
Personalized Geo-Social Group Queries
in Location-Based Social Networks

Yuliang Ma1(B), Ye Yuan1(B), Guoren Wang2, Xin Bi3, and Yishu Wang1

1 School of Computer Science and Engineering, Northeastern University,
Shenyang, China

ylma.neuer@gmail.com, yuanye@mail.neu.edu.cn
2 School of Computer Science and Technology, Beijing Institute of Technology,

Beijing, China
3 Sino-Dutch Biomedical and Information Engineering School,

Northeastern University, Shenyang, China

Abstract. Geo-social group query, one of the most important issues
in LBSNs, combines both location and social factors to generate useful
computational results, which is attracting increasing interests from both
industrial and academic communities. In this paper, we propose a new
type of queries, personalized geo-social group (PGSG) queries, which aim
to retrieve both a user group and a venue. Specifically, a PGSG query
intends to find a group-venue pattern (consisting of a venue and a group
of users with size h), where each user in the group is socially connected
with at least c other users in the group and the maximum distance of all
the users in the group to the venue is minimized. To tackle the problem of
the PGSG query, we propose GVPS, a novel search algorithm to find the
optimal user group and venue simultaneously. Moreover, we extend the
PGSG query to top-k personalized geo-social group (TkPGSG) query.
Instead of finding the optimal solution in the PGSG query, the TkPGSG
query is to return multiple feasibility solutions to guarantee the diversity.
We propose an advanced search algorithm TkPH to address the TkPGSG
query. Comprehensive experimental results demonstrate the efficiency
and effectiveness of our proposed approaches in processing the PGSG
query and the TkPGSG query on large real-world datasets.

1 Introduction

With the progress of location acquisition and wireless communication technol-
ogy, people now are able to add location dimension into traditional social net-
works, which fosters a bunch of location-based social networks (LBSNs), such
as, Foursquare, Gowalla, and Yelp. People can easily record and share their life
experiences via their mobile devices in these service platforms. Therefore, indi-
viduals’ location data and social data have been readily available from mobile
devices. One of the most important applications in LBSNs, geo-social group
query, combines both location and social factors to generate useful computa-
tional results, which is attracting increasing interests from both industrial and
academic communities.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10827, pp. 388–405, 2018.
https://doi.org/10.1007/978-3-319-91452-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91452-7_26&domain=pdf

Personalized Geo-Social Group Queries in Location-Based Social Networks 389

In the literature of geo-social group queries, the authors in [11,23] aim to
find a group of users close to a given rally point and to ensure that the selected
users have a good social relationship. The authors in [22] aim to find the activity
time and attendees with the minimum total social distance to the initiator. The
authors in [6,7] explore a group of experts whose skills can cover all the require-
ments and the communication cost among group members is low. The authors
in [9] retrieve a user group of size k where each user is interested in the query
keywords and they are close to each other in the Euclidean space. Besides, some
other types of geo-social group queries have been proposed, such as, geo-social
k-cover group query [8], and geo-social group query with minimum acquaintance
constraint [28]. While being useful in some applications, these queries mentioned
above do not completely utilize new search potential brought by geo-social data.

The following scenario is very common in real life. Assume that user Alice
wants to establish an activity (such as, a group of users P including Alice will
have dinner together at a venue s). There are some constraints by satisfied: (1)
the size of the group |P | is 10. Each user in the group should know at least 3 other
users, which can create good atmosphere in the activity; and (2) the maximum
distance of all the users in the group to the venue is minimized. However, none
of the existing works on geo-social group queries can be used to answer such a
scenario. For example, the authors in [23] propose a novel query SSGQ to find a
set of users close to a given venue. While, Alice (the query user) does not know
such a input venue and wants to find a user group and a venue simultaneously.
If we use the SSGQ query to model the above scenario, we need to address the
SSGQ queries repeatedly, which is extremely expensive. Thus, the SSGQ query
is unsuitable for modeling the above scenario.

Consequently, we propose a novel type of geo-social group queries, called Per-
sonalized Geo-Social Group (PGSG) queries. Specifically, a PGSG query intends
to find a venue and a user group (including the query user) with size h, where
each user in the group is socially connected with at least c other users in the
group and the maximum distance of all the users in the group to the venue is
minimized. We call such a pair of user group and venue as a group-venue pattern.
Our proposed PGSG query can model the above mentioned scenario. The size
constraint h is 10 and the social topology constraint c is 3. By modeling the
scenario as a PGSG query, Alice can obtain a appropriate group-venue pattern
(consisting of a user group with size 10 and a venue), which each user in the
group is connected with at least 3 other users and the maximum distance of all
the users in the group to the venue is minimized. Besides, the PGSG query can
be used to model some other real applications, such as spatial task outsourcing
[18–20], event planning [3,16,17].

Moreover, we extend the PGSG query to the top-k personalized geo-social
group (TkPGSG) query. Instead of finding the optimal group-venue pattern
defined in the PGSG query, the TkPGSG query is to return k group-venue
patterns X = {X1, · · · ,Xk} such that: (a) all the k group-venue patterns satisfy
the social constraints (group size constraint and the social topology constraint);
(b) any group-venue pattern Xm /∈ X satisfying the social constraints has a cost

390 Y. Ma et al.

(the maximum distance of all the users in the group to the venue) that exceeds
that of any group-venue pattern Xi ∈ X.

Challenges. The PGSG query is a hard problem to be tackled. The challenge
is threefold.

Firstly, the PGSG query aims to find a user group (including the query user)
with size h, where each user is socially connected with at least c other users
in the group. If we directly extract all such groups by simply enumerating all
possible combinations, the search space is large and redundant. Therefore, the
first challenge is how to extract possible user groups efficiently.

Secondly, there are infinitely many user group combinations and venues,
which make infeasibility to examine all group-venue patterns to the PGSG query.
Therefore, the second challenge is how to efficiently find the optimal group-venue
pattern for the PGSG query.

Thirdly, in order to guarantee the diversity of query processing, one common
and effective way is to return multiple query results. We extend the PGSG query
to the TkPGSG query. It is inefficient to tackle the TkPGSG query by invoking
multiple PGSG queries. Thus, the third challenge is how to efficiently return
top-k group-venue patterns for the query user.

Our Proposed Methods. In order to tackle the PGSG query efficiently, we
propose a novel search algorithm, called group-venue pattern search (GVPS).
The intuition of GVPS is that we expand a user group from the query user by
a breadth search strategy. With the group expanding processing, GVPS reduces
the venue search space by a derived lower bound and upper bound of spatial
distance. Moreover, based on the GVPS algorithm, we propose an advanced
top-k personalized geo-social group query algorithm, namely top-k group-venue
patterns hunter (TkPH), to tackle the TkPGSG query efficiently.

Contributions. To summarize, we make following contributions in this paper.

– We propose a new type of geo-social group queries called Personalized Geo-
Social Group (PGSG). Specifically, a PGSG query aims to find a venue and
a group with size h, where each user in the group is socially connected with
at least c other users in the group and the sum of the distance from every
user in the group to the venue is minimized.

– We extend the PGSG query to the top-k personalized geo-social group
(TkPGSG) query. Instead of finding the optimal group-venue pattern defined
in PGSG, the TkPGSG query is to return multiple query results to guarantee
the diversity of query processing.

– To tackle the problem of PGSG query, we propose a search algorithm, called
group-venue pattern search (GVPS). Besides, we propose an advanced top-
k group-venue patterns search algorithm, namely TkPH, for processing the
TkPGSG query.

– Extensive experiments are conducted to demonstrate the efficiency and effec-
tiveness of the proposed approaches on real-world datasets.

Personalized Geo-Social Group Queries in Location-Based Social Networks 391

The rest of this paper is organized as follows. We formally define the PGSG
query and the TkPGSG query in Sect. 2. We present the details of PGSG query
algorithm in Sect. 3. In Sect. 4, we present the proposed algorithm to process the
TkPGSG query. We show an extensive experimental evaluation in Sect. 5, and
overview the related works in Sect. 6. In Sect. 7, we conclude this paper.

2 Problem Formulation

In this section, we describe the terms and notations that we use throughout the
paper, and formally define the Personalized Geo-social Group (PGSG) queries.

LBSNs allow users to search location-tagged contents within their social
graphs, and consist of the new social structures made up of individuals. We
call the integration of location data and social data, generated by individuals in
LBSNs, as geo-social data.

We model a LBSN as two main components. As shown in Fig. 1(a), the first
component is the underlying social network G = (V,E), where each vertex u ∈ V
is a user. Each edge e ∈ E denotes an acquainted relation (e.g., friendship)
between the two users it connects. Moreover, each user u maintains a pair of
coordinates indicating the user’s location, which can be extracted from the user’s
profiles (such as home address) or discovered by the existing work [27]. We take
the user’s location as one part of the input, since user location extraction is
not the focus of our work. In this paper, we take the venues in LBSNs as spatial
objects. Thus, the second component of a LBSN is a set of spatial venues S. Each
venue s ∈ S is a spatial object associated with a pair of coordinates indicating
its geographical position. Figure 1(b) shows an example of the spatial locations
of users and venues in a LBSN.

A PGSG query aims to find a user group (including the query user) with size
h, where each user in the group is socially connected with at least c other users
in the group.

Definition 1 (c-core). For a graph G = (V,E), a maximal connected subgraph
G′ = (V ′, E′) of G is a c-core, if each vertex u ∈ V ′ has degree at least c.

Fig. 1. An example of a location-based social network.

392 Y. Ma et al.

The concept of c-core was first proposed by Seidman in [15], which can be
widely applied to describe the complex topologies of social networks and reveal
the hierarchical structures of networks.

Definition 2 (Induced Subgraph). Given a graph G = (V,E), for any subset
V ′ of V , and edge set E′:

E′ = {(u, v)|u, v ∈ V ′ and (u, v) ∈ E},
we call G′ = (V ′, E′) is an induced subgraph of V ′ in G, denoted as G[V ′].

Definition 3 (Connected c-core Component). Given a graph G = (V,E),
a subset V ′ of V , G[V ′] is a connected c-core component, if G[V ′] is a connected
component and minu∈V ′ degG[V ′](u) ≥ c.

Definition 4 (Group-Venue Pattern). Given a user group P = {u1, u2, · · · ,
uh}, a venue s, we call such a pair of user group and venue a group-venue pattern,
denoted as X = (P, s). The distance of a group-venue pattern X is the maximum
distance of all the users in X.P to X.s. That is, we have:

Dist(X) = Dist(X.P,X.s) = Maxui∈P dist(ui, s) (1)

where dist(ui, s) is the Euclidean distance.

Remember that a personalized geo-social group (PGSG) query aims to find a
venue and a user group (including the query user) with size h, where the group
is a connected c-core component and the maximum distance of all the users in
the group to the venue is minimized. Formally, we define the PGSG query as
follows:

Definition 5 (Personalized Geo-Social Group (PGSG) Query). Given
an underlying social network G = (V,E) and a spatial venue set S =
{s1, s2, · · · , sm}, the personalized geo-social group query q = 〈uq, h, c〉, where
uq is the query user who initiate such a query, h is the group size constraint,
and c indicates a social constraint c-core, aims to retrieve a user group P ⊆ V
and a venue s ∈ S such that:

(1) P includes uq and |P | = h;
(2) G[P] is a connected c-core component;
(3) Dist(P, s) is minimized.

Example 1. Take Fig. 1 as an example, assume a PGSG query q = 〈u5, 4, 2〉,
which means the query user is u5, the group size constraint is 4. The user group
P = {u5, u9, u10, u11} contains 4 users including u5, and the induced subgraph
P in G is a 2-core. In this condition, the group-venue pattern X = (P, s3) is the
result of q, since Dist(P, s3) is minimized.

In order to guarantee the diversity of query processing, we extend the PGSG
query to the top-k personalized geo-social group (TkPGSG) query. Instead
of finding the optimal group-venue pattern defined in the PGSG query, the
TkPGSG query aims to find k group-venue patterns. Formally, we define the
TkPGSG query as follows:

Personalized Geo-Social Group Queries in Location-Based Social Networks 393

Definition 6 (Top-k Personalized Geo-Social Group (TkPGSG)
Query). Given an underlying social network G = (V,E) and a spatial venue
set S = {s1, s2, · · · , sm}, the top-k personalized geo-social group query q =
〈uq, h, c, k〉, where uq is the query user who initiate such a query, h is the
group size constraint, c indicates a social constraint c-core, and k the number of
group-venue patterns needed to return, aims to retrieve k group-venue patterns
X = {X1,X2, · · · ,Xk} such that:

(1) for any Xi ∈ X, Xi includes uq and |Xi.P | = h;
(2) for any Xi ∈ X, G[Xi.P] is a connected c-core component;
(3) for any Xi ∈ X, and any Xj /∈ X such that Xj .P satisfies (1) and (2),

Dist(Xi) ≤ Dist(Xj).

If the number of group-venue patterns satisfying the conditions (1) and (2)
in Definition 6, the TkPGSG query returns all these group-venue patterns. It’s
worth noting that the TkPGSG query can also be extended to other metrics,
such as average distance and minimal distance.

Example 2. Continue to use Fig. 1 as an example. Assume a TkPGSG query
q = 〈u5, 4, 2, 3〉, which means the query user is u5, the group size constraint is
4, the core constraint is 2, q aims to find 3 group-venue patterns. There are four
user groups: P1 = {u5, u3, u4, u6}, P2 = {u5, u3, u6, u11}, P3 = {u5, u6, u10, u11},
and P4 = {u5, u9, u10, u11}, where each group satisfies the condition (1) and (2)
presented in Definition 6. The results of q are: X1 = (P1, s1), X2 = (P2, s1), and
X3 = (P4, s3). The user group P3 can not be included in the results, since the
distance of any group-venue pattern Xj containing P3 exceeds the third-largest
distance in the results.

3 PGSG Query Processing

In this section, we discuss how to process the PGSG query. We firstly introduce
a baseline algorithm, and then propose a novel search algorithm.

3.1 Baseline Algorithm

According to our problem statement, a PGSG query aims to find a venue s
and a user group P (including the query user uq) with size h, where the induced
subgraph G[P] is a connected c-core component and the maximum distance of all
the users in P to s is minimized. To process the PGSG query, a baseline solution
can be readily described as follows. Firstly, we enumerate all the c-core groups
including the query user with size h. We regard these c-core groups as group
candidates (called GCS). To find a feasible venue si for each group Pi ∈ GCS,
we utilize the method proposed in [12], which aims to find the aggregate nearest
neighbor for a given query point set in spatial databases. We take the group-
venue pattern Xi = (Pi, si) as a candidate solution. Finally, the group-venue
pattern with the minimum distance is returned as the result.

394 Y. Ma et al.

The methods proposed in [12] to address the aggregate nearest neighbor
query are based on a spatial access method, R-tree [5]. In order to index social
relations in LBSNs, a new concept, core bounding rectangles (CBRs), has been
proposed in [8,28]. Based on this concept, SaR-tree structure [28] and enhanced
SaR-tree [8] are proposed to facilitate social relations processing. But they both
relies on inputs of corresponding geo-social group queries, which are unsuitable
for our PGSG queries. In this paper, we utilize the R-tree in all our proposed
algorithms to speed up spatial distance computation.

3.2 Group-Venue Pattern Search

Apparently, the baseline algorithm is time-consuming and impractical. It is inef-
ficient to enumerate all c-core groups including the query user with size h, since
most of these groups are not the final result. Besides, it is expensive and time
consuming to find a feasible venue for each above enumerated group. Thus, we
propose a novel search algorithm, called group-venue pattern search (GVPS).

The intuition of the GVPS algorithm can be present as follows. GVPS
expands a user group from the query user by a breadth search strategy. With the
group expansion processing, GVPS reduces the venue search space by a derived
lower bound and upper bound of spatial distance. And then, a user group and
a venue can be retrieved simultaneously by a novel group-venue pattern search
method.

Group Expansion. When a PGSG query q = 〈uq, h, c〉 is initiated, we firstly
adopt a core decomposition algorithm to obtain the c-core Gc. And then, we
take the query user uq as a center to do breadth search in Gc. The size of a user
group increases with the breadth expansion. In order to accelerate processing, we
select multiple vertices in one breadth expansion. In each expansion, we select
the vertex with maximum degree in the current group as the new center for
next expansion. When the size of a group Pi reaches h, we check whether the
induced subgraph G[Pi] is a connected c-core component. If yes, Pi must be a
connected c-core component and contain the query user, since we start to expand
a user group from the query user and select the neighbors of the center in each
expansion.

Take the social graph G in Fig. 1 as an example. Assume a PGSG query
q = 〈u11, 4, 2〉. Figure 2 shows an example of group expansion. Figure 2(a) shows
the 2-core of G. We start to do breadth search from the query user u11. We select
at least 2 neighbors of u11. The expansions from v11 are shown in Fig. 2(b). As
the size constraint h is 4 in q, b1 has already finished expansion. In a user group
(such as b2) needed to be extended, we selected the node with maximum degree
as new center to do next group expansion. The size of b2 is 3, we can add only
one user into the current user group. The user groups extended from b2 are
shown in Fig. 2(c).

Group-Venue Pattern Search. Before illustrating the produce of group-
venue pattern search method, we derive the upper bound and the lower bound
of the distance of a group-venue pattern X. Note that X consists of a user group

Personalized Geo-Social Group Queries in Location-Based Social Networks 395

Fig. 2. Example of group expansion.

and a venue. According to the problem definition of the PGSG query, one of the
query constraint is that the returned user group in a pattern should include the
query user. Thus, in the rest of this section, discussions are restricted to a user
group including the query user, unless otherwise stated.

Theorem 1. Given a user group P including the query user uq, and a venue s,
the upper bound of the maximum distance of a user in P to s is dist(uq, s) +
maxui∈P dist(ui, uq).

Proof. Suppose the maximum distance of any user in P to s is the distance of
a user u0 to s, denoted as dist(u0, s). As the user group P includes the query
user uq, we have dist(u0, s) < dist(uq, s)+dist(u0, uq) by the triangle inequality.
This theorem is proved, since dist(u0, uq) ≤ maxui∈P dist(ui, uq).

Theorem 2. Given a user group P including the query user uq, and a venue s,
the lower bound of the maximum distance of a user in P to s, Dist(P, s), is
max{dist(uq, s),maxui∈P dist(ui, uq) − dist(uq, s)}.
Proof. As the user group P includes the query user uq, the maximum dis-
tance of a user in P to a venue s is at least the distance of uq to s, i.e.,
dist(uq, s) ≤ Dist(P, s). Suppose the maximum distance of any user in P
to s is the distance of a user u0 to s, by the triangle inequality, we have
|dist(uq, s) − dist(uq, u0)| < Dist(P, s). If dist(uq, s) ≥ dist(uq, u0), we have
|dist(uq, s)−dist(uq, u0)| < dist(uq, s) < Dist(P, s). If dist(uq, s) < dist(uq, u0),
we have dist(uq, u0)−dist(uq, s) < Dist(P, s). And than, maxui∈P dist(ui, uq)−
dist(uq, s)} < Dist(P, s) can be derived by the triangle inequality. Thus, we
take max{dist(uq, s),maxui∈P dist(ui, uq) − dist(uq, s)} as the lower bound of
Dist(P, s).

Now, the GVPS algorithm is ready to be presented. GVPS maintains the
current minimum distance of the current optimal group-venue pattern X∗. By
leveraging the lower bound (denoted as LDist(P, s)) and the upper bound
(denoted as UDist(P, s)) of the distance of a group-venue pattern X = (P, s),
the search space can be reduced. In order to retrieve the user group and the

396 Y. Ma et al.

Algorithm 1. Group-Venue Pattern Search (GVPS)
Input: A graph G = (V,E), S = {s1, s2, · · · , sm}, a PGSG query q = 〈uq, h, c〉
Output: A group-venue pattern X∗ = (P ∗, s∗)

1 Initialize X∗ ← ∅;
2 Initialize Dist(X∗) ← ∞;
3 Initialize priority queue UQ ← uq, DQ ← ∅, DV ← ∅;
4 Find the c-core Gc of G;
5 while UQ �= ∅ do
6 Pi ← UQ.dequeue();
7 if |Pi| < h then
8 Select the node v ∈ Pi with highest degree and v �∈ DV ;
9 DV ← DV ∪ v;

10 for each set V p ⊆ N(v)/Pi, c ≤ |V p| + dG[Pi](v) and |V p| + |Pi| ≤ h do
11 induce a subgraph Gi of Pi ∪ V p in Gc;
12 if Gi �⊂ UQ ∪ DQ then
13 UQ ← UQ ∪ Gi;

14 if |Pi| = h and Pi �⊂ DQ then
15 DQ ← DQ ∪ Pi;
16 if {v ∈ Pi : c > |degG[Pi](v)|} �= ∅ then
17 Continue;

18 Generate a venue candidate set Si for Pi;
19 Dist(X∗) ← Dist(Pi, s0);
20 for each venue sj ∈ Si do
21 if LDist(Pi, sj) ≥ Dist(X∗) then
22 Continue;

23 if UDist(Pi, sj) < Dist(X∗) or Dist(Pi, sj) < Dist(X∗) then
24 Update P ∗ ← Pi, s

∗ ← sj ;

25 Return X∗;

venue of X∗ simultaneously, GVPS retrieves the venues along with the user
group expansion processing. That is, when the size of a user group Pi reaches
h, GVPS utilizes the lower bound to prune venues. GVPS prunes the pattern
Xi = (Pi, sj), if LDist(Xi) ≥ Dist(X∗). On the other hand, GVPS leverages the
upper bound to check whether the group can emerge in the final query result.
If UDist(Xi) < Dist(X∗), GVPS updates the current optimal solution with-
out more distance computation. Let s0 be the nearest venue of uq. Instead of
taking the whole venues in a LBSN as the search space for a user group Pi, we
generate a venue candidate set Si. That is, we adopt Dist(Pi, s0) to do a range
query at each user in Pi. The venues in these query ranges are regarded as venue
candidates. By this way, we can largely reduce the venue search space.

Algorithm 1 details the procedure of the GVPS algorithm. At the begin-
ning, GVPS initially sets the final optimal group-venue pattern X∗ to ∅ and its
distance Dist(X∗) to ∞ (lines 1–2). GVPS maintains two priority queues UQ

Personalized Geo-Social Group Queries in Location-Based Social Networks 397

and DQ. UQ stores user groups that have not been extended. DQ manages the
user groups that have already been extended. Besides, the vertices in G are stored
in DV if they are impossible to be included in any other user groups except these
already lie in UQ and DQ. GVPS exploits c-core to prune users in the origi-
nal social graph (line 4). And then, GVPS leverages the above-mentioned group
expansion to search user groups (lines 6–13).

When the size of a user group Pi reaches h, GVPS checks whether the induced
subgraph of Pi is a connected c-core component (lines 14–17). If yes, GVPS
generates a venue candidate set Si for Pi and update Dist(X∗) (lines 18–19).
Here, we only update the value of Dist(X∗) rather than X∗, since an earlier given
Dist(X∗) can bring a better pruning effectiveness. And then, GVPS utilizes the
lower bound to reduce the search space (lines 21–22). That is, a group-venue
pattern (Pi, sj) can be pruned directly, if LDist(Pi, sj) ≥ Dist(X∗). Next, the
upper bound can be used to speed up the update of current optimal solution
(lines 23–24). Final, the optimal group-venue pattern X∗ is returned as the result
of the PGSG query.

The following example illustrates how Algorithm1 works.

Example 3. Continue to use Fig. 1 as an example. Assume a PGSG query
q = 〈u11, 4, 2〉. GVPS starts to do group expansions from u11 (as shown in Fig. 2).
When the size of a user group P reaches 4 (suppose P = {u5, u9, u10, u11}),
GVPS executes multiple range queries to generate a venue candidate set. Refer-
ring to Fig. 1 again, s1 is the nearest venue of u11. GVPS utilizes Dist(P, s1)
(i.e., dist(u9, s1)) to do range query at each user in P . We can see that s2 does
not lie in any query range. Thus s2 can pruned directly about P . Finally, the
group-venue pattern (P, s3) is returned as the optimal result of q.

Complexity Analysis. According to Algorithm1, we can analyze the time
complexity of GVPS algorithm from the following three aspects. Let a given
graph G = (V,E) and a PGSG query q = 〈uq, h, c〉. Firstly, the time com-
plexity of core decomposition O(|V | + |E|) by following the existing work [2].
Secondly, the time complexity of group expansion is O(d̄h · h2), where d̄ is the
average degree of the vetices in G, O(d̄h) is the time complexity of packing a
user group with size h from uq, and O(h2) is the time of estimating whether
the induced subgraph of a user group with size h constitutes a c-core. Thirdly,
the time complexity of once group-venue pattern search is O(h2 · |S|), where |S|
is the number of venues in a LBSN. Overall the time complexity of the GVPS
algorithm is O(|V | + |E| + d̄h · (h2 + h2 · |S|)).

4 TkPGSG Query Processing

As mentioned above, we extend the PGSG query to the top-k personalized geo-
social group (TkPGSG) query. Instead of finding the optimal group-venue pat-
tern defined in the PGSG query, the TkPGSG query is to return k group-venue
patterns X = {X1, · · · ,Xk}. Although the parameter k is a small positive integer,
it is time-consuming and inefficient to invoke multiple Algorithm1 for TkPGSG

398 Y. Ma et al.

query processing. Thus, we propose an advanced search algorithm (top-k group-
venue patterns hunter, TkPH) to tackle the TkPGSG query.

The TkPH algorithm is designed based on the GVPS algorithm presented in
Subsect. 3.2. Thus, we only elaborate the group-venue pattern search phase, and
the group expansion is the same with the GVPS algorithm.

TkPH maintains X to store the current best k group-venue patterns. In X,
the patterns are sorted in ascending order of their group-venue distance. Given
a user group P including the query user uq, and a venue s, let Dist(X∗

k) be the
distance of the k-th group-venue pattern, the group-venue pattern (P, s) can be
pruned directly if LDist(P, s) ≥ Dist(X∗

k). On the other hand, the group-venue
pattern (P, s) can be updated into the X, if UDist(P, s) < Dist(X∗

k). That is,
we update X by replacing the k-th group-venue pattern with (P, s).

Once a user group Pi includes uq with size h, and G[Pi] is a connected
c-core component, TkPH retrieves k nearest venues for Pi to constitute k group-
venue patterns. By this way, an initial solution can be obtained quickly. An
earlier viable solution can bring greater pruning performance. Consequently, the
distance of the k-th group-venue pattern can be leveraged to reduce the search
space.

The following example illustrates how this algorithm works. As the group
expansion phase of TkPH algorithm is similar to that in the GVPS algorithm,
thus we simply show how TkPH keeps tracking of the current best k results.

Fig. 3. An example of the TkPH algorithm. (Color figure online)

Example 4. Take the social network in Fig. 1 as an example. Assume a TkPGSG
query q = 〈u11, 4, 2, 2〉. The group expansion procedure is shown in Fig. 2.
As shown in Fig. 3(a), suppose P1 = {u5, u9, u10, u11} is the first user group
that satisfies the size constraint and social core constraint, we take X =
{(P1, s3), (P1, s1)} as an initial solution. And then, we utilize Dist(P1, s1) to
reduce the search space. As shown in Fig. 3(a), (b), and (c), we can find three
group-venue patterns (consisting of the grey user nodes and the red venue
in each figure). Finally, X = {X1,X2} is returned as the result of q, since
Dist(X3) > Dist(X2).

Personalized Geo-Social Group Queries in Location-Based Social Networks 399

5 Experiments

In this section, we experimentally study the performance of the proposed
approaches. We perform a series of sensitivity tests to study the impact of query
parameters with real-world datasets. In the following, we first present the exper-
imental settings, and then analyze the experimental results.

5.1 Experimental Settings

Algorithms. We implement four various algorithms: BL, BL+GE, GVPS, and
TkPH. Specifically, BL denotes the baseline algorithm presented in Subsect. 3.1.
Note that, to find all the connected c-core components with size h, BL utilizes
brute-force strategy to do user group expansion. Then, BL adopts the methods
proposed in [12] to find a optimal venue for each extracted user group. BL+GE
denotes the baseline algorithm with the group expansion strategy presented in
Subsect. 3.2. GVPS denotes the group-venue search algorithm presented in Sub-
sect. 3.2. TkPH is the top-k group-venue patterns hunter algorithm presented in
Sect. 4. All algorithms are implemented in C++. All experiments are conducted
on a computer with 3.20 GHz Intel i5-6500 CPU and 16 GB memory.

Dataset. We use three real world datasets, i.e., Gowalla, Brightkite, and
Foursquare. Table 1 gives the details. The first two datasets are downloaded
from (http://snap.stanford.edu/data/index.html). We crawled the Foursquare
datasets via Foursquare API1 from November 2014 to January 2016. This dataset
has 76,503 users and 1,531,357 social edges. We obtained 299,995 venues located
in Singapore.

Table 1. Some statistics of datasets

Datasets Gowalla Brightkite Foursquare

of venues 1,280,969 772,789 299,995

of users 196,591 58,228 76,503

of social edges 950,327 214,078 1,531,357

5.2 Experimental Results

Efficiency. The objective of this set of experiments is to study the efficiency of
the proposed algorithms with different real datasets.

We first test the efficiency of BL, BL+GE, and GVPS algorithms to address
the PGSG query. Note that the PGSG query can be model as 〈uq, h, c〉, where uq

is the query user, h is the user group size constraint, and c is the core number. We
set the value of size constraint h to be 8, c to be 3, and the degree of query user
to be 9. Figure 4(a) shows the runtime (average time of 50 queries) of the three
1 https://developer.foursquare.com/.

http://snap.stanford.edu/data/index.html
https://developer.foursquare.com/

400 Y. Ma et al.

Fig. 4. Efficiency

Fig. 5. Scalability

algorithms on the three real datasets. It can be seen that the BL+GE algorithm
runs faster that the BL algorithm, which indicates that the group expansion
strategy presented in Subsect. 3.2 can efficiently reduce the search space. The
runtime is related to the number of venues and the size of social networks. The
reason is that our aim is to find a group-venue pattern. The group extraction
processing relies on the size of social network and the venue search depends on
the number of venues.

To study the efficiency of TkPH algorithm to tackle the TkPGSG query, we
construct a comparative algorithm by invoking multiple the GVPS algorithm,
denoted as Mul-GVPS. With the same parameter setting of h, c, and degree of uq

in Fig. 4(a), the experimental results of the TkPH algorithm and the Mul-GVPS
algorithm on Gowalla datasets are shown in Fig. 4(b). We observe that the TkPH
algorithm runs faster than the Mul-GVPS algorithm. The reason is that TkPH
algorithm keeps track of the current best k results rather than tracking only
the current best result. The TkPH algorithm is proposed based on the GVPS
algorithm. In the following experiments, we just show the performance of the
algorithms on tackling the PGSG query.

Personalized Geo-Social Group Queries in Location-Based Social Networks 401

Scalability. We study the effect of the scale of graph (vertex number) and the
number of venues on the performance of our proposed algorithms, which can
evaluate the scalability of our proposed algorithms.

By extracting the subgraph of the social graph in Gowalla datasets, we obtain
4 datasets containing 5,000, 10,000, 15,000, and 20,000 users, respectively. The
corresponding induced graphs can be obtained. Figure 5(a) shows the runtime of
the proposed algorithms (the size constraint h is 6, c = 2, and the degree of the
query user is 6) with the number of users increasing. Analogously, by extracting
the subset of the venues in Gowalla datasets, we obtain 4 datasets containing
20K, 40K, 60K, and 80K venues, respectively. Figure 5(b) shows the runtime of
the proposed algorithms (the size constraint h is 6, c = 2, and the degree of the
query user is 6) with the number of venues increasing. It can be seen that the
relative ratio of GVPS algorithm changes only slightly, and the other two are
opposite. Thus, the scalability of GVPS algorithm outperforms the other two
algorithms.

Varying the Query Parameters. In this set of experiments, we study the
effect of the three parameters on the performance of our proposed algorithms.
Particularly, we regulate uq for fixed coreness and size constraint pairs to esti-
mate the effect of the degree of query user. Similarly, we evaluate the impact of
core number c (or size constraint h) by fixing the other two parameters.

Fig. 6. Varying size constraint h

Varying h. In this set of experiments, we study the effect of h in the PGSG
query. Let c = 3, we alter the size constraint h from 10 to 50. We regard the
average runtime of 50 queries as the performance measure of our proposed algo-
rithms, where the degree of query users is 9. Figure 6 shows the results on the
three datasets.

For a fixed coreness and degree of query user, the three algorithms run slower
with the size constraint h increasing. The reason is that a query with a larger
size constraint h is more likely to have a greater search space, that is, all the
algorithms are required to settle more group expansions.

Varying c. In this set of experiments, we study the effect of c in the PGSG query.
Let the size constraint h = 20, we vary c from 2 to 10. We regard the average

402 Y. Ma et al.

Fig. 7. Varying c

runtime of 50 queries as the performance measure of our proposed algorithms,
where the degree of query users is 9. The results on the three real datasets is
shown in Fig. 7. The three algorithms run faster as the coreness c increases. The
reason is that a query with a larger coreness c is more likely to have a stronger
social constraint, which indicates that the query has fewer group expansions to
process.

Varying the Query User (Degree). In this set of experiments, we study the
effect of the degree with respect to the query user. Let the size constraint h = 20
and c = 4, we vary the query users with different degree from 10 to 50. Figure 8
shows the running time of the three algorithms over the three real datasets. For a
fixed size constraint h and core constraint c pair, the three algorithms run slower
with the degree of query user increasing. The reason is that a larger degree of
query user leads to a larger search space.

Fig. 8. Varying query user (degree)

6 Related Works

Our work is related to three main research areas: (1) group recommendation,
(2) activity-partner recommendations, and (3) geo-social group query.

Group Recommendations. A group recommendation system suggests items
to a group of users engaged in a group activity. By taking the different preferences
of different group members into consideration, most of the studies on group

Personalized Geo-Social Group Queries in Location-Based Social Networks 403

recommendations aims to recommend items for a given user group [1,10,13,14,
24,26]. Whereas, in this paper, we focus on retrieving a user group rather than
research on a given user group.

Activity-Partner Recommendations. Tu et al. [21] propose and study the
problem of recommending activity partners to Web uses for activity items sug-
gested to them. Besides, they study the use of partner factor for improving activ-
ity recommendation. She et al. [16,17] propose a novel problem, utility-aware
social event-participant planning (USEP), that provides personalized event plan-
ning for each participant. By taking the minimum-participant requirement con-
straint for each evnet, Cheng et al. [3] formalize the global event planning with
constraints (GEPC) problem, and its incremental variant. Our work is different
from this research area. Our work is not only to find a group of users (partners),
but also to find a venue (activity item), which yields specified social constraint
and spatial constraint in LBSNs.

Geo-Social Query Processing. With the increasing prevalence of location-
based services, geo-social queries considering both spatial and social relations are
attracting increasing attention [4,6–9,11,22,23,25,28]. The most related work to
ours is [23], which study the Socio-Spatial Group Query (SSGQ): given a query
venue s, the SSGQ returns a group users, such that (a) each user in the group
is socially connected with at least a number of other members, and (b) the sum
of distances of all members in the group to s is minimized. Our work is different
from [23] in that, (a) the PGSG query aims to find both a venue and a user
group simultaneously, (b) the user group is a connected c-core component with
a specified size, and (c) the maximum distance of all the users in the group to
the venue is minimized.

7 Conclusions

In this paper, we propose a new type of geo-social group query to find both a
venue and a user group. We formally define the problem as Personalized Geo-
Social Group (PGSG) query, which aims to find a group-venue pattern (con-
sisting of a venue and a group of users with size h), where each user in the
group is socially connected with at least c other users in the group and the
maximum distance of all the users in the group to the venue is minimized. We
study the problem of PGSG query and propose a novel search algorithm to
find the optimal user group and venue simultaneously. Moreover, we extend the
PGSG query to top-k personalized geo-social group (TkPGSG) query. Instead
of finding the optimal solution in PGSG query, the TkPGSG query is to return
multiple feasibility solutions to guarantee the diversity. We propose an advanced
search algorithm TkPH to address the TkPGSG query. Extensive experimental
results demonstrate the effectiveness and efficiency of the proposed approaches.
A direction for future work is to investigate the issue of social trust and how to
integrate social trust into geo-social group query.

404 Y. Ma et al.

Acknowledgments. This research is partially funded by the National Natural Sci-
ence Foundation of China (No. 61572119, 61622202, U1401256, 61732003, 61729201,
61702086) and the Fundamental Research Funds for the Central Universities (No.
N150402005).

References

1. Amer-Yahia, S., Roy, S.B., Chawlat, A., Das, G., Yu, C.: Group recommendation:
semantics and efficiency. Proc. VLDB Endow. 2(1), 754–765 (2009)

2. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of net-
works. Comput. Sci. 1(6), 34–37 (2003)

3. Cheng, Y., Yuan, Y., Chen, L., Giraud-Carrier, C., Wang, G.: Complex event-
participant planning and its incremental variant. In: 2017 IEEE 33rd International
Conference on Data Engineering, ICDE, pp. 859–870. IEEE (2017)

4. Fang, Y., Cheng, R., Li, X., Luo, S., Hu, J.: Effective community search over large
spatial graphs. Proc. VLDB Endow. 10(6), 709–720 (2017)

5. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching, vol. 14.
ACM, New York (1984)

6. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 467–476. ACM (2009)

7. Li, C.T., Shan, M.K.: Team formation for generalized tasks in expertise social
networks. In: IEEE Second International Conference on Social Computing, pp.
9–16 (2010)

8. Li, Y., Chen, R., Xu, J., Huang, Q., Hu, H., Choi, B.: Geo-social k-cover group
queries for collaborative spatial computing. IEEE Trans. Knowl. Data Eng. 27(10),
2729–2742 (2015)

9. Li, Y., Wu, D., Xu, J., Choi, B., Su, W.: Spatial-aware interest group queries in
location-based social networks. Data Knowl. Eng. 92, 20–38 (2014)

10. Li, Y.M., Chou, C.L., Lin, L.F.: A social recommender mechanism for location-
based group commerce. Inf. Sci. 274, 125–142 (2014)

11. Liu, W., Sun, W., Chen, C., Huang, Y., Jing, Y., Chen, K.: Circle of friend query
in geo-social networks. In: Lee, S., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R.,
Yoo, J. (eds.) DASFAA 2012. LNCS, vol. 7239, pp. 126–137. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29035-0 9

12. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor
queries in spatial databases. ACM Trans. Database Syst. (TODS) 30(2), 529–576
(2005)

13. Quijano-Sanchez, L., Recio-Garcia, J.A., Diaz-Agudo, B., Jimenez-Diaz, G.: Social
factors in group recommender systems. ACM Trans. Intell. Syst. Technol. (TIST)
4(1), 8 (2013)

14. Quijano-Sanchez, L., Sauer, C., Recio-Garcia, J.A., Diaz-Agudo, B.: Make it per-
sonal: a social explanation system applied to group recommendations. Expert Syst.
Appl. 76, 36–48 (2017)

15. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287
(1983)

16. She, J., Tong, Y., Chen, L.: Utility-aware social event-participant planning. In:
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, pp. 1629–1643. ACM (2015)

https://doi.org/10.1007/978-3-642-29035-0_9

Personalized Geo-Social Group Queries in Location-Based Social Networks 405

17. She, J., Tong, Y., Chen, L., Cao, C.C.: Conflict-aware event-participant arrange-
ment and its variant for online setting. IEEE Trans. Knowl. Data Eng. 28(9),
2281–2295 (2016)

18. Tong, Y., Chen, L., Zhou, Z., Jagadish, H.V., Shou, L., Lv, W.: SLADE: a smart
large-scale task decomposer in crowdsourcing. IEEE Trans. Knowl. Data Eng.
(2018). https://doi.org/10.1109/TKDE.2018.2797962

19. Tong, Y., She, J., Ding, B., Wang, L., Chen, L.: Online mobile micro-task allocation
in spatial crowdsourcing. In: 2016 IEEE 32nd International Conference on Data
Engineering, ICDE, pp. 49–60. IEEE (2016)

20. Tong, Y., Wang, L., Zhou, Z., Ding, B., Chen, L., Ye, J., Xu, K.: Flexible online
task assignment in real-time spatial data. Proc. VLDB Endow. 10(11), 1334–1345
(2017)

21. Tu, W., Cheung, D.W., Mamoulis, N., Yang, M., Lu, Z.: Activity recommendation
with partners. ACM Trans. Web (TWEB) 12(1), 4 (2017)

22. Yang, D.N., Chen, Y.L., Lee, W.C., Chen, M.S.: On social-temporal group query
with acquaintance constraint. Proc. VLDB Endow. 4(6), 397–408 (2011)

23. Yang, D.N., Shen, C.Y., Lee, W.C., Chen, M.S.: On socio-spatial group query for
location-based social networks. In: ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 949–957 (2012)

24. Yuan, Q., Cong, G., Lin, C.Y.: COM: a generative model for group recommen-
dation. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 163–172. ACM (2014)

25. Yuan, Y., Lian, X., Chen, L., Sun, Y., Wang, G.: RSkNN: kNN search on road
networks by incorporating social influence. IEEE Trans. Knowl. Data Eng. 28(6),
1575–1588 (2016)

26. Zhang, C., Gartrell, M., Minka, T., Zaykov, Y., Guiver, J., et al.: GroupBox: a
generative model for group recommendation (2015)

27. Zheng, Y., Zhang, L., Ma, Z., Xie, X., Ma, W.Y.: Recommending friends and
locations based on individual location history. Acm Trans. Web 5(1), 1–44 (2011)

28. Zhu, Q., Hu, H., Xu, C., Xu, J., Lee, W.C.: Geo-social group queries with minimum
acquaintance constraints. VLDB J. 26(5), 709–727 (2017)

https://doi.org/10.1109/TKDE.2018.2797962

	Personalized Geo-Social Group Queries in Location-Based Social Networks
	1 Introduction
	2 Problem Formulation
	3 PGSG Query Processing
	3.1 Baseline Algorithm
	3.2 Group-Venue Pattern Search

	4 TkPGSG Query Processing
	5 Experiments
	5.1 Experimental Settings
	5.2 Experimental Results

	6 Related Works
	7 Conclusions
	References

