
Filtering Techniques for Regular
Expression Matching in Strings

Tao Qiu(B), Xiaochun Yang, and Bin Wang

School of Computer Science and Engineering,
Northeastern University, Liaoning 110819, China

qiutao@stumail.neu.edu.cn, {yangxc,binwang}@mail.neu.edu.cn

Abstract. Matching a regular expression (regex) on a text is widely
used in many applications, such as text editing, information extraction
and instruction detection (IDS). Traditional algorithms generally com-
pile an equivalent automaton from the regex query, then run it on the
text to find all matching results. However, they have to scale linearly
with the size of the text. Recent algorithms utilize various filtering tech-
niques to quickly jump to candidate positions in a text where a matching
result may appear, then only these candidate positions are verified by
the automaton. In this paper, we give a full specification on filtering
techniques for the regex matching problem, in which filters for the regex
query can be classified into positive factor and negative factor. We review
three typical positive factors, including prefix, suffix, and necessary fac-
tor and show that negative factors can collaborate with positive factors
to significantly improve the filtering ability.

Keywords: Regular expression · Filtering technique · Query efficiency

1 Introduction

Regular expression (regex) matching is a fundamental problem that exists
in many applications, such as text editing, information extraction, protein
sequence matching and instruction detection (IDS). For example, in the
domain of bioinformatics, a regex query TC(T|G)(C|T)A has the language
{TCTCA,TCTTA,TCGCA,TCGTA}, matching this regex is to find all matchings of
the string in this language from a genome sequence.

The classical approaches to match a regex query in a text is that first trans-
forming the regex into an equivalent automaton, and then running it from each
position in the text to verify if the substring is an occurrence of the regex. An

The work is partially supported by the National Natural Science Foundation of China
(Nos. 61572122, U1736104, 61532021).
The original version of this chapter was revised: For detailed information please see
correction chapter. The correction to this chapter is available at https://doi.org/
10.1007/978-3-319-91455-8 24

c© Springer International Publishing AG, part of Springer Nature 2018
C. Liu et al. (Eds.): DASFAA 2018, LNCS 10829, pp. 118–122, 2018.
https://doi.org/10.1007/978-3-319-91455-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91455-8_12&domain=pdf
https://doi.org/10.1007/978-3-319-91455-8_24
https://doi.org/10.1007/978-3-319-91455-8_24

Filtering Techniques for Regular Expression Matching in Strings 119

occurrence is found whenever a final state of the automaton is reached [1,5,8].
NFAThompson [8] and DFAClassical [1] are two typical automaton-based algo-
rithms. NFAThompson is the pioneering work that proposes the Thompson NFA
to match a regex with time complexity O(mn), where m is the size of the regex
query and n is the length of the text. DFAClassical realizes regex matching by
simulating the DFA, which can guarantee a linear search time of O(n). However,
the automaton-based algorithms have to check every character in a text, the
matching efficiency is largely limited.

To improve query efficiency, filtering techniques have been proposed for many
applications which focus on producing a set of candidates which could be the final
query results [3,4,7,10,13,14]. To alleviate the above issue in the regex matching
problem, many algorithms have been developed under a filtering-and-verification
framework, where candidate positions are generated using one or more filters
and then verified by an automaton to find the true matching positions [7,11].
The filters can be divided into two types. The first one, called positive factor,
utilizes the substrings extracted from the regex query, including prefix, suffix
and necessary factor. MultiStringRE [9] computes a set of prefixes for all strings
matching the regex query (i.e., the language of a regex), then uses a Commentz-
Water-like algorithm to verify the text starting from each occurrence of these
prefixes. NRGrep [6] gets the candidate positions using the reversed prefixes of
the regex and verifies them using a reversed automaton. GNU grep [2] utilizes
the necessary factors to get candidate positions, which are the substring must
appear in a regex match. Since a necessary factor could divide a regex into
a left and a right part, two automatons are constructed to verify a candidate
position in forward and backward directions. The other one is called negative
factor and initially proposed in [12], which is the substring that cannot appear in
any matching string of a regex. Negative factors can further prune the candidate
positions generated by the positive factors.

In this paper, we give a full specification on filtering techniques for the regex
matching problem and show different filters of the regex can be used together to
improve the filtering ability.

2 Filtering-Based Regular Expression Matching

Let Σ be a finite alphabet. A regular expression (regex) Q is a string over
Σ ∪{ε, |, ·, ∗, (,)}, in which {|, ·, ∗} are the operators that represents disjunction,
conjunction and Kleene closure (repeating unit), respectively. We use L(Q) to
represent the language of a regex Q. For a text T of the characters in Σ, we
use |T | to denote its length, T [i] to denote its i-th character (starting from 0),
and T [i, j] to denote the substring ranging from its i-th character to its j-th
character.

Regular Expression Matching. Given a regex Q and a text T , the regex
matching problem is to find matching occurrences of the strings in L(Q) from T .

In the following, we first review the filtering techniques with positive factors,
then show negative factors can collaborate with positive factors.

120 T. Qiu et al.

2.1 Computing Candidate Positions Using Positive Factors

Recent techniques have utilized certain features of the regex Q to improve the
performance of automaton-based methods [7]. Their main idea is to use positive
factors, which are substrings of Q, to identify candidate positions of Q in T . Next,
we present three typical positive factors, including prefix, suffix, and necessary
factor.

A prefix w.r.t. a regex Q is defined as a prefix of a string in the language
L(Q). We use lpre to denote the length of a prefix. A set of prefixes SP can be
used as the filters of a regex if and only if there is a prefix in SP for any string in
L(Q) [9]. For example, for the regex Q = (A|G)T∗AT∗G, the prefixes with lpre = 2
are {AT, AA, GT, GA}. Due to any matching string of Q must start with a prefix
in SP , then the matching positions of the prefixes in SP on T are the candidate
positions for Q. To compute all matches of Q, we only examine these matching
positions of prefixes using the automaton of Q.

Similarly, a suffix w.r.t. a regex Q is defined as a suffix of a string in L(Q),
and the length is denoted by lsuf . We use SS to represent the set of suffixes
computed from Q, e.g., for the regex Q = (A|G)T∗AT∗G, the suffixes with lsuf = 2
are {TG, AG}. Different from prefixes, the ending matching positions of suffixes
in SS are candidate positions, which are verified by a reversed automaton in the
backward direction [6].

In addition to prefixes and suffixes, the necessary factor is another type of
positive factor, which is a substring that must appear in every matching string
in L(Q) [2]. For instance, for the regex Q = (A|G)T∗AT∗G, {A} is a necessary
factor of Q. To verify a candidate position where a necessary factor appears, we
can divide Q into a left part and a right part with a corresponding automaton,
e.g., two automatons are constructed for the left and right parts of the regex Q
(i.e., (A|G)T∗ and AT∗G).

Instead of independently applying each positive factor, all three types of
positive factors can also be leveraged together to further improve the filtering
ability [11]. PS and PMS are two typical patterns used to identify candidate posi-
tions. PS pattern utilizes prefix and suffix which requires a candidate occurrence
contains the matchings of a prefix and a suffix simultaneously in T . Likewise,
PMS pattern requires a candidate occurrence contains all matchings of the three
positive factors. Generally, PMS pattern can achieve better filtering ability than
PS pattern since one more positive factor is considered, but it also needs more
computational cost for filtering.

Consider the example in Fig. 1, there is a matching result T [6, 10] for the
regex Q = (A|G)T∗AT∗G. Using prefixes of Q as filters, there are 6 candidate
occurrences needed to be verified. PS and PMS further prune the candidate
occurrences when considering more positive factors, and obtain 5 and 4 candidate
occurrences, respectively.

2.2 Further Pruning Candidate Positions Using Negative Factors

Although positive factors can be used together to compute candidate occur-
rences, compared to the single type of positive factors, using more than one type

Filtering Techniques for Regular Expression Matching in Strings 121

A T C T T G G T A T G A C G T T G C G T A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Candidate occurrences

PS pattern

PMS pattern

Prefix
Suffix

A Necessary
Suffix

A

Fig. 1. An example of using positive factors to identify candidate occurrences for the
regex Q = (A|G)T∗AT∗G.

of positive factors obtains few improvements in the filtering ability. Negative
factors solve this problem.

A negative factor (also called N-factor) w.r.t. a regex Q is a string w such that
there is no string Σ∗wΣ∗ in L(Q) [11,12]. For example, for the running example,
C is an N-factor since any string in L(Q) does not contain C. Essentially, N-factor
is the substring that does not appear in any matching string of Q. Based on this
property, given a set of N-factors of Q, a text T can be divided into several
disjoint segments and we can get the matching result of Q can only appear
within a segment.

At first, we show N-factors can be integrated into the PS pattern. According
to the definition of N-factor, a candidate occurrence must start with a prefix
and end with a suffix, and do not contain any matching of N-factor. We call
such candidate occurrences satisfy the PNS pattern. For example, as shown in
Fig. 2, candidate occurrences T [0, 16] and T [10, 16] obtained by PS pattern can
be pruned by the PNS pattern since they contain the matching of N-factor C.

Similarly, we can get the PMNS pattern by integrating N-factors into PMS
pattern, which requires a candidate occurrence contains the matchings of nec-
essary factors based on the requirements of the PNS pattern. Because PMNS
considers the requirements of all filters computed from the regex, it achieves the
best filtering ability. For the example in Fig. 2, compared to the PNS pattern,
the candidate occurrence T [13, 16] can be further pruned by the PMNS pattern
since it does not contain the matching of A.

A T C T T G G T A T G A C G T T G C G T A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Candidate occurrences

PNS pattern

PMNS pattern

Prefix
Suffix

A Necessary
factor

C N-factor

Fig. 2. Using negative factors to further prune candidates generated by positive factors.

122 T. Qiu et al.

3 Conclusion and Future Work

Regular expression matching is a fundamental problem existing in a diverse
range of applications. In this paper, we introduced the filtering techniques for
the regex matching problem, in which filters of the regex query can be classified
into positive factor and negative factor. We reviewed three typical positive fac-
tors, including prefix, suffix, and necessary factor and showed they can be used
together to compute candidate occurrences. Furthermore, we showed negative
factors can collaborate with positive factors to significantly improve the filtering
ability. As parts of future work, we will (i) further investigate the correlation
between different filters extracted from the regex query; (ii) balance the filtering
cost caused by different filters.

Acknowledgment. This paper constituted an invited talk, held atBDQM2018, aDAS-
FAA 2018 satellite workshop. The main techniques derive from our work cited in [11].

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers - Principles, Techniques and Tools.
Addison-Wesley, Reading (1986)

2. GNUgrep: ftp://reality.sgiweb.org/freeware/relnotes/fw-5.3/fw gnugrep/gnugrep.
html

3. Li, B., Yang, X., Wang, B., Cui, W.: Efficiently mining high quality phrases from
texts. In: AAAI, pp. 3474–3481 (2017)

4. Li, B., Yang, X., Zhou, R., Wang, B., Liu, C., Zhang, Y.: An efficient method for
high quality and cohesive topical phrase mining. TKDE (2018, to appear)

5. Mohri, M.: String matching with automata. Nord. J. Comput. 4(2), 217–231 (1997)
6. Navarro, C.: NR-grep: a fast and flexible pattern matching tool. Softw. Pract. Exp.

(SPE) 31, 1265–1312 (2001)
7. Navarro, C., Raffinot, M.: Flexible Pattern Matching in Strings: Practical On-

line Search Algorithms for Texts and Biological Sequences. Cambridge University
Press, Reading (1979)

8. Thomphson, K.: Regular expression search algorithm. Commun. ACM 11, 419–422
(1968)

9. Watson, B.W.: A new regular grammar pattern matching algorithm. In: Diaz, J.,
Serna, M. (eds.) ESA 1996. LNCS, vol. 1136, pp. 364–377. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61680-2 68

10. Yang, X., Liu, H., Wang, B.: ALAE: accelerating local alignment with affine gap
exactly in biosequence databases. PVLDB 5(11), 1507–1518 (2012)

11. Yang, X., Qiu, T., Wang, B., Zheng, B., Wang, Y., Li, C.: Negative factor: improv-
ing regular-expression matching in strings. ACM Trans. Database Syst. (TODS)
40(4), 25 (2016)

12. Yang, X., Wang, B., Qiu, T., Wang, Y., Li, C.: Improving regular-expression match-
ing on strings using negative factors. In: SIGMOD, pp. 361–372, June 2013

13. Yang, X., Wang, B., Yang, K., Liu, C., Zheng, B.: A novel representation and
compression for queries on trajectories in road networks. TKDE 30(4), 613–629
(2018)

14. Yang, X., Wang, Y., Wang, B., Wang, W.: Local filtering: improving the perfor-
mance of approximate queries on string collections. In: SIGMOD, pp. 377–392.
ACM (2015)

ftp://reality.sgiweb.org/freeware/relnotes/fw-5.3/fw_gnugrep/gnugrep.html
ftp://reality.sgiweb.org/freeware/relnotes/fw-5.3/fw_gnugrep/gnugrep.html
https://doi.org/10.1007/3-540-61680-2_68

	Filtering Techniques for Regular Expression Matching in Strings
	1 Introduction
	2 Filtering-Based Regular Expression Matching
	2.1 Computing Candidate Positions Using Positive Factors
	2.2 Further Pruning Candidate Positions Using Negative Factors

	3 Conclusion and Future Work
	References

