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Abstract. In recommender systems, personal characteristic is possessed
by not only users but also displaying products. Users have their personal
rating patterns while products have different characteristics that attract
users. This information can be explicitly exploited from the review text.
However, most existing methods only model the review text as a topic
preference of products, without considering the perspectives of users and
products simultaneously. In this paper, we propose a user-product topic
model to capture both user preferences and attractive characteristics of
products. Different from conventional collaborative filtering in conjunc-
tion with topic models, we use non-negative matrix tri-factorization to
jointly reveal the characteristic of users and products. Experiments on
two real-world data sets validate the effectiveness of our method in Top-N
recommendations.
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1 Introduction

The emergence of e-commerce facilitates the development of recommender
systems. In recent years, an increasing number of companies have applied
recommender systems to automatically suggest products or services to their
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customers [1]. Top-N recommendation is a personalized information filtering
strategy which aims to identify a set of items that best fit interests and needs
of users [2]. As one of the classical approaches for Top-N recommender systems,
Collaborative Filtering (CF) via matrix factorization [3] assumed that users who
exhibited similar preferences tend to have similar rating patterns for each prod-
uct. Since the incomplete user-product rating data is leveraged only, traditional
CF-based methods suffer from the issue of the sparsity of rating vectors [4].
Thus, the topic information of items have been extracted and then adopted in
the collaborative topic regression (CTR) [5] for recommending scientific arti-
cles. CTR captures the semantic information from the item contents by latent
Dirichlet allocation (LDA) [6], which can effectively identify the attractive char-
acteristics of items. For example, the food quality and the environment may
be a restaurant’s topic preferences, but the price may be the attractive char-
acteristics of electronic products. However, we argue that users not only are
attracted by item characteristics (topic preferences), but also have their per-
sonal rating patterns. Taking ratings of a restaurant as an example, we assume
that the restaurant’s environment is important to user A, while user B focuses
more on the food quality. Although both the environment and the food quality
are critical aspects for restaurants, user A is more likely to give a lower rating
than user B if the restaurant’s environment is poor but has a good food quality.
Thus, jointly exploiting both user preferences and product characteristics can
obtain the dominant aspects in ratings to users and the dominant attributes (or
aspects) of items, which is a key motivation of our research.

In this paper, we propose an approach named user-product topic model
(UPTM). The key idea is to find the user preferences and attractive characteris-
tics of products. Specifically, these preferences and characteristics are considered
as a topic distribution, in which each topic value represents the level that a user
prefers or a product is attracted. Then, these topic preferences are incorporated
into matrix tri-factorization to model the ratings. The major process is as below:
Firstly, the topic preferences of users and products are jointly extracted from the
review text. Secondly, the topic information is incorporated into a non-negative
matrix tri-factorization to facilitate rating prediction. Compared to the tradi-
tional bi-factorization, tri-factorization can better reveal the latent structures
among products (samples) and attributes (features) [7]. Matrix tri-factorization
is significant only when it cannot be transformed into bi-factorization, and this
happens when certain constraints are applied to the tri-factorization [8]. Thus,
we incorporate the topic preferences of users and products into user and prod-
uct latent vectors and add a mapping matrix. The predicted ratings are demon-
strated to improve the performance of Top-N recommendations compared to
the conventional CF-based approach combined with a topic model. The main
contributions of our paper are summarized as follows:

– We propose a probabilistic matrix tri-factorization model that incorporates
both user and product preferences. By taking both types of preferences into
account, the model extends the features of recommender systems.
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– Our model is the first research to consolidate the non-negative matrix tri-
factorization with topic information for recommendations. Revealing the
latent aspects among users, products and reviews, our model effectively
improves the quality of Top-N recommendations.

Experimental results on two real-world datasets indicate that our model can
outperform baselines consistently.

2 Related Work

2.1 Matrix Factorization

Matrix factorization is a basic model for CF-based recommendations, in which
products are recommended to a user based on other users with similar pref-
erences of products. To learn joint latent space for users and products, a pre-
liminary study developed a probabilistic matrix factorization (PMF) [9] that
combined matrix factorization with probabilistic models. Recently, nonnegative
matrix factorization (NMF) has been shown to be useful in CF recommenda-
tions [10,11]. NMF aims to factor a matrix X into two lower-dimension matrices
and minimizes the square error between X and the approximation of X using
those lower-dimension matrices. NMF is applied when certain non-negativity
constraints exist, which makes the result easier to explain since it is natural to
consider that users have non-negative affinities for some user communities based
on their interests [12]. Guillamet et al. [13] extended the NMF to a weighted non-
negative matrix factorization (WNMF) to improve the capabilities of represen-
tations. Experimental results show that WNMF achieves a great improvement
in the classification accuracy compared with NMF. Ding et al. [14] provided
an analysis of the relationship between bi-factorization and tri-factorization,
and proposed an orthogonal non-negative matrix tri-factorization for clustering.
This model is demonstrated to better capture the latent features of products and
reveal hidden aspects underlying products [7]. Kang et al. [15] recently proposed
a matrix completion method based on a low-rank assumption, which shows the
effectiveness of matrix factorization.

2.2 Topic-Based Recommendations

To learn how users prefer products, understanding the hidden preferences for a
product is quite important, such as food quality for a restaurant or price for an
electronic product. Modeling these hidden factors is key to obtaining state-of-
the-art performance on product recommendation system [16]. Therefore, many
recommender systems rely on users feedback, which typically comes in the form
of a plain-text review and a numeric score. However, in spite of the wealth of
research on utilizing numeric score, the plain-text review is not well exploited.

To exploit the textual information of products, a collaborative topic regres-
sion (CTR) [5] was proposed by integrating a topic model in the matrix fac-
torization. CTR used LDA [6] to mine the topic information from the item’s
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text and incorporated it into PMF [9]. Compared to LDA and PMF, CTR is
an appealing method in that it produces promising and interpretable results.
The aforementioned method, however, did not consider the topic preference
from both user and product perspectives. More specifically, CTR utilized matrix
bi-factorization to capture items’ attractive characteristics only. Furthermore,
McAuley and Leskovec [17] proposed a model called HFT, which combines latent
dimensions in rating data with topics in review text based on matrix factoriza-
tion and LDA, and obtain highly interpretable textual labels for latent rating
dimensions. Although HFT further mined the information under the connection
between rating and review text, it also ignored the dual preference between users
and items.

3 User-Product Topic Model

3.1 Problem Definition

For the reader’s convenience in understanding our description of the model, we
define the following terms and notations: We consider a review text as a doc-
ument, which describes the evaluation of a certain product from the aspect of
a certain user. Thus, an online collection consists of T documents is denoted
as {d1, d2, . . . , dT }, expressed by |U | users {u1, u2, . . . , u|U |} over |P | products
{p1, p2, . . . , p|P |}, together with the corresponding ratings. The number of doc-
uments authored by user u is denoted as Du while the number of documents
described about product p is denoted as Dp. In particular, a document d for each
user-product pair contains a sequence of N words denoted by {w1, w2, . . . , wN}
and a given rating r. A user u can make comment on several products, and a
product p may be reviewed by multiple users.

The key process of our method is to find the user preferences θui
∈ R

K and
the attractive characteristics of products θpj

∈ R
K , i.e., the topic preference on

the aspects of users and products. Typically, user i is represented by a latent
vector ui ∈ R

K and product j by a latent vector pj ∈ R
K . The rating prediction

rij that describes whether user i will like product j with the inner product
between their latent representations and a mapping matrix H, i.e., uiHvT

j .

3.2 Generative Process

Our proposed approach, designated a user-product topic model (UPTM), aims
to jointly learn the users’ and products’ latent topic vector. The motivation of
designing a UPTM is to incorporate user and product topic preferences into non-
negative matrix tri-factorization to factorize ratings. Typically, users will reveal
their own shopping preference in the review text, and products, being reviewed
by a larger number of users, can also be discovered what they attract different
users in the reviews over them. Based on this phenomenon, we can assume that
the topic preference of a user or a product can be exploited from the collection
of reviews that this user issued or this product received. Thus, our proposed
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Fig. 1. Generative process of the proposed UPTM

UPTM is able to find topic preferences of users and products from review texts
simultaneously. Given K topics, the generative process of UPTM, as shown in
Fig. 1, is described as follows:

1. For the collection of documents expressed by user ui:
(a) Draw a topic distribution θui

∼ Dirichlet (α);
(b) For each word wu in a document:

i. Draw a topic assignment zu ∼ Multinomial (θui
);

ii. Draw the word wu ∼ Multinomial (βzu).
2. For the collection of documents over product pj :

(a) Draw a topic distribution θpj
∼ Dirichlet (α);

(b) For each word wp in a document:
i. Draw a topic assignment zp ∼ Multinomial (θpj

);
ii. Draw the word wp ∼ Multinomial (βpj

).
3. For the i-th user, sample user latent vector ui ∼ N (θui

, λ−1
u IK).

4. For the j-th product, sample product latent vector vj ∼ N (θpj
, λ−1

p IK).
5. For the (i, j)-th user-product pair, draw the rating

rij ∼ N (uiHvT
j , c−1

ij ),

where N (μ, σ2) is a Gaussian distribution with a mean μ and a variance σ2.
Here, cij is the confidence parameter over user ui and product pj . If cij is larger,
we trust rij more. The topic preferences on the perspective of users and products
are obtained from the collection of reviews that this user issued or this product
received. Typically, H is a matrix that maps dual (i.e., user and product) pref-
erences to the rating space. The parameters λu and λp balance the proportion of
users’ topic preferences and ratings, and the proportion of products’ topic pref-
erences and ratings, respectively. Given that topic preferences are non-negative
interests in a community [12], ui, vj and H are constrained to be non-negative. In
this way, the objective can be considered non-negative matrix tri-factorization,
which is a 3-factor decomposition of non-negative dyadic data R ∈ R

|U |×|P |
+ that
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takes the form R ≈ UHV T , where U ∈ R
|U |×K
+ , H ∈ R

K×K
+ , and V ∈ R

|P |×K
+

are constrained to be non-negative matrices.

3.3 Parameter Estimation

Since it is intractable to compute the full posterior of ui, vj , θui
and θpj

, we
develop an expectation maximization (EM)-style algorithm for learning param-
eters. Maximizing the posteriors with fixed hyper-parameters is equivalent to
maximizing the complete log likelihood of U, V, θd,H, and R given λu, λp, βu ,
and βp , as follows:

L = −λu

2

∑
i
(ui − θui

)T (ui − θui
)

− λp

2

∑
j
(vj − θpj

)T (vj − θpj
)

+
∑

i

∑
nu

log
∑

k
θikβk,winu

+
∑

j

∑
np

log
∑

k
θjkβk,wjnp

−
∑

i,j

cij
2

(rij − uiHvT
j )2,

(1)

where nu and np denote the n-th item in the word set of the collection of doc-
uments expressed by user u, and the collection of documents over product p,
respectively. A confidence parameter cij is used to determine the weight of rat-
ings in different cases, and the Dirichlet parameter α is set to 1 by following [5].
To maximize the above likelihood function, we propose an alternating approach
by coordinate ascent, i.e., by iteratively optimizing one variable while fixing the
others, and repeat the procedure until convergence. The update formula of L
with respect to U , V , and H is as follows:

Uik ← Uik

√
[C � RV HT ]ik + λuθuik

[C � (UHV T )V HT ]ik + λuUik
, (2)

Vjk ← Vjk

√
[(C � R)TUH]jk + λpθpj k

[(C � (UHV T ))UH]jk + λpVjk
, (3)

Hij ← Hij

√
[UT (C � R)V ]ij

[UT (C � (UHV T ))V ]ij
, (4)

where Uik is the k-th item of ui, Vjk is the k-th item of vj , Hij is the i-th row
and the j-th column item of H, C is the confidence parameter matrix with each
element cij , and � is the element-wise product.

Equations 2 and 3 show how the parameters λu and λp affect the user and
product latent factors. A larger λu gives rise to the influence of topic preference
rather than rating information. Similarly, a larger λp corresponds to a larger pro-
portion of the product topic preference compared to rating information. These
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update formulae are in good and consistent agreement with traditional matrix
factorization methods, with two additional issues that require proofs: (1) The
correctness of the converged solution, and (2) the convergence of the algorithm.

Correctness Analysis. We optimize U by fixing V and H in Eq. 1, as follows:

L(U) = −1
2
||C � (R − (UHV T ))||2F − λu

2
tr(GT

u Gu )

s.t.U ≥ 0,

where ||·||F is the Frobenius norm and Gu is the matrix (U −θu ). The derivative
of L(U) with respect to U is

∂L(U)
∂U

= C � RV HT − C � (UHV T )V HT − λuGu .

According to the Karush-Kuhn-Tucker (KKT) complementarity condition
[18] of the non-negativity of U , we have

[C � RV HT − C � (UHV T )V HT − λuGu ]ikUik = 0.

This is the fixed-point relation that local minima must hold, and it is true
that at convergence, from Eq. 2, the solution will satisfy

[C � RV HT − C � (UHV T )V HT − λuGu ]ikU2
ik = 0.

This is identical to the fixed-point condition because either Uik = 0 or the
left-hand term being equal to zero will make the above equation true. The cor-
rectness analysis of updating rules for V and H are similar to that of U , by
separating Eq. 1 that contains V and H, respectively.

Convergence Analysis. In the following, we will demonstrate the deduction
and the convergence of our updating formulas in Eqs. 2, 3, and 4. We apply the
auxiliary function approach [19] and inequality Lemma [14] for the convergence
analysis.

Definition 1. Z(h, h′) is called an auxiliary function for F (h) if the conditions

Z(h, h′) ≥ F (h), Z(h, h) = F (h)

are satisfied [19].

Lemma 1. If Z is an auxiliary function, then F is nonincreasing [19] under
the update

h(t+1) = arg min
h

Z(h, h(t)).



140 X. Li et al.

Proof: F (h(t+1)) ≤ Z(h(t+1), ht) ≤ Z(ht, ht) = F (ht).
Note that if Z is lower bounded and we iteratively update until F (h(t+1)) =
F (ht), ht becomes a local minimum of Z, which also implies the derivative
∇F (ht) = 0. The key is to find an appropriate Z(h, h′). 
�
Lemma 2. For any matrices A ∈ R

n×n
+ , B ∈ R

k×k
+ , S ∈ R

n×k
+ , S′ ∈ R

n×k
+ ,

and A,B being symmetric, the following inequality holds [14]:

n∑

i=1

k∑

p=1

(AS′B)ipS2
ip

S2
ip

≥ tr(STASB).

Proof: It can be referred to in [14]. 
�
Theorem 1. Let

J (U) = −L(U)

=
1
2
||C � (R − (UHV T ))||2F +

λu

2
tr(GT

u Gu )

∝ tr(GT
u Gu ) − tr(2C � RV HTUT )

+ tr(C � (UHV T )V HTUT ).

(5)

The auxiliary function of J (U) is then

Z(U ,U ′)

=λu

∑

i,k

U2
ik + λu

∑

i,k

θu
2
ik

− 2
∑

i,k

U ′
ikθu ik(1 + log

Uik

U ′
ik

)

− 2
∑

i,k

(C � RV HT )ikU ′
ik(1 + log

Uik

U ′
ik

)

+
∑

i,k

(C � (U ′HV T )V HT )ikU2
ik

U ′
ik

.

(6)

Furthermore, this is a convex function with respect to U and its global min-
imum is

Uik = Uik

√
[C � RV HT ]ik + λuθu ik

[C � (UHV T )V HT ]ik + λuUik
.

Proof: According to Lemma 1, it is obvious that when U ′ = U the equality
holds Z(U ,U ′) = J (U). Second, the inequality Z(U ,U ′) ≥ J (U) also holds
because the first four terms in Eq. 6 are larger than the first two terms in Eq. 5
since the inequality

z ≥ 1 + log(z),∀z>0, (7)
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and we can set z = Uik/U ′
ik. Furthermore, the last term in Eq. 6 is larger than

the last term in Eq. 5 in terms of Lemma 2. Therefore, according to Lemma 1,
the minimum of Z(U ,U ′) fixing U ′ is given by

0 =
∂Z(U ,U ′)

∂Uik

= 2λuUik − 2θu ik

U ′
ik

Uik

− 2(C � RV HT )ik
U ′

ik

Uik

+ 2
(C � (U ′HV T )V )ikUik

U ′
ik

.

Then, to solve Uik, let U = U (t+1) and U ′ = U (t), we obtain the updating
formula of U , as shown in Eq. 2. 
�
Theorem 2. Updating U under the update formula 2 will monotonically
decrease the value in Eq. 5. The updating will finally converge.

Proof: Since J (U) is lower bounded to zero, the only condition of conver-
gence is that it is monotonically decreasing. Due to that J (U0) = Z(U0,U0) ≥
Z(U1,U0) ≥ J (U1) ≥ · · · , it converges. 
�
Theorem 3. Let

J (V ) = −L(V )

=
1
2
||C � (R − (UHV T ))||2F +

λp

2
tr(GT

p Gp)

∝ tr(GT
p Gp − tr(2C � RV HTUT )

+ tr(C � (UHV T )V HTUT ).

(8)

Updating V under the formula Eq. 3 will monotonically decrease the value
J (V ), and finally it converges.

Proof: Since V is similar and symmetrical to U in Eq. 1, the proof of conver-
gence is similar to that of U . 
�
Theorem 4. Let

J (H) = −L(H)

=
1
2
||C � (R − (UHV T ))||2F

∝ tr(−2UT (C � R)V HT )

+ tr(UT (C � (UHV T ))V HT ).

(9)
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The auxiliary function of J (H) is then

Z(H,H ′)

= − 2
∑

i,j

(UT (C � R)V )ijH ′
ij(1 + log

Hij

H ′
ij

)

+
∑

i,j

(UT (C � (UH ′V T ))V )ijH2
ij

H ′
ij

.

(10)

Furthermore, this is a convex function with respect to H and its global min-
imum is

Hij = Hij

√
[UT (C � R)V ]ij

[UT (C � (UHV T ))V ]ij
.

Proof: According to Lemma 1, it is obvious that when H ′ = H the equality
holds Z(H,H ′) = J (H). Second, the inequality Z(H,H ′) ≥ J (H) also holds
because the first term in Eq. 10 is larger than the first term in Eq. 9 since the
inequality (Eq. 7) and we can set z = Hij/H ′

ij . Furthermore, the second term
in Eq. 10 is larger than the second term in Eq. 9 in terms of Lemma 2.

Therefore, according to Lemma 1, the minimum of Z(H,H ′) fixing H ′ is
given by

0 =
∂Z(H,H ′)

∂Hij

= −2(UT (C � R)V )ij
H ′

ij

Hij

+ 2
(UT (C � (UH ′V T ))V )ijHij

H ′
ij

.

Then, to solve Hij , let H = H(t+1) and H ′ = H(t), and we obtain the
updating formula of H, as shown in Eq. 4. 
�
Theorem 5. Updating H under the update formula 4 will monotonically
decrease the value in Eq. 9. The updating will finally converge.

Proof: Since J (H) is lower bounded to zero, the only condition of convergence
is that it is monotonically decreasing. Due to that J (H0) = Z(H0,H0) ≥
Z(H1,H0) ≥ J (H1) ≥ · · · , it converges. 
�

Optimization of Other Parameters. Learning θui
and θpj

is different
because they are difficult to derive. We can, however, apply Jensen’s inequality
to solve this problem. For θui

, it is constrained by a low bound with respect to
θui

. We now define q(zin = k) = φink and separate the items that contain θui
.
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We then apply Jensen’s inequality as follows:

L(θui
) ≥ −λu

2

∑
i
(ui − θui

)T (ui − θui
)

+
∑

nu

∑
k
φink(logθikβk,winu

− logφinuk)

= L(θui
, φi),

where φi = (φink)
|Du|×K
n=1,k=1, |Du| is the number of words in the document group

of this user. The optimal φink satisfies φink ∝ θikβk,winu
.

Thus, L(θui
, φi) gives the tight lower bound of L(θui

). The gradient projec-
tion [20] can be applied to optimize θui

. We can then optimize βu as follows:

βkwi
∝

∑

d

∑

nu

φinuk1[winu
= w].

This is consistent with the M-step of the EM-algorithm in LDA [6]. Moreover,
for θpj

, φjnpk, and βkwj , it is similarly updated. Note, however, that in order
to ensure topics θui

and θpj
have the same semantic information, we make βu

equal to βp . After estimating ui, vj , θui
, and θpj

, the rating is predicted by
rij ≈ uiHvT

j .

Complexity Analysis. Our method applies an EM-style algorithm, so the
parameter estimation algorithm is implemented in an iterative manner. The
efficiency is determined by the convergence and time cost per iteration. The time
cost mainly comes from two parts: topic modeling and matrix tri-factorization.
For topic modeling, the time complexity is O(Niter · (|U | · |D̃u|+ |P | · |D̃p|) ·K · l̃),
where Niter is the number of iterations, D̃u and D̃p are the average number of
review text of users and products, respectively. |U | and |P | are the number of
users and products, K is the number of topic and l̃ is the average length of each
review text. For matrix tri-factorization, the time complexity is O(Niter · |U |2 ·
|P |2 · |K|5). Thus, the total time complexity is

Θ = Niter · ((|U | · |D̃u| + |P | · |D̃p|) · K · l̃ + |U |2 · |P |2 · |K|5).

4 Experiments

4.1 Datasets

We employ two datasets in our experiment: IMDB [21] and Yelp20131. IMDB and
Yelp2013 contain users’ reviews and ratings on different aspects of movies, and
on different restaurants, respectively. Table 1 presents the statistical information
of these datasets.

In our experiment, we split each dataset into three parts: a training set
(80%), a validation set (10%), and a testing set (10%). Each model is trained on
the training set and obtains its optimal parameters on the validation set. The
performance is then evaluated on the testing set.
1 http://www.yelp.com/dataset challenge.

http://www.yelp.com/dataset_challenge
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Table 1. Statistical information of datasets.

Dataset # users # products # reviews Rating scale

IMDB 1,310 1,635 84,919 1–10

Yelp2013 1,631 1,633 78,966 1–5

4.2 Comparisons and Evaluation

The baseline models are listed as follows:

– 2NMF [12]: Non-negative matrix bi-factorization is a type of probability
matrix factorization in which a rating matrix R is factorized into two matrices
U and V .

– 3NMF: Different from 2NMF, 3NMF is a non-negative matrix tri-
factorization that factorizes a rating matrix into three matrices, i.e., U ,V
and H. Review text is not considered in this method.

– CTR [5]: Collaborative topic regression is a model used to perform topic
modeling and collaborative filtering simultaneously.

– RSMC [15]: Recommender system via matrix completion is a method based
on a low-rank assumption for Top-N recommendations.

We measure the performance of the proposed model and baselines by com-
paring Precision and Recall, as in [5]. For each user, Precision and Recall are
defined as follows:

Precision@M =
# products the user likes in Top M

M
,

Recall@M =
# products the user likes in Top M

Total number of products the user likes
,

where M is the number of returned items sorted by their predicted ratings.
Specifically, Precision evaluates the recommendation accuracy of the model
while Recall evaluates which of the returned items were actually in each user’s
purchase records. The final result reported is the average precision and recall
over all users.

4.3 Experimental Setting

As we mention earlier, we leveraged a validation dataset to find the optimal
parameters of all models. For 2NMF and 3NMF, we employed multiplication
update rules to avoid the learning rate setting, which is similar to [12]. CTR
delivered good performance when λu = 0.01 and λp = 0.01, and when a = 1
and b = 0.01, where a and b are the confidence parameters cij . For RSMC, we
set μ = 1.2 × 10−3 and γ = 1.3 in IMDB and μ = 1.5 × 10−3 and γ = 1.8 in
Yelp2013. Except for RSMC, we set a common topic dimension K = 20, i.e., the
rating matrix R is factorized into U |U |×K and V |P |×K in 2NMF and CTR, while



Learning Dual Preferences with Non-negative Matrix Tri-Factorization 145

50 100 150 200 250 300

M

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

P
re

ci
si

on

2NMF
3NMF
CTR
RSMC
UPTM

50 100 150 200 250 300

M

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

R
ec

al
l

2NMF
3NMF
CTR
RSMC
UPTM

Fig. 2. Performance on IMDB with different M .
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Fig. 3. Performance on Yelp2013 with different M .

it is factorized into U |U |×K ,SK×K and V |P |×K in 3NMF and our UPTM. The
impact of topic number will be further discussed in Sect. 4.5. For our UPTM, we
directly set a = 1, b = 0.01, and apply a grid search to obtain the best parameters
λu and λp on the validation dataset. On IMDB, the optimal performance is
achieved when λu = 1000 and λp = 10, while λu = 100 and λp = 1 obtains the
best performance on Yelp2013. For evaluation, we set M = 50, 100, 150, 200, 250,
and 300 and fix the parameters of each approach to the best results.

4.4 Performance Comparison

The overall performance of each approach on IMDB and Yelp2013 are shown
in Figs. 2 and 3, respectively. For non-negative matrix factorization, 3NMF
sightly outperforms 2NMF for both metrics, which shows the effectiveness of
non-negative matrix tri-factorization in recommender systems. However, they
both do not perform as well as other models in Recall. RSMC performs bet-
ter than most baseline models in Recall, while it is the worst in Precision in
both datasets. Our proposed model, the UPTM, outperforms 2NMF, 3NMF,
RSMC and CTR on IMDB in terms of different M consistently. On Yelp2013,
CTR sightly outperforms the UPTM on Precision when M = 50. However,
a zero entry in the rating matrix may be due to the fact that the user is not
interested in the product, which indicates that Recall is a more important per-
formance measure than Precision on Top-N recommender systems [1,5]. This
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slightly worse Precision is unconvincing on the condition that Recall of the
proposed UPTM improves 6.51% and 15.04% compared to CTR. On average,
UPTM improves 2NMF, 3NMF, CTR and RSMC by 18.03%, 16.60%, 10.06%,
and 82.06%, respectively, in terms of precision, and by 18.03%, 16.60%, 10.06%,
and 6.24% in terms of Recall, respectively, on the dataset of IMDB. On the
other dataset Yelp2013, the UPTM improves 2NMF, 3NMF, CTR, and RSMC
by 28.60%, 28.58%, 6.58% and 63.41%, respectively, in terms of Precision, and
by 37.35%, 35.27%, 14.13% and 7.51%, respectively, in terms of Recall.

The performance comparison shows the effectiveness of our UPTM which
captures both users’ and products’ topic preferences. Compared to conventional
non-negative matrix factorization, our model incorporates the topic informa-
tion between user and products, which effectively improves the recommenda-
tion performance. Compared to CTR, our model leverages topic information on
both aspect of users and products and adopts matrix tri-factorization to bet-
ter reveal the latent aspects among users, products and topic features [7], which
significantly improves the recommendation performance. Compared to the state-
of-the-art matrix completion method, RSMC, our model also performs better,
achieving the best performance in Top-N recommendations among matrix fac-
torization methods. Note that execution times of algorithms and the performance
on a small M value are also important to test the effectiveness of a recommender
system, we leave these kinds of evaluations to the future work due to the limit
of space.

4.5 Influence of the Number of Topics

The number of topics K is an important parameter in topic-based recommen-
dation. We tried different values of K and the result is shown in Fig. 4. We can
observe that as the cross-validation we did, K = 20 delivers the best perfor-
mance in both data sets. Furthermore, as K gets larger, the performance gets
worse. This is because too many topics over-depict the review features. Topic
number below 30 is enough to depict the review features and performs well in
recommendation.
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We also investigate the effect of K on our model and the baseline CTR.
Our model performs better over both of the evaluations. This demonstrates
that considering two aspects of users and products simultaneously is superior
to the one-side topic modeling. As the number of topics becomes larger, their
performances get worse since the number of the documents under a specific topic
come to the bottleneck. On the other hand, like LDA, if K is too small, the topics
will be coarse and a lot of useful features are missing. If K is too large, some
useless features may be incorporated and useful features may be confounded by
those noise.

4.6 Impact of Training Data Size

A good recommender system aims to perform well even when the data is quite
sparse. We examined the impact of the size of training data on each model’s per-
formance by randomly selecting x% data from the original training corpus. The
values of x varied from 20 to 80, with an interval of 20. In case of coincidence, we
extracted the training data 10 times and calculated the average of performance
each time.
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Fig. 5. The Recall@300 with different training data size.

To be consistent with existing evaluations [1], the Recall@300 performance
is shown in Fig. 5. We observed that the performance of all methods increased as
the size of the training data increased, and our model outperforms the baselines
on both datasets.

4.7 Parameter Effect Analysis

Here, we study the effects of the parameters λu and λp on the proposed UPTM
using Recall@300 (ref. Table 2). On IMDB, UPTM achieved the best perfor-
mance when λu = 1000 and λp = 10, which indicates that product topic prefer-
ence contributes more than user topic preference on this dataset. On Yelp2013,
the optimal parameters for the best performance were λu = 100 and λp = 1;
the contribution of product preference is consistently important in this dataset.
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Table 2. The Recall@300 of UPTM with different λu and λp.

(a) IMDB
����λp

λu 0.01 0.1 1 10 100 1000

0.01 0.647 0.657 0.648 0.661 0.663 0.649
0.1 0.650 0.656 0.664 0.666 0.664 0.648
1 0.655 0.653 0.663 0.669 0.663 0.663
10 0.666 0.659 0.648 0.659 0.663 0.678
100 0.656 0.655 0.648 0.657 0.661 0.664
1000 0.657 0.656 0.659 0.666 0.647 0.668

(b) Yelp2013
����λp

λu 0.01 0.1 1 10 100 1000

0.01 0.527 0.526 0.534 0.533 0.532 0.528
0.1 0.531 0.530 0.531 0.537 0.535 0.532
1 0.527 0.538 0.532 0.537 0.545 0.531
10 0.531 0.529 0.532 0.529 0.541 0.531
100 0.528 0.530 0.532 0.533 0.537 0.535
1000 0.527 0.530 0.532 0.532 0.532 0.529

In addition, on both datasets, when λu and λp were both small (i.e., smaller
than 1), the performance suffered, which means that both user and product
topic preferences affect recommendation performance.

5 Conclusions

In this paper, we proposed a probabilistic matrix tri-factorization approach
named UPTM, which applied LDA to mine the user and product topic pref-
erences and incorporated them into the matrix factorization. We also leveraged
non-negative matrix tri-factorization to factorize the rating matrix into a user
latent matrix, a product latent matrix and a mapping matrix. The main conclu-
sions of our paper are the following:

– By mining the topic preference not only from the product aspect but also
from the user aspect, our UPTM was used to find a connection between a
user’s topic of interest and a product topic that was attractive to the user.

– The matrix factorization part of our model is based on non-negative matrix
tri-factorization. By incorporating a third mapping matrix, the predicted rat-
ing was demonstrated to enhance the recommender performance.

In the future, we plan to explore the implementation of parallel calculating
algorithms, which can make the proposed method scalable to large-scale datasets.
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