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Abstract. With the popularity of Linked Open Data, a large amount
of RDF data have been published and developed in the form of knowl-
edge graphs, which can be publicly accessible via SPARQL endpoints.
The efficiency of SPARQL querying on large-scale knowledge graphs
has attracted increasing research efforts. In this paper, we propose a
template-based query approach, which involves temporal, spatial, and
domain-specific constraints to focus on certain resources of interest. Fur-
thermore, query results which include a set of RDF triples are visualized
in graph format to display entities and relationships in a user-friendly
manner. We also analyze the visualized graph with ranking, partition-
ing, filtering, and statistics. Various template-based queries are designed
and evaluated on the knowledge graph of DBpedia. It can be observed
that template-based queries with temporal-spatial and domain-specific
constraints can effectively facilitate users to obtain target answers by
filtering out irrelevant information.

Keywords: Template query · Temporal-spatial · Visualization
SPARQL

1 Introduction

With the popularity of Linked Data, a series of systematic methods to organize
and publish RDF graphs have been developed [6], which aim to build large-scale
knowledge graphs. As a flexible graph-like data model, an RDF graph is a set
of triples, where each triple, consisting of a subject, predicate, and object, can
be viewed as an edge in a directed graph from a subject to an object with the
predicate as the edge label. SPARQL is the standard query language, endorsed
by W3C, to retrieve data from RDF graphs. Since RDF has been gradually rec-
ognized as a major representation format by the knowledge graph community, in
recent years, increasing importance has been attached to SPARQL for querying
large-scale knowledge graphs more effectively.

To provide effective SPARQL query experience, there have been some
research efforts on large-scale knowledge graphs. With the interface of
TriniT [15], users need to input a complete SPARQL query, which is difficult
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for end users. On the other hand, in RelFinder [8,13], users need to provide two
resources in the interface. Then, from a starting node, RelFinder explores its
neighboring nodes and properties, which form the edges in the paths between
the two user-specified resources. Meanwhile, Fusion [1] is also designed to offer
discovery of relationships between two given resources. As a graph-based query
method, NAGA [11] provides a user interface and focuses on a novel scoring
model to rank results. Shekarpour et al. [14] propose basic graph pattern tem-
plates to generate SPARQL queries, where users merely need to provide some
words of interest. However, the above methods are designed for professional pro-
grammers in most cases and the query results are returned in form of triples or
paths, which are not visible and usable for users.

In this paper, we propose an approach to evaluating template-based SPARQL
queries, which are defined as general SPARQL queries with Basic Graph Patterns
(BGPs) and FILTER clauses. End users just need to provide several specific key-
words or values to replace the placeholders in BGPs or FILTER clauses without
knowing the syntax and semantics of SPARQL. Since the attributes about time
and space are common and essential for the resources in knowledge graphs, we
define the basic template query by adding temporal-spatial constraints that are
provided by users. However, in the real world, users’ requests not only focus on
the temporal and spatial attributes of resources but also other various domain-
specific properties. If users need to obtain precise relationships, they can choose
the refined template query, which replaces the variables with certain values or
adds triple patterns with extra constraints based on the basic template query.

Despite the proliferation of knowledge graphs, there still exist a number of
obstacles, which hinder the large-scale deployment of knowledge graphs [2]. In
general, for end users, the query result on knowledge graphs is a set of triples
that are not yet sufficiently visible and usable. The visualization for knowledge
graphs is commonly displayed in form of a labeled graph, such as the Paged
Graph Visualization [4]. It turns out that the efficient innate human capabili-
ties can be inspired to perceive and process data when knowledge graphs are
presented visually [10]. Therefore, we convert the result of the template-based
query into a series of nodes and edges and display them in graph format using
the following three steps: (1) the result is loaded into the R tool; (2) igraph
package is applied to construct an adjacency graph of the result in R; and (3)
the adjacency graph can be visualized as a labeled graph in Gephi. We designed
and evaluated 8 template-based queries on the knowledge graph of DBpedia.
Moreover, We demonstrate these queries in several typical case studies via a
SPARQL endpoint on a single machine.

Our main contributions include: (1) We propose the basic template SPARQL
query with temporal-spatial constraints, where the keywords or values are pro-
vided by users to extract entities and relationships of interest. (2) Further we
design the refined template query, which is defined by adding constraints with
certain domain-specific values based on the basic one. (3) Various queries are
designed and conducted as different case studies on knowledge graphs, such as
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the DBpedia dataset. Moreover, we realize a user-friendly visualization of each
query result in graph format.

The rest of the paper is organized as follows. We discuss the related work in
the areas of SPARQL query and visualization on knowledge graphs in Sect. 2.
Section 3 provides the fundamental definitions of background knowledge. In
Sect. 4, we describe in detail the template-based query. We also present the uni-
versal procedure of visualization in Sect. 5. Queries based on the basic and refined
templates are evaluated in case studies in Sect. 6, and we conclude in Sect. 7.

2 Related Work

The existing query and visualization methods on knowledge graphs can be clas-
sified into the following four categories:

Language-Based Query. TriniT search engine [15] provides a user interface for
querying, where users need to input a complete SPARQL query with knowing the
syntax of SPARQL. Elbassuoni et al. [5] present a structured query mechanism
on RDF graphs, which shows the inter-relationships between entities based on
a language model. Despite with rich expressiveness, the above language-based
query methods are designed for professional programmers in most cases. Thus,
it is difficult for end users to use it effectively.

Keyword-Based Query. Heim et al. [8] propose an approach, called RelFinder,
to searching the relationships between two user-specified nodes and displaying
all the edges between the two nodes as a graph. Users can choose a starting
node and incrementally explore a knowledge graph. The found resources are
visualized as nodes connected by the edges labeled with the relationships. In
addition, Lohmann et al. [13] present an approach with relationships filtering
in four dimensions based on RelFinder. Fusion [1] implements a path discovery
algorithm, which can find a path represented in form of a triple between two
known resources given by users in a Web interface. However, the above methods
only focus on the paths satisfying between the two given nodes labeled with
keywords, which result in ignoring the global information that is vital for data
statistics and analysis.

Graph-Based Query. NAGA [11] is a semantic search engine, which is built
based on a knowledge base consisting of millions of entities and relationships.
It presents a graph-based query language that allows the formulation of queries
with semantic information, which can be more expressive than those standard
keyword-based search approaches. The query result of NAGA is ranked using a
scoring model, while it is not visualized in form of a graph and not intuitive for
end users.
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Template-Based Query. Shekarpour et al. [14] propose a set of predefined
basic graph pattern templates to generate SPARQL queries with the user-
supplied keywords. Users just need to provide several keywords, then the corre-
sponding SPARQL query can be generated and the query result can be returned.
LESS [2] presents a language, called LESS Template Language (LeTL), which
can define arbitrary text-based output representations and support the integra-
tion of information. It provides a Web interface for users to edit the template
with user-defined parameters, then returns the query result for users, whereas it
cannot display the result in form of a graph.

Actually, most of the above methods simply automatically display the results
in the Web applications without graphics visualization. Unlike the above meth-
ods, we combine keyword-based and template-based queries with a balance
between flexibility and expressiveness to design the basic and refined template
queries. In our method, the query result is displayed as a graph with interac-
tive features and filter options considering the global information in different
granularity and dimensions.

3 Preliminaries

In this section, we introduce the definitions of relevant background knowledge.
RDF data is a collection of triples denoted as (s, p, o), which states that the

resource s has a relationship p to the resource o, where s is called the subject, p
the predicate (or property), and o the object, which can be formally defined as
follows:

Definition 1 (RDF graph). Let U and L be the disjoint infinite sets of URIs
and literals, respectively. A tuple (s, p, o) ∈ U × U × (U ∪ L) is called an RDF
triple. A finite set of RDF triples is denoted as G = (V,E,Σ), called an RDF
graph, where V is a set of vertices that correspond to all subjects and objects;
E ⊆ V × V is a set of directed edges that correspond to all triples; and Σ is a
set of edge labels.

SPARQL is the standard RDF query language, in which Basic Graph Pat-
tern (BGP) queries are fundamental building blocks [7]. The BGP queries can
be easily extended to general SPARQL queries with FILTER, UNION, and
OPTIONAL.

Definition 2 (Basic graph pattern (BGP)). Assume there exists an infinite set
V ar of variables disjoint from U and L, and every element in V ar starts with
the character ? conventionally, e.g., ?v ∈ V ar. A triple (s, p, o) ∈ (V ar ∪ U) ×
(V ar ∪U)× (V ar ∪U ∪L) is called a triple pattern. Basic graph pattern (BGP)
is denoted as a finite set of triple patterns. For a triple pattern t, let vars(t) be
the set of variables occurring in t.

In order to help users query on knowledge graphs without knowing the syn-
tax and semantics of SPARQL, we design the basic template query. First, we
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predefine a series of placeholders, denoted by K = {K1,K2, . . . ,Kn}, where
Ki ∈ P(U ∪ L) and Ki denotes the resources that belong to some specific
domains. Then, as a placeholder, each element ki ∈ Kj can denote a sub-
ject, a predicates, or an object. For example, given a certain triple pattern
(s, ki, o), users can specify ki ∈ Kj to denote a predicate in the triple pattern.
In particular, we define Kpt as a set of predicates for restricting the temporal
attributes, such as Kpt = {birthYear,birthDay,...}, Kot as a set of objects for
representing certain temporal values, such as Kot = {1990,1990-01-01,...},
Kps as a set of predicates for restricting the spatial attributes, such as Kps =
{nationality,birthPlace,...}, and Kot as a set of objects for representing
certain spatial values, such as Kos = {United Kingdom, London,...}. There-
fore, we define the basic template query as follows:

Definition 3 (Basic template query). Assume that a SPARQL query, denoted
as Qt = {t1, . . . , tn}, includes a set of triple patterns and additional FIL-
TER statements. There exist several triple pattern statements, such as, tp =
(s, kpt, kot) satisying kpt ∈ Kpt ∧ kot ∈ Kot, tf = (s, kpt, o) satisying kpt ∈ Kpt

and o is restricted by FILTER in a range, and ts = (s, kps, kos) satisying
kps ∈ Kps ∧ kos ∈ Kos. If (tp ∈ Qt ∨ tf ∈ Qt) ∧ ts ∈ Qt, then Qt is a basic
template query. The placeholders in Qt can be replaced by proper values specified
by users.

The properties related to temporal-spatial attributes of the resources in
knowledge graphs are general in most cases. For Qt, users just need to provide
the values to replace the placeholders. However, in the real world, users’requests
not only focus on the temporal-spatial attributes, but also other attributes in
different domains. If users would like to obtain more specific or detailed infor-
mation, they can choose the refined template query, which is defined as follows.

Definition 4 (Refinement relation). Let Sq and Sr denote two sets of basic
template queries, a binary relation from Sq to Sr, denoted as R ⊆ Sq × Sr, is
called a refinement relation if and only if ∀(Qt, Qr) ∈ R the following conditions
hold, for a triple pattern t ∈ Qt: (1) t ∈ Qr or t /∈ Qr ∧ ∃ tr ∈ Qr ∧ vars(tr) ⊂
vars(t); (2) vars(Qr) ⊂ vars(Qt).

Definition 5 (Refined template query). Given a basic template query Qt =
{t1, . . . , tn}, where ti is a triple pattern or a FILTER statement, we design a
query Qr = {t1, . . . , tn, tn+1, . . . , tn+m}, where tn+i (i ≥ 1) denotes a triple
pattern in general SPARQL. If Qt and Qr satisfy a refinement relation, i.e.,
(Qt, Qr) ∈ R, then Qr is called a refined template query w.r.t. Qt.

Obviously, for a refinement relation R, ∀(Qt, Qr) ∈ R, the result set of Qr

is a subset of that of Qt [12]. For instance, in Fig. 1, the SPARQL expressions
highlighted in orange represent temporal-spatial constraints, in gray represent
extra refined triple patterns. The query result is a set of triples, i.e., a series of
subjects, predicates, and objects, which need to be visualized explicitly. To this
end, we visualize these triples in graph format.
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SELECT * SELECT *
WHERE { WHERE{

.tsitrAlacisuMepytx?.m?z?x?

?x ?u ?y . ?x associatedMusicalArtist ?y .

?x kpt kot . ?x birthYear 1989 .

?x kps kos . ?x birthPlace United Kingdom .

?y ?v ?n . } ?y type Person . }

Fig. 1. Examples of the basic and refined template queries

Definition 6 (Visualization of RDF triples). We define the visualization of a set
of RDF triples as an labeled undirected graph G = (V,E), called the visualized
graph. Then, for ∀ a triple (s, p, o), the subject s (or the object o) denotes a
vertex v ∈ V (or v′ ∈ V ) labeled with s (or o), and the predicate p denotes an
undirected edge between v and v′. The nodes are sorted in different colors and
sizes and the graph is shown in proper layouts.

4 Template-Based Query

In this section, we describe two template-based queries in detail. Moreover, we
present how to evaluate the queries to obtain the meaningful target relationships
and information of rich semantics.

4.1 Basic Template Query

There exist several predicates that are restricted to the sets Kpt and Kps in the
basic template query. The basic template query applies temporal and spatial
constraints to the resources, which contributes to an important influence on the
visualized graph.

Given a basic template query Qt, users need to provide kot and kos to com-
plete the query and execute it against a SPARQL endpoint. Since the predicates
in Kpt and Kps are determined by the knowledge graph, we can evaluate the
basic template query on a knowledge graph in the real world, such as DBpe-
dia. For example, when asking the query “to search the one that belongs to
dbo:Preson and return the person and his related attributes”, two triple pat-
terns t1 = (?x rdf:type dbo:Person) and t2 = (?x ?p ?y) can return the tar-
get answers. In basic template query, we add temporal and spatial constraints
based on t1, which is shown in template Qt. It aims to find all the resources
that have the property rdf:type with dbo:Person, dbo:nationality with kos,
and dbo:birthYear with the value that is larger than kot. When we increase (or
reduce) the range of kos or kot, the number of the results can change dramatically,
which can be clearly observed in the visualized graph.
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Template Qt:
PREFIX rdf: <http://www.w3.org/1992/02/22-rdf-syntax-ns#>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX db: <http://dbpedia.org/resource/>
SELECT ?x ?y
WHERE {

?x rdf:type dbo:Person.
?x ?p ?y.
?x kps (e.g., dbo:nationality) kos (e.g., db:United Kingdom).
?x kpt (e.g., dbo:birthYear) ?birthYear .
FILTER(?birthYear >= kot (e.g., 1990)) .

}

In this paper, we mainly focus on the resources and their relationships involv-
ing persons, i.e., social networks. We also consider the resources in other domains
to reveal the meaningful relationships in the real world. When the domain varies,
the corresponding temporal and spatial attributes also change.

4.2 Refined Template Query

In the basic template query, we only add temporal and spatial constraints. How-
ever, the resources in knowledge graphs have covered various domains and the
query result is too large to be analyzed directly due to the massive knowl-
edge graphs. We propose the refined template query to specify and restrict the
resources further to search more meaningful relationships. For example, we spec-
ify ?p in t2 = (?x ?p ?y) of Qt as dbo:parent and add new triple patterns
(?x ?z ?m), (?y ?v ?n), . . . , to restrict ?x and ?y, where ?z, ?m, ?v, ?n, etc.
are all specified by users.

Template Qr:
SELECT ?x ?y
WHERE {

?x rdf:type dbo:Person.
?x dbo:parent ?y.
?x kps (e.g., dbo:nationality) kos (e.g., db:United Kingdom).
?x kpt (e.g., dbo:birthYear) ?birthYear .
FILTER(?birthYear >= kot (e.g., 1990)) .
?x ?z ?m .
?y ?v ?n .
. . .

}

Obviously, there exists a refinement relation R from Qt to Qr, where the
result set of Qr is a subset of that of Qt.
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5 Template-Based Visualization

In this paper, the result of the template-based query is a set of RDF triples.
Therefore, we can transform these RDF triples into an undirected labeled graph.

As a statistical analysis software, R combines statistical analysis and graph
visualization well. The igraph package in R can easily convert the result into
an adjacent graph in GraphML format. Gephi is a very powerful software for
processing graphs with many functions, such as sorting, partitioning, statistics,
filtering, layout, and so on. To this end, we process the query results with R and
realize visualization of RDF triples in Gephi.

5.1 General Data Transform Algorithm

Given a template-based query Q, we execute the query in R against a specified
SPARQL endpoint. Once receiving the result, we transform it to an adjacency
graph in Algorithm1, which includes the general steps of visualization in R.

Algorithm 1. visualizeInR
Input : The template-based query Q.
Output: A visualized graph.

1 Re ← the result of Q against a specified SPARQL endpoint;
2 Sort Re as a table Tr;
3 Select two columns −→x , −→y in Tr;
4 m,n ← the number of values in −→x ,−→y , respectively;
5 Mxy ← construct a matrix with m rows and n columns;
6 if i-th value in −→x relates to j-th value in −→y then
7 Mxy[i][j] = 1;

8 else Mxy[i][j] = 0;
9 if visualizing a direct relationship then

10 xy ← graph.incidence(Mxy);

11 else if visualizing an indirect relationship then
12 Mxy ← Mxy ∗ Mxy;
13 diag(Mxy) ← 0;
14 xy ← graph.incidence(Mxy);

15 Attach the labels to the corresponding nodes in xy;
16 return xy in GraphML format ;

The query result in R includes several columns of different entities with
certain attributes. We select two columns of entities to construct an adjacency
matrix (lines 2–8), which can be transformed into an adjacency graph. There are
two cases: (1) when visualizing a direct relationship, we transform the adjacency
matrix into an adjacency graph directly (lines 9–10); (2) when visualizing an
indirect relationship, we conduct multiplication with the adjacency matrix itself
to build a new matrix, then we transform the new one into an adjacency graph
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(lines 11–14). For clarity of the visualized graph, we attach the labels to the
nodes in the graph. Finally, the output is a labeled graph in GraphML format,
which can be further demonstrated in Gephi.

5.2 Visualization and Analysis

Gephi is a common visualization tool, which is mainly used for exploratory data
analysis, link analysis, social network analysis, and biological network analysis.
As a powerful software for processing graphs, it provides systematic analysis with
ranking, partitioning, filtering, and statistics for graph analysis [3]. In this paper,
the input of Gephi is an adjacency graph from R, shown in a random layout,
which can be sorted and displayed in a proper layout as output to intuitively
provide useful information for end users.

The process of visualization in Gephi can be realized in the following steps.
First, we can allocate different colors to the nodes in accordance with the param-
eters of betweenness centrality or PageRank and sort the size of each node by
its degree. Then we can choose an appropriate layout strategy to display the
nodes. There are a variety of layout strategies which consider the gravitational
and repulsive forces between each node. Furthermore, to obtain more refined
information, we can select nodes or edges with thresholds, ranges, and other
properties to filter out irrelevant information.

6 Case Study

The SPARQL queries were executed against a SPARQL endpoint provided by Vir-
tuoso on a PC machine. Eight template-based queries were designed and evalu-
ated on the knowledge graph of DBpedia, shown in four case studies. The datasets
we employed are four subsets in DBpedia, called instance types en, labels en,
mappingbased literals en, and mappingbased objects en, respectively. We
also displayed the visualized graph with sorted nodes in terms of colors and sizes.
In most cases, a strategy, called ForceAtlas2, was chosen to layout the nodes in
the graph, which aims to generate a readable shape of the graph [9].

Case Study 1. Without temporal and spatial constraints, the result includes
a large number of triples which cannot be analyzed intuitively when visualized.
We carried out 4 template-based queries as follows, for selecting the entities
and relationships in the real world, in three granularities: (i) template query
with temporal and spatial constraints, (ii) refinement by replacing variables with
constants, and (iii) refinement by adding extra triple patterns.

When asking the query “which musical artists have a genre?”, in template
query users just need to provide MusicalArtist, genre, and temporal and spa-
tial constraints instead of a complete SPARQL query. For example, we select
musical artists and corresponding resources who were born in United Kingdom
and between 1987 and 1997, shown as Q1. The result of Q1 is shown in Fig. 2(a).
Although the nodes that represent dbo:MusicalArtist are highlighted in green
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(a) The result of Q1
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(b) The result of Q2

Fig. 2. The visualization of the query results of Q1 and Q2 (Color figure online)

and its related nodes are marked in red, the whole results are still difficult to be
analyzed intuitively.

Q1: SELECT ?x ?y
WHERE {
?x rdf:type dbo:MusicalArtist . ?x dbo:genre ?z .
?x ?p ?y . ?x dbo:birthPlace db:United Kingdom .
?x dbo:birthYear ?birthYear. FILTER(?birthYear >= 1987) .
FILTER(?birthYear <= 1997) .
}

Furthermore, we can narrow the range of spatial and temporal values, such
as London and 1989, shown as Q2. As shown in Fig. 2(b), the size of the result
decreases in comparison with the result of Q1. We can observe that the node
labeled with db:Katy B and db:Labrinth have the larger outdegree than the
other nodes. However, temporal and spatial constraints are inadequate, the above
results include a certain number of resources that users are not interested in.

Q2: SELECT ?x ?y
WHERE {
?x rdf:type dbo:MusicalArtist . ?x dbo:genre ?z .
?x ?p ?y . ?x dbo:birthPlace db:London .
?x dbo:birthYear 1989.
}
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db:Katy_B

db:Labrinth
db:Breakstep

db:Contemporary_R&B

db:Dubstep

db:Electronic_dance_music

db:Electronica

db:Hip_hop_music

db:House_music

db:UK_funky

db:UK_garage

(a) The result of Q3

db:Labrinth

db:MckNasty

db:Rihanna

db:The_Weeknd

db:Usher_(singer)

(b) The result of Q4

Fig. 3. The visualization of the query results of Q3 and Q4

To obtain more specific information, more constraints need to be added based
on the basic template query. For example, if users are interested in the musical
artists who can play Bass guitar, or the people who are associated with the
musical artists, then variables can be replaced with constants or extra new triple
patterns can be added. Suppose Q3 be a query that satisfies the refinement rela-
tion R(Q2, Q3). Based on Q2, Q3 is formed by replacing the triple pattern (?x
?p ?y) with (?x dbo:instrument db:Bass guitar), whose result is shown in
Fig. 3(a). As we can see, the size of the result of Q3 decreases significantly com-
pared with that of Q2. We use Q4 to select the persons who have the relationship
called associatedMusicalArtist with musical artists, shown as follows.

Q4: SELECT ?x ?y
WHERE {
?x rdf:type dbo:MusicalArtist . ?x dbo:genre ?z .
?x dbo:birthPlace db:London . ?x dbo:birthYear 1989.
?x dbo:associatedBand ?y . ?y rdf:type dbo:Person .
}

The query Q4 also satisfies R(Q2, Q4), whose result is shown in Fig. 3(b). It can
be observed that the answers to Q3 and Q4 are both subsets of the answers to Q2.

Case Study 2. When querying the universities that have direct relationships,
we add corresponding temporal and spatial constraints, i.e., dbo:foundingDate
and dbo:country. We design Q5 and vary the value of kot in temporal dimension,
i.e., 1800-01-01 and 2000-01-01 to analyze the query results, as shwon in Fig. 4.

Q5: SELECT ?x ?y
WHERE {
?x rdf:type dbo:University . ?y rdf:type dbo:University .
?x ?p ?y . ?x dbo:country db:United States .
?x dbo:foundingDate ?date .
FILTER(?date >= 1800-01-01 (or 2000-01-01)) .
}
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Obviously, the number of nodes in the result of Q5 declines as the range of
temporal constraint being narrowed, as shown in Fig. 4(a) and (b). The main
relationships between two universities are that one has dbo:affiliation with
the another. We allocate the color of each node using the community detection
algorithm and sort the size of each node with the value of the degree. Thus,
different communities consisting of several universities are highlighted in different
colors. In particular, the less important nodes are marked in gray. It can be
observed that all the universities are divided into several groups, which can be
analyzed further.
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Fig. 4. The visualization of the query result of Q5 (Color figure online)

Case Study 3. In Q5, it searches the universities that have direct relationships,
where each node in Fig. 4 represents a university. Now we look for a person and
his/her related university. Temporal-spatial constraints are added to the person
rather than the university, as shown in Q6.

Q6: SELECT ?x ?y
WHERE{
?x ?p ?y . ?x dbo:nationality db:United Kingdom .
?x rdf:type dbo:Person . ?y rdf:type dbo:University .
?x dbo:birthYear ?birthYear . FILTER(?birthYear >= 1900) .
}

The result of Q6 contains the persons and the related universities, including
296 nodes and 236 edges in total, among which 169 persons marked in red and
127 universities in green in Fig. 5(a). We allocate color of each node by its kind;
rank the size of each node by PageRank algorithm in Gephi, where the rank of
a node is higher, the size is larger. Based on the result of Q6, we just display
the nodes whose rank are greater than or equal to 0.59, then we obtain several
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(a) Persons and universities

db:Malcolm_Todd
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db:Segun_Toyin_Dawodu

db:Talyn_Rahman-Figueroa

db:City_University_London

db:Harvard_University

db:Imperial_College_London
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db:Royal_College_of_Art db:SOAS,_University_of_London

db:University_College_London
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db:University_of_Glasgow

db:University_of_Leeds

db:University_of_London

db:University_of_Oxford

db:University_of_Sussex
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(b) The nodes with rank ≥ 0.59

Fig. 5. The visualization of the query result of Q6 (Color figure online)

significant nodes as shown in Fig. 5(b). Further, the modularity class is applied
to allocate the color of each node in order to build 9 main communities consisting
of the persons and the related universities in Fig. 6.

In particular, we take advantage of the above direct relationships between the
persons and the universities to mine the indirect connections, i.e., the schoolfel-
low relationship. After using matrix multiplication operation in Algorithm1 to
process the result of Q6, we can obtain the social relationship between the per-
sons who are studying or working in the same university, as visualized in Fig. 7,
which is a complex social network and different from the other visualized graphs.
If a person has complex relationships with other persons, then the color of the
node that labeled with this person is closer to red. We use the K-core algorithm
to refine the social network further and employ between centrality to filter out
the nodes, as shown in Fig. 8(a) and (b).

Case Study 4. In this subsection, we focus on the relationships that belong to
some specific domains. For example, based on Q1, we change the value of object
correspond with to rdf:type in the first triple pattern, which can limit the sub-
ject to a certain class of people, such as swimmer, writer, soccerplayer, or tennis-
player. Then we design Q7 to specify the relationship called dbo:influencedBy,
which is a unique attribute in dbo:Writer. Similarly, we desgin Q8 to search the
relationship called dbo:soccerPlayer between a soccerplayer and a team. For
obtaining specific results, we search the soccerplayers and their teams, who are
born after 1800 s and have British citizenship.

The result of Q7 includes 29 nodes and 18 edges in Fig. 9(a), which means that
there are 18 relationships satisfy the conditions. We sort color of each node by
the modularity class and rank the size of each node by PageRank. In Fig. 9(a),
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Fig. 6. The visualization of the main communities in Q6 (Color figure online)
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Fig. 7. The visualization of the schoolfellow relationship based on Q6 (Color figure
online)
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Fig. 8. The visualization of the schoolfellow relationship with filtering (Color figure
online)

db:James_Richardson-Brown

db:Leo_Butler

db:Michael_Hoey_(linguist)

db:Norman_Dennis

db:Patrick_Cave

db:Polly_Stenham

db:Samantha_Shannon

db:Ted_Walker

db:Terry_Scales_(painter)

db:Tony_Parker_(author)

db:Tyne_O'Connell

db:Andrew_Young_(poet)
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(a) The influencedBy relationship

db:Alfred_Chalk
db:James_Jones_(footballer)

db:Stephen_James_(model)

db:William_Gosling_(footballer)

db:AFC_Wimbledon

db:Brentford_F.C.

db:Chelmsford_City_F.C.
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db:Nea_Salamis_Famagusta_FC

db:Scotland_national_youth_football_team

db:Upton_Park_F.C.

(b) The soccerPlayer relationship

Fig. 9. The relationships of some specific domains in Q7 and Q8 (Color figure online)

the size of a node is proportional to the rank of the node. The relationship
soccerPlayer in Q8 involves soccer players and teams, which are marked in
yellow and green, respectively, as shown in Fig. 9(b). Since the above two rela-
tionships belong to the specific domains, the number of result is relatively fewer
and it can be easily visualization.
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7 Conclusion

We present template-based queries on knowledge graphs, which is a query
method based on temporal, spatial, and domain-specific constraints. We mainly
propose two template queries, i.e., the basic and refined template queries, to
extract valuable information on knowledge graphs, whose results are visualized
in undirected labeled graph. Our experimental results are well displayed in graph
format for data analysis. With different constraints, knowledge graphs are visu-
alized in different granularity. Our future work includes the visualization of more
knowledge graphs and implementation of a more user-friendly interface.
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