®

Check for
updates

A Privacy-Preserving Framework
for Subgraph Pattern Matching in Cloud

Jiuru Gao!, Jiajie Xu!, Guanfeng Liu', Wei Chen', Hongzhi Yin?,
and Lei Zhao!(®)

1 School of Computer Science and Technology, Soochow University, Suzhou, China
jrgao@stu.suda.edu.cn, {xujj,gfliu,zhaol}@suda.edu.cn, wchzhg@gmail.com
2 School of Information Technology and Electrical Engineering,

The University of Queensland, Brisbane, Australia
db.hongzhi@gmail.com

Abstract. The growing popularity of storing large data graphs in cloud
has inspired the emergence of subgraph pattern matching on a remote
cloud, which is usually defined in terms of subgraph isomorphism. How-
ever, it is an NP-complete problem and too strict to find useful matches
in certain applications. In addition, there exists another important con-
cern, i.e., how to protect the privacy of data graphs in subgraph pattern
matching without undermining matching results. To tackle these prob-
lems, we propose a novel framework to achieve the privacy-preserving
subgraph pattern matching via strong simulation in cloud. Firstly, we
develop a k-automorphism model based method to protect structural
privacy in data graphs. Additionally, we use a cost-model based label
generalization method to protect label privacy in both data graphs and
pattern graphs. Owing to the symmetry in a k-automorphic graph, the
subgraph pattern matching can be answered using the outsourced graph,
which is only a subset of a k-automorphic graph. The efficiency of sub-
graph pattern matching can be greatly improved by this way. Extensive
experiments on real-world datasets demonstrate the high efficiency and
effectiveness of our framework.

Keywords: Privacy-preserving - Subgraph pattern matching
Strong simulation - k-automorphism - Label generalization

1 Introduction

A graph can be a powerful model tool to represent objects and their relation-
ships. The increasing number of applications that take use of graph data in
recent years, such as disease transmission [1,2], communication patterns [3], and
social networks [4-7], has promoted the development of graph data management,
especially subgraph pattern matching. Typically, subgraph pattern matching is
defined in terms of subgraph isomorphism [8,9], which is an NP-complete prob-
lem [10]. It is often too strict to catch sensitive matches, as it requires matches to
have same topology with data graphs. The problem will hinder its applicability

© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10827, pp. 307-322, 2018.
https://doi.org/10.1007/978-3-319-91452-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91452-7_20&domain=pdf

308 J. Gao et al.

in some certain applications like social networks and crime detection. Our work
focus on subgraph pattern matching via strong simulation [11]. Strong simula-
tion is a revision of graph simulation, which imposes more flexible constraints
on topology in data graphs, and it retains cubic-time complexity.

Example 1. Consider a real-life social network shown in Fig. 1. Fach vertez in
graph G represents an entity, such as a human resources (HR;) person, a devel-
opment manager (DM;), and a project manager (PM;). Fach directed edge in G
indicates one recommendation relationship, e.g., edge HR; — PM; represents
HRy recommends PM;. Each entity has some attributes like “name”, “gender”,
“state”, and “school”.

A headhunter wants to employ a DM to help a PM. A qualified candidate
must live in Illinois and at the same time, he must recommend the PM and
be recommended by the HR and PM. The headhunter issues a subgraph pattern
matching of Q over G, as shown in Fig. 1. When subgraph isomorphism is taken,
there is no match can be found, since there is no subgraph that has the same topol-
ogy with the pattern Q in graph G. However, when it comes to strong simulation,
we can find the subgraph Gy is an appropriate match to pattern Q, since there
exists a path (DMy, PMy, PMy) from DM; to PM;. Obviously, compared with
the subgraph isomorphism that imposes a very strict constraint on the topology
of the matched graphs, strong simulation provides a more flexible constraint.

<N Alice>

<Gender: Female>
<State: Califomia>

<Name: Tom>
<Gender: Male>
<School: Cornel>

<Name: Millie>
<Gender: Female>
<School: Harvard>

<Name: Lucy>
<Gender: Female>
<State: Hlinois>

<Gender: Male>
<State: Illinois>

\\ <Name: Adrian> ‘
|

|

I

<Name: Ruby>
<Gender: Female>
<School: Harvard>

<Name: Ablett>
<Gender: Male>
<School: Columbia>

(oAt Y—e

DM)%

<State: [llinois> <Name: Jack>
<Gender: Male>

<School: Columbia>

<Name: Daniel>
<Gender: Male>
<State: Illinois>

<Name: David=>
<Gender: Male>
<State: Washington>

<Name: Rose>
<Gender: Female>
<School: Harvard>

(a) Pattern Q (b) Graph G

Fig. 1. An original data graph G and pattern graph Q.

Meanwhile, the popularity of storing the large number of data graphs in cloud
to save storage brings another inevitable challenge, i.e., how to process users’
queries without compromising sensitive information in cloud [12]. In many real
scenarios, we can not make sure that the cloud platform is completely credible,
as many adversaries may attack the cloud and cause serious privacy leakage.
The main privacy leakage problem is the “identity disclosure” problem [13,14].
A naive anonymous approach is to remove all identifiable personal information
before uploading the data graph to cloud. However, even though the data graph

A Privacy-Preserving Framework for Subgraph Pattern Matching in Cloud 309

is uploaded without any sensitive information, it is still possible for an adversary
to locate the target through structural attacks [13,15,16]. To protect privacy of
data graphs from multiple structural attacks, many methods have been proposed
[17-19]. One typical approach is k-automorphism, which uses the symmetry of
the published data graph [19]. For each vertex v in a k-automorphic graph,
there are at least k — 1 structurally equivalent counterparts. An adversary can
not distinguish v from the other k¥ — 1 symmetric vertices, because there is no
structural difference between them.

Consider the Example1 in Fig. 1, uploading the original graph G to cloud
directly will cause privacy leakage. To address the problem, we propose the
following solution. On one hand, we propose a k-automorphism model based
method to protect structural privacy of data graphs. Firstly, we transform the
original graph G to an “undirected” graph G*. During the process, if an edge
u — v is unidirectional, we will add an edge v — w. For example, we add an
edge PMs — DM, for the edge DM, — PM, in Fig. 1. Then, we can use the k-
automorphism model to generate graph G*, where k = 2 in Fig. 2. On the other
hand, to protect the label privacy in both data graphs and pattern graphs, we
apply a cost-model based label generalization technique [12], where each vertex
label in G* and @Q is replaced by a label group. The mapping between label
groups and vertex labels are given in the Label Correspondence Table (LCT),
presented in Fig. 2(a).

<Occupation: A> <Occupation: A>

<Gender: B>
<State: C>

<Gender: B>
<State: C>

<0 ion: A>
<Gender: B>
<State: C>

<O A>
<Gender: B>
<State: C>

=0« A
<Gender: B>
<School: D>

A HR, PM, DM °
B Female, Male <Occupation: A>
. California, Illinois, <Gender: B>
¢ : <School: D>
Washington

Harvard, Conell,
Columbia

<Gender: B>
<School: D>

Labels

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<School: D>

(a) Label Correspondence !

. (c) Anonymous
Table (LCT) (b) Graph G Pattern Q°

Fig. 2. The k-automorphic graph G* and anonymous pattern Q°.

However, the solution suffers from the following limitation. During the gen-
eration of G* and GF, it may generate a large number of noise edges, which
will result in more expensive storage cost and much larger communication over-
head. Thus, we upload the outsourced graph G° (The definition of G is given
in Subsect. 4.3), which is only a subset of G, to cloud. Next, the cloud exe-
cutes subgraph pattern matching via strong simulation of Q° over G° to obtain
r(Q°, GY), i.e., subgraph matches of Q° over G°, and transmits it to the client
side. On the basis of k-automorphic functions Fy, (i = 1,2,...,k — 1), client
can firstly compute 7(Q°, G*) according to 7(Q°, G°). Then, it filters out false

310 J. Gao et al.

positives based on the original data graph G and pattern @ to derive 7(Q, G).
Note that we assume the client is the data owner who has access to the original
graph G for the filtering step.

Contributions. The main contributions of our work are summarized as follows:

— To the best of our knowledge, we are the first to support privacy-preserving
subgraph pattern matching via strong simulation in cloud.

— We re-design a cost-model based label generalization method to select effec-
tive vertex label combinations for anonymizing labels in both data graphs
and pattern graphs.

— We conduct extensive experiments on several real-world datasets to study the
efficiency and effectiveness of our framework.

The rest of the paper is organized as follows. Section 2 narrates the related work.
Section 3 gives the problem formulation. Section4 describes the main solution.
Section 5 reports the experimental analysis. Section 6 concludes the paper.

2 Related Work

Strong Simulation. Subgraph pattern matching is typically defined in terms
of subgraph isomorphism [8,9], an NP-complete problem [20]. It is often too
restrictive to catch sensible matches. Subgraph simulation and its various exten-
sions have been considered to lower the complexity [10,21,22]. Fan et al. [21]
proposed bounded simulation which extended simulation by allowing bounds on
the number of hops in pattern graphs and further, they extended it by incor-
porating regular expressions as edge constraints on pattern graphs [22]. Both
the two extensions of simulation are in cubic-time. Nevertheless, the lower com-
plexity comes with the price that they do not preserve the topology of data
graphs and yield false matches. Thus, Ma et al. [11] proposed the notation of
strong simulation by enforcing two additional conditions: the duality to preserve
the parent relationships and the locality to eliminate excessive matches. Strong
simulation is capable of capturing the topological structures of pattern and data
graphs, and it retains the same cubic-time complexity of former extensions of
graph simulation [10].

k-Automorphism. The question of how to publish information on graphs in
a privacy-preserving way has been of interest for a number of years [13,23-25].
Most previous work focus on protecting data privacy from structural attacks [13,
23,24]. Some of them assume that the adversary launches one type of structural
attack only [13,23,24]. Liu and Terzi [13] studied how to protect privacy in
published data from degree attack only. However, an attacker can launch multiple
types of structural attacks to identify the target in practice. Thus, Zou et al. [19]
proposed the k-automorphism framework. Each vertex in a k-automorphic graph
has at least k — 1 counterparts so that it is hard for an adversary to identify
the vertex from others. The framework can protect privacy of data graph from
multiple structural attacks and furthermore, the k-automorphism model does
not need to delete any vertices or edges from data graph, which can significantly
preserve the integrity of the data.

A Privacy-Preserving Framework for Subgraph Pattern Matching in Cloud 311

3 Problem Formulation

In this section, we first present the basic notations and definitions frequently
used in this paper. Then we give a definition of our problem.

We model a social network as an attributed graph [12], G = {V(G), E(G),
Lc(V(G))}, where V(G) is the set of vertices, E(G) is the set of edges, and
La(V(Q)) is the set of vertex labels. The notational convention of this paper
are summarized in Table 1.

Table 1. Table of notations

Notations | Descriptions

dg The diameter of pattern @

G The original data graph

G” The “undirected” graph by adding noise edges in G
G* The data graph released by k-automorphism model
G° The final outsourced graph uploaded to the cloud
a[v, dg] | The ball with center v and radius dg

Q The original pattern graph

Q° The anonymous pattern graph of @

r(Q,G) | The set of subgraph pattern matches of Q over G

dis(u,v) | The distance between vertex u and v

Definition 1 Path. A directed path p is a sequence of nodes (v1,va,...,05,),
where i € [1,n — 1] and (v;,viq1) is an edge in graph G. The number of edges in
a path p is the length of p, denoted by len(p).

Definition 2 Distance and diameter. Consider two nodes u,v in graph G,
the distance from wu to v is the length of the shortest undirected path from u
to v, denoted by dis(u,v). The diameter of the connected graph G is defined as
the longest distance of all pairs of nodes in G, denoted by dg. More specifically,
de = max{dis(u,v)} for all nodes u,v in graph G.

Definition 3 Ball [11]. For a node v in graph G, a ball is a subgraph of G,
where v is the center node and r is the radius, denoted by G[v,r]. For all nodes
u in Glu,r], the shortest distance between u and v should satisfy dis(u,v) < r
and edges must exactly appear in graph G over the same node set.

Consider the pattern graph) and data graph G in Fig. 1, we can figure out that
dg = 1 according to the Definition 2. If we take the vertex DM, as the center

node and dg as the radius, then we can obtain the ball a[DMl, dgl (ie., G1),
which is a subgraph of G based on Definition 3.

312 J. Gao et al.

Definition 4 Subgraph Pattern Match. Given a data graph G = {V(Q),
E(G), La(V(G))} and a pattern graph Q = {V/(Q), E(Q), Lo(V(Q)}, @ is a
subgraph match to G via strong simulation, if there exists a node u in @ and a
connected subgraph Gs of G such that:

(1) There exists a match relation R, and for each pair (u,v) in R:
(a) Lq(u) € Lg, (v);
(b) V(u',u) € E(Q), there exists a path (v/,...,v) in E(Gs);
(c) V(u,u') € E(Q), there exists a path (v,...,v") in E(Gy);
2) Gy is contained in the ball Glv,dg|, where dg is the diameter of pattern Q.
(2) Q Q
The set of subgraph pattern matches of @ over G via strong simulation is
denoted as r(Q, G).

Problem Definition. Given a data graph G and a pattern graph @, our work is
to find all subgraph pattern matches of @) over G via strong simulation in cloud,
without compromising the privacy of both data graph G and pattern graph Q.

4 Privacy Preserving in Cloud

4.1 Structural Privacy

To protect the structural privacy in data graphs, we develop a novel approach
based on k-automorphism model. When a directed data graph G is given, we
firstly transform it to an “undirected” graph G* by introducing noise edges.
Then we convert G* into graph G*, where G* satisfies the k-automorphic graph
model.

Definition 5 k-automorphic Graph [12]. A k-automorphic graph G* is
defined as G* = {V(G*), E(G¥)}, where V(G*) can be divided into k blocks

and each block has [V(fk)—‘ vertices.

Intuitively, for any vertex v in a k-automorphic graph G*, there are k — 1
symmetric vertices. An adversary can hardly distinguish v from its structurally
equivalent counterparts. Thus, the structural privacy in data graphs can be well
preserved. According to Definition 5, we can transform G* to a k-automorphic
graph G* as follows.

Firstly, we adopt the METIS algorithm [12,26] to partition the graph G* into

k blocks. In order to guarantee that each block has exactly [V(fk)-‘ vertices,

some noise vertices will be introduced if V/(G*) can not be divided into & blocks.
There is an efficient method to build Alignment Vertex Table (AVT) after the
partition [19]. For example, we divide the graph G* in Fig. 2(b) into two blocks
and build the corresponding AVT, which is presented in Fig. 3(a). Each row in
AVT denotes they are symmetric vertices, such as p; and pr in Fig. 2(b). Each
column in AVT contains the vertices in one block, such as (p1, p2, p3, D4, D5, D6)
in the first block of G*. According to the AVT, we define the k-automorphic
function Fy,, as shown in Fig. 3(b).

A Privacy-Preserving Framework for Subgraph Pattern Matching in Cloud 313

Fkl(p1)= P, F}(, (py)=p

b b F (p)=py Fy(py)=p,
P, Py

F,(py)=ps F,(ps)=p;
Py | Ps
Py | P F(py)=pn F(pn)=p,
Ps | P F/(,(ps):pn F}f‘(pll):ps
Ps P EL, (Pg) =Py Fkl (P1) = Ps

(a) Alignment Vertex Table (b) Automorphic Function

Fig. 3. The Alignment Vertex Table (AVT) and automorphic function.

Secondly, we perform block alignment and edge copy [19] to obtain the
k-automorphic graph G*. For example, we can obtain 2 isomorphic blocks:
Bo(p1,p2, p3,pa,p5,06) and Bi(p7,ps, po, p1o,p11,p12) by adding noise edges
(ps,p10) and (p11,p12) via block alignment in Fig.2. According to the cross-
ing edge (ps, p7) between 2 blocks, we add an edge (p1,p10) based on the edge
copy techniques.

4.2 Label Privacy

Since the k-automorphism model based method can only protect structural pri-
vacy of the original graph G, we define a cost-model based label generalization
method to protect label privacy of both data graph G and pattern graph Q.
The method considers two factors: label matching and searching space, while
estimating the number of candidates of a vertex u in Q, denoted as sim(u).
According to the definition of strong simulation [11], when a vertex v in graph
G* matches the vertex u in pattern Q°, it must firstly contain u’s label groups.
We let [V (G¥,)| and |V,(Q°, i)| denote the set of vertices with the label group i
in G* and Q° that are obtained after the label generalization respectively. Then,

we can define: V(0.0
V,(Q°, 4

ST P (i) = e 1)
ven e = i) (
P2, (i) and Pgo (i) estimate the probability of a vertex in G¥ and Q° having an
i-th label group after the label generalization, respectively. Then, the estimat-
ing number of vertices that can match vertex u in QY while considering label
matching can be defined as follows:

kg
P, (i) = a1

[V(GF)IY Pa(i) - P4o(i) (2)
=1

Next we need to consider the search space of checking whether each of u’s par-
ent vertices and child vertices can find matching vertices. We define the average
in-degree D;(G*) and average out-degree D,(G*) to represent the in-degree and
out-degree of vertex v (u’s matching vertex) respectively. Similarly, D;(Q) and

314 J. Gao et al.

D,(Q) represent the in-degree and out- degree of vertex v in Q° separately. Note
that D,(Q") = D,(Q), and D;(Q") = D;(Q). Therefore, the maximum potential
searching space of u’s first child vertex is DO(Gk)QdQ , and that of the second child
vertex is (D,(G*)—1)D,(G¥)24@~1. Thus, the total searching space of u’s child
vertices can be estimated as DO(Gk)de “(Do(GF)-1)D,(G*)%de~1...(D,(G*) —
D,(Q)4+1)D,(G*)?¥@~1, We estimate it as D, (G*F)P(@) 'DO(Gk)(de’l)DO(Q) for
simplicity, i.e., DO(Gk)DO(Q)"’@dQ_l)DG(Q). Similarly, we can define the searching
space of u’s parent vertices as Di(Gk)Di(Q)"’@dQ_l)Di(Q)
of searching space can be defined as follows:

{DO(G’“>
. {Di(Gk) in

We assume the total labels in original graph G can be divided into « groups,
each group contains 6 different labels without loss of generality. We define
(p1,P2,P3, - - -y Dap) to form a permutation of (1,2,3,...,af). According to [12],

we can obtain that P2, (i) < Z?:1 Pc(po(i—1)+;)- Thus, we can define the cost
model:

. Thus, the estimation

}DG@H(MQDD“Q)

>
i=1

}Di(Q)’F(QdQ—l)D"'(Q)

} }DO(QH(qu—l)DO(Q)

|sim(u)] = |V (G*)] {Z 2 (P, 0():| {DO(G" [Z Pl (i)
i=1

{D@-(G’C) D PP (0)
i=1

_1)Do(Q)) _1)Di(Q)
:lv(Gk)lDo(Gk)Do(QH‘@dQ 1) _Di(Gk)Dz(QH‘(QdQ 1) .

]}Di(QH(QdQ—I)D i(Q)

Z 0(7'

_1)Po(Q)) _1)Pi(Q)
S|V(Gk)|Do(Gk)Do(QH‘(2dQ 1) .Di(Gk)Dz(QH‘(de 1) .

} Do(QHDi(QMH2dg—1) "o (DH2do-1)Pi (D

}Do<Q>+Di(szdg—n’%<Q>+<de—1>Di(Q>+1

« 0 0
{Z {Z PG(Pe(i—1)+j):| {Z Pg(Po(i—1)+5)

i=1 |j=1 j=1

(4)

According to the cost model in Eq.(4), an effective permutation of

(1,2,3,...,a0), i.e., (p1,p2,D3,-..,Pan), can decrease the cost of the searching

space of pattern graph @ over G. We choose the component that concerns the
label combination to define Label Combination Cost.

« 0

6
cost(L) = > | > Pa(paii—1)+5) | * | D PaDoii—1)+5) (5)

i=1 | j=1 j=1

A Privacy-Preserving Framework for Subgraph Pattern Matching in Cloud 315

There is an iterative solution that can explore the optimal permutation to
decrease cost(L) according to Eq. (5). Firstly, a random label combination is
generated; then, we try to swap two labels in two different label groups for each
iteration. If the swap leads to smaller cost, we will keep the swap; otherwise,
we will ignore that. When there is no swap that can lead to smaller cost, the
iteration stops and we can obtain an effective permutation.

4.3 Outsourced Graph

After obtaining an anonymous k-automorphic graph G*, a basic solution is to
upload G* to cloud directly. However, G* is more larger than the original graph
G since G* contains large number of noise edges. Therefore, we only upload the
outsourced graph, which is only a subset of G¥, denoted as G°, to the cloud
platform. The definition of G is given below.

Definition 6 Outsourced Graph. An outsourced graph is defined as G° =
{V(G®), E(G®), Lo (V(G®))} where (1) V(GP) is the set of vertices in the first
block of G* (i.e. block By), denoted as V(By), together with their neighbors
within 2dg-hops, denoted as V (Naq,,); (2) E(G®) is the set of edges that connected
vertices within V (By) and vertices between V (By) and V (Naqy,); (3) Leo(V(G?))
is the set of vertex labels in graph G°.

<Occupation: A> <Occupation: A>
<Gender: B> <Gender: B>
<State: C> <State: C>
P1 p7
<Occupation: A> <Occupation: A> <Occupation: A> || <Occupation: A>
<Gender: B> <Gender: B> <Gender: B> <Gender: B>
<School: D> <State: C> <School: D> <State: C>
<Occupation: A> P2 P3 Ps Py

<Gender: B>
<School: D>

Ps Pig, Piy

<Occupation: A> || <Occupation: A> <Occupation: A> || <Occupation: A>
<Gender: B> <Gender: B> <Gender: B> <Gender: B>
<State: C> <School: D> <State: C> <School: D>

Outsourced Graph G°

Fig. 4. The outsourced graph G° for G*

According to Definition 6, we can generate an outsourced graph G° based on
the graph G* and upload it to cloud. For example, an outsourced graph G° (as
shown in Fig.4) can be generated based on graph G* in Fig. 2. Although G© is a
part of G*, we can easily recover G* based on G° together with k-automorphic
functions Fy, (i =1,2,...,k —1).

316 J. Gao et al.

4.4 Result Processing

When G° and Q° are uploaded, the cloud executes subgraph pattern matching
via strong simulation to obtain the matching result 7(Q%, G°) and transmits it
to client. There are two steps for the client side to process the result.

Firstly, the client computes r(Q°, G*) based on r(Q°, G°) together with k-
automorphic functions Fy, (i = 1,2,...,k — 1) (Lines 1-3 in Algorithm 1). For
each subgraph G, in r(Q, G°), we can compute Fy, (Gs) (i = 1,2,...,k—1) and
add them to r(Q°, G*). Then, we obtain the final 7(Q°, G¥) by adding 7(Q°, G°)
(Line 4 in Algorithm 1).

ALGORITHM 1. Result Processing Algorithm
Input: 7“(@07 GO) (The matching subgraphs of G° w.r.t. QO) and AVT
Output: 7(Q, G)

1 7(Q%GY) =0

2 fori:=1tok—1do

3 | r(@°%G*) =r(Q%G") U Fy, (r(Q% G%));

a r(Q°,G%) ==r(Q% G*)ur(Q°,G%;

5 7(Q,G):=0;

6 for each subgraph G, € r(Q°, G*) do

7 for each vertex v € V(G,) do

8 if v ¢ V(G) then

9 ‘ remove node v from Gg;

10 else if Lg(v) do not match the corresponding vertex on pattern Q then
11 L remove node v from Gg;

12 for each edge e € E(G;) do

13 if e ¢ E(G) then

14 ‘ remove edge e from Gg;

15 if G5 contains the connected component that matches to pattern Q then
16 | r(Q,G):=7(Q,G)UGs;

17 return r(Q,G)

Secondly, the client needs to filter out the false matches in 7(Q°, G¥) accord-
ing to the original data graph G and pattern @Q. For each matching subgraph
G, in r(Q°, G¥), if there exist vertices that are not contained in graph G or
whose labels cannot match those of the corresponding vertices in the original
pattern Q (We have anonymized the vertex labels in pattern @ via label gen-
eralization method), remove them from G, (Lines 7-11 in Algorithm 1). Note
that we have introduced noise edges when generating “undirected” graph G*
and k-automorphic graph G*, if G, contains edges that do not exist in the orig-
inal graph G, remove them from Gy (Lines 12-14 in Algorithm 1). When all the
noise vertices or edges and unmatch vertices are filtered out from G, we need
to consider whether Gy is a candidate. We define that if there exists a subgraph
which is a match (meets the requirements of strong simulation) to pattern @
in G, it is a right positive and we need to add it to r(Q,G) (Lines 15-16 in
Algorithm 1).

A Privacy-Preserving Framework for Subgraph Pattern Matching in Cloud 317

5 Experimental Study

5.1 Datasets and Setup

We evaluate our method in three real-world datasets in our experiments. The
statistics on these datasets are given in Table 2.

Table 2. Real-world data graphs

Dataset V] |E| Number of labels
p2p-Gnutella08 6301 20777 | 62
Brightkite-edges | 58228 | 428156 | 134
Web-NotreDame | 325729 | 1090108 | 208

p2p-Gnutella08. p2p-Gnutella08 is a sequence of snapshots of the Gnutella
peer-to-peer file sharing network collected in August 8, 2002. Nodes represent
hosts in the Gnutella network topology and edges represent connections between
the Gnutella hosts.

Brightkite-edges. Brightkite-edges is the friendship network collected using
Brightkite’s public API. Nodes correspond to users having checked-in Brightkite
and directed edges correspond to relationships among them.

Web-NotreDame. Web-NotreDame is a web graph collected in 1999. Nodes
represent pages from University of Notre Dame and directed edges represent
hyperlinks between them.

SETUP. In our experiments, we compare four methods All_Ran, All_Eff
Part_Ran, and Part_Eff, where All_Ran applies the random label generaliza-
tion method and upload G* to cloud; All_Eff applies the cost-model based label
generalization method introduced in Sect. 4.2 and upload G* to cloud; Part_Ran
applies the same label generalization approach with All_Ran but only upload
G to cloud; Part_Eff applies same label generalization method with All_Eff but
upload G° to cloud.

All methods are implemented in C++. We use a Windows 10 PC with
2.30 GHz Intel Core i5 CPU and 8 GB of memory as the client side. The cloud
server is on a virtualized Linux machine within Microsoft Azure Cloud with 4
CPU cores and 200 GB main memory.

5.2 Experiments Analysis

We evaluate the cost of our experiments from three aspects: time cost of gener-
ating G*, time cost of pattern matching, and time cost of result processing in
client.

Time Cost of Generating G*. We first evaluate the performance of the pro-
posed methods while generating graph G*. In these experiments, we define that
each label group contains two labels, i.e. the default value of 6 is 2.

318 J. Gao et al.

60 300 400
All_Ran All_Ran All_Ran
50 All_Eff All_Eff All_Eff
Part_Ran Part_Ran 300 Part_Ran
_40 Part_Eff __.200 part_Eff . part_Eff
)) 4,
ﬂé 30 g g 200
=20 = 100 -
100
e | |
0 2 3 4 5 0 2 3 4 5 0 2
K K K
(a) p2p-Gnutella08 (b) Brightkite-edges (c) Web-NotreDame

Fig. 5. Time cost in generating G*

According to Fig. 5, the cost-model based label generalization method and the
random label generalization method have similar performance while generating
graph G*, i.e., the four proposed methods have similar time cost. The reason
is that all of them need to generate graph G* firstly despite the ultimately
uploaded graph is either G* or G°. We note that the time cost on the three
datasets increases when k goes from 2 to 5. The reason is that when k increases,
more and more noise edges are added to G*, as shown in Table 3. Note that each
“undirected” edge in G* represents two directed edges. We can intuitively see
that the number of noise edges has slightly difference when using different label
generalization methods and increases with k.

Table 3. Number of noise edges in generating G*

Dataset k=2 k=3 k=4 k=5

p2p-Gnutella08 | All.Ran | 16417 x 2 |34267 x 2 | 53195 x 2 71388 x 2
Part_Ran
AlLEff 16309 x 2 | 34309 x 2 | 53195 x 2 | 71443 x 2
Part_Eff

Brightkite-edges | All_LRan | 178278 x 2|367859 x 2 |553810 x 2 | 753265 x 2
Part_Ran
AlLEff 178674 x 2368399 x 2 | 554794 x 2 | 752677 x 2
Part_Eff

Web-NotreDame | All_.Ran | 923266 x 2 | 1829324 x 2 | 2749760 x 2| 3747812 x 2
Part_Ran
AlLEff 923382 x 2| 1846433 x 2 | 2745792 x 2 | 3767437 X 2
Part_Eff

Time Cost of Pattern Matching. Then we pay attention to the time cost of
subgraph pattern matching via strong simulation in cloud. Firstly, we evaluate
the time cost of the proposed methods while varying the number of edges in
pattern @, i.e., |F(Q)|. Pattern graphs are generated by randomly extracting

A Privacy-Preserving Framework for Subgraph Pattern Matching in Cloud 319

subgraphs from the original data graph G. We use |E(Q)| to control the size
of pattern graphs. In these experiments, the value of k is set to 3. According
to Fig. 6, we can clearly find out that Part_Eff performs better than the other
three approaches on the three datasets. The one reason is that Part_Eff only
uploads G° to cloud. Note that Part_Ran and Part_Eff are only different in label
generalization. Thus, the results demonstrate the effectiveness of our cost-based
label generalization method. The matching time increases with |E(Q)| varying
from 4 to 10, since the searching space will become larger for subgraph pattern
matching when |E(Q)| increases.

140 160 200
oo Al Ran oo AllRan 180|[*® ALRan
_120{o« aerr __ 140/l o AlEr _ oo ALEf
& 100} PartRan & 120} PartRan 3 160f| —x Part | Ran
£ v Part_Eff | g v Part_Eff ¥ Part_Eff
£ 80 £ 100
[=
£ 60 £ 80 ./
S S
£ 0 £ 60
= =
20t 40
0 6 8 o 2 6 8
|E(Q)| |E(Q)] |E(Q)]
(a) p2p-Gnutella08 (b) Brightkite_edges (c) Web-NotreDame
Fig. 6. Matching time vs. |[E(Q)]|. (k = 3)
120 180 200

e—e All_Ran
94— All_Eff
> Part_Ran
v Part_Eff

e—e All_Ran
— *-0 AllERf
%140 % Part_Ran
v—v Part_Eff

[
o
<)

©
o

o—e All_Ran
— 180 ¢ All_Eff
% 160¢| % Part_Ran
v—v Part Eff
[S J——
E :

Matching Time(s)
B o
o o

N
o

0

(a) p2p-Gnutella08 (b) Brightkite-edges (c) Web-NotreDame

Fig. 7. Matching time vs. k. (|E(Q)| = 6)

Next, we evaluate the running time of subgraph pattern matching while vary-
ing the parameter k. The time cost increases with k varying from 2 to 5, as shown
in Fig. 7. This is because ’E(GO)‘ increases with k varying from 2 to 5, since more
noise edges will be inserted when k becomes larger. The method Part_Eff, which
uses the cost-model based label generalization method and uploads G° to cloud,
has better performance than other methods in all three datasets. It demonstrates
the superiority of our cost-model based generalization method as well.

Time Cost of Result Processing in Client. At last, we evaluate the perfor-
mance of four methods involving result processing in the client side while varying
parameters k and |E(Q)| respectively. According to Fig. 8, the result processing
time increases with k varying from 2 to 5 for all four methods, since client need

320 J. Gao et al.

to filter out more noise edges when k becomes larger. Note that both All_Ran
and All_Eff upload G* to cloud, the step to obtain 7(Q°, G¥) on the basis of
r(Q°, G°) together with F,(i = 1,2,...,k — 1) can be omitted. Thus, the time
cost of result processing with All_Ran and AIL_Eff are smaller than the other two
methods. However, the method Part_Eff that uses our cost-model based label
generalization method still performs better than the Part_Ran.

_.30 _.30 = .80
) o—a All_Ran 1’_128 e—e All_Ran 0 e—e All_Ran
I - AllEff e @0 All_Eff 270t oo AllEff %]
€25 £ £
= %< Part_Ran i 26f|—x Part_Ran = % Part_Ran
o ¥~ Part_Eff @ o4|| ¥ Part Eff @60t v part_Eff
£ / £ £
8 £22 850
5} I+ 53
o © 20 o
<4 <] 240
< t1s <
gr i
5 2 3 4 5 14 2 3 4 5 20 2 3 4 5
K K K
(a) p2p-Gnutella08 (b) Brightkite_edges (c) Web-NotreDame

Fig. 8. Result processing time vs. k. (|E(Q)| = 6)

30 32 80
0 e—a All_Ran | 8 3pl[e—e AllRan | w e—e All_Ran X
g 25)|e-e AlEf g g Sgl[¢® AlLER g g 70l|e-o Aner s
= *—< Part_Ran = »— Part_Ran = *— Part_Ran
o v Part_Eff 26} v Part_Eff o ¥ Part_Eff
£20 £, £ 60
g g5 g
915 g 950
o o o
& & 20 &
£10 £18 40
& g1 g
5 4 6 8 10 14 4 6 8 10 30 4 6 8 10
|E(Q)| |E(Q)| [E(Q)|
(a) p2p-Gnutella08 (b) Brightkite_edges (c) Web-NotreDame

Fig. 9. Result processing time vs. |E(Q)|. (k = 3)

The result processing time increases with |F(Q)| varying from 4 to 10, as
shown in Fig. 9. The reason lies in that the search space will become larger for the
filtering process when |E(Q)| increases. Similarly, the time cost of All_ Ran and
AlLEff are smaller than other two methods. However, the gap is small compared
to the time cost of pattern matching. As shown in Table4, Part_Eff runs faster

Table 4. Overall running time (s) (|E(Q)| = 6 and k = 3)

Dataset | p2p-Gnutella08 | Brightkite-edges | Web-NotreDame

Part_Eff |40 81.02 119.05
Part_Ran | 49.1 91.55 140.22
All_EfT 56.02 98.93 160.89

All_.Ran |70.12 114.42 181.56

A Privacy-Preserving Framework for Subgraph Pattern Matching in Cloud 321

than other three methods in terms of the overall running time. Note that the
overall running time consists of the subgraph pattern matching time in cloud
and the result processing time in the client side.

6 Conclusion

In this paper, we propose an effective framework to protect privacy of subgraph
pattern matching via strong simulation in the cloud. Without losing utility, the
framework protects structural and label privacy of both data graphs and pattern
graphs. We introduce noise edges to transform a directed graph to an “undi-
rected” graph so that the k-automorphism model based method can be applied
to protect structural privacy of the data graph. We apply a cost-model based
label generalization method to protect label privacy in both data graphs and pat-
tern graphs additionally. In our framework, we only upload the outsourced graph
to cloud so that the time cost of subgraph pattern matching can be decreased.
Experiments on three real-world datasets illustrate the superior performance of
our method.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China under Grant Nos. 61572335, 61572336, 61472263, 61402312 and
61402313, the Natural Science Foundation of Jiangsu Province of China under Grant
No. BK20151223, and Collaborative Innovation Center of Novel Software Technology
and Industrialization, Jiangsu, China.

References

1. Lu, H.-M., Chang, Y.-C.: Mining disease transmission networks from health insur-
ance claims. In: Chen, H., Zeng, D.D., Karahanna, E., Bardhan, I. (eds.) ICSH
2017. LNCS, vol. 10347, pp. 268-273. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-67964-8_26

2. Ray, B., Ghedin, E., Chunara, R.: Network inference from multimodal data: a
review of approaches from infectious disease transmission. J. Biomed. Inform. 64,
44-54 (2016)

3. Balsa, E., Pérez-Sola, C., Diaz, C.: Towards inferring communication patterns in
online social networks. ACM Trans. Internet Technol. 17(3), 32:1-32:21 (2017)

4. Yin, H., Zhou, X., Cui, B., Wang, H., Zheng, K., Hung, N.Q.V.: Adapting to user
interest drift for POI recommendation. TKDE 28(10), 25662581 (2016)

5. Yin, H., Hu, Z., Zhou, X., Wang, H., Zheng, K., Hung, N.Q.V., Sadiq, S.W.:
Discovering interpretable geo-social communities for user behavior prediction. In:
ICDE, pp. 942-953 (2016)

6. Xie, M., Yin, H., Wang, H., Xu, F., Chen, W., Wang, S.: Learning graph-based
POI embedding for location-based recommendation. In: CIKM, pp. 15-24 (2016)

7. Yin, H., Wang, W., Wang, H., Chen, L., Zhou, X.: Spatial-aware hierarchical collab-
orative deep learning for POI recommendation. TKDE 29(11), 2537-2551 (2017)

8. Aggarwal, C.C., Wang, H.: Managing and Mining Graph Data. Advances in
Database Systems, pp. 11-52. Springer US, New York City (2010). https://doi.
org/10.1007/978-1-4419-6045-0

https://doi.org/10.1007/978-3-319-67964-8_26
https://doi.org/10.1007/978-3-319-67964-8_26
https://doi.org/10.1007/978-1-4419-6045-0
https://doi.org/10.1007/978-1-4419-6045-0

322

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

J. Gao et al.

Gallagher, B.: Matching structure and semantics: a survey on graph-based pattern
matching. In: AAAT (2006)

Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite
and infinite graphs. In: Annual Symposium on Foundations of Computer Science,
pp. 453-462 (1995)

Ma, S., Cao, Y., Fan, W., Huai, J., Wo, T.: Strong simulation: capturing topology
in graph pattern matching. ACM Trans. Database Syst. 39(1), 4:1-4:46 (2014)
Chang, Z., Zou, L., Li, F.: Privacy preserving subgraph matching on large graphs
in cloud. In: SIGMOD, pp. 199-213 (2016)

Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: SIGMOD, pp.
93-106 (2008)

Tai, C., Tseng, P., Yu, P.S., Chen, M.: Identity protection in sequential releases of
dynamic networks. TKDE 26(3), 635-651 (2014)

Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood
attacks. In: ICDE, pp. 506-515 (2008)

Li, J., Xiong, J., Wang, X.: The structure and evolution of large cascades in online
social networks. In: Thai, M.T., Nguyen, N.P., Shen, H. (eds.) CSoNet 2015. LNCS,
vol. 9197, pp. 273—-284. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21786-4_24

Cheng, J., Fu, A.W., Liu, J.: K-isomorphism: privacy preserving network publica-
tion against structural attacks. In: SIGMOD, pp. 459-470 (2010)

Wu, W., Xiao, Y., Wang, W., He, Z., Wang, Z.: k-symmetry model for identity
anonymization in social networks. In: EDBT, pp. 111-122 (2010)

Zou, L., Chen, L., Ozsu, M.T.: K-automorphism: a general framework for privacy
preserving network publication. PVLDB 2(1), 946-957 (2009)

Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31-42
(1976)

Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph pattern matching: from
intractable to polynomial time. PVLDB 3(1), 264-275 (2010)

Fan, W., Li, J., Ma, S., Tang, N., Wu, Y.: Adding regular expressions to graph
reachability and pattern queries. In: ICDE, pp. 39-50 (2011)

Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood
attacks. In: ICDE, pp. 506-515 (2008)

Tai, C.H., Yu, P.S., Yang, D.N., Chen, M.S.: Privacy-preserving social network
publication against friendship attacks. In: SIGKDD, pp. 1262-1270 (2011)

Chen, S., Zhou, S.: Recursive mechanism: towards node differential privacy and
unrestricted joins. In: SIGMOD, pp. 653-664 (2013)

Karypis, G., Kumar, V.: Analysis of multilevel graph partitioning. In: Supercom-
puting, p. 29 (1995)

https://doi.org/10.1007/978-3-319-21786-4_24
https://doi.org/10.1007/978-3-319-21786-4_24

	A Privacy-Preserving Framework for Subgraph Pattern Matching in Cloud
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Privacy Preserving in Cloud
	4.1 Structural Privacy
	4.2 Label Privacy
	4.3 Outsourced Graph
	4.4 Result Processing

	5 Experimental Study
	5.1 Datasets and Setup
	5.2 Experiments Analysis

	6 Conclusion
	References

