
A Parallel Spatial Co-location Pattern Mining
Approach Based on Ordered Clique Growth

Peizhong Yang, Lizhen Wang(&), and Xiaoxuan Wang

School of Information Science and Engineering, Yunnan University,
Kunming 650091, China

pzyang0924@163.com, lzhwang@ynu.edu.cn

Abstract. Co-location patterns or subsets of spatial features, whose instances
are frequently located together, are particularly valuable for discovering spatial
dependencies. Although lots of spatial co-location pattern mining approaches
have been proposed, the computational cost is still expensive. In this paper, we
propose an iterative mining framework based on MapReduce to mine
co-location patterns efficiently from massive spatial data. Our approach searches
for co-location patterns in parallel through expanding ordered cliques and there
is no candidate set generated. A large number of experimental results on syn-
thetic and real-world datasets show that the proposed method is efficient and
scalable for massive spatial data, and is faster than other parallel methods.

Keywords: Spatial data mining � Co-location patterns � Ordered clique
Parallel algorithm � MapReduce

1 Introduction

The spatial co-location pattern mining is one of the spatial knowledge discovery
technologies, and it is intended to discover a subset of spatial features whose instances
are frequently located together. The spatial co-location pattern mining has many
applications [1], and various co-location pattern mining methods have been proposed.
But most methods are serial processing and inefficient when handling massive spatial
data. As a solution, the methods of parallel co-location pattern mining are imperative.
However, little research pays attention to the parallel co-location pattern mining. In this
work, we propose a parallel spatial co-location pattern mining approach based on
ordered clique growth, and it needs not to generate candidate sets and check clique
instances. The algorithm is implemented on Apache Spark, and extensive experiments
are conducted to evaluate the efficiency. Experimental results demonstrate that our
method is efficient and scalable for mining co-location patterns from massive spatial
data.

The main contributions of this work can be summarized as follows: (1) The ordered
clique expanding method in a level-wise manner is proposed. (2) An iterative frame-
work for spatial co-location pattern mining based on ordered clique growth is provided.
(3) We suggest a pruning strategy to cut out some ordered cliques early to speed up the
mining process. (4) A parallel spatial co-location pattern mining algorithm based on
MapReduce is proposed.

© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10827, pp. 734–742, 2018.
https://doi.org/10.1007/978-3-319-91452-7_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91452-7_47&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91452-7_47&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91452-7_47&domain=pdf

The rest of this paper is organized as follows: Sect. 2 reviews related work. Sec-
tion 3 presents the basic concept of spatial co-location mining and the MapReduce. In
Sect. 4, a novel parallel spatial co-location pattern mining method is provided. Sec-
tion 5 shows experimental evaluations and the paper will conclude on Sect. 6.

2 Related Work

A large number of methods have been developed to discover co-location patterns.
Huang et al. [1] defined the participation index to measure the prevalence of
co-location patterns and proposed the Apriori-like method join-based. Based on the
participation index, a partial-join approach [3] and a join-less approach [2] proposed by
Yoo and Shekhar to improve mining efficiency. However, above methods are difficult
to avoid generating huge candidate patterns and storing massive clique instances. To
address this problem, various optimization algorithms have been proposed [4–6, 8], but
these methods are serial processing and they are inefficient when processing massive
spatial data. Yoo et al. [7] proposed a parallel spatial co-location pattern mining
algorithm based on MapReduce. It can handle massive spatial data, but the candidate
clique instances generation and the clique checking operation are still time-consuming.
In this work, a novel parallel spatial co-location pattern mining approach based on
ordered clique growth is proposed. There is no candidate set generated and the clique
testing operations can be avoided in our method.

3 Basic Concepts

In a spatial database, let F = {f1, f2,…, fm} be a set of spatial features and O = {o1, o2,
…, on} be a set of instances of F. Two instances have the spatial neighbor relationship
R, if the distance between two instances is less than a threshold d. A co-location pattern
Cl = {f1…fk} is a subset of spatial features, whose instances frequently form clique
under R. A set of instances I is a row instance of Cl, if (1) I contains all features of Cl
and no proper subset of I does so, and (2) all instances of I form a clique. The set of all
row instances of Cl is called table instance, denoted as T(Cl). The Participation Index
(PI) is defined [1] to evaluate the prevalence of co-location pattern. The participation
index of Cl is the minimum Participation Ratio (PR) for all spatial features in Cl. The
participation ratio of fi in Cl can be computed as:

PRðCl; fiÞ ¼ number of distinct instances of fi in TðClÞ
number of global instances of fi

ð1Þ

Cl is called a prevalent co-location pattern, if the participation index of Cl is not less
than a given prevalence threshold min_prev. The participation index is anti-monotone
[1], which means the PI of a pattern is not bigger than the PI of its sub-patterns.

MapReduce is a programming model which provides a highly scalable and flexible
framework for data-oriented parallel computing. A MapReduce job is executed in two
main phases of user defined data transformation functions, map and reduce. In the first

A Parallel Spatial Co-location Pattern Mining Approach 735

phase, the key-value pairs are processed by Mapper instances and the output of the map
function is another set of intermediate key-value pairs. The intermediate process of
moving the intermediate key-value pairs from the map tasks to the assigned Reducer is
called shuffle phase. At the completion of the shuffle, all values associated with the
same key are fed to a Reducer and processed by the reduce function. Each Reducer
generates a set of new key-value pairs as the output of the job.

4 A Parallel Approach

The generation of table instance set is the most time-consuming operation in
co-location pattern mining. Generating row instance in parallel is an effective way to
improve the efficiency of the mining process. This section presents a method to dis-
cover co-location patterns through expanding ordered clique in parallel.

4.1 Ordered Clique Growth

Definition 1 (Ordered Clique). Given an instance set Ik = {o1, o2,…, ok}, oi 2 O,
1 � i � k, if f(oi) � f(oj) and R(oi, oj) holds for every 1 � i � j � k, Ik is called
an ordered clique. The set Ik contains k instances, thus Ik is a size-k ordered clique.

f(oi) is the feature type of instance oi. f(oi) � f(oj) represents that the feature type
of oi is not greater than oj in alphabetical order.

Definition 2 (Neighbor Set of Instance). Given an instance oi 2 O, the neighbor set
of instance oi is defined as:

NSIðoiÞ ¼ fokjok 2 O ^ R oi; okð Þ ^ ðf ðoiÞ\ f ðokÞÞg

That is, the neighbor set of oi consists of some instances who has spatial neighbor
relationship with oi and whose feature type is bigger than oi in alphabetical order.

Definition 3 (Neighbor Set of Clique). Given a size-k ordered clique Ik = {o1, o2,…,
ok}, oi 2 O, 1 � i � k. The neighbor set of clique Ik is defined as:

NSCðIkÞ ¼ NSIðo1Þ \ � � � \NSIðokÞ

Lemma 1. Given a size-k ordered clique Ik, if o 2 NSC(Ik), appending o to Ik con-
stitutes a new clique Ik+1 = {o1, o2,…, ok, o}, and Ik+1 is a size-(k + 1) ordered clique.

Proof. If oi 2 Ik, 1 � i � k, and o 2 NSC(Ik). Thus, o 2 NSI(oi) by Definition 3,
that is, the instance o has spatial neighbor relationship with all instances in Ik, and the
feature type of o is bigger than all instances in Ik lexicographically according to
Definition 2. Therefore, appending o to Ik to form a size-(k + 1) clique Ik+1, and it is
ordered clique by definition.

736 P. Yang et al.

4.2 An Iterative Parallel Mining Framework

According to Lemma 1, given an ordered clique Ik, the size-(k + 1) (k � 1) ordered
cliques prefixed with Ik can be produced by appending an element in NSC(Ik) to Ik.
Obviously, the operation of expanding ordered cliques can be performed in parallel.
A size-k ordered clique corresponds to a row instance of a size-k ordered co-location
pattern. When all size-k ordered cliques are generated, table instances for all size-
k ordered co-location patterns can be collected easily. Starting from the size-2 ordered
cliques, we can search for all ordered co-location patterns level by level. Naturally, an
iterative parallel co-location pattern mining framework based on ordered clique growth
is suggested. The mining framework is given in Fig. 1. In addition, a pruning strategy
is proposed to narrow searching space.

Pruning Strategy. Given a size-k ordered clique Ik, and Ik is a row instance of the
pattern Cl. If Cl is not prevalent, the size-(k + 1) ordered cliques prefixed with Ik can be
pruned.

Depending on the anti-monotone property of the participation index, if the pattern
Cl is not prevalent, the super set of Cl must be not prevalent. A size-(k + 1) ordered
clique prefixed with Ik corresponds to a size-(k + 1) co-location pattern Cl0, and Cl0

must be the super set of Cl. We do not need to search for the pattern Cl0 because the
pattern Cl is not prevalent, thus the size-(k + 1) ordered cliques who are prefixed with
Ik can be pruned.

4.3 Parallel Algorithm

In this subsection, the parallel co-location pattern mining algorithm based on ordered
clique growth (PCPM_OC) is presented. The algorithm is described by MapReduce
procedure presented in Fig. 2.

Firstly, we count and store the number of instances per spatial feature utilizing Job1
presented in Fig. 2(a). It is preparation for future participation index calculation.

The task of generating the neighbor set of instance is accomplished by Job2 pre-
sented in Fig. 2(b). The pair of instances who have spatial neighbor relationship is the
input for Mapper. Spatial neighbor relationships can be obtained in advance by the
parallel neighbor searching method proposed in [7]. Then, the pair <oi, oj> is the output
of Mapper and the feature type of oi is smaller than oj lexicographically. At shuffle
phase, the neighbor of per instance will be collected in a set. The pair, <o, NSI(o)>, be

Fig. 1. The mining framework

A Parallel Spatial Co-location Pattern Mining Approach 737

fed to Reducer and then the pair will be stored for the operation of expanding ordered
clique. In order to construct the initial input of Job3, an instance is considered as a
size-1 ordered clique. An ordered clique I consists of 3 parts, the pattern corresponding
to I, the instance set of I and the neighbor set of clique. The new key-value pair on
behalf of a size-1 ordered clique is emitted as the output of Reducer.

The procedure of searching for prevalent co-location patterns is shown in Fig. 2(c).
The Mapper is fed with size-k ordered cliques, and performs the operation of expanding
ordered clique according to Lemma 1. For a size-k ordered clique Ik, the size-(k + 1)
ordered cliques prefixed with Ik are emitted. At the completion of the shuffle, the
ordered cliques associated with the same pattern will be gathered. In Reducer, com-
puting the participation index of the pattern, and then storing prevalent pattern and
pruning the searching space for the next iteration. Depending on the pruning strategy,
just emitting the size-(k + 1) ordered cliques corresponding to prevalent patterns and
whose neighbor set is not null. Proceeding from size-1 ordered cliques, all prevalent
co-location patterns can be obtained level-by-level through executing Job3 iteratively.

Our algorithm has a few advantages: (1) High degree of parallelism. The expanding
operation for each size-k ordered clique can be carried out independently, and it can
resolve the problem that generating table instances is time-consuming in co-location
pattern mining. (2) Iterative execution. Because of the iterative mining framework, we

(a)

1:procedure Mapper(null, value=o)
2: emit(f(o),1)
3:end procedure
4:procedure Reducer (key=feature type

, value=[1])
5: count=sum(value)
6: store(feature, count)
7: emit(feature, count)
8:end procedure

(b)

1:procedure Mapper(key=oi, value=oj)
2: if f(oi)< f(oj)
3: emit(oi, oj)
4: else
5: emit(oj, oi)
6:end procedure
7:procedure Reducer(key=o ,value=NSI(o))
8: store(o , NSI(o))
9: pattern=f(o) I= o.id NSC(I)= NSI(o)
10: emit(pattern,(I, NSC(I)))
11: end procedure

(c)

1: procedure Mapper(key=pattern, value=(I, NSC(I)))
2: for all o∈NSC(I) do
3: newPattern= pattern+ f(o)
4: newI=I+o.id
5: load neighbor set of o to NSI(o)
6: NSC(newI)=NSC(I) NSI(o)
7: emit(newPattern, (newI, NSC(newI)))
8: end for
9:end procedure
10:procedure Reducer (key=pattern, value=[(I, NSC(I))])

11: compute PI of pattern
12: if PI ≥ min_prev
13: store(pattern, PI)
14: for all v∈value do
15: if v.NSC(I)
16: emit(pattern,(v.I , v.NSC(I)))
17: end if
18: end for
19: end if
20:end procedure

Fig. 2. The parallel spatial co-location pattern mining approach based on ordered clique growth,
(a) Job1: procedure for counting the number of instances per spatial feature, (b) Job2: procedure
for generating the neighbor set of instance, (c) Job3: procedure of searching for prevalent
co-location patterns

738 P. Yang et al.

can re-use the previously processed information. (3) Effective pruning. A pruning
strategy is proposed to narrow the searching space. (4) No candidate sets. There is not
any candidate pattern and candidate clique instance to be generated. (5) No clique
checking. Our method ensures that each expanding operation generates ordered cliques.

5 Experimental Evaluation

We implement our algorithm in Spark library functions. The performance evaluation is
conducted on the cluster that deployed Hadoop and Spark. The cluster consists of one
master node and six worker nodes with the following characteristics: (1) CPU per node:
Intel Core i7-6700, @3.40 GHz; (2) Memory per node: 8 GB. Experiments are con-
ducted on real and synthetic data sets. Two real data sets are used. The first is a plant
dataset of the “Three Parallel Rivers of Yunnan Protected Areas” that contains 25
spatial features and 13,348 spatial instances. The second is the POI of Beijing that
contains 63 spatial features and 303,895 spatial instances. The synthetic data sets are
generated based on the spatial data generator described in [1].

5.1 Compared with Serial Mining Methods

In the first experiment, we evaluate the efficiency of the PCPM_OC compared with
two state-of-the-art serial co-location mining algorithms, the JoinBase [2] and the
JoinLess [3]. We use a small data set, the plant dataset, because the serial algorithms
easily overflow on large data sets. In Fig. 3(a), we set the participation index threshold
min_prev to 0.1. The running time of the JoinBase increases dramatically with the
increasing of the distance threshold d and the efficiency of the JoinLess is slightly better
than the PCPM_OC when d is smaller, owing to the PCPM_OC requires extra cost.
When d > 3,000 m, the advantage of the PCPM_OC can be reflected. In Fig. 3(b), we
set d to 3,000 m. The running time of three algorithms decreases with the increasing of
min_prev, because fewer patterns need to be searched when min_prev is larger. Sim-
ilarly, the JoinBase is the least efficient. When min_prev is smaller, more patterns are
searched, the PCPM_OC is better than two serial algorithms, because the large number
of calculation is executed in parallel.

Fig. 3. Running time over the plant dataset: (a) by the distance thresholds, (b) by the
participation index thresholds

A Parallel Spatial Co-location Pattern Mining Approach 739

5.2 Compared with PCPM_SN

In the second experiment, we compare the efficiency of the PCPM_OC with the parallel
algorithm (PCPM_SN) proposed in [7]. We implement the PCPM_SN algorithm in
Spark and use the data set of the POI of Beijing. First, the effect of the distance
threshold is evaluated. In Fig. 4(a), we set min_prev to 0.4. The running time of two
methods is increased with the increasing of d, because a larger value of d means more
instances could form cliques. The performance of the PCPM_OC is better than the
PCPM_SN, as there is no candidate clique generation and clique checking operation in
the PCPM_OC. Next, we assess the effect of the participation index thresholds. In
Fig. 4(b), we set d to 300 m. As min_prev becomes higher, more patterns dissatisfy the
condition of prevalent co-location patterns. Naturally, the performance of two algo-
rithms improves. When min_prev is smaller, the running time of the PCPM_OC is less
than the PCPM_SN obviously. Because more patterns are searched means that more
candidate clique instances need to be generated and more clique checking operations
are required to be undertaken in the PCPM_SN, but these are not required in the
PCPM_OC.

5.3 Scalability Evaluation

In order to assess the scalability, some experiments are conducted on synthetic data sets.
We generate spatial instances and randomly distribute them into a 10,000 � 10,000
space, and min_prev = 0.1, d = 20.

In Fig. 5(a), we assess the effect of the number of spatial features. The average of
instances per spatial feature is 10,000. The running time is increased with the
increasing of the number of spatial features, because more potential patterns are
required to be searched when increasing the number of spatial features. The perfor-
mance of the PCPM_OC is preferable to the PCPM_SN, especially when the number
of spatial features is larger.

In Fig. 5(b), we assess the impact of the number of spatial instances and set the
number of spatial features to 100. As the number of spatial instances becomes larger,
the running time of two algorithms is raised. The distribution of spatial instances is
more densely and more spatial instances could form cliques when the number of total
spatial instances is larger. The performance of the PCPM_OC outperforms the
PCPM_SN, especially when the number of spatial instances is larger.

Fig. 4. Running time over the POI of Beijing: (a) by the distance thresholds, (b) by the
participation index thresholds.

740 P. Yang et al.

In Fig. 5(c), the performance of speedup is evaluated. The number of spatial fea-
tures is 100 and the number of spatial instances is 1,000,000. Increasing worker nodes,
the running time of two algorithms is reduced obviously, because the mining tasks are
allocated to more nodes to execute. In the case of the same number of worker nodes,
the performance of the PCPM_OC is better than the PCPM_SN.

6 Conclusions

In this work, we propose a parallel approach for mining co-location patterns from
massive spatial data. Each worker node conducts the co-location pattern mining process
through expanding ordered cliques level by level. In our method, there is no candidate
set generating and clique checking. The experiments show that our approach has a
significant improvement in efficiency and has better scalability. Our method is effective
for handling massive spatial data, but collecting table instance sets are still
time-consuming. Moreover, the issue of load balance is to be explored also. The above
questions will be focused on our future researches.

Acknowledgement. This work is supported by the National Natural Science Foundation of
China (61472346, 61662086, 61762090), the Natural Science Foundation of Yunnan Province
(2015FB114, 2016FA026), and the Project of Innovative Research Team of Yunnan Province.

References

1. Huang, Y., Shekhar, S., Xiong, H.: Discovering colocation patterns from spatial data sets: a
general approach. IEEE Trans. Knowl. Data Eng. 16(12), 1472–1485 (2004)

2. Yoo, J.S., Shekhar, S.: A joinless approach for mining spatial colocation patterns. IEEE
Trans. Knowl. Data Eng. 18(10), 1323–1337 (2006)

3. Yoo, J.S., Shekhar, S.: A partial join approach for mining co-location patterns. In: The 12th
Annual ACM International Workshop on Geographic Information Systems, pp. 241–249
(2004)

4. Wang, L., Bao, X., Zhou, L.: Redundancy reduction for prevalent co-location patterns. IEEE
Trans. Knowl. Data Eng. 30(1), 142–155 (2018)

5. Xiao, X., Xie, X., Luo, Q., Ma, W.: Density based co-location pattern discovery. In: 16th
ACM SIGSPATIAL, pp. 1–10 (2008)

Fig. 5. Running time over synthetic data sets: (a) by the number of spatial features, (b) by the
number of spatial instances, (c) by the number of worker nodes

A Parallel Spatial Co-location Pattern Mining Approach 741

6. Lin, Z., Lim, S.J.: Fast spatial co-location mining without cliqueness checking. In:
International Conference on Information and Knowledge Management, pp. 1461–1462 (2008)

7. Yoo, J.S., Boulware, D., Kimmey, D.: A parallel spatial co-location mining algorithm based
on MapReduce. In: IEEE International Congress on Big Data, pp. 25–31 (2014)

8. Wang, L., Bao, X., Chen, H., Cao, L.: Effective lossless condensed representation and
discovery of spatial co-location patterns. Inf. Sci. 436–437(2018), 197–213 (2018)

742 P. Yang et al.

	A Parallel Spatial Co-location Pattern Mining Approach Based on Ordered Clique Growth
	Abstract
	1 Introduction
	2 Related Work
	3 Basic Concepts
	4 A Parallel Approach
	4.1 Ordered Clique Growth
	4.2 An Iterative Parallel Mining Framework
	4.3 Parallel Algorithm

	5 Experimental Evaluation
	5.1 Compared with Serial Mining Methods
	5.2 Compared with PCPM_SN
	5.3 Scalability Evaluation

	6 Conclusions
	Acknowledgement
	References

