
Discrete Binary Hashing Towards
Efficient Fashion Recommendation

Luyao Liu1(B), Xingzhong Du1, Lei Zhu2, Fumin Shen3, and Zi Huang1

1 School of ITEE, The University of Queensland, Brisbane, Australia
{luyao.liu,x.du}@uq.edu.au, huang@itee.uq.edu.au

2 School of Information Science and Engineering, Shandong Normal University,
Jinan, China

leizhu0608@gmail.com
3 School of Computer Science and Engineering, UESTC, Chengdu, China

fumin.shen@gmail.com

Abstract. How to match clothing well is always a troublesome problem
in our daily life, especially when we are shopping online to select a pair of
matched pieces of clothing from tens of thousands available selections. To
help common customers overcome selection difficulties, recent studies in
the recommender system area have started to infer the fashion matching
results automatically. The conventional fashion recommendation is nor-
mally achieved by considering visual similarity of clothing items or/and
item co-purchase history from existing shopping transactions. Due to the
high complexity of visual features and the lack of historical item pur-
chase records, most of the existing work is unlikely to make an efficient
and accurate recommendation. To address the problem, in this paper
we propose a new model called Discrete Supervised Fashion Coordinates
Hashing (DSFCH). Its main objective is to learn meaningful yet compact
high level features of clothing items, which are represented as binary hash
codes. In detail, this learning process is supervised by a clothing matching
matrix, which is initially constructed based on limited known matching
pairs and subsequently on the self-augmented ones. The proposed model
jointly learns the intrinsic matching patterns from the matching matrix
and the binary representations from the clothing items’ images, where
the visual feature of each clothing item is discretized into a fixed-length
binary vector. The binary representation learning significantly reduces
the memory cost and accelerates the recommendation speed. The exper-
iments compared with several state-of-the-art approaches have evidenced
the superior performance of the proposed approach on efficient fashion
recommendation.

1 Introduction

With the rapid growth of e-commerce, traditional offline clothing sales have been
moving to the online websites [33]. Facing the eyeful of clothing items available
online, customers usually have limited time on fashion matching and are easy
to be suffering from selection difficulties. It is a very common scenario that we
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feel difficult to decide ‘which trousers would fashionably match this jumper’ or
‘what kind of skirt would go well with this shirt’. Clothing recommendation is
now a trending service provided by a number of major online shopping websites.
Hand-picked fashion coordinates such as model images which are advised by
the fashion insides are presented to customers to assist them choosing a better
matching style. However, the hand-picked solution is usually unscalable and
labor-consuming. In result, recent research efforts in the recommender system
area try to infer the fashion matching results automatically for the customers
[25], which has strong potential to provide considerable economic value to the
existing online services.

The existing work technically provides the clothing fashion matching auto-
matically in three steps: (1) learning representations of clothing items by high-
dimensional vectors with real values based on visual features and matching
tuples; (2) calculating the Euclidean distances between the matching target and
complementary clothing; (3) selecting the nearest complementary clothing as the
matching results [12].

Since the ability of visual aware is significantly advanced by the progress
in the computer vision area, recent work [8,14,24,25,33] mainly focus on how
to embed the matching relations between clothing items into the embedding
vectors. Although the matching accuracy has been improved by recent studies
to some extent, the fashion recommendation task still faces three challenges
[1,25,33].

– Inference efficiency. With the sustainable growth of e-commerce, a large
amount of clothing is available online at high speed nowadays. Considering
that the existing work need to store a high-dimension real-value vector for
each item, the persistent and temporal storage costs for inference are heavy
burden due to the massive data scale. In addition, the existing work employ
the Euclidean distance to calculate the nearest neighbors for each query tar-
get. Given the huge amount of clothing, the inference process would be very
slow. As a result, it is necessary to develop a compact feature representation
for clothing items to support high efficient and scalable fashion matching with
limited storage cost.

– Label quality. Precise labels that represent matching relationships are impor-
tant for constructing an effective learning system. In other words, a match-
ing matrix to carry the relationships (i.e., matched, un-matched, unknown)
among clothing items is the essential priori knowledge for the learning pro-
cess in the recommender system. As fashion matching is subjective without
a clear definition, precise matching relationships are generally achieved from
fashion expertise. To the best of our knowledge, the existing datasets for fash-
ion matching, i.e., Deep Fashion [22,23] and Amazon Product Data [26,34],
construct the matching labels purely according to customers’ shopping carts
in single transactions. Obviously, co-purchased items cannot be guaranteed
relevant or matched with each other. The matching labels generated in this
way is not reliable for fashion matching supervision.
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– Fashion understanding. Individuals may have different understanding of fash-
ion. Fashion, from the perspective of automatic fashion matching, need to be
understood by the learning over user-clothing interactions and visual features.
Accordingly, how to design a better learning process to effectively capture the
fashion is in high demand for personalization.

In this paper, we propose an efficient fashion recommendation method to
learn meaningful yet compact representations of clothing items to capture their
intrinsic visual appearances and the matching relationships. The efficiency prob-
lem in existing methods is addressed with high competitive recommendation
accuracy. Specifically, we design a supervised hashing framework, called Dis-
crete Supervised Fashion Coordinates Hashing (DSFCH), that learns discrete
binary representations of clothing items from their visual content features and
the matching matrix constructed based on expertise knowledge. The proposed
framework guarantees that each clothing item is discretized into a fixed-length
binary vector when the training stops. The discretization significantly reduces
the memory cost and accelerates the inference speed. Our experiments validate
that the learned binary representations effectively facilitate the fashion matching
with competitive recommendation accuracy.

It is worthwhile to highlight the key contributions of our proposed method:

– we propose a supervised learning to hash framework that learns the discrete
binary representations of clothing items from their visual content features and
the matching matrix constructed based on expertise knowledge. An iterative
optimization guaranteed with convergence is proposed to effectively solve the
optimal binary representation of clothing items. The discretization can signif-
icantly reduce the memory cost and accelerate the fashion recommendation
speed.

– We construct two real life fashion datasets with clothing images and pro-
fessional fashion coordinates advices. These datasets are built up based on
websites Netaporter1 and Farfetch2. To the best of our knowledge, this is the
first large-scale fashion database with professional advices for fashion recom-
mendation.

The rest of the paper is structured as follows. Section 2 reviews the related work.
Details about the proposed methodology are presented in Sect. 3. In Sects. 4 and
5, we introduce the experiments. Section 6 concludes the paper.

2 Related Work

Due to the limited space here, in this section, we only focus on the most related
works on fashion recommendation and hashing techniques.

1 www.net-a-porter.com/au/.
2 www.farfetch.com/au/.

www.net-a-porter.com/au/
www.farfetch.com/au/
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2.1 Fashion Recommendation

Motivated by the huge impact for e-commerce applications, fashion recommen-
dation [10,25,33] has been receiving increasing attentions. Content-based recom-
mender systems [15] attempt to model each user’s preference toward particular
types of goods. An early work [9] proposes a probabilistic topic model to learn
information about coordinates from visual features by training full-body pho-
tographs from fashion magazines. The model finds reference photographs that
are similar to the query image based on image content and recommends fashion
items that are similar to those in the reference photograph.

Beyond exact matching between user photos and clothing images [9,10,13],
recommendation systems require learn the human notions between outfit collec-
tions [30,33] and mining personal taste [4] with surrounding auxiliary informa-
tion. In [25] the authors aim to model human notion of what is visually correlated
by investigating a large scale dataset and affluent corresponding information.
The model understands human preference more than just the visual similarity
between the two. The system suggests people what not to wear and who is more
fashionable.

A variety of approaches are proposed to incorporate deep learning into rec-
ommender systems [36]. A feature transformation learning [33] extends the tradi-
tional metric learning by utilizing Siamese Convolutional Neural Network (CNN)
[7] architecture and projects images into a latent fashion style space to express
the compatibility of outfit with the help of cross-category labels and user co-
purchase data. Similarly, a recent work [12] combines fashion design and image
classification by training image representations to achieve personalized fashion
recommendation.

Forecasting future fashion trend is also an interesting way [1] to recommend
fashion outfits before they occur. A study in [5] investigates the correlation
between attributes popular in New York fashion shows versus what is seen later
on the street. Another model [1] analyses fine-grained visual styles from large
scale fashion data in an unsupervised manner to identify unique style signatures.
The model provides a semantic description on key visual attributes to predict
the future popularity of the styles.

However, existing fashion recommendation approaches still suffer from the
problem of inference efficiency, label quality and fashion understanding.

2.2 Hashing

Hashing [2] is an advanced indexing technique that can achieve both high
retrieval efficiency and memory saving. With binary embedding of hashing, the
original time-consuming similarity computation can be substituted with efficient
bit operations. Thus, the similarity search process could be greatly accelerated
with constant or linear time complexity [43]. Moreover, binary representation
could significantly shrink the memory cost of data samples, and thus accom-
modate large-scale similarity search with very limited memory. Due to these
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desirable advantages, hashing has been received great attention in literature
[3,20,37,39,42].

According to the learning dependence on semantic labels, existing learning-
based hashing methods can be categorized into two major families: unsuper-
vised hashing [6,11,18,20,38,40] and supervised hashing [16,19,27,43]. Super-
vised hashing learns effective binary codes based on the supervised semantic
labels. It usually achieves better performance than unsupervised hashing meth-
ods.

The inner product of binary codes play an important role on cross-modality
retrieval [17] and supervised hashing [21]. As indicated by the existing studies [21,
28,29], it has been proved that code inner product can characterize the similarity
of two binary hash codes in Hamming space.

3 Methodology

In this section, we will detail our proposed Discrete Supervised Fashion Coor-
dinates Hashing (DSFCH) for efficient fashion recommendation. We develop a
unified hashing learning framework. A kernelized feature embedding is employed
to efficiently capture the nonlinear structure of the raw feature in original space
with a single vector. An inner-product fitting model is designed to preserve the
correlation between various images of clothing items into binary hash codes.

3.1 Problem Formulation

Let X = {x1, x2, . . . , xn} ∈ �n×d represent an image representation matrix for
the collection of clothing items, n is the number of data samples and d is the
dimension of feature representation. As mentioned above, we aim to learn a
hash function Z(x) = sgn(F (x)), which maps x from the original space into a
Hamming space. Here sgn(·) is the signum function which returns 1 if x ≥ 0, −1
if x < 0. We will discuss F (x) in Sect. 3.2.

The projected binary codes are defined as B = {b1, b2, . . . , bn} ∈ {−1, 1}n×r,
where r denotes the hash code length and bTi , bTj ∈ {−1, 1}1×r denote the ith, jth
row of B, respectively. Formally, the hashing projection loss can be formulated
as:

min
B,F

1
2

n∑

i=1

(bi − F (xi))2

s.t. bi ∈ {−1, 1}r.
(1)

We introduce a fashion matching matrix S ∈ {0, 1}n×n to semantically guide
the hash code learning process. The matrix records each pairwise similarity Sij

as 1 if two clothing items are correlated, and 0 if their matching relations are
unknown. As mentioned above, existing studies [17,21,41] have approved that
the inner product of binary codes can characterize their similarity in Hamming
space. In this paper, to preserve the fashion matching relations in binary codes,
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we try to solve the following optimization problem:

min
B,F

1
2

n∑

i=1

n∑

j=1

(Sij − 1
r
bTj · bi)2 +

1
2
ν

n∑

i=1

(bi − F (xi))2

s.t. bi, bj ∈ {−1, 1}r
(2)

where ν > 0 is the parameter to balance regularization terms. Considering that
the elements of S are comprised of 0 and 1, and the binary quantization loss
between each b and F (xi) can be minimized by imposing the binary constraints
on B. Therefore we rewrite the problem (2) as:

min
B,F

1
2

n∑

i=1

n∑

j=1

Cij � (Sij − 1
r
bTj bi)2 +

1
2
ν

n∑

i=1

(bi − F (xi))2

s.t. bi, bj ∈ {−1, 1}r
(3)

where Cij indicates the precision parameter for Sij . The element-wise product
“�” means we are only interested in the bj where Sij = 1 corresponds to each
bi, which is targeted to our application. According to [35], we set Cij a higher
value when Sij = 1 than when Sij = 0,

Cij =
{

a, if Sij = 1
b, if Sij = 0 (4)

where a and b are tuning parameters satisfying a > b > 0. Here we follow the
same settings in [35] as a = 1, b = 0.01.

3.2 Kernelized Feature Embedding

Large-scale real-world data contains a lot of noises which negatively affect the
accuracy of the projections. Specifically, the learned hash codes will be affected
unavoidably by variances, redundancies and noises [17]. It will result in in crucial
representation problems of raw features. Thus we utilize RBF kernel embedding
to achieve better performance [21]. The nonlinear form can be formulated as:

F (x) = φ(x) · H (5)

where φ(x) ∈ �1×m is a m-dimensional row vector obtained by the kernel map-
ping: φ(x) = [exp(‖x − a1‖2/ε, · · · , exp(‖x − am‖2/ε)], where ‖ · ‖ denotes the
Frobenius norm operation, {au}mu=1 indicates the randomly selected m anchor
points from the training samples and ε is the kernel width. The H ∈ �m×r is
the projection matrix which maps the original image feature into the low dimen-
sional space. Once the kernelized feature embedding is obtained, we derive the
overall objective formulation as:

min
B,F

1
2

n∑

i=1

n∑

j=1

Cij � (Sij − 1
r
bTj bi)2 +

1
2
ν

n∑

i=1

(bi − F (xi))2 + λ‖H‖2

s.t. bi, bj ∈ {−1, 1}r
(6)

where λ denotes the penalty parameter. The next step is to optimize the hash
functions and find the optimal solution.
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3.3 Optimization

Directly solving the minimization problem in Eq.(3) is NP-hard. Thus, we pro-
pose an iterative approach to convert this problem into a few sub-problems with
each solving one variable when fixing all other variables. For each sub-problem,
it is tractable and able to get the optimal solution.

Optimizing F . If B is fixed in Eq. (6), the projection matrix H is independent
to other regularization terms. Therefore we can easily compute the H by solving:

min
H

‖B − φ(X)H‖2 + λ‖H‖2 (7)

Eq. (5) can be solved by linear regression. The optimal H can be derived as:

H = (φ(X)Tφ(X) + λI)−1φ(X)TB. (8)

Optimizing B . It is still challenging to optimize B due to the discrete con-
straints in Eq. (6) which is NP-hard problem. So we try to find a closed-form
solution for each single bi by fixing all other bits {bj}nj �=i during optimization.
We can rewrite the each iteration step of Eq. (6) as:

L =
n∑

i=1

n∑

j=1

Cij � (Sij − 1
r
bTj bi)2 + ν

n∑

i=1

(bi − F (xi))2 + λ‖H‖2 (9)

where L denotes the total loss of each loop, and it will achieve convergence
after Kth iteration. It should be noticed that when we apply another embedded
iteration to solve each single bi of B, we relax the discrete constraint. When i
is ranged from 1 to n, we calculate the partial derivatives of loss term li with
respect to the output bi. The partial derivation process can be written as:

∂li
∂bi

= 2
n∑

j=1

Cij � (Sij − 1
r
bTj bi)

∂(− 1
r bTj bi)
∂bi

+ 2ν(bi − F (xi))
∂bi
∂bi

= (
n∑

j=1

Cij � 1
r2

Sijbjb
T
j + νI)bi − (

n∑

j=1

Cij � 1
r
Sijbj + νF (xi)).

(10)

Due to Eq. (4), Cij � Sij = Sij . Let ∇li = 0, the optimized solution can be
calculated as:

bi = sgn((
n∑

j=1

1
r2

Sijbjb
T
j + νI)−1(

n∑

j=1

1
r
Sijbj + νF (xi))). (11)

We can observe that computing single bit binary codes for each data point relies
on the rest of pre-learned (n − 1) binary codes. It is also noted that bkj should
be selected from the previous iterative round of pre-learned Bk−1 corresponding
to each bi. Thus, we need to learn and update bi for n times in each iteration
to obtain the final optimized B. The iteration complexity here is O(knr + knr3)
where k, r � n. More importantly, we still keep the discrete constrains for B
outside the embedded iteration.
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Algorithm 1. Discrete Supervised Fashion Coordinates Hashing (DSFCH)
Input: Training data X = {x1, x2, . . . , xn} ∈ �n×d , matching matrix S, precision

parameter C, code length r, number of anchor points m, maximum iteration num-
ber K, parameters λ and ν.

Output: Binary codes B ∈ {−1, 1}n×r, hashing projection matrix H.

Randomly select m samples {au}m
u=1 from the training data and map the training

data via the RBF kernel function φ(x)
Initialize B0 ∈ {−1, 1}n×r.
repeat

Optimizing F :
Calculate H using Eq.(8):

H = (φ(X)Tφ(X) + λI)−1φ(X)TB

Optimizing B:
Calculate each bi of B using Eq.(11):

bi = sgn((

n∑

j=1

1

r2
Sijbjb

T
j + νI)−1(

n∑

j=1

1

r
Sijbj + νF (xi)))

Calculate the loss of each iteration using Eq.(9):

L =

n∑

i=1

n∑

j=1

Cij � (Sij − 1

r
bTj bi)

2 +

n∑

i=1

ν(bi − F (xi))
2 + λ‖H‖2

until Convergence

Initializing B . Obviously we should initialize B0 to start F sub-problem before
conducting the K iterations. Inspired by SH [40] and KSH [19], we tried to ini-
tialize the binary codes by thresholding spectral graph decomposition. However,
the performance was unsatisfactory and considering the time consumption, we
choose to use random binary codes B0 ∈ {−1, 1}n×r which is sufficient to show
the effectiveness of our method.

Precision Parameter Cij . In the above section, we have presented the discrete
learning algorithm for each bit of hash codes. We haven’t discussed the influence
of the Cij which is a precision parameter for rating the correlation matrix Sij .
Without Cij , our model will compute all of the 0 labels (unknown cases) same
as the ones with 1 labels, which dramatically reduces the learning effectiveness.
With considering Cij , we trust the labelled cases more than the unknown cases
when Cij is high (e.g. here we define it as a = 1). In addition, the parameter
helps the model balance the weight of loss between matching and unknown cases
(by defining b = 0.01 when Sij = 0). It means the model considers the loss of
100 unknown cases as 1 trust case.
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Online Recommendation. Once we get the optimized projection matrix H,
for given a query q, the predicted binary code can be simply computed by a
signum function on a linear embedding. The formula is Bq = Z(x) = sgn(φ(q) ·
H). We use inner product to calculate ranking score which is formulated as:

score =
1
r
B · BT

q . (12)

The ranking score will be sorted in descend order and the larger value get the
better recommending priority.

4 Experimental Dataset

4.1 Fashion Dataset

As one of the key contributions of this work, two real-life fashion datasets are con-
structed by crawling clothing data from two well-known online shopping websites
Netaporter and Farfetch. These two websites demonstrate millions of clothing
images, where each item is associated with detailed descriptions such as cate-
gory, brand, price, similar items, matching advice and groups of pictures taken
from different views. At the current stage, more than 80,000 clothing items have
been stored in our fashion database with more than 30,000 professional clothing
matching suggestions, which is detailed in Table 1. In this paper, we are only
focused on the clothing visual appearance and matching advice (Fig. 1).

Table 1. Statistics of the fashion dataset

# of Netaporter Farfetch

Items 13,190 68,563

Categories 57 174

Matching pairs 15,476 18,244

Fig. 1. Number of clothing in top 20 categories for both datasets.
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4.2 Feature Extraction

The deep convolutional Neural Network (CNN) [31] is employed in this work to
capture the visual appearance of clothing items. We extract the 4096 dimensional
visual features from the second fully-connected layer (i.e. FC7). These features
are used as the input of our learning model and also for the matching matrix
self-augmentation (Fig. 2).

4.3 Description of Matching Matrix

The matching matrix indicates the identified matching items based on both the
professional advices and the self-augmented relationships. The original clothing
items are divided into different categories, such as T-shirt, pants, etc. Possible
matching relationships are not limited to the items from different categories.
In reality, matched pairs may from the same category, where one example is
shown in Fig. 3 This fact clearly points out the difference between our work
of fashion recommendation and the conventional visual similarity based clothing
retrieval, where the later one is limited to finding the similar items from the same
category. The initial matching matrix is constructed based on the professional
advice that is provided by the websites. All these advice is hand-picked (i.e.,
manually generated) and obviously quite limited. Due to this, the matching
matrix is very sparse (Fig. 3).

Fig. 2. Example of professional advices
for matching. These three clothing
match each other.

Fig. 3. Example of matched pairs from
the same category “top”.

4.4 Data Preprocessing

The real world data on the website contains a lot of noises such as typo, wrong
labels, ambiguity of name, strange id numbers and off-line items which bring
negative impact on recommendation model training. Therefore we made a lot of
efforts on correcting and eliminating those noises to get pure valid pair labels. In
particular, for off-line items, if the items are still stored in the image database
and do have pair matchings with other items, we still save them as valid records.
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In addition, we only focus on the items being labelled. Before training, we
select those positive records which at least are labelled with another item. The
valid dataset size of Netaporter and Farfetch are 10,793 and 18,753 respectively.
For Netaporter dataset, we select 500 records as query set, the remaining 10,293
records are determined as the training and retrieval set. For Farfetch dataset,
we select 1000 records as query set, the remaining 17,753 records as the training
and retrieval set.

After we separate the whole data into training and testing parts, some of the
records which belong to the training part will lose their pair labels due to the
sparsity of the matching matrix. For example, if one record only has one matching
pair which is selected into the test part by accident, this record becomes invalid.
In this paper, we propose an effective self-augmentation process to alleviate the
problem.

4.5 Matching Matrix Self-augmentation

Due to the sparsity of the initial matching matrix, we conduct a self-
augmentation process to enrich the density of the matching relationships.

Firstly, we directly calculate the Euclidean distance of CNN features between
each clothing in order to find the K-Nearest Neighbour similar items. Then we
find all of the matched items for each clothing by the matching matrix. Finally
we assign each matched item with the most n similar neighbours of the clothing
as matching pair. In other words, if two items xi xj are labelled with 1 (i.e.
Sij = 1), we find K-NN samples xik and xjk where xik, xjk ∈ X and xik 	= xi,
xjk 	= xj . Then assign Sik,j = Sjk,i = 1. As a result, the scale of density is
multiplied by n.

Intuitively, it can be understood that if a white long-sleeve shirt is labelled
with a jeans and there is another white long-sleeve shirt which is super close to
the previous shirt on visual content, we can infer that the second shirt is also
well matching the jeans. But we do not label them crossly and it is expected
that our model is able to learn those intrinsic relationships.

5 Experiment

5.1 Evaluation Metrics

We compute the AUC (Area Under the ROC curve) to evaluate the recommen-
dation performance of each model. The AUC measures the quality of a ranking
based on pairwise comparisons. Higher value of AUC means higher performance
on recommendation. The AUC is formulated as:

AUC =
1

|Q|
∑

(q,i,j)∈Q
δ(xq,i > xq,j),

where δ(·) is an indicator function and Q is the fraction of the data withheld for
testing. In other words, we are counting the fraction of times the model correctly
ranks i higher than j.
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5.2 Compared Approaches

We compare our DSFCH with four state-of-art hashing methods, including
Supervised Hashing with Kernels (KSH) [21], Inter-media hashing(IMH) [32],
Canonical Correlation Analysis (CCA) [6] and Supervised Discrete Hashing
(SDH) [27].

5.3 Implementation Settings

In experiments, hash code length on all datasets is varied in the range of [16,
32, 64, 128] to observe the performance. (1) For Netaporter, number of anchor
points m = 500, maximum iteration number K = 50, parameters λ = 10−2 and
ν = 10−2, Self-augmentation n = 3, query size=500 with the same initial seed.
(2) For Farfetch, number of anchor points m = 1000, maximum iteration number
K = 50, parameters λ = 10−2 and ν = 10−2. Self-augmentation n = 3, query
size=1000 with the same initial seed.

5.4 Experiment Results

We report AUC results of all compared methods in Table 2. A query example
of coordinates recommendation is shown in Fig. 4. For the Netaporter dataset,
we can easily find that our method DSFCH outperforms the competitors on all

Fig. 4. Example of fashion recommendation by DSFCH with top-5 returned candi-
dates. The returned clothing items that are the same as the recommended ones by
professionals are highlighted with green frame. The items bounded in blue boxes are
the same as the matched ones identified by the proposed self-augmentation process. (1)
Given a query of “top”, the recommended results are jeans, pants, top and jackets. The
5th is a matching advice of the query (https://www.net-a-porter.com/au/en/product/
735424). The 1st and 4th are visual similar to the 5th. (2) Given a query of “bra”, the
recommended results are briefs. (3) Given a query of “cape”, the recommended results
are pants, gown and culottes.

https://www.net-a-porter.com/au/en/product/735424
https://www.net-a-porter.com/au/en/product/735424
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cases. The largest improvement appears on 128 bits about 40.5% than the second
best approach. For the Farfetch dataset, our method DSFCH is outperform at 64
and 128 code bits. In particular, DSFCH can achieve 0.5228 AUC on 16 bits for
Farfetch if the Self-augmentation parameter setting is n = 2, which shows that
different lengths of binary code accommodate different n. In addition, there is
also an interesting finding from the experimental results that the AUC increases
significantly along with the increase of the hash code length on both two datasets.

Table 2. AUC of all approaches on two datasets. The best result in each column is
marked with bold.

Methods Netaporter Farfetch

16 32 64 128 16 32 64 128

KSH 0.5124 0.5016 0.4874 0.5252 0.5495 0.5621 0.5731 0.5720

IMH 0.4650 0.4650 0.4650 0.4650 0.5070 0.5070 0.5070 0.5070

CCA 0.5067 0.5070 0.4981 0.4953 0.5073 0.5046 0.5037 0.5114

SDH 0.4624 0.4796 0.5114 0.5174 0.4369 0.4931 0.4322 0.5436

DSFCH 0.5468 0.5911 0.6622 0.7379 0.4815 0.5209 0.6262 0.7105

5.5 Self-augmentation Study

We are trying to enrich the density of the matching matrix by KNN search, the
testing result on 128 bits is shown below in Figure 3. We tested both Netaporter
and Farfetch dataset. We found that, when the nearest neighbours number n = 3,
the performance is peaking at highest value. Along with the number n increasing,
the performance is dropping sharply (Fig. 5).

Fig. 5. Comparison of AUC curves for different Self-augmentation parameter n on 128
bits with two datasets.
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5.6 Discrete or Not?

In practical, we compare the performance in two situations: (1) we keep the
binary constraint of B in Eq. (11) during training; (2)we relax the discrete con-
straints to get a continuous B and threshold it at last. In most cases, we notice
that discrete method is better than relaxed method. Keeping the binary con-
straints is getting better and better performance along with the code length
increasing. Which can be understood that short code length suffers more penalty
from quantization loss. All these two experiment is tested on Netaporter dataset,
maximum iteration number K = 50, self-augmented neighbours n = 3, with the
same query set and initial seed (Table 3).

Table 3. Comparative performance between discrete or relaxed methods on Netaporter
dataset.

Constraint 16 bits 32 bits 64 bits 128 bits

AUC Discrete 0.5702 0.5898 0.6684 0.7500

Relaxed 0.5663 0.6004 0.6655 0.7134

Figure 6 shows the convergence procedures in discrete and relaxed respec-
tively. It can be seen from the figures that discrete method is much faster to get
convergent than the other one. Also the convergence curve of discrete is more
stable than the relaxed one.

Fig. 6. Objective function value variations with the number of iterations on discrete
and relaxed methods.

5.7 Parameter Sensitivity Experiment

In practical, we notice that the parameter ν has a significant impact on learning
performance, so a parameter study is applied shown below in Fig. 7. Testing
range is {10−3, 10−2, 10−1, 1, 101, 102, 103} on 128 bits, argumentation n = 3.
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Fig. 7. Comparison of AUC for different ν on 128 bits with two datasets.

6 Conclusion

In this paper, we propose an effective model, dubbed as Discrete Supervised
Fashion Coordinates Hashing (DSFCH), to learn meaningful yet compact visual
features of clothing items, and thus support large-scale fashion recommenda-
tion. The learning process is supervised by a clothing matching matrix, which is
initially constructed based on the limited pre-known matching pairs with self-
augmentation. The proposed model jointly learns the intrinsic matching pat-
terns from the matching matrix and the discrete binary representations from
the images of clothing items. The binary representation significantly reduces
the memory cost and accelerates the fashion recommendation. Extensive exper-
iments have been conducted to provide comprehensive performance studies on
different parameter settings. The comparisons with the-state-of-the-arts methods
have evidenced the superior performance of the proposed approach for fashion
recommendation.
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