements. It is observed that the performance of all the methods
improves as k increases. Compared to RVM, the three embedding methods show
improvement, which demonstrates the advantage of representation learning in

Table 3. Diagnosis clustering measured by NMI

SAE Med2Vec RoMCP

NMI 0.5409 0.3029 0.5557

Table 4. Next day recommendation measured by Recall

Model Recall@A Recall@k

5 10 15 20 25 30 50

RVM 0.5613 0.3354 0.5477 0.6532 0.6935 0.7277 0.7484 0.8103

SAE 0.5772 0.3787 0.5752 0.6602 0.7028 0.7252 0.7432 0.7863

Med2Vec 0.6179 0.3829 0.6149 0.6996 0.7351 0.7585 0.7766 0.8268

RoMCP 0.7684 0.4555 0.7031 0.7965 0.8393 0.8522 0.8674 0.9050
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Table 5. LOS prediction measured by AUC

Model # of beginning days

1 2 3

RVM 0.7626 0.7833 0.7962

SAE 0.7460 0.7559 0.7637

Med2Vec 0.7327 0.7283 0.7328

RoMCP 0.7650 0.7888 0.7894

next day recommendation task. RoMCP consistently shows the best performance
across various k. Since in this task the most remarkable difference of RoMCP is
the independent diagnosis embedding, it suggests that our diagnosis embedding
can better grasp the key topics of the disease.

LOS Prediction. The results for LOS prediction are summarized in Table 5.
Since the type and number of the medical activities used in the beginning several
days in part reflect the patient’s condition and treatment schedule, in most cases
the longer given days contribute more to AUC metric. As can be seen from the
table, our method get the best performance when given the beginning 1/2 days.
Unlike the next day recommendation task, it is surprising that RVM achieves a
competitive performance. A possible reason is that RVM contains more complete
information about the past days, especially the entire numerical information,
which are important for LOS prediction. It can be also inferred from the weak
performance of Med2Vec, which takes binary vector as the input.

4.6 Computational Complexity Study

We show the execution time of the three representation learning methods in
Fig. 2, and all the experiments were conducted on a machine with 24 cores of
Intel(R) Xeon(R) CPU E5-2620 v3 @2.40 GHz, 256 GB memory and one Nvidia
K40m Tesla cards. As can be seen from the Table, all the three methods show
linear time complexity on different proportions of data. SAE takes the longest
time due to the reconstruction procedure (one epoch for reconstruction, and one
epoch for representation learning). In Med2Vec, the code-level loss dominates the
complexity, so that it takes longer time than RoMCP. It is worth mentioning
that although the structure of RoMCP is similar to doc2vec [17], we map each
diagnosis rather than each visit to a vector space, so that we have linear time
complexity according to the number of training instances.

4.7 Case Study

In this subsection, we select a typical visit of ICH (whose Chinese official CP is
shown in Fig. 1) to demonstrate the interpretability of our embedding.
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Fig. 2. Running time of different size of data.

Table 6. Top medical activities of ICH discovered by RoMCP. All of them have been
classified into the four categories (we extract biochemical assay from examination as an
independent category). The number in bracket represents the ranking of the medical
activity in Eq. 10.

Category Medical activities

Medication (2) Glycerin fructose, (3) Vitamin C injection, (4) Sodium chloride, (5)
Glucose, (7) Glucose injection, (7) Vitamin B6 injection, (10) Vitamin
B6, (11) Tranexamic acid, (12) Vitamin C, (16) Glucose and sodium
chloride, (19) Potassium chloride, (36) Mannitol, (41) Aminocaproic
acid, (42) Pantoprazole, (43) Omeprazole

Biochemical assay (6) Seromucoid, (8) Cystatin, (13) Plasma fibrinogen, (15) Thrombin
time, (22) Plasma prothrombin time, (23) GGT, (24) Serum globulin,
(28) ALT, (30) Chloride, (31) APTT, (32) TBA, (33) Sodium, (34)
ABO blood subgroup, (35) ALP, (36) Serum uric acid, (37) Inorganic
phosphorus, (40) Apo AI, (42) 5’-NT, (43) TBil, (44) AST, (45) Apo B,
(48) Treponema pallidum specific antibody

Nursing (14) Infusion, (15) Urinary intubation, (25) Absorbing oxygen cylinders,
(26) Oxygen Inhalation, (27) Retention intubation, (29) oral care, (39)
II-level nursing, (47) Intensive care unit, (50) Arterial and venous
intubation

Examination (1) Ambulatory electroencephalogram, (18) Blood oxygen saturation
monitoring, (20) Electrocardiogram monitoring (ECG), (21) Brain CT

For each diagnosis, we can derive the most important medical activities (top
k) from the diagnosis embedding and softmax weight matrix as follows:

argsort(Ws[0 : p] · Eg(g(n))[0 : k] (10)

where argsort returns the top k activities with the largest values.
Table 6 shows the top 50 medical activities with the strongest value in Eq. 10.

Compared to the official CP (as shown in Fig. 1), all these medical activities are
critical for ICH treatment, such as brain computed tomography (CT), glycein
fructose and various biochemical examinations.
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Table 7 shows parts of a visit of ICH. Given the first day (column 1) con-
tains some basic medications, nursing and admission examinations (biochemical
assay), the prediction (column 3) derived from the day embedding includes two
new examinations (brain CT and ECG) and the drugs in-use with high ranking,
while no biochemical assay that already happened. This prediction conforms to
the truth of the next day (column 2) with Recall@A = 0.9565. It demonstrates
that RoMCP can effectively grasp the temporal relations between days.

Table 7. A demo visit for the case study. Total # refers to the number of medical activ-
ities in the day. BA refers to biomedical assay. For the category with many activities,
we just list the number of the activities in it.

Day1-True Day2-True Day2-Predict

Total #: 58 Total #: 23 Total #: 23

BA: 36 BA: 0 BA: 0

Nursing: 11 Nursing: 11 = Day1 Nursing: 10 = Day2-True (except vein
intubation)

Medication: 11 Medication: 11 = Day1 Medication: 11 = Day2-True

Examination: 0 Examination: Brain CT Examination: Brain CT (Rank 5),
ECG (Rank 22)

5 Conclusion

In this paper, we present a representation learning approach, RoMCP, that
embeddings medical features for CP analysis. RoMCP mimics the practice of
CP by incorporating both diagnosis information and temporal relations so that
it can effectively tackles the key challenges in inpatient medical data, includ-
ing semi-temporality, numerical sensitivity and interpretability. The core topics
of a disease are captured by the diagnosis embedding, and each day embed-
ding is derived from the diagnosis embedding together with the preorder days.
Meanwhile, the method is scalable and without depending on expert knowledge.
Experimental results on a large real-world claims dataset prove the effectiveness
and efficiency of the proposed RoMCP for CP analysis tasks.

A number of open problems need to be solved to allow further develop-
ment of the proposed representation learning work. One direction is to introduce
examination data, such as laboratory tests results and radiological examination
reports. These data can help us to identify the patient status, which are use-
ful for the representation learning. Another direction is to explore an adaptive
strategy to determine the context window size for better usage of the temporal
relations.
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In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS,
vol. 7328, pp. 398–413. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31095-9 26

4. Bouarfa, L., Dankelman, J.: Workflow mining and outlier detection from clinical
activity logs. J. Biomed. Inform. 45(6), 1185–1190 (2012)

5. Caron, F., Vanthienen, J., Vanhaecht, K., Van Limbergen, E., De Weerdt, J., Bae-
sens, B.: Monitoring care processes in the gynecologic oncology department. Com-
put. Biol. Med. 44, 88–96 (2014)

6. Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J.: Doctor AI: predict-
ing clinical events via recurrent neural networks. In: Proceedings of MLHC, pp.
301–318 (2016)

7. Choi, E., Bahadori, M.T., Searles, E., Coffey, C., Thompson, M., Bost, J., Tejedor-
Sojo, J., Sun, J.: Multi-layer representation learning for medical concepts. In: Pro-
ceedings of KDD, pp. 1495–1504. ACM (2016)

8. Choi, E., Bahadori, M.T., Song, L., Stewart, W.F., Sun, J.: GRAM: graph-based
attention model for healthcare representation learning. In: Proceedings of KDD,
pp. 787–795. ACM (2017)

9. Choi, E., Bahadori, M.T., Sun, J., Kulas, J., Schuetz, A., Stewart, W.: Retain: An
interpretable predictive model for healthcare using reverse time attention mecha-
nism. In: Proceedings of NIPS, pp. 3504–3512 (2016)

10. Choi, E., Schuetz, A., Stewart, W.F., Sun, J.: Using recurrent neural network
models for early detection of heart failure onset. J. Am. Med. Inform. Assoc. 24(2),
361–370 (2016)

11. Choi, Y., Chiu, C.Y.I., Sontag, D.: Learning low-dimensional representations of
medical concepts. In: AMIA Summits on Translational Science Proceedings 2016,
p. 41 (2016)

12. De Vine, L., Zuccon, G., Koopman, B., Sitbon, L., Bruza, P.: Medical semantic
similarity with a neural language model. In: Proceedings of CIKM, pp. 1819–1822.
ACM (2014)

13. Harutyunyan, H., Khachatrian, H., Kale, D.C., Galstyan, A.: Multitask learning
and benchmarking with clinical time series data. arXiv preprint arXiv:1703.07771
(2017)

14. Huang, Z., Dong, W., Ji, L., Gan, C., Lu, X., Duan, H.: Discovery of clinical
pathway patterns from event logs using probabilistic topic models. J. Biomed.
Inform. 47, 39–57 (2014)

15. Huang, Z., Dong, W., Ji, L., He, C., Duan, H.: Incorporating comorbidities into
latent treatment pattern mining for clinical pathways. J. Biomed. Inform. 59, 227–
239 (2016)

16. Huang, Z., Lu, X., Duan, H.: Latent treatment pattern discovery for clinical pro-
cesses. J. Med. Syst. 37(2), 1–10 (2013)

17. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
Proceedings of ICML, pp. 1188–1196 (2014)

https://doi.org/10.1007/978-3-642-31095-9_26
https://doi.org/10.1007/978-3-642-31095-9_26
http://arxiv.org/abs/1703.07771


52 X. Xu et al.

18. Li, C., Hou, Y., Sun, M., Lu, J., Wang, Y., Li, X., Chang, F., Hao, M.: An eval-
uation of China’s new rural cooperative medical system: achievements and inade-
quacies from policy goals. BMC Public Health 15(1), 1079 (2015)

19. Lipton, Z.C., Kale, D.C., Elkan, C., Wetzell, R.: Learning to diagnose with LSTM
recurrent neural networks. arXiv preprint arXiv:1511.03677 (2015)

20. Ma, F., Chitta, R., Zhou, J., You, Q., Sun, T., Gao, J.: Dipole: diagnosis predic-
tion in healthcare via attention-based bidirectional recurrent neural networks. In:
Proceedings of KDD, pp. 1903–1911. ACM (2017)

21. Mans, R.S., Schonenberg, M.H., Song, M., van der Aalst, W.M.P., Bakker, P.J.M.:
Application of process mining in healthcare – a case study in a Dutch hospital. In:
Fred, A., Filipe, J., Gamboa, H. (eds.) BIOSTEC 2008. CCIS, vol. 25, pp. 425–438.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92219-3 32

22. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

23. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: Proceedings of NIPS,
pp. 3111–3119 (2013)

24. Nguyen, P., Tran, T., Wickramasinghe, N., Venkatesh, S.: Deepr: a convolutional
net for medical records. J. Biomed. Health Inf. 21(1), 22–30 (2017)

25. Pham, T., Tran, T., Phung, D., Venkatesh, S.: DeepCare: a deep dynamic memory
model for predictive medicine. In: Bailey, J., Khan, L., Washio, T., Dobbie, G.,
Huang, J.Z., Wang, R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9652, pp. 30–41.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31750-2 3

26. Poelmans, J., Dedene, G., Verheyden, G., Van der Mussele, H., Viaene, S., Peters,
E.: Combining business process and data discovery techniques for analyzing and
improving integrated care pathways. In: Perner, P. (ed.) ICDM 2010. LNCS
(LNAI), vol. 6171, pp. 505–517. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14400-4 39

27. Prodel, M., Augusto, V., Xie, X., Jouaneton, B., Lamarsalle, L.: Discovery of
patient pathways from a national hospital database using process mining and inte-
ger linear programming. In: T-ASE, pp. 1409–1414. IEEE (2015)
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Abstract. As millions of people are diagnosed with diabetes every year
in China, many diabetes-related websites in Chinese provide news and
articles. However, most of the online articles are uncategorized or lack
a clear or unified topic, users often cannot find their topics of inter-
est effectively and efficiently. The problem of health text classification
on Chinese websites cannot be easily addressed by applying existing
approaches, which have been used for English documents, in a straight-
forward manner. To address this problem and meet users’ demand for
diabetes-related information needs, we propose a Chinese domain lex-
icon, adopt some professional diabetes topic explanations as domain
knowledge and incorporate them into deep learning approach to form
our topic classification framework. Our experiments using real datasets
showed that the framework significantly achieved a higher effectiveness
and accuracy in categorizing diabetes-related topics than most of the
state-of-the-art benchmark approaches. Our experimental analysis also
revealed that some health websites provided some incorrect or misleading
category information.

Keywords: Domain knowledge · Stacked Denoising Autoencoders
Healthcare · Chinese

1 Introduction

Diabetes is a common chronic disease. According to the survey by the Interna-
tional Diabetes Federation, 109.6 million people were diagnosed with diabetes
and more than 13 million people died of diabetes in China in 2015 [9]. To meet
the increasing demand for health information and knowledge, many diabetes-
related websites in Chinese provide various resources and services, including
health news, articles, discussion forums, and online patient communities.
c© Springer International Publishing AG, part of Springer Nature 2018
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The documents of the news, articles and discussion posts in China have two
key characteristics. First, the quality of the documents is uneven in various
authors, for example healthcare professionals and experts produce many high-
quality health news and articles based on their domain knowledge, while a lot of
low-quality and uncategorized documents are generated by patients and small
website editors. Second, the classification standards of topics of the documents
differ in various sources, the websites provided by the authoritative and official
institutions have more clear and unified standards for a certain disease than the
forums and communities websites. Even though there is the same classification
standard for different websites, the results of classification for a certain disease
may be different. This situation is especially obvious in developing countries
that have less healthcare experts and official institutions. As a result, most of
the news and articles are uncategorized and lack a clear or unified topics, mak-
ing it very time-consuming and overwhelming for users to browse and search for
information about specific topics from the search engines (e.g., Google) or spe-
cial health websites (e.g., tnbz.com). While automatically categorizing topics out
of uncategorized health-related articles could be very useful for various types of
health information users, including patients and their family members, health-
care professionals (e.g., physicians and nurses), and researchers. Especially, it
can help newly diagnosed patients find valuable educational materials for self-
management of their diseases and health conditions more effectively.

Many approaches and methods have been proposed for categorizing topics
in English articles in various application domains, including the healthcare and
medical domain [6,33]. Unfortunately, the work of health-related topic classifica-
tion of online Chinese articles has been comparatively unexplored. The problem
of health-related topic classification of online Chinese articles is quite challeng-
ing. It cannot be easily addressed by applying existing approaches and methods,
which have been used for English articles, in a straightforward manner due to
the difference between Chinese and English, the lack of Chinese medical lex-
icons, and the special characteristics of Chinese online health articles. First,
Chinese is based on ideographic writing systems, whose structure and grammar
are quite different from those of English, which is based on alphabetic [24]. For
instance, since there is no space between Chinese characters, it is more diffi-
cult to parse Chinese sentences into unambiguous word segments. Second, many
prior studies adopt a standard medical knowledge base, UMLS (Unified Medical
Language System) [2] provided by U.S. National Library of Medicine, to extract
medical terms and features when categorizing English articles. Unfortunately,
there has not been a standard Chinese medical knowledge base available. Third,
there has been a lack of widely adopted standards for categorizing online Chi-
nese health articles. Because of the lack of diet, medicine related classification,
ICD-10 (International Classification of Diseases 10th version) is not enough for
healthcare research. Consequently, the topic categories of many online Chinese
articles are misleading.

To address these challenges, we develop a Chinese domain lexicon, adopt
some professional diabetes topic explanations and incorporate them into deep

http://www.tnbz.com/
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learning approach to form our topic classification framework. Deep learning [7]
is a promising machine learning approach. Among many different deep learn-
ing architectures, RNN based word embedding model [14] is a promising text
classification method with a large scale corpus training. But with limited online
Chinese articles available, we introduce domain knowledge to help improve per-
formance of classification. In order to represent the domain knowledge better, we
tried many models and finally choose Stacked Denoising Autoencoders (SDA)
[28] model because its loss function is easy to be modified [11]. In this research,
We develop deep learning based models for text classification application that
identify topics related to diabetes on Chinese online articles. The main contri-
butions of this work are summarized as follow:

– We develop a Chinese domain lexicon, adopt some professional diabetes topic
explanations as domain knowledge and incorporate them into deep learning
approach to form our topic classification framework.

– We propose domain supervised SDA that incorporates domain knowledge into
the process of model training, which makes use of limited auxiliary domain
knowledge to help improve performance of topic classification.

– Our experiments show that our methods significantly outperform the state-
of-the-art text classification techniques for diabetes-related articles including
basic deep learning model SDA and reveal some health websites provide some
incorrect or misleading category information.

The remainder of this paper is organized as follows. We present a review of
literature on deep learning and healthcare text classification, and then describe
our topic classification framework, and two SDA-based deep learning models.
Next, we report on our experiments and discuss the results in detail. Finally, we
conclude this paper.

2 Related Work

In this section, we review related work about text classification methods,
especially the deep learning methods, and their applications in health-related
domains.

Text classification is a set of important and well-developed classification
methods for categorizing the growing number of electronic documents world-
wide. Text classification has been widely used in natural language processing
and information retrieval applications, including Web page classification, spam
filtering, email routing, genre classification, readability assessment, and senti-
ment analysis [3]. Deep learning is a latest advanced representation-learning
approach [15]. The various deep learning architecture are widely used in the
processing of images, audios, videos and text documents [4,23,31,32]. Images
and sounds can be easily represented as input feature vectors, deep learning is
a natural technique for image processing and speech recognition applications.
However, it is difficult to find appropriate feature vectors to represent text. In
other words, when representing text documents, the feature vectors are usually
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based on bag-of-words or other feature extraction methods, which often cause
information loss. Word2vector [14] is a promising embedding model for comput-
ing vector representations of text documents, but it cannot receive good perfor-
mance without a large scale corpus training. Only a limited number of studies
have employed the deep learning techniques to process small text corpus. Nolle
et al. applied denoising autoencoders to deal with anomaly detection in noisy
business process event text logs [17]. Wang et al. proposed SDA based model to
learn more effective text representation for tag recommendation [29]. As a result,
it remains a major challenge to use deep learning techniques in text classifica-
tion applications with small text corpus. In this study, we identify and combine
feature vectors by using different methods to represent text in SDA-based model
with better classification performance.

On the other hand, some researchers [27,30] have used domain knowledge to
improve the classification performance. Sinha and Zhao [27] compared the perfor-
mance of seven classification methods with and without incorporating domain
knowledge. They found that incorporation of domain knowledge significantly
improves classification performance. Thus we introduce auxiliary domain knowl-
edge to help further enhance the classification performance with limited online
Chinese articles available.

As a data mining and text mining approach, classification has been used
to categorize electronic medical documents (e.g., medical literatures and clin-
ical records) and Web documents into meaningful topics in the health-related
domains. [15] reviewed the recent literature on deep learning technologies for
health-related domain. Some studies often rely on a standard domain lexicon
during the process of document classification. Liu et al. [12] assessed the effec-
tiveness of several traditional learning models against a number of performance
metrics based on a relational graph database of clinical entities. Sibunruang
and Polpinij [25] leveraged an ontology of Cancer Technical Term Net to select
keyword-based features, where this ontology is used as a lexicon. Nie et al. [16]
proposed a novel deep learning scheme to infer the possible diseases given the
questions of health seekers, they obtained features of bag-of-words with the aid
of MetaMap tool. However, there has not been a standard medical lexicon avail-
able in Chinese, not to mention a medical ontology. This adds more difficulty
for the task of categorizing medical and health-related documents in Chinese.

We focus on articles about diabetes because it is one of the most widely stud-
ied chronic diseases and there are many diabetic patients in China. Simon et al.
[26] applied association rule mining for EMR to discover sets of risk factors and
their corresponding subpopulations that represent patients at particularly high
risk of developing diabetes. In this research, we develop a Chinese domain lex-
icon and some professional diabetes-related topic explanations and incorporate
them into the deep learning framework to identify topics related to diabetes on
Chinese Web articles.
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3 The Topic Classification Framework

Our framework includes four stages: data collection, data preprocessing, model
training, and topic classification.

3.1 Data Collection

We developed a Web crawler to fetch and download online articles from Chi-
nese health websites. We used the keyword “diabetes” to locate diabetes-related
pages. Figure 1 presents an example of collected pages in our dataset. Text
parsers were used to extract various fields from the pages including article ID,
URL, title, article source, posted time, and article body as shown in Fig. 1. Nav-
igation paths (e.g., Home Page > Diabetes Information > Child Diabetes) that
provide category information were also extracted. Note that not all websites con-
tain navigation paths. We chose the pages with navigation paths as the training
and testing data in the experiments. Additionally, some pages contain tags or
keywords (e.g., “Child Diabetes”, “Diabetes Complications”) that highlight the
focuses of the content. These tags and keywords were extracted as well. We focus
on the article body of the pages and refer to them as articles in the following sec-
tions. From all the navigation paths in the Web pages, we concluded 26 distinct
diabetes-related terms and compiled definitions and explanations for these 26
terms based on classical books for Medicine and Diabetes [35]. Based on which,
we created a professional diabetes vocabulary.

Fig. 1. An example of a diabetes-related Web page

For example, the term (Hypoglycemia) is defined as

(Hypoglycemia is low blood sugar.
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It is one of the most common symptoms of diabetes, often caused by insulin
overdose, missing meals after insulin injections, or excessive physical activities.).
In this study we used this professional diabetes vocabulary and their definitions
and explanations as the domain knowledge for helping the diabetes-related
topic classification.

3.2 Data Preprocessing

Data preprocessing prepares the data for the model training stage in our frame-
work. Data preprocessing consists of five steps: lexicon creation, word segmenta-
tion, topic category map construction, article annotation, and feature extraction.

Lexicon Creation. A domain lexicon, which contains terms in a specific
domain, is usually used for feature extraction and word segmentation in text
mining applications. Unfortunately, there has not been a standard domain lex-
icon in Chinese for diabetes. To build this lexicon, we combined entries from
Diabetes Dictionary App [18], which was the easy available commercial mobile
application for Chinese diabetic patients, and the extracted tags from diabetes-
related Web pages to obtain a relatively complete Chinese diabetes lexicon. The
resulting lexicon contains 1,065 terms related to diabetes including its medica-
tion, treatment, care, and prevention.

Word Segmentation. We used a Chinese word segmentation tool, ICTCLAS
to remove stop words and perform word segmentation for the content bodies of
Web pages.

Topic Category Map Construction. Our diabetes topic category map is
a tree structure with nested levels of topic categories related to diabetes. The
top level consists of main topic categories, each of which is broken down to
lower-levels of sub-categories. The map was built based on both the professional
vocabulary (with the 26 terms) and the navigation paths extracted from the
web pages in the data collection stage. Because most navigation paths of the web
pages comprised non-professional, layperson terms, we made a semantic mapping
between the professional vocabulary and the extracted navigation paths with the
help of domain experts. Figure 2 presents the resulting topic category map with
six main categories on the top level and sub-category levels. Because of the space
limit, some lower-level sub-categories are not shown on the map.

Article Annotation. This is an optional step in this framework and can be
skipped if all the collected Web pages contain navigation paths that can be used
as ground truth, namely category topic labels. For pages without navigation
paths, they should be manually annotated based on the diabetes topic category
map for the model training and testing purposes.

Feature Extraction. The features used as input in the deep learning based
model are then extracted from the articles. In prior studies [34], the bag-of-words
(BOW) approach has often been employed to generate features for text data in
deep learning models. In this approach, each distinct word in an article is treated
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Fig. 2. Diabetes topic category tree

as a feature. However, this approach can result in a large but sparse feature
vector, significantly affecting the performance of deep learning models [21]. To
reduce the dimensionality of the feature vectors, we combined 1,065 diabetes-
related terms from our Chinese diabetes domain lexicon and 123 feature values
using the TFIDF method [22]. The first 1,065 features were binary, indicating
whether the corresponding term appears in the article or not. The remaining 123
features were calculated by obtaining the N greatest mean weights from TFIDF
output using a certain threshold. As a result, each article was represented as a
feature vector of 1,188 dimensions. We will demonstrate the effectiveness of the
combined features in the experiments.

3.3 Model Training and Topic Classification

The SDA-based models will be described in detail in the next section. The feature
vectors representing the articles serve as the inputs to the deep learning based
models. For each article, the models produce 26 probability values, each of which
corresponds to one category node on the topic category map.

In the topic classification stage, the primary topic category of the article is
identified against the topic category map. For each article, this primary topic
category is mapped to one of the six main category nodes on the first level of
the tree as shown in Fig. 2.

4 The SDA-Based Models

We propose two Stacked Denoising Autoencoders(SDA) based models for the
topic classification. Specifically, the first model is called TSSDA that incorpo-
rates topic of corresponding input data for supervision into the SDA model, the
second model is called DSSDA and incorporates the domain knowledge supervi-
sion into the SDA model. Figures 3 and 4 present the architecture of our TSSDA
and DSSDA models.
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Fig. 3. The training process and architecture of TSSDA

Fig. 4. The training process and architecture of DSSDA

4.1 Topic Supervised Stacked Denoising Autoencoders

Our task is to classify the diabetes-related articles to the suitable topics, a simple
idea is to guide the unsupervised pre-training process with topic supervision so
that the trained hidden layers of SDA are topic-specialized and improve perfor-
mance of topic classification. The idea is similar with the SDA with sentiment
supervision [11].

Figure 3 shows how we incorporate topic supervision into the SDA. We add
a fully connected logistic regression layer and use softmax function to predict
the topic of input data. Thus output layer in a DA (a stochastic version of
autoencoder [8] that randomly sets some values of the input to zero in corrupted
layer, the stochastic corruption process forces the output layer to discover more
robust features and avoid simply learning the identity) is not only used for
reconstructing the input, but also predicting the topic label. In this way, the
TSSDA is encouraged to extract topic-specific features better in the classification
task. This is what we expected will be demonstrated in the experiments.

Loss(I,R) = −
∑

j

(Ij logRj + (1 − Ij)log(1 − Rj) (1)

In Fig. 3(a), W1 is the weights of the links between the corrupted layer and
the output layer, W2 is the weights of the links between the output layer and
the topic of the input data. Mathematically, the probability that an output data
O is a member of a topic t can be written as:
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P (T = t|O) = softmax(OW2 + c) =
eOW

(t)
2 +c(t)

∑tN
j=1 eOW

(j)
2 +c(j)

(2)

where c is node biases of logistic regression layer, tN is the number of topics in
our diabetes-related articles classification. It is very common to use the negative
log-likelihood as the loss function in the case of muticlass logistic regression.
Thus we define the loss function of topic supervision as follow:

loss(T ) = −logP (T = t|O) (3)

By combining the reconstruction loss (Eq. 1) and topic supervision loss, we
obtain the new loss function of the DA in TSSDA as follow:

lossTSSDA = loss(I,R) + λloss(T ) (4)

where λ is used to control the balance of the two loss function between 0 to 1.
We still use stochastic gradient descent to minimize the new loss function under
all training data.

4.2 Domain Supervised Stacked Denoising Autoencoders

If incorporating topic supervision in the SDA model introduced in previous
section is effective, a more novel idea is to combine domain knowledge (e.g.
diabetes topics’s professional definitions and explanations) into the process of
topic classification using the SDA, enforcing the hidden representation of input
data more domain-favorable.

As depicted in Fig. 4(a), the network models in the left corresponding domain
knowledge of the input data are shared parameters with the DA in the right
that models the input data and will output the hidden representation of domain
knowledge whose dimensions are the same as the number of dimension of output
layer in the right DA. The process mathematically expresses as follow:

p(Ok = 1|Ĩ) = sigmoid(bk +
∑

j

(ĨjWjk)) (5)

p(Dok = 1|D̃) = sigmoid(bk +
∑

j

(D̃jWjk)) (6)

where Dok and D̃j are the states for the k-th node in hidden representation
layer of domain knowledge and the j-th node in the corrupted layer of domain
knowledge, respectively.

In order to measure the degree of approximation between the hidden repre-
sentation layer of the domain knowledge and the output layer of the input data,
we apply cross-entropy again to express the domain supervision loss as follow:

loss(Do,O) = −
∑

j

(Doj logOj + (1 − Doj)log(1 − Oj) (7)
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where the distributions of Do and O can be obtained from Eqs. 5 and 6. We
naturely obtain the new loss function of the DA in DSSDA through combining
the reconstruction loss and domain supervision loss as follow:

lossDSSDA = loss(I,R) + ηloss(Do,O) (8)

where η controls the balance of the two loss function between 0 to 1. We use
stochastic gradient descent to minimize the new loss function under all training
data. Thus we stack the domain supervised DA as the building blocks as shown
in Fig. 4(b).

At the end, for each article, the SDA-based models select the category with
the maximum probability value. All parameters obtained in the SDA-based mod-
els training process are used to test the performance of the model in the exper-
iments.

5 Experiments

We conducted the experiments to evaluate the performance of the SDA-based
models for categorizing diabetes-related topics. In this section, we report the
results and findings from these experiments.

5.1 The Datasets

We collected all pages posted between July 2010 and September 2013 from two
dedicated Chinese health websites for diabetes. A summary of the two datasets
is shown in the Dataset 1 column and Dataset 2 column in Table 1. Some pages
contain tags such as “High Satiety” and “Diet Control” .
There are in total 912 distinct tags in Dataset 1 and Dataset 2.

Table 1. Dataset statistics summary

Dataset Dataset 1 Dataset 2 Dataset 3

Website tnbz.com zzcxhg.com Combined

No. of articles 3936 15682 1000

No. of all tags 6933 7023 –

No. of distinct tags 888 49 –

To evaluate our models’ performance for uncategorized Web pages, we cre-
ated Dataset 3 by randomly selecting 1,000 Web pages out of Datasets 1 and 2
(see the Dataset 3 column in Table 1). We removed the navigation paths in the
original pages and manually annotated the 1,000 articles. Two graduate students
with diabetes knowledge annotated the data (with 0.88 inter-coder reliability);
and the remaining disagreement was resolved by in-person discussions between
the two students.

http://tnbz.com/
http://zzcxhg.com/
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5.2 Evaluation Metrics and Benchmarks

The evaluation metrics of the experiments are precision, recall, F-measure and
accuracy. We selected the following six techniques as the benchmarks.

– SDA. This model uses only one SDA without supervision in unsupervised
pre-traing stage and takes only the articles from the websites as the input.

– DBN. The training process of DBN (Deep Belief Network [8]) is very similar
with the SDA, because both model invole the unsupervised layer-wise pre-
training followed by supervised fine-tuning. The main difference is that the
SDA use DAs instead of RBMs. This model uses only one DBN module and
takes only the articles from the websites as the input.

– SVM (Support Vector Machine). SVM is one of the most popular and effec-
tive classification techniques, it has been adopted in medical research [1].

– GNB (Gaussian Naive Bayes). GNB [5] is a simple probabilistic classifier
implementing Bayes’ theorem and has been shown to perform superior in
some text classification tasks.

– PE (Perceptron). Perceptron [20] is one of the first artificial neural networks
and suitable for supervised classification.

– DT (Decision Trees). DT [19] is a non-parametric supervised learning method
for classification.

5.3 Comparison Results

To compare the effectiveness of the DSSDA and TSSDA with the benchmarks,
we conducted 10-fold cross validation on each of the three datasets. We also
report the p-values of the t-tests for comparing between DSSDA and each of
the benchmarks for F-measure (only consider F-measure here because it is a
comprehensive metric incorporating both Precision and Recall) and accuracy,
respectively. The values of the default parameters in the models are presented
in Table 2. In the training stage, we set the learning rates for the training and
tuning processes to be 0.1, and the number of iterations to be 100 and 200,
respectively.

Table 2. The values of the default parameters in the models

Parameters DBN SDA TSSDA DSSDA

Dimensions of input 1188 1188 1188 1188

Dimensions of domain topic explanation input – – – 1188

No. of hidden layers 3 3 3 3

Ratio of input values to zero in each DA’s corrupted layer – 0.05 0.05 0.05

Dimensions of hidden layers 594 594 594 594

Dimensions of output 26 26 26 26

Control factor of in the loss function – – 0.05 0.05
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In our implementation, the deep learning related models contain three hidden
layers with 594 dimensions (i.e., half of the number of input dimensions) in each
layer. In Tables 3 through 5, the metric values that are significantly less than
those of the DSSDA model are highlighted with asterisks. The last four columns
report the average values of metrics over the 10-fold cross validations.

Table 3 summarizes the results of the performance comparison among pro-
posed models and the benchmarks over Dataset 1. Compared with the bench-
mark models, the DSSDA model is significantly better than all benchmarks
including the TSSDA in F-measure and accuracy. As a result, the supplementary
information provided by the domain knowledge helps enhance the performance
of the deep learning. Table 4 presents the performance comparison results over
Dataset 2. It shows that the performance is worse than that over Dataset 1. This
is because the distribution in dataset 2 is more uneven, which results in many
indistinguishable class boundaries. For example, there are no articles in 7 out
of the 26 (27%) categories in this dataset. Since the model always outputs 26
probabilities values, it may assign some articles into categories that do not exist
in the dataset. However, even though the DSSDA’s F-measure and accuracy are
lower than those in Dataset 1, these two measures are still significantly greater
than those of the benchmarks. Table 5 shows the results from Dataset 3. It can
be seen that when the category distributed is more even (with no missing data
in any category), all classification models’ performances are better, and that the
DSSDA is even significantly more effective and accurate than the TSSDA model.

Table 3. Performance comparison over Dataset 1

Method Precision% Recall% F-measure% Accuracy%

DSSDA 71.40 64.91 67.92 78.52

TSSDA 68.80 64.57 66.52* 77.76*

SDA 67.39 64.60 65.90* 77.28*

DBN 62.67 62.93 62.73*** 74.78***

SVM 79.65 51.07 62.14*** 75.14***

GNB 42.00 50.60 45.88*** 53.33***

PE 64.50 59.10 61.47*** 73.69***

DT 51.97 51.77 51.83*** 67.28***

*: p < 0.05, ***: p < 0.001

In summary, the DSSDA model is significantly more effective and accurate
in categorizing topics in diabetes-related Chinese Web pages than mainstream
classification models, including SVM, GNB, PE, and DT. In most cases, the
DSSDA, TSSDA and SDA models perform betther than the DBN model in terms
of F-measure and accuracy. Therefore, the SDA-based model is more suitable for
categorizing topics by using domain knowledge in diabetes-related Chinese Web
pages.
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Table 4. Performance comparison over Dataset 2

Method Precision% Recall% F-measure% Accuracy%

DSSDA 46.36 38.83 42.16 56.58

TSSDA 43.79 37.94 40.60* 55.63**

SDA 44.47 38.47 41.18* 55.55*

DBN 38.07 36.60 37.31*** 52.96***

SVM 58.33 27.55 37.29*** 43.32***

GNB 27.73 30.55 29.04*** 39.97***

PE 38.50 36.40 37.29*** 54.28*

DT 33.25 31.72 32.45*** 49.21***

*: p < 0.05, **: p < 0.005, ***: p < 0.001

Table 5. Performance comparison over Dataset 3

Method Precision% Recall% F-measure% Accuracy%

DSSDA 55.95 59.74 57.28 64.3

TSSDA 50.63 55.66 52.46*** 60.4**

SDA 51.52 55.11 52.77** 60.2**

DBN 49.45 53.89 51.16** 61.1*

SVM 61.05 33.16 42.62** 52.3*

GNB 36.74 44.54 39.69*** 47.1**

PE 52.80 53.70 52.72* 60.8*

DT 45.70 49.47 47.23*** 56.0**

*: p < 0.05, **: p < 0.005, ***: p < 0.001

5.4 Extra Comparison Results Using English Datasets

In order to demonstrate the effectiveness of domain supervision SDA model on
text dataset in other language, we select the small number of English datasets
to do some extra experiments. We investigated some diabetes-related research
using English text and obtained the dataset of diabetes online community of the
American Diabetes Association from the paper [13].

We selected three types topics: gestational diabetes, type 1 diabetes and type
2 diabetes. After randomly selecting 300 English articles of each topic from the
dataset, we got a small English dataset with 900 articles in total. Professional
diabetes topics explanations of three topics as domain knowledge are achieved
by applying UMLS to extract related text. We used TFIDF method to extract
features for each English articles and then conducted 10-fold cross validation
on the dataset. The Table 6 shows the performance among proposed SDA-based
models and the SDA model.

Compared with the basic SDA models, our DSSDA model is significantly
better than basic SDA including the TSSDA in F-measure and accuracy. As a
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Table 6. Performance comparison over English Dataset

Method Precision% Recall% F-measure% Accuracy%

DSSDA 89.25 89.46 89.35 89.22

TSSDA 87.42 87.61 87.51* 87.33*

SDA 87.88 88.14 88.01* 87.78*

*: p < 0.05

result, the supplementary information provided by the domain knowledge helps
enhance the performance in our proposed model.

5.5 The Effects of the Parameter Values

In order to find best performance of our SDA-base models, we conducted addi-
tional experiments to examine the effects of the parameters on model perfor-
mance. Especially, we focused on the effects of the dimensions of hidden layers,
the number of hidden layers, the ratio of corrupted input values and the control
factors of the loss function in the SDA-based models. We used the default values
for other parameters (e.g., learning rate). Dataset 3 with smallest articles was
used for these experiments.

Fig. 5. The effects of parameter values

Figure 5(a) shows the performance of the SDA-base models in terms of the
number of nodes (dimensions) of the hidden layers. As we can see from the
Figure, as the dimension of hidden layers increases, the performance of the mod-
els goes up first and then goes down. This indicates that for the SDA-based
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models, having hidden units about the half of the number of input dimensions
is sufficient to train the model.

Figure 5(b) displays the F-measures and accuracy of the DSSDA as a function
of the number of layers. As the number of layers in the DSSDA model increases,
the DSSDA’s effectiveness increases until it reaches its top at the point for four
layers. The right of the Fig. 5(b) presents the changes in models’ effectiveness in
response to the changes in the number of layers showing a tendency of a convex
peak. There is a trade-off between the performance and training time, thus we
chose to use three layers in the SDA-based models.

Figure 5(c) shows the performance of the SDA-base models in terms of the
ratio of input values to zero in each DA’s corrupted layer. As we can see from
the Figure, as the ratio of input values to zero increases, the performance of the
models goes up first, then goes down and reaches top at the point 0.05. Thus we
chose to use this point to train the models.

We report the performance of DSSDA and TSSDA among different control
factors of the loss functions in the Fig. 5(d). As the control factors of the loss
function in the DSSDA increases, the DSSDA’s performance increases until it
reaches its top at the point 0.05 and then goes down fast. However, the per-
formance of TSSDA is steady for the changes in the control factors of the loss
function in the TSSDA. Therefore, we set the control factors as 0.05 for training
the models.

These results also show that the performance of DSSDA is better than
TSSDA and SDA in general.

5.6 The Effects of the Feature Vectors

We also investigated the effects of different feature vectors on our model. In
this study, we firstly applied paragraph2vector (a word2vector based model for
documents representation) [10] to do preliminary experiment, but it had poor
performance for the lack of large scale corpus. Finally we used two types of
features: 1,065 binary features from the diabetes lexicon and the 123 features
by using the TFIDF method. We call them BOW (bag of words) and TFIDF,
respectively. The combined features, which was what we used in the above exper-
iments, is called B-TFIDF. To demonstrate the value of B-TFIDF, we compared
it with the BOW and TFIDF feature vectors over Dataset 3. The performance
of the DSSDA model by using the three different feature vectors are shown in
Table 7. Our results demonstrate that the combined feature vectors, B-TFIDF,
yields the best performance in terms of F-measure and accuracy.

5.7 Causes of Misclassification Errors

To further investigate and analyze the causes of misclassification errors, we
selected some samples misclassified by the DSSDA model. We randomly selected
100 articles out of Dataset 1 and 15% of these articles were misclassified by the
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Table 7. Performance using different feature vectors

Method Precision% Recall% F-measure% Accuracy%

B-TFIDF 55.95 59.74 57.28 64.3

BOW 52.37 57.58 54.29* 62.9

TFIDF 36.75 40.63 38.26** 47.1**

*: p < 0.05; **: p < 0.005

DSSDA model. We conducted an indepth analysis of the 15 articles and identi-
fied three possible causes for the misclassification errors: wrong label, multiple
topics, and model error.

– Wrong label. We found that 7% of the articles were “misclassified” by the
DSSDA because of their navigation paths, which were used as topic category
labels in our experiments, were actually wrong. In other words, the DSSDA
model assigned correct topics based on the articles’ contents and the topic
category map. For example, the article’s category label provided by the health
website is Glucose Tests, while the article actually describes the diabetes
complications.

– Multiple topics. Because our model selected only one primary topic cate-
gory for each article, an article may be misclassified if it contains multiple
topics. We found that 3% of the articles were misclassified due to this rea-
son. For example, one article covers two topics: Diabetes Diet and Diabetes
Complications; and the original website used only Diabetes Diet as the topic
label. Since our model outputs Diabetes Complications as the topic category,
it was treated as a kind of misclassification error.

– Model error. For the remaining 5% of the misclassified articles, the model
simply did not capture the main point of the articles. For instance, “Hyper-
glycemia” was mistakenly assigned by the DSSDA model as the topic category
regarding glucose testing.

In short, if the training data are correctly labeled, the DSSDA model will
achieve better performance in accuracy. The cases of wrong label and mul-
tiple topics show that some health websites provide some categorized articles
but the category information is incorrect or misleading. There is also a lack of
widely accepted standard for categorizing diabetes-related topics. These issues
are also the reasons that we propose this SDA-based framework. We provide
an effective approach (and standard) to categorize diabetes-related topics from
online Chinese articles.

6 Conclusion

In this study, we propose a deep learning based framework for categorizing
diabetes-related topics on Chinese health websites. Our experiments using real
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data show that the DSSDA model significantly outperforms several state-of-the-
art benchmark classification methods without the large scale corpus training.

The contributions of our research are summarized as follow. First, we develop
a Chinese domain lexicon, adopt some professional diabetes topic explanations
and incorporate them into deep learning approach to form our topic classifica-
tion framework. Second, we propose domain supervised SDA that incorporates
domain knowledge into the process of model training, which makes use of limited
auxiliary domain knowledge.

One limitation of our model is that the training process is time-consuming,
affecting the model’s scalability for large datasets.

Our future work will be done in two directions: (a) seek more collaboration
with physicians and medical professionals to refine the topic category map; and
(b) extend and apply our framework to other chronicle diseases and even other
domains.
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Abstract. Protecting the private graph data while releasing accurate
estimate of the data is one of the most challenging problems in data
privacy. Node strength combines the topological information with the
weight distribution of the weighted graph in a natural way. Since an
edge in graph data oftentimes represents relationship between two nodes,
edge-differential privacy (edge-DP) can protect relationship between two
entities from being disclosed. In this paper, we investigate the problem
of publishing the node strength histogram of a private graph under edge-
DP. We propose two clustering approaches based on sequence-aware and
local density to aggregate histogram. Our experimental study demon-
strates that our approaches can greatly reduce the error of approximating
the true node strength histogram.

Keywords: Differential privacy · Node strength
Histogram publishing

1 Introduction

Many kinds of private data can be well represented by graph data, e.g., social
network activities [1–4], communication patterns [5], and disease transmission
[6]. Due to the sensitivity of these valuable network data, they cannot be directly
exploited by analysts. Even if the private data is anonymized, publishing graph
data has risk to reveal sensitive information of an individual [7,8]. To tackle
the problem, Differential Privacy (DP) has been widely used to design sanitiza-
tion mechanisms for publishing information of graphs [9]. Based on the original
description of differential privacy, it guarantees that the change of one record
will not significantly affect the output distribution of an analysis procedure.
This model is very effective for releasing data in the form of histogram, since
the magnitude of the statistical noise is often dominated by random variation in
the data [10].
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 75–91, 2018.
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In the context of graph data, two interpretations of differential privacy have
been proposed: edge and node differential privacy [11]. Intuitively, edge differen-
tial privacy ensures that the algorithm’s output does not reveal the inclusion or
removal of a particular edge in the graph, and node differential privacy hides the
inclusion or removal of a node together with all its adjacent edges. In edge-DP,
two graphs are neighboring if they differ on a single edge. The meaning of an
edge in the graph could connote friendship, email exchange, etc. [12] assumes that
edge represents a sensitive relationship that should be kept private. For some
applications, edge-DP seems to be a reasonable privacy standard. For exam-
ple, consider the study of [13], in which they analyze a graph derived from the
email communication among students and faculty of a large university. What
makes this dataset sensitive is that it reveals who emails whom, and edge-DP
can protect email relationships from being disclosed.

Numerous recent studies [10,12,14,15] release differentially private graphs
under edge-DP and node-DP. Many of them focus on publishing the node degree
of graphs [12,14,15]. However, the degree distribution of a graph cannot fully
represent the importance of nodes. Bitcoin OTC [16] is a who-trusts-whom net-
work of people who trade using Bitcoin on a platform. The edge weight is the
distrust level of a transaction and the node degree is the number of transac-
tions. In this case, node degree cannot represent a user’s reputation. And an
individual edge does not provide a general picture of all transactions. Instead,
we can use node strength to measure the importance of nodes. Node strength
has combined the topological information with the weight distribution of the
network in a natural way. The quantity measures the strength of nodes in terms
of the total weight of their connections. A more significative measure of the net-
work properties in terms of the actual weights is obtained by studying the node
strength.

In this paper, we investigate the problem of publishing the node strength
histogram of a weighted graph under edge differential privacy. Given a graph
G = (V,E,W ), the goal is to release a node strength histogram that approxi-
mates the true distribution of G as much as possible while satisfying edge differ-
ential privacy. A key challenge is that the true distribution is too sparse. If the
maximum node strength is far greater than the number of nodes, the values of
a larger number of bins will be zero. This means that when the query interval is
large, the noise accumulation will lead to the low accuracy of query results. To
address this problem, we propose the following solutions. First, we reduce the
number of bins of histogram by setting a upper bound t for edge weights. Note
that, given a larger t, more weight information can be preserved. Meanwhile, a
lower t means that the distribution of node strength can be less sparse. Then we
generate a node strength histogram of the weight bounded graph. Furthermore,
We privately learn a partitioning of the bins B and replace the value of each bin
with the mean of its group’s sum. Finally, to reduce the errors caused by noise,
transformation and aggregation, we use exponential mechanism to output the
accurate estimate of node strength histogram. We also prove that publishing the
node strength histogram under edge-DP has a sensitivity of 4.



Publishing Graph Node Strength Histogram with Edge Diffierential Privacy 77

Our main contributions can be summarized as follows.

1. To the best of our knowledge, we are the first to study the problem of releasing
node strength histogram on weighted graph under edge differential privacy.

2. We propose two efficient clustering approaches, sequence-aware and density-
based, to group histogram under differential privacy, and design a low-
sensitivity quality function to obtain a trade-off between the error of noise
and aggregation.

3. We have conducted extensive experiments on four real world datasets. The
experimental results demonstrate that our proposed mechanisms have signif-
icant improvement over the baseline systems. We also perform the introspec-
tive analysis to investigate the impacts of weight bound t and aggregation
strategies B.

The rest of this paper is organized as follows. In Sect. 2, we give the problem
definition, discuss ε-differential privacy and its application on graphs. Section 3
introduces our proposed approaches. Experimental results are given in Sect. 4.
We discuss related work in Sect. 5, and conclude in Sect. 6.

2 Preliminaries

2.1 Node Strength

A weighted and finite graph G = (V,E,W ) is defined by a set of nodes
V = {v1, v2, . . . , vn}, a set of edges E = {eij |i, j ∈ V }, and W = {wij |wij =
value(eij)}, where value(eij) represents the connection weight of edge eij . In
this paper, for simplicity of presentation, we assume that n = |V |, the number
of nodes of the input graph G, is publicly known.

We generally extend the degree of a node vi to the sum of weights of edges
that connect vi, denoted by node strength, which is given as follows:

si =
∑

j∈Γ (i)

wij

where Γ (i) is the set of adjacent nodes of node vi.

2.2 Differential Privacy

The notion of (ε,δ)-differential privacy [17] is defined based on the concept
of neighboring databases. Two datasets G and G′ are defined as neighboring
datasets if they only differ in one record.

Definition 1 ((ε, δ)-Differential Privacy). A randomized algorithm A is
(ε,δ)-differential privacy if for all events S in the output space, and for any
two neighboring databases G and G′, we have

Pr[A(G) ∈ S] ≤ exp(ε) × Pr[A(G′) ∈ S] + δ

where S ⊆ Range(A).
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When δ = 0, the algorithm is ε-differential privacy. The parameter ε refers
to the privacy budget and a smaller ε represents a stronger privacy level. For
queries that produce numerical outputs, the differential privacy can be satisfied
by adding appropriately random noise to the answer. The noise depends on the
query’s sensitivity.

Definition 2 (Global Sensitivity). For a query f : G → R
d, and neighboring

databases G and G′, the l1-global sensitivity of f is defined as:

�f = max
G�G′

||f(G) − f(G′)||1

where the L1 distance ||x||1 is the sum of the absolute values of each element of
the vector x.

While there are many approaches to achieve differential privacy, the best
known and most-widely used two for this purpose are the Laplace mechanism
[17] and the exponential mechanism [18].

Laplace Mechanism. For a query f : G → R over a database G, we use
Laplace mechanism to satisfy ε-DP, noise Lap(�f/ε) is added to the output of
the query.

A(G) = f(G) + Lap(
�f

ε
)d

and Pr[Lap(β) = x] = 1
2β e−|x|/β .

Exponential Mechanism. Given a quality score u(G,Hi) for outputting Hi

on input G and a randomized algorithm A, we have

A(G,Hi) =
{

Hi : |Pr[Hi ∈ H] ∝ exp(
εu(G,Hi)

2 � u
)
}

where �u = max∀Hi,G,G′ |u(G,Hi) − u(G′,Hi)| is the global sensitivity of the
quality function. The sampling probability for each Hi ∈ H is determined based
on a user-specified quality function u.

Composition Properties. Differential privacy satisfies sequential composition
and transformation invariance [19,20]. If an algorithm A runs t randomized
algorithm A1,A2, . . . ,At, each of which is (εi,δi)-differential privacy, and applies
an arbitrary algorithm g to their result, i.e., A(G) = g(A1(G), . . . ,At(G)), then
A is (

∑
i εi,

∑
i δi)–differential privacy.
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3 Proposed Approaches

A graph is t-bounded if the weight of each edge is no more than t. Given an
input graph G, we transform G to a t-bounded graph Gt, where the weight of
each edge is defined as follows:

wij =
{

t if value(eij) > t
value(eij) otherwise

During the transformation, we use m to denote the number of edges whose
weights are larger than t. Obviously, t is an important parameter to our study.
On the one hand, given a larger t, we can preserve more weight information, but
the number of bins in the node strength histogram will increase and more noise
will be added. On the other hand, although we can obtain a dense distribution
of node strength with a smaller t, more weight information will be lost.

Next, based on the graph Gt, we can generate a node strength histogram
hist(Gt) = {h1, h2, . . . hn}, where hi is the number of nodes whose node strength
are i. Note that, according to the following Lemma 1, the global sensitivity of
releasing hist(Gt), which is defined as �hist = ||hist(Gt) − hist(G

′
t)||1, is no

more than 4.

Lemma 1. For any G � G′ that differ in one edge, we have

||hist(Gt) − hist(G
′
t)||1 ≤ 4

Proof. Assume, without loss of generality, that G′ = (V ′, E′) has an additional
edge e+ compared to G = (V,E), i.e. V ′ = V , E′ = E ∪ {e+}. For arbitrary
nodes vi and vj , assuming that e+ = (vi, vj), so we have si =

∑
k∈Γ (i) wik and

s′
i = si + w(e+). Similarly, sj =

∑
k∈Γ (j) wjk and s′

j = sj + w(e+). Obviously,
only the node strength of vi and vj has changed. And one change in node strength
of arbitrary node can cause two changes in the histogram, thus the change of
one edge induces a difference of at most 4 in the histogram.

3.1 Sequence-Aware Clustering

The standard solution to differential privacy is to add Laplace noise directly to
each bin in the original histogram, which will cause a large magnitude of noise.
One way to reduce the effect of noise is to merge the adjacent bins into a group
and use an average to estimate each bin within a group [21,22]. However, this
will lead to extra approximate error. In this section, we introduce a sequence-
aware clustering (SC) algorithm which groups neighboring bins with close values
into the same bucket. As shown in Algorithm 1, the algorithm takes the node
strength histogram Ht = {h1, h2, . . . , hn} as input as well as ε, where the param-
eter ε represents the privacy budget. For each given k, we partition Ht into k
disjoint sets, e.g., B = {b1, b2, . . . , bk}, and each bi ∈ B is a group of contiguous
bins in Ht.
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ALGORITHM 1. Sequence-aware Clustering algorithm
Input: Original histogram Ht, number of buckets k, privacy budget ε, and the number of

iterations N
Output: The clustered buckets B.

1 Choose k candidates c1, ..., ck randomly from the histogram Ht

2 repeat
3 for each hi ∈ Ht do
4 compute the cumulative distance dist(cl, hi), dist(hi, cr) between hi and two

neighboring candidates cl, cr

5 end
6 Associate each hi with the nearest candidate cj , and partition Ht into k sets b1, ..., bk

7 for 1 ≤ j ≤ k do

8 sum′(bj) = sum(bj) + Lap( �SC
ε ), num′(bj) = num(bj) + Lap( �SC

ε )

9 compute the mean of the bins in bj , mean′(bj) = sum′(bj)/num′(bj)

10 set the nearest bin from mean′(bj) as the new candidate cj

11 end

12 until the number of iterations reaches N ;
13 return B

Algorithm 1 has two steps. First, it randomly selects k bins as initial candi-
dates c1, . . . , ck. Then for each bin in Ht, the algorithm determines its associated
candidate according to the sequence-aware cumulative distance. The sequence-
aware cumulative distance dist(cl, hi) and dist(hi, cr) between hi and two neigh-
boring candidates cl, cr is defined as:

dist(cl, hi) =

∑
hk∈(cl,hi]

|hk − cl|
i − p

dist(hi, cr) =

∑
hk∈[hi,cr) |hk − cr|

q − i

where p and q is the position of cl and cr in the histogram Ht respectively.
If dist(cl, hi) < dist(hi, cr), then we associate all bins between cl and hi to

cl. Otherwise, the bins between hi and cr are associated to cr. The results of
this step is k sets {b1, . . . , bk}.

Second, we update the candidate cj according to the mean of all bins in
the set bj . Although computing the nearest mean of any one bin would break
privacy, as mentioned in [23], to compute an average among an unknown set
bj can be equivalent to compute the sum(bj) and divide by num(bj), where
sum(bj) is the sum of the bins, and num(bj) is the number of the bins in the set
bj . Thus, the computation only needs to expose the approximate cardinalities
of the bj , instead of the sets themselves. And the k candidate means provide
a differential private approximation to the mean in updating step. In our case,
the denominators num(bj) will not change, and the numerators sum(bj) has
sensitivity at most 2. Therefore, the global sensitivity of SC is not more than
2. We can compute a new set of candidate means by dividing the approximate
sum of the bins sum′(bj) by the approximation to the cardinality num′(bj).

Lemma 2. For any G � G′ that differ in one edge, we have

||SC(hist(GT )) − SC(hist(G′
T ))||1 ≤ 2
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Proof. We follow the idea and notations in the proof of Lemma1. Since neigh-
boring databases G and G′ only differ at one edge, which induces a difference
of at most 4 in the histogram. And there must be at most 4 bins where hi 
= h′

i.
Assume, without loss of generality, an additional edge causes the bin hx1, hx2 to
add by 1 and hx3, hx4 to minus 1. In the worst case, sum(bj) can change by 2,
which can only happen when hx1, hx2 ∈ bj and hx3, hx4 /∈ bj .

ALGORITHM 2. Density-based Clustering algorithm
Input: Original histogram Ht, bucket counts k and privacy budget ε
Output: The clustered buckets B.

1 for each hi ∈ Ht do
2 compute the distance with neighboring bin hj as d(i, j)

3 ˜d(i, j) = d(i, j) + Lap( �DC
ε )

4 end
5 for each hi do
6 compute the local density ρi

7 end
8 Select the top k bins with the highest local density as the cluster centers
9 Associate each hi with the nearest cluster center, and partition Ht into k sets b1, ..., bk

10 return B

The updating rule of the clustering is iterated until the convergence condition
is satisfied, or a fixed number of iterations is reached. In our approach, we fix the
number of iterations into N . Then we can use the noise distribution Lap(�SC ∗
N/ε) to satisfy ε-differential privacy. Finally, we obtain a set of disjoint buckets
B = {b1, b2, . . . , bk}.

3.2 Density-Based Clustering

The sequence-aware clustering method preserves ε-differential privacy and
reduces the error of noise and approximation. However, its initial candidates
are randomly selected, which cannot guarantee a stable result. In this section,
we discuss another approach that adopts a different strategy, which is based
on the observation that the cluster centers has a smaller fluctuation among the
adjacent bins. If a bin has more neighboring bins whose values are similar to its,
then the more suitable it is to serve as a cluster center. And we consider that
this bin has a higher local density.

In Algorithm 2, we present the details of our proposed density-based cluster-
ing (DC) method. First, for each bin hi, we compute its local density ρi, which
is measured by the cumulative average distance between hi and its neighboring
bin hj . The cumulative average distance is

d(i, j) =
∑

|j−i|<ξ,l∈[i,j]

|hl − avg(i, j)|

where avg(i, j) =
∑

|j−i|<ξ,l∈[i,j] hl

|j−i| .
Note that directly computing the cumulative average distance d(i, j) between

any two bins cannot be done based on their true values, otherwise differential
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privacy will be violated. For this reason, we obtain the noisy d̃(i, j) by the Laplace
mechanism using privacy parameter ε. Since the histogram has 4 changed bins,
and Lemma 3 below shows that the total sensitivity of the computation of d(i, j)
is at most 6.

Lemma 3. For any G � G′ that differ in one edge, d(i, j) is the cumulative
average distance in hist(G) and d′(i, j) is the cumulative average distance in
hist(G′), we have

||d(i, j) − d′(i, j)||1 ≤ 6

Proof. Assume, without loss of generality, let i < j, we use avg(i, j) =
∑j

l=i xl

j−i to denote the average value of bins within [xi, xj ], then d(i, j) =
∑j

t=i |xt − avg(i, j)|. Following the idea and notations in the proof of Lemma1,
the change of one edge induces a difference of at most 4 in the histogram. In the
worst case, there are two bins between xi and xj having a difference of 2, so we
have

∑j
t=i |xt − x′

t| ≤ 4. And the change of sum of the bins between xi and xj

is at most 2, i.e., |∑j
m=i xm − ∑j

m=i x′
m| ≤ 2.

Thus, we have

||d(i, j) − d′(i, j)||1 =
∣∣∣

j∑

l=i

|xl − avg(i, j)| −
j∑

l=i

|x′
l − avg′(i, j)|

∣∣∣

≤
∣∣∣

j∑

l=i

(xl − avg(i, j)) −
j∑

l=i

(x′
l − avg′(i, j))

∣∣∣

≤
∣∣∣

j∑

l=i

(xl − x′
l) −

j∑

l=i

(avg(i, j) − avg′(i, j))
∣∣∣

≤
j∑

l=i

|xl − x′
l| +

j∑

l=i

|avg(i, j) − avg′(i, j)|

≤
j∑

l=i

|xl − x′
l| + (j − i) ∗ |

j∑

m=i

xm −
j∑

m=i

x′
m|/(j − i)

≤
j∑

l=i

|xl − x′
l| + |

j∑

m=i

xm −
j∑

m=i

x′
m|

≤ 4 + 2 ≤ 6

In fact, the proposed DC method is sensitive only to the relative magnitude
of d(i, j). Therefore, the global sensitivity of DC is not more than 6. Then we
the local density ρi of hi is defined as

ρi =
∑

j

exp(−
√

d̃(i, j)/|j − i|
dc

)

where dc is a threshold value.
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Basically, ρi is equivalent to the degree of proximity between the value of the
neighboring bins and hi. And for a bin with a larger local density, the probability
of being selected as a cluster center should be higher. Thus given the buckets
size k, we choose the top k bins with the maximum density as the cluster centers
greedily. After the cluster centers have been found, each remaining bin is assigned
to the nearest bucket.

ALGORITHM 3. t-Bounded-Buckets-Hist algorithm
Input: A weighted graph G = (V, E, W ), privacy budget ε, candidates T and K

Output: A histogram ˜H satisfying the differential privacy
1 ε = ε1 + ε2 + ε3
2 for each ti ∈ T do
3 for each kj ∈ K do
4 clustering a partition Bij of node strength histogram of Gti

with privacy budget ε3
5 end

6 end
7 Calculate cost(G, ti, Bij , ε1) for each (ti, Bij) ∈ T × B,

8 Select (t′, B′) with probability proportional to exp(
−ε2cost(G,ti,Bij,ε1)

2�cost )

9 Calculate average count hk for every bin in bucket bk

10 Add noise to counts as ˜hi = hk + Lap( �hist
ε1|bk| )

11 return ˜H

3.3 Finding the Least Cost Partition

When publishing node strength histogram, the proposed clustering strategies
with a smaller bucket size k means less noise error is added to the histogram.
However, it can lead to more approximate error. Similarly, a larger t can preserve
more weight information, but the number of bins in the node strength histogram
will increase and more noise will be added.

In this section, we propose a strategy which features a sophisticated evalua-
tion of the trade-off between the approximation error due to clustering and the
Laplace error due to Laplace noise injected. To do so, we design a low-sensitivity
quality function to select the optimal group strategy B and weight bound t simul-
taneously, and generate an accurate publication of the node strength histogram
H. The main framework is summarized in Algorithm 3.

The t-Bounded-Buckets-Hist method is a ε-differential privacy algorithm that
takes as input a weighted graph G, transformation parameters T and candidates
K, represented as the set of weight bounds and the number of buckets. The
output is an estimate H̃ of original node strength histogram H. To ensure that
the overall algorithm satisfies ε-differential privacy, we split the total ε budget
into ε1, ε2 and ε3 such that ε = ε1 + ε2 + ε3, and use these three portions of the
budget on the respective stages of the algorithm.

The first step obtains a clustering result B = {b1, b2, . . . , bk} of the histogram.
We propose two novel differential privacy algorithms SC and DC that use ε3
budget to partition H. Then for the partition B, the second step derives noisy
estimates of the bucket counts. In the last step we derive H̃ = {h̃1, h̃2, . . . , h̃n},



84 Q. Qian et al.

which is the differential private estimate of H, and h̃i = hi + fi. The counts∑
j∈bk

hj of each bucket bk spread uniformly amongst each bin of bk. After
playing this, the resulting estimate for hi is:

h̃i =

∑
j∈bk

hj

|bk| +
Fk

|bk|

where each hi is near the mean of the bucket
∑

j∈bk
hj

|bk| , Fk is the noise added to
bucket bk and Fk ∼ Laplace(�hist/ε).

Since the scale of Fk is fixed, larger buckets can have less noise per individual
h̃j . However, larger buckets can have more approximation error. To select an
optimal partition result for histogram, we design a cost function similar to that
used in [22], which has three components. The first component captures the
number of edges whose weights are changed after transformation. The intuition
is that each of such edge will cause two changes on node strength, which results in
four changes in corresponding histogram before and after transformation. Given
a partition Bj and a transformation parameter ti, the cost of this step is

costtran(G, ti, Bj) = 2 ∗ |{v|e ∈ E(v), value(e) > ti}|

where value(e) gives the weight of edge e in the graph and E(v) contains all
edges adjacent to node v.

The second component captures the error due to the aggregation step, which

approximates each bin hi in the bucket by the mean value
∑

s∈bk
hs

|bk| . And the
cost of the aggregation step is

costagg(G, ti, Bj) =
∑

bk∈Bj

∑

s∈bk

(|hs −
∑

s∈bk
hs

|bk| |)

where hs denotes the number of nodes with node strength s in hist(Gti
).

The third component captures the error due to the added noises produced
by employing Laplace mechanism (with a budget of ε1). Recall the resulting

estimate for hi is h̃i =
∑

s∈bk
hs

|bk| + Fk

|bk| , where hi is in the bucket bk. The cost of
this step is

costnoise(G, ti, Bj) =
∑

bk∈Bj

∑

s∈bk

Fi

|bk| =
∑

bk∈Bj

�hist

ε1
=

4k

ε1

Combining the three components, the proposed cost function is

cost(G, ti, Bj) = costtran + costagg + costnoise

To apply the exponential mechanism to select an optimal (t, B) pair, we need
to have a upper bound on the global sensitivity of cost(G, ti, Bj) given before.
The following lemma shows that the global sensitivity is bounded by 12.
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Lemma 4. For any G � G′ that differ in one edge, we have

|cost(G, ti, Bj) − cost(G′, ti, Bj)| ≤ 12

Proof. We have costproj(G, ti) = 4 ∗ |{e|e ∈ E, value(e) > ti}|, and based on the
proof of Lemma 1, |costproj(G, ti) − costproj(G′, ti)| ≤ 4. costnoise(G, ti, Bj) =
2k/ε2 and k = |Bj |, we can see costnoise(G, ti, Bj) is independent of the input
dataset and thus does not change between two neighboring graphs, so we have
|costnoise(G′, ti, Bj) − costnoise(G, ti, Bj)| = 0. Since cost(G, ti) = costnoise +
costproj + costgroup, we only need to analyze the part of costgroup. We have
∑

bk∈Bj

∑
s∈bk

(
∑

s∈bk
hs

|bk| −
∑

s∈bk
h′

s

|bk| ) =
∑

bk∈Bj

| ∑
s∈bk

hs− ∑
s∈bk

h′
s| ≤ ∑

bk∈Bj

∑
s∈bk

|hs−h′
s| =

4
Thus, we have

|costgroup(G, ti, Bj) − costgroup(G′, ti, Bj)|

=
∣∣∣

∑

bk∈Bj

∑

s∈bk

(|hs −
∑

s∈bk
hs

|bk| |)
∣∣∣

≤
∑

bk∈Bj

∑

s∈bk

∣∣(|hs −
∑

s∈bk
hs

|bk| | − |h′
s −

∑
s∈bk

h′
s

|bk| |)∣∣

≤
∑

bk∈Bj

∑

s∈bk

∣∣(hs −
∑

s∈bk
hs

|bk| ) − (h′
s −

∑
s∈bk

h′
s

|bk| )
∣∣

≤
∑

bk∈Bj

∑

s∈bk

∣∣(hs − h′
s) − (

∑
s∈bk

hs

|bk| −
∑

s∈bk
h′

s

|bk| )
∣∣

≤
∑

bk∈Bj

∑

s∈bk

∣∣hs − h′
s

∣∣ +
∑

bk∈Bj

∑

s∈bk

∣∣
∑

s∈bk
hs

|bk| −
∑

s∈bk
h′

s

|bk|
∣∣

≤ 4 + 4 ≤ 8

Finally, we give the privacy guarantee of t-Bounded-Buckets-Hist as well as
the proof in the following.

Lemma 5. t-Bounded-Buckets-Hist in Algorithm 3 satisfies (ε1 + ε2 + ε3)-edge-
differential privacy.

Proof. In Algorithm 3, the step of clustering (Line 4) uses Laplace mechanism
with privacy budget ε3. The step of Lines 8 uses exponential mechanism with
privacy budget ε2. The step of publishing histogram with aggregated counts(Line
10) uses Laplace mechanism and satisfy edge-differential privacy for ε1. By the
composition theorem and transformation invariance, this algorithm satisfies (ε1+
ε2 + ε3)-edge-differential privacy.
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4 Experiment

In this section, we report experimental results comparing our proposed
approaches with approaches NoiseFirst and StructureFirst proposed in [21], and
analyse how different aspects of our proposed approaches affect the utility.

4.1 Datasets and Settings

Our experiments are based on 4 real-world datasets downloaded from [16], as
shown in Table 1. These datasets are from different domains: (i) USairports
dataset denotes the network of passenger flights between airports in the United
States. (ii) Facebook is a social networks dataset, and we add random weight
values to each edge of the unweighted graph. (iii) Bitcoin OTC trust network
is a who-trusts-whom network of people who trade using Bitcoin on a platform
called Bitcoin OTC. This is the first explicit weighted signed directed network
available for research. (iv) Enron dataset is an email network obtained from a
dataset of around a million emails. Nodes of the network are email addresses
and if an address i sent at least one email to address j, the graph contains
an undirected edge from i to j. We add random weight values to each edge of
the unweighted graph, which indicates the number of email exchanges between
nodes. Table 1 illustrates the properties of the datasets such as maximum edge
weight weightmax and maximum node strength nsmax.

Table 1. Information about datasets

Graph |V | |E| weightmax nsmax

USairports 755 4660 53 1700

Facebook 4039 88234 10 5794

Bitcoin OTC 5881 35592 20 874

Enron 36692 183831 25 17844

Following previous works [12,14,15], we use L1 error and Kolmogorov-
Smirnov distance (KS-distance) as the utility metrics.

We use the L1 distance [15] between the published distribution and the true
distribution (or L1 error) to evaluate different approaches. More formally, the L1
distance between any two distributions d and d′ with length n can be computed
by ||d−d′||1 =

∑n−1
i=0 |di − d′

i|. Some techniques may publish a distribution with
size smaller than n. We follow the same procedure in [24] to pad d with 0 if its
size is less than n for comparison.

In addition to the L1 error, we also employ the KS-distance used in [12] to
evaluate the published distribution. Given two distributions d and d′, the KS-
distance between d and d′ is used to test the closeness between them and is
defined as: KS(d, d′) = maxi|CDFd(i)−CDFd′(i)|, where CDFd(i) is the value
of cumulative distribution function on node strength i from distribution d.
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We compare our proposed methods t-Sequence-aware-Hist and t-Density-
based-Hist, against two state-of-the-art methods NoiseFirst and StructrueFirst
for answering a given set of range queries. And we modify NoiseFirst and Struc-
trueFirst algorithms to publish node strength histogram under edge-DP.

We evaluate the approximation result on privacy budget ε ∈ [0.1, 2.0] in
Sect. 4.2, where each privacy budget ε is divide into ε1 = 0.8ε, ε2 = 0.1ε and ε3 =
0.1ε in our proposed approaches. All results published by exponential mechanism
are the averages from 50 runs. When partitioning the histogram, the t-Sequence-
aware-Hist runs 10 times for relieving the uncertainty of the random chosen of
initial cluster center.
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Fig. 1. The L1 error and KS distance of approaches on different datasets

4.2 Evaluating t-Sequence-aware-Hist and t-Density-based-Hist

Figure 1 compares the quality of the resulting node strength histograms of our
two proposed methods to those of variant of NoiseFirst and StructureFirst. The
upper half is L1 error and the lower half is KS distance.

The experiment results show that StructureFirst generally performs the
worst, followed by NoiseFirst. And our two proposed methods perform signifi-
cantly better than StructureFirst both in L1 error and KS distance. t-Sequence-
aware-Hist results in quite accurate node strength histograms, especially when
ε > 1. For the KS distance, we can see that t-Sequence-aware-Hist performs
almost identically with t-Density-based-Hist, and they both perform noticeably
better than StructureFirst and NoiseFirst on the four datasets.

The reason that t-Density-based-Hist performs not as well as t-Sequence-
aware-Hist in terms of some datsets is because density-based clustering is a
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greedy strategy that can only guarantee the local optimal. Meanwhile, sequence-
aware clustering is more accurate for the randomness is reduced by itera-
tion. Overall, both t-Sequence-aware-Hist and t-Density-based-Hist can achieve
advanced performance for publishing the node strength distribution under
edge-DP.
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Fig. 2. Comparison of weight bound and clustering components on different datasets

4.3 Introspective Analysis

In this section, we perform the introspective analysis, to understand how different
aspects of our approaches affect the utility.

In this analysis, we would like to know how the use of weight bound and aggre-
gation affect the performance of our approach. Figure 2 illustrates the result,
the upper half is L1 error and the lower half is KS distance. t-No-Clustering-
Hist restrict the upper bound of weight but does not use aggregation strategy.
Sequence-aware-Hist uses the Sequence-aware aggregation strategy without lim-
iting the weight bound. Density-based-Hist is similar to Sequence-aware-Hist.

From the results, we can see that the t-No-Clustering-Hist performs the worst
both in L1 error and KS distance, which indicates that the aggregation strategy
significantly impacts the accuracy. And for all the four datasets, t-Sequence-
aware-Hist and t-Density-based-Hist both outperform the Sequence-aware-Hist
and Density-based-Hist, demonstrating the effectiveness of restricting the bound
of edge weight.
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5 Related Work

DP on Graph Data. Applying differential privacy to the graph has been
studied extensively. Two concepts of differential privacy in graph data have been
defined: edge differential privacy [10,12,25,26] and node differential privacy [14,
15]. Nissim et al. [25] conducted the first differential privacy research into graph
data. They showed how to evaluate the number of triangles in a social network
with edge differential privacy and showed how to calibrate the noise for subgraph
counts accordingly. Hay et al. [12] translated the language of differential privacy
to the graph context, and gave the formal definitions of edge and node differential
privacy. It provided solutions to releasing the degree sequence of a sensitive
graph, and use some sophisticated post-process techniques to reduce noise. Zhang
et al. [10] claimed that the isomorphic graph could be used to generate accurate
query answers if one could find an isomorphic graph with proper statistical
properties that is similar to the original graph.

Histogram Publishing Under DP. Numerous recent studies [21,22,27–29]
have been studied to publish histogram under differential privacy. One promis-
ing line of research is [21,22,29] based on the idea of aggregation bins for more
accurate histogram. Xu et al. [21] proposed the NoiseFirst and StructureFirst
algorithms. NoiseFirst formed clusters by applying the non-private optimal his-
togram construction technique over a noisy histogram. StructureFirst used a cost
function based on L2 to solve a different optimization problem. DAWA [22] was
most similar to StructureFirst, and aimed to minimize the sum of errors caused
by the noise and errors caused by applying dynamic programming to select a
configuration. P-HP [29] used the exponential mechanism to recursively bisect
each interval into subintervals. Publishing node strength histogram under differ-
ential privacy has the challenge that the histogram is distributed very sparsely.
To address this problem, we set a upper bound of edge weights, and propose two
clustering strategies for aggregating the bins of histogram to achieve an accurate
publication.

6 Conclusion

In this paper, we discuss the necessity of node strength, and study how to publish
node strength histograms while satisfying edge-DP. We employ a transformation
method to restrict edge weight and limit the length of node strength histogram
on the t-bounded graph. Based on the transformation, we propose two cluster-
ing approaches, sequence-aware and density-based clustering, and experimentally
compare with existing studies for publishing node strength histogram. The exper-
imental results show that our proposed approaches have significant improvement
over the state-of-the-art methods. In the future, we plan to improve the effect
furthermore by using node-DP.
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Abstract. In this paper, we address the problem of mining time-
constrained sequential patterns under the differential privacy framework.
The mining of time-constrained sequential patterns from the sequence
dataset has been widely studied, in which the transition time between
adjacent items should not be too large to form frequent sequential pat-
terns. A wide spectrum of applications can greatly benefit from such
patterns, such as movement behavior analysis, targeted advertising, and
POI recommendation. Improper releasing and use of such patterns could
jeopardize the individually’s privacy, which motivates us to apply dif-
ferential privacy to mining such patterns. It is a challenging task due
to the inherent sequentiality and high complexity. Towards this end, we
propose a two-phase algorithm PrivTS, which consists of sample-based
filtering and count refining modules. The former takes advantage of an
improved sparse vector technique to retrieve a set of potentially frequent
sequential patterns. Utilizing this information, the latter computes their
noisy supports and detects the final frequent patterns. Extensive exper-
iments conducted on real-world datasets demonstrate that our approach
maintains high utility while providing privacy guarantees.

1 Introduction

Frequent sequential pattern mining (FSM) is a fundamental task in data mining.
Given a collection of input sequences, FSM aims to find all subsequences that
occur in the input sequences more frequently than a user-specified threshold.
Finding all sequential patterns usually returns overwhelming number of pat-
terns, which limits the utility of the detected patterns. Hence, the time elapsed
between adjacent items are often taken into account to obtain the frequent
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time-constrained sequential patterns [2,20], which can benefit a wide spectrum
of important practical applications, such as web usage analysis [2] and disease
diagnosis [20].

Motivation. Despite valuable insights the discovery of such frequent time-
constrained sequential patterns could potentially provide, if the data is sensitive,
releasing these frequent patterns may pose considerable threats to individual’s
privacy. In fact, the malicious adversaries may exploit these information for
nefarious purposes such as stalking, spamming, and inferring political/religious
affiliations or alternative lifestyles. To illustrate, let’s consider the following
example.

Example 1. Figure 1 shows a trajectory dataset D consisting of 5 users
{o1, o2, . . . , o5} and 3 places {p1, p2, p3}. Let the threshold σ = 3, and the max-
imum time gap constraint �t = 60. The sequential pattern p1 → p2 → p3
becomes frequent since it appears in the trajectories of o1, o2, and o4. Mean-
while, both transitions p1 → p2 and p2 → p3 occur in no more than 60 min. Such
a time-constrained sequential pattern clearly reveals a common behavior
that people visiting p1 and p2 would like to visit p3 within an hour. When an
adversary has all knowledge about D except the trajectory of o4, to mine fre-
quent patterns, he can derive that p1 → p2 → p3 is a pattern with support
2. Combining the released information, he can infer that p1 → p2 → p3 must
appear in the trajectory of o4. If this pattern is “school → hospital → hospi-
tal”, the adversary can infer that o4 may work at school and suffers from serious
health problem with high probability. This inference violates the privacy of o4.

Fig. 1. An example of a time-constrained sequence pattern p1 → p2 → p3(σ = 3,
�t = 60)

Differential privacy [11] has become one popular paradigm that can be used
to provide strong privacy guarantees. It ensures that the output of an algo-
rithm is insensitive to the change of any record. Only recently, several tech-
niques [4,27,28] have been proposed to mine FSM under this model. It would
seem attractive to adapt those techniques to address the problem of frequent
time-constrained sequential pattern mining. Unfortunately, they all have some
drawbacks. The technique proposed in [4] is only applicable to mining consec-
utive patterns. The state-of-the-art algorithm PFS 2 [27,28] fails to satisfy the
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specific requirements of mining frequent time-constrained sequential patterns
because: (i) The sequence shrinking strategy of PFS 2 could result in the loss of
some frequent patterns, or the violation of the time constraint. (ii) The candi-
date set generation based on the downward closure property [1] is only a subset
of real candidate set. To our best knowledge, none of existing work is able to
privately mine time-constrained sequential patterns.

Our solution. Motivated by the facts above, we propose a novel differen-
tially private time-constrained sequential pattern mining algorithm PrivTS.
We observe that, mining the sequential patterns directly from the data incurs
excessive noise due to the large number of generated candidate sequential pat-
terns. Therefore, we propose to use two phases to mine the patterns privately:
(i) Sample-based filtering. All potentially frequent time-constrained sequen-
tial patterns are identified at this stage. The algorithm does not compute the
accurate supports of the patterns, but only knows that their supports are prob-
ably above the threshold; (ii) Count refining. Using the information obtained
from the first phase, this phase computes the noisy support of each identified
sequential pattern, and discovers the final frequent patterns with privacy guar-
antees.

In the first phase, we observe that in real dataset the number of frequent
sequential patterns is much smaller than the number of candidate patterns.
Inspired by this, our PrivTS algorithm makes use of the advanced sparse vec-
tor technique [7,13] to effectively filter out unpromising candidate patterns. The
nice property of this technique is that the information disclosure affecting differ-
ential privacy occurs only for patterns above the threshold; negative answers do
not consume the privacy budget. Therefore, the final impact of the perturbation
noise is reduced significantly.

Our solution in the second phase is inspired by the power of the group-based
scheme [25], which renders the sensitivity on the new counts up to constant,
irrelevant to the maximum number of the original counts affected by a sequence.
We group the identified sequential patterns into disjoint groups, and set their
noisy counts as the averaging count in each group with adding noise. Unfortu-
nately, the determination of the group strategy is a challenge. To address this
issue, we leverage an effective grouping technique with low privacy cost based on
sampling. Grouping introduces the approximate error, which may considerably
balance off the benefits from the reduced Laplace noise, resulting in non-effective
for low sampling rate scenarios. To tackle this problem, a greedy-based counting
is applied.

Contributions. In designing our solution to the problem of privately frequent
time-constrained sequential patterns mining, our contributions can be summa-
rized as below:

(i) This is the first work to study the problem of differentially private frequent
time-constrained pattern mining.
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(ii) We propose an algorithm PrivTS consists of two phases: sample-based fil-
tering and count refining, which has high data utility while satisfying ε-
differential privacy.

(iii) Through formal privacy analysis, we show that our proposed algorithm guar-
antees ε-differential privacy.

(vi) Extensive experiments demonstrate that our algorithm can privately find
frequent time-constrained sequential patterns with high data utility.

2 Preliminaries

Let I = {L1, L2, . . . , L|I|} be the universe of items, where |I| is the size of
the universe. Formally, a sequence S of length |S| is an ordered list of items
S = L1 → L2 → . . . → L|S|, where ∀i ∈ [1, |S|], Li ∈ I. A sequence S is called
a k-sequence if |S| = k. Due to time continuity, the transition time between
two consecutive items should not too large. Below, we introduce the concepts of
T-sequence and containment.

Definition 1 (Time-constrained sequential pattern, T -sequence). A length-k

T -sequence S has the form Tk = L1
�t−−→ L2

�t−−→ . . .
�t−−→ Lk where �t is the

maximum transition time between any two consecutive items.

Definition 2 (Containment). Given an input sequence S ≤ (L1, t1)(L2, t2)

. . . (Ll, tl) and a Tk-sequence Tk = L1
�t−−→ L2

�t−−→ . . .
�t−−→ Lk(k ≤ l), S contains

Tk (denoted as Tk � S) if there exist integers 1 < w1 < w2 < . . . < wk ≤ l such
that: (1) ∀1 ≤ i ≤ k, Lwi

= Li; and (2) ∀1 ≤ i ≤ k − 1, 0 < twi+1 − twi
≤ �t.

A sequential dataset D of size |D| is composed of a multiset of sequences
D = {S1, S2, . . . , S|D|}. Each input sequence represents an individual’s record.
The support of a T -sequence is the number of input sequences containing T .
Given the user-specified minimum support threshold σ, a T -sequence is called
frequent if its support is no less than this threshold.

To ensure privacy protection, we require that mining frequent T -sequences
should be performed with an algorithm that satisfies ε-differential privacy, which
is defined based on the concept of neighboring datasets. Two datasets D and D′

are referred to as neighboring if we can obtain D′ from D by removing or adding
a sequence, donated by D Θ D′.

Definition 3 (ε-Differential Privacy, ε-DP). A randomized algorithm A is ε-
differential privacy if for any pair of neighboring datasets D and D′, and for any
subset of output S ⊆ Range(A),

Pr(A(D) ∈ S) ≤ eεPr(A(D′) ∈ S) (1)
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The most common mechanism for achieving DP is Laplace mechanism [12].
Given an analysis task with a numeric output f : D → R

d and a privacy
budget ε, the Laplace mechanism injects into f random Laplace noise of
scale Δf

ε , where Δf is called the sensitivity of the function f . In particular,
Δf = maxDΘD′ ‖ f(D) − f(D′) ‖1, where ‖ . ‖1 represents the L1 norm.

For an analysis task with a categorical output (e.g., an item), injecting ran-
dom noise no longer yields meaningful results. The exponential mechanism [18]
tackles this problem by performing random perturbations during the selection
of the output. More specifically, it draws a sample from the distribution on the
output domain R which assigns each possible output r ∈ R a probability mass
proportion to exp( εq(D,r)

2Δq ). Here, Δq is the sensitivity of the utility function
q(D, r), i.e., Δq = max∀r,DΘD′ |q(D, r) − q(D′, r)|. Intuitively, a high scoring
output r is exponentially more likely to be chosen.

In some cases, q(D, r) satisfies the condition that when the input dataset
is changed from D to D′, the changes of all quality values are one-directional,
i.e., ∀DΘD′ [(∃r1q(D, r1) < q(D′, r1)) → (∀r2q(D, r2) < q(D′, r2))]. Then one
can remove the factor of 1/2 in the exponent of exp( εq(D,r)

2Δq ) and return r with

probability proportional to exp( εq(D,r)
Δq ), instead of exp( εq(D,r)

2Δq ). This improves
the accuracy of results.

Two composition properties are extensively used to ensure the overall privacy,
known as sequential and parallel compositions.

Theorem 1 (Sequential Composition [19]). Let Ai, . . . ,Am be m algorithms,
each provides εi-DP. A sequential of algorithms Ai(D) over the dataset D pro-
vides (

∑
i εi)-DP.

Theorem 2 (Parallel Composition [19]). Let Ai, . . . ,Am be m algorithms, each
provides εi-DP. Then, a sequential of Ai(DSi) over disjoint subsets DSi of
dataset D provides (maxi εi)-DP.

Fig. 2. Overview of PrivTS

3 Overview of PrivTS

To privately mine frequent T -sequences, we present a two-phase algorithm
PrivTS. An overview of our algorithmic framework is illustrated in Fig. 2. In
the first phase, a sampled-based filter is utilized to mine potentially frequent



PrivTS 97

T -sequences in ascending order of length. At this stage, we focus on whether the
support of a T -sequence exceeds the threshold, rather than its accurate support.
In the second phase, we design a counting refiner to derive the noisy count of
each potentially frequent T -sequence and retrieve the final frequent results with
private guarantees.

Our strategy presents several advantages. First, the use of a sample-based
filter allows us to achieve high utility for mining potentially frequent sequen-
tial patterns. Second, the use of the sample-based filter helps us to significantly
reduce the space of computing noisy supports of the frequent patterns. In fact,
rather than considering the entire universe of patterns, we focus only on those
potentially frequent patterns. Third, we refine the count of all the mined poten-
tially frequent patterns, to derive their noisy supports. In this way, the sensitiv-
ity of the counting query can be controlled, further leading to a smaller amount
of perturbation noise in reporting their noisy supports. We introduce the two
phases in details in the subsequent two sections.

4 Phase 1: Sample-Based Filtering

In this section, we first introduce advanced sparse vector technique. Then, we
formally present the sample-based filter algorithm and its theoretical privacy
analysis. Table 1 summarizes some important notation.

Table 1. Summary of notation

Symbol Meaning

D/Ds Input dataset/sampled dataset

Q Query that ask for all considering pattern counts

Ck Candidate set of Tk-sequences

TSk/FSk Set of potentially frequent/frequent Tk-sequences

g/Qg Group strategy/Count query given g

o/og Result vector of Q/Qg on D

γmin Minimum sampling rate

TSs/TSd Set of TSi whose sampling rate is larger/smaller than γmin

|A|/ ˜A Size of A/ Noisy count of A

4.1 Sparse Vector Algorithm

The sparse vector algorithm (SVT) [7,13] was widely adopted to release κ count
queries that are above the given threshold σ. For a count query q, it outputs
either ⊥ (negative response) or � (positive response). This algorithm works in
two steps: (1) perturb the threshold σ by injecting Laplace noise Lap(2/ε) to get
the noisy threshold σ̃. (2) calculate the noisy count of each query q by injecting
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Laplace noise Lap(2κΔ/ε) and compares it with σ̃. Output ⊥ if q̃ < σ̃ and �
otherwise. Note that each query q has sensitivity bounded by Δ. Let K denote
the algorithm.

K(D) =
{

q(D) + Lap( 2κΔ
ε ) q(D) + Lap( 2κΔ

ε ) ≥ σ̃
⊥ otherwise (2)

The algorithm divides the remaining privacy budget 2
ε into κ count queries.

After outputting κ positive responses it halts. This technique guarantees that
privacy only degrades with (a) the maximum sensitivity of any one query, and (b)
the number of positive responses output by the algorithm. Hence, any number
of below threshold queries can be answered without compromising privacy. In
that case, the amount of injected noise is proportionate to the number of above
threshold queries, irrelevant to the number of all queries. This allows us to answer
the query more accurately.

4.2 Sample-Based Filtering

In general, the amount of noise required for counting frequent Tk-sequences is
proportionate to the number of candidate Tk-sequences. Despite this negative
results, in real datasets, the number of real frequent sequences is much smaller
than the number of candidate sequences. Thus, if we could filter unpromising
candidates, the amount of noise required by differential privacy can be signifi-
cantly reduced, which considerably improves the utility of the results. Intuitively,
the sample from within a statistical population can be used to estimate charac-
teristics of the whole population. Thus, for most T -sequences, it is sufficient to
estimate if they are frequent based on a small part of the dataset. In this way,
we can further filter the unpromising T -sequences.

To this end, we propose a sampled-based filter approach. Given the candi-
date Tk-sequences and a small sample dataset Dk randomly drawn from the
original datasets, the local supports of candidate Tk-sequences in the sample
dataset are used to estimate whether they are potentially frequent. Due to the
privacy requirement, we have to inject noise to the local support of candidate
Tk-sequences. To make estimation more accurately, an improved sparse vector
technique is leveraged.

Algorithm 1 shows the steps of our sample-based filtering approach, which
follows the general framework of the Apriori-based. It involves four main inputs:
D (the sequence dataset), σ (the threshold), εs (the privacy budget), and Δt
(the time constraint). The output of the algorithm are potentially frequent T -
sequences TS. More specifically, the algorithm starts by extracting some statistic
information, after which it performs the initialization (lines 1–2). The subse-
quent part of the algorithm consists of a number of iterations (lines 3–14). In
each iteration, it first generates the candidate Tk-sequences and leverage binary
estimation method to estimate the number of frequent Tk-sequences (lines 4–5).
Then, the algorithm uses the advanced SVT technique to discover frequent Tk-
sequences (lines 6–14). During this process, to make more accurate estimation,
the threshold for the sample dataset is relaxed (line 6).



PrivTS 99

Algorithm 1. Sample-based Filter Algorithm(D, εs, σ, Δt)

1 Lf ← compute max frequent sequence length(D, σ, Δt, ε1);
2 randomly partition datasets D = {D1, D2, ..., DLf };

3 for k from 1 to Lf do
4 generate the candidate Tk-sequences Ck;
5 ck ← binary estimation(Dk, Ck, ε2

2
);

6 σk = |Dk|
|D| × σ, σ̃k=σk+Lap( 1

εt
), count=0;

7 for Each candidate qi ∈ Ck do
8 vi = Lap( ck

εp
);

9 if (qi(Dk) + vi) ≥ σ̃ then
10 output ai = �;
11 TSk = TSk ∪ qi;
12 count=count+1, Abort if count≥ ck.

13 else
14 output ai = ⊥
15 TS = TS ∪ TSk;

4.3 Candidate Generating

During the process of mining frequent sequences, the downward closure prop-
erty [1] is extensively used for generating candidate sequences. It states that
a sequence is frequent iff all its subsequences are frequent. Thus, the can-
didate k-sequences are those sequences whose (k − 1)-subsequences are all
frequent. For mining frequent T -sequences, this property is no longer appli-
cable. This is because the temporal continuity constraint is not exerted on
any two items but only on two consecutive items. Thus, the candidate T -
sequences generated according to this property is only a subset of real can-
didate set. For example, suppose for a dataset D, its frequent T3-sequences are
TS3 = {L1 → L2 → L3, L2 → L3 → L1}. If the algorithm has identified
TS2 = {L1 → L2, L2 → L3, L3 → L1, L1 → L3}, by applying the downward
closure property, we can only obtain C3 = {L1 → L2 → L3}. As a result, the
frequent pattern L2 → L3 → L1 is lost. To address this problem, we propose a
modified downward closure property to generate candidate T -sequences, formu-
lated as below:

Modified Downward Closure Property: Assume that two frequent Tk−1-
sequences Tc1 = {Li1 → Li2 → . . . → Lik−1} and Tc2 = {Lj1 → Lj2 → . . . →
Ljk−1}, they can be used to generate candidate Tk-sequences Tc3 if ∀n ∈ [2, k−1],
Lin

= Ljn−1 or Ljn
= Lin−1 . If ∀n ∈ [2, k − 1] and Lin

= Ljn−1 , Tc3 = {Li1 →
Li2 → . . . → Lik−1 → Ljk−1}; else if Ljn

= Lin−1 , Tc3 = {Lj1 → Lj2 → . . . →
Ljk−1 → Lik−1}.

Lemma 1. Any frequent Tk-sequences must be in the candidate set Ck generated
by applying the modified downward closure property. Furthermore, the magnitude
of Ck is far smaller than that generated by enumeration.
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4.4 Parameter Settings

The Calculation of Lf . To estimate Lf , an exponential mechanism based app-
roach is proposed to select it from R = {1, 2, . . . , n}. The scoring function used
is q(D, i) = −|ζi(D) − σ|, where ζi(D) is the maximal support of Ti-sequences
in D. Since adding or removing a sequence affect the support of ζi(D) at most
by one, thus the sensitivity Δq = 1. Then, a sample r on R is drawn with prob-
ability proportion to exp(ε13q(D, r)). The main drawback for this approach is
the existence of long sequence, it causes a large R from which it has to select,
making the selections inaccurate.

In real world applications, the majority of the sequences in the dataset are
short and only few of them are very long [4]. Hence, the support of frequent
T -sequences are captured by most short sequences. Toward this end, we utilize a
heuristic way to determine the upper of n, np. Concretely, let αi be the number
of input sequences with length i. Starting from j = 1, we incrementally compute

the percentage p = 1 − (
np∑

j=1

αj)/|D| until p is less than σ/|D|. To guarantee

differential privacy, the noise Lap(1/ε11) and Lap(1/ε12) are injected into D
and each αj , respectively. After that, R becomes Rh = {1, 2, . . . , np}, which is
significantly smaller than itself.

The Estimation of ck. Given the candidate Ti-sequences, we need to estimate
the number of frequent Ti-sequences. To guarantee the result with high accuracy,
we utilize the binary estimation method [26,29]. It mainly leverages the idea of
binary search to reduce the amount of injected noise. It starts with obtaining
the noisy support of Ti-sequence with the |Ck|

2 -th largest support by injecting
noise Lap(�log2|Ck|�/(ε2/2)). If it is larger than σ, this means the candidate
Ti-sequences in the upper half are all above σ, so we only need to consider the
candidate Ti-sequences in the lower half in the next iteration, and vice versa.
This process continues until the number of candidate Ti-sequences with supports
larger than σ, ck, is determined.

The Allocation of εt and εp. In standard SVT, it uses half privacy budget
to derive the noisy threshold, and uses the remaining half to calculate the noisy
count of each query. However, it is observed that the ratio of these two parts
can be optimized to improve the accuracy of SVT. In Sample-based Filter, SVT
is used to determine potentially frequent T -sequences, i.e., we check if qi(Dk) +
Lap( ck

εp
) is larger than σk + Lap( 1

εt
). Then, the error of SVT can be expressed

as Error(SVT) = Lap( ck

εp
) − Lap( 1

εt
). To make this comparison as accurate as

possible, we want to minimize the variance of error, which is 2( c2k
ε2p

)+2( 1
εt

). When

εp + εt is fixed, it is minimized when εt : εp = 1

c
2/3
k

.
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4.5 Privacy Analysis of Sample-Based Filtering Approach

In this subsection, we give the privacy analysis of our sample-based filter algo-
rithm. Since the key step is our improved SVT, we first prove it satisfies ε2-
differential privacy.

Theorem 3. Our proposed improved SVT is ε2-DP, where εt + εp = ε/2.

Proof. Given any two neighboring datasets D and D′, such that D′ is obtained
by inserting a sequence into D, thus, qi(D) ≤ qi(D′) and qi(D′) − 1 ≤ qi(D) ≤
qi(D′) + 1. For any output vector a ∈ {a1, a2, . . . , al}l, let a� = {i : ai = �},
a⊥ = {i : ai = ⊥}, and ρ donate the binary estimation function. As shown
in [26], Pr(ρ(D) = c) ≤ e

ε2
2 Pr(ρ(D′) = c)). Then, for improved SVT, we have

P r[A(D) = a ]

=
∫ ∞

−∞

∫ ∞
−∞

P r(ρ(D) = c)P r(σ̃k = z)
∏
a ⊥

P r(qi(D) + vi < z)
∏
a �

P r(qi(D) + vi ≥ z) dz dc

=
∫ ∞

−∞
P r(ρ(D) = c)[

∫ ∞
−∞

P r(σ̃k = z − 1)
∏
a ⊥

P r(qi(D) + vi < z − 1)
∏
a �

P r(qi(D) + vi ≥ z − 1) dz] dc

≤
∫ ∞

−∞
P r(ρ(D) = c)[

∫ ∞
−∞

e
εt P r(σ̃k = z)

∏
a ⊥

P r(qi(D
′) − 1 + vi < z − 1)

∏
a �

P r(qi(D) + vi ≥ z − 1) dz] dc

≤
∫ ∞

−∞
P r(ρ(D) = c)[

∫ ∞
−∞

e
εt P r(σ̃k = z)

∏
a ⊥

P r(qi(D
′) + vi < z)

∏
a �

P r(qi(D
′) + vi ≥ z − 1) dz] dc

≤
∫ ∞

−∞
P r(ρ(D) = c)[

∫ ∞
−∞

e
εt P r(σ̃k = z)

∏
a ⊥

P r(qi(D
′) + vi < z)

∏
a �

e

εp
c P r(qi(D

′) + vi ≥ z) dz] dc

≤
∫ ∞

−∞
e

ε2
2 P r(ρ(D

′) = c)[e
εt+c× εp

c

∫ ∞
−∞

P r(σ̃k = z)
∏
a ⊥

P r(qi(D
′) + vi < z)

∏
a �

P r(qi(D
′) + vi ≥ z) dz] dc

= (e
ε2
2 +εt+c× εp

c )
∫ ∞

−∞
P r(ρ(D

′) = c)[
∫ ∞

−∞
P r(σ̃k = z)

∏
a ⊥

P r(qi(D
′) + vi < z)

∏
a �

P r(qi(D
′) + vi ≥ z) dz] dc

= e
ε2P r[A(D

′) = a ]

Theorem 4. Our proposed sample-based filtering is εs-DP, where εs = ε1 + ε2.

Proof. In our pre-processing phase, Lf is computed. Since adding (removing)
a sequence only affects |D| by 1, the sensitivity of computing |D| is 1. Thus,
injecting Laplace noise Lap(1/ε11) in this computation satisfies ε11-DP. Similarly,
the sensitivity of computing αi (i.e., the number of i-sequences) is 1, then adding
Laplace noise Lap(1/ε12) satisfies ε12-DP. Besides, since q(D, i) is one-directional
and adding (removing) a sequence only affect Δq at most by one, selecting r
with probability proportion to exp(ε13q(D, r)) satisfies ε13-DP according to the
exponential mechanism. Based on sequential composition, computing Lf satisfies
(ε11 + ε12 + ε13 = ε1)-DP.

Since all sample datasets are disjoint, due to the parallel composition prop-
erty, the privacy budget used in computing potentially frequent Ti-sequences
do not need to accumulate. In summary, based on the sequential composition
property, we can conclude that our sample-based filtering algorithm satisfies
ε1 + ε2 = εs-DP.
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5 Phase 2: Count Refining

After privately identifying potentially frequent T -sequences, we now discuss how
to compute their noisy supports. A simple method is to inject independent
Laplace noise in each potentially frequent T -sequence support before releasing
it. However, the noise scale is proportionate to the number of identified poten-
tially frequent T -sequences. If this value is large, the support of each frequent
T -sequence is perturbed by a large amount of noise, which reduces the accuracy
of the noisy supports.

One of popular schemes on static histogram publication is grouping
scheme [25]. The benefit of this scheme is that grouping the bins of a histogram
with similar counts can enjoy Laplace noise reduction proportional to the sizes
of the groups. Specifically, it decomposes the histogram into disjoint groups, and
averages the count in each group. Subsequently, it injects noise to each group
average, and sets the result as the new count of every bin in the group. Thus,
the Laplace noise injected to each unit-length range inside a group covering b
such ranges has a scale of 1/b · ε, compares to 1/ε scale.

Motivated by the shortcoming of simple method and the power of grouping,
Fig. 3 sketches our refine counting approach for computing the noisy supports
for all T -sequences in TS (TS = {TS1, TS2, . . . , TSlmax}). It consists of two
novel modules: a sampling rate calculation module and a counting publication
module. The former calculate the sampling rate to learn the underly dataset’s
feature, based on which takes proper publishing strategies to improve the utility.

In more detail, the sampling rate γi of each TSi is calculated as γi = (e
εn
2 −

1)/(e
εn
2 ×|TSi| − 1), where εn = εr/lmax. If γi ≥ γmin, the sampled dataset is

considered representative enough to predict the group strategy of the original
dataset, thus enabling to enjoy noise reduction by group-based counting; In
contrast, if γi < γmin, the sampled dataset may not be representative. This
fact may considerably balance off the benefits from Laplace noise reduction,
sometimes even completely negating them. To remedy this deficiency, we propose
a greedy-based counting method. In the sequel, we introduce the details of these
methods.

Fig. 3. Internal mechanics of count refining
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5.1 Grouping-Based Counting

As discussed above, grouping-based counting could necessitate low Laplace noise
for guaranteeing differential privacy. However, averaging introduces a new source
of error, approximate error (i.e., the error that caused by replacing the true
supports by the average support of each group). If the grouping strategy is
not designed carefully, T -sequences with considerably different supports may
be grouped together. As a result, their averaged supports (prior to Laplace
noise injection) will greatly deviate from their original ones. Ideally, we must
group together identified Ti-sequences with similar supports, in order to reduce
the approximate error. However, determining the optimal group strategy is a
challenge.

To tackle this problem, we present an effective grouping technique with low
privacy cost that is based on sampling. In the context of differential privacy,
previous research [16] has indicated the amplification effect of sampling on the
privacy budget, which is formalized in Lemma2. This lemma suggests that if
the sample generated is representative (i.e., the statistics obtained over it are
approximately the same as those of the original data), it is possible to obtain
more accurate group results over the sample by taking advantage of reduced
Laplace noise.

Lemma 2. Let M be a mechanism that satisfies ε-differential privacy. Let Ms

be another algorithm that first samples each record independently in its input
dataset with probability γ, and then applies M on the sample dataset. Ms satisfies
ln(1 + γ(eε − 1))-differential privacy.

Algorithm 2. Group Count(D, TSi, �t, εn, σ)

1 Ds ← sampling D with rate γi = (e
εn
2 −1)

(e
εn
2 ×|T Si|−1)

, d = |TSi|;
2 õs = Q(Ds)+ < Lap( 2

εn
) >d;

3 sort them based on õs;
4 estimate õ = os

γi
, and compute the grouping g using õ;

5 o = Q(D) and compute og using g and õ;

6 compute õg = og+ < Lap( 2|g|
εn

) >dg ;

7 recompute õ using g and õg;
8 select FSi using õ and σ;

Algorithm 2 describes the main process of our group-based counting method.
For each TSi, the first step is to obtain the sample dataset Ds with sampling rate

γi = (e
εn
2 −1)

(e
εn
2 ×|T Si|−1)

(line 1). Then, the algorithm derives the local support of each

Ti-sequence in TSi, and injects noise Lap(2/εn) to produce local noisy support
(line 2). Next, it sorts these Ti-sequences according to their local noisy values,
and compute the grouping strategy g (lines 3–4). Specifically, g is computed as
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follows: it estimates the true supports of these Ti-sequences as õ = os

γi
, after

which it employs the V-Optimal algorithm [14] to derive the group strategy g.
Subsequently, the algorithm adds reduced Laplace noise Lap(2|g|

εn
) to each group

average and sets the noisy average result as the final support of each identified Ti-
sequence in the group (lines 5–7). At last, the algorithm selects the Ti-sequence
with noisy support larger than σ as frequent (line 8).

5.2 Greedy-Based Counting

In our group-based counting, the sampling rate γi decreases exponentially with
the sensitivity |TSi|, potentially yielding a very small sample for larger |TSi|.
Consequently, it inflicts an amount of approximate error, which greatly destroys
the utility of results. The greedy-based counting method presented below tackles
this problem. Our solution is based on the following observation: for Ti-sequences
with high sensitivity, merging them with others can contribute to incur smaller
noise; In contrast, computing Ti-sequences with low sensitivity separately intro-
duces less noise. To demonstrate this, we see the following example. Suppose
TS = {TS1, TS2, TS3, TS4} where |TS1| = 15, |TS2| = 28, |TS3| = 9, and
|TS4| = 8. Due to the existence of long sequence, the sensitivity of computing
the support of Ti-sequences (1 ≤ i ≤ 4) is |TSi|. If we compute these Ti-sequences
together, then the error variance of adding Laplace noise is 2× (60/4εn)2. While
if we compute each TSi by separately, the error variances of adding Laplace
noise are 2 × (15/εn)2, 2 × (28/εn)2, 2 × (9/εn)2 and 2 × (8/εn)2. Obviously,
computing TS3 and TS4 separately incurs less noise, compared to merging them
with others. In contrast, computing TS2 shows the opposite trend.

In real world, we observed that the counting of short T -sequences are more
larger, which is more resistant to noise than long T -sequences. Furthermore,
the number of frequent short T -sequences is huge, dominating the whole per-
formance. Unfortunately, computing noisy support of these short T -sequences
usually incurs high sensitivity. Motivated by these facts, the goal of our greedy
counting method is two-fold: (1) merging the support computation of short Ti-
sequences with different length to improve the performance. (2) keeping the
support computation of long Ti-sequences individually to reduce the injected
noise, further making more accurate estimation.

The detailed description of our greedy counting method is shown in Algo-
rithm 3. Firstly, the algorithm distinguish the T -sequences that required to com-
pute separately with those that need to merge (lines 1–2). In the following, it
runs a series of iterations. At each iteration, it selects two T -sequence set with
the largest error reduction to merge until no error reduction by merging (lines
3–10). Finally, it perturb each T -sequence set by injecting Laplace noise(lines
11–13).

5.3 Privacy Analysis of Count Refining Approach

In what follows, we establish the privacy guarantees of our group-based counting
and refine counting approach.



PrivTS 105

Algorithm 3. Greedy Count(D, TSd, �t, εn, σ)

1 nd = |TSd| and Δtotal =
∑

TSi∈TSd

|TSi|;

2 TSsep = {TSi| 2Δ2
total

n2
d

×ε2n
≥ 2|TSi|2

ε2n
}, TStotal = TSd − TSsep;

3 while (|TStotal| ≥ 2) do
4 for TSI , TSJ(I 
= J) in TStotal do
5 TSm = TSI ∪ TSJ , nm = |{TSi|TSi ∈ TSm}|, Δm =

∑

TSi∈TSm

|TSi|;

6 estimate inc = |TSI | × ( 2|TSI |2
n2

I
ε2n

− 2Δ2
m

n2
mε2n

) + |TSJ | × ( 2|TSJ |2
ε2n

− 2Δ2
m

n2
mε2n

) ;

7 if maximum inc ≤ 0 then
8 break;
9 else

10 merge TSI , TSJ with the largest inc, and update TStotal;

11 for each TSI in TSseq ∪ TStotal do
12 nm = |{TSi|TSi ∈ TSI}|, Δm =

∑

TSi∈TSI

|TSi|, εm = Δm × εn;

13 perturb each T -sequence in TSI by injecting Laplace noise Lap(Δm/εm);

Theorem 5. Our group-based counting method is εn-DP.

Proof. Let M : D → O donate the group-based counting mechanism, G is
the module that calculates the grouping strategy g, and Mg be the mechanism
that return õg, which is the result of Qg(D) perturbed with noise Lap(2|g|/εn).
Then, in the view of an adversary, it holds that Pr(M(D) = õ) = Pr(Mg(D) =
õg) · Pr(G (D) = g).

Let mgi
be the number that a sequence can affect the supports of the group

gi, and recall that a sequence can affect the supports of Ti-sequences by at most
|TSi|, thus, the sensitivity �Qg = mg1

|g1| + mg2
|g2| + . . . +

mg|g|
|g|g|| ≤ |g|. Then, Mg

injects noise Lap( 2|g|
εn

) satisfies εn

2 -differential privacy according to the Laplace
mechanism, i.e., Pr(Mg(D) = õg) ≤ εn

2 Pr(Mg(D′) = õg). In addition, g is
derived from the sample dataset. If injecting noise Lap(2/εn) on D, it satis-
fies (|Ti|/(2/εn))-differential privacy. Based on Lemma 2, injecting this noise on

Ds, it achieves (ln(1 + (e
εn
2 −1)

(e
εn
2 ×|T Si|−1)

(e
|Ti|
2/εn − 1)) = εn

2 )-differential privacy, i.e.,

Pr(G (D) = g) ≤ εn

2 Pr(G (D′) = g).
To sum up, Pr(M(D) = õ) = Pr(Mg(D) = õg) · Pr(G (D) = g) ≤ εn

2 ·
Pr(Mg(D′) = õg) · εn

2 Pr(G (D′) = g) = eεnPr(Mg(D′) = õg) · Pr(G (D′) = g) =
eεn · Pr(M(D′) = õ), which completes the proof.

In the following, we prove that the refine counting algorithm overall guaran-
tees εr-differential privacy.

Theorem 6. Our proposed count refining satisfies εr-DP.

Proof. In greedy-based counting method, the only step involves D is deriving
support count (lines 11–13). Since a sequence can affect the support of TSI by
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at most Δm, adding noise Lap(Δm/εm) in this step satisfies εm-differential pri-
vacy. Besides, our refine counting approach consists of group-based counting and
greedy-based counting two parts. Therefore, due to the sequential composition
theorem, it gives εn × |TSs| +

∑
TSI∈TSseq∪TStotal

εm = (|TSs| + |TSd|) × εn =
lmax × εn = εr-DP.

6 Experiments

In this section, we evaluate the performance of our proposed PrivTS algorithm
through extensive experiments. All programs are implemented on a machine
with CPU Inter(R) Core(TM)i7–2600, memory 8.00 GB, frequency 3.40 GHz,
hard disk 500 GB, using C++ language.

6.1 Experimental Setup

(1) Datasets. Our experiments are based on two publicly available real
datasets1. Since the original data in dataset MSNBC appears as non-time-series,
we attached the timestamps to each sequence by randomly. A summary of these
two datasets is reported in Table 2.

Table 2. Real Dataset Parameters

Name of Dataset Sequences Items Max length Average length

MSNBC 989818 17 14975 4.7

HOUSE POWER 40691 21 50 50

(2) Algorithms. We evaluate the following algorithms. (a) PrivTS : The algo-
rithm is our proposed solution for mining frequent T -sequences with ε-differential
privacy guarantee. (b) Prefix : It is a differentially private sequence dataset
publishing algorithm proposed. More concretely, prefix uses noisy prefix tree
(Sect. 4.4 in [6]) to publish sequence data for mining T -sequences. In PrivTS, the
privacy budget ε is allocated as follows: ε11 = 0.025ε, ε12 = 0.025ε, ε13 = 0.05ε,
ε2 = 0.25ε, εr = 0.65ε, and γmin is determined by the sample size formula of
simple random sampling. Besides, in these experiments, the relative threshold is
used. As both algorithms involve randomization, we run each algorithm several
times and report its average results.

(3)Metrics. The utility metrics in these experiments are F-score [29] and Rel-
ative Error (RE) [17]. F-score is combination of precision and recall for the
mined T -sequences, and RE is used to measure the error with respect to the
actual supports.
1 http://archive.ics.uci.edu/ml/datasets.

http://archive.ics.uci.edu/ml/datasets
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6.2 Experimental Results

In this subsection, we first compare the effectiveness of PrivTS and Prefix. Then,
we evaluate the accuracy of our proposed refine counting approach.

Fig. 4. Effectiveness comparison of PrivTS and Prefix under σ

Varying σ. Figure 4 shows the effect of σ on the performance of two algorithms.
It can be observed that PrivTS substantially outperforms Prefix. This can be
explained by the fact: Prefix directly deletes items exceeding the limit, which
lose much information. In contrast, PrivTS does not limit the length of input
sequence, which effectively preserves the support information. Besides, Prefix
obtains good performance in MSNBC while not producing reasonable results in
House Power. One main reason for this phenomenon is prefix makes use of the
prefixes of input sequences, usually less than 20 items, to construct a prefix tree.
For House Power, the average length of input sequences is long, the prefix tree
cannot preserve enough frequency information, which inevitably leads to poor
performance. Since Prefix cannot produce reasonable results in House Power, we
do not compare them on this dataset in the following experiments.

Varying Δt. Figure 5(a) and (b) illustrate the performance of the two algorithms
with different Δt. From the results, it is clearly that the performance of these two
algorithms is improved in terms of F-Score and RE. This is intuitive as a larger
Δt imposes a weaker constraint on the maximum transition time between any
two consecutive items, thus T -sequences tend to gain larger support. Further, a
larger support can resist the effect of added noise, which can improve the utility
of the results.

Varying ε. Figure 5(c) and (d) show the performance of the two algorithms as
ε varies. Generally, PrivTS consistently gains better performance at the same
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level of privacy. In addition, larger ε lead to higher F-score and lower RE. This
conforms to the theoretical analysis that a larger ε results in less noise and
therefore a more accurate result.

Effect of Refine Counting. We also study the effect of our refine counting
approach. We compare PrivTS to a naive algorithm which directly perturbs
the support of each identified frequent T -sequence. Figure 5(e) and (f) show
the accuracy of the noisy supports is significantly improved by using our refine
counting approach.

Fig. 5. Effect of different parameters on PrivTS and Prefix

7 Related Work

Nowadays, privacy-preserving has been an active research in many fields, such as
spatial crowdsourcing [9,10,23,24], regression analysis [30], and frequent pattern
mining. More broadly, previous differentially private frequent pattern mining
studies can be divided into three groups according to the type of pattern being
mined. The topic most related to ours is differentially private frequent sequence
mining.

Sequence Mining. Bonomi and Xiong [4] propose a two-phase differentially
private algorithm for mining consecutive item sequences. Subsequently, Xu et
al. [27,28] propose the PFS2 algorithm to mine general sequences and gen-
eral gap-constrained sequences, regardless of whether they are consecutively.
It mainly leverages a sampling based pruning technique to effectively prune the
unpromising candidate sequences, further reducing the amount of added noise
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to improve the accuracy of the mining results. Recently, Cheng et al. [8] propose
DP-MFSM for finding maximal frequent sequences under differential privacy.
However, due to the time constraint of the T -sequences, these approaches are
not suitable in our setting.

Several studies have been proposed to tackle the issue of publishing sequence
dataset under differential privacy. Chen et al. propose two algorithms to release
a sanitized dataset from which frequent sequential patterns can be mined. They
are based on prefix tree [6] and variable length n-gram model [5]. These two
studies differ from ours lies in that they focus on the publication of sequence
dataset for mining frequent sequences, while our work aims at the release of
frequent sequences.

Itemset Mining and Graph Mining. Bhaskar et al. [3] firstly develop two
differentially private FIM algorithms, which are based on Laplace mechanism
and exponential mechanism respectively. Subsequently, Li et al. [17] propose
PrivBasis which projects the high dimensional dataset onto lower dimensions to
meet the challenge of high dimensionality. Zeng et al. [29] propose SmartTrunc
to deal with large noise caused by the existence of long transactions. Besides, Lee
and Clifton [15] propose utilizing a generalized SVT to identify frequent itemsets.
Unfortunately, it fails to satisfy differential privacy [7]. After that, a differentially
private FIM algorithm based on FP-growth algorithm is proposed [22]. However,
due to inherent difference between the item and the sequence, these algorithms
are not applicable for our problem.

Mining frequent graph patterns under differential privacy was first proposed
in [21]. In this work, both frequent graph pattern mining and the privacy guaran-
tee are unified into a Markov Chain Monte Carlo sampling framework. However,
it only achieves a relaxed differential privacy. In contrast, Xu et al. [26] propose a
novel algorithm to address the issue of frequent graph mining under the rigorous
differential privacy.

8 Conclusions

In this paper, we presented an efficient differentially private algorithm PrivTS
for frequent time-constrained sequential pattern mining. It is a two-phase algo-
rithm, which consists of sample-based filtering and count refining modules. At
the first stage, the former takes advantage of an improved sparse vector tech-
nique to retrieve a set of potentially frequent sequential patterns. Utilizing this
information, at the second stage, the latter computes their noisy supports and
detects the final frequent patterns. Extensive experiment evaluations show the
effectiveness of our proposed algorithms on large-scale real datasets.

Acknowledgments. This research was partially supported by the National Natu-
ral Science Foundation of China under Grant Nos. 61572119, 61622202, 61732003,
61729201 and U1401256, and the Fundamental Research Funds for the Central Uni-
versities under No. N150402005.
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Abstract. With the rapid development of cloud computing paradigm,
data owners have the opportunity to outsource their databases and man-
agement tasks to the cloud. Due to the privacy concerns, it is required
for them to encrypt the databases before outsourcing. However, there
is no existing techniques handling range queries in a fully secure way.
Therefore, in this paper we focus exactly on secure processing of range
queries over outsourced encrypted databases. To efficiently process secure
range queries, the extraordinarily challenging task is how to perform fully
secure range queries over encrypted data without the cloud ever decrypt-
ing the data. To address the challenge, we first propose a basic secure
range queries algorithm which is not absolutely secure (i.e., leaking the
privacy of access patterns and path patterns). To meet a better security,
we present a fully secure algorithm that preserves the privacy of the data,
query, result, access patterns and path patterns. At last, we empirically
analyze and conduct a comprehensive performance evaluation using real
dataset to validate our ideas and the proposed secure algorithms.

Keywords: Database outsourcing · Encrypted index
Secure range query

1 Introduction

With the rapid development of cloud computing paradigm, such as Amazon
EC2, Google AppEngine, and Microsoft Azure, it is a promising choice for data
owners to outsource their databases and management tasks to the cloud due
to their inefficiently calculative capacity. Moreover, the databases outsourced to
the cloud can provide high availability and flexibility at a relatively low cost.
However, the cloud can access the original data directly without supervision.
It easily leads to the leakage of sensitive data, e.g., user’s location or financial
records are exposed to the cloud completely. Such data leakage may cause that
the data owner and client could not trust the cloud completely.
c© Springer International Publishing AG, part of Springer Nature 2018
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A straightforward approach to address the above secure issue is to encrypt
the databases before outsourcing to the cloud, which can guarantee the data
confidentiality [1]. In addition, in order to preserve the user’s query privacy, it is
essential to encrypt the query with the same cryptosystem before sending to the
cloud [1]. Moreover, during the query processing period, through analyzing the
access patterns [2] and path patterns [12], the cloud can infer some useful infor-
mation about the real data though the data and query are encrypted. Therefore,
to perform fully secure queries, we aim to guarantee the five key factors: (1) the
confidentiality of the real data in database; (2) the confidentiality of the query;
(3) the confidentiality of the result; (4) the confidentiality of the access patterns
corresponding to the query; (5) the confidentiality of the path patterns.

In real life, range query is one of the most common query types which is
widely used in many areas. However, the above privacy issue is inevitable in range
queries. A typical example is finding all the banks around financial center of New
York within a rectangle range. In this example, the information corresponding
to the rectangle range and banks are both involved in privacy. Over the years,
a lot of research works have been studied to address the privacy issue for range
queries. According to the literatures on how to tackle the privacy, these works can
be summarized as Table 1. However, these works have weak privacy protection,
especially leaking the access patterns privacy or path patterns privacy to the
cloud. In addition, the approaches in [5,6,9,10,13] have the false positive rate
problem (i.e., negative records that are returned as positive).

Table 1. Comparison of four privacy-preserving types with competing methods

Type Hore [5,6] Shi [8] Wang [9] Chi [7] Chi [10] Wang [11] Wang [12] Li [13] Kim [14]

Data
√ √ √ √ √ √ √ √ √

Query
√ × √ √ √ √ × √ √

Result × × × × × × √ × √

Access patterns × × × × × × × × √

Path patterns - × × × × × × × ×

Along this direction, a major challenge faced in secure range queries is how
to design a fully secure and efficient algorithm over the encrypted data. In order
to achieve this, we propose the secure range query algorithms on an encrypted
R-tree by utilizing a paillier cryptosystem [15]. Firstly, we design a set of basic
secure operations to develop a basic secure range queries algorithm, while ignor-
ing the privacy of access patterns and path patterns. To address the omissive
privacy, we further propose a set of fully secure operations and two obfuscations
for oblivious traversal, which guarantee the confidentiality of the access patterns
and path patterns scenarios, and can also be used as stand-alone building blocks
for other applications.
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Our main contributions are summarized as follows:

– This is the first work to address the problem of fully secure range query
processing with regards to the confidentiality of the data, query, result, access
patterns and path patterns.

– This is the first effort of applying encrypted R-tree by using paillier cryp-
tosystem for fully secure range queries.

– We propose a basic secure range query algorithm which can support range
queries over encrypted R-tree in a not absolutely secure but efficient way.

– To provide a better security, we propose a fully secure range queries algo-
rithm that does not reveal any privacy to the cloud by employing the secure
oblivious traversal.

– We perform extensive experiments on both real and synthetic datasets, which
demonstrate efficiency and scalability of our proposed solutions.

The rest of the paper is organized as follows. We introduce the preliminaries
and problem definition in Sect. 2. Sections 3 and 4 show the process of our pro-
posed algorithms. The experimental evaluation results are shown in Sect. 5. We
give an overview of related work in Sect. 6. Section 7 concludes our paper.

2 Preliminaries and Problem Definition

In this section, we firstly define the system framework and security model which
are used for implementing and evaluating the secure algorithms, and then intro-
duce the cryptosystem used in our study. Finally, we formalize our privacy pre-
serving problem of secure range queries.

2.1 System Framework

Figure 1 shows the general system framework. It mainly consists of four compo-
nents: Data Owner, Service Cloud, Client and Certificate Authority. Specifically,
the framework works as follows.

• Step 1. Certificate authority first allocates the public key pk and secret key
sk of the public-key cryptosystem to different parties.

• Step 2. Before outsourcing the database to the cloud, the data owner uses pk
to encrypt the database and sends the encrypted index Epk(I) (e.g., encrypted
R-tree) to cloud C1, where Epk denotes the encryption function.

• Step 3. Considering an authority client, in order to protect query privacy, the
data owner utilizes the public key pk to encrypt the query Q (i.e., Epk(Q)),
and sends the request to cloud C1.

• Step 4. Service cloud is composed of two different cloud servers, denoted by
C1 and C2. Between them, the proposed algorithms are performed in a not-
colluding and semi-honest way which is widely used in related work [1,3,4].
After the execution of the searching algorithms, both of them return partial
query results which need to be integrated further to form the final results on
the client. It is worthy noting that C1 only possesses the public key pk, and
C2 possesses both public key pk and secret key sk.
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Fig. 1. System framework

2.2 Security Model

Adversary Model: There mainly exist two types of adversaries: semi-honest
and malicious[4]. In semi-honest model, each participant explicitly and correctly
implements the secure protocol specification, but intends to obtain the additional
information of intermediate results between the corrupted participants, and uses
them to analyze the transcript of messages. In the malicious model, the adversary
can violate the protocol specification arbitrarily, but in practice, it is inefficient to
be employed. In this paper, we adopt the semi-honest adversary model because
it is a widely used model [1,3,4] and it can guarantee strong security and high
efficiency for designing secure operations.

Privacy Specification: In our study, we propose a novel secure range queries
over encrypted data, which attempts to protect the privacy of data and query as
well as the result. Specifically, during the entire process, the proposed algorithms
should achieve the following requirements.

• Data Privacy. The cloud servers just have the encrypted data or do not
know the exact data.

• Query Privacy. The cloud servers can know nothing about user’s query Q,
and can infer nothing about user’s query Q by intermediate results.

• Result Privacy. From the user side, no information other than the query
result should be revealed to user; From the side of cloud servers, the exact
query result should not be revealed to them.

• Access Patterns Privacy. Access patterns refer to the data corresponding
to the user’s query Q. For the cloud servers, they know nothing about which
exact data matches the user’s query Q.

• Path Patterns Privacy. The original traversal path should not be exposed
to the cloud servers while searching over the index.
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2.3 Cryptographic Building Blocks

Paillier Cryptosystem. Paillier cryptosystem [15] is a probabilistic asym-
metric algorithm for public key cryptography. A notable feature of the paillier
cryptosystem is its homomorphic properties along with its non-deterministic
encryption. The properties of paillier cryptosystem are described as follows.

• Homomorphic addition of plaintexts.

Dsk(Epk(a) × Epk(b)) mod N2 = a + b mod N2

Dsk(Epk(a))b mod N2 = a × b mod N2

where a and b ∈ ZN are plaintexts for encryption, respectively, and N is a
product of two large prime numbers. Also, let Epk be the encryption function
with public key pk, and Dsk be decryption function with secret key sk.

• Semantic security. Given a set of ciphertexts, the adversary can deduce
nothing about the plaintexts [1].

Paillier-Based Encrypted R-Tree. In this paper, we construct an encrypted
R-tree by employing the paillier cryptosystem. In the encrypted R-tree, for the
non-leaf node, we only encrypt the node’s minimum boundary rectangle (MBR);
while for the leaf node, we encrypt the node’s MBR and all points located in
this leaf node. As shown in Fig. 2, the encrypted MBRs or points are dark.
By padding with dummy entries, both non-leaf and leaf nodes have the same
number of entries. In particular, each point in leaf nodes owns an encrypted sign
bit Epk(f ). If f is 0, it represents the point is a real data; otherwise, the point
is a dummy data.

f
a b

g

h

c
d

e
N3

N4

N5

N6

N1

N2

Epk(.)

a e b f c g d h

N1 N2

N3 N4 N5 N6

root

MBRN1 MBRN2

MBRN6MBRN3

Fig. 2. Paillier-based Encrypted R-tree

2.4 Problem Definition

Definition 1 (Secure Range Query). Consider an encrypted dataset
D∗(d) = {Epk(pd1), . . . , Epk(pdn)} where n represents the dataset size and d
represents the dimension size, and an encrypted query range Epk(Rd) =
{Epk(R1

Min), . . . , Epk(Rd
Min)} × {Epk(R1

Max), . . . , Epk(Rd
Max)} where Rk

Min and
Rk

Max represent the minimum and maximum of Rd in kth dimension, respec-
tively. The secure range query retrieves all points covered by query range Epk(Rd)
from D∗(d) without revealing the privacy of data, query, result, access patterns
as well as path patterns.
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In order to address this problem, our goal is to design a secure algorithm
which can make the two cloud servers cooperate mutually so that the secure
range query processing can be implemented.

3 Basic Secure Range Queries Algorithm

In this section, we propose a basic secure range queries (SRQb) algorithm,
including basic secure node intersection operation and basic secure intermediate
value operation, to support secure range queries.

3.1 Basic Secure Node Intersection Operation

As we know, since the node intersection operation is an inevitable step for the
traversal over the tree-based structure, we devise a basic secure node intersection
(SNIb) operation. It needs to check whether the query region Epk(Rd) intersects
with the node Epk(Nd) (i.e., MBR in R-tree), where d denotes the domain size
of dimension. Assume C1 with Epk(Rd) and Epk(Nd).

Nk
min Nk

minNk
max Nk

max

Rk
min Rk

minRk
max Rk

max

1 2

Nk
min Nk

max or Nk
min Nk

max

Rk
min Rk

max

3

Fig. 3. Example of the node intersection in one-dimension

As shown in Fig. 3, the node intersection consists of the following three situa-
tions in each dimension: 1© the segment [Epk(Rk

Min), Epk(Rk
Max)] partially inter-

sects with the segment range [Epk(Nk
Min), Epk(Nk

Max)]; 2© the segment range
[Epk(Nk

Min), Epk(Nk
Max)] is surrounded by [Epk(Rk

Min), Epk(Rk
Max)]; 3© the seg-

ment range [Epk(Rk
Min), Epk(Rk

Max)] is surrounded by [Epk(Nk
Min), Epk(Nk

Max)].
In order to sufficiently check whether the node intersection is true, we only dis-
cuss the SNIb operation according to the former two situations because if the
situation 1© is not satisfied, the situation 3© is not satisfied surely; and if the
situation 1© is satisfied, no matter whether the situation 3© is satisfied, the node
intersection is true. In detail, for situation 1©, it needs to check whether at least
one endpoint of [Epk(Rk

Min), Epk(Rk
Max)] lies in the segment range [Epk(Nk

Min),
Epk(Nk

Max)]. If it does, SNIb assigns 0 to Γ k; otherwise, it continues to per-
form the next stage. For situation 2©, it only needs to check whether Epk(Nk

Min)
or Epk(Nk

Max) lies in the segment range [Epk(Rk
Min), Epk(Rk

Max)]. If it does,
SNIb assigns 0 to Γ k; otherwise, SNIb assigns 1 to Γ k. At last, the SNIb returns
Γ = Γ

∨
Γ k, for 1 ≤ k ≤ d, where the initial value of Γ is 0. Similarly, we can

define the basic secure point intersection operation as the way of SNIb, denoted
as SPIb. C1 only needs to check whether this point Epk(pd) is covered by the
query region Epk(Rd) in each dimension.
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In the process of SNIb or SPIb, the most important part is how to check
whether Epk(Rk

Min)/Epk(Rk
Max) lies in the range [Epk(Nk

Min), Epk(Nk
Max)] or

Epk(NMin)k/Epk(Nk
Max) lies in the range [Epk(Rk

Min), Epk(Rk
Max)]. To do this,

we propose a basic secure intermediate value operation in Sect. 3.2.

3.2 Basic Secure Intermediate Value Operation

We devise the basic secure intermediate value operation, called SIVb, which is
used to estimate whether the value of Epk(b) is between Epk(a) and Epk(c) (a,
b, c ∈ ZN ) in a loosely secure way, but more efficient. Consider C1 with Epk(a),
Epk(b), and Epk(c), and C2 with sk. Before elaborating SIVb, we first show an
observation below.

Observation 1. Given any three numbers a, b, c ∈ ZN , let d1, d2, d3 be the
distances between a and b, a and c, and b and c, respectively. We have b ∈ [a, c]
iff d2 = d1 + d3, as shown in Fig. 4. Similarly, we have b ∈ [a, c] iff |a − c| =
|a − b| + |b − c|.

0 Na b c

d1 d3

d2

Fig. 4. Example of the SIVb operation

Based on observation 1, initially, C1 and C2 need to compute the difference
value of (c − a), (c − b), and (b − a) in the ciphertext domain. Here C1 assigns
Epk(|c − a|) and Epk(|c − b| + |b − a|) to Epk(z) and Epk(z

′
), respectively. Our

SIVb operation is equivalent to checking the equality of [z]1 and [z
′
] in a secure

way. Then, we employ the SBD protocol [16] to decompose the value of Epk(z)
and Epk(z

′
). Next, for 1 ≤ j ≤ m, C1 computes the encrypted bit-wise XOR Gj

between Epk(zj) and Epk(z
′
j) by utilizing the protocol secure XOR [1]. Later, C1

computes the encrypted bit-wise OR [1] between Gj and Hj−1, and assigns the
result to Hj , where H0 = Epk(0). Notice that [z] = [z

′
] iff Hm = 0, otherwise [z]

�= [z
′
] iff Hm = 1. After choosing a random number r ∈ ZN and computing Hm×

Epk(r), C1 sends the result to C2. Upon receiving, C2 decrypts it and assigns it
to Ψ . Furthermore, if Ψ is even, C2 sends σ = 0 to C1; otherwise, C2 sends σ = 1
to C1. Finally, in C1, if r is even, C1 returns σ; otherwise, it returns 1 − σ.

Example 1. Consider that a = 4, b = 6, c = 8 and m = 4. C1 gets Epk([z]) =
Epk([|8 − 4|]) = 〈Epk(0), Epk(1), Epk(0), Epk(0)〉 and Epk([z

′
]) = Epk([|8 − 6| +

|6 − 4|]) = 〈Epk(0), Epk(1), Epk(0), Epk(0)〉. Then, C1 gets G = 〈Epk(0), Epk(0),
Epk(0), Epk(0)〉 and H = 〈Epk(0), Epk(0), Epk(0), Epk(0), Epk(0)〉. By generating

1 [z] denotes the standard binary conversion (e.g., for m = 8, [6] = ‘00000110’, where
m represents the domain size in bits).
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Algorithm 1. Basic Secure Range Query Algorithm

Input: C1: Epk(R
d), Epk(I); C2: sk

Output: Query Result Set S
1 C1 and C2 :
2 Initializes the root node of Epk(I) and a stack s;
3 s.push(root);
4 while s �= null do
5 Node o ← s.pop();
6 if o is a non-leaf node then

7 if (Γ = SNIb(Epk(o
d),Epk(R

d)))==0 then

8 s.push(odj ), for each odj ∈ od;

9 else

10 if (Γ = SNIb(Epk(o
d),Epk(R

d)))==0 then

11 for each point pd
j in node od do

12 if (τ = SPIb(Epk(p
d
j ),Epk(R

d)))==0 then
13 chooses a random number rj ∈ ZN ;

14 Epk(P
k
j ) ← Epk(p

k
j ) × Epk(rj), for k = 1 to d;

15 Epk(Fj) ← Epk(fj) × Epk(rj);

16 sends Epk(P
d
j ), Epk(Fj) to C2, and rj to Client;

17 C2 :

18 P d
j ← Dsk(Epk(P d

j )), Fj ← Dsk(Epk(Fj));

19 sends P d
j and Fj to Client;

20 Client:
21 if Fj - rj == 0 then

22 pk
j ← P k

j -rj , for k = 1 to d;

23 S ← pd
j ;

a random number r = 2, C1 sends H4 × Epk(r) to C2. Subsequently, C2 decrypts
it and gets Ψ = 2, and sends σ = 0 to C1 since Ψ is even. Finally, since r is even,
C1 returns σ = 0.

3.3 Basic Secure Range Query Algorithm

Based on the above proposed operations, we develop our basic secure range query
algorithm (SRQb), which is easy to understand but not fully secure. The overall
step involved in the protocol SRQb is given in Algorithm 1.

Assume that C1 with Epk(Rd) and encrypted index Epk(I), and C2 with
sk. The SRQb computes the range query by traversing the encrypted R-tree in a
depth-first way. Initially, C1 is assigned with the root node of Epk(I) and a stack
s, and pushes the root into s. The SRQb starts from the root and recursively visits
all entries which are intersected with Epk(Rd). By popping up the top element o
from s, the algorithm checks whether it is a non-leaf node. If it is, by exploiting
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the protocol SNIb, the algorithm put all children nodes of o into s iff the returned
value of the SNIb is equal to 0. Otherwise, the algorithm first checks whether
the leaf node o intersects with Epk(Rd). If it does, by exploiting the protocol
SPIb, the algorithm checks whether each point in o is covered by Epk(Rd). If
it is, the point is obfuscated by computing Epk(P k

j ) = Epk(pkj ) × Epk(rj) (1 ≤
j ≤ |v|, assuming the capacity of the node is |v|), for 1 ≤ k ≤ d, and computing
Epk(Fj) = Epk(fj)×Epk(rj). Here rj ∈ ZN is a random number. Then, C1 sends
Epk(P d

j ) and Epk(Fj) to C2 and sends rj to Client. Upon receiving, C2 decrypts
the obfuscated point Epk(P k

j ) and obfuscated sign bit Epk(Fj), and sends P k
j

and Fj to the Client. After receiving rj from C1 and P k
j and Fj from C2, Client

checks if Fj − rj is 0, Client computes pkj = P k
j − rj , for 1 ≤ k ≤ d, and puts

the point pdj into result set S. Otherwise, the point is filtered out since the point
is not covered by Rd or is the dummy data.

Table 2. Example of basic secure range query algorithm

s o Γ s o Γ s o Γ s o Γ p1 τ p2 τ r2 P2 F2 F2 − r2 S

N1 N1 1 N2 N2 0 N5 N5 1 N6 N6 0 d 1 h 0 2 h:̂h+2 2 0 h
N2 N6

As shown in Table 2, we illustrate the entire algorithm through the running
example of Fig. 2. Please note that all column values are in encrypted form except
the last two columns. In addition, in Table 2, p:p̂+r represents that the value of
point p is p̂+ r in each dimension, where p̂ is the original value and p is identical
with p:p̂.

Correctness Analysis. According to the above process, the node intersection
operation puts all points intersecting with the query range Rd into candidate
set. Moreover, if the point is a dummy data, it will be filtered out by checking
the sign bit. Hence, the points in final result set S are correct.

Security Analysis. Based on literature [3], the protocol (operation) is secure if
the sub-protocols are secure and the intermediate results are random or pseudo-
random. Above all, it is clear that the privacy of data and query is achieved by
using the semantic security of the paillier cryptosystem. For the result privacy,
Client only knows the query result, and C1 and C2 do not know the exact
data since the data is obfuscated by random number. Hence, the result privacy
is achieved. In addition, for the access patterns and path patterns, the SBD
protocol is secure based on literatur [16]. However, since the operations, SIVb

and SNIb, both reveal some intermediate results to C1 (e.g., the returned results
σ and Γ of the operations SIVb and SNIb), they are secure except that the
access patterns and path patterns can be revealed to the cloud. More detail, in
the algorithm SRQb, due to the intermediate results (e.g., the node intersecting
results and the traversal path on the original index) of the operation SIVb or
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SNIb are revealed to C1, the path patterns are also revealed to C1 and C2. Thus,
the algorithm is secure except that the access patterns and path patterns can
be revealed to the cloud.

4 Fully Secure Range Query Algorithm

As discussed in Sect. 3, the algorithm SRQb is not secure absolutely since it
reveals access patterns and path patterns to the clouds. Accordingly, we first
propose two fully secure operations, namely SIVf and SNIf , for addressing the
issues of SIVb and SNIb operations, respectively. Then, we propose two obfusca-
tion operations that can ensure clouds to traverse the index obliviously. Finally,
we show how to perform range queries in a fully secure way.

4.1 Fully Secure Operations

Intuitively, the operations SIVb and SNIb return unencrypted values which can
make the cloud servers C1 and C2 to check whether the node intersects with the
query region directly. Along this direction, we propose two fully secure opera-
tions: SIVf and SNIf .

• SIVf . Unlike the SIVb, SIVf returns an encrypted value. Specifically, in C2,
if Ψ mod 2 == 0, it returns Epk(σ) ← Epk(0); otherwise, Epk(σ) ← Epk(1).
And in the end, if r mod 2 == 0, C1 returns Epk(σ); otherwise, Epk(σ)N−1 ×
Epk(1).

• SNIf . Similar to SIVf , SNIf also returns an encrypted value. Specifically,
based on the two conditions discussed in node intersection, for 1 ≤ k ≤ d,
since SIVf returns Epk(0) or Epk(1) (i.e., Γ k is Epk(0) or Epk(1)), SNIf
computes Γ = Γ ∨ Γ k (for 1 ≤ k ≤ d) by utilizing SOR [1], where the initial
value of Γ is Epk(0). At last, SNIf returns Γ . Similarly, SPIf only implements
SOR to check all dimensions of the point, and returns the result of SOR.

4.2 Obfuscation for Oblivious Traversal

To avoid revealing the traversal path, we propose two obfuscations for traversing
the encrypted R-tree obliviously.

Traversal Path Obfuscation. First, we access the nodes according to the
level iteratively. For each level l (1 ≤ l ≤ L, where L represents the height of
encrypted R-tree), C1 generates a perturbation function Πl. Before sending all
nodes (Ol) of level l to C2, C1 adopts the perturbation function Πl to obfuscate
the traversal path (e.g., Π2([N3, N4, N5, N6]) = ([N6, N3, N4, N5])).
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Node Obfuscation. Intuitively, for the perturbed nodes (Ol) at each
level l, cloud C1 first chooses a random number rl ∈ ZN , and computes
Epk(M)Max

Min
2 ×Epk(rl) → Epk(M

′
)Max
Min and Epk(Q) × Epk(rl) → Epk(Q

′
l). It

is worth emphasizing that the operation on the point or MBR (e.g., Epk(p)
or Epk(M)) represents the corresponding operation in each dimension. Then,
cloud C1 sends Epk(M

′
)Max
Min of this level’s nodes to C2. C2 processes them

as the way of cloud C1 by choosing a random number r
′
l ∈ ZN , and only

sends the obfuscated nodes (O
′
l) who are intersected with the query region (i.e.,

the initial intersecting result is Epk(0).) and Epk(r
′
l) to server C1. Notice that

the node obfuscation is based on the fact that the equality condition is still
satisfied by adding the identical parameter at both sides. Thus, C1 needs to
compute Epk(Q

′
l) × Epk(r

′
l) → Epk(Q

′′
l ) for each level l. The above process is

denoted as Nobf (.). Similarly, the points (P ) in the leaf nodes also need to be
obfuscated, denoted as Pobf (.). C1 and C2 choose |v| random numbers γ and
γ

′
(|γ| = |γ′ | = |v|) ∈ ZN to obfuscate the points in each leaf node, respec-

tively. Also, C2 only sends the obfuscated points (P) who are located in the
leaf node intersecting with the query region and its corresponding encrypted
random numbers Epk(γ

′
) to C1. At last, C1 computes the obfuscated queries

Epk(Q
′′
l ) (|Q′′

l | = |v|) by using encrypted random numbers Epk(γ) and Epk(γ
′
).

4.3 Fully Secure Range Query Algorithm

In this section, we propose a fully secure range query algorithm (SRQf ), which
combines the two full operations and obfuscations for preserving the access pat-
terns and path patterns. The steps involved in SRQf are shown in Algorithm 2.

Initially, C1 first gets the node set Ol of level l (1 ≤ l ≤ L), and obtains the
corresponding initial intersecting results Tl. Note that initial intersecting result
of the first level T1 = {Epk(0)}. Then, by exploiting the perturbation function
Πl(.) and obfuscation function Nobf (.), C1 obtains the obfuscated intersecting
node set O

′
l and the obfuscated query Epk(Q

′′
l ). Next, by employing SNIf (.),

C1 gets the intersecting result set Wl of O
′
l, and sends Wl to C2. Upon receiving

Wl, C2 updates Tl by using Wl, and sends the updated intersecting result set
of level l to C1. Upon receiving, C1 exploits the inverse perturbation function
Π−1

l (.) to recover the order of the nodes at level l, and assigns recovered T
′
l to

their children. Repeat the above steps until the leaf level.
Next, C1 gets the point set Pi (1 ≤ i ≤ |v|L) in each leaf node, and perturbes

the points in Pi by using Π(.). Then C1 obtains the obfuscated intersecting
point set P and the obfuscated query Epk(Q

′′
l ) by exploiting obfuscation function

Pobf (.). As for each point p in P, C1 obtains the intersecting result Epk(α)
of point p by using SPI(p,Epk(Q

′′
lj

)), where Epk(Q
′′
lj

) is the obfuscated query
corresponding to point p, and computes Epk(Fj) = Epk(fj)×Epk(γj). Then, C1

computes Epk(β) = Epk(p × (1 − α)) × Epk(λj) and Δ = γj + λj . Here λj is

2 (M)Max
Min denotes the point with the minimum and the point with the maximum

coordinate values in each dimension, respectively.
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Algorithm 2. Fully Secure Range Query Algorithm

Input: C1: Epk(R
d), Epk(I); C2: sk

Output: Query Result Set S
1 C1 and C2 :
2 for 1 ≤ l ≤ L do
3 gets the nodes (Ol) of level l and their initial intersecting results (Tl). // for

level l = 1, Tl = {Epk(0)}.
4 Ol = Πl(Ol);

5 < Epk(Q
′′
l ),O

′
l > = Nobf (Ol);

6 Wl = SNIf (O
′
l , Epk(Q

′′
l )), sends Wl to C2;

7 C2:
8 updates Tl by using Wl and sends the updated results to C1;
9 C1:

10 computes T
′
l = Π−1

l (Tl) and set them as the initial intersecting results of
their children;

11 gets the point set Pi in each leaf node, 1 ≤ i ≤ |v|L;

12 computes P
′
i = Π(Pi) and < Epk(Q

′′
l ),P > = Pobf (P

′
);

13 for each point p in P do

14 Epk(α) = SPIf (p, Epk(Q
′′
lj

)), 1 ≤ j ≤ |v|
15 Epk(Fj) = Epk(fj) × Epk(γj);
16 sends Epk(β) = Epk(p × (1 − α))× Epk(λj) to C2, and sends Δ = γj + λj

and γj to Client, λj is a random number ∈ ZN ;
17 C2:
18 β = Dsk(Epk(β)), Fj = Dsk(Epk(Fj));

19 sends Δp = β - γ
′
j and Fj to Client;

20 Client:
21 if Δp - Δ > 0

∧
Fj - γj == 0 then

22 p = Δp - Δ mod N ;
23 S.put(p);

a random number ∈ ZN . After that, C1 sends Epk(β) and Epk(Fj) to C2, and
sends Δ and γj to Client. Upon receiving, C2 gets β and Fj by using decryption
function Dsk(.). On this basis, C2 computes Δp = β − γ

′
j , and sends Δp and Fj

to Client. Upon receiving, the Client computes the difference between Δp and
Δ in each dimension. If Δp − Δ > 0 in each dimension and Fj − γj == 0, the
Client inserts the point p = Δp − Δ mod N into the result set S.

As shown in Table 3, we illustrate the entire algorithm through the running
example of Fig. 2. Please note that all column values are in encrypted form except
the last five columns. In the period of obfuscation, C1 holds the perturbation
function Π1 = {2, 1}, Π2 = {2, 4, 1, 3} and Π = {2, 1}, respectively. In addition,
in Table 3, (N) (or (p)) represents the node (or point) obfuscated by the random
number of its own, and p:p̂+r represents that the value of point p is p̂+ r in each
dimension, where p̂ is the original value and p is identical with p:p̂.
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Table 3. Example of fully secure range query algorithm

O1 T1 O
′
1 W1T

′
1 O2 T2 O

′
2 W2T

′
2 P P

′
T3 γ γ

′
P α F λ β Δ Δp Δp-Δ F−γ S

N1 0 (N2)0 1
N3 1 (N5)1 1 a e 1 2 2

e a 1 1 2

N4 1 (N3)1 1 b f 1 2 2
f b 1 1 2

N2 0 (N1)1 0
N5 0 (N6)0 1 c g 1 2 2

g c 1 1 2

N6 0 (N4)1 0 d h 0 2 2 (h) 0 2 3 h:̂h+7 5 h:̂h+5 h:̂h 0 h
h d 0 1 2 (d) 1 1 2 d:2 3 d:0 d:−3 0

Correctness Analysis. According to the above process, the fully secure inter-
section operations can also guarantee that the returned nodes or points intersect
with the query region surely. Notice that the node obfuscation is based on the
fact that the equality condition is still satisfied by adding the identical parame-
ters at both sides. Meanwhile, Client subtracts the identical parameters which
can make sure the point value is unchanged. Moreover, if the point is a dummy
data, it will be filtered out by checking the sign bit. Hence, the points in final
result set S are correct.

Security Analysis. The security of the algorithm SRQf is analyzed as follows.
Since the privacy data, query and result can be achieved through security anal-
ysis in Sect. 3.3, here we only analyze the privacy of access patterns and path
patterns. From the view of C1, at each level, since C2 only sends obfuscated
intersecting nodes O

′
l to C1, and the operations SNIf and SPIf both return an

encrypted value Wl or Epk(α) to C1. Therefore, C1 cannot infer any information
from the intermediate results (i.e., the intermediate results are encrypted data).
In addition, C1 know nothing about the exact locations of obfuscated intersect-
ing nodes, so C1 cannot infer the traversal path over the encrypted R-tree. From
the view of C2, though C2 can obtain the permuted traversal path, it cannot
trace back to the corresponding original path. In addition, even if C2 receives
Epk(β) from C1, and decrypts Epk(β), due to the permutation by C1, it cannot
infer whether the corresponding data point is covered by Epk(R). Therefore, the
access patterns and path patterns are preserved from both C1 and C2. More-
over, from the view of Client, he/she can only obtain the exact points located
in Epk(Rd) but nothing else. Hence, our algorithm SRQf is secure.

5 Experiments

The experiments are conducted on a PC machine with Intel Core2 Duo @
2.93 GHz CPU and 8 GB RAM. The program is mainly coded by utilizing Java.

DataSet. We evaluate the performance of our algorithms using two real
datasets, CAR3 and US4 [12], and a synthetic dataset SYN. CAR represents
3 http://snap.stanford.edu/data/roadNet-CA.html.
4 http://archive.ics.uci.edu/ml/datasets.html.

http://snap.stanford.edu/data/roadNet-CA.html
http://archive.ics.uci.edu/ml/datasets.html
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the road segments in California which includes 2,096,702 two-dimensional points,
US represents part of the 1990 census in US which has 2,458,285 records and 68
categorical attributes, and SYN is randomly generated following uniform distri-
bution and includes 100,000 points with 10 attributes which are normalized to
[0, 1000] along every dimension.

Parameter Settings. To verify the effect of parameters in the experiments,
we vary the dataset size n from 2,000 to 10,000, the query range R from 1% to
5% of the whole space, the key size of paillier cryptosystem K from 256 to 1024
bits, and the domain size of bit-decomposition m from 6 to 12 bits. In addition,
the data dimension is varying from 2 to 6. Table 4 summarizes the parameter
settings used in the experiments.

For comparison, we evaluate four algorithms, including: SRangeI , Basic,
SRQb and SRQf , where SRangeI is proposed in literature [14] which is similar
to our work and Basic only performs the operation SPIb to scan and check all
the points one by one. In addition, we evaluate the performance corresponding
to five different parameters through fixing the other four parameters.

Table 4. Parameter settings

Parameter Symbol Default Range

Dataset size n 2,000 2,000–10,000

Query range size R 1% 1%–5%

Encryption key size K 512 256–1024

Domain range size m 6 6–12

Data dimension d 2 2–6

Evaluation of Varying n. Figure 5 shows the time performance over the
datasets SYN and CAR, respectively. It is obvious that the time cost of four
algorithms increases linearly. The SRQb is the most efficient because it does not
need extra encryption or decryption operations for high efficiency. The time cost
of SRangeI is higher than that of SRQf because it needs to implement extra
secure multiplication protocol [1] for each point. In addition, Basic has the lowest
efficiency. For different datasets SYN and CAR, their time costs show similar
trend when the number of data records n varies.

Evaluation of Varying R. Figure 6 compares the time performance by varying
different query ranges over SYN and CAR, respectively. We observe that the time
cost of SRQf increases almost by a factor of 5 comparing with SRQb, SRangeI
increases almost by a factor of 6 comparing with SRQb, and Basic increases
almost by a factor of 9 comparing with SRQb. In particular, When the query
range varies from 1% to 5%, SRQf increases from 258.74 to 351.38 s, while
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Fig. 5. The impact of dataset size n
(R = 1%, K = 512, m = 6, d = 2)
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Fig. 6. The impact of query range R
(n = 2000, K = 512, m = 6, d = 2)
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Fig. 7. The impact of encryption key
size K (n = 2000, R = 1%, m = 6,
d = 2)
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Fig. 8. The impact of bit-
decomposition size m (n = 2000,
R = 1%, K = 512, d = 2)

SRangeI increases from 385.53 to 506.45 s. But Basic is almost unchanged. This
is because Basic needs to check all points no matter how large the query range is.
For different datasets SYN and CAR, their time costs show similar trend when
the number of data records R varies.

Evaluation of Varying K. In Fig. 7, we observe that the time cost of four
algorithms increases exponentially when the value K increases. As shown in
Fig. 7(b), the time cost of SRQb and SRQf increases from 10.15 to 415.36 s and
from 47.43 to 1457.05 s when K varies from 256 to 1024 bits. However, the time
cost of SRangeI and Basic increases from 64.25 to 2158.97 s and from 100.18 to
4336.97 s, and is almost by a factor of 1.5 and 3 comparing with SRQf when K
is 1024. For different datasets, the time cost of such algorithms shows similar
trend under different encryption sizes of K.

Evaluation of varying m. In Fig. 8, the time cost of all algorithms increases
linearly when m increases. But SRQb is more efficient than SRQf and SRangeI .
Basic is still the most expensive algorithm. As shown in Fig. 8(b), the time cost
of SRQf increases from 263.88 to 353.18 s and SRQb increases from 59.48 to
78.53 s when m varies from 6 to 12 bits. But SRangeI and Basic take the time by
a factor of 1.6 and 2 comparing with SRQf when m is 6. For different datasets,
the time cost of such algorithms shows similar trend under different encryption
sizes of m.
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Evaluation of Varying d. Figure 9 illustrates the time performance over the
datasets SYN and US, respectively. The time cost of four algorithms increases
linearly when d increases. However, our approachs, SRQb and SRQf , have a
better performance than SRangeI by varying d. Basic is still the most time-
consuming algorithm. Specifically, as shown in Fig. 9(b), the time cost of SRQf

increases from 258.74 to 689.13 s and SRangeI increases from 385.53 to 1040.59 s
when d varies from 2 to 6. But Basic has to take the time from 601.83 to 2868.01 s.
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Fig. 9. The impact of dimension size d (n = 2000, R = 1%, K = 512, m = 6)

6 Related Work

There exist a lot of related work concerning privacy-preserving techniques for
range queries.

Li et al. [13] proposed a novel PBtree which can satisfy index indistinguisha-
bility and resist chosen keyword attacks. Unfortunately, the traversal path is
revealed to the cloud when the range queries are performed over the PBtree,
and it only support one-dimensional range queries. Chi et al. [7] proposed a
scheme to build index and trapdoor by using canonical ranges and polynomials.
But it is still not applicable to multiple numeric attributes.

To achieve multi-dimensional range queries, Wang et al. [12] proposed
a scheme for multi-dimensional range queries by leveraging Point Predicate
Encryption. But the query privacy is not protected from the cloud. Moreover,
it still exposes the identifiers of the data to the cloud although the encrypted
query results contain redundant data. Besides, Shi et al. [8] and Wang et al. [11]
exploited R-tree to index objects and predicate encryption to encrypt nodes.
However, the predicate encryption suffers from the efficiency and scalability.

In order to accelerate the efficiency of range queries over encrypted data,
Wang and Ravishankar [9] and Chi et al. [10] exploited asymmetric scalar-
product preserving (ASPE) and enhanced-ASPE scheme to encrypt objects.
However, This scheme is not fully secure because it reveals the access patterns
and traversal path to the cloud. In addition, it assumes that the client has secret
key to decrypt the query result which will cause other security problems.

Moreover, Hore et al. [5,6] proposed a bucketing scheme that evaluates range
queries with minimal information leakage by building privacy-preserving indices.
Different from our work, this scheme requires the data owner to store and search
the indices locally, rather than at the cloud.
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Recently, Kim et al. [14] proposed a way to hidding data access patterns
while searching over kd-tree. However, since the structure of kd-tree exposes the
ordering information of points, the cloud server can infer the relative ordering
information without decrypting nodes. In addition, the path patterns are also
revealed to cloud server.

Meanwhile, many techniques on secure query processing are studied. Specifi-
cally, kNN [1], skyline [3] and trajectory similarity [4]. However, these techniques
cannot apply to range queries directly or are infeasible to efficiently process range
queries.

7 Conclusion

In this paper, we investigated and studied the problem of secure range queries
in outsourced environments. To do this, we first developed a basic secure range
query processing algorithm with the incomplete secure situations. To further sat-
isfy the requirements of fully secure range queries, we developed a fully secure
range query processing algorithm by designing a set of fully secure operations
and two obfuscations for oblivious traversal. In addition, we analyzed the oper-
ations of the algorithms regarding to the security issue. Experimental results
demonstrated that our proposed solutions can achieve an effective and efficient
performance to deal with fully secure range queries. In the future, we will focus
on compacting the secure operations and accelerating the query efficiency further
with the strong security.
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Foundation of China (Nos. 61532021, 61572122, U1736104), the Project is sponsored
by Liaoning BaiQianWan Talents Program, and the Fundamental Research Funds for
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Abstract. With the prevalence of cloud computing, data owners are
motivated to outsource their databases to the cloud. However, sensi-
tive information has to be encrypted to preserve the privacy, which
inevitably makes effective data utilization a challenging task. Existing
work either focuses on keyword searches, or suffers from inadequate secu-
rity guarantees or inefficiency. In this paper, we focus on the problem
of multi-dimensional range queries over dynamic encrypted cloud data.
We propose a Tree-based private Range Query scheme over dynamic
Encrypted cloud Data (TRQED), which enables faster-than-linear range
queries and supports data dynamics while preserving the query privacy
and single-dimensional privacy simultaneously. TRQED achieves prov-
able security against semi-honest adversaries under known background
model. Extensive experiments on real-world datasets show that the over-
head of TRQED is desirable, and TRQED is more efficient compared
with existing work.

Keywords: Range query · Cloud data · Data dynamics
Query privacy

1 Introduction

Database outsourcing has become a popular service in cloud computing. In cloud
computing paradigm, a data owner prefers to remotely store their data into the
cloud so as to benefit from outsourcing heavy storage and management tasks to
the cloud server. To protect the privacy, sensitive data such as emails and med-
ical records have to be encrypted before outsourcing [1]. This introduces new
challenges to data utilization. How to enable effective queries over encrypted
cloud data while preserving the privacy is still one of the most significant issues
to be resolved. Traditional searchable encryption (SE) schemes [1–3] have been
proposed to support specific type of queries, such as keyword searches [3,4].
However, considering the common SQL query operations that can be trans-
formed into multi-dimensional range queries, deploying the above SE schemes

c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 130–146, 2018.
https://doi.org/10.1007/978-3-319-91458-9_8
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directly would not be adequate, which cannot be applied to the complex multi-
dimensional range queries over encrypted cloud data.

To enable multi-dimensional range queries, Boneh and Waters designed a
predicate encryption scheme [5] (henceforth referred as BonehW) by using Hid-
den Vector Encryption (HVE) [6]. The scheme, however, incurs high computa-
tion and cannot prevent the cloud server from identifying whether two encrypted
queries are from the same query, which we refer to as query privacy. To improve
the efficiency, researchers proposed a symmetric scheme LSED+ [7] and an
̂R-tree scheme [8] (henceforth referred as WangR) by decomposing a multi-
dimensional range query into single-dimensional queries. However, both schemes
suffer from single-dimensional privacy leakage, through which the server would
learn the relationship between every single-dimensional query and its correspond-
ing results. To solve this problem, Wang et al. [9] proposed a scheme Maple
based on HVE. As a public-key scheme, Maple causes heavy computation cost,
and fails to provide query privacy. Moreover, Maple cannot support data dynam-
ics (or data update), i.e., insertion, deletion and modification. In summary, the
aforementioned multi-dimensional range query solutions either suffer from inad-
equate security guarantees, or fail in efficiency. Moreover, most works which
achieve faster-than-linear search do not support data dynamics. Thus, the issue
of private range query over dynamic encrypted cloud data remains open to date.
This motivates us to design an efficient and privacy-preserving multi-dimensional
range query scheme while supporting data update.

In this paper, to achieve both security and efficiency, we propose a Tree-based
private Range Query scheme over dynamic Encrypted cloud Data (TRQED),
which enables efficient range queries without revealing sensitive information to
the cloud server. Specifically, our design goals of TRQED are as follows:

(1) Multi-dimensional range query. The design should enable multi-dimensional
range queries over encrypted data, and return the correct results.

(2) Privacy-preservation. The design should protect data and index privacy,
query privacy, and single-dimensional privacy from learning anything by the
cloud server.

(3) Data dynamics support. The design supports data update including insertion,
deletion and modification.

(4) High Efficiency. The above goals should be achieved with low system over-
head and high efficiency.

To achieve the above goals, we address two technical challenges. The first
challenge is how to preserve query privacy and single-dimensional privacy. We
address this challenge by first proposing the perturbation-based inner product
comparison (IPC) and extended dimensions to convert the same query to varied
query vectors and obfuscate the cloud server’s view, and then checking the secu-
rity of our system to verify its effectiveness of privacy protection. The second
technical challenges is how to reduce the system overhead. We address this chal-
lenge by designing the lightweight point intersection predicate encryption (PIPE)
and the range intersection predicate encryption (RIPE), thus transforming the



132 W. Yang et al.

query processing into an efficient traversal of a tree by checking the relations
between the given range query and tree nodes.

Our contributions are summarized as follows:

• Design of Novel Range Query Scheme. We present TRQED, the first private
range query scheme which achieves faster-than-linear search and supports
data dynamics while preserving the query privacy and single-dimensional
privacy simultaneously. As a contrast, almost all the related works cannot
support the above all characteristics at the same time.

• Secure and Efficient Building Blocks. For the objective of privacy-preservation
and high efficiency, we propose two building blocks PIPE and RIPE, thus
transforming private range query processing into an efficient traversal of R-
tree in the ciphertext domain, and use the perturbation-based inner product
comparison and extended dimensions to preserve the query privacy and single-
dimensional privacy.

• Formal Security Proof and Dataset-driven Evaluation. We theoretically prove
that TRQED is secure against semi-honest adversaries under known back-
ground model, which is the strongest threat model in the range query area to
date. Furthermore, extensive experiments using real-world dataset show that
the overhead of TRQED is desirable, and TRQED is more efficient compared
with existing works.

2 Related Work

Our work is related to prior art in two aspects: searchable encryption and range
query.

Searchable Encryption. The issue of secure query processing on encrypted
cloud data has been studied in recent years. An ideal approach is using ORAM
[15]. However, the efficiency of ORAM is a huge concern for real applications.
Traditional Searchable Encryption (SE) schemes [1,18] have been put forward
to support simple types of queries, but directly deploying them would not be
adequate for practical use. Wong et al. proposed a SCONEDB model [19] which
achieved secure kNN query over encrypted vector databases. Li et al. [2] proposed
an authorized private keyword search framework. Subsequently, researchers stud-
ied the privacy-preserving multi-keyword ranked search [3], fuzzy search [4],
and verifiable search [20]. However, the researches cloud only support keyword
searches or single-dimensional range queries, which cannot be applied to the
complex multi-dimensional range queries.

Range Query. BonehW [5] designed a public-key query system by using HVE,
and [21] studied range queries in authenticated data structures where the privacy
requirements are not considered. [22] proposed a private range query approach at
the price of much more memorizing space. Moreover, all these schemes incur high
computation overhead. To improve the efficiency, [7,8] are designed to improve
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the efficiency. As mentioned before, the schemes would cause single-dimensional
privacy leakage. To solve the problem, [9] proposed a scheme Maple based on
HVE and R-trees. As a public-key scheme, it suffers from the heavy compu-
tation and fails to provide query privacy. Afterwards, the authors proposed a
symmetric-key MDRSE [23]. However, it should know all the range domain sizes
of the dimensions in advance, and thus cannot support data update effectively.
Furthermore, the client of the schemes who outsources database should be the
one that searches, which does not fit our private range query model. Our work
distinguishes itself from others by addressing the challenges that the above solu-
tions either suffer from inadequate privacy guarantees, or fails in efficiency and
supporting data update, which have not been addressed in research to date.
Compared with Wang’s work [9,23], we study the private range queries in the
owner-server-user cloud computing model. TRQED achieves faster-than-linear
search and supports effective data update while preserving query and single-
dimensional privacy simultaneously.

3 Problem Formulation

3.1 System Model

The system model in this paper consists of three entities: a data owner, a cloud
server and multiple authorized users, as depicted in Fig. 1. The data owner
wants to outsource its database to the cloud to reduce the management cost.
To protect the privacy, the sensitive data are encrypted before outsourcing. To
enable effective data utilization over encrypted database, the data owner first
builds a searchable index with a multi-dimensional tree, and encrypts the index.
Afterwards, the owner outsources the encrypted database and index to the cloud
server. The users have mutual authentication capability with the data owner, and
can search the encrypted cloud data by submitting an encrypted range query
to the server. Once receiving the search token, the cloud server searches the
tree-based index and returns the set of matched data records.

Fig. 1. Architecture of private range query over encrypted cloud data
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In this paper, we employ R-tree [10] to build the index. R-tree is a type of
multi-dimensional data structure which represents each leaf node with a point
and each non-leaf node with a Minimum Bounding Rectangle (MBR), and group-
ing nearby objects (e.g., points or MBRs) in the same layer. In our work, each
data record is essentially a leaf node, and each node of R-tree has the form (R, p),
where R represents a MBR or point, and p is the pointer.

3.2 Threat Model

We consider a semi-honest (also known as honest-but-curious) cloud server in
the threat model, which is the foundation of designing secure protocols against
malicious adversaries [11]. That is, the server follows the protocol honestly, but it
is curious to record all intermediate results and try to deduce useful information
about the data and queries. We assume the authorized users are trusted by the
data owner and do not collude with the server.

In terms of the level of privacy protection, there are three kinds of threat
models, namely Known ciphertext model, Chosen Plaintext model and Known
background model with respect to the assumption of the cloud server’s ability.
The threat strength increases from low to high accordingly. For example, [12–
14] adopt the former two models, and thus only provide moderate security for
range queries over encrypted cloud data. In this paper, we adopt the strongest
threat model, namely Known background model, which is also considered in some
existing work [3,4]. In this model, the cloud server is supposed to not only know
the encrypted dataset and index as those in the former two models, but also
possess more knowledge such as the distribution of queries. As an instance of
possible attacks, the server could launch frequency analysis attacks combined
with the background information to deduce useful information.

4 Intersection Predicate Encryption

Query processing is essentially a traversal of R-tree index, by checking the rela-
tions that whether a point (i.e., a data record Ci) is inside a MBR (i.e., a range
query Q) and whether two MBRs (i.e., non-leaf node Ei and query Q) intersect.
In this section, we first present a method called inner product comparison (IPC)
to convert range query into inner product computation in the ciphertext domain,
and design two predicate encryptions to determine the geometric relations.

4.1 Inner Product Comparison

Comparison Predicate. In predicate query model [7], the users send predicate
functions p as queries to the cloud server. The server searches the tuples of which
the attribute values d satisfies p(d) = true and then returns the query results.
In this, for a one-dimensional range query [xl, xr] and a point d, we propose a
function p : R

+ → R, where R is the set of real numbers as: p(d) = (d−xl)(d−xr).
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The predicate function regards p(x) ≤ 0 as true iff x is in the closed range [xl, xr]
and false otherwise.

To preserve privacy, we add perturbations δ to the predicate p(d) as:

p̃(d) = (d − xl)(d − xr)(d + δ), (1)

where δ is a κ bit positive number (κ is a given security parameter). Therefore,
p̃(d) ≤ 0 iff xl ≤ d ≤ xr as d+δ is positive. As such, the statistical information of
transformed queries are different from that of plain ones, and the perturbation-
based predicate can find the correct tuples of which d ∈ [xl, xr].

Vector Extraction. We now transform the predicate p̃(d) into query and value
vectors. Define the query vector p and value vector v as:

p = (1,−xl − xr + δ, xlxr − xlδ − xrδ, xlxrδ)T ,v = (d3, d2, d, 1)T .

Thus the inner product is 〈p,v〉 = p̃(d), and 〈p,v〉 ≤ 0 is true iff d ∈ [xl, xr].

Vector Encryption. We employ the matrix based encryption to encrypt the
vectors. The secret key for vector encryption is a four-dimensional invertible
matrix. Alternatively, we can also adopt a φ-dimensional matrix where φ > 4
as the key, and add dummy values into additional (φ − 4) dimensions which
satisfy that

∑φ
i=5 pivi = 0. For simplicity, we adopt a four-dimensional invertible

matrix M to encrypt p in this paper. Correspondingly, the encryption key for v
is ˜M = |det(M)|M−1, where det(M) is the determinant of M as follows:

EM (p) = rpM
Tp (2)

E
˜M

(v) = rv|det(M)|M−1v (3)

where rp and rv are randomly generated positive numbers.
In the ciphertext domain, the query processing is to find the tuples of which

the encrypted value vector E
˜M

(v) satisfies 〈EM (p), E
˜M

(v)〉 ≤ 0, which is com-
puted as

〈EM (p), E
˜M

(v)〉 = rprv|det(M)|〈p,v〉. (4)

As rprv|det(M)| > 0, 〈EM (p), E
˜M

(v)〉 depends on the 〈p,v〉. Consequently,
〈EM (p), E

˜M
(v)〉 ≤ 0 is true iff d ∈ [xl, xr].

4.2 Point Intersection Predicate Encryption (PIPE)

Based on IPC, we introduce the building block PIPE to check whether a value
d is inside a range R. Inspired by the predicate encryptions in [7,9], the 1-
dimensional PIPE (1dPIPE) is detailed as follows:

– Setup(1κ). On input a security parameter κ, output a secret key SK.
– Encrypt(SK, d). On input SK and a value d, output ciphertext C = rv

˜Mv,
where v = (d3, d2, d, 1)T and rv is a generated random positive number.
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– GenToken(SK, R). On input SK and a range R = [xl, xr], output search
token TK = rpM

Tp, where p = (1,−xl − xr + δ, xlxr − xlδ − xrδ, xlxrδ)T ,
and rp is a random positive number.

– Query(TK, C). On input TK and C, output 1 iff 〈TK,C〉 ≤ 0 and 0 other-
wise.

We now extend the 1dPIPE to the multi-dimensional case and construct the
w-dimensional PIPE (wdPIPE) to check whether a multi-dimensional point D
is inside a query range. It is based on the geometric relation that if a point is
inside a query range, the value of this point in every dimension is inside the
corresponding single-dimension range of the MBR, and vice versa: D ∈ MBR ⇔
{di ∈ Ri},∀i ∈ [1, w], where D = (d1, · · · , dw) and MBR = (R1, · · · , Rw). The
details of wdPIPE are presented in Algorithm1. Note that the dimension w is
extended to 2w dimensions in the inner product queries to obfuscate the cloud
server’s view and preserve the single-dimensional privacy.

Algorithm 1. wdPIPE

- Setup(1κ). On input a security parameter κ, output a secret key SK = {M, ˜M}.
- Encrypt(SK, D). On input SK and a point D = (d1, · · · , dw), output ciphertext

C = rv(˜Mv1, · · · , ˜Mv2w), where rv is a random positive number, and for k ∈ [1, w],

vi =

{

(d3
k, d2

k, dk, 1)T , i = 2k − 1

(rk,1, rk,2, rk,3, rk,4)
T , i = 2k

where rk,j is a random positive number for 1 ≤ j ≤ 4.
- GenToken(SK, MBR). On input SK and a range query MBR = (R1, · · · , Rw), where

Rk = [xk,l, xk,r], output search token TK = rp(MTp1, · · · , MTp2w), where rp is a
random positive number, and for k ∈ [1, w],

pi =

{

[1, −xk,l − xk,r + δ, xk,lxk,r − (xk,l + xk,r)δ, xk,lxk,rδ]
T , i = 2k − 1

(r
′
k,1, r

′
k,2, r

′
k,3, r

′
k,4)

T , i = 2k

where r
′
k,j is a random negative number for 1 ≤ j ≤ 4.

- Query(TK, C). On input TK and C, output 1 iff 〈TKi, Ci〉 ≤ 0, ∀i ∈ [1, 2w], or
output 0 otherwise.

Correctness. The inner product for i = 2k − 1, k ∈ [1, w] is 〈TKi, Ci〉 =
rprv|det(M)|〈pi,vi〉, and he inner product for dimension i = 2k, k ∈ [1, w] is
〈TKi, Ci〉 = rprv|det(M)|∑ ri,jr

′
i,j , where ri,j > 0, r

′
i,j < 0 for 1 ≤ j ≤ 4,

which guarantees the inner product below 0. Thus, 〈TKi, Ci〉 ≤ 0 is true if
dk ∈ [x2k,l, x2k,r],∀i ∈ [1, 2w], k ∈ [1, w]. The probability of returning the point
is negligible if D is not inside the range.



TRQED: Secure and Fast Tree-Based Private Range Queries 137

4.3 Range Intersection Predicate Encryption (RIPE)

Based on IPC, we propose the RIPE to check whether two MBRs intersect. We
begin with the 1-dimensional case. For two ranges R = [xl, xr] and R

′
= [x

′
l, x

′
r],

we find that there exists a true proposition: R ∩ R
′ 
= ∅ ⇔ p = (xl − x

′
r)(xr −

x
′
l) ≤ 0. Similarly, add the perturbation to the predicate, and we can obtain

p̂ = (xl − x
′
r)(xr − x

′
l)(xr + δ), where δ is also a positive random number. In the

same way, we express the predicate as query and value vectors as follows:

p = [xr + δ,−x2
r − xrδ,−xlxr − xlδ, xlxr(xr + δ)]T ,v = (x

′
lx

′
r, x

′
r, x

′
l, 1)T .

Similarly, we design the 1dRIPE, and further extend it to the multi-
dimensional case, namely wdRIPE, as shown in Algorithm 2.

Algorithm 2. wdRIPE

- Setup(1κ). On input a security parameter κ, output a secret key SK = {M, ˜M}.

- Encrypt(SK,MBR). On input SK and a MBR
′

= (R
′
1, · · · , R

′
w), where R

′
k =

[x
′
k,l, x

′
k,r], output ciphertext C = rv(˜Mv1, · · · , ˜Mv2w), where rv is a generated

random positive number, and for k ∈ [1, w],

vi =

{

(x
′
k,lx

′
k,r, x

′
k,r, x

′
k,l, 1)T , i = 2k − 1

(rk,1, rk,2, rk,3, rk,4)
T , i = 2k

where rk,j is a random positive number for 1 ≤ j ≤ 4.
- GenToken(SK,MBR). On input SK and a range query MBR = (R1, · · · , Rw), where

Rk = [xk,l, xk,r], output search token TK = rp(MTp1, · · · , MTp2w), where rp is a
random positive number, and for k ∈ [1, w],

pi =

{

[xk,r + δ, −x2
k,r − xk,rδ, −xk,lxj,r − xk,lδ, xk,lxk,r(xk,r + δ)]T , i = 2k − 1

(r
′
k,1, r

′
k,2, r

′
k,3, r

′
k,4)

T , i = 2k

where r
′
k,j is a random negative number for 1 ≤ j ≤ 4.

- Query(TK, C). On input TK and C, output 1 iff 〈TKi, Ci〉 ≤ 0, ∀i ∈ [1, 2w], or
output 0 otherwise.

Using IPC, the correctness proof of wdRIPE is similar to that of wdPIPE.

5 TRQED Scheme

Now, we can present our TRQED formally.
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5.1 TRQED Construction

To perform private range query, TRQED searches the R-tree index through the
five polynomial algorithms (Setup, EncIndex, GenToken, Query) as:

• Setup(1κ). On input a security parameter κ, the data owner generates a secret
key SK = {SKleaf , SKnonleaf , SKdata}, where

SKleaf ← wdPIPE.Setup(1κ),

SKnonleaf ← wdRIPE.Setup(1κ),

SKdata ← AES(1κ).

• EncIndex(SK, D). On input the SK and dataset D, the data owner builds
an R-tree I = {D1, · · · ,Dn, N1, · · · , Nt,P }, where {Di}n

i=1 is a leaf node,
{Nj}t

j=1 is a non-leaf node, and P is the set of pointers to children nodes.
Then owner encrypts every leaf and non-leaf node separately as follows:

Ci ←wdPIPE.Encrypt(SKleaf ,Di),
Ej ←wdRIPE.Encrypt(SKnonleaf , Nj).

where {Ci}n
i=1 is an encrypted leaf node, and {Ej}t

j=1 is an encrypted non-leaf
node. The data records are encrypted as follows:

D∗
i ← AES.encrypt(SKdata,Di), for 1 ≤ i ≤ n.

Afterwards, the data owner outsources the encrypted index I∗ =
{

C1, · · · ,

Cn, E1, · · · , Et,P
}

and dataset D∗ to the cloud server.
• GenToken(SK, Q). On input the SK and a range query Q, the owner gen-

erates a search token TK = {TKleaf , TKnonleaf}, where

TKleaf ← wdPIPE.GenToken(SKleaf , Q),

TKnonleaf ← wdRIPE.GenToken(SKnonleaf , Q).

Then TK is distributed to authorized users and submitted to the cloud.
• Query(TK, I∗). On input the TK and I∗, the cloud server searches tree I∗

level-by-level as follows:
– For a non-leaf node Ej , if wdRIPE.Query(TKnonleaf , Ej) is true, it con-

tinues to search the child nodes of Ej ; otherwise it stops searching this
branch.

– For a leaf node Ci, if wdPIPE. Query(TKleaf , Ci) is true, that indicates
Di ∈ Q, and it puts the identifier Ii of this node into the list IDQ.

Finally, the server returns a set IDQ of identifiers of matched data records,
and the user obtains the results.

Correctness. The correctness of TRQED is based on the correctness of
wdPIPE and wdRIPE. Formally, for all κ ∈ N, let SK

R←− Setup(1κ), I∗ R←−
EncIndex(SK,D), TK

R←− GenToken(SK, Q). If Di ∈ Q,

Pr[Query(TK, I∗) = IDQ, Ii ∈ IDQ] = 1.
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If Di /∈ Q,
Pr[Query(TK, I∗) = IDQ, Ii ∈ IDQ] ≤ negl(κ),

where negl(κ) is a negligible function in κ. Thus, Query(TK, I∗) returns Ii if
and only if Di ∈ Q.

5.2 Data Update

Insertion. To insert a new record D
′
, we should find the lowest-layer non-

leaf node of R-tree that contains this tuple. That is, the algorithm needs to
traverse the index by testing whether a point (i.e., D

′
) is inside a MBR of non-

leaf node, which is based on equality query. Roughly speaking, equality query
is a specific type of range query. For a new data record D

′
= (d

′
1, · · · , d

′
w),

it can be expressed as a range MBR
′

= (R
′
1, · · · , R

′
w), where R

′
j = [d

′
j , d

′
j ],

for 1 ≤ j ≤ w. Then the data owner computes an update token TKπ with
GenToken(SK,MBR

′
) of wdPIPE and wdRIPE. After receiving the token and

C
′
generated by wdPIPE.Encrypt(SKleaf ,D

′
), the cloud server searches the R-

tree until it finds the lowest-layer non-leaf node E
′
that contains D

′
. Afterwards,

the server just inserts this tuple into the non-leaf node, and puts the encrypted
record into D∗ and new pointers into P .

Deletion. To delete a data record, the algorithm should search for its location
in the R-tree index. Specifically, it first finds the non-leaf node in the lowest-layer
that contains the record, and then checks whether a leaf-node is equal to the
record. Given the record D

′
, the owner submits the deletion token TKπ similarly

with the above MBR
′
. The token consists of (TK

′
leaf , TK

′
nonleaf ), which enables

the server to locate the record D
′
. Then the cloud server deletes D

′
, and deletes

the corresponding pointers and encrypted record.

Modification. Data modification is considered as a combination of deletion of
old value and insertion of new value [7]. The server just needs to perform one
deletion and insertion to modify a record, and thus we omit the details here for
brevity.

The UpdToken and Update are defined as follow:

• UpdToken(SK, π,MBR
′
). On input SK, update option π ∈ {

insertion,

deletion, modification
}

, and a target record MBR
′

= (R
′
1, · · · , R

′
w), where

R
′
j = [d

′
j , d

′
j ], the owner outputs a token TKπ = (TK

′
leaf , TK

′
nonleaf ), where

TK
′
leaf ← wdPIPE.GenToken(SKleaf ,MBR

′
),

TK
′
nonleaf ← wdRIPE.GenToken(SKnonleaf ,MBR

′
).
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• Update(TKπ, I∗, C
′
). On input the token TKπ, the index I∗, and cipher-

text of the record C
′
, where C

′
= wdPIPE.Encrypt(SKleaf ,D

′
), the cloud

server outputs a new I∗ and updates the D∗.
– If π = insertion, call Query(TK

′
nonleaf , I∗) and find the lowest-layer non-

leaf node E
′

where C
′ ∈ E

′
. Insert the leaf node C

′
in the R-tree, and

add the pointers into P and encrypted record into D∗.
– If π = deletion, call Query(TK

′
, I∗) to find the leaf node C

′
. If yes,

delete C
′
from the R-tree, and delete the pointers from P and encrypted

record from D∗.
– If π = modification, first perform the deletion operation, and then per-

form insertion operation.

6 Security Analysis

In this section, we prove the security of our TRQED scheme.

Lemma 1. The intersection predicate encryption schemes are semantically
secure if the encrypted messages are indistinguishable under Chosen Plaintext
Attack (IND-CPA).

Proof. We just have to prove that the probability for the probabilistic
polynomial-time (PPT) adversary to break the encrypted messages of IPE
schemes (i.e., PIPE and RIPE) is negligible. Suppose the challenger runs
Setup(1κ) to generate an intersection encryption system SK = {SK1, SK2},
and a PPT adversary A submits two messages m0 and m1, which knows SK2

from the challenger. The challenger randomly chooses b ∈ {0, 1}, encrypts
mb with SK1, and sends the ciphertext to A. Then the adversary A takes a
guess b

′
of b. Recall with the perturbation-based matrix encryption, a random

number is used each time, thus transforming a plaintext into varied cipher-
text with the same key. It is easy to conclude that A cannot guess b correctly
with a probability higher than 1/2. Thus the advantage in the security game is
AdvCPA

IPE,A(κ) = |Pr[b = b
′
]− 1

2 | < negl(κ). Moreover, considering the invertible
matrix is random, it is difficult to be cracked, as there are an infinite number of
key pairs. Thus we say that the IPE schemes are semantically secure.

The indistinguishability of encrypted vectors and tokens is based on the indis-
tinguishability of the pseudo-random number and perturbation-based matrix
encryption, so that the index privacy are preserved. Based on Lemma 1, we
analyze the security of TRQED.

Theorem 1. TRQED is secure against semi-honest adversaries under the
known background model.

Before proving the Theorem 1, we introduce some notions used in [16] and
adapt them for our proof.
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– History: an interaction between the user and cloud server, determined by
a dataset D, a searchable index I and a set of queries Q = (q1, · · · , qτ )
submitted by users, denoted as the knowledge H = (D, I, Q).

– View: the encrypted form of H under the secret key SK, denoted as V (H),
i.e., the encrypted dataset D∗, the secure index I∗, and the search tokens
TK(Q). Note that the cloud server can only see the views.

– Trace: given a history H, the trace Tr(H) is the information which can be
learned by the cloud server. It contains the access pattern α(H), search pat-
tern σ(H) and the returned identifiers ID(Q). Let ID(q) be the set of iden-
tifiers of the matched data records, and α(H) = {ID(q1), · · · , ID(qτ )}. The
search pattern σ(H) is a n×τ binary matrix where σ(H)i,j is 1 if Ii is returned
by a query qj , and 0 otherwise. Then we have Tr(H) = {ID(Q), α(H), σ(H)}.

Under known background model, we assume the server obtains the Tr(H), and
a certain number of query and its probability pairs (qi, pi). Informally, given
two histories with the same trace, if the server with the distribution of queries
cannot distinguish which view of them is generated by the simulator, he cannot
learn additional knowledge beyond what we are willing to leak (i.e., the trace),
and thus our solution is secure.

Proof. Let S be a simulator that can simulate a view V
′
indistinguishable from

the cloud server’s view V (H) = {D∗, I∗, TK(Q)}. To achieve this, the S does
the following:

• To generate D′
, S selects a random D

′
i ∈ {0, 1}|D∗

i |, D∗
i ∈ D∗, 1 ≤ i ≤ |D∗|,

and outputs D′
= {D

′
i, 1 ≤ i ≤ |D∗|}.

• S randomly picks an invertible matrix M
′
1,M

′
2 ∈ R

4×4. Set SK
′
= {M

′
1,M

′
2}.

• To generate I
′
(D′

), S first generates a vector of 2w elements for each v
′
i ∈

I
′
(D′

), 1 ≤ i ≤ |I∗| as the index, then does the following:
(1) For each element of v

′
i, S replaces it with a four-dimensional vector

(ri,1, · · · , ri,4)T , where ri,k is a random number for 1 ≤ i ≤ n, 1 ≤ k ≤ 4.
(2) S encrypts each v

′
i with the M

′
2, and obtains I

′
(D′

) = {EncSK′ (v
′
i), 1 ≤

i ≤ |I∗|}.
• S constructs the query Q

′
and the search tokens TK(Q

′
) as follows. For each

q
′
i ∈ Q

′
, 1 ≤ i ≤ τ ,

(1) Generates a vector of 2w elements, denoted as u
′
i, and replace each ele-

ment with a four-dimensional vector (r
′
i,1, · · · , r

′
i,4)

T , where r
′
i,k is a ran-

dom number for 1 ≤ i ≤ n, 1 ≤ k ≤ 4. Output Q
′
=

{

q
′
i, 1 ≤ i ≤ τ

}

.
(2) Generate the search token for each q

′
i by encrypting u

′
i with M

′
1 from

SK
′

for 1 ≤ i ≤ τ . Then S obtains EncSK′ (Q
′
) =

{

EncSK′ (q
′
1),

· · · , EncSK′ (q
′
τ )

}

.
• S outputs the view V

′
= (D′

, I
′
(D′

), TK(Q
′
).

The correctness of such construction is easy to demonstrate by querying TK(Q
′
)

over I
′
(D′

). The index I
′
(D′

) and the token TK(Q
′
) generate the same trace

as the one that the cloud server has. We claim that no PPT adversary can
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distinguish the view V
′
from V (H). Specifically, due to the semantic security of

IPE and AES, no PPT adversary can distinguish the D∗ from D′
. Moreover, the

PPT adversary with the query and probability pairs cannot distinguish which
tokens are generated from the same query because of the indistinguishability of
random perturbation-based comparison predicate, so that it cannot exploit the
distributions of plain and encrypted queries to deduce information. �

7 Evaluation

We evaluate the performance of TRQED on a real-world (REAL) dataset from
the U.S. census bureau dataset [17]. The REAL dataset consists of 299,285
records with more than 20 attributes. We chose a number of records (from
20,000 to 100,000) to construct our datasets with needed dimensionality, and
built R-tree indexes on each REAL dataset. The data owner, user and cloud
server are all set on desktop computers with 3.20 GHz CPU and 4 GB RAM.
We adopt GMP library and AES CTR mode for data encryption, and set the
security parameter κ at 128, bit length l of each attribute at 32. For performance
evaluation, we focus on overhead and efficiency as the scheme is proved to have a
high search accuracy, which we omit for space reasons. 100 queries are executed
and their average costs are reported.

7.1 Overhead and Efficiency

Setup. To setup the system, the data owner first encrypts all nodes of the R-tree
index, of which each node requires about O(w) matrix-vector multiplications and
bits. Here we are interested in the encryption overhead ignoring tree construction
cost. As shown in Fig. 2(a) and (b), the costs of index encryption is increasing
with number of dimensions w and data records n, as the TRQED should encrypt
each non-leaf node of R-tree with RIPE and each leaf node with PIPE. That
is, TRQED trades off the setup time and storage cost for improvement of the
search efficiency.

(a) (b) (c)

Fig. 2. Setup and token generation cost: (a) R-tree index encryption time versus n
with dimensions w = 2, 4, 6; (b) total storage cost versus n with w = 2, 4, 6; (c) token
generation time versus w with n = 100,000.
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Token Generation. We evaluate the experimental results of generating search
tokens in Fig. 2(c). The time of token generation per query is linearly increasing
with the number of dimensions w, as TRQED needs to spend additional time to
generate tokens in the added dimensions.

Search. We can see from Fig. 3(a) the impact of w and n on the search time
per query. The search time shows a logarithmic increase trend as n increases, as
the cloud server searches the R-tree level-by-level honestly to check whether the
node satisfies Query(TK, I∗) = true. If fixing n, the cost shows a linear trend
with the dimensions w, as the amount of inner product computations at each
node increases with w. This verifies search time is linear with the number of
dimensions and the height of R-tree. In Fig. 3(b), it can be seen that the average
communication cost is linear with w, n has little effect, as the communication
cost is composed of the generated search tokens and matched records.

(a) (b)

Fig. 3. Search efficiency: (a) search time versus n with w = 2, 4, 6; (b) communication
cost versus w with n = 60,000, 100,000.

The efficiency of data update is similar to that of search phase, as the update
operation is essentially fulfilled through search. The detailed results are omitted
due to space limitation. Roughly speaking, the insertion and deletion operations
require about the same computation, while the modification needs about the
double computation overhead.

7.2 TRQED v.s. Prior Art

We compare our TRQED with the existing protocols, i.e., BonehW [5], LSED+

[7], WangR [8], and Maple [9] in terms of privacy and data dynamics. As for
efficiency, BonehW [5] fails to achieve faster-than-linear search and LSED+ [7]
achieves efficiency at the price of revealing ordering information and compromis-
ing privacy which makes it to be impractical. Therefore, we focus our efficiency
comparison on WangR [8] and Maple [9], which are practical and represent the
state-of-the-art multi-dimensional range query schemes.
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Privacy and Data Dynamics. We compare the privacy guarantees and data
dynamics support of the four related schemes and our TRQED, as shown in
Table 1. As for the query and single-dimensional privacy, LSED+ and WangR
preserve the query privacy and do not provide single-dimensional privacy.
BonehW and Maple preserve the single-dimensional privacy and fails in query
privacy. In contrast, our TRQED preserves both the query privacy and single-
dimensional privacy. As to data dynamics, only LSED+ and our TRQED can
provide data update while the other three scheme do not support.

Table 1. Comparison among different solutions

Faster-than-linear
search

Query
privacy

Single-dimensional
privacy

Data dynamics
support

BonehW [5] × × √ ×
LSED+ [7]

√ √ × √

WangR [8]
√ √ × ×

Maple [9]
√ × √ ×

TRQED
√ √ √ √

Efficiency. The experimental results of search efficiency are depicted in Fig. 4(a)
varying n from 20,000 to 100,000. They all show an increasing trend as n
increases. Figure 4(b) illustrates the search time of three schemes are all linearly
increasing with w. By contrast, the time cost of TRQED is slightly smaller than
that of WangR because of smaller coefficient of the time complexity. Compared
with Maple, TRQED is about 240 to 1,000 times faster than Maple, as Maple
relies on public-key cryptography and the impact of domain limit T cannot be
ignored. Thus, the proposed TRQED is more efficient.

(a) (b)

Fig. 4. Performance comparison: (a) average search time of the schemes versus n with
w = 2; (b) average search time versus w with n = 100,000.

From the above comparison, we can conclude TRQED has a better perfor-
mance than prior art. It not only preserves query and single-dimensional privacy,
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but also has a comparatively desirable overhead. On the whole, combining both
security and efficiency, we think TRQED may be promising.

8 Conclusion

We have studied the problem of multi-dimensional private range queries over
dynamic encrypted cloud data. Our proposed TRQED is the first private range
query scheme that achieves faster-than-linear search and supports data dynam-
ics while preserving the query privacy and single-dimensional privacy simul-
taneously. We have proven TRQED is secure against semi-honest adversaries
under known background model. Experiments on real-world dataset have shown
TRQED is more practical compared with prior art.
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Abstract. Exploratory data analysis over large datasets has become an
increasingly prevalent use case. However, users are easily overwhelmed
by the data and might take a long time to find interesting facts. In
this paper, we design a system called iExplore to assist users in doing
this time-consuming data exploration task through predicting user inten-
tion. Moreover, we propose an intention model to help the iExplore sys-
tem have a comprehensive understanding of user’s intention. Thus, the
exploratory process can be accelerated by the intention-driven recom-
mendation and prefetching mechanisms. Extensive experiments demon-
strate that the intention-driven iExplore system can significantly lighten
the burden of users and facilitate the exploratory process.

Keywords: User intention · Data exploration · Query log

1 Introduction

Exploratory data analysis is an effective way for users to obtain insights from
large datasets, especially for non-expert users who are unfamiliar with the under-
lying data. In the exploratory analysis scenario, users usually pose several trial
queries sequentially to explore the dataset. Such a “human-in-the-loop” analysis
is essentially a multi-steps and time-consuming process. There are two reasons
making the exploratory process time-consuming and tedious for users. (i) Users
have to continuously pose a series of queries to try to figure out the underlying
data space and discover interesting facts as much as possible. (ii) When users
face massive amount of data, they tend to be overwhelmed by the data and fall
in random walk in the data space, even without any useful information found
for a long time. Basically, in data exploration, most of users are faced with such
a dilemma: How could users find what they want to know efficiently?
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In fact, in the exploratory process, there is hidden intention which leads
users to approach their goals step-by-step, even though they do not have a clear
end-goal at first. It is because users always pose suitable queries based on their
previous queries and results. Therefore, if we could automatically extract this
hidden intention to offer some advice and prefetch some results for users, it can
greatly lightening the burden of users and accelerating the exploratory process.
Additionally, it is worth noting that the intention is hidden in their previous
queries and query logs from other people with similar backgrounds, reflecting in
both query logs and the similarity of data. Actually, the hidden intention is the
intrinsic connection between previous queries posed by the user and the next
query to be posed, as users leverage their observations or experiences.

Let us consider a specific example from SDSS [1] DR7 database1, which stores
digital astronomy data. We retrieve a segment of a session, which is a series of
queries posed by users from the SDSS DR7 log dataset2, as shown in Fig. 1. The
log dataset records users’ successive exploratory queries. In Fig. 1, the DBObjects
table stores the descriptions of all database objects, and IndexMap contains
all index information. The example segment includes three queries. The first
one (q1) is that users want to see the description information of the ‘HoleObj’
table, and q2 indicates that users want to figure out the detail description of
the ‘HoleObj’ table. These two queries are similar as both of them show the
description information of the same table at different level. q3 shows that users
want to make out the index information built on table ‘HoleObj’.

q1:
select description 
from DBObjects 
where name='HoleObj'

q2:
select text 
from DBObjects 
where name='HoleObj'

q3:
select 
[indexMapID],[code],[type],[tabl
eName],[fieldList],[foreignKey]
from IndexMap  
where tableName='HoleObj'
order by [indexMapId]

Session

text
This table stores information for non OBJECT holes, and for OBJECT holes that were not mapped.

indexMapID
58
120

code
K
F

type
primary key
foreign key

tableName
HoleObj
HoleObj

fieldList
HoleID
plateID

foreign Key

PlateX(plateID)

description
information for holes on a Plate

Results:

... ...

Fig. 1. Example of a session with queries and their corresponding results.

As shown above, this exploratory segment illustrates that the user wants to
figure out the underlying data space, and it also implies a very strong inherent
intention as follows. When a user wants to explore a table, she/he often starts
with looking at the description of the table. If the user is interested in the table,
she/he will further look at the index built on the table. Two points are worth
highlighting: First, many users all have this common query behavior according
to the statistic information of the query log dataset. This reveals that users have
tremendous possibility to turn to the index information of the table, when they
1 http://cas.sdss.org/dr7/en.
2 http://skyserver.sdss.org/log/en/traffic/sql.asp.

http://cas.sdss.org/dr7/en
http://skyserver.sdss.org/log/en/traffic/sql.asp
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glimpse at the description information of the table. Second, when users pose a
query, results similar to this query are most likely to be selected by users next,
such as q1 and q2. Therefore, we could extract the hidden intention from both
query log and the similarity of data. The extracted intention can be used to
navigate users to their end-goals and accelerate the exploratory process.

In this paper, we study the problem on how to navigate users to explore the
data space and to accelerate the exploratory process through predicting users’
hidden intention. However, to solve this problem, we face the following chal-
lenges: (i) The hidden intention essentially embodies a degree of uncertainty
and vagueness. It is because users leverage their uncertain observations or expe-
riences to decide their next-step query. This greatly complicates the modelling
and computation of the hidden intention. (ii) We should ensure that the inten-
tion model makes the exploratory process convergent, which means the user’s
exploration would stop at a stable point finally under the guidance of the sys-
tem. To the best of our knowledge, the investigation of the convergence of the
exploratory analysis process has not been reported in the literatures.

To address these challenges, we propose an intention model to model the
exploratory analysis process. A key component of this model is an intention
function. This function measures the intrinsic connection between the next query
and previous queries to describe the uncertainty and vagueness of the intention.
Furthermore, the convergence of the intention model has been studied to figure
out the characteristic of exploratory process that users have end-goals. Thus we
can know whether users randomly walk or not. Finally, we propose an intention-
driven exploratory (iExplore) system to assist users’ exploration and accelerate
the exploratory process. The main contributions are summarized as follows:

i A generalized intention model modelling the exploratory analysis process has
been proposed in this paper. The intention model defines the fundamental
components for modelling user’s hidden intention.

ii The convergence of the intention model has been studied to figure out the
characteristic of exploratory process that users have clear end-goals.

iii An intention-driven exploration system called iExplore is proposed in this
paper, which incorporates an instantial intention model into the system. The
iExplore offers recommendations to assist users and prefetches data to accel-
erate the exploratory process.

iv We experimentally demonstrate that iExplore can successfully help users to
specify their querie, significantly facilitating the exploratory process.

Paper outline: In Sect. 2, we formulate our user intention problem and study
the conditions of convergence of the intention model. Section 3 describes the
iExplore system. Comprehensive experiments are presented in Sect. 4. We review
the related work in Sect. 5 and conclude this paper in Sect. 6.
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2 Problem Formulation

2.1 Intention Model

In the exploratory process, the user’s hidden intention which describes the intrin-
sic connection between two queries determines the possibility that the user moves
from one query to another query. We introduce an intention function to describe
this hidden intention. Given the current query and its result, the intention func-
tion gives the next query a score according to the intensity of user’s intention.
The definition of this intention function is as follows and one type of detailed
method of the intention function is given in Sect. 3.3.

Definition 1 (Intention Function). For given two pairs of query and result
(qi, ri) and (qj , rj) where qi and qj represent different queries and ri and rj
represent corresponding result, the intention function f gives a score to describe
the degree of user’s intention that he/she moves from the current query and
result (qi, ri) to the next query and result (qj , rj). The higher score, the stronger

intention. f is (qi, ri), (qj , rj)
f−→ a score.

The intention function is the critical component in our intention model. Addi-
tionally, the intention function operates according to some basic premises consid-
ering the notion of query similarity. The fundamental premises and the intention
function determine the intention model, and it is defined as follows.

Definition 2 (Generalized Intention Model). The intention model is a
quadruple [S, D, F , f((qi, ri), (qi+1, ri+1))] where

i S is a sequence of pairs of query qi and result ri posed by the current user.
S = {(q1, r1), (q2, r2), . . . , (qs, rs)} where (qi, ri), i ∈ {1, . . . , s} is the pair
of query and result that the user posts at time i.

ii D is a set composed of sessions in the query log dataset.
iii F is a framework for modelling the representation of pairs of query and result

and the relationship between different pairs, such as vectors and probability
distributions.

iv f((qi, ri), (qi+1, ri+1)) is the intention function. Given that the user posts
query qi and sees its result ri at time i, the intention function gives query
qi+1 a score for modelling the possibility that user converts to this query at
time i + 1, or the intention function gives a score to result ri+1 for modelling
the possibility that this result to be selected at time i + 1. This intention func-
tion defines an order for the next pair of query and result (qi+1, ri+1).

The intention model consists of two main tasks: (i) the conception of a logical
framework for representing pairs of query and result, F . This framework provides
a method to map pairs of query and result into the measurable space, such
as vector space and probability distribution. (ii) The detailed definition of the
intention function f((qi, ri), (qi+1, ri+1)). This intention function models user’s
intention during data exploration and can be used to navigate users in the data
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space. Additionally, qi is used to denote both the query and its representation,
and ri is used to denote both the corresponding result and its representation.

The iExplore system presented in Sect. 3 provides a prototype of the intention
model especially these two main tasks. On one hand, we introduce a vector
model to map pairs of query and result into the vector space and standard linear
operations are allowed on this model given in Sect. 3.2. And other methods for
F are in our future work. On the other hand, a detailed method for the intention
function f which measures the hidden intention based on both query log and the
similarity of data is given in Sect. 3.3 although this may be not the only method.
Therefore, this intention model is a general definition of the exploratory analysis
process and its components can be instanced more than the methods mentioned
in this paper. Additionally, the intention model can be used not only to navigate
the user in the data space, but also to automatically prefetch data during data
exploration.

2.2 Convergence

In terms of the characteristics of the exploratory process, it is worth noting that
the users’ intention is basically consistent and does not change with the process of
exploratory analysis. Therefore, we assume that the intention function does not
change over time, this is called the homogeneity of the intention model, otherwise
inhomogeneous. The formal definition of the homogeneity is as follows.

Definition 3 (Homogeneity). For the given intention model [S, D, F , f((qi,
ri), (qi+1, ri+1))], if the intention function f((qi, ri), (qi+1, ri+1)) is invariant
during an exploratory process, we say that the intention model is homogeneous.

For simplicity, we study the homogeneous intention model in the sequel of
this paper. Additionally, we discover that if users find what they want or their
end-goals in the process of exploration, users’ query would stop at a stable query
point. This analysis shows that such a type of exploratory analysis that users
have end-goals is convergent. The convergence of the intention model is defined
as follows.

Definition 4 (Convergence). For the given intention model [S, D, F , f((qi,
ri), (qi+1, ri+1))], if the user ends with a unique stationary pair of query and
result (qs, rs) through multi-steps queries, that is (qs+1, rs+1) = (qs, rs), we say
that the intention model is convergent.

During the process of exploration, if the intention model is convergent, the
user’s query would stably stop at the end-goal of this user. Then the exploratory
analysis process is convergent and valid for the user. On the contrary, if the
intention model is not convergent, the user’s query randomly walks in the data
space without useful information found. This kind of exploratory analysis process
is useless and invalid for the user. Additionally, we also study the conditions that
make the intention model convergent with the following theorem introduced.
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Theorem 1. Given the intention model [S, D, F , f((qi, ri), (qi+1, ri+1))], if the
intention function satisfies the following two conditions: (i)the intention function
is aperiodic, and (ii) no matter how many steps, every two pairs of query and
result, (qi, ri) and (qj , rj), is reachable, we say that the intention function is
convergent.

Proof. Assume that the query and result space is {(q1, r1), (q2, r2), · · · , (qn, rn)},
we can construct an intention table which has n rows and n columns. The value
in the ith row and jth column of the intention table is the value of the intention
function f((qi, ri), (qj , rj)) which associates a score with the intensity of user’s
intention. Then perform the row normalization on the intention table and we can
obtain a n × n stochastic matrix [9], denoted P . A sequence of queries posed by
the user according to the intention model during the exploratory analysis process
can form a Markov Chain [9] with transition matrix P . If every two pairs of query
and result is reachable, the transition matrix P is irreducible. Therefore, these
two conditions indicate that P is aperiodic and irreducible. Then the Markov
Chain is convergent according to the Markov Chains Convergence Theorems [4].
Thus the intention model is convergent.

(q1, r1)

(q2, r2) (q3, r3)
f((q3,r3),(q2,r2))=0.4

f((q1,r1),(q1,r1))=1.6

f((q2,r2),(q2,r2))=1.6

(q1,r1) (q2,r2) (q3,r3)

1.6 0.4 0

1.2 1.6 1.2

0.8 0.4 2.8

(q1,r1)

(q2,r2)

(q3,r3)

(q1,r1) (q2,r2) (q3,r3)

0.8 0.2 0

0.3 0.4 0.3

0.2 0.1 0.7

(q1,r1)

(q2,r2)

(q3,r3)

Row 
normaliza on

(a) Intention Function (b) Intention Table (c) Stochastic Matrix

(0.5556,0.222,0.222)

(d) Convergence State

Fig. 2. Example of intention function with n = 3.

To illustrate the homogeneity and convergence of the intention model, con-
sider a simple example of the intention function with n = 3 as shown in
Fig. 2. Figure 2(a) shows the intention function in the query and result space
{(q1, r1), (q2, r2), (q3, r3)}. The intention table constructed from these intention
functions is shown in Fig. 2(b). In this example, we assume that the intention
model is homogeneous, that is the intention table will not change during the
exploratory analysis process. Then as shown in Fig. 2(c), we can obtain a 3 × 3
stochastic matrix through the row normalization on the intention table. As this
matrix satisfies Theorem 1, the user’s intention has the convergent state shown
in Fig. 2(d). This indicates that user’s query would finally stop at (q1, r1), and
this reflects the intention of a general exploratory process of a user.
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3 iExplore: Intention-Driven Exploration

3.1 iExplore Architecture

In this paper, we propose an intention-driven exploratory (iExplore) system,
which uses users’ intention to assist and accelerate the exploratory process for
users. The overview of the iExplore system is presented in Fig. 3. The user inter-
acts with the system by posting queries through the user interface. The query
posted by the user goes to the query engine to fetch result from the database
or the cache. Then the vector model map the query and its result to the vector
space. The intention function computes user’s next query based on vectors of
pairs of query and result. Then the recommendation engine select top-k queries
qi+1 according to the intention function, and these queries are recommended
to the user. qi+1 is a set of k recommended queries. Finally, the prefetching
engine prefetches results according to the query recommendation to accelerate
the execution of user’s next query.

Fig. 3. The iExplore system architecture.

The iExplore system is actually an instance of the generalized intention model
presented in the previous section. It is composed of the following four compo-
nents: (i) Vector Model: it maps pairs of query and result into the vector
space, and standard linear operations are allowed. (ii) Intention Function: this
component scores user’s next query from two perspectives: query logs and the
data similarity. (iii) Recommendation Engine: this engine recommends top-k
queries according to scores computed by the intention function. (iv) Prefetch-
ing Engine: it prefetches the result data of queries recommended to users to
accelerate the exploratory process. The first two components form the intention
model and the last two components show how the intention model works in the
exploratory process.

3.2 Vector Model

Before measuring the hidden intention, we need to map pairs of query and result
into the measurable space. On one hand, as the query is a declarative language,
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different users may write syntactically different queries by leveraging their cus-
tom and experiences to reflect the same information needed. This complicates
greatly the measurement of different queries. On the other hand, as the query
and its result are equivalent, we can use the result set to represent the query,
avoiding the aforementioned problem. Therefore, we can express queries based
on their result sets.

For a given database D, all distinct tuples can construct a tuple vocabulary
VT . A query on this database can be expressed as a vector v, depending on
whether the tuple appears in the result set. If the tuple t appears in the result
set of query q, q[t] = 1. Otherwise, q[t] = 0. As the length of the vocabulary is
too long and the vector of query has mostly zero elements, we use the sparse
vector to express the query. The sparse vector records the indices of all result
tuples in the tuple vocabulary. The tuple vocabulary VT and sparse vectors of
three queries are shown in Fig. 4(a) and (b). But this vector model is suitable
for Select-Project-Join (SPJ) queries.

We use the Jaccard Similarity [13] to measure the similarity between two
queries. The Jaccard Similarity between two queries is the ratio of the size of
intersection of these two queries’ vectors to the size of union vectors. And the
similarity of two query qi and qj can be described as follows:

sim(qi, qj) =
|vi ∩ vj |
|vi ∪ vj | (1)

where vi, vj are the vectors of query qi, qj , respectively, and |vi ∩ vj | is the size of
intersection of vectors vi and vj . The Jaccard Similarity of the three queries in
Fig. 4(b) are shown in Fig. 4(c). Therefore, we can map pairs of query and result
into the measurable vector space and standard linear operations are allowed.
Then we can measure the hidden intention.

3.3 Intention Function

We consider the hidden intention from two aspects, which are query logs and
data similarity. Therefore, the intention function consists of two parts: (i) query
logs from other people with similar backgrounds, and (ii) the similarity between
two adjacent queries. We denote these information as fql and fsim, respectively.
A parameter α can be introduced to leverage these two parts. Then the total
intention function can be represented as follows:

f((qi, ri), (qi+1, ri+1)) = αfql((qi, ri), (qi+1, ri+1)) + (1− α)fsim((qi, ri), (qi+1, ri+1)) (2)

First, let us consider fql. If the sub-sequence {qi, qi+1} appears frequently
in the log dataset, the next query is likely to be selected by the user at time
i + 1 when he/she has posted query qi at time i. According to this intuition
and the query log dataset D, the intention can be estimated by the conditional
probability of the next query based on previous query. Therefore, the probability
that user posed query qi+1 at time i + 1 can be estimated as follows:
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fql((qi, ri), (qi+1, ri+1)) = p((qi+1, ri+1)|(qi, ri)) = C((qi, ri), (qi+1, ri+1)) C(qi, ri) (3)

where C(qi, ri) is the count of query qi appearing in D.
Then, we now model fsim. If a query is similar to the previous query, it is

likely to be selected. Based on this intuition, we use the similarity between two
queries introduced in Sect. 3.2 to model the hidden intention fsim and it is as
follows:

fsim((qi, ri), (qi+1, ri+1)) = sim(qi, qi+1) (4)

Therefore, according to Eqs. 2, 3 and 4, the intention function is as follows:

f((qi, ri), (qi+1, ri+1)) = αp((qi+1, ri+1)|(qi, ri)) + (1 − α)sim(qi, qi+1) (5)
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Fig. 4. An example of a database with ten
tuples and three queries on this database.
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Algorithm 1. The Intention-Driven Exploration Algorithm
Input: qi, D, VQ, α, k
Output: qi+1, ri+1

1: ci ← Count(D, qi), pro
2: for all q′ ∈ VQ do
3: ci,i+1 ← Count(D, qi, q

′)
4: pro[q′] ← α × ci/ci,i+1 + (1 − α) × Sim(qi, q

′)
5: end for
6: pro ← Sort(pro)
7: while k ≥ 0 do
8: q′ ← pop(pro), k = k − 1
9: insert(qi+1, q′), insert(ri+1, fetch(q′))

10: end while

3.4 Recommendation and Prefetching

In this section, we will describe how the intention model works in the exploratory
analysis process. The existing users’ hidden intention decides their suitable next
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queries in the exploratory process. This fact indicates that the hidden inten-
tion steers users to explore in the data space. Therefore, the extracted hidden
intention can be used to navigate users to their end-goals and to accelerate the
exploratory process. In terms of navigation, the iExplore system recommends
top-k queries from the query vocabulary VQ to the user according to the inten-
tion function. VQ is a set of all distinct queries in the query log dataset D. In
terms of acceleration, the iExplore system prefetches the result data of these
top-k queries. When the user adopts the recommended queries, the result can
be obtained from cache without accessing the database.

The intention-driven recommendation and prefetching algorithm is presented
as pseudo-code shown in Algorithm 1. It computes the value of intention function
for every query in the query vocabulary VQ (line 1–5), where Count(D, qi) is the
number of times that qi appears in D, and Sim(qi, q′) is the Jaccard Similarity
between qi and q′. Line 6 sorts according to the value of intention function.
Finally, line 7–10 select top-k queries (insert(qi+1, q′)), prefetch their results
(insert(ri+1, fetch(q′))) and return back to users.

4 Experimental Evaluation

4.1 Experiments Setup

Experimental Environment. All experiments presented in this section are
implemented in Java (JDK 1.8). They are conducted on a Ubuntu Linux 16.04
LTS machine with an Intel E5-2650v3 CPU of 40 cores. This machine is equipped
with 128 GB DDR4 RAM and Seagate 2TB SATA HDD.

Dataset. Our experiments are performed on the SDSS DR7 [1] real database
which can be accessed online. It is the largest astronomical data collection to
date, and covers half of the Northern sky characterizing about 200M objects in
5 optical bands. The SDSS DR7 database is about 20TB containing 95 tables,
51 views, 224 functions and 90 indices.

Workloads. For the experimental evaluation, we have gathered 47,214 query
logs issued by users in 2011 from the SDSS DR7 log dataset. These query logs
can be separated into 12,378 sessions according to the method mentioned in [17].
We have conducted statistical analysis of these sessions. The distribution of the
length of sessions is shown in Fig. 5. The length of a session is the number
of queries in this session. As shown in Fig. 5, the distribution has a long tail
indicating that long sessions are very few. To study the effect of different length
sessions, we divide the session set into three sets according to the length of
sessions, denoted D1, D2, D3. The characteristics of them are summarized in
Table 1. Each dataset is divided into a train set and a test set with 9:1.

Performance Metrics. The exploratory analysis system can be divided into
three categories, and the time cost for two adjacent queries on three categories
is shown in Fig. 6. The symbols used in Fig. 6 are described in Table 2. As the
time cost of posting the first query on three category systems is the same, we
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Table 1. The characteristics of D1, D2, D3.

Workloads Length of sessions Number of sessions Number of queries The size of VT

D1 [2, 4] 9,680 25,494 1,044,375

D2 [5, 16] 2,548 17,062 616,463

D3 [17, 64] 150 4,658 2,831

Table 2. The symbols used to describe exploratory time in Fig. 6.

Tr&n The time of reading the results of previous query and thinking the next query

Twnq The time of writing the next query

T ˆwnq The time of modifying the next query based on the recommended queries

Tgr The time of getting results of query from database

Tĝr The time of getting results of query from cache

Tr The time of computing the recommended queries

ai Adoption flag

ignore it in the following analysis. We assume that users posed N queries in one
exploratory process. The time cost for three category exploratory processes are
as follows.

1. Exploration without Assistance: The pure database system just performs
queries posed by users without providing any support to help users carry out
their exploratory analysis, such as SkyServer. The SkyServer is a search tool
allowing users to explore the SDSS database by submitting queries. The time
cost for two adjacent queries is shown in Fig. 6(a). The response time for the
ith query is: Tr&n,i + Twnq,i + Tgr,i. And the exploratory time for users on
this system is:

∑N
i=1(Tr&n,i + Twnq,i + Tgr,i).

2. Exploration with Recommendation: It provides recommended queries
to help users explore. For instance, QueRIE [8] recommends similar
queries by collaborative filtering based on query logs, and AIDE [6] pro-
vides suggestions according to users’ feedback. The time cost for two
adjacent queries is illustrated in Fig. 6(b). The response time for the
ith query is: Tr&n,i + Tr,i + (1 − ai) × Twnq,i + ai × T ˆwnq,i + Tgr,i. And the
exploratory time for users is:

∑N
i=1(Tr&n,i + Tr,i + (1 − ai) × Twnq,i+

ai × T ˆwnq,i + Tgr,i).
3. Exploration with Recommendation and Prefetching: Such a kind of

system offers some advice to navigate users’ exploration and prefetches results
to accelerate the exploratory process, such as the iExplore system. The time
cost for two adjacent queries is shown in Fig. 6(c). The response time for the
ith query is: Tr&n,i + Tr,i + (1 − ai) × (Twnq,i + Tgr,i) + ai × (T ˆwnq,i +Tĝr,i).
And the exploratory time for users on such a type of system is:∑N

i=1 (Tr&n,i + Tr,i + (1 − ai) × (Twnq,i + Tgr,i) + ai × (T ˆwnq,i + Tĝr,i)).
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Fig. 6. Several exploratory systems.

where ai is the adoption flag. If the user adopts the recommended queries, ai = 1.
Otherwise, ai = 0. As the average time for two adjacent queries in sessions in
D1, D2 and D3 is 100 s, we set Tr&n,i = 50 s, Twnq,i = 50 s and T ˆwnq,i = 10 s. In
the following experiments, we compare iExplore with QueRIE and SkyServer,
as both QueRIE and iExplore do not need users’ feedback. SkyServer serves as
the baseline.

4.2 Response Time Comparison

For the first group experiments, we compare iExplore, QueRIE and SkyServer
through measuring the average response time in the exploratory process. We
use sessions in the test set to simulate the exploratory processes and calculate
the response time for every query posed by users. The average response time on
three datasets are shown in Fig. 7.

As shown in Fig. 7, the average response time of iExplore is less than that
of QueRIE and SkyServer, indicating that iExplore has accelerated the response
time. Additionally, the fluctuation of the average response time on iExplore is
because that users may adopt the recommended queries and do not need to write
the next query and access the underlying database. Specifically, as the adoption
flag ai is different in different exploratory processes for the ith query, the average
response time varies greatly with i. For completeness, we evaluate ai in Sect. 4.3.

The slight fluctuation of the average response time on QueRIE is because
users may not adopt the recommended queries. QueRIE is concerned with the
effect of the last prediction, and does not focus on the effect of the whole
exploratory process. Additionally, as we measure the average response time to
offset the deviation, the response time on SkyServer has changed only a little.

4.3 Impact of Parameter

In this experiment, we now turn our attention to the problem that how the
adoption flag ai is affected by the adjustable parameter α. From an overall view,
we evaluate the adoption rate p, where p =

∑N
i=1 ai/N and N is the number of
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Fig. 7. The average response time of these three systems (iExplore, QueRIE, Sky-
Server) on three datasets (D1, D2, D3).

queries in the exploratory process as we mentioned in Sect. 4.1. We employ our
three datasets and measure p varying α. Figure 8 reports the results.

In Fig. 8, we can see that p can achieve 0.8 indicating that the iExplore can
help users reduce about 80% query burden in the exploratory process. We observe
that α ≥ 0.5 performs better. It is coincident with the fact that the similarity
of queries may be contained in the query log dataset. Additionally, the adoption
rate on D1 is higher than that on D2 and D3. It is because the dataset D1 is
larger than D2 and D3, and there is sufficient statistics in D1.

A
do

pt
io

n 
R

at
e 

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Parameter α
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

A
do

pt
io

n 
R

at
e 

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Parameter α
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b)

A
do

pt
io

n 
R

at
e 

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Parameter α
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(c)

D1 D2 D3

Fig. 8. The change of adoption rate with α on three datasets.

4.4 Prefetching Evaluation

We conduct an experiment to evaluate our intention-driven prefetching (IDP)
strategy by comparing it with random prefetching (RP) strategy and no-
prefetching (NP) strategy. RP strategy prefetches data randomly. Specifically,
RP randomly selects k queries, and then prefetches their results. NP does not
prefetch any data, and it serves as the baseline. We employ our three datasets
and use sessions in the test set to simulate the exploratory process. The average
exploratory time for users are measured and shown in Fig. 9.

In Fig. 9, the exploratory time of IDP is significantly less than that of RP
and NP with 86%, 81% and 82% improvements respectively in D1, D2 and D3.
It is because IDP could predict user’s next queries and prefetch their results.
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Fig. 9. The exploratory time for different prefetching strategies on three datasets.

The exploratory time of RP is less than NP (76%, 67% and 68% improvements
respectively in D1, D2 and D3). As RP randomly selects queries and prefetches
their results, this may hit the query the user wants next and accelerate the
exploratory process. It also demonstrates that prefetching is an effective strategy.
And the exploratory time on D1 is less than that on D2 and D3. This is due to
the length of session.

4.5 Case Study

As a final step, we invite 20 users to explore the SDSS DR7 database by using
the iExplore system, QueRIE and SkyServer, respectively. Every user carries
out three exploratory processes, and we record their average exploratory time
for three datasets and three systems in Fig. 10.
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Fig. 10. The users exploratory time on three systems and three datasets.

According to Fig. 10, the iExplore system significantly accelerates the
exploratory process comparing to QueRIE and SkyServer with 89%, 84.6%
and 86% improvements in D1, D2 and D3. It demonstrates that the iEx-
plore system can successfully assist users to specify their queries and acceler-
ate the exploratory process for users. Additionally, the QueRIE accelerates the
exploratory process comparing to the no assistance system (SkyServer) with
59%, 53% and 54% improvements in D1, D2 and D3. This is due to the rec-
ommended queries by QuerRIE accelerating the process for writing the next
query.
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5 Related Work

Data Exploration. During the last decade, a variety of recent research efforts
focusing on data exploration [10] have been proposed. A comprehensive overview
of this field is proposed in [10]. And it reviews recent researches in the emerg-
ing systems tailored for data exploration and discusses new challenges in data
exploration. Furthermore, there are some efforts focus on the prototype systems
from different aspects. Query Steering [6] relies on the user’s feedback to provide
suggestions. QueRIE [8] recommends the most likely queries, and YMALDB [7]
recommends additional results based on the most interesting sets of attribute
values. Additionally, DICE [11] supports efficient faceted explorations of data
cubes. Finally, work in [16] aim at interactively and efficiently navigating explor-
ers through large data space based on cluster information of the data. However,
none of these systems pays attention to the characteristics of the exploratory
process to the best of our knowledge.

Prefetching. The idea of speculative execution of queries and prefetching results
has been extensively used in the database area to improve performance of query
processing [18]. PROMISE [15] investigates the likehood of future queries based
on Markov Models while it targets very specific OLAP workloads. Work in [3]
predicts upcoming requests based on past observations. And Ramachandran et
al. [14] focus on the speculation of exact, non-approximate drill-down queries.
Ideas in these papers can be used to further prioritize our intent queries.

Query Log Mining. Several authors have proposed query log mining algo-
rithms, either to improve the performance of database or to help users write
queries. Aouiche et al. [2] mine the column names in the log dataset to select
candidate materialized views and indexes. [12] recommends possible additions
to query clauses by collecting relevant snippets from log dataset. [5] presents
with an ambiguous query to better results by diversification. But [5] focuses on
are keyworks search queries in a search engine not SQL queries. Additionally,
SDSSLogViewer [19] visualizes and analyzes the SDSS log data to understand
users’ behaviors. But these works do not accelerate the data exploration.

6 Conclusion and Future Work

In this paper, we study the exploratory data analysis problem from the perspec-
tive of user intention. As we propose a general definition of the intention model,
there are also several interesting directions for future researches. Other methods
implementing the intention model can be proposed. Specially, we can also map
them into the probability distribution space to support complex queries. In fact,
the work reported in this paper is part of our ongoing research towards a general
interactive data exploration analysis framework.
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Abstract. Query result diversification has drawn great research inter-
ests in recent years. Most previous work focuses on finding a locally
diverse subset of a given finite result set, in which the results are as dis-
similar to each other as possible. However, such a setup may not always
hold. Firstly, we may need the result set to be globally diverse with
respect to all possible demands behind a given query. Secondly, the result
set may not be given before diversification. In this paper, we address
these two problems in the scenario of keyword search on graphs. We first
reasonably formalize a problem of coverage-oriented diversified keyword
search on graphs. It aims to find both locally and globally diverse and
also relevant results simultaneously while searching on graphs. The global
diversity is defined as a query-dependent metric called coverage, which
dynamically assigns weights to potential query demands with respect
to their topological distances to the given keywords. Then, we present
a search algorithm to solve our problem. It guarantees to return the
optimal diverse result set, and can eliminate unnecessary and redun-
dant diversity computation. Lastly, we perform both effectiveness and
efficiency evaluation of our approach on DBPedia. Compared with the
local diversification approach, our approach can improve the coverage
and reduce the redundancy of search results remarkably.

1 Introduction
Query result diversification has drawn great research interests in recent years.
In a nutshell, it is to find a set of query results, which have as high scores as
possible, and meanwhile, are as dissimilar as possible to the others. Since it
can improve user satisfaction by expanding the query demands covered by the
returned results, it is widely used in many applications, such as Web search [1,
3,6,14,19], structured data querying/search [7–10,26], online shopping [17,21],
recommender system [25], location-based service [10], etc.

In the scenario of Keyword Search on Graphs (KSoG) [5,11,13,15,16], the
redundancy of results could be serious. Generally, a result to a keyword query
is defined as a set of joined paths (formulated as subtrees or subgraphs) on the
graph from each keyword. Thus, by combining a few of small groups of paths
with the highest scores, a large number of top-ranked results can be generated, so
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Fig. 1. A comparison of local and global diversity.

that the top-k results could contain very redundant information. This is similar
to the over-specialization in recommender systems [25]. As a result, query result
diversification is very important to KSoG applications.

However, diversifying the results of KSoG brings forth two challenges. Firstly,
we hope the diversified results are not only dissimilar to each other, but also can
cover more possible demands behind the given query. For convenience, these two
properties of a result set are referred to as local diversity and global diversity,
respectively. Let us consider the following example.

Example 1. As shown in Fig. 1, there are a set of nodes v1, · · · , v8 (in three
colors) matched by the three query keywords k1, k2, and k3, respectively. On
these keyword nodes, five result trees r1, · · · , r5 can be built, which are ordered
by score. Let a result be dissimilar to another if they contain at most one identical
node. Thus, the top-4 results are dissimilar to each other. If we need a locally
diverse top-4 result set, r1, r2, r3 and r4 will be chosen, because they have the
highest scores. However, if we need the top-4 result set to cover all keyword
nodes that represent different query demands, namely, be more globally diverse,
r1, r2, r3 and r5 would be a better choice.

Secondly, we have to implement diversification simultaneously while gener-
ating the results, different from most previous work that only deals with a given
result set. Because KSoG normally can generate enormous results for a given
query due to combinatorial explosion of edges. It would be too time-consuming
to enumerate all results and then diversify them separately.

Although there have been researches on either challenge, there still lacks of
a practical solution to address both of them in one task like KSoG. As shown in
Fig. 2, we classify the query result diversification problems into four categories,
with respect to whether the diversity needs to be global and whether the query
results have been given already. The problems addressed by existing approaches
fall into three of them (see Sect. 2). To the best knowledge we have, the global
(and local) diversification of unknown results (see the upper right quadrant) has
not been well studied yet.

In order to address the problem, this paper presents an approach that
searches for a both locally and globally diverse set of most relevant results for a
given keyword query on graphs. Our contributions are as follows.

– We propose a novel metric of global diversity called coverage. Different from
the previous definition of coverage [23], our definition is query-dependent.
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Fig. 2. A classification of diversification problems.

Specifically, given a keyword query, we will evaluate the weights of the query
demands with respect to their topological distance on graph, and the more
weighted demands contribute more to the overall coverage. Thus, our mea-
surement of coverage is more precise for specific queries. Moreover, although
we only give a solution to diversified KSoG problem, our idea can be applied
on similar problems in many other applications, such as natural language
question answering [28].

– Based on the new metric, we formalize a Coverage-Oriented Diversified KSoG
(COD-KSoG) problem. It aims to find an optimal set of search results with
respect to the common objectives in KSoG. Moreover, different from the
traditional diversification problem [8], it does not fix the number of returned
results but requires their coverage to satisfy a certain condition. For the users,
coverage is a more intuitive and explicit parameter than result number to
constrain the global diversity of returned results. Like the previous work,
COD-KSoG also requires the returned results to be locally diverse, namely,
the results are dissimilar to each other.

– To solve the COD-KSoG problem, we present a search algorithm that com-
bines diversification into query evaluation. Our algorithm applies a pop-and-
diversify framework that can avoid unnecessary diversity computation. The
framework repeats two steps iteratively. Firstly, leverage the upper bound
estimation method of KSoG to enumerate the top-scored results. Secondly,
find diverse sets from the top results. More specifically, our algorithm treats
the problem of finding the diverse sets as finding maximal independent sets
on an evolving similarity graph, and uses a dynamic programming based app-
roach to address the problem for reducing the redundant computation. Lastly,
our algorithm can stop as soon as a diverse set of results have been found.
The optimality of returned results is guaranteed.

– To evaluate our approach, we perform comprehensive experiments on a real
world RDF graph called DBPedia [4]. Compared with the local diversification
approach, our approach can improve the coverage and reduce the redundancy
of search results remarkably.
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The rest of this paper is organized as follows. Section 2 introduces the related
work. Section 3 gives a formal definition of the problem to be addressed. Section 4
presents the measurement of diversity. Section 5 presents a solution to the prob-
lem. Section 6 introduces the experiments. Lastly, Sect. 7 concludes our work and
briefly plans the future work.

2 Related Work

Query Result Diversification. Figure 2 shows a number of related work in
recent years. We can see that most work [7,9,10,12,18,21,22,25,26] assumes a
finite result set that has been already known. Zheng et al. [27] give a survey of
such kind of query result diversification. Both local (content-based) and global
(intent-based) diversification problems are discussed and a list of typical solu-
tions are introduced in the survey.

Angel and Koudas [3] propose a diversity-aware search model on a (possibly
infinite) unordered list of results. It dynamically adjusts the scores of results with
respect to their “novelty” to the already selected results, thereby still falling to
the category of local diversification.

Deng and Fan [8] formulate a general theoretical framework of query result
diversification problems. In particular, they analyze the problems with the
assumption that the result set is not available. Moreover, one of the discussed
objective functions considers the global diversity as the sum of dissimilarity to
all other results. However, since the result set is unknown, their algorithm has to
enumerate all possible results in the search space. Obviously, it is too expensive
for a large search space.

Different from the framework, our approach uses the coverage of a predefined
set of query demands as the metric of global diversity, to address the problem
of global diversification on unknown results. Moreover, we propose a novel and
query-dependent definition of coverage in the scenario of KSoG.

In addition, most existing diversification approaches fix the number of
returned results. However, estimating an appropriate number of results that
are enough to cover a number of query demands is intractable in the scenario
of KSoG. Thus, we use coverage to replace number of returned results as a
constraint and study the COD-KSoG problem.

Keyword Search and Result Ranking on Graphs. A variety of KSoG
approaches have been proposed in recent years, such as [5,11,13,15,16,20]. Yu
et al. [24] review the approaches and summarize the proposed graph search
algorithms. A number of state-of-the-art metrics are also proposed to rank the
search results, such as size, TF/IDF, PageRank, etc.

Compared to these work, our approach focuses on combining result diver-
sification into the search algorithm, so that the algorithm can achieve early
termination. Thus, the overhead of generating the universal result set, which is
typically expensive, can be reduced.
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3 Problem Formulation

In the scenario of KSoG, we can generally represent the relational, XML, RDF
or other data as the following data graph.

Definition 1 (Data Graph). A data graph G = (V,E, T,K) is a labeled undi-
rected graph, where (1) V (G) is a set of nodes that represent tuples, XML ele-
ments, or RDF entities; (2) E(G) = V (G)×V (G) is a set of edges that represent
primary-foreign key references, parent-child relationships, or predicates between
nodes; (3) T (G) is a set of node types inferred from the schema, DTD, or OWL
ontology; and (4) K(G) is a set of terms contained by the attributes of nodes.

Given a data graph G and a keyword query Q ⊆ K(G), the results of KSoG
are subtrees or subgraphs on graph G that contain all keywords in query Q,
which are denoted by Q(G).

Normally, the KSoG problem tries to find the top-k query results with respect
to an objective function sco : Q(G) �→ R that scores them in IR style [20]. To
diversify the query results, given a dissimilarity function dis : Q(G) × Q(G) �→
[0, 1], the dissimilarity between query results is considered as a constraint or
another objective [7]. The COD-KSoG problem further takes the global diversity
into consideration, which is evaluated by a coverage function cov : 2Q(G) �→ [0, 1].
The coverage of a result set R ⊆ Q(G) measures how much semantics (namely,
potential query demands) of a query Q is covered by R. Formally, the COD-
KSoG problem to be addressed in this paper is as follows.

Definition 2 (COD-KSoG Problem). Given a data graph G, a keyword
query Q, two positive real numbers α, β ∈ [0, 1], find a set of query results
R ⊆ Q(G) such that (1) cov(R) � α, (2) minr,r′∈R dis(r, r′) � β, and (3)
minr∈R sco(r) is maximized.

As the major difference from the previous work, we use the coverage but
not the number of results as a constraint, because the coverage is a more intu-
itive measurement of users’ interest ranges. For a diversification problem, the
users require more results means they want more semantics of the query to be
demonstrated. However, more results may not contain new semantics. It is diffi-
cult to give a precise number of results that can guarantee to contain a specific
proportion of query semantics.

4 Diversity Measurement

In the absence of external resources like query logs or user preferences, we treat
the node types, namely, T (G) as query demands. Each node type represents a set
of data objects which the users may intent to see. For a query result r, we denote
by T (r) ⊆ T (G) the set of types of all nodes in r. Intuitively, T (r) represents
the query demands satisfied by r.

Dissimilarity. Firstly, we define the dissimilarity between two query results.
For a pair of results, we assume the less common query demands they satisfy,
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Fig. 3. An example of query-dependent coverage measurement.

the more dissimilar they are. Formally, given two query results r, r′ ∈ Q(G), we
use the Jaccard distance between T (r) and T (r′) as their dissimilarity.

dis(r, r′) = 1 − T (r) ∩ T (r′)
T (r) ∪ T (r′)

(1)

Coverage. We propose an effective query-dependent metric of global diversity
for KSoG. For a set of query results, we assume the more query demands they
satisfy, the more globally diverse they are. In other words, we prefer the result
set that has more types of nodes. While, different from the previous work [23],
we assume each query represents a particular set of query demands, and thus
do not treat each node type equally to a specific query. Instead, we define a
weighting function ω : T (G) × 2K(G) �→ [0, 1] that assigns a weight to each node
type with respect to a given keyword as follows

ω(t,Q) =
δmax(Q) − mink∈Q δ(t, k) + 1

∑
t′∈T (G)(δmax(Q) − mink∈Q δ(t′, k) + 1)

(2)

where δ(t, k) is the shortest distance between the nodes of type t and the nodes
that contain keyword k, and δmax(Q) = maxt∈T (G) mink∈Q δ(t, k). According to
this weighting function, the types of node that are closer to the nodes containing
keywords have higher relevances to a given keyword query. Therefore, the results
that cover more relevant node types to the given query should be preferred.

Thus, we evaluate the coverage of a set of results R ⊆ Q(G) for a given query
Q as follows

cov(R,Q) =
∑

t∈T (R)

ω(t,Q)/|Q| (3)

where T (R) = ∪r∈RT (r) is a set of all types contained by R.
Let us consider the example in Fig. 3. Given a keyword query Q = {k1, k2},

we have two sets of result R1, R2 ⊂ Q(G). They both cover four node types,
T (R1) = {A, C, D, E} and T (R2) = {A, B, C, E}, so that their coverage are
equal if the weights of node types are not taken into consideration. However,
the type B is directly related to a keyword node, and thus should be preferred
than the types of nodes that are farther from keywords (i.e., C and D). Thus, R2

should be better than R1 in terms of coverage. By using our coverage function,
we have ω(A, Q) = 0.25, ω(B, Q) = 0.25, ω(C, Q) = 0.13, ω(D, Q) = 0.13,
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ω(E, Q) = 0.25, cov(R1, Q) = 0.76, cov(R2, Q) = 0.88. Therefore, our coverage
function is more precise for specific queries.

To reduce the overhead of online coverage computation, we precompute δ(t, k)
for each node type and each keyword on the graph. In practice, there is no need
to consider the query demands that are too irrelevant to a given query. Thus, we
fix all the maximum shortest distances δmax(k) to be δmax. For each keyword
k ∈ K(G), the node types that are farther than δmax to k will be ignored, namely,
ω(t, k) = 0 if δ(t, k) > δmax, in computation of coverage. Also, the overheads of
indexing can be reduced considerably.

5 Diversified Search

In this section, we address the COD-KSoG problem defined in Definition 2. In
order to improve search efficiency, we propose an algorithm that executes two
tasks iteratively and can stop early when the optimal diverse result set has
been found. The first task is to find a new candidate result by traversing the
graph. We narrow the range of candidate results as much as possible to avoid
the unnecessary computation in this task. The second task tries to find diverse
result sets from the current candidate results, while reducing the redundant
computation. We propose two functions nextTop() and searchSG() to implement
these two tasks respectively. It is guaranteed that the first diverse result set found
by the algorithm is optimal.

5.1 Result Generation

As the state-of-the-art KSoG algorithms (e.g. [13]), our search algorithm decom-
poses the problem of finding results to a keyword query Q into |Q| independent
subproblems, each of which is to traverse the graph and enumerate the search
path from a keyword in Q with respect to specific heuristics. Meanwhile, the
algorithm will check whether the enumerated search paths can be joined to gen-
erate new results constantly. The algorithm can stop early when there is a set
of results that (1) satisfy all constraints and (2) have the best objective value.

Through analyzing the search procedure, we have such an important obser-
vation: since the results are not generated in a strict descending order of score, it
is not necessary to diversify all results generated during the search. The compu-
tational complexity of diversification is inherently very high, so that we should
avoid to diversify more results unless that is proved to be necessary.

Based on the above observation, we propose a pop-and-diversify framework
to reduce the overheads of diversification. The KSoG algorithms normally offer
effective upper bound estimation for scores of unknown results to support effi-
cient top-k search. We refer top results to the results with scores higher than
the current upper bound. The framework uses a function called nextTop() to
enumerate the top results one by one during the search. It returns a result with
the highest score among all current non-top results (including unknown results).
Once a result is returned by nextTop(), our algorithm tries to find a diverse set
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Algorithm 1. nextTop(temp, unknown)
1: while temp.peek() < unknown do
2: path ← enumeratePath();
3: new ← generateResults(path, temp);
4: temp ← temp ∪ new;
5: update unknown;
6: end while
7: return temp.pop();

of top results that satisfy the constraints of diversity. Whenever a diverse set of
top results have been found, it is certainly the optimal diverse result set. See the
following theorem.

Theorem 1. The pop-and-diverse framework guarantees to return the optimal
diverse result set.

Proof. Let R be the returned result set and R′ be another different result set.
(1) Assume R′ contain a result r′ that is not in the current set of top results.
It is certain that minr∈R sco(r) > sco(r′). Thus, we have sco(R) > sco(R′). (2)
Assume R′ be composed of the current top results other than arg minr∈R sco(r).
In other words, the results in R′ are top results popped earlier, so that sco(R) �
sco(R′). However, R′ is certainly not a diverse set, or it has been returned before.
Therefore, R must be the optimal diverse result set.

Algorithm 1 presents the pseudo codes of function nextTop(). Let temp be a
priority queue of currently generated results in descending order of their scores,
and unknown be the upper bound of scores of results that have not been gen-
erated yet. The function will run iteratively until there is at least one result
in temp with a score higher than unknown. At each iteration, a search path
is enumerated by traversing the graph. Then, the path will be joined with the
other paths from different keywords in temp, and new results could be found.
See details of enumeratePath() and generateResults() in [5]. The new results
will be added into temp. Then, the upper bound unknown will be updated with
respect to specific scoring function. Once the loop is over, the first result in temp,
namely, the next top result will be returned.

5.2 MIS-Based Diversification

In order to find a diverse set of top results, we introduce the concept of similarity
graph.

Definition 3 (Similarity Graph). Given a list of top results S =
{r1, r2, ..., rn}, the similarity graph of S, denoted as GS = (V,E), is an undi-
rected graph such that (1) for each result r ∈ S, there is a corresponding node
v ∈ V (GS), and (2) for any two results r, r′ ∈ S, there is an edge (v, v′) ∈ E(GS)
if dis(r, r′) � β, namely, the result r is similar to the result r′.
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A set of top results that are dissimilar to each other is equal to a set of nodes
on similarity graph that are not adjacent to each other. Thus, searching for the
sets of locally diverse results is equal to finding the maximal independent sets
(MIS) of nodes on similarity graph. The maximal independent set is defined as
follows.

Definition 4 (Maximal Independent Set). Given a similarity graph GS, a
set of nodes I ⊆ V (GS) is an independent set, if each node in I is not adjacent
to the others. Let SI(GS) be the set of all independent sets on GS. If there
is no other independent set I ′ ∈ SI(GS) such that I ⊂ I ′, I is the maximal
independent set.

For example, Fig. 4 shows a similarity graph GS
n . There are three maximal

independent sets on GS
n , such as {v1, v3}, {v2, v4}, and {v2, v3, v5}. If the sets

also meet the coverage constraint, they are diverse sets of top results.
Thus, our problem can be equivalently defined as finding a set of nodes I on

similarity graph GS , such that

1. I is a maximal independent set;
2. cov(I) � α;
3. minv∈I sco(v) is maximum.

Next, we discuss how to find the maximal independent sets on an evolving
similarity graph.

5.3 A DP-Based Approach

Finding the maximal independent sets on a graph is an important NP-complete
problem in graph theory. There are many studies about traversing the maximal
independent sets on a certain graph. However the similarity graph we dealt with
is dynamically growing. Obviously, repeating the traditional approach in each
time when the similarity graph has been updated is too expensive.

We present a function searchSG(), a dynamic programming based approach,
to incrementally find the new maximal independent sets on a similarity graph
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that is built by adding a new node into the previous similarity graph. Our
approach can avoid the redundant computation that occurs while finding the
maximal independent sets on a constantly evolving graph, thereby reducing the
overall overheads.

Let C be the set of all the maximal independent sets on the current similarity
graph GS

n , and Cnew be the new maximal independent sets containing the new
node on the next similarity graph GS

n+1 to which a new node has been added. To
find Cnew, the function searchSG(C, v) has two steps. Firstly, for each maximal
independent set Im ∈ C, create a new node set I ′

m = Im∪{v}. If there are nodes
in I ′

m adjacent to v, we remove them from I ′
m. Otherwise, we remove Im from

C, and put I ′
m into Cnew. Secondly, remove the sets in the Cnew that are the

subsets of some other sets. Then, we can find all maximal independent sets on
the new similarity graph by getting the union of C and Cnew.

Lemma 1. We assume GS
n+1 be the similarity graph by adding new node v to

the GS
n. For each maximal independent set on GS

n+1 without node v, it is also
the maximal independent set on GS

n.

Proof. Assume Im is maximal independent set without node v on GS
n+1. Firstly,

it is also an independent set on GS
n . Now we prove that there is no other inde-

pendent set I ′
m on GS

n such that Im ⊂ I ′
m. Now assume that the set I ′

m exists,
and v′ is the node in I ′

m but not in Im. Because v′ is also a node in GS
n+1, we put

the node v′ into the Im. However Im is the maximal independent set without
node v of GS

n+1, there must be a node in Im which is also in I ′
m adjacent to v′.

So the independent set I ′
m dose not exist.

Lemma 2. Cnew contains all the maximal independent sets that contain node
v on GS

n+1.

Proof. Assume Im is the maximal independent set containing node v but not in
Cnew. We create a new set I by removing node v from Im. Now, there must be
a maximal independent set I ′

m on GS
n that I ⊂ I ′

m. We remove all the nodes in
I ′
m that are adjacent to node v to get a new set I ′. We still have I ⊂ I ′, because

there is not any node in I that is adjacent to node v. Because Im is a maximal
independent set on GS

n+1, we can know I ′ ∪ {v} is actually the same as Im. So
there is not any maximal independent set containing node v but not in Cnew.

Theorem 2. The union C ∪Cnew contains all the maximal independent sets of
GS

n+1

Proof. With Lemma 1, we can know all the maximal independent sets without
node v are in the set C. With Lemma 2, we can know all the maximal indepen-
dent sets containing node v are in the set Cnew. So C ∪ Cnew contains all the
maximal independent sets of GS

n+1.

With the above theorem, the correctness of searchSG(C, v) holds. Like
dynamic programming (DP), it finds the best solutions to GS

n+1 based on the
solutions to a simpler subproblem GS

n . So we call it DP-based approach. There
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Algorithm 2. searchSG(C, v)
1: Cnew ← ∅;
2: for all Im ∈ C do
3: I ′

m ← Im ∪ {v};
4: if there are nodes in Im adjacent to v then
5: remove the nodes from I ′

m;
6: else
7: remove Im from C;
8: end if
9: Cnew = Cnew ∪ {I ′

m};
10: end for
11: maximize(Cnew);
12: return Cnew;

are some supplementary explanations. Firstly, we remove some sets from C
because they are the subsets of I ′

m (Line 7). So there is no non-maximal indepen-
dent set in C. Secondly, since there still may be some non-maximal independent
sets in Cnew, we use a procedure maximize(Cnew) to remove them (Line 11). Let
us consider the following example.

Example 2. As shown in Fig. 4, the similarity graph GS
n+1 is built by adding a

new node v6 to the previous similarity graph GS
n . The maximal independent sets

on GS
n are C = {{v1, v3}, {v2, v4}, {v2, v3, v5}}. By adding v6 to these sets respec-

tively, we have the new node sets {v1, v3, v6}, {v2, v4, v6}, and {v2, v3, v5, v6}.
By removing the adjacent nodes of v6 from these sets, we have new independent
sets Cnew = {{v3, v6}, {v2, v4, v6}, {v2, v3, v6}} that contains v6, and mean-
while, remove {v2, v4} from C because it is a subset of elements in Cnew. Then,
we have Cnew = {{v2, v4, v6}, {v2, v3, v6}} by removing the non-maximal set.
Lastly, the new maximal independent sets on GS

n+1 are C ∪ Cnew, including
{v1, v3}, {v2, v3, v5}, {v2, v4, v6}, and {v2, v3, v6}.

Complexity Analysis. Alekseev [2] have discussed the upper bound of the
number of maximal independent sets in a general graph. We assume bound is
this upper bound. We assume boundk is the upper bound of the number of
maximal independent sets of the kth similarity graph G(Sk). The largest size of
a maximal independent set is k. So the worst space complexity is o(k ∗ boundk).
Each time the algorithm SearchGS() is called, we traverse the C one time to
find the Cnew. So the time complexity is o(bound1 + bound2 + · · · + boundk) if
we end our search at the similarity graph G(Sk).

5.4 Search Algorithm

Lastly, we present a search algorithm divSearch() to address COD-KSoG based
on above studies. It applies the pop-and-diversify framework and incorporates
the two functions nextTop() and searchSG(). Algorithm3 presents the pseudo
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codes of divSearch(). At each iteration, it calls nextTop() to get a top result. The
result will be added to the similarity graph. Then, it calls searchSG() to get the
new maximal independent sets that contain the result, and checks whether they
satisfy the coverage constraint. Whenever a new maximal independent set does,
it will be returned. At the end of iteration, current maximal independent sets
will be expanded by importing the new ones. If no result set can be returned,
the algorithm will stop when no other result can be found.

6 Experiments

In this section we evaluate our proposed algorithms. The experiments are per-
formed on a Windows 2012 server with 3.3 GHz CPU and 128 GB memory. Our
algorithms are implemented in Java 1.7.

6.1 Setup

Data Graph. The data graph is derived from DBPedia, a popular real-world
RDF dataset which contains over two million entities and nearly ten million
relationships. Moreover, the entities have 272 types, such as “Aircraft”, “Base-
ballPlayer”, “ChemicalCompound”, etc.

Algorithm. The tests are executed by using three algorithms. (1) Our COD
algorithm (see Algorithm 3). (2) A locally diversified search algorithm denoted
by Div. Compared with COD, it replaces the requirement of coverage to the
size of result set and returns a result set R′ ∈ Q(G) such that |R| = k,
minr,r′∈R′ dis(r, r′) � β, and minr∈R′ sco(r) is maximized. The implement of
Div is similar to COD except the termination condition. (3) A typical top-k
search algorithm denoted by Topk which returns the most relevant k results
without diversification.

Keyword Query. Each test query is generated by randomly choosing 2–5 key-
words. Moreover, we define a metric ψ called ambiguity for keyword queries. It
measures how diverse the results of a query could be.

ψ = λH0 + (1 − λ)H1 (4)

where λ ∈ [0, 1], H0 is the number of types of nodes that contain the keywords
in query, and H1 is the number of types of nodes that are one hop away from
the nodes matched by keywords. The greater value of H0 and H1 means the
keyword query is more ambiguous. Moreover, the ambiguity of keyword queries
has a great influence on the process time of diversification. Therefore, we classify
the test keyword queries with respect to their value of ψ into the five levels shown
in Table 1. The experimental results demonstrated in the followings are actually
the average of 50 keyword queries in each ambiguity level.



178 M. Zhong et al.

Algorithm 3. divSearch(G, Q)
1: temp, C, Cnew ← ∅, initialize unknown
2: while v ← nextTop(temp, unknown) �= null do
3: update the similarity graph;
4: C ← C ∪ Cnew;
5: for all Im ∈ Cnew do
6: if cov(Im) � α then
7: return Im;
8: end if
9: end for

10: Cnew ← SearchGS(C, v);
11: end while

Table 1. The ambiguity levels of keyword queries.

Am1 Am2 Am3 Am4 Am5

ψ 1–9 10–19 20–29 30–39 40–49

6.2 Effectiveness

To evaluate the effectiveness of our approach, we compare the coverage of search
results of the three algorithms with queries in different levels of ambiguity. In
order to ensure the comparability of different algorithms, for each query, we
firstly run COD with the given value of α, and then run Div and Topk to return
the top-k results, where k is the number of results returned by COD.

The experimental results are shown in Fig. 5. In general, we can see that
the coverage of search results of COD is always the highest in different settings.
Specifically, we have the following observations. (1) Since the coverage of COD
is constrained by the input value of α, the output coverage is certainly higher
than α denoted by the dashed line. While, the coverage of Div and Topk is lower
than COD when they return the same number of results as COD. It indicates
that, our algorithm can indeed improve the global diversity of a specific number
of search results, compared with the algorithms that do not consider diversity or
only consider the local diversity. (2) As shown in Fig. 5(a), given α = 0.25, the
average coverage difference of all query groups is 0.047 between COD and Div,
and is 0.152 between COD and Topk. As shown in Fig. 5(b), given α = 0.5, the
corresponding differences are 0.162 and 0.323 respectively, though the coverage of
Div and Topk is also increased with the increase of α. It means, the redundancy
of results of Div and Topk increases quickly while more results are returned.
In contrast, COD can still capture novel query demands. Thus, the coverage
constraint is more effective than the number of results for declaring the interest
range of users. (3) With the growth of the ambiguity of queries, the coverage
differences between COD and Div increase from 0.031 to 0.059 when α = 0.25
and from 0.121 to 0.189 when α = 0.5. Thus, COD beats Div by a larger margin
for more ambiguous queries.
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Fig. 5. The coverage of search results.

Moreover, we conduct a simple case study. Given a query “Beckham,
Ronaldo”, Table 2 shows a part of top results returned by Topk, Div and COD,
respectively. For conciseness, we only give a brief summary of the search results:
the types of root node and two leaf nodes on each result tree. We can see that, the
top-1 results of them are the same, and are indeed the most relevant pattern to
these two keywords: the teammate of both famous soccer players. However, the
other results of Topk are still the same pattern, and just show the different team-
mates. In contrast, the other two algorithms reveal the different patterns related
to the two keywords. For example, if some users are interested in “Beckham”
as an album and “Ronaldo” as a musical artist, they will find that the album
and the artist share some sort of musical genre. Although both algorithms can
improve the diversity of search results, we can see COD is obviously more effec-
tive, by comparing their search results. Also, we offer the statistics of the top-12
results. Except the coverage, we denote by redundancy rate the percentage of
redundant results. The redundant results are the results whose node types are
all included in other returned results, like the top-5 result of Div, which are not
helpful for global diversity. The comparison of redundancy rate further verifies
the effectiveness of COD.

6.3 Efficiency

For evaluating the efficiency of our approach, we test the average response time
and answer size of specified approaches. The followings are our observations.

1. Figure 6(a) and (b) illustrates the average response time of Topk, Div and
COD with β = 0.7. In the experiments, for each query, we firstly run COD
with the given value of α, and then run Div and Topk to return the top-k
results, where k is the number of results returned by COD. With the increase
of ψ, the average response time of Topk is almost stable, because the com-
putational overhead of it will not be much increased by the growth of redun-
dant search results. With the growth of the ambiguity of queries, the average
response time of COD increase from 1.8 s to 25.1 s when α = 0.25 and from
20.5 s to 100.2 s when α = 0.5. The average growth rate of response time is
89.56% and 51.25% respectively. As for the Div, the average growth rate of
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Table 2. Results of keyword search.

Approach Topk Div COD

Top-1 Soccer Player
SoccerPlayer
&
SoccerPlayer

SoccerPlayer
SoccerPlayer &
SoccerPlayer

SoccerPlayer
SoccerPlayer &
SoccerPlayer

Top-2 Soccer Player
SoccerPlayer
&
SoccerPlayer

MusicGenre Album &
MusicalArtist

BroadcastNetWork
SettleMent & School

Top-3 Soccer Player
SoccerPlayer
&
SoccerPlayer

Book Book & School MusicGenre Album &
MusicalArtist

Top-4 Soccer Player
SoccerPlayer
&
SoccerPlayer

SoccerManager
Settlement & School

Book Book & School

Top-5 Soccer Player
SoccerPlayer
&
SoccerPlayer

SoccerManager
SoccerPlayer & Album

Village Settlement &
Person

· · · · · · · · · · · ·
Coverage of
top-12

0.12 0.31 0.50

Redundancy
rate of top-12

83% 33% 0%

response time is 86% and 54% respectively. The average growth rate is almost
same for Div and COD which means their response time will not differ too
much, however COD is much effective for the diversity of results.

2. Figure 6(c) illustrates the average response time of COD with β =
0.7 and Fig. 6(d) illustrates the average response time of COD with
α = 0.25. The average growth rate of response time with varying α is
29.35%(Am2), 59.9%(Am3) and 77%(Am4) and 11.17%(Am2), 10.77%(Am3)
and 17.16%(Am4) for varying β. The result shows that α has a greater impact
on the response time. For the Fig. 6(c), the main increasing in response time
is from the growth of the result set with the growth of coverage, especially
when the query ambiguity is relatively high. For Fig. 6(d), on the one hand,
as β increases, it becomes more difficult to search for results which are dis-
similar with each other. On the other hand, because the results are dissimilar
with each other, we need fewer results in the answer set to reach α. Thus the
growth of response time is relatively low.
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Fig. 6. Efficiency experiment.

3. Figure 6(e) and (f) illustrates the average answer size of COD with varying α
and β. For Fig. 6(e), α equals 0.25. For Fig. 6(f), β equals 0.7. The answer size
is positively related to the α and negatively related to β. With the growth of
the ambiguity of queries, the answer size grows both of them.

7 Conclusions and Future Work

In this paper, we study a novel query result diversification problem, namely,
given a keyword query, finding a both locally and globally diverse set of most
relevant results while searching on the graph. Since the query results are gener-
ated continuously in realtime, there rise two challenges. Firstly, how to measure
the global diversity. Secondly, how to extract an optimal diverse set from the
enormous streaming results efficiently. We address them respectively. The exper-
imental results demonstrate the effectiveness and efficiency of our solutions.

In the future, we plan to consider the coverage as an additional objective but
not a constraint, and study the multi-objective optimization problem. Naturally,
more efficient algorithms that do not have to yield the optimal solutions are
needed due to the increased complexity.
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Abstract. Recently, some studies have utilized the Markov Decision
Process for diversifying (MDP-DIV) the search results in information
retrieval. Though promising performances can be delivered, MDP-DIV
suffers from a very slow convergence, which hinders its usability in real
applications. In this paper, we aim to promote the performance of MDP-
DIV by speeding up the convergence rate without much accuracy sac-
rifice. The slow convergence is incurred by two main reasons: the large
action space and data scarcity. On the one hand, the sequential decision
making at each position needs to evaluate the query-document relevance
for all the candidate set, which results in a huge searching space for
MDP; on the other hand, due to the data scarcity, the agent has to pro-
ceed more “trial and error” interactions with the environment. To tackle
this problem, we propose MDP-DIV-kNN and MDP-DIV-NTN methods.
The MDP-DIV-kNN method adopts a k nearest neighbor strategy, i.e.,
discarding the k nearest neighbors of the recently-selected action (doc-
ument), to reduce the diversification searching space. The MDP-DIV-
NTN employs a pre-trained diversification neural tensor network (NTN-
DIV) as the evaluation model, and combines the results with MDP to
produce the final ranking solution. The experiment results demonstrate
that the two proposed methods indeed accelerate the convergence rate of
the MDP-DIV, which is 3x faster, while the accuracies produced barely
degrade, or even are better.

Keywords: Search result diversification · Markov decision process
Convergence rate

1 Introduction

In real web search scenarios, a large number of queries are ambiguous or multi-
faceted. For instance, the query “apple” can be a kind of delicious fruit or the
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great IT company; the huge vehicle “rocket” can also be mentioned as the Hous-
ton Rocket basketball team. In order to satisfy the users with different infor-
mation needs, search result diversification approaches, which provide the search
results that covered with a wide range of subtopics for a query, have been widely
studied. The approaches work by ranking documents or webpages take both
relevance and information novelty (diversification) into considerations.

A majority of traditional methods for search result diversification are heuris-
tic methods with manually defined functions [2,5,13–16]. Their key rationale
is that the subsequent document should be “different” from the ones already
ranked. As a representative work, the maximal marginal relevance (MMR) [2]
is proposed to formulate the construction of a diverse ranking as a process of
sequential document selection. In MMR, the marginal relevance is defined as a
sum of query-document relevance and the maximal document distance as novelty
by a predefined document distance function.

Recently, in order to avoid heuristic methods with manually defined evalu-
ation functions, machine learning methods have been proposed and applied to
search result diversification [21,22,24,25,28]. The basic idea is to automatically
learn a diverse ranking model from the labeled training data. Typical approaches
include the relational learning to rank (R-LTR) [28] and its variations [21,22,24].
In [21,28], the novelty of a document with respect to the previously selected doc-
uments is encoded as a set of handcrafted novelty features. In [22], the neural
tensor networks are extended to model the novelty among them.

However, all these methods model utility of a candidate document either
based on carefully designed heuristics or handcrafted relevance features and nov-
elty features. The utility perceived from the preceding documents is not fully uti-
lized. To avoid this, the latest work for search result diversification, Markov deci-
sion process diversification model (MDP-DIV) [23] is proposed, which formalizes
the construction of a diverse ranking as a sequential decision making process and
models the process with Markov decision process (MDP). Reinforcement learn-
ing technique, the policy gradient algorithm of REINFORCE [18], is adopted to
adjust the model parameters. MDP-DIV outperforms the state-of-the-art base-
lines on the TREC benchmark datasets. However, its low convergence rate, often
requiring tens of thousands iterations to converge, is unacceptable, especially for
industrial applications.

In this paper, we aim to promote the performance of MDP-DIV by speed-
ing up the convergence rate and maintaining the accuracy. The primary reasons
for low convergence rate are the large action space and data scarcity. On the
one hand, the sequential decision making at each position needs to evaluate all
the remaining documents of relevance, which forms a huge search space; on the
other hand, the data scarcity compels the agent to proceed more “trial and error”
interactions with the environment. To address the problem, we propose MDP-
DIV-kNN and MDP-DIV-NTN methods. The MDP-DIV-kNN method adopts
a k nearest neighbor strategy to linearly reduce the action space at each posi-
tion. Specifically, it removes the k nearest neighbors of the recent selected action
(document). Different from the MDP-DIV-kNN, the MDP-DIV-NTN employs
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a pre-trained diversification neural tensor network (NTN-DIV) as the evalua-
tion model, and combines the results with MDP to produce the final ranking
list. There are two instantiations of MDP-DIV-NTN. Specifically, the MDP-
DIV-NTN(D) method directly filters the pre-ranked list; while the MDP-DIV-
NTN(E) method sequentially models the novelty of candidate document with
respect to previously selected documents. The main contributions of this paper
can be summarized as follows:

– We analyze the reasons for the slow convergence of MDP-DIV, and find that
it is mainly due to the large action space and the data scarcity.

– We propose the MDP-DIV-kNN and MDP-DIV-NTN methods, which can
promote the convergence rate while maintaining the accuracy of MDP-DIV
for search result diversification.

– Extensive experiments are carried out on 09-12 TREC benchmark datasets,
and the results demonstrate the proposed methods indeed fasten MDP-DIV
and outperforms the state-of-the-art competitors.

The remainder of the paper is structured as follows. In Sect. 2, we briefly
review the related works. In Sect. 3, the Markov decision process, MDP-DIV,
and NTN-DIV are introduced as preliminaries. The proposed methods are pre-
sented in Sect. 4. Experimental results are provided in Sect. 5 to demonstrate the
effectiveness of the proposed methods.

2 Related Work

2.1 Search Result Diversification

One of the key problems in search result diversification is the diverse rank-
ing. Formalizing the construction of diverse ranking as a process of sequential
document selection is a common practice. This ranking strategy provides us
a more rational way to model the utility of a candidate document which not
only depends on the document itself but also the preceding documents. Existing
approaches can be classified into two categories, namely heuristic methods [2,5–
7,16] and machine learning methods [21–24,28].

The representative work in the first kind is the maximal marginal relevance
(MMR) [2] criterion to guide the design of diverse ranking models. In MMR, the
sequential document selection is based on the marginal relevance score, which
is a linear combination of query-document relevance score and document nov-
elty score. A variation of MMR is the probabilistic latent MMR model proposed
by Guo and Scanner [6]. PM-2 [5] tackles the problem from the perspective
of proportionality. xQuAD [16] explicitly models the relationships between the
documents retrieved for the query and the possible sub-queries coverage. The
authors in [7] propose to combine the implicit and explicit topic representations
for constructing diverse ranking. All these methods model the utility of can-
didate document based on carefully designed heuristics with manually defined
evaluation functions. However, it is hard to design an unified similarity function
for different tasks.
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Recently, machine learning approaches have been proposed for search result
diversification issue. The ranking score for diverse ranking is based on a linear
combination of relevance features and novelty features, and the parameters can
be automatically adjusted from the training data. Zhu et al. [28] propose the rela-
tional learning to rank (R-LTR) framework by optimizing the objective function
to construct the diverse ranking model. With different definitions of the objec-
tive functions and optimization techniques, different diverse ranking algorithms
have been proposed [21,22,24]. Xia et al. [21] learn a maximal marginal relevance
model via directly optimizing diversity evaluation measures. The authors in [22]
utilize the neural tensor network to model the novelty relations. To avoid the
handcrafted features and fully utilize the utility in preceding documents, Xia
et al. [23] propose to adapt reinforcement learning techniques to formalize the
diverse ranking as a process of sequential decision making which can be modeled
with MDP, where the parameters can be trained by policy gradient algorithm
of REINFORCE [18].

2.2 Reinforcement Learning for Information Retrieval

Reinforcement learning (RL) techniques are widely used in information retrieval
(IR) applications. The aforementioned MDP for diverse ranking in [23] is a repre-
sentative work in this kind. What’s more, MDP also can be extended to learning
to rank problems [20], in which the proposed MDPRank model utilizes the MDP
to directly optimize the NDCG at all ranking positions. Wang et al. [19] pro-
pose a game theoretical minimax game to iteratively optimize the generative
retrieval and discriminative retrieval models, in which the generative retrieval
model is optimized by the policy gradient algorithm of REINFORCE. In session
search, Luo et al. [10] propose to utilize the partially observed Markov deci-
sion process (POMDP) to model session search as a dual-agent stochastic game
for constructing a win-win search framework. The authors in [27] propose to
utilize the log-based document re-ranking, which is modeled as a POMDP to
improve the ranking performance. Moreover, RL techniques are also utilized in
recommender systems. For instance, Guy et al. [17] designed a MDP based rec-
ommender system which employs a strong initial model to converge quickly. The
multi-armed bandits technique is also utilized for diverse ranking [12]. Lu and
Yang [9] propose a neural-optimized POMDP model for building a collaborative
filtering recommender system.

Recent advances in reinforcement learning techniques make the research in IR
one step further, and promising performances are delivered, such as MDP-DIV,
MDPRank, etc. However, MDP-DIV suffers from a very slow convergence, which
hinders the usability in real applications. In this paper, we aim to promote the
performance of MDP-DIV by speeding up the convergence rate without much
accuracy sacrifice.
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3 Preliminaries

3.1 Markov Decision Process

The search result diversification issue considered in this paper could be formu-
lated with a continuous state Markov decision process (MDP) [11,18] which
is usually utilized for sequential decision making. An MDP is comprised of
states, actions, rewards, policy, and transition, and can be represented by a
tuple 〈S,A, T,R, π〉.

States S is a set of states. In [23], states can be defined as tuples consisting
of preceding ranked documents, candidate documents, and the utility that the
agent perceives from the preceding documents as well as the query.

Actions A is a discrete set of actions that an agent can take. The possible
actions at each time step depend on the current state s, denoted as A(s).

Transition T is the state transition function st+1 = T (st, at) which maps a
state st into a new state st+1 in response to the selected action at.

Reward r = R(s, a) is the immediate reward, also known as reinforcement.
It gives the agent an immediate reward when taking action a under state s.

Policy π(a|s) describes the behaviors of an agent which is a sequence map-
ping from states to actions. Generally speaking, π is optimized to decide how
to move around in the state space to achieve the optimal long-term discounted
reward

∑∞
t=1 γtrt.

The agent interacts with the environment at each time step. For instance, at
time step t, the agent receives the environment’s state st ∈ S, and then selects
an action at ∈ A(st) based on the current state st, where A(st) is the set of
actions available under state st. As a consequence of the action taken, the agent
receives a numerical reward rt+1 ∈ R and the state changes to st+1 = T (st, at)
simultaneously in the next time step.

3.2 MDP-DIV

MDP-DIV is proposed by Xia et al. [23], which is the latest and the first approach
that utilizes the reinforcement learning techniques for search result diversifica-
tion. The construction of diverse ranking is formalized as a process of sequential
decision making, which is modeled with a continuous state Markov decision pro-
cess (MDP). The user’s perceived utility can be treated as a part of its MDP
state.

More specifically, at time step t, the agent receives the environment’s state
st which models the user’s dynamic state on the perceived utility, starting from
the first ranking position. Based on the received state, the agent chooses an
action at ∈ A(st) depending on the policy that the agent has learned recently.
The policy in MDP-DIV is formulated as a softmax type of function that maps
from the current state to a probability distribution of selecting each possible
actions. According to the selected action (document), the user perceives some
additional utility, also known as the immediate reward, from the recently-selected
document. Here the reward is defined as the quality improvement of the selected
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documents in terms of α-DCG or Subtopic recall (S-recall), which are two widely
used metrics in search result diversification. Then the system transits to a new
state. The transition function, which maps old state and the selected document
to a new state, is implemented in a recurrent manner. Reinforcement Learning
techniques, the policy gradient algorithm of REINFORCE [18], is adopted to
coordinate the model parameters for the sake of maximizing the expected long-
term discounted rewards.

The end-to-end MDP-DIV model unifies the relevance and novelty as the
criterion for selecting documents which directly optimizes a diversity evaluation
measure, and outperforms the state-of-the-art baselines on the TREC bench-
mark datasets. However, the low convergence rate of needing tens of thousands
iterations in the training phase is indeed unacceptable, especially for industrial
applications. The reasons are two fold: (i) In the training stage, for decision
making at each ranking position, the agent has to go through the whole remain-
ing candidate set which introduces high computational complexity. Suppose we
are given N training queries, and each query is associated with a set of M
retrieved documents1. The diverse ranking process will cost N( 12M(M + 1))
times of query-document relevance evaluations for just one iteration. Moreover,
the reinforcement learning process often needs large numbers of iterations to
converge. Therefore, it is really a catastrophe if we are unfortunately facing to
a large discrete action space, i.e. M is large; (ii) The retrieved documents are
too scarce to train, which means that the agent has to proceed more “trial and
error” interactions with the environment. For instance, more than 70% of data
utilized in MDP-DIV are not labeled (i.e., no subtopics is contained). Worse still,
some queries are associated with completely irrelevant (unlabeled) documents.

3.3 NTN-DIV

The NTN-DIV model is proposed by Xia et al. [22] that models document nov-
elty with neural tensor networks. Intuitively, the neural tensor networks model
the relationships between two entities with a bilinear tensor product. This idea
could be naturally extended to model the novelty relation of a document with
respect to the other documents for search result diversification. Suppose we are
given a set of M candidate documents X = {dj}M

j=1, where each document is
characterized with its preliminary representation with embedding models, such
as the doc2vec model. The novelty score of a candidate document d ∈ X with
its preliminary representation v, and a set of ranked documents S ∈ X\{d} with
their representations {v1, ..., v|S|} can be defined as a neural tensor network with
z hidden slices. The ranking function can be defined in Eq. (1):

fn(v, S) = ωT v + μT max{tanh(vT W [1:z][v1, ..., v|S|])} (1)

1 For the ease of explaination, we suppose each query is associated with the same
number of documents.
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where the first term is the relevance score2, and ω weights the embedding fea-
ture v. The second term is the novelty score computed by neural tensor network.
Specially, W [1:z], a z dimensional three-way tensor, represents the relationship of
the documents, where Wijk stands for the k-th feature of relationship between
documents di and dj . And μ weights the importance of the slices of the ten-
sor. The primary merit of using neural tensor network to model the document
novelty is that the tensor can relate the candidate document and the selected
documents multiplicatively, instead of only going through a predefined similarity
function or through a linear combination of novelty features. To the best of our
knowledge, the NTN-DIV model is the latest and the best approach for search
result diversification except for MDP-DIV.

4 Methodology

As aforementioned that large action space and data scarcity will lead to low
convergence rate, in this paper, we propose two kinds of strategies to deal with
this issue. The first one is the k nearest neighbor strategy, which discards the k
nearest neighbors of the recently-selected action (document); The second strat-
egy relies on the pre-trained NTN-DIV [22] model, which employs a pre-trained
NTN-DIV as the evaluation model, and combines the results with MDP to pro-
duce the final ranking solution. The two strategies are, respectively, realized by
the proposed MDP-DIV-kNN and MDP-DIV-NTN methods in this paper. Both
methods are based on the original MDP-DIV, and they differ from each other in
the sampling procedure of the episode. Suppose we are given N labeled training
data D = {(q(n),X(n), J (n))}N

n=1, where each query q(n) is associated with a
set of retrieved documents X(n) = {x

(n)
1 , ..., x

(n)
M }, and J (n) denotes the labels

on the documents, in the form of a binary matrix. J (n)(i, j) = 1 if document
x
(n)
i contains the j-th subtopics of q(n) and 0 otherwise. The reward function

R(st, at) = α-DCG[t+1]−α-DCG[t] is based on α-DCG. As an overview of our
approaches, we first summarize main procedure in Algorithm 1. Clearly, similar
to the MDP-DIV model, our approaches also work in an iterative manner. The
main improvements come from the step 4, where two different sampling methods
are developed to efficiently search the action space. Next, we will elaborate the
two methods.

4.1 K Nearest Neighbors Strategy

The action evaluation is always a parameterized function that takes both state
and action as input. Hence, each time to select an action, |A| evaluations have
to be performed first, where |A| is the size of action space. However, this quickly
becomes intractable, especially if the parameterized function is costly to evaluate.

2 In order to learn end-to-end, we use the embedding features instead of handcrafted
relevance features.
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Algorithm 1. MDP-DIV-kNN and MDP-DIV-NTN
input : Labeled training set D = {(q(n), X(n), J(n))}N

n=1, learning rate η, discount factor
γ, reward function R, and the size of returned list m

output: All the parameters Θ
1 Randomly initialize Θ in [−1, 1]
2 while not converge do
3 for (q, X, J) ∈ D do
4 (s0, a0, r1, ..., sM−1, aM−1, rM ) ← SampleEpisode(Θ, q, X, J, R) with kNN strategy

for MDP-DIV-kNN or pre-trained NTN-DIV strategy for MDP-DIV-NTN
5 for t = 0 to m − 1 do

6 Gt ← ∑M−1−t
k=0 γkrt+k+1

7 Θ ← Θ + ηγtGt∇Θ log π(at|st;Θ)

8 return Θ

In MDP-DIV, the policy π(a|s) is defined as a normalized softmax function whose
input is the bilinear product of the utility and the selected document in Eq. (2):

π(at|[Zt,Xt, ht]) =
exp{xT

m(at)
Uht}

Z

Z =
∑

a∈A(st)

exp{xT
m(a)Uht} (2)

where U is the parameter in the bilinear product and Z is the normalization
factor. The perceived utility of information ht could be computed in a recurrent
manner in Eq. (3):

ht = σ(V xm(at) + Wht−1) (3)

where V is the document-state transformation matrix that adds the newly per-
ceived utility from the recently-selected document. W is the state-state transfor-
mation matrix which determines the utility remained across time step. Generally
speaking, at each time step, the utility perceived by users for fulfilling the infor-
mation needs has to take all the previously selected documents into account, i.e.,
the later, the more complicated. Unfortunately, the execution complexity grows
quadratically with |A| which makes this approach inefficient. This motivate us
to reduce the computational complexity.

Since the complexity of MDP-DIV closely relates to |A|, it is natural to find
a way to “shrink” the action space, i.e. reduce the complexity. To maintain the
accuracy not degrading, the “shrink” strategy guarantees such foundations that:
(i) It has the ability to smartly prune part of the redundant (highly similar)
actions; (ii) The shrunken action evaluation can nearly generalize over actions.
For search result diversification, our goal is to return the most relevant docu-
ments to the queries and ensure the diversity of the documents simultaneously.
Therefore, consider such a situation: ai and aj are highly alike and both are
closely relevant to the queries, can we just return ai (or aj)? The answer is pos-
itive, because learning about ai also inform us about aj . Moreover, in order to
guarantee the diversity of the selected documents, returning them both is not
a reasonable choice. Therefore, we propose a k nearest neighbor based strategy
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(MDP-DIV-kNN) to reduce the complexity of MDP-DIV. The basic idea of the
MDP-DIV-kNN is to discard the k nearest neighbors of the recently-selected
action (document) at each time step. In particular, the strategy is instantiated
in Algorithm 2. Each time we adopt an action at ∈ A(st), at the same time, we
remove the k nearest neighbors of at from the action space, where the neighbors
are computed by using the document embeddings3 with Euclidean distance as:

fk(at) =
k

arg min
a∈A(st)

‖at − a‖2 (4)

The kNN lookup is a lightweight operation than the action evaluation exe-
cution although they are of the same complexity of the action space. Therefore,
the kNN based strategy offers us three merits here: (i) It provides sub-quadratic
complexity with respect to the action space; (ii) It avoids heavy cost of eval-
uating all actions while retraining generalization over actions; (iii) It directly
optimizes the diversity of the selected documents.

Algorithm 2. SampleEpisode with kNN strategy
input : Θ, q, X, J, R, and m
output: An episode

1 Initialize s0 and E=()
2 for t = 0 to m − 1 do
3 sample at ∈ A(st) according to π(at|st;Θ)
4 rt+1 = R(st, at)
5 change st to st+1 according to the transition function
6 discard k nearest neighbor of at in Xt according to Eq.(4)
7 append (st, at, rt+1) to the tail of E

8 return E;

4.2 Pre-trained NTN-DIV Strategy

The other method we propose to speed up the convergence rate of MDP-DIV
is to use a pre-trained diversity ranking model. As aforementioned that the
large action space and the data scarcity will lead to low convergence rate. The
proposed k nearest neighbors strategy in turn reduces the action space at each
position by filtering out the k nearest neighbors of the recently-selected action
(document). It is apparent that this strategy will efficiently shrink the action
space to speed up the convergence. However, it cannot deal with the data scarcity.
Because, in the incipient phase, once the document is selected, we will delete the
k nearest neighbors of the selected document, but we cannot make sure that it
is relevant to the query or is the right one to rank at the current position. To
deal with this problem, we propose the MDP-DIV-NTN method, which has two
instantiations, i.e., MDP-DIV-NTN(D) and MDP-DIV-NTN(E), to promote the
performance of MDP-DIV.

3 All the queries and documents are embedded with doc2vec [8] embedding model.
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The first instantiation adopts the pre-trained NTN-DIV model to rank the
candidate set first and then takes actions in part of the pre-ranked list by apply-
ing the MDP-DIV. As a result, the action space is reduced as the NTN-DIV
model can provide accurate candidates with good diversity. The MDP-DIV-
NTN(D) offers us two merits: (i) It directly shrinks the candidate set, i.e., the
action space in MDP-DIV; (ii) It straightforwardly takes out part of the irrel-
evant documents (the documents with none subtopics). Although the MDP-
DIV-NTN(D) methods is effective, it may loss a bit of information because the
NTN-DIV model is indeed not perfectly accurate.

The second variant is more precise. We utilize the pre-trained NTN-DIV
model at each position, i.e., each time to adopt an action. Similar to kNN
strategy, we summarize its sampling strategy in Algorithm 3. It can be seen
that, at each step time of the training, once the agent chooses an document, we
utilize the pre-trained NTN-DIV model to find the documents which are novelty
to the previously selected documents and relevant to the query simultaneously.
For the next time step, the agent only needs to learn on the filtered the candidate
set. Moreover, this approach also provides more considerable advantages: (i) It
precisely shrinks the action space; (ii) It accurately takes out the irrelevant
documents.

Algorithm 3. SampleEpisode with pre-trained NTN-DIV strategy
input : Θ, q, X, J, R, m, K, and pre-trained NTN-DIV model
output: An episode

1 Initialize s0, D̂ = (){empty set of selected docs}, and E=(){empty episode}
2 for t = 0 to m − 1 do
3 sample at ∈ A(st) according to π(at|st;Θ) and add at to D
4 rt+1 = R(st, at)
5 change st to st+1 according to the transition function
6 rank the documents in Xt with D and the pre-trained NTN-DIV model
7 choose the first K documents of Xt as Xt+1
8 append (st, at, rt+1) to the tail of E

9 return E;

However, the training of the NTN-DIV model using the original implemen-
tation is time consuming4, because it is executed sequentially on CPU. In order
to accelerate the training, we re-implement this model with Tensorflow [1] on a
NVIDIA� Tesla� K80 GPU because all the tensor product can be computed
parallelly. Finally, we obtain a slightly better performance with less than 30 min
to train instead of more than 5 h training of the original CPU version. We also
note that the NTN-DIV is trained off-line and its GPU implementation brings
no improvement on the convergence for the MDP-DIV-NTN.

4 https://github.com/sweetalyssum/DiverseNTN.

https://github.com/sweetalyssum/DiverseNTN
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5 Experimental Study

5.1 Datasets and Evaluation Metrics

The dataset is provided by the authors5 which is a combination of four TREC
benchmark datasets: TREC 2009–2012 Web Track. The retrieved documents are
carried out on the ClueWeb09 Category B data collection6, which is comprised of
50 million English web documents. We note that the large number of parameters
in MDP-DIV needs lots of labeled data to train, which is the reason why the four
benchmark datasets are merged together. In total, there are 200 queries. Each
query includes several subtopics identified by the TREC assessors. Moreover,
the documents’ relevance labels are made at the subtopic level, which are binary
with 0 denoting irrelevant and 1 denoting relevant.

We employ three widely-used evaluation metrics to assess the diverse ranking
models. They are α-NDCG [4], subtopic recall [26] (denoted as “S-recall”), and
ERR-IA [3]. The α-NDCG and ERR-IA adopt the default settings in official
TREC evaluation program7, which measure relevance and diversity of the rank-
ing list by explicitly rewarding diversity and penalizing redundancy observed at
each rank. The parameter α in these two evaluation metrics are set to 0.5. The
traditional diversity metric S-recall measures the coverage rate of the retrieved
subtopics for each query. All of the measures are computed over the top-k search
results (k = 5 and k = 10).

5.2 Experimental Setup

All the experiments are conducted with 5-fold cross-validation. We randomly re-
split the queries into five even subsets8. For each fold, three subsets are utilized
for training, one is for validation, and the rest one for testing. Moreover, for fair
comparison, we run each fold five times, and the results reported are presented
with average and standard deviation values over the total 25 trials. All the
experiments are performed on an intel� Xeon� Processor E5 V4 server with
NVIDIA� Tesla� K80 GPU and over 256 GB memory.

We compare the proposed methods with the latest state-of-the-art baselines
in search result diversification, including the NTN-DIV [22] and MDP-DIV [23].
We do not compare conventional models because previous studies have shown
that their performances are inferior [22,23].

NTN-DIV: As mentioned in Sect. 3.3, as a state-of-the-art method, the model
computes a ranking score by taking both relevance and novelty into account with
a neural tensor network. To speed up the training, we implement this method
with Tensorflow on GPU which is extremely much faster than the original CPU
version. The tensor slices is 100.
5 The datasets and source code are available at https://github.com/sweetalyssum/

RL4SRD.
6 http://lemurproject.org/clueweb09/.
7 http://trec.nist.gov/data/web/12/ndeval.c.
8 The authors does not provide the split results, therefore we re-split the queries.

https://github.com/sweetalyssum/RL4SRD
https://github.com/sweetalyssum/RL4SRD
http://lemurproject.org/clueweb09/
http://trec.nist.gov/data/web/12/ndeval.c
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MDP-DIV: As introduced in Sect. 3.2, this is the latest and state-of-the-art
method based on the MDP. We set parameters following [23], because the
datasets utilized are exactly the same as in [23]. As our methods employ α-
DCG as reward function, the α-DCG version MDP-DIV is thus adopted for a
fair comparison.

MDP-DIV-kNN: The parameter k is set to be 10% × |A|, 20% × |A|, and
30% × |A|, denoted as MDP-DIV-kNN(10), MDP-DIV-kNN(20), and MDP-
DIV-kNN(30), respectively. The other parameters follow the settings in MDP-
DIV.

MDP-DIV-NTN: The tensor slices of the pre-trained NTN-DIV model is 100,
and the learning rate is 0.009. The size of both pre-ranked list in MDP-DIV-
NTN(D) and MDP-DIV-NTN(E) is set to 50% × |A|. Again, the other param-
eters follow the setting in MDP-DIV.

In the experiments, the query vector and document vector are represented
as the embeddings generated by the Doc2vec model, which is trained on all the
documents in Web Track datasets. When training of the Doc2vec model, the
number of dimension is set to 100, the learning rate is set to 0.025 and 8 is
utilized as the window size.

5.3 Results and Analysis

Performance Comparison for Search Result Diversification. Table 1
shows the performance of all the methods on TREC web track datasets. From the
table, we can see that the re-implemented GPU version of NTN-DIV needs half
an hour to train which is extremely faster than all the other methods. However,
its performance (accuracy) is significantly inferior to the other approaches.

Table 1. Performance comparison of all methods on TREC web track dataset. (The
best results are marked in bold format)

Method α-NDCG@10 α-NDCG@5 S-recall@10 S-recall@5 ERR-IA@10 ERR-IA@5 time (:h)

NTN-DIV(GPU) 0.4617 0.4124 0.6205 0.5140 0.3446 0.3186 0.5

MDP-DIV 0.4874 0.4480 0.6639 0.5599 0.3697 0.3477 65

MDP-DIV-kNN(10) 0.4915 0.4462 0.6731 0.5435 0.3725 0.3539 43

MDP-DIV-kNN(20) 0.4869 0.4461 0.6582 0.5463 0.3723 0.3506 25

MDP-DIV-kNN(30) 0.4844 0.4464 0.6489 0.5467 0.3721 0.3517 16

MDP-DIV-NTN(D) 0.4912 0.4470 0.6738 0.5464 0.3727 0.3493 26

MDP-DIV-NTN(E) 0.4937 0.4485 0.6795 0.5627 0.3735 0.3497 53

Compared to the original MDP-DIV, the proposed MDP-DIV-kNN methods
and MDP-DIV-NTN methods are all faster, with a barely degraded or even
slightly better accuracy. Among the MDP-DIV-kNN methods, the fastest one is
the MDP-DIV-kNN(30) which discards 30% of the current actions by the nearest
neighbor strategy. It takes 16 h to train which is 3x faster than the MDP-DIV



196 F. Liu et al.

Fig. 1. Performance of stability comparison of all the methods on TREC web track
dataset.

(taking 65 h). Moreover, the MDP-DIV-kNN(10) shows best accuracy among the
three. We observe that it is slightly better than the original MDP-DIV, while the
other two (i.e., MDP-DIV-kNN(20) and MDP-DIV-kNN(30)) are slightly worse.
The reasons are two fold: (i) The k nearest neighbors strategy can help produce
a more diverse ranking list; (ii) Filtering nearest neighbors may also result in a
information loss. The lager the k, the more the information loss is. Therefore,
the performance is a trade-off between the complexity and the accuracy.

As to the MDP-DIV-NTN methods, the performance is better compared
to MDP-DIV. For MDP-DIV-NTN(D), the pre-trained NTN-DIV model offers
us a pre-ranked list which helps to shrink the action space and filters part of
the irrelevant document; For MDP-DIV-NTN(E), at each time step, we model
the novelty of the candidate document based on both the query and preceding
selected documents which provides us a more accurate pre-ranked list. Hence,
its performance (accuracy) is not only better than MDP-DIV, but also better
than MDP-DIV-NTN(D). However, the computing on GPU at each time step
will cost some time. This is the reason that MDP-DIV-NTN(E) (taking 53 h)
does not run as fast as MDP-DIV-NTN(D) (taking 26 h).

In Fig. 1, we report the error-bar of the comparison methods. From the figure,
we can see that all the approaches show relatively consistent standard deviation,
which indicates the proposed methods achieve stably better or comparable per-
formance than NTN-DIV and MDP-DIV.

Next, we present some results to analyze the efficiency and effectiveness of
the proposed methods in details.

Efficiency Analysis. To analyze the efficiency, We draw a shaded-line figure in
Fig. 2 to show the time cost for α-NDCG@10 performance of the models based
on 5-fold cross validation. The horizon axis is the α-NDCG@10 performance, and
the vertical axis is the time cost to achieve the α-NDCG@10 performance. The
curve in the figure means the average time cost for α-NDCG@10 performance,
and the shade is the standard deviation. From the figure we can see that the
proposed MDP-DIV-kNN and MDP-DIV-NTN methods are all trained faster
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Fig. 2. Efficiency analysis of the proposed methods on TREC web track dataset.

than the original MDP-DIV. Specially, with the increase of the k value, the
MDP-DIV-kNN models converge faster. Although the accuracy of the final con-
vergence will sacrifice, it is still relatively acceptable. The MDP-DIV-NTN(D)
trained faster than other models before the α-NDCG@10 performance reaches
0.48. However, the promotion of α-NDCG@10 after 0.48 becomes very time-
consuming. In terms of α-NDCG@10, after convergence, MDP-DIV-NTN(D)
performs worse than MDP-DIV-NTN(E) which achieves the best accuracy.

Compared to the original MDP-DIV, for instance, to achieve the α-
NDCG@10 performance at 0.48, MDP-DIV-kNN(30) and MDP-DIV-NTN(D)
are almost 3 times faster, MDP-DIV-kNN(20) is 1.4 times faster, MDP-DIV-
kNN(10) is 0.4 times faster, and MDP-DIV-NTN(E) is 0.54 times faster than
MDP-DIV. According to the observations, we draw the following conclusions:
(i) The proposed MDP-DIV-kNN and MDP-DIV-NTN models fulfill the target
of accelerate the convergence of MDP-DIV without much accuracy sacrifice; (ii)
The MDP-DIV-kNN methods converge fast with a relatively acceptable accu-
racy, and the MDP-DIV-NTN methods converge fast and show better accuracy
than MDP-DIV.

Effectiveness Analysis. Another promotion comes from the accuracy perfor-
mance. Here we draw a shaded-line figure in Fig. 3 to show the α-NDCG@10
performance against the number of iterations. From this figure, we observe that
during the first 2000 iterations, MDP-DIV-NTN(E) shows a significant improve-
ment of α-NDCG@10 up to 0.05 over the MDP-DIV. As the training phase goes
on, the improvement becomes gentle. Finally, when both the methods converge,
MDP-DIV-NTN(E) still delivers better performance than MDP-DIV. In sum-
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Fig. 3. Effectiveness analysis of the proposed methods on TREC web track dataset.

mary, we draw the following conclusions: (i) The proposed MDP-DIV-NTN(E)
converges faster than the original MDP-DIV; (ii) MDP-DIV-NTN(E) can reach
a high performance in the first 2000 iterations, and the converge performance
is also better. The reason of the fast convergence rate is that we utilize an off-
line NTN-DIV model to shrink the search space and filter part of the irrelevant
documents.

6 Conclusion

In this paper, we aim to promote the performance of MDP-DIV by speeding up
its convergence rate without much accuracy sacrifice. After analysis, we find the
slow convergence of MDP-DIV is mainly due to the two reasons: the large action
space and data scarcity. On the one hand, the sequential decision making at each
position needs evaluate the query-document relevance for all the candidate set,
which results in a huge searching space for MDP; on the other hand, due to the
data scarcity, the agent has to proceed more “trial and error” interactions with
the environment. To tackle this problem, we propose MDP-DIV-kNN and MDP-
DIV-NTN methods. The experiment results demonstrate that the two proposed
methods indeed accelerate the convergence rate of the MDP-DIV, while the
accuracies produced barely degrade, or even become better.
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Abstract. Expert finding plays an important role in community ques-
tion answering websites. Previously, most works focused on assessing the
user expertise scores mainly from their past question-answering semantic
features. In this work, we propose a gating mechanism to dynamically
combine structural and textual representations based on past question-
answering behaviors. We also use some user activities including temporal
behaviors as the features, which determine the gate values. We evaluate
the performance of our method on the well-known question answering
sites Stackexchange and Quora. Experiments show that our approach
can improve the performance on expert finding tasks.

Keywords: Expert finding · Representation learning
Gating mechanism · Neural Tensor Network

1 Introduction

Community-based question answering (CQA) is an Internet-based web service
that enables users to post their questions on a CQA website, which might be
answered by other users later [7]. Expert finding is an essential problem in CQA
sites [9], which arises in many real applications such as question routing and the
identification of best answers [2]. Most of the existing works consider the expert
finding problem as a text-based expert recommendation task, which learns the
user representations via deep semantic models [1] and then predicts users’ per-
formance for answering the questions. Although these expert finding methods
have achieved promising performance, most of them still suffer from the insuffi-
ciency of discriminative feature representations for question contents [7] and the
sparsity of CQA data. To solve the issue of data sparsity, some methods have
been proposed to learn answerer embeddings by utilizing related network struc-
ture information. However, the optimal combination of the structure-aspect and
text-aspect representations is not well studied in these methods.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 201–208, 2018.
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In this paper, we propose a novel vector gate architecture to learn the expert
representation by utilizing structural information of the CQA heterogeneous net-
works and textual information of questions. Specifically, we learn a joint represen-
tation of each user from two information sources: one is structural information,
and another is textual information. The joint representation is the combination
of the structures and texts with gating mechanism. Each dimension of the vector
gate controls how much information is flowed from the structural and textual
representations respectively and then the gate can generate the final joint rep-
resentation. The major contribution of this paper is listed below:

1. Unlike previous methods, we propose a gating mechanism to dynamically
combine structure-aspect and text-aspect representations based on question-
answering behaviors.

2. To take full advantage of users’ limited activities, we employ the features
including users’ temporal behaviors to guide the combination between struc-
tures and texts more accurately.

2 Related Work

The existing work for the task of expert finding can be mainly categorized as
authority-based approaches and topic-based approaches called as TSPM [2,4].
In recent years, with the prevalence of online social networks in CQA sites, some
researchers adopt the Network Representation Learning to exploit the rich social
information from heterogeneous networks to solve the sparsity problem in CQA
tasks. Authors of [11] tackle the expert finding problem via graph regularized
matrix completion and metric network learning named as RMNL. Based on pre-
vious work [5], we integrate the structural and textual information of experts into
joint deep representations for expert finding tasks. Recently, it has gained lots of
interests to jointly learn the embeddings of structure and text information [6,10].
The most commonly used method is to concatenate these two representations.

3 Expert Finding via Jointly Embedding Texts and
Structures

In this section, we will describe our dynamic gating method for expert finding
via jointly embedding structures and texts. We will first introduce the settings
of expert finding tasks and then describe our structure-text gate, definition of
user temporal behaviors and neural tensor layer approaches for Q-U matching
respectively.

3.1 Problem Description and Formulation

We denote the set of user representations by U = {u1, u2, . . . , um} where ui is
the embedding vector for the latent expertise of the i-th user and the semantic
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representations of the questions by Q = {q1, q2, . . . , qn} that are learnt via the
BiLSTM model. We first construct the heterogeneous CQA network based on
User nodes and Question nodes to obtain user structure-aspect representations,
which is a undirected graph. We denote the proposed heterogeneous CQA net-
work by G = (V,E) where the set of nodes V is composed of question contents Q
and users U . The set of edges E consists of question-user relations and user-user
relations. Secondly, the users’ text-aspect representations need to be obtained
using Bi-directional LSTM. We define the text-aspect representations as Ut. The
major descriptions of edged E is listed below:

(a) user-user relations. We define user-user connections with users’ common
keywords features in Stackexchange Datasets and define user-user connec-
tions with users’ friend relations in Quora Datasets. Thus, we denote the
set of edges between users by E(1) ∈ Rm×m. The entry e

(1)
ij = 1 if the i-th

user and the j-th user are friends or there are more than λ common badge
keywords between them, otherwise e

(1)
ij = 0. The parameter λ is defined that

there is an edge between two users in G if there are more than λ common
badges between them in Stackexchange Datasets.

(b) question-user relations. We denote the set of edges between questions and
users by E(2) ∈ Rn×m. The entry e

(2)
ij = 1 if the i-th question is answered

by the j-th user, otherwise e
(2)
ij = 0.

An overview of the heterogeneous CQA network is illustrated in Fig. 1. We
learn users’ structure-aspect representations Us in the heterogeneous network
by Node2vec [3] method.

u1

q2

u2

u3
u4

q1
q u

u

question-answerer�link

user-user�linku

Fig. 1. The heterogeneous CQA network. The network contains two types of nodes:
user, question. and the edges include question-answerer and user-user.

3.2 Gating Mechanism

Since both the structures and texts provide valuable information for a user, we
wish to integrate these information into a joint representation. In this Section,
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we propose a united model to learn a joint representation of both structural
and textual information. The whole model can be end-to-end trained. For a user
u, we denote us to be its structure-aspect representation, ut to be its text-
aspect representation. Then, the main concern is how to combine us and ut.
To integrate two kinds of representations of users, we use gating mechanism to
decide how much the joint representation depends on structures or texts. The
joint representation u is a linear fusion between the us and ut.

Given a text encoding ut and a structure encoding us, we now describe how to
compute the vector representation u = f(us,ut) for the user. Previous methods
defined f using the textual representation ut, the structural representation us,
or the concatenation [ut;us]. Unlike these methods, we propose to use a vector
gate to dynamically choose between the textual and structural representations
based on the features of the users’ activities. Let v denote the feature vector
that encodes the features. In this work, we use the concatenation of structure
features, structure embeddings and user temporal behaviors to form the feature
vector v. Then the gate is computed as follows:

g = σ(Wgv + bg) (1)

where Wg and bg are the model parameters with shapes du × dv and du, and σ
denotes an element-wise sigmoid function. The final representation is computed
using a gating mechanism,

u = f(us,ut) = g � us + (1 − g) � ut (2)

where � denotes element-wise product between two vectors.
All illustration of our gating mechanism is shown in Fig. 2. Intuitively speak-

ing, when the gate g has high values, more information flows from the structural
representation to the final representation; when the gate g has low values, the
final representation is dominated by the textual representation.

Combined User Embedding

Concatenation

Structure Features Temporal Behavior Features

Sigmoidg

(1-g)

Text Embedding Structure Embedding

Fig. 2. The dynamic gating framework for user representations
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3.3 Matching U-Q with Neural Tensor Network

To model the interactions between new questions and the user, we need utilize
some metrics to measure their relevance. In this paper, we model the matching
degree of two vectors with a non-linear tensor layer, which has been successfully
applied to explicitly model multiple interactions of relational data [8]. Given
a new question representation q and some users’ representations. Following the
Neural Tensor Network (NTN) [8], we place a tensor layer to model the relations
of the questions and each user. The final output is the matching score of Q-U
pairs. Figure 3 shows a visualization of our general architecture.

f + +

Q-U�Matching�Score

New�Question�Embedding

User�Embedding

Linear�Layer Slices�of�Tensor
Layer

Standard�Layer Bias

Fig. 3. Visualization of the Neural Tensor Network. Each dashed box represents one
slice of the tensor, in this case there are k = 2 slices.

The tensor layer calculates the matching degree of a question-user pair by
the following score function:

s(q,u) = μT f(qTW[1:z]u + V
[
q
u

]
+ b) (3)

where f is a standard nonlinearity applied element-wise, W [1:z] ∈ Rdq×du×z is a
tensor and we conduct the bilinear tensor product qTW [1:z]u results in a vector
h ∈ Rd, where each entry is computed by one slice i = 1, . . . , z of the tensor:
hi = qTW [1:z]. The other parameters are the standard form of a neural network:
V ∈ Rz×2du , b ∈ Rz and μ ∈ Rz.

4 Experiments

We evaluate the performance of our method on the well-known question answer-
ing sites Stackexchange1 and Quora2. The themes of these two forums are
“Academia” and “Askubuntu” in Stackexchange datasets. Our two datasets of

1 https://www.stackexchange.com.
2 https://www.quora.com.

https://www.stackexchange.com
https://www.quora.com
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Stackexchange cover 7 years from Sep 2010 to Aug 2017 divided into training
data (Sep 2010 to Aug 2016) and testing data (Sep 2016 to Aug 2017) as shown
in Table 1. In addition, We also evaluate the performance of our method using
the Quora dataset, which is obtained from a popular question answering site
Quora. The detail is also shown in Table 1.

Table 1. User set, training set and testing set numbers

Forums # of users U # of training questions Qtrain # of testing questions Qtest

Quora 3,352 11,599 3,464

Academia 15,047 75,901 12,954

Askubuntu 34,924 187,241 33,154

We evaluate the performance of our proposed method based on three widely-
used ranking evaluation criteria for the problem of expert finding in CQA site:
Mean Reciprocal Rank, Mean Average Precision and Precision@1. For ground
truth, we consider all the corresponding answerers as the candidate user set and
their received thumbs-up/down as the ground truth ranking scores. The experts
for the questions tend to receive more scores. Given the testing question set Q, we
denote the predicted ranking of all the users for question q and the ranked user
on i-th position. We compare our proposed method with other state-of-the-art
methods for the problem of expert finding in CQA sites as follows:

(1) AuthorityRank method [2] computes the user authority based on the num-
ber of best answers provided, which is an in-degree method.

(2) TSPM method [4] is a topic-sensitive probabilistic model for expert finding
in CQA sites, which learns question representations via LDA-based model.

(3) Node2vec method [3] only learns the structure embeddings of users based
on the CQA network as users’ representations.

(4) BiLSTM method only learns the text embedding of users based on the
history questions answered by users as users’ representations.

(5) QR-DSSM [1] method uses deep semantic similarity model (DSSM) to
extract semantic similarity features using deep neural networks.

(6) RMNL [11] method is a ranking metric network learning framework for
expert finding by exploiting both users’ relative quality rank to given ques-
tions and their social relations.

Among them, the AuthorityRank and Node2vec methods learn the user
model for expert finding only based on network structures while the TSPM,
BiLSTM and QR-DSSM methods learn the user model based on both the ques-
tion contents. The RMNL method learns the user model from the proposed
CQA network. Unlike previous works, we learn user representation via jointly
embedding structures and texts.

Table 2 shows the evaluation results on MRR, MAP and Precision@1 of three
forums. With these experimental results, we observe that our framework can
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Table 2. Experiment results on three forums.

Method Quora Academia Askubuntu

MRR MAP P@1 MRR MAP P@1 MRR MAP P@1

AuthorityRank 0.5711 0.5595 0.4217 0.6955 0.6765 0.5248 0.6653 0.6486 0.5255

TSPM 0.5495 0.528 0.3743 0.6551 0.6345 0.5122 0.6374 0.6156 0.4959

Node2vec 0.5873 0.5624 0.4455 0.7167 0.6988 0.5852 0.6967 0.6789 0.5788

BiLSTM 0.6179 0.5952 0.4671 0.749 0.7215 0.6087 0.7245 0.711 0.6134

QR-DSSM 0.6608 0.6456 0.5108 0.7755 0.7442 0.6519 0.7632 0.7401 0.6538

RMNL 0.6542 0.6355 0.4955 0.7656 0.7347 0.6533 0.7467 0.7255 0.6683

Our model 0.6629 0.6424 0.5104 0.8177 0.7895 0.685 0.7904 0.7767 0.6872

Fig. 4. Visualization of gate values in the Askubuntu CQA forum. Red means high
number of users and blue means low in (a), while red means high gate values and blue
means low in (b). (Color figure onlin)

outperform other state-of-the-art solutions to the problem, which suggests that
our model is appropriate and effective for expert finding tasks. In addition, we
visualize the model parameter g as described in Fig. 4. The horizontal axis is user
degrees, while the vertical axis is mean values of the gates in 4(a). We notice
rare degrees in CQA Networks that means there are less edges linked to the
users tend to use text-aspect representations, while others tend to use structure-
aspect representations. To further justify the argument, we also compute the
mean values of gate in each degree-level that is defined a level per 5 degrees.
The result is shown in Fig. 4(b). The same conclusion can be obtained based on
Fig. 4(b). We conclude this method can make use of structure information and
text information of CQA data to detect experts or route questions. In addition,
in this way, we can dynamically obtain more valuable information of data and
it is convenient for the end-to-end applications.

5 Conclusions

In this paper, we present a gating method that dynamically combines structure-
aspect and text-aspect representations for expert finding tasks. Experiments on
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the Stackexchange and Quora datasets show that the gating model outperforms
other state-of-the-art methods. This work opens to several interesting directions
for future work. Firstly, it is of interest for us to explore other question-answering
features to enhance the performance in this way. Secondly, We plan to apply
the dynamic gating mechanism for combining other aspects of representations
and apply it to other domains, such as commodity recommendation and link
prediction in heterogeneous networks with rich texts.

Acknowledgements. This work is supported by NSFC under Grant No.61532001,
and MOE-ChinaMobile under Grant No.MCM20170503.
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Abstract. Prior solutions for securely handling SQL range predicates
in outsourced cloud-resident databases have primarily focused on passive
attacks in the Honest-but-Curious adversarial model, where the server
is only permitted to observe the encrypted query processing. We con-
sider here a significantly more powerful adversary, wherein the server
can launch an active attack by clandestinely issuing specific range queries
via collusion with a few compromised clients. The security requirement
in this environment is that data values from a plaintext domain of size
N should not be leaked to within an interval of size H. Unfortunately,
all prior encryption schemes for range predicate evaluation are easily
breached with only O(log2ψ) range queries, where ψ = N/H. To address
this lacuna, we present SPLIT, a new encryption scheme where the adver-
sary requires exponentially more – O(ψ) – range queries to breach the
interval constraint, and can therefore be easily detected by standard
auditing mechanisms.

The novel aspect of SPLIT is that each value appearing in a range-
sensitive column is first segmented into two parts. These segmented
parts are then independently encrypted using a layered composition of a
Secure Block Cipher with the Order-Preserving Encryption and Prefix-
Preserving Encryption schemes, and the resulting ciphertexts are stored
in separate tables. At query processing time, range predicates are rewrit-
ten into an equivalent set of table-specific sub-range predicates, and the
disjoint union of their results forms the query answer. A detailed evalua-
tion of SPLIT on benchmark database queries indicates that its execution
times are well within a factor of two of the corresponding plaintext times,
testifying to its efficiency in resisting active adversaries.

1 Introduction

Cloud computing has led to the emergence of the “Database-as-a-Service”
(DBaaS) model for outsourcing databases to third-party service providers (e.g.,
Amazon RDS, IBM Cloudant). Accordingly, considerable efforts have been made
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 211–227, 2018.
https://doi.org/10.1007/978-3-319-91458-9_13
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over the last decade to devise encryption mechanisms that organically support
query processing without materially compromising on data security. Here, we
investigate this issue specifically with regard to range predicates, the core build-
ing blocks of decision-support (OLAP) queries on data warehouses.

Security Architecture. A typical DBaaS setup consists of the entities shown
in Fig. 1, including: (i) a Service Provider (SP), who maintains the cloud infras-
tructure; (ii) a Data Owner (DO), who is the data source; (iii) a set of Query
Clients (QC), who are authorized to issue queries over the data stored by DO on
SP’s platform, and (iv) a Security Agent (SA), who acts as the bridge connecting
the DO and QC with the SP.

Fig. 1. System entities in DBaaS model

The SA is a trusted entity, and could be a simple proxy in the DO’s enterprise
network. Alternatively, it could be located at the SP, implemented using secure
threads or secure co-processors. Although all queries pass through the SA, it
is a light-weight component since it is responsible only for query rewriting and
decryption of the final results.

Adversary Model. The SP, on the other hand, is always untrusted and treated
as the primary adversary. We assume that the SP is only interested in deciphering
the encrypted data, and not in affecting the functionality of the database system.
That is, the query processing engine is in pristine condition, and all client queries
are answered correctly and completely. Further, the SP maintains compliance
with the standard access control and auditing mechanisms.

The Query Clients (QC) can either be trusted or untrusted, giving rise to the
following alternative adversarial models:

(a) Honest-but-Curious (HBC), in which the clients are trusted. Here, only
passive attacks by the SP are possible – that is, the SP can try to breach
the plaintext values solely by observing the encrypted data, and the compu-
tations executed by the database engine on this data. This model has been
widely considered in the literature (e.g. [1,5,12–14,17,18]).
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(b) Honest-but-Curious with Collusion (HCC), in which the SP can
unleash active attacks through collusion with a few compromised clients
– specifically, the SP can inject range queries of its choice through the com-
promised QC, and then observe how these queries are processed by the
database engine hosted at its site. Further, these injected queries can be
constructed adaptively, using the results of previous queries. This powerful
attack model was also recently considered in [8], as an adaptive semi-honest
adversary.

1.1 Example Security Breach Under HCC

Consider a bank that has outsourced its relational database to the Cloud. Let
the schema include a table Loan (CustName, LoanAmt, Collateral) capturing
the loans taken by customers, and the collaterals furnished to obtain these loans,
as shown in Fig. 2a. In order to simultaneously maintain security on the Cloud
and support range query processing, the current practice is to employ one of
the contemporary range encryption schemes – e.g. OPE [5] – on the sensitive
LoanAmt and Collateral data columns, as shown in Fig. 2b1.

(a) Plaintext Loan Table (b) Encrypted Loan OPE Table

Fig. 2. Plaintext and OPE banking database

Assume that the bank provides a form-based interface to third-parties, such
as auditors, analysts, etc. to query the encrypted data. For instance, a form to
generate a report that lists all the loans of a customer (say Alice) in a given
range – say [15000 : 40000], and the associated collaterals in another range –
say [13000 : 33000]. The corresponding plaintext SQL query that is internally
generated from the Web form is shown in Fig. 3.

SELECT * FROM Loan WHERE
LoanAmt BETWEEN 15000 AND 40000 AND
Collateral BETWEEN 13000 AND 33000 AND CustName = ’Alice’;

Fig. 3. Form-based SQL query with range predicates

1 The CustName column is encrypted with AES for additional security.
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Now suppose the HCC adversary comprises of the SP and the authorized
auditors of customer Alice. In this setting, the security goal is to protect the
adversary from learning the plaintext values of LoanAmt (and Collateral) for an
unrelated customer from the encrypted Loan OPE table. However, the OPE-
based encryption scheme can be easily breached for any target cell with just a few
injected queries by Alice’s auditors on Loan OPE. For instance, say the adver-
sary selects the shaded tuple in Loan OPE as the target cell – corresponding
to customer Bob. Then the attack proceeds as follows:

– The adversary first injects a query Q1, similar to that of Fig. 3, with the
LoanAmt range set to [OPE(32768):OPE(65535)], Collateral range set to
[OPE(40000):OPE(40000)]2 and CustName set to [AES(‘Alice’)]. When Q1

is processed by the database engine, the SP observes whether or not Bob’s
encrypted LoanAmt lies in this range (note that the SP has unrestricted read
access over encrypted data).

– Since it happens to lie outside the range, the adversary injects Q2,
which is identical to Q1 except that the LoanAmt range is now set to
[OPE(16384):OPE(32767)]. When Q2 is executed, the SP finds that Bob’s
encrypted LoanAmt lies in the target range.

– The adversary then injects another similar query, Q3, with LoanAmt now set
to [OPE(24576):OPE(32767)].

– Since OPE(24576) is equal to Bob’s encrypted LoanAmt value in Loan OPE,
the HCC adversary learns that Bob’s loan amount is 24576.

The above process is representative of an injection-based binary search attack
(BSA) that becomes feasible via collusion. As explained in [20], it is also the
strongest feasible attack in the HCC environment, and applicable to all security
systems that store the encryption of a plaintext table in a single ciphertext table.

1.2 Range Predicate Security (RPS)

Before we address the above weakness, it is necessary to formalize the security
definition in the HCC model. In this scenario, a plausible security formulation
for SQL range predicates is that data values from a plaintext domain of size N
should not be leaked to within an interval of size H on this domain. For instance,
the bank may require that no loan amount should be leaked to within an interval
of size 15000 from its actual value. Note that setting H to 1 corresponds to the
special case where a security breach occurs only if a plaintext is fully leaked –
this typically applies to identificatory attributes such as Social Security numbers.

Unfortunately, as highlighted in the BSA attack example, all previous
schemes for range security can be breached under HCC with a sequence of only
O(log2ψ) range queries, where ψ = N/H. To address this lacuna, we present
here a new encryption scheme, called SPLIT, in which the HCC adversary
requires exponentially more – i.e. O(ψ) – range queries to breach the interval
2 The Collateral range is fixed to a single value since the objective is to breach
LoanAmt. A similar exercise can be carried out to break the Collateral column.
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constraint. Such extended query patterns can be easily detected by standard
auditing mechanisms, or incur impractically long durations to achieve covertly,
thereby effectively satisfying the interval security requirement.

We present a detailed evaluation of SPLIT on benchmark databases, and
demonstrate that its execution times are always within twice the correspond-
ing plaintext times, thus providing an attractive security-performance tradeoff
against an extremely strong adversary. Further, while SPLIT does incur large
storage overheads, the extremely low resource costs on the Cloud allow it to
retain viability. Finally, SPLIT is attractive from a deployment perspective also
since it can be implemented as a security layer over existing database engines,
without necessitating internal changes.

Organization. The rest of the paper is organized as follows: We begin with the
formal problem framework in Sect. 2. The new SPLIT encryption scheme, and
its associated range query processing technique, are described in Sects. 3 and 4,
respectively. The security of SPLIT is analysed in Sect. 5, and the experimental
results are presented in Sect. 6. Related work is reviewed in Sect. 7, and our
conclusions are summarized in Sect. 8.

2 Problem Framework

As mentioned previously, the OPE and PPE schemes are currently in vogue for
the secure handling of range queries, and are defined as follows:

Order-Preserving Encryption [5]: An order-preserving encryption func-
tion Eo is a one-to-one function from A ⊆ N to B ⊆ N with |A| ≤ |B|, such that,
for any two plaintext numbers i, j ∈ A, Eo(i) > Eo(j) iff i > j.

Prefix-Preserving Encryption [18]: A prefix-preserving encryption func-
tion Ep is a one-to-one function from {0, 1}n to {0, 1}n such that, given two
plaintext numbers a and b sharing a k-bit prefix, their corresponding cipher-
texts Ep(a) and Ep(b) also share a k-bit prefix.

2.1 Adversary Objective

In accordance with the DBaaS model, the DO provides authorized access to
portions of the data stored on the Cloud to individual QCs, using an access
control mechanism and fixed query form templates. Further, the DO also defines
the interval constraint size H. Given this environment, the adversary (i.e. SP
+ colluding QC) chooses to attack a target cell from an encrypted tuple which
is outside of its authorized access, with the objective of breaching the Range
Predicate Security (RPS) interval constraint H on this target cell.

Formally, the adversary A is given a set M∗ consisting of m ciphertexts,
and the interval constraint size H. A selects a challenge ciphertext x∗ ∈ M∗

and its objective is to identify a plaintext interval (a, b) containing x∗ such that
|b − a| < H. In its attack, A is allowed to issue a polynomial(λ) number of
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range queries and observe their computations and results – here λ is the security
parameter, corresponding to the bit-lengths of the plaintext values.

In the full version of this paper [20], the above attack model is formalized
in the form of a game between the challenger C and the adversary A for a
deterministic encryption scheme SE that supports range query execution. We
hereafter refer to this game as Chosen Range Attack (CRA).

2.2 Notations

The following notations are used in the remainder of this paper:

– xpxp+1 · · · xq denotes extraction of bits p through q from the (big-endian)
binary representation of x.

– x1|| · · · ||xk denotes the concatenation of bits x1, · · · , xk, from which each xi

is uniquely recoverable.
– P denotes the plaintext domain. Further, given a plaintext value x, its

encrypted version is denoted by x∗.
– N denotes the size of the plaintext domain, and H represents the size of

the RPS interval constraint specified by the Data Owner. The normalized
plaintext domain size is denoted by ψ = N

H .

3 Database Encryption with SPLIT

In this section, we present the design of the SPLIT encryption scheme, which
is conceptually based on two main ideas of splitting and layered encryption.
Subsequently, we describe how a plaintext database is converted to an encrypted
database, followed by a rationale for the design choices.

3.1 Splitting of Data

If we consider plaintexts sourced from an n-bit integer domain, the entire set
of these plaintexts can be represented by a complete binary tree of height n,
referred to as the Plaintext Tree (PT). The leaf level containing 2n nodes
is denoted as L0, the level above it is denoted as L1, and so on. For example,
consider the plaintext tree for 4-bit integers shown in Fig. 4(a). In this case, n is
4 and PT contains nodes at 5 different levels, L0 through L4. Every node at the
leaf level of PT is associated with n-bits of information characterizing its path
from the root to level L0.

SPLIT partitions the levels of the PT into two contiguous groups, referred to
as Range Safe (RS) and Brute-force Safe (BS), respectively, and associated
encrypted tables RS and BS are created based on this partitioning. The RS
partition consists of the top levels of PT . For example, in Fig. 4(a), levels L2

through L4 belong to the RS partition, and the bits corresponding to these
levels are encrypted for range query processing (this procedure is explained later
in Sect. 3.2). Thus, in the encrypted RS table, for each plaintext value, the upper



Collusion-Resistant Processing of SQL Range Predicates 217

Fig. 4. Basic SPLIT scheme

bits are encrypted for range query processing and the remaining bits are blinded
using a Secure Block Cipher (SBC). Hence, in this example, nodes at level L2

effectively serve as leaf nodes and the associated range for every such node is of
granularity 22 integers, as shown in Fig. 4(b).

The BS partition is comprised of the remaining levels of PT from level L0

up to the level where the RS partition ends. In the current example, levels L0

through L2 are assigned to the BS partition, and the bits corresponding to these
levels are encrypted for range query processing. Thus, in the encrypted BS table,
the lower bits are encrypted for range query processing while the upper bits are
blinded using SBC. This represents a set of trees, with the prefixes blinded, as
shown in Fig. 4(c).

3.2 Layered Encryption

SPLIT uses three encryption schemes as black boxes, namely, Secure Block
Cipher (ESBC), Order Preserving Encryption (EOPE) and Prefix Preserv-
ing Encryption (EPPE). The SPLIT encryption scheme for plaintext domain
P is constructed as a tuple of polynomial-time algorithms SPLIT =
(KeyGen, EBS , ERS , ESBC ,DBS ,DRS ,DSBC), where KeyGen is probabilistic
and the rest are deterministic.

Key Generation [sk ← KeyGen(λ, w, d)]. KeyGen is a probabilistic algo-
rithm that takes the following as input: The security parameter λ, the total
number of table columns w, and the number of columns on which range pred-
icates can be simultaneously applied d. It then outputs the secret key sk,
which consists of d ∗ 2d equi-length secret keys (K1

O,K2
O, ...,Kd∗2d

O ) of the OPE
encryption algorithm (EOPE), d ∗ 2d equi-length secret keys (K1

P ,K2
P , ...,Kd∗2d

P )
of the PPE encryption algorithm (EPPE) and w ∗ 2d equi-length secret keys
(K1

S ,K2
S , ...,Kw∗2d

S ) of a Secure Block Cipher (ESBC).

Encryption Algorithms. SPLIT incorporates two encryption algorithms EBS

and ERS . Both the algorithms are deterministic and take the following as input:
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Fig. 5. SPLIT ciphertext construction

the plaintext data item m, key for OPE encryption KO, key for PPE encryption
KP , key for SBC KS and number of bits u in the RS partition. The EBS algorithm
outputs the BS ciphertext (c∗

BS) while ERS outputs the RS ciphertext (c∗
RS)

corresponding to message m encrypted under the given keys. Let l = n − u,
m′ = mn−1mn−2 · · · ml and m′′ = ml−1ml−2 · · · m0, thus, m = m′||m′′. Then,

– Encryption for BS [EBS(m,KO,KP,KS,u)]

c∗
BS ← EKO

OPE(EKP

PPE(EKS

SBC(m′)||m′′)) (1)

– Encryption for RS [ERS(m,KO,KP,KS,u)]

c∗
RS ← EKO

OPE(EKP

PPE(m′||EKS

SBC(m′′))) (2)

The entire set of data encryption steps for a given plaintext value, as described
above, is pictorially shown in Fig. 5. The corresponding decryption algorithm is
comprised of similar equations and is presented in [20].

3.3 Data Transformation

Consider a plaintext table with w columns, from which we wish to support
range predicates on d columns. The plaintext values for each of the d columns
are independently encrypted 2d−1 times using EBS and ERS each, thus creating
2d ciphertext columns. Further, 2d encrypted tables are created by capturing
all BS and RS combinations of these columns. The remaining columns in the
plaintext table – on which range queries will not be issued, are simply encrypted
using an SBC.

We illustrate this data transformation process with the help of an example.
Say our plaintext table is Loan with schema as enumerated in Fig. 2a – then, w =
3. Assume that range predicates can only be asked on LoanAmt and Collateral
columns, i.e. d = 2. First, we call KeyGen(λ, 3, 2), which returns secret keys
consisting of eight (2 ∗ 22) OPE keys (K1

O,K2
O, . . . ,K8

O), eight (2 ∗ 22) PPE keys
(K1

P ,K2
P , . . . ,K8

P ), and twelve (3 ∗ 22) SBC keys (K1
S ,K2

S , . . . ,K12
S ). Next, we

create four encrypted tables, as shown in Fig. 6, which contain all combinations
of the BS and RS partitions of LoanAmt and Collateral. Further, the physical
row orderings of the tables are randomized to prevent position-based linkages
across their tuples.



Collusion-Resistant Processing of SQL Range Predicates 219

(a) Loan BS BS (b) Loan BS RS (c) Loan RS BS (d) Loan RS RS

Fig. 6. SPLIT banking database

3.4 Design Rationale

The motivation for row randomization and layered encryption in SPLIT is to
prevent linkages of tuples across the various encrypted tables. For example, there
should be no linkage between tuples in Loan RS RS and Loan BS RS, both of
which correspond to the RS partition of Collateral. If such a linkage exists, it can
be used to connect the tuples on the Collateral column in the two tables, thereby
enabling a binary search attack by keeping this column fixed, and searching on
the other LoanAmt column.

Further, the Collateral values are encoded using the same RS Encrypt func-
tion, but with different keys in Loan RS RS and Loan BS RS. This is where
the layered encryption, using OPE and PPE, plays a role. In both these columns,
the lower l bits are blinded using an SBC with different keys, so it is not possible
to link tuples based on the lower bits. However, if no further encryption is used,
i.e. the upper u bits are kept as plaintext, it would be possible to link the tuples
based on the upper bits. So, further encryption that enables range queries based
on the upper u bits is necessary. Clearly, OPE and PPE are possible schemes
that can be used. However, OPE by itself is not sufficient. Consider a set of val-
ues V encrypted using OPE with two different keys giving sets V1 and V2. Since
OPE preserves order, the order of encrypted values in V1 and V2 is identical.
Thus, by sorting these sets, one could link their values.

Similarly, PPE by itself is not secure since it preserves the structure of the
tree corresponding to the binary representation. In some cases, it may be possible
to map nodes across two PPE trees by using the structure. For example, if in
the plaintext domain, there is a single value with bit n − 1 as 1 and all others
have bit n − 1 as 0, then this value can be linked across different PPE trees,
irrespective of whether bit n − 1 gets flipped or not.

In a nutshell, the advantage of OPE is that it destroys the structure of the
tree and the advantage of PPE is that it destroys the order information. Thus, by
combining OPE with PPE, we remove both order and structure-based linkages.

4 Range Query Processing

In this section, we explain how a range query is executed over a SPLIT-encrypted
database. The main idea is to transform the query range into a disjoint set of
prefix ranges of the form bn−1bn−2 · · · bj∗, where each bi is a bit taking value 0
or 1, and ∗ can match any value. Smaller ranges, corresponding to j < l, are
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answered from the BS tables and the larger ranges from the RS tables. Formally
Range Query Processing consists of two main steps – Range Query Mapping and
Range Query Execution, as described below.

4.1 Range Query Mapping

The steps to map range predicates from the plaintext domain to the RS and
BS partitions are shown in RQM Algorithm1. The mapping process starts by
converting the input range r into a set of ranges R represented by prefixes (Line
1). The maximum number of such ranges is 2 ∗ (n − 1), where n is the number
of bits used for representing the attribute values [18]. For each prefix in R, a
value with that prefix is chosen – the remaining unspecified bits are set to 0
(Line 4). Then, depending on the size of the range represented by the prefix,
it is mapped to either the RS or the BS partition. For a BS range, the higher
order bits are encrypted with the SBC (Line 7). Then the value is encrypted
with PPE encryption (Lines 8, 10). The lower and upper bounds of the range
in the PPE encrypted domain are computed by replacing the remaining lower
j bits by all 0 and by all 1 (Lines 12–13). Finally, these lower and upper bits
are further encrypted using OPE encryption with the appropriate keys and the
range is added to RBS or RRS , depending on the size of the range (Lines 14–20).
It can be seen that due to the prefix-preserving property of PPE and the order
preserving property of OPE, this mapping produces the correct range on the
encrypted domain. The ranges in RRS are answered from the RS partition, and
those from RBS are answered from the BS partition.

The above walkthrough shows the range mapping for a single column. If there
are ranges on multiple columns, each range is split into prefixes and the set of all
combinations of prefixes together represents the full range of the original query.
Each combination is answered from the table corresponding to the range types.
For example, a BS range on the LoanAmt column combined with BS range on
the Collateral column is answered from the Loan BS BS table.

4.2 Range Query Execution

The next step is to execute the ciphertext queries at SP. We illustrate this
process through the example plaintext query specified in Fig. 3. The following
steps are performed to evaluate this query in SPLIT:

1. QC sends the plaintext query to the SA.
2. SA calls RQM Algorithm 1 and identifies sub-ranges over ciphertext tables.
3. Using output of Step 2, SA creates ciphertext sub-queries and sends them to

SP.
4. SP executes the sub-queries and sends (encrypted) result tuples to the SA.
5. SA computes the union of the tuples returned from each sub-query, and then

decrypts the result tuples. (The union is efficiently computable because it is
apriori known that the sub-queries access disjoint sets of tuples.)
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Algorithm 1. Range Query Mapping (RQM)

Input: Range r on plaintext attribute. OPE keys K1
O and K2

O, PPE keys K1
P and K2

P ,
SBC keys K1

S and K2
S for RS and BS partition respectively. The number of bits in

RS partition ‘u’
Output: Set of ranges on RS partition RRS , set of ranges on BS partition RBS

1: Convert r into a set of ranges R of form bn−1bn−2 · · · bj∗ {using technique in [18]}
2: Let l = n − u
3: for all (ri = bn−1bn−2 · · · bj∗) in R do
4: v ← bn−1bn−2 · · · bj0 · · · 0 {set lower bits to 0}
5: vU ← vn−1vn−2 · · · vl; vL ← vl−1vl−2 · · · v0
6: if (j < l) then {BS range}
7: v∗ ← EK2

S
(vU )||vL

8: e∗
v ← EK2

P
(v∗)

9: else {RS range}
10: e∗

v ← EK1
P

(v)
11: end if
12: Let cncn−1 · · · c0 be the bit representation of e∗

v

13: rL ← cn−1cn−2 · · · cj0 · · · 0; rU ← cncn−1 · · · cj1 · · · 1
14: if (j < l) then
15: r∗

L ← EK2
O

(rL) ; r∗
U ← EK2

O
(rU )

16: Add (r∗
L, r∗

U ) to RBS

17: else
18: r∗

L ← EK1
O

(rL) ; r∗
U ← EK1

O
(rU )

19: Add (r∗
L, r∗

U ) to RRS

20: end if
21: end for
22: return RRS , RBS

5 Security Analysis of SPLIT

In this section, we evaluate the Range Predicate Security offered by the SPLIT
scheme against a Honest-but-Curious with Collusion adversary mounting a Cho-
sen Range Attack. Specifically, in a binary search attack as the range is refined,
the table from which the query is answered is switched from RS to BS according
to the RQM Algorithm 1. So, a target RS cell cannot be guessed to a range of
size less than 2l. And there is no way to reach the corresponding target cell in BS
table in log(ψ) steps unless the rows in the tables can be linked. Without linkage,
binary searches over all the ψ sub-trees in the BS partition will be needed. We
prove that the table rows cannot be correlated in the following discussion.

For ease of understanding, a diagrammatic view of the layered SPLIT encryp-
tion scheme is shown in Fig. 7.3 The various ways in which RPS for the LoanAmt
column can be breached are highlighted through the numbered dotted lines,
which are explained below – a similar reasoning holds for the Collateral column.

3 For visual clarity, CustName is not shown in the figure, but its encrypted form,
CustName Enc, is present in all four tables.
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Fig. 7. Ensuring security of LoanAmt values

The SPLIT scheme protects against all these breaches, as explained in the
remainder of this section.

To begin with, the HCC adversary is unable to independently break the
BS and RS ciphertexts (dotted lines 1 and 2, respectively) because these were
generated by SBC-encrypting the upper and lower half bits of the plaintext
value, respectively. Secondly, the BS and RS ciphertexts (dotted lines 3 and 4)
corresponding to a given LoanAmt plaintext value, cannot be associated, because
there is no value linkage between these ciphertexts – again due to the blinding of
the lower half bits in the RS table and the upper half bits in the BS table using
a SBC. Further, the linkages of row locations between these tables have been
removed due to the randomization (denoted by R in the figure) of the physical
row orderings of the tables. Preventing this association ensures a break in the
chain of attack queries.

Apart from these direct attacks on LoanAmt, there could also be indirect
attacks launched on it via the sibling Collateral attribute. Specifically, the link-
age between a pair of BS ciphertexts corresponding to a Collateral plaintext
value (dotted line 5), or a pair of RS ciphertexts corresponding to a Collateral
plaintext value (dotted line 6), could be used to launch a BSA on LoanAmt. This
is prevented because physical randomization ensures the absence of row linkages
between the encrypted Collateral columns, while value linkages are eliminated
by the three-layered SBC-PPE-OPE encryption, using different keys for each
table, as described in Sect. 3.

In a nutshell, the security of the SPLIT encryption scheme is established
based on the following points (the complete set of formal claims and proofs are
available in [20]):

1. The BS and RS encryptions are independently secure (dotted lines 1 and 2
in Fig. 7).

2. For any plaintext table, there is no linkage between the corresponding BS and
RS ciphertext tables (dotted lines 3 and 4 in Fig. 7).

3. For any plaintext table, there is no linkage between a pair of corresponding
BS (or two RS) ciphertext tables (dotted lines 5 and 6 in Fig. 7).
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6 Experimental Evaluation

The importance of range predicates in OLAP environments can be gauged from
the fact that more than half the queries in the TPC-H and TPC-DS decision
support benchmarks feature such predicates. In this section, we move on to
empirically evaluating SPLIT’s efficiency with regard to handling range predi-
cates in the encrypted domain.

Our experimental setup consisted of two identical server machines, with one
representing the SP hosting the DO’s encrypted data, and the other representing
the SA interfacing with the QCs. PostgreSQL 9.4 was used as the database
engine on the SP server, and all queries were issued through a Java program,
which converted the plaintext queries to their SPLIT ciphertext equivalents.

The experiments were carried out on 10 GB versions of the TPC-H and TPC-
DS benchmark databases. For TPC-H, the queries having range predicates on 4
attributes were constructed, with a range of selectivities on lineitem, the largest
table in the TPC-H schema with 60 million rows. For TPC-DS, the standard
benchmark tables sizes [21] were used and three benchmark queries (Query 82,
Query 87 and Query 96) were executed to evaluate the performance.

6.1 Query Execution Time

The execution times taken for range query processing by the SPLIT and plaintext
algorithms on the TPC-H and TPC-DS databases, as per the above experimental
framework, are captured in Figs. 8a and b, respectively, The results in these
figures consistently show that the performance of SPLIT is within a factor of
two of the plaintext query execution. For instance, in Fig. 8a at 50% selectivity,
the plaintext query takes around 30 s while SPLIT completes in 52 s. Similarly,
in Fig. 8b, Query 82 takes 32 s in the plaintext environment, and is computed in
45 s with SPLIT encryption.

(a) 10GB TPC-H database (b) 10GB TPC-DS database

Fig. 8. Query execution time on benchmark databases

At first look it may seem that SPLIT will incur a performance slowdown
equal to the storage blowup. However such worst case scenario will require a



224 M. Kesarwani et al.

query containing multi dimensional range predicate where each predicate has
high selectivity requiring a full table scan. In general cases, if indexes are present
and are chosen by the optimizer, then the number of tuples fetched from the disk
will be equal to the size of the final result set. In these cases the performance
overhead will be within two times since the ciphertext size is twice the size of the
plaintext. Further note that since the query rewriting leads to multiple queries,
each with predicates having lesser selectivity, the probability that the optimizer
decides to use indexes is higher.

Note that the good performance of SPLIT is inspite of the large number of
sub-queries in the transformed query. This is because each sub-query accesses a
disjoint set of tuples, meaning that the total work done is almost equivalent to
that of the single query in the plaintext domain, particularly if indexes are used
in the query plan. This points to the practicality of the SPLIT scheme.

An important observation here is that the SPLIT implementation in these
experiments lacked any parallelization. However, the many sub-queries (one per
encrypted table) in the transformed query over the encrypted database can, in
principle, all be executed in parallel. If this optimization were to be implemented,
the time overheads will be further reduced.

6.2 Storage Cost

The size of the plaintext TPC-H database with indexes is 21 GB, whereas the
corresponding SPLIT encrypted database is 335 GB. This is because we are han-
dling 4D range predicates, resulting in the encrypted database being roughly 16
times the size of the plaintext database. Though this blowup is certainly large,
the overall impact on the system dollar cost is substantively lower, since storage
is relatively cheap. For instance, Table 1 shows the monthly costs for attain-
ing same throughput with both the plaintext and SPLIT schemes, estimated
using the rates charged by Amazon’s AWS service [19] for machines similar to
our experimental configuration. Since the execution time of SPLIT is within
twice of the plaintext execution time, and the resource cost is dominated by the
VM rental duration, the overall monetary investment in the SPLIT scheme is
also within a factor of two with respect to the plaintext scheme. Further, vari-
ous workload-dependent optimizations to reduce the storage overheads are also
described in [20].

Table 1. Monthly dollar cost of cloud platforms

Scheme Size (GB) $/VM $/GB $(VM) $(Storage) $(Total)

Plaintext 21 288 0.045 288 0.945 288.945

SPLIT 335 288 0.045 576 15.075 591.075
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7 Related Work

Several schemes have been proposed over the last decade for securely process-
ing range predicates over outsourced encrypted databases. The most prominent
among them have been OPE [1,5,6,11,14] and PPE [12,18], which inevitably
leak order-based and structure-based characteristics respectively, of plaintext
data. In PBtree [13] the authors have proposed an encrypted tree-based index
structure, but this scheme requires significant changes to the underlying database
engine which may hinder its adoption by industry.

Subsequently, alternative tree-based encryption schemes have been proposed
in [7,8] and Bucketing Schemes are proposed in [9,10]. These schemes provide
stronger security guarantees than OPE schemes in Honest-but-Curious model.
However the fundamental problem is that, these schemes return false positives
in the query results.

Another line of research [2,3,15–17] has focused on building complete systems
which support secure execution of entire SQL queries over encrypted databases.
In CryptDB [15], multiple encryption schemes are used to encrypt the data in
an “onion”-style layering. At query processing time, the outer layers of the appro-
priate onions are removed as dictated by the query predicates. MONOMI [16]
also uses multiple encryption schemes, albeit without the onion-based layering.
It assumes instead that the clients also have a local database engine, and each
query is split into two parts – the first part is executed on the encrypted data at
the Cloud server, and its result is transferred to the client, decrypted and loaded
into the local database. The second part of the query is then run on this local
plaintext database.

Systems such as TrustedDB [3] and Cipherbase [2] assume the availability
of trusted hardware at the server, which can be used to decrypt and process the
data in a secure manner. In TrustedDB, the whole database engine runs inside
the trusted hardware, whereas in Cipherbase, the database engine is aware of
the encryption requirements and integrates tightly with trusted hardware.

The common limitation of all the above systems is that they are susceptible
to a CRA attack in the HCC model, as described in detail in [20].

8 Conclusions

In this paper we considered a Honest-but-Curious with Collusion adversary on
Cloud-resident databases. This model represents a significantly more powerful
attack than the traditional HBC adversary, and is capable of easily launching
Chosen Range Attack to breach the encrypted data. We proposed the SPLIT
encryption scheme to securely process range predicates in the presence of such
adversaries, with the key features being splitting of data values and layered
encryption. With this scheme the adversary requires exponentially more queries
to breach the data, making the attack unviable in practice. SPLIT was imple-
mented and evaluated on benchmark environments, and the experimental results
demonstrate that its strong security guarantees can be supported without incur-
ring more than a doubling of the plaintext response time, even under sequential
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execution. When parallel execution is implemented, these performance overheads
will be much smaller.

In the full version of this paper [20], we have shown how SPLIT can be
extended to handle updates and other database operators, as well as serve
as a potent and efficient replacement for OPE in complete systems such as
Cipherbase. Therefore, in an overall sense, SPLIT promises to be a viable and
desirable component for securely handling OLAP queries.

In our future work, we plan to compare the efficiency of our work with other
solutions in the HBC model (ex. PBtree [13]), and to design encryption schemes
to securely handle additional SQL operators (ex. θ join) against HCC adversaries.
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Abstract. In-memory transaction processing has gained fast develop-
ment in recent years. Previous works usually assume the one-shot trans-
action model, where transactions are run as stored procedures. Though
many systems have shown impressive throughputs in handling one-shot
transactions, it is hard for developers to debug and maintain stored pro-
cedures. According to a recent survey, most applications still prefer to
operate the database using the JDBC/ODBC interface. Upon realizing
this, the work targets on the problem of interactive transaction process-
ing for in-memory database system. Our key contributions are: (1) we
address several important design considerations for supporting interac-
tion transaction processing; (2) a coroutine-based execution engine is
proposed to handle different kinds of blocking efficiently and improve
the CPU usage; (3) a lightweight and latch-free lock manager is designed
to schedule transaction conflicts without introducing many overhead; (4)
experiments on both the TPC-C and a micro benchmark show that our
method achieves better performance than existing solutions.

Keywords: Transaction · Concurrency control · Network interaction

1 Introduction

In-memory database systems have gained a rapid development in recent years.
These systems store the entire database in the main memory and totally removes
the performance bottleneck resulted from slow disk I/O. And the major design
consideration has evolved into better utilization of the multi-core and multi-
socket CPUs [3]. To achieve that, in-memory databases usually assume the one-
shot transaction model (see Fig. 1), where transactions are run as stored proce-
dures and no client-server interaction was allowed once a transaction got started.
One-shot transactions do not worry about I/O-related stall any more, and can
keep being processed to the completion if no conflict access is witnessed. Based
on that, many lightweight concurrency control schemas are proposed [8,15,16].
All introduce little maintaining overhead in identifying access conflicts. On the
other hand, conflicts are resolved by simply aborting and retrying transactions,
c© Springer International Publishing AG, part of Springer Nature 2018
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Fig. 1. The one-shot transaction Fig. 2. The interactive transaction

which is actually quite time-consuming [17,18]. Thus, the efficiency of these
methods is promised based on the fact that most one-shot transactions finish
execution in a short time and conflict with each other seldomly.

Although, one-shot transaction processing achieves impressive throughput,
another very important kind of workload is rarely studied, namely the interactive
transaction processing (see Fig. 2). In this case, applications operate database
system with SQLs and JDBC/ODBC interface. Transactions are invoked by
sending SQLs one-by-one to the server. A recent survey [10] shows transaction
processing in interactive way is much more common than that in one-shot way.
It is reported that 54% responders never or seldom use stored procedure in
their DBMSs. Only 16% responders have more than half of transactions ran as
stored procedures. Several reasons for the situation are: (1) stored procedures
are difficult to maintain and debug; (2) they lack portability, making it hard to
deploy applications on different platforms and databases.

Such fact has made us think about how to design in-memory database sys-
tem for interactive transaction processing. We conclude the major differences
between the interactive model and the one-shot model are: (1) a transaction can
be stalled by network I/O, which requires the execution engine to handle the net-
work I/O blocking efficiently; (2) a transaction lasts much longer since network
latencies are included, which results in more access conflicts. The concurrency
control is expected to be efficient in both identifying and resolving conflicts. Our
contributions can be summarized as follows: (1) we examine the design space,
and conclude several design considerations in implementing interactive transac-
tion processing. (2) A new execution model is designed to interleave transaction
execution efficiently. It can fully utilize the CPUs and does not waste much time
on handling different kinds of blocking. (3) A lightweight and latch-free lock
manager, named as iLock, is proposed to schedule conflict operations efficiently.
It introduces little overhead regardless of the workload containing lots of con-
tention or not. (4) Experiments on well-known benchmarks show our method
achieves the better throughput than existing techniques.

The paper is organized as follows: Sect. 2 analyzes the properties of interac-
tive transaction processing and gives the design consideration. Section 3 presents
a new execution engine which efficiently running concurrent transactions on
multi-core hardwares. Section 4 designs a new lock manager and analyzes its
correctness. Section 5 shows the experiment results. Related works are discussed
in Sect. 6 and the work is concluded in Sect. 7.
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2 Design Consideration

The section firstly emphasizes two important facts about the interactive trans-
action workload, and then gives our design considerations.

Frequent Network I/O Blocking. As a transaction is executed by interac-
tively sending SQLs to the server, its processing is frequently blocked by network
I/O. As a result, a transaction has itself suspended when a SQL request is fin-
ished, and get resumed after the next request arrives. The database system is
responsible for handling transaction’s suspending and resuming efficiently.

Long Transaction Duration. Transaction duration is the time from the begin-
ning of a transaction to the end. Given a one-shot transaction accessing tens of
record, its processing phase only contains memory access and CPU calculation
(the commit phase is not included, which requires one disk write). Therefore, it
has a very short duration and can usually be finished in less than 100µs. On
the other hand, an interactive transaction requires multiple network communi-
cations between the client and the database system. In a cluster, it takes nearly
100µs to do a simple message round-trip between two servers through Ethernet.
If there is 10 client-server interactions, a transaction will last longer than 1000µs.

Based on these observations, we consider that the in-memory transaction
engine should have the following design principles.

CPU-Efficient Execution Model. Consider that a transaction tx is running
on a CPU core ci. If tx is blocked by network I/O, ci becomes idle. In order
to make full use of CPU, ci ought to process another transaction ty before
the next SQL of tx is received. Hence, a large number of transaction should run
concurrently on a relatively small number of CPU cores. To achieve that, existing
systems use the Transaction-To-Thread execution model, where a transaction
binds its execution with the same thread during its lifetime. If a thread is blocked
and a core becomes idle, another thread would be switched in and run on the
same core. However, the limitation is that each time a thread is blocked by
network I/O, it results in one context switch. For instance, on an Intel E5-2620
CPU, it takes typically 8–13µs to finish one context switch. Such overhead
makes the execution model less appealing. Hence, we target on designing a new
execution model, which handles the network-related blocking more efficiently.

Lightweight Lock-Based Concurrency Control. Since interactive trans-
actions have the long duration, the risk that two transactions access the same
data item is greatly increased. As a result, transaction conflicts happen more
frequently. (i) Many in-memory systems [8,15] favor the optimistic concurrency
control [7]. But it is not suitable for scheduling interactive transactions. Since the
protocol identifies conflicts at the end of a transaction with a validation phase, a
client has to process a transaction from the scratch once its validation fails. As
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mentioned in the above, conflicts happen more frequently under the interactive
workload, OCC would waste a plenty of CPU time and network resources on
retrying failed transactions. (ii) With that in mind, we consider the lock-based
concurrency control (i.e. 2PL) as a better choice. Under the lock-based protocol,
access conflicts are identified by asking each transaction to acquire locks. Con-
flict can be resolved by blocking a transaction until the required lock is released.
The protocol has the balanced performance in scheduling workloads exhibiting
either high lock contention or low. In further, in order to work efficiently in the
main memory environment, the lock-based protocol requires a lightweight imple-
mentation to reduce the CPU overhead. However, We observe existing solutions
do not satisfy the requirement. (a) Disk-based systems implement the protocol
with a centralized lock table. The structure is proven to have considerable main-
taining overhead [5,11]. (b) Some in-memory systems optimize the protocol by
simplifying lock manager (i.e. row locking [8,11]). It is only efficient in identify-
ing access conflicts. When a conflict is witnessed, it forces a transaction to abort
and get retried, which consumes much CPU time. Hence, it is not suitable for
the case where the workload contains much contention.

In all, the interactive transaction processing calls for (1) an execution engine,
which is efficient in handling blocking caused by network I/O or access conflicts;
and (2) a lightweight lock manager, which introduces little overhead in identify-
ing and resolving conflicts.

3 Execution Model

This section presents an execution model, which is efficient in handling blocking
coming from network I/O and lock conflicts. Overall, our goal is to minimize the
number of context switches resulted from blocking. In the following, we start
with a simple execution model which is able handle network-related blocking
efficiently. Based on that, we take the conflict-related blocking into consideration.
And then, a new execution model is given with its features clearly discussed.

3.1 SQL-To-Thread

Here we firstly assume there is no conflict-related blocking. As discuss in the
previous section, transaction-to-thread model is not a good design because each
time a thread waits for the next SQL request to arrive, it is blocked and generates
one context switch. A possible design is to bind a SQL request with a thread. As
a client interacts with the server in degree of SQL request, a thread can execute
a request to the completion without being blocked. Once a request is processed,
the thread continues to process a SQL of another transaction.

In the SQL-To-Thread model, a batch of I/O threads are responsible for
communicating with clients. Several working threads are created to handle the
transaction execution. The number of working threads is equivalent to the
number of available CPU cores. Once a request is received, an I/O thread would
push it into a task pool. Each working thread keeps pulling a request from the



232 T. Zhu et al.

Fig. 3. Different kinds of execution models.

co-init
allocate resources required by
a coroutine instance

co-resume
resume the execution of a
coroutine instance

co-yield
exit the current coroutine in-
stance temporarily

Fig. 4. Interface for coroutine usage Fig. 5. Coroutine mechanism

task pool for processing. After a request is processed, a working thread informs
an I/O thread to send results back to the client, and continues to pull a request
from the task pool. Figure 3(b) gives an example. Two working threads w1, w2

are started on two cores. Here, w1 processes SQL s1 of transaction Txn1 in the
first, and then Txn2.s4. When the next request Txn1.s2 is arrived, w1 is occupied
by Txn2.s4 but w2 is available. Hence, w2 begins to process Txn1.s2. In the model,
each thread keeps itself busy by servicing requests of different transactions. It
eliminates the context switches generated by network I/O.

3.2 SQL-To-Coroutine

Conflict-Related Blocking. In addition to network-related blocking, a transaction
can also be blocked by access conflicts. The SQL-To-Thread model cannot suffi-
ciently handle this kind of blocking. Considering a SQL s1 attempts to acquire
a lock li and the li is already held by another transaction ty, s1 can not pro-
ceed any more before ty releases li. Facing this situation, s1 has two choices: (1)
abort and retry itself later (only abort s1, not the whole transaction); (2) wait
until the lock is released. The first choice is not acceptable. As analyzed in the
previous section, an interactive transaction tends to have a long duration. It is
very likely that s1 will be retried for many times before s1 acquires the lock and



Interactive Transaction Processing for In-Memory Database System 233

all those failed attempts only waste CPU time without any other return. Hence,
we prefer the second choice, which let s1 wait for ty to release li.

SQL-Wait. The next problem is how to make a SQL wait in a thread. Two
common solutions are possible: (1) busy-waiting and (2) condition-waiting. In
busy-waiting, the thread keeps checking whether the lock is released. Obviously,
it is even worse than the abort-retry strategy, as it not only wastes lots of CPU
time on checking the lock condition, but also prevents other requests from being
processed. In condition-waiting, the thread gives up the CPU and is awakened
later when ty releases li. Before the thread is waked up, its CPU core becomes
idle (recall that exact one thread is created for each core). As a result, using
condition-waiting will under utilize the CPU resource.

Ideally, we expect the execution engine to process SQLs in the following way.
If s1 is blocked due to a lock conflict, the thread temporarily leaves its execution,
and starts to process the next request. After li is released, the thread resumes the
execution of s1 again. To achieve that, we propose a SQL-To-Coroutine model.
Figures 4 and 5 illustrates the mechanism of coroutine [6] briefly. As we can
see in Fig. 5(b), a caller A uses co-init to allocate memory space and do some
initializations for a coroutine instance B. The caller invokes co-resume to begin
the execution of B. In the middle of the execution, B can invoke co-yield to
exit its execution temporarily. In the back-end, co-yield saves B’s stack into the
memory region allocated by co-init . Later, when A calls co-resume, B would
have its stack copied back into the thread’s execution context again. This time,
B continues its execution from where the last co-yield is called. Essentially, the
coroutine is similar with the function if co-yield is never used. The difference is
that a coroutine instance holds all states and variables before it is ended. It can
exit in the middle of its execution and later return to the point where it leaves.
More information about coroutine can be found in [6].

The SQL-To-Coroutine model processes each SQL request as a coroutine
instance. During processing, if there is no lock conflict, the coroutine instance
executes the same as a normal function call. Otherwise, if lock conflict does
exist, co-yield can be called to exit the current execution temporarily. Once the
coroutine instance yields, the thread begins to process a new request. In later, if
the thread is informed that the lock has been released, it gets back the pointer
of the coroutine instance, and invoke co-resume to resume the execution. The
informing mechanism would be left to the next section.

Figure 3(c) gives an example for executing SQL requests as coroutines. In
the example, Txn2.s4 is blocked due to conflict data access. The thread w1 calls
co-yield to exit the execution of Txn2.s4 temporarily. Then w1 begins to process
the next request Txn3.s6 in the task pool. And Txn2.s4 is resumed when another
transaction releases the lock that it is waiting on. As we can see, in the SQL-
To-Coroutine model, a thread will not be blocked by transaction conflicts.
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3.3 Discussion and Refinement

Running SQL requests as coroutine instances also introduces some inherent over-
heads, which come from two sources: coroutine initialization and switching.

Initialization. co-init allocates about 1M bytes for a coroutine instance to save
its execution context. If it is always called for each request, lots of CPU time
are wasted on memory allocation and deallocation. A simple refinement is to
build a resource pool on each thread. To process a request, a thread tries to
reuse a coroutine instance in its pool. If the pool is empty, co-init is called to
create a new instance. After a request is finished, its coroutine instance is put
back into the pool. Another concern is whether using coroutines would consume
lots of memory resource. Obviously, each thread requires an instance for its in-
processing request. In addition, an instance is also required for each blocked
transaction that is waiting for a lock. Actually, the number of working threads
and blocked requests would not get very big. For example, give a system with
30 CPU cores and 70 transactions waiting for locks, it takes about 100M bytes
memory space, which is relatively small as an in-memory database is deployed
with more than hundreds of gigabytes memory.

Coroutine Switching. As discussed in the above, a coroutine instance gives up
the thread by using co-yield , which saves its stack into the preallocated memory
region. The thread uses co-resume to copy its stack back and continues its exe-
cution. A problem is whether such memory copying takes lots of CPU time. On
a Intel E5-2620 CPU, a micro-benchmark showed that it usually takes about
less than 50 ns to finish one switch. In a comparison, it takes about 10µs to
done one context switch. And it takes about several tens of microseconds (µs)
to handle a point-get request in a prototype main memory system. Hence, the
overhead introduced by coroutine switching is negligible. In addition, switching
only happens when a transaction is blocked. If all requests are processed without
any conflicts, coroutine switching never happens.

The section discusses how to handle different kinds of blocking efficiently
with a SQL-To-Coroutine execution engine. Based on that, we are required to
discuss how to schedule concurrent transactions correctly and efficiently.

4 Lock Manager

This section proposes a lightweight, latch-free lock manager, named as iLock.
It produces little CPU overhead in both identifying and resolving transaction
conflicts. In the following, we firstly present related data structures, and then
design its acquisition/releasing algorithms, as well as the deadlock avoidance
mechanism. In the last, the correctness of iLock is analyzed.

A record stores the following information in its header:

– lock-state, a 64-bit variable, representing the state of the lock;
– write-waiter , a 64-bit variable, encoding who waits for writing the record;
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– read-waiter , a 64-bit variable, encoding who waits for reading the record;

The first bit of lock-state tells the lock mode of the record, using 1 for write-
mode and 0 for read-mode. In write mode, the last 63 bits of lock-state stores
the transaction identifier of the owner. In read mode, the rest bits tells how
many transactions have acquired the read lock. Clearly, the record is not locked
if lock-state = 0, i.e. all bits of the lock state are zeros.

The i-th bit of write-waiter represents whether any transaction in the i-
th working thread is trying to acquire the write lock of the record. Similarly,
read-waiter tells which thread is waiting for the read lock. Concretely, write-
waiter uses N bits if there are N working threads. Here N is determined by
the number of CPU cores used by transaction processing. Since we leverage the
SQL-To-Coroutine model and modern servers are usually equipped with no more
than 64 cores, 64 bits are enough for most cases. Besides there is no limitation
to use a large-sized write-waiter to work with an advanced platform equipped
with more CPU cores.

A transaction has the following fields in iLock.

– tid , a unique identifier for a transaction;
– co-pointer , the pointer to the current coroutine instance.

Here, tid is allocated as a 63-bit positive integer. Note that 0 is not used as
tid because the number is used by a dummy write lock, which will be explained
in the later. co-pointer is only used when a transaction has its SQL execution
blocked due to lock conflicting.

A working thread maintains some thread-local structures:

– thd , a unique index for a thread, numbered starting from 0.
– wait-map, a hash map, organizing all suspended transactions.
– lock-queue buffers all lock entries received from ended transactions.

The wait-map is a hash map permitting multiple entries with the same key. Its
key field is a locking request, and the value field is a pointer of a transaction.
When a transaction tx has its lock request li blocked due to conflict, it adds an
entry <li, tx> into the wait-map.

The lock-queue buffers all lock entries received from finished transactions.
When a transaction releases its lock, it checks the write-waiter and read-waiter
fields of the record, and sends the lock to a proper thread by adding a lock entry
into the lock-queue. Later, a thread uses the received lock entry to wake up a
proper transaction in the wait-map.

4.1 Lock Acquisition

Here we discuss how to identify conflict locking requests and to resolve conflicts
by suspending a transaction. In the following, we consider the scenario where a
transaction tx is trying to acquire the write/read lock of the record r.
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Input: Record r, Transaction tx
1 nstate ← tx.tid | mask ;
2 if 0 �= atomic-cas(r.lock-state, 0, nstate) then
3 changed ← atomic-set(r.write-waiter , thd) ;
4 atomic-synchronize();
5 if 0 = atomic-cas(r.lock-state, 0, tx.tid) then
6 if changed then
7 atomic-unset(r.write-waiter , thd) ;
8 return locked ;
9 tx.co-pointer ← co-self() ;

10 wait-map.put(r.rid, write-mode, tx) ;
11 co-yield(tx.co-pointer) ;
12 if timed-out(tx) then
13 return aborted ;
14 atomic-cas(r.lock-state, mask , nstate) ;
15 return locked ;

Fig. 6. acquire-write-lock

Input: Record r, Transaction tx
1 do
2 ostate ← r.lock-state;
3 if write-locked(ostate) then
4 changed ← atomic-set(r.read-waiter , thd) ;
5 atomic-synchronize();
6 if write-locked(r.lock-state) then
7 tx.co-pointer ← co-self() ;
8 wait-map.put(r.rid, read-mode, tx) ;
9 co-yield(tx.co-pointer) ;

10 if timed-out(tx) then
11 return aborted ;
12 else if changed then
13 atomic-unset(r.read-waiter , thd) ;
14 ostate ← r.lock-state;
15 nstate ← ostate + 1 ;
16 while ostate �= atomic-cas(r.lock-state, ostate, nstate);
17 return locked ;

Fig. 7. acquire-read-lock

Identifying Conflicts. To lock a record r down, (1) tx checks whether its lock
request is compatible with the current lock state r.lock-state. If the result is yes,
(2) tx updates the field with a new state (the field is updated in different ways
for the read lock and the write lock as introduced later). The two steps are done
atomically using the compare-and-swap instruction (atomic-cas in figures), which
is a hardware-assisted synchronization primitive (See Wikipedia).

Figure 6 gives the pseudo-code for the write lock acquisition. Here, Line 1

creates a new lock state, whose first bit is set as 1 and the rest bits are set as tid
of tx, representing a write lock held by tx. Then Line 2 checks whether r.lock-state
= 0, i.e. r is not locked by anyone, and try to atomically update r.lock-state with
the new lock state calculated in Line 1. Figure 7 gives the pseudo-code for the
read lock acquisition. (1) Line 2–3 fetches a snapshot of r.lock-state and checks
whether the record is locked in write mode (i.e. the first bit of r.lock-state is 1).
(2) If the result is yes, a conflict is identified, otherwise, Line 15 creates a new
lock state by increasing the number of readers by 1. (3) Line 16 checks that the
latest state r.lock-state is equal with the snapshot, and update r.lock-state with
the new value computed in Line 15. (4) Line 16 may find that r.lock-state has
been changed as other threads can modify the variable in parallel. In this case,
the above steps have to be done again.

Resolving Conflicts. If r.lock-state is in an incompatible state, tx is suspended
with the following steps. (1) Turn the wait bit on. First of all, the thd -th bit
of r.write-waiter (or r.read-waiter) is turned on. It is used to inform the lock
holder that a transaction in the thd -th thread is waiting for the lock. Then a
memory fence (i.e. atomic-synchronize in figures) is added to ensure the wait bit
is modified before the following steps are executed. (2) Try locking again. tx must
check the locking state again in case that the record is just unlocked after the
previous attempt. If tx can secure the lock, it continues its processing; otherwise,
tx will still be suspended. (3) Suspend the execution. tx saves the pointer of its
coroutine instance into r.co-pointer , and then add an entry into the wait-map,
which maps the blocked lock request to tx itself. After that, co-yield is invoked
to exit its execution temporarily.



Interactive Transaction Processing for In-Memory Database System 237

Input: Record r, Transaction tx
1 ostate ← r.lock-state;
2 nstate ← 0 ;
3 if r.write-waiter = 0 ∨ r.read-waiter = 0 then
4 nstate ← mask ;
5 atomic-cas(r.lock-state, ostate, nstate) ;
6 atomic-synchronize();
7 if nstate = 0 then
8 if r.write-waiter = 0 ∨ r.read-waiter = 0 then
9 if 0 = atomic-cas(r.lock-state, 0, mask) then

10 nstate ← mask ;
11 atomic-synchronize();

12 if nstate = mask then
13 if r.read-waiter = 0 then
14 send-read-lock(r) ;
15 else if r.write-waiter = 0 then
16 send-write-lock(r) ;

Fig. 8. release-write-lock

Input: Record r, Transaction tx
1 do
2 ostate ← r.lock-state;
3 nstate ← ostate − 1 ;
4 if nstate = 0 then
5 if r.write-waiter = 0 ∨ r.read-waiter = 0 then
6 nstate = mask ;

7 while ostate = atomic-cas(r.lock-state, ostate, nstate);
8 atomic-synchronize();
9 if nstate = 0 then

10 if r.write-waiter = 0 ∨ r.read-waiter = 0 then
11 if 0 = atomic-cas(r.lock-state, 0, mask) then
12 nstate ← mask ;
13 atomic-synchronize();

14 if nstate = mask then
15 if r.write-waiter = 0 then
16 send-write-lock(r) ;
17 else if r.read-waiter = 0 then
18 send-read-lock(r) ;

Fig. 9. release-read-lock

In Fig. 6, Line 3–11 are detail steps used to suspend a write lock request. Line
3–4 turn the thd -th bit of write-waiter on. Line 5–6 try locking again. If Line 3

does flip the wait bit, Line 7 turns that off if the lock is acquired successfully. It
is because no transaction in the thread is waiting for the lock once tx is granted.
If the second lock attempt is failed, Line 9–11 suspend the execution of tx. In
Fig. 7, Line 4–14 suspends a read lock request. Line 4–5 turn the thd -th bit of
read-waiter on. Line 6 checks whether the read lock is acquirable again. If not,
Line 7–9 suspend the execution of tx. Otherwise, Line 12–13 clear the wait bit if
it is flipped in the previous. And Line 14–17 try locking again. Here, a write lock
request may be starved when new readers are always allowed to acquire the read
lock. To fix the issue, we can refine the algorithm in Fig. 7 by blocking any new
reader if there is a writer waiting for the lock (i.e. r.write-waiter �= 0).

4.2 Lock Releasing

Releasing a lock on a record is decomposed into two stages. The first stage
reverts the lock-state field of the record. The second stage informs some partic-
ular threads to wake up their blocked transactions if no one is holding the lock
any more. In the following, we consider the scenario where a transaction tx is
releasing its lock on a record r.

Reverting Lock State. If multiple transactions are holding read locks on r, tx
simply decreases r.lock-state by 1. Otherwise, tx becomes the last lock holder.
In this case, we need check whether any transaction is waiting for accessing r.
(A.) Have a waiter. If there is a blocked request, r.lock-state is reverted to a
special state mask = 0x80000000, whose first bit is 1 and the rest are zeros.
It can be viewed as a dummy write lock held by a dummy transaction with
tid = 0. Recall that tid = 0 is never used by real transactions. It prevents ongoing
transactions from stealing the lock, and ensure the lock would be granted to a
blocked transaction. (B1.) Have no waiter. If no one is blocked, the record is
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Input: Record r
1 state ← r.write-waiter ;
2 for i ← 1 ; i ≤ thd-num; ++i do
3 j ← (i + thd) mod thd-num;
4 if 0 = (state & (1 <<j)) then
5 lock-queue[j].push(rid , write-mode) ;
6 break ;

Fig. 10. send-write-lock

Input: Record r
1 state ← r.read-waiter ;
2 reader-number ← popcount(state) ;
3 atomic-cas(r.lock-state, mask , read-number) ;
4 atomic-synchronize();
5 for i ← 0 ; i < thd-num; ++i do
6 if 0 = (state & (1 <<i)) then
7 lock-queue[i].push(rid , read-mode) ;

Fig. 11. send-read-lock

truly unlocked by set r.lock-state ← 0. (B2.) Have a new waiter. If the record
is unlocked, r.write-waiter and r.read-waiter should be checked again since a
transaction ty may be just suspended after tx does the first check. If a new
waiter is found, we try to acquire the dummy write lock again and resume ty.

Figures 8 and 9 give procedures used to release write locks and read ones
respectively. In Fig. 8, Line 1–6 reverts r.lock-state to mask or 0 based on whether
a waiter exists or not. Line 7–11 check waiter information again, and try to acquire
the dummy write lock if a new waiter is found. In Fig. 9, Line 1–8 reverts the
lock state based on the waiter information, while Line 9–13 tries to acquire the
dummy write lock if a new waiter arrives. In both algorithms, a memory fence
is added after modifying the lock state in order to avoid the execution order is
changed by the compiler or CPU.

Resuming Transactions. If r is protected by a dummy write lock, we try to wake
up blocked transactions (by Line 12–16 in Fig. 8 and by Line 14–18 in Fig. 9).

Figure 10 is used to wake up a suspended write lock request. Here, (1) Sending
lock entry. tx sends a write lock entry to a thread who is waiting. Line 2–4 start
from the (thd + 1)-th bit, and tries to find a non-zero bit in write-waiter . Let
j-th bit be the non-zero bit. Then, Line 5 pushes a write lock entry into the
lock-queue of the j-th thread. (2) Resuming transaction. When j-th thread pops
the lock entry from its lock-queue, it gets a transaction ty from wait-map, who
is waiting for the lock entry. Then co-resume is invoked on ty.co-pointer , and ty
resumes its execution from Line 12 in Fig. 6. This moment, ty must succeed in
acquiring the lock in Line 14. (3) Clearing wait bit. the j-th thread calls atomic-
unset(r.write-waiter, j) to clear its wait bit, if no transaction is waiting for the
write lock on the j-thread any more.

Figure 11 is used to wake up read lock requests, which is a little different
from the write one. Before sending read lock entries to any thread, Line 2 cal-
culates the number of threads those require the read lock1. Line 3–4 acquires
a dummy read lock for each of them. It is used to ensure that r is always
locked in read mode before each thread has waked all its blocked transactions
up. The dummy read lock is released when a thread has finished resuming trans-
actions. After that, Line 5–7 distribute read lock entries to lock-queue. Then
each thread resumes all transactions blocked by the read lock. And a transac-

1 popcount is an efficient algorithm for calculating the hamming weight of a bit array.
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Fig. 12. Critical path of acquiring and
releasing a lock

Fig. 13. All possible schedules

tion resumes its execution from Line 10 in Fig. 7. In the last, each thread calls
atomic-unset(r.read-waiter, thd) to clear its wait bit and release the dummy read
lock.

4.3 Deadlock

Deadlock happens when multiple transactions are waiting for the others to
release a lock. Here we adopt a time-out strategy to prevent deadlocks from
happening. It allows each transaction to wait for a lock within a limited time.
When time runs out, a transaction is aborted. It introduces little maintaining
overhead and does not generate many unnecessary aborts. The drawback is that
a deadlock can not be identified and solved very fast. We consider that a well-
designed application would not generate many deadlocks. Hence, the time-out
strategy is chosen by iLock to handle deadlocks. In implementation, each thread
periodically checks whether any local blocked transaction is timed-out. A trans-
action is resumed if it is timed-out. In Figs. 6 and 7, a timed-out transaction
aborts itself after being resumed. There are also some other solutions, such as
using a wait-graph or a wait-die policy [2]. But, maintaining the wait-graph intro-
duces lots of CPU overhead. It is worthwhile when deadlock happen frequently.
On the other hand, the wait-die policy would result in many unnecessary aborts.

4.4 Correctness

The security property requires that no conflict lock requests will be granted at
the same time. Detailed speaking, two requests are considered to be conflict if
they are for the same record and one is a write lock request. In Fig. 6, a write
lock is acquirable only when lock-state = 0 (Line 1) or lock-state = mask (Line
14). If r.lock-state = 0, the record is not locked by any others. If r.lock-state =
mask , the record is just unlocked. In both cases, no one is holding the lock of
the record. Hence, iLock does not break the security property.

Another correctness concern is that concurrent acquisition and releasing
operations execute correctly. Figure 12 illustrates the scenario where a transac-
tion tx is about to release its write lock on r. Concurrently, transaction ty tries
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to acquire the write lock. We must guarantee that the end of tx will wake up
ty. Figure 13 gives all schedules resulting from the interleaving of the acquisition
and releasing operations.

– Case 1, tx releases its lock (R5) before ty does its first locking attempt (A2),
then ty must succeed in lock acquisition.

– Case 2, tx releases its lock (R5) between the two locking attempts of ty
(A2, A5). Here, either ty directly acquire the lock in the second attempt;
or tx finds that ty is waiting, acquires the dummy write lock and wake up ty
(R8–9).

– Case 3, the lock is released (R5) after the second locking attempt from ty
(A5), tx must find that ty is in-waiting, and then acquire the dummy write
lock for ty.
In all, ty is always able to acquire the write lock after tx releases that. It is
similar to verify the correctness of read lock acquisition/releasing.

5 Experiment

We implement an in-memory database prototype with 12,850 lines of C++ codes
to verify the efficiency of our method. It is equipped with an in-memory B+-
Tree, a query engine and a concurrency control component. All experiments are
conducted on a cluster with 5 servers. Each has two 2.00GHz 6-Core E5-2620
processors, 192GB DRAM, connected by a 10GB switch. Four servers are used
to simulate clients, and one is used to deploy the database.

Three methods are compared in the following experiments.

– iLock uses the SQL-To-Coroutine model and the new lock manager proposed.
– Row-Locking uses the SQL-To-Thread model and the simplified lock manager

(row locking). If a lock conflict happens, the transaction gets its SQL request
aborted and retried. The row locking mechanism is proposed and used by
VLL [11] and pessimistic transactions in Hekaton [1].

– Lock-Table uses the Transaction-To-Thread model and a centralized lock
table [5]. Such design is adopted by many disk-based database systems.

Each method uses a time-out mechanism to avoid deadlocks. The TPC-C and
a micro benchmark are used to evaluate the performance of different methods. For
the TPC-C, we ran a standard transaction mix. On the other hand, the micro
benchmark has a table with two columns: key, 64-bit integer and value, 64-bit
integer. A transaction would read N records and write M records (N +M SQLs
in total). Records are selected with a Zipfian distribution. It is used to generate
workloads with varied read/write mixes and access distributions.

5.1 Varying Number of Clients

Figure 14 uses TPC-C to evaluate performances by varying the number of clients.
200 warehouses are populated in the database. Overall, iLock has the best per-
formance. Its performance increases with more clients are used, and reaches the
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Fig. 14. TPC-C: varying clients
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Fig. 15. TPC-C: varying warehouses

peak throughput (about 23k tps) when 300 clients are used. The performance sta-
bilizes because the server has reached the maximal CPU usage. The performance
of Row-Locking increases when a few clients are used. Its throughput is almost
the same as that of iLock , because both methods have little CPU overhead if
conflicts happen rarely. With the number of clients increased, the performance
of Row-Locking sees a rapid decrease. It is because access conflicts happen more
frequently now, and Row-Locking would waste a plenty of CPU time on retrying
many failed SQL requests. In contrast, iLock is much more efficient. It would
suspend a transaction and resume that until the lock is available. In the last,
The performance of Lock-Table increases slowly. Its peak throughput is about
10k tps. The poor performance is mainly because much CPU time is consumed
by context switching and accessing the heavy-weighted lock table. As a result,
Lock-Table exhausts the CPU easily.

5.2 Varying Number of Warehouses

Next we increase the number of warehouses populated to decrease the work-
load contention. Figure 15 shows the results. 300 clients are running in default.
Overall, iLock has the best performance. Its performance increases at the begin-
ning, because when more warehouses are populated, fewer transactions would
be blocked by lock conflicts. After the number of warehouses reaches 100, the
performance of iLock converges as the CPU is fully utilized. The throughput of
Row-Locking increases almost linearly against the number of warehouses. Under
a small number of warehouses, Row-Locking is worse than iLock because the
workload contains many conflicts and the former is less efficient than the latter
in handling them. Using more warehouses reduces the probability of lock con-
flicts, and also reduces the total number of SQL requests retried by Row-Locking .
As a result, CPU time is saved for processing real work. When 300 warehouses
are used, Row-Locking reaches its peak throughput, which is similar to that of
iLock . In the last, Lock-Table has a stable but low performance under each case.
Decreasing the workload contention has little effect because the performance is
always dominated by CPU usage.
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Fig. 16. Micro: 10 reads
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Fig. 17. Micro: 5 reads+ 5 writes

5.3 Varying Workload Characteristics

Figures 16 and 17 give micro benchmark performances using different mixes of
read/write requests. The Zipfian distribution uses θ = 0.6 to generate requests.
Figure 16 uses a read-only workload and each transaction issues 10 read requests.
Figure 17 uses a write-intensive workload and each transaction issues 5 read
requests and 5 write ones. (1) Under the read-only workload, iLock and Row-
Locking almost have the same performance. It is because there is no conflict in
the workload. And both are very efficient in scheduling a conflict-free workload.
Their peak throughputs reach 45k tps when the CPU is fully utilized. On the
other hand, the throughput of Lock-Table is always about 15k tps under each
case, which is only one-third the performance of iLock . Its poor performance
results from spending much valuable CPU time on context switches and main-
taining the lock table. (2) Under the write-intensive workload, when 500 clients
are used, the performance of iLock is about 5.3x that of Row-Locking , and 1.6x
that of Lock-Table. By increasing the number of clients, its performance gets
stabilized because more transactions are blocked by lock conflicts. The perfor-
mance of Row-Locking increases at the beginning and get decreased as adding
clients results in more lock conflicts. Lock-Table shows the similar performance
in both the read-only and the write-intensive workloads. The performance gap
between iLock and Lock-Table is smaller than that in Fig. 16. It is because the
transaction conflict is the dominating factor for the performance now.

Figure 18 gives throughputs by varying the skewness θ of the Zipfian distri-
bution. Here, we simulate the same write-intensive workload used by Fig. 17.
And 200 clients are running concurrently. Figure 19 displays the normalized per-
formances of different methods against that of iLock . As we can see, through-
puts of all methods are decreasing when the access distribution becomes more
skewed. It is because some records become “hot” and being frequently accessed.
Transactions are more likely blocked when accessing hot records. When θ < 0.6,
there is little contention in the workload, and performances of different methods
are limited by the CPU usage. When θ > 0.6, workload contention becomes
non-negligible. Here, the throughput of Row-Locking drops faster than that of
iLock . It is because iLock is more efficient in scheduling lock conflicts while
Row-Locking wastes lots of CPU time on retrying failed lock requests. When
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Fig. 20. CPU time breakdown

θ ≥ 0.8, iLock and Lock-Table show very similar performance. At the moment,
throughputs are largely limited by the workload contention. Figure 19 shows the
performance gaps among different methods clearly. Given a workload containing
low contention, a lightweight lock manager gains the better performance. Given
a workload containing high contention, the lock manager, which is more efficient
in resolving conflicts, works better. Overall, iLock shows nice performance under
different kinds of workloads.

5.4 Breaking CPU Time down

In Fig. 20, we use VTune, a CPU profiling tool, to track where a working thread
has its time gone. Here, we run the TPC-C workload with 200 warehouses.
The number of clients is varied to change transaction conflicts in the workload.
In Fig. 20(a), iLock spends little time on lock management (lock-mgr), context
switching (thd-ctx) or coroutine switching (co-ctx). It means that iLock handles
both network-related and conflict-related blocking efficiently. The network I/O
(net-I/O) uses a considerable percent of CPU time. It mainly includes serializing
results into a packet and informing I/O threads to respond clients. Most time
(about 70%) are spent on real work (e.g. accessing the index, writing records).
Figure 20(b) shows the CPU time used by Row-Locking . When 100 clients are
running concurrently, the workload contains little contention, and Row-Locking
spends most time on useful work. By increasing the number of clients, there
are more conflicts in the workload. Row-Locking wastes a large percent of time
(41.3%–53.2%) on locking (e.g. retrying failed lock requests, checking the lock
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condition). Hence, it works poorly when the workload exhibits high contention.
Figure 20(c) breaks down the CPU time used by Lock-Table. Under different
configurations, the most time-consuming part is always context switching (41%–
58%) because each request could result in one context switch. On the other hand,
lock management also uses considerable time (13%–16%). Its poor performance
is due to both context switches and accessing the lock table.

6 Relate Work

Interactive transaction processing is rarely studied under in-memory database
system. Existing disk-based systems usually process transactions in interactive
way, while in-memory systems are mostly optimized for one-shot transactions.
As our best knowledge, the work is a pioneering study on the problem.

As discussed in the above, disk-based database systems usually adopts the
Transaction-To-Thread model. But the method could generate lots of CPU over-
head. Pandis et al. [9] proposes the data-oriented execution model, where each
thread services a disjoint part of database partition. It helps reduce contention
because less resources are shared among threads. Transactions should be decom-
posed into small actions in advance based on the partition, so that each action
runs on the proper thread. However, it does not work for interactive transaction
since the pre-process is unfeasible.

Disk-based database systems schedule transactions with a centralized lock
manager. It is proven to generate much contention on multi-core hardwares. Jung
et al. [5] proposes a multi-core scalable lock manager by reducing latch usages.
However, acquiring/releasing locks still consumes considerable CPU instructions.
Johnson et al. [4] designs a lock inheritance mechanism to reduce the number of
lock table access. A transaction can inherit locks directly from an ending one.
The mechanism does not work if two transactions have no locks in common. The
iLock we proposed here is a latch-free and lightweight structure. It has multi-core
scalability and does not generate too much maintaining overhead.

In-memory databases are mostly designed for one-shot transactions. Some
new execution models are proposed. Stonebraker [12] proposes a serial execution
model, which queues and executes transactions one-by-one. Similarly, Thomson
[13,14] proposes the deterministic transaction execution. Concurrency control
is done before the real transaction execution. They take full advantage of CPU
resources by eliminating all blocking during transaction processing. But, they
are limited to handle only one-shot requests.

Many concurrency control schemas are designed for one-shot transactions
processing. Ren et al. [11] and Larson et al. [8] design lightweight lock man-
agers, which put the lock information in the header of a record. Tu et al. [15]
improves the OCC by eliminating its centralized contention point. Wu et al. [18]
adds a healing phase for OCC, which helps reduce operations retried when a
transaction has its validation failed. Wang et al. [17] chops a transaction into
multiple pieces in an offline phase, and isolates transactions in the degree of
pieces. Efficiencies of these methods rely on the one-shot property. Some should
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analyze transaction logics in advance. And others would like transactions to be
short and do not conflict with each other frequently. As a result, they are not
suitable for scheduling interactive transactions.

7 Conclusion

This work studies the interactive transaction processing for the in-memory
database system. We propose a new execution model and a new lock manager
to efficiently process and schedule interactive transactions. Experiments on well-
known benchmarks show our method achieves good performance in processing
interactive workloads. A future direction is to design a transaction engine for
processing the hybrid workload, containing both one-shot requests and interac-
tive ones.
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Abstract. Current in-memory DBMSs suffer from the performance bot-
tleneck when data cannot fit in memory. To solve such a problem, anti-
caching system is proposed and with proper configuration, it can achieve
better performance than state-of-the-art counterpart. However, in cur-
rent anti-caching eviction procedure, all the eviction parameters are fixed
while real workloads keep changing from time to time. Therefore, the
performance of anti-caching system can hardly stay in the best state.
We propose an adaptive eviction framework for anti-caching system
and implement four tuning techniques to automatically tune the evic-
tion parameters. In particular, we design a novel tuning technique called
window-size adaption specialized for anti-caching system and embed it
into the adaptive eviction framework. The experimental results show that
with adaptive eviction, anti-caching based database system can outper-
form the traditional prototype by 1.2x–1.8x and 1.7x–4.5x under TPC-C
benchmark and YCSB benchmark, respectively.

Keywords: In-memory database · Anti-caching · Database tuning

1 Introduction

In-memory DBMSs remove heavy components such as data buffers and
locks, thus providing higher OLTP throughput than traditional disk-oriented
DBMSs [1,24]. However, a fundamental problem of in-memory DBMSs is that
the improved performance is only achievable when database is smaller than the
amount of available physical memory. If database grows larger than main mem-
ory while executing transactions, operating system will start to page virtual
memory, and accesses to main memory will cause page faults; the performance
of in-memory DBMSs may suffer a rapid decrease. One widely adopted method
to enhance performance is to apply a main memory distributed cache, such as
Memcached [23], in front of a disk-based DBMS. Such implementations with a
two-tier model, however, come with a problem of double data buffering, causing
a serious waste of memory resources.

As a better solution, anti-caching system [4] is proposed. In an anti-caching
based in-memory database, when memory is exhausted, the DBMS gathers the
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 247–263, 2018.
https://doi.org/10.1007/978-3-319-91458-9_15
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“coldest” tuples and writes them to disk with minimal translation from their
main memory format, thereby freeing up space for more recently accessed tuples.
As such, the “hotter” data resides in main memory, while the colder data resides
on disk in the anti-cache portion. Unlike a traditional DBMS architecture, each
tuple is in either memory or a disk block, but never in both places at the same
moment. Anti-caching system is not bound with any specified database systems,
it is a design architecture which can be applied to any in-memory DBMSs aimed
at dealing with OLTPs [3].

However, the configuration for anti-caching system prototype is fixed. Evic-
tion parameters such as eviction size, eviction threshold and eviction check inter-
val, are all preset by DBMS using a configuration file. For different types of
workloads, an in-memory DBMS with anti-caching cannot run at its best per-
formance with these fixed eviction parameters. Furthermore, anti-caching system
with a fixed eviction configuration cannot always work at a high performance
level when transaction workloads change from time to time.

One natural method is to manually modify the anti-caching configuration
file each time a new workload comes. For example, DBMSs such as Oracle and
MySQL are equipped with tuning manuals for DBAs and users. But for perfor-
mance tuning, manual method comes with obstacles such as inflexibility, ineffi-
ciency and time consumption.

The drawbacks of both fixed anti-caching configuration and labored man-
ual tuning motivate us to develop an adaptive tuning design, which is able to
support evicting data dynamically with respect to temporary workload. Instead
of tuning components like buffer pool in traditional disk-oriented DBMSs, we
tune eviction-related parameters for anti-caching in a main memory DBMS. The
whole procedure is automatic and we name it adaptive eviction framework in
this paper.

We modify a few existing tuning techniques in order to embed them into
the adaptive eviction framework. However, it is hard for these methods to exert
their full potential because none of them is anti-caching oriented.

To overcome such a challenge, we propose a novel tuning technique called
window-adaption specialized for anti-caching system. By shrinking and extend-
ing the window size related to anti-caching eviction parameters according to
the workloads and system information, unsuitable eviction parameters will be
adaptively tuned to a more proper set.

Our contributions can be concluded as follows.

• We make an observation into the relationship between different workloads and
anti-caching parameter configurations; we find that fixed eviction parameter
configuration limits the potential of anti-caching system.

• To the best of our knowledge, we are the first to propose an adaptive eviction
framework for anti-caching based in-memory databases.

• We implement a variety of tuning methods aimed for in-memory anti-caching
system based on previous work and propose a novel tuning technique called
window-size adaption with high efficiency.
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Fig. 1. Anti-caching architecture

• We conduct extensive experiments with standard TPC-C and YCSB bench-
marks. The experimental results show that with adaptive eviction frame-
work, anti-caching based database system can outperform the previous one
by 1.2x–1.8x and 1.7x–4.5x under TPC-C benchmark and YCSB benchmark,
respectively.

The remainder of this paper is organized as follows. Section 2 introduces the
background of anti-caching system and the motivation of our proposed adaptive
eviction framework. Section 3 provides the design of adaptive eviction framework
and introduces four tuning techniques for adaptive eviction. The experimental
results are presented in Sect. 4 and we review the related work in Sect. 5. The
paper is concluded in Sect. 6.

2 Background and Motivation

2.1 Anti-caching Background

Anti-caching system aims at alleviating the pressure of in-memory DBMS while
the data grows larger than memory space with transaction processing. The basic
idea is to manage data in tuple granularity instead of page granularity. Since a
data tuple is always much smaller than a page size (usually 4 KB), tuple-grained
eviction can avoid evicting hot tuples to disk when a page includes both hot and
cold tuples but considered to be a cold page by OS.

Figure 1 shows the storage architecture of anti-caching system, which includes
four main components: Data Table, Index Table, Evicted Table and Block Table.
Among them, Data Table, Index Table and Evicted Table reside in DRAM while
Block Table is in disk.

Similar to other in-memory DBMSs, in an anti-caching based database sys-
tem, the whole database stays in the memory when transactions begin. All the
data tuples reside in Data Table. The Index Table is built by sampling the tuple
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accesses. Notice that Data Table stores data tuples in a LRU linked list for each
database table, with the top being hotter and the bottom being colder. Along
with transactions processing, both Index Table and Tuple Data may grow larger
and the DRAM space can be very limited. Therefore, an eviction decision should
be made by anti-caching system to free up memory for hot data. Once the evic-
tion check interval is reached, anti-caching system scans all the Data Tables and
decides how much data should be evicted for each table.

Anti-caching system globally tracks hot and cold data. However, the cost of
maintaining a single chain across partitions is prohibitively expensive due to the
added overhead of inter-partition communication. Instead, anti-caching main-
tains a separate LRU Chain per table that is local to a partition. Therefore, in
order to evict data, anti-caching system must determine (1) from which tables
to evict data and (2) the amount of data that should be evicted from a given
table. In its current implementation, the DBMS answers these questions by the
relative skew of accesses to tables. The amount of data accessed at each table is
monitored, and the amount of data evicted from each table is inversely propor-
tional to the amount of data accessed in the table since last eviction. Therefore,
the hotter a table is, the less data will be evicted from it.

Block Table is a disk-resident hash table that stores evicted tuples in block
format. Since Block Table stores relatively colder data, it’s less accessed than
the memory-resident Data Table. Data tuples stay in either DRAM or disk, thus
the memory space occupation and coherence maintaining overhead is efficiently
reduced. To track the tuples in Block Table, Evicted Table is designed to map
evicted tuples to block ids. When a transaction requires data not in Data Table,
the database system then looks up the Evicted Table, obtains its corresponding
block id, and finally locates the binding block address for data access.

Main memory DBMSs, like H-Store [2], owe their performance advantage
to processing algorithms which assume that data is in main memory. But any
system will slow down if a disk read must be processed in the middle of a transac-
tion. Anti-caching avoids stalling transaction execution at a partition whenever
a transaction accesses an evicted tuple by applying a pre-pass process [4].

2.2 Motivation

With proper configuration, anti-caching system can behave much better than
traditional disk-oriented DBMSs with large-than-memory database, due to its
fine-grained eviction data control. However, the eviction parameters of anti-
caching system prototype is fixed, thus unsuitable for multiple workloads or
changing workload. The key parameters of anti-caching system fall on three:
eviction threshold, eviction size and eviction check interval. Their functions are:
deciding when to evict, how much to evict and how often should the system check
if eviction is needed, respectively. In this section we give a few observations of the
fixed configuration performance for anti-caching system and then analyze some
typical cases to give insight about the drawbacks of fixed eviction parameter
configuration.
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Fig. 2. Performance range with different eviction parameter groups

Threshold=0.1

0

1 Memory usage

Check
interval

Eviction
size

Index usage

Time

(a) low threshold setup

Threshold=0.9

0

1 Memory usage

Check
interval

Index usage

Time

(b) high threshold setup

Threshold=0.5

0

1 Memory usage

Check
interval

Eviction
size

Index usage Workload change!!!

Time

(c) fixed threshold setup

Fig. 3. Anti-caching with different types of threshold setup

Observations: We conduct a variety of experiments using the same type of
YCSB benchmark to observe the limitations of fixed eviction configuration.
Figure 2 shows that under different anti-caching configuration for three evic-
tion parameters listed above, the performance of anti-caching system distin-
guishes from each other a lot. We can see that the best versus the worst ratio
on transaction performance is 8.4x, 6.2x for each. We notice that the best per-
formance group in Fig. 2(a) is <Check interval = 100 ms, Eviction size = 20 MB,
Threshold = 0.8>. However, for other groups with Check interval = 100 ms, Evic-
tion size = 20 MB, their performance seems to be very poor. It might be con-
sidered that the threshold makes sense. The <Check interval = 10000 ms, Evic-
tion size = 200 MB, Threshold = 0.8> group, however, just gives the extreme
reverse result. Therefore, it’s hard to find the optimized eviction parameter
group pattern for a certain workload. The deeper reason is that the performance
of anti-caching system is not bound with a certain parameter group, but tightly
related to workload state (e.g., skew, read/write ratio) and system state (e.g.,
memory usage). In conclusion, we argue that fixed eviction parameter
configuration is improper for anti-caching system.

Case Analysis: In this part we offer some cases to further explain why fixed
eviction parameter configuration is improper for anti-caching system. To make
the explanation simpler, we assume that the index size is stable (even though it
can grow larger and larger under real workloads).

Figure 3 shows the case how different types of eviction threshold configura-
tion can affect the anti-caching processing. Figure 3(a) illustrates that when low
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Fig. 4. Anti-caching with different types of eviction size and interval setup

threshold is set up by a DBA or system maintainer, the memory utilization rate
would be very low. Even if the user workload is slow and steady without too
much data expansion in memory, eviction process will still be invoked frequently,
naturally deriving the conclusion that such a fixed low-threshold configuration
is not optimized. Figure 3(b) shows the case when an improper high threshold is
set up. It might be considered that high threshold can better utilize the available
memory. However, once the total database memory is not enough, page swap will
happen automatically. Since page swap is transparent to user transactions, when
the anti-caching engine checks whether all the data tuples needed for a specific
transaction, it may consider those tuples in pages which are swapped before still
reside in memory. However, such accesses need disk I/O indeed, thus resulting in
much longer latency. If a high threshold is set up, then fewer evictions will occur
with the price of page swap during a transaction execution. We argue that such
a fixed high-threshold configuration is also not proper. Figure 3(c) shows how
a fixed threshold fails to utilize available memory when meeting with workload
changes, say, from write-heavy to read-heavy. The main difference between these
two workloads in anti-caching environment is that the latter workload results in
much fewer data appended into memory, thus only a little more memory is used
in addition. In such cases, the available memory can be abundant. However,
the anti-caching system just performs conservatively with regular evictions. We
argue that the fixed eviction threshold configuration is not optimized.

Figure 4 shows how eviction size and check interval can affect the transaction
performance. Figure 4 shows the case when fixed eviction size and check interval
are set up. For example, if a normal read-heavy workload turns into a write-heavy
workload, then the data in memory will increase very quickly. Page swap might
happen during a transaction processing and the database performance can suffer
a rapid descending. To better illustrate the inefficiency of fixed configuration for
eviction size and check interval, we compare it with the cases that either eviction
size or check interval changes along with the workload change. These two cases
are shown in Fig. 4(b) and (c), respectively. With workload-aware adjustment
for eviction size and check interval, page swap can be avoided to some extent,
thus maintaining a high transaction performance. Therefore, we argue that both
fixed eviction size and check interval are not optimized.
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Fig. 5. Adaptive eviction framework

3 Adaptive Eviction

3.1 Overview

Figure 5 presents the framework of adaptive eviction. The three important
components are Monitor, Analyzer and Adaptive Eviction Processor (AEP).
The Monitor is responsible for gathering information about transaction work-
load and system state. Workload information includes read/write times, query
numbers in a certain time period, accessed tuple numbers; system informa-
tion includes real-time transaction performance and memory usage. The raw
information collected by Monitor is conveyed to Analyzer for further com-
putation. For example, the read/write ratio of the workload is computed by
rw ratio = read number/total access number; the access skew is computed by
access skew = total access number/access tuple number. The Info Buffer of
Analyzer is used to store the historic workload and system information while
the Comparator is used to compare its current results with the history, which
implies whether there is a change of workload characteristics or system state.
The result computed by Analyzer is then transferred to AEP. AEP is the core
tuning model of adaptive eviction framework. We can implement different tun-
ing techniques in AEP to modify the eviction parameter group for anti-caching
based database systems.

Algorithm 1 further introduces the work flow of adaptive eviction frame-
work. First, necessary components go through either startup or initiation. During
transactions processing, the Monitor keep tracking the information of both sys-
tem and workload, and then transfer them to Analyzer. Once the eviction check
interval is reached, Analyzer deals with the workload/system information data
received during the check interval period. It counts the access skew, read/write
ratio and transaction rate. Then it makes a comparison of these data with cor-
responding ones computed last time to tell whether eviction parameters should
be reconfigured or not. In our current implemented version of adaptive evic-
tion framework, when either one of the following two conditions are satisfied, a
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reconfiguration action should be performed: (1) available memory space change
is over 10%; (2) workload state change is over 10% (e.g., 10% write-heavier, 10%
more skew access). The choice of our threshold 10% is based on a few exper-
imental observations, which show such a configuration outperforms than most
other ones. We expect to explore more critical knowledge about the choice of
threshold representing changes in our future work. AEP is the core component
which performs actual tuning procedure. It decides the concrete method of how
eviction parameters change. We implement four tuning techniques as AEP to
tune the eviction parameters, which are presented in next part of this section.
Notice that even if the eviction parameters have been changed, the data eviction
do not need to happen if only the memory occupation of data is smaller than
the eviction threshold.

Algorithm 1. AdaptiveAntiCaching

1 P ← default eviction parameters
2 while transaction state is ON do
3 Analyzer ← Monitor.getInfo()
4 if Monitor.timer.last() == P.check interval then
5 Analyzer.compute()
6 Analyzer.compare()
7 AEP ← Analyzer.changeInfo()
8 if AEP.shouldChangeConfig() is True then
9 AEP.tune(P)

10 if data memory > P.threshold then
11 Evict(database, P);

12 Monitor.timer.continue()

3.2 Tuning Techniques

We design our adaptive eviction framework as a pluggable platform for equipping
various tuning techniques. Four tuning methods are implemented in our study.
They are simple-rule based tuning (SRB), experiment-reflected tuning (ER),
candidate block replacement tuning (CBR) and window-size adaption tuning
(WSA). Among them, the first three refer to previous research [12–14] and WSA
is an efficient tuning technique we propose for better adapting to anti-caching
system. Next we will introduce each of the tuning technique with more details.

SRB: Simple Rule-Based. Pavlo et al. [14] introduce machine learning into
in-memory database to tune the indexes, views, storage layout and etc. We adopt
the simpler off-line machine learning version to obtain the patterns with certain
<workload info, system info, eviction parameter set> format. It is fast to make a
tuning decision and can often work better than the default configuration of anti-
caching. However, it is not accurate indeed and can suffer serious performance
degrading in a few cases.
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Table 1. Design issues for different tuning techniques

SRB ER CBR WSA

In-memory DBMS oriented Yes No No Yes

Anti-caching oriented No No No Yes

Tuning time Short Long Middle Short

Memory overhead Small Neutral Large Small

Performance improvement Low Middle Middle High

ER: Experiment-Reflected. Duan et al. [13] proposes this feedback-driven
tuning method based on adaptive sampling. Adaptive sampling analyzes the
samples collected so far to understand how the surface looks like (approximately),
and where the good settings are likely to be. Based on this analysis, more exper-
iments are done to collect new samples that add maximum utility to the current
samples.Although this technique is able to be quite adjacent to the optimized
eviction parameter values for single-type workload, it is time-consuming and
suffer from serious performance bottleneck under changing workload.

CBR: Candidate Block Replacement. Storm et al. [12] describes such a self-
tuning approach based on cost-benefit analysis. This method previously attempts
to solve the problem of developing a database-wide, memory-tuning algorithm by
considering each of the memory consumers such as compiled cache-pool, buffer-
pool, sort-buffer, etc., wherein each has a different usage. It accumulates the cost
savings in processing time for each component with which a database process
is interacting with the memory subcomponent. This technique is also called
shared memory management technique (SMMT) and has been incorporated in
IBM’s DB2. It behaves in a block-grained memory replacement, thus losing the
flexibility of tuple-grained data control.

WSA: Window-Size Adaption. The idea of window-size adaption comes from
the TCP flow control mechanism in network communication. Figure 6 shows the
implementation of WSA. The aim of WSA is to balance the trade-off between
utilizing memory space and avoiding page swap. If more data can reside in the
memory, access to disk will become less, thus promoting the overall transaction
performance and decreasing the average delay. However, if the system greedily
holds too much data tuples in DRAM, the sum of space used by indexes, data
tuples, buffers and evicted tables may exceed the available memory space, thus
causing heavy OS page swap. To explore the full potential of anti-caching, we
design two phases for WSA. One is Relaxation Phase, during which transaction
burden is not heavy and memory space is sufficient, anti-caching system tries
to hold more data tuples in the memory and reduce the tuning overhead (i.e.,
decrease eviction size, increase eviction threshold and check interval); the increas-
ing/decreasing ratio is chosen to be 0.1 in our current implementation version.
The other is Shrinking Phase, where transaction burden is detected to be heavy
or memory resource is inadequate, anti-caching system makes a radical change
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Fig. 6. Window-size adaption

for its eviction parameters (i.e., double eviction size, halve eviction threshold
and check interval). Notice that for most workloads the Relaxation Phase can
improve transaction behavior with optimizing the eviction parameters gradually
and this process is slow and steady. As for Shrinking Phase, it changes rapidly to
avoid the danger of OS page swap by sacrificing the memory usage and adding
more frequent checking overhead. However, compared to access tuples in the
method of OS page swap, it is more reasonable to evict data in advance to save
memory space. This is because anti-caching itself allow asynchronously fetching
disk-resident tuples while executing next transactions which only concern data
in memory. By taking advantage of this intrinsic feature of anti-caching system,
WSA becomes a well-suited tuning method in our study.

Table 1 makes a conclusion of four tuning techniques used in our adaptive
eviction framework. Compared the other three tuning techniques, WSA is anti-
caching oriented, thus it can obtain considerable performance improvement with
small overhead and short tuning time. SRB is also a fast-tuning technique
with small memory occupation. However, it is unaware of the dynamic work-
load/system changing, which limits its ability. As for ER and CBR, they are
previously designed for disk-oriented DBMSs to optimize buffer resources, thus
cannot fully exert their potential for anti-caching based database systems.

4 Experiments

We implement our adaptive eviction framework in H-Store and compare its per-
formance against traditional anti-caching system. Four kinds of adaptive eviction
techniques introduced in Sect. 3.2 are tested in our experiments. We first describe
the two benchmarks and the DBMS configurations used in our analysis.

4.1 Benchmarks

TPC-C: This benchmark is the current industry standard for evaluating the
performance of OLTP systems. It consists of nine tables and five procedures
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that simulate a warehouse-centric order processing application. Only two of these
procedures modify or insert tuples in the database, but they make up 88% of the
benchmark’s workload. For our experiments, we use a 10 GB TPC-C database
containing 100 warehouses and 100,000 items. For this benchmark, we set the
available memory to the system to 12 GB. As the benchmark progresses and more
orders accumulate, the data size will continue to grow, eventually exhausting
available memory, at which point the anti-caching system will begin evicting
cold data from the data tables to disk.

YCSB: The Yahoo! Cloud Serving Benchmark is a collection of workloads
that are representative of large-scale services created by Internet-based com-
panies. For all of the YCSB experiments in this paper, we use a 20 GB YCSB
database containing a single table with 20 million records. Each YCSB tuple
has 10 columns, each with 100 bytes of randomly generated string data. The
workload consists of two types of transactions; one that reads a single record
and one that updates a single record. We use the write-heavy transaction work-
load mixtures (i.e., 50% reads/50% updates). We also vary the amount of skew
in workloads to control how often a tuple is accessed by transactions. In our
experiments, we use a Zipfian skew with values of s between 0.5 and 1.5.

4.2 System Setup

We deploy latest H-Store with our adaptive eviction framework on a single node
with a dual socket Intel Xeon E5-2620 CPU (12 cores per socket, 15M Cache,
2.00 GHz) processor running 64-bit Ubuntu Linux 14.04. All transactions are
executed with a serializable isolation level. The benchmark clients in each exper-
iment are deployed on a separate node in the same cluster. In each trial except
one that tests the connection between performance change and running time,
H-Store is allowed to “warm-up” for two minutes. During the warm-up phase,
transactions are executed as normal but throughput is not recorded in the final
benchmark results. For H-Store, cold data is evicted to the anti-cache and hot
data is brought into memory. After the warm-up, each benchmark is run for a
duration of ten minutes, during which average throughput is recorded. The final
throughput is the number of transactions completed in a trial run divided by the
total time (excluding the warm-up period). Each benchmark is run five times
and the throughputs from these runs are averaged for a final result. To prop-
erly control the data size for experimental presentation, we write extra codes
for benchmark testing. Once the goal (e.g., 2x memory size) is achieved for one
experiment, new data will not be generated throughout this experiment. For each
trial we test the performance of six database configurations: one is pure DBMS
without anti-caching system (i.e., No AC), another is anti-caching system with-
out eviction parameter configuration as baseline (i.e., Default), the other four are
anti-caching systems equipped with our proposed adaptive eviction framework,
which includes four different tuning techniques (i.e., SRB, ER, CBR, WSA). We
don’t perform manually-tuned experiments because such a method fails to access
the optimal performance, due to the random changing patterns and slow human
reactions to the OLTP workloads.
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Fig. 7. Adaptive eviction performance under TPC-C benchmark

4.3 Results and Analysis

We now discuss the results of executing two benchmarks with our adaptive
eviction framework across different size configurations and workload skews.

TPC-C: The results for running the TPC-C benchmark are shown in Fig. 7.
We first examine the performance of different tuning methods with the change
of data size, whose result is depicted in Fig. 7(a). It can be simply observed
that with data size being larger and larger, the performance of DBMS degrades
again and again. This is because more data tuples are evicted to disk thus
more disk I/Os should be taken. When the data size can just fit into mem-
ory (data/memory = 1), DBMS with no anti-caching behaves the best because
the overhead of eviction process is removed. However, when data size become
larger, the performance of DBMS without anti-caching decrease rapidly. It can
be concluded that using tuning methods with our adaptive eviction framework
can obtain higher average throughputs than anti-caching system with default
eviction parameter configuration. Among the four tuning techniques, window-
size adaption is the best and it beats default anti-caching system in transaction
throughput with 21%, 52% and 118% under 2x, 4x and 8x memory data size,
respectively. Compared with other tuning techniques, WSA wins 43% to 75%
when the data size is 8x memory. WSA can efficiently balance the trade-off
between utilizing memory space and avoiding page swap. Therefore, it is more
proper than the other implemented tuning methods for anti-caching system.

Figure 7(b) shows the performance change of each tuning technique along
with time. Notice that we just choose the first 60 s to give explanations for bet-
ter visual effect. The time-sequential throughput change can tell more detailed
information about what happens for each tuning technique while transactions
are being executed. When transactions just begin, the memory space is suffi-
cient and DBMS without anti-caching works at its best state with fetching all
the target tuples from memory. Since no eviction threshold is limited for it, the
performance will not be worse until OS page swap happens. However, once the
data size start to exceed the available memory, page swap can occur frequently
for DBMS without anti-caching and the performance goes down rapidly and
finally reaches a stable state. Other anti-caching choices, start with relatively
lower transaction throughputs, grow steadily until the same bottleneck occur
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Fig. 8. Adaptive eviction performance under YCSB benchmark

for them: the data size become too large and only a small fraction of them can
reside in memory. The interesting thing is that compared to the baseline, all
tuning techniques have a jump-after-fall phenomenon. For example, WSA expe-
riences a performance fall from 10 s to 12 s and just after this, it has an obvious
performance jump to 17 s. Another instance is for the CBR tuning method. Its
performance falls from 8 s to 15 s and jumps from 15 s to 22 s. The reason for the
fall-and-jump style is simple: when performance degrading is captured by Ana-
lyzer in our adaptive eviction framework, a tuning decision should be made by
AEP, configuring the eviction parameters to a relatively proper set. After such
a procedure, anti-caching system fits more to the current workload than before
and obtains a performance growth, which we regard as a jump action. Among
the four tuning techniques, WSA’s stable state is the highest and it gains 1.25x
better performance than the baseline.

YCSB: The results in Fig. 8 are for running the YCSB benchmark with write-
heavy workload across a range of workload skews and data sizes. Figure 8(a)
shows the performance difference of each tuning technique with different work-
load skews. We can observe that under the workload of same skew, anti-caching
system can obtain higher average transaction throughput by taking advantage
of our proposed adaptive eviction framework. With the skew becoming higher,
more transaction accesses reach the same group of hot data in memory, DBMS
can obtain a natural throughput improvement. However, in the case of low
skew, anti-caching system with default eviction parameter configuration behaves
poorly and is only 52% better than no anti-caching choice. While using adaptive
eviction, the performance can obtain considerable improvement, up to 1.7x–4.5x
compared with the baseline. In particular, under low-skew workload, WSA also
beats other tuning techniques by 2.6x, 2.2x and 2.3x compared with SRB, ER
and CBR, respectively. The reason is that when transaction accesses randomly
fall into data tuples, WSA gently changes its window size to fit more cold data
in memory while promising that the memory resource is not over-used. It keeps
more access in memory rather than evicts a large amount to disk. In this way
WSA fits anti-caching system better than other tuning techniques.

Figure 8(b) presents the performance behaviors of different tuning techniques
for three data size setups. The performance difference among all the anti-caching
choices in the 1x memory data size scenario is slight, but it can still be clearly
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observed that WSA obtains an average throughput nearly to pure DBMS without
anti-caching system. We can infer that with the transactions proceeding, different
windows of WSA behave in the following style: the eviction size becomes smaller
and smaller, while the eviction threshold and check interval becomes larger and
larger. In larger-than-memory data scenarios, adaptive eviction obtains more
obvious improvement than the baseline, up to 1.2x–1.8x for 2x memory and
2.3x–4.6x for 4x memory, respectively. The interesting thing is that with much
larger data size, the improvement of using adaptive eviction is also larger. This
is reasonable because with adaptive eviction framework, anti-caching system is
able to leave more hot data in memory with more proper eviction parameters.

5 Related Work

Anti-caching Data Management. [3] concludes different kinds of “anti-
caching” data management mechanisms and divides them into three cate-
gories: user-space, kernel space, hybrid of user- and kernel-space. H-Store anti-
caching [4] falls into the user-space approach. Project Siberia [6–8] also adopts
a user-space “anti-caching” approach for Hekaton [5]. Instead of maintaining
an LRU like H-Store anti-caching, Siberia performs offline classification of hot
and cold data by logging tuple accesses first, and data in Hekaton is evicted
to or fetched from a cold store in disk. Kernel-space approaches mainly refers
to OS paging, which is an important part of virtual memory management in
most contemporary general purpose operating systems. OS paging tracks data
access in the granularity of pages and it allows a program to process more data
than the physically available memory [9]. As for hybrid of user- and kernel-space
approach, efficient OS paging [10] and access observer method [11] are proposed
to better assist the hot/cold data classification. Our work is based on H-Store
Anti-caching as it is the state-of-the-art in-memory DBMS data management
architecture and deals with workload online to serve multiple application sce-
narios.

Performance Tuning. Performance tuning of database systems has been an
interesting and active area of research in the last three decades and recent trend
has been in developing self-tuning database systems with little or no human
intervention. Several methods have been proposed in the literature [12,15,16]
to implement self-tuning techniques ranging from use of histograms, gradient
descent technique, creation of index, use of materialized views, etc. There have
been several attempts to self-manage the DBMS memory [13,17–19] for improved
performance. Oracle 10 g uses automated shared memory management (ASMM)
to resize the subcomponents of the shared memory pool based on current work-
load. When switched on, the ASMM controls the sizes of certain components
in the SGA by making sure that the workload gets the memory it needs. It
does that by shrinking the components which are not using all of the memory
allocated to them, and growing the ones which need more than the allocated
memory. Microsoft SQL Server also has an automatic memory tuning manager.
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However, none of these techniques can fully exert their potential for anti-caching
architecture because of either disk-oriented design or heavy and redundant buffer
components.

Workload Characterization. The key to successful implementation of a self-
tuning database system is the knowledge base [21,22] on two aspects. One is
helping the system to identify important performance bottlenecks. The other
is collecting information about tuning impact of each tuning parameter on the
system performance under different workloads and user load conditions. There
have been attempts to identify key tuning parameters that have significant tun-
ing impact on performance. [20] has presented the impact of various tuning
parameters on the performance and the parameters are ranked using statistical
approach. In our study we consider that the workload characteristics are bound
with anti-caching memory environment, since the workload itself does not really
affect the system performance.

6 Conclusion

In this paper, we propose an adaptive eviction framework for anti-caching based
in-memory databases to figure out the problems caused by fixed eviction param-
eter configuration. With adaptive eviction for anti-caching system, in-memory
DBMS is able to collect workload and system information to adaptively adjust
the eviction parameters, taking more advantage of anti-caching system. We
propose a novel window-size adaption strategy based on our designed general
adaptive eviction framework; by extending and shrinking the eviction param-
eters along with the workload characteristics and system information change,
an in-memory DBMS can smartly avoid weak memory utilization or slow OS
page swap. The experimental results show that with adaptive eviction, an anti-
caching based database system can obtain higher transaction performance under
both TPC-C and YCSB benchmarks. In particular, window-size adaption tun-
ing technique can outperform the base line up to 2.2x and 4.5x under TPC-C
and YCSB benchmark, respectively. We conclude that for OLTP workloads, the
results of this study demonstrate that adaptive eviction can efficiently improve
the transaction performance of in-memory DBMS with anti-caching system.

Acknowledgment. This research is supported in part by 863 Program (no.
2015AA015303), NSFC (no. 61772341, 61472254, 61170238, 61602297 and 61472241),
Singapore NRF (CREATE E2S2), and 973 Program (no. 2014CB340303). This work is
also supported by the Program for Changjiang Young Scholars in University of China,
and the Program for Shanghai Top Young Talents.



262 K. Huang et al.

References

1. Harizopoulos, S., et al.: OLTP through the looking glass, and what we found there.
In: Proceedings of the 2008 ACM SIGMOD International Conference on Manage-
ment of Data. ACM (2008)

2. Kallman, R., et al.: H-store: a high-performance, distributed main memory trans-
action processing system. Proc. VLDB Endow. 1(2), 1496–1499 (2008)

3. Zhang, H., et al.: Anti-caching based elastic memory management for big data.
In: 2015 IEEE 31st International Conference on Data Engineering (ICDE). IEEE
(2015)

4. DeBrabant, J., et al.: Anti-caching: a new approach to database management sys-
tem architecture. Proc. VLDB Endow. 6(14), 1942–1953 (2013)

5. Diaconu, C., et al.: Hekaton: SQL server’s memory-optimized OLTP engine. In:
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data. ACM (2013)

6. Eldawy, A., Levandoski, J., Larson, P.-Å.: Trekking through Siberia: managing
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Abstract. To manage the Event Based Social Networks (EBSNs),
an important task is to solve the Global Event Planning with Con-
straints (GEPC) problem, which arranges suitable social events to
target users. Existing studies are not efficient enough because of the
two-step framework. In this paper, we propose a more efficient method,
called Heuristic-DP, which asynchronously considers all the constraints
together. Using this method, we improve the computational complex-
ity from O(|E|2 + |U ||E|2) to O(|U ||E|), where |U | is the number of
users and |E| is the number of events in an EBSN platform. We also
propose an improved heuristic strategy in one function of the heuristic-
DP algorithm, which slightly increases the time cost, but can obtain a
more accurate result. Finally, we verify the effectiveness and efficiency
of our proposed algorithms through extensive experiments over real and
synthetic datasets.

1 Introduction

In recent years, Event Based Social Network (EBSN) platforms, such as Meetup1

and Plancast2 increasingly show its importance in citizens’ daily life, specially
with the popularity of Online to Offline (O2O) services [18,22]. These platforms
help users to online create and manage social events, and make personalized
plans for offline joining, which is increasingly attracting attention from both
industry and academia [12]. Meetup, as the largest current EBSN platform, for
example, has 16 million registered users and involved in aggregate 300,000 events
held each month. Thus, how to efficiently make suitable plans for such a large
number of users and events becomes an urgent problem.

1 http://www.meetup.com/.
2 http://plancast.com/.
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Planning events for users’ participation over EBSNs is first proposed by She
et al. in [16]. Aiming at the limitation that they failed to consider the lower
bound of participants of each event, Cheng et al. in [2] proposed the GEPC
problem. We use the following example to describe the GEPC problem in detail.

Example 1 (The GEPC Problem). Figure 1 is a 2-D grid, which shows the loca-
tions of users and events. For each user, a utility score is assigned to each event,
which shows his/er interest to each event. These utility scores are shown in
Table 1. Each user provides a travel budget, which is attached in the parenthesis
after each user in Row 1 of Table 1. Events together with their respective par-
ticipation lower and upper bounds are shown in column 1, and their start and
end times are shown in column 10.

Fig. 1. Location of events and users

Table 1. Utility between events and users and time of events and utility scores

ej(ξj , ηj) u1(10) u2(12) u3(13) u4(15) u5(17) u6(19) u7(20) u8(23) Time

e1(1, 5) 0.3 0.4 0.8 0.9 0.8 0.4 0.5 0.3 1:00–2:00 p.m.

e2(1, 5) 0.2 0.3 0.8 0.6 0.7 0.7 0.9 0.7 1:00–4:00 p.m.

e3(3, 6) 0.6 0.7 0.4 0.3 0.9 0.5 0.5 0.8 3:00–7:00 p.m.

e4(2, 6) 0.8 0.2 0.5 0.6 0.6 0.4 0.6 0.7 5:00–9:00 p.m

A global plan, P , is a set of feasible plans that users are assigned to events,
such that the sum of utility scores of all users is the largest under the constraints
as follows. (1) Users’ plans are designed with no time conflicts. That is, the
holding time of the events planned for the same user should not have overlaps.
Specifically, in Example 1, events e1 and e2 have time conflicts, so they cannot
appear in the plan of one user at the same time. (2) The number of participants
of every event should be larger than the lower bound and smaller than the
upper bound. In Example 1, the number of participants of event e1 should be
larger than 1 and smaller than 5. (3) The travel cost of each user is not larger
than his/er travel budget, which is attached after each user in parenthesis in
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Row 1 of Table 1. Here, we simply use Manhattan distance to calculate the
travel cost. In Example 1, if u1 attends to e1 and e3, his/er travel cost is D1 =
d(u1, e1) + d(e1, e2) + d(e2, u1) = 2 + 3 + 3 = 8, which should be smaller than
10. Under the above constraints, a feasible plan of Example 1 is shown by the
bold cells in Table 1, and its total utility score is 9.9. The GEPC problem aims
at finding such a feasible plan whose total utility score is the largest.

Although the authors of [2] provide two approximate algorithms to solve the
GEPC problem, these algorithms are not efficient enough. They both follow a
two-step framework, in which each step satisfies parts of the constrains. Even
the one with a smaller computational complexity is still O(|E|2+ |U ||E|2), where
|U | is the number of users, |E| is the number of events in the EBSN platform.
To overcome this shortcoming, we propose a more efficient algorithm, called
Heuristic-DP algorithm. The main idea is using dynamic programming to reduce
the time cost, asynchronously considering all the constraints together instead of
a two-step method. The complexity of our algorithm is only O(|U ||E|). Further-
more, we propose an improved heuristic strategy of the Heuristic-DP algorithm.
This strategy spends a little more time, but can obtain a more accurate result.
Our experiments show that the total utilities of our approximate algorithms are
larger than those of [2], which indicate that the approximation of our proposed
algorithms not only improve the efficiency, but also ensure the accuracy.

To summarize, the contribution of our paper is,

– We propose a more efficient method, called Heuristic-DP algorithm, to solve
the GEPC problem than that proposed by [2], which improves the computa-
tional complexity from O(|E|2 + |U ||E|2) to O(|U ||E|).

– We also propose an improved heuristic strategy, which spends a little more
time, but can obtain a more accurate result.

– Extensive experiments show that our proposed algorithms are more efficient
and accurate than those of [2].

The rest of our paper is organized as follows. In Sect. 2, we formally define the
GEPC problem. In Sect. 3, we summarize the related works. Then we describe
our Heuristic-DP method in Sect. 4, and improved strategy in Sect. 5. We report
our experiment results and corresponding analysis in Sect. 6, and conclude our
work in Sect. 7.

2 Problem Definition

In this section, we introduce a formal mathematical definition of the GEPC
problem. We assume that there is a set U = {ui} of n users and a set E = {ej}
of m events in EBSN problem.

A tuple (lui
, Bi) consisting of the location and travel budget of ui is used to

describe each user ui ∈ U . A 5-tuple (lej
, ξj , ηj , t

s
j , t

t
j) denotes each event ej ∈ E,

consisting of a location, participation lower bound, participation upper bound,
start time, and end time. Each user participates each event, forming a utility
score, μ(ui, ej) ≥ 0, signifying ui’s level of interest in ej . If μ(ui, ej) = 0, user ui

will not attend event ej . The notations of symbols are summarized in Table 2.
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Table 2. Summary of symbol notations

Notation Description

E = {e1, . . . , e|E|} Set of events

U = {u1, . . . , u|U|} Set of users

μ(e, u) Utility scores when ui participates ej

cost(u, e) Travel costs between u and e

cost(ei, ej) Travel costs from ei to ej

{ξe, ηe} Lower bound and upper bound of e

{te1, t
e
2} Start time and end time of e

bu Travel budgets of u

2.1 Complex Event Planning: GEPC Problem

The EBSN’s global utility score for a plan P , denoted UP , is the sum of the
every user’s utility scores in Pu.

Definition 1 (GEPC problem [2]). Given an EBSN, the GEPC problem
is to find a feasible global plan P �, such that UP � = maxP UP , subject to the
following constraints:

1. Users’ plans have no time conflicts, i.e., ∀i ∀ek �= eh ∈ Pi tsek
< tseh

⇒
ttek

< tseh
.

2. Users’ travel costs are within budget, i.e., ∀i Di ≤ Bi.
3. Events’ participation upper bounds are satisfied, i.e., ∀j |{Pi : ej ∈ Pi}| ≤ ηj

4. Lower bounds are satisfied, i.e., ∀j |{Pi : ej ∈ Pi}| ≥ ξj

Example 2. The cells with bolded entries in Table 1 correspond to a global plan.
It is easy to verify that all constraints are satisfied. There are no time con-
flicts among assigned events. All travel costs are within budget. All events’
participation upper bounds are met. Finally, all events’ participation lower
bounds are also met. The EBSN’s global utility score under the given plan is
μ(u1, e1) + μ(u1, e3) + · · · + μ(u8, e4) = 9.9.

According to [2], the GEPC problem is NP-hard, and we propose a more
efficient heuristic algorithm than those of [2] to solve this problem.

3 Related Work

Studies on EBSNs. Different with Location-Based Social Networks
(LBSNs) [1,8,11,13,14,19] focusing on maximizing users’ individual utilities,
EBSNs [12] focus on maximizing system total utilities. Feng et al. [4] formu-
late a problem of mining influential cover set (ICS), combining influence max-
imization problem [7] and the team formation problem [9], to discover influ-
ential event organizers who are essential to the overall success of social events.
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Liu et al. [12] first investigated EBSNs properties, then studied problems of com-
munity detection and information flow considering both online and offline social
interactions. Zhang et al. [24] focused on event-based group recommendation,
proposed a method considering location features, social features to model inter-
actions between users and events to provide better solution. Du et al. [3] aimed
to exploit individual behaviors in EBSNs, and proposed a novel SVD-MFN algo-
rithm to predict activity attendance by integrating heterogeneous factors into a
single framework. Pham et al. [15] modeled the rich information with a hetero-
geneous graph, and considers the three kinds of recommendation problems (i.e.
recommending groups to users, recommending tags to groups, and recommend-
ing events to users) as a query-dependent node proximity problem. These works
all focused on individual user recommendations, while ours focus on a global
satisfiable planning.

Social Event Organization and its variants were investigated by [10,16,17,
20,21,23], assigning a group of users to attend a set of events by maximizing
overall satisfaction. Cheng et al. [2] proposed approximate solutions to solve
the GEPC and its incremental variant problems, considering the aspects of the
events’ participation lower bound. However, this algorithm is not efficient enough
since it satisfy all the constraints in order rather than in parallel. The main
contribution of our paper is synchronously considering all the constraints to
accelerate this process and gain a litter bigger overall satisfaction.

Studies on Heuristic DP. Many optimization problems in various fields have
been solved by diverse algorithms, such as greedy, dynamic programming (DP).
Although these algorithms can guarantee global optimization in simple and ideal
models, there also exists some drawbacks. For instance, in DP the increase in
the number of variables would exponentially increase the number of the recursive
functions. Geem et al. in [5] proposed a heuristic optimization techniques based
on simulation to overcome the shortage above. Researchers in [6] presented an
algorithm for planning with time and resources, based on heuristic search. In this
paper, we combine the heuristic strategy and dynamic programming process.

4 Heuristic-DP Algorithm

The main idea of heuristic-DP algorithm is to transfer the EBSN problem into
|U | sub-problems. In each sub-problem, we satisfy one user’s constraint until
all users are dispatched. During this process, all the constraints are taken into
account asynchronously, overcoming the shortage of the algorithm in [2] which
synchronously use the greedy-based algorithm and then the algorithm in [16].

When designing plans for users, it must predefine a time horizon, H, which
the EBSN operated on. For simplicity, we assume a time horizon is one day, so
that every user are provided with their individualized “Plan for today”.

In Heuristic-DP algorithm, we scan each user in order until all the users have
been dispatched with the feasible plan. During the process of scanning, each user
has two states. One is called “incomplete”, in which not all the events satisfy
their the lower bound of participants. The other is called “complete”, in which all
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events satisfy their the lower bound of participants. In the state of uncomplete,
we firstly assign users to the event which is chosen by the heuristic strategy, and
then consider the utility score and travel budget of users. While in the state of
complete, we only take the utility scores and travel costs of users into account,
meeting the needs of users. The pseudo-code is shown in Algorithm 1.

Algorithm 1. Heuristic-DP Algorithm
input : E, U , μ(e, u),{cost}, {ξe, ηe}, {te1, t

e
2}, bu

output: A feasible schema P

1 sort all the events in E in non-descending order by te2
2 sort all the users in U in non-descending order by bu
3 Cr

1 := 0
4 for each user ur do
5 if not all events meet their lower bound then
6 P := P ∪ iTDP (ur)
7 update Cr

1 according to the selected events

8 else
9 P := P ∪ TDP (ur)

10 update Cr
1 according to the selected events

11 return P ;

We firstly sort the events in E in non-descending order according to the end
time te2 of each event (Line 1). Secondly, we sort the users in U by non-descending
order according to the travel budgets bu (Line 2). Initialize the number of selected
participants for each event Ce

1 before the first iteration (Line 3). We scan all the
users in order (Line 4–10), and check whether the lower bounds are been satisfied
in each iterator. If not, it falls into the “incomplete” state. We conduct iTDP
algorithm to obtain a feasible plan of user ur with the assignment satisfying both
the user’s need and the lower bound of events, and update the number of selected
users of every event (Line 5–7). If so, it falls into the “complete” state, and we
call the TDP Algorithm to obtain a feasible plan of user ur considering his/er
travel budgets and the whole time slice. Then we update the number of selected
users of every event (Line 8–10). Finally, we combine the sequence of events for
all users after finishing the process of scanning, and every user’s feasible schemes
is obtained (Line 11).

4.1 iTDP Algorithm

When not all events satisfying the lower bound on number of participants, i.e.,
the “incomplete” state, the iTDP algorithm is operated. The main idea of iTDP
algorithm is to distribute user ur to the event selected by the heuristic strategy
priority, and then meet user’s need to gain a better utility scores. Specifically,
the heuristic strategy here is to select the event whose difference between the
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selected number of participants and the lower bound is the largest. Then, we
record the start time and end time of the selected event as the end time and
start time of the two new time scales, whose original start time is 0 o’clock
and end time is 24 o’clock. At last, the TDP algorithm is invoked to obtain
the feasible scheme that has the biggest total utility scores in the two new time
scales. The approach is summarized in Algorithm 2.

Algorithm 2. iTDP Algorithm
input : E, ur, μ(e, u),{cost}, {ξe, ηe}, {te1, t

e
2}, bu

output: Pur : a feasible schema of user ur

1 Pur := ∅
2 Find the event et by heuristic strategy
3 end = tet

1 − 1, start = tet
2 + 1

4 B = bur − cost(ur, et)
5 Pur = Pur ∪ TDP (0, end, B)
6 Update B according the selected events
7 Pur = Pur ∪ TDP (start, 24, B)
8 return Pur ;

We first initialize the set of plan for user ur, Pur
, as empty set (Line 1). Then,

heuristic strategy is used to select one event who has the biggest difference from
the already selected number of participants and the lower bound among all the
unsatisfied events (Line 2). In addition, the travel costs between the location of
selected event and ur cannot exceed ur’s travel budgets. After that, we get the
end time end and start time start of the new time scale according to the start
time tet

1 and end time tet
2 of event et (Line 3). Meantime, we get the residue

travel budgets B of user ur according to the travel costs cost(ur, et) from the
location of user ur to the event et (Line 4). Particularly, the distance will be
infinity when the number of participants of event et reaches its upper bound,
so that no user will be dispatched to event et. At that time, we invoke TDP
algorithm to calculate the list of events adding to the set of user ur’s plan,
which maximizes the utility scores of user ur during 0 o’clock and end with the
travel budgets B (Line 5). Then update the residue travel budgets B of user
ur by his/er selected events (Line 6). After that, the event lists are obtained by
invoking TDP algorithm, which maximizes the utility scores of user ur during
start and 24 o’clock with the updated travel budget B (Line 7). Finally, a feasible
schema of user ur is gained (Line 8).

Example 3. Consider the problem defined in Example 1. When we dispatch event
lists for user u1, we should judge whether all events have been satisfied their lower
bound. Obviously it is not, so iTDP algorithm is used to design schedule for u1.
We first choose the event by heuristic strategy, so we add e3 into Pu1 . Then, a
“before” time scale is designed with its start time been 0 o’clock and end time
been the start time of e3 e.g. 3:00 p.m. Meantime, the start time of “after”
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time scale is the end time of e3, 7:00 p.m. and end time is 24 o’clock. The TDP
algorithm is invoked to calculate the event lists making the utility scores biggest
with u1’s residue travel budgets in the “before” and “after” time scales. The
blue font in Table 3 is the feasible schema of users in the “incomplete” state.

Table 3. Plans obtained by iTDP algorithm

ej(ξj , ηj) u1(10) u2(12) u3(13) u4(15) u5(17) u6(19) u7(20) u8(23) Time

e1(1, 5) 0.3 0.4 0.8 0.9 0.8 0.4 0.5 0.3 1:00–2:00 p.m.

e2(1, 5) 0.2 0.3 0.8 0.6 0.7 0.7 0.9 0.7 1:00–4:00 p.m.

e3(3, 6) 0.6 0.7 0.4 0.3 0.9 0.5 0.5 0.8 3:00–7:00 p.m.

e4(2, 6) 0.8 0.2 0.5 0.6 0.6 0.4 0.6 0.7 5:00–9:00 p.m

Theorem 1. All the events will achieve their lower bound on number of partic-

ipants if
M∑

i=1

ξi ≤ N .

Proof. All the events will achieve their lower bound on number of participants
if the sum of the lower bound of every event is less than the number of users. In
our algorithm, if the lower bound of each event has not been satisfied, we invoke
the iTDP algorithm to dispatch users to events, it is clear that at least one of
the unsatisfied events will be dispatched users at one iteration, so all the events’

lower bounds will be meet at most during
M∑

i=1

ξi.

4.2 TDP Algorithm

The aim of this algorithm is to design a feasible schema Pur
for user ur in the

r-th iteration, where 1 ≤ r ≤ |U |. The main idea of this algorithm is to use
two-dimensional dynamic programming algorithm, considering both the time
conflicts and travel costs. Particularly, the key of the TDP algorithm is to divide
the time horizon, H, into several time slices, recording the biggest total utility
scores in every time slice of user ur. For simplicity, we use Ωr(i, j) to donate the
biggest utility scores obtained in the r-th iterator by the i time with j travel
budgets of user ur.

In TDP algorithm, we scan all events and find the biggest total utility scores
qualifying the constraints, and denote êi,k as the last event in the schema at
different time slices. Firstly, the travel costs to the location of event ek not exceed
the user ur’s travel budgets. That is, when cost(ur, e1) +

∑|Pu|
i=2 cost(ei−1, ei) +

cost(êi,k, ek) > bur
, the event ek could not be included in the schema of ur. The

second constraint is that for the event chosen by the user ur, its start time cannot
be earlier than S time and end time cannot be later than T time. Meanwhile,
the start time and end time between the chosen events cannot overlap.

TDP algorithm takes both time conflicts and the travel costs between the
locations of users and the events into consideration. Two-dimensional dynamic
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programming algorithm scans all the events in every time slices to judge whether
event ek satisfies the constraints, and calculate the biggest total utility scores
Ωr(i, j) in current moment with current travel budgets. The specific computa-
tional formula of Ωr(i, j) is defined as follows:

Ωr(i, j) =

⎧
⎪⎨

⎪⎩

Ωr(i − 1, j) j < cost(êi, ek)
max(Ωr(i − 1, j), Ωr(ξej , Y ) + μr(ur, ek))
Y = j − cost(êξej ,k, ek)

ξek ≥ S, ηek ≤ T,

j > cost(êi, ek)

The equation means whether user ur chooses the current event ek. If there is
a time conflict or exceeding travel budgets, ur do not select the current event ek,
so the Ωr(i, j) is equal to Ωr(i − 1, j) at the last moment with the same travel
budgets. If it will get bigger utility scores with no time conflicts and no exceeding
travel budgets, ur would select ek and add it to the schema. So Ωr(i, j) is equal
to the current utility scores add to Ωr(ξek , j − cost(êi,k, ek), whose start time is
as same as the start time of ek and the travel budgets is current residue travel
budgets. The entire dynamic programming process obtains the biggest utility
scores of every moments and every travel costs, and get a feasible schema Sur

of the user ur by recalling the dynamic programming process by Ωr(i, j). The
specific description of the TDP algorithm is illustrated as Algorithm3.

Algorithm 3. two-dimensional DP Algorithm
input : Er, ur, êi ,μ(e, u), cost(e, u), {ξe, ηe}, {te1, t

e
2}, bur , S, T

output: the best feasible schema of ur, Sur .

1 j = bur , Initialize the ê0 as the location of ur

2 for each moment between S and T do
3 for each event ek do
4 if j > cost(êi,k, ek) then
5 if Ω(ξek − 1, j − cost(êi,k, ek)) + μr(ur, ek) > Ω(i − 1, j) then
6 Ωr(i, j)=Ωr(ξek , j − cost(êi,k, ek)) + μr(ur, ek)
7 j = j − cost(êi,k, ek)
8 add ek into path(i, j)

9 else
10 Ωr(i, j) = Ωr(i − 1, j)

11 else
12 if j < cost(êi,k, ek) then
13 Ωr(i, j) = Ωr(i − 1, j)

14 find the largest Ω(i, j)
15 construct Sur according to path(i, j)
16 return Sur ;

In Algorithm 3, we first set a variable j to record the residue travel budgets
of ur, and initialize the ê0 as the location of ur (Line 1). Then we scan all the
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moments and events in order to obtain the list of events who has the biggest
utility scores with the travel budgets j according to the Eq. (1) (Line 2–13). In
the process of scanning, if the travel costs between the location of last selected
event êi,k and event ek is no more than the residue travel budgets of ur, and the
start time ξej and end time ηek are both in the period between S time and T time
(Line 4). Then we continue to judge whether the utility scores will be bigger by
adding event ek to the event lists (Line 5). If so, we update the Ωr(i, j) and the
residue travel budgets, meantime, record the selected event ek (Line 6–8). If not,
Ωr(i, j) is equal to Ωr(i− 1, j) at the last moment with the same travel budgets
(Line 9–10). If the travel costs between the location of last selected event êi,k and
event ek is more than the residue travel budgets of user ur, we update Ωr(i, j)
by the Ωr(i−1, j) at the last moment with the same travel budgets (Line 12–13).
After finishing the scanning, we find the biggest utility scores (Line 14). Then
rollback the process according to the biggest utility scores (Line 15). Finally, the
algorithm returns the best feasible schema Sur

of user ur (Line 16).

Example 4. Since the 5-th iteration, we have already satisfied every events’ lower
bound, we use the TDP algorithm to continue obtain feasible plans for users. In
the 6-th iteration, we could obtain the biggest utility scores from 0:00–24:00 with
the travel budgets bur

, then rollback the process getting the feasible schemas of
every users. So u6 chooses e1 and e4 as his/er schedule. We can easily find that
there is no time conflicts or no exceeding the travel budgets of u6, meanwhile,
every events’ lower bound and upper bound are also satisfied. By the same way,
we get every users’ feasible plans with red colored fond in the Table 4.

Table 4. Plans obtained by TDP algorithm

ej(ξj , ηj) u1(10) u2(12) u3(13) u4(15) u5(17) u6(19) u7(20) u8(23) Time

e1(1, 5) 0.3 0.4 0.8 0.9 0.8 0.4 0.5 0.3 1:00–2:00 p.m.

e2(1, 5) 0.2 0.3 0.8 0.6 0.7 0.7 0.9 0.7 1:00–4:00 p.m.

e3(3, 6) 0.6 0.7 0.4 0.3 0.9 0.5 0.5 0.8 3:00–7:00 p.m.

e4(2, 6) 0.8 0.2 0.5 0.6 0.6 0.4 0.6 0.7 5:00–9:00 p.m

4.3 Complexity Analysis

Algorithm 1 scans every users, so the number of iterations is |U |. When user in
the stage that some events not been satisfied the lower bound on number of par-
ticipants, it need to invoke Algorithm2 to obtain the feasible schema with the
start time and after the end time of the event, which is chosen by the heuristic
strategy, the complexity of this process is O(|E| + |E| |T |), where |T | is a constant
indicting the number of time slices. After all events satisfy the lower bound, we
invoke the Algorithm 3 to calculate the feasible schedule during the whole day
with user’s travel budgets, which complexity is O(|E| |T |). Thus, the computa-
tional complexity of our heuristic-DP algorithm is O(|U | |E| + |U | |E| |T |).
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5 Improving Heuristic Strategy

Although Heuristic-DP algorithm speeds up the process of GEPC, and gets a
larger total utility scores, it still can be further improved. This is because the
heuristic strategy in Heuristic-DP algorithm only considers the lower bound of
the events, not takes the interests of users into account. It may appear the
phenomenon that user u1 has no interests in event e1, but since the difference
between lower bound of e1 and the already selected number of participants are
the biggest, the event e1 are still included in the feasible schema of user u1. To
overcome this shortage, we propose an improved heuristic strategy that takes
the demand of user and the constraints of events into account at the same time.
Specifically, the event with the biggest utility score for user ur among all the
unsatisfied events will be selected. This method may spends a little more time,
but obtains a larger total utility scores.

Example 5. Consider the same problem defined in Example 3. If we use the user-
oriented heuristic strategy, we first choose the event with biggest utility scores
μ(u1, ek) in all the unsatisfied events, whose travel distance to u1 also not exceed
the travel budgets of u1, so we add e3 into Pu1 . Then, a “before” time scale and a
“after” time scale is defined as the same way in Example 3. The TDP algorithm
is invoked to calculate the event lists making the utility scores biggest with u1’s
residue travel budgets in the “before” and “after” time scale. The blue fonts
in Table 5 are the feasible schemas of users in the state of not all event been
satisfied their lower bounds.

Table 5. Plans obtained by iTDP algorithm with improved heuristic strategy

ej(ξj , ηj) u1(10) u2(12) u3(13) u4(15) u5(17) u6(19) u7(20) u8(23) Time

e1(1, 5) 0.3 0.4 0.8 0.9 0.8 0.4 0.5 0.3 1:00–2:00 p.m.

e2(1, 5) 0.2 0.3 0.8 0.6 0.7 0.7 0.9 0.7 1:00–4:00 p.m.

e3(3, 6) 0.6 0.7 0.4 0.3 0.9 0.5 0.5 0.8 3:00–7:00 p.m.

e4(2, 6) 0.8 0.2 0.5 0.6 0.6 0.4 0.6 0.7 5:00–9:00 p.m

6 Experimental Evaluation

6.1 Experimental Environment and Datasets

The algorithm are implemented in C++, and the experiments are performed on
a Windows 10 machine with Inter i7-6700 3.40 GHZ CPU and 8 GB memory.
The time costs reported here are calculated by the system clock. It is unlikely
for a user to attend the events in different cities, so we focus on a single situation
that the users and events are located in the same city. We use the Meetup and
Plancast datasets as real database, and we choose four different cities as our
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Table 6. Real datasets

City |U | |E| Mean of ξ Mean of η

Beijing 113 16 10 100

Singapore 1500 87 10 100

Vancouver 2012 225 10 100

Auckland 569 37 10 100

research object, covering Beijing, Singapore, Vancouver and Auckland. Table 6
presents the parameters of the data.

To further evaluate the stable of our algorithm, we also use synthetic datasets
which are extracted by the Meetup dataset. Various settings are shown in Table 7,
where we mark our default settings in bold font.

Table 7. Synthetic datasets

Factor Setting

|E| 20, 50,100,200,500

|U | 200, 500, 1000, 5000

6.2 Results

In this section, we will compare the efficiency of the GAP-based, greedy-
based, our heuristic-DP algorithm, and heuristic-DP algorithm with an improved
heuristic stategy by solving the GEPC problem. Since the heuristic-DP algo-
rithm is an extension of the GAP-Based and greedy-based algorithms, we use
the GAP-based and greedy-based algorithms as a baseline to evaluate the results
and effects of our proposed heuristic-DP algorithm.

Tables 8, 9, 10 and 11 depict the results and effects on the real datasets.
By comparing Tables 8 and 10, we can easily find that the total utility scores
obtained by the GAP-based algorithm is a little larger than the total utility
obtained by the heuristic-DP algorithm. However, the time costs and the memory
costs of the GAP-based algorithm are much larger than that of our heuristic-DP
algorithm. This suggests that the heuristic-DP algorithm is much more efficient
than the GAP-based algorithm. Furthermore, it is clear that the total utility
scores gained by the heuristic-DP algorithm are larger than that of greedy-based
algorithm, meantime, the time costs and the memory costs of the greedy-based
algorithm are also much larger than the time costs of the heuristic-DP algorithm
by comparing Tables 9 and 10. From Tables 10 and 11, we can see that the total
utility scores of heuristic-DP algorithm with an improved strategy are a little
larger, while the time costs are a little larger than that of heuristic-DP algorithm,
and the memory costs of both two methods are the same. In conclusion, the
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heuristic-DP algorithm may be as effective and more efficient than the GAP-
based and greedy-based algorithms. By contrasting our heuristic-DP algorithm,
and the heuristic-DP algorithm with an improved strategy may get a little larger
total utility scores, while the heuristic-DP algorithm may costs a little smaller
time.

Table 8. GAP algorithm for GEPC on real datasets

Datasets Greedy-based

Total utility Time costs (s) Memory costs (MB)

Beijing 223.19 1.34 3.9

Singapore 5753.68 137.83 56.7

Vancouver 6821.83 13539 545.6

Auckland 1290.13 7.95 44.3

Table 9. Greedy-based algorithm for GEPC on real datasets

Datasets Greedy-based

Total utility Time costs(s) Memory costs (MB)

Beijing 209.65 0.063 1.7

Singapore 4702.00 232.14 52.5

Vancouver 5522.34 13.56 341.2

Auckland 1158.98 1.75 19.3

Table 10. Heuristic-DP algorithm on real datasets

Datasets Heuristic-DP algorithm

Total utility Time costs (s) Memory costs (MB)

Beijing 239.48 0.041 1.2

Singapore 5593.17 186.74 47.7

Vancouver 6641.85 10.17 305.2

Auckland 1245.63 1.06 13.1

Figures 2, 3 and 4 depict the performance of the GAP-based, greedy-based
and our heuristic-DP algorithm (Event-DP) and our improved method (User-
DP) on different datasets. We first study the effective and efficient of different
number of users |U |. Figures 2a, 3a and 4a show the results when the number
of events |E| = 50 and varying the number of users |U | from 100 to 5000. We
can learn that the total utility scores obtained by the GAP-based algorithm are
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Table 11. Heuristic-DP algorithm with improved strategy on real datasets

Datasets Heuristic-DP algorithm with improved strategy

Total utility Time costs (s) Memory costs (MB)

Beijing 246.27 0.047 1.2

Singapore 5607.21 198.4 47.7

Vancouver 6657.48 11.28 305.2

Auckland 1261.45 1.23 13.1

the biggest, and that obtained by the greedy-based algorithm are the smallest.
However, the time costs and memory costs of heuristic-DP algorithm are the
smallest, and the costs of GAP-based algorithm are much larger than that of
heuristic-DP and greedy-based algorithms. Hence, the heuristic-DP algorithm is
more practical.

Fig. 2. Total utility of algorithm for GEPC

We then study the effective and efficient of different number of events |E|.
Figures 2b, 3b and 4b show the results when the number of users |U | = 5000
and varying the number of events |E| from 20 to 500. By comparison, we can
see that the total utility scores obtained by the GAP algorithm are larger, but
the time costs and the memory costs of this algorithm are also the largest. The
total utility scores obtained by heuristic-DP algorithm are the second largest,

Fig. 3. Time costs of algorithm for GEPC
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Fig. 4. Memory costs of algorithm for GEPC

and the costs are the smallest. Therefore, these results further suggests that the
heuristic-DP algorithm is more effective and efficient than the GAP-based and
greedy-based algorithms.

7 Conclusion

In this paper, we propose Heuristic-DP algorithm to solve the complex social
event-participant planning efficiently. To solving the GEPC problem, the
Heuristic-DP algorithm asynchronously considers all the constraints together
with the computational complexity been only O(|U ||E|). To obtain a more
accurate result, we also have proposed a heuristic strategy in the first stage of
Heuristic-DP algorithm. At last, Experiments over real and synthetic datasets
demonstrate the efficiency of our proposed algorithm.

Acknowledgment. The work has been supported by the National Natural Science
Foundation of China (NSFC) under Grant Nos. 61472069, 61402089, 61332006 and
U1401256; and the Fundamental Research Funds for the Central Universities under
Grant Nos. N161602003 and N171607010.

References

1. Chen, C., Zhang, D., Guo, B., Ma, X., Pan, G., Wu, Z.: TripPlanner: personalized
trip planning leveraging heterogeneous crowdsourced digital footprints. T-ITS 16,
1259–1273 (2014)

2. Cheng, Y., Yuan, Y., Chen, L., Giraud-Carrier, C., Wang, G.: Complex event-
participant planning and its incremental variant. In: 2017 IEEE 33rd International
Conference on Data Engineering (ICDE), pp. 859–870. IEEE (2017)

3. Du, R., Yu, Z., Mei, T., Wang, Z., Wang, Z., Guo, B.: Predicting activity atten-
dance in event-based social networks: content, context and social influence. In:
UbiComp (2014)

4. Feng, K., Cong, G., Bhowmick, S.S., Ma, S.: In search of influential event organizers
in online social networks. In: SIGMOD (2014)

5. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algo-
rithm: harmony search. Simulation 76(2), 60–68 (2001)



Efficient Complex Social Event-Participant Planning 279

6. Haslum, P., Geffner, H.: Heuristic planning with time and resources. In: Sixth
European Conference on Planning (2014)
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Abstract. Lexicographical order dependencies (ODs) are proposed to
describe the relationships between two lexicographical ordering specifi-
cations with respect to lists of attributes, and are proved to be useful in
query optimizations concerning ordered attributes. To take full advan-
tage of ODs, the data instance is supposed to satisfy OD specifications.
In practice, data are often found to violate given ODs, as demonstrated
in recent studies on discovery of ODs. This highlights the quest for data
repairing techniques for ODs, to restore consistency of the data with
respect to ODs. New challenges arise since ODs convey order semantics
beyond functional dependencies, and are specified on lists of attributes.
In this paper, we make a first effort to develop techniques for repairing
data violations with ODs. (1) We formalize the data repairing problem
for ODs, and prove that it is NP-hard in the size of the data. (2) Despite
the intractability, we develop effective heuristic algorithms to address the
problem. (3) We experimentally evaluate the effectiveness and efficiency
of our algorithms, using both real-life and synthetic data.

1 Introduction

Data consistency is one of the central aspects of data quality, where inconsis-
tencies in the data are generally identified as violations of data dependencies.
In light of this, various dependency proposals are presented to express appli-
cation semantics that data are required to satisfy, and fundamental theoretical
problems, dependency discoveries and data repairing techniques related to these
dependencies are also studied in literature, among other things.

Lexicographical order dependencies (ODs) [13,15] are recently introduced
to state the relationship between two lexicographical ordering specifications on
lists of attributes. Ordered attributes, e.g., date, time and price, are prevalent
in data values and are well employed in SQL queries. As stated in [13], 85 out
of the 99 queries in the TPC-DS benchmark involve date. Sorting is one of the
most basic database operations, and ODs are shown to play important roles in
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 283–300, 2018.
https://doi.org/10.1007/978-3-319-91458-9_17
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Fig. 1. A relational instance r.

query optimizations concerning sorting [13,15]. In addition to the theoretical
foundations of ODs, discoveries of ODs [10,14] are also recently studied. The
researches reveal that inconsistencies of ODs exist in real data sets, and have
to be treated as noises in the discovery process. To improve data quality and
further to facilitate query optimization, the data consistency should be restored
with respect to ODs. With this comes the need for repairing techniques for OD

violations. To our best knowledge, no such algorithms are in place yet.

Example 1: Figure 1 presents a relation r about a round-the-world tour. Each
tuple specifies the time (year, month, day, time), the place (country, city) and the
accumulated expenses (accum expenses) to that time, and each tuple carries an
auto-increment number in its no attribute.

Formal definitions of ODs will be reviewed in Sect. 2. Intuitively, An OD “ X
orders Y” (written as X �→ Y) states that if we sort tuples by X, they are also
sorted by Y. Here X (resp. Y) is a list of attributes, and sorting by X = [A, B,
. . . ] means sorting by attribute A first, and then breaking ties by attribute B,
etc. This specification is in accordance with the SQL order by clauses.

By analyzing the semantics, the following ODs can be defined.

ϕ1 : [ no] �→ [ year, month, day, time]
ϕ2 : [ year, month, day, time] �→ [ accum expenses]
ϕ3 : [ city] �→ [ city, country]

(1) ϕ1 states that when tuples are sorted by no, they are also sorted by [ year,
month, day, time] in lexicographical order (new records with larger no are
added as time goes by); similarly for ϕ2. As stated in [13,15], ODs can be
employed in query optimization. On a relation that satisfies ϕ1, a query in
the form of “order by year, month, day, time” can be readily rewritten to
“order by no”. This is beneficial when index is only built on no and helps
reduce indexing space [13].

(2) ϕ3 is a “re-interpretation” of the functional dependency (FD) city → country.
Any FD can be mapped to an equivalent OD by prefixing the left-hand side
(LHS) attribute onto the right-hand side (RHS) in the list [13]. Therefore,
techniques on ODs can be readily applied when both FDs and ODs are taken
into account.

Note that relation r violates given ODs, and is hence inconsistent. As an
example, values on [ year, month, day, time] do not comply with the ordering
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imposed by no, which violates ϕ1. As another example, tuples t3, t4 agree on
their city values, but have different values for country; this violates ϕ3.

The goal of this paper is to develop repairing techniques for OD violations.
We highlight features of ODs that complicate this issue.

(1) OD X �→ Y states that values on Y are monotonically non-decreasing with
respect to values on X. Specifically, (a) Each OD X �→ Y implies a FD

X → Y [13]. Here set X (resp. Y) denotes the set of elements in list X
(resp. Y). Recall that FDs are defined on sets of attributes. When tuples
agree on X’s values, they must agree on Y’s values; otherwise when tuples
are sorted by X, it cannot be guaranteed that they are also sorted by Y.
(b) ODs convey additional order semantics, since ordering is imposed on
tuples with different X’ values. The richer expressiveness of ODs necessarily
comes at a cost. [13] proves that a sound and complete axiomatization for
ODs consists of 6 inference rules, while a well-known axiomatization for FDs

consists of only 3 rules.
(2) In contrast to traditional dependencies, ODs are specified on lists of

attributes, and the order of attributes on the LHS and RHS matters. As
an example, neither [ no] �→ [ year, day, month, time] nor [ time, year, month,
day] �→ [ accum expenses] holds, since any given year (resp. month; day) cor-
responds to several different months (resp. days; times). Indeed, the order
of attributes in the list implies a hierarchy of attributes: the value of month
(resp. day; time) is relative to that of year (resp. month; day). We will for-
malize this observation in Sect. 3, as a guide for data repairing.

(3) FDs are typically given in a minimal form with a single RHS attribute; other
constraints, e.g., conditional FDs [3], denial constraints (DCs) [4], differential
dependencies (DDs) [12], can be easily converted to similar forms. However,
RHS attributes in an OD are typically considered as a whole and may not
be splitted. For example, neither [ no] �→ [ month] nor [ no] �→ [ day] holds,
since any year (resp. month) corresponds to several different months (resp.
days). ��

Contributions. We make a first effort to investigate data repairing with ODs.

(1) We formalize the data repairing problem for OD violations (Sect. 3). In addi-
tion to a cost model based on the number of modified attribute values, we
take into account the hierarchy of ordered attributes. We show that it is
NP-hard to repair OD violations with our framework.

(2) Despite the intractability, we develop efficient heuristic algorithms for data
repairing with ODs (Sect. 4). We tackle this problem by unifying the app-
roach enforcing equivalence and the technique enforcing ordering among
tuples. Since any FD can be mapped to an equivalent OD, our techniques
can be readily applied to the setting when both FDs and ODs are considered.

(3) Using both real-life and synthetic data, We conduct an extensive exper-
imental study to verify the effectiveness and efficiency of our algorithms
(Sect. 5).
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Related Work. Lexicographical order dependencies (ODs) [11,13,15] are pro-
posed to describe the relationships between two lexicographical ordering specifi-
cations with respect to lists of attributes. As stated in [15], Lexicographical ODs

properly subsume functional dependencies (FDs), which are specified on sets of
attributes. As for query optimization, OD is to order-by what FD is to group-by
in SQL statements. After the theoretical foundations of lexicographical ODs are
discussed in [13,15], the automatic discoveries of ODs are studied in [10,14], aim-
ing to find ODs in a given data set. OD validations are also discussed in [10,14]
as basic steps of OD discoveries, which are to verify whether given ODs hold on
a data set. OD validation is polynomial in the data size, while repairing with
ODs is proved to be intractable for a simple cost model and update operation
(Sect. 3). We argue that violations of ODs should be cleaned in advance to fully
take advantage of ODs in query optimization, which motivates this research.

In literature a different OD, referred to as pointwise order dependency, is
proposed in [8]. Unlike lexicographical OD on lists of attributes, pointwise OD

is defined on sets of attributes. The pointwise OD X ↪→Y holds if for any two
tuples s and t, for every attribute A in X , val(s[A]) op val(t[A]) implies val(s[B])
op val(t[B]) for every attribute B in Y, where op ∈ {<,≤, >,≥,=}. Here X and
Y are sets of attributes, and val(t[A]) denotes the value of A in tuple t.

Data repairing is one of issues central to data quality, and is well studied
(see e.g., [1–4,6,7,9,16,17]). Specifically, data repairing is discussed for differ-
ent constraint models, such as FDs [1,9], conditional FDs [2,3], editing rules [7],
DCs [4] and fixing rules [16], among others. To our best knowledge, neither of for-
mer works discusses the problem of data repairing with lexicographical ODs. As
opposed to above-mentioned dependencies, lexicographical ODs specify ordering
semantics on lists of attributes. This necessarily introduces new challenges, as
demonstrated in existing researches with ODs.

[15] states that pointwise OD subsumes lexicographical OD, and denial con-
straint (DC) subsumes pointwise OD. Therefore, one naive solution for our
problem is to map lexicographical ODs to pointwise ODs, then to map point-
wise ODs to DCs, and to employ existing repairing algorithms for DCs, e.g., [4].
However, a single lexicographical OD of the form X �→ Y needs to be expressed
in a set of DCs with size |Y| + |X|·|Y|, where |X| (resp. |Y|) is the number of
attributes in list X (resp. Y). As remarked earlier, lexicographical ODs may not
be converted to the form with a single RHS attribute; that is, |Y| is typically
larger than 1. As an example, 8 DCs are required to encode the OD ϕ1 : [ no]
�→ [ year, month, day, time] in Example 1. This large number of DCs necessarily
has negative effects on the efficiency and on the repair quality, and makes the
naive approach impractical. Moreover, as shown in Example 1, lists of attributes
in ODs essentially imply a hierarchy of ordered attributes, and this hierarchical
structure should be reflected in the repair framework. Obviously, this important
factor is not taken into account in existing repairing techniques. A good solution
for OD repairing should exploit the nature of ODs itself.
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2 Preliminaries

In this section, we review basic notations and definitions of ODs [10,13–15].

Relation. For a relation schema R(A1, . . . , Am), each Aj denotes a single
attribute of R. Given an instance r of R, tr, sr denotes tuples in r. Each tuple is
associated with a distinct identifier (id), which is not subject to updates. We use
tr and tri interchangeably when i is the identifier of tr. tr[A] denotes attribute
A of tuple t in r, called a cell, and val(tr[A]) denotes the value of this cell.

We abbreviate tri as ti if r is clear from the context, and also use ti to denote
the id of tuple ti when it is clear from the context.

One subtle issue is that ODs are specified on lists of attributes, while tradi-
tional dependencies, e.g., FDs, are typically specified on sets of attributes.

Sets and Lists.

(1) X and Y denote sets of attributes of schema R, while X and Y denote lists
of attributes of R. Specifically, {} (resp. [ ]) denotes the empty set (resp.
empty list). XY is a shorthand for the concatenation of X and Y.

(2) By convention, a non-empty list X can be expressed as [A|Y], where head A
is a single attribute, and tail Y is the remaining list by removing A from X.

(3) To simplify notation, for a list X, set X denotes the set of elements in X,
and t[X ] denotes the projection of tuple t on X .

ODs define lexicographic orders commonly found in the SQL order-by clause.

Order Operator 	X on Lists. For tuples t, s and an attribute list X, t 	X s if

(1) X= [ ]; or
(2) X= [A|Y] and (a) val(t[A]) <A val(s[A]); or (b) val(t[A]) = val(s[A]), and

t 	Y s.

Here <A is an order operator defined on the domain of attribute A. <A can be
naturally defined for numbers, strings and dates, among other things.

Note that t 	X s when ∀A ∈ X , val(t[A]) = val(s[A]). Let t ≺X s iff t 	X s
but s �	X t.

Example 2: Recall Fig. 1. t5 ≺[year,month,day,time] t4, while t4 ≺[no] t5. ��

Order Dependency [10,13–15]. For two lists of attributes X, Y on R,
(1) X �→ Y denotes an order dependency, read as X orders Y. An instance r of
R satisfies OD ϕ =X �→ Y, denoted r |= ϕ, if for any two tuples t, s ∈ r, when
t 	X s, t 	Y s. (2) We write r |= Σ for a set Σ of ODs, when ∀ϕ ∈ Σ, r |= ϕ.

Theorem 1: [13,15].

(1) if an OD X �→ Y holds, then the FD X→Y holds.
(2) X→Y holds, iff X �→ XY holds, for any list X (resp. Y) over the attributes

of X (resp. Y). ��
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As stated in [15], the dependency class of ODs generalizes that of FDs, in the
sense that there is a semantically preserving mapping of any FD γ into a set Σ
of ODs, and γ holds iff Σ holds (Theorem 1 (2)).

Violations of Order Dependency [13,15]. For an OD ϕ =X �→ Y, two sources
of OD violations are discussed in [13,15]:

(1) A split w.r.t. ϕ is a pair of tuples s and t such that val(t[X ]) = val(s[X ]),
but val(t[Y]) �= val(s[Y]).

(2) A swap w.r.t. ϕ is a pair of tuples s and t such that t ≺X s but s ≺Y t.

Example 3: (1) A split is actually a violation of FD, since each X �→ Y implies
X→Y. In Fig. 1, t3 and t4 incur a split w.r.t. [ city] �→ [ city, country]: they agree
on city values, but not on country values.
(2) t4 and t5 cause a swap: t5 ≺[year,month,day,time] t4, while t4 ≺[no] t5. ��

3 Framework of Repairing Order Dependency Violations

In this section, we first present the definition of repair for OD violations, followed
by two repair quality metrics based on the distance of instances and the concept
of attribute hierarchy. We then formalize the problem of data repairing with
order dependencies, and finally prove the complexity of this problem.

Repair w.r.t. OD. Given an instance r of schema R and a set Σ of ODs on R,
r is inconsistent when there exist OD violations in r w.r.t. Σ. A repair of r is an
instance r′ of R such that (1) r′ has the same set of tuples (with identifiers) as
r, possibly with modified values; and (2) r′ |= Σ.

Example 4: We get a repair of r in Fig. 1, when modifying the value of
t5[month] to be 02, and t4[country] to be “UK”. ��

Attribute value modification is employed as the only repair operation in
our definition, similar to repairing techniques for FDs and DCs, e.g., [2–4,9].
Obviously, value modifications suffice to restore the consistency of any instance
w.r.t. ODs. There may be a large or even infinite number of repairs. To this end,
some metrics are required to evaluate the quality of a repair.

Distance and Cost. A distance function d is employed to measure the dissim-
ilarity between two instances carrying the same set of tuples (identifiers), with
modified attribute values. Specifically, d is defined as follows [1,3,4,9]:

d(r, r′) =
∑

i∈[1,n],j∈[1,m]

(tir[Aj ], tir
′
[Aj ])

r, r′ are instances of schema R(A1, . . . , Am), both carrying a set of tuple
identifiers {t1, . . . , tn}. For an inconsistent instance r and its repair r′, the cost
of r′ is typically defined as the distance between r and r′: cost(r, r′) = d(r, r′).
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(tir[Aj ], tir
′
[Aj ]) is a distance between values of cells ti

r[Aj ] and ti
r′

[Aj ].
There are varying measurements for different types of values, e.g., string, num-
ber, date, time. To avoid depending on a particular approach, we consider a
binary distance between values: 0 for equal values, and 1 otherwise. This is a
typical setting adopted in data repairing (cardinality-based repairs), e.g., [4,9],
where the cost of a repair is measured as the number of changed cells. Note that
to find a repair with the smallest cost is NP-hard in this setting [4,9].

Example 5: The repair in Example 4 has a cost of 2. ��
In Example 1, year, month, day and time form a hierarchy of attributes: the

value of month is relative to that of year, and the value of day is relative to that of
month, etc. This suggests that it essentially incurs more changes to the instance
when modifying year attribute, compared to modifying month. We introduce the
following concept to encode this observation in the framework.

Attribute Hierarchy. Given a relation schema R(A1, . . . , Am), an attribute
hierarchy on R is a strict partial order <R defined on certain pairs of attributes
of R, written as Ak <R Aj . Ak <R Aj indicates that Aj precedes Ak in the
order: Ak is directly or indirectly relative to Aj .

Example 6: In Fig. 1, we define time <R day <R month <R year. ��
Based on attribute hierarchy, we present an additional metric to judge the

“goodness” of repairs with a same cost. As an auxiliary notion, we denote by
mod(r, r′) the set of cells modified in repair r′ of r.

Metric on Attribute Hierarchy. Given two repairs r′, r′′ of r with schema
R, we say r′′ is preferable to r′ in terms of attribute hierarchy <R on R, written
as r′′ � r′, if (1) there is a one-to-one mapping from each cell c′ ∈ mod(r, r′)
to cell c′′ ∈ mod(r, r′′) via function ρ or τ , where (a) ρ is an identity function:
ρ(c′) = c′ = c′′, i.e., c′, c′′ are the same cell, and (b) τ is a hierarchy reduction
function: τ(c′) = c′′, such that c′ = ti[Aj ], c′′ = ti[Ak], and Ak <R Aj ; and (2)
at least one cell c′ is mapped to c′′ via τ .

Example 7: We get a repair r′ by setting val(t5[year]) = 2019, val(t4
[country]) = “UK”, and another repair r′′ by setting val(t5[month]) =
02, val(t4[country]) = “UK”. r′′ � r′. ��
Remark. (1) r′′ � r′ implies that cost(r, r′) = cost(r, r′′), since there is a one-
to-one mapping between modified cells in r′ and r′′. (2) In accordance with the
binary distance adopted in the distance function, identity function ρ concerns
only the cell (position), not the cell value.

We are now ready to formalize the data repairing problem with ODs.

Repairing OD Violations. Given a relation r of schema R(A1, . . . , Am) with
attribute hierarchy <R, when r is inconsistent w.r.t. a set Σ of ODs, the problem
of repairing r w.r.t. Σ is to find a repair r′ of r, such that there does not exist
a repair r′′ of r, where (1) cost(r, r′′) < cost(r, r′), or (2) r′′ � r′.



290 Y. Qiu et al.

Intuitively, repairing OD violations aims to find a repair that either has the
minimum cost among all repairs, or incurs minimum changes in terms of attribute
hierarchy among repairs with the same cost. This problem is necessarily hard.

Theorem 2: The problem of data repairing with ODs is NP-hard. ��

4 Data Repairing with Order Dependencies

Despite the intractability of data repairing with ODs, we present efficient heuris-
tic algorithms to address the problem. Given an OD ϕ =X �→ Y, an order oϕ is
specified by its LHS attribute list X. oϕ is then imposed on the RHS attribute list
Y, where possible violations are to be repaired. We formalize orders specified by
LHS attributes, then present techniques to repair violations on RHS attributes,
and finally tackle the repairing problem when multiple ODs are involved.

4.1 Order Specified by LHS Attributes

We first introduce one auxiliary notation.

Equivalence Class. Equivalence class (EC) [1–3,6] is a common technique in
data repairing with FDs, for keeping track of equivalence relationships between
cell values. We use the following notations: (1) an EC e is a set of tuple ids; (2)
any tuple id ti belongs to one EC, denoted by ec(ti); (3) eA is the projection of
EC e = {ti, . . . , tk} on attribute A, i.e., a set of cells {ti[A], . . . , tk[A]}; and (4)
all cells in eA are assigned a same value, referred to as the target value of eA.

Order Specified by an OD. On a relation r with n tuples {t1, . . . , tn}, OD ϕ
= X �→ [A] specifies an order oϕ. Specifically, (1) By lexicographically sorting
tuples on X, we get a list of tuple ids [ti1 , . . . , tin ], where ij ∈ [1, n] (j ∈ [1, n]),
such that tuples ti1 	X · · · 	X tin . (2) We denote order oϕ as a list of equivalence
classes (ECs) [e1, . . . , ek]. oϕ is constructed in a linear scan of [ti1 , . . . , tin ], by
collecting successive tuple ids with equivalent X’s values in an EC.

Example 8: Consider the instance r given in Fig. 2(a). By sorting on [A,B], we
get a list of tuple ids [t1, t2, t3, t4, t5]. Then, the order oϕ specified by ϕ = [A,B]
�→ [E] is [{t1}, {t2}, {t3, t4}, {t5}], in a list of ECs. ��

Merge Multiple Orders. Several ODs may share (part of) their RHS

attributes; in this case multiple orders are imposed on the same RHS attributes,
which may cause violations. We generally cannot resolve violations for these
orders one by one, since fix violations for one order may break another. One
better approach is to merge these orders, say oϕ1 , . . . , oϕm

, into a new order oϕ,
such that if oϕ is satisfied, then oϕ1 , . . . , oϕm

are all satisfied.

Algorithm. Algorithm Merge takes as input orders oϕ1 , . . . , oϕm
, and produces

a single order oϕ, such that if oϕ is satisfied, then any oϕi
(i ∈ [1,m]) is satisfied.
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Fig. 2. Instance r for Example 8 to Example 11

Algorithm 1. Merge

input : orders oϕ1 , . . . , oϕm

oϕi (i ∈ [1, m]) is a list of ECs with size i′: oϕi = [ei1, . . . , eii′ ];
eij (j ∈ [1, i′]) is a set of tuple ids with size j′: eij = {tij1, . . . , tijj′}.

output: An order oϕ

1 for each tuple tl in relation r do add a vertex vl to graph G ;
2 for i:=1; i ≤ m; i++ do
3 for j:=1; j ≤ i′; j++ do
4 for k:=1; k < j′; k++ do
5 add an edge from vijk to vij(k+1);
6 add an edge from vijj′ to vij1;

7 if j �= i′ then add an edge from vij1 to vi(j+1)1;

8 find strongly connected components (SCCs) in G; convert G into a directed
acyclic graph (DAG), by treating each SCC as a single vertex; relabel vertices in
the DAG as Vh (if Vh is a simple vertex in G, Vh = vh);

9 for each vertex Vh in the DAG do
10 construct an EC eh: (a) if Vh is a SCC in G, then tl ∈ eh for all vl in Vh.
11 (b) otherwise, eh = {th}, i.e., a single tuple id corresponding to vertex vh.

12 find a topological order o on the vertices in the DAG; put EC eh into oϕ

according to Vh in o ;

(1) A graph G is used to represent relationships between tuples (ids), and each
tuple tl is denoted as a vertex vl in G (line 1);

(2) (a) Merge adds edges between tuple ids (vertices in G) in a same EC eij in
an order oϕi

, such that these vertices form a circle (lines 4–6). (b) Merge
then adds an edge from vij1 in eij to vi(j+1)1 in ei(j+1) for j ∈ [1, i′ −1]; this
follows the order in list oϕi

(line 7). Merge does (a) and (b) for all orders
oϕ1 , . . . , oϕm

.
(3) Merge converts G into a DAG by treating each SCC as a single vertex. Merge

then transforms vertices back to ECs in oϕ. Specifically, vertices in a SCC
are converted into tuple ids in a same EC, and orders of ECs in oϕ follows
the topological order in the DAG (lines 8–11).

Example 9: Recall instance r in Fig. 2(a). The order specified by [A] �→ [C] is
[{t1}, {t2, t3, t4}, {t5}] (solid lines) and the order specified by [D] �→ [C] is [{t1},
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{t5}, {t3, t4}, {t2}] (dotted lines) in Fig. 2(b). By merging the two orders, we
get the order as [{t1}, {t2, t3, t4, t5}]. ��

Complexity. The time complexity of Merge is O(m ·n), where m is the number
of orders as input, and n is the number of tuples. This is because the number of
edges in G is in O(m · n), and finding SCCs takes linear time in the number of
vertices and edges with well-known algorithm, e.g., Tarjan’s algorithm [5].

4.2 Fix Violations on RHS Attributes

We start from the basic case, to fix violations for one RHS attribute.

Violations of OD. Suppose order oϕ is imposed on a single RHS attribute A.
Recall that OD violations are categorized into split and swap (Sect. 2). To repair
OD violations, we need to enforce equivalence between cells in the same EC for
resolving split, and simultaneously, enforce ordering between cells in different
ECs for resolving swap. This is further complicated since each EC on A can
have arbitrary number of different values, and worse, we aim to make the fewest
modifications.

Algorithm. We present algorithm Fix to resolve violations for a single RHS

attribute. Fix is optimal in that it incurs the minimal number of modifications.

Algorithm 2. Fix
input : order oϕ = [e1, . . . , ek] and attribute A on which oϕ is to be imposed

1 for j:=1; j ≤ k; j++ do
2 initialize an empty list L′ of dpUnit;
3 for each ti in ej do
4 if L′ has a dpUnit dp such that dp.value = val(ti[A]) then
5 dp.weight := dp.weight+1
6 else add a new dpUnit dp′(value=val(ti[A]), ecno=j, weight=1) to L′;
7 add all dpUnits in list L′ to a list L;

8 sort dpUnits dps in list L by dp.value, breaking ties by dp.ecno;
9 initialize two lists DP and π with size l, where l is the size of L ;

10 DP [1] := L[1].weight; π[1] := -1;
11 for j:=2; j ≤ l; j++ do
12 if ∃ i < j such that L[i].ecno < L[j].ecno then
13 DP [j]:=L[j].weight+maxi(DP [i]);
14 π[j] := argmaxi(DP [i]); (i ∈ [1, j − 1], L[i].ecno < L[j].ecno)

15 else DP [j] := L[j].weight; π[j] := -1 ;

16 index := argmaxi∈[1,l]DP [i];
17 while index! = −1 do
18 assigns L[index].value as the target value of eA

m when m = L[index].ecno;
19 index := π[index];

20 determines target values for unresolved ECs by adjacent resolved ECs;
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Fix takes as inputs the order oϕ = [e1, . . . , ek] and the attribute A on which oϕ

is to be imposed. Fix modifies some ti[A] values such that oϕ is satisfied on A.

(1) On attribute A, the projection of an EC ej in oϕ, i.e., eA
j , results in a set

of cells. For each distinct value v of cells in this set, Fix creates a tuple dp
of the structure (value = v, ecno = j, weight = w), referred to as a dpUnit,
when there are w cells in eA

j having v as their values (lines 3–6). Intuitively,
when assigning a target value to eA

j , all of the cells in a same dpUnit should
be modified or not be modified, which incurs a repair cost of w or 0. All
dpUnits are collected in a list L for all ECs of oϕ (line 7).

(2) Fix sorts dpUnits in list L by value first, then breaks ties by ecno (line 8).
(3) Fix finds the maximum number of cells on A that can remain unchanged

without violating oϕ; this implies finding a sublist of L in strictly ascending
order of ecno, and with the maximal summed weights. Fix employs dynamic
programming with two lists DP and π (line 9); each list is of size l (l is the
size of list L). Fix iteratively computes DP, π for dpUnits in L (lines 11–15).
(a) If there is some L[i] such that L[i].ecno < L[j].ecno, L[j] can be attached
to the existing sublist ended with L[i] having the maximal DP [i]. DP and π
are maintained accordingly: DP [j] is to save the maximal summed weights
of any sublist ended with L[j], and π[j] is to save the index of the (j-1)th
elements in the sublist. (lines 12–14). (b) Otherwise a new sublist starts
from L[j] (line 15).

(4) Fix finds the index that maximizes DP [index] (line 16), and backtracks
all indices of list L that forms the optimal sublist (line 19); corresponding
dpUnits in L are not modified by Fix. Fix finds the EC eA

m (the projection
of em in oϕ on A) such that m = L[index].ecno, and assigns L[index].value
as the target value of eA

m. That is, Fix sets all values of cells in eA
m to be

L[index].value when they have different values (line 18). We call eA
m resolved.

(5) For each unresolved EC eA
h , Fix finds its most adjacent resolved ECs:

i1 = min(i) (eA
h−i is resolved), i2 =min(i) (eA

h+i is resolved). Note that (a)
at least one of i1, i2 exists, and that (b) there may be other unresolved ECs

between eA
h and its most adjacent resolved ECs. Fix determines target values

for eA
h , following the imposed order restrictions by eA

h−i1
, eA

h+i2
.

Example 10: Recall [A,B] �→ [E] specifies order oϕ = [{t1}, {t2},{t3, t4}, {t5}]
in Fig. 2(a). When enforced on E, we get [{val(t1[E]) = 5}, {3}, {4, 1}, {5}]. Fix
then computes and sorts dpUnits in list L as [(value = 1, ecno = 3, weight = 1),
(3,2,1), (4,3,1), (5,1,1), (5,4,1)]. By computing DP and π, Fix finds the optimal
sublist (dpUnits in bold); they are in strictly ascending order of ecno and have the
maximal summed weights of 3. Those dpUnits are not modified. Fix determines
target values of ECs {t2} (ecno = 2), {t3, t4} (ecno = 3) and {t5} (ecno = 4) as 3,
4 and 5 respectively. t4[E] is in EC {t3, t4}, and hence Fix sets val(t4[E]) = 4. For
the unresolved EC {t1}, Fix sets its value v according to the order restrictions
val(t1[E]) ≤ 3, since 3 is the target value of EC {t2}. Suppose we want to
minimize the quadratic objective function (v − 5)2 under this restriction, where
5 is the original value of t1[E]. We can set v = 3 in this case. Existing techniques,
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e.g., quadratic programming, can be employed in this process, complementary
to our method. Similar techniques exist for string values as well, see e.g., [4]. ��
Theorem 3: Algorithm Fix is optimal, with the fewest value modifications. ��

Complexity. The worst-case time complexity of Fix is O(n2), where n is the
number of tuples. Specifically, (1) lines 1–7 takes O(n) by hashing on cell values,
since each tuple id belongs to one EC; (2) line 8 takes O(l · log(l)), l is the size
of list L, and l ≤ n. There are typically many duplicate values in each EC; l is
much smaller than n; (3) lines 11–15 takes O(l2); and (4) lines 17–20 takes O(n).

We further present techniques to repair violations on multiple RHS attributes.

Algorithm. We present algorithm FixM, which takes as inputs order oϕ and
RHS attribute list Y= [A|T]. FixM modifies some RHS attribute values such that
oϕ is satisfied. FixM is recursively defined, and employs algorithm Fix to resolve
violations for each attribute in Y. Specifically, FixM works as follows.

(1) FixM calls Fix with inputs oϕ and A, to resolve violations on A (line 1).

(2) Based on the results of repairing cells on A, FixM divides oϕ into several
partitions (orders), to be further enforced on the remaining list T; each ej in
oϕ belongs to one of these partitions. FixM generates these partitions one by
one in o′

ϕ, and initially puts e1 into o′
ϕ (line 3). Recall that in Fix, to satisfy the

ordering between two successive ECs ej−1 and ej on attribute A, the target value
vj−1 of eA

j−1 must be less than or equal to the target value vj of eA
j . (a) If vj−1

= vj , the ordering between ej−1 and ej is copied in o′
ϕ (line 5). (b) Otherwise,

the ordering between ej−1 and ej is already guaranteed to be satisfied on Y in
lexicographical order. In this case, FixM discards the order restriction between
ej−1 and ej in o′

ϕ, and recursively calls FixM with o′
ϕ on T (line 7). After that,

FixM starts a new partition of oϕ in o′
ϕ, with ej as the first EC (line 8).

(3) A final call of FixM is required for remaining ECs in o′
ϕ (line 9).

Example 11: We repair violations of [A,B] �→ [E,F ] in Fig. 2(a). Suppose fol-
lowing Example 10, FixM sets val(t4[E]) = 4 and val(t1[E]) = 3 in repairing E.

Algorithm 3. FixM
input : order oϕ=[e1,. . . , ek] and RHS attribute list Y= [A|T]

1 Call algorithm Fix with oϕ and A as inputs;
2 if T = [ ] then return;
3 o′

ϕ := [e1] ;
4 for j:=2; j ≤ k; j++ do
5 if eA

j−1 and eA
j have a same target value then add ej to the tail of o′

ϕ ;
6 else
7 call algorithm FixM with o′

ϕ and T as inputs;
8 o′

ϕ := [ej ] ;

9 call algorithm FixM with o′
ϕ and T as inputs ;
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Then the order oϕ = [{t1}, {t2}, {t3, t4}, {t5}] specified by [A,B] is divided into
three orders to be imposed on F : [{t1}, {t2}], [{t3, t4}], [{t5}]. This is because
val(t2[E]) = 3 and val(t3[E]) = 4, this already guarantees t2 	[E,F ] t3; similarly
for t4 and t5. Note that the three orders are disjoint in terms of tuples ids, and
each of them is imposed on a horizontal partition of r on attribute F .

Consider [A] �→ [A,B], which is essentially a FD A → B. The order o specified
by [A] is [{t1}, {t2, t3, t4}, {t5}], when applying o on A in FixM, no value
modification occurs. However, this order is divided into three orders [{t1}], [{t2,
t3, t4}], [{t5}], enforcing equivalence in each EC on B with further call of FixM. ��

Complexity. The worst-case time complexity of FixM is O(|Y| ∗n2), where n is
the number of tuples and |Y| is the number of RHS attributes. Note that FixM
partitions the input order into several orders enforced on disjoint set of cells
when possible, to reduce the computational complexity in practice.

Remark. FixM considers the preference of attribute hierarchy: it delays value
modifications in RHS attributes whenever possible.

4.3 Repairing Violations for Multiple ODs

We put our techniques together to repair violations for multiple ODs.

Algorithm. RepairOD is to fix OD violations for a set Σ of ODs on relation r.
(1) To facilitate repair computations, we encode the relationships between
attributes in an attribute graph G, for identifying the sequence of attributes
in the repairing process. Specifically, for each OD ϕ in Σ, where ϕ =X �→ Y,
X= [A1, . . . , Ak] and Y=[B1, . . . , Bl], we add in G (a) vertices for A1, . . . , Ak,
B1, . . . , Bl, respectively; (b) a composite vertex [A1, . . . , Ak]; (c) an edge from
each vertex Ai (i ∈ [1, k]) to vertex [A1, . . . , Ak]; (d) an edge from vertex [A1,
. . . , Ak] to B1; and (e) an edge from Bi to Bi+1 for each i ∈ [1, l − 1].

Example: we show in Fig. 3(b) the attribute graph for ODs in Fig. 3(a).
(2) We find SCCs in G, convert G into a DAG by treating each SCC as a single
vertex, and find a topological order on the vertices in the DAG.

Example: The topological order for Fig. 3(b) can be A, SCC (B, [A, B], C), E,
D.

Algorithm 4. RepairOD
input : a set Σ of ODs, relation r

1 construct attribute graph G ;
2 find SCCs in G; convert G into a DAG by treating each SCC as a single vertex;

find a topological order on the vertices in the DAG ;
3 foreach vertex v in the DAG, by following the topological order do
4 if v is not a SCC then repair the attribute corresponding to v;
5 else make a traversal of all vertices in the SCC, and repair corresponding

attribute one by one, possibly with iterative computations;
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Fig. 3. Example of RepairOD

(3) We deal with vertices in the DAG one by one in the topological order. If v is
not a SCC, we repair the corresponding attribute, say A. Specifically, we collect
all ODs with A as RHS attributes, and employ algorithm Merge to find a single
order o to be imposed on A. When A is not the left-most attribute in the RHS

attribute list, we may employ FixM to compute partitioned orders on A, to be
merged with orders specified by other ODs. Finally, we employ algorithm Fix or
FixM to repair A with the order o.

Example: Consider attribute D. There are two ODs with D in RHS: [A,B]
�→ [C,D] and [E] �→ [D]. When calling FixM [A,B] �→ [C,D], after repairing
attribute C (C is in a SCC, see (4) below), we get the order (or several parti-
tioned orders) to be imposed on D. We use Merge to merge this order (these
orders) with the order specified by E together, and employ Fix on D with this
merged order. This improves efficiency and repair quality, as will be seen in
Sect. 5.
(4) For a SCC in the DAG, we deal with vertices in that SCC one by one in a
traversal of all vertices. We repair corresponding attributes just like (3). However,
iterative computations may be required when repairing attributes involved in a
SCC, due to interactions between ODs. More specifically, we have to repair an
attribute Ai when repairing attribute Aj incurs changes and in the SCC (a) there
is an edge from Aj to Ai, or (b) there is an edge from Aj to a composite vertex
v′ and an edge from v′ to Ai. To this end, we label attributes once they are
repaired. When an attribute A is repaired again, we apply a slightly modified
version of Fix in its final step. For each unresolved EC eA

h , Fix finds its most
adjacent resolved EC, w.l.o.g., say eA

h−i, and sets the target value of eA
h the same

as that of eA
h−i; this guarantees the reduction of number of ECs on A.

Example: Consider the SCC (B, [A,B], C) in Fig. 3(b). We start from a vertex,
say B, and repair it according to [C] �→ [B]. No computation is required for the
composite vertex [A,B]. We then repair C with [A,B] �→ [C,D]. Note that D is
after the SCC in the topological order, we hence do not repair D at this time.
When any changes occur on C, we repair B again; similarly for C.

Remark. RepairOD always terminates and generates a repair. For those
attributes not involved in a SCC, repairing them according to the topological
order in G suffices. While for those attributes A in a SCC, RepairOD guarantees
termination because at each step the total number of ECs on A is reduced.
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5 Experimental Study

Experimental Setting. We use one machine with 24 core Intel Xeon CPU and
64GB RAM, run each experiment 5 times and report the average here.

Data. (1) Real-life data (FLI) is about US flights. We obtain more than 100K
tuples with 12 attributes (https://www.transtats.bts.gov/). This dataset is used
in OD discoveries [10,14]; we choose 7 ODs. (2) Synthetic data SYN is to eval-
uate our approach with intricate ODs. We generate up to 100K tuples with 10
attributes, and design 8 ODs on it (extension of ODs in Fig. 3).

Algorithms. We implement the following algorithms in Java: (1) RepairOD
(with Fix, FixM and Merge) and (2) algorithm VC for comparison. VC follows the
same framework as RepairOD, and only differs in repairing a single RHS attribute,
i.e., algorithm Fix. VC handles OD violations on a RHS attribute with conflict
graph, a technique in repairing violations for FDs [9] and DCs [4]. VC builds a
conflict graph with an edge between each pair of cells that causes a violation,
employs a 2-approximation algorithm for a minimum vertex cover (MVC) of the
graph, and modifies cells in the MVC similar to the last step of Fix.

Metrics. Cardinality-based repairs aim to correctly identify error cells (posi-
tions), so as to minimize number of changes. We measure the number of changes
(#C) in the repair. Based on the known ground truth, we evaluate precision (P ,
the fraction of correct changes), recall (R, correct changes over the total number
of errors), and F-measure (F , 2 × (P ×R)/(P+R)), in terms of correct positions.

All experiments are controlled by 3 parameters: (1) n: the number of tuples;
(2) |Σ|: the number of ODs; and (3) θ: the ratio of dirty data, the number of
introduced dirty cells to the number of cells involved in ODs in the dataset.

Exp-1. Using FLI data, we compare RepairOD against VC. We set n = 30K,
|Σ| = 4, θ = 5% by default, and vary one parameter in each of the experiments.

Varying |n|. We first evaluate all algorithms by varying n from 10K to 90K.
Figure 4(a) shows results of running time; we omit results over 30 min. We see
RepairOD significantly outperforms VC and scales well with n: it takes less than
73 s when n = 90k. We reduce the number of value comparisons in VC to O(n ·
log(n)) with sorted partitions [10], and the most expensive part of VC is to
maintain its large conflict graph. In RepairOD, finding the optimal sublist governs
the overall time, with a complexity of O(l2). l is the number of dpUnits in the
list L (Algorithm 2: Fix), which is much smaller than n on FLI.

Figure 4(b) shows results of the number of changes (#C). We find RepairOD
significantly outperforms VC; RepairOD finds repairs with much smaller costs.
Recall that Fix is proved to be optimal in terms of changes for a given OD

with one RHS attribute. Figure 4(c) shows results of F-measure (F ). We see
that F values of RepairOD are high, in the range of [0.85, 0.88]; RepairOD can
correctly identify error cells in most cases. VC exhibits lower F values compared
to RepairOD, mainly due to lower precision values (not shown in figures); the
2-approximation vertex cover algorithm causes some unnecessary changes.

https://www.transtats.bts.gov/
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Fig. 4. Experimental results

In practice, we may also want to find correct values (last step of Fix). When
F-measures are considered in terms of both positions and values, they reduce
to the range of [0.45, 0.49] on FLI (not shown), as expected. This is because
(1) randomly introduced errors are not helpful in deducing original values; and
(2) many values are identified based on order restrictions, say v1 ≤ v ≤ v2,
when the difference between v1, v2 is large, it is very difficult to find exactly the
correct value of v. When data follow some mathematical distributions, statistical
methods [17] can be combined with our approach, as a future work.

Varying θ. We then evaluate all algorithms by varying θ from 5% to 13%.
Figure 4(d) shows results of running times. The number of edges in the con-
flict graph of VC almost grows linearly with θ, so are the running times. As
θ increases, we see times of RepairOD increase from 11 s to 14 s, due to more
dpUnits in list L (Algorithm 2: Fix). Figure 4(e) shows results of #C. Since the
number of errors increases when θ increases, more changes are required for both
algorithms. The #C values of RepairOD are almost linear with θ, as expected,
and the F-measure values are stable as θ increases (not shown).

Varying |Σ |. We then vary the number of ODs (|Σ|) from 4 to 7. Figure 4(f)
shows that times of the two algorithms increase almost linearly with |Σ|. This
is because (1) errors are evenly distributed in cells involved in ODs; (2) ODs

found in FLI are relatively simple such that the attribute graph has no circle
(Algorithm 4: RepairOD); and (3) VC follows the same framework as RepairOD,
which repairs attributes one by one in the topological order. In Fig. 4(g), we can
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see more changes are required to fix violations for both algorithms, as expected.
When |Σ| increases, the number of introduced errors increases with a fixed θ.

Exp-2. Using SYN data, we further verify our approach with more intricate
ODs. We set n = 90K, |Σ| = 5, θ = 5% by default in this set of experiments.

Varying θ. By varying θ from 5% to 13%, Fig. 4(h) shows F-measure values. The
results confirm our observations on FLI: RepairOD has high F values and outper-
forms VC. We find F values slightly decrease (about 5%) for both algorithms as
θ increases. More ODs with multiple RHS attributes are used in Exp-2, and some
introduced dirty cells are at the tail of RHS attribute list, which do not cause
violations and are hence not repaired. This negatively affects values of recall.

Varying |Σ |. By varying |Σ| from 5 to 8, Fig. 4(i) and (j) show values of time
and F-measure, respectively. RepairOD scales well: the time increases from 111 s
to 202 s as |Σ| increases. F-measure values slightly decrease when |Σ| increases,
due to more interactions between ODs and some error values at the tail of RHS

attribute list do not cause violations and are not repaired.

Exp-3. We demonstrate the benefits of Merge, to merge orders into one before
fixing attributes. For comparison, we implement another approach, denoted by
Iter, which repairs RHS attributes with several orders one by one and guarantees
termination by merging ECs in the repairing. We set |Σ| = 4, θ = 5%, vary n from
10K to 90K on SYN data. Figure 4(k) shows running times of both algorithms.
We find RepairOD (with Merge) outperforms Iter, and this becomes more evident
as n increases. The number of repairing attributes with Fix is reduced by capital-
izing on Merge, and the time complexity of Merge is only O(n). Figure 4(l) shows
that Iter incurs more number of changes (#C) compared to Merge; Merge also
helps improve repair quality by reducing the number of changes in the repair.

6 Conclusions

We have formalized the problem of repairing OD violations, studied its com-
putational complexity, presented algorithms, and experimentally verified our
techniques. We are currently developing distributed repairing techniques for OD

violations to enhance the scalability, so as to leverage more resources with dis-
tributed computations. Another topic for future work is to combine our tech-
niques with statistical methods, in helping identify correct values.
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Abstract. Spatial crowdsourcing emerges as a new computing
paradigm with the development of mobile Internet and the ubiquity of
mobile devices. The core of many real-world spatial crowdsourcing appli-
cations is to assign suitable tasks to proper workers in real time. Many
works only assign a set of tasks to each worker without making the plan
how to perform the assigned tasks. Others either make task plans only
for a single worker or are unable to operate in real time. In this paper, we
propose a new problem called the Multi-Worker -Aware Task Planning
(MWATP) problem in the online scenario, in which we not only assign
tasks to workers but also make plans for them, such that the total utility
(revenue) is maximized. We prove that the offline version of MWATP
problem is NP-hard, and no online algorithm has a constant competitive
ratio on the MWATP problem. Two heuristic algorithms, called Delay-
Planning and Fast-Planning, are proposed to solve the problem. Exten-
sive experiments on synthetic and real datasets verify the effectiveness
and efficiency of the two proposed algorithms.

Keywords: Spatial crowdsourcing · Task assignment · Task planning

1 Introduction

The development of mobile devices has triggered the fast growing of spatial
crowdsourcing. Unlike traditional crowdsourcing where workers perform tasks
via webs [1], workers in spatial crowdsourcing need to physically go to the loca-
tion of a task to perform it [2]. Spatial crowdsourcing extends traditional crowd-
sourcing to the physical world and has seen many applications in daily life [3,4].
For example, Waze1 provides a dynamic traffic navigation by collecting the GPS
information; Uber2 offers an efficient real-time taxi-calling service; Gigwalk3 per-
forms location-based micro tasks via crowds, etc.
1 http://www.waze.com.
2 http://www.uber.com.
3 http://www.gigwalk.com.
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Table 1. Release time, expiration time and utility

Task/worker t1 w1 t2 t3 w2 t4 t5

Release time 1 1 1.5 2 3 5 5.5

Expiration time 4 6.8 3 5 8.2 6.2 7

Utility (revenue) 5 � 2 3 � 2 1

Fig. 1. Initial locations of workers and tasks (Color figure online)

One of the most important issues in spatial crowdsourcing research is how
to assign tasks to proper workers [5–8]. Imagine the following scenario. Suppose
Alice is off duty at 5:00 p.m. from her office, and she wants to perform some tasks
passingly from Gigwalk on her way home. However, she has to reach home before
6:00 p.m. to have dinner with her family. Thus Alice wants to receive not only the
guidance of which tasks to perform, but also a plan (order) to perform them.
Every performed task contributes a revenue to the platform. When multiple
workers raise such demands in real time, the platform faces a new problem in
spatial crowdsourcing: how to make plans of tasks for multiple workers in online
scenario, such that the total revenue of the platform is maximized?

We further illustrate our motivation using the following example.

Example 1. Suppose there are two workers w1−w2 and five tasks t1−t5 appear-
ing on the platform, whose release and expiration times (in minutes) are shown
in Table 1, and the locations are shown in Fig. 1. The “utility” of each task
is also shown in Table 1, representing the revenue contributed to the platform
when the task is performed. For ease of presentation, the coordinates in Fig. 1
have been transformed to the corresponding time. Workers and tasks can be
observed after their release times, and tasks cannot be performed after their
expiration times. At time 1, only the task t1 and the worker w1 are observed.
Along a route 〈(1, 1), (1, 2), (2, 3), (5, 3)〉 (blue arrows in Fig. 1), w1 performs
{t1, t2}, and reaches his/her destination dw1 at time 6.41 (we calculate the time
accurately to 2 decimal places), which is earlier than w1’s expiration time. Since
t5 appears at time 5.5, w1 cannot reach his/her destination dw1 earlier than
time rt5 + dis(lt5 , dw1) = 7.5 if he/she performs t5. w2 appears at time 3, but no
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task can be accomplished by w2 right away. Suppose we let w2 move to location
(4, 2) and stay. At time 5, t4 appears, and it can be accomplished by w2. We
then alter w2’s plan to be “accomplishing t4 and moving to his/her destination”
(gray arrow in Fig. 1). However, at time 5.5, observing that t5 appears and it
can be accomplished by w2 (w2 is at location (4, 2.5) right now), we redirect w2

to perform t5 before he/she moves to his/her final destination. w2 can finally
accomplish t4 and t5. Based on the above plans for w1 and w2, we obtain a total
utility (revenue) of 10, which is the optimal planning in this instance.

Many works model the task assignment problem as an online bipartite graph
matching and only assign a set of tasks to the workers without indicating an order
to perform them [2,9,10]. Some pioneer works have explored task planning [11–
16]. However, they either are designed for a single worker [11,13], or cannot
handle the real-time (i.e., online) scenario [12,14–16].

In this paper, we propose a new task assignment problem for real-time spatial
crowdsourcing, called the Multi-Worker-Aware Task Planning (MWATP) prob-
lem. We attempt to not only assign a set of tasks to multiple workers, but also
make plans for them, to maximize the total utility (revenue) contributed to the
platform, in the two-sided online scenario (i.e. both workers and tasks appear on
the platform dynamically). In summary, we make the following contributions.

– We formulate the Multi-Worker-Aware Task Planning (MWATP) problem,
which assigns tasks and makes plans for multiple workers in online sce-
nario, such that the total utility (revenue) is maximized. We prove that the
offline MWATP problem is NP-hard, and any online algorithm for the online
MWATP problem has no constant competitive ratio.

– We propose two heuristic algorithms, called Delay-Planning and Fast-
Planning to solve the online MWATP problem.

– We conduct extensive experiments on both synthetic and real datasets. Eval-
uations verify the effectiveness and efficiency of our proposed algorithms.

The rest of the paper is organized as follows. We formally define the MWATP
problem and prove its hardness in Sect. 2. Two heuristic algorithms are proposed
in Sect. 3. We present the experimental evaluations in Sect. 4, review related work
in Sect. 5, and finally conclude this work in Sect. 6.

2 The MWATP Problem

In this section, we first formally define the Multi-Worker-Aware Task Planning
(MWATP) problem, and then prove its hardness.

2.1 Problem Definitions

This subsection presents the formal definition of the Multi-Worker-Aware Task
Planning problem.
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Definition 1 (Task). A task t is a tuple 〈lt, rt, et, ut〉, where lt is the location
which requires the worker to reach, rt and et are the release time and expiration
time of task t, and ut is the utility (revenue) contributed to the platform if the
task is accomplished. The task t can be observed only after its release time rt,
and it cannot be performed after its expiration time et. The time interval [rt, et]
is called the valid interval of t.

We assume the release time of a task is always no greater than its expiration
time, i.e., rt ≤ et for ∀t ∈ T , because otherwise the task will never be finished.
We also assume a task can only be performed by one worker. Besides, we use
“utility” to represent the revenue of a task hereafter.

Definition 2 (Worker). A worker w is a tuple w = 〈sw, dw, cw, rw, ew〉, where
w appears at his/her release time rw with the initial location sw, and needs to
reach his/her destination dw before the expiration time ew. We use cw to denote
the current location of w at a certain time T ∗. Specifically, cw equals the initial
location sw when w appears on the platform. A worker can accomplish a task t
if he/she can reach the location of t within the valid interval [rt, et], which will
add a utility value of ut for the platform.

We model the locations on a metric space (M,dis), where M is a set of
locations, and dis is a function, dis : M × M → R, and assume each worker
can reach his/her destination before his/her expiration time, i.e., ew ≥ rw +
dis(sw, dw) for ∀w ∈ W . For simplicity, each worker is assumed to travel at the
same constant speed. Consequently, a distance can be represented by a time
period, and we will follow this rule whenever there is no ambiguity.

Definition 3 (Guidance). A guidance for a worker w is a tuple g =
〈tg,DIR(l)〉, which means at time tg, worker w needs to head to the location
l from his/her current location. Note that l can be the same as the worker’s
current location. In this case, we denote DIR(l) as STAY .

Definition 4 (Plan). A plan for a worker w is a vector of guidance pw =
〈g1, g2, . . . , g|pw|〉, where tgi

< tgi+1 for i = 1, 2, . . . , |pw − 1|. A plan is valid if
w can reach his/her destination dw before his/her expiration time ew following
the plan pw. Given a set of tasks T , we further denote AT (T, pw) as the set of
tasks that can be accomplished by w following pw.

Note that the plan pw for a worker w can be updated by the platform when
new tasks appear on the platform. However, the updated plan should always be
valid. With a plan pw, we can generate a route of the worker. Based on this route,
we can check whether a task can be accomplished, i.e. a task t ∈ T belongs to
AT (T, pw), by checking whether w can reach lt within t’s valid interval [rt, et].
Given a set of plans P for multiple workers on a set of tasks T , we define the set
of accomplished tasks AT (T, P ) = ∪p∈P AT (T, p).

Definition 5 (Online Multi-Worker-Aware Task Planning Problem).
Given a set of workers W and a set of tasks T , where workers and tasks arrive
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one by one according to their release times, the problem is to find a valid plan
set P for W , such that the total utility of accomplished tasks, i.e.,

U(T, P ) =
∑

t∈AT (T,P )

ut (1)

is maximized.

In this paper we mainly study the online MWATP problem. If not explicitly
specified, we will use “MWATP” to refer to the online MWATP problem.

Example 2. Assume the same settings as in Example 1. Then the plan for w1 is
pw1 = 〈〈1,DIR((1, 2))〉, 〈2,DIR((2, 3))〉, 〈3.41,DIR((5, 3))〉〉, which generates
a route 〈(1, 1), (1, 2), (2, 3), (5, 3)〉. Similarly, the plan for w2 is pw2 = 〈〈3,DIR
((4, 2))〉, 〈4.41, STAY 〉, 〈5,DIR((4, 4))〉, 〈5.5,DIR((3, 3))〉, 〈6.62,DIR((4, 4))〉〉,
which also generates a route 〈(3, 1), (4, 2), (4, 2.5), (3, 3), (4, 4)〉. The set of tasks
accomplished from P = {pw1 , pw2} is AT (T, P ) = AT (T, pw1) ∪ AT (T, pw2) =
{t1, t2, t4, t5}.

2.2 Hardness of MWATP Problem

In this subsection, we first show that the offline MWATP problem is NP-hard,
and then prove that no algorithm can achieve a constant competitive ratio on
the MWATP problem.

Definition 6 (Offline Multi-Worker-Aware Task Planning Problem).
Given a set of workers W and a set of tasks T , where the release times of
workers and tasks are known a priori, the problem is to decide a valid plan set
P for W , such that the total utility of the accomplished tasks is maximized.

Theorem 1. The offline MWATP problem is NP-hard.

Proof. We prove the NP-hardness of offline MWATP problem by reducing the
orienteering problem [17] to it. The decision version of MWATP problem is to
decide if there is a valid plan set P , such that total utility is no less than U . The
decision version of orienteering problem is defined as follows. Given n nodes,
where one is the start node s1, one is the end node sn, and each of the other
n − 2 nodes is associated with a score, the objective is to find a route of nodes
starting from s1 and ending at sn, such that the total score is no less than S,
with a time constraint TMAX . For an instance I of the orienteering problem,
we map the start node s1 to the worker’s start location, the end node sn to
the worker’s destination, the other n − 2 nodes to n − 2 tasks, and the decision
threshold S to U . Let the release time and expiration time of each task and the
worker be 0 and TMAX , respectively. Now we get an instance I ′ of the offline
MWATP problem. In I ′, a task can be performed at any time, as long as the
worker can reach his/her destination on time. This means that as long as there
is a route for the worker in I ′ achieving utility U , then there must be a route
in the orienteering problem gaining the same scores, and vice versa. Since the
decision version of orienteering problem is NP-complete, the optimization version
of offline MWATP problem is NP-hard. 
�
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Next we prove that for the MWATP problem, neither deterministic nor ran-
domized online algorithm can yield a constant competitive ratio. Although a
similar claim of a special case of the MWATP problem has been considered in
[13], it neglects the proof on randomized algorithms.

Lemma 1. No deterministic algorithm for the MWATP problem has a constant
competitive ratio.

Proof. The problem in [13] is a special case of the MWATP problem with a single
worker. Since the problem in [13] does not have a deterministic algorithm with
constant competitive ratio, the MWATP problem does not have a deterministic
algorithm with constant competitive ratio either. 
�
Lemma 2. No randomized algorithm for the MWATP problem has a constant
competitive ratio.

Fig. 2. An instance that randomized algorithms perform bad

Proof. We prove the lemma by showing that the MWATP problem with exactly
one worker does not have a constant competitive ratio. Consider an instance
shown in Fig. 2. We omit the Y axis since tasks and workers appear on the X
axis. l0 is the origin with coordinate (0, 0). Let m be an arbitrary positive integer
and ε = 1

m . At time 1, with probability 1
m , n tasks appear at location li with

expiration time 1 + ε
2 . All of the tasks have a utility value of 1. This yields a

probability distribution X over the input of the tasks. At time 0, a worker w
appear at l0, with the destination lm = (1, 0) and expiration time 2. No matter
where the n tasks appear, in the optimal solution w can wait at the location until
tasks appear, and then go to the destination before his/her expiration time.
Therefore the optimal result on X is EX [OPT ] = n. Now consider a generic
deterministic online algorithm ALG. The worker at most reach one location of
l1, l2, . . . , lm before the tasks’ expiration time, no matter where he/she is located
at time 1. This means that the expectation of the utility value under the input
distribution X is at most EX [ALG] ≤ 1

m · n = nε. This yields

EX [ALG]
EX [OPT ]

≤ nε

n
= ε (2)

The ratio for any deterministic online algorithm becomes unbounded when ε
is small enough. From Yao’s Principle [18], no randomized algorithm for the
MWATP problem can achieve a constant competitive ratio. 
�
Theorem 2. No online algorithm, neither deterministic nor randomized, can
achieve a constant competitive ratio on MWATP problem.

Proof. The theorem is a direct result from Lemmas 1 and 2. 
�
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Algorithm 1. BenefitGreedy
input : a worker w and a set of tasks T
output: worker w with new plan

1 Sort t in T according to BEN(w, t) in descending order;
2 end loc ← cw;
3 end time ← the current time;
4 foreach task t ∈ T do
5 if end time + dis(end loc, lt) ≤ et and

end time + dis(end loc, lt) + dis(lt, dw) ≤ ew then
6 Append t to Sw;
7 end time ← end time + dis(end loc, lt);
8 end loc ← lt;
9 T ← T − t;

10 if no task is assigned to w then
11 Let w move toward to dw;

3 Solutions to MWATP Problem

Although no deterministic or randomized algorithms can achieve a constant
competitive ratio, we propose two efficient heuristic algorithms, Delay-Planning
and Fast-Planning, to solve the MWATP problem.

3.1 The Delay-Planning Algorithm

Main Idea. In the Delay-Planning algorithm, a worker neglects the new tasks
while he/she is executing his/her current plan. Once the current plan is finished,
the worker is assigned a new plan with the delayed (previously neglected) tasks.

Algorithm Details. We use a task pool to store the tasks that have not been
assigned to workers. Whenever a new worker arrives or a worker finishes his/her
last plan, the algorithm finds a new plan for the worker from the task pool.

We apply a succinct greedy function to make new plans for a worker by
considering both the utility and the distance from the worker’s current location
to the task. (i) A task with a higher utility is preferred. (ii) A larger distance
between the task and the worker leads to a higher risk of the expiration of the
task. Combining these two considerations, we use the ratio between the utility
and the distance from the worker, denoted by BEN(w, t) = ut

dis(cw,lt)
, to measure

the benefit of a task. The function greedily chooses the next task with the largest
benefit that can be accomplished on time by the worker.

Algorithm 1 illustrates the procedure of the greedy function. In line 1, the
tasks in the task pool are sorted according to their benefits from w. In lines 2–3,
two variables end loc and end time are defined to represent the location and
time when the worker finishes his/her current plan. For each task t, we judge if
the worker can accomplish it and reach the destination on time if t is appended
to the tail of Sw in line 5. Note that Sw represents the task sequence of w, as
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is shown in Algorithm 2. If “yes”, then the algorithm assigns t to w, updates
end time and end loc, and removes t from the set T in lines 6–9.

The Delay-Planning algorithm is built upon the BenefitGreedy function
(see Algorithm 2). In lines 1–2, we initialize a task pool taskPool, and a free
worker set freeWorkerSet. In line 3, each worker w ∈ W is associated with a
task sequence Sw, i.e., a plan. Whenever a task arrives (“true” judgement in line
5), we first attempt to assign it to the workers in freeWorkerSet in lines 6–8.
If fail, we add the task to taskPool in lines 9–10. When a worker arrives, we
assign tasks and update his/her plan from the task pool taskPool for him/her
in line 13. A worker who has just finished his/her current plan is regarded as a
new worker in Delay-Planning (see lines 12–15).

Example 3. Back to our running example in Example 1. When w1 appears, there
is one task, t1, in the task pool. We then invoke BenefitGreedy(., .) to make a
plan for w1. Since w1 can reach lt1 before et1 , and reach his/her destination on
time, w1’s new plan is to accomplish {t1}. Then t2 and t3 appear at time 1.5 and
2 but there is no worker in freeWorkerSet. So they are added to taskPool. At
time 3, w2 appears. Now taskPool is {t3}, because t2 has expired. However, w2

cannot accomplish t3 before the expiration time of t3. Thus w2 directly moves
to dw2 . At time 3.24, w1 finishes the last task sequence 〈t1〉 and now taskPool =
{t3}. w1 cannot accomplish t3 before the expiration time of w1. Hence w1 directly
moves to dw1 . At time 5, t4 appears. Currently freeWorkerSet = {w1, w2}. The
locations of w1 and w2 are (3.76, 3) and (3.63, 2.90), respectively. t4 is assigned
to w2. We cannot choose w1 because of w1’s expiration time. At time 5.5, t5
appears. Neither w1 nor w2 can accomplish it. Note that at this time, w2 is
still accomplishing his/her current task sequence 〈t4〉. Finally, Sw1 = 〈t1〉 and
Sw2 = 〈t4〉. The total utility is ut1 + ut4 = 7.

Time Complexity. We apply the amortized analysis to analyze the complex-
ity of Algorithm 2. Assume n and m are the number of workers and tasks,
respectively. First, the time complexity for calling Algorithm1 is O(m log m).
In Algorithm 2, the time complexity of lines 6–8 is O(n), and they are executed
at most m times. The time complexity of lines 5–10 is O(mn). In lines 11–15,
a worker may become a request more than one time. However, this happens
only when he/she appears for the first time or just accomplishes a plan, which
means that lines 11–15 are executed at most O(m + n) times (n for appear-
ing and m for accomplishing a plan). The total complexity of lines 11–15 is
O((m + n)m log m). Combing these two parts, the time complexity of Delay-
Planning is O((m + n)m log m).

3.2 The Fast-Planning Algorithm

The Delay-Planning algorithm defers the processing of tasks for a certain time,
which potentially leads to the expiration of some tasks. Thus we further propose
the Fast-Planning algorithm to fasten the process of making new plans, and
therefore, potentially increase the total utility.
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Algorithm 2. Delay-Planning
input : A set of workers W , a set of tasks T
output: Plans for w ∈ W

1 taskPool ← ∅;
2 freeWorkerSet ← ∅;
3 Set Sw an empty task sequence for each w ∈ W ;
4 for each new arrival request do
5 if the request is a task t then
6 if there exists a worker w′ ∈ freeWorkerSet can accomplish t with

largest BEN then
7 Append t to Sw′ ;
8 freeWorkerSet ← freeWorkerSet − {w′};

9 else
10 taskPool ← taskPool ∪ {t};

11 else
12 // Denote the arrival worker by w.
13 BenefitGreedy(w, taskPool);
14 if there is no task appended to Sw then
15 freeWorkerSet ← freeWorkerSet ∪ {w};

Main Idea. Whenever a task appears, the Fast-Planning algorithm immediately
assigns the task to a worker and makes a new plan for the worker. To make the
new plan efficiently, the algorithm only attempts to combine the new task with
the current plan, rather than going through all possible permutations.

Algorithm Details. Algorithm 3 illustrates the procedure of the Fast-Planning
algorithm. In line 1, we initialize two sets, aWorkerSet and freeTaskSet, repre-
senting the available worker set and the unassigned task set, respectively. When-
ever a worker w arrives (“true” judgement in line 3), we make a new plan for
w from the freeTaskSet, as shown in lines 4–5. Otherwise if a task t appears,
we try to combine t with the task sequence (plan) of a worker in aWorkerSet,
with minimized increased travel distance (lines 8–15). If such combination does
not exist, t is added to freeTaskSet and waits to be assigned to prospective
workers, as shown in lines 16–17.

Example 4. We use the settings in Example 1 to run the Fast-Planning algo-
rithm. At time 1, w1 arrives and moves to t1, which is the same as in the
Delay-Planning algorithm. At time 1.5, t2 appears and we try to combine it
with w1’s task sequence Sw1 . At this time, w1 is at (1.22, 1.45). With simple cal-
culation, it results in a smaller increased travel distance by performing t2 first
than performing t1 first. Therefore Sw1 = 〈t2, t1〉. At time 3, w2 arrives. Now
freeTaskSet = {t3}, but w2 cannot accomplish t3 on time. Hence w2 directly
moves to his/her destination dw2 . t4 and t5 appear at time 5 and 5.5, respec-
tively, and only t4 can be accomplished by w2. This process is similar to that in
the example of the Delay-Planning algorithm and we omit the details. Finally,
t1, t2 and t4 are accomplished, and we obtain a utility value of 9.
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Algorithm 3. Fast-Planning
input : A set of workers W , a set of tasks T
output: Plans for w ∈ W

1 aWorkerSet ← ∅, freeTaskSet ← ∅;
2 for each new arrival request do
3 if the request is a worker w then
4 BenefitGreedy(w, freeTaskSet);
5 aWorkerSet ← aWorkerSet ∪ {w};

6 else
7 // Denote the arrival task by t.
8 wbest ← None, bestComPos ← −1, minCost ← ∞;
9 foreach wa ∈ aWorkerSet do

10 foreach combination position ComPos in Swa do
11 tmpCost ←extra distance if combine t to ComPos;
12 if tmpCost < minCost then
13 minCost ← tmpCost, bestComPos ← ComPos, wbest ← wa;

14 if minCost < ∞ then
15 Combine t with Swbest according to bestComPos.

16 else
17 freeTaskSet ← freeTaskSet ∪ {t};

Table 2. Experiments settings

|T | 100, 200,300, 400, 500

|W | 1000, 2000,3000, 4000, 5000

tst σ = 10, μ = 30, 60,90, 120, 150

tsw σ = 10, μ = 60, 120,180, 240, 300

Umax 2, 4,6, 8, 10

Scalability(|T | × |W |) 10k × 1k,20k × 2k,30k × 3k,40k × 4k,
50k × 5k,60k × 6k,70k × 7k,80k × 8k,
90k × 9k,100k × 10k,200k × 20k,300k × 30k,
400k × 40k,500k × 50k

Time Complexity. We still use n and m to denote the number of workers and
tasks, respectively. Lines 3–5 are executed at most O(n) times, and the time
complexity per execution is O(m log m). Thus the total time complexity of lines
3–5 is O(mn log m). When the request is a task, lines 11–13 are executed O(nm2)
times (O(n) for line 9, and O(m) for line 6 and line 10). Line 8 and lines 14–17
can be executed in O(1) time, and they are iterated at most O(m) times. The
total time complexity of lines 6–17 is O(nm2). Combing these two parts, the
time complexity of the Fast-Planning algorithm is O(nm2).
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4 Experimental Study

4.1 Experimental Setup

Datasets. We evaluate the performance of the proposed algorithms on both
synthetic and real datasets. Table 2 shows the settings of the synthetic dataset,
where the default settings are marked in bold. Tasks and workers are randomly
sampled on a 600 × 600 metric space, with different values of |T | and |W |.
We also change the extra expiration time span of tasks and workers (tst and
tsw). Motivated by [19], the waiting time of a task (worker) follows a Gaussian
distribution with the settings as in Table 2. The utilities of tasks are randomly
sampled between [1, Umax]. Similarly to [20], we generate the release time of
tasks and workers by the Poisson distribution, with a parameter λ = 2/min for
workers, and λ = 20/min for tasks. We also generate datasets with large scales
to test the scalability of the algorithms. For real data, we use the taxi order
data, collected from a real taxi-calling service platform, to generate the locations
of workers and tasks. Specifically, the location of a task is generated from an
order’s starting location. The initial location and the destination of a worker are
generated from an order’s starting location and destination, respectively. Other
settings are the same as in the synthetic dataset.

Baselines. In addition to the two proposed algorithms, we also evaluate the
performance of two baseline algorithms. The first is the NNH algorithm in [9],
and the second is the GMCS algorithm in [13]. Both of them solve the single-
worker task planning problem, and perform best in [9,13] respectively. To extend
them to the MWATP problem, whenever a task appears, we find a candidate
worker set (satisfying the expiration constraint) and randomly assign the task to
a worker in the set. Each worker runs the corresponding single-worker algorithm
to accomplish the tasks. The two baselines are denoted by Baseline-NNH and
Baseline-GMCS, respectively.

Implementation. All the algorithms are implemented in C++, and the exper-
iments were performed on a machine with 40 Intel(R) Xeon(R) E5 2.30 GHz
CPUs and 512 GB memory.

4.2 Experiment Results

Effect of |T |. Figure 3a–c show the results of varying |T |. Delay-Planning and
Fast-Planning outperform the two baselines in terms of the total utility value
while Fast-Planning performs the best. The utility obtained by Delay-Planning is
stable, while that of the other three increases with |T |. This might be because in
each batch of Delay-Planning, tasks have been overflowed, and more tasks do not
increase the utility. All the algorithms consume more time when |T | increases,
because more tasks lead to a larger searching space. Delay-Planning is the most
time-efficient, while Fast-Planning consumes more time, because a combination
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Fig. 3. Results on varying |T | and |W |
inspection for all workers is called whenever a task appears. For memory, Delay-
Planning and Fast-Planning consume more space when |T | increases, but are
still more efficient than baselines.

Effect of |W |. Figure 3d–f show the results of varying |W |. For the total utility
value, Delay-Planning and Fast-Planning perform better than the baselines. The
total utility of Delay-Planning and Fast-Planning increases with |W |, yet that of
the baselines remain almost constant. The running time of all the algorithms are
stable as the increase of |W |. This might be because the tasks are overflowed, and
more tasks do not lead to more efficient plans. Delay-Planning is still the most
time-efficient. For memory, Delay-Planning and Fast-Planning consume stable
space as |W | increases, which is better than the baselines.

Effect of tst . Figure 4a–c show the results of varying tst. The total utility of
Delay-Planning and Fast-Planning increases as tst increases, but that of the base-
lines decrease as tst increases. This is probably because when μ of tst increases, a
worker can be assigned to a task far away from him/her, which wastes too much
time in one task, which leads to a decrease in the total utility. Delay-Planning
and Fast-Planning still get larger total utility than the baselines (except for
Delay-Planning when μ = 60), and Fast-Planning performs the best. As μ of tst

increases, the running time of Delay-Planning and Fast-Planning increases, but
that of the baselines tends to be stable. This is because the size of the candidate
task set for a worker is restricted by the spare time of workers, even though
tasks have more waiting time. All the four algorithms consume stable memory,
but the two proposed algorithms require less memory.
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Fig. 4. Results on varying tst, tsw and Umax
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Fig. 5. Results on scalability
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Fig. 6. Utility results on real datasets

Effect of tsw . Figure 4d–f show the results of varying tsw. As μ of tsw increases,
the total utility values of our algorithms increase, because workers have more
spare time to accomplish tasks. Delay-Planning and Fast-Planning perform bet-
ter than the baselines. As μ of tsw increases, the running time of Delay-Planning
and Fast-Planning increases, while that of the baselines tend to be stable. The
reason is similar as when varying tst. Delay-Planning is still the most time-
efficient. The memory of the four algorithms are similar as when varying tst.

Effect of Umax . Figure 4g–i show the results of varying Umax. The total utility
value of all the algorithms increases linearly as Umax increases. The running time
of all the algorithms remains stable, indicating the utility of tasks has no impact
on the running time. The trend of the memory consumption is similar as when
tst varies.

Scalability. The scalable results are shown in Fig. 5. The utility and the run-
ning time of the four algorithms increase linearly as |T | ∗ |W | increases, and
our algorithms perform better than baselines. Our algorithms also consume less
memory than the baselines.

Performance on Real Datasets. Figure 6 shows the results of the total utility
value on real datasets. The results are similar to those on the synthetic datasets.
The results for the running time and memory are also similar to those on the
synthetic datasets. Thus we omit the figures of memory and time due to the
limited space.

Summary of Results. The Delay-Planning algorithm, though performs worse
than the Fast-Planning algorithm in terms of the total utility value, has the
most efficient running time. The Fast-Planning algorithm obtains the largest
total utility at the cost of a slightly longer running time than the Delay-Planning
algorithm. Both the two proposed algorithms can fit the scalable environment
in terms of total utility and running time. The results are also similar on the
real-world datasets.
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5 Related Work

Our work is related to the domains of Spatial Crowdsourcing and Orien-
teering Problem.

5.1 Spatial Crowdsourcing

Spatial crowdsourcing has attracted extensive research interest since [2].

Task Assignment and Planning. Task assignment, task planning in particu-
lar, is one of the most important issues in spatial crowdsourcing [2,9,21–23]. In
[11], the authors make plans for a single worker in the offline scenario, with the
objective to maximize the number of accomplished tasks. The model is general-
ized to multiple workers in [12,15], but still only for the offline scenario. Both
models [11,12] try to find approximate plans for workers. In [22], a protocol is
proposed for protecting the privacy while task assignment. One recent work [16]
makes one step further to find the exact plans of maximizing accomplished tasks
for the offline scenario by using dynamic programming and graph partition.

Online Models. Since many real-world spatial crowdsourcing applications are
real-time, recent studies have proposed various online models. In [24] and [25],
the authors study the maximizing weighted bipartite matching in the one-sided
online scenario, where only nodes on one side appear dynamically. The two-
sided online scenario is explored in [10], and a solution with a competitive ratio
of 1

4 is proposed. [23] further studies the online trichromatic matching problem.
However, these works focus on task assignment as a bipartite matching problem,
which is invalid for task planning in our work. The closest related work is [13],
which studies the route planning problem for a single worker in the one-sided
online scenario (i.e., only tasks appear dynamically).

5.2 Orienteering Problem

Given a worker with a starting location, an end location, and a time budget,
and a set of n nodes in the plane, each of which is associated with a score, the
orienteering problem aims to make a scheduling for the worker to gain maximal
scores, with the constraint of costing less time than the time budget [17]. Many
variants of the orienteering problem have been proposed [26]. Among them, the
Team Orienteering Problem with Time Windows (TOPTW) [27] is the closest
to our work. In this problem, each node is associated with a valid time window
and we need to find a proper scheduling for a team of workers. However, these
time windows can be observed at the beginning of the system, which means that
the TOPTW is still an offline scenario. Furthermore, in TOPTW the workers
are foreknown, while in our MWATP problem, the arrivals of both workers and
tasks are unknown beforehand.
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6 Conclusion

In this paper, we propose a new online task planning problem, called Multi -
Worker -Aware Task Planning (MWATP) problem. We prove that the offline
MWATP problem is NP-hard and no online algorithm has a constant competitive
ratio. We then propose two heuristic algorithms, called Delay-Planning and Fast-
Planning to solve the MWATP problem. We finally evaluate the effectiveness and
the efficiency of the proposed algorithms on both synthetic and real datasets.
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Abstract. Student assessment aims to diagnose student latent
attributes (e.g., skill proficiency), which is a crucial issue for many
educational applications. Existing studies, such as cognitive diagnosis,
mainly focus on exploiting students’ scores on questions to mine their
attributes from an independent exam. However, in many real-world sce-
narios, different students usually participate in different exams, where
the results obtained from different exams by traditional methods are not
comparable to each other. Therefore, the problem of conducting assess-
ments from different exams to obtain precise and comparable results
is still underexplored. To this end, in this paper, we propose a Multi
Task - Multidimensional Cognitive Diagnosis framework (MT-MCD) for
student assessment from different exams simultaneously. In the frame-
work, we first apply a multidimensional cognitive diagnosis model for
each independent assessment task. Then, we extract features from the
question texts to bridge the connections with each task. After that, we
employ a multi-task optimization method for the framework learning.
MT-MCD is a general framework where we develop two effective imple-
mentations based on two representative cognitive diagnosis models. We
conduct extensive experiments on real-world datasets where the experi-
mental results demonstrate that MT-MCD can obtain more precise and
comparable assessment results.

Keywords: Student assessment · Cognitive diagonosis
Item Response Theory · Multi-task learning

1 Introduction

Educational Data Mining (EDM) is an emerging research field which seeks
to develop methods for exploring data from educational settings (e.g., schools
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Fig. 1. Student assessment for exams

or learning systems). It contributes to learning theories, especially extracting
instructive patterns from student learning, which helps understand students bet-
ter and improve their learning [19,21].

One of the most important research issues in EDM is student assess-
ment [4,17], where the goal is to discover student latent attributes (e.g., skill
proficiency) based on their learning activities, such as exam scores [20] and feed-
back records in systems [26]. For better illustration, Fig. 1 shows a toy example
of the general process of student assessment. From the figure, after collecting the
responses of the students for each exam, the general goal of student assessment
is to develop effective models to evaluate and diagnose student skills with the
corresponding question characteristics (e.g., difficulty, discrimination). As the
assessment results could be a fundamental task for various educational applica-
tions [22], such as targeted knowledge training and question recommendation,
this issue has caused a great attention from both researchers and general publics
[1].

In the literature, researchers have proposed many cognitive diagnosis models
(CDMs) for the assessment along this line [12]. Existing CDMs have achieved a
great success for student assessment in an independent exam, in which we argue
that student A is more capable than student B if A gets a higher score than B.
However, in most real-world scenarios, such as Graduate Record Examinations
(GRE), students are allowed to take part in different exams [14]. If A gets a
higher score than B when they participate in different exams, can we believe
that A has a higher ability than B? In fact, educational psychologists claim
that scores for students who participated in different exams could not compare
directly [14]. Thus, in Fig. 1, it is not satisfied if we directly apply traditional
CDM to conduct student assessment for all T exams. To this end, there is a
urgent problem of conducting assessments from different exams simultaneously
and it is necessary to propose an unified solution in such situation.

However, there are many challenges along this line. First, it is challenging to
design a general unified framework to connect different exams for student assess-
ment. Second, how to bridge connection with independent exams is a nontrivial
problem. At last, in order to obtain comparable results for students, it is also
difficult to find an appropriate way to estimate student latent attributes from
independent exams simultaneously.
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In this paper, inspired by the idea multi-task methods that can associate
similar tasks together, we propose a Multi Task - Multidimensional Cognitive
Diagnosis (MT-MCD) framework to conduct several independent student assess-
ment tasks simultaneously. In this framework, given a set of exams containing
response records of students and corresponding text information of questions,
we first view the assessment in each exam as a single task and apply an existing
CDM for each independent task. Then, we extract features from the question
texts and develop an mapping matrix to bridge the connection with different
tasks, which helps make tasks comparable. After that, we present a multi-task
optimization method for the framework learning. Specifically, MT-MCD is a
general framework and we propose two implementations based on two cognitive
diagnosis models. i.e., M2PL model and M2PNO model. Finally, we conduct
extensive experiments on real-world datasets, in which the experimental results
demonstrate that MT-MCD can obtain more precise and comparable assessment
results. The main contributions of this paper are summarized as follows:

– By conducting several independent student assessment tasks simultaneously,
MT-MCD framework can estimate comparable student latent attributes. To
the best of our knowledge, this is the first attempt to conduct several inde-
pendent student assessment tasks at the same time.

– MT-MCD framework utilizes question’s text information as supplemental
material to bridge the connections among all assessment task, which ensures
the comparability of student cognitive results.

– MT-MCD is a general framework which can apply many cognitive diagno-
sis models. Meanwhile, several student assessment tasks could be conducted
simultaneously.

2 Related Work

In this section, we will introduce two aspects of related work: student assessment
and multi-task learning.

2.1 Student Assessment

Student assessment is designed to measure specific knowledge structures and
skills of students, which aims to find student latent attributes and provide infor-
mation about their cognitive strength and weakness [5,12,16]. Educational psy-
chologists have proposed a number of CDMs for student assessment [11].

Different CDMs are applied in specific occasions which can generate differ-
ent types of student latent attributes (e.g. skill proficiency, guessing and slip
factors) [25]. According to the assessment result, CDMs could be classified into
two main categories: unidimensional CDM and multidimensional CDM. Uni-
dimensional CDMs represent student latent attribute by a single dimensional
variable [8]. For example, Item Response Theory (IRT) applies a mathematical
expression that shows the relation between characteristics of a student (e.g.,
a latent trait) and the characteristics of the questions [13]. IRT provides a
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collection of models such as Two-Parameter Normal Ogive (2PNO) model and
Two-Parameter Logistic (2PL) model [18]. One of the violates assumptions is
the uni-dimensionality in the latent trait structure [15]. When the single dimen-
sional variable is insufficient to indicate the complex and diverse student latent
attributes, multidimensional CDMs would be necessary. Multidimensional Item
Response Theory (MIRT) is a nature extension of IRT [19], and also contains
a collection of models such as multidimensional extension of the 2PNO model
(M2PNO [24]) and multidimensional extension of 2PL model (M2PL [18]). These
MIRT models represent student latent attributes by a vector [18]. Multidimen-
sional CDMs can assess a more complex student latent attributes.

However, most traditional CDMs aimed to do student assessment for an indi-
vidual exam. In many real-word situations, student in different schools usually
participate in different exams. So, it is eager to considered a framework which
can conduct several independent student assessment simultaneously.

2.2 Multi-task Learning

Multi-task Learning (MTL) is a subfield of machine learning, in which several
learning tasks are solved simultaneously by exploiting commonalities and differ-
ences across tasks [29].

MTL aims to improve the performance of each task by learning them jointly,
which is different from single task learning. When adopting multi-task learning
methods, independent tasks are learned simultaneously by utilizing shared infor-
mation through tasks [28]. Multi-task learning has been applied in many different
research fields, which utilizes the similarity information to conduct several tasks
simultaneously to get higher performance [3,28], especially for those research
problems where the amount of data per task is small. For example, Bansal et
al. used multi-task method in text recommendations which a combination of
content recommendation is trained by the text encoder network [2]. Yu et al.
conducted image privacy protection by a deep multi-task learning algorithm to
jointly learn more representative deep convolutional neural networks and more
discriminative tree classifier [27].

In the research field of student assessment, it suffered from the problem that
records available for each exam are limited. Therefore, applying MTL in student
assessment may expand the sample size and generate more accuracy estimation.
Therefore, it is necessary to consider a multi-task framework to optimize several
independent student assessment tasks together based on the shared information.

3 Multi Task - Multidimensional Cognitive Diagnosis

In this paper, we propose a Multi Task - Multidimensional Cognitive Diagnosis
(MT-MCD) framework which can implement several independent student assess-
ment tasks simultaneously to generate more comparable and accurate student
latent attributes than traditional CDMs. First, we formulate our problems in
Sect. 3.1. Then we describe our MT-MCD framework in Sect. 3.2. At last, we
illustrate wo implementations on the basis of MT-MCD in Sect. 3.3.
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3.1 Problem Formulation

Given a set of exams E = {E1, E2, · · · , ET }, and student set Ut = {Ut1, Ut2, · · · ,
UtU}, question set Vt = {Vt1, Vt2, · · · , VtV } for each exam Et(t = 1, 2, · · · , T ),
we consider each student assessment on exam Et as an independent task Tt (t =
1, 2, · · · , T ). Note that, none of these students or questions sets overlaps among
different tasks. In this paper, independent tasks are implemented simultaneously
to generate comparable results.

Students’ responses to questions are represented by matrix Yt for task t,
where Ytuv is the student Utu’s response on question Vtv. Usually, in traditional
CDMs, Ytuv equals 1 when Utu answered Vtv correctly, and equals 0 otherwise.
Therefore, each student response matrix Yt is a binary matrix composed of 0
and 1. In addition, we also collect corresponding question’s text information as
a supplement to connect independent assessment tasks. For each task t, we have
questions’ text feature Ft which is generated from text information. Specifically,
Ft = (Ft1,Ft2, · · · ,FtV ) is composed of row vector Ftv which represent the text
feature for question Vtv. Therefore, our problem could be defined as:

Problem Definition: Given a set of exams E = {E1, E2, · · · , ET }, student
set UT and question set Vt for each exam Et, student response matrix Yt and
question information matrix Ft for each exam Et, the main propose of our
MT-MCD framework is: (1) Implement T independent student assessment tasks
for each exam simultaneously to obtain comparable and accurate student latent
attributes and question’s characteristics (e.g., discrimination, difficult); (2) Pre-
dict student’s performance on questions based on the student latent attributes
and question’s characteristics assessed by MT-MCD.

For better illustration, Table 1 shows some important math notations.

Table 1. Some important notations

Notation Description

T Task number

Ut , Vt Students and questions in task t

Yt Students’ response matrix for task t

Ft Questions’ text feature matrix for task t

Ξt Questions’ parameter matrix for task t

ξtv Parameters for vth question in task t

Θt Student latent attributes for task t

θtu Latent attributes for uth student in task t

Wt Mapping matrix for questions in task t

M Dimension of student latent attributes

D Dimension of question’s text feature
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3.2 Framework

We propose the MT-MCD framework to conduct several independent student
assessment tasks simultaneously. Figure 2 illustrate MT-MCD framework.

Fig. 2. MT-MCD framework

3.2.1 Step 1: CDM for Single Assessment Task
Step 1 of our proposed MT-MCD framework is to apply an existing multidi-
mensional CDM to each individual exam. Therefore, we need to select a basic
multidimensional CDM. The CDM which could be applied in MT-MCD frame-
work can be constructed in the following way:

P (Yuv = 1|θu , ξv ) ≡ f(θu , ξv ), (1)

where θu is a M -dimensional column vector which represents the latent
attributes of student u (we will discuss the effectiveness of hyperparameter M
experimentally in Sect. 4.4), and ξv is a row vector which represents the parame-
ters of question v. When there are several independent tasks for different exams
to be assessed simultaneously, function of CDM that t assessment tasks givens
as (2):

f(θu , ξv ) =
T∏

t=1

f(θtu , ξtv ). (2)

There are many existing CDMs which could be applied for each task sepa-
rately to assess student latent attributes, however, the student latent attributes
estimated from different individual assessment task are not comparable to each
other. To solve this problem, step 2 and step 3 of MT-MCD framework con-
nect independent tasks, and conduct these assessment tasks simultaneously to
estimate accurate and comparable student latent attributes.
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3.2.2 Step 2: Connecting Questions in Different Tasks
Questions play a significant role in student assessment, and it can be a great
help to bridge the difference among diverse tasks. In our proposed MT-MCD
framework, question’s text feature are utilized as a supplement to those separate
assessment tasks because it is easy to obtain and remain unchanged.

In order to connect question’s text feature to its’ parameters, we suppose
there is a mapping matrix Wt ∈ R

D×M for each task t. The question’s parameter
ξtv could be represented by it’s feature Ftv and mapping matrix Wt :

ξtv = m(Ftv ,Wt , ξtv ), (3)

where Ftv is a 1 × D row vector represent the feature of question Vtv. The
questions’s parameters ξtv , appear on both sides of the function m because in a
specific implementation, part of the question’s parameters may not represented
by it’s feature and mapping matrix. Therefore, the probability of student Utu’s
response to question Vtv is defined as follow:

P (Ytuv = 1|θtu , ξtv ) ≡ f(θtu ,m(Ftv ,Wt , ξtv )). (4)

In step 2, we introduce the question’s text feature as a supplement and con-
nect it to the question’s parameter. Therefor, we can obtain the interaction
between students and question’s text feature based on the selected CDM.

3.2.3 Step 3: Multi-task Learning Optimization
After we applied question’s text feature matrix Ft into each assessment task
t in step 2, we need to connect these individual tasks. There are two basic
assumptions in our framework:

Assumption 1. Similar questions are similar in text feature.

Assumption 2. Similar questions should have similar parameters.

Based on these two assumptions, questions which have similar text feature should
have similar parameters even in different tasks. Therefore, we assume that map-
ping matrix Wt for all tasks are close to each other.

Evgeniou and Pontil presented a multi-task learning method based on the
minimization of regularization functionals, which is a natural extension to exist-
ing methods for single task learning [9]. Inspired by this, we define the opti-
mization function of the mapping matrix Wt for each task who’s regularization
function penalizes the deviation from the mean:

min
W

1

2

T∑

t=1

‖ Ŷt − Yt ‖2
F +λ

T∑

t=1

‖ Wt − 1

T

T∑

s=1

Ws ‖2
F

= min
W

1

2

T∑

t=1

(
∑

u,v

(f(θtu , m(Ftv , Wt , ξtv )) − Ytuv)
2) + λ

T∑

t=1

‖ Wt − 1

T

T∑

s=1

Ws ‖2
F .

(5)
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The first part of Eq. (5) is the loss function which ensures the accuracy of
estimation. The second part is the regularization which tries to make Wt closer
to each other. If question’s text feature mapping matrix Wt from different tasks
are made close, then question’s parameters for similar questions in different tasks
will be closer.

We apply gradient descent (GD) method to optimize the Eq. (5). The gradient
Wt is as follow, where f ′ is the first derivative of f :

∇Wt =
∑

u,v

(f(θtu ,m(Ftv ,Wt , ξtv )) − Ytuv)f ′(θtu ,m(Ftv ,Wt , ξtv ))(θtuFtv )T

+ λ((− 1
T

)
T∑

s=1

Ws +
2T − 1

T
Wt).

(6)
By optimizing the mapping matrix Wt , we can update the question param-

eter ξt for each question Vtv according to Eq. (3), and new question parameters
are used in next estimation epoch in Step 1.

3.2.4 Output and Predicting
After processing by the 3-steps framework, MT-MCD, we could generate latent
attributes for each student and parameters for every single question.

The outputs of MT-MCD framework are student latent attribute matrix Θt

and question parameters Ξt for each task t. For the students, we get latent
attribute matrix Θt = (θt1,θt1, · · · ,θtU ) for task t, which is composed of col-
umn vector θtu represent the student Utu’s latent attribute. For questions, we
estimate its’ parameter matrix Ξt = (ξt1, ξt2, · · · , ξtV )T for task t where ξtv is
a row vector represented the question Vtv’s parameter.

Since similar questions gain close parameters, student latent attributes assess-
ment corresponding to the questions they have answered would be more com-
parable. Thus, MT-MCD framework not only guarantee the accuracy of student
latent attributes and question parameters, but also make questions and students
from independent task more comparable.

The second purpose of MT-MCD is to predict student’s performance on
questions. MT-MCD helps us to assess comparable student latent attributes
and corresponding question’s parameters. Since the basic CDM we choose in
step 1 describes the interaction between students and questions. We could easily
adopt the output of MT-MCD to predict student performance by utilizing the
probabilistic function for the selected basic CDM.

3.3 MT-MCD Implementation

As we mentioned before, many existing CDMs could be applied in MT-MCD
framework to generate comparable student assessment result.

There are many existing CDMs proposed for student assessment, among
which, Multidimensional Item Response Theory (MIRT) provides a collection
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of models that describe how questions and students interact to produce prob-
abilistic response of correct or incorrect [8,23]. MIRT model is assumed to be
a continuous probability function relating the student latent attribute θ to the
probability of correct response to a question with specified structural parameters.
In this section, we illustrate MT-MCD framework with two MIRT models.

3.3.1 MT-MCD with M2PL Model
Multidimensional extension of the two-parameter logistic (M2PL) model [7] is a
widely used MIRT model. First, we use M2PL model to illustrate how MT-MCD
work.

When we select M2PL model as basic CDM, the cognitive diagnosis function
Eq. (1) would be replaced by Eq. (7), which defines the probability that stu-
dent Utu answered question Vtv correctly by the changing shape of the standard
logistic function [18] as:

f(θtu , ξtv ) = f(θtu , (αtv , βtv)) =
e(αt v θt u +βtv)

1 + e(αt v θt u +βtv)
, (7)

where the question’s parameter ξtv = (αtv , βtv) is composed of discrimination
parameters αtv = (αtv1, αtv2, · · · , αtvM ) and difficulty parameter βtv [7]. We
suppose that the mapping matrix Wt is connecting question’s text feature Ftv

and discrimination parameters ξtv as:

m(Ftv ,Wt , ξtv ) = (FtvWt , βtv), (8)

Thus, the probability of student Utu’s response to question Vtv correctly (Eq. (4))
could be replaced by Eq. (9) when selecting M2PL model as basic CDM:

f(θtu , (FtvWt , βtv)) =
e(Ft v Wt θt u +βtv)

1 + e(Ft v Wt θt u +βtv)
. (9)

Then, for the multi-task learning optimization in step 3, the first derivative
f ′ in gradient descent (Eq. (6)) could be replace by Eq. (10):

f ′(θtu , (FtvWt , βtv)) =
e(Ft v Wt θt u −βtv)

(1 + e(Ft v Wt θt u −βtv))2
. (10)

3.3.2 MT-MCD with M2PNO Model
Besides M2PL model, there are many other forms of MIRT model. Multidimen-
sional extension of the two-parameter normal ogive (M2PNO) model [24] derives
from the assumption of normally distributed measurement error an is theoreti-
cally appealing on that bia s [6]. M2PNO is another widely used MIRT model,
and When M2PNO is selected as basic CDM, the cognitive diagnosis function
Eq. (1) would be replace by Eq. (11):

f(θtu , ξtv ) = f(θtu , (αtv , βtv)) =
1√
2π

αt v θt u −βtv∫

−∞
e− t2

2 dt = Φ(αtvθtu − βtv),

(11)
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where the question’s parameter ξtv = (αtv , βtv) is also composed of discrimina-

tion parameter αtv and difficulty parameter βtv [24], and Φ(z) = 1√
2π

z∫
−∞

e− x2
2 dx

is the normal cumulative density function (normal CDF). After the question’s
parameter ξtv is replaced by Eq. (8), the response probability for student Utu on
question Vtv (Eq. (4)) could be replaced by Eq. (12):

f(θtu , (FtvWt , βtv)) = Φ(FtvWtθtu − βtv). (12)

Correspondingly, the first derivative f ′ in gradient descent (Eq. (6)) is
replaced by the following equation:

f ′(θtu , (FtvWt , βtv)) = ϕ(FtvWtθtu − βtv) =
1√
2π

e
(F t v W t θ t u −βtv)2

2 . (13)

3.3.3 Conclusion
As we can see, many different existing CDMs could be applied in MT-MCD
framework. Apart from this, there are many existing CDM could by applied in
MT-MCD framework such as multidimensional partial credit model and mul-
tidimensional extension of Rasch model [18]. Therefore, MT-MCD framework
could implement several independent student assessment tasks simultaneously
and improve the accuracy and comparability of traditional CDMs. The effective-
ness of MT-MCD would be proved in Sect. 4.

4 Experiment

In this section, we conduct extensive experiments to demonstrate the effective-
ness of MT-MCD framework. Specifically, we use two implementations, which
denoted as MT-MCD(M2PL) and MT-MCD(M2PNO), introduced in Sect. 3.3.

In the following section, we first introduce our experimental datasets and
setups in Sect. 4.1. Then, we report experimental results of MT-MCD framework
from the following four aspects:

– Student Score Prediction: Evaluate the accuracy of student assessment
for each task in Sect. 4.2.

– Student Attribute Evaluation: Comparability evaluation of student
attributes in Sect. 4.3.

– Dimension Sensitivity of Student Attributes: Evaluate the accuracy of
MT-MCD with different dimensions of student attribute M in Sect. 4.4.

– Question Parameter Evaluation: Question analysis via the learned
parameters in Sect. 4.5.

4.1 Dataset and Setups

4.1.1 Experimental Dataset
In the experiments, we use two real-world datasets supplied by iFLYTEK Co.,
Ltd., i.e., MATH1 and MATH2, to evaluate the effectiveness of MT-MCD
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Table 2. Task statistics

1All students in School S1 to S4
2Part of students in School S5 to S12

framework. Both datasets are about mathematics exam records for high school
students collected from different schools in China.

In both datasets, students of the same school take the same exam, and each
exam is taken by at least one school’s students. Specifically, in MATH1, there are
4 senior high school students (S1, S2, S3, S4) participating in 5 different exams
(E1, E2, · · · , E5). In MATH2, 8 senior high schools (S5, S6, · · · , S12) partic-
ipates in 9 different exams (E6, E7, · · · , E14). For task partition, we take each
exam as a student assessment task in our MT-MCD framework. Therefore, there
are 5 (9) tasks in MATH1 and MATH2, respectively. Table 2 shows the statis-
tics of both datasets. In the following experiments, we take the first 4 (8) tasks
for training, and the remaining one for testing.

We collect student records and the original texts of questions in all exams. For
preprocessing, we first utilize the open source software Jieba1 tool to segment
each question’s original text into a word sequence. Then, we extract question
features by averaging the word embedding vector in the dimensions of D = 60.

4.1.2 Setups
We select the M2PL model and M2PNO model to illustrate MT-MCD frame-
work, which have been introduced in Sect. 3.3.

When selecting M2PL as basic model, we apply a Maximum Likelihood Esti-
mation (MLE) method in step 1 of MT-MCD framework [15]. In the following
experiments, we set the numbers of MLE iterations to 1,500 for each task. When
applying M2PNO model in MT-MCD, we apply a 5-step Gibbs Sampler [24] in
step 1. In the following experiments, we set the number of iterations of gibbs
sampler to 1,500 and estimate the parameter based on the last 1,000 samples to
guarantee the convergency of the Markov Chain. Besides, we set regularization
parameter λ in Eq. (5) to 0.001 in all of the following experiments.

1 https://github.com/fxsjy/jieba.

https://github.com/fxsjy/jieba
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4.1.3 Baseline Approaches
To demonstrate the effectiveness of MT-MCD framework, we compare two imple-
mentations i.e., MT-MCD(M2PL) and MT-MCD(M2PNO), with many models
from various perspectives. First, we consider the traditional CDMs without MT-
MCD framework on multiple tasks to evaluate whether MT-MCD improve the
performance, we introduce M2PL m and M2PNO m method. Then, to evalu-
ate the effectiveness of MT-MCD framework by applying a multi-task learning
method in multiple tasks, we introduce M2PL s and M2PNO s method. At last,
introduce a traditional multi-task learning (MTL) method from data mining
area as the baseline. The details of them are as follows:

(1) M2PL m [15]: Use M2PL model (Eq. (7)) on each task independently to
generate parameters of students and questions.

(2) M2PNO m [18,24]: Conduct the M2PNO model (Eq. (11)) on each task inde-
pendently to generate parameters of students and questions.

(3) M2PL s: Consider all tasks as a whole and applied M2PL model to do student
assessment.

(4) M2PNO s: Consider all tasks as a whole and apply M2PNO model to do
student assessment.

(5) MTL [9,28]: A multi-task learning method to optimize several related classi-
fication task simultaneously. In this baseline approach, we use ( ¯Ytu, Ȳtv,Ftv)
as a feature vector or each response record for student u on question v in
task t.

4.2 Student Score Prediction

One of the problems to be solved by MT-MCD is to obtain accurate student
latent attributes and corresponding question’s parameters. In this section, we
evaluate the accuracy of the results assessed by MT-MCD. We compare the
performance on predicting student’s score against the baseline approaches. In
other words, we evaluate the precision of predicting the students response to
prove the accuracy of parameter estimation [25].

In this experiment, we evaluate the performance of MT-MCD from both
regression and classification perspectives. For regression, we adopt root mean
square error (RMSE) and mean absolute error (MAE) to quantify the distance
between predicted scores and the actual ones. The smaller these values are, the
better the results have. For classification, we consider the predicted scores which
bigger than 0.5 as 1 and those less than 0.5 as 0, to compute precision, recall
and F1, and the larger, the better.

Figure 3 shows the predicting results of our MT-MCD framework and base-
line approaches on dataset MATH1 and MATH2. First, we construct different
size of training sets with 90%, 80%, 70% and 60% of records for each student
to observe how MT-MCD behave at different sparsity levels. Then, we set the
dimensions of student latent attributes M = 3 to observe the effectiveness of
MT-MCD framework. From this figure, we observe that, MT-MCD framework
could improve the accuracy of the basic CDM which demonstrates that improve
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the accuracy of estimation for students and questions of basic CDM. This is
because MT-MCD framework introduces the question’s text feature as a supple-
ment to do a multi-task optimization on several independent student assessment
tasks. Second, the performance of MT-MCD frame work beats MTL method, this
is because MT-MCD framework applied student assessment method to observe
student latent attributes and question’s parameters.

In many real-world occasions, students usually participate in different test,
thus, MT-MCD helps to improve the student assessment accuracy.
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Fig. 3. Predicting student performance

4.3 Student Attribute Evaluation

In this subsection, we evaluate the comparability of student latent attributes
assessed by MT-MCD framework. Intuitively, if student a masters better than
student b on a specific dimension of latent attributes, a will have a higher proba-
bility to get larger score than student b when they participated in the same exam.
We adopt DegreeofAgreement(DOA) [10] metric for a specific dimension m,
which is defined as:

DOA(m) =
U∑

a=1

U∑

b=1

δ(θam, θbm) ∩ δ(Suma, Sumb)
δ(θam, θbm)

, (14)

where m refers to the ability dimensions, θim represent student ith ability on
dimension m which assessed from task T1 to T4 in dataset MATH1 or T6 to T9

in dataset MATH2. Besides, Sumi is the total score for student i in task T5

or T14. The higher the DOA value, the stronger comparability of student latent
attributes.
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Figure 4 shows the result of DOA for MT-MCD(M2PNO), MT-MCD
(M2PL), and comparative approach M2PNO m, M2PL m when the dimension
of students is set to 3. As can be seen from the figure, the comparability of stu-
dent latent attributes assessed by MT-MCD framework is higher than the basic
CDM.

4.4 Dimension Sensitivity of Student Attributes

In this subsection, we apply MT-MCD(M2PNO) and MT-MCD(M2PL) to eval-
uate when the dimension of student latent attributes M is set to different values.

We set the dimension of student latent attribute M equals 2 to 5. Then,
construct the size of training sets with 90% of records in dataset MATH1 and
MATH2 in this experiment.

Figure 5 shows the results of MT-MCD framework whit different dimensions
M . As we can see from this figure, as dimensions of student latent attributes
increases, the performance of MT-MCD framework firstly increases but decreases
when dimensions surpasses 3 with both MT-MCD(M2PNO) and MT-MCD
(M2PL) in both datasets MATH1 and MATH2. Therefore, we can summa-
rize that performance of M = 3 is better and more stable, and set M = 3 in
Sects. 4.2 and 4.3 to obtaining the best results.
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4.5 Question Parameter Evaluation

We emphasize that MT-MCD framework can make parameters of similar ques-
tions in different tasks closer, therefore, we evaluate the question parameters (dis-
crimination, difficulty) estimated by MT-MCD framework with M2PNO basic
CDM to prove the effectiveness in this section.



332 T. Zhu et al.

Fig. 6. Clustering result

For this experiment, we cluster the question’s parameters estimated by MT-
MCD to illustrate that similar question’s parameters are closer. Specifically,
we set the dimension parameter M = 3. Then we use the K-means clustering
method to cluster the result of question’s parameters into 7 categories. Finally,
we adopt t-SNE 2 program to visualize these questions. Figure 6(a) and (b) shows
the clustering result of question’s parameter for dataset MATH1 and MATH2.
Each dot in Fig. 6(a) represent a question in task T1 to task T4, and each dot
in Fig. 6(b) represent a question in task T6 to task T13. The dots of same color
belong to the same class clustered by K-means.

We check all the categories clustered by K-means, and questions in same
category are similar to each other. For example, we find that all questions corre-
sponding to these blue dots in Fig. 6(a) are about ‘function’ knowledge point, and
all these green dots in Fig. 6(b) are about ‘triangle’ knowledge point. Further,
a case study of several questions in these two categories are listed in Table 3.
This experiment proves that MT-MCD framework makes parameters of similar
questions in different student assessment tasks closer.

Table 3. Case study

Task Question description Parameters (α,β)

Q1 T1 The number of zero points for function
f(x) = 3x2 + 2x − 4 is?

((0.25, 0.66, 0.89), −1.77)

Q2 T2 The range of function f(x) = x +
√

1 − 2x is? ((0.23, 0.50, 0.94), −1.21)

Q3 T8 A, B, C is the inner corner of the triangle,
therefore, sin(A + B) = sinC ?

((1.56, 1.69, 2.54), 0.99)

Q4 T11 A = (5.1), B = (1, 1), C = (2.3), The shape of
triangle �ABC is?

((1.45, 1.38, 2.07), 1.05)

2 https://lvdmaaten.github.io/tsne/.

https://lvdmaaten.github.io/tsne/
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5 Conclusion and Future Work

In this paper, we proposed a MT-MCD framework to conduct several indepen-
dent student assessment task simultaneously to generate accurate and compa-
rable student latent attributes for students who participated in different exams.
Specifically, we first applied an existing multidimensional cognitive diagnosis
model to each independent student assessment task to estimate student latent
attributes and corresponding question’s parameters (e.g., discrimination, diffi-
culty). Second, we introduced question’s text information as a bridge to connect
each independent assessment tasks. Then, we and employed a multi-task opti-
mization method to make parameters of similar questions closer. New question’s
parameters updated by multi-task learning method will be adopted in cognitive
diagnosis model for each student assessment task to obtain comparable stu-
dent latent attributes. Extensive experiments on the real-world datasets clearly
demonstrated the effectiveness of our propose framework MT-MCD which can
assess accurate and comparable student latent attributes and question’s param-
eters from independent student assessment tasks.

In the future, there are some directions for further studies. First, we will
consider to find more relatedness between independent student assessment tasks.
For example, student is an important aspect in assessment, the characteristics
of students may connect individual student assessment together. Second, many
natural language processing (NLP) method could be used for the pre-processing
of question’s text information.
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Abstract. The key challenge of detecting highway traffic conditions is to
achieve it in a fully-covered, high-accuracy, low-cost and real-time manner. We
present an approach named Megrez on the basis of treating mobile phones and
probe vehicles as roving sensors, loop detectors as static sensors. Megrez can
admit one or multiple types of data, including signaling data in a mobile
communication network, data from loop detectors, and GPS data from probe
vehicles, to carry out the traffic estimation and monitoring. In order to accurately
reconstruct traffic conditions with full road segment coverage, Megrez provides
a practical way to overcome the sparsity and incoherence of sensory data and
recover the missing data in light of recent progresses in compressive sensing.
Moreover, Megrez incorporates the characteristics of traffic flows to rectify the
estimates. Using large-scale real-world data as input, we conduct extensive
experiments to evaluate Megrez. The experimental results show that, in contrast
to three other fusion methods, the results from our approach have high preci-
sions and recalls. In addition, Megrez keeps the errors of estimates low even
when not all three types of data are available.

Keywords: Data fusion � Traffic condition detection � Mobile signaling
Compressive sensing � Adaptation

1 Introduction

In recent years, various types of heterogeneous data have been providing great
opportunities for the improvement and reconstruction of information systems in all
areas [1]. In particular, with the aid of smart sensors and pervasive networks, large
amounts of transportation data which relate to people, vehicles, roads and environments
can be continuously recorded and collected. Taking full advantage of these data makes
it possible to provide high-quality services, such as personalized travel services,
real-time monitoring services, and intelligent decision support services.

In this paper, we focus on detecting traffic conditions for highways. It is well
known that real-time highway traffic conditions can be used for vehicle navigation.
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More importantly, such information can assist traffic administrative departments in
traffic monitoring, emergency management, and real-time dispatching.

For road traffic condition detection, what is highly desired is to utilize the sensory
data for high-accuracy real-time detection with full road coverage but at a low cost.
Unfortunately, existing methods cannot achieve the requirements satisfactorily. For
example, some methods require deploying expensive devices, which are not scalable to
large areas. Some methods cannot handle low-quality sensory data well (e.g., sparse,
inconsistent, and inaccurate data). Therefore, in this paper, we present a novel approach
called Megrez (which is the name of a star—with the hope that our approach will shed
some light on traffic control). Megrez fuses three types of data: signaling data, loop
detector data, and GPS data from probe vehicles.

Signaling data [2] come from signaling monitoring systems of mobile operators and
play a crucial role in controlling and recording activities in mobile communication
networks. When users with phones move with the vehicles, the signaling data are
generated at the cell towers along the travel trajectories. According to these signaling
data, the speeds of corresponding vehicles can be estimated, and then the traffic con-
ditions of the corresponding road segments can be speculated. On the other hand, probe
vehicles refer to vehicles equipped with the satellite positioning devices and are mostly
taxis and buses in the cities, which appear infrequently on highways. We notice that, in
China, two kinds of long-distance buses (i.e., intercity buses and tour buses) and the
vehicles specially used for transporting hazardous goods (hereafter, referred to as
2K1W vehicles, an abbreviation in Chinese pinyin) can be viewed as the probe
vehicles, since they have to comply with the provisions of administrative regulations to
install satellite positioning devices. Furthermore, loop detectors are fixed, static devices
installed on highways, from which the speeds of passing vehicles can be obtained.

We collect and analyze some real-world data, including the signaling data in a
mobile communication network, the data from loop detectors, and the GPS data from
2K1W vehicles. We find that all these data are indeed poor in quality, and they are
highly correlated in both temporal and spatial dimensions.

Inspired by the data characteristics observed from our analyses, we design the
Megrez approach which consists of the following three steps: (1) a concrete function is
proposed to get the first-cut estimates of vehicle speeds associated with road segments;
(2) missing vehicle speeds at certain road segments are completed using compressive
sensing; and (3) vehicle speeds are finally rectified by incorporating the characteristics
of traffic flows. These three steps provide high-accuracy guarantees over all road
segments in the traffic condition detection. Besides, a parallel linear algebra library is
employed to speed up and provide real-time road traffic conditions.

Megrez is adaptive to both temporal and spatial variations of data. It is originally
designed for three types of data sources. However, it can work well using only two
types of data sources. Furthermore, our approach can deal with changes in the data
distribution of incoming data streams. In reality, at some time slices, a particular type of
data may be obtained only at certain regions. The coverage of different types of data
may be either overlapping or disjoint. For example, signaling data and GPS data can
both be captured when vehicles are driving at open areas, and only the signaling data
can be captured when the vehicles drive in tunnels. In either case, our approach can
detect the whole road traffic conditions seamlessly.
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The remainder of the paper is organized as follows. Section 2 introduces the related
work, and Sect. 3 gives some analyses of real-world data, including signaling data,
loop detector data and GPS data. In Sect. 4, we describe the Megrez approach in detail,
and discuss our experimental evaluations in Sect. 5. Finally, we conclude in Sect. 6.

2 Related Work

So far, there have been a lot of research efforts on traffic condition detection. The data
which have been used for detecting road traffic conditions include loop detector data
[3], images [4], GPS data from probe vehicles [5–9], signaling data from mobile
communication networks [10, 11] and CDRs (Call Detail Records) [12, 13] which can
be viewed as a subset of signaling data.

Acquiring data from loop detectors and cameras requires deploying the devices in
advance, but leveraging these data can only obtain the traffic conditions on the specific
cross-sectional points. Besides, these devices cannot be deployed to cover all the road
segments of highways due to device investment costs and their limited working life-
time. These innate weaknesses make fixed device-based solutions alone difficult to
acquire satisfactory traffic conditions.

Signaling data have the advantage of their wide coverage, but they suffer from the
poor data quality. They not only have the low positioning accuracy, but also have
irregular frequencies, depending on the mobile users’ behaviors. On the whole, the
temporal and spatial distributions of the signaling data are uneven. Moreover, a number
of factors, including the radio propagation characteristics (signal fading, multipath
effect, etc.), the locations and radiuses of cell towers as well as their realistic loads, will
affect the handovers, increasing the uncertainty of handovers. In general, before sig-
naling data are used for highway monitoring, the data cleaning is necessary, e.g., the
ping-pong handovers and cell oscillation need to be identified and removed. However,
the signaling based approaches cannot avoid the dilemma that the accuracy is not high
enough.

GPS data have received much attention in detecting road traffic conditions due to
their high location accuracy. In [6], the authors provide a multi-channel singular
spectrum analysis (MSSA) to iteratively estimate urban traffic conditions. But the
estimated results have large errors. What is worse, the MSSA-based method is so time
consuming that it cannot be used for real-time monitoring. Further, in [7], the authors
give a compressive sensing based method to recover the vehicle speeds at the positions
where no nearby GPS data can be obtained. Their work shows that compressive
sensing can be applied to GPS data from taxis. However, there have been no in-depth
studies reported on applying compressive sensing to data fusion tasks.

Adopting multi-source data provides a promising way to improve the accuracy in
detecting traffic conditions [14–17]. For example, different data streams are used in
DynaMIT2.0 [17], including data from inductive loops, cameras and probe cars,
incident information feed, as well as data from the Internet (e.g., special events web-
sites, weather forecasts, and social networks). DynaMIT2.0 uses a SP-EKF method
(simultaneous perturbation extended Kalman filter) to calibrate the traffic parameters,
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and uses microscopic traffic simulator MITSIMLab to conduct closed loop experiments
on Singapore Expressway to verify the method.

In contrast to previous work, we combine the signaling data from mobile operators,
the data from loop detectors, and the GPS records from probe vehicles for the first time,
and estimate the fused vehicle speeds in three steps, i.e., estimating the initial vehicle
speeds by a concrete function, filling in the missing speeds via compressive sensing,
and rectifying the speeds using traffic flow features. Our comprehensive and carefully
designed approach ensures that our traffic condition estimates are closer to the ground
truth, as demonstrated in our experiments.

3 Real-World Data Analyses

In order to understand the characteristics of signaling data, loop detector data and GPS
data on highways, we collect real data generated along the nine highways (i.e., G3,
G15, G25, S35, G70, G72, G76, G1501 and G1514) in Fujian Province, China. The
data include the signaling records from CMCC (China Mobile Communications Cor-
poration) Fujian branch, the loop detector data, and the GPS records of 2K1W vehicles
running on the highways in Fujian.

3.1 Spatial-Temporal Distribution Analyses

On the nine highways whose total length is about 2,620 km, there are 431 loop
detectors with 1,289 coil sensors. We count the numbers of coil sensors from which no
items are reported (referred to as silent coil sensors) on each day of October,
November, and December 2015, which are shown in Fig. 1. From Fig. 1, we can see
that in the last three months of 2015, the number of daily silent coil sensors is at most
470, at least 340, and with an average of 406. Moreover, we find 302 coil sensors
(accounting for 23.43%) and the corresponding 126 detectors (accounting for 29.23%)
do not report any data in the three months. These data indicate that there is a high
probability that the loop detectors do not work normally and the data stream from the
loop detectors is unstable. The sparse geographic distribution of loop detectors plus
their abnormal states lead to the result that loop detector data are sparse in space and
time.

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031
340

360

380

400

420

440

460

480

Day of The Month

N
um

be
r

October 2015
November 2015
December 2015

Fig. 1. Daily variation on silent coil
sensors

0 0.5 1 1.5 2 2.5 3 3.5 40.2

0.4

0.6

0.8

1

Time Interval (hour)

C
D

F

signaling
gps

0 0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1

Fig. 2. CDFs of time intervals of signaling data
and GPS records

Towards Adaptive Sensory Data Fusion 339



Next, we calculate the time intervals between two consecutive signaling records
from the same mobile phone and time intervals between two consecutive GPS records
from the same vehicle. Figure 2 shows the CDFs (Cumulative Density Functions) of
time intervals of signaling records and GPS records generated on November 1, 2015.
As shown in Fig. 2, over 70% of time intervals between two consecutive GPS records
are shorter than 5 min. Whereas only 45% of the time intervals between two consec-
utive signaling records are shorter than 5 min, and about 57% are shorter than 10 min.
There is a sudden change in the CDF curve of time intervals of signaling data when
time interval reaches 2 h. It is because the mobile operator will proactively contact a
mobile phone via signaling data if the phone has not been used in the past 2 h.

We also plot the spatial-temporal graphs for signaling records and GPS records to
observe their spatial-temporal coverage. A typical spatial-temporal graph is shown in
Fig. 3, where the X axis denotes the time of day and the Y axis denotes the distance to
G76’s start location Xiamen and white space denotes no data at that time and location.
The more blank space in Fig. 3(b) illustrates that GPS data are sparse and signaling
data are not as sparse in terms of sheer numbers. Meanwhile, the GPS data and the
signaling data are non-uniform in spatial-temporal distributions.

3.2 Data Inherent Structure Discovery

For each road segment on highways, the vehicle speeds at each time slice can be
measured by three types of data (i.e., signaling data, GPS data, and loop detector data).
We call the vehicle speeds obtained by loop detectors, GPS records and signaling data
the detector speeds, GPS speeds, and signaling speeds, respectively.

Then, we employ a matrix to record vehicle speeds, where each column denotes the
time series of vehicle speeds over a specific road segment and each row denotes the
vehicle speeds on every road segment at a specific time slice (5 min by default).

Taking the three types of data during November 1–7, 2015 as input, we construct
three matrices, one for a single type (i.e., one matrix of signaling speeds, one of GPS
speeds, and one of detector speeds). We find that many elements in the three matrices
are missing. We search for the corresponding maximum dense square submatrices in

(a) Signaling data (b) GPS data
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Fig. 3. Spatial-temporal graph of Fujian section of G76 (from Chengdu to Xiamen) on
November 12, 2015
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each of these three matrices and find their sizes are 273, 90, and 4, respectively. Then,
for each matrix, we extract multiple dense square submatrices with different sizes,
compute the singular values of each extracted submatrix and then normalize them by
setting the largest singular value to 1.

Figures 4(a)–(c) show the magnitude (ratio to the maximum) of singular values of
different-sized dense square submatrices in the three matrices, respectively. In Fig. 4,
the X axis denotes the singular values sorted from large to small, and the legend shows
the size of the square submatrix as well as the number of non-overlapping same-sized
submatrices whose singular values are averaged into the curve shown. We find that
three kinds of submatrices show similar singular value distributions.

Sharp knees can be observed in Figs. 4(a)–(c), which illustrates that the ranks of
different-sized dense square submatrices are low and indicates that vehicle speeds are
tightly correlated in both temporal and spatial dimensions.

4 Megrez Approach

In this paper, detecting traffic conditions refers to estimating vehicle speeds on high-
ways and then mapping them into road traffic states including congested, slow and free
states. For highways with n road segments in total, we use an m� n nonnegative matrix

(a) Signaling submatrices (b) GPS submatrices

(c) Loop detector submatrices (d) Merged submatrices
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to describe highway traffic conditions within m time slices. Let Xm�n and bXm�n be the
real and estimated vehicle speeds matrices, respectively. Given a signaling stream, a
loop detector data stream, and a GPS data stream of probe vehicles, the problem of
detecting traffic conditions is to find the bXm�n with the minimum jjX � bX jjF . Here,
jj � jjF is the Frobenius norm of a matrix, i.e., Xk kF :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;j ðXijÞ2

q
.

To obtain an accurate bXm�n, we present our Megrez approach, which consists of
three steps, i.e., multi-source speed merging, compressive sensing based interpolation,
and feature-driven filtering.

In the first step, we obtain the vehicle speeds from loop detectors, calculate the
vehicle speeds via GPS records, and estimate the vehicle speeds from signaling data.
These vehicle speeds are referred to as detector speeds (hereafter, DSs for short), GPS
speeds (GSs for short), and signaling speeds (SSs for short), respectively. Then, we
merge three speeds (if available) into the merged speeds (MSs for short) by a concrete
function and then form the measurement matrix of traffic conditions, denoted as Mm�n.

Due to the sparsity of original data, the matrix Mm�n is not complete where values
of many elements are missing. However, in light of features of traffic flows, many rows
should be linearly dependent on each other, and so are many columns. That is, the rank
of the matrixMm�n should be relatively low. Based on these observations, in the second
step, we employ the compressive sensing technique to achieve the interpolation of
matrix Mm�n and fill in missing values. The speeds in the completed matrix are called
interpolated MSs, or IMSs for short.

After the above step, we filter the elements in the interpolated matrix to restrain the
interference of random factors. What we design is in fact a type of exponential
smoothing algorithm, but we integrate the spatial-temporal features of traffic flows into
the filter so as to conform to the real road traffic conditions. After filtering, we get the
final vehicle speed estimates which are called filtered IMSs, or FIMSs for short. In the
following, we describe the Megrez approach in detail.

4.1 Multi-source Vehicle Speed Merging

As initial processing, we divide the roads into segments by the locations of cell towers
along the roads. Next, we clean the signaling records so as to get valid ones. In detail,
we glean the signaling records whose cell towers are along the roads. On receiving
these signaling records, we filter the signaling data with abnormal movement features
(e.g., teleportation), and further identify and get rid of the ping-pong handovers and cell
oscillation. Then, we discern whether a user is in a vehicle and moving along the road.
If so, the user is marked as being in-motion state. The signaling data are thus mapped
into mobile users’ trajectories. In order to obtain the vehicle speeds, the trajectories of
users with in-motion states within several hours are cached in memory. So we can
calculate the moving speed of the vehicle where the user is in, and then obtain the
average vehicle speed for every road segment.

At the same time, we can obtain the vehicle speeds by GPS data of 2K1W vehicles,
i.e., GSs, and the ones from loop detectors, i.e., DSs.
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Then, we apply the following concrete function to merge SSs, GSs and DSs on the
same road segment and same time slice into MSs, and construct Mm�n, the measure-
ment matrix of traffic conditions.

MS ¼
DS; if DS 6¼ ?
GS; if DS ¼ ? ^ GS 6¼ ?
SS; if DS ¼ ? ^ GS ¼ ? ^ SS 6¼ ?
?; otherwise

8>><
>>: ð1Þ

where ? denotes that the value is missing.

4.2 Data Completion via Compressive Sensing

We notice that Mm�n still has missing values. Therefore, in this section, we devise a
compressive sensing model, and exploit the relations hidden in the measurement matrix
to complete the matrix. Our aim is to estimate the traffic condition matrix that
approximates the real traffic conditions as closely as possible.

Designing the Compressive Sensing Model
Since Mm�n is a sparse matrix, which has many missing elements compared to Xm�n,
we introduce an indicator matrix Bm�n which makes the following hold:

Mm�n ¼ Bm�n :� bXm�n;Bm�n ¼ ½bij� ¼
0; if no sensory data for road

segment j in time slice i
1; otherwise

8<
: :

where :� is an operator of Hadamard (element wise) product.
Our objective is to obtain bXm�n given Mm�n.
Due to the correlation characteristics of traffic flows on roads, the measurement

matrix Mm�n must have correlations between different rows or columns, which implies
that Mm�n has a relatively low rank with a high probability. That is, for traffic condition
scenarios, it is reasonable to approximate Mm�n by a matrix of lower rank.

The method in Sect. 3.2 can be used to observe the property of measurement matrix
Mm�n. For example, for the measurement matrixMm�n constructed by the three types of
data during November 1–7, 2015, the singular values of dense square submatrices of
Mm�n are shown in Fig. 4(d) and these submatrices are considered to have low ranks.
Therefore, Mm�n are regarded to have a low rank with a high probability. This feature
of Mm�n allows us to apply compressive sensing techniques to complete the matrix
Mm�n. In other words, if Mm�n can be approximated by a low rank matrix, the accurate
recovery of Mm�n from a small number of matrix elements is possible by using
compressive sensing [18].

Designing the Algorithm for Data Completion
To solve the traffic detection problem, we are required to make an estimate close to the
measurement matrix. What we desire is to find the low-rank estimate bXm�n as shown in
Eq. (2) [18].
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min rankðbXm�nÞ
s:t: Bm�n :� bXm�n ¼ Mm�n

ð2Þ

Minimizing rankðbXm�nÞ is a non-convex optimization problem and is NP-hard. As
the nuclear form jj � jj� of the matrix is the tightest convex envelop for the matrix rank,
it is usually adopted to replace the rank. Based on it, the non-convex problem in Eq. (2)
can be converted to a convex problem as shown in Eq. (3) [19, 20]. Specifically, if the
restricted isometry property holds, minimizing the nuclear form equals to the rank
minimization exactly for a matrix of low rank [21].

min jjbXm�njj�
s:t: Bm�n :� bXm�n ¼ Mm�n

ð3Þ

Here jjbXm�njj� :¼
PrankðbXm�nÞ

i¼1
viðbXm�nÞ, and viðbXm�nÞ is the i-th largest singular value

of bXm�n. To obtain bXm�n satisfying Eq. (3), we make use of the SVD-like factorization,
and let bXm�n ¼ URVT ¼ LRT , where L ¼ UR1=2 is a m� r matrix, and R ¼ VR1=2 is a
n� r matrix. There exist many possible factorization results for bXm�n; however, what
we need is to find the matrices L and R that minimize the summation of their Frobenius
norms, i.e., L and R should satisfy the following Eq. (4).

min jjLjj2F þ jjRjj2F
s:t: Bm�n :� ðLRTÞ ¼ Mm�n

ð4Þ

Besides, r � rankðX0Þ should be satisfied as a constraint, where X0 is a solution to
Eq. (2). If so, then Eq. (3) is equivalent to Eq. (4) [21]. In practice, L and R that strictly
satisfy Eq. (4) are likely to lead to an undesirable result due to two reasons. First, a
traffic condition matrix is usually approximately low-rank but may be not really low in
the rank. Second, there is noise in the measurement matrix, and strictly satisfying the
constraints may lead to over-fitting. Considering these factors, according to the
Lagrange multiplier method, we convert Eq. (4) into a convex optimization in Eq. (5).

min jjBm�n :� ðLRTÞ �Mm�njj2F þ kðjjLjj2F þ jjRjj2FÞ ð5Þ

The parameter k controls a tunable tradeoff between rank minimization and accu-
racy fitness. k is set to 50 by default.

To solve Eq. (5), we propose an algorithm to compute L and R alternatively with
regularized least-square estimation. First, with a random initialization of L, the algo-
rithm optimizes the matrix R by least-square estimation. We notice that solving each
row of R has no influence on each other in the optimization; so it is efficient to quickly
obtain R by solving each row of R separately. Next, R is fixed and L is computed. The
above least-square estimation is executed iteratively where the iteration number is a
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parameter constrained by convergence condition and real-time requirements (we set it
to 200 by default in experiments).

As a result, we can obtain the traffic condition matrix bXm�n, in which the row
values at the current time slice indicate the real-time traffic conditions. Meanwhile, we
utilize a fast linear algebra library jblas [22] to accelerate matrix multiplications. As
such, while in Fujian highway data set the measurement matrix has a size of 2016 �
3038 with r = 2 and the iteration number 200, it only takes about 164 s to execute the
algorithm. This can fully satisfy the requirements of monitoring traffic conditions in
real time.

4.3 Data Filtering by Traffic Flow Features

After data completion, we carry out a filtering procedure, whose main functionality is
to rectify the data by integrating the characteristics of different traffic flows. The
following gives the description of the filtering.

Given the existing speed sequence fxðti; pjÞg, where ti denotes a time point and pj
denotes a location, what we do as follows is to estimate the speed at time point t and
location p, i.e., xðt; pÞ, where p 2 fpjg and t� ti. Let xf ðt; pÞ be the estimated speed in
the free flow, and let xcðt; pÞ be the estimated speed in the congested flow, we can
determine the estimated speed by:

xðt; pÞ ¼ ½1� wðt; pÞ�xf ðt; pÞþwðt; pÞxcðt; pÞ ð6Þ

where wðt; pÞ is the weight function of the filtering method. A key intuition is that the
current vehicle speed at a road segment is affected by the historical speeds at the road
segments nearby and that the effects of historical speeds exponentially decay over both
space and time distances. Therefore, we define the above two speeds via Eq. (7).

xcðt; pÞ ¼ 1
Ncðt; pÞ

X
pj;distðp;pjÞ�r

Xt

ti¼t�s

xðti; pjÞ/cðti � t; pj � pÞ

xf ðt; pÞ ¼ 1
Nf ðt; pÞ

X
pj;distðp;pjÞ� r

Xt

ti¼t�s

xðti; pjÞ/f ðti � t; pj � pÞ
ð7Þ

Here r is the maximum distance to p, s is the earliest time point prior to t, Ncðt; pÞ
and Nf ðt; pÞ are the normalization coefficients. /f ðDt;DpÞ and /cðDt;DpÞ are the
weight functions for free and congested flows, respectively. Further, we design

/ðDt;DpÞ to be /ðDt;DpÞ ¼ expð� jDtj
a � jDpj

b Þ, where a and b are given as the per-
turbation range in time and space dimensions, respectively. And then, we design
/f ðDt;DpÞ and /cðDt;DpÞ as follows:

/f ðDt;DpÞ ¼ /ðDt � Dp=cf ;DpÞ
/cðDt;DpÞ ¼ /ðDt � Dp=cc;DpÞ

ð8Þ
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where cf is the free traffic propagation speed in a free flow and cc is the congestion
traffic propagation speed in a congested flow [23].

The weight function wðt; pÞ should be designed to have the following properties.
(a) wðt; pÞ should tend to 0 for a free flow and to 1 for a congested flow. (b) From the
traffic observation, we find that if a free flow meets a congested flow at any road
segment, then the latter usually overrides the former. Therefore, as for the estimated
speeds, a large weight should be assigned to xf ðt; pÞ if both xcðt; pÞ and xf ðt; pÞ are
greater than vc, or to xcðt; pÞ if xcðt; pÞ or xf ðt; pÞ is less than vc, where vc denotes the
crossover from a free flow to a congested flow. Therefore, we employ a sigmoid
function as the kernel of wðt; pÞ. As a result,

wðt; pÞ ¼ 1

1þ e�
vc�minðxf ðt;pÞ;xcðt;pÞÞ

Dv

ð9Þ

where vc is set to 60 km/h and Dv is set to 20 km/h which is used for normalization of
speed variation. As long as the parameters a; b; cc; cf ; r; s are specified (we set them to
5 min, 3 km, -15 km/h, 80 km/h, 16 km and 60 min by default), we can obtain the
final vehicle speed estimates by Eqs. (6), (7), (8) and (9).

5 Evaluation

We evaluate Megrez from different spatial granularities. We start with segment-level
comparisons, then we take a highway as the granularity, and finally we treat all the
highways as a whole.

5.1 Case Study

First, we compare the speeds estimated by the Megrez approach (FIMSs) with the
detector speeds (DSs) on specific road segments where loop detectors are installed. In
experiments, we estimate FIMSs using signaling data, GPS data, and half of the loop
detector data, and take the other half of detector data as ground truth.

We select the 6th road segment of Fujian section of G25 (from Changchun to
Shenzhen) and the 3rd road segment of Fujian section of G15 (from Hainan to She-
nyang), and then obtain the DSs and FIMSs on the road segments on November 8, 10
and 13 of 2015, respectively. Figure 5 shows the comparison between the two kinds of
speeds.

As we can see from Fig. 5, the speeds are relatively low at night, which may be
attributed to the poor visibility. As a result, the drivers have to slow down for safety.
Meanwhile, FIMSs are smooth and can fit the profile of DSs well. Besides, in Fig. 5(c),
the congestion is observed from 10 a.m. to 12 a.m. FIMSs can capture the change of
speeds accurately. There is a slight delay in the FIMSs, this is due to the sampling
delays of signaling data and GPS data.

Next, we plot the spatial-temporal graph of Fujian section of G72 (from Nanning to
Quanzhou) on November 10, 2015 based on the DSs and FIMSs, respectively. In
Fig. 6, the X axis is the time of the day, and the Y axis is the distance to Quanzhou,
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which is the start of Fujian section of G72. In addition, green color in Fig. 6 represents
the free traffic state (vehicle speeds higher than 60 km/h), blue color represents the
slow state (vehicle speeds in 40–60 km/h), and red color represents the congestion state
(vehicle speeds lower than 40 km/h).

From Fig. 6(a), we can see that the traffic conditions given by DSs are sparse, and
no traffic conditions are reported on many road segments. On the other hand, the traffic
conditions given by FIMSs offer full coverage in time and space, as shown in Fig. 6(b).
Notice that from 0 a.m. to 7 a.m., the vehicle speeds are low at the location which is
about 120 km away from Quanzhou, which is consistent with DSs.

5.2 Speed Accuracy and Traffic Condition Accuracy Evaluation

Next we give the statistical comparisons for the nine highways in Fujian, comparing
Megrez with three other methods: Kalman filtering, MSSA-based method [6] and

(a) The 6th road segment of Fujian section of G25 on November 8, 2015

(b) The 6th road segment of Fujian section of G25 on November 10, 2015

(c) The 3rd road segment of Fujian section of G15 on November 13, 2015
Fig. 5. The comparison between DSs and FIMSs
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Megrez– (i.e., Megrez without the third step). The methods chosen for comparison are
briefly described as follows.

Kalman Filtering: In Kalman filtering [24], the merged speed at the n-th time slice is
taken as the observed value zðnÞ, and the estimated speed of the n-th time slice, denoted
as x̂ðnÞ, is calculated by performing an iteration procedure according to

prediction process
x0ðnÞ ¼ x̂ðn� 1Þ
P0ðnÞ ¼ Pðn� 1ÞþQ

�

correction process

KðnÞ ¼ P0ðnÞ=ðRþP0ðnÞÞ
x̂ðnÞ ¼ x0ðnÞþKðnÞ½zðnÞ � x0ðnÞ�
PðnÞ ¼ ½1� KðnÞ�P0ðnÞ

8><
>:

where x0ðnÞ denotes the prediction speed at current time slice, P0ðnÞ is a priori
covariance matrix of estimation error, KðnÞ is a Kalman gain matrix, PðnÞ is a pos-
teriori covariance matrix of estimation error, Q is a system noise covariance matrix, and
R is a measurement noise covariance matrix.

MSSA-Based Method (MSSA for Short): MSSA is often used to solve missing data
problems, e.g., for geographic data and meteorological data. It is a data adaptive and
nonparametric method based on the embedded lag-covariance matrix. We adopt an
iterative procedure proposed in [6] that utilizes the internal periodicity of traffic con-
ditions. The parameter M is set to 288 (i.e., one day) as suggested by [6].

Megrez–: Megrez– is the Megrez approach without the third step, i.e., feature-driven
filtering.

For evaluating the accuracy of the speeds, we take Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and
Normalized Mean Absolute Error (NMAE) as metrics.

Experiments are conducted with the merging of signaling data, GPS data and half
of loop detector data occurred along the nine highways in Fujian as input. We treat
these data as an incoming stream arrived in chronological order and execute the above

(a) DSs (b) FIMSs
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Fig. 6. Spatial-temporal graph of Fujian section of G72 on November 10, 2015 (Color figure
online)
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four methods every 5 min. In addition, the data that span a duration of one week prior
to the current time slice are adopted to form the measurement matrix. We examine the
estimated speeds at locations with loop detectors as the ground truth (of course, at those
locations, loop detector data are not used/merged in our speed estimations). We
evaluate the speed accuracy using the four metrics mentioned above.

In particular, we take as input the data on November 8 (weekend) and 10 (weekday)
of 2015, and execute the four methods, respectively. The results are shown in Fig. 7,
which is the performance of the four methods in terms of estimation errors. We can see
that Megrez outperforms the other three methods under all metrics. Megrez first fills the
missing speeds via compressive sensing, and then filters the speeds by leveraging the
characteristics of traffic flows. Since the inherent features of sensory data and char-
acteristics of traffic flows are both utilized, the estimated results are better than other
methods.

The performance of the Kalman filtering method is not as good as Megrez. The
reason behind it is that Kalman filtering optimizes the estimates by using linear state
equations, but the characteristics of realistic traffic flows are not linear. We find that
MSSA takes a long time to get results. As far as Fujian highways are concerned, under
the same hardware and software configurations, MSSA spends about 2.4 h to estimate
the traffic conditions of one time slice while Megrez takes only about 3 min. So MSSA
is not efficient in execution time and cannot be used in real-time scenarios especially
when the number of road segments is large. Megrez performs better than Megrez–,
which is attributed to the filtering. The filtering incorporates the characteristics of the
traffic flows, which is consistent with real traffic patterns.

To evaluate traffic condition accuracy, we introduce state consistency and speed
consistency. The former means that the estimated traffic condition (congested, slow, or
free) is consistent with the traffic condition indicated by the DS, while the latter means
that the difference between the estimated speed and the corresponding DS is within

(a) Data on November 8, 2015 as input (b) Data on November 10, 2015 as input
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Fig. 7. Speed errors under different methods
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20 km/h. We consider as metrics the precision and recall of the estimated speed with
respect to state consistency or speed consistency. For the sake of convenience, state
precision, state recall, speed precision and speed recall are used to replace the full
names of the metrics. The results are shown in Fig. 8.

As shown in Fig. 8, Megrez outperforms the other three methods in both cases. For
the weekday and the weekend, its state precisions reach 93.41% and 93.50%,
respectively, and its state recalls are 47.82% and 37.19% higher than Kalman filtering,
although the state precisions of Kalman filtering are close to Megrez. This is because
the standard Kalmen filtering cannot fill in missing data.

The behaviors of the MSSA method and Megrez– are not as good as Megrez. This
is because the filtering process has not been imposed on MSSA and Megrez–; as such,
the vehicle speeds show a large fluctuation.

5.3 Adaptability of Megrez

As mentioned earlier, Megrez is adaptive to the variation of data in temporal and spatial
distributions. In this subsection, we evaluate the adaptability of Megrez by conducting
the following experiments.

We execute Megrez with different combinations of three sets of sensory data on
nine highways in Fujian on November 8 (weekend) and 10 (weekday), 2015 respec-
tively. The first data set is the signaling data from CMCC; the second data set is the
GPS data from 2K1W vehicles; and the third data set is the half of loop detector data.
The results are shown in Fig. 9.

From Fig. 9, we find that Megrez can accurately estimate vehicle speeds with any
two data sets, and the accuracy of using only two types of data is slightly lower than
that with all three data sources. In other words, even if some types of data are not
available, Megrez can still report quite accurate traffic conditions.

(a) Data on November 8, 2015 as input (b) Data on November 10, 2015 as input
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6 Conclusions

The biggest hurdle to fully achieving multiple detection goals comes from the low
quality of available data. The Megrez approach proposed in this paper performs
adaptive data fusion to maximize the potential of available data. Especially, Megrez
overcomes the sparsity and incoherence of data, and integrates the characteristics of
traffic flows. Therefore, it can correct the distortions in road condition reports as much
as possible. Based on a large number of real data, we conduct extensive experiments
and evaluate Megrez from different perspectives. The experimental results show that
the vehicle speeds estimated by Megrez have low errors, and that our approach can
accurately detect the traffic conditions on highways.
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Abstract. Infamously, the finite and unrestricted implication problems
for the classes of (i) functional and inclusion dependencies together,
and (ii) embedded multivalued dependencies alone are each undecidable.
Famously, the restriction of (i) to functional and unary inclusion depen-
dencies in combination with the restriction of (ii) to multivalued depen-
dencies yield implication problems that are still different in the finite
and unrestricted case, but each are finitely axiomatizable and decidable
in low-degree polynomial time. An important embedded tractable frag-
ment of embedded multivalued dependencies are independence atoms.
These stipulate independence between two attribute sets in the sense
that for every two tuples there is a third tuple that agrees with the first
tuple on the first attribute set and with the second tuple on the sec-
ond attribute set. Our main results show that finite and unrestricted
implication deviate for the combined class of independence atoms, unary
functional and unary inclusion dependencies, but both are axiomatizable
and decidable in low-degree polynomial time. This combined class adds
arbitrary independence atoms to unary keys and unary foreign keys,
which frequently occur in practice as surrogate keys and references to
them.

Keywords: Functional dependency · Inclusion dependency
Independence atom · Implication problem

1 Introduction

Databases represent information about some domain of the real world. For
this purpose, data dependencies provide the main mechanism for enforcing the
semantics of the given application domain within a database system. As such,
data dependencies are essential for most data management tasks, including
database design, query and update processing, as well as data cleaning, exchange,
and integration. The usability of a class C of data dependencies for these tasks
depends critically on the computational properties of its associated implication
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problem. The implication problem for C is to decide whether for a given finite set
Σ ∪ {ϕ} of data dependencies from C, Σ implies ϕ, i.e. whether every database
that satisfies all the elements of Σ also satisfies ϕ. If we require databases to
be finite, then we speak of the finite implication problem, and otherwise of the
unrestricted implication problem. While the importance of data dependencies
continues to hold for new data models, the focus of this article is on the implica-
tion problems for important classes of data dependencies in the relational model
of data. In this context, data dependency theory is deep and rich [37]. Our sub-
mission is from the area of database theory, on which DASFAA’s call for paper
has solicited original contributions.

Functional and inclusion dependencies constitute the most commonly used
classes of data dependencies in practice. In particular, functional dependencies
(FDs) are more expressive than keys, and inclusion dependencies (INDs) are
more expressive than foreign keys, thereby capturing Codd’s principles of entity
and referential integrity, respectively, on the logical level. An FD R : X → Y
with attribute subsets X,Y on relation schema R expresses that the values on
attributes in Y are uniquely determined by the values on attributes in X. In
particular, R : X → R expresses that X is a key for R. An inclusion dependency
(IND) R[A1, . . . , An] ⊆ R′[B1, . . . , Bn], with attribute sequences A1, . . . , An on
R and B1, . . . , Bn on R′, expresses that for each tuple t over R there is some
tuple t′ over R′ such that for all i = 1, . . . , n, t(Ai) = t′(Bi) holds. If n = 1 we
call the IND unary (UIND).

A fundamental result in dependency theory is that the unrestricted and finite
implication problems for the combined class of FDs and INDs differ and each
is undecidable [10,32,33]. Interestingly, for the expressive sub-class of FDs and
UINDs, the unrestricted and finite implication problems still differ but each are
axiomatizable and decidable in low-degree polynomial time [12].

Another important expressive class of data dependencies are embedded mul-
tivalued dependencies (EMVDs). An EMVD R : X → Y ⊥Z with attribute
subsets X,Y,Z of R expresses that the projection r[XY Z] of a relation r over R
on the set union XY Z is the join r[XY ] �� r[XZ] of its projections on XY and
XZ. Another fundamental result in dependency theory is that the unrestricted
and finite implication problems for EMVDs differ, each is not finitely axioma-
tizable [36] and each is undecidable [23,24]. An important fragment of EMVDs
are multivalued dependencies (MVDs), which are a class of full dependencies in
which XY Z covers the full underlying set R of attributes. In fact, MVDs are
the basis for Fagin’s fourth normal form [13]. For the combined class of FDs,
MVDs, and UINDs, finite implication is axiomatizable and decidable in cubic
time, while unrestricted implication is axiomatizable and decidable in almost
linear time [12,26].

Independence atoms (IAs) constitute an expressive subclass of EMVDs and
FDs. An IA X⊥Y with attribute subsets X,Y of R expresses that X ∩ Y is
constant (i.e., the FD ∅ → X ∩Y holds) and that the EMVD ∅ → X \Y ⊥Y \X
holds. The latter expresses that the projection of a relation r on XY equals
the cartesian product of its projections on X and Y , i.e., r[XY ] = r[X] × r[Y ].
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For disjoint X and Y , the independence atoms X⊥Y thus form a subclass of
EMVDs. For the class of IAs, the finite and unrestricted implication problems
coincide, they are finitely axiomatizable and decidable in low-degree polynomial
time [27].

Given the usefulness of EMVDs, FDs, and INDs for data management, given
their computational barriers, and given the attractiveness of IAs as a tractable
fragment of EMVDs, it is a natural question to ask how IAs, FDs, and INDs
interact. Our article helps address the current gap in the existing rich theory
of relational data dependencies. Adding further to the challenge it is important
to note that IAs still form an embedded fragment of EMVDs, in contrast to
MVDs which are a class of full dependencies. Somewhat surprisingly, already the
interaction of IAs with just keys is intricate [19,20]. For example, unrestricted
implication is finitely axiomatizable but finite implication is not for keys and
unary IAs (those with singleton attribute sets), while the finite and unrestricted
implication problems coincide and enjoy a finite axiomatization for IAs and
unary keys (those with a singleton attribute set). In contrast, the extension of
INDs with IAs, although being more expressive than the class of INDs alone,
does not add further complexity to the latter. For INDs and IAs taken together
both implication problems still coincide and are finitely axiomatizable, PSPACE-
complete, and fixed-parameter tractable in their arity [9,21].

Examples. We few examples will illustrate how knowledge about IAs advances
data management. FDs and INDs do not require further motivation but the
more we know about the interaction of IAs with FDs and INDs, the more we
can advance data management.

Our first example is query processing. In particular, we show how the validity
of independence atoms is intrinsically linked to the optimization of the famous
division operator. The operator πXY (R) ÷ πY (R) returns all those X-values x
such that for every Y -value y there is some tuple t with t(X) = x and t(Y ) = y
[11]. The ability of the division operator to express universal quantification makes
it very powerful for expressing natural queries. The following result establishes
the intrinsic link.

Theorem 1. For all relations r over R, πXY (R)(r) ÷ πY (R)(r) = πX(R)(r) if
and only if r satisfies X⊥Y .

Proof. The division operator is defined as follows:

πXY (R)(r)÷πY (R)(r) = πX(R)(r)−πX((πX(R)(r)×πY (R)(r))−πXY (R)(r)),

and r satisfies X⊥Y if and only if πX(R)(r) × πY (R)(r) = πXY (R)(r). The
result follows directly.

In particular, the validity of an IA reduces the quadratic complexity of the
division operator to a linear complexity of a simple projection [28]. The reduction
in complexity also applies to the expression complexity of a query. Suppose we
would like to return those entities x that occur together with all entities y (for



356 M. Hannula and S. Link

example, suppliers that supply all products), then we need to express the division
operator πX,Y (R) ÷ πY (R) in SQL by double-negation as in:

SELECT R0.X FROM R AS R0
WHERE NOT EXISTS

SELECT ∗ FROM R AS R1
WHERE NOT EXISTS

SELECT ∗ FROM R AS R2
WHERE R2.X = R1.X AND

R2.Y = R0.Y ;

where R.X is short for
∧

A∈X R.A, and R2.X = R1.X (R2.Y = R0.Y ) for∧
A∈X R2.A = R1.A (

∧
B∈Y R2.B = R1.B). However, if a query optimizer can

notice that the IA X⊥Y is implied by the enforced set Σ of constraints, then
the query can be rewritten into

SELECT X
FROM R ;

Our second example is database security. More specifically, the aim of infer-
ence control is to protect private data under inferences that clever attacks may
use to circumvent access limitations [7]. For example, the combination of a par-
ticular patient name (say Jack) together with a particular medical examination
(say angiogram) may be considered a secret, while access to the patient name
and access to the medical examination in isolation may not be a secret. How-
ever, in some given context such as a procedure to diagnose some condition, all
patients may need to undergo all examinations. That is, the information about
the patient is independent of the information about the examination. Now, if
the secret (Jack, angiogram) must not be revealed to an unauthorized user that
can query the data source, then this user must not learn both: that Jack is a
patient undergoing the diagnosis of the condition, and that angiogram is a med-
ical examination that is part of the process for diagnosing the condition. Being
able to understand the interaction of independence atoms with other database
constraints can therefore help us to protect secrets under clever inference attacks.

Our final example is data profiling. Here we would like to demonstrate that
independence atoms do occur in real-world data sets. For that purpose, we have
mined some well-known publicly available data sets that have been used for
the mining of other classes of data dependencies before [34]. We report the
basic characteristics of these data sets in the form of their numbers of rows and
columns, and list the number of maximal IAs and the maximum arity of those
found. Here, an IA X⊥Y is maximal in a given set of IAs if there is no other
IA V ⊥W in the set such that V ⊆ X and W ⊆ Y holds. The arity of an IA is
defined as the total number of attribute occurrences.
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Data set Number of columns Number of rows Number of IAs Maximum arity

Bridges 13 108 4 3

Echocardiogram 13 132 5 4

Adult 14 48,842 9 3

Hepatitis 20 155 855 6

Horse 27 368 112 3

Table 1. Subclasses of FD+IND+IA. We write “ui” and “fi” for unrestricted and finite
implication, respectively.

Class ui = fi Complexity: ui/fi Finite axiomatization: ui/fi

FD Yes [4] Linear time [5] Yes (2-ary) [4]

IND Yes [9] PSPACE-complete [9] Yes (2-ary) [9]

IA Yes [15,27,35] Cubic time [15,27] Yes (2-ary) [15,27,35]

IND+IA Yes PSPACE-complete [21] Yes (3-ary) [21]

FD+IA, FD+UIA No [20] ?/? ?/no

FD+IND No [10,32] Undecidable/undecidable [10,32] No/no [10,32]

FD+UIND No [12] Cubic time/cubic time [12] Yes/no (infinite) [12]

UFD+UIND No [12] Linear time/linear time [12] Yes /no (infinite) [12]

UFD+UIND+IA No Cubic time/cubic time Yes /no (infinite)

It should be stressed that the usefulness of these IAs is not restricted to
those that are semantically meaningful. For example, the optimizations for the
division operator also apply to IAs that “accidentally” hold on a given data set.

1.1 Contributions

In this article we make the following contributions.

(1) We illustrate the relevance of independence atoms for data management,
such as their intrinsic link to the optimization of the division operator, more
precise cardinality estimations for choosing better query plans, and database
security. Moreover, we show that they occur in real-world data sets.

(2) For the combined class of FDs and IAs, finite and unrestricted implication
differ [19,20]. We show that finite implication is not finitely axiomatizable,
already for binary FDs (those with a two-element attribute set on the left-
hand side) and unary IAs. For the combined class of IAs and unary FDs,
we show that finite and unrestricted implication coincide and establish a
finite axiomatization. Hence, the situation for the combined class of FDs
and IAs is more intricate than for the combined class of FDs and MVDs,
where finite and unrestricted implication coincide, which enjoy an elegant
finite axiomatization [6], and for which implication can be decided in almost
linear time [14].
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(3) For the combined class of IAs, unary FDs, and UINDs, we establish axiom-
atizations for their finite and unrestricted implication problems, and show
that both are decidable in low-degree polynomial time. This is analogous to
the results for the combined class of FDs, MVDs, and UINDs. To the best of
our knowledge, the class of IAs, unary FDs, and UINDs is only the second
known class for which the finite and unrestricted implication differ but both
are decidable in low-degree polynomial time. The class is practically relevant
as it covers arbitrary IAs on top of unary keys and unary foreign keys, and
already unary keys and unary foreign keys occur readily in practice [12].
The significant difference to FDs, MVDs, and UINDs is the more intricate
interaction between FDs and IAs in comparison to FDs and MVDs. Note
that unary FDs and INDs frequently occur in practice as surrogate keys and
foreign keys that reference them. For example, 6 out of 8 keys are unary
and 8 out of 9 foreign keys are unary in the TPC-H benchmark, while 20
out of 32 keys are unary and 44 and out 46 foreign keys are unary in the
TPC-E benchmark1. The ability to reason efficiently about IAs, UFDs, and
UINDs is good news for data management. Finally, trading in restrictions
of the arity on INDs and FDs for restrictions on the arity of IAs cannot be
successful: Finite implication for unary IAs and binary FDs is not finitely
axiomatizable, see (2).

(4) For the combined class of IAs and FDs we establish tractable conditions suffi-
cient for non-interaction in both the finite and unrestricted cases. Instances of
the finite or unrestricted implication problems that meet the non-interaction
conditions can therefore be decided efficiently by using already known algo-
rithms for the sole class of IAs and the sole class of FDs. The decidability of
the finite and unrestricted implication problems for IAs and FDs are both
still open.

Organization. In Sect. 2 we present all the necessary definitions for the article.
Section 3 addresses the combined class of FDs and IAs. In Sect. 4 we focus on the
combination of UFDs, UINDs, and IAs, and establish axiomatizations for their
finite and unrestricted implication problems. Section 5 identifies polynomial-time
criteria for the non-interaction between INDs and IAs, and also between FDs
and IAs. Finally, in Sect. 6 we discuss the computational complexity of the impli-
cation problems. Due to lack of space we refer the reader to Appendix for any
remaining proofs. The appendix can be found in [22].

2 Preliminaries

We denote by A,B,C, . . . attributes and by X,Y,Z, . . . either sets or sequences
of attributes. For two sets (sequences) X and Y , we write XY for their union
(concatenation). Similarly, we may write A instead of the single element set or
sequence that consists of A. The size of a set (or length of a sequence) X is
written as |X|.
1 http://www.tpc.org.

http://www.tpc.org
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A relation schema consists of attributes A, each equipped with a set of
domain values denoted by Dom(A). By database schema we denote a pairwise
disjoint sequence of relations schemata. Given a relation schema R, a tuple over R
is a function that maps each attribute A from R to Dom(A). A relation r over R
is then a non-empty set of tuples over R, and a database d over R = (R1, . . . , Rn)
is a sequence (r1, . . . , rn) where each ri is a relation over Ri

2. We sometimes write
r[R] to denote that r is a relation over R, and similarly we may write d[R]. A
relation is called finite if the underlying set of tuples is finite, and a database
is finite if it is a sequence of finite relations. For a tuple t and a relation r over
R and a subset (or subsequence) X of R, t(X) is the restriction of t to X, and
r(X) is the set of all restrictions t(X) where t ∈ r.

Next we define the syntax and semantics of functional and inclusion depen-
dencies and independence atoms.

Functional Dependency. Let X and Y be two sets of attributes from a relation
schema R. Then R : X → Y is a functional dependency that is satisfied by a
database d = (r[R]) iff for all t, t′ ∈ r, t(X) = t′(X) implies t(Y ) = t′(Y ).

Inclusion Dependency. Let A1, . . . , An and B1, . . . , Bn be two sequences
of distinct attributes from relation schemata R and R′, respectively. Then
R[A1 . . . An] ⊆ R′[B1 . . . Bn] is an inclusion dependency that is satisfied by
a database d = (r[R], r′[R′]) iff for all t ∈ ri there is t′ ∈ rj such that
t(A1) = t′(B1), . . . , t(An) = t′(Bn).

Independence Atom. Let X and Y be two (not necessarily disjoint) attribute
sets from a shared relation schema R. Then R : X⊥Y is an independence atom
that is satisfied by a database d = (r[R]) iff for all tuples t, t ∈ r there is a tuple
t′′ ∈ r such that t′′(X) = t(X) and t′′(Y ) = t′(Y ). A disjoint independence atom
(DIA) is an IA X⊥Y where X ∩ Y is empty.

Regarding all the aforementioned dependencies, if the relation schema R is
not needed in the context, we will drop it from the syntax. E.g., we will write
X⊥Y instead of R : X⊥Y .

We say that an IND is k-ary if it is of the form A1 . . . Ak ⊆ B1 . . . Bk. An
IA X⊥Y and an FD X → Y are called k-ary if max{|X|, |Y |} = k. A class
of dependencies is called k-ary if it contains at most k-ary dependencies. Most
of the subclasses that we consider are only unary, so we add “U” to a class
name to denote its unary subclass. For instance, UIND denotes the class of all
unary INDs. In general, for k ≥ 2, we add “k” to a class name to denote its
k-ary subclass. We use “+” to denote unions of classes, e.g., IND+IA denotes
the class of all inclusion dependencies and independence atoms.

2 We exclude empty relations from our definition. This is a practical assumption with
no effect when single relation schemata are considered only. However, on multiple
relations it has an effect, e.g., the rule UI3 in Table 2 becomes unsound.
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Notice that the semantic condition for IAs X⊥Y holds only if the values of
the common attributes of X and Y are constant. In other words, the following
holds:

* d |= R : X⊥X, if for all s, s′ ∈ r it holds that s(X) = s′(X).

Hence, we also call unary FDs of the form ∅ → A and unary IAs of the form
A⊥A constancy atoms (CAs).

The restriction of a dependency σ to a set of attributes R, written σ � R, is
X ∩ R → Y ∩ R for an FD σ of the form X → Y , and X ∩ R⊥Y ∩ R for an IA σ
of the form X⊥Y . If σ is an IND of the form A1 . . . An ⊆ B1 . . . Bn and i1, . . . , ik
lists {i = 1, . . . , n : Ai ∈ R and Bi ∈ R}, then σ � R = Ai1 . . . Aik ⊆ Bi1 . . . Bik .
For a set of dependencies Σ, the restriction of Σ to R, written Σ � R, is the set of
all σ � R for σ ∈ Σ. For attributes A and B from R, we denote by σ(R : A �→ B)
the dependencies obtained from σ by replacing any number of occurrences of A
with B.

A set of axioms σ and rules of the form σ1, . . . , σn ⇒ σ is called an axioma-
tization. A rule is called n-ary if its antecedent part has n conjuncts. An axiom-
atization consisting of at most n-ary rules is called n-ary. A deduction from a
set of dependencies Σ by an axiomatization R is a sequence of dependencies
(σ1, . . . , σn) where each σi is either an element of Σ, an axiom, or follows from
σ1, . . . , σi−1 by an application of a rule in R. In such an occasion we write
Σ R σ, or simply Σ  σ if R is known.

Given a finite set of database dependencies Σ ∪{σ}, the (finite) unrestricted
implication problem is to decide whether all (finite) databases that satisfy Σ
also satisfy σ, written Σ |= σ (Σ |=fin σ). An axiomatization R is sound for
the unrestricted implication problem of a class of dependencies C if for all finite
sets Σ ∪ {σ} of dependencies from C, Σ R σ ⇒ Σ |= σ; it is complete if
Σ |= σ ⇒ Σ R σ. Soundness and completeness for finite implication are defined
analogously.

Some of our proofs use the chase algorithm that was invented in the late 70s
[3,31]. For a detailed exposition of this technique we refer the reader to [2].

Axiomatizations. Tables 2 and 3 present the axiomatizations considered in
this article. In Table 2, the axiomatization I := {I1, . . . , I5} is sound and com-
plete for independence atoms alone [20,27]. The rules F1,F2,F3 form the Arm-
strong axiomatization for functional dependencies [4], and the rules FI1 and
FI2 describe simple interaction between independence atoms and functional
dependencies. Table 3 depicts the sound and complete axiomatization of inclu-
sion dependencies introduced in [8,9]. Table 2 presents rules describing interac-
tion between inclusion dependencies and independence atoms [21].

We leave it to the reader to check the soundness of the axiom systems in
Tables 2 and 3. The proof does not include anything unexpected; we only note
that soundness of UI3 follows only if databases are not allowed to contain empty
relations.
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Theorem 2. The axiomatization A ∪ B ∪ C is sound for the unrestricted and
finite implication problems of FD+IND+IA.

Lastly, we note that, for notational clarity only, we will restrict attention to
the uni-relational case in all our proofs. That is, we will consider only those cases
where databases consist of a single relation.

3 IAs+FDs

First we consider the interaction between FDs and IAs. Already keys and IAs
combined form a somewhat intricate class: Their finite and unrestricted implica-
tion problems differ and the former lacks a finite axiomatization [20]. In Sect. 3.1
we extend these results to the classes FD+IA and 2FD+UIA. However, the inter-
action between unary FDs and IAs is less involved. In Sect. 3.2 we show that for
UFD+IA unrestricted and finite implication coincide and the axiomatization A∗

given in Table 2 forms a sound and complete axiomatization.

3.1 Implication Problem for FDs and IAs

The following theorem enables us to separate the finite and unrestricted impli-
cation problems for FD+IA as well as for FD+UIA.

Theorem 3 [19]. The unrestricted and finite implication problems for keys and
UIAs differ.

Table 2. Axiomatizations A for FDs and IAs and C for IAs and INDs. We define
I := {I1, . . . , I5} and A∗ := A \ {I5, F3}.

∅⊥X

X⊥Y

Y ⊥X
(trivial independence, I1) (symmetry, I2)

X⊥Y Z

X⊥Y

X⊥Y XY ⊥Z

X⊥Y Z
(decomposition, I3) (exchange, I4)

X⊥Y Z⊥Z

X⊥Y Z XY → Y
(weak composition, I5) (reflexivity, F1)

X → Y Y → Z

X → Z

X → Y

XZ → Y Z
(transitivity, F2) (augmentation, F3)

X⊥Y X → Y

∅ → Y

X⊥Y Z Z → V

X⊥Y ZV
(constancy, FI1) (composition, FI2)

Axiomatization A

R[X] ⊆ R′[Z] R[Y ] ⊆ R′[W ] R′[Z⊥W ]
R[XY ] ⊆ R′[ZW ]

(concatenation, UI1)

R[XY ] ⊆ R′[ZW ] R′[ZW ] ⊆ R[XY ] R′[Z⊥W ]
R[X⊥Y ]

(transfer, UI2)

R[X] ⊆ R′[Y ] R′ : Y ⊥Y

R′[Y ] ⊆ R[X]
(symmetry, UI3)

R[X] ⊆ R′[Y ] R′ : Y ⊥Y

R : X⊥X
(constancy, UI4)

R[A] ⊆ R′[C] R[B] ⊆ R′[C] R′ : C⊥C σ

σ(R : A �→ B)
(equality, UI5)

Axiomatization C
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Table 3. Axiomatization B for INDs

R[X] ⊆ R[X]

R[X] ⊆ R′[Y ] R′[Y ] ⊆ R′′[Z]

R[X] ⊆ R′′[Z]

R[A1 . . . An] ⊆ R′[B1 . . . Bn]

R[Ai1 . . . Aim ] ⊆ R′[Bi1 . . . Bim ]
(∗)

(reflexivity, U1) (transitivity, U2) (projection and permutation, U3)

(∗) ij are pairwise distinct and from {1, . . . , n}

This theorem was proved by showing that Σ |=fin σ and Σ �|= σ, for Σ :=
{A⊥B,C⊥D,BC → AD,AD → BC} and σ := AB → CD. In [19] it was
shown that this counterexample can be extended to a non-axiomatizability
results for finite implication of keys and IAs. By an analogous line of reason-
ing this results carries over to the class of FDs and IAs, as well (see Appendix).

Theorem 4. The finite implication problem for FD+IA (2FD+UIA) is not
finitely axiomatizable.

The implicit assumption in the above theorem is that an axiomatization must
be attribute-bounded, meaning that it may not introduce new attributes [10]. It is
easy to see that with this prerequisite finite axiomatization entails decidability.
Contrarily, there are finite axiomatizations for undecidable implication problems
that do not adhere to this assumption [16–18,33].

To the best of our knowledge, decidability is open for both FD+IA and
FD+UIA with respect to their finite and unrestricted implication problems. It is
worth noting here that the unrestricted (finite) implication problem for FD+UIA
is as hard as that for FD+IA. For this, we demonstrate a simple reduction from
the latter to the former. Let Σ ∪ {σ} be a set of FDs and IAs, and let Σ′

denote the set of FDs and IAs where each IA of the form X⊥Y is replaced with
dependencies from {A⊥B,X → A,A → X,Y → B,B → Y } where A and B
are fresh attributes. If σ is an FD, then Σ (finitely) implies σ iff Σ′ (finitely)
implies σ. Also, if σ is of the form X⊥Y , then we have Σ |= σ iff Σ′′ |= σ′,
where

Σ′′ := Σ′ ∪ {X → A,A → X,Y → B,B → Y },

σ′ := A⊥B, and A and B are fresh attributes.

3.2 Implication for UFDs and IAs

Next we turn to the class UFD+IA. Extending the scope and methods from [20],
which presented a finite axiomatization for unary keys and IAs, we show that
the axiomatization A∗ (see Table 2) is sound and complete for UFD+IA in both
with respect to finite and unrestricted implication. Hence, compared to UIAs
and FDs, the interaction between IAs and UFDs is relatively tame. Combined,
however, these two may entail new restrictions to column sizes. For instance, in
the finite A → B1, A → B2, and B1⊥B2 imply |r(B1)| · |r(B2)| ≤ |r(A)|. The
proof of the following completeness theorem is obtained by a chase-based model
construction (see Appendix).
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Theorem 5. The axiomatization A∗ is sound and complete for the unrestricted
and finite implication problems of UFD+IA.

As the same axiomatization characterizes both finite and unrestricted impli-
cation, we obtain the following corollary.

Corollary 1. The finite and unrestricted implication problems coincide for
UFD+IA.

4 IAs+UFDs+UINDs

Next we turn attention to the combined class of FDs, INDs, and IAs. In the
previous section we noticed that the finite implication problem for binary FDs
and unary IAs is not finitely axiomatizable. On the other hand, both the finite
and unrestricted implication problems for unary FDs and binary INDs are unde-
cidable [32]. Hence, in this section we restrict to unary FDs and unary INDs, a
class for which the two implication problems already deviate [12]. It turns out
that the combination UFD+UIND+IA can be axiomatized with respect to both
problems. However, in the finite case the axiomatization is infinite as one needs
to add so-called cycle rules for UFDs and UINDs.

An axiomatization for unrestricted implication follows from results in
Sect. 3.2 and [12]. For the proof, see Appendix.

Theorem 6. The axiomatization A∗ ∪ {U1,U2,UI3,UI4} is sound and com-
plete for the unrestricted implication problem of UFD+UIND+IA.

For finite implication a complete axiomatization of UFD+UIND+IA is found
by extending A∗ ∪ {U1,U2,UI3,UI4} with the so-called cycle rules [12] (see
Table 2) and by removing UI3,UI4 which become redundant. However, the com-
pleteness proof is now more involved and proved in two steps. We will combine
the chase-based approach of the proof of Theorem 5 with the graph-theoretic
approach from [12]. The latter method was used to prove a complete axiomati-
zation for the finite implication problem of UIND+FD. For the graph-theoretic
approach, we commence by introducing multigraphs with two sorts of edges: red
ones which encode UFDs and black ones which encode UINDs.

Table 4. Cycle rules for finite implication

A1 → A2 A2 ⊇ A3 . . . A2n−1 → A2n A2n ⊇ A1

A1 ← A2 A2 ⊆ A3 . . . A2n−1 ← A2n A2n ⊆ A1

(cycle rule for n, Cn)

Definition 1 [12]. For each set Σ of UINDs and UFDs over R, let G(Σ) be the
multigraph that consists of nodes R, red directed edges (A,B), for A → B ∈ Σ,
and black directed edges (A,B), for B ⊆ A ∈ Σ. If G(Σ) has red (black) directed
edges from A to B and vice versa, then these edges are replaced with an undirected
edge between A and B.
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Given a multigraph G(Σ), we first topologically sort its strongly connected
components which form a directed acyclic graph [25]. That is, each compo-
nent is assigned a unique scc-number, greater than the scc-numbers of all its
descendants. For an attribute A, denote by scc(A) the scc-number of the com-
ponent node A belongs to. Note that scc(A) ≥ scc(B) if (A,B) is an edge in
G(Σ). Denote also by scci the set of attributes A with scc(A) = i, and let
scc≤i :=

⋃
j≤i sccj and define scc≥i, scc<i, and scc>i analogously. The following

lemma is a simple consequence of the definition.3

Lemma 1 [12]. Let Σ be a set of UFDs and UINDs, closed under {F1,F2,U1,
U2} ∪ {Ck : k ∈ N}. Then every node in G(Σ) has a red and a black self-loop.
The red (black) subgraph of G(Σ) is transitively closed. The subgraphs induced
by the strongly connected components of G(Σ) are undirected. In each strongly
connected component, the red (black) subset of undirected edges forms a collection
of node-disjoint cliques. Note that the red and black partitions of nodes could be
different.

We now apply this graphical approach to earlier techniques presented in this
paper. Theorem 7 shows completeness of the axiomatization A∗∪{U1,U2}∪{Cn :
n ∈ N} for the finite implication problem of UFD+UIND+IA by using the
relation generated in Lemma 2. The proof of this lemma describes an incremental
modification of the base relation, taken from the proof of Theorem 5, that is
shown to reflect a growing number of inclusion dependencies in its composition.
This is achieved by an inductive re-organization of the column values according
to the underlying scc-numbering while at the same time maintaining the integrity
of the UFD and IA dependencies in the base relation. The proof of the theorem
and the lemma can be found in Appendix.

Lemma 2. Let Σ be a set of UFDs, UINDs, and IAs over R, partitioned respec-
tively to ΣUFD, ΣUIND, and ΣIA. Assume that ΣUFD∪ΣUIND contains all UFDs
and UINDs derivable from Σ by A∗ ∪ {U1,U2} ∪ {Ck : k ∈ N}, and assume that
we have assigned an scc-numbering to G(ΣUFD ∪ ΣUIND). Let E be either the
empty set or a single attribute, and let R′ := {B ∈ R : E → B �∈ Σ}. Then there
exists a finite relation r and tuples t0, t1 ∈ r such that:

(i) Σ  X⊥Y if X,Y ⊆ R′ and for some t ∈ r, t(X) = t0(X) and t(Y ) =
t1(Y );

(ii) r |= ΣUFD ∪ ΣIA;
(iii) r(A) is (strictly) included in r(B) if scc(A) is (strictly) less than scc(B).

Theorem 7. The axiomatization A∗ ∪ {U1,U2} ∪ {Cn : n ∈ N} is sound and
complete for the finite implication problem of UFD+UIND+IA.

3 Lemma 1 is a reformulation of Lemma 4.2. in [12] where the same claim is proved for
a set of FDs and UINDs that is closed under {F1, F2, F3, U1, U2} ∪ {Ck : k ∈ N}.
We may omit F3 here since, when restricting attention to UFDs, F3 is not needed
in the proof.
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5 Polynomial-Time Conditions for Non-interaction

The interaction-freeness between the class FD+IND has been well-studied in the
literature [29,30]. Here, we examine the frontiers for tractable reasoning about
the class FD+IA in both the finite and unrestricted cases. For IND+IA these
questions have been studied in [21]. The idea is to establish sufficient criteria
for the non-interaction between IAs and FDs. There is a trade-off between the
simplicity and generality of such criteria. While simple criteria may be easier to
apply, more general criteria allow us to establish non-interaction in more cases.
Our focus here is on generality, and the criteria are driven by the corresponding
inference rules. We define non-interaction between two classes as follows.

Definition 2. Let Σ0 and Σ1 be two sets of dependencies from classes C0 and C1,
respectively. We say that Σ0, Σ1 have no interaction with respect to unrestricted
(finite) implication if

– for σ from C0, σ is (finitely) implied by Σ0 iff σ is (finitely) implied by Σ0∪Σ1.
– for σ from C1, σ is (finitely) implied by Σ1 iff σ is (finitely) implied by Σ0∪Σ1.

Let us now define two syntactic criteria for describing non-interaction. We say
that an IA X⊥Y splits an FD U → V if both (X \ Y ) ∩ U and (Y \ X) ∩ U
are non-empty. An IA X⊥Y splits an IND Z ⊆ W if both X ∩ W and Y ∩ W
are non-empty. Furthermore, X⊥Y intersects U → V if XY ∩ U is non-empty.
Notice that both these concepts give rise to possible interaction between two
different classes. We show that lacking splits implies non-interaction for FD+IA
in the unrestricted case. Non-interaction for FD+IA in the finite is guaranteed
by the stronger condition defined in terms of lacking intersections.

For IND+IA lack of splits entail non-interaction [21].

Theorem 8 [21]. Let ΣIND and ΣIA be respectively sets of INDs and IAs. If no
IA in ΣIA splits any IND in ΣIND, then ΣIND and ΣIA have no interaction with
respect to unrestricted (finite) implication.

We proceed with the non-interaction results for FD+IA. The proofs are located
in Appendix. For unrestricted implication the idea is to first apply the below
polynomial-time algorithm which transforms an assumption set Σ to an equiva-
lent set Σ∗. The set Σ∗ is such that it has no interaction between FDs and IAs
provided that none of its FDs split any IAs.

For a set of FDs Σ, let us denote by Cl(Σ,X) the closure set of all
attributes A for which Σ |= X → A. This set can be computed in linear time
by the Beeri-Bernstein algorithm [5]. The non-interaction condition for unre-
stricted implication is now formulated using Σ∗

IA = {X1⊥Y1, . . . , Xn⊥Yn} and
Σ∗

FD = ΣFD ∪ {∅ → Z} where Z,XiYi are computed using the following algo-
rithm that takes an FD set ΣFD and an IA set ΣIA = {U1⊥V1, . . . , Un⊥Vn} as
an input.
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Algorithm 1. Algorithm for computing Z,Xi, Yi

Require: ΣFD and ΣIA = {Ui⊥Vi | i = 1, . . . , n}
Ensure: Z and Σ∗

IA = {Xi⊥Yi | i = 1, . . . , n}
1: Initialize: V ← ∅, Xi ← Ui, Yi ← Vi

2: repeat
3: Z ← V
4: for i = 1, . . . , n do
5: Xi ← Cl(ΣFD, XiV )
6: Yi ← Cl(ΣFD, YiV )
7: V ← V ∪ (Xi ∩ Yi)

8: until Z=V

From the construction we obtain that Σ∗
FD ∪ Σ∗

IA is equivalent to ΣFD ∪ ΣIA

and that

(1) for Z1⊥Z2 ∈ Σ∗
IA and i = 1, 2, Σ∗

FD |= Zi → X implies X ⊆ Zi;
(2) Σ∗

FD ∪ Σ∗
IA |= ∅ → A iff A ∈ Z.

Recall that the closure set C(ΣFD,X) can be computed in linear time by the
Beeri-Bernstein algorithm. Now, at stage 5 (or stage 6) the computation of the
closure set is resumed whenever V introduces attributes that are new to Xi (Yi).
Since the number of the closures considered is 2|ΣIA|, we obtain a quadratic
time bound for the computation of Z,Xi, Yi.

Theorem 9. Let ΣFD and ΣIA be respectively sets of FDs and IAs, and let Σ∗
FD

and Σ∗
IA be obtained from ΣFD and ΣIA by Algorithm 1. Then the following holds:

– if no IA in Σ∗
IA splits any FD in Σ∗

FD, then Σ∗
FD and Σ∗

IA have no interaction
with respect to unrestricted implication;

– if no IA in ΣIA intersects any FD in ΣFD, then ΣFD and ΣIA have no inter-
action with respect to finite implication.

To illustrate the necessity for a stronger condition in the finite case, recall
from Sect. 3.1 that AB → CD is finitely implied by {A⊥B,C⊥D,BC →
AD,AD → BC}, and notice that AB → CD is not finitely implied by
{BC → AD,AD → BC}. However, Algorithm 1 does not produce any fresh
assumptions, and neither A⊥B nor C⊥D splits any FD assumption. Therefore,
lack of splits is not sufficient for non-interaction in the finite case.

6 Complexity Results

Next we examine the computational complexity of the discussed implication
problems. We show that both implication problems for UFD+UIND+IA can be
solved in low-degree polynomial time, even though the problems differ from one
another. The associated decision procedures, found in Appendix, transform the
implication problems first to graphs, as earlier in this paper, and subsequently
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modify them according to appropriate inference rules. The only difference with
finite implication is that an application of the cycle rules is included in the
process. The implication problem then reduces, for UFDs and UINDs, to reach-
ability in the graph, and for IAs, to an IA-implication instance which reflects
the topology of the graph. Consequently, the stated time bounds follow.

Theorem 10. Let ΣUFD, ΣUIND, ΣIA be respectively sets of UFDs, UINDs, and
IAs over a relation schema R. The unrestricted and finite implication problems
for σ by ΣUFD ∪ ΣUIND ∪ ΣIA can be decided in time:

– O(|ΣIA| · |ΣUFD| + |ΣUIND|) if σ is an UFD or UIND;
– O(|ΣIA| · (|ΣUFD| + |R|2) + |ΣUIND|) if σ is a IA.

7 Conclusion and Outlook

In view of the infeasibility of EMVDs and of FDs and INDs combined, the class
of FDs, MVDs and unary INDs is important as it is low-degree PTIME decidable
in the finite and unrestricted cases. As independence atoms form an important
tractable embedded sub-class of EMVDs, we have delineated axiomatizability
and tractability frontiers for sub-classes of FDs, INDs, and IAs. The most inter-
esting class is that of IAs, unary FDs and unary INDs, for which finite and
unrestricted implication differ but each is axiomatisable and decidable in low-
degree polynomial time. The results form a basis for the advancement of several
data processing tasks, including cardinality estimation, database security, and
query optimization.

Even though research on dependency theory has been rich and deep, there
are many problems that warrant future research. Theoretically, the decidability
remains open for both independence atoms and functional dependencies as well
as unary independence atoms and functional dependencies, both in the finite
and unrestricted case. This line of research should also be investigated in the
probabilistic setting of conditional independencies, fundamental to multivariate
statistics and machine learning. Practically, implementations and experimental
evaluations of the algorithms can complement the findings in the research. Of
direct practical use for data profiling would be algorithms that compute the set
of IAs that hold on a given relation, as would algorithms to mine notions of
approximate IAs [1].
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Abstract. Inconsistencies in a database can be detected based on vio-
lations of integrity constraints, such as functional depencies (FDs). In
big data era, many related data sources give us the chance of detecting
inconsistency extensively. That is, even though violations do not exist
in a single data set D, we can leverage other data sources to discover
potential violations. A significant challenge for violation detection based
on data sources is that accessing too many data sources introduces a
huge cost, while involving too few data sources may miss serious viola-
tions. Motivated by this, we investigate how to select a proper subset of
sources for inconsistency detection. To address this problem, we formu-
late the gain model of sources and introduce the optimization problem
of source selection, called SSID, in which the gain is maximized with the
cost under a threshold. We show that the SSID problem is NP-hard and
propose a greedy approximation approach for SSID. To avoid accessing
data sources, we also present a randomized technique for gain estimation
with theoretical guarantees. Experimental results on both real and syn-
thetic data show high performance on both effectiveness and efficiency
of our algorithm.

1 Introduction

Consistency is one of the central criteria for data quality. Inconsistencies in
a database can be captured by the violations of integrity constraints, such as
functional dependencies (FDs). Specifically, given a database D and a set of
FDs Σ, tuples in D that violate rules in Σ are inconsistent and need to be
repaired. However, D might still have errors when there is no violations in D.
To address this problem, we can compare D with other data sets to identify
more inconsistencies and capture more errors. Fortunately, with the dramatic
growth of useful information nowadays, data sets can be collected from various
sources, i.e., websites, data markets, and enterprises. It brings opportunities and
challenges for using data sources to detect inconsistencies (or errors). We give
an example below to illustrate this issue.

Example 1. Consider S0, S1 and S2 in Table 1. S0 is the data for inconsistency
detection, which is called the target data. S1 and S2 are two data sources. For
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S0-S2, the data items in italics are incorrect. For S0, there are three errors:
x1[name], x1[street] and x2[state]. We assume the schemas of S0 − S2 have been
mapped by existing schema mapping techniques. A set of FDs, ϕ1 − ϕ6 (shown
in Table 1 a), are used for inconsistency detection, in which S0 satisfies ϕ1 − ϕ6,
S1 satisfies ϕ5−ϕ6, and S2 satisfies ϕ1−ϕ3. Clearly, since there is no violation of
FDs in S0, none of the above errors can be detected. However, if we compare S0

with S1, inconsistencies can be discovered. For example, since x2[zip] = y2[zip] =
10012, x2[state] �= y2[state], they are inconsistent according to FD ϕ6. Therefore,
x2[state] might be incorrect. Similarly, according to the inconsistencies detected
based on sources S1 and S2, we can conclude that the following data items
(underlined) in S0 might be incorrect: x1[name], x1[street], x2[state], x3[name]
and x3[state]. We call these items candidate errors. It can be seen that involving
extra data sources can help us detect more inconsistencies in target data. The
candidate errors will be cleaned by a further step, i.e., posing queries on multiple
data sources for truth discovery, which has been widely studied [12]. This paper
focuses on how to select sources for inconsistency detection.

Table 1. Motivating example

However, accessing all the sources for inconsistency detection is neither worth-
while nor impractical. On one hand, most of the data in sources might be irrel-
evant or redundant. On the other hand, integrating data from sources requires
cost. Moreover, some sources charge for their data [6], such as GeoLytics and
American Business Database. Therefore, this paper studies how to select a proper
subset of sources for inconsistency detection. Moreover, such selection process
should not require accessing data sources. Otherwise, it is not worthwhile due
to its large cost. This problem brings three major challenges: (1) How to eval-
uate the gain of data sources for inconsistency detection? (2) How to define
the optimization problem of source selection to balance between gain and cost?
(3) How to implement the source selection algorithm without accessing sources?
Aiming at the aforementioned problems, this paper makes the following main
contributions.
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1. Based on patterns of tuples over FDs, we define the gain model of sources and
formulate the problem of source selection for inconsistency detection, called
SSID. As far as we know, this is the first study on how to select sources for
inconsistency detection. We show that the SSID problem is NP-hard (Sect. 2).

2. A greedy approximation algorithm for SSID is presented (Sect. 3). To avoid
accessing data sources, we develop a randomized approach for intersection
set size estimation based on min-hashing (Sect. 4). Such estimation has a
theoretical guarantee.

3. Using real-life and synthetic data, the effectiveness, efficiency and scalability
of our proposed algorithm are experimentally verified (Sect. 5).

2 Problem Definition

In order to formalize the source selection problem, we first introduce the symbols
and notations in this paper.

Let S0 be the target data for inconsistency detection and S = {Si|1 ≤ i ≤ m}
be the set of sources, where each Si (0 ≤ i ≤ m) includes a dataset Di with
schema Ri and a FD set Σi. We assume that the schemas of sources have been
mapped by existing schema mapping techniques. Table 2 shows the symbols that
will be used throughout the rest of this paper.

Table 2. Symbols

Symbols Meaning

S0 The target data

S = {S1, · · · , Sm} The set of data sources

S A subset of sources S

h1, · · · , hk k random hash functions

K The threshold of cost

A, B P [S0, ϕ], P [S, ϕ]

U The universe of A and B, with |U | = n

a, b |A|, |B|
x, y, s |A ∩ B|, |A ∪ B|, s(A, B)

Now we introduce the notion of pattern to describe tuples over FDs. Given
a tuple t in Si and a FD ϕ in Σi, the pattern of t under ϕ, denoted as P [t, ϕ],
is defined as P [t, ϕ] = (t[LHS(ϕ)],RHS(ϕ)), where LHS(ϕ) (RHS(ϕ)) is the left-
hand side (right-hand side) of ϕ, and t[LHS(ϕ)] is the LHS(ϕ) value of t. For
example, for tuple x1 in Table 1(b) and FD ϕ1 in Table 1(a), pattern P [x1, ϕ] is
(“949-1212”,name). Accordingly, the pattern set of Si on FD ϕ ∈ Σi, denoted
P [Si, ϕ], is defined as

P [Si, ϕ] = {(t[LHS(ϕ)],RHS(ϕ))|t ∈ Si} (1)
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The pattern set of Si is
P [Si] = ∪ϕ∈Σi

P [Si, ϕ] (2)

Similarly, for source set S, we have

P [S, ϕ] = ∪Si∈SP [Si, ϕ] (3)

P [S] = ∪Si∈SP [Si] (4)

Thus, using data sources to detect inconsistency is transformed into a pattern
matching problem, as the property below.

Property 1. Given tuple s ∈ S0 and FD ϕ ∈ Σ0 ∩(∪Si∈SΣi), s can be checked by
S iff P [s, ϕ] ∈ P [S, ϕ]. In another word, s can be checked by S iff ∃t ∈ ∪Si∈SSi

such that P [s, ϕ] = P [t, ϕ]. For such tuple t, we say that s and t are inconsistent
on ϕ if s[RHS(ϕ)] �= t[RHS(ϕ)]; otherwise we say s and t are consistent on ϕ.

Now we present the gain model of sources, called coverage. Given a source
set S, we call the number of patterns in target S0 been covered by S as the
coverage of S, denoted as cov(S). Formally,

cov(S) = |P [S0] ∩ P [S]| (5)

According to Property 1, cov(S) represents the number of patterns in target
data whose consistency can be checked by S.

Ideally, we wish to maximize the gain, i.e. cov(S), and minimize the cost, i.e.
|S|. However, it is impractical to achieve both goals. Thus, this paper attempts to
find a subset of sources that maximizes the coverage with the number of sources
no more than a given threshold. Note that, we assume unit cost of each source.
We call this problem as Source Selection for Inconsistency Detection (SSID).
The formal definition is shown below.

Definition 1 (Source Selection for Inconsistency Detection (SSID)). Given a
target S0, a source set S and a positive integer K, the source selection for incon-
sistency detection is to find a subset S of S, such that |S| ≤ K, and cov(S) is
maximized.

Discussion. In our definition of coverage, each pattern in S0 has only two states:
covered or uncovered. One question is: whether it is enough for each pattern to
be covered only once? We use the following example to demonstrate that this
measure is reasonable.

Example 2. Consider a pattern p in P [S0, ϕ] which is covered by source Si, i.e.,
p ∈ P [S0, ϕ] and p ∈ P [Si, ϕ]. Suppose ϕ : X → Y . Let s ∈ S0 and t ∈ Si be the
two tuples s.t. P [s, ϕ] = P [t, ϕ] = p. Therefore, we have s[X] = t[X]. For s[Y ]
and t[Y ], there are two cases: (a) s[Y ] �= t[Y ], then we don’t need to access any
other sources because an inconsistency has been detected; (b) otherwise, we still
don’t need to access any other sources because s[Y ] is unlikely being incorrect
unless S0 and Si have copying relationship [13].

Theorem 1. SSID is NP-hard.

The proof is by reduction from the classic unweighted maximum coverage prob-
lem [11]. The detail is omitted due to space limitation.
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3 Algorithm for SSID

Due to the NP-hardness of SSID, we devise a greedy approximation algorithm
for SSID (shown in Algorithm 1), denoted by Greedy-SSID. At each stage, the
marginal gain of coverage, cov(S ∪ Si) − cov(S), is computed for each unse-
lected source Si (line 3); and a source that provides the largest marginal gain
is selected (line 4). Note that, in order to compute the accurate values of cov-
erage (CompCoverage in line 3), all the data sources have to be accessed, which
is unacceptable. To address this problem, we present a randomized method for
coverage estimation, which will be discussed in Sect. 4.

Algorithm 1. Greedy-SSID
Input: S0, S, K
Output: a subset S of S with |S| ≤ K;
1: while |S| < K do
2: for each Si ∈ S do
3: cov(S ∪ Si) ← CompCoverage(S ∪ Si);
4: Sopt ← arg maxSi∈S cov(S ∪ Si) − cov(S);
5: add Sopt into S;
6: remove Sopt from S;
7: return S;

The following theorems demonstrate the time complexity and the approxi-
mation ratio bound of Algorithm 1.

Theorem 2. The expected time of Algorithm 1 is O(K ∗n ∗m), where K is the
number of selected sources, n is the maximum size of Si and m is the number of
sources in S.

Theorem 3. Algorithm 1 is a (1 − 1/e)-approximation algorithm.

Proof. Since the coverage function is submodular and monotone, this algorithm
has 1 − 1/e approximation ratio based on the submodular theory [16]. �

4 Coverage Estimation

In this section, we will introduce a randomized approximation method for cov-
erage estimation. The main idea is to build small sketches for each data source
(including the target S0) in an offline phase. These sketches could be used for
coverage estimation without accessing data. Given target data S0 and source set
S, we use these sketches to estimate the coverage of S on S0.

According to the definition of coverage in Sect. 2, we have that,

cov(S) = |P [S0] ∩ P [S]| =
∑

ϕ∈Σ0

|P [S0, ϕ] ∩ P [S, ϕ]| (6)



Source Selection for Inconsistency Detection 375

As can be seen, cov(S) is the sum of the sizes of each intersection set
P [S0, ϕ] ∩ P [S, ϕ] for each FD ϕ. Thus, estimating the size of each intersec-
tion set is the key component. Unfortunately, as far as we know, there has
been little work about intersection set size estimation. [21] proposed an overlap-
estimation algorithm to estimate overlaps between sources under the maximum
entropy principle. However, this approach requires some prior statistics overlap
information of sources from third parties.

For convenience, we denote P [S0, ϕ] as set A and P [S, ϕ] as set B (shown in
Table 2). Our goal is to estimate |A ∩ B|. According to inclusion-exclusion prin-
ciple, the intersection set size can be computed based on the Jaccard similarity
(s(A,B) = |A∩B|

|A∪B| ). We have

|A ∩ B| = s(A,B) ∗ (|A| + |B|)/(1 + s(A,B)) (7)

For simplification, we also denote |A|, |B|, |A ∩ B| and s(A,B) by a, b, x and s
respectively (see Table 2). Then Eq. (7) can be written as

x = s ∗ (a + b)/(1 + s) (8)

From Eq. (8), to obtain x, values of a, b and s should be known. a can be
computed directly because a = |P [S0, ϕ]|, which is determined by the target
data. Since b = |P [S, ϕ]| and s = |P [S0,ϕ]∩P [S,ϕ]|

|P [S0,ϕ]∪P [S,ϕ]| , which are determined by
sources S that cannot be accessed, thus these two values need to be estimated.

To tackle this problem, we build a sketch P̃ [Si, ϕ] for each P [Si, ϕ] offline and
use them to estimate the coverage of sources online. The framework for coverage
estimation is shown in Algorithm 2. Firstly, we estimate similarity s and set size
b based on sketches (line 3–4) for each FD ϕ. Then the intersection set size, x, is
estimated based on Eq. (8) (line 5). Finally, we sum up all the x̂s to get cov(S)
based on Eq. (6) (line 6). Note that, this algorithm is embedded into our greedy
source selection algorithm (Algorithm 1). We call the greedy source selection
with Algorithm 2 embedded MH-Greedy algorithm.

Algorithm 2. CompCoverage
Input: {P̃ [Si, ϕ]|Si ∈ S, ϕ ∈ Σi}, S0

Output: ˆcov(S)
1: ˆcov(S) ← 0;
2: for each ϕ ∈ Σ0 do
3: ŝ =Estimate Sim(P̃ [S, ϕ], P̃ [S0, ϕ]);
4: b̂ =Estimate SetSize(P̃ [S, ϕ]);
5: x̂ = ŝ(a + b̂)/(1 + ŝ);
6: ˆcov(S) ← ˆcov(S) + x̂;
7: return ˆcov(S);

Thus, the core of Algorithm 2 is the estimation of s, b and x. The sketch
building approach and the estimation of s will be introduced in Sect. 4.1 and the
sketch-based estimation of b and x will be discussed in Sect. 4.2 and Sect. 4.3.
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4.1 Sketch

Min-hashing [2] is a widely-used hashing method for quickly estimating the Jac-
card similarity. We also find that min-hash values can be applied to estimate
set size effectively. Therefore, in order to estimate s and b effectively, we apply
min-hash values to be the sketch of each P [Si, ϕ].

We first introduce the min-hashing method. To ensure the min-hashing tech-
nology can be applied, we assume that all the attributes in FDs are in finite
domains. Note that, an infinite domain can be mapped to an approximate finite
domain based on piecewise-linear functions. Let U denote the domain of both A
and B. A random hash function h is used to imitate random permutation of all
the elements in U . To achieve this goal, h randomly maps each element in U to
[1, |U |]. For any subset X of U , the min-hash value of X, denoted by h(X), is the
smallest hash value whose corresponding element is in X. The most important
property of min-hashing is as below.

Theorem 4. Pr[h[A] = h[B]] = s(A,B).

To obtain an accurate estimation, it is necessary to determine multiple (say k)
independent min-hash values. Consider k random hash functions h1, · · · , hk, the
estimated Jaccard similarity of A and B is defined as follows.

ŝ = |{j|1 ≤ j ≤ k and hj(A) = hj(B)}|/k (9)

Based on the following theorem [17], we can derive a guarantee on the error
bound of ŝ (shown in Theorem 6) when k is sufficiently large.

Theorem 5. Consider a set of r independent identically distributed random
variables {X1, · · · ,Xr} such that −Δ ≤ Xi ≤ Δ and E[Xi] = 0 for each i ∈
[1, r]. Let M =

∑r
i=1 Xi (a sum of Xis). Then for any α ∈ (0, 1/2),

Pr[|M | > α] ≤ 2 exp(−α2/2rΔ2)

We then have the following property for the estimated value ŝ.

Theorem 6. Let ε be the error bound, δ be the error probability, and k be the
number of random hash functions. When k = 2

ε2 ln 2/δ, we have the following
property,

Pr[|s − ŝ| < ε] > 1 − δ

That is, the Jaccard similarity is within ε error with probability at least 1-δ, if we
use k = 2

ε2 ln 2/δ random hash functions. Therefore, for a sketch of each P [Si, ϕ],
we use k random hash functions h1, · · · , hk to get k min-hash values of P [Si, ϕ],
denoted by h1(P [Si, ϕ]), · · · , hk(P [Si, ϕ]). The sketch building algorithm for each
source Si is described in Algorithm 3.

The following theorem demonstrates the time complexity of this algorithm.

Theorem 7. The expected time of Algorithm 3 is O(m ∗ t ∗ navg ∗ k), where
t = max0≤i≤m |Σi|, navg = avg0≤i≤m|Si|.

Although the complexity of Algorithm 3 is quite high, such sketches are
computed offline. Hence it will not affect the performance of our source selection
algorithm.
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Algorithm 3. Sketch Building
Input: S0, · · · , Sm, h1, · · · , hk

Output: {hc(P [Si, ϕ])|0 ≤ i ≤ m, ϕ ∈ Σi, 1 ≤ c ≤ k}
1: for each Si do
2: for each ϕ in Σi do
3: hc(P [Si, ϕ]) ← ∞;
4: for each j ← 1 to |dom(LHS(ϕ))| do
5: if j-th item is in Si then
6: for c ← 1 to k do
7: if hc(j) < hc(P [Si, ϕ]) then
8: hc(P [Si, ϕ]) ← hc(j);
9: return {hc(P [Si, ϕ])|0 ≤ i ≤ m, ϕ ∈ Σi, 1 ≤ c ≤ k};

4.2 Estimation of Set Size

Based on the sketches of sources, we first study how to compute the min-hash
value h(B) and then how to use h(B) to estimate the size of B, denoted by b.
As B = P [S, ϕ] = ∪Si∈SP [Si, ϕ], which is a union set, a brute-force method for
computing h(B) is to obtain B by merging all the sets at first. This method is
impractical due to the large cost of accessing sources. Fortunately, min-hashing
has a good property (shown in Theorem 8): the min-hash value of a union set
can be obtained based on the min-hash value of each set.

Theorem 8. h(A1 ∪ A2) = min(h(A1), h(A2)).

Based on the above theorem, for each random hash function hj , the min-hash
value of union set B can be computed as below without generating set B.

hj(B) = hj(P [S, ϕ]) = min
Si∈S

hj(P [Si, ϕ]) (10)

The following equation shows how to use these min-hash values of B to
estimate b. The estimator of b is denoted by b̂.

b̂ = nk/
∑

1≤j≤k

hj(B) (11)

Lemma 1 shows that b̂ is a good estimator when the number of random hash
functions k is sufficiently large.

Lemma 1. Given ε, δ, let α = min{ε2, ε/n}. When k ≥ 2
α2 ln 2

δ , we have the
following property.

Pr[| b̂ − b

b
| < ε] > 1 − δ

Proof. For each random hash function hj , B can be modeled as a vector vj . For
each row i, the probability of vj [i] = 1 is a Bernoulli distribution, where p =
b/n. Since hj(B) is the minimum row which contains a 1, hj(B) is a geometric
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distribution. Specifically, for each random hash function hj , E(hj(B)) = 1/p =
n/b. We then have E(1

b̂
− 1

b ) = 0. Let Xi = hi(B)
nk − 1

bk (1 ≤ i ≤ k), M =
∑k

i=1 Xi = 1
b̂

− 1
b , Δ = 1 and r = k = 2

α2 ln 2
δ . Pr[| 1

b̂
− 1

b | < α] > 1 − δ can be
easily proved based on Theorem 5. �

4.3 Estimation of Intersection Set Size

Recall that the estimator x̂ of the intersection set size x is defined as below,

x̂ = ŝ(a + b̂)/(1 + ŝ) (12)

Lemma 2 shows that x̂ is also a good estimator of x when the number of random
hash functions k is sufficiently large.

Lemma 2. Given ε, δ, let α = ε2

3 , and δ′ = 1 − √
1 − δ. When k ≥ 2

α2 ln 2
δ′ , we

have the following property.

Pr[| x̂ − x

x
| < ε] > 1 − δ

Proof. Let ε0 = ε2(1 + ε)/(3 − ε2), ε1 = ε(a + b̂)/(3b̂ + εa). Since ε0 > ε2/3 and
ε1 > ε2/3, when k ≥ 2

α2 ln 2
δ′ , we have Pr[|ŝ − s| < ε0] > 1 − δ′ and Pr[| b̂−b

b | <

ε1] > 1 − δ′. Thus, Pr[|ŝ − s| < ε0 and | b̂−b
b | < ε1] > (1 − δ′)2 = 1 − δ. Note

that, we require ŝ to be larger than the threshold ε + ε0. Otherwise, we do not
consider this sketch P [Si, ϕ] during the coverage computation due to its small
contribution to the coverage. As |ŝ − s| < ε0 and ŝ > ε + ε0, we have s ≥ ε.

Supposing that |ŝ − s| < ε0 and | b̂−b
b | < ε1, we prove | x̂−x

x | < ε. Clearly,

| x̂ − x

x
| = | ŝ(a + b̂)(1 + s) − s(a + b)(1 + ŝ)

s(a + b)(1 + ŝ)
| (13)

Since | x̂−x
x | monotonically increases in ŝ and b̂, plugging the maximum of ŝ, i.e.

s + ε0 and the maximum of b̂, i.e. b + ε1b into | x̂−x
x | gives

| x̂ − x

x
| ≤ ε0

s(1 + s + ε0)
+

ε1b(1 + s)
y(1 + s + ε0)

+
ε0ε1b(1 + s)

ys(1 + s + ε0)

<
ε0

s(1 + s + ε0)
+

ε1b

y
+

ε0ε1b

ys
(14)

where we denote a+b as y for simplicity. As ε0
s(1+s+ε0)

+ ε1b
y + ε0ε1b

ys monotonically
decreases with s and s ≥ ε, Eq. (14) can be written as

| x̂ − x

x
| <

ε0
s(1 + s + ε0)

+
ε1b

y
+

ε0ε1b

ys
≤ ε0

ε(1 + ε + ε0)
+

ε1b

y
+

ε0ε1b

yε
(15)

As ε0 = ε2(1 + ε)/(3 − ε2), we have

ε0
ε(1 + ε + ε0)

= ε/3 (16)
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As ε1 = ε(a + b̂)/(3b̂ + εa), ε1 = εa
3b̂

(1 − ε1) + ε
3 < ε(a+b)

3b = εy
3b , we get

ε1b

y
<

εy

3b
∗ b

y
= ε/3 (17)

ε0ε1b

εy
<

b

εy
∗ ε2(1 + ε)

3 − ε2
∗ ε(a + b̂)

(3b̂ + εa)
≤ ε

3
(
ε + ε2

3 − ε2
) ≤ ε

3
(18)

Embedding (16)–(18) into (15), we have | x̂−x
x | < 3 ∗ ε

3 = ε if |ŝ − s| < ε0 and
| b̂−b

b | < ε1. Since Pr[|ŝ − s| < ε0, | b̂−b
b | < ε1] > 1 − δ, Pr[| x̂−x

x | < ε] > 1 − δ. �

4.4 Properties of MH-Greedy Algorithm

In this section, we analyze the time complexity and approximation ratio bound
of MH-Greedy with the properties of the estimators in Sects. 4.2 and 4.3. We
firstly show the time complexity of MH-Greedy.

Lemma 3. The expected time of CompCoverage (Algorithm 2) is O(|Σ0| ∗ k),
where we assume k ≥ |S| without loss of generality.

Embedding Algorithm 2 into Algorithm 1, the expected time complexity of MH-
Greedy (Algorithm 1) is shown as follows.

Theorem 9. The expected time of MH-Greedy is O(K ∗ |Σ0| ∗ k ∗ m).

We proceed to study the approximation ratio of our algorithm.

Definition 2. Given 0 < ε, δ < 1, an algorithm A is said to be a (ε, δ)-
approximation algorithm for the SSID problem if for any SSID instance with
the optimal solution SOPT , the algorithm returns a solution S such that

Pr[|cov(S) − cov(SOPT )
cov(SOPT )

| < ε] > 1 − δ (19)

According to Lemma 2, since ˆcov(S) is the sum of x̂ for each FD ϕ ∈ Σ0, the
following property holds.

Lemma 4. Let 0 < ε, δ < 1, α = ε2

3|Σ0| , δ′ = 1 − √
1 − δ. When k ≥ 2

α2 ln 2
δ′ ,

∀S ⊆ S, we have,

Pr[| ˆcov(S) − cov(S)
cov(S)

| < ε] > 1 − δ.

We proceed to prove the approximation ratio bound of our algorithm as follows.

Theorem 10. Given ε, δ, let α = ε2

3|Σ0| , δ′ = 1 − √
1 − δ. When k ≥ 2

α2 ln 2
δ′ ,

MH-greedy achieves a (1−ε)(1−1/e)
(1+ε) -approximation ratio for the SSID problem

with a probability larger than 1 − δ.
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Proof. We denote the optimum solution of SSID under the true values of coverage
as α, the optimum solution under the estimated values of coverage based on min-
hashing as γ, our solution is θ. Let cov ( ˆcov) denote the cost function of solution
under true coverage (estimated coverage based on min-hash values).
Based on Lemma 4, for any solution x, when k ≥ 2

α2 ln 2
δ′ , we have

Pr[| ˆcov(S) − cov(S)
cov(S)

| < ε] > 1 − δ (20)

We assume that, ∀x ⊆ S:
ˆcov(x) − cov(x)

cov(x)
< ε (21)

Now we prove cov(θ) ≥ (1−1/e)(1− ε)/(1 + ε)cov(α). According to (21), we get

(1 − ε)cov(γ) ≤ ˆcov(γ) ≤ (1 + ε)cov(γ) (22)

(1 − ε)cov(α) ≤ ˆcov(α) ≤ (1 + ε)cov(α) (23)

(1 − ε)cov(θ) ≤ ˆcov(θ) ≤ (1 + ε)cov(θ) (24)

As γ is the optimum solution under the estimated coverage, we have

ˆcov(γ) ≥ ˆcov(α) (25)

According to Theorem 3, θ achieves a (1 − 1/e)-ratio under the estimated cov-
erage,

ˆcov(θ) ≥ (1 − 1/e) ˆcov(γ) (26)

Combining (22)–(26), we then give

cov(θ) ≥ ˆcov(θ)
1 + ε

≥ 1 − 1/e

1 + ε
ˆcov(γ) ≥ 1 − 1/e

1 + ε
ˆcov(α) ≥ (1 − ε)(1 − 1/e)

1 + ε
cov(α).

(27)
According to Eqs. (20) and (27), we get Pr[ cov(θ)

cov(α) ≥ (1−ε)(1−1/e)
1+ε ] > 1 − δ. ��

5 Experimental Results

In this section, we study the proposed algorithms experimentally. The goals of
our study are to investigate (1) the quality of the results produced by MH-
Greedy, and (2) how MH-Greedy performs in terms of execution efficiency.

5.1 Experiment Setup

We conducted our experiments over two real-world datasets: Book and Flight
[6]. In addition, to investigate the impact of parameters and scalability of our
algorithm, we evaluated the performance of MH-Greedy on synthetic datasets
that yielded more sources and more tuples.
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The Book data set contains 1263 books and 894 data sources. The Flight
data set contains 1200 flights and 38 sources from the flight domain. The Syn-
thetic Data is synthetic data sets with various data source number and data
size. The relation to clean, denoted by R, contains 10 attributes A1 − A10. Each
data source contains a subset of A1 − A10. The Synthetic Data is controlled
by the following parameters: (a)perc attr: the probability of each attribute in
A1 −A10 been chosen in each data source. (b)(no tuple, min perc, max perc): the
size of each data set is a random number in the range of [min perc*no tuple,
max perc*no tuple]; (c)size domain: the size of the domain of each attribute
Aj(1 ≤ j ≤ 10); (d)#Sources: the number of data sources; and (e)#Hash: the
number of random hash functions. For each attribute Aj in each tuple, the value
is a random value in [1, size domain]. Table 3 shows the parameters used for
generating the data sets and the default settings for the parameters. We used
following ten FDs: A1 → A6, A1 → A7, A1 → A8, A2 → A9, A2 → A10,
A5 → A9, A5 → A10, [A3, A4] → A6, [A3, A4] → A7 and [A3, A4] → A8. Each
generated source should contain at least one of the FDs.

Table 3. Parameters for data generation

Param Val. for target Val. for source

perc attr 100% 20%

no tuple 20000 20000

(min perc, max perc) (100%, 100%) (0%, 100%)

size domain 1000 1000

#Sources 1 100

#Hash 100 100

We implemented two selection algorithms: one is our approximate greedy
algorithm based on estimated coverage, called MH-Greedy; the other is the
greedy source selection algorithm based on exact coverage information which
are obtained by accessing to all the sources, called Greedy. We also implemented
the exact algorithm. However, we did not compare our approach with the exact
algorithm since the exact algorithm takes prohibitive amount of time due to
its expected time exponential in K. From our experiments, the exact source
selection algorithm takes more than 27 h with the following setting: K = 5,
#Sources= 100, no tuple= 20, 000. Additionally, MH-Greedy is an approxima-
tion of Greedy which is the polynomial time algorithm that achieves the best
approximation ratio for SSID.

Thus, we compare MH-Greedy algorithm with Greedy algorithm to verify
both the effectiveness and efficiency of our algorithm. All experiments are imple-
mented in C and executed on a PC with Windows 10, a 8 GB of RAM and a
2.9 GHz Intel i7-7500U CPU.
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(a) Cov. VS Top-K (b) Cov. VS Top-K (c) Cov. VS #Hash

(d) Cov. VS #Hash (e) Cov. VS. #Tuple (f) Cov.VS. #Source

(g) Cov. VS. TOP-K (h) Cov. VS. #Hash (i) Runtime VS. #Tuple

(j) Runtime VS. #Source (k) Runtime VS. TOP-K (l) Runtime VS. #Hash

Fig. 1. Experimental results

5.2 Comparison

We firstly compare the effectiveness of methods with K varying from 1 to 10
and #Hash varying from 4 to 10 on real data sets. The comparison results are
reported in Fig. 1(a)–(d). We have similar observations on both real-world data
sets. (1) The coverage of MH-Greedy is almost as good as that of Greedy. This
is because in real data sets, the differences between data sources are large, and
both MH-Greedy and Greedy could easily find several proper data sources. (2)
MH-Greedy performs quite well on a small number of hash functions. This is
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also caused by the significant differences between data sources, which could be
distinguished with even a small number of hash functions.

5.3 Impact of Parameters

In this section, we evaluate the impact of average data size (#Avg Tuple), the
number of sources (#Sources), TOP-K and #Hash on the performance of our
algorithm. The results are reported in Fig. 1(e)–(h). We have the following obser-
vations. (1) MH-Greedy achieves a comparable performance on effectiveness as
Greedy in the synthetic data sets, where the approximation ratio is around 90%.
(2) Fig. 1(e) shows that #Avg Tuple has little impact on the effectiveness of
MH-Greedy. (3) Fig. 1(f) shows that the effectiveness of MH-Greedy is not sen-
sitive to the number of sources. (4) Fig. 1(g) reports the impact of K. It can
be seen that, with the increase of K, the gap between MH-Greedy and Greedy
is widened. When K is larger than 20, such gap is narrowing. This is because
the gap between MH-Greedy and Greedy is added up in each iteration. The
more iterations are executed, the larger the gap is. However, when K becomes
sufficiently large, no matter how we select sources, most patterns have been cov-
ered, so the gap between MH-Greedy and Greedy becomes small. (5) Fig. 1(h)
shows that with the increase of #Hash, the gap between two algorithms becomes
smaller, the ratio increases from 0.90 to 0.98. These results on synthetic data
are consistent with our expectation.

We also note that the differences between two algorithms for the synthetic
data set are larger than that for real data sets. This is because there are many
similar data sources for synthetic data, and more accurate coverage estimation
are required. It is also the reason that the accuracy of MH-Greedy changes more
significantly with the number of hash functions on synthetic data.

5.4 Results for Efficiency

In this section, we investigate the runtime performance of MH-Greedy. Figure 1
(i) reports the runtime of both algorithms with varying the data size. We observe
that the runtime of Greedy grows with the data size, while the runtime of MH-
Greedy is very stable, which is around 0.024 s. This result is consistent with our
analysis in Sect. 4.4. In Fig. 1(j), we varied the number of sources from 100 to
1000. The runtime of both algorithms grows linearly with #Sources, and MH-
Greedy outperforms Greedy significantly. In Fig. 1(k), we varied TOP-K from
10 to 100. The runtime of Greedy is still linear to TOP-K, while the runtime
of MH-Greedy grows slowly with K and outperforms Greedy significantly. Such
results shows the benefit of MH-Greedy on efficiency and scalability. Figure 1
(l) shows the runtime with varying #Hash from 10 to 100, the runtime of MH-
Greedy grows approximately linearly as #Hash increases. These results verifies
the scalability of MH-Greedy. There are also some fluctuations, it is because the
runtime of coverage estimation is determined by the number of FDs in S ∪ Si.
Thus the runtime varies as we choose different S based on different sketches.
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Summary. From the experimental results, we can draw the following conclusions.
(a) The sources output by MH-Greedy is comparable to that of Greedy on both
real-data sets and synthetic data sets. (b) MH-Greedy outperforms Greedy both
on efficiency and scalability significantly. (c) The effectiveness of MH-Greedy is
insensitive to the data size and the number of hashes. (d) MH-Greedy scales well
on both the data size and the number of sources.

6 Related Work

Inconsistency detection and repairing [1,3,15] have been widely studied due to
its importance (see [7] for a survey). [8] studied the problem of CFD violations
detection for centralized data. [9,10] studied the problem of detecting FD and
CFD violations in a distributed database.

Source selection [6,19–21] has been recently studied. Previous work of source
selection focus on choosing proper sources for querying or integration while the
objective for SSID is to detect FD violations. Source selection techniques can also
be applied on inconsistency detection under other integrity constraints, including
conditional functional dependencies (CFDs) and denial constrains (DCs), but we
leave that for future work. [21] is the most relevant to our work. It proposed an
overlap estimation strategy of sources. However, this method requires some prior
statistics overlap information of sources from third parties. This assumption is
not required in this paper.

Data fusion [4,5,12,14,18] aims at finding true values of conflicting data
items. Various fusion models have been proposed. The most basic and simple
fusion method is to take the value provided by the majority vote. Advanced
methods assign weights to sources according to their reliability. SSID can be
viewed as a preprocessing work of data fusion.

7 Conclusion

We studied the source selection problem to effectively detect inconsistencies in
database in this paper. We introduced coverage model describing the gain of
selected sources and defined the source selection problem for inconsistency detec-
tion, where we select the near-optimal source based on the estimated coverage
values in each iteration. We provided theoretical guarantees for our algorithm.

We experimentally evaluated our algorithms on both real and synthetic data
sets. The experimental results show that our algorithm finds solutions that are
competitive with the near-optimal greedy algorithm and achieves a better per-
formance on both efficiency and scalability without accessing to data sources.

In the future, we plan to extend our method to more general cases, such as
selecting sources with different costs based on multiple quality measures.
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Abstract. One of the core problems of crowdsourcing research is how
to reduce the cost, in other words, how to get better results with a lim-
ited budget. To save budget, most researchers concentrate on internal
steps of crowdsourcing while in this work we focus on the pre-processing
stage: how to select the input for crowds to contribute. A straightfor-
ward application of this work is to help budget-limited machine learning
researchers to get better balanced training data from crowd labeling.
Specifically, we formulate the prior information based input manipulat-
ing procedure as the Candidate Selection Problem (CSP) and propose an
end-squeezing algorithm for it. Our results show that a considerable cost
reduction can be achieved by manipulating the input to the crowd with
the help of some additional prior information. We verify the effectiveness
and efficiency of these algorithms through extensive experiments.

1 Introduction

With the flourishing and easily-accessible web based crowdsourcing platforms,
such as Amazon Mechanical Turk (AMT), crowdsourcing becomes a popular
paradigm to utilize human intelligence. Among various applications of crowd-
sourcing [1,3,20], labeling is arguably the most common and natural practice.
Compared with hiring a number of experts, the monetary cost of crowdsourcing
is fairly low [2]. Existing studies focus on reducing the cost by considering incen-
tive design, task assignment and answer aggregation [12,16,19,21]. However, if
the raw data set is already very biased, existing methods cannot guarantee good
balanced results with limited budgets.

To address the bias issue of raw data sets, in this paper, we study an essential
problem in crowdsourcing systems, namely candidate selection problem (CSP),
which is to select a subset of candidates from the raw data set to satisfy the
required distribution of the final results with the highest probability. We illus-
trate the CSP problem by a motivation example of image labeling as follows.

Example 1. A researcher wants to use AMT to label some portraits as
male/female, then utilizes them to train a classifier. To train a good classifier,
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 386–394, 2018.
https://doi.org/10.1007/978-3-319-91458-9_23
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Table 1. Prior confidences of the raw portraits.

Portrait ID Male confidence Female confidence

c1 0.95 0.05

c2 0.95 0.05

c3 0.94 0.06

c4 0.92 0.08

· · · · · · · · ·
cn−3 0.05 0.95

cn−2 0.03 0.97

cn−1 0.01 0.99

cn 0.01 0.99

it is better to input a balanced 1:1 male/female portrait dataset with enough
entries (e.g., portraits) [8], as the distribution of the training data set may sig-
nificantly affect the accuracy of the classifiers. She crawled a large number of
raw portraits (candidates) from the Web, however, and only has $100 budget to
use AMT to label the portraits. The average cost of a reliable portrait label is
10 cents, thus at most 1000 portraits can be labeled. She needs to construct a
1:1 balanced training data set with as many as possible portraits. The optimal
result is that she can select 1,000 candidates and results in 500 male portraits
and 500 female ones. She first uses some existing classifiers (e.g., the Viola-Jone
detector [23]) to estimate the portraits into difference confidences (e.g., c1 has
95% confidence of being male portrait) as shown in Table 1. Then, the problem
she faced is how to select 1,000 candidates from the raw portraits with given
confidences to be labeled by crowds such that the answers returned are balanced
in the highest probability.

Motivated by the example above, in this paper, we first formalize the CSP
problem, which aims to select a subset of candidates from the raw data set, given
their prior confidences of being possible choices, for the crowds to label such that
the probability of that the results returned by the crowds satisfy the required
distribution is maximized. The CSP problem essentially concerns the quality of
the final results returned by the crowds. Existing studies on quality controlling in
crowdsourcing usually target on designing aggregation methods [14,22], propos-
ing fair mechanisms to encourage crowds to contribute reliably [4] or matching
suitable crowds to particular tasks [6], which rarely consider of the preprocessing
of the raw data sets. To the best of our knowledge, there is no previous studies
that focus on selecting the most promising candidates for crowds to label. How-
ever, efficiently selecting a subset of candidates from the raw data set with given
prior confidences and limited budgets is not easy. We propose an exact algorithm,
namely end-squeezing algorithm, which can select candidates from the ends of a list
of candidates sorted by the prior confidence values to achieve the optimal subset
(proved by Theorem 1). Finally, through extensive experiments, we demonstrate
the efficiency and effectiveness of our approach.
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To summarize, in this paper we have made the following contributions.

1. We formulate the Candidate Selection Problem (CSP) in Sect. 2;
2. We propose one end-squeezing exact approach in Sect. 3.
3. We conduct extensive experiments on real and synthetic data sets, and show

the efficiency and effectiveness of our CSP approaches in Sect. 4.

For the rest parts, Sect. 5 revises previous related works. Section 6 concludes
this paper and discusses the future works.

2 Preliminary

In this section, we introduce the preliminaries used in this work.

Definition 1 (Binary Labeling Candidates). Let C = {c1, c2, . . . , cn} be a
set of n binary labeling candidates. For each candidate ci, it will be labeled by
workers with either 0/1. Each candidate ci has a true label ϕi and crowdsourced
label φi, which is aggregated from the answers of crowds.

Each candidate ci can be an image of a male or female noted as it true label
ϕi. To improve the accuracies of the image labels, we may utilize crowds to
label the images with binary choices (male/female or 0/1). Although the crowds
may be fallible, there are a lot of existing methods [5,11] to guarantee that the
qualities of the answers returned by crowds can satisfy the required accuracies.
Then, the resulted label φi suggested by crowds can be used to train better
detectors.

Definition 2 (Candidate Selection Problem). Given a set, C =
{c1, c2, . . . , cn}, of n binary (0/1) labeling candidates with their prior proba-
bilities pi = Pr(ϕi = 1) = 1 − Pr(ϕi = 0) and the minimum label result
requirements l0, l1, the candidate selection problem is to select a set Ck of
k(≥ l0 + l1) candidates that maximize the probability: Pr(x0 ≥ l0, x1 ≥ l1),
where x1 =

∑

ci∈Ck

φi, x0 = k − x1.

Some existing methods (e.g., the Viola-Jone detector [23]) can estimate the
prior confidence pi of each candidate being male (or 0). Then, we need to solve
the CSP problem to select a subset of candidates such that the required min-
imum number of male candidates and female candidates can be satisfied with
the maximum probability.

3 An End-Squeezing Approach

In this section we will propose an exact algorithm, namely end-squeezing app-
roach, to the CSP problem, which selects candidates from the ends of a list of raw
candidates sorted by their prior probabilities to squeeze to the optimal positions
(the optimal result). We first introduce some mathematical basis.
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Definition 3 (Poisson Binomial Variable). Let a sequence of n independent
Bernoulli variables X1,X2, . . . , Xn have success probabilities ppp = (p1, p2, . . . , pn),
then X = X1 + X2 + . . . + Xn, i.e. the total number of successes Bernoulli trials
is called a Poisson Binomial Variable with parameter ppp.

Definition 4 (Poisson Binomial Distribution (PBD)). The probability of
k(0 ≤ k ≤ n) success trials is: Pr(X = k) =

∑

S∈Sk

∏

i∈S

pi
∏

0<j≤n,j /∈S

(1 − pj)(0 ≤
k ≤ n), where Sk is the set of all k size subsets of {1, 2, 3, . . . , n}.

Below we show some properties of PBD and CSP.

Unimodality. From [26] we know that the p.m.f of any PBD is unimodal. The
optimization goal of CSP is actually the sum of probabilities in a continuous
span on such a p.m.f. Considering one of the selected px ∈ ppp (ppp is the set of
probabilities of all candidates) as a variable with domain [0, 1], the peak of the
p.m.f moves to the right when px increases and to the left when px decreases.

Non-submodularity. Submodularity is an important property of optimization
problems (A comprehensive introduction of it can be found in [7]). Maximization
of submodular functions with even simple constraints is usually NP-hard. Let
f(X) = Pr(x0 ≥ l0, x1 ≥ l1|X), k = 2, l0 = l1 = 1, S = {0.5, 0.6} and
T = {0.1, 0.2}, then we have: f(S) + f(T ) = 0.76 < f(S ∪ T ) + f(S ∩ T ) = 0.85.
So CSP is not submodular.

Recursiveness. Except Definition 4, PBD also has several recursive forms [26].
An intuitive one is:

Definition 5 (Recursive PBD). Let Prn,k be the probability of a Poisson
Binomial Variable X =

∑

i=1..n

Xi to be k. We have:

Prn,k = pnPrn−1,k−1 +(1−pn)Prn−1,k, where 0 ≤ k ≤ n, pn = Pr(Xn = 1)

With p ∈ ppp and p′p′p′ = ppp − {p}, the CSP goal function can be represented in
as:

CSP (ppp, l0, l1, k) = CSP (p′p′p′, l0, l1 − 1, k − 1)p + CSP (p′p′p′, l0 − 1, l1, k − 1)(1 − p)

Next we propose an algorithm that gives the exact solution of any CSP
problem based on the properties above.

Briefly, Algorithm 1 first sorts all candidates in a row by their probabilities,
then iterates over the candidate sets that only choose from the head and tail of
the row, and finally returns the one with largest cumulated PBD.

If we use the fast PBD calculation method in [9], the time complexity of
CUM−PBD will be O(k3). Then the time complexity of END−SQUEEZING
is O(k4 + nlogn).

Algorithm 1 considers only candidates “squeezed” to the two ends of all
candidates, thus we call it the end-squeezing algorithm. The below theorem
shows its correctness.

Theorem 1. The end-squeezing algorithm is correct.
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Algorithm 1. The End-Squeezing Algorithm
1: input: ppp = p1, ..., pn, (l0, l1) and k
2: output: the maximum probability
3: procedure END-SQUEEZING(ppp, l0, l1, k)
4: sort ppp increasingly
5: for i from 0 to k do
6: let Ci be the set of first i candidates and the last k − i candidates.
7: calculate the probability cumPBD(Ci, l0, l1)

return Cmax with the largest probability.

8:
9: input: a PBD X and the range kmin, kmax

10: output: p
11: procedure cum-PBD
12: Let pcum ← 0
13: for k from kmin to kmax do
14: pcum+=PBD(X, k)

return pcum

Proof. For any CSP instance < ppp, l0, l1, k >, suppose that p′p′p′ is the optimal
candidate set and OPT = CSP (ppp, l0, l1, k) is the optimal probability.

For any p′ ∈ p′p′p′, let Pos(p′) = CSP (p′p′p′ − {p′}, l0, l1 − 1, k − 1) and Neg(p′) =
CSP (p′p′p′ − {p′}, l0 − 1, l1, k − 1). Then, from the recursiveness of CSP, we know
the optimal probability OPT = p′ ∗ Pos(p′) + (1 − p′) ∗ Neg(p′).

Assume that there are two candidates px, py not selected into p′p′p′ and px <
p′ < py. If Pos(p′) ≥ Neg(p′), we can replace py with p′ to get a larger optimal
probability, i.e. OPTx = py ∗ Pos(p′) + (1 − py) ∗ Neg(p′) > OPT . Otherwise, if
Pos(p′) < Neg(p′), p′ can be replaced by px.

Note that p′p′p′ is the optimal candidate set, so the assumption is wrong. It
means either (1) there is only one candidate not selected into p′p′p′ or (2) there are
at least two such candidates but they all lay on one side of p′. Formally, we have:

∀p′ ∈ p′p′p′, �px, py ∈ ppp − p′p′p′s.t.px < p′ < py

That is, the optimal candidate set must be composed of only the largest and
smallest candidates. �

4 Experimental Study

4.1 Experimental Methodology

Data Sets. We use both real and synthetic data sets to test our CSP approaches.
Specifically, for the real data set, we use the LFW [10] Face Dataset, which is a
collection of 13, 233 face images of 5, 749 individuals. Note that the face images
in this dataset were selected on the bias that they could be detected by the
Viola-Jone detector [23]. We first choose 2000 images randomly from LFW Face
Database data set as the candidates set D. Then, we use a mature CNN based
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Fig. 1. Results on synthetic data. X-axis is k.

face detection/annotation model (a variant from the model in [25]) to generate
a group of face image features from the rest part of data set D′ (more than 8000
faces). Next, we utilize these features and D′ as training data to build a SVM
based male/female classifier C. For the prior confidences of images, we apply C
to generate the prior probabilities of whether the input faces are male/female
for candidate set D. We also test the effectiveness over a set of synthetic data
in which the confidences follow a normal distribution with μ = 0.6, σ = 0.1. For
both real and synthetic datasets, we set both l0, l1 to 2

5k.

CSP Approaches and Measures. We compare the end-squeezing approach
(ES) with two baseline solutions, a random approach (RND) and a greedy app-
roach (GRDY). Specifically, RND will return 2k elements from the given n prob-
abilities randomly. GRDY tries to reduce the entropy as much as possible and
greedily refrains the candidates with the highest probabilities to increase the
entropy most.

For each set of experiments, we report the running times and the accuracies
of the tested approaches. Particularly, accuracy is measured base on the distance
between the optimal probability and the one returned by the testing approach.
All codes are written in Python 2.7 and all the experiments are conducted on
an Intel(R) Core(TM) i7 3.40 GHz PC with 8 GB memory.

4.2 Experiments on Synthetic Data

For synthetic data, we fix n to be 2000 and vary k in {50, 100, 200, 500}.
We first compare the efficiency of all the tested approaches (Figure 1). The

time cost of ES increases when either k or n increases while both two base line
methods can finish very fast for all k values. Overall, the time cost result is as
expected. For accuracy, GRDY is always better than RND and its performance
even approaches the optimal result from ES if there are enough “good” (high
confidence) candidates available.
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Fig. 2. Results on LFW data. X-axis is k.

4.3 Experiments on Real Data

Results of LFW Data are shown in Fig. 2. The results from LFW data are not
quite different from the results of synthetic data above. A difference worth not-
ing is: the accuracy of both GRDY here is a little bit better than synthetic
data. A possible reason is the diversify of probabilities in LFW data is relatively
higher. This also explains that the RND performance is not as stable as other.
The LFW data experiment is an example of how pre-selection can improve the
crowd-labeling result. If we select randomly, as the RND result indicates, the
probability that we get the requirement ratio is only around 30% while the max-
imum probability could be higher than 80%.

5 Related Works

Sampling Methods. The procedure of our problem, choosing a subset from
a whole data set, looks similar to the procedure of some sampling methods,
e.g. stratified sampling [18] and adaptive sampling [17]. But actually they are
different. Sampling aims to get the best characteristics estimation of the whole
data by only checking a subset of it. While our problem is about how to get a
subset with the highest probability to have a specified feature. So the goal of
our problem is radically different from sampling’s.

Poisson Binomial Distribution Based Prediction. Researchers in mathe-
matics and statistics has studied some prediction methods based on the Poisson
binomial distribution model. The approximation methods in [13,24] are used in
these papers but it is in a different way as used in ours. The hard part of these
prediction problems is the lacking of accurate prior possibilities which is the
given information in our problem. They predict the best result by constructing
a model while we get the best result by choosing the most suitable candidates.

Imbalanced Learning. Imbalanced learning is about how to train a better
model from unbalanced input data. Researchers proposed some techniques [8,15]
try to overcome the imbalance issue but still what they can do is to improve the
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learning process only. In this paper we also want to fix the imbalance problem
but from another prospective to control the balance from the beginning.

6 Conclusion

In this paper, we show a new approach to reduce crowdsourced labeling cost
and formulate the pre-selection process as the Candidates Selection Problem
(CSP). We propose one exact algorithm for CSP and verify its effectiveness and
efficiency on both synthetic and real data from LFW through experiments.
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Abstract. Negative survey is a method of collecting sensitive data. Compared
with traditional surveys, negative survey can effectively protect the privacy of
participants. Data collector usually has some background knowledge about the
survey, and background knowledge could be effectively used for estimating
aggregated results from the collected data. Traditional methods for estimating
aggregated results would get some unreasonable data, such as negative values,
and some values inconsistent with the background knowledge. Handling these
unreasonable data could improve the accuracy of the estimated aggregated
results. In this paper, we propose a method for handling values that are
inconsistent with the background knowledge and negative values. The simula-
tion results show that, compared with NStoPS, NStoPS-I and NStoPS-BK, more
accurate aggregated results could be estimated by the proposed method.

Keywords: Negative survey � Unreasonable data � Background knowledge
Aggregated results � Data adjustment

1 Introduction

Negative survey is a promising model for privacy protection [1–4]. In traditional
surveys (also called positive surveys), participants choose a category that is in line with
their actual situation (this category is called the positive category), which could easily
lead to the disclosure of personal privacy of the participants. Inspired by the negative
selection mechanism in Biological Immune System [5], Esponda [6, 7] proposed the
concept of negative survey.

Negative surveys require participants to choose a category that does not fit their
own situation (this category is called the negative category). Negative survey does not
require participants to give the appropriate information directly, and thus it can protect
the privacy of participants when there are at least 3 categories for each question.
Negative survey has been applied in several applications, e.g., anonymous data col-
lection [8], location and trace privacy [9, 10], credits rating [11], etc.
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The data we actually need is the aggregated data about the positive survey which
can be effectively reconstructed from the collected negative data. The first recon-
struction algorithm NStoPS is proposed by Esponda. Bao et al. [12] showed that
NStoPS algorithm might produce negative values when reconstructing aggregated
results, and the negative values are unreasonable. Bao et al. [12] proposed two algo-
rithms for handling negative values, i.e. NStoPS-I and NStoPS-II. However, NStoPS-I
and NStoPS-II cannot handle some other unreasonable values in negative surveys, such
as the data inconsistent with background knowledge. NStoPS-II is only suitable to the
uniform negative surveys (in which participants select each negative category with the
same probability). NStoPS-I is a kind of iterative method, which is less efficient [13]
(i.e., need more computations) than NStoPS-II. In real world, the data collector often
has some background knowledge about the negative survey or participants, for
example, in a survey of a certain disease, hospitals (data collector) often know the
incidence of the disease. Basically, the random selection in the negative survey, the
human preferences during the process, these are likely to result in the unreasonable data
in the reconstruction of the positive survey. Zhao et al. [14] proposed an algorithm
called NStoPS-BK, which demonstrated that the use of background knowledge could
effectively improve the accuracy of the reconstructed aggregated results.

Aiming at handling the unreasonable data, for example, negative values and values
inconsistent with background knowledge, this paper proposed a new method. The
proposed method is based on the idea of adjusting negative survey results according to
the survey rule and background knowledge to eliminate unreasonable values. Experi-
mental results show that the proposed method could obtain more accurate aggregated
results than NStoPS, NStoPS-II. The proposed method in this paper can achieve the
same effect as NStoPS-II when there is no extra background knowledge and performs
better than NStoPS-BK. In summary, the contributions of this paper are listed as
follows.

1. A new reconstruction algorithm (called NStoPS-UD) was proposed to handle the
unreasonable data for uniform negative surveys. Then, a general expression for the
algorithm was presented, which is suitable for general negative surveys.

2. Two experiments were carried out and the effectiveness of the proposed method on
handling unreasonable data, i.e., negative values and values inconsistent with
background knowledge was demonstrated.

This paper is organized as follows. Section 2 introduces the reconstruction algo-
rithm proposed in this paper; Sect. 3 shows the experimental results and some dis-
cussion; Sect. 4 discusses the general expression for the proposed algorithm; we
conclude this work and present some future work in Sect. 5.

2 Reconstruction Algorithm

In this section, we introduce the proposed algorithm for handling unreasonable values
and reconstructing positive data, which is called NStoPS-UD. Specifically, NStoPS-UD
is designed for the uniform negative survey, but we will give its general expression in
Sect. 4. Assuming that the number of categories is c, the proportion of participants who
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belong to the ith i ¼ 1. . .cð Þ category in the negative survey (the data is called negative
data) is ri, and R ¼ r1; r2; . . .; rcf g; r1 þ r2 þ . . .þ rc ¼ 1. The proportion of partici-
pants who belong to the ith i ¼ 1. . .cð Þ category in the positive survey (the data is called
positive data) is ti, and T ¼ t1; t2; . . .; tcf g; t1 þ t2 þ . . .þ tc ¼ 1. pij represents the
probability that a participant who chooses category i in the positive survey, but chooses
category j in the negative survey. It is assumed that the positive data obtained by
NStoPS is T ¼ t�1; t

�
2; . . .; t

�
c

� �
and t�1 þ t�2 þ . . . þ t�c ¼ 1. After handling the

unreasonable data with the NStoPS-UD, the estimated positive data is
X ¼ x1; x2; . . .; xcf g, and xi satisfy x1 þ x2 þ . . .þ xc ¼ 1.

First, we consider the situation in which the reconstruction result of a category is
unreasonable, and without loss of generality, we assume that this category is cth cat-
egory. The estimated positive data of category c is t�c , and it should be adjusted to a
reasonable value xc. Due to the unreasonable selection of some participants, the dif-
ference Drc (could be negative) between t�c and xc is induced. The algorithm
NStoPS-UD first adjusts the unreasonable t�c to xc. Because the sum of r1; . . .; rc should
be 1, the change Drc in rc will result in a change �Drc over the other c − 1 categories.
Each of the other c − 1 categories will have an appropriate proportion (denoted as
Dr1;Dr2; . . .;Drc�1) according to the survey rule. The problem can be attributed to the
following equation:

Pc
i¼1 xi � pi;1 ¼ r1 þDr1Pc
i¼1 xi � pi;2 ¼ r2 þDr2

..

.
Pc

i¼1 xi � pi;c ¼ rc þDrc

8>>><
>>>:

ð1Þ

For uniform negative survey, when i 6¼ j, pij in (1) equals to 1=c� 1, and when i ¼ j,
pij equals to 0. According to the rule that participants choose each negative category
with the same probability, the proportions of unreasonable selection �Drc from the
participants that actually belong to categories 1. . .c� 1 are expected to be
dx1 ; . . .; dxc�1 , and dxi i ¼ 1; . . .; c� 1ð Þ can be estimated as follow.

dxi ¼
xi 1

c�1Pc�1
j¼1 xj

1
c�1

� ð�DrcÞ ¼ xiPc�1
j¼1 xj

� ð�DrcÞ ð2Þ

Because it is the uniform negative survey, dxi is re-assigned to the other c − 2
categories of the negative survey with an equal probability, i.e., 1= c� 2ð Þ: So, the Dri
is calculated as follow:

Dri ¼
Xc�1

j¼1;j6¼i

dxj
1

c� 2
ð3Þ

Finally, NStoPS is used again to calculate positive data using the adjusted negative
data.
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xi ¼ 1� (c� 1)(ri þDri) ð4Þ

Deduced from (1) (2) (3) (4), the results of estimated positive data are

xi ¼ 1� xc þ xc � (c� 1)ri

1þ (1�xc)�(c�1)rc
(1�xc)(c�2)

ð5Þ

Suppose there are n n � cð Þ categories which have unreasonable results among the
positive data obtained by NStoPS, and without loss of generality, we assume that they
are the cth; c� 1ð Þth; . . .; c� nþ 1ð Þth categories. The estimated results for these cat-
egories by NStoPS are t�c ; t

�
c�1; . . .; t

�
c�nþ 1, respectively, and the adjusted results for

these categories are xc; xc�1; . . .; xc�nþ 1. Similar to the above derivation process, we
have

dxi ¼
xiPc�n
j¼1 xj

� ð�DrcÞþ . . .þ xiPc�n
j¼1 xj

� ð�Drc�nþ 1Þ; (i ¼ 1. . .c� n) ð6Þ

Dri ¼
Xc�n

j¼1;j6¼i

dxj
1

c� n� 1
ð7Þ

Finally, we can get the general formula for xi

xi ¼ 1� xs þ xs � (c� 1)ri

1þ (n�xs)�(c�1)rs
(1�xs)(c�n�1)

ð8Þ

Where xs ¼ xc þ xc�1 þ . . .þ xc�nþ 1,rs ¼ rc þ rc�1 þ . . .þ rc�nþ 1. According to
(8), we design an algorithm for handling unreasonable values and reconstructing
positive data, its pseudo code is shown in Algorithm 1. The background knowledge
[14] could be presented as value ranges of the positive data: li � ti � ui, ði ¼ 1. . .cÞ.
Where 0� li � 1, 0� ui � 1, li is the lower bound and ui is the upper bound. It means
that the proportion of participants who chooses category i in the positive survey is not
less than li and not larger than ui.

In Algorithm 1, Step 1 is to calculate the estimated value by NStoPS, Steps 3–9 are
introduced to adjust the unreasonable data of NStoPS according to the background
knowledge. Then the other categories’ results are calculated by (8) in Step 15, and
when the number of adjusted categories in Steps 3–9 is up to c − 1, the sum of the
positive data may not equal to 1, so Steps 10–12 aim at solving the situation. If the
number of adjusted categories is up to c, the results need to be scaled to keep the sum of
the positive data unchanged in Steps 17–19.
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3 Experiments

In this paper, we use the positive data and background knowledge in [14] to carry out
the simulation experiments, which is convenient to compare the result with
NStoPS-BK. For each positive data, a negative category is randomly chosen with the
same probability as the corresponding negative data (in the remaining categories, one
category is chosen randomly as the negative data with the same probability), and the
data is shown in Table 1.

In the experiment, the traditional NStoPS, NStoPS-II and NStoPS-BK and the
algorithm in this paper are used to reconstruct positive data from negative data and
background knowledge. The accuracy of each algorithm is compared by calculating the
error between the reconstructed results si and the original positive data. Experiments
were performed 1000 times independently, and then the average error was calculated.
The error is calculated as follow [9].
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error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXc

i¼1
si � tið Þ2

q
ð9Þ

Table 2 lists the average error of each algorithm. For three distributions (i.e.,
uniform distribution, normal distribution and exponential distribution), the proposed
algorithm can obtain higher accuracy than other algorithms when dealing with
unreasonable data that is inconsistent with the background knowledge. For the
log-normal distribution, the error of our algorithm is almost the same as that of
NStoPS-BK. Since three accurate background intervals [0, 10], [0, 50] and [0, 10] are
used for the log-normal distribution, based on these three background intervals, the
NStoPS-BK can also get good results. Because the results of the three accurate cate-
gories are similar, for the two less accurate background intervals [200, 500], the results
for both NStoPS-BK and NStoPS-UD are either fixed at 200, or with a small difference.
Therefore, for the log-normal distribution, the error of our algorithm is similar to that of
NStoPS-BK.

We tried to change the background knowledge of each distribution to [0, 500] (in
this case, we only have the background knowledge that the reconstructed result should
not be negative or larger than 500), and the average error of each algorithm is obtained
by repeating the above experiment. The results are shown in Table 3. The experimental
results show that the performance of NStoPS-BK on dealing with the unreasonable
negative values is poor, and it results in a larger average error. However, the algorithm
proposed in this paper can achieve good performance on dealing with negative values,
and its performance is the same as that of NStoPS-II. The experimental results show

Table 1. Background knowledge and results of original positive surveys and negative surveys

Distribution Background knowledge Positive survey Negative survey

Uniform ([0, 100], [0, 500], [0, 500], [100,
500], [0, 500])

(99, 89, 103,
109, 100)

(95, 110, 112,
98, 85)

Normal ([0, 20], [0, 500], [250, 500], [0,
500], [0, 10])

(10, 102, 290,
96, 2)

(126, 105, 55,
107, 107)

Log-normal ([0, 10], [200, 500], [200, 500], [0,
50], [0, 10])

(5, 269, 205, 19,
2)

(118, 72, 66,
125, 119)

Exponential ([250, 500], [0, 200], [0, 100], [0,
20], [0, 10])

(317, 130, 38,
10, 5)

(37, 102, 117,
113, 131)

Table 2. Average error of reconstructed positive data by different algorithms

Distribution Uniform Normal Log-normal Exponential

NStoPS 0.145201 0.144154 0.143554 0.146301
NStoPS-II 0.144537 0.117060 0.098597 0.107892
NStoPS-BK 0.126520 0.094933 0.060932 0.092924
NStoPS-UD 0.124682 0.089995 0.063179 0.086889
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that our algorithm can effectively deal with both the negative values and the unrea-
sonable data which are inconsistent with the background knowledge.

4 Extension to General Negative Surveys

In this part, the extension of our algorithm which can be applied to general negative
surveys will be discussed. At present, most of the reconstruction algorithms and the
simulation experiments are based on the uniform negative survey, but, in reality, there
is a possibility that participants will choose one or more options in a biased way. Our
algorithm can be extended to support the general negative survey in which the selection
probability is not forced to follow any distribution. First, we also take the category c as
an example, in the same way, we need to solve the following equations

Pc
i¼1 xi � pi;1 ¼ r1 þDr1Pc
i¼1 xi � pi;2 ¼ r2 þDr2

..

.

Pc
i¼1 xi � pi;c ¼ rc þDrcPc

i¼1
xi ¼ 1

8>>>>>>><
>>>>>>>:

Dri ¼
Xc�1

j¼1

xj � pj;c
rc þDrc

� (� Drc)� pj;i
1� pj;c

; i ¼ 1; . . .; c� 1

Note that xc is fixed to a known value, and x1; . . .; xc�1 and Drc are unknown.
Therefore, the above is an equation set which contains c variables and c equations.

Finally, we also need to get the general formula for the situation that the results
obtained by NStoPS contain unreasonable values for n n � cð Þ categories. The analysis
is similar to Sect. 2, and finally we have:

Dri ¼
Xc�n

j¼1

xj � pj;c
rc þDrc

� (� Drc)� pj;i
1� pj;c þ . . .þ pj;c�nþ 1

� � þ . . .

þ
Xc�n

j¼1

xj � pj;c�nþ 1

rc�nþ 1 þDrc�nþ 1
� ð�Drc�nþ 1Þ � pj;i

1� pj;c þ . . .þ pj;c�nþ 1
� �

Table 3. Average error of reconstructed positive data by different algorithms when handling
negative values

Distribution Uniform Normal Log-normal Exponential

NStoPS 0.144997 0.144553 0.144955 0.146063
NStoPS-II 0.144394 0.116390 0.097277 0.110176
NStoPS-BK 0.144350 0.118865 0.109463 0.117183
NStoPS-UD 0.144394 0.116390 0.097277 0.110176
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In specific applications, matrix P and c are known values, the equation sets will be
easy to solve. For example, when the reconstruction result of a category is adjusted and
c is equal to 3, it is a quadratic equation with one unknown variable finally. There are
many methods for solving this kind of equation sets, such as Newton iteration method,
Evolutionary Algorithm, and neural network algorithm. Therefore, the algorithm in this
paper can also be used when the participants do not follow a uniform selection
probability.

5 Conclusions and Future Work

In this paper, we proposed a new algorithm to handle the unreasonable data and two
experiments are carried out. The experimental results demonstrated that this method
could produce more reasonable aggregated results. Finally, we extend the algorithm to
general negative survey, and give a general expression for the method.

In future work, we will choose an efficient method to obtain the result expression of
the general equation sets. Moreover, in this paper, we only study the negative survey in
which each participant should select only one negative category, and we will inves-
tigate the way to handling unreasonable values in multiple-selection negative surveys
[15] in future work.
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Abstract. In recent years, multi-view clustering has become a hot
research topic due to the increasing amount of multi-view data. Among
existing multi-view clustering methods, proximity-based method is a typ-
ical class and achieves much success. Usually, these methods need prox-
imity matrices as inputs, which can be constructed by some nearest-
neighbors-based approaches. However, in this way, neither the intra-view
cluster structure nor the inter-view correlation is considered in construct-
ing proximity matrices. To address this issue, we propose a novel method,
named multi-view proximity learning. By introducing the idea of repre-
sentative, our model can consider both the relations between data objects
and the cluster structure within individual views. Besides, the spectral-
embedding-based scheme is adopted for modeling the correlations across
different views, i.e. the view consistency and complement properties.
Extensive experiments on both synthetic and real-world datasets demon-
strate the effectiveness of our method.

Keywords: Multi-view clustering · Proximity learning
Representative · Spectral embedding

1 Introduction

Recently, multi-view data, whose data features are collected from multiple het-
erogenous but related views, have arisen in a number of fields [1–8], such as
pattern recognition, data mining, natural language processing, etc. For instance,
a web page can be described in two views, one contains the words occurring in
the page and the other contains the words occurring in the hyperlinks point-
ing to that page [4]. Another example is the multilingual document, which is
available in several languages such that each language is taken as a separate
view [5]. In these fields, data clustering is a basic but widely used technique [9].
Considering clustering the multi-view data, it is difficult to produce good results
by using only one view of feature, since usually each view only provides par-
tial information [10]. Therefore, it is necessary to properly combine information
from all views together to improve the clustering performance. This leads to the
emergence of multi-view clustering.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 407–423, 2018.
https://doi.org/10.1007/978-3-319-91458-9_25
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Proximity-based method is a kind of typical method for multi-view cluster-
ing. These methods integrate the information from different views by making
use of the predefined proximity matrices together. One of the most straight-
forward scheme for view integration is weighted combination, which combines
the proximity matrices from all views together by weighted addition via an
adaptive weighting parameter for each view [11,12]. Besides, some other useful
methods are developed. In [13,14], co-training based approaches are adopted to
share information among views, which improves the proximity matrices to fit
multi-view data. Co-regularized approaches are also effective approaches to view
integration [15,16]. Wang et al. propose a method which considers the neighbor-
hood consistency of different views [17], while Xia et al. consider the low-rank
and sparse properties of proximity matrices [18].

Despite the success of the aforementioned proximity-based methods, they suf-
fer from some common problems. First, proximity matrices are needed as inputs
for these methods, while usually data features are given rather than proxim-
ity matrices. In this case, some nearest-neighbors-based methods are applied
on data features to construct proximity matrices, such as k-nearest neighbors,
Gaussian proximity [19] and self-tuned Gaussian [20]. However, these proximity
construction methods do not consider the underlying cluster structures, such
that the constructed proximities may not exhibit good properties for clustering.
Moreover, these methods only consider separately the information in individual
views, leading to the loss of the inter-view correlations.

In order to address these problems, we propose a new multi-view proximity
learning (MVPL) method for multi-view clustering. In the multi-view proximity
learning, both the relations between data objects in individual views and the
correlations across different views are considered. For the intra-view relations, a
novel idea of data representative is adopted, such that the cluster structure is
also taken into account during the learning process. Besides, spectral-embedding-
based scheme is designed for modeling the inter-view correlations, such that both
the view consistency and complement properties can be utilized for improving
the clustering performance. Accordingly, an objective function is designed and
an alternative iteration scheme is proposed to optimize the objective. Extensive
experiments conducted on both synthetic and real-world datasets demonstrate
the effectiveness of the proposed model.

2 The Proposed Model

In order to address the proximity learning problem for multi-view data, our
model should consider two parts. One is the intra-view learning quality, which
means that the learning process should consider the relations between data
objects within each view. Inspired by [21], the proposed model discovers these
relations based on the idea of representative. It can transform the original view
feature into a more suitable representation for proximity learning, by which the
cluster structures are also considered. In particular, in each view, each feature
vector has a dedicated representative that is very similar to itself, and represen-
tatives of data objects with higher proximity should be similar to each other.
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Fig. 1. Illustration of the main idea of our method. In this simple example, the dataset
contains a document view and an image view.

The other part is to model the correlations across different views, such that both
the view consistency and complement properties can be utilized for improving
clustering performance. The view consistency property implies that the proxim-
ities learnt from different views will reach a certain degree of consistency, while
the view complement property implies that one view will provide complementary
information for the other views. Accordingly, a well-designed inter-view criterion
function is proposed based on spectral embedding. For clarity, Fig. 1 illustrates
the main idea of our method by a two-view example. From the figure, we find
that the data representatives are determined by both view features and learnt
proximities. Similarly, the learnt proximities are derived from intra-view data
representatives and further mutually affected in a inter-view manner by spectral
embedding. In what follows, we will introduce the model in detail.

2.1 The Objective Function

Given a dataset containing n objects whose features are collected from m views,
the features in the v-th view are represented by matrix Xv = [xv

1,x
v
2, . . . ,x

v
n] ∈

R
dv×n, where dv is the dimensionality of the v-th view and xv

i is the feature
vector for the i-th object in the v-th view. The goal of the multi-view proximity
learning is to learn a proximity set {S1, S2, . . . , Sm}, where Sv = [sv

ij ]n×n is the
proximity matrix for the v-th view with sv

ij representing the proximity between
the i-th and j-th objects in the v-th view. According to the discussion above,
the learning process should consider both intra-view and inter-view criteria.

Intra-view Criterion. In order to discover the relations between data objects
in individual views, we introduce the idea of data representatives, which are bet-
ter representations with clearer cluster structures for data objects. Intuitively in
this process, original data point is moved to a better position for clustering
according to its relations with other data points. We use Uv = [uv

1,u
v
2, . . . ,u

v
n] ∈

R
dv×n to denote the representative matrix where uv

i is the representative for fea-
ture vector xv

i in the v-th view. Treating the original feature as important basis
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for learning representative, uv
i should not be far from xv

i , otherwise the topologi-
cal structure will be destroyed. Besides, the learning of representative should also
consider the proximities between objects. If two data objects have higher proxim-
ity in one view then their representatives should be relatively closer. Similarly,
the proximity learning should consider the relations between data representa-
tives. If two data representatives uv

i and uv
j are close in the v-th view, then sv

ij

should be relatively large. In other words, the learning processes of represen-
tatives and proximities are mutually affected by each other. According to the
above discussion, the intra-view criterion is defined as follows,

Φv(Uv, Sv) =
1
n

n∑

i=1

‖xv
i − uv

i ‖22 +
α

n2

⎛

⎝
n∑

i=1

n∑

j=1

sv
ij‖uv

i − uv
j ‖22 + β‖Sv‖2F

⎞

⎠

s.t.
n∑

j=1

sv
ij = 1, sv

ij ≥ 0,∀i, j

(1)

where ‖ · ‖2 is the L2 norm of vector, ‖ · ‖2F is the Frobenius norm of matrix and
α, β > 0 are trade-off parameters. In our paper, the probabilistic proximities are
used. Therefore constraint

∑n
j=1 sv

ij = 1 and sv
ij ≥ 0 should be introduced. The

term β‖Sv‖2F is adopted for controlling the sparsity of learnt proximity. If β is
large, the learnt proximity matrix will be relatively dense, while a smaller β will
make the matrix sparser.

Inter-view Criterion. The inter-view criterion considers both the view consis-
tency and view complement properties. We design such criterion by introducing
the concept of spectral embedding. Spectral embedding is a low-dimensional
representation of data object, which is obtained through spectral decomposi-
tion on specific matrix. In our model, spectral embedding is the representation
integrating information from all views. By denoting the embedding matrix as
F = [f1, f2, . . . , fn] ∈ R

c×n with fi being the c-dimensional spectral embedding
of the i-th data object, the relation between F and the learnt proximity Sv can
be modeled by

1
2n2

n∑

i=1

n∑

j=1

sv
ij‖fi − fj‖22 s.t. FFT = I (2)

where I is the identity matrix. Here FFT = I is a widely used constraint for
weakening the relations between the features of embedding, which makes F a
better representation [19]. If the distance between fi and fj is small, it implies
that i-th and j-th data objects may have higher proximity in all views. If the
value of (2) is smaller, the learnt proximity of the v-th view is more consis-
tent with the spectral embedding F . Since the spectral embedding F carries
information from all views, the high consistency between F and Sv implies that
information of other views is transferred to the v-th view, which reflects the
view complement property. Moreover, proximities from different views can reach
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a certain degree of consistency through F . Here F is regarded as a medium for
inter-view interactions, which reflects the view consistency property. Considering
all views together, we get the inter-view criterion as follows,

Ψ({Sv}, F ) =
1

2n2

m∑

v=1

n∑

i=1

n∑

j=1

sv
ij‖fi − fj‖22 s.t. FFT = I (3)

which models the inter-view correlations through the spectral embedding.

The Overall Objective Function According to the discussion above, we can
use Φv(Uv, Sv) to measure the intra-view learning quality and Ψ({Sv}, F ) to
measure the inter-view consistency and complement properties. By integrating
them together, we can get the overall objective function as follows,

min
{Uv},{Sv},F

m∑

v=1

Φv(Uv, Sv) + γΨ({Sv}, F )

s.t.
n∑

j=1

sv
ij = 1, sv

ij ≥ 0,∀i, j, v, FFT = I

(4)

where γ > 0 is the trade-off parameter balancing the intra-view criterion and the
inter-view criterion. By minimizing the objective function (4), both the learning
quality of proximities in all views and the interactions between different views are
considered, such that suitable proximities for multi-view data can be obtained.
Following the convention of spectral clustering, the dimensionality of spectral
embedding can be set as the predefined number of clusters [19].

2.2 Determination of Parameter β

In the proposed model, three parameters are needed as inputs for proximity
learning. Parameter α is adopted to control the distances between data features
and data representatives, while parameter γ is adopted for controlling the view
consistency. Both parameters should be determined according to the properties
of datasets. In comparison, β is adopted for controlling the sparsity of learnt
proximities, which has less variability. Therefore, it is necessary to design a
method for determining its value more easily.

Inspired by [22], we propose a method based on k-nearest neighbors to
determine β. It also induces a method for constructing single-view proximity,
which will be used in our experiments. Considering data feature in certain view,
whose data matrix is X = [x1, . . . ,xn] ∈ R

d×n (here we ignore the super-
script specifying view index for simplicity), we can learn the proximity vector
wi = [wi1, wi2, . . . , win]T associated with xi by solving the following model

min
wi

1
2

∥∥∥∥wi +
dx

i

2βi

∥∥∥∥
2

2

s.t. wi
T1 = 1,wi ≥ 0, (5)
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where βi > 0 is the sparsity parameter, 1 is the all-one vector and wi ≥ 0 means
all elements of vector wi are not less than 0. We assume the original distance
vector as d̂x

i = [d̂xi1, d̂
x
i2, . . . , d̂

x
in]T , where d̂xii is set as a very large number (i.e.

ignoring xi itself) and ∀j �= i, d̂xij = ‖xi − xj‖22. The distance vector dx
i in (5)

is defined by dx
i = [dxi1, d

x
i2, . . . , d

x
in]T , which is the sorted vector of d̂x

i such that
dxi1 ≤ dxi2 ≤ · · · ≤ dxin. In the model, the parameter βi determines the number of
nonzero elements in the proximity information vector wi. If βi = 0, there will be
only one nonzero element in the vector, corresponding to the nearest neighbor of
object xi. If βi → ∞, all elements will be nonzero except the one corresponding
to xi. Aiming to solve problem (5), we write down its Lagrangian function as

L(wi, η, μi) =
1
2

∥∥∥∥wi +
dx

i

2βi

∥∥∥∥
2

2

− η
(
wi

T1 − 1
) − μT

i wi (6)

where η and μi ≥ 0 are Lagrangian multipliers. According to the KKT condition,
the optimal solution of wi is given by

wij = max
(

− dxij
2βi

+ η, 0
)

. (7)

If there are exactly k nonzero elements in the vector wi, we get the value of
Lagrangian multiplier η = 1

k + 1
2kβi

∑k
j=1 dxij [22]. These k nonzero elements of

wi correspond to the k-nearest neighbors of xi and the elements of wi satisfy
∀1 ≤ j ≤ k,wij > 0 and ∀j ≥ k + 1, wij = 0. According to the constraint
wi

T1 = 1, the sparsity parameter βi can be set as

βi =
k

2
dxi,k+1 − 1

2

k∑

j=1

dxij , (8)

such that the resulting wi will have exactly k nonzero elements. Considering all
data objects, the sparsity parameter β can be set as the average of βi, which is
given by

β =
1
n

n∑

i=1

⎛

⎝k

2
dxi,k+1 − 1

2

k∑

j=1

dxij

⎞

⎠ . (9)

Using the method above, we can determine the sparsity parameter according
to the number of neighbors k, which is much easier to tune. Furthermore, the
single-view weighted k-nearest neighbors proximity can be constructed after k
is determined. For multi-view data, since different views may have different dis-
tance distributions, it is more reasonable to use different sparsity parameters for
different views. Therefore, the modified intra-view criterion function is given by

Φ̃v(Uv, Sv) =
1
n

n∑

i=1

‖xv
i − uv

i ‖22 +
α

n2

⎛

⎝
n∑

i=1

n∑

j=1

sv
ij‖uv

i − uv
j ‖22 + βv‖Sv‖2F

⎞

⎠

(10)
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where βv > 0 is the sparsity parameter for the v-th view determined by the
aforementioned method via the number of neighbors k. Finally, our objective is
given by

min
Uv,Sv,F

m∑

v=1

Φ̃v(Uv, Sv) + γΨ({Sv}, F )

s.t.
n∑

j=1

sv
ij = 1, sv

ij ≥ 0,∀i, j, v, FFT = I.

(11)

Although more sparsity parameters are introduced to control the model in (11)
compared with (4), they can be determined via the same number of nearest
neighbors k.

2.3 Optimization

In this subsection, the alternative iteration scheme is used to solve problem (11).

Update Uv . When Sv and F are fixed, the subproblem with respect to Uv is
given by

min
Uv

1
n

n∑

i=1

‖xv
i − uv

i ‖22 +
α

n2

n∑

i=1

n∑

j=1

sv
ij‖uv

i − uv
j ‖22. (12)

In order to rewrite the subproblem into matrix form, we introduce the property
[19] as

Tr
(
HLGHT

)
=

1
2

n∑

i=1

n∑

j=1

gij‖hi − hj‖22 (13)

where Tr(·) is the trace operator for matrix, G = {gij} ∈ R
a×a and H =

[h1,h2, . . . ,ha] ∈ R
b×a. LG is the unnormalized Laplacian matrix of G defined

by LG = DG −G, where DG is the degree matrix of G. Using the property (13),
the subproblem can be transformed as

min
Uv

‖Xv − Uv‖2F +
2α

n
tr

(
UvLv

SUvT
)

(14)

where Lv
S is the unnormalized Laplacian matrix of (Sv + SvT )/2. Setting the

derivative with respect to Uv to zero, we find that Uv satisfies the equation as
follows

Uv

(
I +

2α

n
Lv

S

)
= Xv, (15)

which can be solved by matrix inversion. Besides, the problem is essentially a
least-square problem, which can also be solved in many efficient ways.
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Update Sv . When Uv and F are fixed, the subproblem with respect to Sv is
given by

min
Sv

n∑

i=1

n∑

j=1

sv
ij‖uv

i − uv
j ‖22 + βv

n∑

i=1

n∑

j=1

sv
ij

2 +
γ

2α

n∑

i=1

n∑

j=1

sv
ij‖fi − fj‖22

s.t.
n∑

j=1

sv
ij = 1, sv

ij ≥ 0,∀i, j, v.

(16)

By denoting dv
ij = ‖uv

i − uv
j ‖22 + γ

2α‖fi − fj‖22, dv
i = [dv

i1, d
v
i2, . . . , d

v
in]T and

sv
i = [sv

i1, s
v
i2, . . . , s

v
in]T , we translate the problem into vector form as follows

min
svi

∥∥∥∥s
v
i +

dv
i

2βv

∥∥∥∥
2

2

s.t. sv
i

T1 = 1, sv
i ≥ 0,

(17)

which is equivalent to computing the Euclidean projection of point −dv
i /(2βv)

onto the probability simplex. The problem has a unique solution, which can be
solved by using the method proposed in [23].

Update F. When Uv and Sv are fixed, the subproblem with respect to F is to
solve a trace minimization problem as

min
FFT=I

Tr(FLSFT ) (18)

where LS =
∑m

v=1 Lv
S . The optimal F is a matrix formed by the c eigenvectors

of LS corresponding to the c smallest eigenvalues.
By alternatively update Uv, Sv and F , the objective value will decrease and

finally converge as the iteration goes, from which the solution of problem (11)
can be obtained. The optimization algorithm is summarized in Algorithm 1.
After learning the proximity matrices, the spectral clustering is applied on the
proximity matrices to obtain the clustering results.

3 Experiment

In this section, extensive experiments are conducted to demonstrate the effec-
tiveness of the proposed method on one synthetic dataset and four real-world
datasets. On the synthetic dataset, we will show how the proposed method works.
While on the real-world datasets, parameter analysis, convergence analysis and
comparison experiments will be conducted. The code of our method and the
testing datasets are available on dropbox1.

1 The code is available on https://www.dropbox.com/s/tj5zc7yry0ing3l/MVPL
PCode.zip?dl=0 and the password for decompression is “DASFAA2018”.

https://www.dropbox.com/s/tj5zc7yry0ing3l/MVPL_PCode.zip?dl=0
https://www.dropbox.com/s/tj5zc7yry0ing3l/MVPL_PCode.zip?dl=0
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Algorithm 1. Multi-view proximity learning
Input: Data matrices of m views {X1, X2 . . . , Xm}, parameters α, γ and k, number

of clusters c.
1: Initialize representative matrix Uv as Xv.
2: Initialize Sv and determine βv by the strategy in Section 2.2.
3: Initialize F by solving Eq. (18).
4: repeat
5: Update Uv, ∀v by solving Eq. (15).
6: Update Sv, ∀v by solving Eq. (17).
7: Update F by solving Eq. (18).
8: until Convergence or reaching the maximum number of iterations.
Output: Proximity matrices {S1, S2, . . . , Sm}.
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Fig. 2. Synthetic experiment. In the figures, points in the first class are in blue while
those in the second class are in red. Green lines are edges representing the proximities
between data objects, i.e., if the proximity between two data objects in certain view is
larger than zero then there is an edge between them. (Color figure online)

3.1 Synthetic Experiment

A synthetic dataset consisting of two views, namely Two-Gaussian and Two-
moon, is used for demonstrating how the proposed method works. Figure 2(a)
and (d) plot the original data points in both views with edges representing
the initial proximities learnt by the method introduced in Sect. 2.2. In order to
show the significance of considering inter-view criterion, a variant of our method,
called SVPL, is introduced by setting γ = 0. It is a single-view proximity learning
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method which considers only the intra-view criterion. Figure 2(b) and (e) show
the results of SVPL, where points denote the learnt representatives. From the
subfigures, we find that SVPL transforms the original data view into a more
suitable state for clustering based on representatives. It is essentially equivalent
to making the data points move in such a manner that the intra-class connections
are stronger and the inter-class connections are weaker. However, the learnt
proximity is not good enough since there are still edges between the two clusters.
Therefore, we need to consider the inter-view information. Figure 2(c) and (f)
show the results of MVPL, where points denote representatives learnt by MVPL.
From these two subfigures, we find that there are no edges between clusters in
both views. This implies that much better proximities are learnt by considering
both the intra-view and the inter-view criterion. The comparison results confirm
the significance of considering inter-view criterion.

3.2 Real-World Datasets and Evaluation Measures

In this subsection, we will first introduce the four real-world datasets used in
experiments.

1. Handwritten numeral dataset
Multiple features (Mfeat) dataset is a handwritten numeral dataset from UCI
machine learning repository [24]. The dataset contains handwritten digits
from 0 to 9 and each category has 200 objects. In our experiment, we use
three kinds of feature to represent images, namely 216 profile correlations, 76
Fourier coefficients and 47 Zernike moments, where each kind of features is
regarded as a view.

2. Multi-source news dataset
3Sources dataset2 is a multi-source news dataset consisting of news collected
from three sources, namely BBC, Guardian and Reuters. Although the origi-
nal dataset contains 984 news articles covering 416 distinct news stories, there
are only 169 stories reported by all three medias. In our experiment, we only
use these 169 news objects so that each object has three views of features.

3. Object image datasets
Caltech101 [25] is an image dataset consisting of 101 categories of images
for object recognition problem. Following the previous work [26], two sub-
sets are selected to generate two datasets for experimental purpose. The first
subset is called Caltech101-7, containing 1474 images from 7 widely used cate-
gories. The second one is a larger subset called Caltech101-20, which contains
2386 images of 20 categories. Three kinds of features are extracted from the
images to generate three views, namely 1984-dimensional HOG feature, 512-
dimensional GIST feature and 928-dimensional LBP feature.

The statistic of the four real-world datasets is shown in Table 1.
In order to evaluate the clustering performance of the proposed method and

the compared methods, three widely used measures are adopted in our exper-
iments, namely accuracy (ACC), normalized mutual information (NMI) and
2 http://mlg.ucd.ie/datasets/3sources.html.

http://mlg.ucd.ie/datasets/3sources.html
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Table 1. Statistic of the four real-world datasets.

Mfeat 3Sources Caltech101-7 Caltech101-20

View1 fac(216) BBC(3560) hog(1984) hog(1984)

View2 fou(76) Guardian(3631) gist(512) gist(512)

View3 zer(47) Reuters(3068) lbp(928) lbp(928)

# of objects 2000 169 1474 2386

# of classes 10 6 7 20

purity (PUR). For each measure, higher value indicates better performance [17].
In comparison experiments, following [21], the average rank of the performance
obtained by each method is also reported across all datasets.

3.3 Parameter Analysis

In this subsection, parameter analysis is conducted to show the effect of the
three parameters α, γ and k. The first parameter to be analyzed is k, which
determines the value of βv. By fixing α = 1 and γ = 0.001, we tune the value
of k in range [5, 70] with step 5. The performance in terms of all three measures
on the four datasets are reported in Fig. 3. From the figure, we find that the
method performs not so well when k is too small due to the failure of preserving
the neighborhood structures. As the value of k increases, the performance will
gradually increase. After reaching the highest point (often around k = 30), the
value of curve will gradually decrease. Although the method may perform not so
well with relatively larger k, it produces acceptable results. The main reason is
that by introducing the idea of representative, which transforms the original data
into a more suitable state for proximity learning, the negative impact caused by
the noisy neighbors will be alleviated.
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Fig. 3. Parameter analysis on number of neighbors k.

Next we analyze the effect of α and γ by setting k = 30. According to the
properties of datasets, different ranges of γ are used for different datasets while
the same range of α is used for all datasets. The experimental results are shown
in Figs. 4, 5, 6 and 7 respectively. From the figures, we find our method has
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Fig. 4. Parameter analysis on α and γ on Mfeat.
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Fig. 5. Parameter analysis on α and γ on 3Sources.
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Fig. 6. Parameter analysis on α and γ on Caltech101-7.
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Fig. 7. Parameter analysis on α and γ on Caltech101-20.

similar performance with similar γ/α. What is more, the value of α should not
be set too large since it may lead to information loss in terms of topological
structure. In practice, user can select the value of α in [0.5, 1] and the value of
γ from {0.01, 0.001, 0.0001} by which satisfactory performance can be obtained.
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Fig. 8. Convergence analysis of optimization.

3.4 Convergence Analysis

In this subsection, convergence analysis is conducted to explore the convergence
property of the proposed iterative algorithm by setting α = 1, γ = 0.001 and
k = 30. Figure 8 plots the log value of objective as a function of iteration step.
From the subfigures, we find that the log values of objective decrease rapidly
during the iterations on all four datasets. Usually, the algorithm will converge
within 30 times of iteration.

3.5 Comparison Experiment

In this subsection, we compare the proposed MVPL method with several state-
of-the-art algorithms. Two types of clustering methods are used for comparison,
namely the traditional single-view clustering methods and the multi-view clus-
tering methods. For the single-view methods, three representative algorithms are
selected, namely k-means (KM) [27], normalized cut (NCut) [19] and robust con-
tinuous clustering (RCC) [21]. These single-view methods operate on each indi-
vidual views from which the best results are reported. For multi-view clustering
methods, five state-of-the-art algorithms are used, namely multi-view k-means
(MVKM) [28], multi-view spectral clustering (MVSC) [12], co-training multi-
view clustering (CoTrn) [13], co-regularized multi-view clustering (CoReg) [15]
and multi-view learning with adaptive neighbors (MLAN) [29]. Following [13], for
the methods that generate multiple view-specific clustering results (i.e. CoTrn,
CoReg and MVPL), prior knowledge is used to select the most informative view
for comparison purpose. For all the spectral-clustering-like compared methods,
we use the method mentioned in Sect. 2.2 to construct the proximity matrices,
which is shown to be a good method for proximity construction [30]. And the
sparsity of the proximity matrices is determined by the number of neighbors k.
We will tune k in the range of [10, 50] to select the best proximity according to
the three measures for all the methods. For all spectral-clustering-like methods
and k-means-like methods, we set the number of clusters c as the ground-truth
number. Besides, for all the methods involving k-means, we run each algorithm
50 times in the same parameter setting and select the results with the smallest
objective as the result for this setting. For all the methods, the best parameters
are tuned as suggested by the authors.
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Table 2. Clustering results in terms of ACC on all datasets.

Method Mfeat Caltech101-7 Caltech101-20 3Sources Rank

KM 0.729 0.463 0.466 0.527 8.5

NCut 0.753 0.646 0.486 0.746 5.0

RCC 0.779 0.761 0.597 0.420 4.6

MVKM 0.738 0.754 0.516 0.775 4.0

MVSC 0.834 0.556 0.445 0.645 6.8

CoTrn 0.833 0.588 0.473 0.734 5.5

CoReg 0.844 0.586 0.497 0.675 4.8

MLAN 0.750 0.707 0.475 0.757 5.0

MVPL 0.970 0.926 0.719 0.781 1.0

Table 3. Clustering results in terms of NMI on all datasets.

Method Mfeat Caltech101-7 Caltech101-20 3Sources Rank

KM 0.685 0.459 0.582 0.506 7.8

NCut 0.742 0.521 0.564 0.679 6.0

RCC 0.790 0.621 0.588 0.344 5.5

MVKM 0.650 0.616 0.619 0.587 5.3

MVSC 0.819 0.473 0.551 0.619 6.3

CoTrn 0.846 0.555 0.597 0.696 2.8

CoReg 0.830 0.489 0.596 0.690 4.3

MLAN 0.815 0.544 0.464 0.613 6.3

MVPL 0.932 0.789 0.677 0.720 1.0

Table 4. Clustering results in terms of PUR on all datasets.

Method Mfeat Caltech101-7 Caltech101-20 3Sources Rank

KM 0.729 0.875 0.786 0.757 7.3

NCut 0.774 0.891 0.783 0.834 5.3

RCC 0.836 0.876 0.866 0.716 4.8

MVKM 0.738 0.899 0.810 0.781 4.8

MVSC 0.834 0.868 0.764 0.811 6.0

CoTrn 0.857 0.896 0.803 0.846 2.3

CoReg 0.844 0.860 0.788 0.811 5

MLAN 0.778 0.857 0.665 0.793 7.8

MVPL 0.970 0.929 0.803 0.840 2.0

The comparison results obtained by all the methods on the four real-world
datasets in terms of ACC, NMI and PUR are reported in Tables 2, 3 and 4 respec-
tively. In the tables, the best performance among all the methods is highlighted
in bold. From the tables, we find that the proposed MVPL method outperforms
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all the other methods on ACC and NMI. In particular, our method has achieved
on average 14% percent improvement in terms of ACC and 12% improvement in
terms of NMI on all the datasets. For PUR, although our method cannot reach
the highest PUR on all the datasets, it still ranks the first on average. Over-
all, the comparison results have demonstrated the effectiveness of the proposed
method.

4 Conclusion

In this paper, we propose a novel proximity learning method for multi-view clus-
tering, called multi-view proximity learning. Through the method, proximities
between data objects with multiple views of features can be obtained, which are
suitable for multi-view clustering. Accordingly, our method adopts two criteria
to fulfill the task, namely intra-view criterion and inter-view criterion. For the
intra-view part, we not only make use of the relations between data objects but
also take cluster structures into account within individual views. For the inter-
view part, we model the correlations between views based on spectral embed-
ding, which utilizes the view consistency and complement properties such that
the learning performance is improved. Extensive experiments conducted on both
synthetic and real-world datasets demonstrate the effectiveness of our method.
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Abstract. Existing multi-label learning approaches assume all labels
in a dataset are of the same importance. However, the importance of
each label is generally different in real world. In this paper, we introduce
multi-label importance (MLI) which measures label importance from
two perspectives: label predictability and label effects. Specifically, label
predictability and label effects can be extracted from training data before
building models for multi-label learning. After that, the multi-label
importance information can be used in existing approaches to improve
the performance of multi-label learning. To prove this, we propose a
classifier chain algorithm based on multi-label importance ranking and
a improved kNN-based algorithm which takes both feature distance and
label distance into consideration. We apply our algorithms on bench-
mark datasets demonstrating efficient multi-label learning by exploiting
multi-label importance. It is also worth mentioning that our experi-
ments show the strong positive correlation between label predictability
and label effects.

1 Introduction

Traditional single-label classification aims at building a classifier that can tag
each instance with a single label. Both binary classification and multi-class clas-
sification belong to this learning framework. However, multi-label classification
is a more general learning framework. In multi-label learning, each instance in
the dataset is associated with a set of labels, and the task of multi-label problem
is to output a label set whose size is unknown for each test instances.

Multi-label problems are ubiquitous in the real world, for example, in image
categorization, each image can be associated with multiple labels, such as
sea, desert and mountain [1]; in text categorization, each text may belong to
a set of topics, such as economics, poetry and health [2,21]; in bioinformatics,
a gene may be related to multiple functions, such as metabolism and protein
synthesis [3].
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Existing multi-label classification methods usually assume that all labels in a
dataset have the same importance. However, because of the different attributes
carried by labels, the importance of each label is generally different in real world.
Intuitively, the label importance can be described from two perspectives: label
predictability and label effects.

• The predictability of labels in multi-label learning is generally different. Given
a multi-label dataset, there may be some labels can get the high accuracy
prediction, while some labels cannot. This issue can affect the performances
of some approaches (e.g. Classifier Chains) since the propagation of error
information.

• Label effects represent the influence power of each label in multi-label data.
The presence or absence of different labels have different effects on the over-
all label structure. We can extract Label effects from training data before
building classifiers for multi-label learning.

In this paper, we introduce multi-label importance combining label pre-
dictability and label effects. Specifically, label predictability can be gained uti-
lizing existing approaches as the base classifiers, and label effects are extracted
from label structure of train data. To prove the usefulness of MLI information,
we propose a classifier chain algorithm based on multi-label importance rank-
ing and an improved ML-kNN algorithm considering both feature distance and
label distance. Our experiments show the significantly improved performance
by exploiting multi-label importance and the positive correlation between label
predictability and label effects.

The paper is organized as follows. In Sect. 2, we review previous work on
multi-label learning. In Sect. 3, we introduce multi-label importance (MLI).
Section 4 present two approaches by exploiting MLI. The experiment results on
real-world datasets are given in Sect. 5. Finally, we conclude and propose future
work in Sect. 6.

2 Multi-label Learning

We denote X = Rd as the d-dimensional feature space an Y = {0, 1}L as the
label space with L possible labels, then the goal of multi-label classifier is to learn
a function f : X �→ Y. Given a multi-label dataset, we can divide it into feature
space X and label space Y . An instance in multi-label problem is associated
with a subset of labels Yi ⊆ Y (finite set of labels), and a multi-label dataset is
composed of m examples (x1, Y1),(x2, Y2), . . . ,(xn, Yn) [4,5].

Given a multi-label learning task, it can be transformed into other
well-established learning tasks. This way is formally defined as Problem
Transforma-tion. In this way, we can decompose a multi-label problem into
multiple single-label problems, and each single-label problems can be tackled by
a binary classifier. Another way to tackle multi-label classification problems is
Algorithm Adaptation [8]. This category of approaches tackle multi-label learn-
ing problem by adapting existing learning approaches to deal with multi-label
problem directly.
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Problem Transformation is widely used in multi-label learning problems
owing to its greater flexibility. The multi-label classification function can be rep-
resented in another form f={f1, f2, . . . , fL} in this way. Binary Relevance (BR)
[1] is the most well known first-order approach in multi-label learning. It decom-
poses a multi-label problem into multiple binary problems, and for each binary
classification problem, several existing algorithms such as k Nearest Neighbor
(kNN), Support Vector Machine and Logistic Regression can be employed. The
second-order approach Calibrated Label Ranking [7] transforms the multi-label
problem into the label ranking problems.

The high-order approach Classifier Chains (CC) [4] transform the multi-
label classifier into a chain of binary classifier, and exploit label correlations
by extend the feature space using the outputs of previous binary classifiers in
the chain (see in Fig. 1). It is obvious that the order of the chain itself has an
effect on prediction accuracy. Ensembles of Classifier Chains (ECC) solve the
issue by using an ensemble framework with a different random chain ordering
for each iteration, but this strategy takes a lot of time in prediction phase.
After introducing multi-label importance, the order of classifier chains can be
determined by the multi-label importance ranking.

xnx1

y1

... y1xnx1

y2

... y2y1xnx1

y3

... y3y2y1xnx1

y4

...

Fig. 1. Classifier Chains (CC) transform the multi-label classifier into a chain of binary
classifier.

Algorithm Adaptation method adapt popular learning approaches such
as AdaBoost, kNN or Neural Networks to deal with the multi-label problems
directly. Adaboost.MR [2] is a improved boosting algorithm proposed to solve
multi-label text and speech categorization task. MP-MLL [10] is proposed to
tackle the multi-label problems on functional genomics and text categorization
by employing a novel error function to capture the characteristics of multi-label
learning, i.e. the labels belonging to one instance should be ranked higher than
those not belonging to this instance.

ML-kNN [9] is the first lazy learning approach for multi-label learning, which
is derived from the traditional k-nearest neighbor (kNN) algorithm. It is modified
based on the classic kNN algorithm by utilizing the maximum a posteriori rule.
The application of maximum a posteriori principle is the kernel part of ML-kNN:

yt (l) = arg max
b∈{0,1}

P (H l
b|El

Ct (l)
)

= arg max
b∈{0,1}

P (El
Ct (l)

|H l
b)P (H l

b)
(1)

where yt is the label vector for a test sample t. Ct (l), El
Ct (l)

and H l
b are the

same as described in [9]. However, it ignores the correlation between labels, i.e.,
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it does not consider label distance as the base of measurement when identifying
neighbors for a test sample. In Sect. 4, we will address this problem by exploiting
label distance.

3 Multi-label Importance

Existing multi-label learning algorithms assume that the importance of all labels
is equal. However, the importance of each label in label space is generally differ-
ent in real world. As the intrinsic correlations interact between different labels,
a label can effect the prediction of other labels. Intuitively speaking, different
labels have different degrees of effect on the label structure, and the more impor-
tant the label is, the more effect it has on entire label structure. Another factor
that determines the label importance is the predictability of each label. Given a
multi-label dataset, there may be some labels can get the high prediction accu-
racy, while some labels cannot. This issue can effect the performances of some
approaches like Classifier Chains since the disseminating of error information.
Based on the above assumption, we introduce multi-label importance (MLI) in
this section.

Note that our proposed multi-label importance is different from relative
labeling importance (RLI) proposed in [11]. The former is used to reveal
the influence power of a label in whole label space. The latter represents the
degree to which a label l describes an instance, similar to label distribution in
Label Distribution Learning [12].

Different predictive accuracy of multiple labels imply that the predictability
of each label is different from each other. The predictability of each label can be
measured by utilizing existing approaches as the base classifiers (we need further
divide the training data into two parts). In our work, we respectively use two
popular approaches SVM and ML-kNN to measure the predictability of labels.
The rest of this section describes how to extract label effects from label space.

Label effects represent the influence power of each label in multi-label data.
The presence or absence of different labels have a different influence power on
the overall label structure. Let E be the effect relation matrix, where Eij stands
the effect of label i on label j.

Eij =
1
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is the normalizing constant which ensures that the effects of all other labels on
label j sum up to 1. And �j is the complementary set of label j. We divide
training samples into two parts by the positive and negative values of label i
when calculating Eij , formulated as follows: ui

0 = {s|Y i
s = 0, 0 < s < n}, and
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l1 l2

l3l4

E12
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E13
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Fig. 2. Eij stands the effect of label i on label j. Given label size L, there are L(L−1)
edges in the graph. After introducing the normalizing constant N(j), the sum of the
effects of all labels on label j is 1 (for label l1, E21 + E31 + E41 = 1).

ui
1 = {s|Y i

s = 1, 0 < s < n}. The hypothesis is that each label in training sets
has both positive and negative samples, so ui

0 and ui
1 will not be empty sets.

After calculating Eij for each label li and lj , the interaction effect relation-
ships of all label pairs can be shown in effect relation matrix E. Note that the
diagonal elements of the effect relation matrix is 0. We use a directed graph to
demonstrate the relationship between labels in Fig. 2.

We use vl to denote the effect degree of label l on label structure, and the
degree vector v = [v1, v2, . . . , vL]T . We can calculate the effect degree vector as
following:

v(t) = Ev(t−1)

v(1) = EuT
(4)

Combining these two equations:

v(t) = E tuT (5)

where u = [1, 1, . . . , 1] is the all-1 vector to initiate the effect degree vector. As
shown in (4) and (5), we calculate the effect degree using an iterative process.
Because of the transfers of influence powers between different labels, the effect
degree vector v will dynamically update at each iteration.

As we described above, we have introduced a normalizing constant to ensure
the effects of all other labels on label j sum up to 1. Thus effect relation matrix
E has two properties:

(1) Eij � 0 for i, j ∈ Y (All entries greater than or equal to zero).
(2)

∑L
i=1 Eij = 1 for j ∈ Y (All columns add to 1).

Then according to the properties of Markov matrices, we know that the effect
vector v will converge to a stable state as long as the number of iterations is
large enough. Actually, for our specific requirements, the convergence usually
occurs within a few dozens of iterations.
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Algorithm 1. v =get-Degree(Y, t)

1 Obtaining size of label space: [n, L] = size(Y )

1 Initializing E = zeros(L, L)

2 for i ∈ Y do:

3 Divide training samples into two parts:

(i) ui
0 = {s|Y i

s = 0, 0 < s < n}
(ii)ui

0 = {s|Y i
s = 0, 0 < s < n}

4 for j ∈ �i do:

5 Eij =

∣
∣
∣
∣

1
|u i

0|
∑

l∈u i
0
Y j
l − 1

|u i
1|

∑

l∈u i
1
Y j
l

∣
∣
∣
∣

6 end

7 end

8 Normalizing the columns of E

9 v = Etu

11 return v

We show how to extract the effect degrees from label structure in Algorithm
1. The meanings of the input arguments Y and the output argument v are the
same as described previously. The input arguments t is the number of iterations.

Given a multi-label dataset, we can extract the effect power degrees from
label space Y of training data. For label l, the degree vl can be determined
by measuring its effect power on other labels, i.e., its influence power can be
measured by the effect it makes to the rest of the label set. Obviously, the
higher the value of vl, the more influence power conveyed by label l.

After extracting the label effects information, we can determine the multi-
label importance for multi-label learning by combining the label predictability
and label effects. Although there may exist several possible ways to coordinate
the contribution ratios of both label predictability and label effects, we simply
use the pointwise product of these two terms as the MLI degree vector I to show
its usefulness in our works.

I = v · p (6)

where p = [p1, p2, ..., pL]T denotes the predictive accuracy vector which measured
by the base classifiers, and each pi is a real number which is greater than 0 and
less than 1.

4 Exploiting Multi-label Importance Information

To prove the usefulness of multi-label importance extraction, we apply multi-
label importance to optimize the label ordering in multi-label Classifier Chains
and propose a improved ML-kNN algorithm considering both feature distance
and label distance.
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4.1 Optimizing the Label Ordering in Classifier Chains

The Classifier Chains (CC) is one of the most popular methods for multi-label
learning since its flexibility and effective exploiting of label correlations. Nev-
ertheless, the label ordering is still a challenging issue of CC. In the basic CC
model, the label ordering is decided at random. It is clear that the inadequate
order may cause a significant decrease in predictive accuracy since the prop-
agation of error information. The authors of CC solve the issue by using an
ensemble framework with a different random chain ordering for each iteration.
[14] proposed a genetic algorithm for optimizing the label ordering in a chain of
classifiers. However, all these approaches caused great computational complexity
while optimizing the label ordering in Classifier Chains.

Based on the analysis of multi-label importance, we solve the issue using a
heuristics by exploiting the multi-label importance ranking. Before building the
classifiers for multi-label learning, we firstly extract the MLI information from
training data. Specifically, the predictability of each label can be measured by
the base classifier built for each label (we need further divide the training data
into two parts), and the label effects can be obtained by Algorithm 1. Then we
use the product of these two terms as the MLI degree. Then we can determine
the label ordering of Classifier Chains by ranking the MLI degrees.

Our strategy offers important advantages for multi-label Classifier Chains.

• First, it considers both the label predictability and label effects. That means
it can reduce the error propagation along the classifier chain while effectively
exploiting the label correlations.

• Second, it has relatively low computational complexity and can be parallelized
when determining the label ordering.

4.2 Considering Label Distance in ML-kNN

ML-kNN has become one of the most influential lazy learning approach for
multi-label data. Nevertheless, it only considers feature distance between two
samples when identifying neighbors, which means it ignores the implicit correla-
tion between different labels. To achieve effective multi-label learning, the label
distance can also be considered when identifying neighbors for each label [19]. In
this section, we firstly discuss the distance metric between different label sets.
Then we introduce a novel algorithm MLLD-kNN (ML-kNN by considering label
distance).

Label Distance. Label distance indicates the dissimilarity degree between two
label vectors (binary vector), and it can be measured by Hamming distance. The
Hamming distance [13] is a metric expressing the distance between two objects by
the number of mismatches among their pairs of variables. In particular, Hamming
distance between two label vectors of equal length is the number of positions at
which the corresponding label are different.
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Dh(i, j) =
L∑

k=1

[[Y k
i �= Y k

j ]] (7)

However, the Hamming distance treats each label equally, which is not appro-
priate for our problem. Therefore, a weighted Hamming distance is presented
for effectively measuring the dissimilarity between label vectors [16]. The multi-
label importance degrees can be used as a weight vector to calculate the weighted
Hamming distance.

D∗
h(i, j) =

L∑

k=1

Ik[[Y k
i �= Y k

j ]] (8)

where Ik stands the MLI degree of label k. As shown in Fig. 3, the difference
between Hamming distance and our proposed weighted Hamming distance can
be illustrated by two 3-bit binary cubes. The Hamming distance Dh(i, j) between
points can be indicated by the first cube (see in Fig. 3 (a)), where each side length
is 1. The weighted Hamming distance D∗

h(i, j) can be indicated by the second
cube (see in Fig. 3(b)), the side lengths of which are 1, 1.5 and 0.5.
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Fig. 3. Dh(i, j) and D∗
h(i, j) can be illustrated by these two 3-D cubes. The minimum

rectilinear distance between any two vertices indicates distance between two binary
strings. For example, 000 �→011 has distance 2 in (a) and 2.5 in (b).

MLLD-kNN Algorithm. Before prediction phase, we need to determine MLI
for given multi-label dataset. In prediction phase, given a test instance, we firstly
output a label set using ML-kNN algorithm, then we can identify its k nearest
neighbors by measuring both feature distance and label distance. Finally, we
obtain the result label set after multiple iterations. The output label set yt will
be dynamically updated in each iteration.

Algorithm 2 shows the test procedure of our proposed algorithm. The mean-
ings of input arguments S, k, t and the output argument yt are the same as
described in Sect. 2. While the input argument T is the maximum numbers of
iterations. As discussed previously, we need to extract the MLI vector I (step-14
in Algorithm 2) before implementing the iteration steps (steps from 15 to 17).

The kernel function MLLD-kNN is modified on the basis of ML-kNN algo-
rithm. The measurements of distance between two samples are different in these
two algorithms. In particular, the distance used in MLLD-kNN can be defined as:
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D(i, j) = Df (i, j) + λD∗
h(i, j) (9)

where D∗
h(i, j) is the weighted Hamming distance between the label sets of two

samples as defined above. λ is used to determine the contribution ratios of both
feature distance and label distance. Df (i, j) is the feature distance which can be
measured by different metrics. As a commonly used metric, Euclidean distance
can be employed.

D2
f (i, j) = D2

euc(i, j) =
L∑

k=1

(Xk
i − Xk

j )2 (10)

Algorithm 2. MLLD-kNN Algorithm

2 MLLD-kNN(S, t, k,I, yt)

3 if yt is null

4 Identify N (t) only considering feature distance

5 else

6 Identify N (t) based on D(i, j)

where D(i, j) = Df (i, j) + λD∗
h(i, j)

7 for l in range(Y) do:

8 get yt(l) using maximum a posteriori principle

9 end

10 return yt

12 main(S, k, t, T )

13 get Y and L from dataset S

14 Extracting the MLI vector I
15 for i in range(T ) do:

16 yt=MLLD-kNN(S, t, k,I, yt)

17 end

18 output yt

5 Experimental Results

5.1 Evaluation Metrics

In multi-label learning, the evaluation is more complicated than that in single-
label learning. Various evaluation metrics have been proposed to measure the
performance of multi-label classifier [17]. There are five commonly used metrics:
hamming lass,ranking loss, coverage, one error and average precision.

hloss(H) =
1
n

n∑

i=1

1
L

|H(xi)ΔYi| (11)

where H is the multi-label classifier which outputs a binary set for each instance
and Δ stands for the symmetric difference between two sets.

one-error(f)=
1
n

n∑

i=1

[[[arg max
l∈L

f(xi, y)] /∈Yi]] (12)
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where f is ranking function which outputs a real-value (between 0 and 1) set,
so we can get the ranking of predicted labels of each instance. For any predicate
π, [[π]] equals 1 if π holds and 0 otherwise. This evaluation criteria indicates the
probability of that the classifier failed to get even one of the labels correct.

rloss(f) =
1
n

n∑

i=1

|Ri|
|Yi||Ȳi| (13)

where Ȳi denotes the complementary set of Yi in Y. For instance (xi, Yi), |Ri| is
the number of label pairs that are reversely ordered by ranking function f , and
Ri defined as: Ri = {(l1, l2)|f(xi, l1)≤f(xi, l2), (l1, l2) ∈ Yi×Ȳi},.

coverage(f) =
1
n

n∑

i=1

|C(xi)| − 1 (14)

where C(xi) = {l|f(xi, l) ≥ f(xi, l
min
i ), l ∈ Y} and lmin

i = arg miny∈Si
f(xi, y).

ave-prec(f) =
1
n

n∑

i=1

1
|Yi|P (xi) (15)

where

P (xi) =
∑

y∈Yi

|{l|f(xi, l) ≥ f(xi, y), l ∈ Yi}|
|{l|f(xi, l) ≥ f(xi, y), l ∈ L}| . (16)

These above five metrics evaluate the performance of a multi-label classifier
from different horizon. Hamming loss is based on the multi-label classifier H,
and others are based on the real-valued ranking function f , which concern the
ranking quality of different labels.

5.2 Experiments

Datasets. We evaluate the performance of our approaches on four multi-label
classification datasets from different domains1:

• Emotions come from the music domain, which consists of 593 songs with six
clusters of music emotions [18].

• Scene is a benchmark for image classification containing 2407 natural scene
images and six possible labels: Beach, Sunset, FallFoliage, Field, Mountain
and Urban [1].

• Y east is a dataset for predicting the gene functional [3]. It has 2,417 instances
that each instance in the dataset represents a yeast gene and there are 14
possible labels indicating gene functional groups.

• Enron is a benchmark for text classification. It is a subset of the Enron email
corpus [15], including 1702 emails with 53 possible labels.

1 Data sets were downloaded from http://mulan.sourceforge.net/datasets.html and
http://meka.sourceforge.net/#datasets.

http://mulan.sourceforge.net/datasets.html
http://meka.sourceforge.net/#datasets


434 D. Wang et al.

• The dataset Slashdot was collected from the Slashdot web page and consists
of article blurbs labelled with subject categories.

• Ohsumed was constructed from a collection of peer-reviewed medical articles
and labelled with the appropriate disease categories.

Table 1. Multi-label datasets used in experiments.

Name Domain Instances Labels Cardinality Density

emotions music 593 6 1.869 0.311

scene image 2407 6 1.074 0.179

yeast biology 2417 14 4.237 0.303

enron text 1702 53 3.378 0.064

slashdot text 3782 22 1.181 0.054

ohsumed text 13929 23 1.663 0.072

There are two measures for evaluating the characteristics of a dataset: cardi-
nality and density [6]. The cardinality of a dataset S is the mean of the number
of labels of the instances that belong to S, defined by (16), and the density of
S is the mean of the number of labels of the instances that belong to S divided
by L, defined by (17).

cardinality(S) =
1
n

n∑

i=1

|Yi| (17)

density(S) =
1
n

n∑

i=1

|Yi|
L

(18)

Results. To prove the usefulness of multi-label imp-ortance extraction, we
apply multi-label importance in CC and ML-kNN. We first compare CC-MLI
with the basic CC model and BR method (all these three method based on
SVM). For each dataset, we select 5 random label ordering to build CC models
respectively. Results show that our strategy performs significantly better than
most CC models. In Table 2, CC∗ is the best one in these 5 (random ordering)
CC models. Note that although our strategy can significantly improve the per-
formance of Classifier Chains, it exhibits a predictive accuracy inferior to BR
method on yeast.

Then we compare MLLD-kNN with the ML-kNN. The 6th and 7th columns
of Table 2 shows the comparison results on four datasets. As can be seen from the
comparison of the experimental results, our proposed approach achieves effective
classification on emotions, scene and enron. Similar to the results of CC-MLI,
the improved ML-kNN algorithm exhibits a worse performance on yeast. We
think it is due to the error propagation after considering label correlations [20].
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Table 2. We evaluate the performance of our approaches on four multi-label classi-
fication datasets, and five evaluation metrics (•(◦) indicates our approaches is better
(worse) than the corresponding approach).

Datasets Metrics CC-MLI CC∗ BR MLLD-kNN ML-kNN

emotions hloss 0.217 0.213◦ 0.213◦ 0.196 0.196•
one-error 0.306 0.301◦ 0.282◦ 0.247 0.272•
rloss 0.187 0.191• 0.165◦ 0.150 0.160•
coverage 1.930 1.965• 1.850◦ 1.811 1.815•
ave-prec 0.788 0.787• 0.803◦ 0.819 0.802•

scene hloss 0.111 0.115• 0.112• 0.093 0.088◦
one-error 0.285 0.301• 0.287• 0.235 0.248•
rloss 0.106 0.109• 0.107• 0.085 0.089•
coverage 0.636 0.646• 0.629◦ 0.526 0.551•
ave-prec 0.825 0.816• 0.820• 0.856 0.850•

yeast hloss 0.203 0.216• 0.198◦ 0.198 0.196◦
one-error 0.253 0.257• 0.242◦ 0.233 0.235•
rloss 0.196 0.219• 0.174◦ 0.191 0.168◦
coverage 7.060 7.660• 6.476◦ 6.870 6.286◦
ave-prec 0.733 0.718• 0.752◦ 0.749 0.762◦

enron hloss 0.051 0.051• 0.056• 0.051 0.052•
one-error 0.317 0.309◦ 0.359• 0.284 0.313•
rloss 0.087 0.090• 0.115• 0.090 0.093•
coverage 12.674 12.775• 15.582• 13.250 13.091◦
ave-prec 0.655 0.652• 0.578• 0.636 0.626•

slashdot hloss 0.049 0.052• 0.054• 0.052 0.051◦
one-error 0.432 0.502• 0.511• 0.646 0.669•
rloss 0.181 0.189• 0.184• 0.181 0.180◦
coverage 4.344 4.304◦ 4.645• 4.164 4.284•
ave-prec 0.623 0.601• 0.579• 0.522 0.495•

ohsumed hloss 0.066 0.072• 0.068• 0.069 0.074•
one-error 0.373 0.386• 0.388• 0.631 0.656•
rloss 0.143 0.154• 0.122◦ 0.230 0.231•
coverage 6.384 7.435• 4.255◦ 7.112 6.984◦
ave-prec 0.638 0.636• 0.655◦ 0.517 0.487•

Since multi-label importance provides important prior information for the
following training and testing process, our proposed algorithms applied on bench-
mark datasets demonstrate efficient multi-label learning by exploiting multi-label
importance. Based on the analysis of comparison results, we conclude that the



436 D. Wang et al.

Fig. 4. The results demonstrate the performances of MLI-based approaches better
others (consider just label predictability or label effect).

multi-label importance information extracted from training data is helpful to
improve the performance of some multi-label classification algorithms.

In the above experiments we considered both label predictability and label
effects. It is also important to observe what would happen if we consider just label
predictability or just label effect. As shown in Fig. 4, we conduct the comparison
experiments and the results demonstrate that the MLI-based approaches (con-
sidering both label predictability and label effects) have superior performance
than others (considering just label predictability or just label effect).

Another key observation of our experiments shows that there is a strong
positive correlation between the label predictability and label effects. As we
described above, different predictive accuracy of multiple labels imply that the
predictability of each label is different from each other. We determine the label
predictability by ranking the predictive accuracy of labels on test data utilizing
SVM (in fact, the label predictability ranking measured by different models are
approximately the same). More concretely, for emotions, we can get the accuracy
of each label using SVM: {0.787, 0.707, 0.663, 0.891, 0.806, 0.861}. Then we obtain
the label predictability ranking: {4, 6, 5, 1, 2, 3}. The effect degrees extracted from
label structure are {0.868, 0.705, 1.01, 1.209, 1.109, 1.096} and the effect power rank-
ing can be obtained:{4, 5, 6, 1, 3, 2}. Thus the Spearman correlation coefficient of
these two ranking vectors can be calculated (as shown in Table 3). All values are
greater than 0 and close to 1 in Table 3, which demonstrate the positive corre-
lation between those two ranking vectors (if there is no correlation between two
vectors, the correlation coefficient is about 0).

We can also use the Euclidean distance to measure the dissimilarity of the
vectors. We compare the Euclidean distance between two ranking vectors against
that between random arrays (see in Fig. 5). For each data set, we select 3 groups
of arrays and each group has 5 random arrays (the length of arrays is equal to
the label size L). For each group, we calculate the Euclidean distance of each
array pair and average the results. As shown in Fig. 5, the distances between
“acc & effects” are significantly shorter than corresponding comparative groups.
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Table 3. We calculate the Spearman correlation coefficient of predictive accuracy and
effect power of labels.

Datasets emotions scene yeast enron slashdot ohsumed

ρ 0.886 0.771 0.481 0.207 0.335 0.567

Fig. 5. The comparison of Spearman correlation coefficients.

Experimental results show the strong positive correlation between label pre-
dictability and label effects. In other words, for a multi-label data, more predi-
cable labels have more effect on entire label structure.

6 Conclusion

We introduced multi-label importance (MLI) in this paper and addressed the
issue of label importance extraction. To prove the usefulness of multi-label
importance we applied it to two existing multi-label algorithms. The experimen-
tal results explicitly demonstrate the efficient multi-label learning by exploiting
multi-label importance. Another contribution of this work is that our experi-
ments show the strong positive correlation between label predictability and label
effects. We think this finding is helpful for exploring the effective strategies for
multi-label learning.

In future work, we plan to conduct more experiments on other large multi-
label datasets to fully prove the usefulness of multi-label importance extraction.
Applying multi-label importance extraction to more multi-label classification
approaches will be another interesting work to be investigated.

Acknowledgement. It was supported by NSF Chongqing China (cstc2017zdcy-
zdyf0366).
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Abstract. Extreme multi-label classification is an important data min-
ing technique, which can be used to label each unseen instance with a
subset of labels from a large label set. It has wide applications and many
methods have been proposed in recent years. Existing methods either
seek to compress label space or train a classifier based on instances’
features, among which tree-based classifiers enjoy the advantages of bet-
ter efficiency and accuracy. In many real world applications, instances
are not independent and relationship between instances is very useful
information. However, how to utilize relationship between instances in
extreme multi-label classification is less studied. Exploiting such rela-
tionship may help improve prediction accuracy, especially in the cir-
cumstance that feature space is very sparse. In this paper, we study
how to utilize the similarity between instances to build more accurate
tree-based extreme multi-label classifiers. To this end, we introduce the
utilization of relationship between instances to state-of-the-art models
in two ways: feature engineering and collaborative labeling. Extensive
experiments conducted on three real world datasets demonstrate that
our proposed method achieves higher accuracy than the state-of-the-art
models.

1 Introduction

Multi-label classification is to label each instance with the most relevant subset of
labels from a label set. But when label set is very large, traditional multi-label
classification methods don’t work well. Therefore, extreme multi-label classi-
fication has been studied to deal with this situation in recent years. Lots of
applications have a large number of labels today. For instance, in e-commerce
platforms, each item such as product or service has labels such as categories
or tags to describe it. In social network platforms, users have several tags to
express their preferences. In app stores, there are tags describing functions of
apps. In these scenarios, the number of labels is large. How to automatically
and accurately assign most relevant labels to those without labels is very chal-
lenging and essential for many other applications such as information retrieval
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 440–456, 2018.
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and recommendation. For instance, Agrawal et al. [1] treated search queries as
labels to train a classifier that could automatically tag a new web page with the
most relevant queries sorted by their relevance. Jain et al. [9] showed how to
treat product recommendation as an extreme multi-label classification problem,
where items bought by a user can be seen as user labels. These methods provide
a fresh way to re-think recommendation and ranking problem. Also, if items and
users are accurately labeled with tags, traditional ranking algorithms and recom-
mendation algorithms can also be improved by taking labels into consideration,
as labels can better describe items’ characteristics or users’ preferences.

To deal with the extreme multi-label classification problem, existing meth-
ods either seek to compress label space through embedding approach or train
tree-based classifiers based on instances’ features. Among existing tree-based
methods, state-of-the-art methods are FastXML [16], PfastreXML [9] and PLTs
[11], which are usually more efficient and accurate than other methods. The
quality of the classifiers built by these methods relies heavily on the features
that are used to describe each instance. In many cases, the number of features
is big while the feature space is very sparse. For example, most features come
from description of instances, where the total number of terms occurred in all
descriptions is big and quality of the descriptions is not good. In this case, accu-
racy of the classifiers built is usually low. To solve these problems, we study how
to leverage instance relationship to improve accuracy, which is less studied in
extreme multi-label classification model. Usually, instances are not independent
but associated with each other. Therefore, relationship between instances can
be exploited to improve classification. Specifically, in this paper, we propose to
make use of the similarity among instances to modify existing tree-based extreme
multi-label classification models, including FastXML, PfastreXML and PLTs.

The intuition behind our proposed method is that similar instances are more
likely to have common labels. This kind of relationship is universally available in
many applications and we can infer this relationship in different ways. For exam-
ple, in app store, users usually browse and compare some apps before download-
ing one of them. In this case, the browsed apps in one short session are usually
similar in functions thus having common labels. In Twitter, users usually follow
internet celebrities according to their interests. If two celebrities are followed
by the same users, they are very likely to be in the same field or have similar
interests. Therefore, we can infer that they are similar and share similar tags.

The proposed method, incorporating Relationship into Tree-based
Classifiers (RTC for short), can utilize instance relationship in different ways.
We propose two ways: feature engineering and collaborative labeling, which can
be used separately or combined in different scenarios. By feature engineering,
we mean that we transform the relationship between instances into features. By
collaborative labeling, we mean that the relationship is used during tree building
process and prediction process, where similar instances collectively help label the
target instance, acting like collaborative labeling.
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To summarize, we make the following contributions in this paper:

– To the best of our knowledge, we are the first to take instance relationship
into consideration for extreme multi-label learning. We propose different ways
to infer and represent the relationship.

– We propose methods to modify existing tree-based extreme multi-label clas-
sification models including FastXML, PfastreXML and PLTs to leverage the
relationship.

– We present extensive experiments conducted on several real world datasets
to evaluate the proposed method. Experimental results demonstrate that our
proposed method performs better than state-of-the-art original models.

2 Related Work

2.1 Extreme Multi-label Learning

Existing extreme multi-label learning methods are usually embedding based or
tree based ones.

Traditional methods like one-vs-all [12], which train classifier for each label,
cannot be used for extreme multi-label classification due to high time complex-
ity. Embedding based methods compress the dimension of labels based on the
correlation between labels, usually through a projection matrix. Many methods
have been proposed to tackle extreme multi-label learning problem in embedding
based ways [3,4,10,13,17]. Methods are different in compression and decompres-
sion techniques, including SVP [10], SVD [17], etc. Predictions can be made
based on k nearest neighbors in embedding space. Embedding based methods
enjoy strong theoretical foundation, ease of implementation and simplicity. But
usually they cannot perform better than one-vs-all methods in terms of predic-
tion accuracy [16].

Tree based methods like FastXML [16] and PfastreXML [9] usually learn a
hierarchy to recursively partition the training dataset into subsets in child nodes.
The intuition is that only a small number of labels are present or active in each
local region. So we can estimate the unseen instance’s label distribution accord-
ing to training instances within the region. PfastreXML introduces propensity
to FastXML to deal with missing labels and tail labels. Others like PLTs [11] are
similar to conditional probability estimation trees. Each internal node of the tree
decides whether the path should continue or not, and each leaf node corresponds
to a label. The product of conditional probability of the path from root to leaf
is the probability whether a label should be assigned to an instance.

Tree based methods usually enjoy better efficiency and accuracy [16]. There-
fore, in this paper, we choose the competing tree based classifiers to improve
further.

2.2 Relational Learning

Relational learning [7] has been used in classification for a long time. Relation
between instances is usually represented by a graph or network, where nodes
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usually share some common characteristics with its linked neighbors, as nodes
with similar labels are more likely to be connected [15].

Many relational classification models have been proposed, which usually learn
models by using the correlation between labels of linked nodes in the network.
The relational neighbor classifier [14] is a probabilistic model, where an instance’s
class labels depend on its neighbors’ class labels. This model mainly solves the
single-label classification problems. SCRN [20] extends relational neighbor classi-
fier to solve multi-label problems. The model represents each edge of the network
as a vector of 0 and 1, where the edges’ linked nodes are 1 s and the others are 0s.
Then the nodes’ features are constructed based on edge cluster IDs. Predictions
are made by the nearest neighbors in embedding space. SocDim [18,19] learns
latent social dimensions on social network and uses SVM or logistic regression
to train a classifier.

3 Preliminary

In this section we overview three state-of-the-art tree-based extreme multi-label
classification models, FastXML, PfastreXML and PLTs, which are the base mod-
els of our proposed method. We also use them as comparison baseline in Sect. 5.

3.1 FastXML

Based on the intuition that only a small number of labels are active in each
region of instances’ feature space, FastXML learns a hierarchy over the feature
space. Labels that are active in each region are the union of labels of all instances
in the region. So the objective is to partition regions that can recognize similar
instances correctly based on instances’ features.

FastXML considers both feature and label distributions to build the tree
model, which recursively partitions a parent’s feature space between its children,
directly optimizing a normalized Discounted Cumulative Gain (nDCG) [21] loss
function, which is sensitive to both ranking and relevance. An effective method
is also proposed to solve the optimization problem. Through experiments, the
proposed model is shown to be more accurate than other competing methods.

When the tree is built, prediction is made based on the label distribution of
all the instances within the leaf node where the unseen instance goes to, starting
from the root of the tree.

3.2 PfastreXML

PfastreXML is a modified FastXML model. Apart from following the same
way of node-splitting and prediction, it takes missing labels into consideration,
using a propensity to weigh each label. After making label prediction as used in
FastXML, it ranks the predicted labels by a classifier designed specially for tail
labels. This model performs well in dealing with missing label and tail label.
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3.3 Partial Label Trees

PLTs is based on conditional probability trees [2] and probabilistic classifier
chains [5]. Different from FastXML, the structure of PLTs is predefined or ran-
domly assigned. Each node of the tree stands for a conditional probability, and
each leaf node corresponds to one label. The product of the conditional prob-
ability of each node along a path from root to a leaf node is calculated as the
probability that an instance has the corresponding label. During training time,
instances traverse each node from root to every leaf to train a linear estimator
for the node, which is used to measure the conditional probability in feature
space at the node.

At prediction time, the final probability of whether a label should be assigned
to an instance is determined by the product of conditional probability of nodes
in the path from root to some leaf nodes. If the product is greater than a thresh-
old, the label corresponding to that leaf will be assigned to the instance. If the
probability at some nodes within the path is less than a threshold, the path will
not be checked further.

4 The RTC Approach

In this section, we present our proposed method, RTC, which takes the rela-
tionship between instances into consideration for extreme multi-label learning
task, aiming to achieve higher accuracy and overcome the problem of feature
sparsity. Incorporating the idea of RTC to models FastXML, PfastreXML and
PLTs, we introduce the first method to get RTC-FastXML, RTC-PfastXML and
RTC-PLTs respectively. After that, we introduce the second method, feature
engineering, for extreme multi-label classification models.

In many applications, we can infer similarity relationship between instances.
For example, we can infer similarity relationship between instances (items) by
analyzing user behavior sequence. Taking user’s behavior in app store as an
example, when we want to download an app, we usually first search and browse
many relevant apps and then download some of them. Those apps searched,
browsed or downloaded together by many users are usually very similar in func-
tion. Therefore, we can infer similarity based on user behavior. Based on this
observation, we incorporate instance relationship into the competing extreme
multi-label classification models. By doing this, for those instances we don’t
have high quality features to describe, similar instances can collectively help to
label them.

We propose two ways to utilize instances’ relationship information, collabora-
tive labeling and feature engineering, which can be used separately or combined
in different scenarios.

Through experiments we find that both ways can improve classification accu-
racy compared to the original model, and combining the two ways in RTC
achieves better performance.

We adopt the same symbols used in FastXML to define the mining problem.
Training dataset consists of a set of instances, B = {(xi,yi)|i = 1, 2, . . . , N},
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where xi is feature vector for training instance i (xi ∈ RD), and yi is a binary
label vector with L dimensions. If label l is assigned to instance i, yil = 1, oth-
erwise yil = 0. In other words, there are N training instances and the num-
ber of distinct labels is L. Specially, in each node of a tree, Sdi is the set
of instances similar to instance i, sij is the strength of similarity relationship
between instances i and j, which could be measured in different ways in differ-
ent scenarios, Si =

∑
j∈Sdi

sij .

4.1 RTC-FastXML

A. Training Model. Model FastXML builds a classification tree based on
feature space of instances. The quality of instance’s feature influences the per-
formance of the tree. In many cases, the feature space is huge and sparsity is
a major problem. To alleviate this problem, we introduce the collaboration of
similar instances into the tree building process, and the modified model is called
RTC-FastXML. It builds a binary tree recursively. Initially, all training instances
belong to a root node. Then, training instances in each node are split into two
children nodes, with one child node called positive node and the other negative
node. The key point is how to split the current node. For each instance i present
in current node, let δi in {−1,+1} denote whether it is assigned to the positive
child node (δi = +1) or the negative child node (δi = −1). To get the value of δi,
a linear separator w is learnt to partition the current node through optimizing
an objective function, which is shown below.

min ‖w‖1 +
∑

i

Cδ(δi)log(1 + e−δiw
Txi) − Cr

∑

i

1
2
(1 + δi)LnDCG@L

(r+,yi)

− Cr

∑

i

1
2
(1 − δi)LnDCG@L

(r−,yi) − Cs

∑

i

∑

j∈Sdi

δiδj log(
sij

Si
+ 1)

w.r.t w ∈ RD, δ ∈ {−1,+1}n, r+, r− ∈ Π(1, L)
(1)

where i is the index of the training instances present at the node being parti-
tioned, j is an instance of the similar instance set Sdi and n is the number of
instances in the node. Π(1, L) is the set of all permutations of {1, 2, . . . , L}
with each permutation representing a rank of L labels, r+ and r− are the
predicted label rankings for the positive and negative nodes respectively. Sup-
pose r+ = (r1, r2, . . . , rL), then label r1 is the most relevant predicted label in
the positive node. yi is the ground truth label vector with L dimensions for
instance i. Cr and Cs are hyper-parameters, determining the relative impor-
tance of the three terms. Cδ(δi) is a function of δi to allow different misclassifi-
cation penalties for positive and negative nodes. Cδ(+1) = npos/(npos + nneg),
Cδ(−1) = nneg/(npos + nneg). npos is the number of instances assigned to the
positive child at the current node, and nneg is that of instances assigned to the
negative node. sij measures the relationship strength between instances i and j.
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Algorithm 1. RTC-FastXML: SPLIT-NODE({xi,yi}N
i=1, node)

1: Input:{xi, yi}N
i=1, node

2: Output: w [t], node+, node−

3: Id ← node.Id
4: Sd ← node.Sd
5: δi[0] ∼ {−1, 1}, ∀i ∈ Id
6: w [0] ← 0, t ← 0, tw ← 0, W0 ← 0
7: repeat
8: r±[t + 1] ← rankL(

∑
i∈Id

1
2 (1 ± δi[t])IL(yi)yi)

9: for i ∈ Id do

10: v±
i ← Cδ(±1)log(1+e∓w [t]Tx i )−CrIL(yi)

∑L
l=1

y
ir

±
l

[t+1]
log(1+l) ∓Cs

∑
j∈Sd[i] δj [t]log(

sij
Si

+

1) � consider relationship

11: if v+ = v− then
12: δi[t + 1] = δi[t]
13: else
14: δi[t + 1] = sign(v− − v+)
15: if δ [t + 1] = δ [t] then

16: w [t + 1] ← argmin
w

‖w‖1 + Cδ(δi[t])
∑

i∈Id log(1 + e−δi[t]w
Tx i )

17: Wtw+1 ← t + 1

18: tw ← tw + 1
19: t ← t + 1
20: until δ[Wtw ] = δ[Wtw −1 ]

21: node+ ←new node, node− ← new node
22: node+.Id ← {i ∈ Id : w [t]Txi > 0}
23: node−.Id ← {i ∈ Id : w [t]Txi � 0}

The normalized Discounted Cumulative Gain for the top k predictions
LnDCG@k

in (1) is defined in (2).

LnDCG@k
(r,yi) = Ik(yi)

k∑

l=1

yirl

log(1 + l)
(2)

Ik(yi) is the inverse of the DCG@k of the ideal ranking for yi defined in (3).

Ik(yi) =
1

∑min(k,‖yi‖0)
l=1

1
log(1+l)

(3)

The first term in (1) is a regularization. The second one is based on feature
values to determine the separator and δ. The third and fourth items consider
the label distributions of the partition. We add the fifth term to make use of
relationship between instances to facilitate the learning of the separator. The
intuition behind this term is that similar instances are more likely to go to the
same child node. The higher the similarity between instances i and j, the more
likely they will be distributed to the same child node. The tree building process
is shown in Algorithm 1, where node represents the splitting node.

B. Prediction. When the separator w is learned in each node of the tree, for
an unseen instance i, we use formula (4) to determine which node it goes to
starting from the root node. If the result of (4) is greater than zero, then it goes
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Algorithm 2. RTC-FastXML: PREDICT({T1, ..., TT },xi)
1: Input:{T1, ..., TT }, xi

2: Output: r(xi)
3: for l = 1, ..., T do
4: node ← Tl.root
5: while node is not a leaf do
6: w ← node.w
7: Id ← node.Id
8: Sd ← node.Sd
9: if wTxi + Cp

∑
j∈Sd[i] δj log(

sij
Si

+ 1) > 0 then

10: node ← node.left child
11: else
12: node ← node.right child � consider relationship

13: pleaf
l (xi) ← node.P

14: r(xi) = rankk(
1
T

∑T
l=1 P leaf

l (xi))

to the positive child node. Otherwise, it goes to the negative one.

wTxi + Cp

∑

j∈Sdi

δj log(
sij

Si
+ 1) (4)

j refers to similar instance of instance i in the training set belonging to the
present node. Cp is another hyper-parameter, indicating the importance of rela-
tionship to the classification task. The added second term in (4) implies that
which node instance i goes to depends on not only its feature values but also its
similar instances. If more similar instances go to the positive node, node instance
i is more likely go to the same node. Vice versa. Prediction is made based on the
label distribution of the training instances within the leaf node where instance
i goes to. We assign top k labels to it, as shown in line 12 of Algorithm 2. T is
the number of trees we have trained and P is label distribution of the leaf.

C. Optimization. In our proposed model, we need to optimize w, r and δ. We
optimize one of them while keeping the other two fixed. w and r are optimized
in the same way as in FastXML.

We optimize with respect to δ while keeping r and w fixed.
Each δi can be optimized by checking whether it is optimized by δi

� = +1
or -1 while keeping others fixed. This yields

δ�
i = sign(v−

i − v+
i ) (5)

v±
i = Cδ(±1)log(1 + e∓w Txi) − CrIL(yi)

L∑

l=i

y
ir±

l

log(1 + l)
∓ Cs

∑

j∈Sdi

δj log(
sij

Si
+ 1)

(6)

IL(yi) is defined in (3), and the other variables are the same as those in (1).

4.2 RTC-PfastreXML

In real world applications, an instance may not have the complete set of correct
labels due to many reasons. For example, for an app, it is not easy to find all of
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appropriate tags, as it is very time consuming to go over each tag to find suitable
ones. PfastreXML assumes that a relevant label l is observed for an instance i
by a marginal probability pil. It is estimated by a sigmoidal function and the
label’s observation times.

The objective function of RTC-PfastreXML is the same as that of RTC-
FastXML as shown in formula (1), with a replacement of LnDCG@k

(r,yi) with
LPSnDCG@k

(r,yi):

LPSnDCG@k
(r,yi) = Ik(yi)

k∑

l=1

yirl

pirl
log(1 + l)

(7)

where pirl
is the marginal probability and other variables are the same as Eq. (2).

Similar to RTC-FastXML, the fifth term is added to the original objective
function with the same intuition. The prediction procedure and optimization
method are the same as those in RTC-FastXML. After prediction, we also rank
the labels again by a classifier designed specially for tail labels, which is the same
as PfastreXML.

4.3 RTC-PLTs

A. Training model. To build a multi-label classification tree T , we need to
learn a classifier in each node. Each leaf in the tree corresponds to a label. We
denote a set of leaves of a (sub) tree rooted in node t by L(t), pa(t) stands for
the parent node of t and ch(t) stands for the set of child nodes of t. The training
process is shown in Algorithm 3.

The objective of PLTs is to minimize the following loss function for each
training instance i:

L(f |xi) =
L∑

j=1

∑

t∈path(j)

|ηT (xi, t) − η̂T (xi, t)| (8)

In this equation, xi is the feature of instance i. ηT (xi, t) is the real conditional
probability at node t of instance i, and η̂T (xi, t) is the predicted value, measured
by a real valued function ft(xi). η̂T (xi, t) = σ(ft(xi)). σ is sigmoid function,
mapping ft(xi) from R to [0, 1]. In PLTs, ft(xi) = wxi, where w is weight in
node t. Variable j refers to each of the L labels and t stands for each node along
the path from root to the leaf corresponding to label j. If instance i has several
labels and these labels correspond to some leaves in the tree, for the nodes along
the paths to these leaves, ηT (xi, t) is 1. For other nodes, ηT (xi, t) is 0, as shown
in line 5 of Algorithm 3.

In RTC-PLTs, we have the same loss function as Eq. (8) and to utilize
instance relationship information, we add one more term to ft(xi):

ft(xi) = wxi + Cs

∑

j∈Sdi

log(
sij

Si
+ 1)(η̂T (xj , t) − 1

2
) (9)
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Algorithm 3. RTC-PLTs: TRAIN({xi,yi}N
i=1, T )

1: Input:{xi, yi}N
i=1, T

2: Output: w
3: for each node t ∈ T do
4: Initialize wt randomly
5: for i = 1 → N do
6: if t is root or ηT (xi, pa(t)) = 1 then
7: if

∑
j∈L(t) yij ≥ 1 then ηT (xi, t) = 1 else ηT (xi, t) = 0

8: wt ← min
∑

j∈L(t) |ηT (xi, t) − η̂T (xi, t)|
9: η̂T (xi, t) = σ(wt xi + Cs

∑
j∈Sdi

log(
sij
Si

+ 1)(η̂T (xj , t) − 1
2 ))

Algorithm 4. RTC-PLTs: PREDICT({xi}, T )
1: Input:{xi}, T
2: Output: yi

3: η̂T (xi, root(T )) = σ(wrootxi + Cp

∑
j∈Sdi

log(
sij
Si

+ 1)(η̂T (xj , root(T )) − 1
2 ))

4: Q = ∅, yi = 0, Q.add(root(T ), η̂T (xi, root(T )))
5: while Q �= ∅ do
6: (t, pt) = pop(Q)
7: if pt �threshold then
8: if t is a leaf node then
9: ŷt = 1
10: else
11: for c ∈ ch(t) do

12: η̂T (xi, c) = σ(wcxi + Cp

∑
j∈Sdi

log(
sij
Si

+ 1)(η̂T (xj , c) − 1
2 ))

13: Q.add(c, pt · η̂T (xi, c))

where η̂T (xj , t) is the conditional probability of instance j calculated in the last
training epoch at node t. sij , Si, Sdi and Cs have the same meanings as those
in Eq. (1).

Adding the second term, we aim to leverage similar instances’ help to judge if
instance i should go further along the path. If the similar instances of i are more
likely to continue the path at the current node, i.e. η̂T (xj , t) > 1

2 , then instance
i is more likely to continue, too. Vice versa. The more similar two instances are,
the more likely they continue the same paths and have the same labels.

B. Prediction. After we get w at each node, at prediction time, the conditional
probability at each node is calculated based on Eq. (9), where Cs is replaced
by another hyper-parameter Cp. η̂T (xj , t) here is the conditional probability
of training instance j calculated finally in the training process at node t. The
intuition is that

when we predict labels of an instance i, we use both the estimator w and the
similar instances of i in the training set to calculate the conditional probability at
each node. If the similar instances in the training set are more likely to continue
at a node, then instance i is also more likely to continue at that node.

Finally, the product of η̂T (xi, t) of all nodes along a specific path is used to
decide whether the label represented by the leaf nodes should be assigned to
instance i. The predict process is shown in Algorithm 4. We initialize a queue Q
to perform a breadth first traversal.
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C. Optimization. The second term we added in Eq. (9) is a constant value
for w, so we can directly optimize w in the same way as done by PLTs with a
two-phase gradient descent step [6].

4.4 Feature Engineering

A simple way to utilize instance relationship is to transform relationship infor-
mation into features. We regard each instance as a feature. As for instance i,
those instances similar to it have a nonzero weight as their values, and oth-
ers have value of zero. The weight can be calculated based on the strength of
the relationship. Taking the app downloading scenario for example, we can use
tf-idf measure as the weight. Suppose a user u’s behavior sequence is denoted
by qu =< sessionu

1 , sessionu
2 , . . . >, where each session sessionu

i is a sequence
of apps (instances) browsed and downloaded by the user in a short period ses-
sion. Let N be the number of instances (app) in the training dataset, M be the
number of instances in the testing dataset. Then, for each instance i in training
dataset or testing dataset, we use a N + M dimensional vector zi to depict its
relationship with other instances, where the jth element is defined in (10), which
is similar to tf-idf measure.

zij =
sij

Si
× log

N + M

sfj
(10)

where sij is the number of times instances i and j co-occur in a same session of all
of users’ behavior sequences, sfj is the number of distinct instances co-occurred
with instance j.

We directly concatenate zi to the raw feature xi as the feature of instance i
in RTC related methods.

5 Experiments

In this section, we present experiments conducted on three different kinds of real
datasets to evaluate the performance of our proposed method.

5.1 Datasets

A. Mobile App Dataset. This dataset contains app description and user
behavior sequence, including browsing and downloading behavior. We use the
co-occurrence of apps in the behavior sequence of a session to infer the similarity
between apps, and use the tf-idf of description terms as the original features. The
tags of apps are labels, such as Game, Camera, Chat, etc. This dataset is obtained
from a famous mobile app store.

B. Amazon Category Dataset. The Amazon Category dataset contains the
description of each item sold on Amazon and a set of similar items of each one.
We use the similar items as relationship between items directly. It is published
in Stanford Large Network Dataset Collection1. We use the tf-idf of the item
1 http://snap.stanford.edu/data/#amazon.

http://snap.stanford.edu/data/#amazon
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description words as the original feature, published by Probhu et al. [9]. The
labels here are the hierarchical categories of the items, such as Books, Bible,
Family Bibles, etc.

Table 1. Dataset statistics

Dataset Train N Features D Labels L Test M Avg. labels

instance

Avg. instances

per label

Avg. similar

instances per

instance

Mobile App 60406 768631 20118 20136 2.65 10.60 3.45

Amazon 57168 203882 14385 16856 11.68 60.11 1.63

Twitter 2442 17829 159 1221 12.5 288.8 49.77

C. Twitter Dataset. The Twitter dataset contains the description of each
twitter celebrities and each celebrity has several tags to describe his or her inter-
est. Normal users may follow the celebrities due to some aspects, so we exploit
relationship of celebrities in the following list of normal users. That is to say, two
celebrities are similar to some extent if they co-occur in the same following list,
and we use the co-occurrence frequency as sij to measure the similarity between
i and j. The dataset is published by He et al. [8]

The detail of the three datasets is shown in Table 1.

5.2 Hyper-parameters

RTC related classification models have two common hyper-parameters Cs, Cp.
To choose appropriate values of these parameters, we calculate precision of the
predicted top 1 tag on the Mobile App dataset under different parameters, which
is illustrated in Fig. 1. In Fig. 1.(a), we set Cp = 1.0, and Cs varies from 0.01
to 0.1. In Fig. 1.(b), we set Cs as the best of Fig. 1.(a), and Cp varies from 0.1
to 1.5. As we can see from the figures, when Cs and Cp change in this range,
precisions of three models don’t change obviously. In the following experiments,
we set Cs = 0.03 and Cp = 0.8 for RTC-FastXML, Cs = 0.1 and Cp = 0.6 for
RTC-PfastreXML, Cs = 0.07 and Cp = 0.9 for RTC-PLTs. Besides, we choose
Huffman tree with 32◦ in PLTs.

The other hyper-parameters are the same as used in the original models
published by the authors. The number of trees in FastXML and PfastreXML is
both 50, and epoch in PLTs is 30.

For the mobile app dataset, we split the behavior sequence into sessions by
2 min’ gap. That is to say, we regard the behaviors of one user within 2 min as
a session.

5.3 Experimental Results

Implementations of FastXML, PfastreXML and PLTs are provided by their
authors. We evaluate the performance of various algorithms based on measures of
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Fig. 1. Parameter sensitivity study on Mobile App dataset

precision at k and nDCG at k (k=1, 3, 5). The baseline algorithms are FastXML,
PfastreXML, PLTs, SLEEC [3], and PDSparse [22].

Table 2 compares the performance using precision. time in the table means
testing time on the test dataset in seconds. difference in the table means the
accuracy difference between RTC related algorithms and the original models.
Figures in bold are the highest precision among six algorithms for each dataset.
This result corresponds to the combination of the two ways of relationship uti-
lization: collaborative labeling and feature engineering. We also conduct exper-
iments on the datasets to compare the two ways. We find that they both can
improve classification accuracy, and their combination is the best. In the follow-
ing, we only show the results of combination due to space limitation. Table 3
is the result in terms of nDCG. Our proposed models also perform better than
corresponding original models.

As can be seen from Tables 2 and 3, the proposed RTC related algorithms
lead to significantly better prediction accuracies compared to the state-of-the-art
methods on all the three datasets. Overall, RTC-FastXML achieves the highest
accuracy, and FastXML works better than PLTs and PfastreXML on the three
datasets.

As for the efficiency, PLTs needs the least time. PDsparse is performed in a
multi-thread method while the other models are all performed in single thread.
PDSparse and SLEEC need more time to train the model and consume much
more memory than the others. Amazon dataset needs more time than the other
two datasets, because instances have more labels on average and the scale of the
dataset is bigger. RTC related algorithms need a little more seconds to run than
the original models, mainly because the number of features for each instance
becomes bigger by adding new features based on feature engineering method.
But the extra time to predict all test instances is less than 10 s.

In addition, from the experiments we also find that the quality of the rela-
tionship information is important. On Twitter dataset, we use the information
of the frequency of two celebrities co-occurred in the same following list of a
normal user to measure the similarity. We may follow people due to different
reasons, and there may be some noise. Hence, the information is not so strong
as that used in the first two datasets. Therefore, the improvement of precision
is relatively smaller than the other two datasets.
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5.4 Case Study

In this section, we showcase the experimental results with several cases, which
can help understand the proposed model better. We take FastXML and RTC-
FastXML on Amazon dataset as examples. Table 4 shows the top 10 categories
(labels) predicted by them on Amazon dataset. The first column of this table
shows the name of each item (underlined) and terms extracted from its descrip-
tion. The fifth column shows the similar items (underlined) and their categories.
Categories shown in bold in the third, fourth and fifth column are those match-
ing with the ground truth. The first two cases in the table suffer the problem of
feature sparsity or limitation of description information.

From the table, it is easy to see that RTC-FastXML can predict more accu-
rate labels than FastXML, especially in the first two cases. For example, the
first case is about item The Sound of the Mountain, which has three terms in
its description: mountain, sound and text. FastXML assigns label music to it,
possibly due to the fact that the term sound appears in its description text.
As a matter of fact, it is a Japanese novel. With the help of similar items,
RTC-FastXML can successfully predict all the right categories for this item.
Therefore, when description terms of the item are not enough to represent its
characteristics, similar items are especially important to improve the accuracy.

Table 2. Precision@k of different algorithms (%) and the time for testing in seconds

Algorithm Mobile app Amazon Twitter

P@1 P@3 P@5 time P@1 P@3 P@5 time P@1 P@3 P@5 time

FastXML 57.07 40.28 29.56 19.66 93.38 89.21 79.53 67.24 76.00 65.33 59.62 2.31

RTC-FastXML 61.78 43.70 31.70 29.87 94.36 91.30 82.79 70.98 76.25 67.13 59.80 3.09

PfastreXML 51.00 39.11 29.36 42.37 77.71 78.12 72.96 80.12 73.96 63.69 56.18 1.10

RTC-PfastreXML 57.39 43.12 31.74 48.96 82.50 82.09 77.05 84.5 75.51 65.74 58.97 3.30

PLTs 54.27 38.07 28.04 2.97 66.89 24.00 14.49 4.10 75.10 66.09 59.51 0.08

RTC-PLTs 60.88 43.12 31.22 3.53 70.20 46.22 34.91 4.82 76.82 67.26 60.36 0.10

PDSparse 51.22 35.72 25.95 3.33 88.10 82.81 74.41 4.42 65.38 57.39 51.86 0.08

SLEEC 53.33 37.03 26.71 37.67 93.73 88.31 76.84 70.12 75.38 66.02 58.72 2.30

Table 3. nDCG@k of different algorithms (%)

Algorithm Mobile app Amazon Twitter

nDCG@1 nDCG@3 nDCG@5 nDCG@1 nDCG@3 nDCG@5 nDCG@1 nDCG@3 nDCG@5

FastXML 57.07 56.11 58.30 93.38 90.12 83.44 76.00 71.65 60.16

RTC-FastXML 61.78 60.70 62.68 94.36 91.98 86.17 76.25 71.18 61.50

PfastreXML 51.00 53.25 56.23 77.71 78.01 74.68 73.96 67.78 64.26

RTC-PfastreXML 57.39 57.55 60.82 82.50 82.17 78.88 75.51 69.77 66.83

PLTs 54.27 63.10 65.42 66.89 33.56 24.41 75.10 86.82 83.35

RTC-PLTs 60.88 70.86 72.91 70.20 55.21 45.32 76.82 88.00 84.47

PDSparse 51.22 50.90 53.50 88.10 84.13 78.19 65.38 61.91 60.02

SLEEC 53.33 51.84 53.31 93.73 89.52 81.50 75.38 74.47 72.84
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Table 4. Top 10 categories predicted by FastXML and RTC-FastXML on Amazon
Category dataset

Item and

description

Ground truth Categories predicted by different

models

Similar items and labels

FastXML RTC-FastXML

The Sound of

the Mountain:

mountain sound

text

Books;

Subjects;

General;

Literature

& Fiction;

World Litera-

ture;

Literary;

Japanese

General ;

Music;

Styles;

Specialty

Stores;

Indie Music;

Country;

Bluegrass;

Contemporary;

Folk;Traditional

Books;

Subjects;

General;

Literature

& Fiction;

Literary;

World Literature;

Japanese;

Contemporary;

Short Stories;

Authors, A-Z

1.First Snow on Fuji: Books;

Subjects; Literature & Fiction;

General; Literary;Short Sto-

ries;

World Literature; Japanese;

2.Snow Country: Books;

Subjects; Literature & Fiction;

General; Literary;

World Literature; Japanese;

3.Beauty and Sadness:

Books; Subjects; Literature

& Fiction; General; Literary;

World Literature; Japanese

Adrenalize:

cassette

General;

Music;

Styles;

Classic Rock;

Album-

Oriented

Rock (AOR);

Hard Rock

& Metal;

Hard Rock;

Pop Metal

Styles;

Music;

Categories;

General;

Amazon.com

Stores;

Travel;

Formats;

Music Outlet;

Bargains;

Today’s Deals

in Music

Styles;

Music;

General;

Classic Rock;

Hard Rock

& Metal;

Album-Oriented

Rock (AOR);

Hard Rock;

Pop Metal;

Rock;

British Metal

1.Retro Active: Music;

Styles; Hard Rock & Metal;

General; Pop Metal;

Classic Rock; Album-Oriented

Rock (AOR); Hard Rock;

2.Euphoria: Music; Styles;

Hard Rock & Metal;

General; Pop Metal; Classic

Rock;

Album-Oriented Rock (AOR);

Hard Rock;

3.Slang: Music;Styles;

Hard Rock & Metal;

British Metal; General; Pop

Metal;

Classic Rock;

Album-Oriented Rock (AOR)

Planning Your

Addition: adding

addition

architect

architectural

assembled

book builder

color design

detailed explore

house ideas

illustrations

involved photos

planning plans

point show

source

starting use

Books;

Subjects;

Home & Gar-

den;

General;

Home Design;

Remodeling &

Renovation;

Design &

Construction;

House Plans

Books;

Subjects;

General;

Amazon.com

Stores;

Business

& Investing

Books;

Home & Office;

Business

& Investing;

Marketing

& Sales;

Home & Gar-

den;

Marketing

Books;

Subjects;

General;

Home & Garden;

Home Design;

Remodeling &

Renovation;

Design &

Construction;

Interior Design;

How-to & Home

Improvements;

Professional

& Technical

1. Additions: Your Guide

to Planning and Remodeling

(Better Homes and Gardens) :

Books; Subjects;

Home & Garden;

Home Design;

Remodeling & Renovation;

General

6 Conclusions

In this paper we study how to leverage similarity relationship among instances
to improve tree-based extreme multi-label learning. We propose to incorpo-
rate instance similarity relationship information into state-of-the-art models:
FastXML, PfastreXML and PLTs. Two methods, collaborative labeling and fea-
ture engineering, are developed to utilize the relationship, which can be used indi-
vidually or combined. Experiments were conducted on three real world datasets.
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Results show that combining collaborative labeling and feature engineering with
existing tree-based extreme multi-label classification models can improve classi-
fication performance significantly. Case study further helps us analyze the exper-
imental results, from which we can see that exploiting instance relationship does
help find more accurate labels, especially when the original feature space is
sparse.

Acknowledgment. This work was supported in part by National Natural Science
Foundation of China under grant No. U1711262, 71771131, 71272029, 71490724 and
61472426.
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Abstract. Location-based services, which use information of people’s
geographical position as service context, are becoming part of our daily
life. Given the large volume of heterogeneous data generated by location-
based services, one important problem is to estimate the visiting proba-
bility of users who haven’t visited a target Point of Interest (POI) yet,
and return the target user list based on their visiting probabilities. This
problem is called the location promotion problem. The location promo-
tion problem has not been well studied due to the following difficulties:
(1) the cold start POI problem: a target POI for promotion can be a new
POI with no check-in records; and (2) heterogeneous information inte-
gration. Existing methods mainly focus on developing a general mobility
model for all users’ check-ins, but ignore the ranking utility from the
perspective of POIs and the interaction between geographical and pref-
erence influence of POIs.

In order to overcome the limitations of existing studies, we propose
a unified representation learning framework called hybrid ranking and
embedding. The core idea of our method is to exploit the ranking con-
sistency principle into the representation learning of POIs. Our method
not only enables the interaction between the geographical and prefer-
ence influence for both users and POIs under a ranking scheme, but also
integrates heterogeneous semantic information of POIs to learn a unified
preference representation. Extensive experiments show that our method
can return a ranked user list with better ranking utility than the state-
of-the-art methods for both existing POIs and new POIs. Moreover, the
performance of our method with respect to different POI categories is
consistent with the hierarchy of needs in human life.

Keywords: Location promotion · Ranking consistency
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1 Introduction

Location-based services, such as Foursquare, Yelp and Facebook Place, are
becoming increasingly popular these days. The data generated in a typical
location-based service consist of two parts: the check-in records of users and
the profiles of Points of Interest (POIs). Many methods have been developed
for applications such as POI recommendation [2,6,9–11,13,14,19,21,22] and
friend recommendation in location-based social networks [15,18]. Besides provid-
ing user-centric services as mentioned above, mining data from location-based
services can also help local companies to promote their business more effectively.
For example, a new restaurant owner at Pittsburgh would like to know the tar-
get users who are more likely to have dinner at his restaurant according to their
check-in histories so that he can distribute coupons to them.

Different from existing studies on POI recommendation [2,6,9–11,13,14,19,
21,22], which recommends POIs to a target user as a user-centric task, we need
to recommend users to a target POI in the coupon distribution scenario. In this
paper, we define the task of ranking users according to their visiting probabili-
ties to a target POI as a location promotion problem. There are two major
challenges for this problem: (1) the cold start POI problem, i.e., a target POI for
promotion can be a new POI with no check-in records; and (2) heterogeneous
information integration, as there are both geographical and semantic informa-
tion associated with POIs. Existing POI recommendation methods [10,11,13,22]
cannot be directly applied to solve the location promotion problem with satis-
factory performance.

Existing solutions [21,28] for location promotion is unsatisfactory due to two
reasons. First, they build their models by maximizing the likelihood of observing
all check-in records. They ignore “unobserved” POI-user pairs, i.e., those users
with no check-in at certain POIs, in their models. But such “null” relationship
can be combined with the check-in records to help infer the ranking of poten-
tial users to specific POIs. Second, they consider modeling interaction between
users and POIs in only one space. [28] only considers the geographical proximity
between users and POIs, i.e., geographical space. [21] only considers represent-
ing users and POIs in one POI latent space. However, using only one space is
not enough for integrating heterogenous information in location-based service
because different information may have different interaction patterns.

In order to overcome the limitations of existing studies, we propose a unified
representation learning framework called hybrid ranking and embedding
(HRE) to solve the location promotion problem. The core idea of our method
is to exploit the ranking consistency principle in the representation
learning framework of POIs. The ranking consistency principle states that
users with more check-ins at the POI should be ranked higher than users with
fewer check-ins or no check-in at the POI. With the ranking consistency principle,
we can use the unobserved POI-user pairs to alleviate the data sparsity issue
in check-in records. To measure the interaction between users and POIs, we use
geographical embeddings and preference embeddings to represent both users and
POIs. The geographical embeddings measure the geographical influence to users
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and POIs in each region. The preference embeddings measure the similarity of
check-in patterns between users and between POIs. The final ranking score of
users w.r.t. the target POI is estimated by their embeddings in both geographical
space and preference space.

To learn the embeddings of new POIs in preference space as well as improve
the ranking performance of existing POIs, we build different types of weighted
bipartite POI-semantic graphs to capture and integrate heterogeneous semantic
information of POIs. Our intuition is that POIs with similar semantic informa-
tion should be close in preference space. Five kinds of information, including
sequential visiting POIs, temporal check-in number in each time slot, region
proximity, tags, and neighborhood visiting users, are considered for learning the
preference embeddings for all POIs through multiple graph embeddings. A joint
learning algorithm is proposed to train a unified preference representation for
each POI.

Compared with existing solutions, our method has four advantages. First, we
can gain better ranking performance for location promotion since we optimize
from the POIs’ perspective and integrate heterogeneous semantic information
for POIs. Second, our hybrid model can learn preference embeddings for new
POIs by sharing POI preference embeddings in different POI-semantic graphs.
New POIs can utilize the collective check-in data of existing POIs to achieve
better ranking performance. Third, the embeddings of users are divided into two
spaces, the geographical and preference spaces, and trained by a joint learning
algorithm, which enables the interaction between geographical influence and
preference influence as well as preserving the heterogenous interaction pattern
in different spaces. Fourth, our method can be easily extended to incorporate
other kinds of semantic information such as the photos and comments posted by
users at POIs.

We have made the following contributions in this paper.

– To the best of our knowledge, we are the first to incorporate the ranking
consistency information into the representation learning framework of POIs,
which has been ignored by current literatures.

– Our method can integrate both the geographical and semantic information
of POIs. Existing POIs and new POIs can have a unified embedding in both
geographical space and preference space.

– Extensive experiment results show that our method can boost the ranking
performance measured by AUC and Tau for both existing POIs and new POIs,
compared to several baselines and state-of-the-art methods. On average, we
increase the AUC by 3.0% and Tau by 7.7% for all POIs in four cities of
United States, compared to the second best solution.

– We conduct a case study to demonstrate that the performance of our method
with respect to different POI categories is consistent with the hierarchy of
needs in human life, which has not been reported by previous studies.

The remainder of this paper is organized as follows: Sect. 2 gives a formal
definition of our problem and performs data analysis for geographical space
embedding. Section 3 describes the hybrid ranking and embedding method and
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the parameter learning algorithm. Section 4 reports the experimental results.
Section 5 reviews related work. Finally Sect. 6 concludes this paper.

2 Preliminaries

2.1 Problem Description

Assume we have a user set U = {u1, u2, . . . , uN} and a POI set L =
{l1, l2, ..., lM}. A check-in record can be defined as a triple c = (u, l, t) which
indicates that user u performs a check-in action on POI l at time t. We denote
Cu = {c1, c2, . . .} as the user u’s check-in records, Cul as the set of check-in
records which are performed by user u on POI l, and Ul as the set of users that
have check-in at l. Furthermore, we denote a POI as l = (ωl, τl), where ωl is the
coordinate of l and τl is the tag set of l. The location promotion problem can be
defined as:

Definition 1 (Location Promotion Problem). Given the user set U =
{u1, u2, . . . , uN}, all users’ check-in records C = {C1, . . . , CN} and a target POI
l, return a rank list of candidate users who have not visited POI l yet, i.e.,
u ∈ U \ Ul, in descending order of their probability of visiting l.

2.2 Data Analysis

Different from the traditional recommendation problem, user’s check-in records
not only contain the user’s preference on POIs but also indicate the user’s geo-
graphical preference. For example, the check-in records of a user usually cluster
around his/her workplace and home [4].

In order to find a reasonable geographical embedding method for users and
POIs, we perform data analysis on the check-in records from two cities Los
Angeles and San Diego. We first use k-means algorithm to cluster POIs in a city
into K regions according to their coordinates. Then we consider all sequential
check-in records in pairs made by the same user, in the form of (lj−1, lj). Denote
the region center where lj−1 belongs to as ωk. We calculate the distance between
ωk and the next POI lj . Then we plot the distribution of such distances from
a region center to the next check-in POI in Fig. 1. We observe that the visiting
probability decreases as the distance between the region center and next check-in
POI increases.

To further choose a suitable distribution to describe the relationship, we
try to fit the data with three alternatives: Pareto distribution, Exponential dis-
tribution and Log-normal distribution, and show the loglikelihood of different
distributions in Table 1. We find that the Pareto distribution has the largest
loglikelihood in modeling the distance distribution between the region center
and the next check-in POI. Thus, we decide to use Pareto distribution in POIs’
geographical embeddings.



Exploiting Ranking Consistency Principle in Representation Learning 461

Table 1. Loglikelihood of different distance distribution in Los Angeles and San Diego

City Pareto Exponential Log-normal

Los Angeles −2.476 −3.186 −2.879

San Diego −2.153 −3.199 −2.839

3 Hybrid Ranking and Embedding Method

In this section, we first introduce the two building blocks of our unified model:
ranking consistency model and graph based POI embedding. Then we describe
our joint learning model.

3.1 Learning Geographical and Preference Embedding
with Ranking Consistency

Based on the analysis on Sect. 2.2, we utilize two latent spaces G and V to model
the geographical factor and the preference factor respectively.

Geographical Factor Embedding. We propose a geographical embedding
method to encode the spatial proximity between candidate users and target
POIs. For POI lj , we denote its geographical feature by an embedding vector
gj ∈ G as:

gj = [f(d(ωj , ω1)), . . . , f(d(ωj , ωK))]T . (1)

In Eq. (1), d(·, ·) represents the distance between two coordinates and the k-th
entry of gj denotes the probability that a user moves from the k-th region to
lj . In general, f(·) can be any function that can output a probability. In our
proposed framework, we adopt the Pareto distribution based on the analysis in
Sect. 2.2. Following the setting in [28] where a similar observation is reported
between sequentially visited POIs, the specific form of gj is:

gj = [(1 + d(ωj , ω1))−α, . . . , (1 + d(ωj , ωK))−α]T . (2)

Fig. 1. The distance distribution between the sequential check-in region center and
POI in two cities
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α is a shape parameter in Pareto distribution and is estimated by maximum
likelihood estimation.

The geographical embedding for user ui can be defined as:

gi = [γi,1, γi,2, . . . , γi,K ]T , (3)

where γi,k denotes the expected number of check-ins in the k-th region by ui.
Using the geographical embedding of POIs and users, we define the ranking

score yij that ui will visit lj as:

yij = gi · gj . (4)

Equation (4) can be considered as a two-layer model, where the inner product
encompasses the weighted sum of the expected check-in number from user ui’s
activity regions denoted by gi. The weight factor gj of a target POI lj only
depends on its distance to each region center, which implies the spatial influence
from each region to lj .

Preference Factor Embedding. Though the geographical factor has a large
impact on determining the ranking score of candidate users, there are still por-
tions of check-in records that cannot be explained by the geographical factor. For
example, when people choose a certain store they like to check-in in a shopping
mall, the distance factor has less impact compared to users’ preference. If we
represent all users’ check-in records with a POI-user matrix where each entry
is the number of check-ins from a specific user at a POI, we can infer a user’s
preference by comparing his/her check-in records with those of other users who
have similar check-in patterns.

To model the preference, we introduce an embedding vector vi ∈ V for ui, and
vj ∈ V for lj to represent the preference factors of user ui and POI lj respectively.
If ui has check-ins at lj , vi ·vj should be larger than that of another user ui′ who
has no check-in at lj . Under this assumption, two users who visit many common
POIs should have close preference embeddings. On the other hand, POIs that
share many common users should have close preference embeddings in V. To
combine the information from geographical coordinates and POI-user matrix,
we define the final ranking score yij as:

yij = vi · vj + gi · gj . (5)

In Eq. (5), gi,gj ∈ R
K
+ indicate the feature vectors of user ui and POI lj in

geographical space G; vi,vj ∈ R
D indicate the feature vectors of user ui and

POI lj in preference space V.
Combining the scores in two separate spaces enables the interaction between

geographical influence and preference influence. To illustrate this point, consider
the following example. For a target shop in a shopping mall, users who have
check-ins near the shopping mall are more likely to walk by and visit the target
shop, i.e., from the perspective of the geographical embedding. On the other



Exploiting Ranking Consistency Principle in Representation Learning 463

hand, users who have the similar preference to the target shop are also more
likely to visit the target shop, i.e., from the perspective of preference embedding.

In our solution, the geographical embedding gi for users and the preference
embedding vi for users and vj for POIs are all trained using the check-in records
because the influence of geographical embeddings and preference embeddings on
check-in behaviors varies from user to user. Later we will describe how to learn
the vectors gi,vi,vj for all users and POIs in our inference algorithm.

Ranking Consistency Model. Given the definition of ranking score, we pro-
pose our ranking consistency model to learn the latent representation of users
and POIs in both geographical and preference spaces simultaneously. The core
idea behind our model lies in the ranking consistency principle, which indicates
that the ranking score of different users should be consistent with their check-in
records. Concretely, given a target POI lj , the following constraints should be
satisfied:

– A user who has performed check-in at lj should be ranked higher than those
who have not performed check-in at lj .

– A user with more check-in records at lj should be ranked higher than those
with less check-in records at lj .

Based on the ranking consistency principle, given POI lj , our model can be
defined as:

f(lj |Θ) =
∏

ui∈Ulj

∏

ui′ ∈U<|Cij |

P ((yij − yi′j) > 0|Θ). (6)

In Eq. (6), U<|Cij | = {ui′ ||Ci′j | < |Cij |} is the set of users whose number of check-
in records at POI lj is less than that of user ui. Θ = {vi,vj ,gi|ui ∈ U, lj ∈ L}
is the parameter set. P ((yij − yi′j) > 0|Θ) is the probability which indicates
that the ranking score of user ui is higher than that of user ui′ . Following the
Bayesian personalized ranking scheme [16], we apply the logistic function σ(x) =
1/(1 + exp(−x)) to output the probability P ((yij − yi′j) > 0|Θ):

P ((yij − yi′j) > 0|Θ) =
1

1 + e−(yij−yi′j)
. (7)

Therefore, given a POI set L, the log-likelihood function FRC(L,Θ) is written
as:

FRC(L,Θ) =
∑

lj∈L

log f(lj |Θ) − λ||Θ||2. (8)

In Eq. (8), λ||Θ||2 is the Gaussian prior for regularization. Compared with the
methods that directly approximate the check-in frequency like rating based rec-
ommendation problems, Bayesian personalized ranking criterion learns the rank-
ing models based on pairwise comparison of users such that the area under the
ROC curve (AUC) can be maximized [16]. On the other hand, it alleviates the
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data sparsity problem in modeling check-in records by fully utilizing information
of the number of check-in records of users at a POI. This happens to meet our
goal for location promotion.

3.2 Learning POI Semantic with Graph Based Embedding

Although the ranking based embedding learning method can alleviate the data
sparsity problem in check-in data, it cannot handle new POIs without any check-
in record. Other than the geographical and user preference information, POIs
in location-based services also contain rich semantic information, such as tags,
spatial check-in relations, temporal check-in patterns and neighborhoods.

In order to handle new POIs and enhance the representation power of our
POI embeddings, based on the intuition that POIs with similar semantic infor-
mation would share common potential target users, we utilize the POI semantic
information to infer the preference embeddings of all POIs. This would be par-
ticularly useful for new POIs with no check-in records.

POI-semantic Graph Construction. We first extract the semantic informa-
tion for POIs by constructing POI-semantic graphs. A POI-semantic graph is a
bipartite graph carrying weights on the edges. According to different semantics,
we design five types of POI-semantic graphs as follows.

– POI-POI graph: It is denoted as GLL = (L,L,ELL,WLL) and designed for
capturing POI check-in sequential relationship. The two node sets are both
the POI set L. If there exists a user who visits two POIs lj , lk ∈ L sequentially
and the time gap between the two visits is less than a threshold ΔT , we add
an edge ejk ∈ ELL from lj to lk. The weight wjk ∈ WLL of ejk is defined as
the number of such sequential visits between lj and lk in all check-in records.

– POI-Time graph: It is denoted as GLT = (L, T,ELT ,WLT ) and designed for
capturing POI temporal visit patterns. One node set is the POI set L, and
the other node set is T representing different time slots. We first divide all the
check-in timestamps into 24 time slots and denote each time slot as a node in
T . For a POI lj ∈ L and a time slot tk ∈ T , an edge ejk ∈ ELT denotes that
there are check-ins in lj at tk. The weight wjk ∈ WLT for ejk is the number
of check-ins in lj at tk.

– POI-Tag graph: It is denoted as GLW = (L,W,ELW ,WLW ) and designed for
capturing functions of POIs. One node set is the POI set L, and the other
node set is W representing different tags (such as “Chinese Restaurant” and
“Coffee”) of POIs. For a POI lj ∈ L and a tag wk ∈ W , an edge ejk ∈ ELW

exists if lj has tag wk, and the weight wjk ∈ WWL is defined as the tf.idf
value.

– POI-Region graph: It is denoted as GLR = (L,R,ELR,WLR) and designed
for capturing region influence to POIs. One node set is the POI set L, and
the other node set is R representing the K regions defined in Sect. 3.1. For
a POI lj ∈ L and a region rk ∈ R, an edge ejk ∈ ELR with a unit weight
denotes that lj belongs to rk.
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– POI-Neighborhood User graph: It is denoted as GLU = (L,U,ELU ,WLU ) and
designed for capturing the neighborhood visit patterns. One node set is the
POI set L, and the other node set is the user set U . A user ui ∈ U may not
have check-in records in lj ∈ L, but has check-ins in the k-nearest neighbor
POIs of lj . Then we consider ui as lj ’s neighborhood user, i.e., whose check-
ins are near lj , and an edge eij ∈ ELU is added. The edge weight wij ∈ WLU

is the number of check-ins at lj ’s neighbor POIs by ui.

Overall, there are five types of semantic information as described above, thus
we use a semantic set S = {L, T,R,W,U} to denote them collectively. It is
noted that the POI-POI, POI-Time and POI-Tag graphs are in the same form
as defined in [21].

To solve the location promotion problem within a city, we further define
POI-Region graph and POI-Neighborhood User graph to model different levels
of geographical proximity between POIs. The construction of the two graphs
helps us to learn a more geo-aware preference embedding for POIs and improve
the ranking performance.

Learning POI and Semantic Embeddings. Based on the semantic infor-
mation captured by the above POI-semantic graphs, we can learn the preference
embeddings for new POIs. For the ease of presentation, we use a generic nota-
tion GLS = (L, S,ELS ,WLS) to denote a POI-semantic graph, which can be
any specific type of the above five POI-semantic graphs. For the node set S in
the POI-semantic graph, we call the nodes s1, s2, . . . , sm ∈ S semantic nodes.
Our target is to map these semantic nodes as well as the POIs to the preference
latent space V. We define the empirical conditional probability that sk can be
represented by lj as:

p̂(sk|lj) =
wjk∑

sk′∈Slj
wjk′

, (9)

where Slj ⊆ S is the semantic node set related to POI lj .
In the preference latent space V, the embedding vector of sk is vk. We use the

softmax function to model the conditional probability that sk can be represented
by lj in V:

p(sk|lj) =
exp(vk · vj)∑

sk′∈Slj
exp(vk′ · vj)

. (10)

Since we have
∑

sk∈S p̂(sk|lj) = 1 and
∑

sk∈S p(sk|lj) = 1, given the POI lj ,
the conditional probability over semantic information S can be treated as a
distribution which is denoted as Plj (empirical distribution as P̂lj ). The objective
of the embedding is to make the conditional distribution Plj close to the empirical
distribution P̂lj for all POIs. We use the KL-divergence KL(., .) to measure the
distance between two distributions. Thus the objective function for the semantic
information S is written as:
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F(S,L|ΘS) = −
∑

lj∈L

σjKL(P̂lj ,Plj )

=
∑

ejk∈ELS

ωjk log p(sk|lj). (11)

In Eq. (11), ΘS = {vk|sk ∈ S} is the embedding vector set of semantic nodes in
S. σj =

∑
sk∈S ωjk is the importance of node lj .

As there are five types of POI-semantic graphs, we construct a combinational
graph-based POI embedding scheme. Given the semantic information set S =
{L, T,R,W,U}, the objective function can be written as:

FEMB(S, L|ΘS) =
∑

S∈S
F(S,L|ΘS). (12)

In Eq. (12), each POI in L has a unique preference embedding among differ-
ent POI-semantic graphs. Therefore, the learned POI preference embeddings
integrate heterogeneous information related to POIs and improve the ranking
performance for all POIs as confirmed in experiments.

3.3 The Unified Model

We propose to jointly learn the embeddings of all elements simultaneously by
sharing the preference embedding of POIs. The final objective function of our
unified model is written as:

F(L,S, Θ,ΘS) = FRC(L,Θ) + βFEMB(S, L|ΘS), (13)

where Θ = {vi,vj ,gi|ui ∈ U, lj ∈ L} and ΘS = {vk|sk ∈ S, S ∈ S}. After
learning the embeddings of POIs, users and all kinds of semantic information,
we can calculate the visiting score for each unobserved POI-user pair and rank
the unvisited users w.r.t. a POI according to Eq. (5). Our model can be trained
efficiently by a stochastic gradient descent method with mixed unified and alias
sampling. The training time for the largest data set of LA is less than 10 min
with 4 threads.

4 Experimental Results

In this section, we conduct extensive experiments on the real data sets. Firstly
we evaluate the overall performance of our algorithms and the other baselines.
Specifically, we compare the performance of new POIs to demonstrate the effec-
tiveness of our algorithms in cold start situation. Then we analyze the parameter
sensitivity. At last, we conduct a case study on the real world data sets to show
the explanation power of our algorithms.
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4.1 Settings

Datasets. We conduct experiments on a foursquare data set collected from 4
cities in USA1. We list the statistics of the data set in Table 2. For each city,
we only consider users with check-ins at more than 4 POIs as active users. For
each user, we first aggregate the check-ins at each POI and sort the POIs in
ascending order according to the first check-in timestamp. Then we select the
earliest 80% POIs as training data and the remaining 20% as test data. As a
result, the numbers of test POIs in four cities are 3686 in LA, 4035 in SF, 2149
in SD, and 1392 in NY.

Table 2. Statistics of our data set

City #POIs #Users #Check-ins

Los Angeles (LA) 7986 1128 49616

San Francisco (SF) 7907 1204 58547

San Diego (SD) 4770 393 25618

New York City (NY) 3631 365 8523

Evaluation Metrics. We use two metrics to evaluate the performance of our
model: AUC and Kendall’s Tau Coefficient.

AUC. For a target POI lj and candidate users U\Ulj , we consider candidate
users that have check-ins at lj in the test set as positive users and other candi-
date users as negative users. Then we can plot the ROC curve according to the
predicted ranking scores of a model and calculate the Area Under ROC Curve
(AUC) as AUC(lj). We compare the average AUC of all POIs in the test set
produced by different models.

Kendall’s Tau Coefficient. Kendall’s Tau is used to measure the overall rank-
ing accuracy when we consider the number of check-ins in the test data. For a
target POI lj and two candidate users ui, ui′ ∈ U\Ulj , we can get user ranking
scores yij , yi′j and check-in numbers |Cij |, |Ci′j |. Then, the user pair (ui, ui′) is
said to be concordant, if both yij > yi′j and |Cij | > |Ci′j |, or if both yij < yi′j
and |Cij | < |Ci′j |. On the other hand, if both yij > yi′j and |Cij | < |Ci′j |, or
if both yij < yi′j and |Cij | > |Ci′j |, (ui, ui′) is said to be discordant. We define
#cons and #disc as the number of concordant and discordant user pairs in can-
didate users U\Ulj , and Tau = #cons−#disc

#cons+#disc . We compare the average Tau of all
POIs in the test set produced by different models.

1 The data set is publicly available at https://sites.google.com/site/dbhongzhi/.

https://sites.google.com/site/dbhongzhi/
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Baseline Methods. Our method is denoted as HRE, which stands for hybrid
ranking and embedding. We compare HRE with the following baselines.

– User Popularity (POP) ranks each candidate user according to the number
of check-ins by that user at all POIs in the training data.

– Distance-based Mobility Model (DMM) [28] considers the probability
that a candidate user moves from his/her visited POIs to a target POI. It
estimates the probability of moving from a visited POI to the target POI by
a Pareto distribution from the distances between sequentially visited POIs.

– Graph Embedding (GE) [21] is the state-of-the-art model for POI rec-
ommendation that learns the embedding of POIs by considering four types
of information: POI sequential visit pattern, temporal visit pattern, regional
proximity and content similarity. The user embedding in GE is the sum of
POI embedding in a user’s visited records. We rank each candidate user by
the dot product of user embedding and the target POI embedding.

– Multi-Context Embedding (MC) [26] is also the state-of-the-art model
for POI recommendation that incorporates user-level, trajectory-level,
location-level, and temporal contexts for learning embeddings of users and
POIs. However, this model cannot learn the embeddings for new POIs.

Parameter Settings. The major parameters for our method HRE include:
(1) the dimension D for preference embeddings of users and POIs. D is also the
dimension of semantic embeddings for time slots, regions, tags and neighborhood
users; (2) the number of regions K. By default, we set D = 50, K = 50. We
set the regularization parameter λ = 0.001 in Eq. (8), the number of nearest
neighbor POIs k = 30 in constructing POI-neighborhood user graph, and the
weight β = 1.0 in Eq. (13). We set the temporal threshold ΔT for constructing
POI-POI graph to be 25 days as [21]. We conduct parameter sensitivity test in
Sect. 4.4 to study the influence of parameters on the ranking performance.

4.2 Overall Ranking Performance

We report the performance of different methods for all test POIs in the four
cities. The results for AUC and Tau are in Fig. 2. From Fig. 2, we observe that:

– Our method HRE has the best performance in terms of both AUC and Tau
among all comparison methods in four cities, because HRE is designed to
optimize the ranking consistency and incorporate the heterogeneous informa-
tion. Compared with the second best method DMM, HRE increases the AUC
by 3.0% and Tau by 7.7% on average.

– To our surprise, the ranking performance of two existing POI recommen-
dation methods GE and MC are lower than those of DMM and HRE. The
reasons are three-folds. First, GE and MC are not designed for optimizing
ranking consistency. Second, GE and MC ignore the geographical proximity
between regions, which are captured by geographical embedding and POI-
Neighborhood User graph in HRE. Third, GE and MC ignore the interaction
between geographical and preference influence for modeling user mobility.
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– Regarding the results of four cities, we find that LA, SF and SD have much
larger AUC than NY. This is because the hometowns of all users in our data
set are located in California. These users’ check-in behaviors become less
regular and predictable when they travel to a new city such as New York
City, which was also reported in [19]. The performance gain of HRE in LA
and SF is larger than the gain in SD and NY, this is because there are more
check-ins in LA and SF which contain more collaborative information between
POIs for POI preference embedding enrichments.

LA SF SD NY0.7

0.75

0.8

0.85

AU
C

MC POP DMM GE HRE

(a) AUC for all POIs

LA SF SD NY0.02

0.03

0.04

0.05

0.06

0.07

Ta
u

MC POP DMM GE HRE

(b) Tau for all POIs

Fig. 2. Performance on all POIs

4.3 Performance on New POIs

We consider POIs with no check-in users in the training set as new POIs in
our evaluation. Since MC cannot be applied to new POIs, we only report the
performance of the four methods for new POIs in Fig. 3. Again we can observe
that HRE has the largest AUC and Tau among all methods, which confirms that
incorporating the ranking information in the user-POI interaction can enrich the
representation of POIs without check-in information.

4.4 Parameter Sensitivity Test

We evaluate the performance of HRE w.r.t. four parameters: the dimension D of
preference embedding, the dimension K of geographical embedding, the number
of k-nearest POIs, k, in selecting neighborhood users, and the coefficient β for
tuning weight of graph-based POI embedding. The AUC values for all POIs and
new POIs in all four cities are reported in Fig. 4. We observe that the ranking
performance of our method is not very sensitive to the parameter change. This
shows the robustness of our method HRE.

4.5 A Case Study

We report the AUC for each category of POIs in the test set. The category infor-
mation is obtained from tags of POIs in the data set, where each POI may have
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Fig. 4. AUC w.r.t. different parameters in HRE

more than one tag because it may have multiple functions. We calculate the aver-
age AUC of one tag by aggregating the POIs in four cities. Then we sort the tags
based on their AUC produced by our method in descending order. We plot a heat
map recording the AUC produced by five methods in Fig. 5. We observed that
the AUC rankings w.r.t. category produced by HRE are more consistent with
the hierarchy of needs for human life. The top three categories with the largest
AUC, which are “Food & Drink Shop”, “Shop & Service”, “Residence”, stand for
more fundamental needs. On the other hand, categories such as “Arts & Entertain-
ment”, “Office” and “Airport” stand for higher-level human needs related to spirit
and self-actualization [5]. In contrast, ranking categories based on other methods’
AUC fail to reveal the needs order of human due to the lack of user-POI interaction
information in learning POIs’ preference embeddings. For example, the AUC of
“Clothing” in GE and DMM are close to “Art & entertainment”. In fact, “Cloth-
ing” is a more fundamental need than “Arts & Entertainment”.
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Fig. 5. AUC w.r.t. category

5 Related Works

Influential Users Selection in Location Based Social Network. Unlike
traditional influence maximization problems in online social networks [1,7,17],
users’ locations need to be considered in finding influential users in location-
based social networks [3,24,27]. [8] identifies a set of users who are most influen-
tial to other users in a specific region. [20] considers the user-POI distance in cal-
culating the influence spread. Both works assume that the user’s location is fixed
and ignore the user mobility. [28] first studies the location promotion problem
where the activation probability of each edge is determined by users’ probability
to visit a target location. They propose two mobility models for setting the users’
visiting probability where the distance-based mobility model (DMM) is reported
to have the largest AUC under different activation thresholds. As mentioned in
Sect. 1, DMM only considers check-in records of one user in deriving his/her vis-
iting probability, while our method considers heterogeneous information such as
POI tags and neighborhood user visiting patterns in check-in records of all users.
Besides, our method focuses on maximizing the ranking consistency on setting
user visiting score so that it has the highest ranking performance as shown in
the experiments.

User Mobility Modeling and POI Recommendation. Studies [4,12,25]
related to user mobility modeling focus on maximizing the likelihood of observing
all check-in records of individual users. [4] finds that most of the human move-
ment is based on periodic behaviors. They propose a Periodic Mobility Model
(PMM) that consists of two Gaussian distributions to denote user’s states at
work and home respectively. In POI recommendation [2,6,9–11,13,14,19,21,22],
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the search engine is asked to return a set of POIs that the query user may be
interested in. Most of the works on POI recommendation [9,11,13,22] are based
on a fused model that considers geographical influence as well as collabora-
tive filtering information from check-in records. [10] first uses a ranking based
loss function to optimize the precision and recall of top-k recommendation, but
their method cannot deal with new POIs because they only use information
of user-POI matrix. [21] further considers the context information in POI rec-
ommendation and proposes a multi-graphs embedding method for integrating
heterogeneous information. It outperforms other cold start POI recommenda-
tion methods based on content information and geographical locations [19,23].
Our work is different from user mobility modeling and POI recommendation as
our target is to recommend users for a target POI. We also confirm the effec-
tiveness of our ranking based methods by comparing with the methods for POI
recommendation [21,26].

6 Conclusion

In this paper, we study the location promotion problem in location-based ser-
vices. In order to return a target user list w.r.t. a target POI, we propose a
unified representation learning framework called hybrid ranking and embedding.
Our framework maximizes the ranking consistency and integrates heterogeneous
information of POIs, which alleviates the data sparsity problem in users’ check-
in data and solves the cold-start POI problem. Experiments on four cities of the
United States show that our method has better ranking performance than the
state-of-the-art methods.

Acknowledgement. The work is supported by a Microsoft Research Asia Collabo-
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Abstract. Patenting is of significant importance to protect intellectual
properties for individuals, organizations and companies. One of prac-
tical demands is to automatically evaluate the quality of new patents,
i.e., patent valuation, which can be used for patent indemnification and
patent portfolio. However, to solve this problem, most traditional meth-
ods just conducted simple statistical analyses based on patent citation
networks, while ignoring much crucial information, such as patent text
materials and many other useful attributes. To that end, in this paper,
we propose a Deep Learning based Patent Quality Valuation (DLPQV)
model which can integrate the above information to evaluate the qual-
ity of patents. It consists of two parts: Attribute Network Embedding
(ANE) and Attention-based Convolutional Neural Network (ACNN).
ANE learns the patent embedding from citation networks and attributes,
and ACNN extracts the semantic representation from patent text mate-
rials. Then their outputs are concatenated to predict the quality of new
patents. The experimental results on a real-world patent dataset show
our method outperforms baselines significantly with respect to patent
valuation.

Keywords: Patent quality valuation · Attribute network embedding
Convolutional Neural Network · Patent citation network

1 Introduction

With regard to industry research and development, patent application is one
of the most significant sources of key technologies for protecting intellectual
properties. And patenting is also an important asset for companies in the knowl-
edge economy. Over the past few decades, with the rapid development of mul-
tifaceted technology in different application domains, a large amount of patents
are applied and authorized. They serve as one of the crucial intellectual prop-
erty components for individuals, organizations and companies. Many compa-
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nies, especially burgeoning firms, apply several thousands of patents each year1.
The granted patent information is open to public and can be available for pro-
fessional organizations in various countries or regions around the world. For
instance, World Intellectual Property Organization (WIPO)2 reported over 2
million total patent applications authorized worldwide within a year [15]. The
researches which contrapose patent information are more and more important
in order to make fair and credible valuation results available to investors.

In fact, questions involving patent mining have intrigued scholars for decades,
and there have been many influential academic researches in this area, includ-
ing patent retrieval [7], patent classification [4], patent visualization and cross-
language patent mining [8] and patent valuation [1,10]. In this work, we devoted
to exploring this deeper and hope to make further support for the last topic,
patent valuation, a common process of evaluating the quality of patent docu-
ments.

Indeed, assessing the value of a patent is crucial both at the licensing stage
and during the resolution of a patent infringement lawsuit [20], and it is unde-
niable that business community have paid much concern about this question
because of its considerable significance, so they might hire many professional
patent analysts engaging in this. Obviously, patent valuation is a non-trivial
task which requires tremendous amount of human efforts. What’s more, it is
necessary for patent analysts to have a certain degree of expertise in different
research domains, including information retrieval, data mining, domain-specific
technologies, and business intelligence [32]. As a result, it is of great significance
to evaluate the potential value of a given patent automatically, which is the goal
of this work.

However, there are many challenges to solve this question. First of all, dif-
ferent from general text analysis, patent document contains dozens of special
features, including structured items and unstructured items [32]. The structured
items are uniform in semantics and format (such as patent number, inventor,
assignee, application date, grant date and classification code) and the unstruc-
tured ones consist of text content in different length(including claims, abstracts,
and descriptions of the invention.). Second, there contains much useful infor-
mation in patent citation network, but how to model it and make it effectively
contribute to patent valuation is kind of difficult, which is one of the technicality
goal of our framework modeling.

As mentioned above, there are indeed previous works focusing on patent val-
uation, while most of them just focus on one aspect of patent value, such as
statistical analysis [28] and text mining [13]. As far as concerned, none of the
existing works [13,20] takes into account both the patent text materials and
the citation networks in terms of finding more valuable patents. To solve all
these problems with addressing the challenges above, we propose Deep Learn-

1 http://www.ificlaims.com/, in 2015, IBM received 8,088 granted U.S. patents, fol-
lowed by Samsung (5,518), Canon (3,665), Qualcomm (2,897), Google (2,835), Intel
(2,784), LG (2,428), Microsoft (2,398).

2 http://www.wipo.int.

http://www.ificlaims.com/
http://www.wipo.int
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ing based Patent Quality Valuation (DLPQV) model to evaluate patent quality,
which extracts the patent attribute network embedding by Attribute Network
Embedding (ANE) and analyzes patent text materials by Attention-based Con-
volutional Neural Network (ACNN).

Specially, given the text materials, citation relations and meta features of
patents, we first design an unified CNN-based and ANE-based architecture to
exploit the semantic representations and network embedding for all patents.
Then we qualify the quality valuation contribution of each sentence to the title
by utilizing an attention strategy. Next, train DLPQV and generate the quality
valuation prediction for each patent. Finally, extensive experiments on a large-
scale real-world dataset validate both the effectiveness and explanatory power
of our proposed framework. The main contributions of this paper could be sum-
marized as:

(1) We are the first one to apply deep learning method to patent document
analysis, which is an ingenious piece of work combining the strength of deep
learning and patent characteristics.

(2) We present novel attribute network embedding for learning the low-
dimensional vectors of patent citation networks, which is one of the most
important components of patent valuation.

(3) We propose a unified framework to combine attribute network embedding
and deep learning based CNN methods, which allows jointly modeling patent
information for patent quality valuation.

(4) The extensive experiments in a real patent dataset show the proposed
method outperforms baselines significantly.

2 Related Work

Generally, the related work can be classified into the following two parts, i.e.,
patent citation network studies in patent quality valuation and text mining tech-
niques for patent analysis.

2.1 Patent Citation Network in Patent Quality Valuation

Many scholars have suggested that patent citation counts are strongly relevant
to patent value or patent quality [1,10,12,22]. Sterzi [29], who proposed that
the number of times a patent has been cited by other patents is significantly
associated with the value of the patent, trying to solve data truncation problems
by using year dummies; these dummies represented the period from the priority
year up to 3 years, the period from the priority year up to 6 years, and the
period from 7 years to the search year. Fischer and Henkel [6] used the natural
logarithms of the number of forward citations +1 to reduce the skewness of the
distribution of patent citation counts. The number of citations made by other
firms or researchers in a similar field for up to 5 years after the publication date
showed a considerable association with economic patent value [19,29], and late
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citations those made after 5 years since a patent was granted showed a strong
relationship with the market value of a firm [11,29]. In addition, Karki [17]
considered the number of citations to reflect a patents technological influence
on subsequent inventions. The number of backward citations signifies references
that are quoted by the relevant patent, and a variety of technological information
is expected to contribute to high patent quality [2]. Based on all the previous
works, we can tell that the number of patent citations can reflect patent value
in terms of novelty.

However, the common limitation of these works is that these methods are
usually based on statistical analysis using historical citation information in order
to explore some specific relationships between patent citation count and patent
value, and there still need extensive and unified approaches to synthetically
measuring patent quality, which is what we devote to. Different from them,
our study adopts both the citation networks with the patent meta features and
abundant patent documents to predict the potential patent value, trying to reveal
more deeper insights in this problem using attribute network embedding method.

2.2 Text Mining Techniques for Patent Analysis

One of the crucial steps in our framework is the understanding and represen-
tations of patent text materials, which aims at automatically processing patent
document inputs and producing textual outputs. Most of the previous researches
in this area are based on bag-of-words or LDA. Hasan et al. [13] built a patent
ranking software, named COA (Claim Originality Analysis) that rates a patent
based on its value by measuring the recency and the impact of the important
phrases. Shaparenko et al. [27] discovered important documents in a document
collection, which are clustered by their word bags. They find that a document
is important if it has fewer similar documents published before it, and has more
similar documents published after it. Specifically, Tang et al. [31] designed and
implement a general topic-driven framework for analyzing and mining the het-
erogeneous patent network. Besides, to assess the technology prospecting of a
company, Jin et al. [16] proposed an Assignee-Location-Topic (ALT) Model to
extract emerging technology terms from patent documents of different compa-
nies, which are also based on LDA method.

However, these existing methods fail to display the relationships among words
or sentences in patent documents, which is exactly the strengths of deep learning
methods in NLP (Natural Language Processing) field.

Combining the above two points, in this work, we adopt both the citation
networks with the patent meta features and abundant patent documents and
propose a novel framework (DLPQV) of patent quality valuation, consisting of
Attribute Network Embedding (ANE) and Attention-based Convolutional Neu-
ral Network (ACNN), which mixes patent text materials, meta features and
citation network together to carry our point of comprehensive valuation of given
patents.
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3 Deep Learning Based Patent Quality Valuation
(DLPQV) Framework

In this section, we first detailedly introduce the Patent Quality Analysis task,
and then we introduce the technical details of DLPQV. The DLPQV model
consists of Attribute Network Embedding (ANE) and Attention-based Convolu-
tional Neural Network (ACNN).

Fig. 1. The flowchart overview of our work

3.1 Problem and Study Overview

Traditional patent citation analysis can work on different applications for
patents. For instance, if a patent have a high citation count, the cited patent
probably have high chance to be a foundation of the citing patents. That is to say,
highly-cited patents are possibly more important compared with those less ones.
Therefore, we regard forward citation within two decades after authorization as
patent quality with normalization.

Definition 1. Formally, given a set of patents with corresponding text materials
including title (PT), abstract (PA), citation networks and patent meta features.
And each patent has a quality valuation record obtained from cited amount with
normalization (see Table 1). Our goal is to leverage the information of patent Pi

available to train a prediction model M (i.e., DLPQV), which can be effectively
used to valuate the quality of patents in the new granted patents.

As is shown in Fig. 1, our solution is a two-stage framework, which includes
a training stage and a testing stage: (1) In the training stage, given patent
features including text materials, citation network and patent meta features
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Table 1. Examples of patent instances with text, citation and attributive information.

Quality

(Q)

Patent (P) Text materials Citation network Meta features

Title (PT) Abstract (PA) Cite Cited WIPO Claims Nber ...

0.8761 US5148265 Semiconductor

chip...

A semiconductor

chip having

contacts on...

US3302067... US5367763... A 39 Meth

0.1205 US5366931 Fabrication

method...

This invention

relates to a

technology...

US4177480... US5895966... B2 5 Meth

? US5477611 Method of

forming...

A method for

creating an

interface...

US4079511... US5776796... B1 39 Elec

(see Table 1), we propose DLPQV to represent the text materials of each patent
Pi and embedding the attribute network so as to evaluate patent quality Qi. (2)
In the testing stage, after the training of DLPQV is completed, for each new
granted patent, DLPQV could estimate its quality with the available patent
features.

Our DLPQV detailed framework is showed in Fig. 2, and we will introduce
the model specifically in the following description, which covers Attribute Net-
work Embedding (ANE) and Attention-based Convolutional Neural Network
(ACNN).

d0 d1

d1

jα

d0

Fig. 2. Deep Learning based Patent Quality Valuation (DLPQV) framework
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3.2 Attribute Network Embedding for Citation Network

Definition 2 (ANE for Citation Network). Treating the granted patents as
nodes and citation relations among them as edges respectively, we construct a
citation network and use the proposed attribute network embedding method to
learn the patent representation. Our citation network representation problem is
formalized as follows. Given a citation network G = (V,E, F ), where V is the
sets of nodes, E is the sets of edges and F = {f1, f2, ..., f|V |} represents the sets
of features of size m for each node. We aim to learn a low-dimensional vector
representation uv ∈ Rd for each node v ∈ V in G, where d is much smaller
than |V |.

Attribute Network Embedding Framework. For citation network, we pro-
pose a Attribute Network Embedding model (ANE ) that incorporates the node
attributes, whose framework is shown in Fig. 3. Firstly, different from the sen-
tences generation (like word2vec) method used in previous work, we propose
the sentences generation method based on nodes’ neighbors. We can preserve
the citation network structure based on these sentences, so that nodes with the
similar neighborhoods will have the similar citation network embedding. Then,
in order to incorporate the attributes of nodes into citation network embedding,
we take nodes’ attributes as the initial input and utilize the mapping function
to project it into the node embedding space. Finally, through the optimization
of the model, we obtain the citation network embedding which can simultane-
ously preserve the citation network structure and reflect the similarity of node
attributes. In the following section, we will introduce our model in detail.

Fig. 3. ANE model framework

Sentences Generation. In previous network representation learning research
works, there are two main ways to learn the network structure information. Like
Deepwalk [25], node2vec [9] etc., they sample uniformly a random node v ∈ G
as the root of random walk and generate a truncated random walk sequences
as the training Sentences to learn the node embedding. They are based on the
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assumption that the node is similar to the surrounding nodes in window size
k, which we think is too strong for some network structures, like the network
in Fig. 3. The other is to learn the network embedding by preserving the First-
order Proximity or the Second-order Proximity, like [3,30], etc. However, these
methods only consider the similarity between the node and their neighborhoods
and don’t consider the similarity between nodes’ neighborhoods. In order to
alleviate these problems, inspired by [26], we proposed the sentences generation
method based on nodes’ neighborhoods as follows:

We use each node as the root once, and take the random permutations of
the root node’s neighborhoods into the sentence. Each generated sentences has
the form: [vroot, v1, ..., vn], where ∀ 1 ≤ i ≤ n, vi is the neighborhood of vroot.
Take the node 2 in Fig. 3 as an example, [3, 4, 1] is a permutation of the node
2’s neighborhoods and [2, 3, 4, 1] is an instance of sentence generation of node
2. Also, it is important to note that the nodes in root node’s neighborhoods
should be no explicit order. So we set the number of permutations of root node’s
neighborhood to be NP . The larger the value NP is selected, the more evenly
distributed root node’s neighborhoods are in generated sentences.

ANE Model Formulation. Here, we describe how the ANE model incorpo-
rates the node attributes into citation network embedding. For each node in
generated sentences, the ANE model predicts the center node vi given a repre-
sentation of the surrounding context nodes v ∈ {vi−k, ..., vi+k} \ {vi}, where k
is the window size of context nodes. The objective function of ANE model is
to maximize the average log probability of the center node vi given the context
nodes context(vi) for all the sentences s ∈ S, which is defined as following:

L = − 1
|s|

|s|∑

i=1

log p(vi|context(vi)) = − 1
|s|

|s|∑

i=1

log
exp u′T

i ucontext(i)
∑|V |

j=1 exp u′T
j ucontext(i)

(1)

where u′
i is ‘output’ vector representation of node vi, ucontext(i) is vector repre-

sentation of context words of node vi and |V | is the number of citation network
nodes as well as the number of patents.

In order to make full use of the nodes’ own attributes, as shown in Fig. 3, we
take the nodes’ attributes as the initial input of the model. Then we transform
it to node embedding space with the use of transformation matrix M , where we
have:

ui = MT fi (2)

where ui is the ‘input’ vector representation of the node vi, fi is attribute value
of node vi. And M ∈ Rm×d, where m is the node attributes dimension, and d is
the dimension of ui.

Furthermore, we defined ucontext(i) as weighted average of the ‘input’ vector
representation of context nodes:

ucontext(i) =
1
2k

∑

j∈[i−k,i+k]\{i}
uj (3)
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Finally, by minimizing Eq. (1), we obtain ‘input’ representation ui and ‘out-
put’ vector representation u′

i for node vi ∈ V , and both of them can be regraded
as low-dimensional representation of node. Therefore, we utilize the concatena-
tion of them as the citation network embedding, and each patent is represented
by a citation network embedding.

Model Optimization. Next, we introduce the details of how to use the
Stochastic Gradient Descent method(SGD) to train the ANE model. Then we
present the algorithm framework and time complexity of the model.

Approximation by Negative Sampling: Optimizing the Eq. (1) is computa-
tionally expensive, because the denominator of p(vi|context(vi)) requires sum-
mation over all the nodes in citation network, which the number of node is
usually very large. To address this problem, we adopt the approach of negative
sampling proposed in [23], which select negative samples according to the noisy
distribution Pn(v) for each node contexts. As a result, the log p(vi|context(vi))
in Eq. (1) is replaced by the following objective function:

Li = log σ(u′T
i ucontext(i)) +

neg∑

t=1

Evt∼Pn(v)[log σ(−u′T
t ucontext(i))] (4)

where σ(x) = 1/(1 + exp(−x)), neg is the number of negative samples. And we
set the node noisy distribution Pn(v) ∝ d

3/4
v as proposed in [23], where dv is the

out-degree of node v.
We employ the widely used Adaptive Moment Estimation (Adam) algorithm

[18] to optimize the Eq. (4). In each step, the Adam algorithm samples a mini-
batch of training instance(center-context) and then update the model parameter
by walking along the descending gradient direction,

u′t+1
i = u′t

i − η · ∂Li

∂u′
i

(5)

where u′ is the ‘output’ vector representation of the node vi, and t is the iteration
times. η is the learning rate, which is automatically adjusted in Adam algorithm.

3.3 Attention-Based Convolutional Neural Network

Through ANE for citation network, a patent Pi as a node in citation network is
represented as a representation vector u′

i, which is expressed as PUi in the fol-
lowing description. In this subsection, we will introduce the specific components
of ACNN of DLPQV, which deals with text materials to obtain the representa-
tion of patents. As shown in Fig. 2, ACNN can be divided into four components,
i.e., Input Layer, CNN Layer, Attention Layer and Prediction Layer. The follow-
ing will cover concrete content about the four layer, especially CNN Layer and
Attention Layer.
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Definition 3 (ACNN of DLPQV). Given a dataset of patents with text mate-
rials including patent titles (PT), patent abstracts (PA) and patent attribute
citation network embedding (PU), and each patent Pi has a quality valuation Qi

(e.g., 0.8761) obtained from the normalized cited amount (see Table 1), we aim
at leveraging the information of patents to train a prediction model based on
ACNN, which can estimate the qualities of patents.

Input Layer. The input to ACNN is the title text and all abstract text of
a patent Pi, i.e., title(PT i) and abstract(PAi). Specifically, the abstract text
PAi is expressed to a sequence of sentences PAi = {s1, s2, ..., sM} where M is
the sequence length. And the title PT i is an individual sentence. Considered
to sentence constituents, each sentence consists of a sequence of words s =
{w1, w2, ..., wN} where wi ∈ R

d0 is obtained from d0-dimensional pre-trained
word embedding and N is the length of sentence. Finally, the title of a patent is
translated into a matrix PTi ∈ R

N×d0 , and the abstract of a patent is represented
by a tensor PAi ∈ R

M×N×d0 .

CNN Layer. We aim at learning each sentence representation from word
embedding in CNN Layer. Reasonably, we choose CNN-based model to learn
sentence embedding with following reasons: (1) Because of convolution-pooling
operations, CNN works better on considering dominated information of each sen-
tence from local to global views. Usually, sentence is well represented by local
key words. (2) CNN leverages shared convolution filter for training model, so it
can reduce the complexity compared with other deep learning architecture, such
as DNN or RNN [21]. (3) CNN is suitable for learning the interactions between
words and deeply mining the semantic representations for sentences.

Fig. 4. CNN Layer, which contains several layers of convolution and p-max pooling.

As shown in Fig. 2, we design CNN Layer as a traditional model [5] that
selects several layers of convolution and p-max pooling. Then each sentence is
represented as a fixed length vector. Next, we will introduce the detail of the
convolution-pooling operation in CNN Layer.

Specifically, we analyze the first convolution-pooling operation, and the other
more operations are similar to that. In Input Layer, we transform a sentence
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into a sentence matrix input s ∈ R
N×d0 as the input of CNN Layer (showed

in Fig. 4), then the wide convolution operates on a sliding window of every k
words with a kernel k × 1. Through the first convolution operation, the input
sentence s = w1, w2, ..., wN is transformed to a new hidden sequence, i.e., ec =
{ #»e c

1,
#»e c

2, ...,
#»e c

N+k−1}, where:

#»e c
i = ReLU(G · [wi−k+1 ⊕ ... ⊕ wi] + b), (6)

here, G ∈ R
d×kd0 ,b ∈ R

d are the convolution parameters, and d is the output
dimension of the convolution operation. ReLU(x) is a nonlinear activation func-
tion which is equal to ReLU(x) = max(0, x). “⊕” is in order to concatenate k
word vectors into a long vector.

After the convolution operation, we obtain a local semantic representation
by convoluting sequential k words. Next, we leverage p-max pooling operation
to transform the convolution sequence ec into a new global hidden sequence, i.e.,
ecp = { #»e cp

1 , #»e cp
2 , ..., #»e cp

�(N+k−1)/p�}, where:

#»e cp
i =

⎡

⎣max

⎡

⎣
ec
i−p+1,1

...
ec
i,1

⎤

⎦ , ... , max

⎡

⎣
ec
i−p+1,d

...
ec
i,d

⎤

⎦

⎤

⎦ . (7)

Similar to the first convolution-pooling operation, more layers of convolution-
pooling processes are merged into the ACNN model to gradually express the
global semantic information of sequential words in a sentence. Finally, a sentence
consisted of N word embedding is transformed to a vectorial representation s ∈
R

d1 , where d1 is the output dimension of CNN Layer.
Through CNN Layer, the title of a patent is transformed into a vector

PTi ∈ R
d1 . Meanwhile, the abstract of a patent which contains M sentences

is represented by a matrix PAi ∈ R
M×d1 . The output form of CNN Layer is

showed in Fig. 2.

Attention Layer. After the previous layers’ operation, we obtain sentence
representation. However, it is not equally important for the M sentences of
the abstract contributing to the patent quality. Therefore, Attention Layer is
designed to assign different weights according to the title. Detailedly, the atten-
tion representations are modeled as vectors by a weighted sum aggregated result
of the sentence representations from abstract perspectives. For example, the
abstract attention score PAAi of a specific patent Pi is represented as follows:

PAAi =
M∑

j=1

αjs
PAi
j , αj = cos(sPAi

j , sPTi), (8)

here, sPAi
j is the j-th sentence in PAi, sPTi is the sentence representation of

patent title PTi; Cosine similarity αj is denoted as the attention score for mea-
suring the weight of the sentence sj in abstract PAi for patent Pi, which means
the importance of the contribution to the patent quality.



Patent Quality Valuation with Deep Learning Models 485

Prediction Layer. The last layer of ACNN is Prediction Layer, which aims at
predicting the quality Q̃i of patent Pi considered the abstract-attention represen-
tation PAAi, the title representation sPTi and the attribute network embedding
PUi. To be specific, we first merge those three representation vectors into a long
vector by concatenation operation, then use a classical full-connected network
[14] to learn the overall valuation representation oi, then predict the quality Q̃i

by LeakyReLU function, which we will discuss detailedly in Sect. 4:

oi = ReLU
(
WReLU · [PAAi ⊕ sPTi ⊕ PUi] + bReLU

)
, (9)

Q̃i = LeakyReLU(WLeakyReLU · oi + bLeakyReLU ), (10)

where WReLU , bReLU , WLeakyReLU , bLeakyReLU are parameters to tune the net-
work.

And we formulate the function by minimizing the least square loss with a
l2-regularization term:

J (Φ) =
∑

Pi

(Qi − Q̃i)2 + λΦ||ΦM||2, (11)

where M represents the DLPQV that transforms text materials, citation
relation and attribute information of patent Pi into predicted patent quality Q̃i

(Eq. (10)). ΦM denotes all parameters in DLPQV and λΦ is the regularization
hyperparameter.

4 Experiments

In this section, we first introduce our DLPQV framework settings, then compare
the performance of DLPQV against the baseline approaches on patent quality
valuation task. At last, we provide a case study to visualize the explanatory
power of DLPQV.

4.1 Dataset Description

The experimental dataset is supplied by United States Patent and Trademark
Office (USPTO)3, which grants US patents to inventors and assignees all over
the world since 1976. Patents are classified according to the technical features
of patented invention. These classification are mapped to broader, more easily
understood technology fields.

For data pre-processing, we extract 51224 patents from USPTO dataset as
our experimental dataset including the titles, abstracts, citation relation and
meta features. Text materials are cleaned by deleting stop words, and meta
features contain WIPO document kind codes, number of claims, categories by
National Bureau of Economic Research, authorization year, assign information

3 http://www.patentsview.org.

http://www.patentsview.org
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and so on, which are also transformed into one-hot form (8035 dimensions).
Lastly, the cited amount of a patent within two decades after granted is normal-
ized as the patent quality.

4.2 Experimental Setup

Word Embedding. The word embedding in Input Layer of ACNN are trained
on a large-scale gigaword corpus using public word2vec tool [23] with the dimen-
sion 100.

Fig. 5. Statistics of sentence and word distribution.

DLPQV Setting. In ANE of DLPQV, we set patent citation network embed-
ding dimension as 100, and negative sampling number is set as 4 when the
maximal length of sentence generation path is 40. In ACNN of DLPQV, we set
maximum length N(M) of words (sentences) in sentences (abstracts) as 10 (20)
(zero padded when necessary) according to our statistics in Fig. 5, i.e., around
90% sentences (abstracts) contains less than 10 (20) words (sentences). There
are four layers of convolution consisted of three wide convolutions and one nar-
row convolutions and max-pooling. And they are employed for CNN Layer in
ACNN to accommodate the sentence length N, where the numbers of the feature
maps for four convolutions are (200, 400, 600, 600) respectively. Meanwhile, the
kernel size k is set as 3 for all four convolution layers and the pooling window p is
set as (2, 2, 2, 1) for each max pooling respectively. We notice that LeakyReLU
performances better in the patent quality valuation task, due to the property
that it can not only preserve the advantage of ReLU like fast convergence speed,
but also retain the informance in the negative axis. LeakyReLU(x) denotes x
when x > 0, and αx when x � 0. Further, we choose the value of α as 0.1 by
conducting several experiments.

Training Setting. On the basis of the operation [24], we randomly initialize all
vector and matrix parameters in ACNN with uniform distribution in the range
between −√

6/(nin + nout) and
√

6/(nin + nout), where nin and nout are the
numbers of the input and output matrix feature sizes. To measure the perfor-
mance of DLPQV, we use the widely used Root Mean Squared Error (RMSE)
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for the comparison of patent quality valuation precision. Overall speaking, the
smaller the RMSE is, the better performance the result has.

RMSE =

√∑n
i=1(Qi − Q̃i)2

n
(12)

4.3 Baseline Approaches

To our best knowledge, this is the first work based on deep learning for predicting
patent quality valuation based on cited amount, which integrated text materials,
citation network and patent meta features, so we verify the effectiveness of each
component of DLPQV. The details of comparison are as follows:

– ANE : ANE is a framework without ACNN part, and only use citation network
embedding PUi as the patent embedding to predict the patent quality Qi.

– ACNN : ACNN only consider text materials without citation relation and
patent meta features.

– CNN : CNN is a framework with attention-ignored strategy compared with
ACNN. Here, the attention-ignored strategy means the attention parameters
α in Eq. (8) are the same for all sentences.

– ANE-CNN : ANE-CNN is a framework with attention-ignored strategy com-
pared with DLPQV.

Both DLPQV and baselines are all implemented by Tensorflow and all exper-
iments are run on a Tesla K20m GPU.

Fig. 6. Overall performance on the patent quality valuation task.

4.4 Experimental Results

Overall Results. To observe the several models’ performance for different data
sparsity, we randomly select 80%, 60%, 40% of the extracted patent dataset
as the training sets, and the rests as testing sets, respectively. In Fig. 6, we
summarize the patent quality valuation results of all models. Obviously, we can
see that DLPQV model performs best. Concretely, DLPQV performs better than
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ANE, which indicated that the semantic representation from ACNN can provide
patents’ content features to improve the patent quality valuation accuracy rate.
Both attribute information and patent effects are well integrated to enhance the
network embedding so that Fig. 6 shows DLPQV beats ACNN, which indicates
that ANE is also significant to DLPQV. Meanwhile, ACNN beats CNN as well
as DLPQV beats ANE-CNN, which qualifies the contributions of texts with
attention strategy. In summary, DLPQV has a best performance in different
scale of training sets, and each part of DLPQV provides an important role for
enhancing patent quality’s forecast accuracy.

5 Conclusions

In this paper, we proposed a novel Deep Learning based Patent Quality Valua-
tion (DLPQV) framework to predict patent quality. It is the first one to apply
deep learning method to patent quality valuation problem with attribute net-
work embedding and CNN method combined. We firstly design ANE to learn
the patent embedding from attribute citation networks. Then, in order to rep-
resent text materials, we use a CNN-based architecture for exploiting sentence
representations with attention strategy. And we qualified the contributions of
abstract sentences to the patent valuation by an attention strategy. Finally, we
mix citation network embedding and text representation to generate the patent
quality prediction value. Experiments on real-world dataset supplied by USPTO
proved that our framework could effectively predict the patent quality. In the
future, we will focus on the patent quality variation tendency over time based
deep learning method.
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Abstract. Domain adaptation is widely used in database applications,
especially in data mining. The basic assumption of domain adaptation
(DA) is that some latent factors are shared by the source domain and
the target domain. Revealing these shared factors, as a result, is the core
operation of many DA approaches. This paper proposes a novel app-
roach, named Learning Distribution-Matched Landmarks (LDML), for
unsupervised DA. LDML reveals the latent factors by learning a domain-
invariant subspace where the two domains are well aligned at both fea-
ture level and sample level. At the feature level, the divergences of both
the marginal distribution and the conditional distribution are mitigated.
At the sample level, each sample is evaluated so that we can take full
advantage of the pivotal samples and filter out the outliers. Extensive
experiments on two standard benchmarks verify that our approach can
outperform state-of-the-art methods with significant advantages.

Keywords: Domain adaptation · Transfer learning
Landmark selection

1 Introduction

In real-world multimedia databases and data mining applications, cross-domain
contents are often involved, such as videos, audios, texts and so on [3,5,29].
Naturally, there exists the need for multi-domain knowledge transferring among
these applications. For example, if a biologist wants to develop an application
that can accurately index or retrieve an endangered breed of bird, numerous
labeled images of the birds are required if he or she employs the conventional
machine learning algorithms. Unfortunately, it is impossible to collect plenty of
such images and consume high labor-cost to label them manually. In recent years,
DA algorithms get a rapid development for their advantage on solving the cross-
domain knowledge transfer problems. Domain adaptation has been widely used
in computer vision and database applications, such as image classification [18,
19], object recognition [11], text analysis [29] and recommendation systems [16].
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J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 491–508, 2018.
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The principle of existing DA algorithms is to learn the latent shared factors
between the source and target domains. These factors are at either feature level
or sample level. Most existing DA algorithms, therefore, can be roughly classified
into two groups: feature-based methods and sample-based methods.

Methods in the first group aim to reduce the gaps between domains at the
feature level. The idea of these methods is to learn a new feature representa-
tion, typically a latent subspace, to minimize distribution divergence between
domains. For example, Gopalan et al. [11] find intermediate representations by
learning subspaces along the geodesic path that connects the source subspace
and the target one on the Grassmann manifold. Fernando et al. [7] align sub-
spaces of the two domains by directly using one linear mapping matrix so that
the source and target subspaces can move closer. LRDE [18] constructs a novel
graph structure under the graph embedding framework so that it can preserve
geometric information in both the ambient instance space and the embedding
feature space. JGSA [28] learns two coupled projections that project the source
domain and the target domain data onto low-dimensional subspaces where the
geometric structures are preserved and the distribution divergence is reduced.
For a better understanding, we show the main idea of these methods in Fig. 1(a)
and (b).

Methods in the second group employ landmark selection at the sample level.
Landmarks are defined as a subset of the training samples which can bridge the
two domains. Figure 1(c) illustrates the importance of landmark selection. After
projecting data onto a low-dimensional subspace, discrepancies among samples
remain. Some cross-domain pivotal samples are close to each other and can
reduce the distribution divergence between domains, while other samples are far
from the ones in the other domain and can increase the gaps between domains.
The process of landmark selection takes full advantage of pivotal samples that
align the source and target domains well, and filters out outliers. For instance,
Gong et al. [9] discover landmarks at multiple granularities and construct auxil-
iary tasks correspondingly to compose domain-invariant features. LSSA [1] com-
putes a quality measure for each sample using the Gaussian kernel. If the mea-
sure is above a threshold, the corresponding sample is selected as a landmark.
CDLS [15] selects landmarks that match cross-domain data distributions well by
using the empirical Maximum Mean Discrepancy (MMD) [12].

However, most of the existing approaches are based on either features or sam-
ples. They consider only one of the two factors independently. We observe that
features and samples are factors at two different levels, and they can adapt two
domains at different granularities: coarse-grained adaptation at the sample level
and fine-grained adaptation at the feature level. It is obvious that both of the
factors are interrelated and can reinforce each other. Therefore, in this paper,
we propose a novel approach, named Learning Distribution-Matched Landmarks
(LDML), for unsupervised DA. LDML learns a domain-invariant subspace where
the two domains are well aligned at both feature level and sample level. Tech-
nically, at the feature level, we use MMD as the measure of the marginal and
conditional distribution divergences. Then, minimizing MMD is employed to
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Fig. 1. The main idea of LDML. Points with the same color stand for samples that
belong to the same domain and points with the same shape stand for samples that
belong to the same class. The size of a point represents the weight of a sample. (a)
the distribution divergence of data in their original spaces is large; (b) the distribu-
tion divergence between domains is reduced after mapping data onto a latent shared
subspace; (c) select landmarks that can bridge the source and target subspaces.

align the two domains. Furthermore, we construct a graph under the graph
embedding framework to preserve the locality structures in both domains. At
the sample level, we evaluate each sample and put different weights on them. As
a result, the pivotal samples are selected automatically in the iteration process
and can be used to train a robust model. The contributions of this paper can be
summarized as follows:

(1) We propose a multi-granularity DA method which considers factors at not
only fine-grained feature level but also coarse-grained sample level. There-
fore, our method can not only reduce the distribution divergence between
domains but also be robust to outliers.

(2) Different from the conventional domain adaptation methods which learn
only one projection matrix, we learn two projection matrices, one for each
domain, so that the proposed method is more generalized and can be easily
extended to handle the heterogeneous domain adaptation problems where
the two domains may have different dimensionalities and features.

(3) Extensive experiments on two standard benchmarks with three features ver-
ify that our algorithm outperforms state-of-the-art algorithms with a signif-
icant advantage.

2 Related Work

As stated above, existing DA methods can be roughly classified as feature-based
methods and sample-based methods. We now give a brief review of these methods
from both categories.

Feature-based methods can be further categorized as distribution match-
ing, e.g., subspace learning [17,20,22], and property preserving, e.g., geometric
structures preserving [8,28]. Distribution matching algorithms reduce marginal
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or conditional distribution divergence through learning a latent subspace shared
by the two domains. The MMD-based subspace learning algorithms [20,22] are
the typical examples of distribution matching. For instance, TCA [22] learns
some transfer components across domains in a Reproducing Kernel Hilbert
Space using MMD, which mitigates the marginal distribution between domains.
JDA [20] improves TCA by jointly considering the marginal and the conditional
distributions and building a new feature representation to guarantee robust-
ness. Property preserving algorithms preserve important properties when embed-
ding data to a low-dimensional subspace. Graph-based subspace learning algo-
rithms [4,18,26] belong to this category. For example, LRDE [18] constructs a
novel graph structure under the graph embedding framework. Specifically, LRDE
builds a within-class graph to encourage data in the same class to move closer,
and a between-class graph to make data between classes far away. JGSA [28] is
a feature matching algorithm which learns two coupled projections that project
the two domains onto low-dimensional subspaces where the geometric structures
are preserved and the distribution divergence is reduced.

Landmark [30] selection is a DA method at the sample level. For instance,
TJM [21] employs instance reweighting by imposing the �2,1-norm regularizer
on the source projection matrix. CDLS [15] selects landmarks that have higher
matching degree across domains by minimizing MMD. LSSA [1] uses the Gaus-
sian kernel to compute quality measures of all samples and selects landmarks by
a quality threshold.

The most related work is JGSA [28]. However, our method is significantly
different from JGSA in at least two aspects:

(1) JGSA is merely a feature-based method which does not consider discrepan-
cies among samples. When the two domains are not closely related, JGSA
still enforces samples close to each other though they are far away. This
transfer may degrade the performance of DA, even lead to the negative
transfer [23]. LDML reweights samples to ensure that the pivotal samples
are taken full advantage of and outliers are filtered out. The advantage of
landmark selection is illustrated in Fig. 1.

(2) To preserve the discriminative information, JGSA employs the LDA criterion
on the source domain data, which assumes the data are sampled from Gaus-
sian distribution and makes the algorithm sensitive to outliers [27]. LDML
applies the graph embedding strategy to preserve the local and global geo-
metric information, which is more robust.

Experimental results in Sect. 4.4 show that our method can achieve better
performance compared with JGSA.

3 Learning Distribution-Matched Landmarks

3.1 Problem Definition

Definition 1. A domain D is defined by a feature space χ and its probability
distribution P (X), where X ∈ χ. For a specific domain, a classification task T
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consists of class information y and a classifier f(x), that is T = {y, f(x)}. We
use subscripts s and t to indicate the source domain and the target domain,
respectively. This paper focuses on the following problem:

Problem 1. Given a labeled source domain {Xs, ys} and an unlabeled target
domain {Xt, yt}, where Xs and Xt are the source and target domain samples,
ys and yt are labels for the corresponding domains respectively, yt is unknown,
P (Xs) �= P (Xt) and P (ys|Xs) �= P (yt|Xt), project the source and target domains
onto a subspace by projection matrices A and B so that the common latent
features shared by involved domains are uncovered, the data manifold structure
is preserved, and the domain difference is minimized.

3.2 Problem Formulation

Distribution Matching. LDML reveals the latent factors by learning a
domain-invariant subspace where the two domains are well aligned at both fea-
ture level and sample level. Previous work [14,20] only learn one projection
matrix, which has a major limitation when the two domains have different dimen-
sionalities. To gain strong generalization ability, we learn two different projec-
tion matrices, one for each domain. We deploy these two matrices to project the
source and target domain data onto a latent shared subspace. Specifically, let
A be the projection matrix for the source domain and B for the target domain.
Xs ∈ R

m×ns and Xt ∈ R
m×nt are the source and target domain data respec-

tively, where ns and nt are the total numbers of the corresponding domain sam-
ples, m is the original dimensionality. A ∈ R

m×d can project the source domain
data onto a d-dimensional subspace, where d � m. Then, the low-dimensional
data can be represented by ATXs. Similarly the low-dimensional representation
of the target domain data Xt is BTXt. Considering the substantial distribution
divergence, we align both the marginal and the conditional distribution between
the two domains by adopting MMD. It is worth noting that the learned subspace
should be shared by two domains. Therefore, we employ the Frobenius norm to
minimize the distance between the two domains. Then, our objective function
can be written as:

min
A,B

EM(Xs,Xt, A,B) + EC(Xs,Xt, A,B) + λ
∣
∣
∣
∣A − B

∣
∣
∣
∣
2

F
, (1)

where λ > 0 is the regularization parameter, EM and EC match the marginal
and the conditional cross-domain data distributions, respectively. For simplicity,
we set EM and EC with the same coefficient. EM can be calculated as:
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EC can be calculated as:

EC =
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(3)

where C is the number of classes, nc
s and nc

t denote the total numbers of the
source and target domain samples in class c, respectively. Since labels in the
target domain are not available, we use the pseudo labels to classify the target
domain samples.

Landmark Selection. At the sample level, we learn two weight vectors α
and β for the source and target domains, respectively. Each entry of the vector
is a weight of the corresponding sample. Then the objective function can be
rewritten as:

min
A,B

EM(α, β,Xs,Xt, A,B) + EC(α, β,Xs,Xt, A,B) + λ
∣
∣
∣
∣A − B

∣
∣
∣
∣
2

F
,

s.t. {αc
i , β

c
i } ∈ [0, 1],

αcT1nc
s

nc
s

=
βcT1nc

t

nc
t

= δ ,

(4)

where α = [α1; · · · ;αc; · · · ;αC ] ∈ R
ns and β = [β1; · · · ;βc; · · · ;βC ] ∈ R

nt

are the weights of data in the source and target domains respectively, αc =
[αc

1; · · · ;αc
nc
s
], βc = [βc

1; · · · ;βc
nc
t
], 1nc

s
∈ R

nc
s and 1nc

t
∈ R

nc
t are column vectors

with all ones. δ ∈ [0, 1] controls the average weight of the whole source or target
domain samples.

The EM and EC in (4) can be updated as:
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Equation (4) can be further transformed to its matrix form as follows:

min
A,B

Tr
(

[
AT BT

]
[
Mss + λI Mst − λI
Mts − λI Mtt + λI

][
A
B

])

, (5)

where
Mss = XsHssX

T
s , Mtt = XtHttX

T
t ,

Mst = XsHstX
T
t , Mts = MT

st .

Each entry (Hss)ij in Hss ∈ R
ns×ns denotes the coefficient associated with

xi
s
T
xj
s . Similar remarks can be applied to Htt ∈ R

nt×nt and Hst ∈ R
ns×nt .

Detailed derivations are similar to that in CDLS [15]. For the conciseness, we
omit the regular mathematical derivations in this paper.
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Locality Structure Preservation. In general, a sample tends to have the
same label with its k-nearest neighbors. This locality property is crucial in many
computer vision tasks [4,18]. Therefore, we propose to preserve the geometric
structures in the source domain so that the discriminative information can be
maximized and then be transferred to the target domain. On the other hand, the
geometric structures in the target domain should be preserved as well, so that
the manifold structures in the original space can be retained. So we introduce
two Laplacian graph terms, one for each domain:

min
Tr(ATXsL

s
wXT

s A)
Tr(ATXsLs

bX
T
s A)

= min
Tr(ATSs

wA)
Tr(ATSs

bA)
, (6)

min
Tr(BTXtL

t
wXT

t B)
Tr(BTXtLt

bX
T
t B)

= min
Tr(BTSt

wB)
Tr(BTSt

bB)
, (7)

where
Ss
b = XsL

s
bX

T
s , Ss

w = XsL
s
wXT

s ,

St
b = XtL

t
bX

T
t , St

w = XtL
t
wXT

t ,

where L = D − W , D is a diagonal matrix and its diagonal entry is Dii =
∑

j �=i Wij . Ls
w and Ls

b are the Laplacian matrices of the intrinsic graph and the
penalty graph for the source domain. Similarly, Lt

w and Lt
b are the Laplacian

matrices for the target domain. Ww and Wb are the weight matrices for the
intrinsic graph and the penalty graph, respectively. In this paper, we follow the
following two criteria to construct Ww and Wb.

(a) Construct the intrinsic weight matrix Ww: For each sample x, connect the
nearest neighbor v with x where v has the same class information with x.

(b) Construct the penalty weight matrix Wb: For each domain, connect the k-
nearest vertex pairs where samples in each pair belong to different classes.

By applying (a), samples from the same class can be more compact and
the local manifold structure can be preserved. By deploying (b), samples from
the same domain but different classes can be more separable and the global
discriminative information can be retained. We apply the heat kernel method to
get Ww and Wb, e.g., if two samples xi and xj are connected, then the weight
of them is exp(−((||xi − xj ||2)/(2σ2))), otherwise it is 0.

Overall Objective Function. Considering all the above discussions, we get
the overall objective function:

min
A,B

Tr
(

[
AT BT

]
[
Mss + γSs

w + λI Mst − λI
Mts − λI Mtt + γSt

w + (λ + μ)I

][
A
B

])

Tr
(

[
AT BT

]
[
γSs

b 0
0 γSt

b + μSt
h

][
A
B

]) , (8)

where
St
h = Xt(It − 1

nt
1nt1

T
nt

)XT
t (9)
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is the covariance matrix of the target domain, γ, μ and λ are trade-off param-
eters for the graph-embedding term, the target variance term and ||A − B||2F,
respectively.

3.3 Problem Optimization

Optimizing A and B. To optimize (8), we rewrite[A;B] as P . Thus, the
objective function can be rewritten as:

min
P

Tr
(

PT

[
Mss + γSs

w + λI Mst − λI
Mts − λI Mtt + γSt

w + (λ + μ)I

]

P

)

Tr
(

PT

[
γSs

b 0
0 γSt

b + μSt
h

]

P

) . (10)

We can reformulate (10) as:

max
P

Tr
(

PT

[
γSs

b 0
0 γSt

b + μSt
h

]

P

)

, (11)

s.t. Tr
(

PT

[
Mss + γSs

w + λI Mst − λI
Mts − λI Mtt + γSt

w + (λ + μ)I

]

P

)

= 1 .

The Lagrange function of (11) is

L = Tr
(

PT

[
γSs

b 0
0 γSt

b + μSt
h

]

P

)

+ Tr
((

PT

[
Mss + γSs

w + λI Mst − λI
Mts − λI Mtt + γSt

w + (λ + μ)I

]

P − I

)

Φ

), (12)

where Φ = diag(φ1, · · · , φd) and (φ1, · · · , φd) are the d largest eigenvalues of the
following eigendecomposition problem:

[
γSs

b 0
0 γSt

b + μSt
h

]

P =
[
Mss + γSs

w + λI Mst − λI
Mts − λI Mtt + γSt

w + (λ + μ)I

]

PΦ. (13)

As a result, P consists of the corresponding d eigenvectors of the above
problem. Once the transformation matrix P is obtained, the subspace A and B
can be obtained easily.

Optimizing α and β. By regarding A and B as constants, the optimization of
our objective function can be written as:

min
α,β

1
2
αTKssα − αTKstβ, (14)

s.t. {αc
i , β

c
i } ∈ [0, 1],

αcT1
nc
s

=
βcT1
nc
t

= δ ,
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where (Kss)i,j in Kss ∈ R
ns×ns is the coefficient associated with (ATxi

s)
TATxi

s,
and (Kst)i,j in Kst ∈ R

ns×nt is the coefficient associated with (ATxi
s)

TBTxj
t .

Limited by space, the detailed derivations are omitted since they are similar to
that in CDLS [15].

With the above formulation, we can apply Quadratic Programming (QP)
solvers to optimize the equivalent problem:

min
zi ∈ [0, 1], ZTV = G

1
2
ZTBZ, (15)

where

Z =
(

α
β

)

, B =
(

Kss −Kst

−KT
st 0

)

, G ∈ R
1×2C with

(G)c =

{

δnc
s if c ≤ C

δnc−C
t if c > C

, V =
[

Vs 0ns×C

0nt×C Vt

]

∈ R
(ns+nt)×2C with

(Vs)ij =

{

1 if xi
s ∈ class j

0 otherwise
, (Vt)ij =

{

1 if xi
t predicted as class j

0 otherwise
.

Finally, we use the weight sensitive libsvm [2] to train a classifier so that
the learned weights can be fully exploited. We show the procedure of LDML in
Algorithm 1.

3.4 Computational Complexity

Now we analyze the computational complexity of Algorithm 1 by the big O nota-
tion. As stated above, Xs ∈ R

m×nt , Xt ∈ R
m×ns , X = [Xs Xt] ∈ R

m×n, A ∈
R

m×d, B ∈ R
m×d, where m is the original dimensionality, d is the dimensionality

of the subspace, n = ns + nt is the number of all samples. We note the number
of classes as C and the number of iterations as T . The time cost of Algorithm1
consists of the following three parts:

(1) Solving the eigendecomposition problem in step 2 is O(Tdm2).
(2) Solving the equality constrained QP problems in step 5 is O(Tn3).
(3) Computing the MMD matrices and the graph embedding matrices in step 6

are both O(TCn2).

Then, the overall computational complexity of Algorithm 1 is O(Tdm2 +
Tn3 + TCn2). In Sect. 4.5, we show that the number of iterations T is usually
set as 5, which is enough to guarantee convergence. Besides, the typical values
of d are not greater than 200, so T � min(m,n), d � min(m,n). Therefore,
the computational complexity of Algorithm 1 depends mainly on the number of
samples n and the dimensionality m.
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Algorithm1: Learning Distribution-Matched Landmarks
Input: source and target domain data: Xs, Xt; labels for source domain data:ys;

Parameters: δ = 0.5, d, λ, μ, γ
Output: Predicted labels yt for target domain data
begin

1: Initialize pseudo labels of target domain ŷt using PCA; Construct St
h, Mss, Mtt, Mst,

Mts, Ss
b, Ss

w, St
b, St

w according to (9)(5)(6)(7);
while not converge do

2: Solve the generalized eigendecomposition problem in (13) and select d corresponding
eigenvectors of d largest eigenvalues as the transformation P , and obtain transformation
A and B;

3: Map the original data to respective subspace to get the embeddings: Zs = ATXs,

Zt = BTXt;
4: Train a SVM classifier on α, Zs, ys to update pseudo labels in target domain ŷt;
5: Update landmark weights α, β by (15);
6: Update Mss, Mtt, Mst, Mts, St

b, St
w by (5)(6)(7);

end while
end

4 Experiments

4.1 Datasets

Office + Caltech: Office [24] consists of three different datasets: Amazon
(images downloaded from amazon.com), Webcam (low-resolution images taken
by a web camera), DSLR (high-resolution images taken by a digital SLR cam-
era). Caltech [13] is a dataset which has 256 classes and 30, 607 images. Ten
common classes of all four datasets are selected [10] and each dataset is regarded
as a domain. As a result, we have four domains: C (Caltech), A (Amazon), W
(Webcam), D (DSLR) and 12 DA evaluations by selecting two different domains
as the source and target domains respectively. We consider two types of features:
SURF and DeCAF6 [6]. SURF features are encoded with the 800-bin histogram
with codebooks trained from a subset of Amazon images. DeCAF6 are activation
features of the 6th fully connected layer of a convolutional network constructed
by [6].

PIE: PIE [25] is a face recognition benchmark which has 68 individuals with
41, 368 face images. These individuals have different poses, expressions and illu-
minations. Five subsets of PIE are selected to conduct the face recognition exper-
iments: C05 (left pose), C07 (upward pose), C09 (downward pose), C27 (frontal
pose) and C29 (right pose). All face images are cropped and resized to 32 × 32
pixels and then converted to grayscale. Each subset is regarded as a domain,
and each time one subset plays the role of the source domain and the other one
plays the role of the target domain. Then, we can generate 20 DA evaluations.

4.2 Compared Baselines

We compare our LDML with the following six state-of-the-art baselines: trans-
fering with SVM, subspace alignment (SA) [7], geodesic flow kernel (GFK) [10],
joint distribution analysis (JDA) [20], transfer joint matching (TJM) [21], joint
geometrical and statistical alignment (JGSA) [28].

http://amazon.com/
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4.3 Experimental Settings

Following the previous work [10,21], we normalize all of the data to have zero
mean and unit standard deviation in each dimension.

For all the baselines, we report the best results we can achieve. For LDML, we
fix the average weight δ = 0.5. Both of the numbers of neighbors in the intrinsic
graph and the penalty graph are 5. The number of iterations T is usually set to
5 except for testing the convergence of our method. For different experimental
tasks, we set different hyperparameters to gain good performance. Specifically,
when evaluating our method on Office + Caltech with SURF features, we set
λ = 0.5, μ = 0.1, γ = 0.001, d = 40. On Office + Caltech with DeCAF6 features,
we set λ = 0.05, μ = 0.5, γ = 0.01, d = 40. On PIE dataset, we set λ = 1,
μ = 0.1, γ = 0.02, d = 120.

To exploit the learned weights for samples, our LDML uses the weight sensi-
tive SVM to train a classifier. For fairness, we also use SVM to train classifiers
on some baselines, e.g., SA, JDA, TJM and JGSA.

In this paper, we follow the previous work [10,22] and use the following
equation as the classification accuracy:

|x : x ∈ Xt ∧ ŷt = yt|
|x : x ∈ Xt| ,

where x is a sample in target domain, yt is the real label for x, and ŷt is the
predicted label for x.

4.4 Experimental Results

The results of LDML and other baseline methods on all the datasets are reported
in Tables 1, 2 and 3.

On Office + Caltech with SURF features, LDML achieves the best classi-
fication accuracy on 8 out of 12 evaluations. Besides, the average accuracy of
LDML is 55.81%, gaining an improvement of 3.43% compared with the best
baseline JGSA. JGSA is a method that can reduce not only the distribution
divergence but also the geometrical divergence simultaneously when projecting
data onto low-dimensional subspaces. However, since the domain difference in
Office + Caltech is substantially large, there may exist samples in one domain
that are irrelevant to samples in the other domain even in subspaces learned by
JGSA. LDML handles limitation of JGSA by selecting pivotal samples in both
of the source and target domains, which contributes to the better performance
compared with JGSA.

On Office + Caltech with DeCAF6 features, all of the methods achieve bet-
ter performance than that on Office + Caltech with SURF features, especially
our LDML. LDML achieves the best classification accuracy on 10 out of 12
evaluations. It is also observed that LDML, JGSA and JDA achieve the best
three average classification accuracies. The common point of these methods is
that they all reduce both the marginal and conditional distribution divergences
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Table 1. Accuracy (%) on the Office + Caltech dataset with SURF features.

Xs Xt SVM GFK SA JDA TJM JGSA LDML

C A 54.18 41.02 51.04 54.28 51.77 58.87 59.60

W 44.41 40.68 40.34 47.80 44.41 54.58 58.98

D 43.95 38.85 45.86 45.86 49.68 45.22 54.14

A C 45.41 40.25 44.79 43.46 43.99 40.69 45.24

W 36.61 38.98 38.64 46.10 45.08 60.34 55.25

D 37.58 36.31 39.49 40.76 45.22 58.60 52.87

W C 33.04 30.72 35.71 32.23 35.89 31.79 37.76

A 34.55 29.75 36.95 38.41 38.10 40.40 43.11

D 84.08 80.89 71.97 84.08 82.17 84.71 91.72

D C 30.01 30.28 34.11 33.30 35.80 34.11 35.44

W 32.57 32.05 35.39 35.60 37.16 38.62 44.47

A 73.90 75.59 76.61 82.03 84.75 80.68 91.19

Avg. 45.86 42.95 45.91 48.65 49.50 52.38 55.81

Table 2. Accuracy (%) on the Office + Caltech dataset with DeCAF6 features.

Xs Xt SVM GFK SA JDA TJM JGSA LDML

C A 89.46 89.04 90.61 90.60 90.92 92.07 92.90

W 77.28 87.80 82.37 80.68 86.10 83.05 89.49

D 80.25 85.99 86.62 84.71 87.90 88.54 89.81

A C 81.21 78.45 84.06 85.04 82.46 85.57 87.71

W 74.58 81.02 82.71 87.46 86.10 86.78 87.12

D 82.80 80.25 86.62 89.17 87.90 87.90 87.26

W C 66.34 72.31 76.58 82.37 79.52 85.40 87.00

A 75.68 81.84 84.45 90.61 89.04 91.34 91.44

D 99.36 100 99.36 99.36 98.73 99.36 100

D C 64.74 75.96 73.73 72.31 73.91 74.98 88.07

W 76.93 77.35 84.45 89.46 88.52 88.94 93.11

A 97.29 97.29 94.24 97.29 94.58 99.66 99.66

Avg. 80.49 83.94 85.48 87.42 87.14 88.63 91.13

simultaneously by using MMD. TJM only considers the marginal distribution
divergence, which leads to its relatively poor performance.

On PIE dataset, LDML outperforms state-of-the-art methods on all of the 20
evaluations. The average classification accuracy of LDML is 82.36%, which over-
whelmingly has a 19.62% improvement compared with the best baseline JGSA.
On PIE dataset, the Euclidean distance between samples from one domain but
different classes may be smaller than that of samples within one class but from
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Table 3. Accuracy (%) on the PIE dataset.

Xs Xt SVM GFK SA JDA TJM JGSA LDML

C05 C07 33.52 45.49 35.54 54.08 34.87 52.73 80.11

C09 43.69 50.31 46.38 60.54 44.36 51.84 72.49

C27 61.28 65.82 63.62 85.97 60.74 73.72 95.31

C29 36.46 41.97 39.58 49.33 34.93 52.39 64.64

C07 C05 42.05 46.91 44.24 60.41 38.75 64.26 80.34

C09 41.85 56.74 44.06 55.45 49.82 58.88 75.49

C27 65.64 70.86 66.45 82.43 63.41 70.71 94.86

C29 34.13 41.85 35.48 47.37 35.23 49.02 69.73

C09 C05 49.58 48.65 51.80 58.64 43.04 64.89 78.75

C07 42.91 56.23 46.41 49.60 38.74 59.91 79.19

C27 67.98 74.95 68.76 67.80 65.33 72.63 96.00

C29 42.40 50.61 45.22 46.69 41.12 57.72 74.69

C27 C05 66.96 71.43 69.57 79.26 63.39 74.73 95.98

C07 62.06 81.34 64.03 77.59 60.59 76.24 96.13

C09 70.71 86.34 72.06 77.45 74.39 67.89 94.24

C29 54.23 59.87 55.94 58.88 50.61 63.05 84.74

C29 C05 46.16 39.98 48.50 51.02 37.18 63.99 77.46

C07 34.81 38.80 35.30 42.79 29.28 54.02 69.06

C09 47.98 48.96 49.39 41.85 42.77 59.87 77.63

C27 59.12 54.73 59.51 62.51 46.77 66.39 90.36

Avg. 50.17 56.59 52.09 60.48 47.77 62.74 82.36

different domains. The illustration can be seen in Fig. 2. To handle this, LDML
constructs an intrinsic graph to preserve the local manifold structure, and a
penalty graph to make samples with different labels more separable. This novel
graph structure enhances the discriminability of the model and leads to the
best performance of LDML on PIE dataset. We also notice that TJM performs
poorly on PIE dataset, even not as good as SVM. TJM imposes �2,1 norm on the
source projection matrix to get the “row sparsity”. On PIE dataset, �2,1 norm
reinforces the modal information among the faces with the same pose but from
different people, and weaken the classification information among the faces from
one person but with different poses. This results in low performance of TJM.

Above all, our LDML obviously performs the best on almost all evaluations,
especially on PIE dataset. The only two exceptions are on A → W and A → D.
As stated in [10], Amazon is greatly different from Webcam and DSLR geo-
metrically and statistically. Besides, we also notice that Amazon is the unique
dataset where images usually have no backgrounds. In this case, the MMD dis-
tances of almost all cross-domain sample pairs are so far that the selected land-
marks have no obvious discrepancies with other samples. Even so, LDML still
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(a) (b) (c)

Fig. 2. Three faces are chosen from the CMU PIE dataset. Profile and frontal faces can
be regarded as two domains. The faces of different people represent different classes.
Figure 2(a) and (b) are two faces from the same domain but with different labels.
Figure 2(b) and (c) are two faces with the same label but from different domains. We
simply compute the Euclidean distance of two images. One is between the profile face
of two classes in (a) and (b), the other is between two domains of one class in (b) and
(c). We get that the distance of (a) and (b) is much smaller than that of (b) and (c),
which is a common phenomenon in PIE dataset.

achieves the second-best performance on A → W(SURF), A → D (SURF) and
A → W (DeCAF6), which reveals the robustness of LDML.

4.5 Parameter Sensitivity and Convergence

To analyze the parameter sensitivity, we evaluate four hyperparameters: λ, μ,
γ and d. When one of them is being evaluated, we set the others the same
as parameters in Sect. 4.3. We conduct sensitivity analysis on C05 → C07 and
C → A. The results are shown in Fig. 3.

In Fig. 3(a), when the dimensionality of subspace d varies from 20 to 200,
the classification accuracies on Office + Caltech with both SURF and DeCAF6

features fluctuate in small ranges. We observe that the classification accuracy
on PIE is sensitive to d and the optimal range of d on PIE is between 100 and
120. In Fig. 3(b), it is obvious that the classification accuracy will reduce on all
datasets if γ > 0.01. In Fig. 3(c), we can observe that the optimal λ for Office +
Caltech is around 0.1, while the optimal λ for PIE is around 1. In Fig. 3(d), μ
affects the performance on Office + Caltech dataset little when μ > 0.01, while
the optimal μ on PIE is around 0.1.

To show the convergence of our method, we report the values of the objective
function on C → W (SURF), C → W (DeCAF6) and C05 → C07 with different
iterations. The results are illustrated in Fig. 4. It is obvious that the value of
the objective function is monotonically decreasing when T ≤ 5 and keeps stable
when T > 5. This result reveals that LDML can converge in 5 iterations.

4.6 Effectiveness Analysis

To evaluate the effectiveness of landmark selection, we conduct experiments
on Office + Caltech (SURF) with two settings: one is LDML with the same
weight, the other is LDML with landmark selection. The results are reported
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Fig. 3. Parameter sensitivity.

Fig. 4. Convergence analysis.

in Table 4. We observe that LDML with landmark selection achieves the better
performance on 10 out of 12 evaluations. Besides, the average accuracy of LDML
with landmark selection gains an improvement of 2.13% compared with that of
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Table 4. Effectiveness analysis: accuracies (%) of two settings on Office + Caltech
(SURF).

Method C → A C → W C → D A → C A → W A → D -

No landmarks 58.35 61.02 54.14 43.01 50.51 47.77 -

With landmarks 59.60 58.98 54.14 45.24 55.25 52.87 -

Method W → C W → A W → D D → C D → A D → W Avg.

No landmarks 30.81 41.02 92.99 31.26 42.07 91.19 53.68

With landmarks 37.76 43.11 91.72 35.44 44.47 91.19 55.81

LDML with the same weight. These results reveal the effectiveness of landmark
selection in our method.

5 Conclusion

In this paper, we propose a novel method for unsupervised domain adaptation,
named Learning Distribution-Matched Landmarks (LDML). LDML aligns the
source and target domains by reducing the distribution divergence and selecting
landmarks that bridge two domains. Comprehensive experiments on two real-
world datasets verify the effectiveness of the proposed method. In the future, we
plan to extend our LDML to be capable of handling the heterogeneous DA.
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Abstract. We address the problem, i.e., early prediction of activity pop-
ularity in event-based social networks, aiming at estimating the final pop-
ularity of new activities to be published online, which promotes appli-
cations such as online advertising recommendation. A key to success
for this problem is how to learn effective representations for the three
common and important factors, namely, activity organizer (who), loca-
tion (where), and textual introduction (what), and further model their
interactions jointly. Most of existing relevant studies for popularity pre-
diction usually suffer from performing laborious feature engineering and
their models separate feature representation and model learning into two
different stages, which is sub-optimal from the perspective of optimiza-
tion. In this paper, we introduce an end-to-end neural network model
which combines the merits of Memory netwOrk and factOrization moD-
els (MOOD), and optimizes them in a unified learning framework. The
model first builds a memory network module by proposing organizer
and location attentions to measure their related word importance for
activity introduction representation. Afterwards, a factorization module
is employed to model the interaction of the obtained introduction repre-
sentation with organizer and location identity representations to generate
popularity prediction. Experiments on real datasets demonstrate MOOD
indeed outperforms several strong alternatives, and further validate the
rational design of MOOD by ablation test.

Keywords: Popularity prediction · Event-based social network
Memory network · Factorization model

1 Introduction

In recent years, a growing body of studies have explored the problem of pop-
ularity prediction for user-generated content [1], which finds a wide range of
real applications, including online advertising [2], recommender system [3], and
trend detection [4], to name a few. In this paper, we present a new variant of
general popularity prediction problem, titled early prediction of activity popular-
ity. Activity is the fundamental component in event-based social networks [5–8],
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 509–525, 2018.
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an increasingly popular social media linking online and offline worlds. This prob-
lem focuses on predicting the ultimate number of participants given activities
to be published online with respect to three important types of factors, namely,
organizer (Who organize the activities?), location (Where are the activities
held?), and textual introduction (What are the activities about?). It is signifi-
cant for both activity organizers to understand whether their activities will be
attractive in advance and ordinary users to avoid information overload and filter
unappealing activities (see Fig. 1).

Many efforts have been devoted to different popularity prediction problems
in the literature [9–12]. Among them, textual based static popularity modeling
approaches [13–15], which have no need of targets’ existing popularity dynamics
over time, are relevant to our study. However, most of these approaches suf-
fer from heavy engineering cost to pursue effective representations of different
factors for the studied targets, especially for unstructured textual data. Such
complicated feature design limits its generalization ability. Moreover, feature
representation and model learning are separated into two stages, which is sub-
optimal from the perspective of optimization as the pre-specified feature repre-
sentation might not be very suitable for the prediction object. These limitations
pose a major challenge for this study: how can we learn multiple effective fea-
ture representations and model these representations jointly to generate accurate
popularity prediction in an end-to-end fashion?

Proposed Model. To address the challenge, we develop an end-to-end neu-
ral network approach which fuses Memory netwOrk with factOrization moDels
(MOOD), inspired by recent advances of attention and memory mechanisms for
natural language processing [16,17]. The central idea is to endow MOOD with
the ability of learning effective textual representation through powerful mem-
ory network and jointly modeling representations of multiple factors by tensor
factorization. More specifically, MOOD first builds a memory network module
to learn the representation of activity introduction. Organizer and location are
leveraged as contextual information when performing attention to capture the
importance of each word in the activity introduction. Through this way, the
same word associated with different organizers and locations might have dif-
ferent contributions to build the activity introduction representation, enabling
the representation being personalized. Afterwards, a tensor factorization mod-
ule with pairwise interaction is employed to model the activity introduction
representation, organizer representation, and location representation jointly and
generate an integrated representation for the final prediction. An end-to-end
learning framework ensures the representation learning more focuses on the tar-
get of prediction, which is promising to achieve better performance.

Contributions. To sum up, the main contributions of this paper lie in three
aspects:

– We formulate the problem of early prediction of activity popularity in event-
based social networks, a variant of existing popularity prediction problems.

– We present a neural network approach called MOOD, which is able to learn
effective representation for text through memory network and jointly model
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Fig. 1. Analysis of activity participants. The data used in this figure comes from
Douban Event (https://beijing.douban.com/events/future-all). Figure (a) shows the
activity frequency of different number of participants and Figure (b) describes the
corresponding cumulative distribution (CD). We observe many activities have only a
few participants and about more than 90% activities have less than 100 participants,
revealing that many activities are not very appealing and it is necessary to provide
them with less attention than hot activities.

multiple representations by tensor factorization. Its key novelty is to combine
the merits of memory network and factorization model by a unified deep
learning framework.

– We conduct comprehensive experiments on real datasets to demonstrate the
benefits of our model over several strong alternatives and verify the rationality
of the model design by ablation test. To make our model repeatable, we make
the code of MOOD and the dataset available1.

2 Related Work

2.1 Popularity Prediction

According to whether considering existing sequential patterns about popularity
dynamics of targets, the methods for popularity prediction can be categorized
into dynamic popularity modeling [10,12,18,19] and static popularity model-
ing [9,13–15,20,21]. Although the former methods behave well as reported in
their experiments, they have to collect enough records of popularity dynamics
before performing prediction and thus lack of timeliness. Furthermore, it might
not be easy to obtain popularity dynamics due to restricted access of third-
parties [22], which limits the scope of application. Therefore, we consider the
research direction of the latter methods.

Some of the static popularity modeling based methods [9,20,21,23] are care-
fully designed for domain-specific tasks and could not be easily generalized to our
problem setting. The most related studies to us are [13,14], both of which con-
sider textual content and the publishers’ influence on popularity. The first study
obtains the representations of tweets by topic modeling [24] and then incorpo-
rates them into a non-negative matrix factorization framework. Consequently,
1 https://github.com/Autumn945/MOOD.

https://beijing.douban.com/events/future-all
https://github.com/Autumn945/MOOD


512 W. Wang et al.

its learning involves a two-stage process. The latter proposes diverse features
relevant to user and text. However, the efforts of feature engineering might be
tedious and not so necessary. In the experiments, we compare our model MOOD
with them to validate its effectiveness.

2.2 Deep Learning for Personalization and Memory Network

Deep learning methodologies have flourished since [25] and made great success
in many domains including computer vision and natural language processing. In
this paper, we pay attention to deep learning for personalization and memory
network, related to the model we proposed. On the one hand, deep learning for
personalization is promising for recommender system. It is employed to model
attributes of items [26] or replace simple inner product between factors [27]. How-
ever, most deep learning methods are not designed for text popularity prediction
problem. On the other hand, memory network [16], with recurrent attention to
basic memory units, has shown new progress in natural language processing. It
exploits interactions between query and text to perform representation learning
and improve the performance of textual question answering [17], sentiment clas-
sification [28], etc. In the pursuit of learning effective representation from textual
modality, we enhance basic memory network with both organizer and location
attentions to capture importance of each word.

3 Problem Definition

Activity is the most essential component in event-based social networks
(EBSNs) [5]. Each activity is associated with an organizer who can be a user
or an institution, a textual introduction to describe what it is about, and a
location denoting where it will be held. Organizers usually publish activities
online and other users in EBSNs can register to participate offline activities.
The above three types of factors are most critical for the popularity of each
activity. Besides, we also know the starting time of each activity. As no one can
attend an activities after it start, we can determine the corresponding ultimate
number of participants. However, we do not consider the time information when
building models, due to the reason that time seems to be not a significant factor
to influence activity popularity, which is discussed in later experiments. We leave
how to model the time information effectively as future work.

Specifically, we assume A, U , Q, and V to be activity, organizer, location,
and vocabulary sets, respectively. The vocabulary set consists of a large quantity
of words, V = {wv}v=|V|

v=1 , where |V| is the size of V. For an activity a ∈ A, we
denote its organizer as ua ∈ U , location as qa ∈ Q, and its ultimate number of
participants as r̄a ∈ Z

+
0 . To suppress large variance of participants for different

activities, we predict a rescaled version of ra just like [19,23], which can be
regarded as the popularity score of activity a and is defined as follows,

ra = log(r̄a + 1). (1)
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Fig. 2. The graphical representation of MOOD. In this figure, the gray rectangles
represent intermediate representations. Memory network is plotted as two-layered ver-
sions. ⊕ means element-wise addition of corresponding embeddings while � denotes
element-wise multiplication of connected embeddings.

Moreover, the activity a has a textual introduction, denoted as da =
{wa

1 , . . . , wa
i , . . . , wa

n}, where n is the length of da. For the ease of later clari-
fication, we further denote the training, validation, and test parts of the activity
set as Atn, Avd and Att, respectively. In a nutshell, we have {ua, qa, da, ra} for
each activity a ∈ A. With these preliminaries, we can formally define the studied
problem as below,

Problem 1 (Early Prediction of Activity Popularity). For a new activity a
to be published in event-based social networks, given its organizer ua, location
qa, and textual description da, the goal is to predict the popularity ra of this
activity.

4 Computational Model

This section first presents the overview of the proposed model. Afterwards, it
goes deeper into the details of the model to clarify it.

4.1 Model Overview

Our model MOOD is an end-to-end learning framework which takes textual
introduction, organizer, and location of the target activity as input and out-
put its predicted popularity score. Graphical illustration of MOOD is shown in
Fig. 2. Essentially, the cores of the model are the memory network and tensor
factorization modules. In each module, the model designs specific organizer and
location embeddings with different roles: attention embedding for the memory
network module and interaction embedding for the tensor factorization module.
We also consider bias embedding when generating the final prediction.
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4.2 Memory Network Module

We begin by introducing this module with an example of activity, a = {u, q, d, r},
where we omit the subscript a for simplicity. A one-layered version is first clarified
and then it can be naturally extended to multiple layers.

Memory Representation: In this module, MOOD defines memories for word,
organizer, and location, respectively. Following [16], a word wv with index v
in V is associated with two embeddings, i.e., ev ∈ R

k and fv ∈ R
k, where

k denotes the dimension of embedding. ev is leveraged to generate attention
weights and fv is adopted to generate output embedding. As a result, all of
these word embeddings constitute two embedding matrices, i.e., E ∈ R

k×|V|

and F ∈ R
k×|V|. We declare the notation êv = E:,v and it is the same for

other symbols. To further consider word position information in each activity
introduction, we follow the idea of [29] by incorporating two absolute position
encoding matrix Ep ∈ R

k×L and F p ∈ R
k×L into basic word embeddings, where

L is the length of the document.
Analogously, MOOD defines attention embedding matrices for both orga-

nizer and location, UA ∈ R
k×|U| and QA ∈ R

k×|Q|. Without losing generality,
we assume the dimension of word embedding equals to those of organizer and
location attention embeddings. Likewise, we have uA

u = UA
:,u for organizer u and

qA
q = QA

:,q for location q.

Attention for Memory: In the original vocabulary space, a textual introduc-
tion can be represented as a sequence of one-hot vectors. For the j-th word wj

in the introduction d, the one-hot vector is expressed as ŵj ∈ {0, 1}|V|. Assume
v(j) represents the index of wj in the vocabulary, we can obtain the embedding
ev(j) = Eŵj + Ep

:,j . In a similar fashion, fv(j) can be acquired as well.
Based on these embeddings, MOOD computes the attention weight of the

organizer u and location q to the word v(j) through the follow equation,

ωu,q
v(j) = (uA

u + qA
q )Tev(j). (2)

Intuitively speaking, larger ωu,q
v(j) denotes word v(j) is more relevant to its corre-

sponding organizer and location, and thus it could be more important for rep-
resenting the introduction. The addition of organizer and location embeddings
ensures the joint influence on word embedding, which shares the similar idea
adopted in the matrix factorization approach for modeling multiple factors [30].

Output Representation of Text: The central goal of the memory network
module is to obtain better representation for activity introduction. We first cal-
culate pu,qv(j) = softmax(ωu,q

v(j)), in which the probability denoting the importance
of v(j) to represent d. We regard the representation of d learned from the one-
layered memory network as o. It could be computed by cumulative sum of each
word output embedding fv(j) as follows,

o =
∑

j

pu,qv(j)fv(j). (3)
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Multi-layered Extension: Analogous to the common strategy adopted in
deep memory network [16], MOOD updates organizer and location embeddings
between each layer. Assume the embeddings of the organizer u and location q in
the k-th layer are expressed as uA,k

u and qA,k
q , respectively. For the first layer, we

have uA,1
u = uA

u and qA,1
q = qA

q . On the basis of the output from Eq. 3, iterative
updates can be formulated as below,

uA,k+1
u = uA,k

u + ok

qA,k+1
q = qA,k

q + ok.
(4)

Using the updated organizer and location embeddings, this module itera-
tively calculates attention weights until determining final introduction repre-
sentation. We have tried other more complex updating manners such as fusing
these embeddings through matrix transformation. However, they do not improve
performance notably while increasing the complexity of the model.

Suppose the total number of layers is K, then the output embedding of this
module, denoted as od, is formally defined as following,

od = oK + uA,K
u + qA,K

q (5)

where od is then fed into the tensor factorization module introduced below. From
the Eqs. 3 and 5, we can see that the learned textual representation od is deeply
personalized. Even if two introductions have the same text, their representations
could be different for different organizers and locations.

4.3 Tensor Factorization Module

In the tensor factorization module, despite the input of the introduction embed-
ding from the memory network module, MOOD defines interaction embeddings
for both organizer and location. It models the three types of embeddings together
to capture their joint influence on activity popularity. The interaction embed-
dings are expressed as uI

u ∈ R
k for organizer u and qI

q ∈ R
k for location q.

[31] suggests a tensor factorization model with pairwise factor interaction
to calculate multiple factors and obtain scalar values, denoting the preference
of users to items under specific context. Inspired by this idea, we define the
following formula to get an integrated vector representation ψ,

ψu,q
d = uI

u � qI
q + uI

u � od + qI
q � od (6)

Alternative factorization models include PARAFAC and Tucker decomposi-
tion [32]. However, we choose the one in Eq. 6 for its simplicity and good perfor-
mance in the experiments.

It is common that each organizer or location has popularity bias, regardless
of whatever activity introduction is actually about. Based on this intuition, we
introduce bias embeddings uB

u ∈ R
k for user u and qB

q ∈ R
k for location q.
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We further concatenate the bias embeddings and the integrated embedding, and
associate them with a fully connected layer to calculate the popularity r̂,

r̂ = θTσ(WT
1

[
ψu,q

d ;uB
u ; qB

q

]
+ b1) + b (7)

where σ denotes the ReLU (Rectified Linear Unit) with the form ReLU(x) =
max(0, x), W1 and b1 are the parameters of the first full connected hidden layer,
and θ and b are the parameters of the output layer. We adopt only one hidden
fully connected layer due to its already good experimental results.

4.4 Training

Now based on the above formulations, we define the objective function for later
optimization. For an activity a with the known popularity score ra in training
data, suppose r̂a is the corresponding prediction generated by our model for the
activity. We then choose square error, usually adopted in regression tasks, as the
target to be optimized,

L =
∑

a∈Atn

(ra − r̂a)2. (8)

We train the model by taking the first-order gradients of all model parameters
through back-propagation, and adopt Adagrad [33] to learn the parameters.

5 Experimental Setup

5.1 Datasets

We adopt the Douban event dataset [34,35] as the experimental data. Douban
is a very popular website, containing a large user base and various types of rich
data. Thus some previous studies have conducted experiments using the datasets
created from Douban. The Douban dataset we used has totally more than 350k
activities which cover a long time range and are held in many cities. Activities
are locally constrained by cities and different cities have different number of
candidate participants. For this reason, we first segment all the activities by
their cities. Then we choose the largest two cities, Beijing and Shanghai in China,
which contain more than 40% activities to build the two datasets we used in the
experiments.

We perform Chinese word segmentation and sparse word filtering for activity
introduction, and keep activities with the length of introduction more than five.
Moreover, following the common filtering step in personalization modeling [30],
we keep organizers and locations with more than four activities.

For later comparison, we divide the datasets into training, validation and test
sets in chronological order for each user and location. Specifically, the training set
is composed of the first half of activities for both organizers and locations. Then,
we randomly select one-third of the remaining activities as the validation set and
the remaining activities are regarded as the test set. The basic statistics of the
processed datasets are summarized in Table 1. As mentioned in the first section,
we make the source code of MOOD and anonymous data publicly available.
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Table 1. Experimental data statistics.

Data Activity Organizer Location Word Training Validation Testing

Beijing 33,923 882 1,767 79,212 21,851 4,024 8,048

Shanghai 26,133 714 1,376 65,618 16,525 3,202 6,406

5.2 Baselines

To validate the advantages of MOOD, we compare it with several alternative
baselines, some of which have strong performances.

– GloAve, OrgAve, LocAve. The three simple methods are just based on
popularity average in training data. The former one takes all activities into
computation while the later two consider them for each organizer and loca-
tion, respectively.

– HF-NMF [13] and HF-NTF. The hybrid factor non-negative matrix fac-
torization (HF-NMF) model is proposed to estimate the number of retweets
given textual content of original tweets and their authors. It utilizes the top-
ics learned from latent Dirichlet allocation (LDA) [24] as textual features and
incorporates them into a non-negative matrix factorization framework. The
original HF-NMF model only considers two types of factors, i.e. text and user.
To better adapt it to our problem setting, we extend it with pairwise inter-
action tensor factorization, ensuring the fairness of performance comparison.

– PoissonMF [36] and PoissonTF. This model utilizes the benefit of Poisson
distribution to generate count data by regarding the result of matrix factor-
ization as the expected mean of this distribution. Following the methodology
exploited in HF-NTF, we extend PoissonMF to PoissonTF to handle multiple
factors.

– FeaReg [14]. This method needs hand-crafted features to describe how
the three types of factors influence final activities’ popularity. As with the
study [14], we have designed features such as one-hot representation and TF-
IDF to characterize organizer, location, and textual description. We have tried
several standard statistical regression models (random forest, ridge regression,
etc.) and choose ridge linear regression due to its better performance.

In later experiments, we also conduct ablation test to verify the contribution
of each factor considered. We denote FeaReg (D+U) as the one only modeling
introduction (D) and organizer (U), and FeaReg (D+Q) as the one only modeling
introduction (D) and location (Q). Other notations such as MOOD (D+U) are
determined in a similar fashion.

5.3 Variants of MOOD

To verify the design rationality of the proposed model, we present two variants
of MOOD, which can be utilized to demonstrate the benefits of the proposed
two modules.
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– LSTM-TF. This model chooses Long Short-Term Memory (LSTM) Net-
work [37] instead of memory network. Since LSTM performs well in many
text modeling tasks in recent years, we compare it with MOOD to verify the
benefit of leveraging the memory network module.

– DMN. It just feeds the output of the memory network module into the final
prediction. In other words, this model does not consider tensor factorization
and the interaction embeddings of organizer and location. It can be utilized to
demonstrate the effectiveness of modeling interaction embedding with tensor
factorization module.

5.4 Implementation Details and Evaluation Metrics

We set the dimension of all the embeddings used in our model and baselines to
be 128. We set the hyper-parameters of Adagrad to be the default ones shown
in [33] and the batch size is 128. The number of layers in the memory network
module is set to 2 which performs better. L2 regularization is adopted to reduce
overfitting.

We adopt mean square error (MSE) and mean absolute error (MAE), which
are employed by many previous studies for popularity prediction [13,20,23,38].
Moreover, MSE is consistent with the optimization target we adopted for learning
MOOD and other competitors, and MAE often acts as a complement to MSE.
All the models mentioned above are run five times and the average of their
results are reported.

6 Experimental Results

In this section, we present the detailed experimental results and some intuitive
analysis to first answer the following core research questions:

Q1: Does the proposed model MOOD indeed outperform all the other competi-
tors in terms of the evaluation metrics? Does the memory network module
reveal its advantages over some alternatives? Can the tensor factorization
module really benefit the studied problem?

Q2: What is the relative importance of each type of the three factors we consider
for the activity popularity prediction problem? Does joint modeling all the
three factors achieve better performance?

On this basis, we further provide some necessary experimental discussions
about (1) the number of layers in the memory network module, (2) activity time
information, and (3) case study of the visual attention results.

6.1 Model Performance Comparison (Q1)

The overall results are shown in Table 2 with MSE and MAE metrics. By first
comparing GloAve, OrgAve, and LocAve, we can observe that both OrgAve



Early Prediction of Activity Popularity 519

Table 2. Comparisons of different models on activity popularity prediction.

Models Beijing Shanghai

MSE MAE MSE MAE

Traditional approaches

GloAve 2.0070 1.1897 1.6727 1.0850

OrgAve 0.8151 0.6605 0.9851 0.7378

LocAve 0.8573 0.6642 0.9487 0.7173

HF-NMF 0.9619 0.7288 1.0703 0.7764

HF-NTF 1.0023 0.7221 1.0564 0.7629

PoissonMF 1.0056 0.7298 1.1147 0.7875

PoissonTF 0.7779 0.6437 0.8753 0.6963

FeaReg 0.6690 0.6028 0.7739 0.6574

Deep learning models (MOOD and its variants)

LSTM-TF 0.7388 0.6322 0.8555 0.6889

DMN 0.6896 0.6109 0.7999 0.6658

MOOD (Ours) 0.6536 0.5850 0.7505 0.6360

and LocAve improve GloAve by a large margin as GloAve considers no fac-
tor of activities. It is surprising that HF-NFM and HF-NTM behave obviously
worse than OrgAve, which reflects that directly utilizing them for our studied
problem is not suitable. Although PoissonMF shows no good results as well, its
extension to tensor factorization presents obviously better results, indicating the
benefits of considering the three factors to some extent. However, the results are
still far from satisfactory, compared with the methods discussed below. One of
the reasons may be that textual feature representation and model learning are
separated into two stages, which is not very optimal.

Based on hand-crafted features, FeaReg performs best among traditional
approaches, and even better than the variants of our model, i.e., LSTM-TF and
DMN. Finally, MOOD not only performs better than DMN and LSTM-TF on
the two datasets, but also better than FeaReg. Through the above comparisons,
we can find that the integration of memory network and tensor factorization
can complement each other and achieve the best results among all the adopted
models, which can answer the question Q1.

6.2 Factor Contribution (Q2)

We investigate how the three types of factors contribute to the popularity predic-
tion in integrated models. To achieve this, ablation test is adopted by removing
one type of factor each time from textual introduction, organizer, and location.
We choose FeaReg and our model MOOD, which achieve the best performance
among traditional approaches and deep learning models, respectively.
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Table 3 shows MOOD outperforms FeaReg on almost every combination of
introduction, organizer, and location for the MAE metric, which further demon-
strates the advantages of MOOD. We observe that both FeaReg (U+Q) and
MOOD (U+Q) obtain better results than other models which also consider two
types of factors. This phenomenon is rational since structured organizer and
location information are easier to be modeled than unstructured text.

Table 3. Ablation test for factor contribution.

Models Beijing Shanghai

MSE MAE MSE MAE

FeaReg (U+Q) 0.7006 0.6170 0.8031 0.6728

FeaReg (D+Q) 0.7588 0.6453 0.8397 0.6873

FeaReg (D+U) 0.7339 0.6258 0.8519 0.6826

FeaReg 0.6690 0.6028 0.7739 0.6574

MOOD (U+Q) 0.6653 0.5884 0.7761 0.6501

MOOD (D+Q) 0.7832 0.6367 0.8343 0.6749

MOOD (D+U) 0.7234 0.6168 0.8329 0.6756

MOOD 0.6536 0.5850 0.7505 0.6360

Finally, we notice that modeling three types of factors jointly can achieve
better performances consistently in the two datasets, no matter which of the two
methods is selected. This phenomenon may reveal that the three factors may be
complementary to each other for the activity popularity prediction problem. In
summary, we can answer question Q2 through the above discussions.
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Fig. 3. Results of MOOD with different number of layers.

6.3 Impact of Number of Layers

We investigate how the number of layers in the memory network module impacts
prediction performance. We analyze the memory network module with different
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number of layers, and the corresponding results are introduced in Fig. 3. Obvi-
ously, the results of the module with two layers achieve the best performance
across the two datasets. We also show the visualizations of attention values given
sampled examples later, which indicate that the second layer is more focused
than the first layer. In summary, setting the number of layers to be two is a
rational choice.

6.4 Impact of Activity Time

We consider time information of activities and present a simple average-based
method called TimeAve to test it. We first discretize the continuous time space
into fixed-length time periods, similar to some previous studies [39]. We regard
one week as a cycle and one hour as a period, and get 7×24 periods. Afterwards,
we calculate the popularity average for each period in the training dataset and
generate prediction according to which period the target activity belongs to.
Figure 4 shows TimeAve is only slightly better than GloAve, but much worse
than OrgAve and LocAve, which reveals that time information is not easily
to be modeled to improve performance. The reason might be that registering
online for participating activities mainly reflects users’ preference, but not their
final decision to participate. Thus the time factor is not very important to be
considered by users, which is also empirically verified in [34].
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Fig. 4. Results of average-based methods.

6.5 Case Study for Attention Visualization

We study the difference of word attention weights in different layers of MOOD
and how the attention weights change when we associate the organizers and
locations with the introduction text not really belonging to them.

We use deeper colors to denote larger attention weights for different words
in Fig. 5. Each word is followed by an English translation and a number indi-
cating the normalized value of attention weight. As different introduction have
different length, making the average attention weights not the same. To enable
the visualization of attention weight comparison for different introduction, we
adopt a simple strategy by multiplying each word’s attention weight with the
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Fig. 5. Attention weights in different attention layers.

length of the corresponding introduction. Through this way, the average atten-
tion weight of all words equals to 1 and an attention weight less than 1 means
less attention to the corresponding word and vice versa. We observe in Fig. 5 that
more meaningful words have larger attention weights on both layers. Besides, the
attention weights in layer-2 are more centralized than those in layer-1. In a nut-
shell, we qualitatively indicate the multi-layered recurrent attention mechanism
is beneficial for our model.

Fig. 6. Different attentions to the same introduction.

We further randomly sample an activity to get its textual introduction, and
calculate the corresponding attention weights with different organizers and loca-
tions. The visualization of attention weights are shown in Fig. 6. The first part
of the figure adopts the organizer and location which the introduction belongs
to, while the second part uses an arbitrary pair of organizer and location. Each
Chinese word is followed by an English translation and a value corresponding to
its attention weight. As the figure shows, the attentions of the first part seem to
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be better and more meaningful than the second, which reveals that the attention
mechanism adopted by MOOD is personalized.

7 Conclusion

We formulate the problem of early predicting the ultimate popularity for a new
activity given its organizer, location, and introduction. To avoid tedious feature
engineering and fuse the two separate stages of feature representation and model
learning for popularity prediction, we present MOOD, a deep learning approach
which combines memory network with tensor factorization in a unified end-
to-end learning framework. It is endowed with the ability of acquiring effective
representations for text and jointly modeling the three types of considered factors
effectively. We conduct experiments on real datasets and validate the advantages
and rationalities of the proposed model.
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Abstract. Representation leaning on networks aims to embed networks
into a low-dimensional vector space, which is useful in many tasks such
as node classification, network clustering, link prediction and recommen-
dation. In reality, most real-life networks constantly evolve over time
with various kinds of changes to the network structure, e.g., creation
and deletion of edges. However, existing network embedding methods
learn the representation vectors for nodes in a static manner, which are
not suitable for dynamic network embedding. In this paper, we pro-
pose a dynamic network embedding approach for large-scale networks.
The method incrementally updates the embeddings by considering the
changes of the network structures and is able to dynamically learn the
embedding for networks with millions of nodes within a few seconds.
Extensive experimental results on three real large-scale networks demon-
strate the efficiency and effectiveness of our proposed methods.

1 Introduction

Networks are ubiquitous in our daily life, such as social networks, communication
networks, biological networks, academic networks and the World Wild Web. Peo-
ple have studied many important data mining problems on networks, including
network visualization [21], node classification [3], community detection [12], link
prediction [20] and recommendation [37]. A typical way to tackle these problems
is based on hand-crafted features of networks, which requires a lot of manual
efforts on feature engineering and usually is constricted to a specific problem.
Network embedding techniques provide an alternative way to learn features auto-
matically. The basic idea of network embedding is to learn the low-dimensional
representation of nodes by preserving the network structure. Following the initial
ideas in network embedding [2,10,31], recent techniques such as DeepWalk [25]
and node2vec [13] learn node representation using random walks sampled in the
network. A limitation of such random walk based method is the high computa-
tional cost. To scale up to large-scale network with millions of nodes, LINE [28]
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utilizes edge sampling in the network to learn representations that preserve the
first-order and the second-order proximities.

However, existing studies mostly focus on static networks. In the real world,
the networks could vary over time with creation and deletion of edges [1]. For
instance, in social networks, users may add a user as a new friend or unfriend a
user who used to be a friend. In co-author network, people build new co-author
relationships over time. In co-location graph where edges as two people being
within certain distance, people gather and depart dynamically.

Though dynamic networks widely exist, the studies of representation learn-
ing on dynamic networks are limited. A naive method is to re-run the embed-
ding methods on the whole network when the network is updated. However,
learning network representation is costly, especially for the large-scale network.
Re-computing on the whole network with every batch of updates may not be
feasible in the real-world setting. Naturally, we ask the question, “can we learn
network embedding dynamically in a more efficient way?”

To address these challenges, in this paper, we propose an efficient embed-
ding method, DLNE, for dynamic network embedding. Our intuition is that, we
update previous embeddings by considering the changes of the networks, i.e.,
newly added (or deleted) edges. The method will be much more efficient com-
pared with re-computing on the whole network because the changes in a large
network could be relatively small. More specifically, our proposed method is
built based on the LINE method [28], which has been shown to be significantly
faster than other embedding methods. We use LINE to obtain the initial repre-
sentations on the current network. With the new batch of updates on the net-
work structure, we update the representations of corresponding affected nodes
by optimizing the loss function defined based on first-order and second-order
proximities.

Our method is validated on three large-scale real world networks, including
social networks and citation networks. We conduct extensive experiments to
verify the effectiveness and efficiency of our method by comparing with state-
of-the-art methods via a multi-label classification task. The results suggest that
DLNE is able to incrementally update the representations for nodes on a dynamic
network with millions of edges in time scale of seconds.

To summarize, the major contributions of this paper are as follows:

– We formally study the problem of dynamic large-scale network embedding.
To the best of our knowledge, we are the first method to efficiently learn
embeddings dynamically on a large-scale network.

– We propose a novel method DLNE to solve the problem of dynamic large-
scale network embedding. We design the loss function to learn the updated
representations by considering the changes of the network structure.

– We conduct extensive evaluations through a multi-label classification task on
three real-world networks. Experimental results demonstrate the effectiveness
and efficiency of our proposed method.

The rest of paper is organized as follows. Related work is discussed in Sect. 2.
Then, we formally state our problem definition in Sect. 3 and the proposed online
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embedding method is described in Sect. 4. Experimental results are reported in
Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Related Work

Dimension reduction or low-dimension graph representation learning have been
studied extensively in the literature. Many methods are proposed in various
fields, such as multidimensional scaling [10], IsoMap [31], LLE [27], and Lapla-
cian Eigenmaps [2]. Chen et al. [8] propose the network embedding for directed
network. They use Markov random walks to measure the locality link structure
of directed networks. Following Chen’s work and motivated by the success of
word2vec technique [22,23], Perozzi et al. [25] propose DeepWalk for social net-
work embedding. They use a truncated random walk to construct the context
of a vertex, then they employ word2vec to learn latent representations for all
vertices in social network. Grover and Leskovec [13] further propose node2vec,
which improve DeepWalk by enabling a controlled random walk. Tang et al. [28]
propose LINE to learn embedding for both undirected and directed large-scale
information networks with unweighted or weighted edges, which is particularly
designed to preserve both the first-order and second-order proximities. Cao
et al. [4] extend LINE to support high-order graph representation learning by
capturing different k-step local relational information. Chen and Wang [9] pro-
pose an heterogeneous information network embedding that considers local and
global semantic among multi-typed entities. In addition, other deep learning
based approaches [5,32] are proposed to enhance the network representation.

Another line of work aims to learn the graph embedding while consider-
ing additional information other than graph connectivity. For example, Yang
et al. [36] propose a matrix factorization based method to learn network rep-
resentations that incorporates text feature into network structure. Chen et al.
[7] incorporate group information to learn network embedding. Most recently,
Huang et al. [14] propose LANE framework for learning representation vectors
for attributed networks. They aim to learn better feature representation incor-
porating label information into network embedding while preserving their cor-
relations. Xu et al. [35] propose Embedding of Embedding (EOE) framework
for coupled heterogeneous networks. They incorporate a harmonious embed-
ding matrix to further embed the embeddings that only encode intra-network
edges. Wang et al. [34] propose a Modularized Nonnegative Matrix Factorization
(MNMF) model to incorporate the community structure into network embed-
ding. Network embedding techniques have attracted more and more attentions
in network science community. Li et al. [17] study on how to leverage node
order information and annotation data to improve network embedding in a sem-
supervised manner. However, all the approaches mentioned so far only handle
static networks. They are not applicable to learn representations on dynamic
evolving information networks.

In practice, many real world networks (e.g., social networks and co-occurrence
networks) are dynamic networks whose edges and vertices change over time. In
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dynamic network analysis, Ning et al. [24] propose an incremental spectral clus-
tering for evolving networks by updating the eigenvalue system continuously.
Chen and Tong [6] propose an online approach to track the eigen-functions of
adjacency matrix for a dynamic network. Li et al. [19] propose a unsupervised
feature selection for dynamic networks, which leverages the temporal evolution
property of dynamic networks to update the feature results incrementally. How-
ever, such work focus on online analysis of network structure change in dynamic
networks, while our work aims to online representation learning for dynamic
evolving networks.

Wang and Li [33] propose a graph embedding method to learn the temporal
dynamics of urban region graph. Although they study a dynamic temporal graph,
the embedding learning is not conducted in an incremental manner. Instead, they
construct the whole evolving network, and learn different embedding for regions
at different timestamp simultaneously. In our method, the embedding vectors of
networks are updated continuously and efficiently, rather than re-learned from
scratch.

Most recently, Li et al. [18] propose dynamic network embedding for
attributed network. They first use an off-line Laplacian Eigenmaps-based model
to learn graph embeddings. Then they update the embedding by updating the
top eigenvectors and eigenvalues according to the updated graph matrix. Jian
et al. [15] propose an online network embedding algorithm for node classifica-
tion on streaming network. They use same Laplacian Eigenmaps-based model to
update embedding representations for newly arrived nodes. However, the graph
factorization-based method only considers the one-hop relationships in adjacency
matrix, and it is difficult to scale because of the use of laplacian eigenmaps.
Meanwhile, our proposed method considers both local and global network struc-
ture and is able to handle large-scale dynamic networks with millions of vertices
and edges in an online fashion.

3 Problem Definition

In this section, we first introduce some concepts used in this paper. Then we
define the problem of dynamic network embedding.

Definition 1 (Network). A network is denoted as G = (V,E), where V =
{v1, v2, . . . , vn} is the set of vertices, and E = {eij}, where i, j ∈ {1, 2, · · · , n},
is the set of edges. Each edge eij connects two vertices vi and vj, and the weight
of this edge is wij.

In practice, networks can be categorized as unweighted (e.g., social networks)
or weighted (e.g., word co-occurrence network) networks. And networks can also
be directed (e.g., citation networks) or undirected (e.g., co-author networks)
networks. In unweighted network, wij = 1 if eij exists, while wij takes continuous
values in weighted network. In undirected network eij = eji with the same
weight, while eij �= eji and wij �= wji in a directed network.
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The structure of networks often evolves over time by adding or deleting edges
and vertices. Without loss of generaliy, we partition the time dimension into
discrete timestamps t = {1, 2, · · · , T} with fixed interval τ . We use Gt to denote
the dynamic evolving network at time t. Correspondingly, the set of edges and
vertices are denoted as Et and Vt.

For simplicity, we track network updates by the addition and deletion of
edges, because the addition (deletion) of vertex could be implemented by the
addition (deletion) of edges. More specifically, one vertex is deleted when all
edges connecting to this vertex are deleted. Also, if a vertex is added to into
current network, at least one edge should be created to connect the new vertex
with an existing vertex. To this end, within each time interval τ , we use Ea and
Ed to denote the set of edges that are added and deleted, respectively.

Network embedding aims to represent each vertex of the networks as a low
dimensional vector, and vertices should have similar embedding vectors if they
are connected. To achieve such an embedding result, the network structures must
be preserved. Next, we formally define the first-order proximity and the second-
order proximity to preserve the local and global network structure, respectively.

Definition 2 (First-Order Proximity). The first-order proximity in a net-
work is defined as the local pairwise proximity between two directly connected
vertices. For each pair of vertices u and v, if there exists euv ∈ E, the weight
wuv indicates the first-order proximity between them. Otherwise, the first-order
proximity between u and v is 0.

Definition 3 (Second-Order Proximity). The second-order proximity
between a pair of vertices is defined to account for their neighborhood struc-
ture. Let Nu = {vu1, vu2, vu3, · · · } denote the set of direct neighbors of vertex u.
The second-order proximity between u and v is determined by the similarity of
two sets Nu and Nv.

In this paper, we aim to learn embedding vectors to preserve the first-order
proximity and the second-order proximity among vertices, meanwhile the learned
embeddings could be updated to account for the temporal dynamics of networks.
The formal definition of dynamic network embedding problem is given as follows:

Problem 1 (Dynamic Network Embedding). Given a dynamic network
Gt, the current embeddings Φt of all the vertices Vt in Gt, the problem of dynamic
network embedding aims to efficiently calculate the embeddings Φt+1 for all ver-
tices in Gt+1 from Φt. Φ : V → R

d can also be regarded as the mapping function
from vertices to d-dimension vector representations.

4 DLNE: Dynamic Large-Scale Network Embedding

In this section, we provide details for our proposed Dynamic Large-scale Network
Embedding (DLNE). First, we present the technical details on how to update
the embeddings according to the addition and deletion edge sets Ea and Ed.
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More specifically, we account for first-order and second-order proximity infor-
mation while update the embedding learning. Finally, we give the algorithm and
optimization steps.

Fig. 1. An example of evolving network: solid red edges denote the added edges Ea,
ane dashed grey edges denote the deleted edges Ed. (Color figure online)

4.1 Overall Framework

In Fig. 1 we show an example of evolving network, where the network evolves
from left to the right. In the given time window, vertex v5 is deleted, which
is equivalent to delete edges {e15, e25, e35, e45}. Similarly, the addition of v7 is
equivalent to addition of {e37, e47, e67}. We use Φl to denote the embedding
function for the graph on the left. The goal of our problem is to calculate Φr

with the addition edge set Ea and deletion edge set Ed.
Intuitively, the edge embedding is used to account for the local network

structure information. Given each edge within the updated edge sets Ea and Ed,
the network structure only changes locally. Driven by this intuition, we propose
to update the vertex embedding locally. Namely, for each edge eij ∈ Ea ∪ Ed,
we only update the embedding vecter Φ(v), where v is in the local structure of
vi and vj . The problem becomes how to define local structure, and update the
embeddings accordingly. In this paper, we define the local structure with the
first-order and the second-order proximity. In the following sections, we give the
technical details on how to update the embedding to account for the first-order
and the second-order proximity, respectively.

DLNE with First-Order Proximity. First, we consider the first-order prox-
imity when there is an edge added into current network. For each edge eij ∈ Ea,
the probability of the connection between vertex vi and vj is formulated as
follows:

p1(vi, vj) = σ(Φ(vj)T · Φ(vi)), (1)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function and Φ(vi) ∈ R
d is the

embedded vector of vertex vi in the current timestamp. Namely, the probability
of vj being a neighbor of vertex vi is correlated to the similarity of their potential
representation vectors.
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However, the influence of added and deleted edge on the corresponded ver-
tices is different. For each newly added edge eij ∈ Ea, in order to maintain
the influence of both connected and non-connected vertices, we utilize nega-
tive edge sampling from the noise distribution Pn(V ) to model the influence of
non-connected vertices and then the loss function is:

Lfa(vi, vj) = − log σ(Φ(vj)T · Φ(vi)) −
k∑

x=1

Evx∼Pn(V )

[
log σ(−Φ(vx)T · Φ(vi))

]
,

(2)

where k is the number of sampled non-connected edges. Based on the loss func-
tion, we maximize the probability of vj being a neighbor of vertex vi and min-
imize the probability of each negative vertex vx being a neighbor of vertex vi.
We set Pn(V ) ∝ d

3/4
v as suggested in [23], where dv is the degree of vertex v.

For each deleted edge ekh ∈ Ed, we use the negative edge sampling shown as
Eq. (3) to minimize the probability of vertex vk being a neighbor of vh, which
reduces the similarity between vk and vh in the latent representation.

Lfd(vk, vh) = −log(1 − σ(Φ(vk)T · Φ(vh))). (3)

Then, in order to update the embedding vectors of all vertices which correspond
to the created and deleted edges, we maximize the joint probability over all
evolved vertices. The loss function for preserving the first-order proximity is
formulated as follows:

L1 =
∑

eij∈Ea

wijLfa(vi, vj) +
∑

ekh∈Ed

wkh Lfd(vk, vh), (4)

where wij is the weight of edge eij , representing the importance of edge eij in
constructing the embeddings of vi and vj .

DLNE with Second-Order Proximity. Second, the second-order proximity
is determined by the similarity of neighbors between two vertices. The intuition
is that two vertices are more similar if they share more common neighbors. The
second-order proximity has been demonstrated to be a good metric to measure
the similarity of a pair of vertices, even if they are not connected [20]. In this
work, we employ the conditional probability of “context” vj linked with vertex
vi [28]:

p2(vj |vi) =
exp(Ψ(vj)T · Φ(vi))

∑|V |
k=1 exp(Ψ(vk)T · Φ(vi))

, (5)

where |V | is the number of neighbors of vi, and Ψ(vj) ∈ R
d is an auxiliary vector

of vj that needs to be learned when vj is treated as “context”. We can see that
p2(·|vi) defines a conditional distribution of vertex vi among its contexts.

Similar to the first-order proximity, the influence of created and deleted edges
are different. For each added edge eij ∈ Ea, we also use the negative edge
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sampling method to model the influence of the vertices that are not in the
context set of vi, and then the loss function is defined as:

Lsa(vi, vj) = −logσ(Ψ(vj)T · Φ(vi)) −
k∑

x=1

Evx∼Pn(V )

[
logσ(−Ψ(vx)T · Φ(vi))

]
.

(6)

The loss function Lsa(vi, vj) is to maximize the log-probability of observing the
context of each vertex vi that connect with the created edges.

For each deleted edge ekh ∈ Ed, one negative edge sampling process is used
to model the influence of edge ekh and then the loss function Lsd is defined as:

Lsd(vk, vh) = −log(1 − σ(Ψ(vh)T · Φ(vk))). (7)

By combining the influence of each added and deleted edge, the loss function for
preserving the second-order proximity is defined as:

L2 =
∑

eij∈Ea

wijLsa(vi, vj) +
∑

ekh∈Ed

wkhLsd(vk, vh). (8)

The representation Φ and Ψ can be learned by training the empirical distri-
bution p2(vj |vi) = wij∑

k∈Ni
wik

that can be observed in the network, where the

denominator is the out-degree of vertex vi.
Finally, we jointly consider the influence of the first-order proximity and the

second-proximity, and the joint loss function is defined as follows:

L = L1 + L2. (9)

4.2 Algorithm and Optimization

The Algorithm 1 is the pseudo-code for our DLNE that preserves both first-order
and second-order proximities. We first perform edge sampling in the set of added
edges Ea to generate the training vertices that are associated with the sampled
edges. In particular, we use negative sampling to implement our loss function
(Eqs. (4) and (8)) for each sampled new edge. Then, we process the deleted
edges by edge sampling in Ed. The sampled deleted edges is addressed in form
of a negative edge in consistent with Eq. (3) for the first-order proximity and
Eq. (7) for the second-order proximity. Note that AddedEdgeSample(Ea) and
DeletedEdgeSample(Ed) only perform one edge sampling from the set of added
edges Ea and the set of deleted edges Ed, respectively. NEGk(vi) represents
the set of k sampled negative vertices w.r.t vi. To optimize the loss function,
we employ the asynchronous stochastic gradient algorithm (ASGD) [26]. The
learning rate η for ASGD is initially set to 0.025 and then decreased linearly
with the number of vertices that have been trained.
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Algorithm 1. DLNE: Dynamic Large-scale Network Embedding
Input: Dynamic network Gt; embeddings Φt and auxiliary vectors Ψt of Gt; network

updates Ea and Ed; embedding dimension d; the number of edge sampling sn; the
number of negative sampling k; learning rate η.

Output: Updated embedding vectors Φt+1 of Gt+1 .
1: nums ← 0;
2: while (nums < sn) do
3: eij ← AddedEdgeSample(Ea);
4: for all v ∈ vj ∪ NEGk(vi) do
5: Φ(v) ← Φ(v) − η ∂L1

∂Φ(v)
;

6: Ψ(v) ← Ψ(v) − η ∂L2
∂Ψ(v)

;
7: end for
8: Φ(vi) = Φ(vi) − η( ∂L1

∂Φ(vi)
+ ∂L2

∂Φ(vi)
);

9: ekh ← DeletedEdgeSample(Ed);
10: Φ(vh) ← Φ(vh) − η ∂L1

∂Φ(vh)
;

11: Φ(vk) ← Φ(vk) − η( ∂L1
∂Φ(vk)

+ ∂L2
∂Φ(vk)

);

12: Ψ(vh) ← Ψ(vh) − η ∂L2
∂Ψ(vh)

;
13: nums + +;
14: end while

The gradients in Algorithm1 for edge eij ∈ Ea are calculated as follows:

∂L1

∂Φ(v)
=

{−wij(σ(−Φ(v)TΦ(vi)))Φ(vi) v = vj
wij(σ(Φ(v)TΦ(vi)))Φ(vi) v ∈ NEGk(vi)

∂L1

∂Φ(vi)
= −wij(σ(−Φ(vj)TΦ(vi)))Φ(vj) + wij

k∑

x=1

(σ(Φ(vx)TΦ(vi)))Φ(vx)

∂L2

∂Ψ(v)
=

{−wij(σ(−Ψ(v)TΦ(vi)))Φ(vi) v = vj
wij(σ(Ψ(v)TΦ(vi)))Φ(vi) v ∈ NEGk(vi)

∂L2

∂Φ(vi)
= −wij(σ(−Ψ(vj)TΦ(vi)))Ψ(vj) + wij

k∑

x=1

(σ(Ψ(vx)TΦ(vi)))Ψ(vx)

The gradient for edge ekh ∈ Ed are calculated as follows:

∂L1

∂Φ(vh)
= wkh(σ(Φ(vh)TΦ(vk)))Φ(vk)

∂L1

∂Φ(vk)
= wkh(σ(Φ(vh)TΦ(vk)))Φ(vh)

∂L2

∂Ψ(vh)
= wkh(σ(Ψ(vh)TΦ(vk)))Φ(vk)

∂L2

∂Ψ(vk)
= wkh(σ(Ψ(vh)TΦ(vk)))Φ(vh)

We use the same strategy as proposed in [28] to sample edges with probabil-
ities in proportional to the original edge weights in the created or deleted slides.
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Intuitively, the edges with large weight would be sampled more times. In this
way, the embedding method can support the weighted graph. Specifically, we
use the alias table method [16] to draw an edge sample, which only takes O(1)
time. Therefore, we are able to efficiently update the embedding vectors for each
vertex in the current window.

It is worthy to mention that if the previous embedding Φt and Ψt are not
available, our method can still apply. In this case, we treat previous graph Gt

as an empty graph, and randomly initialize Φ and Ψ . By adding all edges in Ea

and runs Algorithm 1, we are able to learn the dynamic network embeddings.

5 Experiments

5.1 Data Description

We use three real world networks to evaluate our method:

– YouTube1 [30] is a video-sharing website on which users can upload, view,
and share videos. Both the user social network and group membership infor-
mation are included in the dataset. The group is defined by common video
genres (e.g. anime and wresting) that the user followed. We use such group
information as user labels.

– DBLP is an author-paper network2 [29]. We use the DBLP dataset to con-
struct two citation networks, which are DBLP (Paper) and DBLP (Author).
DBLP (Paper) is a directed network, which represents the citation relation-
ships among papers. As a directed weighted network, DBLP (Author) rep-
resents the citation relationships among authors, where edge weight is the
number of cited papers. The labels of DBLP (Author) and DBLP (Paper)
are the research areas of the published papers and authors. We choose 10
research areas in the field of computer science, including AI, computer net-
works, information security, high-performance computing, software engineer-
ing, computer graphics and multimedia, theoretical computer science, human
computer interaction and ubiquitous computing, interdisciplinary studies,
and database, data mining and information retrieval.

The detailed statistics of these networks are summarized in Table 1. Each
network contains at least half million vertices and millions of edges.

We random assign timestamp to edges in YouTuBe dataset due to lack of
time information. We rank the edges in the DBLP datasets by the publish time.
Without loss of generality, we add the same number of edges Ea and delete the
same number of Ed within each time interval.

1 Available at http://socialcomputing.asu.edu/pages/datasets.
2 Available at https://aminer.org/citation.

http://socialcomputing.asu.edu/pages/datasets
https://aminer.org/citation
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Table 1. Statistics of the information networks

Name YouTube DBLP (Paper) DBLP (Author)

|V | 1,138,499 781,109 524,061

|E| 2,990,443 4,191,677 20,580,238

Average degree 5.25 10.73 78.54

# labels 47 10 10

# train 31,703 61,257 117,934

5.2 Baselines and Evaluation Metrics

We compare our method with the following baselines:

– DeepWalk. This approach learns low-dimensional feature representations for
each vertex in the social networks by simulating truncated random walks [25].

– LINE. LINE [28] is an approach for large-scale information network embed-
ding. LINE preserves the first-order (LINE(1st)) and the second-order
(LINE(2nd)) proximities and supports both weighted and directed networks.

– node2vec. node2vec [13] extends DeepWalk by proposing a flexible neighbor
selection method for vertices instead of simple random walk.

Note that we did not compare with DANE [18], because DANE employs both
network adjacency matrix and node attribute matrix. While it is possible to
apply DANE only on network matrix, called DANE-N, it requires to calculate
the eigenvalues and thus cannot be applied in the large-scale networks with
millions of vertices used in the paper.

To facilitate the comparison between DLNE and baselines, we perform a
supervised task – multi-label classification on the embedding results. Specifically,
we randomly sample a portion of the labeled vertices as training data, and the
rest for testing. We employ a one-vs-rest logistic regression classifier implemented
by LibLinear3 [11]. We repeat this process 10 times, and report the average
performance results in terms of Micro-F1 and Macro-F1, which are defined as
follows:

Micro − F1 =
2 × Precision × Recall

Precision + Recall
, (10)

Macro − F1 =
∑D

i=1 F1(i)
D

, (11)

where D is the number of categories and F1(i) is the Micro-F1 in the ith cat-
egory. The Precision and Recall are calculated on all categories. We evaluate
the efficiency of our method on a machine with CoreTM i7-6700 (3.4 GHz) CPU
and 16 GB memory. In this experiment, the dimensional d of embedding is set as
128. For each baseline (Deepwalk, LINE and node2vec), we follow the parameter
settings used in their original papers.

3 Available at http://www.csie.ntu.edu.tw/∼cjlin/liblinear/.

http://www.csie.ntu.edu.tw/~{}cjlin/liblinear/
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Table 2. Performance of algorithms w.r.t. |Ea|
|E| on incremental networks that only

consider newly added edges

YouTube DBLP(Paper) DBLP(Author)

Algorithm
|Ea|
|E| Mic-F1 Mac-F1 Time(s) Mic-F1 Mac-F1 Time(s) Mic-F1 Mac-F1 Time(s)

DeepWalk 1 44.50 35.46 24653 54.41 45.19 16125 61.55 56.72 11997

node2vec 1 44.66 35.94 27756 57.59 46.18 19524 61.91 57.23 15354

LINE 1 45.11 36.21 682 61.16 48.62 340 63.33 59.18 688

DLNE 0.01 41.07 33.07 3.5 52.42 39.23 3.9 56.42 52.89 5.5

0.05 42.53 34.65 15.5 57.31 45.83 18.5 59.94 55.95 29

0.1 43.85 35.76 27 60.11 47.73 35 62.08 57.83 61

0.5 44.58 36.17 125 61.03 48.14 144 62.97 58.76 355

1 45.35 36.53 255 61.12 48.57 335 63.22 59.13 680

Note: Mic-F1 and Mac-F1 mean Micro-F1 and Macro-F1 scores, and Time(s) denotes runtime (in

seconds) of each update. |Ea| is the number of newly added edges at each timestamp.

5.3 Performance Comparison

Comparison on Incremental Networks. We first evaluate the effectiveness
and efficiency of DLNE on multi-label classification compared with baselines in
an incremental environment. Namely, we assume edges are only added into and
never deleted from the network.

We simulate different evolving networks by changing the value of |Ea|/|E|
from 0.01 to 1, where |Ea| is the number of newly added edges with each
time interval and |E| is the number of edges in the dataset. Semantically,
|Ea|/|E| defines the evolving speed of a dynamic network. For example, when
|Ea|/|E| = 0.01, DLNE adds 1% edges of whole network at each timestamp.
For the compared baselines, the representation is learned based on the whole
network (i.e., |Ea|/|E| = 1). Additionally, since the first-order proximity is not
applicable on directed graph [28], the evaluation of DLNE on DBLP(Author) and
DBLP(Paper) only consider the second-order proximity. On YouTuBe dataset
DLNE is able to consider both the first-order and the second-order proximities,
and thus LINE(1st+2nd) is compared on YouTuBe dataset only.

We evaluate the final embedding of the dynamic graph with a multi-class
classification task. In this task, we choose 20% of the labeled vertices as training,
and report the micro-F1 and macro-F1 on the testing data in Table 2. We report
the running time for different embedding methods as well.

It is clear that DLNE achieves similar performance compared with other
methods, while DLNE is 10–25 times faster than the best baseline. These obser-
vations are consistent on all three datasets. Learning the representation on
the entire network should achieve the best performance, since more informa-
tion could be captured, although at the cost of longer running time. We also
observe that as |Ea|/|E| increases, the DLNE achieves better prediction perfor-
mance with longer running time. The reason is that incrementally updating a
small portion of newly added edges saves time but loses some information in the
process.
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Additionally, on each network, we can see that DLNE and LINE run faster
than DeepWalk and node2vec. This is because the latter two baselines need to
sample and train a huge number of random walks, which is computationally
expensive. The superior performance of DLNE and LINE also indicates that the
first-order and second-order proximities effectively captures the local network
structure.

Furthermore, on YouTube dataset, although both DLNE and Line consider
the first-order and second-order proximities, DLNE achieves better Micro-F1
and Macro-F1 than LINE. The potential reason is that LINE learns the embed-
ding of each vertex by preserving the first-order and second-order proximities
separately and then concatenate them. Meanwhile, DLNE accounts for the first-
order and second-order proximities by optimizing the joint loss function, which
automatically balances the effect of these two proximities.

Table 3. Performance of algorithms on dynamic networks that consider both newly
added and deleted edges

YouTube DBLP(Paper) DBLP(Author)

|E0|
|E| Method Mic-F1 Mac-F1 Time(s) Mic-F1 Mac-F1 Time(s) Mic-F1 Mac-F1 Time(s)

0.9 Deepwalk 41.75 33.51 21687 53.32 44.41 17162 58.41 55.68 14497

node2vec 41.85 33.85 23980 57.26 45.89 18771 58.26 55.54 17816

LINE 42.43 35.09 640 60.16 47.72 340 57.95 54.27 688

DLNE 42.91 35.37 25 60.79 48.01 33 59.35 56.38 58

0.7 Deepwalk 38.71 28.04 15143 45.68 30.49 13645 54.52 50.37 12425

node2vec 40.15 29.34 16250 45.86 31.56 14350 54.94 50.73 14265

LINE 41.97 32.76 568 52.66 34.56 274 54.82 50.28 532

DLNE 42.70 33.85 22 53.53 36.74 34 56.45 52.26 50

0.5 Deepwalk 37.36 27.39 13254 43.62 26.19 12816 52.56 48.36 10797

node2vec 39.04 28.12 14650 44.94 26.91 13010 53.43 48.45 11971

LINE 40.12 28.47 410 51.74 32.79 193 51.97 46.62 398

DLNE 42.49 32.08 20 52.85 34.96 32 55.06 50.20 53

Note: Mic-F1 and Mac-F1 mean Micro-F1 and Macro-F1 scores, and Time(s) denotes running time

(in seconds).

Comparison on Dynamic Networks. Next, we evaluate DLNE on a dynamic
network, where edges are added and deleted simultaneously. In this experiment,
we vary the edge size |E0| of the initial graph G0 from 0.5|E| to 0.9|E|, and
the numbers of added edges and deleted edges at each timestamp are fixed as
|Ea| = |Ed| = 0.1|E|. Similar to last experiment, we compare the DLNE output
after the last timestamp T with the baseline embeddings of the last snapshot
graph GT .

We report the comparison results in Table 3. The DLNE consistently runs
about 6–25 times faster than LINE, because the incremental updating embed-
dings are time efficient. We also see that DLNE achieves better classification
performance than all baselines on both micro-F1 and macro-F1. The reason is
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Fig. 2. Performance w.r.t #threads.

that DLNE updates the embeddings of vertices over evolving networks, where the
historical network information are also captured. Other baselines only capture
the network structure of GT and overlook the temporal dependency.

Furthermore, we compare the results under different window sizes. Table 3
shows that our proposed method DLNE outperforms other methods consistently
with different window size, which demonstrates that our method is robust. In par-
ticular, we can see that the performance gap of DLNE over LINE increases (e.g.
Macro-F1 gaps are 0.8%, 3.3%, 12.7% on YouTuBe when |E0|/|E| = 0.9, 0.7, 0.5),
when the size of initial graph G0 decreases. Smaller initial graph size means the
networks evolves more rounds. When the network evolves more rounds, there are
more historical information, which means stronger temporal dependency in the
dynamic evolving network. Our DLNE captures more information in evolving
networks since it updates the representation incrementally, while other meth-
ods only learn the representation on the snapshot. This also demonstrates the
superiority of our DLNE since most real-world networks continuously evolve.

5.4 Parallel Computing

Finally, we evaluate the scalability of our method by running DLNE with dif-
ferent number of threads. The embedding learning parameters are exactly the
same as previous experiment. Figure 2 shows the performance comparison w.r.t
the number of threads on three datasets. We can see that the speed up of DLNE
is stable with the increase of thread number. At the same time, increasing the
number of threads does not affect the classification performance, as shown in
Fig. 2(b). In summary, DLNE exhibits strong parallelism potential in handling
large scale network dynamics.

6 Conclusion

This paper proposes an incremental model DLNE to learn the representation
of large-scale dynamic networks. DLNE efficiently update the representation of
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network in a dynamic environment. The model preserves the first-order and the
second-order proximities by optimizing the joint loss function. Extensive evalu-
ations on three real-world networks demonstrate the effectiveness and efficiency
of our method. In the future, we plan to explore how to learn the representation
on dynamic networks with the changing of the weights of edges. Besides, it is
interesting to investigate the efficient deep representation learning for dynamic
large-scale networks.
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Abstract. Multi-view learning attempts to generate a classifier with
a better performance by exploiting relationship among multiple views.
Existing approaches often focus on learning the consistency and/or com-
plementarity among different views. However, not all consistent or com-
plementary information is useful for learning, instead, only class-specific
discriminative information is essential. In this paper, we propose a new
robust multi-view learning algorithm, called DICS, by exploring the
Discriminative and non-discriminative Information existing in Common
and view-Specific parts among different views via joint non-negative
matrix factorization. The basic idea is to learn a latent common subspace
and view-specific subspaces, and more importantly, discriminative and
non-discriminative information from all subspaces are further extracted
to support a better classification. Empirical extensive experiments on
seven real-world data sets have demonstrated the effectiveness of DICS,
and show its superiority over many state-of-the-art algorithms.

Keywords: Multi-view learning · Matrix factorization · Classification

1 Introduction

Many real-world entities are often represented with different views such as web
pages [1,33], multi-lingual news [2,8,16] and neuroimaging [22–24]. Consistency
and complementarity, as the bridges to link all views together, are the two main
assumptions in current multi-view learning [30]. The consistency assumption sug-
gests that there is consistent information shared by all views [3,18,31]. Appar-
ently, it is insufficient to exploit multi-view data using only consistent informa-
tion since each view also contains complementary knowledge that other views
do not have [1,9,19]. Therefore, investigating the complementarity of views is
another important paradigm to learn multi-view data.

However, a question comes to our mind: whether the derived consistent and
(or) complementary information really always support a better classification
performance? Our answer is: no, since empirical pre-experiments indicate that
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 542–557, 2018.
https://doi.org/10.1007/978-3-319-91458-9_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91458-9_33&domain=pdf
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prediction performance on multi-view data can be even worse than using single-
view data in some real-world data sets. The main reason is that the consistent or
complementary information does not learn discriminative information directly.
The classifier constructed by multi-view data may give an even worse classifica-
tion performance if the learned consistent and (or) complementary information
contains no clear discriminative information.

Fig. 1. Illustration of extracting discriminative information from multi-view data via
joint non-negative matrix factorization. Each view of the data matrix is a superposition
of four different parts: common discriminative part, common non-discriminative part,
specific discriminative part and specific non-discriminative part.

In this paper, towards robust multi-view learning, we examine both discrim-
inative and non-discriminative information existing in the consistent and com-
plementary parts, and use only discriminative information for learning. Follow-
ing this idea, we propose a new multi-view learning algorithm, called DICS,
by exploring the Discriminative and non-discriminative Information existing in
Common and view-Specific parts among different views via joint non-negative
matrix factorization (NMF). Specifically, as usual, multi-view data is factorized
into common part shared across views and view-specific parts existing within
each view. Beyond, for both common part and each view-specific part, they
are further factorized into two parts (discriminative part and non-discriminative
part). To better obtain the discriminative parts, a supervised constraint is added
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to guide the joint NMF factorization. For illustration, Fig. 1 gives a simple exam-
ple to illustrate the decomposition. Here, each view of data is factorized into four
parts: the common discriminative, common non-discriminative, specific discrim-
inative and specific non-discriminative part, respectively. To find the optimal
decomposition, we follow the block coordinate descent (BCD) framework [14]
to solve the objective function of DICS. Finally, only the derived discrimina-
tive parts from common part and view-specific parts are used to construct a
classifier. Experimental results show that DICS allows extracting discriminative
information as well as discarding non-discriminative information effectively, and
supports a gained classification performance, which outperforms many state-of-
the-art algorithms on seven real-world data sets.

2 Related Work

The most simplest way to deal with multi-view data is to concatenate all fea-
ture vectors of different views into one single long feature vector. However, such
method ignores the relationships among multiple views and may suffer from the
curse of dimensionality. To present, many advanced multi-view learning algo-
rithms have been proposed, which can be broadly categorized into two types:
The first category aims to exploit the consistency, and the second one focuses
on exploiting the complementarity among multiple views.

Studies in exploiting consistency generally seek a common representation on
which all views have minimum disagreement. For instance, Canonical Correlation
Analysis (CCA) related algorithms [3,6,11,12,26] project two or more views into
latent subspaces by maximizing the correlations among projected views. Spec-
tral methods [5,16,20,29,33] use weighted summation to merge graph Laplacian
matrices from different views into one optimal graph for further clustering or
embedding. Matrix factorization based methods [8,18,27] jointly factorize multi-
view data into one common centroid representation by minimizing the overall
reconstruction loss of different views. In addition, multiple kernel learning (MKL)
[7] can also be considered as exploiting the consistency across different views,
where each view is mapped into a new space (e.g. kernel Hilbert space) using
kernel trick, and then combines all kernel matrices into one unified kernel by
minimizing a pre-defined objective function.

Another paradigm of multi-view learning is to explicitly preserve comple-
mentary information of different views. Co-training style algorithms [1,15,28,32]
treat each view as complementarity. Generally speaking, it iteratively trains two
classifiers on two different views, and each classifier generates its complementary
information to help the other classifier to train in the next iteration. Beyond, the
Co-EM algorithm [21] can be considered as a probabilistic version of co-training.
Subspace related methods are also adopted to learn the complementarity. For
instance, [9,10,13,19,25] learn one shared latent factor and view-specific latent
factors to simultaneously capture the consistency and complementarity.

In summary, most existing multi-view learning algorithms mainly focus
on learning consistency and complementarity from multi-view data. However,
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discriminative information existing in consistency and complementarity is not
fully investigated, which is actually the direct factor to dominate the learning
performance.

3 The Proposed Method

3.1 Preliminaries

Given a non-negative matrix X ∈ R
m×n
+ , where each column represents a data

point. NMF aims to approximately factorize the data matrix into two non-
negative matrix W ∈ R

m×k
+ and H ∈ R

n×k
+ , so that,

min
W,H

||X − WHT ||2F
s.t. W,H ≥ 0

(1)

where || · ||F denotes the Frobenius norm. Note that the original data matrix is
a linear combination of all column vectors in W with weights of corresponding
column vectors in H. Therefore, W and H are often called the basis matrix and
the coefficient matrix respectively.

For multi-view data, NMF-based approaches often take either W or H as a
common factor. One of the representative formulation is as follows.

min
W,H

nv∑

v=1

||X(v) − W(v)HT ||2F + Φ(W,H)

s.t. W,H ≥ 0

(2)

where nv denotes the number of views, and W(v) denotes the basis matrices cor-
responding to different views. H denotes the common coefficient matrix shared
across views, and Φ(·) are some regularization terms on W and H. It assumes
that different views of one identical object are generated from distinct subspaces,
and all views share with one centroid latent representation. This paradigm con-
siders the consistency shared by all views, however, it ignores the complementary
knowledge existing in each view.

3.2 Discriminant Learning on Multi-view Data

As multiple views have their commonality and distinctiveness, we first decom-
pose the multi-view data into two parts: common part and view-specific parts,
like many existing approaches [9,10,13,19]. Formally, let WC represents the
common subspace shared by all views and W(v)

S represents the distinct subspace
corresponding to each specific view. Therefore, each view of data matrix can be
written as X(v) = WCHT

C+W(v)
S H(v)T

S . To derive the common and view-specific
information, we thus can formulate our objective function as follows.

min
W,H

nv∑

v=1

∣∣∣∣

∣∣∣∣X
(v) −

[
WC W(v)

S

] [
HT

C

H(v)T
S

] ∣∣∣∣

∣∣∣∣
2

F

+ Φ(W,H)

s.t. W,H ≥ 0

(3)
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To learn the discriminative information existing in multi-view data, we fur-
ther leverage the available label information to guide joint matrix factorization
in a supervised way. Specifically, we first divide the common part and each
view-specific part into the discriminative part and the non-discriminative part,
respectively. Namely,

W̃ =
[
WCD WCN W(v)

SD W(v)
SN

]
(4)

H̃ =
[
HCD HCN H(v)

SD H(v)
SN

]
(5)

where WCD and WCN indicate the common discriminative as well as the non-
discriminative part of matrix W̃, respectively. Similarly, W(v)

SD and W(v)
SN indicate

the view-specific parts. It is the same for H̃.
Afterwards, we impose the supervised constraint on the latent coefficient

matrix H. Here, it is worth noting that we only add the constraint on the dis-
criminative part of H to derive discriminability. In addition, we should notice
that the discriminative information not only exists in the common part, but also
in each view-specific part. Therefore, the objective function is further reformu-
lated as follows.

min
W,H,B

nv∑

v=1

∣∣∣∣X(v) − W̃H̃T
∣∣∣∣2

F
+ Φ(W,H)

+ γ

∣∣∣∣

∣∣∣∣Y −
[
BCD B(v)

SD

] [
HT

CD

H(v)T
SD

] ∣∣∣∣

∣∣∣∣
2

F

s.t. W,H ≥ 0, ||(W)·,i||2 = 1

(6)

where Y ∈ R
c×n is the label matrix, c is the number of classes, and n is the

number of data instances. yi,j = 1 if the instance j belong to class i and 0 other-
wise. B = [BCD B(v)

SD] ∈ R
c×(k1+k3) is a linear projection matrix which maps the

latent representation into label space. Subscript “C” and “S” represent “com-
mon” and “specific” respectively. “D” and “N” represent “discriminative” and
“non-discriminative” respectively. For example, WCD denotes the common dis-
criminative subspace. We normalize each column vector of W to ensure a unique
solution. The supervised regularization term is imposed on HD = [HCD H(v)

SD]
to make the derived patterns discriminative.

3.3 Regularization Terms

To further enhance the discriminative power of latent subspaces, we impose a �1,1

norm constraint on WD as ||WT
DWD||1,1, where WD = [WCD W(v)

SD]. This term
can be factorized into two parts: ||WT

DWD||1,1 =
∑

i w
T
DiwDi +

∑
i�=j w

T
DiwDj .

The first term is used to prevent overfitting. The second term encourages basis
vectors to be as orthogonal as possible, which reduces the redundancy of discrim-
inative bases. At last, we impose a �1,1 norm constraint on HD, which encourages
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the discriminative coefficients to be sparse. The reason is that data points of dif-
ferent classes should not possess identical latent concepts (i.e. basis vectors).
It is reasonable that a latent concept only appears in a certain class but not
in the others. With such intuition, a discriminative latent representation vector
hDi should be sparse in the elements which are corresponding to the latent con-
cepts that hDi doesn’t posses. Finally, putting all terms together, the objective
function of DICS is formulated as follows.

min
W,H,B

nv∑

v=1

∣∣∣∣X(v) − W̃H̃T
∣∣∣∣2

F
+ α

∣∣∣∣WT
DWD

∣∣∣∣
1,1

+ β
∣∣∣∣HD

∣∣∣∣
1,1

+ γ

∣∣∣∣

∣∣∣∣Y −
[
BCD B(v)

SD

] [
HT

CD

H(v)T
SD

] ∣∣∣∣

∣∣∣∣
2

F

s.t. W,H ≥ 0, ||(W)·,i||2 = 1

(7)

where α, β, γ are non-negative parameters to balance the regularization terms.

3.4 Optimization

The objective function Eq. (7) is not convex over both variables W and H. There-
fore, it is impractical to find the global optimum. We follow the general BCD
framework to divide the objective function Eq. (7) into several convex subprob-
lems corresponding to each column of W and H, then solve each subproblem
successively by fixing the others. In this way, the global convergence and local
minimum solutions can be obtained [4].

Firstly, we represent WHT as the sum of rank-1 outer products. We can
equivalently reformulate the objective function Eq. (7) as follows.

f(W,H,B) =
nv∑

v=1

∣∣∣∣

∣∣∣∣X
(v) −

k1∑

i=1

wCDihT
CDi −

k2∑

i=1

wCNihT
CNi−

k3∑

i=1

w(v)
SDih

(v)T
SDi −

k4∑

i=1

w(v)
SNih

(v)T
SNi

∣∣∣∣

∣∣∣∣
2

F

+

α(
k1∑

i=1

k1∑

j=1

wT
CDiwCDj +

k3∑

i=1

k3∑

j=1

w(v)T
SDi w

(v)
SDj+

2
k1∑

i=1

k3∑

j=1

wT
CDiw

(v)
SDj) + β11×n(

k1∑

i=1

hCDi +
k3∑

i=1

h(v)
SDi)

γ

∣∣∣∣

∣∣∣∣Y −
k1∑

i=1

bCDihT
CDi −

k3∑

i=1

b(v)
SDih

(v)T
SDi

∣∣∣∣

∣∣∣∣
2

F

(8)

where wCDi, wCNi, w(v)
SDi, w(v)

SNi, hCDi, hCNi, h(v)
SDi, h(v)

SNi are the i-th column
vectors of WCD, WCN, W(v)

SD, W(v)
SN , HCD, HCN, H(v)

SD, H(v)
SN respectively. 11×n

is a row vector of length n with all elements 1.
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By fixing all column vectors except the one we want to update, we can obtain
the convex subproblem respect to it, then solve it based on the BCD framework.
Note that we use [·]+ to denote max(0, ·), which projects the negative value
to the boundary of feasible region of zero. Finally, we give the update rules as
follows.

wCDi = wCDi +
[∑nv

v=1(R
(v)hCDi − α(WCD1k1×1 + W(v)

SD1k3×1))
nv(hT

CDihCDi + α)

]

+
(9)

wCNi = wCNi +
[∑nv

v=1 R
(v)hCNi

nv(hT
CNihCNi)

]

+
(10)

w(v)
SDi = w(v)

SDi +
[R(v)h(v)

SDi − α(WCD1k1×1 + W(v)
SD1k3×1)

h(v)T
SDi h

(v)
SDi + α

]

+
(11)

w(v)
SNi = w(v)

SNi +
[ R(v)h(v)

SNi

h(v)T
SNi h

(v)
SNi

]

+
(12)

hCDi = hCDi +
[∑nv

v=1(R
(v)TwCDi − β

21n×1 + γQ(v)TbCDi)
nv(wT

CDiwCDi + γbT
CDibCDi)

]

+
(13)

hCNi = hCNi +
[∑nv

v=1 R
(v)TwCNi

nv(wT
CNiwCNi)

]

+
(14)

h(v)
SDi = h(v)

SDi +
[R(v)Tw(v)

SDi − β
21n×1 + γQ(v)Tb(v)

SD

w(v)T
SDi w

(v)
SDi + γb(v)T

SDi b
(v)
SDi

]

+
(15)

h(v)
SNi = h(v)

SNi +
[R(v)Tw(v)

SNi

w(v)T
SNi w

(v)
SNi

]

+
(16)

where R(v) and Q(v) are

R(v) = X(v) − WCDHT
CD − WCNHT

CN − W(v)
SDH

(v)T
SD − W(v)

SNH
(v)T
SN (17)

Q(v) = Y − BCDHT
CD − B(v)

SDH
(v)T
SD (18)
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Note that we extract the common factors R(v) and Q(v) from the equations
just for saving the writing space. However, it is not efficient for implementation,
since the computation orders i.e. (WHT )hi and W(HThi) largely affect the
computational complexity. The former takes mn(k +1) multiply operations, the
later takes (m+n)k multiply operations. Obviously the later form is much more
efficient in implementation.

In addition, when the other variables are fixed, the projection matrices BCD

and B(v)
SD can be solved in a closed form as follows.

BCD =
∑nv

v=1(Y − B(v)
SDH

(v)T
SD )

nv
HCD(HT

CDHCD + λI)−1 (19)

B(v)
SD = (Y − BCDHT

CD)H(v)
SD(H(v)T

SD H(v)
SD + λI)−1 (20)

where I is the identity matrix, λ is a small positive number.

Initialization. Since the NMF objective function is non-convex and has many
local minima, a proper initialization is beneficial to improve learning perfor-
mance. We develop a heuristic approach to initialize the basis matrix. DICS
encourages the discriminative bases to achieve a degree of orthogonality, thus
we try to initialize them as orthogonal as possible. To initialize WC, we first
calculate the mean of multi-view data, i.e. X̄ = 1

nv

∑nv

v X(v). Afterwards, we
clustering X̄ into k1 + k2 clusters and obtain the corresponding centroids. Then
we compute the pairwise linear correlation coefficients between each pair of cen-
troids, and sort them in an ascending order. At last, we select k1 centroids
corresponding to the top k1 correlation coefficients to initialize WCD, and use
the rest k2 centroids to initialize WCN. It is same to initialize each W(v)

S by
replacing X̄ with X(v).

Time Complexity. The computational complexity of DICS is the same as
solving standard NMF problem via hierarchical alternating least squares (HALS)
algorithm under the BCD framework [14]. It is O(

∑
v mvnk) in the multi-view

case, where mv is the dimension of the v-view feature. Finally, the pseudocode
of DICS is given in Algorithm1.

4 Experiment

In this section, we first experimentally evaluate the proposed algorithm DICS
in classification task on seven real world multi-view data sets. Then we empiri-
cally investigate that whether the extracted discriminative information from the
common and the view-specific parts are really helpful for improving the learning
performance. At last, the sensitivity of parameters and the convergence of DICS
are analyzed.
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Algorithm 1. DICS Algorithm
Input:

Multi-view data matrices X(1),X(2), ...,X(nv), label matrix Y, parameters α, β, γ,
number of latent factors k1, k2, k3, k4.

Output:
Basis matrices W = {WCD,WCN,W

(v)
SD ,W

(v)
SN},

Coefficient matrices H = {HCD,HCN,H
(v)
SD,H

(v)
SN},

Projection matrices B = {BCD,B
(v)
SD}.

1: Initialize W, H, and B.
2: repeat
3: Update each column of WCD using Eq. (9)
4: Update each column of WCN using Eq. (10)
5: for v = 1 to nv do
6: Update each column of W

(v)
SD using Eq. (11)

7: end for
8: for v = 1 to nv do
9: Update each column of W

(v)
SN using Eq. (12)

10: end for
11: Update each column of HCD using Eq. (13)
12: Update each column of HCN using Eq. (14)
13: for v = 1 to nv do
14: Update each column of H

(v)
SD using Eq. (15)

15: end for
16: for v = 1 to nv do
17: Update each column of H

(v)
SN using Eq. (16)

18: end for
19: Update BCD using Eq. (19)
20: for v = 1 to nv do
21: Update B

(v)
SD using Eq. (20)

22: end for
23: until convergence or max no. iterations reached;

4.1 Data Sets

Four popular real-world multi-view data sets are used in the experiment, includ-
ing WebKB, Reuters, YaleFace and BBC, where the WebKB data set can be
further divided into four sub data sets, namely Cornell, Texas, Washington,
Wisconsin. Therefore, finally seven data sets are used to evaluate the perfor-
mance of the proposed algorithm in this study. The statistics of data sets are
summarized in Table 1.

4.2 Selection of Comparison Algorithms

We compare DICS algorithm with several single-view and multi-view algorithms
to demonstrate its effectiveness. For fair comparison, the source codes of all com-
paring algorithms are directly downloaded from the author’s website or requested
from the author by email. The parameters of all algorithms are selected within
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Table 1. Statistics of the data sets

Data sets Data size # of views # of classes # of dimensions

Reutersa 1200 5 6 2000 for all

Cornella 195 2 5 1703/585

Texasa 187 2 5 1703/561

Washingtona 230 2 5 1703/690

Winsconsina 265 2 5 1703/795

YaleFaceb 256 2 8 2016 for all

BBCc 685 4 5 4659/4633/4665/4684
a http://lig-membres.imag.fr/grimal/data.html
b http://vision.ucsd.edu/∼iskwak/ExtYaleDatabase/ExtYaleB.html
c http://mlg.ucd.ie/datasets/segment.html

the range that the author suggested, which are listed in the following. Also, the
source code of our proposed DICS algorithm can be acquired from Dropbox1.

– KNN. We use the KNN algorithm (Set k = 1) as the baseline algorithm since
all NMF-based algorithms can be regarded as a preprocessing before KNN.
We apply KNN on all single views and report the best performance on the
view. Also we apply the KNN algorithm on the concatenated feature vector
(i.e. KNNcat).

– NMF. We apply the standard NMF algorithm on each of the single view
data and the concatenated feature vector (i.e. NMFcat), as another baseline
algorithm.

– SSNMF. This is a supervised NMF variant proposed in [17], which incorpo-
rates a linear classifier to encode the supervised information. We select the
regularization parameter λ within the range of [0.5:0.5:3].

– GNMF 2. This is a manifold regularized version of NMF [2], which preserves
the local similarity by imposing a graph Laplacian regularization. We use the
normalized dot product (cosine similarity) to construct the affinity graph,
and select the regularization parameter λ within the set of {100, 101, 102,
103, 104}.

– multiNMF 3. This is a well-known multi-view NMF algorithm proposed in
[18]. We select the regularization parameter λ within the set of {10−3, 10−2,
10−1, 100}.

– MVCC 4. MVCC incorporates the local manifold regularization for multi-view
learning [27]. We set parameter α to 100, and select β and γ within the set
of {50, 100, 200, 500, 1000}.

– MCL. This is a semi-supervised multi-view NMF variant with graph regular-
ized constraint [8]. We select parameter α within the range of [100:50:250],

1 https://www.dropbox.com/s/guohn1zhq073x9f/DICS.zip?dl=0.
2 http://www.cad.zju.edu.cn/home/dengcai/Data/GNMF.html.
3 http://jialu.cs.illinois.edu.
4 https://github.com/vast-wang/Clustering.git.

http://lig-membres.imag.fr/grimal/data.html
http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html
http://mlg.ucd.ie/datasets/segment.html
https://www.dropbox.com/s/guohn1zhq073x9f/DICS.zip?dl=0
http://www.cad.zju.edu.cn/home/dengcai/Data/GNMF.html
http://jialu.cs.illinois.edu
https://github.com/vast-wang/Clustering.git
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β within the set of {0.01, 0.02, 0.03}, and set gamma to 0.005 as author
suggested.

– DICS. This is the proposed algorithm. We select parameters: α, β and γ
within the set of {10−2, 10−1, 100, 101, 102}.

4.3 Classification on Real-World Data Sets

For DICS and all comparing algorithms, we first perform a five-folds cross vali-
dation to select the parameters, then we run ten times 10-folds cross validation
with the selected parameters to obtain the final average classification accuracy
and standard deviation. For all comparing NMF-based methods, we don’t fix
the number of latent factors k a global constant number, considering different
algorithms may prefer different ks. Thus, we select k within the range of [5:5:100]
for each algorithm. As for DICS, we need to set the number of four latent fac-
tors k1, k2, k3, k4 respectively. To avoid searching too large parameter space,
we first select ki(i = 1, 2, 3, 4) within the range of [5:5:20], then we select the
regularization parameters by fixing all ki.

For classification, we first obtain latent representations from different NMF-
based approaches, then we use KNN(k = 1) for classification. Specifically, for
unsupervised algorithms including NMF, GNMF, multiNMF, MCL and MVCC,
we first apply algorithms on the data sets to obtain the latent representations H,
then we use H for further training and testing. For supervised method like DICS,
we first obtain the discriminative basis WD on training data, then we use the
Moore-Penrose Pseudoinverse of WD as projection matrix to obtain new data
representation, namely X̃(v) = (WT

DWD)−1WT
DX

(v). Then we concatenate X̃(v)

as the input for KNN.
Table 2 summarizes the classification results of different multi-view learning

algorithms, where the numbers in the parentheses of the table denote the stan-
dard deviation. The best result on each data set is highlighted in boldface. As
we can see from the results, the proposed DICS outperforms the other com-
parison algorithms on all seven data sets. DICS is slightly better than other
algorithms on Reuters, YaleFace and BBC. But it achieves remarkably promis-
ing performance on four WebKB sub data sets, where it outperforms the second
best algorithm up to 9.01% on Texas especially. The amazing result may result
from twofold: (a) DICS not only explores the common and the view-specific
information, but more importantly, the discriminative information existing in
these parts is further extracted, which thus supports a gained prediction per-
formance. (b) By filtering out the non-discriminative information from common
part and view-specific parts, and adding the supervised constraints on encoding
coefficients, the extracted discriminative information is much more effective for
classification.

4.4 Empirical Study of DICS Algorithm

DICS assumes that multi-view data can be decomposed into the common part
and the view-specific parts, and only the discriminative information in them
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Table 2. Multi-view classification performance on real-world data sets

Method ACC (%)

Reuters Cornell Texas Washington Wisconsin YaleFace BBC

KNN 43.3 (0.5) 61.6 (1.4) 66.4 (1.2) 74.4 (1.3) 60.2 (1.4) 89.1 (1.1) 36.7 (0.6)

KNNcat 37.3 (0.5) 62.5 (1.5) 65.5 (1.1) 70.4 (0.7) 61.7 (1.4) 74.9 (1.1) 22.7 (1.0)

NMF 59.2 (1.1) 64.0 (2.9) 72.8 (3.5) 74.5 (1.0) 74.9 (2.1) 93.3 (0.7) 69.8 (1.9)

NMFcat 59.6 (0.9) 65.9 (1.9) 73.7 (2.1) 75.3 (2.5) 77.1 (1.7) 92.5 (1.4) 87.9 (1.4)

SSNMF 64.0 (0.7) 66.5 (2.5) 69.3 (2.6) 73.4 (1.1) 73.9 (2.6) 93.8 (0.8) 81.6 (0.7)

GNMF 50.0 (1.0) 49.0 (2.0) 59.8 (1.8) 58.2 (2.0) 67.0 (1.8) 14.9 (1.3) 46.6 (1.7)

multiNMF 61.1 (0.8) 54.7 (1.4) 67.4 (2.8) 59.0 (2.8) 61.5 (2.8) 90.7 (1.2) 89.3 (1.4)

MCL 64.4 (0.8) 69.9 (2.2) 70.0 (2.5) 74.7 (2.1) 79.6 (2.4) 90.0 (0.2) 90.0 (0.8)

MVCC 55.0 (1.5) 64.9 (1.7) 71.0 (3.4) 70.8 (2.8) 76.4 (2.7) 29.5 (3.6) 70.2 (9.6)

DICS 66.9 (1.6) 75.5 (2.3) 82.7 (2.0) 78.7 (1.3) 84.3 (1.1) 94.1 (1.0) 91.9 (0.7)

is essential. To verify this assumption, we first construct the following sub-
spaces: WD = [WCD W(v)

SD], WN = [WCN W(v)
SN ], WC = [WCD WCN] and

WS = [W(v)
SD W(v)

SN ], denoting as the “Discriminative”, “Non-discriminative”,
“Common” and “Specific” subspace. Afterwards, we project the original data
onto these subspaces to obtain the corresponding components of data. We
perform classification on each component, and the results are given in Fig. 2.
The classification performance of the “Common” part is much worse than the
“Specific” part, which suggests that only using the consistent information of
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Fig. 2. Classification accuracy of DICS on different extracted components of multi-view
data.
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multi-view data is not enough to capture the whole discriminative information.
Also, performance on the “Discriminative” part is better than all other parts
in all data sets except Reuters. It suggests that extracting the discriminative
information from the common as well as the view-specific parts, and discarding
the non-discriminative parts do help improve the learning performance.

4.5 Parameter Study

There are three regularization parameters in DICS, i.e. α, β and γ. α controls the
orthogonality degree of discriminative bases WD, β controls the degree of spar-
sity of discriminative latent representation HD, and γ balances the importance
of supervised regularization term. To investigate how these parameters affect the
final classification accuracy, we vary one parameter at a time within the set of
{10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103}, and fix the others to 10−3. Figure 3
shows the variation trend of classification accuracy over different parameters
on four typical data sets. The classification accuracy is relatively stable when
α and β are less than 1, then drops sharply after α and β are increasing. As
for parameter γ, the classification accuracy on BBC largely increases after γ is
greater than 10−2, and has become steady after γ is greater than 1. It is similar
to other data sets except YaleFace, classification accuracy on YaleFace starts to
decrease after γ is greater than 1. Based on the observation, we suggest selecting
parameters α and β within a small range of [0 1], and simply set the parameter
γ = 1 for practical use.
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Fig. 3. Classification accuracy curve w.r.t. parameters α, β and γ.

4.6 Convergence Analysis

Though the original problem Eq. (7) is non-convex, the derived updating rules
can achieve optimal minimum for each subproblem, the original problem Eq. (7)
will eventually converge to a local minimum solution. In order to empirically
investigate the convergence property of DICS, we plot the convergence curve
and the corresponding classification accuracy curve on four typical data sets
(see Fig. 4). From all four plots, we can observe that the objective values drop
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sharply and meanwhile the classification accuracies increase rapidly within about
the first 10 iterations. After that, convergence curves and the accuracy curves
begin to grow/decrease mildly, then it converges eventually. Usually, DICS will
converge in no more than 50 iterations, while the corresponding classification
accuracy becomes stable.

Fig. 4. Convergence and the corresponding classification accuracy curve of DICS on
four typical data sets.

5 Conclusion

In this paper, we propose a novel multi-view learning algorithm, called DICS,
by exploiting the discriminative information existing in multi-view data. To this
end, a joint non-negative matrix factorization is employed to factorize multi-
view data into a common part and view-specific parts. Beyond, the discrimina-
tive and non-discriminative information in these parts are further extracted in
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a supervised way. In contrast to existing multi-view learning approaches focus-
ing on consistent and (or) complementary information, our new approach, offers
an intuitive and effective way to improve classification performance based on
the direct discriminative information. The high discriminative power of derived
distinct patterns, further demonstrates the effectiveness of DICS on seven multi-
view real-world data sets. Although DICS has several desirable properties, it has
its own drawbacks. One limitation is that tuning ki in DICS is quite trouble-
some, since inferring the subspace dimensionality is still an open problem for all
NMF-based algorithms. We simply tune ki via model selection with traditional
strategy. However, once we set proper ki for each subspace, the promising results
can be obtained as we have demonstrated.
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Abstract. Discovering informative patterns deeply hidden in large
tree datasets is an important research area that has many practical
applications. Many modern applications and systems represent, export
and exchange data in the form of trees whose nodes are associated
with attributes. In this paper, we address the problem of mining fre-
quent embedded attributed patterns from large attributed data trees.
Attributed pattern mining requires combining tree mining and itemset
mining. This results in exploring a larger pattern search space compared
to addressing each problem separately. We first design an interleaved
pattern mining approach which extends the equivalence-class based tree
pattern enumeration technique with attribute sets enumeration. Further,
we propose a novel layered approach to discover all frequent attributed
patterns in stages. This approach seamlessly integrates an itemset mining
technique with a recent unordered embedded tree pattern mining algo-
rithm to greatly reduce the pattern search space. Our extensive exper-
imental results on real and synthetic large-tree datasets show that the
layered approach displays, in most cases, orders of magnitude perfor-
mance improvements over both the interleaved mining method and the
attribute-as-node embedded tree pattern mining method and has good
scaleup properties.

1 Introduction

Trees are used for representing data in a plethora of applications ranging from
computational biology, genome and chemistry compound analysis to ontologies,
scientific workflows and business process management. Because of their flexibil-
ity in representing data they have been promoted into the standard format for
exporting, exchanging and integrating data on the web (e.g., JSON) and as the
core data model for databases including NoSQL databases (e.g., MongoDB). The
need to analyze data has triggered the last years extensive research on mining
patterns from tree data. Over the years the extracted tree patterns have evolved
from induced patterns [2,5] to embedded patterns [16–18]. Embedded patterns
generalize induced patterns: while induced patterns involve parent-child edges
and are mapped to the data tree using isomorphisms, embedded patterns involve
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 558–576, 2018.
https://doi.org/10.1007/978-3-319-91458-9_34
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Fig. 1. (a) An attributed tree T (b), (c), (d) embedded attributed frequent patterns
on T (minsup = 2).

ancestor-descendant edges and are mapped to the data tree using embeddings. As
such, embedded patterns are able to extract relationships “hidden” (or embed-
ded) deeply within data trees which might be missed by induced patterns [17,18].
However, mining embedded patterns is computationally more challenging than
mining induced patterns.

Besides structural information such as nodes and edges, tree structured data
often contains also attributes. A node represents an entity (or an object) and
is associated with a number of attributes (or features) which represent proper-
ties of this entity. We refer to these data trees as attributed trees. Attributed
trees and graphs are useful in many application domains. For instance, in social
networks, individuals have many characteristics. In webpage browsing networks,
webpages are characterized by a number of keywords. In publication networks,
various features like author, title and keywords are recorded for every publica-
tion. A simplified example of an attributed tree is shown in Fig. 1(a) where a data
tree records diseases and medical conditions (diabetes, high blood pressure, high
LDL etc.) and other properties for a person and his ancestors. Every node repre-
sents a person and the medical conditions and diseases of the person are shown
as attributes of the node. If attributed trees are to be mined, the embedded
patterns to be extracted need to be defined appropriately so that attributes in
the patterns are associated with nodes which have these attributes. Figures 1(b),
(c) and (d) show three examples of frequent embedded patterns extracted from
the attributed tree of Fig. 1(a) assuming that the frequency threshold is two.
Figure 1(b) says that it is frequent to have a patient with diabetes who has an
ancestor with high sugar levels who, in turn, has a female ancestor with high
LDL. Similarly the pattern of Fig. 1(c) says that a patient with high sugar levels
who has three ancestors with high LDL is also a frequent case. Note that edges
in the patterns are ancestor-descendant edges, that is, they can be mapped to
paths in the data tree.
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As the attributes associated with a node in a tree pattern constitute an
itemset, extracting patterns from attributed trees involves two types of mining:
structural mining (for extracting the tree patterns) and itemset mining (for
extracting the attribute sets of the nodes) [1]. Most previous approaches address
the one or the other problem. Real life application though, like those mentioned
above, require the extraction of tree patterns from attributed trees whose nodes
are associated with attribute sets. Clearly, this problem is more difficult since
it combines the identification of frequent embedded tree structures with the
identification of frequent itemsets associated with the nodes.

Algorithms which mine embedded patterns from trees cannot be directly
applied to attributed trees by representing attributes as (another type of) nodes.
Indeed, as the attributes of a node in a pattern should be associated with the
node that has these attributes and not with an ancestor of this node, these
algorithms do not have a way to enumerate attributed tree patterns. A number of
papers address the problem of mining attributed patterns from attributed graphs
[11,12]. However, graph mining algorithms cannot efficiently mine patterns from
trees: as they are designed for the more general setting of graphs, they cannot
take advantage of the specificities of trees. In addition, these algorithms mine
not only embedded tree patterns, but also non-tree graph patterns (tree patterns
extended with transitive edges). As they generate and output too many useless
frequent patterns, their performance on trees is degraded.

In this paper, we present novel algorithms for mining unordered embedded
patterns from attributed trees. The main contributions of the paper are the
following:

• We formally define the problem of mining unordered embedded tree patterns
from large attributed tree data. Our formalization of the problem covers the
extraction of patterns from a collections of small attributed trees but also
from a single large attributed tree (Sect. 2).

• We design an interleaved approach for mining attributed patterns, which
extends the well-known equivalence-class based tree pattern enumeration
technique with attribute set enumeration to systematically generate candi-
date attributed tree patterns (Sect. 4).

• We further propose a novel layered approach, which, instead of explicitly enu-
merating candidate attributed tree patterns, discovers the frequent attributed
patterns in stages. This approach seamlessly integrates the itemset mining
technique with a recent unordered embedded tree pattern mining algorithm
to greatly reduce the pattern search space (Sect. 5).

• We run extensive experiments to evaluate the performance and scalability
of our approaches on real and synthetic datasets. The experimental results
show that the layered approach mines embedded attributed patterns up to
several orders of magnitude faster than both the interleaved mining method
and the attribute-as-node embedded tree pattern mining method at low fre-
quency thresholds. Further, the layered approach scales smoothly in terms of
execution time and space consumption empowering the extraction of patterns
from large attributed datasets (Sect. 6).
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Fig. 2. An attributed tree and its inverted lists.

2 Definitions and Problem Statement

Trees. Let A denote a set of attributes {a1, a2, . . . , an }, where each attribute
takes its value from a finite domain. A rooted attributed tree, T = (V,E), is a
directed acyclic connected graph consisting of a set of nodes V and a set of edges
E ⊆ V × V satisfying the following properties: (1) there is a distinguished node
called the root that has no incoming edges; (2) there is a unique path from the
root to any other node; (3) there is a labeling function lb mapping nodes to
labels; and (4) there is a function av assigning a subset of A to each node of V .
A tree is called ordered if it has a predefined left-to-right ordering among the
children of each node. Otherwise, it is unordered. The size of a tree is defined as
the number of its nodes.

In this paper, unless otherwise specified, a tree is a rooted, labeled, unordered,
attributed tree.

Data Tree Encoding Scheme. We assume that the input data tree T is
preprocessed and the position of every node is encoded following the regional
encoding scheme [3]. According to this scheme, every node in T is associated
with its positional representation which is a (begin, end, level) triple. The fields
begin and end in the triple of a node correspond to the order of the first and the
last visit of this node in a depth first traversal of T . The region encoding allows
efficiently checking structural relationships between two nodes. For instance,
node n1 is an ancestor of node n2 iff n1.begin < n2.begin, and n2.end < n1.end;
node n1 is the parent of node n2 iff n1.begin < n2.begin, n2.end < n1.end,
and n1.level = n2.level-1. For every label A in T , an inverted list LA of the
positional representations of the nodes with label A is produced, ordered by
their begin field. Figure 2(a) shows an attributed data tree T1 and the positional
representation of its nodes. Subscripts are used in the labels of nodes in T1 to
distinguish between nodes with the same label (e.g., nodes A1 and A2 whose
label is A). Figure 2(b) shows the inverted lists of T1’s labels. In the following,
and depending on the context, we use the same symbol T to refer interchangeably
to the tree T and to its set of inverted lists.
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Tree Patterns. A tree pattern is a tree. There are two types of mined tree pat-
terns in the literature: patterns whose edges represent child relationships (child
edges) and patterns whose edges represent descendant relationships (descendant
edges). The latter are more general, as a child relationship subsumes a descendant
relationship between two nodes. In this paper, we focus on embedded patterns
(defined next) which have descendant edges.

Tree Morphisms. A tree morphism determines if a tree pattern is included in
a tree. Given a pattern P and a tree T , an embedding from P to T is an injective
function m mapping nodes of P to nodes of T , such that: (1) for any node x ∈ P ,
lb(x) = lb(m(x)); (2) (x, y) is a child edge in P iff m(x) is a child of m(y) in T ,
while x is an ancestor of y in P iff m(x) is an ancestor of m(y) in T ; and (3) for
any node x ∈ P , av(x) ⊆ av(m(x)).

Patterns with descendant edges mined using embeddings are called embed-
ded patterns [17,18]. Patterns with child edges mined using isomorphisms are
qualified as induced [2,5].

Support. The support of a pattern P on a data tree T is defined as the minimum
cardinality of the image sets of the pattern nodes under all possible embeddings
of P to T . This support definition is popularly adopted when mining a single
large graph/tree [7]. It enjoys also the antimonotonicity property that is central
in pattern mining algorithms for a substantial pruning of the pattern search
space.

Problem Statement. Given a large rooted labeled attributed tree T and a min-
imum support threshold minsup, our goal is to mine all the frequent unordered
embedded attributed patterns.

3 Mining Embedded Tree Patterns from Non-attributed
Trees

In this section, we briefly describe an algorithm called embTM presented in [16].
Algorithm embTM mines embedded patterns from rooted labeled trees with-
out attributes. We will discuss in the following sections how to extend embTM
to mine embedded attributed patterns from attributed trees. We have chosen
embTM as extension basis since it displays orders of magnitude performance
improvements over a state-of-the-art embedded tree mining algorithm sleuth
[17].

Algorithm embTM works by iterating between the candidate generation
phase and the support counting phase. In the first phase, it uses a systematic
way to generate candidate patterns that are potentially frequent. In the second
phase, it incrementally computes the support of candidate patterns. The main
techniques used in the two phases are briefly reviewed below.
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3.1 Candidate Pattern Generation

Concepts and Notation. Let P be a tree pattern. Each node of P is identified
by its depth-first position in the tree, determined through a depth-first traver-
sal of P , by sequentially assigning numbers to the first visit of the node. The
rightmost leaf of P , denoted rml(P ), is the node with the highest depth-first
position. The immediate prefix of P is the sub-pattern of P obtained by deleting
rml(P ). A sub-pattern of P obtained by a sequence of deletions of rml(P ) is
called prefix of P .

Equivalence Classes. In order to systematically generate candidate patterns,
embTM adopts a method called the equivalence class-based pattern generation
introduced in [17,18]. It is briefly outlined below.

Let the term k-pattern refer to a pattern of size k. Given a (k-1)-pattern
P (k ≥ 1), its equivalence class is the set of all k-patterns that have P as imme-
diate prefix. The equivalence class of P is denoted as [P ]. The notation P i

X

denotes a k-pattern in [P ] formed by adding a child node labeled by x to the
node with position i in P as the rightmost leaf node.

Pattern Join Operations. The equivalence class-based pattern generation
works by joining patterns from the same equivalence class. A join operation can
produce one or two result patterns. One option is to make the right operand’s
rightmost leaf as the rightmost cousin/sibling of the left operand’s rightmost
leaf. The other option is to make the rightmost leaf of the right operand as
the rightmost child of the left operand’s rightmost leaf. Formally, let P i

X and
P j
Y denote any two elements in [P ]. The join operation P i

X ⊗ P j
Y is defined as

follows:

• if j = i, return the pattern Qk−1
Y where Q = P i

X .
• if j ≤ i, return the pattern Qj

Y where Q = P i
X .

The join operation is not defined if i < j. The two result patterns Qk−1
Y and

Qj
Y are called child and cousin expansions of P i

X by P j
Y , respectively. Notice that

for each result pattern its immediate prefix is its left-parent, and its rightmost
leaf is the rightmost leaf of its right-parent.

Equivalence Class-Based Pattern Generation. The main idea of this
expansion is to join each pattern P i

X ∈ [P ] with any other pattern in [P ], includ-
ing itself (self expansion), to produce the patterns of the equivalence class [P i

X ].
The equivalence class expansion method correctly generates all possible labeled,
ordered, candidate tree patterns and each candidate is generated at most once
[18].
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Canonical Form. An unordered pattern may have multiple alternative iso-
morphic representations. To avoid the redundant generation of the isomorphic
representations of the same pattern, a further step is needed to check if the
newly generated candidate is in canonical form. The concept of canonical form
of a tree is used by pattern mining algorithms as an ordered representative of the
corresponding unordered pattern [16,17]. A detailed study of various canonical
representations of trees can be found in [6].

3.2 Support Computation

Core Idea. In order to compute the support of P on T , Algorithm embTM first
computes the homomorphic matches of P under all possible homomorphisms of
P to T , and then, filters out non-embedded matches to retain the embedded ones.
Embeddings are special cases of homomorphisms. Unlike embeddings, homomor-
phisms do not require the mapping from nodes of P to nodes of T to be injective,
and they allow two distinct sibling nodes in P mapping to two nodes on the same
path in T . Because of the relaxations, finding a homomorphism from P to T can
be done in PTIME [10], whereas the problem of finding an unordered embedding
of P to T is NP-Complete [8].

In more detail, in the first phase, embTM incrementally computes the homo-
morphisms of a pattern using the materialized homomorphisms of its parent
patterns and other previously computed patterns. Instead of materializing the
homomorphic matches of previously considered patterns, embTM materializes
the homomorphic instances for each node of the pattern. In the second phase,
embTM uses a polynomial procedure to filter out non-embedded pattern matches
from the homomorphic ones. The 2-phase procedure was further extended to
prune non-embedded node instances of the nodes of the pattern without explic-
itly generating the homomorphic matches of the pattern.

3.3 Algorithm embTM

Algorithm embTM is outlined in Fig. 3. It starts by finding the set F1 of frequent
1-patterns. Set F1 and the inverted lists of the dataset are used to compute the
set F2. Then, using the equivalence class-based pattern expansion method, the
algorithm recursively expands all the patterns in F2. The pattern search space
is traversed in a depth-first manner.

In more detail, the main loop starts by calling the procedure MineEmbPat-
terns on every frequent 2-pattern (lines 3–4). Before expanding a pattern P i

X ,
MineEmbPatterns makes sure that P i

X is in canonical form (line 2). It tries to
expand P i

X with every pattern P j
Y ∈ [P ] and computes the support of each

possible expansion outcome using function IsFrequent (lines 4–6). The inputs
of IsFrequent are the pattern under consideration, and the occurrence list sets
(defined in the next section) of its parent patterns on the input data tree. The
detailed description of function IsFrequent can be found in [16].

Any new pattern that turns out to be frequent is added to the new class [P i
X ]

(line 7). After all patterns P j
Y have been joined with P i

X , the class [P i
X ] contains
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Input: inverted lists L of tree T and minsup.
Output: all the frequent embedded tree patterns in T .

1. F1 := {frequent 1-patterns};
2. F2 := {equivalent classes [P ] of frequent 2-patterns};
3. for (every [P ] ∈ F2) do
4. MineEmbPatterns([P ]);

ProcedureMineEmbPatterns(Equivalence class [P ])
1. for (each P i

X ∈ [P ]) do
2. if (P i

X is in canonical form) then
3. [P i

X ] := ∅;
4. for (each P j

Y ∈ [P ]) do
5. for (each expansion outcome Q of P i

X ⊗ P j
Y ) do

6. if (IsFrequent(Q, OL(P i
X), OL(P j

Y ) )) then
7. add Q to [P i

X ];
8. MineEmbPatterns([P i

X ])

Fig. 3. Algorithm embTM for mining embedded tree patterns.

all the frequent tree patterns sharing the immediate prefix P i
X . The procedure is

then called on [P i
X ] to discover larger frequent tree patterns having P i

X as prefix
(line 8). The recursive process is repeated until no more frequent patterns can
be generated.

4 Mining Embedded Attributed Patterns: An Interleaved
Approach

Based on embTM, we design an embedded attributed pattern mining algorithm
called embATM-inter. Figure 4 shows the outline of Algorithm embATM-inter.
The main difference between embATM-inter and embTM is on their candidate
pattern enumeration. To generate candidate attributed patterns, embATM-inter
extends the equivalence class-based pattern generation with attribute sets enu-
meration. The idea is to interleave the pattern expansion with the enumeration
of attribute sets for pattern nodes during the pattern mining process.

Without loss of generalization, in the following discussion, we assume that
each node in the data tree T is associated with a non-empty subset of the
attribute set A.

Concepts and Notation. We call pattern nodes that are associated with an
non-empty attribute set as attributed pattern nodes. A pattern is called attributed
pattern if every node is attributed. Let the term k-pattern refer to a pattern with
k nodes; Fk and AFk, k ≥ 2, denote respectively the set of the equivalence classes
of frequent k-patterns and attributed k-patterns.

Given a pattern P and a data tree T , an occurrence of P on T is a tuple
indexed by the nodes of P whose values are the images of the corresponding
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nodes in P under an embedding of P to T . Remember that an embedding needs
to satisfy the three conditions given in the definition (Ref. Sect. 2). The set of
occurrences of P under all possible embeddings of P to T is a relation OC whose
schema is the set of nodes of P .

If X is a node in P labeled by label A, the occurrence list of X on T is a
sublist LX of the inverted list LA containing only those nodes that occur in the
column for X in OC. The set of all the occurrence lists of the nodes of P on T
is denoted by OL, that is, OL = {LX | X ∈ nodes(P )}.

Let X be a node in P which is not yet attributed, let also LX be its occurrence
list. After attaching an non-empty attribute set S (⊆ A) to X, the occurrence
list of S w.r.t X on T , denoted by LX(S), is {x | x ∈ LX , S ⊆ av(x)}. We call S
a frequent attribute set of X, if |LX(S)| is not less than minsup.

Attributed Pattern Nodes Enumeration. We first discuss how to gener-
ate AFk, where k ≥ 2. Let P i

X be a candidate k-pattern (k ≥ 2) in class [P ].
Every pattern in class [P ] has the common property that, every node except
for the rightmost leaf has been attributed. embATM-inter iteratively computes
attribute sets from all the attributes to which the rightmost leaf node X of P i

X

is mapped in T (Lines 2–3 in Procedure MineAttrEmbPatterns). Occurrence
list of attribute sets are computed based on occurrence list LX via a call to func-
tion GetAttrOccList. We will talk about the efficient computation of attribute
occurrence lists in the next section. Each computed attribute set that is frequent
is attached to node X of P i

X . The procedure for checking whether an attributed
set is frequent is not shown for simplicity. Any non-frequent attribute sets of X
can be discarded, since by the antimonotonicity property of the pattern support
definition, an attributed pattern with an infrequent attribute set must also be
infrequent. For each canonical attributed pattern of P i

X (we will discuss next
how to check canonicity for attributed patterns), embATM-inter computes its
frequency on T (Line 4). The same frequency computation function IsFrequent
from Algorithm embTM can be applied here, using occurrence list set OL of P i

X

and occurrence list LX(S) as the inputs, where S is the current frequent attribute
set under consideration. Each frequent attributed pattern P i

X(S) is added to AFk

(Line 5).

Attributed Pattern Expansion. embATM-inter proceeds to expand the
newly obtained frequent attributed pattern P i

X(S) with candidates P j
Y from [P ]

to generate (k+1)-patterns (Lines 6–7). Here the equivalence class-based pattern
generation method of embTM is applied. Each frequent (k+1)-pattern is added
to class [P i

X(S)] (Lines 8–9). Notice that embATM-inter keeps the invariant that
only the rightmost leaf node of every (k+1)-pattern is not yet attributed. Once
all P j

Y have been processed, embATM-inter recursively explores the new class
[P i

X(S)] in a depth-first manner (Line 10).

Obtaining AF1 and F2. Frequent attributed 1-patterns in AF1 can be obtained
by first augmenting frequent 1-patterns with frequent attribute sets and then
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Input: Inverted lists L of tree T , attribute set A and minsup.
Output: All the frequent embedded attributed tree patterns in T .

1. F1 := {frequent 1-patterns};
2. AF1 := GetAF1(F1);
3. F2 := {equivalent classes [P ] of frequent 2-patterns};
4. for (every [P ] ∈ F2) do
5. MineAttrEmbPatterns([P ], 2);

ProcedureGetAF1(Frequent 1-patterns F1)
1. for (each X ∈ F1) do
2. for (each subset S of A) do
3. LX(S) := GetAttrOccList(S, X);
4. if (|LX(S)| ≥ minsup) then
5. add X(S) to AF1;

FunctionGetAttrOccList(Attribute set S, pattern node X)
1. for (each x ∈ LX in its preorder appearance in T ) do
2. if (S ⊆ av(x)) then
3. add x to LX(S);
4. return LX(S);

ProcedureMineAttrEmbPatterns(Equivalence class [P ], size k)
1. for (each P i

X ∈ [P ]) do
2. for (each subset S of A) do
3. LX(S) := GetAttrOccList(S, X);
4. if (P i

X(S) is canonical and IsFrequent(P i
X(S), OL(P i

X ), LX(S) )) then
5. add P i

X(S) to AFk and set [P i
X(S)] to be empty;

6. for (each P j
Y ∈ [P ]) do

7. for (each expansion outcome Q of P i
X(S) ⊗ P j

Y ) do
8. if (IsFrequent(Q, OL(P i

X(S)), OL(P j
Y ) )) then

9. add Q to [P i
X(S)];

10. MineAttrEmbPatterns([P i
X(S)], k+1)

Fig. 4. Algorithm embATM-inter for mining embedded attributed tree patterns.

computing their occurrence lists (Procedure GetAF1). Frequent 2-patterns in F2

can then be computed by joining AF1 and F1. We omit the details due to space
limitation.

Checking Canonicity of Attributed Patterns. By the antimonotonicity
property of the pattern support definition, each frequent attributed k-pattern
(k ≥ 2) must have a subset of AF1 as its attributed nodes. Based on this obser-
vation, we assign each 1-pattern in AF1 a unique id and use those ids to identify
pattern nodes in attributed k-patterns. By giving an ordering to those ids, we can
apply the canonical form checking method for unordered tree patterns to check
canonicity of attributed patterns. This way, no explicit definition of a canonical
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form for attributed patterns is needed. An attributed pattern canonical form
that considers labels of both entity nodes and attributes is given in [13].

5 Mining Embedded Attributed Patterns: A Layered
Approach

One difficulty with the interleaved approach embATM-inter for mining
attributed patterns is that it has to maintain a large amount of states to keep
track of attribute sets enumerated during the recursive mining process. This
will consume significant amount of memory when the size of attribute domains
is large, confirmed by the experimental results in Sect. 6. We provide in this
section an improved method for finding frequent attributed patterns which suc-
cessfully addresses this issue. The new method does not alternate between the
pattern node expansion and the attribute set enumeration, but instead, it takes
a layered approach to generate attributed patterns in stages.

The layered approach is called embATM-layer. It first computes a set of
frequent singleton patterns, which are frequent 1-patterns each of which has a
single attribute. Based on the singleton patterns, it adapts an itemset mining
algorithm to find the set of frequent attributed 1-patterns. In the final step, it
feeds attributed 1-patterns and their occurrence lists into the embedded pattern
mining algorithm embTM to produce all the possible attributed k-patterns (k ≥
2). The processing flow of embATM-layer is summarized in Fig. 5. We describe
the three steps in more detail below.

Layer 1: Singleton Pattern Generation. Singleton patterns and their occur-
rence lists can be obtained in the data preprocessing phase. Recall that before a
pattern mining process starts, the input data tree T is preprocessed and every
node is associated with a (begin, end, level) triple encoding the node’s depth-
first position in T (Ref. Sect. 2). Also, for every label A in T , an inverted list LA

of triples of the node with label A is produced, ordered by their begin field. All
the node triples and inverted lists of node labels can be obtained by performing
one depth-first traversal of T .

Each singleton pattern is composed of a node label in the input data tree T
and an attribute from A. During the depth-first traversal of T , we record each
distinct pair of node labels and attributes appearing in T . Each distinct pair
is a singleton pattern. Occurrence lists of singleton patterns are also produced

Fig. 5. The processing flow of algorithm embATM-layer.
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during the depth-first traversal. For each singleton pattern instance encountered
during the depth-first traversal, we add the corresponding node triple to the
occurrence list of the singleton pattern.

Layer 2: Attributed 1-Pattern Generation. By making each singleton pat-
tern as an item, and each node in T as a transaction identified by its triplet,
the problem of mining frequent attributed 1-patterns reduces to the problem of
mining frequent itemsets from the database of transactions. Any frequent item-
set mining algorithm developed in the literature can be applied here. Once the
set of frequent attributed 1-patterns is obtained, we compute the occurrence list
of each 1-pattern by intersecting occurrence lists of singleton patterns contained
in that 1-pattern.

Layer 3: Attributed k-Pattern Generation. Each k-pattern (k ≥ 2) is a
tree formed by 1-patterns. By making attributed 1-patterns, instead of node
labels, as the information unit of pattern mining, we can use the embedded
pattern mining algorithm embTM to find all the frequent attributed k-patterns.
Here, the inputs to embTM are attributed 1-patterns and their occurrence lists.
No changes need to be made on embTM for this purpose.

6 Experimental Evaluation

In this section, we study the performance of the two proposed approaches for
mining embedded attributed tree patterns in terms of execution time, memory
consumption and scalability. We implemented and compared the following algo-
rithms that mine patterns from large tree data: (1) two versions of the recent
embedded tree patterns algorithm which mines all the frequent embedded tree
patterns from tree data [16], one which ignores attributes in the data, denoted
as embTM, and another one which treats attributes as tree nodes, denoted as
embTM(AttrAsNode); and (2) the two embedded attributed pattern mining algo-
rithms presented in this paper, one using the interleaved strategy, denoted as
embATM-inter, and another one using the layered strategy, denoted as embATM-
layer. All four algorithms employ the techniques described in [16] for computing
pattern support and materializing pattern occurrences.

Our implementation was coded in Java. All the experiments reported here
were performed on a workstation having an Intel Xeon CPU 3565 @3.20 GHz
processor with 8 GB memory running JVM 1.7.0 in Windows 7 Professional. The
Java virtual machine memory size was set to 4 GB.

Datasets. We ran experiments on three real and synthetic datasets with differ-
ent structural properties.

D101 is a synthetic dataset generated by the tree generation program pro-
vided by Zaki [18]. To generate attribute sets for nodes in the tree, we used the
1 http://www.cs.rpi.edu/∼zaki/software/.

http://www.cs.rpi.edu/{~}zaki/software/
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IBM synthetic dataset generator (See footnote 1) for itemsets and sequences.
The results presented here were based on setting which associates each tree
node with an attribute set of size ranging from 1 to 5, and each attribute takes
its value from a domain of 20 different values in total. We also ran experiments
on the dataset with different attribute settings. The results are similar and are
omitted due to space limitation.

XMark2 is an XML benchmark dataset modeling an auction website. The
dataset is deep and has many regular structural patterns. It includes a few
recursive elements (elements on one root-to-leaf path with the same label).

DBLP3 is a real XML dataset proving bibliographic information on major
CS journals and proceedings. We used a DBLP XML fragment including 50,000
publications provided as a duplicate detection benchmark for XML [14].

When we parse an XML document for mining attributed patterns, we gen-
erate the positional representation, that is, the triplets (Ref. Sect. 2) only for
elements having attributes and/or subelements, which are called entity nodes
here. For instance, article elements in DBLP are parsed as entity nodes. Empty
elements or elements having only PCDATA as their contents are parsed as
attributes, such as year elements in DBLP. Entity nodes having no attributes
are assigned a special (dummy) attribute. During the data preprocessing step,
we record also the positional representation of entity nodes for each of their
associated attributes. The dataset D10 is processed in the same way.

Value nodes in XMark and DBLP are processed as follows: for XMark, we
ignored its text elements, whose contents are taken from Shakespeare’s plays.
For DBLP, in order to mine informative patterns from its contents, we used
the Apache OpenNLP Tools4 to extract noun phrases from the contents of title
elements, and made each extracted phrase as a value associated with the title
attribute of the corresponding publication. The main characteristics of the above
three datasets are summarized in Table 1. Columns 2 and 3 show the total num-
ber of elements/entity nodes in datasets before and after the data preprocessing
step, respectively. The total number of attributes shown in the table does not
count dummy attributes.

Table 1. Dataset statistics.

Dataset #elements #entity nodes #attributes #labels Max/Avg depth #paths

D10 272407 27371 51089 100 11/2.4 100K trees

XMark 78314 33208 71375 29964 13/6.4 138840

DBLP 260401 49240 395442 227467 5/3.5 1033285

2 http://xml-benchmark.org.
3 http://dblp.uni-trier.de/xml/.
4 https://opennlp.apache.org/.

http://xml-benchmark.org
http://dblp.uni-trier.de/xml/
https://opennlp.apache.org/
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Time Performance. Figures 6(a), 7(a), and 8(a) show the time spent by
embTM, embTM(AttrAsNode), embATM-inter, and embATM-layer on the D10,
XMark, and DBLP, respectively, under different support thresholds. In all the
cases, we excluded the data preprocessing time. Notice that, in all the figures, a
logarithmic scale is used on the Y-axis. We stopped testing algorithms which were
unable to finish within 6 h for the support levels under examination are below
certain values on each dataset. Table 2 compares the number of candidates and
final frequent patterns generated by the four algorithms under different support
thresholds on the three datasets. We have the following observations.

Algorithm embTM(AttrAsNode) runs slower than others by at least one order
of magnitude in most applicable cases. Also, its runtime increase rate is much
sharper than others as the support level decreases. This can be explained as
follows. The pattern computation method of [16] used by all the four algorithms
is based on the structural join operation [3,15] among entity nodes. Labels of
attribute values generally have more variety than labels of entity nodes. When
treating attributes as entity nodes, embTM(AttrAsNode) clearly needs to per-
form more structural joins compared to algorithms that compute structural joins
among entity nodes only. Further, the larger number of labels can substantially
increase the pattern search space. As shown in Table 2, embTM(AttrAsNode) not
only evaluates substantially more candidates but also produces more frequent
patterns. Many of those generated patterns include false information, as they
associate the attributes of pattern nodes with their ancestors.

Understandably, Algorithm embTM has a better performance than
embTM(AttrAsNode) in all the testing cases, and in particular on D10, since it
only considers entity nodes for mining patterns. This reduces both the pattern
search space and the number of structural joins. But on the two XML datasets
XMark and DBLP, embTM still runs much slower than the two attributed pat-
tern mining algorithms. This can be explained by the following two remarks: (1)
embTM (and embTM(AttrAsNode)) treats every XML element as a tree node.
As shown in Table 1, the number of elements is usually larger than the number of
entity nodes obtained after the preprocessing step. (2) Attribute labels usually
have smaller number of occurrences in the data than tree node labels. When
attributes in the data have high selectivity, both the pattern search space and
the structural joins can be greatly reduced when mining attributed patterns.

Algorithm embATM-inter performs poorly when the size of attribute domains
is large. It is because the number of candidate attribute sets enumerated for tree
pattern nodes and hence the number candidate patterns considered by embATM-
inter grows explosively during the mining process. This negatively affects the
time performance of embATM-inter. For instance, on DBLP, the domain size of
attributes such as title and author is expectedly very large, embATM-inter has to
evaluates 544 times more candidates than embATM-layer when minsup = 650
(Table 2).

In contrast, embATM-layer is able to mine attributed patterns in reasonable
time even at very low support thresholds on each dataset. For instance, it is able
to mine 21950 frequent attributed patterns in 433 s when minsup = 3, whereas all
other approaches fail before minsup reaches 499, either due to prohibitively long
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Fig. 6. Performance comparison on D10.
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Fig. 7. Performance comparison on XMark.
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Fig. 8. Performance comparison on DBLP.

execution time or out-of-memory error. This clearly demonstrates the advantages
of layered strategy used by embATM-layer for mining attributed patterns. The
produced frequent patterns on DBLP at low support thresholds provide useful
information on tasks such as detecting duplicated publications, searching recent
hot research topics, or finding frequent co-authorship patterns.
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Table 2. Statistics for frequent patterns mined from the three datasets.

dataset algorithms tot.cand.
patterns

tot.freq. 
patterns dataset algorithms tot.cand.

patterns
tot.freq. 
patterns

embTM 498 76 embTM 146287 13480
embTM(AttrAsNode) 9673 1109 embTM(AttrAsNode) 319248 27008

embATM-inter 754446 107 embATM-inter 264 24
embATM-layer 8569 107 embATM-layer 189 24

embTM n/a n/a embTM 293 55
embTM(AttrAsNode) n/a n/a embTM(AttrAsNode) 235797 1016

embATM-inter 16530918 2403 embATM-inter 196606 36
embATM-layer 30333 2403 embATM-layer 292 36

D10
(minsup=3000)

XMark 
(minsup=600)

XMark 
(minsup=90)

DBLP 
(minsup=650)

Memory Usage. Figures 6(b), 7(b), and 8(b) show the memory consumption of
the four algorithms on the D10, XMark, and DBLP, respectively, under different
support thresholds. Overall, embATM-layer has the best memory performance,
consuming substantially less memory than the other three algorithms in almost
all the test cases.

The large memory consumption of embTM and embTM(AttrAsNode) is
mainly due to the larger number of entity nodes processed as well as the larger
amount of candidate patterns evaluated and final frequent patterns produced
during the mining process.

Algorithm embATM-inter consumes substantially more memory than
embATM-layer, especially when the attribute domain size is large. It aborted
due to out-of-memory error when the support level reaches certain values on
each dataset. This is mainly because embATM-inter has to maintain a large
amount of states to keep track of attribute sets enumerated during the recursive
mining process.

Scalability. We studied the scalability of the four algorithms, as we increase the
size of input data on XMark. We generated 6 XMark trees by setting factor =
0.05, 0.06, . . . , 0.1. Figure 9 shows the scalability results of the four algorithms
when minsup = 1200.

As we increase the input data size, the growth of the running time of both
embTM and embTM(AttrAsNode) is much sharper than that of embATM-inter
and embATM-layer. The memory usage of embTM and embTM(AttrAsNode)
is also larger than the embATM-inter and embATM-layer. The latter two algo-
rithms have similar time performance and memory usage.

We also show in the same figure the scalability results of embATM-inter
and embATM-layer when minsup = 136. In this case, both embATM-inter
and embATM-layer were unable to finish within 12 h even on the smallest sized
XMark tree. The running time and memory consumption of embATM-inter grow
more sharply than embATM-layer. The latter runs up to 63 times faster than
embATM-inter, while consuming up to 12 times less memory.
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Fig. 9. Scalability comparison for mining embedded patterns on XMark with increasing
size. The solid curves correspond to minsup = 1200, the dashed curves correspond to
minsup = 136.

7 Related Work

The problem of mining tree patterns has been studied since the last decade.
Existing work has focused almost exclusively on mining induced and embedded
patterns from a set of small trees. The problem of mining unordered embedded
tree mining is computationally more challenging than mining induced patterns or
ordered embedded patterns. Among the many tree mining algorithms studied in
the literature [4–6,16–18], only few mine unordered embedded patterns [16,17].

There is a growing interest in mining itemsets organized in structures. Among
the works on mining frequent patterns from attributed graphs [9,11–13], FAT-
miner [9] and IMIT [13] mine attributed tree patterns from a collection of
small attributed trees. While FAT-miner [9] aims at mining ordered embedded
attributed patterns, IMIT [13] focuses on mining ordered and unordered induced
attributed patterns. Both works proposed a candidate attributed pattern gener-
ation method that is based on two operations: itemset expansion and tree expan-
sion. The enumeration method extends the rightmost path expansion [2,6,17]
with itemset enumeration. The interleaved approach proposed in this paper also
requires explicitly enumerating attributed candidate patterns, but it extends the
most recent equivalence class-based pattern generation [16] with itemset enu-
meration. The existing works on mining graph patterns from attributed graphs
[11,12] combine itemset expansion with graph expansion and explicitly enumer-
ate candidate attributed patterns. In contrast to these approaches, our proposed
layered approach discovers attributed patterns in stages and avoids enumerating
attributed candidate patterns explicitly.

8 Conclusion

We have addressed the important problem of mining unordered embedded tree
patterns from large attributed tree data. To the best of our knowledge, none of
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the previous approaches can mine embedded attributed tree patterns from large
data trees.

To cope with this pattern mining problem, we have designed an inter-
leaved approach, which extends the widely-used equivalence-class based tree
pattern enumeration technique with attribute sets enumeration. We have fur-
ther designed a novel layered approach, which, instead of explicitly enumerating
candidate attributed tree patterns, discovers all frequent attributed patterns in
stages. The layered approach combines different techniques from frequent itemset
mining and embedded tree pattern mining to greatly reduce the pattern search
space. Our experimental results on real and synthetic datasets show that the
layered approach displays orders of magnitude performance improvement over
both the interleaved mining method and the attribute-as-node embedded tree
pattern mining method for mining embedded attributed tree patterns.

The number of frequent embedded attributed patterns for a given support
threshold can be too large for users to understand and analyze. Our future work
will focus on incorporating user-specified constraints to the proposed approach in
order to enable constraint-based attributed pattern mining. We are also investi-
gating summarization techniques for mining compact sets of frequent attributed
tree patterns.
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Abstract. Classification is useful for mining labels of data. Though
well-trained classifiers benefit many applications, their training proce-
dures on user-contributed data may leak users’ privacy.

This work studies methods for private model training in heterogeneous
settings, specially for the Näıve Bayes Classifier (NBC). Unlike previous
works focusing on centralized and consistent datasets, we consider the
private training in two more practical settings, namely the local setting
and the mixture setting. In the local setting, individuals directly con-
tribute training tuples to the untrusted trainer. In the mixture setting,
the training dataset is composed of individual tuples and statistics of
datasets from institutes. We propose a randomized response based NBC
strategy for the local setting. To cope with the privacy of heterogeneous
data (single tuples and the statistics) in the mixture setting, we design a
unified privatized scheme. It integrates respective sanitization strategies
on the two data types while preserving privacy. Besides contributing error
bounds of estimated probabilities constituting NBC, we prove their opti-
mality in the minimax framework and quantify the classification error
of the privately learned NBC. Our analyses are validated with extensive
experiments on real-world datasets.

Keywords: Differential privacy · Classification

1 Introduction

With the vast penetration of Internet and mobile devices, massive and diverse
data are generated. Classification, as a useful learning tool, has been universally
applied on these data to build relationship among data attributes (e.g., intru-
sion detection). Among many types of classification methods, the Näıve Bayes
Classifier is a simple but effective one. By assuming that data features are con-
ditionally independent on a class, NBC estimates the relevance between feature
values and classes on the training set and uses Bayes theorem to classify unla-
beled data. Yet its training procedure usually relies on individual data, which
may compromise people’s privacy (e.g., locations and medical history) since the
trainer is usually curious and not always trustful.

c© Springer International Publishing AG, part of Springer Nature 2018
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Recently, local differential privacy (LDP) [10] has emerged into a de facto
notion to handle data privacy in the local setting. LDP privatizes data indepen-
dently on the individual side before sharing, and ensures that snoopers cannot
distinguish users’ true data by observing perturbed ones. The practical setting
and protective strength of LDP motivate many related private statistical meth-
ods (e.g., [1,3,6]). However, most of existing LDP works concern about basic
estimations (e.g., mean) and seldom design strategies for widely-used learning
tools (e.g., classifiers) which are actually more close to individual privacy.

Moreover, the local setting is not always feasible in actual scenarios, since
except for individuals, entities with raw datasets (e.g., census department) also
offer data for analyses. Hence, the mixture setting which combines the dis-
tributed setting and the local setting is considerable in actual scenarios. Current
distributed privacy schemes [9,12] generally exploit secure multiparty compu-
tation (SMC) [8]. It has high computational/interactive costs which cannot be
afforded by resource-constrained individuals. Due to the data type difference,
existing LDP approaches cannot be extended on datasets’ statistics either.

In this paper, we design accurate and efficient schemes for the private training
of NBC in both the local setting and the mixture setting. In the local setting,
a randomized response strategy is applied to collect individual tuples and train
NBC privately. In the mixture setting, a general strategy is proposed, filling in
the gap caused by high computational/interactive cost and data type difference.
By rigorous proofs, all these strategies are demonstrated optimal on utility in
the minimax framework.

In summary, our contributions are listed as follows:

– Effective private training strategies. In the local setting, we give a Utility-First
Strategy (UFS) to privately train NBC on individual categorical tuples. In the
mixture setting, we propose a simple but effective method, namely Expanded
Geometric Strategy (EGS). To the best of our knowledge, it is the first time
that different data types are simultaneously considered in one private scheme
of the model learning.

– Provable optimality guarantees and quantified classification error. By the
quantified �2-norm error, we prove the optimality of UFS and EGS in the
minimax framework. Following Bayes theorem, classification errors of UFS
and EGS are formally presented. This error provides a reasonable estimator
to measure the utility loss of a classifier resulting from a private mechanism.

– Experimental validation. The performances of our strategies are evaluated
over a simulative dataset and two real-world datasets. The results experi-
mentally confirm theoretical conclusions about two strategies.

2 System Model

2.1 Problem Definition

In the local setting, there are N individuals; in the mixture setting, there are
N1 individuals and N2 institutes. The institutes are trustworthy that they own
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Table 1. Notations

Symbol Description

Xj , Mj , t The j-th feature domain {aj
1, a

j
2, . . . , a

j
Mj

} (|Xj | = Mj , 1 � j � t)

Y The class domain {c1, c2, . . . , cK} and Y = K

Uck The set of users with label ck

xi[j] The j-th feature of user i

binxj
i The binary basis vector of length Mj representing xi[j]

Nck The amount of data with label ck in the training set

pjk[sj ] The true conditional probability of x[j] = aj
sj

on the class ck

datasets of exact individuals’ tuples. The NBC trainer is assumed to be curious
that it would not attack data providers for more information but would snoop
on the received data as much as possible. The data formation is described as
di = (xi, Yi), where xi is the feature vector and Yi is the label. We privatize the
feature vector and leave the label public in this paper.

Individuals and institutes send sanitized tuples and privatized statistics
of datasets to the trainer. By the trained results (i.e., P (x[j]|Y = ck)), the
trainer classify the unlabeled data with Y = arg maxck

P (Y = ck|x), where
P (Y = ck|x) =

P (Y = ck)
∏

j P (x[j]|Y = ck)∑
k P (Y = ck)

∏
j P (x[j]|Y = ck)

. The denotations used in this paper
are presented in Table 1.

2.2 Privacy Model

We adopt two forms of differential privacy (DP) [4] as definitions in this paper;
the classical notion of DP for the statistics of datasets and LDP for a data tuple.

Definition 1 (DP). A is a randomized mechanism over any neighboring
datasets D′ and D. Let z be a possible output of A. A is said to satisfy ε-
differential privacy, if Pr[A(D)= z]

Pr[A(D′)= z] � eε.

Neighboring datasets used in the definition refers to two datasets D and D′ that
D′ can be obtained from D by adding, removing or modifying a tuple.

Definition 2 (LDP [10]) A randomized mechanism A is said to satisfy the ε-
LDP, if for any pair of tuples v, v′ ∈ V, and for any output z, Pr[A(v)= z]

Pr[A(v′)= z] � eε.

Theorem 1 (Post-processing theorem [5]). For any method ψ which works
on the output of a ε-differentially private mechanism M without accessing the
raw data, the integrated procedure ψ ◦ M remains ε-differentially private.
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Algorithm 1. Utility-First User (UFU)
Require: User data {binxj

i}tj=1, ε.

Ensure: Sanitized vector set < {zji}tj=1, Yi >.
1: for j = 1 to t and s = 1 to Mj do
2: Compute every bit of the privatized vector zji independently with Eq. (1);
3: end for
4: Send < {zji}tj=1, Yi > to the trainer.

Algorithm 2. Utility-First Trainer (UFT)

Require:
⋃N

i=1 < {zji}tj=1, Yi >, ε.

Ensure: Classifier C =
⋃Y ∈Y

x[j]∈Xj
P̂ (x[j]|Y ).

1: Group tuples by the label Y ;
2: for k = 1 to K and j = 1 to t do
3: p̂UF

jk = |Uck |−1 ∑
u∈Uck

[zju − 1(e
ε
2 + 1)−1](e

ε
2 + 1)(e

ε
2 − 1)−1

� 1 represents an all-one vector of length Mj ;
4: for s = 1 to Mj do
5: Add p̂UF

jk [s] to C;
6: end for
7: end for

2.3 Utility Metrics

To describe the utility loss of a private strategy, for final classification results,
we adopt variance V ar[·]; for the estimated conditional probability, we use Mean
Squared Error MSE(p̂) = E[||p̂−p||22] and �1-norm error Dis1(p̂) = E[||p̂−p||1],
where p̂ and p denote the estimated probability and the true one, respectively.

The error bounds of private strategies are discussed in high privacy regime
ε ∈ [0, 1] and their optimality are measured within the minimax framework.

Theorem 2 ([3]). The optimal minimax error of private multinomial estima-
tion, w.r.t. ε ∈ [0, 1], are bounded by || · ||22 � cmin{1, d

Nε2 } and || · ||1 �
cmin{1, d√

Nε2
}, where N, d and c denote the sample size, the size of data domain

and a constant.

3 Private Näıve Bayes Classifier in the Local Setting

In this section, we present a private strategy for NBC in the local setting, and
provide the bound of its utility loss. Due to the space limitation, some proofs of
our conclusions are omitted in this paper.

3.1 Utility-First Strategy (UFS)

We use RR based mechanism introduced in [3] as the basic private block for
UFS. For any user data binxj

i , its corresponding sanitized output zj
i is also a

binary vector, each bit of which is independently set by
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zj
i [s] =

{

binxj
i [s] with probability e

ε
2 (1 + e

ε
2 )−1

1 − binxj
i [s] with probability (1 + e

ε
2 )−1 . (1)

Algorithm 1 shows the workflow of UFS on the user side, and Algorithm2
shows the training process. Since LDP is satisfied by RR and the post-processing
property, the ε-LDP can be guaranteed for UFS.

3.2 Theoretical Analysis

Theorem 3. The MSE of p̂UF
jk is N−1

ck
[e

ε
2 Mj(e

ε
2 − 1)−2 + (1 − ∑Mj

s=1 p
2
jk[s])].

When ε ∈ [0, 1], it holds that e
ε
2 (e

ε
2 − 1)−2 � (4 + ε)ε−2 � 5ε−2. Therefore,

the �2-norm error of p̂UF
jk is bounded as MSE(p̂UF

jk ) � min{2, 5 Mj

Nck
ε2 }. With the

Cauchy-Schwarz inequality that ||p̂UF
jk − pjk||1 �

√

Mj ||p̂UF
jk − pjk||2, we have

Dis1(p̂
UF
jk ) � min{1,

√
5Mj

ε
√

Nck

}. Thus, UFS is optimal in the minimax framework.

To measure the accuracy of the private classifier, the error bound of classifi-
cation probabilities is given below.

Theorem 4. The error bound of the classification probability of UFT is
V ar[ ̂PUF (Y = ck|x)] � {N−1

ck
[e

ε
2 (e

ε
2 − 1)−2 + 1] + 1}t − 1.

4 Private Näıve Bayes Classifier in the Mixture Setting

In this section, we introduce an Expanded Geometric Strategy (EGS) for the
mixture setting.

4.1 Mechanism Description

EGS is a localized expansion of the traditional Geometric mechanism, which
was first proposed in [7] for databases in the centralized setting. It abstracts
noise from two-sided geometric distribution Pr[Z = z] = 1−α

1+αα|z| whose proba-
bility exponentially decrease on integers, and satisfies αΔq-DP, where Δq is the
sensitivity of a query. We set α = e− ε

2 .
For trusted institutes, EGS groups the original dataset by data labels, counts

the histogram Histjk of j-th feature in the group ck, and privatizes Histjk by
Histzjk = Histjk+ < Geo(e− ε

2 ) >Mj . Then it sends the size of each group
{gk}K

k=1 and Histzjk to the trainer. For individual data providers, the workflow
of privatization is similar as in Algorithm2 with two-sided geometric noise.

The trainer aggregates data from institutes and individuals, and estimates the
probability p̂EG

jk = N−1
ck

(
∑N2

i=1 Histzjk
i +

∑

u∈Uck
zj

u), where Nck
=

∑N2
i=1 gk

i +

|Uck
| and gk

i is the group size of the k-th label provided by the i-th institute.

Theorem 5. EGS satisfies ε-DP and ε-LDP.
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4.2 Theoretical Analysis

Geometric mechanism is utility-optimal on datasets [7]. To illustrate the opti-
mality of EGS in the mixture setting, we prove its effectiveness on a tuple.

Theorem 6. The MSE of the estimator p̂EG
jk is 2e

ε
2 V Mj [Nck

(e
ε
2 −1)]−2, where

V = N2 + |Uck
|.

Following this result, in the pure local setting where Nck
individuals provide

training data with label ck, the �2-norm error of the conditional probability
estimated by EGS is 2e

ε
2 MjN

−1
ck

(e
ε
2 − 1)−2 � min{2,

10Mj

Nck
ε2 }. Therefore, EGS is

utility-optimal in the minimax framework on individual data tuples.
The classification error of EGS has the same formation as UFS; that is:

Theorem 7. The error bound of the classification probability of EGS in the
mixture setting is V ar[ ̂PEG(Y = ck|x)] � (2V e

ε
2 [Nck

(e
ε
2 −1)]−2 +1)t −1, where

V = N2 + |Uck
|.

5 Experiment

In this section, we use MSE and Dis1 of the estimated conditional probabil-
ity and the correct rate (CR) of the final classification result to evaluate the
performance of proposed strategies.

Settings. We use two real-world datasets and one simulative dataset for mod-
eling NBC. Two real-world datasets are bank dataset [13] and car dataset [11].
Bank dataset contains 17 features and two classes (i.e., a term deposit sub-
scriber or not), and has 45,307 instances, 41,188 of which are used for training.
Car dataset contains 5 features and 4 types of labels describing car quality, and
has 1728 instances, 1228 of which are used for training. The simulative dataset
has 5 features and 8 labels. Feature values are generated with independently con-
ditional probability on labels. This dataset has 4,000,000 instances and 3,000,000
of them are used as training set.

Results. The experimental performances of private NBCs in the local setting
are illustrated in Fig. 1. The error trends of UFS and EGS on the conditional
probability estimation are similar w.r.t. the privacy budget ε. When the privacy
level is relatively high (ε � 1), UFS slightly outperforms EGS. These experimen-
tal phenomena validate theoretical analyses that the proposed private strategies
share the same error bound but have different constant factors. The CRs of UFS
and EGS are averages of 1000 times experiments and presented in Fig. 2. The
black dashed lines denote average CRs of the original NBC without privatiza-
tion. On the bank dataset and simulative dataset, the experimental results are
mostly above the original CR. This is because that the perturbation from pri-
vate strategies relaxes the overfitting of the non-private model and avoids the



Classification Learning from Private Data in Heterogeneous Settings 583

0.5 1 1.5 2
-4

-3

-2
UFS EGS

0.5 1 1.5 2
-2

-1

0

0.5 1 1.5 2
-2.2

-2

-1.8

0.5 1 1.5 2
-2

-1

0

0.5 1 1.5 2
-1

-0.5

0

0.5 1 1.5 2
-1.5

-1

-0.5

Fig. 1. Estimation errors on different datasets

0.5 1 1.5 2
0.8

0.85

0.9
UFS EGS

0.5 1 1.5 2
0.3

0.4

0.5

0.6

0.5 1 1.5 2
0.5

0.6

0.7

Fig. 2. Correct rate

error caused by pjk = 0. However, the CRs of three strategies fluctuate around
non-private one on the car dataset. Since the simulative dataset and car dataset
are both multi-label datasets, this fluctuation may be caused by the insufficient
training data.

6 Related Work

Differential Privacy. The definition of Differential Privacy (DP) and relevant
mechanisms are first presented in [4]. They are used in various fields, such as
location service [15] and machine learning [14].

Then, the traditional definitions of DP are extended into distributed scenarios
by many works (e.g., [9,12]). Most of them adopting SMC [8] and cryptosystem
to assist distributed DP, which has high computational/interactive costs and
cannot be afforded by resource-constrained individuals.

Local privacy is proposed by Kasiviswanathan et al. [10], to cope with data
privacy with no trustful data curators. Duchi et al. [3] characterized the trade-
off between the utility and LDP for various types of estimation problems. Based
on [3], Bassily et al. proposed an efficient protocol for succinct histograms in
[1]. In practical applications, Erlingsson [6] proposed a scheme RAPPOR to
privately collect crowdsourcing data. Depending on [1], Chen et al. [2] provided
a personalized LDP model to estimate the distribution of users over a certain
area.
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Private Classifier. Many works have been done in private training of classifiers.
Zhang et al. [18] distorted data with randomized response strategy to train
NBC privately. Yang et al. [17] proposed a cryptographic classification approach
to protect the privacy in the local setting. Vaidya and Clifton [16] proposed a
decision tree based privatized method for vertically partitioned data over parties.

7 Conclusion and Future Work

In this paper, we study the private training problem for the Näıve Bayes Clas-
sifier (NBC) in two different settings. In the local setting, we give a random-
ized response (RR) based strategy Utility-First Strategy (UFS). To cover more
real-world data aggregation scenarios, we formally present the mixture setting.
It includes two types of data that commonly appears in data collections, i.e.,
individual tuples and histograms of datasets. We design a strategy Expanded
Geometric Strategy (EGS) to train NBC privately in this setting. Measured by
common error estimators (e.g., �1, �2-norm error) and specific classification error
for the private NBC, we demonstrate the optimality of these strategies in the
minimax framework, and our conclusions are experimentally confirmed on real-
world datasets.
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Communication and Quantum Computers and the Natural Science Foundation of
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Abstract. Business location selection is of great importance in prac-
tice, but is a long and costly process. Traditional approaches to selecting
optimal business locations consider complex factors such as foot traf-
fic, neighborhood structure, space rent and available workforce, which
are typically hard to acquire or measure. In this paper, we propose
to exploit the highly available satellite data (e.g., satellite images and
nighttime light data) as well as urban data for business location selec-
tion. We first perform an empirical analysis to evaluate the direct rela-
tionship between satellite features and business locations. We then pro-
pose a novel regression-and-ranking combined neural network model, to
collectively predict the popularity and ranking for each location. Our
model fuses the heterogeneous yet discriminative features from satellite
and urban data and captures feature interactions effectively. We conduct
experiments to compare our approach with various baselines. The results
verify the effectiveness of the extracted satellite features and the superior
performance of our model in terms of four metrics.

Keywords: Satellite data · Nighttime light · Satellite images
Business location selection

1 Introduction

Selecting a good location for starting a new business is essential for entre-
preneurs. A good location would lead to business prosperity, while an unsuitable
one may result in serious business risk and even the failure of the business. More
importantly, many mistakes for starting a new business can be corrected later
on, but a poor choice of the location is very difficult, if not impossible, to be
repaired.

Business location selection is typically a long and costly process, during which
one of the most important considerations is the potential popularity of locations.
To evaluate the popularity of a location, great efforts have to be denoted to
collecting and assessing factors such as foot traffic, neighborhood structure, space
rent, available workforce and quality partners in the vicinity. While those factors

c© Springer International Publishing AG, part of Springer Nature 2018
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are able to disclose the popularity of a location, they are very difficult to acquire
or measure in practice. Recently, a number of research studies explore the data
from location-based services for business location selection, including check-in
data [11], wifi connections and search engine queries [23]. However, most of these
data are not publicly available due to the privacy concerns, e.g., check-in records
contain sensitive and personal mobility trajectories.

We find that satellite data and urban data are widely available, and they con-
tain effective indicators for determining the popularity of a location. The satellite
data mainly include three pieces of information: nighttime light intensity, visi-
ble and infrared radiometer (VIRR) data, and satellite images. Intuitively, the
nighttime light intensity reflects the population and business concentrations of
an area; the VIRR data collected by visible and infrared radiometer sensors con-
tain Land Surface Temperature (LST), Normalized Difference Vegetation Index
(NDVI) and emissivity of ground that indicate the distribution of vegetation and
building constructions, for example, business centers usually have high temper-
ature and few plants; and the satellite images capture important transportation
infrastructures, such as roads and rivers. All the above information is valuable in
predicting the potential popularity of a business location (see empirical analysis
in Sect. 3). As for the urban data including POIs, road networks and taxi tra-
jectories, they have been widely used in many urban computing methods [8,11],
because they capture important spatial characteristics that are correlated with
location popularity. For example, the number of POIs show the prosperity of
locations and its diversity implies the completeness of the serving facilities; road
networks reflect traffic convenience; and taxi trajectories retain the mobility pat-
terns of people. Intuitively, if properly analyzed, the urban data can be a rich
source to improve the performance of estimating location popularity for business
purpose.

Inspired by our intuitions, in this paper, we propose to exploit both satellite
data and urban data for business location selection. Our goal is to predict the
popularity of any location in a city, and we use the number of check-ins as the
ground-truth popularity score of a known business location. The key challenges
come from three aspects. First, the satellite and urban data are very hetero-
geneous, and we need to mine useful features from both low-level image pixels
and various spatial-temporal data. Second, the identified features from different
data sources have to be fused in a complex yet effective way in order to achieve
high prediction accuracy. Last but not least, we observe that a popularity rank-
ing order among a set of locations is more valuable than individual popularity
scores, as people always choose the rank-1 location with the highest potential
popularity. However, it is worth noting that a small error in popularity prediction
may cause a huge ranking error, and it is extremely difficult to predict accurate
popularity scores that preserve the correct ranking order, as pointed out in [18].

To address the above challenges, we first extract useful features from het-
erogeneous satellite and urban data using different machine learning meth-
ods. A deep empirical analysis is then performed to evaluate the relationship
between extracted features and popularity scores of locations. To predict location
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popularity, we propose a novel neural network model, named R2Net, which effec-
tively identifies discriminative latent features and captures feature interactions
via fully connected layers and convolutional operations. With R2Net, we are able
to fuse heterogeneous features from both satellite and urban data in a unified
way. To preserve ranking order among different locations, our neural network
model acts in two roles by using an objective function that combines popular-
ity regression and ranking order prediction simultaneously. The regression part
focuses on predicting location popularity with high accuracy, while the rank-
ing part regularizes the regression part to predict popularity scores with the
preserved ranking order. We conduct extensive experiments using a real-world
dataset. The results verify the superior popularity prediction performance of our
proposed approach, compared with several baseline methods.

To summarize, the main contributions of this paper are the following.

– To the best of our knowledge, we are the first to exploit both satellite data and
urban data for business location selection problem. In this paper, we consider
three kinds of satellite data, i.e., nighttime light intensity, VIRR and satellite
images.

– We introduce various feature extraction methods to identify important fea-
tures from heterogeneous satellite and urban data according to different data
characteristics. We measure the correlation between the features and the loca-
tion popularity, and perform empirical analysis to evaluate the effectiveness
of the proposed features in depth.

– We propose a novel neural network model, named R2Net, for predicting loca-
tion popularity. Our model employs fully connected layers and convolutional
operations to fuse satellite and urban features in a unified manner, and cap-
tures latent feature interactions automatically. A regression-and-ranking com-
bined objective function is adopted to predict location popularities with high
accuracy as well as preserve ranking order among different locations.

– Extensive experiments are conducted with a real-world dataset. The results
show that (1) our proposed approach outperforms other baseline methods in
terms of different metrics and (2) the features from satellite data are effective
for identifying the locations with high popularities.

2 Problem and Framework

In this section, we first define the satellite data and urban data explored in this
paper. We then present the problem statement and the proposed framework.

Definition 1 (Nighttime Light Intensity). Nighttime light intensity is a
map which indicates the intensity of light generated by human at the nighttime.
We uniformly sample light intensity points from the light intensity map (one
sampling point for every 50m) and each point p contains light intensity in a
location, i.e., (lon, lat, intensity).
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Fig. 1. Framework of our approach

Definition 2 (VIRR Data). VIRR data are collected by the visible and
infrared radiometer (VIRR) sensors on the satellites. Each record in VIRR data
consists of seven fields including a timestamp, geographic coordinates, emissivity,
reflectance, land surface temperature (LST), vegetation coverage (NDVI), i.e.,
(time, lon, lat, emi, ref, lst, ndvi).

Definition 3 (Satellite Imagery). Satellite imagery contains earth images
collected by the imaging satellites. Each record in satellite imagery includes an
image, the geographic coordinates of the place in the image center, and the geo-
graphic range of the image, i.e., (img, lon, lat, r).

Definition 4 (POI). A Point of Interest (POI) is a venue (e.g., bus stop) in
the city associated with name, category, and geographic coordinates.

Definition 5 (Road Network). A road network consists of a set of road seg-
ments. Each segment is represented by an identifier, its length, type, and a list
of points forming the shape of the road segment.

Definition 6 (Taxi Trajectory). A taxi trajectory τ is a sequence of geograph-
ical points with the corresponding timestamps, i.e., {p1, p2, ..., pn}.

Problem Statement. We consider a set L of locations. Following the definition
in [11], we define each location as a region centered at a geographical point with a
radius r (e.g., 200 m). Given both satellite data and urban data as defined above,
our aim is to predict a popularity score y(l) for each location l ∈ L and output a
ranking list for all the locations in L based on the estimated popularities. In this
paper, we use the total number of check-in records crawled from Dianping, the
largest online review platform in China, as the gold standard popularity score
for a location. The number of check-in records is positively correlated with the
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number of customers for business, and it is also applied as the business popularity
in other works [11,25].

Framework. Figure 1 provides the framework of our approach to the business
location selection problem, which consists of four major components as follows.

Data Preprocessing. Given the satellite data and urban data, we remove anoma-
lous values, e.g., satellite data influenced by clouds and trajectory points far
away from roads or adjacent points. We conduct a map-matching algorithm to
reduce the noises in trajectories.

Fig. 2. The nighttime light intensity map and light centers

Feature Extraction. We extract useful features for each location from satellite and
urban data. Given a location l, we consider the data in its affecting region (i.e.,
within certain distance). This is because the popularity of a location is typically
determined by its surrounding environment. The satellite features contain the
average light intensity, the distances to centers whose light intensities are higher
than their surrounding area, and the average values in June and December for
emissivity, reflectance, NDVI, and LST. The urban features include density and
entropy for POIs, length and number of intersections for roads, visiting times
and average speed for taxi trajectories.

Model Training. We first pre-train a convolutional neural network to learn latent
features from satellite images. The image features are then concatenated with
other features to learn the feature interactions in the proposed R2Net model. Our
model employs convolutional layers to handle the numeric satellite and urban
features, and uses a fully connected merging layer to combine features from the
satellite data and urban data. Deep hidden layers learn a latent representation
that models feature interactions well. R2Net leverages a regression-and-ranking
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combined loss function that predicts location popularity with preserved ranking
order among locations.

Ranking. The ranking component predicts the popularity score for each location
in L and outputs locations in descending order of their estimated popularities.

3 Empirical Data Analysis

A novel attempt of this paper is to utilize satellite data for optimal store location
selection. In this section, we perform an empirical analysis over satellite data, to
answer two questions: (1) do satellite data involve features that effectively indi-
cate the business popularity of a location? (2) how are these features correlated
with location business popularity?

To answer the above two questions, we focus on Shanghai, the largest
metropolis in China. We first divide the whole Shanghai area into grids of
1 km × 1 km and each grid is treated as one location. The ground-truth pop-
ularity for each location is measured by the total number of check-ins within
the location crawled from Dianping, a premier online review website in China.
For the ease of illustration, we categorize locations into five classes according to
their popularity. As we are interested in studying the distribution characteris-
tics of locations with high popularity, the locations are not divided uniformly.
Instead, the number of the most popular locations is small and the percentages
of locations for the five classes are [0.45, 0.25, 0.15, 0.10, 0.05].

Next, we identify satellite indicators by calculating the average values of
light intensity, emissivity, reflectance, NDVI and LST for each grid. In addition,
we observe that higher light intensities are typically gathered in several small
areas, as shown in Fig. 2. We thus group light intensity points and identify light
centers in the city. For each location, we compute its distance to the closest
light center as one satellite indicator for its popularity. Figure 3 provides the
correlation analysis results between satellite indicators and location popularity.
We summarize two key observations as follows.

Observation 1: Popular locations tend to have higher nighttime light intensi-
ties and smaller distances to the light centers. Figure 3(a) shows the distributions
of two light intensity indicators for the locations in five classes. We also provide
the scatter plot for each location with respect to two indicators. In the figure,
each row/column denotes one feature and a plot denotes the distribution of loca-
tions over two features. We can see that the locations with higher popularity (the
red hexagons) have higher light intensities and smaller distances to their nearest
light centers than other locations. The reason may be that high light intensities
indicate the existence of a residence area or flourishing business center.

Observation 2: Popular locations tend to have lower reflectance and vegetation
coverage, higher land surface temperature and medium emissivity. Figure 3(b)
and (c) show the correlation matrices between the VIRR related features and
location popularity. From the figure, we can see that the locations with higher
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(a) Light intensity and distance

to the closest light center

(b) Emissivity and reflectance (c) Vegetation coverage and

land surface temperature

Fig. 3. The correlation between satellite features and location popularity

popularity seem to have medium emissivity, low reflectance and vegetation cov-
erage, high land surface temperature. One possible explanation is that popular
locations are typically more crowded with human and buildings that easily cause
the biased distributions of the corresponding satellite features. For instance,
popular city business centers often have low vegetation coverage and human
activities in the centers lead to high land surface temperature.

4 Location Popularity Appraisal Using Neural Networks

4.1 Urban Context and Satellite Feature Extraction

Before introducing our proposed model, we first describe the features extracted
from satellite and urban data in this study.

Satellite Features. We employ convolutional neural network (CNN) to extract
latent features from satellite images1 (see details in Sect. 4.2). Here, we mainly
describe the features extracted from nighttime light intensity and VIRR data for
any location l: (1) average light intensity fn: we uniformly sample light intensity
points from the light pollution map2 and compute the average light intensity by
aggregating sampled intensities within the location; (2) distances to light centers
fdis: we cluster the light intensity points using DBSCAN [6] to find light centers,
and then compute the distances from the location center to light centers; (3)
distance to the closest light center fmdis. The VIRR data3 are collected every 10
days and we consider the following features: average emissivity fe, reflectance
fr, vegetation coverage fv, land surface temperature of the location over the
recent two months.

Urban Features. Urban data have been widely used for urban computing [11,
24,26]. In this study, we extract the following urban features in any location
l. For POI data, we compute: (1) POI category frequency fpf : the number

1 http://map.tianditu.com/map/index.html.
2 https://www.lightpollutionmap.info/.
3 http://satellite.nsmc.org.cn/portalsite/default.aspx.

http://map.tianditu.com/map/index.html
https://www.lightpollutionmap.info/
http://satellite.nsmc.org.cn/portalsite/default.aspx
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of POIs in each category within the location; (2) POI density fpd: the total
number of POIs in all categories; (3) POI entropy fpe: this is computed by

fpe(l) = −∑
i

fpf
i (l)

fpd(l)
× log fpf

i (l)

fpd(l)
, where i is a POI category. For road network

data, we consider features: (1) road length vector frl: the length of roads in each
type within the location, which is also used in [3]; (2) total road length frs; (3)
the number of road intersections frc. For taxi trajectory data, we divide one day
into 24 time slots and extract the following features: (1) trajectory density f tn:
a vector recording the number of GPS points within the location in each time
slot; (2) the number of visits f tv: a vector recording the number of trajectories
that enter the location per time slot; (3) average moving speed f ts: a vector
for average moving speed of trajectories per time slot. The values of trajectory
features are averaged over different days.

Fig. 4. Structure of R2Net (Color figure online)

4.2 R2Net: Proposed Model

We propose a regression-and-ranking combined neural network model, named
R2Net, for predicting location popularity. Figure 4 shows the structure of our
model. The input to our model consists of satellite images, extracted satellite
features and urban features for a particular location l. Due to the heterogeneity
of different features, we leverage three sub-nets (in blue, green and red colors)
to capture the corresponding feature interactions separately. We further con-
catenate the latent representations learned from three sub-nets and use fully
connected layers to obtain a unified representation for predicting the final popu-
larity score y(l). The details of the components in R2Net are described as follows.

(1) Extracting Satellite Image Features. We use I to denote one satellite
image and feed it into a convolutional neural network. The first four layers are
convolutional layers and pooling layers for extracting features from the pixels.
The outputs of the two pooling layers are as follows.
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zc
1 = Pmax(σ(W c

1 ∗ I + bc
1)), zc

2 = Pmax(σ(W c
2 ∗ zc

1 + bc
2)), (1)

where ∗ denotes the convolutional operator. The W c
i and bc

i are kernel and bias
of the ith convolutional layer, respectively. σ is the ReLU activation function.
Pmax(·) denotes the max-pooling function. We then use two fully connected lay-
ers as Eq. (2) for learning the interactions of features from convolutional layers.

zI = hc
2(h

c
1(z

c
2)), (2)

where the h(·) is one fully connected layer, i.e., h(u) = σ(Wu + b).

(2) Learning Interactions Among Satellite/Urban Features. Inspired
by [15], for each location, we also extract features for its neighbor locations
in order to capture the spatial influences, e.g., the popularity scores of nearby
locations typically change continuously. Hence, we organize location l and its
neighbor locations (within a given window size λ) into a map and employ a
convolutional layer to capture spatial influences. As satellite features and urban
features typically encode different information, we use separate CNN layers to
learn feature interactions for each of them. Consider satellite features as an
example.

φ = [xl, xN ], (3)

where xl is the feature vector of location l and xN = {xl′ |l′ ∈ N(l)}. The input
feature vector φ is organized as a λ × λ × d tensor T . Similar to an image, the
first and second dimension indicate the position of one location in the window.
The target location l is at the center of the window. The last dimension indicates
different channels, i.e., different kinds of features in this paper. Then, with the
convolution layer, our model learns the interactions between different features
and influences of neighbors.

z0 = σ(F ∗ T + b0), (4)

where F is the kernel and b0 is the bias vector.
Two hidden layers follow the convolutional layer to learn the feature inter-

actions in a further step, i.e., z = h2(h1(z0)). We use zs and zu to denote the
output vectors of satellite data and urban data respectively.

(3) Location Popularity Prediction. The three vectors, i.e., zI , zs, and zu,
are merged and as the input of a neural network with several fully connected
layers to learn combinatorial features with data from different sources. For sim-
plicity, the three vectors are concatenated together for merging. The output ŷ
is as Eq. (5). It should be noticed that the fully connected hidden layers can be
replaced by a deeper residual network as [19].

ŷ = hN (...h2(h1([zI , zs, zu]))) (5)



598 Y. Xu et al.

(4) Regression-and-Ranking Combined Objective Function. Consider-
ing that the ranking score of traditional learning to rank model usually just indi-
cates the order of locations without estimating the true location popularity which
indicates the number of potential customers and is concerned by entrepreneurs.
On the contrary, the regression methods may yield arbitrary poor ranking per-
formance [18]. In this paper, we combine popularity regression and ranking order
prediction simultaneously to reserve the correct ranking order and predict accu-
rate popularity. The loss function of our approach consists of two parts, i.e.,
ranking loss Lp and regression loss Lr, as shown in Eq. (6).

L(D, θ) = αLp(D, θ) + (1 − α)Lr(D, θ), (6)

where D is the training data set and θ denotes parameters of our R2Net.

Loss Function for Ranking. Similar to the RankNet [1], we adopt the pairwise
loss function for ranking. Given two input samples xi and xj , and location i is
more popular than j, we let ôij = ŷi − ŷj . The cross-entropy cost function is
defined as the following equation.

Lp =
∑

i,j

C(ŷi − ŷj) =
∑

i,j

−Pij log P̂ij − (1 − Pij) log(1 − P̂ij), (7)

where P̂ij = 1

1+e−ôij
which indicates the probability that location i should be

placed ahead of location j. Pij is the desired target values. Pij = 1
1+e−oij

. And
oij = yi − yj .

Loss Function for Popularity Regression. We add the following squared-error loss
function for minimizing the regression errors.

Lr =
∑

i

(yi − ŷi)
2. (8)

4.3 Model Training and Optimization

For the CNN, we can add an output layer, i.e., yt = ht(zI) and pre-train it with
the location popularity as it has a large number of parameters to learn. Then
the component is trained together with the R2Net.

Algorithm 1 shows the training steps of our R2Net model. At first, the param-
eters of the model are initialized. Then, the model is trained with ranking sam-
ples and regression samples until the model converges. We adopt the mini-batch
Adagrad [4] to optimize the loss function as it achieves faster convergence than
the SGD. To prevent overfitting, we adopt dropout [20] on each hidden layer as
the regularization. The dropout ratio is denoted by ρ.
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ALGORITHM 1. R2Net model training
Input: training data D, tradeoff parameter α, iterations t

1 Initialize the parameters of the neural network ;
2 i = 0 ;
3 repeat
4 pick r from a uniform distribution between 0 and 1 ;
5 if r < α then
6 ((xa, ya), (xb, yb)) ← RandomPair(D) ;
7 Take a gradient step with ((xa, ya), (xb, yb)) using Eq. (7) ;

8 end
9 else

10 (x, y) ← RegressionExample(D) ;
11 Take a gradient step with (x, y) with loss function Eq. (8) ;

12 end
13 i ← i + 1 ;

14 until i > t or convergence;

5 Experiments

5.1 Datasets

We use the datasets of Shanghai to evaluate the performance of the proposed
approach. The POI dataset is collected with the API of Baidu map4. The road
network data are downloaded from the OpenStreetMap website5. In addition,
we crawled the check-in data from Dianping6 as the ground truth. The statistics
of the experimental data are shown in Table 1. Similar to the Sect. 3, we divide
the area of Shanghai into disjoined grids of the same size. The total number of
check-ins in a grid is treated as its business popularity. After preprocessing the
raw data and extracting features for grids, we randomly choose about 80% grids
as the training data and the rest as the test data.

5.2 Performance Metrics

We adopt the following three kinds of metrics to assess the quality of ranking
results.

Normalized Discounted Cumulative Gain. We choose the NDCG@k
defined in [11] to measure the extent to which the top-k locations with the high-
est popularity are actually highly ranked in the predicted list. The Discounted
Cumulative Gain measure is defined as DCG@k =

∑k
i=1

2rel(li)−1
log2(i+1) , where rel(li)

is the score of the relevance of an instance at the position i in the predicted
ranking list. The measure is normalized by the DCG value of the ideal ranking,
4 http://lbsyun.baidu.com/index.php?title=jspopular.
5 http://www.openstreetmap.org/.
6 http://www.dianping.com.

http://lbsyun.baidu.com/index.php?title=jspopular
http://www.openstreetmap.org/
http://www.dianping.com
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Table 1. Details of the datasets

Data Properties Statistics

Light intensity Resolution 50 m

VIRR data Time period June and december 2016

Resolution 0.01 degree

Satellite image Number of images 24, 505

POI Number of POIs 486, 822

Road Number of roads 229, 398

Road length 95,000 km

Trajectory Number of GPS points 2, 750, 033

Time period July 2014

Number of cars 4,373

i.e., the instances are sorted by the real relevance. We use the relative position
in the actual ranking list as the relevance, i.e., rel(li) = |L|−rank(li)+1

|L| .

Kendall’s Tau Coefficient. Kendall’s Tau Coefficient (Tau for short) measures
the ranking quality over the whole list [12]. For a location pair <i, j>, it is said
to be concordant, if both yi > yj and ŷi > ŷj or if both yi < yj and ŷi < ŷj .
They are said to be discordant if yi > yj and ŷi < ŷj or if both yi < yj and
ŷi > ŷj . The Tau is defined as Tau = #conc−#disc

#conc+#disc .

Precision and Recall. We select the top N locations with the highest popular-
ity. Given a top-k location list Lk sorted in a descending order of the predicted
ranking scores, the precision and recall are defined as Precision@k = Lk ∩ LN

k

and Recall@k = Lk ∩ LN

N where LN is the list of the top N locations with the
greatest number of check-ins. In the experiment, we set N to 50.

5.3 Baseline Methods

We compare our proposed approach R2Net with the following methods.

– Lasso. Lasso is a linear regression method using L1 norm regularization for
selecting features.

– SVR [9]. SVR is an extension of SVM for solving regression problems.
– MART [7]. It is a boosted tree method and linearly combines the outputs of

a set of regression trees.
– RankNet [1]. RankNet is a neural network based ranking method and adopts

a pairwise objective function.
– ListNet [2]. ListNet is a list-wise learning to rank model. It achieves the best

performance among all baseline methods.

For the two regression methods, i.e., Lasso and SVR, we use the implementa-
tion of skicit-learn library7. For SVR method, we employ the polynomial kernel
7 http://scikit-learn.org.

http://scikit-learn.org
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which performs the best and the degree is 3. For the learning to rank methods,
we use RankLib8. We set the number of trees to 1000, the number of leaves of
each tree to 10, the learning rate to 0.1 for MART method. We set the number
of hidden layers to 3, the number of nodes for each layer to 50 for RankNet. As
for ListNet, the number of epochs is set to 1500 and the learning rate is 0.0001.

For our model, we set the learning rate = 0.001, the window size λ = 3. The
α is set to 0.9. The dropout ratio ρ is 0.1. The optimal hyperparameters are
chosen with the 10-fold cross-validation on the training dataset.

5.4 Performance Comparison of Different Approaches

We compare our approach with five methods mentioned above and report the
comparison results in Fig. 5. Our approach outperforms the baseline methods
for all metrics. Specifically, our method achieves 0.22 Tau and increases it by
about 15% compared with the ListNet. The NDCG metrics are above 0.85 for
different ks. We also observe that our approach has better performances than
the RankNet method which has a same pairwise loss function as ours. We think
it is because our approach adds one regression loss function to estimate the
location popularity and fine tunes the parameters of the CNN component. In
addition, we compare the regression results of our approach with that of the two
regression baseline methods, i.e., Lasso and SVR. Our approach improves the
performance by about 18% and 5% in terms of RMSE compared with Lasso and
SVR respectively.

(a) Tau (b) NDCG@k

(c) Precision@k (d) Recall@k

Fig. 5. Performance comparison of our approach and baselines

8 http://sourceforge.net/p/lemur/wiki/RankLib/.

http://sourceforge.net/p/lemur/wiki/RankLib/
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Table 2. Impact of 1−α
α

on the ranking performance.

Metric 0.001 0.01 0.1 1.0 10

NDCG@5 0.8388 0.8829 0.8322 0.8171 0.8250

NDCG@10 0.8547 0.8655 0.8337 0.8333 0.8231

Tau 0.2333 0.2206 0.2011 0.2124 0.1633

5.5 Impact of Combination of Ranking and Regression

To prove the effectiveness of combing the ranking and regression, we vary the
α to change the weights of the two parts in the loss function. It should be
noticed that if α is bigger, ranking loss has a greater weight. Table 2 shows the
performances of our approach with different ratio 1−α

α . We find that when the
ratio is 0.01, R2Net achieves the best performance in terms of NDCG. As the
ratio grows, i.e., regression loss has greater weights, the performances drop for
metric Tau. We think it is because that the regression objective function ignores
the ranking information among locations.

5.6 Feature Evaluation

We explore which kind of data is more effective for the business location selection.
The results for the features from six data sources are shown in Fig. 6 in terms of
four metrics. It seems that POI, satellite images, and nighttime light intensity

(a) Tau (b) NDCG@k

(c) Precision@k (d) Recall@k

Fig. 6. Performances of features from different sources
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features achieve better performance for almost all cases. Specifically, the POI
features perform the best w.r.t. the Tau and NDCG. We think it is because that
some POIs are highly related to the businesses and bring many customers, e.g.,
bus stops. The light intensity and satellite images are useful for identifying the
places with a large number of citizens and lead to good performances.

6 Related Work

Business location placement problem has been studied in recent years. Various
optimization approaches [13,21] have been proposed to solve the problem. Xiao
et al. focused on selecting a location to build a new facility in the road network
by minimizing a specific cost function [21]. Li et al. tried to find the optimal
locations for ambulance stations by minimizing the average travel time [13].
All these optimization techniques are clearly different from our approach which
mines various features for location popularity prediction.

LBS (Location Based Service) attracts increasing attention as mobile phones
have been used widely in recent years. Check-in data and POI data are utilized to
analysis business area and find the optimal business locations in [11,17]. Fu et al.
propose an estate ranking predictor to rank residential real estates leveraging
features extracted from online user reviews and offline trajectories [8]. Lin et al.
seek to explore the user check-ins, type of business, and business locations data
from Facebook to evaluate locations for the business of a specific type [14]. Eravci
et al. propose to find mobility patterns of customers and their habits from check-
in data and identify a suitable place to open new business venues [5]. Besides
the check-in data, some other location related data are explored. Xu et al. take
advantage of the query log data from Baidu Maps and predict the demand for
specific business to find the optimal places for opening new business venues [23].
As mentioned earlier, some of these data may not be easy to obtain or incur
privacy concerns.

Satellite data have been explored in many traditional sectors. NASA9, NSMC
(National Satellite Meteorological Center). Some government organizations pub-
lish a great amount of satellite data which provide opportunities for urban com-
puting. Many studies have explored satellite data for new applications [10,16,22].
Xie et al. try to predict poverty of Africa with satellite imagery and solve the data
sparsity problem with transfer learning method and nighttime light intensities
[10,22]. Pinkovskiy et al. use the nighttime light data to estimate the business
development of a region [16].

7 Conclusion

This paper has focused on the problem of selecting promising locations for busi-
ness and is inspired by the appealing advantages of satellite data including ease

9 https://www.nasa.gov/.

https://www.nasa.gov/
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of collection, wide coverage, valuable information on assessing the business pop-
ularity of an area. The empirical analysis confirms the predictive power of the
extracted features. We proposed a novel model R2Net for selecting promising
business locations by leveraging the indicative features. With real-world satellite
data and urban data, our experimental results demonstrate that our proposed
approach outperforms other baseline methods and the features extracted from
satellite data are effective for the business location selection. We also envisage
that the satellite data features may benefit a variety of other applications, such
as real estate price analysis and urban area development analysis.
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Abstract. Hashing methods have been extensively applied to efficient
multimedia data indexing and retrieval on account of explosion of mul-
timedia data. Cross-modal hashing usually learns binary codes by map-
ping multi-modal data into a common Hamming space. Most supervised
methods utilize relation information like class labels as pairwise simi-
larities of cross-modal data pair to narrow intra-modal and inter-modal
gap. In this paper, we propose a novel supervised cross-modal hashing
method dubbed Subspace Relation Learning for Cross-modal Hashing
(SRLCH), which exploits relation information in semantic labels to make
similar data from different modalities closer in the low-dimension Ham-
ming subspace. SRLCH preserves the discrete constraints and nonlinear
structures, while admitting a closed-form binary codes solution, which
effectively enhances the training efficiency. An iterative alternative opti-
mization algorithm is developed to simultaneously learn both hash func-
tions and unified binary codes, indexing multimedia data in an efficient
way. Evaluations in two cross-modal retrieval tasks on three widely-used
datasets show that the proposed SRLCH outperforms most cross-modal
hashing methods.

Keywords: Multimedia index · Retrieval · Cross-modal hashing
Discrete optimization

1 Introduction

With the development of multimedia technologies, the quantity of multimedia
data on the Internet such as images and text has increased rapidly [19,34].
Information retrieval techniques are not restricted to a single modality, thus,
cross-modal retrieval, which means using an example from one modality as the
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 606–621, 2018.
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query to retrieve relevant items from other modalities draws more attention in
multimedia area [21,26,29]. For example, users can directly search an image
by a textual sentence that describes the semantic content of the image. The
challenge is how to retrieve multimedia data quickly from large-scale databases
due to explosion of data. To achieve this problem in cross-modal retrieval, it
is necessary to index vast multimedia data in an efficient way. In consideration
of this, hashing, which aims to learn binary codes to reduce the storage and
enhance the retrieval speed via bit operations, shows effectiveness and flexibility
in indexing and retrieving items in a database [16,27,28].

Earlier hashing techniques for multimedia index and retrieval usually focus
on uni-modal data [10,11,17,24], these methods tried to achieve the problem of
intra-modal semantic gap [32,33], which means the differences of data contents,
via a common Hamming space. However, in addition to semantic gap, the key
challenge in cross-modal hashing is solving inter-modal heterogeneous gap, which
demands to measure the similarity of between different modalities in an effec-
tive way. To bridge the two gaps, cross-modal hashing targets to preserve both
intro-modal and inter-modal correlations in common Hamming space. Existing
cross-modal hashing can be divided into two main categories of them based on
whether the labels are exploited: unsupervised methods and supervised ones.
Unsupervised cross-modal hashing usually learns binary codes via a predefined
metric to measure similarities between modalities without class labels. These
methods [1,3,15,23,25,39] can be applied to the data that lack label informa-
tion to support hashing training. Existing unsupervised representative meth-
ods includes Predictable Dual-view Hashing (PDH) [23], Inter-media Hashing
(IMH) [25], Collective Matrix Factorization Hashing (CFMH) [3], Fusion Simi-
larity Hashing (FSH) [15] and so on.

Unlike unsupervised hashing, supervised methods [12–14,31,36–38] make full
use of the class labels to enhance the hash codes learning. The relation informa-
tion in labels is well exploited so that codes generated are more discriminative.
Representative supervised methods includes Semantic Correlation Maximiza-
tion (SCM) [36], Semantics-Preserving Hashing (SePH) [13], Coupled Dictio-
nary Hashing (DCDH) [35], Discrete Cross-modal Hashing (DCH) [31] and so
on. These supervised methods show different approaches in interpreting semantic
information of labels. To be general, supervised schemes usually achieve better
performance than unsupervised ones due to the relation information in class
labels.

Moreover, Deep Neural Networks (DNN) based hashing methods have been
studied recently inspired by the success of deep learning [30]. Such methods
as Deep Visual-semantic Hashing (DVH) [9] and Deep Cross-modal Hashing
(DCMH) [8] merge feature learning and hash function learning in a unified end-
to-end framework, however, training DNN is really difficult and time-consuming.

There are still some problems in both supervised and unsupervised
approaches. Most of the existing methods generate hash functions which use
projection matrices to map the original features into the Hamming space [14],
as a result, some significant feature structures are discarded and the learned
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hash codes lose some key information. In addition, since the discrete hash codes
lead to difficulties in training, most hashing methods relax the original discrete
constraints then solve the objective function in a continuous way to accelerate
the algorithm [12], thus causing a lot of quantization error and the accuracy
of learned hash codes decreases. Some supervised method like DCH develops a
discrete optimization algorithm to solve original objective function without any
relaxation but generated hash codes in a inefficient bit-by-bit way. Furthermore,
how to effectively exploit inter-modal and intra-modal relation information to
learn discriminative hash code in a faster way is still under study.

Fig. 1. Framework of the proposed SRLCH.

To overcome those drawbacks, we propose a novel supervised hashing app-
roach, termed Subspace Relation Learning for Cross-modal Hashing (SRLCH),
which learns binary codes via exploiting the relation information in the Hamming
subspace. Our major contributions can be summarized as follows:

– Our method directly exploits class labels in a Hamming subspace, which can
utilize transformed class labels to subspace relation information to jointly
learn more discriminative hash codes and hash functions by optimizing the
distances between hash codes and the relation information. A symmetrical
framework is designed to generate unified binary codes retrieval database
and learn hash function for query item synchronously. Kernel mapping and
subspace projection is used in our hash functions, in this way, nonlinear struc-
tures in original features are preserved which contribute a lot to improve the
performance significantly.

– We also develop an efficient discrete optimization hashing algorithm to solve
the objective function without relaxing discrete constraints, even in our algo-
rithm, we finally obtain a closed-form solution. And the binary codes can be
generated in a single step, which contributes a lot to large-scale training.
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– Our proposed method is evaluated on three popular datasets in two typical
cross-modal retrieval tasks, experimental results show it outperforms several
state-of-the-art methods.

2 Related Work

A lot of studies in hashing have been done to narrow the semantic gap in the
same modality and heterogeneous gap in different modalities. Both uni-modal
and cross-modal hashing methods focus on learning binary representation for
data objectives, specifically, uni-modal hashing aims at data with homogeneous
features and cross-modal hashing needs to fuse heterogeneous data to achieve
similarity preservation across modalities. Related work to our method in this
paper can be roughly divided into two main areas: how to embed data into a
subspace and how to interpret label semantic information to bridge heteroge-
neous data.

The former one is uni-modal hashing usually does. Representative hashing
methods for single modality [4,10,24] project homogeneous data into a Hamming
subspace via linear projection or nonlinear modeling. Based on such subspace
learning, some hashing methods enhance the accuracy and robustness via new
similarity-measurement or regularization metrics [7,18], some methods adjust
the loss function to obtain faster training speed [5]. As for cross-modal hashing,
the goal of subspace learning is to learn a common Hamming subspace from
two modalities where specific features can be matched well, in this way, some
classical methods like Canonical Correlation Analysis (CCA) [6] are applied.

Supervised hashing methods utilize diverse class labels in subspace, which
refers to the second area we introduced. The goal of supervised methods is to map
samples belonging to same class as close as possible while different-class instances
far away from each other [29], thus semantic labels are integrated into hashing
learning procedure to excavate inter-modal and intra-modal correlations. Gen-
erally, in most supervised cross-modal hashing methods [12,14,36], a semantic
similarity matrix is pre-constructed before training, which shows pairwise simi-
larities of all training data. To be detailed, SCM [36] reconstructs the correlation
matrix through sequential hash codes learning with relation of orthogonality con-
straints, what’s more, in Supervised Matrix Factorization Hashing (SMFH) [14],
collective matrix factorization with the label consistency is utilized to generate
unified hash codes, Linear Subspace Ranking Hashing (LSRH) [12] uses rank
order of features. Other hashing methods like DCDH [35] preserves sematic label
information via graph model and dictionary learning. In some small-scale dataset
it works well, however, for large-scale dataset, constructing correlation matrices
or graphs causes much memory occupation. Unlike these methods, DCH [31]
learns unified binary codes without measuring the similarities between differ-
ent modalities. Inspired by the uni-modal hashing method Discrete Supervised
Hashing (SDH) [24], DCH directly utilizes labels by predicting the class informa-
tion of hash codes during learning, specifically, DCH learns a classifier of binary
codes via class labels and the binary codes are more discriminative.
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In this paper, our SRLCH integrates semantic labels into hashing framework,
preserving both intra-modal and inter-modal similarities when embedding data
into common Hamming subspace. Advantages are well demonstrated in experi-
mental results.

3 Proposed Method

3.1 Notations

Suppose we have n training instances in the dataset, each instance is an image-
text pair. For the i-th instance, an image is denoted by xi

v ∈ R
a and a textual

sentence is denoted by xi
t ∈ R

b, where a and b are the numbers of dimensions
in each specific feature space. Class label vector yi = [yi

1, y
i
2, . . . , y

i
c]

� ∈ R
c

is also available for each instance, where c denotes the category number, and
yi

k = 1 if the instance pertains to the k-th class and otherwise yi
k = 0. More-

over, we denote Xv = [x1
v, x2

v, . . . , xn
v ]� ∈ R

n×a as the image visual feature
matrix, Xt = [x1

t , x
2
t , . . . , x

n
t ]� ∈ R

n×b the text semantic feature matrix and
Y = [y1, y2, . . . , yn]� ∈ R

n×c the label matrix respectively. We denote L as the
length of hash codes, also the dimension number of Hamming subspace.

3.2 Hash Functions

Hashing models can be divided into two categories: linear model and nonlin-
ear one. As images and texts are typical unstructured data, latent structure
in original feature vectors cannot be well preserved by the former one. There-
fore, we learn nonlinear hash functions via the combination of kernel mapping
and linear projection. Kernel functions can be adopted to better express the
nonlinear intra-modal correlations among original features [11,17]. We define
the kernel function φ(·) via the RBF kernel mapping [10,11,17]. Specifically,
for each instance, the kernelized feature of each image vector can be expressed
as φv(xv) and the text vector is φt(xt), where for a specific feature vector x,

φ(x) =
[
exp(‖x−a1‖

2σ2 ), . . . , exp(‖x−am‖
2σ2 )

]�
, {aj}m

j=1 denotes the randomly chosen
m anchor samples and σ is the width.

To generate hash codes for each instance, the mapped feature vectors should
be transformed from their specific space to a common Hamming subspace. Thus,
to achieve the transformation for image and text modalities, we define two hash
functions as

Hv(xv) = sgn(φv(xv)Pv),
Ht(xt) = sgn(φt(xt)Pt),

(1)

where Pv ∈ R
m×L and Pt ∈ R

m×L are matrices that project specific mapped fea-
tures into the low-dimensional Hamming subspace, and the sign function sgn(·)
outputs +1 for positive numbers and −1 otherwise.
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3.3 Subspace Relation Learning for Cross-Modal Hashing

The hash functions defined have similar form but aim to different modalities
respectively, though features are embedded to common Hamming space, binary
codes generated by each function are not discriminative. To reduce heterogeneous
differences and match data from same category, class labels should be utilized in
subspace. As semantic label information is a bridge for both homogeneous and
heterogeneous data that can use categories to distinguish and map embedded
features. Therefore, we try to use a new projection matrix W ∈ R

c×L, to map
class label vectors into the low-dimension subspace as subspace relation informa-
tion, which can be considered as a “datum line”. Note that the goal is to learn
better subspace relation information and binary codes to preserve both inter-
modal and intra-modal similarities, making more similar data mapped closer in
Hamming space. Finally, projection matrix W and hash functions can be learned
by jointly minimizing the distance between binary codes and the “datum line”.
This regression task is conducted in our hashing scheme to learn more discrimi-
native binary codes. Our frame is illustrated in Fig. 1, and based on our frame,
we proposed a novel hashing model as:

min
Hv,Ht

μv‖Hv(Xv) − Y W‖2F + μt‖Ht(Xt) − Y W‖2F , (2)

where μv and μt are the model parameters used to balance two-modality fea-
tures, and ‖·‖2F denotes the Frobenius-norm, and λ represents the regularization
parameter.

Since the hash function in Eq. (2) is nonlinear, original problem cannot be
solved trivially by an off-the-shelf solver. To solve the model, we introduce the
binary codes matrix B = [b1, b2, . . . , bn]� ∈ R

n×L for all training data, where L is
the length of the binary codes and each binary code bi ∈ {−1, 1}L. For the feature
matrix X from a specific modality and the corresponding hash function H(X) =
sgn(φ(X)P ), original quantization loss ‖H(X) − Y W‖2F can be transformed as:

‖B − Y W‖2F + ‖B − φ(X)P‖2F . (3)

Note that Eq. 3 keeps the discrete constrains, in this way, solving the hash
functions Hv and Ht can be regarded as solving the projection matrices Pv

and Pt. What’s more, let Bv and Bt be binary codes generated by the two
hash function respectively, to fit our modality-consistent condition, it also has a
latent constraint, which requires unified binary codes B = Bv = Bt instead of
minimized distance ‖Bv − Bt‖F as prior methods do, because it is very difficult
to effectively require minimized distance between two sparse binary codes and it
will introduce an unnecessary trade-off term. Combining the discrete constrains
and unified B, we rewrite Eq. 2 as:

min
Pv,Pt,B,W

‖B − Y W‖2F + νv‖B − φv(Xv)Pv‖2F + νt‖B − φt(Xt)Pt‖2F
+ Ω(W,Pv, Pt), s.t. B ∈ {−1, 1}n×L,

(4)

where Ω(W,Pv, Pt) = λ‖W‖2F + α‖Pv‖2F + β‖Pt‖2F is a newly-added penalty
term with L2 regularization to enhance the stability of the model, λ, α and β are
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Algorithm 1. Subspace Relation Cross-modal Hashing
Input:

Training data Xv, Xt for image and text feature matrices respectively;
Label matrix Y ;
Model parameters νv, νt;
Penalty parameters λ, α, β.

Output:
Unified binary codes matrix B;
Specific projection matrices in hash function Pv, Pt.

1: Normalize training data Xv, Xt by L2 norm with zero mean on each row.
2: Obtain φ(Xv) and φ(Xt) by RBF kernel mapping.
3: Initialize Pv, Pt, W randomly, and B is initialized as a random {−1, 1}n×L matrix.
4: repeat
5: Compute Pv, Pt according to Eq. (6).
6: Calculate W by Eq. (9).
7: Update B using Eq. (12).
8: until Objective function converges.
9: return Pv, Pt and B

penalty parameters. Both νv and νt are the new model parameters of the two
modalities respectively, where νv = μv

μv+μt
and νv = μt

μv+μt
. In the new model

formulated in Eq. (4), we can directly learn the linear projection matrices and
the unified retrieval binary database B, which simplifies the computation. We
call the proposed method which exploits subspace relation information in class
labels to learn unified binary codes as Subspace Relation Learning for Cross-
modal Hashing (SRLCH).

3.4 Optimization Algorithm

The formula shown in Eq. (4) is still non-convex and difficult to get the local
optimal solution. We propose an iterative alternative optimization algorithm to
solve the problem with respect to one variable while keeping others fixed. In
this way, we can iteratively get the local optimal solution of each variable one
by one with the following three steps until convergence. Note that throughout
the optimization, discrete constraints are preserved well without relaxation. As
conventional alternative optimization algorithm does, the whole optimization
process is decomposed into three sub-steps.

Step-1. Firstly, we fix B and W to update the projection matrices Pv and
Pt respectively. Since the two matrices are independent, the problem can be
rewritten as:

min
Pv

νv‖B − φv(Xv)Pv‖2F + α‖Pv‖2F ,

min
Pt

νt‖B − φt(Xt)Pt‖2F + β‖Pt‖2F ,
(5)
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Fig. 2. Convergence curves.
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Fig. 3. Precision-recall curves @32-bit.
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which can be solved as:

Pv = (φv(Xv)�φv(Xv) + ηvI)−1φv(Xv)�B,

Pt = (φt(Xt)�φt(Xt) + ηtI)−1φt(Xt)�B,
(6)

where ηv = α
νv

and ηt = β
νt

.

Step-2. Since we get Pv and Pt, we just need to fix B to learn the relation
projection matrix W . To solve W , Eq. (4) can be transformed to

min
W

‖B − Y W‖2F + λ‖W‖2F , (7)

which can be further formulated as:

min
W

Tr
(
(B − Y W )�(B − Y W ) + λTr(W�W )

)
(8)

where Tr(·) denotes the trace norm and B ∈ {−1, 1}n×L. Hence, we get the
solution as

W = (λI + Y �Y )−1Y �B. (9)

Step-3. When Pv, Ps and W are fixed, in this step, we can compute B by
rewriting Eq. (4) as:

min
B

‖B − Y W‖2F + νv‖B − φv(Xv)Pv‖2F + νt‖B − φt(Xt)Pt‖2F , (10)

where two penalty terms of Pv and Pt are discarded since Pv and Pt have been
fixed. Equation (10) can be further expressed as:

min
B

Tr
(
(Y W − B)�(Y W − B)

)

+νvTr
(
(φv(Xv)Pv − B)�(φv(Xv)Pv − B)

)

+νtTr
(
(φt(Xt)Pt − B)�(φt(Xt)Pt − B)

)
(11)

As B ∈ {−1, 1}n×L, hence, we get the closed-form solution of B as:

B = sgn (νvφv(Xv)Pv + νtφt(Xt)Pt) + Y W ) . (12)

Since B has discrete constraints, conventional discrete optimization algorithm
in SDH [24] and DCH [31] uses iterative discrete cyclic coordinate descent (DCC)
to solve optimal hash codes bit by bit, leading to lots of iterations in the sub-step
of solving B. In our method, when solving B, all bits of hash codes can be solved
in a single step without iteration, which shows high efficiency especially when
codes are long.

In each iteration, we can follow three steps to update Pv, Pt,W and B respec-
tively until the model converges. Finally, we can learn the unified binary codes as
retrieval database and the hash functions for each modality. The complete opti-
mization algorithm of our SRLCH is presented in Algorithm1. Figure 2 shows
the rapid convergence of our algorithm on different datasets.
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Table 1. Statistics of datasets

Dataset Features Categories Size Retrieval/train Query/test

Image Text

Wiki 128 10 8 2866 2173 693

Labelme 512 245 10 2688 2016 672

NUS-WIDE 500 1000 10 186577 184577 2000
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Fig. 4. Comparative precision evaluation with top 500 retrieved samples @32-bit.



616 L. Liu et al.

3.5 Indexing and Cross-Modal Retrieval

After learning Pv, Pt and B according to Algorithm 1, we can get specific hash
functions Hv and Ht from Eq. (1). In training process, unified binary codes
matrix B as retrieval database is also obtained. Note that B contains both
image and text modalities information, in which all the pairwise image-text
data are indexed. For a given query example, either an image feature vector x′

v

or a textual feature vector x′
t, we can use the learned specific hash functions to

generate a binary-code query vector b′. We can conduct several bit operations
to return relevant query results, which enhances the retrieval efficiency.

Table 2. mAP scores on Wiki dataset

Method Img → Txt Txt → Img

16-bit 32-bit 64-bit 128-bit 16-bit 32-bit 64-bit 128-bit

CCA [4] 0.1669 0.1519 0.1495 0.1472 0.1587 0.1392 0.1272 0.1211

CMFH [3] 0.2098 0.2295 0.2333 0.2431 0.4784 0.5312 0.5287 0.5443

FSH [15] 0.2333 0.2596 0.2557 0.2613 0.2230 0.2572 0.2594 0.2622

SMFH [14] 0.1879 0.2389 0.2519 0.2638 0.4130 0.5454 0.6012 0.6122

SCM-orth [36] 0.1538 0.1402 0.1303 0.1289 0.1540 0.1373 0.2485 0.1224

SCM-seq [36] 0.2341 0.2410 0.2462 0.2566 0.2257 0.2459 0.1258 0.2528

DCH [31] 0.3294 0.3383 0.3756 0.3726 0.6855 0.7086 0.7107 0.7050

SRLCH 0.3526 0.3648 0.3537 0.3829 0.7356 0.7251 0.7343 0.7354

4 Experiments

4.1 Datasets

We use three widely-used multi-modal datasets and there are two small-scale
dataset: Wiki [22] and Labelme [20,39], and one large-scale dataset: NUS-
WIDE [2]. Table 1 shows the statistics of each dataset in detail and we briefly
describes the datasets as follows:

Wiki. There are 2,866 data in the Wiki [22] dataset, which contain image and
text information annotated with 10 different class labels. Each image in this
dataset is represented as a 128-dimensional feature vector extracted by SIFT,
each text is generated by Latent Dirichlet Allocation (LDA) as a 10-dimensional
feature vector. We randomly choose around 20% of the total data as the test
data to query and the remaining data are selected as training data for retrieval
database.

Labelme. The Labelme [20,39] dataset consists of 2,688 images along with
textual data. Each image is a 512-dimensional GIST feature vector, and each
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textual vector is extracted as a 245-dimensional feature vector. The training
and test sizes are the same as Wiki dataset.

NUS-WIDE. Unlike Wiki and Labelme, NUS-WIDE [2] is a large-scale dataset
containing 186,577 images and corresponding textual tags, which are divided
into 10 categories. 1% data of NUS-WIDE dataset are taken as query set to test,
the rest are used to training hash functions and building binary codes retrieval
database. Each image is represented by 500-dimensional manual features, and
each text by 1000-dimensional BoW features.

As is shown in Table 1, all experiments are performed under the same
settings.

Table 3. mAP scores on Labelme dataset

Method Img → Txt Txt → Img

16-bit 32-bit 64-bit 128-bit 16-bit 32-bit 64-bit 128-bit

CCA [4] 0.3199 0.2735 0.2326 0.2029 0.3534 0.2965 0.2560 0.2278

CMFH [3] 0.3873 0.4197 0.4539 0.3039 0.5003 0.5599 0.5995 0.3026

FSH [15] 0.4517 0.5405 0.6234 0.6528 0.5310 0.6532 0.7262 0.7601

SMFH [14] 0.3202 0.4542 0.5411 0.6368 0.4047 0.5767 0.6947 0.7815

SCM-orth [36] 0.3587 0.2902 0.2503 0.2321 0.3831 0.2697 0.2080 0.1681

SCM-seq [36] 0.6684 0.7026 0.6564 0.7354 0.7865 0.8104 0.7638 0.8381

DCH [31] 0.7663 0.8226 0.8150 0.8293 0.9054 0.9053 0.9143 0.9156

SRLCH 0.8607 0.8705 0.8855 0.8896 0.9178 0.9202 0.9203 0.9247

4.2 Compared Methods and Evaluation Metrics

The proposed SRLCH has been compared with six cross-modal hashing meth-
ods. There are three unsupervised methods including CCA [4], CMFH [3] and
FSH [15], and three supervised methods SMFH [14] SCM [36] and DCH [31].
Note that SCM has two approaches: SCM-orth and SCM-seq, which are based on
orthogonal projection learning and sequential learning respectively. To get the
best performance of each compared approach, all the parameters are set default
in the codes available or as the original papers suggest.

The retrieval is conducted on two retrieval tasks: Img → Txt and Txt →
Img. To test the performance of different methods, we use precision at top
K samples (pre@K), mean Average Precision (mAP) and precision-recall as
metrics.

4.3 Implementation

For kernel mapping method, our experiments show that the parameter σ is not
sensitive to the results when its value is not very small, and we set it equaling to
0.6 in both kernel functions. However, the number of anchor samples m is set to
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different values, in small-scale datasets like Wiki and Labelme, m is set to 500,
in large-scale dataset like NUS-WIDE, m is set to 5000.

In our method, there are two main model parameters νv and νt, and three
regularizer parameters λ, α and β. To fit features for different modalities, we
apply linear search for νv and νt over {10−6, 10−5, . . . , 10−1}, and empirically
set the νv and νt to 10−1 and 10−5 respectively. As for λ, α and β, to simplify
computation, we replace α and β by ηv and ηt in Eq. (6), then fix them to 0.1,
0.1 and 0.01 for all experiments based on experience.

Table 4. mAP scores on NUS-WIDE dataset

Method Img → Txt Txt → Img

16-bit 32-bit 64-bit 128-bit 16-bit 32-bit 64-bit 128-bit

CCA [4] 0.3861 0.3729 0.3612 0.3531 0.3809 0.3689 0.3589 0.3519

CMFH [3] 0.3478 0.3446 0.3446 3435 0.3546 0.3499 0.3507 0.3507

FSH [15] 0.5115 0.5172 0.5204 0.5191 0.4816 0.4851 0.4885 0.4920

SMFH [14] 0.4268 0.4361 0.4433 0.4470 0.4008 0.4097 0.4151 0.4177

SCM-orth [36] 0.3986 0.3790 0.3645 0.3570 0.3861 0.3694 0.3586 0.3533

SCM-seq [36] 0.5172 0.5379 0.5547 0.5554 0.4849 0.5038 0.5148 0.5170

DCH [31] 0.5968 0.6002 0.6023 0.5912 0.7232 0.7392 0.7305 0.7036

SRLCH 0.5964 0.6416 0.6263 0.6559 0.7038 0.7556 0.7561 0.7899

4.4 Experimental Results

Comparison with Baselines

We set various binary code length levels from 16-bit to 128-bit. The mAPs of
SRLCH and all the baselines on small-scale datasets Wiki and Labelme are
recorded in Tables 2 and 3. The mAP values of our method is higher than most
supervised and unsupervised approaches on two database for two different tasks.
In detail, on Wiki dataset, our SRLCH improves averagely by 10% than the best
approach and on Labelme dataset, SRLCH obtains the best performance of all
compared methods. As Table 4 illustrates, we can observe that our proposed
method shows good mAP scores on large-scale dataset NUS-WIDE with the
code length more than 32-bit while DCH only outperforms with 16-bit code
length. For larger code length, our SRLCH has higher mAP scores, for example,
with 128-bit length, SRLCH improves by 12% than the best baseline DCH.

We also sketch the precision-recall curves in Fig. 3. Apparently, our proposed
method always maintains the best for both tasks on Wiki and Labelme with
the precision-recall metric. Figure 4 illustrates the variation of precision values
at from 100 to 500 samples for different tasks with 32-bit code length. It can
be observed that our method achieve a very preferable performance on two
datasets for both I → T and T → I tasks. To be specific, some methods are only
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Table 5. Training time (second) of SRLCH and baselines on Labelme.

Code length Method

SRLCH DCH [31] SCM-seq [36] SCM-orth [36] SMFH [14] FSH [15] CMFH [3] CCA [4]

16-bit 0.1305 0.4102 12.0327 0.6945 0.6881 4.3859 1.7778 1.0567

32-bit 0.1290 0.4447 23.1629 0.7008 0.7261 4.6017 1.4875 1.0322

64-bit 0.1344 0.6595 26.6193 0.7008 0.8947 4.7865 1.7859 1.0326

128-bit 0.2110 5.6338 91.7365 0.6962 1.2453 5.3416 0.1345 1.0366

competitive in certain tasks and datasets, for example, DCH shows a preferable
pre@K only when K is more than 300 for the T → I task on Wiki, however, the
pre@K is not so good as the I → T task on the same dataset. What’s more, on
other datasets including Labelme and NUS-WIDE, for both tasks, our SRLCH
can beat all baselines outright throughout 100–500 retrieval samples.

In addition, there are also some interesting findings from the experimental
results. Firstly, with the increase of the hash code length, the mAP value of our
SRLCH also increases. Secondly, both the pre@K curves and precision-recall
curves of our SRLCH have slower trends than most methods, which shows the
stability of our model.

Training Speed

We test the training time (second) of each method on Labelme dataset with
different code lengths, and record the time in Table 5. All of the algorithms
run on the same 64-bit system with Intel Core i7-4790 @ 3.6 GHz and 8 GB of
memory. Notably, the unsupervised method CMFH has a very competitive speed
at 128-bit, since its specific matrix factorization algorithm causes the abnormally
fast convergence at that code length level. However, at other code length levels,
our SRLCH has higher training speed than all baselines, even about 3 to 5 times
faster than the best baselines. At long code length level (128-bit), SRLCH can
achieve similar training speed with those on other levels.

5 Conclusions

In this paper, we proposed a novel supervised cross-modal hashing method,
referred to as Subspace Relation Learning for Cross-modal Hashing (SRLCH), for
efficient multimedia indexing and retrieval. In detail, to interpret semantic labels
and integrate them into our scheme, we projected class labels of two modalities
into a subspace, meanwhile, we exploited the subspace relation information to
jointly learn the unified binary codes and hash functions for two different modal-
ities in a common Hamming space. The subspace relation information can be
regarded as a “datum line” to map similar features together. Thanks to the opti-
mization algorithm we developed, the objective binary codes were generated in a
single step, which accelerated the model training to some extent. As a result, we
learned more discriminative binary codes in less time using SRLCH, enhancing
the efficiency of cross-modal retrieval. The experimental results demonstrated
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that SRLCH outperforms many other methods in accuracy and speed for two
cross-modal retrieval tasks.
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Abstract. In many real applications, it is often encountered that the
models trained on source domain cannot fit the related target images
very well, due to the variants and changes of the imaging background,
lighting of environment, viewpoints and so forth. Therefore cross-domain
image classification becomes a very interesting research problem. Lots
of research efforts have been conducted on this problem, where many of
them focus on exploring the cross-domain image features. Recently trans-
fer learning based methods become the main stream. In this paper, we
present a novel transfer SoftMax model called Sparse Informative Trans-
fer SoftMax (SITS) to deal with the problem of cross-domain image
classification. SITS is a flexible classification framework. Specifically,
the principle eigenvectors of the target domain feature space are intro-
duced into our objective function, hence the informative features of the
target domain are exploited in the process of the model training. The
sparse regularization for feature selection and the SoftMax classification
are also employed in our framework. On this basis, we developed Deep
SITS network to efficiently learn informative transfer model and enhance
the transferable ability of deep neural network. Extensive experiments
are conducted on several commonly used benchmarks. The experimen-
tal results show that comparing with the state-of-the-art methods, our
method achieves the best performance.

Keywords: Transfer learning · Neural network · Deep learning
Image classification · Sparse regularization

1 Introduction

With the fast and widespread proliferation of image and video sensors, the tech-
nology of image classification becomes very popular and necessary in many
c© Springer International Publishing AG, part of Springer Nature 2018
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practical applications such as target detection, web image search and video
surveillance etc. However, it is often the case that in some applications the
pre-trained models do not work very well in the real running of classifications,
where the testing domain is different from the training domain. Figure 1 shows
some examples of cross-domain image datasets. One solution for this problem is
to collect data from the testing domain and train a new model. But it is labor
expensive and tedious to build a new dataset with human annotations. There-
fore, the cross-domain image classification which aims to use the source training
data to learn a related target domain classifier becomes an important research
topic.

In this work, we propose a novel cross-domain classification framework called
Sparse Informative Transfer SoftMax (SITS). To explore the cross-domain fea-
tures, we exploit principle eigenvectors of the target domain feature space in our
objective function. We further employ the sparse regularization method to select
and preserve these informative features. The SoftMax with the aforementioned
regularization approach is applied as the SITS layer in the deep neural networks
and brings significant improvement on the cross-domain classification problem.
Our main contribution can be summarized as:

1. We propose a novel cross-domain classification model SITS to explore the
target domain using the principal eigenvectors and sparse regularization to
fine tune the decision hyperplane.

2. We propose the Deep SITS network which is a combination of convolutional
layers, SITS layers and fully connected layers. SITS layer exploits transferable
information from the target domain to assist final connected layers training.

3. Our experiments show that SITS is more effective and powerful combined
with the pre-processing cross-domain methods and bring further performance
improvement.

• From Google
• Various background 

and environment

• Digital SLR camera
• Realis c environment
• Natural light
• High-resolu on

• From Amazon
• Clear background
• Canonical viewpoint
• Monitored environment

• Digital SLR camera
• Realis c environment
• Natural light
• Low-resolu on
• Significant noise

Amazon

Webcam

Dslr

Caltech

Backpack   Bike   Calculator Headphones Keyboard Laptop  Monitor   Mouse     Mug       Projector

Fig. 1. Image examples and domains’ profile of cross-domain benchmark Office-Caltech
datasets. Office-Caltech dataset contains the 10 overlapping categories between the
Office dataset (includes three domains: Amazon, Webcam and Dslr) and Caltech256
dataset.
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Source Domain Target Domain

fine-tuned 
by target 

feature space
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eigenvectors

Principle 
Direc on
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Domain
Classifier

Original 
Domain
Classifier

Fig. 2. SITS classifier: the decision boundary is the red line (Red dotted line represents
original boundary trained by labeled data, while red solid line is adjusted boundary
fitting for target data by using unlabeled target informative principle eigenvectors).
Grey dotted line is the first principle direction of target domain feature space. (Color
figure online)

The experiments are conducted on several commonly used benchmark
datasets. The previous pre-processing methods, such as JDA [15] and TCA [17],
and the state-of-the-art transfer learning based approaches [14,16,22,27] are
adopted for performance comparisons. The experimental results show that our
methods achieve the best performance on all the datasets in our experiments.
Especially, integrating with the pre-processing and Convolutional Neural Net-
work (CNN), our method achieves significant improvement compared with other
combination approaches.

The paper is organized as follows. The review of related work is given in
Sect. 2. In Sect. 3, our SITS model is given and the sparse regularization and
informative factors are also introduced. In Sect. 4, we introduce the benchmark
data and our experimental settings and compare our method with the baselines
and the state-of-the-art methods in terms of accuracy for evaluation. In Sect. 5
we conclude our work.

2 Related Work

Most of the cross-domain classification methods can be categorized into two
classes: the feature pre-processing based methods [3,4] and the transfer learning
based methods [9,15,17]. The feature pre-processing based methods focus on
exploring the image features with cross-domain characteristics. Since the most
domain bias/difference is often related with the bias of sample selections or
the shifting of means/covariances, several linear and nonlinear transformation
approaches are exploited to reduce the distribution difference. Transfer learning
models make use of domain knowledge to tackle the related target classification
problem. The cross-domain image classification can be regarded as a kind of
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transfer learning problem. Hence the transfer learning techniques are extensively
applied for dealing with the problem of cross-domain classification. Multiple
Kernel Learning (MKL) [6] and distance metric learning [6,23,24] techniques
are also applied to cross-domain image classification. Zhu et al. [27] exploit the
first principle component of the target feature space in their classification model
training.

It is noticed that with the fast development of deep learning technique,
the performance of transfer classification has obtained a significant boost with
deep structure, such as deep low rank coding [5] and deep features training [7].
Besides, Yosinski et al. [26] comprehensively explore the deep CNN transfer-
ability through manifest invariant factors across domains with sufficient target
labels. Tzeng et al. [20,21] improve the adaptation ability of deep networks with
domain invariance and discriminative feature learning. Due to the limited labeled
data in reality, domain-invariant features with deep CNNs [14,22] and domain-
adversarial deep architectures [8] have been proposed. Deep domain confusion
(DDC) [22] is proposed for learning a domain-invariant representation by adding
network adaptation layer and dataset shift loss. Deep adaptation network (DAN)
[14] focuses on increasing transferability in deep feed-forward networks with ker-
nel Hilbert space reproducing and discrepancy reducing. In our work, the deep
features of the source domain are adapted with the target domain by PCA and
L1 regularization based feature selection. In our experiment comparing with sev-
eral previous deep CNN transfer learning models [13,14,22,25] on the standard
benchmarks, our method achieves the best performance.

3 Sparse Informative Transfer SoftMax Model

In this section, we introduce the proposed Sparse Informative Transfer SoftMax
(SITS) model in details.

3.1 Problem Formulation

In the cross-domain classification, we are given M classes from two specific
domains Dsrc and Dtar, where Dsrc denotes the labeled source domain while
Dtar denotes the unlabeled target domain. Let {xsrci

,ysrci
}nsrc

i=1 denote the train-
ing instances and labels in the source domain Dsrc, and {xtari}ntar

i=1 denote the
samples in the target domain without labels. Differ from the traditional classifica-
tion problem, the IID (Identical Independent Distribution) assumption between
the training (source) and testing (target) data sets is not guaranteed in the sce-
nario of cross-domain classification. Generally, in the cross-domain classification
problem, Dsrc and Dtar have different input spaces/distributions. Due to the
distribution discrepancy between the source domain and the target domain, a
classifier fsrc trained on the source domain Dsrc usually does not work very well
on the target domain Dtar.

In cross-domain classification, our aim is to predict the labels of the samples
of the target domain Dtar by training the model fsrc on the source domain train-
ing data and exploring the target data distribution. We optimize a multi-nominal
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logistic regression with Elastic Net regularization and informative factors of the
target domain. SoftMax function is used to define the n-class logistic classifier
model in our experiment which is given by:

P (yi = Y |xi;ω) = fsrc(yi = Y |xi, ω1, ω2, . . . , ωM ) =
eωT

Y xi

∑M
k=1e

ωT
k xi

. (1)

Here ω1, ω2, . . . , ωM are the parameters of the classifier and the term
∑M

k=1 e
ωT

k xi normalizes the distribution. The model is trained by maximum-
likelihood and we rewrite the regularized form of the negative log-likelihood as:

Lsrc(ω) = −
nsrc∑

i=1

M∑

j=1

1{yi = j}log
eωT

yi
xi

∑M
k=1e

ωT
k xi

, (2)

where M is the number of training classes.
However, fsrc often leads to the overfitting in transfer learning problem due

to the discrepancy between the source and target domain distributions. With
the deep network image features such as CNN features being widely applied, it
is reasonable to assume that the feature space is often high-dimensional, which
reduces the overfitting problem. Therefore to deal with the problem, we propose
to fit the generalized linear model fsrc by minimizing the negative log-likelihood
with sparse penalty Lspr(ω). Lspr(ω) is a regulation factor for SoftMax regres-
sion, which scales well to large problems. We combines lasso and ridge as Lspr(ω)
regression, also known as Elastic Net in our model training.

To explore the target domain input space, we distill informative properties
by using a numbers of principle eigenvectors for regularization Linf (ω) to bridge
the gap between the source and target feature space. It helps to fine tune the
direction of the decision hyperplane to more suitable for target domain as shown
in Fig. 2

Hence the loss function is reconstructed as follows:

Ltar(ω) = Lsrc(ω) + μLinf (ω) + λLspr(ω), (3)

where the hyper-parameters λ and μ determine the weight of sparse penalty
and informative factors. Lspr(ω) is the sparse constraint for SoftMax regression
and Linf (ω) is a combination of multiple informative transfer factors helping to
understand target datasets, which will be described in details in the following
sections.

3.2 Multiple Informative Transfer Factor

In this subsection we introduce the idea of maximizing the information represen-
tation of the target domain data into the sparse SoftMax model training. With
our objective function, the informative features of target domain can be pre-
served and utilized to adjust the classification hyperplane in the model training
which consequently leads to performance improvement in the testing.
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PCA is powerful for extracting unlabeled data structure and obtaining its
intrinsic variability. In PCA the data samples are projected onto the new basis
of principal component (PC) and each PC is a linear combination of the original
input space. PCA is often used to reduce the number of dimensions of high-
dimensional data in traditional data processing. For the covariance matrix or
the correlation matrix that PCA applied, the eigenvectors correspond to the
principal components and represent the general directions of the variability of
the input space.

In our SITS model, with the Elastic Net regularization multiple principal
eigenvectors of the target domain are selected to fine-tune the decision hyper-
plane. This makes the classification model more discriminative in the larger
variance directions of the target domain and finally brings performance improve-
ment. The informative factor is given as follows.

Linf (ω) =
M∑

k=1

‖ωkv1‖2 + 1
2!‖ωkv2‖2 + . . . + 1

t!‖ωkvt‖2
1 + 1

2! + . . . + 1
t!

, (4)

where ω is the SoftMax classifier parameter. In the above equation, v1, v2, . . . , vt

are the first t principle eigenvalues of the target domain data. In this equation, we
use the reciprocal of factorial as decay penalty to weight each principal direction.
As illustrated in Fig. 2, where t equals to 1 and ωT

k vi makes classifier parameter
ω adjusting to vertical to the first principal direction of the target domain. In
our experiment, we use multiple informative factors to exploit more principal
directions of the target data.

3.3 Sparse SoftMax Model

In a lot of multinomial learning methods, SoftMax transformation is a key com-
ponent used as activation function, encompassing multinomial logistic regression
in neural networks and reinforcement learning as multi-instance classifier. Soft-
Max with simple log-likelihood loss function and appealing efficiency is widely
used in deep neural network.

The sparse SoftMax model adds a sparsity constraint to the objective func-
tion. The sparsity constraint is given by the reconstruction error of the Elastic
Net regularization Lspr(ω):

Lspr(ω) =
M∑

k=1

λ1‖ωk‖2 + λ2‖ωk‖1, (5)

where the first term tends to decrease the magnitude of the weights to prevent
overfitting. The first parameter λ1 controls the relative importance of the term
and λ2 controls how sparse the model is.

In our sparse softmax model, lasso penalty shrinks the linear regression coef-
ficients towards zero and generate sparse models, providing a computationally
feasible model selection way. However ridge penalty helps extend the number
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of non-zero coefficients, while lasso does not perform well when the number of
predictors is much larger than the observations or the predictors are highly cor-
related, Elastic Net regularization is proposed integrating both advantages [11].

3.4 Parameter Estimation

Here we give the solution for our objective function, which is shown as follows:

min(λ,μ)[Lsrc(ω) + Linf (ω) + Lspr(ω)]. (6)

The combining of Elastic Net regularization Lspr(ω) implies an automatic
selection of the principle eigenvectors in Linf (ω).

The solution for SoftMax with sparse regularization has mature theory and
algorithm. Gradient descent and coordinate descent are the most commonly used
methods to solve the problem. In this paper, our objective function is minimized
by using batch gradient descent.

The gradient of the loss function is:

G(ω) = ∇Ltar(ω) = ∇Lsrc(ω) + μ∇Linf (ω) + λ∇Lspr(ω), (7)

which denoted by the m × n indicator response matrix (m is the number of
dimensions of the input space and n is the classes number). Then we can write
the partial derivative of the SoftMax as:

∇ωk
Lsrc(ω) = −

nsrc∑

i=1

[xi(1{yi = k} − P (yi = k|xi;ω))], (8)

where ∇ωk
Lsrc helps for grouping the k-th category responses for each value

xi. By solving the minimization problem with sparse penalty, the absolute value
function does not have a derivative at zero. Thus we introduce a positive tiny
factor ε in solving the derivatives.

∇ωk
Lspr(ω) = 2 ∗ λ1 ∗ ωk + λ2sign(ωk)(|ωk| − ε)+, (9)

where for each element of ωk

sign(ωk)(|ωk| − ε)+ =

⎧
⎪⎨

⎪⎩

ωk,i − ε if ωk,i > ε

0 if |ωk,i| ≤ ε

ωk,i + ε if ωk,i < −ε

. (10)

And the gradient of the ∇Linf (ω) is expand as:

∇ωk
Linf (ω) = 2ωk ∗ v2

1 + 1
2!v

2
2 + . . . + 1

t!v
2
t

1 + 1
2! + . . . + 1

t!

. (11)

Typically, determining the number of principle eigenvectors is a trade-off:
poor transfer efficiency versus noise information. We will give more details in
the Section of Experiment.
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Fig. 3. Overall Caffe-based Deep SITS Architecture. As deep features transit from gen-
eral to specific along the network, convolutional layer conv1–conv5 and fully connected
layers fc6–fc7 share the hyper-parameters of pre-trained deep neural network. SITS
layer generates target domain constraint and sparse regularization to the final layer.
The classifier layer fc8 is tailored to task-specific structures with SITS model that con-
sider informative factors constraint from target domain and elastic net regularization
with prior layer representation.

3.5 Deep SITS Network

In this section, we give an overview of Deep SITS network architecture depicted
in Fig. 3. Deep SITS network takes source domain images, source domain labels
and target domain images as input. The network first processes the source images
and target images with several convolutional (conv) and fully connected layers
individually. Then, the SITS layer learns informative factors from the final convo-
lutional layer or one of fully connected layers of target network. The informative
factors work for the source network classifier layer (i.e. the final fully connected
layer) training to fine-tunes the connected weights with target informative prop-
erties. In addition, the classifier layer weights are constrained by sparse Elastic
Net at the same time. The output weights of classifier layer, combined with the
SITS layer informative factors constraint and Elastic Net regulation, is more tai-
lored to target domain classification task. Deep SITS network aims to construct
a deep neural network which is able to train a transferable classifier that bridges
the cross-domain discrepancy. More details of our deep network are given as
follows:

Network Initialization: Deep SITS networks include five convolutional layers
as deep image feature extractors, two fully connected layers, one SITS layer and
one classifier layer as class label predictor. We experiment with two pre-trained
AlexNet weights based on ImageNet datasets [13] for source and target domain
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respectively. The layers of conv1 − fc7 are adopted from released CaffeNet [12].
SITS layer takes as input target domain features representations to generate
informative constraint. After SITS layer calculating, two distinct network output
representations and configs are gathered together in the final connected layer
(classifier layer). We then train the SoftMax classifier using the source labeled
data representation and fine-tune the network using SITS layer output configs.

Layer Choose: The deep features representation transits from general to spe-
cific along the network. The recent researches [19] indicates that the last convo-
lutional layer representation and several fully connection layers representation
are more suited for tackling the problems of visual recognition problem. SITS
layer takes the representation as input and output the configs for the classifier
layer training. Either target layer is feasible to be connected to the SITS layer.
Then SITS achieves the representation of this layer and then the output the con-
figs. These configs are applied to source network classifier layer training process
to add network transferable ability. Figure 3 illustrates the situation that SITS
layer is between the second fully connected layer (fc7) and the classifier layer
(fc8). In our experiment, we investigate which layer representation from conv5
to fc8 is most effective for Deep SITS framework. More details are given in the
following experiments.

4 Experiments

This paper compare SITS model with the state-of-the-art transfer learning meth-
ods and evaluate it on two standard benchmark datasets: Office-31 [18] and 10
common classes Office-Caltech [9].

4.1 DataSet

Caltech-256 [10] and Office [9,18] are increasingly popular benchmark for the
evaluation of image cross-domain classification, where Office datasets includes
three real world object domains: Amazon, Webcam and DSLR. One challenge of
the dataset is that both Office datasets and Caltech datasets are imbalance. We
adopt 10 classes Caltech-Office datasets and encode SUFT features to 800-bin
histogram with bag-of-word method [2].

Therefore, with these two benchmarks, we have 4 different domains images
with common classes labels. The details of the four domains images are described
as follows: The Caltech domain: 256 object classes and 30, 607 images, down-
loaded from Google. The Amazon domain: 31 classes, each of which includes
different object instances seen from one canonical viewpoint, closely monitored
environment, studio lighting conditions, large intra-class variations, downloaded
from online merchants. The DSLR domain: 31 categories and 4652 images,
acquired with a digital SLR camera, high-resolution images, realistic environ-
ment, natural light. The Webcam domain: a similar environment as the DSLR
ones, low-resolution images, contain significant noise.
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4.2 Experimental Settings

We adopt two baselines in our experiment: Principal Component Analysis (PCA)
as data pre-processing method with 1-NN classification and the Support Vec-
tor Machine (SVM) based method. PCA projects input data points into a new
orthogonal space and is often used for dimensional reduction. It is combined with
1-Nearest Neighbor Classifier (NN) for cross-domain image classification [9,17].

Multiple classifiers like SVM and ILR are trained with the labeled data from
the source domain and used to predict the data samples of the target domain. We
also compare our method extensively to a number of transfer learning methods
listed as follows:

1. TCA [17] is a conventional transfer learning method based on MMD-
regularized PCA.

2. GFK [9] is a widely-adopted method which interpolates across intermediate
subspaces to bridge the source and target.

3. LapCNN [25] is a semi-supervised variant of CNN based on Laplacian graph
regularization.

4. CNN [13] is the leading method in the ImageNet 2012 competition, and it
turns out to be a strong model for learning transferable features [26].

5. JDA [15] is a powerful pre-processing method for cross-domain problem
extending MMD by jointly adapting both the marginal distribution and
conditional distribution.

6. JD-CNN is the strong baseline in our experiment. It combines pre-processing
the CNN feature with JDA [15] models, and then trained by nearest-
neighbor. Specifically, experiment adopt supervised CNN based fc7 layer
as feature representation, which trained in the ImageNet using the released
CaffeNet [12] weights.

7. ILR [27] introduces the target data distribution constraints into logistic
regression classification model to keep informative transfer information.

8. TJM [16] is also a practical pre-procession transfer learning model especially
in large domain difference problem. TJM is jointly matching the features
and reweighting the instances across domain in a principled dimensionality
reduction procedure.

9. DDC [22] is proposed for learning a domain-invariant representation by adds
an adaptation layer between the fc7 and fc8 layers that is regularized by
single-kernel MMD to the deep CNN.

10. DAN [14] generalizes a new deep CNN to domain adaptation that embedding
layers to reproducing kernel Hilbert space and reducing discrepancy using
an optimal multi-kernel selection method.

In the experiments, we evaluate two variants of sparse informative transfer
softmax (SITS): SITS and JD-SITS, by using the SURF embedding feature
and deep representations. JD-SITS is the extended model of SITS, which is a
combination methods with the joint adaptation pre-processing analysis [15]. For
both Office-Caltech and Office-31 datasets, we follow the standard evaluation
for cross-domain classification.
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We examine the influence of deep representations for cross-domain classifi-
cation by employing the AlexNet [13] from the open source Caffe [12] package,
which is pre-trained on the ImageNet dataset. The contrast methods, including
CNN, LapCNN, JD-CNN, DDC, and DAN methods, adopt the same network
configuration settings with our proposed methods.

In order to study the effect of various layer features, we evaluate variants layer
feature combined with our SITS transfer learning model classification accuracy.
To determine the optimal values of the hyper-parameters we perform a grid
search over the parameter space of the number of units and the optimal weight
decay was found to be: λ1 = 1×10−4, λ2 = 5×10−4 and μ = 5×10−4. The first
10 principle eigenvectors are adopted in our model training in both SURF-based
and deep-based experiments.

4.3 Experimental Results

We utilize two kinds of visual features: SURF features encoded by the bag-
of-words model and the deep convolutional neural network features on both of
Caltech and Office datasets. 10 common classes of these two datasets are adopted
as usual for the classification task. In addition, the Office dataset with 31 classes
is also employed for deep feature based evaluation.

Our experiment is divided into two parts according to which kind of feature
being employed: SURF feature and deep feature. For the experiment with SURF
feature, Table 1 shows the experimental results of our models comparing with the
baselines, the state-of-the-art pre-processing methods and the transfer models
respectively. In contrast to ILR [27], which exploits a single pre-calculated sparse
principle component of the target domain for transfer learning, our SITS model
employs multiple salient direction factors to fine-tune the decision hyperplane.

Table 1. Accuracy (%) on 10 classes Office-Caltech cross-domain images datasets with
SURF feature.

Datasets Baseline Prior transfer learning methods Our methods

Source Target PCA SVM GFK [9] TCA [17] ILR [27] JDA [15] TJM [16] SITS JD-SITS

Caltech Amazon 36.95 55.64 41.02 38.20 55.11 44.78 46.76 57.93 58.14

Caltech Webcam 32.54 43.73 40.68 38.64 48.81 41.69 38.98 45.08 49.15

Caltech DSLR 38.22 45.22 38.85 41.40 46.50 45.22 44.59 44.59 46.50

Amazon Caltech 34.73 45.77 40.25 37.76 42.39 39.36 39.45 45.24 42.48

Amazon Webcam 35.59 39.66 38.98 37.63 37.29 37.97 42.03 41.36 42.03

Amazon DSLR 27.39 42.04 36.31 33.12 42.04 39.49 45.22 42.68 41.40

Webcam Caltech 26.36 26.62 30.72 29.30 37.79 31.17 30.19 32.21 34.64

Webcam Amazon 31.00 29.39 29.75 30.06 35.80 32.78 29.96 37.89 38.62

Webcam DSLR 77.07 63.39 80.89 87.26 84.08 89.17 89.17 85.35 89.17

DSLR Caltech 29.65 34.76 30.28 31.70 37.27 31.52 31.43 34.11 35.35

DSLR Amazon 32.05 31.43 32.05 32.15 33.57 33.09 32.78 36.01 42.28

DSLR Webcam 75.93 82.80 75.59 86.10 81.36 89.49 85.42 84.07 86.78

Average 39.79 45.04 42.94 43.61 48.50 46.31 47.10 48.96 50.55
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Table 2. Accuracy (%) on 10 classes Office-Caltech datasets with deep convolutional
neural network

Datasets Baseline deep methods Recent methods Our methods

Source Target LapCNN [25] CNN [13] JD-CNN [13,15] DDC [22] DAN [14] SITS JD-SITS

Amazon Caltech 83.6 83.8 84.2 84.3 86.0 85.2 87.0

Webcam Caltech 77.8 76.1 85.1 76.9 81.5 79.8 88.0

DSLR Caltech 80.6 80.8 86.0 80.5 82.0 82.9 87.0

Average 80.7 80.2 85.1 80.6 83.1 82.7 87.3

Caltech Amazon 92.1 91.1 89.8 91.3 92.0 91.8 92.7

Caltech Webcam 81.6 83.1 86.8 85.5 92.0 87.1 93.6

Caltech DSLR 87.8 89.0 84.7 89.1 90.5 89.8 90.5

Average 87.2 87.7 87.1 88.6 91.5 89.6 92.3

Overall average 83.9 84.0 86.1 84.6 87.3 86.1 89.8

Table 3. Accuracy (%) on Office-31 datasets with deep convolutional neural network

Datasets Baseline deep methods Recent methods Our methods

Source Target LapCNN [25] CNN [13] JD-CNN [13,15] DDC [22] DAN [14] SITS JD-SITS

Amazon Webcam 60.4 61.6 63.9 61.8 68.5 62.5 68.9

DSLR Webcam 94.7 95.4 96.9 95.0 96.0 95.6 96.0

Webcam DSLR 99.1 99.0 98.0 98.5 99.0 99.4 96.4

Amazon DSLR 63.1 63.8 61.5 64.4 67.0 64.7 68.3

DSLR Amazon 51.6 51.1 58.8 52.1 54.0 51.9 60.0

Webcam Amazon 48.2 49.8 53.5 52.2 53.1 50.3 57.9

Average 69.5 70.1 72.1 70.6 72.9 70.7 74.6

The experimental results show that our model JD-SITS achieves the best per-
formance, 50.55% on average accuracy and followed by our SITS model 48.96%
and ILR model 48.5%.

For the experiment with deep feature, we compare our methods against the
baseline of CNN and the state-of-the-art CNN transfer models, such as DAN [14]
and DDC [22]. Table 2 shows the experimental results on the 10 common classes
of Office and Caltech datasets. It shows that our JD-SITS model achieves the
best performance on average and outperform 5.8% comparing with CNN. The
experimental results also shown that our framework is more effective for model
integration. It is also observed that with the integration of JD pre-processing
method, our JD-SITS improves the accuracy by 3.7%, from 86.1% to 89.8%.
In contrast, the strong baseline JD-CNN, which is an integration of JD pre-
processing with CNN method improves the accuracy from 84% to 86.1%, the
margin is 2.1%. Hence, the experimental results show that our SITS model is
more effective of integrating with pre-processing transfer learning than the tra-
ditional ones.

Table 3 shows the experimental results on the Office datasets with 31 classes.
In this experiment, our models are compared with serval deep learning models,
such as CNN, LapCNN, DDC and DAN. It is shown that our deep feature based
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Fig. 4. Joint method (JD-SITS) evaluation based on various CNN layers representation
over 10 classes Office-Caltech datasets

SITS model with pre-process (JD-SITS) achieves the best accuracy 74.6% on
average. Specifically, our JD-SITS model achieves 3.9% (from 70.7% to 74.6%)
accuracy improvement comparing with SITS, while the JD-CNN rises the accu-
racy 2.1% (from 70.1% to 72.1%) comparing CNN.

From Tables 2 and 3, it can be observed that our method JD-SITS outper-
forms 2.5% and 1.7% on average comparing with the state-of-the-art method
DAN [14], respectively. All the experimental results demonstrate that our SITS
model and JD-SITS model are more effective to boost the transferability com-
pared with the baselines and the state-of-the-art methods.
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Fig. 5. Classification accuracy (%) comparison on each classes of 10 classes Ofce-
Caltech datasets and confuse intra-class images samples.
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4.4 Discussion

In this section we give more details of our experiment to illustrate the effec-
tiveness of our proposed method on cross-domain image classification. Figure 5
shows the classification accuracies on ten classes in both of Office and Caltech
datasets. The 10 classes labels are: projector, mug, mouse, monitor, laptop, key-
board, headphones, calculator, bike, backpack. Where CNN and our SITS models
are compared by using deep features. From the results, it can be observed that
comparing with CNN, SITS can enhance the transfer ability significantly by
exploring the informative and significant directions of the target domain. From
Table 2, it can be observed that our SITS model outperforms 2.5% (from 80.2%
to 82.7%) than the CNN method with Caltech dataset as the target domain.
When the Office dataset (amazon, webcam and dslr) is utilized as the target
domain, our SITS model outperforms 1.9% (from 87.7% to 89.6%) than the
CNN method. We notice that the accuracy improvements are apparently differ-
ent when we exchange the target and the source domains (Caltech → Office
VS Office → Caltech). With the observation of the images in these datasets,
we find that the background of Caltech images is more complex than the Office
dataset. It partially indicates that with the PCA and sparse regularization app-
roach our SITS model can exploit the complex target images more effectively
and finally brings further improvements. Although in most of the cases our SITS
model achieves the best performance, there is some exceptions in Fig. 5, for
instance on the class of “monitor”, our STIS model shows some worse perfor-
mance than the CNN method with the Caltech dataset bing the target domain.
By investigating the images of Caltech and Office, it shows that in the target
domain (Caltech) the images of “monitor” class are very complex and prone
to be confused with other class such as “Laptop”, please refer to the “confuse
Image Samples” in Fig. 5 for more details. Therefore like the idiom said “A coin
has two sides”, in this situation the PCA method in our SITS may not always
select the correct informative features and finally leads to the even worse per-
formance comparing with the CNN model. While in general the experimental
results show that our STIS and JD-STIS models work quite good and achieve
the best performance comparing with CNN methods.

Our experimental results also demonstrate that deep feature brings signifi-
cant improvement on cross-domain image classification accuracy comparing with
SURF feature. However, how many layers of the deep network should be used
in the cross-domain image classification is not a well studied problem. Previ-
ous work [1] concludes that the first fully connected layer (fc6) works best for
most visual recognition problem. While for the datasets of Office and Caltech in
our experiment, we observe that the deep feature of the second fully connection
layer (fc7) brings the best cross-domain image classification accuracy on average.
Please refer to Fig. 4 for more details. In our experiment the first fully connection
layer (fc6) brings less performance than fc7 by 4.7% on average. Therefore, we
adopt fc7 deep features with all the deep learning methods in our experiment.
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5 Conclusions

In this paper, we have proposed a novel transfer learning classifier model SITS. It
integrates target domain distribution information to classifier training process to
fine-tune the decision hyperplane. The deep SITS framework is also introduced to
improve the classification accuracy. As a novel classification model, it is flexible
and can be easily integrated with the pre-processing approach to bring further
improvements. Our experimental results demonstrate that our model achieves
significant improvement over the state-of-the-art methods.
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J.-O., Gasteratos, A. (eds.) ICVS 2015. LNCS, vol. 9163, pp. 147–156. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-20904-3 14

https://doi.org/10.1007/978-3-642-15561-1_16
https://doi.org/10.1007/978-3-642-15561-1_16
http://arxiv.org/abs/1412.3474
https://doi.org/10.1007/978-3-642-35289-8_34
https://doi.org/10.1007/978-3-319-20904-3_14


Sitcom-Stars Oriented Video Advertising
via Clothing Retrieval

Haijun Zhang, Yuzhu Ji(B), Wang Huang, and Linlin Liu

Department of Computer Science, Shenzhen Graduate School,
Harbin Institute of Technology, Shenzhen, China

andrewchiyz@stu.hit.edu.cn

Abstract. This paper introduces a novel learning-based framework
for video content-based advertising, DeepLink, which aims at linking
sitcom-stars and online stores with clothing retrieval by using state-of-
the-art deep convolutional neural networks (CNNs). Concretely, several
deep CNN models are adopted for composing multiple sub-modules in
DeepLink, including human-body detection, human-pose selection, face
verification, clothing detection and retrieval from advertisements (ads)
pool that is constructed by clothing images collected from real-world
online stores. For clothing detection and retrieval from ad images, we
firstly transfer the state-of-the-art deep CNN models to our data domain,
and then train corresponding models based on our constructed large-
scale clothing datasets. Extensive experimental results demonstrate the
feasibility and efficacy of our proposed clothing-based video-advertising
system.

Keywords: Video advertising · Deep learning · Object detection
Face verification · Image retrieval · Clothing detection

1 Introduction

According to the increasing online video traffic and its growing revenue, video
advertising has a huge potential of business opportunities in the online video
market [1]. However, the widely used advertising approach to most video sites
is still relying on directly inserting an advertisement (ad) in the beginning or
the middle of a video. The ad is usually unrelated with the video content. On
the other hand, undifferentiated advertising for all the users will increase the
advertising cost. Thus, a tradeoff between reducing the impact on users viewing
experience and keeping the advertising revenue should be considered jointly.

Typical video advertising systems work on finding appropriate locations
for ads in sports videos, personalized ads delivery in interactive digital televi-
sion (IDTV) [2], text-based advertising, video segment-level advertising [3], and
object-level video advertising [4]. Although the ad selection in IDTV considers
a users preference, such as viewer information, or current or past users activities
[2], these advertising approaches deliver ads without using the content-relevance
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 638–646, 2018.
https://doi.org/10.1007/978-3-319-91458-9_39
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of the ads and target video. Widely-used text-based advertising methods, such
as AdSense and AdWords1. Segment-level video advertising, e.g. vADeo and
VideoSense [3], works by recognizing scene changes in a video and locate a related
ad in a suitable place of the screen. Moreover, an in-stream video advertising
strategy was designed by considering the emotional impact of the videos as well
as ads [5]. In recent work, an object-level video advertising (OLVA) framework
was developed [4]. Despite the encouraging results obtained by OLVA, only low-
level features (i.e. HOG) were used in OLVA and its effectiveness depends heavily
on the performance of the object detection method.

In this paper, we introduce a novel learning-based framework for content-
based video advertising, which aims to link soapstars and online shops with
clothing retrieval by using state-of-the-art deep learning models. We call the
proposed framework as DeepLink in the following context. Our framework was
tested on a famous American sitcom, The Big Bang Theory. Experimental results
demonstrate the feasibility and efficacy of our framework. The contribution of
this paper is three-fold: (1) A new learning-based video-advertising framework,
DeepLink, is presented by using several state-of-the-art deep learning models. (2)
The performance of deep CNNs, which is experiencing increased popularity in
both academia and industry, has not yet been explored in clothing-related video-
advertising tasks. We provide an empirical study on the performance of state-
of-the-art deep CNN. (3) Three large-scale datasets for clothing-detection, pose
selection, and clothing retrieval, were constructed for clothing-related research.

2 Models and Implementation Details

Overview of DeepLink. The main idea of our proposed clothing-related adver-
tising is based on accurate object detection and image retrieval for ads recom-
mendation by using state-of-the-art CNNs. The whole DeepLink system consists
of several sub-modules, including human-body detection, pose selection, leading
character verification, clothing detection, and ads image retrieval (see Fig. 1).
Learning to Detect the Human Body. Since we consider the content-based
video-advertising system from the perspective of detecting the clothing of leading
characters, detecting human bodies from video frames is the initial step. By
considering the scalability of our framework, we trained a model for multiple-
object detection. The module will be activated if a human body is detected.

(1) Dataset: PASCAL VOC 20122 contains a total of 11,530 images, catego-
rized into 20 classes with 27,450 ROI annotated objects. Approximately 4,087
images contain human bodies and annotated location data. We trained our
networks on this dataset for human-body detection.

(2) Evaluation result: We evaluated five deep CNN models, i.e., Faster R-CNN
with ZF model [6], Faster R-CNN with VGGNet-16 [7], Faster R-CNN with
VGG CNN M 1024, SSD300 with VGGNet-16, and SSD300 with ResNet101

1 http://www.google.com/adwords/.
2 http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html.
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Fig. 1. Overview of our proposed DeepLink framework.

[8]. All of the deep CNN models were implemented by using Caffe library3.
Experimental results are shown in Table 1. Based on this evaluation, we chose
SSD300 with ResNet101 for human-body detection in our implementation. By
using such model, we cropped out 208,519 human body regions from the raw
video-frame dataset.

Table 1. Comparison results of human-body detection.

Network Faster
R-CNN (ZF)

Faster R-CNN
(VGG CNN M 1024)

Faster R-CNN
(VGG-16)

SSD300
(VGG-16)

SSD300
(ResNet)

Acc. 0.753 0.841 0.671 0.836 0.853

Learning to Select Pose. In our framework, we are actually concern with
whether or not the body is in a good pose to facilitate clothing detection, instead
of concerning what pose the detected body is in. For evaluating pose selection,
we selected two widely-used deep CNN structures, including AlexNet [9], and
GoogLeNet [10]. All of the above two network structures were modified with a
binary classifier in order to transfer the deep CNN model to our data domain.

(1) Dataset: We collected 23,167 human-body images, in which 11,097 images
were annotated as positive pose samples with frontal full body, and 12,070
images as negative ones with half bodies, and bodies with deformed clothing.
In the dataset, 13,190 images were collected from the videos, and 9,977 images
were cropped from the Street-shop dataset [11]. All of the cropped body
images were manually cleaned and labeled. We randomly held out 50% of
each class of images as training/validation set, and the rest 50% of images
were used for testing.

3 http://caffe.berkeleyvision.org/.

http://caffe.berkeleyvision.org/
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(2) Evaluation Result: According to our experiment, GoogLeNet achieved
better performance, with 92.2% accuracy on pose selection in comparison to
AlexNet (88.3%). Thus, GoogLeNet was selected to perform pose selection.
According to the human-body detection result in the previous step, 208,519
human-body images will be fed into the pose selection module in this part. As
a result, 84,415 human-body images were determined by our model as positive
samples for the next part of sitcom-star face detection and verification.

Learning to Recognize Sitcom-Stars. To simplify this task, we performed
face recognition by verification on a relatively small set of faces by collecting
the faces of seven leading stars of The Big Bang Theory. Concretely, we adopted
an open source face recognition engine, SeetaFace [12], to conduct face detec-
tion, face alignment and feature extraction. Then 2,048-dimension features were
extracted for similarity calculation. Cosine similarity between leading roles and
detected faces were calculated. By empirically setting the verification threshold
to 0.66, a binarized verification vector was obtained. To verify a detected face,
vectors with all-zero elements and multiple ones located in multiple intervals of
leading characters were regarded as non-leading character samples, which will
be strictly filtered out.

In our implementation, among the 84,415 positive human-pose samples,
around 60,312 faces were detected, and 22,786 face images were verified as lead-
ing characters. As a result, among the 22,786 verified leading role faces, 412 faces
of other characters were verified as leading roles. Thus the precision for leading
character verification with respect to the verified detected faces is 98.19%, which
suggests the reliability of our verification procedure. In practice, the correspond-
ing 22,786 pose regions were preserved for clothing detection in the next step.

Table 2. Comparative detection results on our established clothing dataset.

Network gallus-w sweater-w shirt-w hoodie-m tshirt-w tshirt-m suit-m skirts-w dress-w shirt-m mAP

Faster R-CNN(ZF) 0.906 0.881 0.873 0.907 0.863 0.984 0.908 0.907 0.973 0.907 0.911
Faster R-CNN(VGG CNN M 1024) 0.906 0.885 0.884 0.905 0.870 0.977 0.908 0.905 0.907 0.907 0.905
Faster R-CNN(VGGNet-16) 0.906 0.888 0.893 0.907 0.883 0.909 0.981 0.907 0.985 0.908 0.917
SSD300(VGGNet-16) 0.934 0.915 0.884 0.915 0.890 0.984 0.938 0.937 0.973 0.937 0.931
SSD300(ResNet101) 0.924 0.894 0.893 0.923 0.883 0.962 0.917 0.915 0.909 0.916 0.914

Learning to Detect Clothing. After we obtain a candidate region with lead-
ing stars’ body, clothing-detection module will be executed to locate the poten-
tial clothes’ sub-regions. Since the ultimate goal of this proposed advertising
pipeline is clothing retrieval, we are focused on whether or not the clothing can
be detected in a frame without the necessity to consider the category of the
clothing.

(1) Dataset: We established a dataset by collecting clothing images from Ama-
zon.com and Taobao.com. The constructed clothing dataset contains a total
of 14,812 images, categorized into 10 classes. For clarity, we organized our
dataset structure in the format of the PASCAL VOC dataset.



642 H. Zhang et al.

(2) Evaluation Result: We evaluated five deep CNN models, i.e., Faster R-
CNN with ZFnet, Faster R-CNN with VGG CNN M 1024, Faster R-CNN
with VGGNet-16, SSD with VGGNet-16, and SSD with ResNet101. For
dataset partition, we randomly selected 50% of each class of images as train-
ing/validation set, and the remaining 50% images for testing. Experimental
results are shown in Table 2. As a result, SSD300 with VGGNet-16 achieved
93.1% mAP (mean Average Precision), which is higher than the other net-
works. Therefore, this model was selected for clothing detection in our imple-
mentation. By using such clothing-detection model, 18,471 clothing candidate
sub-images were cropped from the previous 22,786 images in a good pose with
leading characters.

3 DeepLink in the Wild

Clothing Retrieval. The training and image retrieval process by transferring
the original network [13] to our data domain can be summarized as follows.
The whole framework consists of three modules. For clarity and without loss
of generality, we took AlexNet as an example. The first module aims at learn-
ing rich image representations. In the second module, hash-like representations
of the images were learned by adding an extra latent layer between the layer
FC7 and FC8. Finally, a hierarchical search strategy was designed for coarse-to-
fine image retrieval by utilizing the learned hash-like binary codes and feature
representations from layer FC7.

Dataset. A total of 263,865 clothing images were collected from Amazon and
Taobao, and those images were categorized into 22 common classes. Training
samples were generated automatically by using the trained clothes detection
model. For each classes, 80% of images in each class were chosen as training
samples, and the rest of the images were treated as validation samples.

Query Redundancy Removal by Clustering. Since similar query images
may obtain similar retrieval results, a clustering process was used to filter out
the redundancy queries in this step. Concretely, the density peaks clustering
algorithm (DPCA) [14] was utilized as the pre-processing stage of image retrieval,
and we set the hyper-parameter, the percentage of average number of neighbors,
to 2%, and normalized the threshold of ρ and δ to 0.5 and 0.2, respectively.
Image features are extracted from the FC7 layer in our trained deep binary hash
model with AlexNet. As a result, for 18,471 samples, the DPCA automatically
generated 6,875 clusters under such hyper-parameter settings. Among them,
4,233 clusters with only one sample were regarded as outliers. Centroid samples
in the remaining 2,642 clusters were selected as finally queries.

Experimental Setup. We employed three models under the binary hash code
framework with different networks: AlexNet, VGGNet-16, and GoogLeNet. The
length of the binary hash code of the latent layer was set to 20, and we modified
the last FC layer with 22-way softmax output for 22 categories prediction. For
clothing retrieval, we extracted the output of the softmax layer, and binary hash
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code from the latent layer for coarse-level searching, and used feature represen-
tations from the FC layer before for fine-level searching. We also extracted three
traditional features for image retrieval, i.e., local binary pattern (LBP) [15], local
texture pattern (LTP) [16], and local tetra patterns (LTrps) [17].

Table 3. Quantitative results of different methods on the baseline set Baidu (%).

Features MRR S@10 S@20 S@50 NDCG@20 NDCG@50 NDCG@100

AlexNet 57.71 81.76 88.64 95.53 30.78 39.95 46.67

GoogLeNet 58.98 78.84 84.94 91.52 31.62 39.38 45.37

VGGNet-16 47.92 78.88 88.91 96.97 23.32 32.01 39.15

LBP 15.47 36.03 50.53 73.24 4.97 7.87 11.07

LTP 16.38 37.85 53.22 74.22 5.26 8.36 11.53

LTrps 15.69 33.88 49.05 71.88 4.43 6.72 9.35

Evaluation Design. Many search engines have provided APIs for image search.
Such a service provides a possible solution to an objective evaluation on our
framework. Therefore, we have constructed such a ground-truth retrieval list
by using Baidu and Google search engines. After clothing detection from the
previous steps in DeepLink, 2,642 clothing images remained for constructing a
query set. As a result, 2,642 queries and 2,301 queries were obtained retrieval
results returned by Baidu and Google, respectively. For each query, we collected
the top 20 images searched from Baidu and Google. Specifically, for the entire
query set, Baidu and Google returned 52,840 and 46,020 images respectively.
Sub-regions with the highest probability of clothing detection were cropped.
We added these cropped images, used as positive samples, into our candidate
dataset.
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Fig. 2. Results on the baseline set constructed from Baidu.

For performance evaluation, we adopted five commonly used metrics in rec-
ommendation, retrieval and ranking systems, including: Mean Reciprocal Rank
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(MRR), Success at rank k (S@k), and Normalized Discounted Cumulative Gain
at rank k (NDCG@k), as well as precision, and recall. Implementation details of
these metrics can be found in [18].

Table 4. Quantitative results of different methods on the baseline set Google (%).

Features MRR S@10 S@20 S@50 NDCG@20 NDCG@50 NDCG@100

AlexNet 54.56 76.31 83.62 90.74 42.40 53.37 59.56

GoogLeNet 49.89 70.80 78.53 86.40 37.48 48.76 55.71

VGGNet-16 28.19 51.89 65.80 83.05 25.46 37.39 46.63

LBP 23.93 44.59 56.58 73.66 10.51 14.97 19.52

LTP 21.82 41.76 54.50 73.01 9.71 14.09 18.62

LTrps 20.50 40.29 52.50 68.62 8.94 12.90 16.74

Experimental Result. (1) Positive Samples from Baidu: Quantitative results
of different models and features on the baseline set constructed by Baidu are sum-
marized in Table 3. It shows that deep CNN models deliver better results than
other traditional features. In particular, GoogLeNet can achieve over 1.2% and
11.06% MRR improvement in comparison to AlexNet and VGGNet-16, respec-
tively. On the contrary, AlexNet produces superior performance on S@10, but
slightly lower on S@20 and S@50 when comparing with VGGNet. Figure 2(a)–(b)
visually illustrates the results against the number of retrieved images. Figure 2(c)
presents the precision-recall curve. According to our observation, GoogLeNet
performs the best on precision. However, AlexNet achieved better results with
respect to precision and recall when increasing the number of retrieved images.
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Fig. 3. Results on the baseline set constructed from Google.

(2) Positive Samples from Google: Comparative results of different models on
the baseline set constructed by Google are given in Table 4. It shows that AlexNet
outperforms other methods and traditional features consistently. Figure 3(a)–(b)
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visually illustrates the results against the number of retrieved images. It is clear
that AlexNet achieves better NDCG consistently compared with other methods.
From the precision-recall curve shown in Fig. 3(c), AlexNet outperforms other
models and features to a large extent.

4 Conclusion

This paper introduced a learning-based framework for video content-based adver-
tising, DeepLink, which aims at linking sitcom-stars with online stores via cloth-
ing retrieval by using state-of-the-art deep CNN models. To the best of our
knowledge, this research constitutes the first attempt to implement such a sys-
tem for mining fashion data from videos. Extensive experimental results demon-
strated the feasibility and efficiency of our proposed clothing-based system by
linking the clothing of sitcom-stars in videos with similar items from a large-scale
dataset in the real world.
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Abstract. Modern database systems are increasingly deployed in a clus-
ter of commodity machines with Paxos-based replication technique to
offer better performance, higher availability and fault-tolerance. The
widely adopted implementation is that one database replica is elected
to be a leader and to be responsible for transaction requests. After the
transaction execution is completed, the leader generates transaction log
and commit this transaction until the log has been replicated to a major-
ity of replicas. The state of the leader is always ahead of that of the
follower replicas since the leader commits the transactions firstly and
then notifies other replicas of the latest committed log entries in the
later communication. As the follower replica can’t immediately provide
the latest snapshot, both read-write and read-only transactions would be
executed at the leader to guarantee the strong snapshot isolation seman-
tic. In this work, we design and implement an efficient snapshot isolation
scheme. This scheme uses adaptive timestamp allocation to avoid fre-
quently requesting the leader to assign transaction timestamps. Further-
more, we design an early log replay mechanism for follower replicas. It
allows the follower replica to execute a read operation without waiting to
replay log to generate the required snapshot. Comparing with the con-
ventional implementation, we experimentally show that the optimized
snapshot isolation for Paxos-replicated database systems has better per-
formance in terms of scalability and throughput.

1 Introduction

Replication is a key technique to achieve better scalability, availability and fault-
tolerance in distributed systems, and its challenge is how to keep the consistency
between replicas. Many traditional DBMS products adopt primary-backup tech-
nique including eager or lazy schemes to replicate writes from a primary replica
node to multiple backup nodes [12]. Eager replication has bad performance as
the transaction can’t be committed until its updates have been synchronously
installed at all replicas. On the other hand, lazy replication sacrifices consistency
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especially when the primary crashed and failed to replicate the logs of committed
transaction. Replication protocols based on group communication presented by
Kemme and Alonso [15] utilize total order broadcast primitives to ensure that
updates are applied in the same order at all replicas. This technique can maintain
the scalability of replication without violating consistency. However, the cost of
its synchronization is still high due to the fact that a write is synchronized to
all replicas in the group [26]. Furthermore, systems using group communication
need to rely on an external highly available component due to the assumption
that only a primary group is able to continue when network is partitioned [14].

Paxos [17] has been widely used to build a highly available and consistent dis-
tributed system containing unreliable servers and asynchronous network. There-
fore, using Paxos to replicate log is a popular choice in database systems, such
as IBM’s Spinnaker [24], Google’s MegaStore [3] and Spanner [9]. To reduce net-
work overhead, Spanner replicates transactional log entries using multi-Paxos
[18] in which a replica is elected to be the leader and the first phase in the
classic Paxos is not necessary. In common cases, the leader replica commits a
log entry after synchronizing it to a majority of Paxos members referred to as
followers. Then, the leader notifies the followers of the latest commit information
in the later leader-follower communication.

Snapshot isolation (SI) [4], a well-known multi-version concurrency control
method, has been widely available in many DBMS engines like Oracle, Post-
greSQL and Microsoft SQL Server due to the non-blocking read processing. In
the past decade, there are many research works [5–7,10,13,19] focusing on the
combination of SI and various replication schemes for distributed database sys-
tems. Strong snapshot isolation (strong-SI), which is regarded as one-copy SI,
is friendly to application programmers, and is also used to naturally resolve
the problem of transaction inversions in lazy replication [19]. It needs strongly
consistent read to guarantee the recency property from the strong consistency.
Unfortunately, it’s still non-trivial to achieve strongly consistent read when read-
ing the data from any replica. Paxos-based protocols require a write to be vis-
ible only when its corresponding log entry has been persisted in a majority
of Paxos members. There is non-negligible data version difference between the
leader and follower nodes since the leader always commits a transaction first and
then informs the followers to commit. Until the log is replayed in the followers,
the latest updated data can not be observed from these replicas. This procedure
leads to the result that the data on the follower nodes are less fresh than that on
the leader. If the application requires strongly consistent read, the database sys-
tem must process read operations only in the leader which owns the latest state
of database. In this case, the leader node has the potential risk of suffering from
overload and this makes a significant impact on the throughput and response
time. Therefore, many system designs relax the strong consistency requirement
to achieve high performance via weakly consistent read.

In this paper, we propose early log replay (ELR) algorithm, by which we can
achieve efficient snapshot isolation (ESI) in Paxos-replicated database systems.
The main goal of our approach is to avoid read blocking and read failure in the
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conventional implementation of strong-SI. To decrease the overhead of leader
replica, we also present an adaptive timestamp allocation (ATA) mechanism.
ATA effectively reduces the number of timestamp requests to the leader. The
following is the list of our main contributions.

– We give a basic implementation of SI in a Paxos-replicated database system,
analyze its transaction read execution and figure out the root causes of read
blocking, read failure and leader overloading.

– We propose early log replay (ELR) mechanism to implement an efficient snap-
shot isolation (ESI) in Paxos-replicated database systems. ELR can avoid read
blocking effectively. To guarantee the correctness of data, we give the recovery
mechanism for ELR.

– We present adaptive timestamp allocation (ATA) to reduce the leader’s
overhead imposed by frequently processing timestamp requests. ATA allows
the leader’s timestamp to be embedded into response messages (e.g.,
write/commit response messages). By means of ATA, the leader only han-
dles timestamp requests in a few rare cases.

– We implement the efficient snapshot isolation in an open source database
system OceanBase. Experimental results demonstrate the effectiveness of our
method in terms of scalability and throughput.

The reminder of the paper is organized as follows: The background of SI is
introduced in Sect. 2. We give and analyze SI in Paxos-replicated database sys-
tems in Sect. 3. Section 4 presents an efficient version of SI for Paxos replication
systems. In Sect. 5, we introduce the adaptive timestamp allocation, and exper-
imental results are presented in Sect. 6. Finally, related work and conclusion are
presented in Sects. 7 and 8 respectively.

2 Background

Snapshot isolation (SI), which is one kind of multi-version concurrency control
(MVCC), was proposed by Berenson et al. [4]. Under snapshot isolation, the
transaction manager assigns a transaction T a start timestamp (T.sts) when it
receives a start transaction request. The transaction T reads data from the latest
snapshot of database containing the data committed before its start timestamp.
When a transaction T is ready to commit, it gets a commit timestamp (T.cts)
which is larger than any existing start timestamps or commit timestamps.

It’s not straight-forward to extend snapshot isolation, originally defined over
centralized database, to replicated database systems. The main reason is the
“latest” snapshot is not well defined in distributed environment. Generalized
snapshot isolation (GSI) allows the transaction to execute over an old local
snapshot of database [11]. As the read may not get the last committed write in
GSI, it violates the recency guarantee of strong consistency [2].

To achieve the same snapshot isolation semantics of centralized DBMS, a
simple approach is to globally order all transactions to maintain the partial
order of operations from different clients. In other words, when a database replica
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receives a start transaction request from a client, it ensures the latest snapshot
is allocated to this transaction. It’s referred to as the concept of strong snapshot
isolation (strong-SI) and the formal definition is defined below [10]:

Definition 1 (Strong Snapshot Isolation). A history H of transactions sat-
isfies strong snapshot isolation, it has the following property: for any pair of
transactions Ti and Tj, if the database replica receives the commit of Ti before
the start of Tj, then Ti.cts ≤ Tj .sts.

Owing to the recency guarantee, strong-SI in distributed database systems is
also regarded as one-copy SI [19], where the effect of transactions performed on
the database replicas is the same as that in a single centralized database. Strong-
SI is friendly to application developers. Therefore, in this paper, our target is to
implement strong-SI in a Paxos-replicated database system.

3 SI in Paxos-Replicated Database Systems

3.1 System Architecture

For ease of description, we assume that the replicated database is a main-memory
key-value store. The simplified architecture contains two components:

– Request Processing Nodes (RP-Node): RP-Node is the bridge between
the clients and the database. Its task is to parse the SQL, generate the logi-
cal/physical plan, and forward the generated plan to the transaction process-
ing nodes. It should be noted that RP-Node is stateless.

– Transaction Processing Nodes (TP-Node): A set of TP-nodes constitute
a Paxos group, and each one maintains a full copy of the database. TP-
node is responsible for concurrency control and log replication. To reduce the
consensus cost, the group adopting multi-Paxos consists of only one leader as
primary replica and multiple followers as backups.

3.2 Transaction Execution

In the architecture described above, all start-transaction, read/write and commit-
transaction requests need to be processed by the leader TP-node, which is
responsible for transaction scheduling and log replication. When the leader
receives the commit-transaction request of an update transaction, it generates a
log entry including the transaction’s writes and then uses Paxos-based replica-
tion protocol to synchronize the log to other TP-nodes. As shown in Fig. 1, the
classical Paxos-based log replication is divided into two phases:

Phase 1: The leader TP-Node sends the log entry to other TP-nodes. After
the leader confirms the log has been successfully replicated to the majority of
TP-Nodes, it can commit this transaction and then respond to the client;

Phase 2: The leader firstly updates its local commit point, and then asyn-
chronously notifies other TP-Node of the latest committed logs in the later
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Fig. 1. Transaction execution in a Paxos-replicated database system.

communication. It should be noted that the commit point is represented by log
sequence number (LSN), and log entries are persisted and replayed in the order
of LSN. When a follower TP-Node receives the latest commit point from leader,
it can refresh its local commit point and replay these logs with LSN prior to and
including this commit point.

As described in Phase 2, the data committed at leader is not immediately
visible at follower until it receives the commit point and completes the log replay-
ing. To obtain the scalability property of replication, after a transaction gets its
start timestamp from the leader, it’s expected that subsequent read requests can
be forwarded to leader or followers, as illustrated in Fig. 1. To handle a read
request under strong-SI, a follower needs to hold a multi-version storage engine,
and a read operation of Tj can access data only when the replica includes all Ti’s
writes, where Ti.cts ≤ Tj .sts. In this work, the commit timestamp of a transac-
tion is embedded into its log entry. The state of followers reflecting data recency
is represented by three variables. (1) flush cts (f cts): The commit timestamp
in the last log entry flushed by this follower TP-Node; (2) commit cts (c cts):
The commit timestamp in the log entry whose LSN is equal to the latest received
commit point; (3) publish cts (p cts): The commit timestamp in the log entry
with maximal LSN in all replayed log entries.

lsn=18
cts=91

lsn=19
cts=99

lsn=20
cts=104

lsn=21
cts=127

lsn=17
cts=86

commit point last point

f_cts=127
c_cts=99
p_cts=86

lsn

server state

log

publish point

Fig. 2. An example of a follower’s log and state. The boxes with light gray are used
to denote the log entries that are not replayed. The publish point and last point are
used to denote LSN of the last replayed entry and LSN of the last persisted entry,
respectively.

To further demonstrate how the state of a follower influences transaction
execution, an example is presented in Fig. 2. The commit point and last point in
the follower are 19 and 21, respectively. Therefore, the corresponding c cts and
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f cts are 99 and 127, respectively. Since the log entries before LSN 18 have been
replayed, p cts is equal to 86. Based on the follower’s state, there are four cases
on how a read request of transaction T is handled according to strong-SI:

Case 1: f cts < T.sts. The follower realizes that the RP-node requests a
non-existent snapshot. In other words, its log lags behind leader’s. Therefore, it
immediately returns a failure response message.

Case 2: c cts < T.sts ≤ f cts. This indicates that the follower is waiting for
the latest commit point from the leader. To avoid waiting a long time, a failure
response for the request is returned directly.

Case 3: p cts < T.sts ≤ c cts. The follower learns that the expected version of
data will be available soon. Accordingly, the request is blocked until p cts ≥ T.sts.
Finally, the follower returns a response message with expected data.

Case 4: T.sts ≤ p cts. The follower directly gets the data of expected version
from local database snapshot and returns a successful response including the
data to the RP-node.

If the followers handle read requests according to the four cases, it’s referred
to as the basic implementation of strong-SI in Paxos-replicated DBMS. Although
the simplest method to achieve the Strong-SI is to let the leader TP-Node handle
all read/write operations, it loses much scalability. Even under the basic imple-
mentation of Strong-SI, the read requests handled by followers may still be failed
or blocked. We make an analysis on this problem in the next subsection.

3.3 Problem Analysis

Recall that Paxos-based replication has two properties: (1) The leader can com-
mit a log entry if it receives a majority of acknowledgments. In other words,
a follower TP-node may not have the latest log. In Fig. 3, the TP-node 3 has
not the entry with LSN 22. (2) The follower can replay a log entry only when
receiving the commit information about the entry. In Fig. 3, the commit point
is sent asynchronously to the follower TP-node 2. The visibility of a write in
the TP-node 2 is always later than that in the leader. To guarantee the recency
property, a transaction is assigned a newest start timestamp from the leader TP-
node. As shown in Fig. 3, when the leader receives a start-transaction request, it
assigns the p cts(128) as the start timestamp to the transaction. We summarize
the issues in the execution of transaction read as follows:

Issue 1: A transaction read can be rejected by a follower. In Fig. 3, the RP-
node sends a read request of a transaction T with sts(128) to TP-node 3. Since
f cts(127) < T.sts(128), the read is rejected directly by TP-node 3.

Issue 2: A transaction read can be blocked in a follower. In Fig. 3, we find
that a read request of a transaction T with sts(128) is blocked by TP-node 2.
Although TP-node 2 has the latest log, the log is being replayed and the data
of expected version is invisible.

Issue 3: Under Strong-SI, the start-transaction request of each transaction is
always forwarded to the leader replica. Therefore, the leader may be faced with a
large number of requests, which can negatively impact the system’s performance.
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Fig. 3. An example of transaction read with blocking or failure. This is 3-way Paxos
replication system, where TP-node 1 is the leader. Assuming that all variables (i.e.,
f cts, c cts and p cts) in each TP-node’s server state are 127 at the beginning.

Both issue 1 and 2 decrease the read performance of Paxos-replicated
database systems. To address these issues, we introduce a design of efficient
snapshot isolation utilizing early log replay mechanism. For issue 3, we present
adaptive timestamp allocation for read-only transactions in Sect. 5.

4 Efficient Snapshot Isolation

4.1 Overview

We have introduced a basic implementation of SI in Paxos-replicated database
system in Sect. 3. In this section, we present an efficient version. To implement
an efficient snapshot isolation, our design target has two sides: (1) A RP-node
is required to forward a read request to the TP-node having the latest log; (2)
A follower can replay its local log without waiting leader’s commit point.

An example of transaction read in efficient snapshot isolation is illustrated
in Fig. 4. For the first target, the leader responds with a message including the
available followers information (TP-node 2). This is because the leader ensures
that TP-node 2 has the latest log. RP-node can forward subsequent read requests
according to the response. For the second target, when the follower TP-node 2
receives a log entry with commit timestamp (cts = 128) from the leader, it
replays the entry immediately without waiting the corresponding commit point.
Then, the follower can update its p cts to 128 after replaying successfully. Owing
to the efforts for both targets, a transaction read with sts(128) can be processed
without blocking in TP-node 2.

The first target can be easily achieved. To guarantee the correctness of imple-
mentation for the second target, we introduce early log replay (ELR) mechanism
in the following subsections.
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Fig. 4. An example of transaction read avoiding failure and blocking. All variables
(i.e., f cts, c cts and p cts) in each TP-node’s server state are 127 at start.

4.2 Early Log Replay

Owing to the multi-version storage of snapshot isolation for main-memory
database, each object can utilize a committed list (c list) to store multiple ver-
sions in the order of committed timestamps [27]. In a follower replica, each
version—which contains a value and a timestamp (cts of the transaction cre-
ating the version)— can be constructed from the corresponding log entry. We
design a centralized uncommitted list (uc list) to store the pointers to all of
uncommitted versions. uc list is used for data recovery when failure happens
(see Sect. 4.4).

To safely replay log without commit point in followers, ELR decomposes the
conventional log replay into two phases: early log replay and log commit. The
pseudocode of functions used by ELR is showed in Algorithm1. Assuming that
a log entry e contains only one updated object. Accordingly, we use e.key and
e.value to denote the object’s key and value, respectively. Next, we detailedly
describe the transition of follower state using ELR.

When a follower receives a log entry message from the leader, it invokes
the function LogReceiver. The function flushes the entry into the non-volatile
storage and then refreshes the local f cts from the log entry (lines 2–3). Next,
the follower appends the entry to a queue (line 4), which stores the log entries
that are ready to replay. We call it log queue. Finally, the follower responds to
the leader (line 5).

Early Log Replay Phase: There is a thread running EarlyLogReplayer,
which is responsible for early log replay phase. If the thread gets a log entry
from the log queue, it parses the entry and gets the corresponding object from
the local (line 11). Then, it generates a new version and appends it to the object’s
c list (lines 12–13). Next, the follower adds the pointer of the new version to the
uc list (line 14). Finally, it updates the local p cts using the cts of the entry (line
15).

Log Commit Phase: There is a background thread which is in charge of the
log commit phase. It periodically invokes the function LogCommitter using c cts.
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Algorithm 1. Early log replay algorithm
1 Function LogReceiver(entry)
2 flush entry to disk;
3 f cts = entry.cts;
4 log queue.enqueue(entry);
5 response to the leader;

6 end
/* early log replay phase */

7 Function EarlyLogReplayer()

8 while true do
9 if ¬log queue.isEmpty() then

10 entry = log queue.dequeue();
11 obj = getObjectByKey(entry.key);
12 version = new Version(entry.value, entry.cts);
13 obj.c list.add(version);
14 uc list.add(version);
15 p cts = max(p cts, entry.cts);

16 end

17 end

18 end
/* log commit phase */

19 Function LogCommitter(c cts)
20 while ¬uc list.isEmpty() ∧ c cts > uc list.get(0).cts do
21 uc list.remove(0);
22 end

23 end

It gets the head in the uc list . If the cts of the version is not larger than c cts,
the follower removes the pointer from the uc list (lines 20–21).

4.3 Transaction Read Execution

When a follower TP-node receives a read request, it needs to return the data
satisfying the expected version. This processing flow is similar to that described
in Sect. 3.2, excepting that the follower’s c cts is not used to determine whether
this read request can be processed. Since a read is forwarded to a follower having
the latest log, it can be served without blocking due to ELR mechanism.

We note that a read request contains the start timestamp, which represents
a required snapshot. In other words, the log entry whose timestamp is not larger
than the start timestamp is committed. Therefore, the follower can update local
c cts to the request’s sts and invoke the function LogCommitter to handle the
versions in the uncommitted list uc list.



658 J. Guo et al.

4.4 Recovery

If the leader TP-Node is corrupted, Paxos group will leverage election mechanism
to achieve automatic fault tolerance. A typical method is that a TP-node wins
the election if its logs are not older than a majority of TP-nodes. When a new
leader is elected, any component in the system needs to take efforts to guarantee
strong-SI services:

– New Leader: The new leader must do some work for takeover. It is required
to ensure that all writes in the log are committed, i.e., it synchronized local
log to at least a majority of TP-nodes. After log synchronization, it can empty
the uc list and apply all log entries. Finally, the leader returns to normal and
can receives requests from RP-nodes.

– Follower: When a TP-node detects that a new leader is not itself, it becomes
a follower and needs to take some measures to ensure the validation of local
data. Due to invalid versions in the uc list (i.e., a version does not exist in
the new leader), the follower needs to ask the leader to check the local log to
find the invalid log entries. Then, the follower traverses the uc list , removes
the pointer of committed version directly and deletes the invalid versions in
the objects’ c list .

– RP-node: When a RP-node is informed of the crash of leader, it notes that
all writes are blocked until the new leader is elected and returns to normal. On
the other hand, the RP-node can issue these unfinished read-only transaction
to other TP-node’s.

If a follower TP-Node recovers from a failure, it only checks the local log and
applies the correct entries to local due to the main memory storage engine.

5 Adaptive Timestamp Allocation

Recall from Sect. 3 that a RP-node needs to ask the leader to get a latest start
timestamp for each start-transaction request from the clients. As a result, the
leader may be faced with tremendous pressure. In this section, we introduce
adaptive timestamp allocation (ATA) mechanism to reduce the number of times-
tamp requests.

Note that if a transaction is a read-only one, it doesn’t need to be registered
in the leader replica. Therefore, in order to reduce the overhead caused by the
start timestamp requests in the leader, we can adopt batch processing technique
in the RP-node for the read-only transactions. More specifically, the RP-node
uses a buffer to keep a batch of start-transaction requests from clients and send
only one timestamp request to the leader. The RP-node asks the leader for a new
start timestamp every d ms. In real application, it’s difficult to determine which
is the optimal value of d. If d is too small, the leader will receive an enormous
amount of start requests; if d is too large, the delay of clients’ requests will be
increased.
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The idea of ATA is to allow the RP-node to embed the timestamp request
into a write or commit request issued by other transaction. Now we analyze the
cost of timestamp request in terms of how many requests sent to the leader. We
assume that the arrival time of read/write request is uniformly distributed, and
a RP-node needs 1000/d timestamp requests per second. In one second, a RP-
node receives n requests. If the percentage of writes is w in the workload, there
are n · w writes per second that need to be forwarded to the leader. Equation 1
shows the number of timestamp requests sent to the leader:

f(d, n, w) = max(0,
1000

d
− n · w) (1)

Assume that w = 5%, which is a typical value in the read-intensive workload.
According to Eq. 1, we can see that if the extra timestamp requests are not
required, the optimal d can be set to less than 4 ms when n ≥ 5, 000. If n is
small, it indicates that the overhead of the leader is not heavy. In this kind
of case, the RP-node can send additional timestamp requests to the leader to
further decrease the delay of clients’ requests. It is clear that the average delay
of a client’s request is incremented by d/2 ms. We can see that if n = 10, 000,
the request delay is only incremented by 1 ms.

Although the leader TP-Node embeds its state of related timestamps into a
sequence of message for responding many write/commit requests, it should be
noted that not all returned timestamps can be served as the start-timestamp of a
transaction. To guarantee the recency property of strong snapshot isolation, only
the returned timestamps can be taken as valid start timestamp of a transaction
if this message is responded to the write/commit request sent by the RP-Node
after the start-transaction request arrived. Therefore, the RP-node is required
to record the sent time send ts for each request. In order to efficiently allocate
the start timestamps, RP-node utilizes two components pending list and sts
manager, which are illustrated in Fig. 5. The FIFO pending list is used to store
the pending read-only transactions in the order of their arrival timestamps. We
can see that there are four transactions a, b, c and d in Fig. 5, which are waiting
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for the suitable start timestamps. The sts manager manages the latest send ts
of a message whose response is received by the RP-node and the p cts in the
corresponding response. More specifically, when a RP-node receives a response
from the leader, it will refresh the values in the sts manager if the send ts
of corresponding send message is greater. In Fig. 5, the RP-node receives the
response of message e from the leader, and then updates send ts and p ts to
21 and 128, respectively. This triggers an event that the RP-node allocates the
p ts(128) to transactions in the pending list, whose arrival timestamps are not
larger than the send ts(21), i.e., the transactions a, b and c.

There is a background thread which is responsible for checking the sts man-
ager periodically. If the values in the manager are not updated in d ms, the
thread will send a start timestamp request to the leader.

6 Experiments

We implemented efficient snapshot isolation in OceanBase 0.4.2 [1], which is a
scalable open source RDBMS developed by Alibaba. We conducted an exper-
imental study to evaluate the performance of the proposed efficient snapshot
isolation. Experimental setup and the benchmark used in this evaluation are
given below.

Cluster Platform: We deployed a 3-way replication database system includ-
ing RP-nodes and TP-nodes on a cluster of 18 machines, and each machine is
equipped with a 2-socket Intel Xeon E5606 @2.13 GHz (a total of 8 physical
cores), 96 GB RAM and 100 GB SSD while running CentOS version 6.5.

Competitors: We use SINGLE to denote the system containing only one TP-
node without any log replication. Its experimental results will be helpful for
understanding the behavior with other strategies. We use BASIC and ESI to
denote the implementation of basic version and efficient version of SI, respec-
tively. The framework of generalized snapshot isolation, which allows a transac-
tion read over an arbitrary old data version, is denoted as WEAK.

Benchmark: First, we adopt YCSB [8] to evaluate our implementation. We use
the workloads YCSB A and B (abbr. workload-A and workload-B), which have
a read/write ratio of 50/50 and 95/5 respectively, and each transaction contains
only one operation. Second, to investigate the performance of complicated trans-
action workload, we use five read/write operations to generate a transaction with
multiple operations. The size of each update is about 100 bytes.

6.1 Scalability

Figure 6(a) illustrates the system throughput over the increasing number of
clients under the workload-B with read-intensive operations. Because all requests
were forwarded to the single node, the performance of SINGLE is the worst.
Owing to the serviceability of followers, WEAK has the highest throughput,
compared with SINGLE by about 2.5× when the number of clients was more
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(a) workload-B: read/write = 95/5.
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(b) workload-A: read/write = 50/50.

Fig. 6. Throughput for YCSB workloads.
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Fig. 7. Throughput for transaction workloads, where each read-only transaction con-
tains five read operations and each update transaction contains three reads and two
writes.

than 600. Recall from Sect. 3.3 that there are some issues in the basic version
of GSI. Therefore, the results of BASIC was about two third of that of WEAK.
Since an uncommitted write can be published in ELR, a read could be processed
quickly without blocking in any alive replica. This advantage makes the perfor-
mance of ESI be very similar to WEAK. Accordingly, ESI maintains the goodness
of replication under read intensive workload.

Figure 6(b) shows the results under workload-A with write-intensive opera-
tions. The trend of the results is similar to that in Fig. 6(a). Due to the overhead
for synchronizing large amount of updates log by the leader node, the through-
put of the 3-way replication system was limited and less than SINGLE when the
number of clients is more than 640. It’s worthwhile noting that although ESI
provides strong-SI, it has a similar performance to WEAK. Furthermore, we also
observed that ESI outperforms BASIC, since the read requests are always not
blocked in the followers adopting early log replay.

In the transaction workload, a read-only transaction contains multiple read
operations. As ESI reduces the timestamp requests dramatically and allows the
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Fig. 9. Effectiveness of ATA: workload-B.

RP-nodes to quickly forward read operations to a qualified follower node. Thus,
the results of ESI are nearly the same as that of WEAK, which is showed in Fig. 7.

6.2 Effectiveness

To investigate the effectiveness of early log replay (ELR) mechanism, we compare
ESI against BASIC. Recall from Sect. 3.2 that p cts is used to denote the latest
server state a client can access. Assuming that the leader � and the follower f
update their p cts to the same timestamp at physical time t� and tf , respectively.
We use the result of (tf − t�) to denote the time gap between the same visible
state of leader l and one follower f .

Figure 8 shows the visibility difference of all p cts’s between a follower and the
leader over 120 s for the workload-B. The number of clients is fixed to 240, where
the system can output stable results. We can see that the visibility difference of
BASIC exceeds 50 ms, which suggests that a read expecting a latest version may
not be satisfied in followers. And the visibility difference of ESI was close to the
zero, which indicates that a log entry has been replayed successfully in followers
when it finishes the commit phase in the leader. ELR ensures that the expected
data can be returned immediately for the transaction read at the follower replica.

To investigate the effectiveness of adaptive timestamp allocation (ATA), we
evaluate the performance of ESI without ATA, where RP-nodes send a start
timestamp request for each read. Figure 9 illustrates the experimental results
under workload-B. It is clear that the delay of a start transaction request in RP-
nodes may impact the system performance. We can see that ESI without ATA
exceeds ESI when the workload is low (i.e., the leader TP-node has the enough
capacity to process each request). However, as the number of clients increases,
the leader is faced with increasing overhead. When workload is high, due to the
reduction of requests to the leader, ESI significantly outperforms ESI without
ATA. Therefore, in the case of heavy workload, ATA has a positive effect on
system performance.
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7 Related Work

Replication: Replication is an effective mechanism to provide scalability, high
availability and fault tolerance in distributed systems. State machine replication
(SMR) [25], a fundamental approach to fault-tolerant services, can ensure that
the replica is consistent with each other only if the operations are executed in the
same order on all replicas. Eager or lazy replication [12] has been a standard cri-
teria for database systems. But these schemes can not satisfy the requirement of
both performance and consistency. Kemme and Alonso [15] presented a replica-
tion protocol based on group communication, which can maintain the scalability
of replication without violating consistency. However, the assumption that high
throughput network and an external highly available service are required limits
the use of group communication. Wiesmann et al. [23] compared and summarized
the replication techniques from database and distributed system communities.

Snapshot Isolation for Replication: Snapshot isolation [4], which allows
write-skew anomaly but offers greater performance, is widely available in DBMS
engines like Oracle and PostgreSQL. In the past decade, there are many research
works [5–7,10,13,19] focusing on the combination of replication and SI for dis-
tributed database systems. Lin et al. [19] presented a middleware-based replica-
tion scheme which provides strongly global SI. Daudjee and Salem [10] showed
how snapshot isolation can be maintained in lazy replicated systems while taking
full advantage of each replica’s concurrency control. Jung et al. [13] proposed
replicated serializable snapshot isolation, which can guarantee 1-copy serializ-
able global execution. ConfluxDB [7] determine a total snapshot isolation order
for update transactions over multiple master sites without requiring global coor-
dination. Binnig et al. [5] further defined distributed snapshot isolation and
accordingly proposed a criteria to efficiently implement snapshot isolation. To
our best knowledge, there is no snapshot isolation implementation over Paxos
replicated main-memory database systems.

Paxos Replication: To provide highly available services, modern database
systems often adopt Paxos protocol—which is first described by Lamport in
[17,18]—to replicate data from primary to backup replicas. Raft [22] is a famous
variant of Paxos, which is widely used in open-source databases. Google has
developed MegaStore [3] and Spanner [9], which utilize Paxos for log replication.
Spanner implements distributed transaction processing and provides external
consistency based on TrueTime API. Nonetheless, the non-blocking transaction
read can only be forwarded to the leader replica. Spinnaker [24] builds a scal-
able, consistent and highly available datastore using Paxos-based replication.
However, a read request processed by a backup node only offer weak consis-
tency. Moraru et al. [20] introduced the method of Paxos quorum leases to allow
strongly consistent local read be performed at replicas which are lease holders.
The lease mechanism have small negative impact on the availability.

Spanner implemented concurrency control mechanism and Paxos based repli-
cation at different layers, and both of them have consistency requirements. To



664 J. Guo et al.

reduce the coordination cost, [16,21,28] consolidate concurrency and Paxos cen-
sus to decrease the network round-trips.

8 Conclusion

In this work we presented an efficient snapshot isolation (ESI), an optimized
implementation of strong-SI in Paxos-replicated database systems. By analyzing
the transaction execution of basic version, we proposed two effective mechanisms
for ESI, i.e., early log replay (ELR) and adaptive timestamp allocation (ATA).
ELR avoids to block or fail the execution of transaction read in followers. ATA
relieves the leader’s overhead by reducing the number of timestamp requests
sent to the leader. Experimental results demonstrate the effectiveness of ELR
and ATA.
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Abstract. The advent of blockchain sheds light on addressing trust
issues of peer-to-peer networks by providing a distributed tamper-
resistant ledger. Beyond cryptocurrencies, it is believed that blockchain
can also be used to protect other properties such as reputation. Most of
the existing studies of enhancing reputation systems using blockchains
are built on top of the bitcoin-like blockchains, so they are inherently
constrained by the low-efficiency and high-consumption of the underly-
ing blockchain. To fill this gap, we present a reputation-based consensus
protocol called Proof of Reputation (PoR), which guarantees the reliabil-
ity and integrity of transaction outcomes in an efficient way. In PoR, we
let reputation serves as the incentive for both good behavior and block
publication instead of digital coins, therefore no miners are needed. We
also implement a prototype and our scalability experiments show that
our protocol can scale to over a thousand participants in a peer-to-peer
network with throughput of hundreds of transactions per second.

Keywords: Blockchain · Consensus protocol · Reputation system
Peer-to-peer network

1 Introduction

Since 2009 Bitcoin was proposed by Nakamoto [1], more than 250 similar alt-
coins have been proposed. Blockchain, the core technology behind Bitcoin, is
considered to benefit not only economic but also politics, healthcare, supply
chain and scientific domains [2]. A blockchain is a distributed ledger that cryp-
tographically links a chain of blocks, which records a set of time-ordered transac-
tions. With this emerging technology, a trustless environment can be created for
distributed applications. Most blockchain applications running depends on coins
as the incentive for miners to produce blocks, such as Bitcoin and Namecoin [3].
In these applications, the security of the blockchain will be affected if miners are
not paid [4]. In fact, miners and coins are not necessary, as long as the provision
of appropriate incentives to maintain the security of underlying blockchain.

Reputation can be defined as the rating of a member’s trustworthiness by oth-
ers [5]. In peer-to-peer (p2p) networks, reputation systems are applied to drive
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 666–681, 2018.
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the ability for each participant to trust one another and facilitate a successful
interaction [6]. The existing studies can be divided into two kinds: the central-
ized and the distributed, both of which have obvious drawbacks. While central-
ized reputation systems (i.e. eBay online auction site [7]) can grasp the overall
reputation of each participant in the context of their own use case, the single-
point-failure problem is inevitable. On the other hand, in distributed methods,
participants only catch partial reputation evidence. To assess the trustworthi-
ness, they need both direct experience and indirect opinion of its peers, which
is inefficient. Worsely, the effective communication, and sharing of unmodified
reputation evidence remain unsolved [8].

Actually, reputation and blockchain can be a good combination: reputation
serves as the incentive and the blockchain keeps the reputation records safe in
turn. To achieve this purpose, we propose a reputation-based consensus pro-
tocol called Proof of Reputation (PoR), which provides a distributed ledger of
reputation. We hope to build a decentralized protocol that records a history of
transaction outcomes without central third parties involved. The protocol is used
in the permissioned blockchain, where an access control layer is built into the
blockchain nodes. Participants can authenticate with each other using asymmet-
ric cryptography [9]. The reason why we choose permissioned blockchains is that
reputation is inherently tied to identity and needs time to accumulate. In PoR,
each participant maintains a distributed ledger of reputation evidence, which
achieves consistent with the consensus algorithm. Compared with the Proof of
Work (PoW), the consensus algorithm of Bitcoin, our protocol uses the repu-
tation as the incentive, which is cost-efficient since there is no miners or hash
power being consumed during block competition. The cryptographical nature of
blockchain can protect the integrity and reliability of the reputation evidence.
Theoretically, any p2p applications and decentralized reputation systems (e.g.
second-hand dealing, social networking, service sharing etc.) can utilize our pro-
tocol as a reputation layer to objectively and securely record transactional his-
tory, based on which each participant’s reputation can be evaluated without
being manipulated by third parties.

The rest of this paper is organized as follows: In Sect. 2, we review the earlier
work related to our work. We define the problem and threat model in Sect. 3. The
rationale for its design and details are presented in Sect. 4, and the implemen-
tation of the protocol and experiment results are discussed in Sect. 5. Finally,
Sect. 6 concludes the paper with a discussion of the future work.

2 Related Works

The reputation systems in p2p networks have been studied in the literature for
decades. One of the first reputation systems of p2p networks is proposed by
Gupta et al. [5]. It is also the most complete and effective solution, although the
drawbacks are evident. Other studies also made great contributions to reputation
systems [10–12], but none of them are truly decentralized. In recent few years,
integrating reputation with blockchain sheds light on this area and is under
active research.
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Carboni [13] describes how a decentralized feedback management system can
be built on top of the Bitcoin blockchain. The author explains that online rep-
utation has the same requirements of electronic money: (1) can be expressed
as a numerical variable; (2) its value is agreed by every participant and cannot
be manipulated by third parties. The proposed system records the interaction
feedback during payment, leaving the computation of the actual reputation to
third-party applications. Dennis et al. [14,15] propose a novel reputation system
based on the blockchain, which aims to solve the majority of issues remaining
in current reputation systems. They built an entirely new blockchain to store
reputation data and utilized merge mining from Bitcoin network to prevent 51%
attack. However, their blockchain needs miners to produce and verify the blocks,
and a possible drawback is requiring the users to be online for the miners to verify
the transaction. Buechler et al. [16] propose a reputation algorithm named net
flow convergence and a decentralized system that records reputation evidence.
The algorithm is to detect fraudulent behavior by looking at the network flow
of the Bitcoin. The system, which is implemented in three layers, analyzes the
structure of the underlying transaction network and builds a history of transac-
tion outcomes by utilizing smartcontract. Schaub et al. [17] present a trustless,
decentralized, and anonymity preserving reputation system based on blockchain
for e-commerce applications. The system utilizes Proof of Stake blockchain to
keep the reputation system consensus, and meanwhile, it allows customers to
submit ratings as well as textual reviews.

All of these studies use blockchain as a decentralized database storing reputa-
tion evidence. Meanwhile, these systems rely on blockchain mining to motivate
miners to publish blocks, during which a great amount of computing power
is consumed. Furthermore, they are subject to the underlying blockchain, and
therefore they are facing the same challenges as the Bitcoin blockchain, such as
limits on data storage, slow writes, limited bandwidth, and endless ledger [17].

A different study called Trustchain is proposed by Otte et al. [18], which is to
build a permission-less tamper-proof and Sybil-resistant blockchain for storing
transaction records of participants. Compared to traditional blockchains, each
block in Trustchain contains only a single transaction record and Trustchain
blocks together form a directed acyclic graph (DAG). They also propose the
NetFlow accounting mechanism to prevent Sybil attack. Similar to our work,
there are no miners in Trustchain, where two agents in a transaction produce
their block and store it locally. Nevertheless, participants in Trustchain have less
motivation to produce blocks and they do not share a global picture of reputation
in the network.

3 Problem and Threat Model

3.1 Problem Definition

The aim of this study is to solve the problem of reputation agreement in p2p
networks by providing a distributed ledger of reputation. Unlike Bitcoin’s con-
sensus protocol, known as PoW, there is no miner nor bitcoin in PoR. Therefore,
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nodes do not have to compete for the right to write the block. In our protocol,
the node who writes the block is the one who has the highest trust value in the
pre-committed block. Reputation serves as the incentive, because in order to
increase its overall trustworthiness, the participant urges to write the block into
the blockchain when it has the highest trust value in this block.

Noticeably, during the consensus process, there are no complex mathematical
problems to be solved, which means our protocol is cost-efficient. Furthermore,
we do not have to worry about the double-spending problem, because reputation
is an overall status of a node after a number of transactions, which can not be
spent or transferred. We make three assumptions about the underlying network
and nodes involved in the network:

1. Enrolment Control: Our consensus protocol requires an access control layer
built into the blockchain nodes, which is known as “permissioned blockchain”.
Candidates need to go through an enrolment process before joining the net-
work. Each candidate has a pair of cryptographical key (like Bitcoin) used for
authentication and digital signature. The public key will be submitted to the
registry as the participant’s identity, the hash of which will be considered as
its ID, and then the registry will broadcast this key so that other participants
can authenticate.

2. Secure Channel: For simplicity, we assume a secure broadcast channel
avoiding man-in-the-middle attack (MITM) [19]. It means that no third par-
ties can intercept or modify messages. Each pair of participants can authen-
ticate each other reliably.

3. Quick Bootstrap: In Bitcoin, a new node needs to take more than 3 days to
download the whole blockchain from its adjacent peers, verify it for bootstrap.
Contrarily, a new PoR node can boot up instantly by requesting a trust
ranking list from the registry. Details will be discussed in Sect. 4.6.

On the other hand, we do not make any assumption that nodes are reliable
during protocol runs. That means the impact of Byzantine nodes is not within
the scope of our discussion.

We formalize the problem of designing a reputation consensus protocol for
permissioned blockchains as follows. Assume N participants have registered
themselves to join the network, and an individual participant is presented by
pi, i ∈ N . Each participant stores others’ public keys locally so that it can
authenticate identities and verify transactions. Each transaction generated by pi

toward pj is represented by an real number xj
i ∈ R signed by pi’s private key,

denoted as Sig(xj
i ). The transaction from the same pair can only be included

once in one block, which means each block contains N(N − 1) transactions at
most, and a threshold λ ≤ N(N − 1) can be adjusted to limit the number of
transactions in one block.

3.2 Threat Model

Although we assume that nodes communicate through a reliable authenticated
point-to-point channel, the network can still be damaged by selfish behaviors,
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malicious attacks, and even unintentional misconfiguration. Especially, the
reputation-based protocol itself can be an attractive target for attackers. Here
we discuss several Potential attacks [20].

1. Bad-mouthing attack is to provide dishonest recommendations to deframe
good nodes, which is the most straightforward attack [21]. In our protocol,
malicious nodes can continuously give bad comments to a specific node or all
other nodes to improve his trustworthiness ranking in a block in return.

2. Replay attack attempts to reuse transactions and replay them in order to
increase the impact of the same transaction. By carrying out this attack, a
malicious participant can claim he has been involved in a transaction that is
profitable for him multiple times. It can also be used to undermine hostile
participants.

3. On-off attack is referred to irregular behaviors of attackers, which means
that malicious nodes can perform well or badly alternatively in order to
remain undetected while causing damage.

4. Sybil attack and newcomer attack , which was first described by Douceur
[22], is harmful to almost all p2p networks. It can be described that attackers
“legally” create more than a single ID. If one ID gets low reputation by
performing bad behaviors, it switches to a new ID and starts over.

Further, since every participant can publish arbitrary blocks, malicious nodes
can rewrite all the transactions inside or publish a fabricated block. Nonetheless,
provided proper security mechanisms, high attack cost, and low reward, there is
little incentive for attackers to attack a reputation system [23].

4 The Proof of Reputation Protocol

In this section, we present the Proof of Reputation (PoR) protocol, which serves
to provide global reputation agreement in a p2p environment.

4.1 Design Overview

The core idea of PoR is to ensure that every one of participants holds an agreed
ledger, recording the rate of each transaction. To achieve this purpose, three
questions must be answered:

1. How to keep the ledgers consensus? The answer to this question is similar
to that of Bitcoin. Bitcoin applies the PoW protocol, where the first processor
that has solved the mathematical problem gains the right to publish the block,
and others can openly verify the block. Likewise, in the PoR protocol, the one
who has the highest trust value in a group of transactions can package them
into a block and publish it. The verification of the block is also open to other
participants.

2. How to motivate participants to publish blocks? Compared with Bit-
coin, there is no block reward or transaction fee as incentives in the PoR. We
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use trustworthiness instead. However, trustworthiness, which is entirely differ-
ent with coins, can not be spent or transferred. It is a kind of reputation which
indicates that participants with high trust value can provide better services.
In each round, only the one that has the highest trust value can publish the
block. Publishing the block can undoubtedly increase the overall trust rank of
the publisher.

3. How to prevent transactions or blocks from being modified? The
Bitcoin network is entirely open to every machine that has a client installed on it.
Modifying the transactions consumes huge hash power, which is known as 51%
attack [24]. On the contrast, the PoR protocol is applied in the permissioned
blockchain, where all participants are registered with their public keys with
private keys stored locally, and every participant has a copy of all public keys.
Therefore, if some malicious nodes attempt to fabricate identities, it will be
detected instantly. Also, the Merkle Tree [25] is used in forming the transactions
in the block, which can protect the integrity of transactions.

In each round, the PoR protocol runs the following 3 steps:

1. Broadcasting Transactions. At the end of each interaction, a piece of
feedback will be generated by the service requestor, recording the rate of
the service. Then the requestor will broadcast this message together with its
signature. Other nodes that have received these messages will verify and store
them in the memory.

2. Building Block. When the number of transactions reaches the threshold,
the node stops receiving transactions and starts to calculate a ranking list
according to each service providers’ scores recorded in this set of transactions.
If the top of the list is the node itself, it constructs a block and publishes it
after signing with its private key.

3. Verifying Block. Nodes receiving a block will recalculate the ranking list to
check if the sender has the highest trust value. They also need to verify the
signature of each transaction using the signer’s public key. After verification,
the nodes will append the block into the blockchain and prepare for the next
round.

4.2 Broadcasting Transactions

We define the participant that provides a certain service during an interaction as
the provider, while another participant that rates the service as the rater. During
the interaction, the provider sends the requested service, such as a bunch of data,
signed by its private key, along with the hash of the data and a timestamp. After
verifying the integrity of the data by checking the recalculating the hash, the
rater produces a transaction consisting of the reputation score, a timestamp, the
hash of the received data, and its digital signature. Next, the rater broadcasts
the transaction to the network. A diagram of the format of a transaction is
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Service requested
Timestamp
Hash of the service

Signature of 
provider

Reputation score
Timestamp
Hash of the service received

Signature of
rater

Fig. 1. A diagram of the format of a transaction.

illustrated in Fig. 1. The reputation score, represented by xj
i , can be expressed

either in a binary way (xj
i ∈ {0, 1}, i.e., pi rates 1 if it is satisfied with the

service and 0 otherwise), or a real number in a continuous range (xj
i ∈ [0, 1]) to

represent the degree of satisfaction.
An example of this step is shown in Fig. 2, where p1 is the rater and p5 is

the provider. At the end of the interaction, p1 is satisfied with the service and
rates it with 1. Then the transaction, which is represented as Sig(p1 → p5 = 1),
of this interaction is generated, and sent to the other participants by p1.

Fig. 2. Broadcasting transactions step of p1 rating the service of p5.
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Algorithm 1. Transaction Filter Algorithm
Input: A set of tansactions, represented as T = {t1, t2, t3, ..., tm} where m is

the number of the set.
Output: Filtered transactions

1 FilteredNumber = 0;
2 FilteredTransactions = {};
3 for ti in T do
4 if VerifySig(ti) then
5 if the rater and the provider of ti
6 have appeared in FilteredTransactions then
7 update(FilteredTransactions);

8 else
9 if FilteredNumber < λ then

10 FilteredTransactions.append(ti);
11 FilteredNumber+=1;

12 else
13 break;

14 else
15 drop(ti);

4.3 Transactions Filter

Malicious nodes can spread forged transactions and transactions with dishonest
rating. To prevent this, we need filter transactions before packaging them up.

Our algorithm to filter transactions is depicted in Algorithm 1. More specif-
ically, when a transactions comes, its signature will be tested whether it comes
from an authenticated participant. Next step is to check if the same pair of rater
and provider have appeared in the current block. If so, the transaction will be
replaced by the later one. For example, assume a transaction Sig(x1

5) has already
been verified, then if another Sig(x1

5) comes, it will replace the former one. The
purpose of keeping only one transaction of the same pair in one block is to
reduce the impact of bad-mouthing attack. Finally, when the number of filtered
transaction reaches the threshold λ, this set of transactions would be packaged
up to conduct an alternative block, while other transactions will remain in the
memory pool for the next round.

4.4 Block Publication

With a set of verified transactions, there would be two steps to construct an
alternative block.

1. Trustworthiness Evaluation. From the set of verified transactions, a par-
ticipant can extract each provider ’s action log, which can be represented as
lj = s1, s2, s3, ..., sn for the provider pj , where si is the ith score of lj and n
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is the number of the scores. We can use a certain trustworthiness evaluation
model to squash the log into a trust value. For simplicity, we use the sigmoid
function to evaluate the trustworthiness in our protocol (Other trust evaluation
algorithms can also be used, i.e., EigenTrust [12]). Assume that si ∈ {1, 0,−1}
for good, general, bad actions respectively. Then the trustworthiness of pj can be
calculated as follows:

trustj =
1

1 + e−φ
∑n

i=1 si
(1)

Accordingly, φ is simply the adjustable parameter. With this measure, each
provider will be assigned a trust value, and a ranking list is generated. Then the
participant needs to check if itself is the provider and it has the highest trust
value. If so, it moves on to the second step to publish the block, otherwise, it
has to give up this round and prepare the next round. The reason why only the
provider with the highest trust value can publish the block in each round is that
this mechanism can motivate participants that have the highest trust value in
each round to publish the block since it will increase their trust ranks.

2. Block Construction. The way we consider to construct a block is compa-
rable to Bitcoin, but with different data structure. Details are shown in Fig. 3.
Merkle tree is also introduced when constructing the block to facilitate transac-
tion searching. The threshold is to control the number of transactions contained
in a single block. In addition, the participants who publish this block need to
digitally sign the block and add its signature into the blockheader for authenti-
cation.

After these two steps above, the block will be committed and spread to the
network.

Blockheader

transaction 1

transaction 2

transaction n

Fig. 3. Data structure of the block.

4.5 Block Verification

Every block received by participants need to be verified before appended to
the blockchain. The verification process is presented in Algorithm2. First, the
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signature of the block should be from an authenticated participant, so be the
signatures of each transactions in the block. Next, a trustworthiness ranking list
will be recalculated based on the checked transactions. Finally, it will be checked
that whether the provider on top of the list is same as the sender of the block.

Algorithm 2. Block Verification Algorithm
Input: currentBlock

Output: block validity

1 rankingList = {};
2 if !verify(currentBlock.signature) then

3 return false;

4 if !verify(currentBlock.transactionList.signatures) then

5 return false;

6 rankingList = calculateRankingList(currentBlock.transactionList);

7 if (currentBlock.signature is not matched to the public key of rankingList.top)

then

8 return false;

9 return true;

After verification, the block it will be cryptographically linked to the
blockchain and wrote to the disk. If any transactions in the memory pool also
exist in the newly written block, they would be removed.

4.6 Cost Analysis and Quick Bootstrap

The space cost of a single block is closely related to the number of transactions
controlled by λ, which can also be utilized to control the average time a block is
generated according to the number of participants in the network. A block with
no transactions would be about 80 bytes, which is close to that of Bitcoin. A
single transaction costs about 100 bytes. If we suppose λ = 100, a single block
costs no more than 10KB. Since blockchain is an append-only data structure, the
space cost grows linearly with time. However, because the number of participants
is limited in permissioned blockchains, the space cost is far less than Bitcoin
blockchain.

To boost setup, new participants do not have to download the whole
blockchain. Instead, they can simply get a ranking list from the registry. This
ranking list is similar to that described in Sect. 4.4 except that it is calcu-
lated from the whole blockchain. The ranking list is signed by the registry and
expressed in JSON format. An example of it is shown below.
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1 {
2 "number":128
3 "rankingList": {
4 "rankingitem": [
5 {"id": "62923F...CF0629", "value": "0.84"},
6 {"id": "730F75...82848F", "value": "0.74"},
7 ...
8 {"id": "27B2C1...B93255", "value": "0.92"}
9 ]

10 }
11 "rankingListHash":"7520149...60265B"
12 "rankingListHashSignature":{
13 "r":"F0AB42...1D6875"
14 "s":"4C556E...31C42B"
15 }
16 "time":1496374331
17 }}

4.7 Security Analysis

After the details of the protocol design, we provide security analysis for how PoR
prevents potential threats and works securely. Since we have already assumed
that our protocol is deployed in permissioned blockchains where participants
can interact in a secure channel and can authenticate with each other, but the
trust-based protocol itself is easily targeted by potential attackers.

Malicious participants may perform bad-mouthing attack by rating the
provider dishonestly. In PoR, the transaction of the same pair of a rater and a
provider can only appear once in one block. Therefore, even though the rater
is malicious, its dishonest recommendation has limited impact on the provider.
Moreover, it can effectively resist Replay attack. In on-off attack, attackers have
irregular behaviors. In our protocol, the distributed ledger of reputation can pro-
vide a trust ranking list, which is calculated from all the transactions recorded
in the blockchain. This ranking list indicates the overall trustworthiness of each
participant, so the attackers performing on-off attack will be reported by the
rater resulting in a lower rank. If a participant has a low rank, they may want to
switch to another ID and start over, which is known as Sybil attack or Newcomer
attack. The access control layer built on the blockchain can increase the cost of
creating a new ID to prevent this kind of attack.

5 Experiments and Evaluation

In this section, we carry out several experiments and performance measurements
based on a prototype implementation of the PoR protocol. The goal of our eval-
uation is to quantify the overhead and scalability of our protocol when deploying
it in a p2p network.
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Fig. 4. Consensus time and bandwidth of PoR with different network sizes.

5.1 Experiment Setting

We developed a prototype implementation of PoR in the Python 2.7 program-
ming language. Then we virtualized participants by running the protocol on
Docker [26], which is an open source software technology providing containers.
We also used Rancher [27], which is a container management platform, to man-
age our containers so that we can easily create p2p networks of different sizes and
measure the performance of our protocol. We vary the number of participants in
the network from 100 to 500, using 3 servers with load balancing strategy. Each
server has an E5-2640 CPU with 16 cores and 64 GB of memory.

5.2 Performance Evaluation

The ability to log transactions in a light-weight, scalable and efficient manner is
key to a transactional p2p network. In our experiments, we measure the band-
width consumptions per node of PoR, consensus time, production time, as well
as the throughput in different settings.

Scalability of PoR. We start with a network of 100 participants, then we adjust
the network size 4 times, from 100 participants to 500 participants. Meanwhile,
we set the number of transactions in each block fixed to 1000. We quantify the
average time to reach consensus, maximum and average bandwidth consumed
at each participant. The experimental results are shown in Fig. 4.

The maximum bandwidth refers to the bandwidth used when the partici-
pant receiving or delivering a published block, while the average bandwidth is
the bandwidth consumed when processing transactions. The results show that
both the maximum and average bandwidth increase linearly (from 820 Kbps to
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Fig. 5. Average time to produce a block with different block sizes.

1380 Kbps and 160 Kbps to 470 Kbps, respectively) as we enlarge the network size
(100 to 500 accordingly). This is because more participants joining the network,
more messages being transferred in the network. In contrast, the consensus time
is shorter (e.g., 56 s in 100 participants to less than 10 s in 500 participants) since
more transactions are generated, each participant requires less time to publish
the block. These results show the average time of PoR to reach consensus is less
than a minute, which is much shorter than that of Bitcoin blockchain (usually 1
day). In addition, the average bandwidth is less than 1 Mbps, which is negligible
in most p2p networks.

Production Time. We next vary the number of transactions in a single block
from 200 to 1000 to measure the average time it takes to produce a block with
different network sizes. In our experiment, we measured the production time in
different network sizes ranging from 100 to 500 participants.

Figure 5 depicts that longer time is consumed if the block size is larger since
a participant needs to receive more transactions to package them up. Meanwhile,
we observe that smaller network has longer block production time and it grows
faster as the block size goes up. This is because smaller network generates fewer
transactions per unit time. When the block size is set to 1000, the production
time of the network with 100 participants is less than a minute, and in the
network with 500 participants, the production time is less than 10 seconds. This
indicates that the PoR protocol is far more efficient than bitcoin-like ones, where
it takes about 10 min to produce a block. In addition, the results show that we
can adjust the time a single block consumed by changing the block size according
to the requirement of upper applications.
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Throughput. We have the same definition of throughput in [28], where it is
defined as the number of transactions committed per unit of time. In this exper-
iment, we also vary the block size from 200 to 1000 transactions and the network
size from 100 to 500 participants. The results are plotted in Fig. 6.

Fig. 6. Throughput with different block sizes.

From Fig. 6 we can see that the throughput has an increment when more
participants joining the network, the reason of which is obvious. Meanwhile, the
throughput fluctuates slightly around a certain value (i.e., 20, 30, 50, 70, 85
transactions per second respectively in different network sizes) as the block size
increases. The most likely explanation for this is that although a participant can
commit more transactions in larger-size blocks, it takes more time to produce
one. These results indicate that the throughput of PoR hinges on the number
of participants involved in the network. Even in a thousand-level network, it is
possible to process hundreds of transactions in one second, which is far more
efficient than the throughput of bitcoin-like protocols.

In summary, the experiments confirm the expected scalability of PoR’s trans-
action throughput and bandwidth usage. The performance of our protocol largely
depends on the network size and the block size, which gives it flexibility to
adjust various p2p environment. In addition, the proposed protocol can also be
deployed on IoT devices since low bandwidth and low computation resources are
consumed.

6 Conclusion and Future Work

We present PoR, a reputation consensus protocol for p2p networks, which is
derived from the idea of blockchain technology. The contribution of our study is
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to provide a distributed ledger of reputation so that each participant can share a
global view of reputation. We have implemented a prototype of our protocol and
experimental results demonstrate that PoR can be a suitable component to for
transactional applications to make reputation based decisions. More generally,
our study has shown the potential of reputation to serve as the incentive in a
consensus protocol.

As future directions, we would extend our work to build a reputation based
system which contains access control, identity management, and other security
strategies. Additionally, we would test our system in a broader area, such as
participants being deployed in different continents, for performance evaluation.
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Abstract. Modern database systems are in need of supporting highly
scalable transactions of data updates and efficient queries over data
simultaneously for the real-time applications. One solution to reach the
demand is to implement query optimization techniques on the online
transaction processing (OLTP) systems. The materialized view is con-
sidered as a panacea to improve query latency. However, it also involves
a significant cost of maintenance which trades away transaction perfor-
mance. In this paper, we develop materialized views on a distributed
log-structured merge-tree (LSM-tree), which is a well-known structure
adopted to improve data write performance. We examine the design
space and conclude several design features for the implementation of
view on LSM-tree. An asynchronous approach with two optimizations
are proposed to decouple the view maintenance with transaction pro-
cess. Under the asynchronous update, we also provide consistency query
for views. Experiments on TPC-H benchmark show our method achieves
better performance than straightforward methods on different workloads.

1 Introduction

Databases have always been facing challenges, where an important one is that
it requires supporting highly scalable transactions of data updates and efficient
queries over massive data simultaneously for the real-time applications. To meet
the demand, a practical solution is to leverage query optimization techniques on
scalable OLTP systems. In term of query optimization, materialized view can
significantly facilitate query by reducing execution time. The technique succeeds
in many data warehouses and decision support systems which mainly update
data by importing other data source via Extract-Transform-Load (ETL) tools.
It can meet the analytical demand by avoiding the impact of online date updates,
but the accessed data may be out of date. It’s much more challenging to develop
materialized views on OLTP systems than on those data warehouses. In OLTP
systems, data updates frequently happen on data tables. To get an up-to-second
query result, the materialized view must be updated along with the base table.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 682–700, 2018.
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However, views are usually expensive to maintain since they are mainly con-
structed for schemas associated with a bunch of data records. The improvement
of query performance and the cost of maintenance have put the system into a
dilemma for whether to use materialized views.

The answer to the question may be depended on the workload loaded on the
system. But it is apparently beneficial to optimize the view maintenance for those
systems that support high-speed update. In this paper, we aim to support views
in a distributed LSM-tree architecture. Many systems choose LSM-tree since it
offers high write throughput. Following the notations used in [9,15], LSM-tree
organizes records in multiple components: a memtable and several sstables. The
memtable is a memory-based structure for data writes and the sstable is a disk-
based structure, offering large storage capacity and servicing read requests only.
The LSM-tree structure has been widely implemented by distributed systems
such as BigTable [9] and Cassandra [13], where the memtable and sstables are
kept in the main memory and distributed file system (e.g. GFS [10] ) respectively.

We conclude the major problems for view maintenance on distributed LSM-
tree are: (1) the structure is distributed. Thus a record of base tables and its
related records in view table may be located on different machines. If an update
happens on the record of the base table, it takes many costs to identify these
related updates in view. (2) In a LSM-tree system, the memtable is responsible
for high-speed data write. The resources of the memtable’s server are usually
precious and the burden on it is heavy, hence we don’t want to add many addi-
tional overheads of view updates on the server. (3) The system serves both the
transactional update and view query at the same time. If they access same data,
we need to guarantee the consistency of query. (4) The updates of base table
produce plenty of updates in view table. However, if queries and updates fall
on different data, we just need to update the related records in view instead of
updating all of them directly. We can take advantage of this to make better use
of system resources, which requires fine-grained method to update the view.

To address the problems, we propose an effective view maintenance mech-
anism on distributed LSM-tree. Our contributions can be summarized as fol-
lows: (1) we examine the design space and conclude several design features for
implementation of view on LSM-tree. (2) We decouple the procedure of view
maintenance with transaction process, which reduces its impact on transaction
processing. Meanwhile we utilize an asynchronous approach to update the view
and propose two optimizing techniques that delay unnecessary updates. (3) We
separate the storage and maintenance of view table from the server of memtable,
which significantly reduces its overhead. (4) We also ensure query consistency
under the asynchronous updates. (5) Experiments on popular benchmark show
our method achieves a better performance than straightforward techniques.

The rest of paper is organized as follows. Section 2 gives the design consid-
eration. Section 3 presents the overall structure. Section 4 describes the detailed
query and update method. Section 5 shows the experiment results. Related works
are discussed in Sect. 6 and the work is concluded in Sect. 7.
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2 Background

2.1 LSM-Tree Model

In this paper, we study asynchronous view maintenance over a large-scale, dis-
tributed LSM-tree. A typical structure is illustrated in Fig. 1. Basically, it con-
sists of an update server, several chunk-servers and multiple p-nodes.
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Fig. 1. LSM-tree model and UPSV

Memtable and Update Server. Memtable is the in-memory structure which
keeps incremental data. In the LSM-tree, it resides in main memory to facil-
itate write performance. Data write (update, insert and delete) is only allowed
to perform on the memtable. Data in memtableis managed through its primary
key. It can be implemented as any index structure optimized for main memory
access, such as bw-tree [14]. Memtable is placed on an update server, which
usually has high-performance CPUs and large capacity of memory.

SSTables and Chunk Servers. SStable is the on-disk and immutable struc-
ture where static data is stored in lexicographic order based on its primary
key. SStable is generated by freezing an active memtable. The frozen memtable is
transferred into the distributed file system and becomes the sstable. In short, the
log-structured storage firstly keeps written data in the memtable. It then freezes
and merges the memtable into durable storage (sstables) when the memtable
reaches a certain size. Thus, sstable is a read-only data structure. A memtable
can correspond to several sstables, which are horizontally partitioned over the
primary keys and each sstable corresponds to part of the memtable. Disk based
indexes (such as block index), can be utilized in each sstable. SStables live in
several chunk-servers according to a certain data distribution.

Data Write and Access. In LSM-tree, one primary key corresponds to one
data record. We utilize multi-version for data write and access in our work.
If a record is inserted, an entry (with primary key as its entry) is created and
directly added into the memtable with an assigned version number; if a record
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is updated, its new value is appended into the memtable with a new assigned
version number. For a read operation (a point read or a scan request), a process
node (p-node) has to go through both the memtable and sstable to access
records. From memtable, it obtains the latest state of record. Data (with same
primary key) from memtable and sstable is fused on chunk-server, and then
transferred to p-node for further processing.

Data Compaction. To reduce the memory space of update server, data com-
paction can be conducted in back-end to merge sstables and memtable together.
It first freezes the old memtable and starts a new memtable to replace the old
one for servicing further write requests. Then a write process would read entries
from multiple sstables and merge the old memtable, i.e. if a record has a new
state (via data writes) on the memtable, the new state will be merged into cor-
responding sstable based on its primary key. With the completion of the data
compaction, the old memtable becomes expired.

2.2 View Table

The view table is created based on the base tables. In the distributed system,
we divide the view table into different partitions (according to a range or a
hash partitioning) and manage them separately on different chunk-servers. For
example, recall the TPC-H benchmark [5]. It has total eight tables, where one
of them named lineitem is used to store the purchasing records. We can create
the view on lineitem according to the following statement:

CREAT VIEW ShipDate
SELECT l shipdate, l linenumber, l orderkey, l discount, l quantity,
l extendedprice
FROM lineitem
WHERE l quantity >= 11 AND l quantity <= 21
PARTITION BY RANGE (l shipdate);

A projection view table named ShipDate is distributed according to a composite
primary key. It is constructed by combining the attribute of l shipdate and the
primary key of the base table (i.e. l orderkey and l linenumber from lineitem).
Next, we formally define the base table and view table for further description.
For simplicity, we only define the projection view, while other types of view
tables are analogous. The schema of base table and view table are defined as:

Definition 1 (Base table B). A base table contains two type of columns
(attributes): columns of primary key (PK) PKB = {pkb1 , pkb2 , · · · ,pkb|PKB|};
and columns of non-primary key (NP) NPB = {npb1 , npb2 , · · · npb|NPB|}.
pkbi/npbi is a PK/NP column respectively.

For instance, lineitem is a base table, its has two PK columns PKB =
{l orderykey, l partkey} and it has total fourteen NP columns NPB =
{l shipdate, l discount, · · · }.
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Definition 2 (View table V). A view table also contains two type of columns:
PK columns PKV = {pkv1 , pkv2 , · · · , pkv|PKV|} (PKB ⊂ PKV) and NP columns
NPV = {npv1 , npv2 , · · · npv|NPV|} (NPV ⊂ NPB), where pkvi

/npvi
is a PK/NP

column of V respectively.

Since V is constructed from B, in projection view, we select several
columns from NPB and all columns from PKB together as the PKs of
V, thus we have PKB ⊂ PKV ⊂ B. Meanwhile, npvi

is selected from
NP columns of base table, which means NPV ⊂ NPB. For example,
in the above view named ShipDate, its has three PK columns PKV =
{l shipdate, l orderykey, l partkey}, where l orderykey, l partkey are the PKs
of base table lineitem and l shipdate is a NP columns of base table. Three NP
columns, {l discount, l quantity, l extendedprice} from lineitem are selected for
projection.

2.3 A Straightforward View Maintenance Design

We first introduce a straightforward design of view structure following the exist-
ing update and data access procedure on LSM-tree. We name it update server
based view design (UPSV).

UPSV treats materialized views in the same way as the base tables, where
records in the view table are ordered and managed through primary keys. View
tables are also horizontally partitioned and the system can merge them from
update server to chunk-servers through data compaction. For instance, Fig. 1
illustrates a view table with two columns (pk0 and np0), it is distributed on
chunk-servers and partitioned by the PK column pk0. If an update of the view
happens, a new state will be added into the memtable of update server.

It relies on transaction processing to maintain the increment of view table. To
ensure the consistency of the view table and the base table (see Sect. 2.4), view
tables are updated synchronously in the transaction processing thread. To this
end, an additional step of view maintenance will be added to the transaction if
the base table updates are related to the view. Records of view tables associated
with the base table updates will be updated/inserted/deleted in the memtable.
Since the view table is same as the base table, updates of them only appear on
the update server. A critical step is to identify those records in view tables to be
updated. It is non-trivial on LSM-tree. For example, in Fig. 1, if a transaction
updates a record of base table on attribute np0 from a to b, then the view table
should also be updated by inserting its new state into memtable. However, the
update server do not know which record (since the base table and view table
leverages different primary keys) within view table has np0 with value a, so it
has to visit all chunk-servers to find k2 and k3. Thus an identifying step must
perform on the chunk-servers to find those updates and then give feedback to
the update server for further movement.

UPSV is not efficient since it is cost-consuming in view maintenance, thus we
need to reexamine its design space on LSM-tree and propose a new design.
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2.4 Design Features

System for Hybrid Workload. We target for the mixed read-write workload
scenario. The system can support one set of workloads focused on transaction
processing (e.g. insert, update and delete on base tables) and another set config-
ured to run analytical queries (e.g. SPJ query) on view tables without blocking
the ongoing operational workloads. In term of materialized views, as known to
all, it can be applied to query optimization to benefit query performance. For
instance, a simple projection view can significantly facilitate data scan since it
re-adjust the PK columns in the view table to make it better to use the index
(e.g. block index, B+tree) for data scan. Nevertheless, to optimize query with
materialized view, we must carefully design the strategy of view maintenance.

Decoupling of Transaction Processing and View Maintenance. First,
view maintenance severely affects the performance of transaction processing.
Take UPSV into consideration, which binds the view update to the transaction,
it can directly prolong the locking time and increase the delay of a transaction.
Worse still, the cost of view update is usually much higher than that of an
update on the base table, so the design will significantly reduce the performance
of transaction processing. Therefore, we need to decouple the procedure of view
maintenance from transaction processing. In theory, we can put this step at any
time point after the transaction and before the query, which is commonly known
as lazy maintenance or asynchronous maintenance [6,20].

Reducing the Overhead of Update Server. It is not sufficient to simply
split transactions processing and view updates. An important consideration is
the overhead of update server. In a LSM-tree system, update server is the most
resource consuming as its memory is limited, its CPU and networks are not only
used to process transactions, but also to deal with data compaction. For UPSV,
view updates are written in memtable. It greatly increases the use of CPUs and
memory since the scale of view update is far beyond that of the base table, which
also aggravates the burden of data compaction. To this end, we shift the storage
of view table and update it on chunk-servers instead of update server.

View Consistency. Since view updates are no longer bound to transaction
processing, the consistency that it provides for the query needs to be considered.
We aim to provide a consistent snapshot [8] for data access on the view table.
A query must read a unified version on all accessed data and this version can
correspond to the latest updates on data. The problem is difficult since we update
view tables asynchronously on remote chunk-servers.

Summary. We process the mixed workload and leverage materialized view to
optimize query processing. To prevent a substantial decline in the performance
of transaction processing, we decouple view maintenance from the transaction.
In order not to bring additional overhead on update server, we choose to update
views on chunk-servers instead of on update server. We also provide a way to
query the view to ensure that we access a consistent snapshot. Next, we introduce
a new design for view maintenance on LSM-tree.
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3 System Architecture

In this section we describe a new design of view maintenance on LSM-tree. The
core idea is to maintain view tables on chunk-servers. We name the method CSV.

3.1 View Storage

To reduce the overhead of update server, we do not keep any memtable of view
table on update server, instead, we maintain them separately on different chunk-
servers. There are four structures to store records of base tables and view tables:

– B-sstable stores the statistic data of base table. B-sstables are distributed on
different chunk-servers according to the data partitioning algorithms.

– B-memtable is utilized to maintain all the incremental update of base table.
B-memtable leverages a memory B+tree structure. Every leaf node stores
a pair of 〈PKB, list〉, where the entry is the PKs (PKB) of a record. The
list keeps all data writes on the record. An item in the list represents one
update1 with an assigned version number. Record locking [3] are employed
to handle concurrent updates on the same list. Updates are only allowed in
NP columns. As described in Sect. 2, B-memtable lives on update server. It
becomes B-sstables through data compaction.

– V-sstable is the sstable which stores the static data of view table on disk.
Similar to B-sstables, V-sstables are also distributed on chunk-servers.

– V-memtable is a memtable resides on a chunk-server. Each partition of view
table contains a V-memtable and a V-sstable, V-memtable and its corre-
sponding V-sstable live on a same chunk-server. V-memtable stores incre-
mental data of view table. Similar to B-memtable, data writes are added into
a B+tree, where the entry of list is the PKV of the record in view table.

Table Partition. Note that both base table and view table are divided into
several partitions on chunk-servers for parallel processing. Tables are partitioned
over their PKs (PKB or PKV) by partitioning algorithms. Each partition has a
specific partition id (denoted as pid), and for each record, we can compute its
partition id based on its values of PKB or PKV .

3.2 Update on Base Table and View Table

Recall that UPSV updates the base table and the view table in the same trans-
action. It takes a cost-consuming identifying step to read remote data from
chunk-server. In CSV, we decouple transaction processing (which updates the
base table) and view maintenance. One of our contributions is that we pro-
pose a lightweight and asynchronous mechanism to avoid this identifying step in
transaction processing.

1 Delete as well as update, since the record with index will not be actually deleted but
just marked for deletion.
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Fig. 2. Framework of CSV

When an update of record happens on a base table, we can obtain sev-
eral lightweight delta records with only a few overhead. A delta record can
be treated as a corresponding modification of the view table when
an insert/update/delete happens on the base table. Formally it is defined as
follows:

Definition 3 (Delta record δr). Suppose an insert/update/delete happens on
B and it generates a modification on column npvi

of a record r ∈ V, then it
produces the corresponding δr including three parts: (i) its values on columns of
PKV and npvi

(denoted as �(PKV ∪ npvi
)(r)), which records the update on r;

(ii) a partition id pidr, which indicates the partition of r, (iii) an operation flag,
which signs the operation type (insert, delete or update) of this record.

It is worth noting that for the above first part, we may not be able to know
the complete values on PK columns of r (i.e. PKV of r). Since PKB ⊂ PKV ,
its values on columns PKB are known by parsing the SQL which updates the
base table. The rest columns in PKV -PKB may not be known. To this end, we
cannot compute the partition id of r without its exact values on PKV . In this
case, we use a dummy mark ∗ to represent the partition id of a delta record.

We adopt an assisted structure called delta lists to store delta records.

Definition 4 (Delta lists DL). Suppose that the view table V is partitioned
into pn parts over the primary key, then DL contains pn + 1 lists DL =
{DL1,DL2, · · · ,DLpn

,DL∗}, where DLi (1 <= i <= pn) stores delta records
of whose partition id is i, and DL∗ stores delta records that we can’t get the
partition id.

Update Base Table. In transaction processing, we only append δr into DL for
view maintenance. It takes the following two steps (as illustrated in Fig. 2):

(1) In p-node, we parse the SQL statement. There are three operations:

– Insert. There are all values of columns in a insert statement. P-node can
calculate pidr since all values of PKV are known. Then it adds a δr of
(�(PKV ∪ npvi

)(r), pidr, insert) into DLpidr.
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– Delete. When deleting the record via PKB of B, since we do not access
chunk-server, the value of corresponding PKV is unknown, and we cannot
compute the partition id. It adds a δr of (�(PKB)(r), ∗, delete) into DL∗,
where �(PKB)(r) is the values on columns of PKB.

– Update. There are further two situations:
(a) PKV = PKB ∪ npbi

2, it means we need to update the PK of a record
within the view table. It requires to delete the old record and insert a
new one. For deletion, the value of PKV is unknown without requesting
chunk-server. p-node adds a δr of (�(PKB)(r), ∗, delete) into DL∗ for
deletion. Since the value of column after the update is known, P-node
can calculate pidr based on its values of PKV in r. Thus, for insertion,
it adds a δr of (�(PKV ∪ npvi

)(r), pidr, insert) into DLpidr.
(b) PKV 	= PKB ∪ npbi , which means we would update a NP column of

record of the view table. P-node constructs a δr of (�(PKB ∪npvi
)(r), ∗,

update), which will be inserted into DL∗ due to lack of PKV .

(2) The p-node requests update server with δr. Update server updates B-
memtable as usual and appends δr to the corresponding DL according to the
partition id of δr. Then the transaction processing is over, which does not
involve any additional communication between update server and chunk-
servers.

Update View Table. View maintenance becomes no-trivial since view table is
no longer on the update server. Here we explain our main strategy first, and the
detailed implements are introduced in Sect. 4. In essence, we utilize asynchronous
update in CSV:

– Asynchronous update. Rather than update the view table in a transaction,
CSV only appends the modification of view table (i.e. delta records) into DL.
It actually updates the view table by merging delta records into V-memtable
when a query requests relevant data. This naturally reduces the latency
of transaction processing.

Notice that there exists plenty of delta records generated by transactions to be
updated into V-memtable. We only update those related to the query results
instead of updating all of them directly. We propose two optimizing techniques
to achieve this:

– Accurate Update. Only delta records within the query range will be updated
while the rest will be left to an unprocessed list and wait for the next related
queries. As it cause overhead to identify these related delta records, a segment
tree is used to facilitate this progress.

– Merging Fresh. Note DL stores delta records over a period, and many of them
are repeated modification on the same row. Since users only need to know
the latest data at query time, CSV just update the most recent (“fresh”)
delta record into V-memtable, while the historical ones will be left to the
unprocessed list.

2 This is the most commonly used view schema for projection.
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3.3 Query on View Tables

Next, we describe the procedure for the query on view table. A SQL query is first
processed on the p-node, then rewritten as a query plan for leveraging the view
through a SQL parser and a query optimizer. Ultimately, it generates several
sub-plans to access the view table. As shown in Fig. 2, it takes three steps to run
those sub-plans in CSV:

(1) P-node distributes all sub-plans to corresponding chunk-servers. The sub-
plans are executed on different chunk-servers in parallel.

(2) For each chunk-server, (a) a merging thread pulls the corresponding delta
records from update server, then it fuses the static data in V-sstable, the V-
memtable and delta records together to obtain the merging results. (b) The
results are returned to p-node. Meanwhile, the delta records are updated
into V-memtable for view maintenance.

(3) Finally, p-node merges the results returned by all the chunk-servers and
responds to the client.
The second step is the most critical since it includes both data access and
view maintenance at the same time. In Sect. 4, we introduce its details.

3.4 Extension to Join View
For the view of join (R �� S), it is important to design its schema and the
corresponding delta record. If we simply set the PKs of V as the PKs of R and
S, then any lack of values in R and S results in the incomplete PKV , causing all
updates added into the DL∗. To make the method effective, we use the fact that
one of the two tables is usually more frequently updated than the other. Suppose
R is updated more regularly, then PKV is designed as PKR ∪ npi, where npi
is the join column. To this end, if the transaction updates npi of R, we can
generate a delta record whose pid can be computed as the PKV is known. On
the other hand, the update on S generates a delata record into DL∗. For the
query on the view, the process is the same as mentioned in Sect. 3.3.

4 Incremental View Maintenance

In this section, we introduce our solution to ensure transaction-level read consis-
tency under asynchronous updates. Section 4.1 describes how to support snap-
shot isolation for query on the view. Section 4.2 introduces the detailed process
of updating V-memtable. Section 4.3 gives two optimizing techniques to facilitate
this process.

4.1 Version Control

Asynchronous update causes the problem of consistency. We leverage the multi-
version model to provide strong consistency by ensuring snapshot isolation [8].
For each query, it first assigns a snapshot point, i.e. determines a unified version
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for each accessed record, then it returns their (i.e. all accessed records) latest
states smaller than this version.

In CSV, as the transaction node, update server assigns the unique global
version for all transactions, so does a query request. To keep consistent, it should
access the latest snapshot before the global version. There will be two cases.

Query on a Single Chunk Server. We first discuss the query which only
accesses view table on one chunk-server. For each query, we should assign a
snapshot point. In CSV, we specify the point at the first time when the query
accesses update server (denoted as vups). Besides, we maintain a vcs for each
V-memtable, which keeps the latest updated version of the V-memtable. Every
time the view maintenance is done by merging delta records and V-memtable,
vcs is updated to vups, i.e. the data before vcs has been synchronized between
this chunk-server and update server. For a query falls on a chunk-server, the
detailed steps are as follows.

(1) When the query initiates, p-node accesses the specific chunk-server based on
PKV . Then the chunk-server requests the latest delta records from update
server with vcs.

(2) Update server provides chunk-server with a global ordered version vups.
Then the delta records δr between vcs and vups in DLcs id and DL∗ (where
cs id indicates the id of the specific chunk-server) are identified and pulled
from the update server to the chunk-server.

(3) A query access several data records in view table. It probes the V-sstable
and V-memtable to retrieve the data. After fusing the data from DL, V-
memtable and V-sstable, it returns the results to p-node and writes them
into V-memtable. Then it updates vcs to vups for the next query requests.

Query Across Multiple Chunk Servers. Next we introduce our solution to
guarantee reading the consistent data when the query access view tables across
multiple chunk-servers. The problem is that all participated chunk-servers visit
update server asynchronously, however, they should access DL with a unified
version number. To solve the problem, we maintain a query ID for every sub-
plans. When chunk-server pulls the incremental data, update server assigns the
latest version to the sub-request that arrives first. Then update server stores
this version number in a hashmap, and the following sub-requests get it from
the hashmap according to the query ID before they access the delta lists.

4.2 Update of V-Memtable

Next we introduce how to merge delta records into V-memtable. Recall a delta
record has three types of operation flags:

(1) Insert. As (�(PKV ∪ npvi
)(r), pidr, insert) ∈ DLpidr

. It represents a view
table row which needs insertion. Since its values on PKV are known, we
directly add the new row into the corresponding list.
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(2) Delete. As (�(PKB)(r), ∗, delete) ∈ DL∗. It means the record in view table
which has �(PKB)(r) ∈ PKV needs to be deleted. We should mark these
rows with delete flag in V-memtable. Since only PKB is known, we need to
check records in view table. If PKB matches, we get its PKV and apply the
delete into the corresponding list of V-memtable.

(3) Update. As (�(PKB ∪ npvi
)(r), ∗, update) ∈ DL∗. For the record in the

view table which has �(PKB)(r) ∈ PKV , its value on column npvi
should

be updated. Similar to situation (2), since only PKB is known, we need to
check records in view table, if PKB matches, we construct the new updated
row and add it into V-memtable.

For all the data in DL∗, it requires to check the view table for update, which is
cost-consuming. We propose accurate update to optimize this problem.

Concurrent Updates. Several query requests will modify V-memtable at the
same time in the condition of concurrency, i.e. several updates will be added to
the list of a same entry simultaneously. We use an optimistic concurrency control
method to handle conflict. Each thread makes its changes at local first. Before
the change is mounted into the list, it inspects whether another modification has
been made to the list with a self-validation which checks if the last item of the
list has been changed. In case of conflicts, the update will be aborted.

4.3 Two Optimizations

Accurate Update. Since there are many delta records to be updated into V-
memtable, it brings many overheads for a query if all of them are updated at
once. To this end, we only update those related to the query results. For the rest
delta records, we postpone updating and put them into an unprocessed list until
the next queries require them. Figure 3 illustrates the procedure.

In particular, for DL∗, it is the most critical performance bottleneck since
all queries need to scan it and check if there are any related updates. To this
end, we utilize a segment tree [4] to improve its efficiency. Figure 3 illustrates the
above procedure. We name the segment tree update control tree. As shown in
Fig. 3, we build the tree based on the partition range of view table. Each node of
the tree stores a sub-range with a list containing temporary delta records. Given
a query, its input is a single value of PKV (a point query) or a range of PKV
(a scan request), it returns all the related delta records by recursively traversing
the tree. When the query initiates, the root node will copy all δr pulled from
DL∗ into its list. Then we probe the tree from root to leaves. For the query
with range 〈l, r〉, if the range of currently traversed node intersects with 〈l, r〉,
we push down the delta records in the list to the lists of its children. The process
is repeated until it reaches the leaf nodes. Then the delta records whose keys
belong to 〈l, r〉 are merged into V-memtable. The remaining delta records in
DL∗ are left in tree and wait for the next queries.

In this way, we update the records of view table related to the query. The
remaining delta records are left in the unprocessed list or the update control
tree, and wait for the next queries.
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Fig. 3. Procedure of accurate update

Merging Fresh. Since users only care about the latest update at query time
rather than the previous modifications, we also leverage this property to opti-
mize. For different delta records in DL, if they are modified on the same row, only
the latest version of δr in DL will be calculated and added into the V-memtable,
while other will be directly added into an unprocessed list.

Note that this strategy brings risks for concurrent queries which cross mul-
tiple chunk-servers. For instance, for a sub-plan qsub1 of query q1 on a V-
memtable, if it obtains the vups < vcs, it means the V-memtable has already
been updated by other concurrent query q2. Due to the fact that other sub-
query of q1 arrives at update server earlier than that of q2, qsub1 actually uses
the smaller snapshot version than vcs, which means the record in V-memtable
is too “new” for qsub1 that other sub-plans of q1 are still using the old versions.
Therefore, under workload of queries which cross multiple nodes, the updates in
unprocessed list will still be computed to generate the query result.

Space Cost Analysis. The storage overheads of static data on disk for UPSV
and CSV are identical, so we compare their overheads in memory. The total cost
of V-memtable on all chunk-servers in CSV is similar to that of the memtable
in UPSV. For CSV, there are additional delta records which occupy memory. A
delta record only costs several bits as described. And the amount of delta records
is proportional to the number of updates. When the delta record is merged into
V-memtable, its memory is released in time. To this end, the memory overhead
to store delta records is rather low. In addition, the space of the utilized segment
tree is very small since it only stores a fixed number of nodes representing the
sub-ranges of the partition. Overall, the total space cost of CSV is very close to
UPSV. Besides, CSV occupies memory of chunk-servers while the memory cost
of UPSV is mainly on update server.

5 Experiment

5.1 Experiment Setup

Setup. We conduct experiments to evaluate the effectiveness and cost of the
CSV mechanism in an open source database Oceanbase [1]. The architecture
of Oceanbase is a typical distributed LSM-tree structure consisting of update
server, chunk-servers and p-nodes. We conduct our experiments on a database
cluster of four Linux servers. Each server has two Intel Xeon E5-2620@2.00 GHZ
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Table 1. Table schema

View table PKV NPV

1UPSV/1CSV V1 l shipdate,l orderykey,l partkey l quantity

3UPSV/3CSV V1 l shipdate,l orderykey,l partkey l quantity

V2 l quantity,l orderykey,l partkey l shipdate

V3 l extendedprice,l orderykey,l partkey l quantity

5UPSV/5CSV V1 l shipdate,l orderykey,l partkey l quantity

V2 l quantity,l orderykey,l partkey l shipdate

V3 l extendedprice,l orderykey,l partkey l quantity

V4 l suppkey,l orderykey,l partkey l extendedprice

V5 l linenumber,l orderykey,l partkey l tax

processors (each with 10 physical cores), 256 GB main memories and an Intel
SATA SSD. In the experiment, an update server is deployed on one machine,
and three chunk-servers and p-nodes are deployed on rest machines respectively.
Servers in the cluster are connected via 1 Gb Ethernet.

Benchmarks. CSV aims to support analytical queries at the pressure of trans-
action processing. In our experiment, all queries are executed on a 10 GB version
(SF = 10) of TPC-H [5]. We utilize lineitem as base table and generate five view
tables with the similar schema defined in Sect. 2.2. The schemas of view tables
are listed in Table 1. In the experiment, we may use different numbers of view
tables. xUPSV/xCSV means we use x view tables for UPSV and CSV accordingly.
To evaluate the interaction between view queries and transaction processing, we
utilize two transactions. Both of them modify the lineitem, where one inserts a
row and another updates a row.

5.2 Effect of View Query on Transaction Processing

We first measure the impact of view queries on transactions at different levels
of data overlap for read and write requests. We record the peak throughput by
increasing client threads from 1 to 300.

Queries and Transactions Fall on Different Data. Some applications tend
to update the most recent data but query the historical data for analysis. In the
experiment, the view table is range partitioned by l shipdate in lineitem, where
l shipdate is an attribute recording time. First, we let the update occur only in
the last partition which records the most recent data. While view queries are
performed on all the other partitions, which only access historical data. In this
case, in update server, UPSV needs to maintain the view tables as transactions
process, while CSV would only append some lightweight updates to DL.

Figure 4(a) shows the latency of transaction processing under different update
throughput. Notice that CSV beats UPSV in every case because rather than
update view table within the same transaction in UPSV, CSV just appends
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the modification of view table in DL for the asynchronous update, which has a
lower impact on transaction processing. Also, with the increase of throughput,
the average latency in UPSV increases significantly. Figure 4(b) plots the peak
throughput by varying the amounts of view tables for UPSV and CSV. Our main
observation is that the transaction process performs better in CSV than that
of UPSV due to the decoupling of view maintenance and transaction processing
in update server. Besides, as the number of UPSV increases, the peak through-
put drops significantly, while the number of CSV hardly influences it, which is
attributed to the fact that lightweight updates of view table have little influence
on the performance of transaction.

Queries and Transactions Access the Same Data. Next we examine the
effect of queries on transaction processing where the query and transaction access
the same data, which means the updates of view tables need to be obtained.

Point Queries. First we set up a fixed point query with 1K throughput on view
tables. Then we change the proportion of read and write requests in the transac-
tions. Figure 5 shows the peak throughput in different ratios of reads and writes.
We can observe that compared to UPSV, the peak throughput in CSV is higher
and similar to that of no views, which means transactions are less affected by
point queries on views. This is a result of the lower view maintenance cost of
CSV through pulling δr in DL rather than requesting the whole memtable, which
would not bring serious burden on update server. Note that with the increasing
proportion of data writes, the overall throughput decreases. This is because in
contrast to data reads, writes give more pressure on update server.

Range Queries. Then we turn to the effect of range queries for view tables on
transaction processing with a mix of 50%/50% reads and writes. Every 30 s a
range query on view tables will be initiated. We set the range to 100,000 and
10,000. As shown in Fig. 6(a) and (b), it shows that range queries have less
effect on the peak throughput in CSV than UPSV. The reason is that CSV only
accesses the incremental updates between vcs and vups in DL, while UPSV needs
to request and merge the whole updates before vups in memtable, which makes
a stronger impact on transaction processing in update server. Besides, the larger
the query range is, the more updates UPSV needs to merge. That means more
network cost and CPU resources in update server are occupied, which leads to
the lower throughput and worse transaction performance.
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5.3 Effect of Transaction Processing on View Query

Our next experiment studies the impact of update transactions on view queries
under different data distributions.

Point Queries. First we compare the peak throughput of point queries when the
update throughput increases. Figure 7(a) shows the results. For UPSV, owing to
the synchronous update of view table, view queries just simply require appro-
priate information in memtable, which provide better query throughput with
a small amount of update loads. However, with the increase of update opera-
tions, CSV catches up with UPSV. Figure 7(b) plots the change of query latency
under different update throughput. As the update load increases, the greater
burden of transactions will be posed on update server, which causes lower query
latency. In CSV, random point queries require a great deal of calculation for view
maintenance, and this will bring about higher query latency.

Figure 7(c) and (d) show the case under zipfian data distribution. The per-
formance of CSV is close to UPSV. Note that processing zipfian data leads to
more lock contention and conflicts with more transactions aborted. In contrast to
UPSV, CSV allows view updates to complete faster so locks are released sooner,
which provides better query performance with high update loads. Thus with the
rise of the throughput, CSV performs better than UPSV.

Range Queries. Then we measure the effect of update transactions on range
queries via query latency. First, we set the queried range to 100,000 and vary the
update throughput. As shown in Fig. 8(a), CSV performs better on range queries
than UPSV. This is because in update server, CSV just pulls a little lightweight
information from DL and leaves a great deal of computation and merging in
chunk-servers, while UPSV consumes much more network and CPU resources
of update server. More concrete analysis can be analyzed from Fig. 8(b), where
we fix the update throughput to 30 kTPS and vary the query range. With the
increase of query range, the advantages of CSV becomes more significant. Both
small range and large range need to request the information of DL and process
it. Processing small ranges of CSV is expensive compared to getting the updates
using PKs in UPSV. While for large ranges, UPSV needs to request the full
memtable for incremental data, which becomes cost-consuming.

From Figs. 7 and 8, we can also see that with the increase of update fre-
quency, query throughput decreases and scan latency increases. The performance
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decreases because DL stores more delta records as more updates happen. For the
query, each chunk-server needs to pull the delta lists and update the related delta
records, which results in the lower query throughput and higher scan latency. For
UPSV, the performance reduction is more significant, this is because UPSV needs
to maintain the view table for all the updates, which is more cost-consuming.

6 Related Work

Materialized View. Over the past decades, materialized views have been
widely used as an effective optimization method in many commercial systems,
such as Oracle [7], IBM DB2 [16], and Microsoft SQL Server [11]. With its
improvement in query performance, materialized view also needs maintenance.

Asynchronous Maintenance. In database systems, while eager maintenance
approaches usually update the view and base table synchronously within
the same transaction, asynchronous view maintenance can reduce transac-
tion latency and improve processing performance. The view is allowed to be
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inconsistent with the base table and brought up to date as necessary when
queried [2,6,20]. [2,6] introduce the asynchronous maintenance mode in NoSQL
databases without complete ACID characteristics. For the centralized database,
[12,20] give us a lot of inspiration for lazy maintenance. In our system, dis-
tributed chunk-servers holds the view table partitions. They obtain the latest
lightweight updates by requesting update server to maintain the view.

LSM-Tree. LSM [17] model was introduced in 1996 and received a reviving
interest after Google released BigTable [9]. It prevails in workloads with a high
rate of inserts and deletes. bLSM [18] improves LSM’s read performance by
using a geared scheduler and BloomFilters. [19] constructs the index on LSM at
different consistency requirements.

7 Conclusion

In this paper, we propose an incremental strategy to maintain materialized
views in LSM-tree. The view maintenance is decoupled with update transaction.
Under the condition of ensuring data consistency, we use asynchronous method
to identify the view update via lightweight information and propose an effi-
cient algorithm for precise maintenance which postpones unnecessary updates.
Experiment results show our method achieves good performance.

Acknowledgements. This work is supported by National Science Foundation of
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Abstract. Factorization Machines (FMs) offers attractive performance
by combining low-rank data vectors and heuristic features. However,
it suffers from the growth of the dataset and the model complexity.
Although much efforts have been made to distribute FMs over multiple
machines, the computation efficiency is still limited by the foundational
master-slave framework. In this paper, we propose CDSFM, which lever-
ages Stochastic Gradient Langevin Dynamics (SGLD) to optimize FMs,
and is distributed into a completely new circular framework. Experiments
on two genres of datasets show that CDSFM can achieves a 2.3–4.7×
speed-up over the comparison methods while obtains better performance.

1 Introduction

Factorization Machines (FMs) has been proposed by Stefen Rendle and suc-
cessfully applied to recommendation and prediction tasks [10]. Despite much
research on studying Factorization Machines [4,12,13], the problem remains
largely unsolved in industry’s real practice. The first challenge is when the well-
adopted optimization algorithms such as Stochastic Gradient Descent (SGD)
and Alternating Least square (ALS), are leveraged to solve FMs, it is difficult
to escape a local optimum when it arrives. Secondly, due to the growth of the
dataset and the model complexity, it is infeasible to solve problems using FMs in
a single machine. Thus, distributed optimization is becoming a possible solution.

To solve the problem of local optimum, we propose to leverage Stochas-
tic Gradient Langevin Dynamics (SGLD) to optimize FMs. To further adapt
to large-scale dataset, we propose a fast distributed SGLD algorithm to solve
FMs. We name the algorithm as Circular Distributed SGLD-based Factorization
Machines (CDSFM).

Finally, we apply the proposed CDSFM algorithm into two genres of datasets.
The results show that CDSFM clearly achieves better performance than FMs
model that are inferred by SGD. To evaluate the efficiency of the proposed dis-
tributed framework, we compare CDSFM with the same algorithm implemented
under Master-Slave (MS) framework. The results show that CDSFM achieves a
2.3–3.3× speed-up over the comparison methods, while obtains better accuracy
performance.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 701–709, 2018.
https://doi.org/10.1007/978-3-319-91458-9_43
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2 Circular Distributed SGLD-Based FM

Factorization Machines. Suppose the dataset of a prediction problem is for-
mulated by a matrix X ∈ R

n×p, where the i-th row xi ∈ R
p of X represents

a p-dimension data sample, and n is the data size. Based on the above defined
notations, FMs model of order d = 2 can be defined as:

ŷ(x) = w0 +
p

∑

i=1

wixi +
p

∑

i=1

p
∑

j=i+1

〈vi,vj〉xixj (1)

Stochastic Gradient Langevin Dynamics. Let θ denote a parameter vec-
tor. Suppose the dataset is denoted by X = {xi}N

i=1, the posterior distribution
is described as p(θ|X) ∝ p(θ)

∏N
i=1 p(xi|θ). To learn the parameter vector θ,

Stochastic Gradient Langevin Dynamics (SGLD) can be described as:

θt+1 → θt +
εt

2

[

∇ log p(θt) +
N

n

n
∑

i=1

∇ log p(xti|θ)
]

+ νt νt ∼ N(0, εtI), (2)

where εt is a sequence of step sizes, N
n

∑n
i=1 ∇ log p(xti|θt) is the mean score

computed from multiple iterations of batches. SGLD [14] injects the gaussian
noise into the parameter updates so that the variance of the data samples in a
batch matches that of the posterior distribution.

Inferring FMs Using SGLD. Taking binary classification as an example, the
parameter update rules of SGLD for Eq. (1) can be viewed as:

θt+1 ← θt +
εt

2
{−λθθt +

N

n

N
∑

i=1

σ(−ŷy)y
∂ŷ

∂θ
} + νt (3)

where νt ∼ N(0, εtI), σ(z) = 1
1+exp(−z) and we abbreviate ŷ(X|θ) as ŷ.

Circular Distributed Framework. We propose to optimize FMs in a com-
pletely new distributed framework, named as Circular Distributed framework
(CD). Instead of exchanging models between server and clients, CD discards the
server and allows the communications between clients which release the band-
width pressure of the server thoroughly.

In model training process, CD keeps one copy of the whole model in each
worker, and allows each worker to learn the model parameters based on the
partial dataset assigned to it. Thus, we will learn the same number of models
as the number of workers in the framework. We also keep the scheduler node
like the master-slave framework does to record the global variables such as the
worker identifications. During the model prediction process, CD leverages all
the models to predict the same test data independently, and then adopts the
bagging method to merge the predictive results together as the final results.
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Following the above idea, each model is learned by a worker independently.
However, as each worker only captures partial sparse dataset, the model learned
by each worker is not sufficient and cannot achieve good predictive performance.
To obtain sufficient learning for each model, we design a model scheduling strat-
egy. The basic idea is to allow each worker to be able to update not only the
model being located at it, but also the models that are located at other workers.

Scheduling Strategy. We propose an efficient circular scheduling strategy to
determine the next model to be updated by a worker. When a model is being
updated by a worker, it can not be updated by any other workers. Thus, we
keep a vacant model list in the scheduler node, to record all the models that are
not being updated by any worker. In addition, we also keep an updated model
list for each worker in the scheduler node, to allow each worker to only select
the models that are not updated by it before. This principle makes a model to
be learned in sufficient datasets as much as possible. The scheduler node should
be accessed whenever a worker finishes current work and plans to select a next
model to update. Our proposed circular scheduling strategy is to arrange all the
workers in a ring and select the worker adjacent to the current worker in the
ring, and then allow current worker to pull the model of the selected worker.
When the selected model has been in the updated model list of the current
worker, another model will be selected. The circular scheduling strategy can
avoid the model conflict and thus reduce the checking time in updated model
list and rescheduling time. Moreover, we select the model located at the same
machine in priority. Specifically, we first select the workers located at the same
machine as that of the current worker being located at (i.e., select the CPU
cores with the same IP address), and then adopt the proposed strategy to select
a worker within those workers (i.e., select one CPU core from the cores with the
same IP address but different ports). Other workers in different machines will
be tried when no available workers in the same machine can be selected. Then
current worker pulls the model from the selected worker. The adopted strategy
further avoids redundant communications between different machines. Figure 1
illustrates the general idea of model scheduling strategy in our method. From the
figure, we can see that All the registered workers are arranged in a ring. When
worker w4 finishes updating the model m3, it selects model m4 on the ring to be
next one. However, m4 has already been updated by w4, thus w4 requests the
next adjacent worker w5 that is located at the adjacent IP address.

Other Update Strategies. First, we leverage a multiple-iteration update
strategy to reduce the communication cost between the workers. In this way,
the communication cost will be reduced to 1

τ of that of one-time update. More-
over, we only need to transmit the necessary partial model parameters between
workers, as the sparsity of high-dimensional dataset in each worker. Finally, to
address the problem of delay caused by the imbalanced computational time,
we randomly assign a key ranging from one to the number of the workers to
each data sample, and aggregate the data samples with the same key into the
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Fig. 1. Scheduling strategy of CDSFM.

same partition. By this method, the instances can be equally distributed to each
worker which ensures the computational capabilities of the workers will be close
to each other.

Theoretical Analysis of Model Prediction. As introduced before, we lever-
age all the learned models to predict the same test instance independently, and
then adopt the bagging method [1] to merge all the results of different models.
The bagging method actually follows the principle of majority voting. According
to the theory of majority voting [6], we know that if multiple models are trained
independently and all the models have the same individual accuracy, the result
of majority voting is guaranteed to improve on the individual performance.

Suppose that we have learned S models independently and the models have
the same individual accuracy p. A model with accuracy p indicates that the
probability of a data sample being predicted correctly by the model is p. Thus,
following the principle of majority voting, the probability of a data sample being
predicted correctly by multiple models can be represented as:

pc(S) =
S

∑

i=k

(

S

i

)

pi(1 − p)S−i, (4)

where k is the smallest number of the models that composes the majority. We
take k being odd as example to present the theoretical analysis as follows. The
analysis is the same when k is even.

The recursive formula derived from Eq. (4) is given by [6] as Eq. (5). From
Eq. (5), we can see that if each model’s accuracy p > 0.5, 2p − 1 > 0, then
pc(2S + 1) > pc(2S − 1). Thus we can get that pc(S) increases monotonically
with the number of models, S. According to the above recursive formula, we can
further derive the specific improvement of the predictive accuracy of multiple
models on that of a single model as Eq. (6).

pc(2S + 1) − pc(2S − 1) = pS(1 − p)S

(

2S − 1
S

)

(2p − 1). (5)

pc(S) − pc(1) = (2p − 1)

S−1
2

∑

i=1

pi(1 − p)i

(

2i − 1
i

)

, (6)
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3 Experiments Setting

Datasets. We perform experiments on two different genres of datasets for
CTR prediction: Criteo and Avazu. The number of features in each data sample
are 46,811 and 4,036, respectively. And the total number of data instances are
22,917,906 and 20,214,983, respectively.

Comparison Methods. We compare the following methods for classification:

FM: FMs optimized by SGLD and implemented in a single machine.
MSFM: FMs optimized by SGLD and implemented in MS framework.
CDFM-SGD: FMs optimized by SGD and implemented in CD framework.
CDSFM: FMs optimized by SGLD and implemented in CD framework.

Evaluation Measures and Platform. In accuracy performance, we use accu-
racy as the evaluation metric to compare the performance of different methods.
In efficiency performance, we use the elapsed time of model learning to show
the speedup and scalability of CDSFM comparing with other methods. All dis-
tributed methods are performed on a platform containing 15 machines, of which
each machine contains 4 CPU cores (2.0 GHz) and 16 G memory. FM is per-
formed in one machine of the platform.

Accuracy and Efficiency Performance. In Fig. 2, we compare the accu-
racy performance and efficiency performance of all the comparison methods.
For each method, we conduct maximal 300 iterations, and record the accuracy
and elapsed time when conducting 1/3, 1/2, 2/3 and the whole of the maxi-
mal iterations. From the results, we can see that first, the model performance
can be improved by conducting more training iterations. Second, the proposed
CDSFM can achieve better accuracy performance with less training time than
the traditional MS framework. This may due to the reason that we reduce the
communication cost, and keep the accuracy performance by the model bagging
strategy. Finally, on all the datasets, CDFM-SGD performs a little worse than
the proposed CDSFM, which indicates that SGLD can achieve better perfor-
mance by injecting Gaussian noises. Note that on the dataset Criteo, the result
of MSFM is not presented, as the method fails on the large dataset with large
model size. The phenomenon is also shown in Fig. 4(a). We further vary the the
number of maximal iterations, T , as 100, 200, and 300, and compare the final
accuracy and elapsed time of different methods. The results in Fig. 3 show that
CDSFM achieves a 3.3–4.7× speed up over FM, and a 2.3–3.3× speed up over
MSFM, while obtains better accuracy than the two comparison methods.

Scalability. In Fig. 4, we increase the size of the dataset by replicating the
original dataset as its 1.2, 1.5, 2.0, 2.4 and 3.0 times, and check the running time
of different methods on each dataset. In these experiments, S is set as 29, T is set
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(a) Criteo (b) Avazu

Fig. 2. Accuracy and efficiency performance of all the comparison methods.
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Fig. 3. Accuracy and efficiency performance under different number of iterations.

as 150, and τ is set as 100. We can see from the results that the increasing rate
of the running time of CDSFM is much slower than that of FM, as the dataset
is divided into multiple workers in CDSFM and the whole running time is saved.
Meanwhile, on the largest dataset Criteo, after the dataset is larger than 2.4
times of the original dataset, FM fails to give the result, as the memory of a
single machine is not large enough to hold the large dataset. In addition, MSFM
fails even on the original Criteo dataset. It may be that with the increasing of
the dataset, leading to the increment of the model size in each worker. The total
communications may exceed the bandwidth limitation of the server.

In Fig. 5, we reduce the size of the model parameters by different proportions,
and check the running time of different methods on each model size. We can see
that the increasing rate of the running time of CDSFM is much slower than that
of FM, as the model is divided into multiple workers in CDSFM and the whole
running time is saved. The increasing rate of the running time of CDSFM is also
slower than that of MSFM, as MSFM requires much more communication cost
between the workers and the server. In addition, on the largest dataset Criteo,
after the model size is larger than 83% of the original model size, MSFM fails
to give the result, as the size of models exchanged between all the workers and
the server exceeds the bandwidth limitation of the server.
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(a) Criteo (b) Avazu

Fig. 4. Speedup when increasing the data size.

(a) Criteo (b) Avazu

Fig. 5. Speedup when increasing the model size.

Parameter Analysis. We study how the number of worker number, S, affects
the accuracy and efficiency performance of the proposed CDSFM. In these exper-
iments, T is set as 150, and τ is set as 100. Figure 6 shows the accuracy and effi-
ciency performance of CDSFM by varying the number of workers as 11, 15, 21,
25, and 29 on the datasets of Criteo. From the figure, we can see that first, the
accuracy increases with the number of workers; second, the increment becomes
slow and the accuracy becomes stable when there are more than 21 workers. The
result is consistent with the theoretical analysis in Sect. 2.

(a) Accuracy of Criteo (b) Efficiency of Criteo

Fig. 6. Effect of worker number S on the performance of CDSFM.
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4 Related Work

Distributed Architectures. In order to deal with the large-scale data mining
problems, a great deal of distributed computing architectures were proposed.
Hadoop [11] is a popular and easy to program platform, that provides easy pro-
gramming interfaces for efficient data-flow operators, such as map, reduce and
shuffle. The MapReduce implementation of Hadoop needs to write the program
states into disk every iteration. Spark [15] improves upon Hadoop by keeping
machine learning program states in memory, and thus gains large performance
improvement. Graph-centric platforms such as GraphLab [8] and Pregel [9]
efficiently partition graph-based models, but it is not clear whether the asyn-
chronous graph-based models can produce correct machine learning programs,
due to the lack of theoretical analysis. The above mentioned architectures fol-
low the master-slave framework, where the clients always need to pull the latest
models from the server and push the updated models back. Thus, the network
bandwidth between the server and all the clients becomes a bottleneck. Recently,
several systems were built upon the framework of Parameter Server [2,3,5,7].
Parameter Severs allow delayed asynchronous updates and also exchange partial
model between the server and the clients, and thus can handle bigger models
with billions of parameters. The conceptual architectural design of Parameter
Server was introduced in [7] and the formalization was summarized in [16]. Based
on the framework of Parameter Server, Dai et al. proposed Petuum [2], which
allows programmable operation over global parameters.

5 Conclusions

In this paper, we describe CDSFM, a novel method to optimize and distribute
Factorization Machines (FMs). Specifically, in CDSFM, we first optimize FMs
using SGLD algorithm to alleviate the problem of local optimum. Then, we dis-
tribute SGLD-based FMs in a circular distributed framework. Furthermore, we
adopt model bagging strategy when predicting to improve model performance.
The experimental results show that CDSFM can achieves a 2.3–4.7× speed-up
over the comparison methods while achieves better accuracy performance.

Acknowledgments. This work is supported by National Key Research&Develop Plan
(No. 2016YFB 100702), and NSFC under the grant No. (61772537, 61772536, 61702522,
61532021).
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Abstract. Alipay (https://global.alipay.com/), one of the world’s
largest mobile and online payment platforms, provides not only pay-
ment services but also business about many aspects of our daily lives
(finance, insurance, credit, express, news, social contact, etc.). The home-
page in Alipay app (https://render.alipay.com/p/s/download) integrates
massive heterogeneous information cards, which need to be ranked in
appropriate order for better user experience. This paper demonstrates
an industrial-scale system for heterogeneous information card ranking.
We implement an ensemble ranking model, blending online and chunked-
based learning algorithms which are developed on parameter server
mechanism and able to handle industrial-scale data. Moreover, we pro-
pose efficient and effective factor embedding methods, which aim to
reduce high-dimensional heterogenous factor features to low-dimensional
embedding vectors by subtly revealing feature interactions. Offline exper-
imental as well as online A/B testing results illustrate the efficiency and
effectiveness of our proposals.

Keywords: Ranking system · Industrial application · Embedding

1 Introduction

Alipay, which is known as one of the world’s largest mobile and online payment
platforms, also provides services on many aspects of our lives. For example,
trading funds, purchasing insurances, and tracing express delivery can be done
easily within the app. Users may also receive recommendations of news, movies,
restaurants, promotions, or friends’ updated posts based on their own interest.
Moreover, one can even plant trees for public interest while using Alipay. Figure 1
demonstrates screenshots of the homepage in Alipay app. Massive heterogeneous
information are integrated here, and each of which is demonstrated as ‘card’
(called information card, or card for short) with pinterest-style layout. Users
scroll up and down to read them and click which they prefer to open a detail page
for further operations. Massive cards can lead to information overload problem,
hence personalized information card ranking becomes very important for better
user experience.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 713–724, 2018.
https://doi.org/10.1007/978-3-319-91458-9_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91458-9_44&domain=pdf
https://global.alipay.com/
https://render.alipay.com/p/s/download
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Loan Transaction 
Promotion  

Express Delivery

Recommended News

Promotion

Money Fund Income

Ant Forest Social

Fig. 1. Screenshots of the homepage in Alipay app. The left one is the first page, then
the right one (i.e., the second page) comes after scrolling.

Information card ranking system for the homepage in Alipay app is challeng-
ing mainly from three aspects:

Heterogeneity. The ranking problem here is quite different from other indus-
trial ranking or recommendation problems due to the heterogeneity of ranking
targets (i.e., information cards). Most of industrial ranking/recommendation sys-
tems have a commonality that their target items are homogeneous (e.g., Movies
in Netflix [4], user-generated videos in YouTube [3], and news feeds in Face-
book [1]). However, in our scenario, ranking targets (i.e., information cards) can
be quite different from each other. Heterogeneity of information cards means
complicated feature engineering and very-large-scale feature space. Our system
requires an efficient and effective method to alleviate this problem and reveal
the subtle interaction between features.

Time-Awareness. Plenty of information cards are generated every second. The
ranking system requires time-awareness, which means the ability to model newly
generated information cards and the latest user operations. Our system should
implement online feature extraction, real-time user feedbacks collection as well
as online learning model to ensure time-awareness. Moreover, balancing new
information cards with those have been well-established is also important for
our system.

Scalability. Similar to other industrial scenarios, the homepage in Alipay app
serves huge magnitude of users with massive information cards. Many state-
of-the-art ranking or recommendation algorithms perform excellent on smaller
datasets but fail to handle such a massive problem. Industrial-scale distributed
learning system and algorithms become the foundation of our system. Moreover,
efficient online services and real-time computation systems are also essential for
scalability.

Matrix factorization [12] and its variants [7,9] play an importance role in
recommendation, and achieve exciting performance in many real-world rating
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prediction problems. However, they fail to handle large-scale auxiliary features of
heterogeneous business. Recently, deep learning draws more attention of the rec-
ommendation community [16] and has been applied successfully in real-world rec-
ommender system [3]. But it is difficult to be applied in online learning settings
and thus fails to satisfy the time-awareness demand in our scenario. Recently,
some proactive systems such as Google Now and Apple Siri also present informa-
tion cards to their users. Some works propose zero-query ranking method [13] and
proactive search/recommendation systems [14] for card ranking for these appli-
cations. But the variety of information cards in our problem is much greater,
as well as the size of user feedbacks. That means methods worked well on those
situations may fail in our scenario due to the heterogeneity and scalability chal-
lenges.

Considering the three challenges mentioned above, we formalize the infor-
mation card ranking problem as Click-Through Rate (CTR) prediction to pre-
dict whether users will click cards or not. When a user request occurs, its con-
tained cards are ranked by the predicted CTR and sent back to the app. In
this paper, we demonstrate an industrial-scale system with online/chunk-based
learning ensemble model based on elaborate online/offline feature engineering.
Online learning model (i.e., distributed bound delay FTRL-Proximal) captures
latest user operations and newly generated information cards, while chunk-based
learning model (i.e., a modified version of boosted trees plus logistic regression)
is responsible for long-term user interest and well-established cards. The ensem-
ble of them is able to balance the time-awareness demand between short-term
variations and long-term characteristics. All of these algorithms are implemented
on our industrial-scale parameter server based distributed learning system, and
are able to handle billions of training samples and features. Moreover, inspired
by word/document embedding methods, we propose efficient and effective factor
embedding methods to reduce user’s massive heterogenous features to a real-
valued, low-dimensional vector representing his/her latent characteristics, which
also reveals subtle interactions between features.

The remainder of this work is organized as follow: Sect. 2 presents a brief
system overview. Sections 3 and 4 describe feature engineering and the ensem-
ble model respectively. In Sect. 5, offline experiments and online A/B testings
illustrate the performance of proposed factor embedding method as well as the
online/chunk-based learning ensemble model. Finally, Sect. 6 presents the con-
clusion and future work.

2 System Architecture

Figure 2 demonstrates the architecture of our system. When users launch the
Alipay app, our system will accomplish the online personalized card ranking
procedure within several hundred milliseconds (red lines in Fig. 2). After that,
users with different interests receive cards in different orders. In Fig. 1, cards
about fund income and finance product promotion rank higher since the user
heavily involved in finance business with Alipay. Users’ feedbacks (e.g., click after
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Fig. 2. Architecture of the heterogenous information card ranking system. Dashed lines
indicate data flow of user feedbacks after receiving cards. (Color figure online)

exposure) will be recorded by clients or servers and sent back to our system for
training sample construction and online feature generation (dash lines in Fig. 2).

Card Recall module receives user request from client, and then gathers all
candidate cards from various business systems. Different from other industrial
recommender systems [3], our system only focuses on ranking and leaves can-
didate generation to various business system. Specifically, cards come from dif-
ferent sources in different ways. For example, some are triggered by particular
operations of user or state change of business (e.g., notification cards), while
some are delivered in real time (e.g., news and friends’ updated posts). Hence
it’s impractical to build an overall system containing candidate cards generation.

Feature Generator module performs feature engineering, which includes two
sub-modules. Online Feature Generator is deployed on a distributed, high-
efficiency real-time computation system. It collects the latest user feedbacks
and provides up-to-the-minute features. Offline Feature Generator, based on the
MaxCompute platform in Alibaba Cloud1, gathers massive features of users and
cards from various business systems and performs factor embedding technique
(will introduce in Sect. 3.2). Especially, the proposed factor embedding proce-
dure reduces user’s high-dimensional heterogeneous business factor features into
a low-dimensional embedding vector for model training.

Sample Generator is also deployed on the real-time computation system, sim-
ilar like Online Feature Generator. It constructs real-time training samples, by
joining features from online predictor with the corresponding user feedbacks
(i.e., click as positive label while not click as negative). Samples are generated
sequentially for online learning model, and also stored in data warehouse for
chunk-based learning model.

Model Training module, implemented in parameter server mechanism on
KunPeng platform [18], blends online learning model and chunk-based learning
model. The online learning algorithm processes tens of thousand training sam-
ple and updates model in second, while chunk-based learning model is trained
on billions of training samples and features within hours. Trained models are
pushed periodically to Online Predictor for scoring.
1 https://intl.aliyun.com/product/maxcompute.

https://intl.aliyun.com/product/maxcompute
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Online Predictor is the central module of the whole system, which is responsi-
ble for two things: feature processing and scoring. After receiving candidate cards
from Card Recall module, it queries both Online Feature Generator and Offline
Feature Generator to gather features of the target user and his/her cards, and
then perform the simple and effective feature interaction. Scoring is processed
after feature processing, with the latest online/chunk-based learning ensemble
model. Cards are ranked according to the personalized predicted CTR scores and
returned to Card Recall module, and then back to the app. Another data flow
of Online Predictor is to immediately deliver the whole feature vectors to Sam-
ple Generator, which is used to construct training samples for Model Training
module.

Moreover, offline evaluation based on AUC metric helps to guide our system
development, especially for training chunk-based model and factor embedding.
Nevertheless, online A/B testing results hold the final determination of effective-
ness of the system. This is because online A/B testing results may be inconsistent
with offline evaluation.

3 Feature Generator

In this section, we will briefly describe the feature engineering framework and
mainly focus on the proposed factor embedding methods.

3.1 Feature Generator Overview

Online Feature Extraction. Online or real-time feature extraction requires
timeliness and is quite expensive. Hence we only extract simple but effective
features which reflect temporary states of users and cards. For users, the lat-
est actions greatly affect their following operations. For example, a user just
reviewed funds information within the app is more likely to be attracted by a
fund promotion card rather than other promotions or movie recommendation
cards. To do this, we use the k latest interactions between users and our servers
as online user features. On the other hand, the amount and ratio of click in
recent minutes can describe current popularity of cards and are used as online
card features.

Offline Feature Extraction. Our data scientists develop plenty of useful
factors to comprehensively describe different perspectives of each user within
his/her business (e.g., online shopping behaviors on Taobao/Tmall platform,
offline payments with alipay, investments of funds on Ant Fortune platform,
flight and hotel booking on fliggy.com, and so on). Thanks to the MaxCompute
platform, aggregating users’ heterogenous business factors can be done easily and
efficiently. Then, the factor embedding module (will be presented in Sect. 3.2)
reduces the original high-dimensional business factor space into low-dimensional
embedding space, which represents long-term characteristics of users. On the
other hand, when cards are published, their profiles (publisher, key words, rela-
tive business, etc.) will be tagged on them as card features.
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Feature Interaction. The ranking problem in our scenario involves two roles:
users and cards. To perform personalized ranking, user features must interact
with card features. Considering that feature interaction must be done in Online
Predictor which requires low latency, we construct interactive features by apply-
ing the efficient Cartesian product of user and card feature sets. Factor embed-
ding procedure, which reduces the dimension of user’s business factor space
significantly, also prevents the curse of dimensionality in Cartesian product.

3.2 Factor Embedding

Users’ business factors are collected from various heterogeneous business sys-
tems. Factors derived from one business rarely overlap with the others. Therefore,
the dimension of business factor space is too high to perform real-time feature
interaction. Moreover, communication traffic, storage, and the failure rate of
feature queries are likely to increase as the feature size becomes bigger. Some
unsupervised dimensionality reduction methods, such as PCA [15] and autoen-
coder [6], can help to transform high-dimensional vector into lower-dimensional
latent vector. However, a small portion of factors update daily in our scenario,
which require re-training PCA or autoencoder to update latent vectors.

In order to alleviate this problem, we propose to learn distributed represen-
tation of business factor and user in low-dimensional space, which is inspired
by neural language models. Word2vec models [11] (e.g. continuous bag-of-words
and skip-gram) learn low-dimensional distributed embedding of words by utiliz-
ing the dependence of target word and its local context. Inspired by word2vec,
[8] involves vectors to represent paragraphs and learn word and paragraph vec-
tors together. [2] introduces corruption to capture information of global context
for better representation of paragraphs.

In our scenario, user’s latent characteristics determine his/her behaviors in
various business, which are characterized by massive business factors. The goal of
our proposal is to learn low-dimensional vector to represent latent characteristics
of business factors and users. In analogy with word or paragraph embedding
methods, the proposal factor embedding methods regard a single business factor
as a word, while the whole factor set of certain user as a paragraph. We first
define some notations as follow:

– U : training user set of size n, in which each user u contains a set of heteroge-
nous business factors {f1

u , . . . , f tu
u };

– F : a set of m factors;
– x ∈ R

m: Bag of Words (BoW) of a user, where xi = 1 iff the i-th factor
appears in the user’s factor set;

– cf ∈ R
m: BoW of the sampled factor subset w.r.t to factor f , cf

j = 1 iff the
j-th factor is sampled in current iteration;

– U ∈ R
d×m: matrix of users’ distributed representation, in which each column

Uu denotes a d-dimensional embedding vector of user u;
– W,W′ ∈ R

d×m: projection matrices from input space to hidden space and
from hidden space to output space. We use wf and w′

f to denote column in
W and W′ for factor f .
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Fig. 3. Architectures of the factor embedding models.

Figure 3(a) shows the architecture of the first proposed model (called FE1).
Similar to word/paragraph embedding, our proposal consists of an input layer,
a hidden layer, and an output layer for target factor prediction. Target factor
is predicted by an average of other t factors sampled randomly from the same
user. Inspired by [8], user vector also contributes to target factor prediction. We
define the probability of observing a target factor f of a user u given t sampled
factors of the same user as:

P (f |cf ,Uu) =
exp(w′

f
T( 1

1+t (Wcf + Uu)))
∑

f ′∈F exp(w′
f ′

T( 1
1+t (Wcf + Uu)))

. (1)

Matrices U, W, and W′ are then learnt by minimizing the total negative
log-likelihood on the whole training set as follow:

U,W,W′ = arg min
U,W,W′

−
n∑

u=1

∑

f∈Fu

log P (f |cf
u,Uu), (2)

where Fu represent the factor set of user u.
Each time, we choose a factor of certain user and randomly sample other t

factors from his/her factor set to update the corresponding parameters. Exactly
computing the probability in Eq. 1 is impractical, two approximation techniques
(i.e., negative sampling and hierarchical softmax [11]) can help to approximate
it efficiently. To generate embedding for a new user, matrices W and W′ are
fixed and only update the user vector until convergence.

To further improve efficiency and effectiveness, we propose another factor
embedding method (called FE2, shown in Fig. 3(b)), inspired by [2], to represent
user vector as the average of his/her factor vectors. [2] introduces corruption to
capture information of global context for better representations of paragraphs.
In our scenario, information of global context (i.e., user’s latent characteristics)
is essential for learning representations of factors and users, rather than local
context. To perform unbiased corruption to user’s factor set, we remove signifi-
cant portion of factors with probability q, and represent the target factor using
1

1−q times of embedding vectors of the remained factors. We define the BoW of
corrupt sampled factor subset c̃ as follow:
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c̃i =

{
0, with probability q
ci

1−q
, otherwise

. (3)

Then we define the probability of observing a target factor f of a user u given a
corrupt factor subset of the same user as:

P (f |c̃f ) =
exp(w′

f
T( 1

tu
Wc̃f ))

∑
f ′∈F exp(w′

f ′
T( 1

tu
Wc̃f ))

, (4)

where tu denotes the size of the corrupt factor set. Matices W and W′ are learnt
similarly with FE1.

[2] proves that corruption is equivalent to regularization on factors, which
help to avoid overfitting. Factor that appears frequently will get larger penalty
than a rare one. Moreover, regularization will also diminished as a factor is crit-
ical to a confident prediction. Compared with FE1, the inference of user vector
is more efficient since it represents each user as an average of the embeddings of
his/her factors: Uu = 1

tu

∑
f∈Fu

wf .

4 Model Training

Based on feature engineering proposed in Sect. 3, our system ensembles online
learning and chunk-based learning models. As mentioned above, we model the
ranking problem as click-through rate prediction, which is a binary classification
problem to distinguish whether a user will click a card or not. Figure 4 demon-
strates the framework of the online/chunk-based learning ensemble model. All
of the learning algorithms are implemented on KunPeng platform [18], an indus-
trial parameter server based distributed learning system, and able to handle
real-world datasets with billions of samples and features.

Online Learning Model. To perform online learning, we implement online
FTRL-Proximal algorithm [10] (Online-FTRL for short) on Kunpeng. Online-
FTRL can quickly adjust model according to user feedbacks (click information
card or not), thus enable the model to reflect user’s intentions and preferences
in real time and further improve online prediction accuracy. Suppose gt ∈ R

d is
the d-dimensional gradient of Online-FTRL at time t with each element corre-
sponding to the gradient of each model parameter, and gt,i is the i-th element in
vector gt. Similarly, ηt ∈ R

d is the d-dimensional learning rate vector of Online-
FTRL at time t with each element corresponding to the learning rate of each
model parameter, and ηt,i is the i-th element in vector ηt. Then, the model w of
Online-FTRL algorithm is iteratively updated by:

wt+1 = arg min
w

(g1:tw +
1
2

t∑

s=1

δs ‖ w − ws ‖22 + λ1 ‖ w‖1 + λ2 ‖ w − ws ‖22), (5)
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where g1:t =
∑t

s=1 gs and δt = 1
ηt

− 1
ηt−1

. Typically, ηt,i is designed as

ηt,i =
α

β +

√

(
t∑

s=1
gs,i

2)

, (6)

where β = 1 is usually good enough and α depends on the features and datasets.
For more details about FTRL-Proximal algorithm, please refer to [10].

Fig. 4. Architecture of the online/chunk-based learning ensemble model.

Chunk-Based Learning Model. For better utilization of longer historical
data to depict long-term characteristic of users/cards, chunk-based learning
model needs to contribute for the final prediction. Furthermore, model learnt
from massive historical data can alleviate instability of online learning model.
As shown in the yellow box of Fig. 4, a modified version of the boosted trees
plus logistic regression [5] is applied as chunk-based learning model. Distributed
Multiple Additive Regression Trees (MART) [17] learns directly from user and
card features (including offline user factor embeddings/card tag features and
online user/card features). The outputs (i.e., one-hot encoding vector of leaf
nodes) of each tree are concatenated and treated as inputs for a distributed
Sparse Logistic Regression (Sparse-LR). Additionally, card features, as well as
interactive features generated by Cartesian product of user factor embeddings
and card features, are also used as input of Sparse-LR. The MART model learns
more complex feature interactions inherently and achieves better generalization
performance, while the Sparse-LR part, especially the additional wide compo-
nent, achieves memorization and avoid over-generalization.

Since online prediction requires high efficiency, we make final prediction by
simply applying weighted average on outputs of Online-FTRL model and chunk-
based learning model. Weights of each model are adjusted according to online
A/B testing results.
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Fig. 5. AUC performance of factor embeddings and different chunk-based model.

Table 1. CTR improvements of the online/chunk-based learning ensemble model.

Date Mon. Tue. Wed. Thu. Fri. Sat. Sun.

Improvement 12.5% 12.7% 13.5% 12.4% 15.2% 15.1% 13.3%

5 Experiments

In this section, we demonstrate experimental results to show the effectiveness of
proposed factor embedding methods, as well as the online/chunk-based learning
ensemble model. Notice that in the following experiments, the hyper-parameters
of all the models are set according to the best cross-validation results.

5.1 Effectiveness of Factor Embedding

Two datasets are used to show the effectiveness of factor embedding methods.
Factor embeddings are learnt from the first dataset (called D1), while the effec-
tiveness is evaluated on the second one (called D2).

We first present statistical information of D1 and describe how to generate
user factor embedding on it. D1 contains tens of million of users with more than
10000 heterogenous business factors of them. Users in D1 are randomly chosen
from all active users in the last week of March, 2017. A certain user’s factor
set consists of the server-side interfaces which he/she interacted during that
time. It’s a portion of the whole factor set in our scenario. It can approximately
represents the user’s recent behaviors in Alipay app. FRPCA, FE1 and FE2
are trained on D1. Specifically, FRPCA is performed on user-factor matrix, and
each row of the transformed matrix represents user’s feature for D2. For FE1
and FE2, we infer the user embeddings (as user feature for D2) based on factor
embeddings learnt on D1.

We then present how to compare the performance of difference factor embed-
ding methods on D2. D2 contains hundreds of millions of user feedbacks sam-
pled from the first week of April, 2017 (next week from D1), and is divided into
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training set (the former 4 days) and validation set (the latter 3 days). We take
user feature generated from D1 and card tag feature as the input of our model.
Then, we train a MART on training set to predict which cards users will click
on validation set. Finally, we calculate AUC (Area Under Receiver Operating
Characteristic Curve) based on the predictions and the ground truth feedbacks.

According to Fig. 5(a), FE2 outperforms other methods with d ≥ 64 (d is the
size of embedding vector). FE1 with d = 128 is nearly the same as the original
features, while FRPCA seems hard to achieve good performance in this setting.
Our proposed factor embedding methods (especially FE2) can not only reduce
high-dimensional factor space to low-dimensional space (more than 5000 original
factors are reduced to embeddings of size 128 or less), but also reveal subtly
interactions between factors for further improvement of the CTR prediction.

5.2 Effectiveness of Online/Chunk-Based Learning Ensemble Model

Figure 5(b) shows the AUC performance of chunk-based ensemble model, com-
pared with single Sparse-LR and MART, during the first week of April, 2017.
Card features and interactive features (generated by Cartesian product of user
and card features) are applied to Sparse-LR, while user and card features are
directly applied to MART since tree-based model can learn feature interactions
inherently. All the models are trained on the entire user feedbacks during the last
seven days. We report AUC score based on their predictions of user feedbacks in
the next day. Obviously, the chunk-based ensemble model significantly outper-
forms the other two due to its ability to achieve both memorization and general-
ization. Remarkably, Sparse-LR outperforms MART in this scenario because of
the effectiveness of feature interaction by Cartesian product, as well as its ability
to handle larger-scale feature space. Notice that the AUC scores in Fig. 5(b) are
greater than those in Fig. 5(a) since models in Fig. 5(b) are trained on the entire
user feedbacks (i.e., billions of samples) rather than a sampled dataset.

Moreover, Table 1 shows the online A/B testing results of CTR improvement
of the online/chunk-based learning ensemble model, compared with ranking by
chunk-based model only, during the first week of April, 2017. Thanks to the abil-
ity to subtly capture user and card’s short-term variations, more than 12% CTR
improvement is achieved by the online/chunk-based learning ensemble model,
which means tens of millions of clicks increase every day.

6 Conclusions

In this paper, we have demonstrated an industrial-scale system for heterogenous
information card ranking in Alipay. Offline experiments illustrate the effective-
ness of the proposed factor embedding methods and the online/chunk-based
learning ensemble model, while online A/B testing result shows a significant
CTR improvement achieved by the system. For further improvement of user
experience, how to model the staying time of user to each card needs a deeper
exploration.
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Abstract. For a transactional database system, the efficiency of logging
is usually crucial to its performance. The emergence of new hardware,
such as NVM and SSD, eliminated the traditional I/O bottleneck of
logging and released the potential of multi-core CPUs. As a result, the
parallelism of logging becomes important. We propose a parallel log-
ging subsystem called TwinBuf and implemented it in PostgreSQL. This
solution can make better use of multi-core CPUs, and is generally appli-
cable to all kinds of storage devices, such as hard disk, SSD and NVM.
TwinBuf adopts per-thread logging slots to parallelize logging, and a
twin-log-buffer mechanism to make sure that logging can be performed
in a non-stop manner. It performs group commit to minimize the persis-
tence overheads. Experimental evaluation was conducted to demonstrate
its advantages.

1 Introduction

Durability of transactions is the ability to protect data validity from software and
hardware failure. Most transactional database systems utilize logging to ensure
durability. When database systems shutdown abnormally due to loss of electrical
power or errors, logs on the permanent storage guarantee that all modifications
made by committed transactions are not lost. ARIES (Algorithms for Recovery
and Isolation Exploiting Semantics) [10], a particular type of WAL (write-ahead
logging) mechanism, is the most widely adopted approach, which dominates the
majority of modern database systems. In ARIES, each change of a data object
must be first written to a log and flushed to permanent storage before the change
becomes persistent. That is, the log must persist before the modified data object.
If this constraint is met, modified data objects can be recovered from the logs
when the system shutdowns abnormally, by redoing committed transactions and
undoing aborted transactions.

Most traditional database systems manage logs in a centralized way, in which
all worker threads/processes insert logs into the same log buffer. Before a trans-
action commits, it must flush the log buffer, which contains its log records, to the
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 725–737, 2018.
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hard disk. Upon the flush, the buffer may contain logs created by other trans-
actions. This centralized mechanism is designed for hard disks. As disk I/Os are
expensive, it is desirable to write as many logs as possible to the disks through
a single I/O operation. Some systems even employ group commit [7,8,12,14],
so the I/O bandwidth of hard disks can be fully exploited. However, as new
storage devices emerge, such as NVM (Non-Volatile Memory) and SSD (Solid
State Disk), the centralized design becomes the potential bottleneck of trans-
action processing. Especially when multicore CPUs are employed, locks on the
single buffer can be congested, before the I/O bandwidth and the CPU cores
are saturated. The bottleneck becomes increasingly serious when the number of
CPU cores increases. Developers of PostgreSQL realized this problem and made
several patches to improve the scalability of WAL insertions [1,2] . However, as
discussed subsequently, these patches still suffer from lock contention. In this
paper, we present a once-for-all solution for PostgreSQL.

With the emergence of SSD and NVM, researchers in both academia and
industry starts to investigate how to deploy SSD and NVM in database systems.
Both SSD and NVM offers much higher read/write throughput that disks. Intel
released OptanteTM SSD DC P4800X Series whose read/write latency is less
than 10µs and 4 KB random read/write performance can achieve 500K IOPS.
NVM’s transfer rates is faster than hard disks by several orders of magnitude.
If we use SSD or NVM as the persistent storage for logs, I/O may no longer be
the performance bottleneck. Thus, the bottleneck of centralized logging will be
more evident. In recent years, a lot of research work [4,8,9,14] have studied how
to build specialized logging systems for SSD and NVM and SSD. However, they
are not general solutions, as each of them only aims at one type of hardware.
For a generic DBMS, such as PostgreSQL, a single logging scheme that applies
to different types of storage devices, including hard disks, SSD and NVM, is
desired.

In this paper, we designed and implemented a generic logging scheme for
PostgreSQL, called TwinBuf. While TwinBuf was originally designed for NVMs
and SSDs, it is also effective for disk equipped systems. In its essence, TwinBuf
use two buffers, which alternatively receive logs from transactions and flush logs
to persistent storage. This design allows logging to be performed in a non-stop
manner. It is thus superior to the original single buffer approach of PostgreSQL,
in which log insertion and log flush sometimes have to block each other. In each
buffer, TwinBuf assigns each worker thread/process an exclusive log slot, so that
they do not need to contend for buffer space. This allows us to maximally utilize
the parallelism of multi-core CPUs. Moreover, TwinBuf applies group commit, to
minimize the overheads of direct storage access. We conducted extensive experi-
ments, whose results show that on all storage devices TwinBuf outperforms the
centralized logging scheme in the original PostgreSQL.

The rest of the paper is organized as follows. Section 2 reviews the related
work. Section 3 presents some backgrounds of PostgreSQL and NVM. Section 4
introduces the design of TwinBuf. Section 5 introduces the implementation of the
system. Section 6 evaluates TwinBuf. Section 7 concludes the paper and discusses
directions for future work.
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2 Related Work

Several studies [4,9] have investigated how to perform logging efficiently on SSD.
Because the write latency of SSD is significantly longer than its read latency, the
existing approaches all attempted to minimize the cost of write. For instances,
the approach of [4] uses multiple SSDs; when a write request takes longer than
expected, the system re-issues the request to other SSD devices. The approach
of [15] tried to avoid doing redundant rewrite by using old version of the data
on SSD. In [6], the authors try to integrate buffering and logging. In contrast to
these approaches, TwinBuf attempts to be more general w.r.t. storage devices.
It should not only work on SSD, but also work on newly emerging hardware such
as NVM.

Using NVM as log storage is an obvious way to speedup an OLTP database.
It thus has been studied extensively in recent years.

The authors of [8] developed a NV-Logging module in Shore-MT. NV-Logging
adopts decentralized logging, which allocates each worker a private log space on
NVM. Each worker writes logs to NVM directly. NV-logging uses the cflush
instruction to flush specified cache lines to NVM to ensure the persistence of
logs. As frequent invocation of cflush has negative impact on performance, group
commit is used.

In [14], the authors proposed passive group commit. In this approach, every
worker writes logs to NVM independently. To ensure correctness, each worker
tracks the LSN (Log Sequence Number) of its last log record that is persistent
on NVM (by issuing mfence instructions), and inserts this LSN into a queue.
A daemon thread periodically examines the queue to decide which transactions
can commit successfully. In this approach, whenever a transaction commits, a
mfence will be issued. Frequent mfence may hurt performance.

There are many other work [5,6,11,13,16] attempting to perform logging
on NVM. They all managed to parallelize the logging module, to enhance the
throughput of a DBMS. However, as they all directly write logs to NVM, they
cannot be used on slower storage devices such as SSD and HDD. As a general
logging mechanism, TwinBuf utilizes DRAM buffers to amortize the latency of
slow devices.

3 Background

PostgreSQL’s logging subsystem is a well polished module, and has not changed
significantly in recent years. In this section, we present how this logging subsys-
tem works. We also give a brief introduction of NVM’s features and performance
characteristics.

3.1 Logging Subsystem of PostgreSQL

PostgreSQL uses a single WAL buffer. It allows multiple workers to insert WAL
records to the same buffer concurrently. When inserting a log record, a worker
takes the following steps:
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1. Pack the update information into a log record;
2. Reserve a slot of the right size from the log buffer. The start address of of

the next available slot is maintained by the variable Insert->CurrBytePos,
which is protected by a single latch Insert->insertpos lck.

3. Copy the log record to the reserved slot. A write latch is used to protect the
buffer being written, to ensure that the buffer will not be flushed out before
the write is completed.

The critical section in Step 2 is relatively short, while the one in Step 3 can
be quite long. To improve the degree of concurrency, PostgreSQL 9.4 started
to use 8 write latches in Step 3. Each worker only needs to get one of those
latches before the write operation. While this method solves the concurrency
issue temporarily, when the number of workers increases, the critical section can
still be a bottleneck.

When a transaction is about to commit, it must flush all the log records it
created to the disk. As the same log buffer is shared by all the workers, the
log records created by different transactions interleave with each other. When
a worker flushes the buffer, the logs of other transactions are flushed to the
disk too. PostgreSQL intentionally utilizes this effect to improve I/O efficiency.
When a transaction is about to commit, PostgreSQL will usually wait for a short
period, so that other transactions can put more log records into the buffer. This
allows more log records to be flushed to the disk through a single I/O operation.

As we can see, a centralized log buffer is able to combine several small I/Os
to a bigger one, so as the improve the efficiency of disk I/O. However, such a
centralized logging scheme can also be a potential bottleneck on platforms with
high degree of parallelism, especially those equipped with multi-core CPUs and
high-speed storage, such as SSD and NVM. To exploit the parallelism of multi-
core CPUs and the features of SSD and NVM, we need to break the critical
sections of the logging procedure and parallelize the logging scheme.

3.2 Non-Volatile Memories

NVM is a kind of byte-addressable storage, with very fast access speed. Thus, it
can be used as RAM in computer systems. As NVMs have not entered mass pro-
duction, we use NVDIMMs (Non-Volatile Dual In-line Memory Module) to emu-
late NVM in our platform. NVDIMM is actually an ordinary DRAM equipped
with capacitors and SSDs. When encountering power outage, the capacitors
provide sufficient electric power to flush the contents in the DRAM to the
SSDs. Therefore, NVDIMM is non-volatile. The performance characteristics of
NVDIMM is similar to that of DRAM. While NVM and NVDIMM may differ
in many features, they are not relevant to our design of the logging scheme.
Therefore, we believe that our logging scheme should be directly applicable to
NVMs in the future.

Although NVM is non-volatile, data written to NVM will not be automati-
cally persistent:
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Fig. 1. Twin log buffer based log subsystem

1. Most modern CPUs have multiple levels of CPU caches and most systems
adopt a write-back mode. In this mode, when a CPU writes to a NVM through
the RAM interfaces, the data is placed in CPU caches first. The system needs
to explicitly invoke the cflush or mfence instructions, to flush the data in CPU
caches to NVMs. Otherwise, the data will be lost if the system crashes before
the data is evoked from the cache. However, frequent invocation of cflush or
mfence is harmful to the system’s performance.

2. The latency of NVM’s write operation is usually an order of magnitude longer
than its read operation.

When designing a logging scheme on NVM, we must take the above properties
into consideration. To make the best of NVM, some prototypes [8] let workers
directly write log records into NVM, without using a buffer. We believe that this
design choice does not suit our case. First, frequent flushing CPU caches impacts
the CPU performance seriously. Second, if we put data persistence operations
in critical sections, it will impair the concurrency. Moreover, we expect that our
scheme works for SSD and hard disk too. The performance of random access on
SSDs and disks is however unacceptable for the logging subsystem.

4 Design of TwinBuf

4.1 Overview

TwinBuf has two log buffers, each of which is a segment of continuous space in
DRAM. They take the following two roles, and switch their roles periodically.

1. Working buffer: when taking this role, the buffer is responsible for receiving
log records generated by worker threads/processes.

2. Archiving buffer: when taking this role, the buffer flushes the log records it
has received to the permanent storage.
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A working buffer is partitioned into a large number of slots. Each worker
is allocated an exclusive slot for inserting its log records. Thus, all workers can
insert logs concurrently without interfering each other. This eliminates the crit-
ical section in the logging process. When a worker inserts its logs into a working
buffer for the first time, it first applies for a slot from the buffer. Then all its
log records will be inserted into the slot sequentially. When the slot is full, the
worker applies for another slot from the buffer.

When the buffer’s role is switched to an archiving buffer, it stops receiving
logs and proceeds to flush the logs it has received to the permanent storage, which
could be a hard disk, SSD or NVM. The complete set of logs in an archiving buffer
is called a log batch. A single backend process is responsible for the archiving
job. When certain conditions are met, TwinBuf triggers a role switch between
the two log buffers: the archiving buffer that have finished archiving will be
turned into an empty working buffer; the original working buffer will be turned
into an archiving buffer and passed to the backend process. Figure 1 shows the
architecture of TwinBuf.

As the backend process archives the buffers one by one, the log batches are
written to the permanent storage in a serial order. However, the log records in
each batch are ordered by slots, instead of following the temporal orders of the
transactions. During the recovery process, the system must replay log records in
the temporal order. In the original logging scheme of PostgreSQL, the temporal
order of log records is exactly the order of insertions. Therefore, the offset of a
log record in log file is exactly the order of the redo operation. As mentioned
above, when using the parallel logging scheme of this paper, the offset of a log
record is no longer its temporal order. Therefore, we assign each log record a
global timestamp to represent the time it is inserted.

4.2 Group Commit

When applying a WAL method, transactions can not commit before its log
records are permanent. If we flush log records each time a transaction commits,
it will impair the performance of the system. The latency of disk and SSD is far
lengthier than that of DRAM. Even if we use NVM as the permanent storage,
we still need to flush all CPU caches to materialize the write to NVM, which
is also harmful to the performance. Group commit is able to smooth out the
overheads of log persistence, as it transforms the overheads of multiple commits
into one.

The design of TwinBuf allows us to perform group commit naturally. In Twin-
Buf, when a worker is ready to commit a transaction, it is suspended and waits
for the working buffer containing the commit record to turn into an archiving
buffer and have the logs flushed out. When the backend process finishes flush-
ing the logs, it wakes up the suspended workers, which in turn will wrap up
the transactions and inform the clients. When the system is crowded, multiple
workers may wait for the same archiving step. In effect, their transactions will
commit in a single group.
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As we can see, the frequency of group commit is not determined by individual
transactions, but by how frequent the two buffer switch their roles.

4.3 Switch of Log Buffers’ Roles

In TwinBuf, only the backend process is responsible for switching the log buffers’
roles. The switch occurs at a single point of time. After the point, the roles are
exchanged, transactions start inserting logs to the new working buffer. The pre-
vious working buffer stops receiving logs and becomes the archiving buffer. The
backend process starts flushing the archiving buffer to the permanent storage. In
principle, the switch process does not involve any locking or blocking. Therefore,
it can be very efficient and smooth.

The frequency of role switch is important to the system’s performance. If it
is too frequent, the effects of group commit cannot be achieved. If the frequency
is too low, the latency of transaction will be unacceptable. Considering all the
aspects, we trigger the role switch using the following three conditions:

1. Amount of logs. If the threshold of amount of logs in the working log buffer
reaches a limit, we switch the roles.

2. Time interval. If the roles have not been switched for a certain period of time,
we switch the roles.

3. Number of suspended transaction processes. If too many transactions are
waiting for committing, we switch the roles.

4.4 Checkpointing

When performing a checkpoint, all the dirty pages in the buffer pool are written
to the permanent storage and a checkpoint record is written to the log pointing
to the last log record inserted before the checkpoint. This last log record is
known as the checkpoint position. When performing recovery, redo only needs
to start from the checkpoint position. After the checkpoint, the logs before the
checkpoint position can be safely discarded and their space can be recycled. In
TwinBuf, when a checkpoint is initiated, a role switch is immediately triggered.
The checkpoint position will then be the end of the log batch flushed to the
storage immediately after the role switch.

Most databases systems perform checkpoints automatically. The interval
between checkpoints is usually tunable. If the interval is too short, too many
checkpoints may hurt the performance. If the interval is too big, we need much
more space to store logs and the recovery will take a longer time. In Twinbuf,
we set a upper bound to the checkpoint interval, to make sure there is enough
space on permanent storage for logs. If it is NVM, logs can be flushed faster.
Then the upper bound will be smaller. If there are more CPU cores or more
powerful CPUs, the upper bound will also be smaller.



732 Q. Meng et al.

4.5 Recovery

During recovery, the log space is backwardly traversed. Then, the last checkpoint
record is located and checkpoint position is retrieved. TwinBuf copies the log
records from the last checkpoint position forward into the memory, resorts them
and perform the undo and redo procedures. As mentioned above, log records of
TwinBuf do not follow their temporal order in the permanent storage. There-
fore, they have to be sorted based on their timestamps before being replayed.
Fortunately, log batches strictly follow the temporal order, so that resorting only
needs to be conducted within each batch. Therefore, each time TwinBuf only
needs to retrieve a batch of logs into the memory, resort and replay them. This
extra resorting step will not incur significant overheads to the recovery process.

5 Detailed Implementation

In this section, we show how to implement TwinBuf in PostgreSQL so it can
work efficiently. We focus on two processes – the process workers execute to insert
logs into appropriate buffer slots, and the one the backend process executes to
perform archiving.

We added several shared variables to the shared memory of PostgreSQL to
coordinate the logging. They include logswitchcount and xlogcount []. logswitch-
count records the number of buffer role switches that have been conducted by
TwinBuf. Its parity indicates which buffer is the working buffer and which one
is the archiving buffer. To perform role switch, TwinBuf just needs to increment
logswitchcount by 1. xlogcount [0] and xlogcount [1] records the number of log
records in the two log buffers respectively. They also plays as locks – when the
value is −1, it means that the corresponding log buffer is locked by the backend
process.

Log insertion is performed in the following three steps:

1. Call Algorithm 1 to get the identifier of the current working buffer and incre-
ment the corresponding log counter.

2. If the worker is using the buffer for the first time or its current buffer slot is
not enough, apply for a new buffer slot.

3. Insert the log record into the buffer slot.

Algorithm 1 is used for obtaining the current working buffer. It uses a
CAS(compare-and-swap)1 operation instead of an exclusive latch to protect xlog-
count. This latch-free implementation proves to be much more efficient than an
exclusive latch.

The backend process iteratively performs the following procedure to switch
buffer roles and flush the buffers:

1. If the log buffer switch condition is not met, sleep for a while and return;
otherwise, perform the following steps.

1 https://en.wikipedia.org/wiki/Compare-and-swap.
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Data:
logswitchcount: shared variable, used for getting the identifier of the working buffer;
xlogcount[2]: count of logs in log buffers, -1 indicates that the log buffer is locked;

Result: get the current working buffer identifier workinglognumber and increase the
corresponding counter;

while true do
while true do

workinglognumber ← logswitchcount%2;
t ← xlogcount[workinglognumber];
if t == −1 then

usleep(100L);
end
else

break;
end

end
/* CAS is the compare and swap operation */
if CAS(&xlogcount[workinglognumber],t,t+1) then

break;
end

end

Algorithm 1. Increase log counter of the working log buffer

Data:
logswitchcount: shared variable, used for getting the identifier of the working buffer;
xlogcount[2]: count of logs in log buffers, -1 indicates that the log buffer is locked;
Result: lock the current working buffer;

while true do
workinglognumber ← logswitchcount%2;
t ← xlogcount[workinglognumber];
/* CAS is the compare and swap operation */
if CAS(&xlogcount[workinglognumber],t,-1) then

break;
end

end

Algorithm 2. The backend process locks the archiving buffer

2. Switch the roles of the two buffers by incrementing logswitchcount by 1.
3. Get the identifier of the current archiving buffer, and lock it by invoking

Algorithm 2, which sets xlogcount [buffno] to −1.
4. Wait for all transactions that are currently inserting logs to the archiving

buffer to finish. (The backend process counts the number of log records in the
buffer, to know if the transactions have finish inserting.)

5. Write logs in the archiving log buffer to the permanent storage. If NVM is
used, CPU cache is flushed to make sure that all logs are persistent.

6. Unlock this log buffer by resetting the corresponding counter(xlogcount
[buffno]) to 0.

7. Notify the suspended worker waiting for group commit.

Algorithm 2 is invoked for locking the archiving buffer. Again, a latch-free
implementation is adopted for improved efficiency.
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6 Evaluation

We implemented TwinBuf in PostgreSQL 9.4 and conducted experiments to
evaluate its performance. We evaluated TwinBuf’s adaptivity to NVM, SSD and
hard disks. We used three different benchmarks in our tests, which include Small-
bank [3], TPC-C and our custom benchmark. We compared TwinBuf against the
original PostgreSQL 9.4 to demonstrate its advantage. (The logging module in
PostgreSQL 9.4 is the same as that of the newest version – PostgreSQL 10.1.)

The experiments were conducted on a HP Z820 workstation, equipped with
two 2.60 GHz Intel Xeon E5-2670 processors and 256 GB DDR3 RAM. Its pri-
mary storage is a HDD of 10 TB. Its secondary storage is a PCIe SSD of 1 TB.
We used 64 GB of DRAM to simulate NVM. The operating system installed
on the workstation was CentOS 7.1. This size of each log buffer in TwinBuff is
512 MB.

Scalability on Multi-Core CPUs. Our first set of experiments aimed to
evaluate the scalability of the logging modules on multi-core CPUs. We varied the
number of physical cores used by the system, and observed how the throughput
increases with the cores. In all the experiments, the number of workers was set
to two times as many as the number of cores. Figures 2 and 3 show the results
on Smallbank and TPC-C respectively.

As we can see, the logging module is indeed a bottleneck of PostgreSQL on
multi-core platforms. TwinBuf’s scalability is significantly better than that of
the original PostgreSQL 9.4. This advantage is less visible on disks, as disk I/O
seem to be a more significant bottleneck than centralized logging. Nevertheless,
TwinBuf’s advantage on NVM and SSD is quite obvious. When the number of
cores is below 4, TwinBuf performs a bit worse than the original PostgreSQL 9.4.
This is because of the application of group commit – when the degree of con-
currency is low, the benefit of group commit may not compensate its overheads.
As we did not consider think time in the experiments, this phenomenon was
actually magnified. In real-world cases, it will be much rarer.

(a) NVM (b) SSD (c) Disk

Fig. 2. Scalability on smallbank. (Scale factor = 10)
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(a) NVM (b) SSD (c) Disk

Fig. 3. Scalability on TPC-C. (Number of warehouses= 100)

The Case of Intensive Logging. To confirm that the performance difference
in the standard benchmarks is caused by logging, we did an additional set of
experiments on write-intensive transactions. In the experiments, each transac-
tion is comprised of three random updates on a large table. This setting was
intended to make sure that the other scalability bottleneck of PostgreSQL, such
as that of the snapshot isolation mechanism, is not encountered during the exper-
iments. The results are shown in Fig. 4. As we can see, in this write-intensive
scenario TwinBuf can outperform the original PostgreSQL 9.4 by 60%. It can
be predicted, if the number of cores increase further, the advantage of TwinBuf
could be even more significant.

Recovery. In the final set of experiments, we tested the recovery time of Post-
greSQL when using TwinBuf. In all the tests, the checkpoint interval was fixed
to 60 s, during which the system could generate 1–2 GB of logs. We killed the
running PostgreSQL using the command killall -s 9 postgres, and measured the
average amount of time required to restart PostgreSQL. The results are shown
in Fig. 5. As expected, the recovery on NVM and SSD is much faster than that
on disks. As TwinBuf needs to perform sorting before redoing the transactions,
it requires more time in recovery. Nevertheless, as sorting is performed within
each log batch, this extra overhead is quite marginal most of the time.

(a) NVM (b) SSD (c) Disk

Fig. 4. Scalability on write-intensive transactions
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(a) NVM (b) SSD (c) Disk

Fig. 5. Recovery Time (Startup – the entire amount of time required before the system
is available for accepting request. Recovery – the amount of time for doing recovery.
ReadLog – the amount of time required for retrieving log from the storage, including
time on sorting.)

7 Conclusion

In this paper, we presented TwinBuf, a redesign of the logging module in Post-
greSQL. We showed that centralized logging is a potential bottleneck of Post-
greSQL on multi-core platforms. To parallelize the logging scheme, TwinBuf
allocates each worker with an exclusive buffer slot. Two buffers are utilized to
ensure that log insertion and log flushing do not block each other. Experimen-
tal evaluation showed that TwinBuf can speedup PostgreSQL significantly in
intensive transaction processing.
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Abstract. Differential privacy (DP) has become the de facto standard
in the academic and industrial communities. Although DP can provide
strong privacy guarantee, it also brings a major of performance loss for
data mining systems. Recently there has been a flood of research into
the quantitative mining of DP based algorithms, which are designed to
improve the performance of data mining systems. However, industrial
applications demand accurate quantitative mining results. Results con-
taining noise are actually difficult to use. This paper rethinks to apply
DP in industrial big data from another perspective: qualitative analysis,
which aims to dig the data about rank, pattern, important set, etc. It
does not require accurate results and naturally has a greater ability to
accommodate noise. We design a framework about DP data publication
based attribute importance rank to support the qualitative analysis of
DP, which assists data buyers to perform qualitative analysis tasks and
to know the credibility of their results. We show the realization of this
framework using two typical qualitative tasks. Experimental results on
public data and industrial data show that making use of this frame-
work, qualitative analysis tasks can be completed with a high confidence
support even when privacy budget ε is very small (e.g., 0.05). Our obser-
vations suggest that qualitative analysis of DP has the potential ability
to realize applying DP in industrial applications.

Keywords: Differential privacy · Qualitative analysis
Quantitative mining

1 Introduction

Differential privacy (DP) has become the state-of-the-art technology that pro-
tects privacy since it was proposed by Dwork [8]. In recent years, it develops
very fast and a lot of research are proposed [12,13,18,19]. However, numerous
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studies focus on quantitative mining of DP based algorithms, which improve
the performance of algorithms under DP. The quantitative mining tasks usually
need accurate numerical results, so it is hard to use results containing noise.
On the contrary, qualitative analysis focuses on digging data about rank, pat-
tern, important set and so on, which does not need specific numerical values and
has a greater ability to accommodate noise. Therefore we believe that qualita-
tive analysis about strong privacy protection has a broader industrial applica-
tion prospect. In this paper, we propose a framework to apply DP from a new
prospective: qualitative analysis. The framework relies on one type of qualita-
tive analysis approaches: attribute importance rank, i.e., attribute relationship
analysis. For a dataset, depend on some measurement methods, e.g., mutual
information or correlation coefficient, we are able to figure out how great an
attribute is influential to the target value (class label). Therefore an attribute
importance rank can be obtained, which represents the attribute relationship.

About DP, one general usage is data publication, which transforms raw data
into synthetic data with similar characteristics. The synthetic data can be pub-
lished to the public, which protects the privacy of raw data. In recent years,
DP based data publication method has achieved great progress. In this paper,
we design a data publication based qualitative analysis framework, which can
use any data publication algorithms. We make use of the latest two DP data
publication methods, i.e., PrivBayes [20] and DPTable [5] as examples to show
how this framework works. Details about the methods are shown in Sect. 3.1.

In our work, we study the influence of data transformation from raw data to
synthetic data on attribute relationship of raw data and explore the changes in
two general aspects: coincidence rate of attribute rank (CRAR) and comparison
of mining accuracy (CMA). Then on the other side, in industrial systems, data
provider usually does not release raw data or relevant important information
to the public directly, especially for sensitive data or information, so synthetic
data will be put on sell. Therefore data buyers get nothing essential except the
synthetic data that contains a lot of noise. They have no idea how great they can
trust the model performance obtained from the synthetic data. If attribute rank
of the raw data is accessible to data buyers, it must be beneficial for them to make
better use of the data bought. However, the problem is that attribute importance
rank belongs to sensitive information and will not be published directly from data
provider. To solve this problem, we design a framework to assist data buyers to
perform qualitative analysis tasks and to learn more about attribute relationship
of raw data without leaking privacy. The tasks are represented by two stable
classifiers, i.e., Belong to Top-K (BTK) and Be Larger (BL) classifiers, which
answer two different questions. Stability means the classifier is in a convergent
state and we conduct experiments on public and industrial data.

To summarize, we make the following contributions:

– Compared with quantitative mining, qualitative analysis has a greater ability
to accommodate noise. We take the first attempt to apply DP in qualitative
analysis and find a way to realize industrial application of DP.



740 X. Bai et al.

– We propose a DP based qualitative analysis framework, which assists data
buyers to perform qualitative analysis tasks and to know the credibility of
their results. We make use of two typical qualitative tasks represented by
two classifiers, i.e., BTK and BL as examples to show the application of the
framework.

– We conduct experiments on public data and industrial data respectively.
Experimental results show that making use of this framework, qualitative
analysis tasks can be completed with a high confidence support even when ε
is very small (e.g., 0.05), which has the potential ability to realize industrial
application of DP.

2 Background and Motivation

2.1 Differential Privacy

Differential privacy technology takes a strong quantified control of privacy expo-
sure. Insertion or deletion of any individual record has no influence on the output
of queries or calculations on datasets.

Definition 1. A random function F provides ε−differential privacy if for any
neighboring databases DB1 and DB2 (DB1 � DB2 = 1), for any output O ∈
Range(F ), Pr[F (DB1) ∈ O] ≤ eε × Pr[F (DB2) ∈ O].

Neighboring databases DB1 and DB2 are two databases that contain only
one individual record difference. ε is a parameter treated as privacy budget,
which controls the grade of privacy protection. When ε decreases, more noise is
added and stronger privacy protection will be provided.

2.2 Qualitative or Quantitative Mining Under DP

Previous work about DP usually focus on quantitative mining, which aims to
get satisfying numerical results. In data publication algorithms, researchers hope
to obtain better synthetic data with more similar characteristics of the original
data. In other cases, researchers aim to construct better models that learn the
properties of raw data. In general, the purpose of these improvements is to get
better DP based model performance.

However, all these algorithms usually bring a major of performance loss for
data mining systems, which is unacceptable for industrial applications. That is
why DP still cannot be applied in real-life systems. It is difficult for business peo-
ple to trust the results containing noise. In this paper, we study DP from another
perspective: qualitative analysis, which focuses on digging data about rank, pat-
tern, important set, etc. Qualitative analysis naturally has a greater ability to
accommodate noise, so maybe it is a good new way to realize application of DP
in industrial big data.
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3 Qualitative Analysis of Attribute Relationship

Before proposing our own approaches about qualitative analysis, we discuss the
influence of data transformation on attribute relationship through data publica-
tion algorithms. That is to say, how attribute relationship changes when a raw
dataset is transformed into a synthetic one.

3.1 Data Publication with DP

For DP based data publication algorithm [17], it usually uses some methods to
simulate the data distribution of the raw dataset and then under DP protection,
generates a new different synthetic dataset, which contains similar characteris-
tics. The synthetic dataset is privacy-insensitive, so any data mining applications
can be applied on it directly without caring about privacy. However, the short-
coming is quite clear: since data mining algorithms run on the synthetic data
instead of the original data, their performance is restricted by the method of
how to generate the synthetic dataset seriously. In particular, the performance
loss may not be acceptable for industrial big data applications.

Fig. 1. Skeleton of how BTK and BL classifiers work.

In this paper, we make use of two latest data publication algorithms, i.e.,
PrivBayes [20] and DPTable [5]. PrivBayes is a differentially private method
for releasing high-dimensional data using Bayesian network. DPTable develops
a robust sampling-based framework to preserve the joint distribution of high-
dimensional datasets. Both algorithms do not change the number or meaning of
the original attributes in raw data. Due to space limit, we will not talk about
the details here. Interested readers can learn more about them in [20] and [5].
Next we discuss the influence of data transformation on attribute relationship
in two aspects. Both them show the effect of data transformation in some ways.
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3.2 Metrics of Attribute Relationship

Coincidence Rate of Attribute Rank (CRAR). Through data publication
algorithm, a raw dataset can be transformed into a synthetic one. Based on
mutual information, we can get the attribute importance rank. Now assume
attribute rank Rankr for raw data and Ranks for synthetic data have been
obtained, we compare top K attributes of Rankr with top K of Ranks. We figure
out the percentage of the same attributes, i.e., coincidence rate of attribute rank
(CRAR). Sometimes the value of CRAR is small for complex datasets, which
does not mean top K of Rankr definitely has a loose connection with top K of
Ranks. With small CRAR, top K of Rankr may still have similar influence on
the class label with top K of Ranks. Therefore we propose another metric, i.e.,
comparison of mining accuracy (CMA).

Comparison of Mining Accuracy (CMA). To get results of CMA, obtaining
Rankr and Ranks, based on instances in raw data, we respectively use top K of
Rankr and Ranks to train classifiers, e.g., random forests [3] or xgboost [6] and
then compare their performance. It should be noted that all training instances in
these models come from raw data instead of synthetic data. This is because our
goal is to study the change of attribute relationship rather than how suitable the
synthetic data is to build models. In Sect. 5, we give the experimental results.

4 Proposed Approaches of Qualitative Analysis

In this section, we propose two approaches (i.e., classifiers) for data provider to
help data buyers perform qualitative analysis tasks and know the credibility of
their results, without leaking privacy of raw data. This can help data buyers
understand the data they buy more deeply and make better use of it.

4.1 Skeleton Design

The two approaches proposed are named as Belong to Top-K (BTK) and Be
Larger (BL) classifiers respectively. Figure 1 shows the overall skeleton of how
these two classifiers work. Being afraid of revealing privacy, data provider only
can put synthetic data on sell, which is purchased by data buyers. However, since
synthetic data usually contains a lot of noise, data buyers have no idea how great
they can trust the model performance running on it. If data buyers have access
to attribute importance rank about raw data, which is sensitive information and
not released by data provider, they can make better use of the data they buy.

Since attribute rank is not accessible, we construct BTK and BL classifiers
for data provider and provide their interfaces to data buyers. Owning synthetic
data, data buyers are able to calculate some parameters about each attribute,
e.g., mutual information, information gain, etc. For BTK, if data buyers calcu-
late parameters of attribute A as input and invoke the interface of BTK. The
classifier will return the probability of A belonging to top K attributes of raw
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Algorithm 1. Belong to Top-K Classifier (BTK)

Input: Datar - raw dataset, K - number of attributes participating in the comparison;
Output: model - BTK classifier, T - number of synthetic datasets used when convergent;
1: obtain attribute rank Rankr of Datar ;

2: newInstances = ∅, saveScore = [-1, -1], T = 0, index = 0;
3: while index ≥ 0 do
4: generate synthetic dataset Datas from Datar using data publication algorithm;
5: for attr in attributes of Datas do
6: calculate CS, CC, En, ED, IG, MI, VC of attr;

7: if attr ∈ top K of Rankr then
8: label = 1;

9: else
10: label = 0;

11: end if
12: newInstance = [attrCS , attrCC , attrEn, attrED , attrIG, attrMI , attrV C , label];

13: newInstances = newInstances ∪ newInstance;

14: end for
15: index++;

16: isConvergent, T = ctc(index, newInstances, saveScore, T );

17: if isConvergent is true then
18: break;

19: end if
20: end while
21: model ← random forests or xgboost built on newInstances;

22: return model and T ;

data. It needs to be emphasized that a probability will be returned not a defi-
nite prediction result, which protects the privacy. For instance, a relatively high
probability (>0.5) means for A, the probability of belonging to top K is larger
than the probability of not belonging to top K, rather than A definitely belongs
to top K. High probability means high credibility of attribute relationship. Sim-
ilarly, for BL, data buyers want to know whether the influence of attribute A on
class label is larger than the influence of B. They can put parameters of A and
B into the interface and get the corresponding probability. Both BTK and BL
classifiers built are in a convergent state, which protects privacy.

In this framework, data buyers have access to two knowledge: synthetic data
and the probability from the two classifiers. First, synthetic dataset is generated
using DP based data publication algorithms, which satisfies DP. Second, during
construction of classifiers, more and more synthetic datasets are used to train
the classifier until it is converged. Each synthetic dataset is a sample, which is
under the DP noise distribution. Therefore, when it is converged, the classifier
provides no more information than the noise distribution of DP. In general, the
framework can still guarantee the DP protection. Next we explain the details of
how to construct BTK and BL classifiers.

4.2 Belong to Top-K Classifier (BTK)

To build BTK, many (T ) pieces of different synthetic datasets will be gener-
ated. We transform each attribute in each synthetic dataset into a newly gen-
erated instance. For each attribute, based on class label, seven parameters are
calculated, i.e., Chi Square (CS), Correlation Coefficient (CC), Entropy (En),
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Algorithm 2. Belong Larger Classifier (BL)
Input: Datar - raw dataset;

Output: model - BL classifier, T - number of synthetic datasets used when convergent;

1: obtain attribute rank Rankr of Datar ;

2: newInstances = ∅, saveScore = [-1, -1], T = 0, index = 0;

3: while index ≥ 0 do

4: generate synthetic dataset Datas from Datar using data publication algorithm;

5: attrs ← array of attributes of Datas;

6: for A in attrs do

7: for B in attrs do

8: if A == B then

9: continue;

10: end if

11: if A > B according to Rankr then

12: label = 1;

13: else

14: label = 0;

15: end if

16: newInstance = [ACS , ACC , AEn, AED , AIG, AMI , AV C , BCS , BCC , BEn, BED ,

BIG, BMI , BV C , ACS − BCS , ACC − BCC , AEn − BEn, AED − BED , AIG − BIG,

AMI − BMI , AV C − BV C , ACS/BCS , ACC/BCC , AEn/BEn, AED/BED , AIG/BIG,

AMI/BMI , AV C/BV C , label];

17: newInstances = newInstances ∪ newInstance;

18: end for

19: end for

20: index++;

21: isConvergent, T = ctc(index, newInstances, saveScore, T );

22: if isConvergent is true then

23: break;

24: end if

25: end while

26: model ← random forests or xgboost built on newInstances;

27: return model and T ;

Euclidean Distance (ED), Information Gain (IG), Mutual Information (MI) and
Vector Cosine (VC). Chi Square of attribute A is represented as ACS . These
seven parameters are deemed as attributes of the new instance, which describe
the characteristics of A in different aspects. Due to space limit, we will not talk
about the details of these parameters here. They are all general methods, so
interested readers can learn about them by many ways. On the other hand, each
attribute in synthetic data must belong to top K important attributes in raw
data or not, which generating the class label of this new instance. An example
is given here. Assume that a raw dataset with 14 attributes and 1 class label is
used. K equals 4 and T equals 50. Eventually, 700 (14 * 50) new instances are
generated, including 200 (4 * 50) positive (belong to top 4 influential attributes
in raw dataset) and 500 (10 * 50) negative instances (not belong to top 4 in raw
dataset). Each new instance consists of 7 attributes and 1 class label. Finally
these newly generated instances are used to train a model, i.e., random forests
or xgboost, which returns data buyers probabilities (BTK classifier).

On the other side, to protect privacy, we want the classifier to be in a conver-
gent state. This means how we set the value of T . Since T ∗ sizeOf(attributes)
newly generated instances are used, convergence means that the values (VT−1

and VT ) of loss function of classifiers built on (T − 1) ∗ sizeOf(attributes) and
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Algorithm 3. Check termination condition - ctc(index, newInstances, saveScore, T ))

Input: index - number of synthetic datasets used, newInstances - set of newly generated
instances, saveScore - array saving the latest two values, T - number of synthetic datasets
used when convergent;

Output: isConvergent - true or false, which represents whether the classifier is convergent, T -
number of synthetic datasets used when convergent;

1: score ← objective function value of random forests or xgboost built on newInstances;

2: if saveScore[0] == -1 then
3: saveScore[0] = score;

4: saveScore[1] = score;

5: else
6: saveScore[0] = saveScore[1];

7: saveScore[1] = score;

8: end if
9: isConvergent = false, T = -1;

10: if —saveScore[1] - saveScore[0]— ≤ saveScore[0] * 0.01% then
11: isConvergent = true;

12: T = index;

13: end if
14: return isConvergent and T ;

T ∗ sizeOf(attributes) instances are very similar. In our work, if |VT − VT−1| ≤
VT−1 ∗ 0.01%, we say the classifier built on T ∗ sizeOf(attributes) instances
has been convergent. Using more and more newly generated instances, we
can find the moment of convergence (the value of T ). Finally we use T ∗
sizeOf(attributes) instances to train the classifier and provide its interface to
the public. Algorithm1 shows the whole process of how to build a BTK classifier.

4.3 Be Larger Classifier (BL)

Next we discuss BL classifier. Many (T) pieces of synthetic datasets will be gen-
erated. Different from BTK, for BL, every combination of two different attributes
in synthetic dataset is used to generate two new instances, which consist of 28
attributes and 1 class label. The class label implies whether attribute A has
greater influence on class label than attribute B (B != A) in raw dataset, which
is decided by attribute rank (based on mutual information) of raw data. Besides,
28 attributes are respectively CS, CC, En, ED, IG, MI, VC of A and B, and
their subtraction and division. It needs to be noted that two different instances
are generated due to combination of A and B, i.e., A has greater influence than
B (positive instance) and B has less influence than A (negative instance).

For instance, assume that a raw dataset with 14 attributes and 1 class label
is used. T equals 50. Finally 9100 (14 * 13 * 50) new instances will be generated,
including 4550 positive and 4550 negative instances. Based on them, classifica-
tion models are built to return data buyers probabilities (BL classifier). Similar
to BTK, we also need to use the same method to make the classifier built to be
convergent. Algorithm 2 shows the whole process of how to build a BL classifier.
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5 Experiments

5.1 Experimental Settings

Datasets. We make use of two datasets in our experiments: (i) Adult [1] (public),
which is extracted from the 1994 census bureau database. It includes information
of 45222 individuals and the prediction task is to determine whether a person
makes over 50K a year. It contains 14 attributes and 1 class label. (ii) Industry
(private), which is industrial data extracted from one of the biggest telecommu-
nication operators in China. It includes information of more than one million
users and the prediction task is to predict whether a customer will subscribe the
service next month. It contains 53 attributes and 1 class label.

Parameters. To transform raw datasets, we use two data publication algo-
rithms, i.e., PrivBayes [20] and DPTable [5] and build two classification models,
i.e., random forests and xgboost. Due to space limit, we mainly demonstrate
the results of PrivBayes and xgboost. Similar results can be observed by DPT-
able and random forests and we will only show two example results of them in
Figs. 4(b) and 6. On the other side, we use the default settings in PrivBayes and
DPTable. For PrivBayes, usefulness of each noisy marginal distribution in second
phase θ equals 4 and the degree of Bayesian network k equals 3. For DPTable,
marginals generated are all 2-way. Besides, depend on settings in PrivBayes and
DPTable, we set privacy budget ε as 0.05, 0.1, 0.2, 0.4, 0.8 or 1.6 respectively.
For Adult, K is set as 3, 6 or 9. For Industry that contains much more instances
and attributes, K is set as 8, 16, or 24. For getting results of CRAR and CMA,
we conduct experiments 50 times and get average results eventually. For con-
structing BTK and BL, the value of T is determined by the convergent state of
classifiers. Every time we build a model, we split the dataset into two parts: 4/5
of instances as training data and 1/5 as test data.

5.2 Metrics of Attribute Relationship

Coincidence Rate of Attribute Rank (CRAR). About CRAR, Fig. 2(a)
shows the experimental results for Adult. We can see that as budget ε gets larger,
CRAR also becomes larger. This is because when ε increases, size of noise added
into raw data is smaller. The distribution of synthetic data is more similar to
that in raw data. Besides, it is easy to understand larger CRAR with larger K,
which means that more attributes participate in the comparison.

Figure 2(b) shows the results on Industry. Since Industry is much more
complex, the influence of ε on CRAR is smaller and CRAR increases slightly
with larger ε. And CRAR is obviously lower than results for Adult. However, it
does not mean top K of synthetic data has a loose connection with top K of
raw data. We give the results about CMA.

Comparison of Mining Accuracy (CMA). Fig. 3 shows the results about
CMA. For Adult, in Fig. 3(a), for the line Top 6, we use instances in raw dataset
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Fig. 2. Results of CRAR.

Datar to build models on the basis of top 6 influential attributes of synthetic
dataset Datas. For the line Baseline Top 6, the difference is that we use top
6 attributes of Datar instead of Datas. We observe that model performance of
Top 6 is worse than Baseline Top 6, which represents that top 6 attributes of
Datas are not as good as top 6 of Datar. However, as ε becomes larger, less noise
is added and top 6 attributes of Datas are closer to top 6 of Datar. Therefore,
performance of models built becomes better.
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Fig. 3. Results of CMA.

For Industry, we observe the same phenomenon in Fig. 3(b). The two lines
with the same color become closer as ε increases, which means top K of Datas

has a strong connection with top K of Datar. Besides, using more attributes to
build models does not always lead to better model performance. For example,
the line Baseline Top 24 is lower than the line Baseline Top 8.

5.3 Belong to Top K Classifier (BTK)

For Adult, experimental results about BTK are shown in Fig. 4(a)(b). As Adult
is a public dataset, which meets relatively more uniform distribution, mostly
accuracy of models is high (larger than 0.8) even when the privacy budget is very
small (ε = 0.05). When K equals 6 (not very small or large), models usually have
the best performance. During the prediction, for each test instance, the classifier
returns the probability of this instance being positive (attribute A belongs to
top K attributes of raw data). Using these probabilities, we get cumulative
distribution function (CDF) curves, which are shown in Fig. 5(a)(b)(c). From
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these curves, we find that in general, as ε decreases, the number of instances
whose probability of being predicted as positive is larger than 0.8 or smaller
than 0.2 becomes smaller. That is to say, when ε becomes smaller, less instances
are predicted as positive or negative with a high probability. It becomes more
difficult for the classifier to make a prediction.
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Fig. 4. Accuracy of BTK classifier.

Fig. 5. CDF curve of BTK classifier.

For Industry, experimental results are shown in Fig. 4(c). ε has smaller influ-
ence on accuracy of classifier. But we can still find that as ε increases, classifier
performance becomes better. When K equals 8, models have the best perfor-
mance, i.e., the accuracy is larger than 0.8. Figure 5(d)(e)(f) show the corre-
sponding CDF curves. We can still observe that as ε decreases, it becomes more
difficult to predict an instance with a high probability (larger than 0.8 or smaller
than 0.2). On the other side, compared with results on Adult, less instances can
be predicted as positive or negative with a high probability for Industry. This
is because Industry is a much more complex industrial dataset, its distribution
is not uniform as Adult. Test instances seem harder to be predicted.
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5.4 Be Larger Classifier (BL)

For Adult, about BL, Figs. 6(a) and 7(a) show the similar phenomena. Accuracy
of BL classifier is larger than 0.8 even when ε is very small (e.g., 0.05) and with
smaller ε, instances become more difficult to predict.
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Fig. 6. Accuracy of BL classifier.

Fig. 7. CDF curve of BL classifier.

For Industry, Figs. 6(b) and 7(b) show the experimental results. The accu-
racy is not very high (between 0.5 and 0.75). We believe that this is because
with 53 attributes, the number of combination of random two attributes is very
large. Classifier becomes so complex that it is hard to make a very accurate
prediction and we can still observe that less instances are predicted with a high
probability for smaller ε. In order to get better model performance, we make an
improvement on model construction: only combination of two distant attributes
can be used to generate new instances. Specifically, since our standard measure-
ment method is mutual information, if attributes A and B meets |AMI −BMI | /
max{AMI , BMI} > 10%, they are deemed as distant attributes. This improves
model performance very well in Fig. 6(c) and the accuracy is very high even when
ε is very small (e.g., 0.05).

6 Related Work

Researchers prefer DP due to its strong control of privacy leakage. Unlike pre-
vious privacy protection techniques [7,14], DP [8,15,16] does not worry about
how much attackers learn about the background knowledge (quasi-identifiers).
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A lot of research work about different fields have been conducted on DP.
Chaudhuri et al. [4] applied DP in regular logistic regression. Friedman et al.
[11] studied how to apply DP into the decision tree model. Blum et al. [2] realized
applying DP in K-means algorithm and [9] completely proposed the general-
ization about DP based histogram method. Dwork et al. [10] pointed out that
the biggest advantage of applying DP in histogram method is that calculation
of sensitivity is irrelevant to dimension of dataset. Besides, DP can be applied
in other scenarios, such as graph dataset, item set mining, crowdsourcing, etc.

7 Conclusion

In this paper, we propose a DP based qualitative analysis framework, which
assists data buyers to perform qualitative analysis tasks and to know the cred-
ibility of their results without leaking privacy. From a new perspective, i.e.,
qualitative analysis, we want to find a way to apply DP in industrial systems.
We make use of two typical qualitative tasks to show how this framework works.
Experimental results on public and industrial data show that even when ε is
very small, qualitative analysis tasks can be completed with a high confidence
support. Our observations suggest that qualitative analysis of DP is more appli-
cable in large-scale industrial systems than quantitative mining. In future work,
we would like to continue to study qualitative analysis under DP in some other
different ways and design better strategies to apply DP in real-life applications.
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Abstract. Client churn prediction is a classic business problem of
retaining customers. Recently, machine learning algorithms have been
applied to predict client churn and have shown promising perfor-
mance comparing to traditional methods. Despite of its success, exist-
ing machine learning approach mainly focus on structured data such
as demographic and transactional data, while unstructured data, such
as emails and phone calls, have been largely overlooked. In this work,
we propose to improve existing churn prediction models by analysing
customer characteristics and behaviours from unstructured data, par-
ticularly, audio calls. To be specific, we developed a text mining model
combined with gradient boosting tree to predict client churn. We col-
lected and conducted extensive experiments on 900 thousand audio calls
from 200 thousand customers, and experimental results show that our
approach can significantly improve the previous model by exploiting the
additional unstructured data.

Keywords: Text mining · Churn prediction · Call log analysis
Customer data analytics · Machine learning

1 Introduction

Customer data analytics has always been the core business function of any firm.
Without a good insights and customer relationship management (CRM) strate-
gies, there would be no success for any business. In the past decades, companies
have been intensively analyze their customer data for different segmentations,
churn prediction and marketing planning. Many of those business intelligence
applications have been proven to be effective in customer attraction and reten-
tion. As the cost of gaining new customers is approximately three times higher
than that of retaining the existing ones, churn prediction and customer reten-
tion is the most challenging task for any business. Every percentage increase in
accurate churn prediction could result in million dollars saved in cost and rev-
enue. Within financial services field where customer engagement and loyalty is
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 752–763, 2018.
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low in general, this analytics problem has become vital to both long-term and
short-term business plan, especially for Superannuation funds.

Most of current churn prediction models are using only structured data from
customer, e.g. demographic (age, gender, educational background, etc.), transac-
tional data (account balance, balance change, change ratios, etc.), network (advi-
sor, connection with other accounts, etc.) and financial decisions (investment,
churn, buying insurance, etc.). These structured data are easy to be collected
and studied, which make it an efficient approach within customer analytics field.
On the other, there are also some effort to incorporate communications data
from call centre into customer analytics field. However, these are still structured
features such as call frequency, intervals between calls, call lengths, which still
slightly improve the prediction accuracy, but not significantly meaningful for the
financial gains of the firms.

From methodology perspective, since researchers have exhausted all the fea-
ture engineering and stacking techniques, the performance lift of any predictive
model using these features would be very minimal. Those table-formatting fea-
tures from structured data are normally accounted for only 20% of business
insights. The remaining 80% lies within unstructured data from daily customer
interactions, e.g. emails, calls, chats, social media interactions, face-to-face meet-
ings (Fig. 1). These data are often undocumented, unrecorded and unorganized,
which make it harder to perform any analysis. Researches have performed opin-
ion mining and sentimental analysis [14]. However, we believe there is more
information in other types of text features rather than just sentiment scores.
The application of text mining to extract further term-based features from these
communicative data would further increase the churn prediction and provide
deeper customer insights than basic account factors.

Fig. 1. Structured and unstructured data

Considering the recent advancement in text mining and machine learning,
we now have more means to extract meaningful business insights from these
unstructured data. Within the scope of this paper, we will utilize the textual
information from transcriptions of customer call logs to predict whether they
will churn or not. The forecast churn result will directly complement the pre-
diction model using structured data, increasing the prediction accuracy by at
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least 4%. It will help the company in planning the suitable marketing and cus-
tomer services strategies targeting at customers with high churn probability. By
improving customer retention rate, the firm will save 4.5 millions Australian
dollars in business annual revenue.

There would be three main contributions of our paper:

– To the best of our knowledge, this is the first attempt to incorporate text
mining techniques for churn prediction model within Superannuation and
Pension fund industry in Australia.

– Our prediction model was built using big unstructured data in combination
with structured data. This is the initial foundation for the incorporation of
more unstructured data into daily customer analytics in financial services
industry.

– The final contribution is the improvement of churn prediction accuracy using
customer call logs, which is vital for the financial success with on-time cus-
tomer retention strategies for any type of business.

The rest of this paper is organized as follows. Section 1 introduces the current
background of churn prediction application with limitations and our proposed
text mining solution. In Sect. 2, we review the literature on customer churn
prediction with focus on recent methodologies as the motivation for our research
work. Section 3 is devoted to describe the technical details of our methodologies.
In Sect. 4, the proposed text mining approaches are applied to private business
datasets to perform prediction on customer call logs. Finally, conclusions are
drawn in Sect. 5.

2 Preliminary

Churn prediction models have utilize many advanced machine learning algo-
rithms to improve the prediction accuracy [2]. Current literature has been focus-
ing more on churn prediction within telecommunication industry due to the
availability of large database [11].Good results have been achieved with tree-
based models and neural networks [7]. There have also been attempts to incor-
porated customer call logs in decision support system for churn prediction [5,18].
However, these approaches still used the structured data with features, e.g. call
length as time intervals between calls, as inputs for their prediction models [8].
This is due to the high cost as well as other customer privacy and ethical concern
when obtaining the transcription of call logs to perform further analysis.

Within financial services industry, there are already some churn prediction
models using different approaches, especially more research effort has been done
in private banking [1]. The most common methodology for these models is
support vector machines, which achieves good results in general and particu-
larly with unbalance dataset of credit card customers [6]. Other researchers try
to improve further by combining the machine learning algorithm with fuzzy
methodologies [9]. There also has been some effort to use more advance tree-
based algorithms for electronic banking churn prediction [10]. A hybrid method-
ology combining k Reverse Nearest Neighborhood and One Class support vector
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machine (OCSVM) has been proposed to predict credit card churn rate [17]. As
the common practice, all these models are using only demographic and financial
transaction of customers to predict churn.

Little churn prediction research have been conducted on Superannuation
and Pension funds, and those are mainly using qualitative methodologies rather
than machine learning quantitative approaches. Some researchers have conduct
a comprehensive experiments to build churn prediction models for Superannua-
tion industry using multiple machine learning algorithms [4]. According to their
results, random forest has the best average prediction accuracy across different
datasets. Overall, the performances of these models are notable customer data
analytics works. However, the prediction accuracy of these models cannot be sig-
nificantly improved just by using a different machine learning algorithms on the
same demographic features from structured dataset. We believe with the comple-
ment of unstructured data from customer communication would provide deeper
insights into the financial behaviours, i.e. churn decision. The current literature
on this particular research topic definitely lacks of text mining approaches and
the usage of unstructured data.

On the other hand, researchers have also applied text mining methodologies
for sentiment analysis based on customer feedback and social media posts [19].
There also has been a proposed hybrid model that comprises fuzzy formal con-
cept analysis and concept-level sentiment analysis (FFCA + SA) for opinion
mining on complaints from financial services customers [14]. However, the opin-
ion mining task using written text did not go further to predict churn or other
financial and business outcomes. We believe there are more important informa-
tion lies in the words and sentences used by customers rather than those raw
number or simple positive and negative feelings. Realizing this research gap,
we will apply text mining techniques to analyse customer call logs and build a
churn prediction model based on these extracted features in combination with
structural data.

3 Methodology

Within the scope of this research project, we applied three text mining method-
ologies on the private customer call logs datasets to obtain three different sets of
text features: Semantic Information, Word Importance and Word Embedding.
After that, we will combine each and all three approaches with the current cus-
tomer structured database to build the final churn prediction model with higher
accuracy.

3.1 Semantic Information

For semantic information, the most common text mining approach is sentiment
analysis with just positive or negative dimension. In our dataset, we want to have
a more comprehensive semantic features. Therefore, we use Linguistic Inquiry
and Word Count 2015 (LIWC) to extract semantic text features. The LIWC
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2015 master dictionary is composed of almost 6,400 words, word stems, and
selected emoticons. For each dictionary word, there is a corresponding dictionary
entry that defines one or more word categories. For example, the word cried is
part of five word categories: Sadness, Negative Emotion, Overall Affect, Verb,
and Past Focus. Hence, if the word cried was found in the target text, each of
these five subdictionary scale scores would be incremented. As in this example,
many of the LIWC2015 categories are arranged hierarchically. All sadness words,
by definition, will be categorized as negative emotion and overall affect words.
The LIWC 2015 [13] dictionary covers many topic-related features (e.g. work,
family, friend, money), sentiment (e.g. possemo, negemo) and even speech related
features (non-fluent). A total 93 text features were extracted.

3.2 Word Importance

Despite the popularity of unigram or multi-gram Bag of Words models, these
methodologies will produce a large number of features considering the amount
of call logs in our dataset. We believe the most suitable “word importance” text
mining technique in our context is the “term frequency inverse document fre-
quency” (TF-IDF) [12,16]. This methodology reduces the dimension of features
significantly by removing many common and unimportant terms. In total, we
extracted around 10,000 TF-IDF text features (Fig. 2).

– Term Frequency (TF): measures of how often the term appears within the
call

– Inverse Document Frequency (IDF): measures of how much information the
word provides, i.e., whether the term is common or rare across all call logs

idf(terms, calls) = log
number of calls

numbers of calls contain the term

– Term Frequency - Inverse Document Frequency (TF-IDF): TF-IDF =
TF x IDF.

3.3 Word Embedding

In most cases, different combination of similar terms in English could result in a
totally different meaning. It is not sufficient to build a text mining model using
words as features alone. Therefore, we also look at the place of these terms in a
sentence, their positions and their connections. Word embedding methodology
would help us evaluate the relationships and interactions between these terms
better. In this paper, we will use the Word2Vec model from python package
Gensim [15] to extract total 50 word embedding features (Fig. 3).
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Fig. 2. Sample TFIDF features set

Fig. 3. Word embedding model captures relationships between terms

3.4 Combined Prediction Model

After extracting all three different set of text features from the customer call
logs, we will then merge them with other demographic and account performance
features from customer database to build a churn prediction model. We will use
the “Extreme Gradient Boosting” (XGBoost) Classifier from Python package
XGBoost [3] as our machine learning algorithm without any specific parameter
tuning. From the predicted churn, the company can propose suitable customer
retention strategy targeting at the right customer at the right time (Fig. 4).
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Fig. 4. Text mining for churn prediction methodology

4 Experiment

4.1 Datasets

Call Logs dataset (CL). The customer call logs dataset are privately provided
by a Superannuation company for research purpose only. In total, there are
more than 3 millions calls recorded from April 2011 until April 2017. The text
transcription of calls were provided by a third-party service, where the words
spoken by customer service agents and clients were separated with some con-
fidence levels. Using the customer number recorded by the call center system,
we were able to match approximately 900, 000 calls with the right customer
from the client database. Therefore, only the transcriptions of these call logs
will be used for the research within the scope of this paper. Furthermore, to
avoid using call logs when customers specifically contact the agent regard-
ing closing their accounts, we will exclude any calls happened within 14 days
before the churn day. The final cleaned dataset contains 173, 000 calls in total.

Demographic and Account Performance dataset (DAP). We have four
different customer databases: employer superannuation accounts with approx-
imately 268, 000 clients, non-employer superannuation accounts with approx-
imately 302, 000 clients, investment accounts with approximately 170, 000
clients and pension accounts with approximately 131, 000 clients. These
databases contain key demographic features (e.g. age, sex, location) and
account performance features (e.g. account balance, balance change ratio,
balance change). Not all customer has made calls to the company, so will only
use the sub-datasets with customers who have called the company since the
beginning of 2014. The statistics on the final cleaned datasets are described
in Table 1. All these customers have been labeled with binary coding with 1
for churn and 0 for not churn. These labels will be the ground truth labels for
our churn prediction model. We achieve similar results for all four datasets,
which prove our methodology is suitable in general.
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Table 1. Statistics of DAP datasets

Full datasets Called customer datasets Basic

Dataset Churn No churn Total Churn No churn Total Features

Non-employer super 35, 239 266, 244 301, 483 2, 067 47, 929 49, 996 106

Employer super 18, 796 249, 203 276, 999 1, 959 34, 649 36, 608 133

Pension 2, 907 127, 772 130, 679 582 27, 464 28, 046 106

Investment 7, 596 161, 987 169, 583 2, 098 21, 324 23, 422 106

4.2 Evaluation

For churn prediction accuracy, even though the train and test label are binary,
our predicted churn scores are ranging from 0 to 1 as the probability for churn.
We will compare these values with the ground truth labels after running 10-
fold cross validation experiment and evaluate our model performance using Area
Under the Curve (AUC) scores and plot the results using the Receiver Operating
Characteristic (ROC) curve.

4.3 Results

Firstly, we will build separate churn predictions using different set of features:
(1) basic features from DAP dataset, (2) Semantic Information features from
LIWC 2015, (3) Word Importance features from TF-IDF and (4) Word Embed-
ding features from Word2Vec. The predicted churn values of each model will
be evaluated against the ground truth labels provided by the company. Lastly,
we combined all three text features sets and basic features set to build a churn
prediction model. The AUC scores results are as in Table 2 and ROC curves are
as in Fig. 5 for non-employer superannuation accounts, Fig. 7 for pension cus-
tomers, Fig. 6 for employer superannuation accounts and Fig. 8 for investment
customers (Table 2).

Table 2. AUC results on model prediction accuracy

AUC scores

Dataset Basic features Text features Combined Improvement

Non-employer super 0.7261 0.7306 0.7812 7.6%

Employer super 0.7980 0.7599 0.8346 6.4%

Pension 0.7843 0.7311 0.8169 4.2%

Investment 0.6847 0.7798 0.8108 18.4%
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Fig. 5. Churn prediction for non-employer superannuation customers

Fig. 6. Churn prediction for employer superannuation customers

The ROC plots show that the combination of both structured and unstruc-
tured data can increase the churn prediction accuracy by at least 4% compar-
ing to the basic features only model. Especially in the Investment dataset, our
prediction model achieve a significant increase of 18.4%. It confirms that our
combined features approach are effective for churn prediction model. This result
also proves our hypothesis that there is meaningful information in the words
and sentences of customer, and these unstructured data should be incorporated
in customer data analytics. The empirical result further implies the potential
improvement of the model using other unstructured data from other customer
interaction channels like social media.
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Fig. 7. Churn prediction for pension customers

Fig. 8. Churn prediction for investment customers

5 Conclusions

The big data analytics field advances providing businesses more means to under-
stand their customer in a broader quantitative basis using different type of data
rather than traditional ones. Within the scope of this paper, we have taken a new
approach when using unstructured data from customer call logs to build a churn
prediction model. This is the first research within financial services industry to
incorporate both structured and text features for such customer data analytics
problem. The results show that unstructured data contains vital information
which improves the accuracy of churn prediction by at least 5% on different cus-
tomer datasets. It not only help the company on planning for customer retention
strategy and save million dollars in revenue but also lay an initial foundation
for the incorporation of more and more unstructured data in daily business
intelligence system. For future research, we would look into using these unstruc-
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tured data for other customer insights analysis such as segmentation or building
personalized recommendation system for financial services and Superannuation
products.
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Abstract. A gradient boosting decision tree (GBDT), which aggregates
a collection of single weak learners (i.e. decision trees), is widely used for
data mining tasks. Because GBDT inherits the good performance from
its ensemble essence, much attention has been drawn to the optimiza-
tion of this model. With its popularization, an increasing need for model
interpretation arises. Besides the commonly used feature importance as a
global interpretation, feature contribution is a local measure that reveals
the relationship between a specific instance and the related output. This
work focuses on the local interpretation and proposes an unified com-
putation mechanism to get the instance-level feature contributions for
GBDT in any version. Practicality of this mechanism is validated by the
listed experiments as well as applications in real industry scenarios.

1 Introduction

Machine learning has great success in modeling data and making predictions
automatically. In many real-world applications, we need an explanation rather
than a black-box model. For example, when customers apply for a loan on credit,
the loan officers will compute their credit scores based on their historical behav-
iors. In this case, it’s far from enough to only show the customers the final scores,
and the loan officers would better give some detailed reasons. While most efforts
in data mining have been made on improving the accuracy and efficiency, which
results in better models, little attention is paid to model interpretation for these
models. Several common measures for the variable significance have been pro-
posed. Gini importance is one of the commonly used importance measure for
Random Forest, which is derived from the Gini index [2]. Gini is used to mea-
sure impurity between the parent node and two descendent nodes of samples
after splitting. The final importance is accumulated from the Gini changes for
each feature over all the trees in forest. This general feature importance(FI), also
known as global interpretation , shows the important factors of the target, which
unpacks the general information in the trained models. However, it doesn’t take
any feature values of an instance into consideration, which is insufficient some-
times. Local interpretation, on the other hand, places particular emphasis on a

c© Springer International Publishing AG, part of Springer Nature 2018
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specific case and reveals the main causes of each record. This type of interpre-
tation makes up for the shortages of the global one. One approach proposed
to define the feature contributions(FC) [12] , which is accumulated from label
distribution changes, as a measure of the feature impact on the output. The
value of feature contribution reveals how much a feature contributes and the
sign represents whether it’s a positive impact or not.

GBDT [6] is an ensemble model built on top of a bunch of regression decision
trees. It has some appealing characteristics. For example, GBDT can naturally
handle nonlinearity and tolerate missing values. As a winning model in many
data mining challenges [1,3,7], GBDT is a good option for regression, classifi-
cation and ranking problems with well-known ability to generalize. Besides its
wide range of applications, GBDT is also flexible in allowing users to define their
own suitable loss functions. Furthermore, there are many implementations [4,8]
and much work has been done to speed up the training process.

In most cases, GBDT outperforms linear models and random forest. Given
the popularity and high quality of GBDT, it’s important to uncover internals
of the model. For GBDT, global feature importances calculation is widely used
to do the feature selection. For example, Breiman proposed a method to esti-
mate feature importance [6]. However, existing work has largely ignored the
exploration of local interpretations, which will be the focus of this paper. Specif-
ically, we will study feature contributions for GBDT. We starts from previous
approaches of model interpretation for random forest [12] and update the def-
inition of the feature contribution. The proposed mechanism is flexible enough
to interpret all versions of GBDT. The original definition based on label dis-
tribution change is proved to be a special case of ours under a particular loss
function.

The rest of the paper is organized as follows. Section 2 provides a brief review
of related work on local interpretations. Section 3 gives out the formal definition
of feature contribution as preliminary and presents the approach for calculating
feature contributions for random forests. In Sect. 4, we describe the rationale
behind as well as main actions in interpreting GBDT. Section 5 contains exper-
iment settings and the process to examine the proposed methodology. At the
end, Sect. 6 concludes our work.

2 Related Work

Local model interpretation provides convincing reasons to the model outputs.
One type of interpretations prefer both the good performance of complex models
and interpretability of simple models. The pipeline of this type will first make
use of advanced models as a black-box and then extract useful information out
of it with the help of a more interpretable model. For example, a novel approach
in [5] formally treats the interpretation of additive tree models as extracting
the optimal actionable plan. It models the optimization problem as an integer
linear programming and utilizes existing toolkit as the solver. The constraints
are based on both the output score and the objective function. Notice that, this
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kind of approaches need extra training process especially for the interpretation
and bring new models or tasks to solve.

Some other researchers come up with model-independent local interpreta-
tions. They mainly make changes to feature value and test the chain effect to
performance loss of predictions. The loss is then taken as the measure of local
importance of feature [11]. This method only relies on the output evaluation
and provides an unified way to check feature contribution for black-box models.
By replacing the actual feature values with missing, zero or average values, the
impact of a feature in predicting is then removed. The instance-level contribu-
tions of all the features can be calculated separately and compared with each
other. Moreover, this method is also work for global feature importance.

As a derivative of decision tree, the random forest goes further on model
interpretation than GBDT. The method in [10,12] computes the feature con-
tributions so as to show informative results about the structure of model and
provide valuable information for designing new compounds. This method makes
full use of the information, not only the training data but also the model struc-
ture. It is natural to design the interpretations with the model structures to get
a more reasonable result.

This work proposes an easy way to get the feature contributions on the
instance-level. Generally, it can be applied to all versions of GBDT implemen-
tations with little preprocessing and modification to the prediction process.

3 Preliminary

Additive tree models are a powerful branch of machine learning but are often
used as black boxes. Though they enjoy high accuracies, it’s hard to explain
their predictions from a feature based point of view. Different ensemble strate-
gies bring out different models while sharing the tree structure as a basis. So the
model interpretations for different addictive tree models share some key spirits
and can spread out from one to another with appropriate adaptation. In this
section, we first review a practical interpretation method for random forest (for
the binary classification) and introduce the general definition of feature contri-
bution to better illustrate the proposed model interpretation for GBDT.

3.1 Interpretation for Random Forest

Random forest is one of the most popular machine learning models due to its
exordinary accuracy utilizing categorical or numerical features on regression and
classification problems. A random forest is a bunch of decision trees that are
generated respectively and vote together to get a final prediction. Every tree is
trained on randomly sampled data and subsampling feature columns to introduce
the diversity for better generalization, which is the key weakness of single decision
tree models. Random forest is known as a typical bagging model and the bagging
strategy works out by averaging the noises to get a lower variance model.
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An instance starts a path from the root node all the way down to a leaf node
according to its real feature value. All the instances in the training data will fall
into several nodes and different nodes have quite different label distributions of
the instances in them. Every step after passing a node, the probability of being
the positive class changes with the label distributions. All the features along the
path contribute to the final prediction of a single tree.

A practical way to evaluate feature contributions is explored [12]. The key
idea is taking the distribution change values for the positive class as the feature
contribution. Concretely, it takes four procedures to work:

1. Computing the percentage of positive class of every node in a tree;
2. Recording the percentage difference between every parent node and its chil-

dren;
3. Accumulating the contributions for every feature on each tree;
4. Averaging the feature contribution among all the trees in the forest;

The method consists of an offline preparation embedded in training (steps
1–2) and an online computing with the prediction process (step 3–4). It is easy
to record the local contribution (or local increment) and related split feature to
every edge on a tree.

3.2 Gradient Boosting Decision Tree

GBDT is another type of ensemble model that consists of a collection of regres-
sion decision trees. However, the ensemble is based on gradient boosting which
promotes the prediction gradually by reducing the residual. For every iteration,
a new model is built up to fit the negative gradient of the loss function until it
converges under an acceptable threshold. The final prediction is the summation
of all stagewise model predictions. Gradient boosting is a general framework
and different models are available to be embedded. GBDT introduces decision
tree as the basic weak learner. When square error is chosen as the loss function,
the residual between current prediction and target label is the negative gradient
which is computational friendly.

From the above definition, we can see the differences between random forest
and GBDT, some of which are the main obstacles that prevent us from adapting
the model interpretation for random forest to GBDT:

1. Random forest aggregates trees by voting, while GBDT sums up the scores
from all the trees. This means that the trees in GBDT are not equal and the
trees have to be trained in sequential order. The interpretation should make
proper adaptations to deal with this problem.

2. Decision tree in GBDT outputs a score instead of a majority class type for
classification problems. Though we can get the label distribution changes as
random forest interpretation, the output scores in GBDT should be wisely
taken into consideration.
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3.3 Problem Statement

Given a training dataset D = {x(i), y(i)}N
i=1, where N is the total number of

training samples, x = (x1, x2, ..., xS) implies a S dimensional feature vector, x(i)

is the feature vector for the i-th sample and y(i) is the related label. We can
illustrate training process of GBDT as in Algorithm1. rmi is the residual for
sample i in the m-th iteration.

Algorithm 1. Gradient Boosting Decision Tree
1: function Train(D,M)
2: Init f0(x) = 0
3: for m = 1, 2, ...,M do
4: Compute residual:
5: rmi = yi − fm−1(xi), i = 1, 2, . . . , N
6: Train a regression decision tree from residual:
7: Tm =BuildTree(D)
8: Cumulated prediction sum:
9: fm(x) = fm−1(x) + Tm

10: end for
11: Get finally boosting function:

12: fM =
M∑

m=1

Tm

13: return fM

14: end function
15: function PredictInstance(Xi,fM )

16: score =
M∑

m=1

TreePredict(Xi, Tm)

17: return score
18: end function

Besides the basics of model, the feature contribution(FC) , as the key concept
for local interpretation, is clarified below. We introduce the notation of FC by
denoting the model interpretation for random forest in Sect. 3.1 :

LIc
f =

⎧
⎨

⎩

Y c
mean − Y p

mean if the split in the parent is performed
over the feature f ;

0, otherwise
(1)

LIn
f in Eq. 1 is the Local Increment(LI) of feature f for node n defined

before. For binary classification, Y n
mean represents the percentage of the instances

belonging to the positive class in node n.

FCf
i,m =

∑

c∈path(i)

LIc
f (2)

FCf
i =

1
M

M∑

m=1

FCf
i,m (3)
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On a single tree m, FCf
i,m in Eq. 2 cumulates the feature contribution of feature

f for a specific instance i. Equation 3 later average all the feature contribution
for feature f among all the trees.

4 Mechanism

Looking back at model interpretation for random forest, its central spirit is to
establish the idea of feature contribution. By computing label distribution, a
measure of the change is then obtained and associated with the split feature. In
the case of GBDT, we can expand this computation with a slight modification.
Because the targets of the latter trees are the residual, it should replace the
instance label while computing label distribution. Nevertheless, the problem of
this version is that the average of labels on a leaf node is not always equal to the
score on it. So the valuable model information in these scores are not utilized
and the method is not appropriate for different GBDT versions [4,6].

In fact, the loss function determines the optimal coefficient and Table 1 shows
some common examples. LS and LAD stand for Least Square and Least Absolute
Deviation respectively. ỹi is the residual updated after each iteration. Fm−1(xi)
is the approximation on iteration (m−1). gi and hi are the first and second order
gradient statistics on the loss. Different from the numerical optimization essence
to compute negative gradient (for LS and LAD), XGB [4] first approximates the
loss function with its second order Taylor expansion and an analytic solution is
then got. So it contains no negative gradient computation and the evaluation
of leaf weights is far from the label average. Particularly, only if the LS loss
function and traditional GBDT training process is used, the label averages meet
the scores.

Table 1. Loss functions of GBDT

Settings Loss function Negative gradient Leaf weight

LS 1
2 [yi − f(xi)]

2 yi − f(xi) avexi∈Rjm
ỹi

LAD | yi − f(xi) | sign[yi − f(xi)] medianxi∈Rjm
{yi − Fm−1(xi)}

XGB

∑n
i=1[l((yi, ŷ(t−1))) + gift(xi)

+ 1
2hif

2
t (xi))] + Ω(ft)

/ −
∑

i∈Ij
gi

∑
i∈Ij

hi+λ

Without loss of generality, the interpretation for GBDT needs to work on
the leaf scores. Since the scores are only assigned to leaf nodes, we have to find a
way to propagate them back all the way to the root. The left tree of Fig. 1 shows
an example tree in a GBDT model, with split feature and split value marked on
arcs. Observing the three nodes in the rounded rectangle, the instances in node
6 will get a score difference as: Sn11 − Sn12 = 0.085 − 0.069 = 0.016, where Snk

is the score on node k. Moreover, this difference is caused by splitting feature
feat5 branching by a threshold of 1.5. We can allocate this difference to the two
branches by assigning the average score of child nodes to their parent node. For
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instance, Sn6 = 1
2 (Sn11 + Sn12) = 1

2 × (0.085 + 0.069) = 0.0771. Then, the local
increment metrics could be calculated using the scores, LIn11

feat5 = Sn11 − Sn6 =
0.085 − 0.0771 = 0.0079. Similarly, the leaf scores as well as the local increment
could be spread to the whole tree.

The interpretation process during predicting is the same as that of the ran-
dom forest. On the right hand side of Fig. 1, all the node average scores and
feature contributions on the tree are marked. Supposing an instance gets a final
prediction on leaf node 14 of tree t, a cumulation through the path: n0 → n2 →
n5 → n9 → n14 will be executed: FCt

feat5 = LIn2
feat5 = −0.0201, FCt

feat2 =
LIn5

feat2 = −0.0073,FCt
feat4 = LIn9

feat4 + LIn14
feat4 = −0.0015 + 0.0010 = 0.0025.

Fig. 1. Feature contribution example for GBDT

By the propagation strategy, the average score is assigned to the node 6 which
assumes an instance falls into the left branch or the right with equal probability.
So the expectation of intermediate nodes could be revised as in Eq. 4:

Sp =
1
2
(Sc1 + Sc2) → Nc1 × Sc1 + Nc2 × Sc2

Nc1 + Nc2
, (4)

where the Nc1 and Nc2 is the number of the instances fall into child nodes node
c1 and c2. These statistics need extra information from training process.

By viewing the computation in this brand new way, we get a flexible interpre-
tation mechanism by only using the leaf node scores and instance distributions,
regardless of the implement settings of GBDT. Under the setting of the LS loss
function, we can see that not only the label distribution meets the prediction
score on leaf node but also the label distribution of the intermediate node meets
our back propagated score. That is to say, the label distribution method is a
special case of our mechanism with this particular setting. Furthermore, this
method also supports the multiple classification problems.

5 Experiment

In this section, we demonstrate the experiments on the proposed interpretation.
In the first place, we show the mechanism is reliable and generally agrees with
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global feature importance. Then we compare our interpretations to those of
random forest and find it accord with the global feature importance better.
Finally, we study the interpretations of real cases in our scenario and get a
satisfied analysis for them.

5.1 Experiment Setup

The GBDT version in our experiment is the Scalable Multiple Additive Regres-
sion Tree(SMART) [13], which is a distributed algorithm under the parame-
ter server. Hundreds of billions of samples with thousands of features could be
trained by the algorithm. Not only the storage usage but also the running time
cost is optimized without the loss of the accuracy.

The training data is drawn from transactions under the scene of Fast Pay(FP)
in Alipay1. A transaction is marked as a positive if it is reported as a fraud by
the customer. To keep a balanced ratio between positive and negative cases, only
1% of normal transactions are retained by random sampling.

Fig. 2. GBDT model in PMML format

1 https://global.alipay.com/.

https://global.alipay.com/
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Figure 2 is a fraction of GBDT model in Predictive Model Markup Language
(PMML) format2 and the tree embedded in it can be translate as shown in
Fig. 1. The element Node is an encapsulation for a tree node, which contains a
predicative rule to choose itself or its siblings. The attribute id assigns a unique
number to each node in a tree. The value of score in a Node is the predicted value
for an instance falling into it. SimplePredicate is a simple Boolean expression
indicating the split information. Our pre-trained model is stored as a PMML
file. JPMML3 is employed as the evaluator and we implement the proposed
interpretation based on it.

5.2 Consistency Check

We implement the feature contribution as the previous description in [6]. In order
to make the interpretation be independent of the training process of GBDT, the
training algorithm is not changed in our experiment. In order to get the distri-
bution of instances in Eq. 4, we use JPMML to predict the training instances
and record instance distributions on every node. According to the tree structure
in model and instance distributions, the pre-process is done by back propagat-
ing the local increments as shown in Sect. 4. With the local increments, the
feature contributions of the new instances could be computed. After interpret-
ing lots of instances, we can get a distribution of feature contributions among
the instances. The median is a robust estimator for the expectation of the gen-
eral feature contribution and should somehow keep accordance with the global
feature importances metrics [12].

Fig. 3. Feature importance and feature contribution medians

2 http://dmg.org/pmml/v4-3/GeneralStructure.html.
3 https://github.com/jpmml/jpmml-evaluator.

http://dmg.org/pmml/v4-3/GeneralStructure.html
https://github.com/jpmml/jpmml-evaluator
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Figure 3 plots the global Feature Importance(FI) for GBDT and Feature Con-
tribution(FC) medians for every feature. As we can see, this two statistics have
similar distributions and are in good agreement. It proves that the interpretation
for GBDT is practical and reasonable.

5.3 Comparison to Random Forest

Following the experiment of last section, we get a ranking of the feature con-
tribution median. This ranking is a measure of feature importance and reflects
the quality of local interpretation. We implement the work for random forest in
[12] and compare it with our ranking. For justice, we replace the GBDT Fea-
ture Importance with Information Value(IV) as the importance metric. IV is
a concept from information theory and shows the predictive strength for the
features [9].

Fig. 4. Interpretation: GBDT v.s RF

In Fig. 4, we compute the intersection size on different variable coverage (i.e.
Top 10–50 features of IV). RF implies the method explained in Sect. 3.1. GBDT
is the simple average strategy with only the information in PMML file. GBDTV 2
is the revised version in Eq. 4. From the result, our interpretations capture the
importance better and the revised version works best.

5.4 Case Study

Besides the general evaluation, we analysis the 300 specific instances in the test
data. Figure 5 shows a case, we only list some representative fields and divide
them into 4 parts. The variables are ranked by IV (general feature importance).
Domain experts check the feature risk manually and draw the following conclu-
sions:
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– Part I: Variables in this section are with high IV, our interpretation is able
to capture the features that are judged to be high risk(marked as blue fields).
The feature with high IV but low risk (judging from the feature value) is
assigned a lower score, so the interpretation is good for instance-level contri-
butions.

– Part II: There are 2 variables(colored pink) with high IV and marked high
risk is missed by the interpretation, which mainly due to its low occurrence
in split features. The global importance of these two variables is also low and
model interpretations are limit by the model quality.

– Part III: Variables with median or low IVs are not caught by mistake and is
assigned a low feature contribution for that case.

– Part IV: Several variables are considered to be high risk for the particular
instance, even the general IVs of them are low. Our interpretation finds them
out, which shows the superiority of the local feature contribution over the
global feature importance.

Fig. 5. Case study for interpretation

Further more, if we conduct interpretations on a batch of fraud cases which are
missed by the model, the local feature contributions will help analysts improve
the model.

6 Conclusion

Employing models as a black-box is not enough. A measure for the impact of
a feature on the prediction convinces analysts in an intuitive way. The local
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interpretation provides an explanation when necessary and contributes to the
promotion of the models. We describe a method to unpack the interpretation
for the advanced model GBDT. To the delight of analysts, the whole process is
independent from the training details and technical optimizations. Only the tree
structure and instance distribution are needed, which can be easily extracted by
a post-processing after training. The label distribution based method of random
forest is proved to be a special case of our method. We explore the distribution
of local feature contributions and prove it to be in agreement with global feature
importance. The method is applied to real case studies in different scenarios and
serves as a good translator of our models.

References

1. Bennett, J., Lanning, S., et al.: The netflix prize. In: Proceedings of KDD Cup and
Workshop, New York, NY, USA, vol. 2007, p. 35 (2007)

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
3. Chapelle, O., Chang, Y.: Yahoo! learning to rank challenge overview. In: Proceed-

ings of the Learning to Rank Challenge, pp. 1–24 (2011)
4. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794. ACM (2016)

5. Cui, Z., Chen, W., He, Y., Chen, Y.: Optimal action extraction for random forests
and boosted trees. In: Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 179–188. ACM (2015)

6. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29, 1189–1232 (2001)

7. He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah, A., Herbrich,
R., Bowers, S., et al.: Practical lessons from predicting clicks on ads at Facebook.
In: Proceedings of the Eighth International Workshop on Data Mining for Online
Advertising, pp. 1–9. ACM (2014)

8. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.:
LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neu-
ral Information Processing Systems, pp. 3149–3157 (2017)

9. Kullback, S.: Information Theory and Statistics. Courier Corporation, Chelmsford
(1997)

10. Kuz’min, V.E., Polishchuk, P.G., Artemenko, A.G., Andronati, S.A.: Interpretation
of QSAR models based on random forest methods. Mol. Inform. 30(6–7), 593–603
(2011)

11. Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R.J., Wasserman, L.: Distribution-free
predictive inference for regression. J. Am. Stat. Assoc. (2017, accepted)

12. Palczewska, A., Palczewski, J., Robinson, R.M., Neagu, D.: Interpreting random
forest models using a feature contribution method. In: 2013 IEEE 14th Interna-
tional Conference on Information Reuse and Integration (IRI), pp. 112–119. IEEE
(2013)

13. Zhou, J., Cui, Q., Li, X., Zhao, P., Qu, S., Huang, J.: PSMART: parameter server
based multiple additive regression trees system. In: Proceedings of the 26th Inter-
national Conference on World Wide Web Companion, pp. 879–880. International
World Wide Web Conferences Steering Committee (2017)



Cost-Sensitive Churn Prediction in Fund
Management Services

James Brownlow1,2, Charles Chu1,2, Bin Fu1, Guandong Xu2(B),
Ben Culbert1,2, and Qinxue Meng1

1 Colonial First State, Sydney 2000, Australia
{James.Brownlow,Charles.Chu,Bin.Fu,Ben.Culbert,Qinxue.Meng}@cba.com.au

2 Advanced Analytics Institute, UTS, Sydney 2007, Australia
Guandong.Xu@uts.edu.au

Abstract. Churn prediction is vital to companies as to identify poten-
tial churners and prevent losses in advance. Although it has been
addressed as a classification task and a variety of models have been
employed in practice, fund management services have presented several
special challenges. One is that financial data is extremely imbalanced
since only a tiny proportion of customers leave every year. Another is
a unique cost-sensitive learning problem, i.e., costs of wrong predictions
for churners should be related to their account balances, while costs of
wrong predictions for non-churners should be the same. To address these
issues, this paper proposes a new churn prediction model based on ensem-
ble learning. In our model, multiple classifiers are built using sampled
datasets to tackle the imbalanced data issue while exploiting data fully.
Moreover, a novel sampling strategy is proposed to deal with the unique
cost-sensitive issue. This model has been deployed in one of the leading
fund management institutions in Australia, and its effectiveness has been
fully validated in real applications.

Keywords: Customer retention · Churn prediction
Cost-sensitive classification · Imbalanced data

1 Introduction

Fund management services refer to the institutions that help customers achieve
their wealth goals by providing them with a range of investment options, i.e.,
funds. Since a customer could have an investment of thousands or even millions
of dollars, it is vital for them to retain their valuable customers. To this end, a
practical approach is to predict which customers would quit, i.e., churners as soon
as possible, then a retention campaign which targets these potential churners
could be launched. Churn prediction can be viewed as a binary classification
task, which is one of the fundamental concepts in data mining. Basically, a set
of customers classified as churner or non-churner aka a training set is used to
learn a predictive model, which is used to predict churn probabilities of customers
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 776–788, 2018.
https://doi.org/10.1007/978-3-319-91458-9_49
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whose classes are unknown. Nowadays, churn prediction is receiving increasing
attention from both academia and industry. A multitude of methods such as
boosting [1], random forest [2], and neural network [3] etc. have already been
investigated and employed for churn prediction in various applications, including
telecommunication [1,4], online community [5], and social game [6], and so forth.

Despite these achievements in other industries, the fund management indus-
try has its own particular challenges, meaning that existing methods cannot be
employed directly. One is that financial data is even more imbalanced compared
with other industries. Sampling techniques like undersampling are commonly
used to cope with this issue [7]. However, how to sample a set of informative
and diverse subsets still needs further investigation. Another major challenge is
that a unique cost-sensitive problem is presented. Costs in existing applications
are either class-dependent or instance-dependent [8]. However, the cost of churn
prediction in financial industry belongs to neither of them. On one hand, costs of
wrong predictions for churners should be proportional to their account balance,
so these costs are instance-dependent. One the other hand, wrong predictions
for non-churners could be the same loss which should be less than the loss asso-
ciated with any churner, so these costs are class-dependent. Thus the cost here
actually is a hybrid of class-dependent cost and instance-dependent cost. To our
knowledge, there are few approaches for dealing with this special type of cost at
the moment.

To tackle these challenges, we propose a novel approach based on ensemble
learning for churn prediction in this paper. Specifically, multiple balanced sub-
sets are sampled from the original dataset, multiple classifiers are then learnt
and combined using these subsets. Although similar paradigms have been used
in [2,9], we introduce a new sampling strategy that consists of two separate sam-
pling steps with different weighting mechanisms for two classes respectively. The
advantages of our approach include: (1) this novel sampling strategy uses dif-
ferent weighting mechanisms for different classes, thus the special cost-sensitive
issue can be handled properly; (2) sizes of the subsets are determined randomly,
so they are varied instead of being fixed as in [9], this additional randomness
could increase the diversity of classifiers and achieve better performance accord-
ingly. Gradient boosting machine [10] is used in our approach to learn the classi-
fiers to improve the performance further. To summarize, this paper makes the fol-
lowing three main contributions. (1) A new weighting mechanism and sampling
strategy is proposed to deal with the imbalanced data and special cost-sensitive
problem. (2) The concrete process of how this approach has been deployed in
real production is introduced. (3) Extensive experiments with real-world data
have been conducted to validate the effectiveness of our approach.

The rest of this paper is organised as follows. Section 2 previews related
work. Section 3 gives the notations used throughout this paper as well as a formal
formulation of the learning task. Section 4 introduces the specific implementation
of our proposed model in the real scenario. Section 5 presents the experimental
results, followed by conclusions in Sect. 6.
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2 Related Work

2.1 Churn Prediction

Over the last decade, churn prediction has been applied in various fields, e.g.,
telecommunication, social networks, and mobile application [4,6,11]. In most
cases, it is solved as a classification problem through learning a predictive model
using a set of customers whose classes are known. A customer is usually repre-
sented as a vector of features, and the relationship between a customer’s features
and class could be captured by the model. Generally, there are two keys to learn
a good model, one is how to define a set of discriminative features that could
cover underlying factors, and the other is how to determine the form of model
that is suitable for current data. Every particular application has its distinc-
tive data from which features can be derived. For example, business data and
operation data are exploited in the telecom industry [4], question and comment
data are analysed in online question answering services [12], etc. Although each
application has its unique features, existing classification methods can be used in
these applications commonly. Popular methods such as boosting, random forest
and logistic regression have already been employed [1,4,12], and a comprehensive
review of methods used in the telecom industry is also given in [13].

2.2 Imbalanced Data and Cost-Sensitive Learning

Imbalanced data must be carefully handled otherwise the learning process would
be skewed towards the majority class while the minority class is ignored. Two
primary strategies can be employed to cope with imbalanced data, i.e., method
transformation and data transformation [14]. The former adapts learning meth-
ods to enable them to handle imbalanced data directly. For instance, a skew-
insensitive splitting criteria is adopted in decision tree [15]. By contrast, the
latter aims to obtain balanced datasets, so existing methods can be used with-
out adaptation. For example, oversampling and undersampling techniques obtain
balanced data via varying the size of data of one particular class [7]. Since useful
information could be missed in undersampling, ensemble learning based methods
have become popular recently. These methods follow the same paradigm in which
multiple subsets are sampled, but differ from each other in terms of weighting
mechanisms in the sampling process [2,9,16]. Cost-sensitive learning is closely
related to imbalanced data and has been used as a weighting mechanism to make
data balanced [17]. As stated above, there could be a class-dependent cost or
an instance-dependent cost. A classical strategy of dealing with class-dependent
cost is to define a cost matrix and determine predictions using Bayes optimal
rule [18]. In addition, weighting instances according to their relevant costs is
another typical strategy of encoding costs into the learning process [19].

From aforementioned work, it can be observed that assigning appropriate
weights to instances is a critical way of dealing with imbalanced data as well as
the cost-sensitive learning issue. Inspired by the EasyEnsemble method [9], our
approach also adopts the ensemble learning paradigm to obtain balanced subsets
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as well as take full advantage of available data. The key difference is that a novel
weighting mechanism based on customers’ balance is designed in our approach
to handle the special cost-sensitive issue.

3 Problem Formulation

Let P = {(xi, 1)}1≤i≤|P | be a dataset of minority class in which xi denotes the
ith customer whose class is 1, i.e., churner. Similarly, Let N = {(xi, 0)}1≤i≤|N |
be a dataset of majority class in which every customer xi’ class is 0, i.e., non-
churner. The size of N should be considerably larger than the size of P , i.e.,
|P | � |N |. A customer x is represented as a feature vector x = 〈x1, x2, . . . , xn〉,
and these features could be demographic information and behavioural patterns
extracted from historical transactions.

The task of classification is to learn a predictive model f based on a training
set D = P

⋃
N . Essentially, a model f is a function that establishes a mapping

from instance space to class space, i.e.,

f(x) → c, c ∈ {0, 1} (1)

Given an instance x, c is the class predicted for it by f . The output f could also
be a real value y(0 ≤ y ≤ 1) which indicates the probability of c = 1.

In order to learn a good model, aforementioned imbalanced data and the cost-
sensitive learning issue must be handled properly. An effective strategy to handle
imbalanced data is undersampling. Specifically, a subset N ′ is sampled from N ,
and a model is then learnt based on training set D′ = N ′ ⋃P . Usually we choose
|N ′| = |P |, so D′ is balanced. One issue of undersampling is that the majority of
N is excluded, resulting in much useful information being unexploited. Hence,
recent methods often follow the paradigm of integrating ensemble learning with
sampling as shown in Algorithm1.

Algorithm 1. Ensemble of multiple samplings
Data: Training set N and P , iteration number t
Result: Multiple classifiers f = (f1, f2, . . . ft)

1 for k ← 1 to t do
2 sample Pi from P according to weights of instances in P ;
3 sample Ni(|Ni| = |Pi|) from N according to weights of instances in N ;
4 learn a model fi using Di = Ni

⋃
Pi

5 return f = (f1, f2, . . . ft);

As shown in Algorithm 1, every classifier fi is learnt using a balanced dataset
Di, and N is fully exploited through multiple samplings. Methods that follow
this paradigm differ mainly on: (1) how to set the weights of instances in N and
P , (2) the size of Ni and Pi, and (3) the method used to learn classifiers. For
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example, in the EasyEnsemble method, Ni is sampled evenly from N with every
instance having the same weight, Pi is simply set as P so that |Ni| = |Pi| = |P |,
and AdaBoost [9] is used to learn classifiers. Our approach also adopts this
paradigm, and the remaining problem is how to design weighting mechanisms,
determine sizes of subsets, and combine multiple classifiers to deal with the
special cost-sensitive issue. The solution is introduced in following section.

4 Model Design and Implementation

In this section, our proposed approach is introduced. Particularly, the framework
and steps of its implementation in practice are also presented.

4.1 Our Learning Approach

Two types of wrong predictions could possibly happen, i.e., predicting a churner
as a non-churner and predicting a non-churner as a churner. The former is costly
because failing to identify a churner could lead to loss of all his or her money.
The more money he or she has, the greater the cost will be. Consequently, the
cost of a wrong prediction for churners should be proportional to their account
balance. However, the latter would not incur much loss and has nothing to do
with customers’ account balance. Hence it is reasonable to set the cost of wrong
predictions for non-churners as a fixed value. With this assumption, the weight
wi assigned to every instance xi in dataset N and P is set according to Eq. (2)
in our approach.

wi =

{
1

|N | if xi ∈ N
bi∑

x∈P bx
if xi ∈ P

(2)

Here bi is xi’s account balance. It can be seen from Eq. (2) that weights assigned
to churners are proportional to their individual account balance, while weights
assigned to non-churners are the same which is a class level value.

Next, instances should be sampled from N and P according to their weights
to take costs into consideration when learning models. Instances with greater
weights would appear more times in the new training set, thus the likelihood
of making wrong predictions for them is reduced. Here a key point is how to
determine the sizes of sampled subsets. Instead of setting |Ni| and |Pi| always
as |P |, we use a straightforward method to introduce randomness in the sizes of
subsets. Specifically, when sampling a subset Pi from P , a subset P ′ of size |P |
is sampled according to Eq. (2) firstly, then these instances which exist in P but
not in P ′ will also be added into P ′ to form Pi. In this way, the size of Pi is a
random value which ranges from |P | to 2|P | − 1. A subset Ni of size of |Pi| is
then sampled from N , so that (Pi

⋃
Ni) is a balanced dataset. We can see that

now the imbalanced data and the cost-sensitive issue are well addressed in this
way.
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Algorithm 2. Our proposed approach
Data: Training set N and P , iteration number t
Result: Multiple classifiers f = (f1, f2, . . . ft)

1 for i ← 1 to t do
2 sample P ′(|P ′| = |P |) from P using weights according to Equation (2);
3 Pi = P ′ ⋃(P \ P ′);
4 sample Ni(|Ni| = |Pi|) from N using weights according to Equation (2);
5 fi ← Xgboost(Ni

⋃
Pi)

6 return f = (f1, f2, . . . ft);

Furthermore, Xgboost [10], which is a popular implementation of the gradient
boosting machine model, is employed in our approach to learn models. It is an
additive model which consists of multiple submodels, and every submodel is
obtained through minimizing the residuals produced by previous models. Now,
all the key issues are solved, and the details of our approach are specified in
Algorithm 2.

The output of Xgboost for binary classification is a real value in [0, 1] which
denotes the probability of being a churner. After obtaining multiple models, we
simply use the average of their outputs as the final prediction for x as shown in
Eq. (3).

f(x) =
1
t

t∑

i=1

fi(x) (3)

Here fi is the ith model learnt in the ith iteration.
It can be observed that our approach has several advantages: (1) weights

based on account balance are introduced, so it is less likely to make wrong
predictions for high value churners; (2) line 3 of Algorithm2 indicates the size of
every subset is randomly determined, so models learnt using these subsets would
be more diverse and the performance could be improved via reducing variance
accordingly; (3) the size of subset Ni is larger than |P |, so more information
about the majority class could be exploited when learning models compared
with other methods like EasyEnsemble.

4.2 Model Implementation

Our approach has been applied in a fund service company in Australia. In this
section, how to prepare data and define features in practice is introduced.

Data Sources. Multiple sources of data regarding various entities exist in real-
ity, and data from heterogeneous sources should be integrated to get a compre-
hensive understanding of customers. In our implementation, the primary types
of data that have been exploited are: (1) customer demographic information, (2)
customer behaviour, such as call log and online system login, (3) account sta-
tus, (4) transaction records, (5) fund performance such as daily records of fund
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price, (6) insurance records, and (7) interaction with advisers such as records of
adviser fees etc.

Feature Engineering. Six types of features as below are extracted.

(1) Customer demographic features. These features provide information
regarding customers’ profiles, such as gender, age, and occupation etc.

(2) Customer behavioural features. Customers’ past behaviours or interac-
tions with a company contain some useful clues for their future behaviours.
Typical features of this type includes call frequency, survey rating, and so
on.

(3) Account level features. Two types of account level features are extracted.
The first one relates to an account’s current status, such as tenure and
balance. the other describes an account’s changing trend in the past, i.e.,
balance change, and option change.

(4) Fund performance. Customers are usually sensitive to their investment
returns. Therefore, we also extract features like fund performance to measure
the growth rate of a customer’s investment in the past year.

(5) Adviser and dealer features. Although we do not have much data about
advisers and dealers, we can infer their features through customers asso-
ciated with them. Features such as number of customers, and number of
churn customers are constructed under the assumption that if many cus-
tomers who belong to an adviser have left, other customers belonging to the
same adviser are also likely to leave in the near future.

(6) Employer features. We also extract a set of features regarding employers.
Features like number of employees, number of churn employees are extracted
to measure the impact of an employer on its employees.

Around 120 features are defined totally. For every customer, his or her final
feature vector is the combination of features of all above 6 types. The overall
framework of model implementation is outlined in Fig. 1.

Customer 
demographics

Customer
behaviour

Account 
status and 
trend

Fund 
performance

Adviser and 
dealer 
informa on

Employer
informa on

Unified feature vector

Model building and 
evaluation

Final predictive model

Fig. 1. Framework of model implementation
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As shown in Fig. 1, for every customer, multiple sets of features are extracted
from different perspectives. These features are then combined into a single fea-
ture vector. Therefore, a unified view which covers the influential factors as much
as possible is obtained, increasing the probability of building a reliable model.

5 Experiments

In this section, extensive experiments using data from real applications are con-
ducted to validate our approach’s effectiveness.

5.1 Datasets

Datasets of four different funds are used in experiments. They are retail super-
annuation, corporate superannuation, pension, and investment. To generate
these datasets, data between Jan 2016 and Dec 2016 (observation window)
are extracted to generate features that are introduced in previous section, and
data between Jan 2017 and Jun 2017 (label window) are extracted to determine
classes. A customer is classified as a churner if his or her account is closed in the
specified label window, otherwise is classified as a non-churner. The purpose here
is to use a customer’s information in the past one year to predict his decision in
the next six months.

After excluding outliers and customers whose accounts are opened within the
observation window because they do not have sufficient historical data, Table 1
gives the summary of the four datasets in detail.

Table 1. Description of datasets

Dataset |D| |N | |P | churn ratio

Retail super 220000 210320 9680 4.4%

Corporate super 260000 243300 16640 6.4%

Pension 135000 128925 6075 4.5%

Investment 160000 152480 7502 4.7%

In Table 1, |D|, |N |, and |P | is the size of the whole population, non-churners,
and churners respectively, and churn ratio is the ratio of churners in the popu-
lation, i.e., |P |/|D|. It can be observed that all of these datasets are extremely
imbalanced.

5.2 Evaluation Metrics

In practice, churn prediction models are used to predict the churn probabilities or
attrition scores of existing customers. These scores are then ordered descendingly,
so a retention campaign could focus on the most likely churners, i.e., the top
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K customers. In this case, a model can be evaluated in two manners. One is
the number of true churners in top K customers, and the other is the sum of
true churners’ account balance in top K customers. Accordingly, two evaluation
criteria are used in our experiments.

The first one is recall, and its definition is given in Eq. (4)

R@k =

∑
x∈Top(k) cx

|P | (4)

Here Top(k) denotes the top K customers. cx is customer x’s label, and it could
be 1 or 0, 1 indicates x is a churner and 0 indicates the opposite.

The second one is balance recall, which is defined in Eq. (5)

BR@k =

∑
x∈Top(k) cx ∗ bx

∑
x∈P bx

(5)

Here Top(k) and cx have the same meaning as above, and bx is customer x’s
account balance. For both of these two criteria, a greater value means a better
model performance.

5.3 Baselines and Settings

We compare our proposed method with three classical methods of coping with
imbalanced or cost-sensitive data. These methods are:

– Balanced random forest [2]. In its ith iteration of learning a decision tree, a
subset Pi and Ni(|Pi| = |Ni| = |P |) is evenly sampled from P and N .

– WeightGBM. It is Xgboost with class-dependent weights [10]. Weights of
instances in P are set as |N |/|P | in this method.

– EasyEnsemble [9]. In its ith iteration, only a subset Ni is sampled from N ,
and Pi = P .

– CostGBM, our proposed approach.

The purpose of comparing our approach with these baselines is to validate
the effectiveness of the weighting mechanism designed in this paper, especially in
terms of the criterion balance recall. To make the comparison fair and convincing,
Xgboost is also used in EasyEnsemble instead of Adaboost. The size of Balance
random forest, i.e., number of trees is set as 200. In all other 3 methods, the
number of iterations is 10 and a Xgboost model with 200 trees is learnt in
every iteration. When learning Xgboost model, ‘binary:logistic’ is chosen as the
objective function, and the optimal learning rate is chosen from 0.05–0.3 through
multiple trials. All these methods are implemented in R environment, and the
R package Xgboost is used to learn Xgboost models.

5.4 Results and Analysis

Datasets are split into training set (80%) and test set (20%). Models are then
built using the training sets and evaluated using the test sets. All these methods
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Fig. 2. Model performance in terms of recall

generate numeric predictions as churn probabilities, and the population as in
test sets are ranked in terms of their predictions in a descending order.

To begin with, these methods are evaluated and compared in terms of recall,
and the results on the four datasets are depicted in Fig. 2. For any point in Fig. 2,
its x value is the top percentage of the whole population, and its y value is the
recall. We can see that while EasyEnsemble performs slightly better on these
datasets, our proposed method also shows competitive performance in terms of
recall, even it gives more focus on high value customers.

When it comes to balance recall, our proposed method outperforms the other
three methods significantly on all datasets as shown in Fig. 3. Take the results
on corporate superannuation as example, when we look at the top 10% percent
of the population, the balance recall of Balanced random forest, WeightedGBM,
EasyEnsemble, and CostGBM is around 0.1, 0.1, 0.15, and 0.35 respectively.
We can see that the total balance of true churners identified by our method is
around 2 times greater than those identified by other methods. Given the volume
of corporate superannuation, it means the improvement gained by our method
could be millions of dollars.
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Fig. 3. Model performance in terms of balance recall

6 Conclusions

This paper introduces a novel method for churn prediction in fund management
services and its implementation in a fund management company in Australia.
A sampling framework based on ensemble learning and a new weighting mecha-
nism based on account balance are proposed to deal with imbalanced and cost-
sensitive issues with financial data. The practical steps of model implementation
are also introduced, especially how various data from heterogeneous sources are
exploited and integrated to gain a unified view of customers. Evaluation using
real word data validates our model’s superiority in capturing high value churners
compared with traditional methods. Moreover, our method has been applied in
real applications and assists the marketing team to narrow down their campaign
target. In future work, strategies of incorporating account balance based cost
into other advanced models will be investigated, and more features will also be
extracted to enhance learning performance.
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Abstract. In this demo, we present MSeeker, a user-friendly movie
search system with following characteristics: it (1) transforms natural
language queries (nlq) into graph pattern queries Q with a special node
uo as “query focus”; (2) identifies diversified top-k matches of uo by early
termination algorithm; and (3) provides graphical interface to help users
interact with the system.

1 Introduction

Recently, knowledge graphs have attracted a lot of attentions in academia and
industry, since they organize rich information with structured data, and hence
are able to efficiently provide answers to users’ queries. Figure 1(a) depicts a
sample knowledge graph G. Each node in G either denotes a person, labeled
by name; or a movie (m), with attributes title, genres, rating and year. Each
directed edge labeled by “P”, “D” or “P&D” indicates the person played in,
directed or played in and directed the movie. On knowledge graphs, queries are
typically evaluated with graph pattern matching, i.e., given a pattern query Q
and knowledge graph G, it is to find all the matches of Q in G.

Key issues for querying knowledge graphs are query understanding and eval-
uation. (1) Users’ queries are often expressed with natural languages, which can
not be evaluated directly on knowledge graphs, and need to be properly trans-
formed into pattern queries Q. (2) Knowledge graphs are often very big, and
query semantic is typically defined in terms of subgraph isomorphism, which is
an NP-complete problem [2], these together bring following challenges: (a) query
evaluation is cost prohibitive, (b) it is a daughting task to understand query
results, as there may exist excessive matches of Q in G, and (c) users are often
interested in top-k matches of the “query focus” uo of Q, that are not only
relevant to uo, but are also as diverse as possible, simultaneously.

To tackle the issues, we demonstrate MSeeker, a prototype system for movie
search on knowledge graphs with Chinese. MSeeker has the following two main
features.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 791–796, 2018.
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Fig. 1. Knowledge graph and queries

Querying understanding. MSeeker takes natural language queries (Chinese) nlq
as input, and transforms nlq into pattern queries with output node uo as “query
focus”.

Diversified top-k matching. MSeeker proposes metrics to measure relevance and
distance of matches, identifies diversified top-k matches with early termination
algorithm.

The prototype of MSeeker was deployed and tested by one of our industrial
collaborators, and shows its performance in result diversification and high effi-
ciency.

Demo Overview. We demonstrate the functionality of MSeeker in two parts.
(1) We introduce how natural language queries are transformed into pattern
queries with query focus. (2) We illustrate how diversified top-k matches are
efficiently identified.

Below, we first present the foundation (Sect. 2) and the functional com-
ponents (Sect. 3) of MSeeker. We then propose a detailed demonstration plan
(Sect. 4).

2 Preliminary

We start with a review of natural language query understanding, and diversified
top-k graph pattern matching [3], which are the foundations of MSeeker.

Query Understanding. To understand a natural language query nlq, it is
necessary to (1) identify named entities and their relationship from nlq, (2)
recognize the query focus of nlq, and (3) generate a pattern query with entities
as nodes, their relationship as edges, and a designated node, referred to as the
“output node”, as query focus.
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Named entity recognition (NER). NER is a typical application of sequence label-
ing, where the sequence is a sentence and the labels are the classes that a word
can take on. Sequence labeling problem is usually solved by Conditional Ran-
dom Fields (CRF) [4]. Thus, MSeeker applies CRF++ [1] to identify entities in
a query sentence.

Entity relationship identification. After named entities are recognized, each pair
of entities needs to be examined to decide whether they have task-specific rela-
tions using classification model. To this end, MSeeker applies a strategy for
relationship identification. It first extracted several typical rules by mining query
logs. For example, “played in”, “directed” are typical relationships between entity
pairs in query sentences. It then adopts these rules to determine the relationship
of each entity pair.

Pattern query construction. Given a natural language query nlq, MSeeker con-
structs a pattern query Q based on entities and their relationships in nlq. MSeeker
also extends Q by specifying a node uo, referred to as “output node”, to indicate
query focus.

Example 1. A natural language query and its corresponding pattern query Q
is shown in Fig. 1(b). Observe that each node in Q represents an entity, and
each edge is marked with “P” indicating the played in relationship between two
entities. In particular, the query focus M is marked with “∗” as “output node”. ��

Diversified top-k Matching. Considering that (1) it is expensive to conduct
graph pattern matching with subgraph isomorphism on large graphs; (2) there
may exist excessive matches of Q in a large graph G, which makes understanding
very difficult; (3) users are often only interested in top-k matches of the “query
focus” uo; and (4) result diversification has been proven effective in improving
users’ satisfaction, MSeeker identifies diversified top-k matches of uo with early
termination algorithm.

Matching semantic. Given a pattern query Q with output node uo and a knowl-
edge graph G, the matches of uo in G is defined to be Mu(Q,G, uo) = {v|h(uo) =
v, v ∈ Vs, Gs = (Vs, Es) ∈ M(Q,G)}, i.e., all the matches of the output node
uo, where h(·) is the bijective function that maps each node of Q to each node
of the subgraph Gs in G, and M(Q,G) is the match set of Q in G.

Result diversification. To measure the diversification of a match set S =
{v1, v2, · · · , vk}, a function F (·) is defined as F (S) = (1 − λ)

∑
vi∈S w(vi) +

2·λ
k−1

∑
vi∈S,vj∈S,i<j d(vi, vj), where w(·) and d(·) are the relevance and distance

functions, respectively, and λ ∈ [0, 1] is a parameter set by users. The diversity
metric is scaled down with 2·λ

k−1 , since there are k(k−1)
2 numbers for the difference

sum, while only k numbers for the relevance sum.
One may define w(·) and d(·) by using a variety of functions. While in movie

search application, given a match vi of uo, its relevance w(vi) can be simply
defined as its rating; and for a pair of matches (vi, vj), their difference d(vi, vj)
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can be defined to be the total distance on attributes that are used to measure
their difference.

Example 2. Consider knowledge graph G and pattern query Q in Fig. 1(a) and
(b). With subgraph isomorphism, the match set S is {m5,m6,m7,m8,m10}. If
only attribute year is used to measure the distance, then d(m5,m6) = 2

13 , since
the distance 2 is normalized by the largest distance 13 among the match set.
One may further verify that (a) when λ < 13

153 , a top-2 set is {m7,m10}; (b)
when 13

153 < λ < 13
73 , a top-2 set is {m7,m8}; and (c) when λ > 13

73 , {m8,m10}
makes the best result.

3 The System Overview

The architecture of the system, shown in Fig. 2, consists of the following com-
ponents.

(1) A Query Interpreter (QI) for understanding natural language queries nlq,
and transforming them into pattern queries. (2) A Query Engine (QE) that eval-
uates pattern queries Q and identifies diversified top-k matches of the “output
node” uo.

Fig. 2. Architecture of MSeeker

Query Interpreter. QI takes natural language queries nlq as input, recognizes
entities, their relationships, and the query focus from nlq, and constructs pattern
queries Q. As entities and their relationship may not be recognized correctly,
which may lead to incorrect pattern queries, QI hence allows users to adjust the
pattern queries after generation.

Query Engine. QE performs query evaluation with early termination algo-
rithm.

Query evaluation. Upon receiving k and Q, QE (1) identifies a set of candidate
matches vo of uo; (2) ranks diversification value F (·) for each pair of candidates;
and (3) iteratively verifies whether a pair of candidate are valid matches starting
from candidate pairs with highest F (·). Specifically, given a candidate match
vo, QE starts depth first search from uo and vo, simultaneously, following the
topological structure of Q. After verification, if the pair of candidate matches
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are both true matches, they are included in the match set S. When k is odd,
after |k/2| rounds, |S| = k−1, QE only picks a “true” match that is not in S and
can maximize F (·). Once the set S of k matches are identified, QE terminates
search immediately, and returns S as final result.

Following the strategy, the diversification value F (·) of top-k matches identi-
fied is no less than 1

2F (SOPT ), where SOPT is the optimal solution of the given
instance.

4 Demonstration Overview

The demonstration shows: (1) how QI understands a natural language query nlq,
transforms nlq into a pattern query Q with output node uo; and (2) how QE
identifies diversified top-k matches of uo with early termination algorithm. The
back-end of the system is implemented in Java and deployed on a machine with
2.9 GHz CPU, 8 GB Memory.

Performance of QI. We aim to show (a) how a pattern query is transformed
from a natural language query, and how it is modified to eliminate ambiguation.
Performance of QE. As shown in Fig. 3, we will show effectiveness of result
diversification. We will also show the efficiency of our early termination algo-
rithm.

Fig. 3. Query results of “I want to watch action movies that are played by Jackie
Chan”

5 Summary

This demonstration aims to show the key idea and performance of the system
MSeeker. From our industry collaborator’s feedback, MSeeker can understand
users’ query intention, and efficiently find top-k diversified movies from large
knowledge graphs, hence we contend that MSeeker can serve as a promising
searching tool on knowledge graphs.
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Abstract. In this paper, we demonstrate a prototype system named EventSys,
which provides efficient monitoring services for detecting and tracking event
evolution on microblogging platforms. The major features of EventSys are:
(1) It describes the lifecycle of an event by a staged model, and provides
effective algorithms for detecting the stages of an event. (2) It offers emotional
analysis over the stages of an event, through which people are able to know the
public emotional tendency over a specific event at different time. (3) It provides
a novel event-type-driven method to extract event tuples, which forms the
foundation for event evolution analysis. After a brief introduction to the
architecture and key technologies of EventSys, we present a case study to
demonstrate the working process of EventSys.

Keywords: Event evolution � Emotional evolution � Tracking
Microblog � Detection

1 Introduction

Microblog platforms have been one of the major sources for new events detection and
spreading. Motivated by the massive fresh information generated by microblog users,
many works on event detection and analysis on microblogs have been conducted in
recent years [1–4]. However, previous studies mainly focused on extracting structural
tuples of events, e.g., extracting the 5W1H (who, where, when, what, whom, how)
information [2]. In addition to event tuple extraction, some studies paid attention to the
evolution analysis of events [5], but they cannot grasp the development process of
events. On the other hand, an event usually has a developing process in the real world,
i.e., from birth to death, which is similar to the lifecycle of people. The lifecycle
information of an event is very useful in information mining and decision making. For
example, company managers can make specific decisions according to the developing
stage of the events related to products.

In this paper, we propose to extract the lifecycle of events from microblogs.
Basically, the lifecycle of an event can be defined as a five-stage process including a
budding stage, a developing stage, a peak stage, a recession stage, and a pacification
stage. Although there are some previous studies focusing on event evolution [6], to the
best of our knowledge, they are not able to extract the lifecycle of events.
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Particularly, we propose a prototype system called EventSys for detecting and
analyzing the lifecycle of events from microblogs. The major features of EventSys are
as follows:

(1) Microblog Event Tuple Extraction and Semantic Element Extraction. Given an
event keyword, one problem is how to effectively extract the keyword-related
events from the microblog set. We propose to incorporate event type into the
event tuple extraction. Inspired by the studies in the news-report area that describe
an event based on the news features [1], i.e., when, where, who, whom, what, and
how, we consider to detect the news features of events from microblogs.

(2) Microblog Event Evolution Stage Detection. In order to grasp the lifecycle of
events, we describe the lifecycle of events based on a five-stage model that
consists of five stages: budding, development, peek, recession, and pacification.

(3) Emotional Evolution Analysis. The public emotional tendency to an event varies
with time. Based on the extracted stages of an event, we develop a visual interface
to monitor the public emotional evolution for each stage of specific events.

2 Architecture and Key Technologies of EventSys

Figure 1 shows the architecture of EventSys. The modules of EventSys include event
tuple extraction, event tuple linking, event lifecycle detection, and emotional evolution
analysis.

Event Tuple Extraction. The extraction of event tuples is based on event type, which
is defined as follows.

Definition 1. Event Type. Given a collection of microblog post T which is obtained by
one event query word, the event type is defined as a quadruple < pl, pn, po, pt > , in
which pl, pn, po, pt represent the importance of location, person name, organization
and time entity in the collection respectively, and pl + pn + po + pt = 1.

Microblogs

Microblog 
Crwaler

Event Tuple 
Linking

Emotional 
Evolution Analysis

Event Lifecycle 
Detection

User Interface 

Event Tuple 
Extraction Event Tuple

Microblogging 
Platform

Fig. 1. Architecture of EventSys
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Given a microblog post collection, we represent it as a feature vector x and then
employ the Multinomial Logistic Regression method to train the model [1]. The result
pi ¼ p y ¼ ijx ið Þ;w

� �
where i = l, p, o and t for different named entity categories is used

as the probabilistic distribution. Then, we use the quadruple < pl, pn, po, pt> to rep-
resent the event type, based on which we perform event-type-based clustering for
microblogs by calculating the similarity among microblogs. We use the named entity
probability distribution to adjust the similarity of the named entity of the microblog text
to enhance the extraction effect, and finally get several events microblogging clusters.
Each cluster of microblogging describes the same event. Next, for each cluster, we
extract the 5W1H information [2], and finally get event tuples.

Event Tuple Linking. After extracting event tuples, we need to link the event tuples
that describes the same event. This is mainly because an event will evolve with time.
Given the microblogging data set at time ti, we first get the set of event tuples,
represented by eventTupleSeti. For each event tuple in eventTupleSeti, we calculate the
similarity of the event tuple to previous events, find the most similar event, and link the
event tuple to that event. If there is no similar event, we create a new event and add
attach the event tuple to the newly created event.

Event Lifecycle Detection. Figure 2 shows the representation framework of an event.
Each event has a unique ID and a set of event attributes. It also has a unique lifecycle
that is five-bit structure indicating the current evolution process of the event. An event
has a list of event tuples that are linked by the event tuple linking algorithm. All event
tuples are arranged along the timeline and each tuple has an indicator describing what
stage it belongs to.

The key issue of event evolution analysis is to determine the right stage of an event.
Sometimes we need to predict the stage of an event in future. In our system, we use the
popularity of events to detect the event lifecycle. We define the popularity of an event
in terms of the following features: (1) The forwarding number and commenting number
as well as the total number of related microblog posts are used to measure the popu-
larity of an event. (2) If users’ emotional tendency towards an event changes dra-
matically, it implies that the evolutional stage of the event may change. (3) People
cannot always focus on one specific event. When a new and interesting event happens,
it will attract user attention and change the evolutional stage of current events.

Fig. 2. Event representation
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(4) When the locations that are embedded in the event tuples change, it usually implies
the change of the evolutional stage of the event.

2.1 Emotional Evolution Analysis

The public emotional tendency over a certain event will change with time. Thus, it is
helpful to track the emotional evolution of events in decision making. In EventSys, we
take three steps to extract the emotional evolution information of an event: (1) First, We
extract the microblogging event tuples from each microblogging slices and extract the
emotional tendencies of the event tuple based on a given sentiment dictionary.
(2) Second, we map the event tuple to a developing stage of the event, as shown in the
event representation framework in Fig. 2. (3) Finally, we compute the overall emo-
tional polarity for each stage of an event based on the emotional tendencies of the event
tuples linked within the stage. We use a weighted sum to aggregate the emotional
tendencies of the event tuples in a stage, in which we put high weights for recent event
tuples.

3 Demonstration

Figure 3 shows a screenshot of EventSys. Users are first required to select the time
interval and event keywords as well as other parameters. The system will extract all
events related to the selected event keywords. For example, Fig. 3 shows the output

Fig. 3. Screenshot of EventSys
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after inputting the event keyword “acquisition”, Zone A shows a list of all the events
associated with the keyword. The event is sorted by the number of related microblogs.
In zone B, we can see that the acquisition events occurred mostly in the eastern coastal
areas of China. The right part of Fig. 3 shows the emotional evolution of the event,
where different kinds of emotional information are presented, including the static
statistical emotion, the dynamic emotional tendency, and the supported microblog
posts.

Acknowledgements. This work is supported by the National Science Foundation of China
(61672479 and 71273010).
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Abstract. Stream join is a fundamental and important processing in
many real-world applications. Due to the complexity of join operation
and the inherent characteristic of streaming data (e.g., skewed distri-
bution and dynamics), though massive research has been conducted,
adaptivity and load-balancing are still urgent problems. In this paper,
an enhanced adaptive join-matrix system AdaptMX for stream theta-
join is presented, which combines the key-based and tuple-based join
approaches well: (i) at outer level, it modifies the well-known join-matrix
model to allocate resource on demand, improving the adaptivity of tuple-
based parititoning scheme; (ii) at inner level, it adopts a key-based rout-
ing policy among grouped processing tasks to maintain the join semantics
and cost-effective load balancing strategies to remove the stragglers. For
demonstration, we present a transparent processing of distributed stream
theta-join and compare the performance of our AdaptMX system with
other baselines, with 3× higher throughput.

1 Introduction

Stream computation is another important form of big data processing apart from
batch computation, which is tailored for continuously processing with require-
ments of low latency and high throughput. Among various streaming compu-
tations, stream join processing is a fundamental online real-time operation on
data from different streams, and has been the focus of much research in many
applications, such as stock trading, mobile and network information management
systems.

Although a considerable quantity of research has been conducted on stream
join processing, there are still urgent problems to tackle with such as adaptivity
and load balancing: (i) previous work on join-matrix, a high-performance tuple-
based stream join model [3], is subject to the inflexible “The power of two” data
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partitioning scheme and scales out/down in a costly way [1]; (ii) the naive key-
based KeyGrouping approach is easy to implement by sending the tuples with
same key to the same tasks, but leads to severe load imbalance due to data skew
and slows down the overall performance.

In this paper, we propose AdaptMX, a novel stream join processing sys-
tem which mixes together well the key-based and tuple-based join approaches.
At outer level, we modify the join-matrix model by designing a more flexible
tuple-based partitioning scheme which adaptively scales out/down and allocates
resource on demand. At inner level, after partitioning the join-matrix into pro-
cessing units, we group several joiner tasks within each unit and adopt the key-
based join approach: (i) we maintain a routing table (RT) and a basic hash func-
tion (HF) for each processing unit to route tuples; (ii) we propose cost-effective
load balancing strategies to remove the straggler tasks within a processing unit
based on the idea of “Split keys on demand and merge keys as far as possible”.

2 System Overview and Key Techniques

As Fig. 1(a) shows, AdaptMX consists of two parts. The data source contains
applications which continuously generates data, and an input adapter. We adopt
Kafka as input adapter. The join processing is built on the top of Storm, a
widespread distributed real-time computation engine, and contains three com-
ponents, which coordinate to work as a topology: (i) The spout subscribes to
Kafka and routes original tuples to the downstream joiner tasks (instances of
Storm component). Under the current α × β-partition scheme, each stream cor-
responds to one side of the matrix. If stream R is for row side, it first randomly
selects a row and then sends the tuples to all units along the chosen row. It is the
same for stream S corresponding to column side. Then inside a processing unit,
it routes a tuple to its destination task by a RT or HF. (ii) The joiner does the
actual join computation. Several joiner tasks are grouped into processing units
which are organized as a join-matrix and each task periodically reports its load
statistics to the controller. (iii) The controller is responsible for constructing
the partition scheme of join-matrix model, generating unit mapping, building
migration plan to schedule the data migration and conducting load balancing
adjustment among joiner tasks. Four key techniques of AdaptMX’s implementa-
tion including partition scheme, unit mapping, data migration and load balance
are discussed as followings.

Constructing Partition Scheme. As Fig. 1(b) shows, a join operation
between two data streams R and S can be modeled as a join-matrix model,
the calculation area of which equals a rectangular of |R| · |S|. A partition scheme
on the matrix model splits the stream join R �� S into α × β smaller join pro-
cessing units. Each unit holds partial subset data of two streams and does the
local join Ri �� Sj(0 ≤ i < α, 0 ≤ j < β). Figure 1(c) gives an example of a 2× 3
- partition scheme on Fig. 1(b)’s join-matrix. Since those subsets are replicated
along rows or columns, α and β decide the memory and cpu consumption, which
are proportional to the semi-perimeter (|Ri| + |Sj |) and area (|Ri| · |Sj |) of each
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Fig. 1. Processing Example: (a) Architecture of AdaptMX; (b) Join matrix for the
predicate =; (c) A 2 × 3 - partition scheme.

units respectively. Given the predefined memory resource, we aim to minimize
the number of used units α ·β by adopting two well known theories [2]: (i) given
the area, the square has the smallest perimeter among all the rectangles; (ii)
given the perimeter, the square has the biggest area among all the rectangles.
Current partition scheme are proved to have superfluous units along the last row
or last column [2]. We aim to remove the redundant units for the sake of resource
utilization. And then we may generate irregular partition scheme compared to
previous one along the last row and column, but still promise load balancing.

Generating Unit Mapping Pairs. Before building migration plan, we need
to determine the unit mapping pairs from the old (regular) scheme to the new
(irregular) scheme, with the purpose to minimize the data migration (includ-
ing tuples and corresponding states) during matrix transformation. We define a
correlation coefficient λ to measure the data overlap between two units, which
are from old and new scheme respectively. The naive mapping pairs generation
can be divided into two steps: (i) we enumerate all possible mapping pairs; (ii)
we select the ones with the biggest λ. Likewise, we can conduct a start-point-
alignment method to further optimize the eventual mapping pairs. We align the
range start point of data for unit p in the new scheme with unit q in the old
scheme. It is proved in [2] that the total migration volume is smaller than that
in the previous naive method.

Building Migration Plan. To make it comprehensible, we first introduce how
to build migration plan for a regular scheme, and discuss the details for an
irregular one later. We define two actions for data migration: duplicating and
moving. Apart from duplicating actions which occur to units along the same row
or column, the remaining cases are moving actions. Building migration plan is
divided into three steps: (i) we first get the whole dataset of stream R or S by
combining the data from the first row or column of the old scheme; (ii) then we
fill each unit in the new scheme by duplicating or moving actions; (iii) we finally
delete data which has been migrated from the unit of the old scheme by moving
action. Since the new scheme may be irregular, we need to randomly reassign
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the data of the deleted units to the remaining ones in the last row or column,
and set the deleted units inactive.

Conducting Load Balancing within Each Processing Unit. We adopt the
mix routing policy to do join processing: (i) As each processing unit maintains a
RT, when a tuple is incoming, it first checks whether the key of the tuple exists
in RT. If it exists, the tuple is sent to some joiner task corresponding to that
routing entry. Otherwise, the tuple is routed by a HF. (ii) Based on the real-
time load statistics, we apply the cost-effective load balancing strategies among
joiner tasks within a processing unit independently using the idea of “Split keys
on demand and merge keys as far as possible” [4] with the purpose of minimizing
RT size but guaranteeing load balancing.

3 Demonstration

Our system runs on top of Storm1, and the front-end system is deployed on
github2. The control signal data of AdaptMX is managed by Redis. Screenshots
of front-end system are shown in Fig. 2: (i) Fig. 2(a) displays the skew distribu-
tion and the fluctuation of stream; (ii) Fig. 2(b) presents the load statistics of
each joiner task in AdaptMX; (iii) Fig. 2(d) demonstrates the data migration
among joiner tasks during matrix transformation; (iv) To demonstrate the combi-
nation of key-based and tuple-based techniques, Fig. 2(e) shows the tuple routing
both among and inside units; (v) Fig. 2(c) compares the performance among our
AdaptMX, DYNAMIC and Bi [3] where AdaptMX has 3× higher throughput.

(a) (b)

(d) (e)

(c)

Fig. 2. Demonstration: (a) Stream information; (b) Task load statistics; (c) Through-
put of AdaptMX, DYNAMIC and Bi under different; (d) Matrix transformation of
AdaptMX compared with DYNAMIC; (e) Data routing.

1 http://storm.apache.org/.
2 Web link of the demonstration: https://github.com/CJECNU/AdaptMX.

http://storm.apache.org/
https://github.com/CJECNU/AdaptMX
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Abstract. Different GPS devices and transportation companies record
and store their data using various formats. Even though GPS data often
contains the same spatial-temporal and semantic attributes, describing
the moving object’s trajectory, the integration of these datasets into a
single format and storage platform is yet an issue. Therefore, we deliver a
data integration system for simplified loading and preprocessing of tra-
jectory data into a standard text platform; this facilitates data access
and processing by any trajectory application using multiple and hetero-
geneous datasets.

1 Introduction

With the increasing of GPS trajectory data volume and sources, large amount
of spatial-temporal trajectory data formats have emerged. Therefore, spatial-
temporal trajectory data integration is significant to combine data from differ-
ent sources into a unified format and platform for trajectory data-based appli-
cations [3,4]. We introduce a novel system to represent and integrate spatial-
temporal trajectory data from different sources and formats. This system tar-
gets researchers and professionals working on trajectory data-driven systems and
applications, which often demands the collection of data from several sources
in order to perform experiments and trajectory-based analytics. The applica-
tion parses the input data to a predefined output and compressed CSV format,
and stores the formatted data into any of the provided primary storage plat-
forms, i.e., MongoDB1, HBase2, VoltDB3, or Local directory. This allows any
trajectory-based system to process data from multiple heterogeneous datasets
in a user-provided storage platform, without the need of re-implementation.

Current spatial-temporal trajectory data sources generate and store data in
a semi-structured textual format, containing the latitude, longitude, and time-
stamp of the trajectory coordinates points, along with additional semantic infor-
1 MongoDB. https://www.mongodb.com/.
2 HBase. https://hbase.apache.org/.
3 VoltDB. https://www.voltdb.com/.
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mation, which varies from one dataset to another. Furthermore, several indepen-
dent sensors may be used in different circumstances to collect data [1]. However,
it is challenging to interpret and integrate trajectory data from the multitude
of textual formats and sensors available, and it is still an issue [2]. Therefore, in
order to represent and integrate data from different formats, we firstly introduce
the Trajectory Data Description Format (TDDF), a data description format for
spatial-temporal trajectory data. The TDDF was designed based on a survey on
several real GPS trajectory datasets, both public and private, accessible by our
research groups. Then, based on the user-provided TDDF, our application loads
and parses the input data into the selected output data format using lossless
Delta compression, in order to reduce the size of the stored data. Our system
also generates statistical information (Metadata) about the input datasets. A
data parser was built to convert each data record from the input datasets to the
output format provided.

2 System Design

Figure 1(a) introduces the system workflow. Briefly, raw trajectory data is read
and parsed based on a user-provided input data format (Input TDDF). The
parser identifies trajectory records and attributes from the raw data, and parse
the raw data to any of the provided output data formats, along with the metadata
and the description of the output data format (Output TDDF). The parsed data
can be stored into any of the primary storage platforms provided.

Spatial-temporal trajectory datasets available are organized in basically three
manners, (1) each document in the dataset contains one trajectory record, (2)
each document contains several records, one per line, (3) each document contains
several records in multiple lines separated by a delimiter. Attribute values in a
record are separated by a delimiter (such as a comma or semicolon). Attributes
are either atomic or multi-valued (i.e., list). We overcome the problem of reading
different formats by telling the parser how the records are organized in the
dataset, that is, the format, type, and order of each attribute in the trajectory
records.

2.1 Trajectory Data Description Format: TDDF

We introduce a set of data description keywords to describe the input data
format. The format (fields/attributes) of the input data must be provided as
they appear in the source files. The TDDF is a user-specified script containing
the descriptions of the input data files, similar to a Data Description Language
(DDL), assisting the parser to identify trajectory records and attributes. The
TDDF scope contains both attribute declarations, and commands to be exe-
cuted while parsing the data. We introduce a set of declarative keywords to the
TDDF, for both attributes’ (Data Definition Keywords) and command’s (Data
Control Keywords) declarations. Identifiers and spatial-temporal attributes have
a special tag since they represent the core of trajectory data. The scope of the
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Fig. 1. Trajectory data loader workflow and GUI.

TDDF was designed based on a survey of existing spatial-temporal trajectory
formats, in order to cover a wide range of trajectory datasets. Due to space
limitations, however, we omit the TDDF grammar. The complete list of TDDF
keywords and their meanings, with further usage examples, can be found at the
system’s repository 4.

For each attribute of the data record, one must provide the attributes’ NAME,
TYPE and DELIMITER, separated by space or tab. When providing the TDDF
script, the user must declare one attribute per line in the exact order they
appear in the input file. Commands, on the other hand, are declared in the
form NAME, and VALUE. Three different output formats are provided, namely
SPATIAL, SPATIAL-TEMPORAL, and ALL. In SPATIAL format the output
records contain the trajectory ID and the list of spatial attributes of the coordi-
nates only; the SPATIAL-TEMPORAL format adds the temporal information of
every coordinate; the ALL format contains the complete set of attributes declared
in the TDDF. The output formats follow a CSV (comma separated values) style.
Attribute values are separated by semicolon, and array items are separated by
comma. The output documents contain one trajectory record per line. Docu-
ments can also be output as BSON 5 documents in MongoDB. Furthermore, to
reduce storage consumption, the spatial-temporal attributes in the list of coor-
dinates are delta-compressed. The records attributes are always in the order:
ID;LIST OF COORDINATES;SEMANTIC ATTRIBUTES.

3 Case Study and Demonstration Outline

Figure 1(b) shows the main application GUI. We present a set of case studies
using real spatial-temporal trajectory datasets. We demonstrate how our appli-
cation can be used to integrate data from different sources and formats into a
unique format. For each case, we provide an overview of the input raw data, as
well as the Input and Output TDDF scripts, and the parsed data. The sources
of the data files, as well as some attribute values, will be omitted for privacy
reasons. For the sake of simplicity, and to demonstrate how our system can be
used to integrate datasets into a standard format, we output all datasets using
the SPATIAL TEMPORAL output format.
4 https://github.com/douglasapeixoto/trajectory-data-loader.
5 https://www.mongodb.com/json-and-bson.
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CASE 1: The dataset contains one trajectory record per file. Each line contains
the list of trajectory coordinates, one per line. Coordinates contain both spatial-
temporal and semantic attributes. An overview of the dataset records and its
corresponding TDDF script are given below.

CASE 2: The dataset contains several trajectory records per file, delimited by
the character #. The first line of each record contains a set of semantic attributes
of the trajectory, followed by the list of coordinates, one per line. Coordinates
contain both spatial-temporal and semantic attributes.

CASE 3: The dataset contains several records per file, one per line. The dataset
contains a list of coordinates, and a set of semantic attributes. This dataset had
been used for map-matching, hence the coordinate points also contain semantic
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attributes regarding map-matching. A record in this dataset, corresponding to
a single line in the input file, and its corresponding TDDF are given below.

For all three cases, the output TDDF is the following, since in all cases the
input datasets have been parsed to the same output format.

The output formated data, in CSV and BSON documents, for the three
datasets is the following. Notice that now all datasets are in the same format
SPATIAL TEMPORAL.

CASE 4 (Unsupported formats): Despite our efforts to provide a universal parser,
some data formats may still not fit perfectly in our parser. However, some pain-
less preprocessing can be done in the raw data in order to fit it in our model.
For instance, we have access to a dataset collected by a private bus company,
they collect the GPS locations of all their buses after certain time interval, and
store all GPS coordinates collected at the same time together in a text file. Con-
sequently, the GPS coordinates for a given bus trip were spread across multiple
files. Since the GPS records also contained the buses IDs and trip IDs, we sim-
ply had to perform a quick sort-and-aggregate algorithm to group coordinates
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of a same bus and trip into the same file sorted by time-stamp. After that, the
trajectory records could be easily parsed by our application.

4 Conclusions

In this demonstration we introduced a novel system for spatial-temporal tra-
jectory data integration and representation. Our application interprets and inte-
grates trajectory data from several textual formats into a standard format, using
a novel Trajectory Data Description Format (TDDF), and outputs the inte-
grated data into a user-specified storage platform, in order to assist researchers
and developers working on trajectory data-driven applications.

Acknowledgments. This research is partially supported by the Brazilian National
Council for Scientific and Technological Development (CNPq).
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Abstract. Link stability detection has been an important and long-
standing problem in the link prediction domain. However, it is often
easily overlooked as being trivial and has not been adequately dealt with
in link prediction [1]. In this demo, we introduce an innovative link stabil-
ity detection system, called SLIND (Stable LINk Detection), that adopts
a Multi-Variate Vector Autoregression analysis (MVVA) approach using
link dynamics to establish stability confidence scores of links within a
clique of nodes in online social networks (OSN) to improve detection
accuracy and the representation of stable links. SLIND is also able to
determine stable links through the use of partial feature information and
potentially scales well to much larger datasets with very little accuracy
to performance trade-offs using random walk Monte-Carlo estimates.

Keywords: Link stability · Graph theory · Online social networks
Hamiltonian Monte Carlo (HMC)

1 Introduction

Links in Online Social Network models represent complex relationships between
individuals in real life. Link prediction is the likelihood estimation that unob-
served relationships exist in a future time space. Several methods of predict-
ing potential relational ties center around either node, topology or social the-
ory based techniques. Link stability detection shares the same stochastic based
approaches as link predictive methods. However, instead of predicting unob-
served links, it detects and ranks social relations that score a high likelihood
of stable future occurences from past observations of information transaction
activity.

Link stability detection plays an important role to identify key structural
framework for many social and industry applications such as transport, com-
munication networks, engineering, science, business, governments, etc. [2]. For
c© Springer International Publishing AG, part of Springer Nature 2018
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example, transient protein interactions in a peptide network mirror important
properties of cellular function. Recommendation systems and influence mecha-
nisms require stable properties in a social structure to function effectively.

Existing methods of link stability detection include feature similarity based
techniques (e.g. CN, JC, Katz, AA, etc.) [1], clustering ensemble methods [6],
signed relations [5] and graph-embedding approaches [4]. However, the main
limitations of these methods are a bias approach towards a single feature (often
similarity based) in the decision process [1]. This flaw often leads to detection
inaccuracies and data misrepresentations [2].

In order to mitigate the limitation of the existing methods for stable link
detection in OSNs, an innovative link stability detection system, called SLIND
(Stable LINk Detection), is introduced in this demo paper. SLIND serves a good
system platform to label stable links for OSNs. The novel scientific contribution
of our work involves bridging the gap between temporality and stability of links in
any online social network by using dynamic link features instead of conventional
static features. The innovative feature of SLIND are summarized as follows:

1. SLIND implements a novel idea of running a Multi-Variate Autoregressive
model based on dynamic correlated link-based features. This yields highly
accurate results when detecting and representing link stability in OSNs;

2. SLIND features a user-immersive interface that allows for manipulation of
various link-based feature inputs into the analysis of both univariate and
multivariate regression models. It also provides a rich set of visualization
modes to display the final results at either a fixed or continuous time duration
through different 3D presentations;

3. SLIND accepts large-scale, high dimensional datasets such as the crawled
information from real-life OSNs (e.g., Facebook) and can also perform sta-
bility analysis on small tightly knitted cliques as well. The system model is
computationally efficient and versatile;

4. In comparison to traditional structural and attribute based univariate meth-
ods, SLIND is a major advancement for detecting stable links within OSNs
featuring much better computational performance, data representation and
intelligent predictive accuracy.

2 Method and Architecture of SLIND

In SLIND, the MVVA (Multi-Variate Vector Auto-regression Analysis) method
provides the core capability to scale towards the problem complexity. SLIND runs
efficiently on small scale networks. However, MVVA itself is insufficient to tackle
the problem of large-scaled partially observable networks. SLIND assimilates the
Hamiltonian Monte Carlo to build a probabilistic chain of states through time
that converges to the actual Stability Index (SI) distribution [3].

The overview of the system architecture of SLIND is presented in Fig. 1. In
SLIND, crawled data is first decoded through a de-anonymization module to
produce the features of interest. An optional 2-D topology plot of the dataset
can be subsequently produced. The feature selection module, next handles the
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de-anonymized data (e.g. sentiment, trust, frequency, etc.) and a univariate /
multivariate stability index (SI) score is calculated from the UV/MV modules.
A 3D node coordinate set is generated, and the links are subsequently tagged
with SI scores. A 3D universe module establishes and transforms the labeled
social structure onto the euclidean space. Finally, a 3D canvas module is called
to instantiate and draw the corresponding OSN architecture for visual represen-
tation to users.

Fig. 1. System architecture of SLIND

The dataset chosen for this study, as well as for the demo, was crawled from
Facebook and obtained from the repositories of the Common Crawl (August
2016)1. It is de-anonymized to reveal the following relational features in the wall
posts: the Cumulative Frequency, Sentiment, Similarity, Trust and Number of
Posts at corresponding Unix time samples.

The links are tagged based on their SI scores with higher scores denoting
more stable links.

3 Human Computer Interaction

SLIND allows for user interactions when selecting features for regression analysis.
Additionally, SLIND also allows users to specify tuning parameters, L (Number
of steps) and ε (Stepsize) of our developed HMC model. In addition, users can
also specify the length of the HMC sampling chain. Furthermore, SLIND provides
the option for users to specify initial state values (if known), of the feature

1 http://commoncrawl.org/2016/09/august-2016-crawl-archive-now-available/.
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array as parameterization constraints. Alternatively, users can choose to generate
initial values for their model randomly. Finally, users can choose the sample sizes,
number of parallel repetitions and Markov Chain lengths for the burn-in phase
of the HMC.

There are two presentation modes supported by SLIND to display the link
stability analysis results, namely the snapshot mode and the timeline mode. In
the snapshot mode, the link stability analysis results are presented at a fixed time
frame, while the timeline mode supports the continuous real-time presentation
of all the results.

The HMC stochastic distribution model can also be toggled to display the
evolution of the linked stability of the graph. Additionally, SLIND is able to
transform between views for better visualization. Furthermore, users are able to
generate plots, run real-time analysis simulations, define labels for link SI and
fill in the markers of detected outliers.

4 Demonstration Plan

The demonstration plan for SLIND will consist of the following four major parts.
First, we describe to the audience the limitations of the existing link predictive
methods and the main motivations behind using a time-series Mulivariate model
supported by HMC for predicting relational stability in socio-network links. Sec-
ond, we will showcase the system architecture of SLIND. Third, a demonstration
on the interactive interfaces developed on SLIND will be given. Fourth, an on-
site demo of SLIND will be played to the audience. Audience interaction with
the software platform is encouraged at this stage. On-site assistance will also be
available upon request.

Acknowledgements. This research is partially supported by National Science Foun-
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Abstract. Traditional recommendation approaches work well on depict-
ing users’ long-term music preference. However, in the conversational
applications, it is unable to capture users’ real time music taste, which
are dynamic and depend on user context including users’ emotion, cur-
rent activities or sites. To meet users’ real time music preferences, we
have developed a conversational music recommender system based on
music knowledge graph, MusicRoBot (Music RecOmmendation Bot). We
embed the music recommendation into a chatbot, integrating both the
advantages of dialogue system and recommender system. In our sys-
tem, conversational interaction helps capture more real-time and richer
requirements. Users can receive real time recommendation and give feed-
backs by conversation. Besides, MusicRoBot also provides the music
Q&A function to answer several types of musical question by the music
knowledge graph. A WeChat based service has been deployed piloted for
volunteers already.

Keywords: Music recommendation · Online recommendation
Dialogue system · Recommender system

1 Introduction

Listening to music has been common during many people’s leisure time. Gener-
ally, the recommended content includes hit songs, daily playlist and music radio,
but these kind of interactive ways limit the expression of requirements. In this
work, we have implemented a conversational music recommender system, Musi-
cRoBot (Music RecOmmendation Bot), which embeds music recommendation
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Knowledge Service Platform Project (No. ZF1213) SHEITC and Shanghai Agricul-
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into a ordinary chatbot innovatively. Comparing with traditional recommen-
dation scenarios, there’re many differences in the conversational scenario: (1)
it emphasizes more on online interactions; (2) this scenario is more context-
sensitive; (3) dialogues carry richer but more complex information. Obviously,
conversational recommendation is significant but challenging. In fact, conver-
sational recommendation has been already studied. Christakopoulou et al. [1]
proposes a conversational recommender system for restaurant recommendation
by asking user absolute or relative questions. Sun et al. [2] demonstrates a con-
versational products recommendation agent based on deep learning technologies,
but this demo seems like a virtual sales agent using a task-oriented dialog system.
Besides, different from most existing chatbot, we focus on music-domain rather
than open-domain, and we also construct Music Knowledge Graph (MKG) in
support of musical entity recognition and recommendation.

Fig. 1. Architecture of MusicRoBot Fig. 2. Entities and relationships inMKG

2 System Design

Our system can be is divided into three layers: data layer, system layer and
application layer. Figure 1 shows the architecture of MusicRoBot.

2.1 Music Knowledge Graph (MKG)

In support to better recognition and recommendation, we construct Music
Knowledge Graph, raw data of which comes from Xiami1. We organize all musi-
cal entities as a graph in consideration of advantages in inference and analysis.
Figure 2 shows entities and their relationships, the entity is represented as node
and the relationship as edge. We define four types of entities: song, album, artist
and genre, and our genres include both professional genres and common tags.
MKG is stored in neo4j2, and there’re currently over 6 million songs, 600 thou-
sand albums, 130 thousand artists, nearly 500 genres and still increasing.
1 xiami’s homepage: http://www.xiami.com/.
2 neo4j’s homepage: https://neo4j.com/.

http://www.xiami.com/
https://neo4j.com/
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2.2 Scenario Design

In our demo, we have designed four scenarios as follow:

Memory-based User Portrait Construction. In Fig. 1, it’s short for Mem-
ory. System can capture users’ basic properties and preferences on music during
dialogues and store in User Knowledge Graph (UKG). These properties can be
used as explanation for recommendations and relieve the cold-start problem. In
this implementation, basic property contains age, gender and current emotion.
Preference contains all kinds of music entities in MKG. In addition, we conduct
collision detection on user’s basic properties.

Q&A. Q&A consists of user properties’ Q&A and music knowledge’s Q&A.
This function is mainly designed for enhancing the interactivity between user
and system. It may help discover useful user preferences for our future research.

Recommendation. It’s the core module in this system. There’re three kinds
of recommendation scenarios: specific-query based recommendation, free rec-
ommendation and emotion-based recommendation. The recommended items
include song, album and artist. Besides, in coping with online and interactive
recommendation, we adopt a bandit-based recommendation algorithm, C2UCB
[3]. We compare C2UCB with most popular strategy using Xiami user’s listened
song list and show the average reward (AR) for each user in Table 1. The result
shows that user prefer less popular songs and prove the advantage of C2UCB.

Chat. This function is in charge of the other scenarios which don’t match the
above situations. It is essential but not our focus, we employ the existed imple-
mentation by emotibot3.

2.3 Intent Recognition and Dialogue Management

In Intent Module , system recognizes user intent and extracts useful con-
straints from input. We summarize this task into Intent Recognition and Realtime
Requirements Extraction. This module is implemented by Gowild4, applying
both template matching and classifier. Dialogue Management is in charge
of making next system action, which plays a role as a central controller. Both
users’ current intents and the context of previous dialog are considered during
decision making.

3 Demonstration

Our demo is published as a WeChat Service and it currently supports only Chi-
nese text input. Figure 3 shows the representative example motion-based recom-
mendation scenario: a new user comes in and expresses his negative emotion, in
this case, system inquires user preferences under this emotion, then recommends
song as normal. Currently, system provides multi-turn recommendations at most
three times, when user doesn’t accept recommendations.
3 emotibot ’s homepage: http://www.emotibot.com.
4 Gowild ’s homepage: http://www.gowild.cn.

http://www.emotibot.com
http://www.gowild.cn
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Table 1. Comparison with Most-popular rec-
ommendation

#round #user AR for

MP

AR for

C2UCB

based

Promotion (%)

1 645 0.40 0.41 2.5

10 645 4.09 4.5 10.02

20 645 8.51 9.24 8.58

50 645 20.09 23.87 18.82

100 645 39.84 48.27 21.16

200 504 80.21 98.87 23.26

500 277 200.46 261.77 30.58

Fig. 3. WeChat Service Demonstration
for the recommendation scenario
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Abstract. Hadoop is a popular distributed framework for massive data
processing. HDFS is the underlying file system of Hadoop. More and
more companies use Hadoop as data processing platform. Once Hadoop
crashes, the data stored in HDFS can not be accessed directly. We present
HDUMP, a light-weight bypassing file system, which aims to recover the
data stored in HDFS when Hadoop crashes.

1 Introduction

MapReduce [3] is a popular parallel programming model and Hadoop [1] is its
open-source implementation. Many internet companies are dependent on Hadoop
for their massive datasets. HDFS stores meta data on a master node, called
Name Node. Application data are stored on other servers called Data Nodes. For
Hadoop 1.x, there is only one Name node. In [4], the authors proposed the second
Name Node for Hadoop. However, even with two Name Nodes, it is possible that
the two Name Nodes crash at the same time. The recovery of the whole Hadoop
clusters needs professional engineers. Sometimes, users can not wait a long time
to get the urgent data from HDFS. We present HDUMP, an off-line data recovery
tool, which can bypass Hadoop and HDFS to fetch the data directly. We know
that HDFS is made up of the local directories of the Data nodes. The data is
stored in the data blocks, which are distributed in the local directories of the
data nodes. Thus, by acquiring the mapping relationships between the files and
the data blocks, we can fetch the files from the local directories directly.

In this demo, we introduce HDUMP, a light-weight data recovery tool for
HDFS. The total installation package is only about 25 MB. The main idea of
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HDUMP is to restore the information from the meta data of HDFS. The meta file
fsimage includes the file and directory properties and the mapping relationships
between the file and the data blocks. However, a data node includes many data
blocks, to speed up the searching, we build a BTree [2] index for the block ids and
the node ids. HDUMP implements the following functions without the support
of Hadoop:

1. Show the information of HDFS including the users, files and the mapping
relationships between HDFS files and HDFS data blocks.

2. A similar file system as HDFS including common commands, such as
ls,cd,pwd,list,cp,cat, and so on.

3. Scan and download files from HDFS in an off-line way.

The rest of paper is as organized as follows. Section 2 introduces HDUMP.
Section 3 presents the demonstration and evaluation of HDUMP. Section 4 gives
the conclusion.

2 HDUMP

2.1 HDUMP Overview

The main idea of HDUMP is to restore the directory hierarchy, the HDFS file
properties and the mapping relationship between the HDFS files and the data
blocks according to the meta data, named as fsimage. We implement a build-in
file system in HDUMP, which is a similar file system as HDFS.

2.2 HDUMP Architecture

HDUMP is comprised of two main components. One is fsimage analyzer and the
other is the HDUMP file system. Fsimage analyzer transforms the meta data of
HDFS to an xml format. HDUMP file system uses the xml to restore the HDFS
file system. The architecture of HDUMP is illustrated in Fig. 1. HDUMP is imple-
mented by a client/server architecture. The server includes four components,
which are fsimage analyzer, HDUMP file system, file fetcher and BTree index
respectively. The client is a window which supports SSH protocol (Table 1).

2.3 Fsimage Analyzer

We analyze the meta file fsimage to get the data hierarchy of HDFS. HDUMP
supports Hadoop 1.x and Hadoop 2.x. The fsimage of Hadoop 1.x is in the
format of xml. We interpret the xml format to get the requisite information to
restore HDUMP file system. The fsimage of Hadoop 2.x is in a binary format.
We transform it to an xml format.
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Table 1. HDUMP commands

Name Description

load Load the fileimage of HDFS

head Show the info of fsimage

list List the directories and files included in the fsimage

print Print all information in the fsimage

cat Show the contents of the file in HDFS

cp Copy the file in HDFS to the local machine

find Find file in HDFS

ls Show the files and the directories in the current HDFS directory

shell Execute shell command

Fig. 1. HDUMP

2.4 Data Recovery Utilizing HDUMP

HDUMP provides a off-line way to fetch the files stored in HDFS. When Hadoop
crashes, we can use HDUMP to restore the files. For HDFS, the data blocks are
stored in the data directory specified in the hdfs-site.xml in data nodes. There
are a large amount of blocks in a data node. To speed up the time efficiency, we
use a BTree [2] index to implement a quick searching for the data blocks.

When HDUMP starts, we use load command to load the fsimage. The
fsimage analyzer of HDUMP restore the file and directory properties from
fsimage and HDUMP provides a simple file system for users to interact.

3 Demonstration and Evaluation

As illustrated in Fig. 2, HDUMP serves as a file system similar with HDFS.
When Hadoop crashes, we use HDUMP to scan and fetch the data stored in
HDFS. The steps fetching the files on HDFS are listed below:
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Fig. 2. HDUMP interactive interface

1. Step1: Load fsimage into HDUMP
2. Step2: Find the files to be fetched using find command
3. Step3: Enter the specified directory using cd command
4. Step4: Download the files on HDFS using cp command.

The file transferring speed utilizing HDUMP is dependent on the network
speed and the disk speed. We copy a file with size of 500 MB and take about 5 s.

4 Conclusions

In the demo, We present HDUMP, a data recovery tool for Hadoop. When
Hadoop crashes, using HDUMP, we can browse and fetch files from HDFS
directly without the recovery of Hadoop.

References

1. http://hadoop.apache.org/
2. Comer, D.: The ubiquitous B-tree. ACM Comput. Surv. 11, 121–137 (1979)
3. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.

Commun. ACM 51, 107–113 (2008)
4. Deshpande, P., Bora, D.: The recovery system for Hadoop cluster. In: The 20th

International Conference on Distributed Multimedia Systems: Research Papers on
Distributed Multimedia Systems, Distance Education Technologies and Visual Lan-
guages and Computing, Pittsburgh, PA, USA, 27–29 August 2014, pp. 416–420
(2014)

http://hadoop.apache.org/


Modeling and Evaluating MID1 ICAL
Pipeline on Spark

Zhongsheng Li1, Qiuhong Li2(B), Yimin Liu3, Wei Wang2, Fengbin Qi1,
Mingmin Chi2, and Yitong Wang2

1 JiangNan Institute of Computing Technology, Wuxi, China
lizhsh@yean.net, qifb118@sina.com

2 School of Computer Science, Fudan University, Shanghai, China
{qhli09,weiwang1,mmchi,ytwang}@fudan.edu.cn

3 Third Affiliated Hospital of Second Military Medical University, Chongqing, China
liuyiminzsh@aliyun.com

Abstract. Squire Kilometre Array (SKA) project generates almost the
hugest data volume in the world. SKA data flow pipelines need almost
real-time processing ability, which brings huge challenges to the execu-
tion frameworks (EF for short). We propose a cost model for a typical
SKA data flow pipeline named as MID1 ICAL pipeline on Spark. By
simulating the I/O of MID1 ICAL pipeline with a reduced SKA data,
we evaluate several different implementations of MID1 ICAL pipeline
and conclude the optimized method for this pipeline on Spark.

1 Introduction

Squire Kilometre Array [2] is the next generation telescope producing almost
the hugest data volume in the world. The SKA science data processing (SDP
for short) pipelines in SKA include imaging pipelines and calibration pipelines
mainly. Both of these two kind of pipelines are iterative, data-intensive and
computing-intensive. Spark [4] is reported as a popular distributed in-memory
computing framework for large scale data analytics, especially suitable for iter-
ative data processing.

MID1 ICAL pipeline is an astronomical calibration pipeline for SKA. In [1],
the authors propose an implementation of the IO for MID1 ICAL on Spark,
which is treated as the baseline. We do not need the astronomical background
by only considering the nodes as a collection of data and the edges as the data
dependency between nodes. As illustrated in Figs. 1 and 2, the edges between
nodes represent the data dependency. The main bottleneck of the baseline is
the shuffle caused by the “cogroup” and “flatMap”. We propose two methods to
improve it. First, we use Spark partitioning to replace “cogroup” and “flatMap”.
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Fig. 1. Pharotpre dft sumvis Stage Fig. 2. Solve Stage

Secondly, we use Alluxio [3] to replace these two operations. The key contribu-
tions of this demo are as follows.

1. We propose a cost model for MID1 ICAL pipeline on Spark. We model the
execution of MID1 ICAL concerning of partition granularity, shuffle amount
and task overheads.

2. We use Alluxio to solve the performance bottleneck caused by Spark shuffles.

2 Modeling MID1 ICAL Pipeline on Spark

2.1 MID1 ICAL Pipeline Overview

The smallest independent processing unit of MID1 ICAL pipeline generates
about 62.3 TB data with one loop, one island worth of frequencies (20 fre-
quencies) and one snapshot. Figures 1 and 2 illustrate the data dependencies for
Stage Pharotpre dft sumvis and Stage solve. Each stage includes a collection of
<key, value> pairs. The key represents the identifier and the value represents
the data. The key of Stage degkerupd deg is marked as (beam, major loop, fre-
quency, time, facet, polarisation). Here beam, time and major loop are set to 1.
The frequency is from 1 to 20 and facet is from 1 to 81. The polarisation is from
1 to 4. Thus there are 6480 <key, value> pairs for Stage degkerupd deg.

2.2 Cost Model

We propose a cost model for MID1 ICAL pipeline as the following:

COSTI/O = MEMcost + Shufflecost + NETcost + Taskoverheads (1)

MEMcost = RDDmemory + Broadcastmemory + GCcost (2)

Shufflecost = Sortcost + DISKcost + SERcost + DESERcost (3)

NETcost = TRANSRDD + TRANSBroadcast + TRANSshuffle (4)

Spark task overheads per task is less than 3 ms. We reduce the data scale to
a very small value and treat the execution time as the task overheads. We use
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3 ms as the average Spark overheads for a task (not include the data processing
time). For the auto-generated version, 12964 tasks are launched. The time for
extra task overheads is about 12964 * 3 ms = 38.9 s. The number of Spark tasks
is related with the number of the partitions of RDDs. Thus, coarse granularity
of RDD partitions can decrease the extra Spark task overheads.

The number of Spark nodes affects the cost mainly by the amount of network
IOs caused by both the RDD processing and Spark Broadcast. Both intra-RDD
and inter-RDD operations need to consider the network cost. The processing
speed for shuffle is quite slow, less than 50 MB/s for our cluster because of sort
operations and disk IOs are concerned. The Spark partitioning does not generate
shuffle.

3 Comparisons of Different MID1 ICAL Pipeline on
Spark

We compare two proposed implementations with the baseline method.
The Auto-partitioning is the Spark implementation of the MID1 ICAL

pipeline mentioned in [1]. The main idea is to utilize “flatMap” operation to
copy the data and use “cogroup” to generate an RDD from two or three RDDs.
To match the keys, many “flatMap” operations are used to copy the RDD items
to generate new items with different keys.

We solve the cogroup problem by utilizing Spark partitioning and Spark
broadcast. Take pharotpre dft sumvis stage as an example. We use mapParti-
tions function to partition the RDD degrid by frequency. This operation does not
cause shuffle operations. By the combination of broadcasting small datasets and
partitioning big datasets, we can avoid most of the previous cogroup operations.

We use Alluxio, an in-memory distributed file system to replace the
“cogroup” operations and the effect is significant. Fortunately, Alluxio is also
a product from AMPLab, the same as Spark. Alluxio can provide data sharing
across different jobs and different systems with in-memory speed. By the same
way, the “cogroup” operations can be replaced by the combination of Spark and
Alluxio.

4 Evaluation

4.1 Evaluation Environments and Baselines

We conduct the experiments to compare different implementations of the reduced
program for MID1 ICAL pipeline on Spark. We use two experiment environ-
ments. The first includes one machine, which has 1.5 TB memory, 80 CPU cores
of 2.2 GHZ. The second includes five machines, each with 64 GB memory, 8 CPU
cores, each with 1.8 GHZ.
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4.2 Comparisons of Different Spark Implementations of MID1
ICAL Pipeline

We use data scale = 1/8 to evaluate three implementations of auto-partitioning,
partitioning and Alluxio + Spark. The results are illustrated in Table. 1. We
verify the data by checking both the number and the size for the data in Alluxio.
The system resources are illustrated in Figs. 3 and 4.

Table 1. Comparisons of Different Spark Implementations (data scale = 1/8)

Version name Stages number Time (min) Shuffle (Read) Shuffle (Write)

Auto-partitioning 12964 40 18.0 GB 15.8 GB

Partitioning 19 4.4 84.7 MB 107.9 MB

Spark+ Alluxio 22 2.6 75.7 MB 108.1 MB

Fig. 3. System summary (Auto-
partitioning)

Fig. 4. System summary (Partitioning)

5 Conclusions

Traditional astronomical applications use MPI to implement parallelism. In this
demo, we present two efficient implementations for MID1 ICAL pipeline on
Spark.
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