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Abstract. The growing popularity of storing large data graphs in cloud
has inspired the emergence of subgraph pattern matching on a remote
cloud, which is usually defined in terms of subgraph isomorphism. How-
ever, it is an NP-complete problem and too strict to find useful matches
in certain applications. In addition, there exists another important con-
cern, i.e., how to protect the privacy of data graphs in subgraph pattern
matching without undermining matching results. To tackle these prob-
lems, we propose a novel framework to achieve the privacy-preserving
subgraph pattern matching via strong simulation in cloud. Firstly, we
develop a k-automorphism model based method to protect structural
privacy in data graphs. Additionally, we use a cost-model based label
generalization method to protect label privacy in both data graphs and
pattern graphs. Owing to the symmetry in a k-automorphic graph, the
subgraph pattern matching can be answered using the outsourced graph,
which is only a subset of a k-automorphic graph. The efficiency of sub-
graph pattern matching can be greatly improved by this way. Extensive
experiments on real-world datasets demonstrate the high efficiency and
effectiveness of our framework.
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1 Introduction

A graph can be a powerful model tool to represent objects and their relation-
ships. The increasing number of applications that take use of graph data in
recent years, such as disease transmission [1,2], communication patterns [3], and
social networks [4–7], has promoted the development of graph data management,
especially subgraph pattern matching. Typically, subgraph pattern matching is
defined in terms of subgraph isomorphism [8,9], which is an NP-complete prob-
lem [10]. It is often too strict to catch sensitive matches, as it requires matches to
have same topology with data graphs. The problem will hinder its applicability
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in some certain applications like social networks and crime detection. Our work
focus on subgraph pattern matching via strong simulation [11]. Strong simula-
tion is a revision of graph simulation, which imposes more flexible constraints
on topology in data graphs, and it retains cubic-time complexity.

Example 1. Consider a real-life social network shown in Fig. 1. Each vertex in
graph G represents an entity, such as a human resources (HRi) person, a devel-
opment manager (DMi), and a project manager (PMi). Each directed edge in G
indicates one recommendation relationship, e.g., edge HR1 → PM1 represents
HR1 recommends PM1. Each entity has some attributes like “name”, “gender”,
“state”, and “school”.

A headhunter wants to employ a DM to help a PM . A qualified candidate
must live in Illinois and at the same time, he must recommend the PM and
be recommended by the HR and PM . The headhunter issues a subgraph pattern
matching of Q over G, as shown in Fig. 1. When subgraph isomorphism is taken,
there is no match can be found, since there is no subgraph that has the same topol-
ogy with the pattern Q in graph G. However, when it comes to strong simulation,
we can find the subgraph G1 is an appropriate match to pattern Q, since there
exists a path (DM1, PM2, PM1) from DM1 to PM1. Obviously, compared with
the subgraph isomorphism that imposes a very strict constraint on the topology
of the matched graphs, strong simulation provides a more flexible constraint.

HR

PM

DM

2HR

(a) Pattern Q (b) Graph G

<Name: Bob>
<Gender: Male>
<State: Washington>

<Name: Alice>
<Gender: Female>
<State: California>

<Name: Rose>
<Gender: Female>
<School: Harvard>

<Name: Jack>
<Gender: Male>
<School: Columbia>

<Name: Daniel>
<Gender: Male>
<State:  Illinois>

<State: California>

<School: Cornel>

<Name: David>
<Gender: Male>
<State: Washington>

4PM1DM1PM

1HR

2DM 2PM

<Name: Tom>
<Gender: Male>
<School: Cornel>

<Name: Lucy>
<Gender: Female>
<State: Illinois>

4DM

<Name: Millie>
<Gender: Female>
<School:  Harvard>

<Name: Adrian>
<Gender: Male>
<State:  Illinois>

<State: Illinois>

3PM 6PM

<Name: Ruby>
<Gender: Female>
<School: Harvard>

<Name: Ablett>
<Gender: Male>
<School: Columbia>

3DM

5PM

G1

Fig. 1. An original data graph G and pattern graph Q.

Meanwhile, the popularity of storing the large number of data graphs in cloud
to save storage brings another inevitable challenge, i.e., how to process users’
queries without compromising sensitive information in cloud [12]. In many real
scenarios, we can not make sure that the cloud platform is completely credible,
as many adversaries may attack the cloud and cause serious privacy leakage.
The main privacy leakage problem is the “identity disclosure” problem [13,14].
A naive anonymous approach is to remove all identifiable personal information
before uploading the data graph to cloud. However, even though the data graph
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is uploaded without any sensitive information, it is still possible for an adversary
to locate the target through structural attacks [13,15,16]. To protect privacy of
data graphs from multiple structural attacks, many methods have been proposed
[17–19]. One typical approach is k-automorphism, which uses the symmetry of
the published data graph [19]. For each vertex v in a k-automorphic graph,
there are at least k − 1 structurally equivalent counterparts. An adversary can
not distinguish v from the other k − 1 symmetric vertices, because there is no
structural difference between them.

Consider the Example 1 in Fig. 1, uploading the original graph G to cloud
directly will cause privacy leakage. To address the problem, we propose the
following solution. On one hand, we propose a k-automorphism model based
method to protect structural privacy of data graphs. Firstly, we transform the
original graph G to an “undirected” graph G∗. During the process, if an edge
u → v is unidirectional, we will add an edge v → u. For example, we add an
edge PM2 → DM1 for the edge DM1 → PM2 in Fig. 1. Then, we can use the k-
automorphism model to generate graph Gk, where k = 2 in Fig. 2. On the other
hand, to protect the label privacy in both data graphs and pattern graphs, we
apply a cost-model based label generalization technique [12], where each vertex
label in Gk and Q is replaced by a label group. The mapping between label
groups and vertex labels are given in the Label Correspondence Table (LCT),
presented in Fig. 2(a).

p7

p9

(b) Graph Gk

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

p8p3p2

p1

p5 p6

<Occupation: A>
<Gender: B>
<School: D>

p11p10

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<State: C>

p1

p2

p3

<State: C>

<School: D>

(c) Anonymous 
Pattern Q0

<Occupation: A>
<Gender: B>
<State: C>

<State: C>

p4 p12

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<School: D>

(a) Label Correspondence 
Table (LCT)

Label
Group

Labels

A HR, PM, DM

B Female, Male

C California, Illinois,
Washington

D Harvard, Conell,
Columbia

Fig. 2. The k-automorphic graph Gk and anonymous pattern Q0.

However, the solution suffers from the following limitation. During the gen-
eration of G∗ and Gk, it may generate a large number of noise edges, which
will result in more expensive storage cost and much larger communication over-
head. Thus, we upload the outsourced graph G0 (The definition of G0 is given
in Subsect. 4.3), which is only a subset of Gk, to cloud. Next, the cloud exe-
cutes subgraph pattern matching via strong simulation of Q0 over G0 to obtain
r(Q0, G0), i.e., subgraph matches of Q0 over G0, and transmits it to the client
side. On the basis of k-automorphic functions Fki

(i = 1, 2, . . . , k − 1), client
can firstly compute r(Q0, Gk) according to r(Q0, G0). Then, it filters out false
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positives based on the original data graph G and pattern Q to derive r(Q,G).
Note that we assume the client is the data owner who has access to the original
graph G for the filtering step.

Contributions. The main contributions of our work are summarized as follows:

– To the best of our knowledge, we are the first to support privacy-preserving
subgraph pattern matching via strong simulation in cloud.

– We re-design a cost-model based label generalization method to select effec-
tive vertex label combinations for anonymizing labels in both data graphs
and pattern graphs.

– We conduct extensive experiments on several real-world datasets to study the
efficiency and effectiveness of our framework.

The rest of the paper is organized as follows. Section 2 narrates the related work.
Section 3 gives the problem formulation. Section 4 describes the main solution.
Section 5 reports the experimental analysis. Section 6 concludes the paper.

2 Related Work

Strong Simulation. Subgraph pattern matching is typically defined in terms
of subgraph isomorphism [8,9], an NP-complete problem [20]. It is often too
restrictive to catch sensible matches. Subgraph simulation and its various exten-
sions have been considered to lower the complexity [10,21,22]. Fan et al. [21]
proposed bounded simulation which extended simulation by allowing bounds on
the number of hops in pattern graphs and further, they extended it by incor-
porating regular expressions as edge constraints on pattern graphs [22]. Both
the two extensions of simulation are in cubic-time. Nevertheless, the lower com-
plexity comes with the price that they do not preserve the topology of data
graphs and yield false matches. Thus, Ma et al. [11] proposed the notation of
strong simulation by enforcing two additional conditions: the duality to preserve
the parent relationships and the locality to eliminate excessive matches. Strong
simulation is capable of capturing the topological structures of pattern and data
graphs, and it retains the same cubic-time complexity of former extensions of
graph simulation [10].

k-Automorphism. The question of how to publish information on graphs in
a privacy-preserving way has been of interest for a number of years [13,23–25].
Most previous work focus on protecting data privacy from structural attacks [13,
23,24]. Some of them assume that the adversary launches one type of structural
attack only [13,23,24]. Liu and Terzi [13] studied how to protect privacy in
published data from degree attack only. However, an attacker can launch multiple
types of structural attacks to identify the target in practice. Thus, Zou et al. [19]
proposed the k-automorphism framework. Each vertex in a k-automorphic graph
has at least k − 1 counterparts so that it is hard for an adversary to identify
the vertex from others. The framework can protect privacy of data graph from
multiple structural attacks and furthermore, the k-automorphism model does
not need to delete any vertices or edges from data graph, which can significantly
preserve the integrity of the data.
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3 Problem Formulation

In this section, we first present the basic notations and definitions frequently
used in this paper. Then we give a definition of our problem.

We model a social network as an attributed graph [12], G = {V (G), E(G),
LG(V (G))}, where V (G) is the set of vertices, E(G) is the set of edges, and
LG(V (G)) is the set of vertex labels. The notational convention of this paper
are summarized in Table 1.

Table 1. Table of notations

Notations Descriptions

dQ The diameter of pattern Q

G The original data graph

G∗ The “undirected” graph by adding noise edges in G

Gk The data graph released by k-automorphism model

Go The final outsourced graph uploaded to the cloud
�

G[v, dQ] The ball with center v and radius dQ

Q The original pattern graph

Qo The anonymous pattern graph of Q

r(Q,G) The set of subgraph pattern matches of Q over G

dis(u, v) The distance between vertex u and v

Definition 1 Path. A directed path p is a sequence of nodes (v1, v2, . . . , vn),
where i ∈ [1, n − 1] and (vi, vi+1) is an edge in graph G. The number of edges in
a path p is the length of p, denoted by len(p).

Definition 2 Distance and diameter. Consider two nodes u, v in graph G,
the distance from u to v is the length of the shortest undirected path from u
to v, denoted by dis(u, v). The diameter of the connected graph G is defined as
the longest distance of all pairs of nodes in G, denoted by dG. More specifically,
dG = max{dis(u, v)} for all nodes u, v in graph G.

Definition 3 Ball [11]. For a node v in graph G, a ball is a subgraph of G,

where v is the center node and r is the radius, denoted by
�

G[v, r]. For all nodes

u in
�

G[v, r], the shortest distance between u and v should satisfy dis(u, v) ≤ r
and edges must exactly appear in graph G over the same node set.

Consider the pattern graph Q and data graph G in Fig. 1, we can figure out that
dQ = 1 according to the Definition 2. If we take the vertex DM1 as the center

node and dQ as the radius, then we can obtain the ball
�

G[DM1, dQ] (i.e., G1),
which is a subgraph of G based on Definition 3.
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Definition 4 Subgraph Pattern Match. Given a data graph G = {V (G),
E(G), LG(V (G))} and a pattern graph Q = {V (Q), E(Q), LQ(V (Q))}, Q is a
subgraph match to G via strong simulation, if there exists a node u in Q and a
connected subgraph Gs of G such that:

(1) There exists a match relation R, and for each pair (u, v) in R:
(a) LQ(u) ⊆ LGs

(v);
(b) ∀(u′, u) ∈ E(Q), there exists a path (v′, . . . , v) in E(Gs);
(c) ∀(u, u′) ∈ E(Q), there exists a path (v, . . . , v′) in E(Gs);

(2) Gs is contained in the ball
�

G[v, dQ], where dQ is the diameter of pattern Q.
The set of subgraph pattern matches of Q over G via strong simulation is
denoted as r(Q,G).

Problem Definition. Given a data graph G and a pattern graph Q, our work is
to find all subgraph pattern matches of Q over G via strong simulation in cloud,
without compromising the privacy of both data graph G and pattern graph Q.

4 Privacy Preserving in Cloud

4.1 Structural Privacy

To protect the structural privacy in data graphs, we develop a novel approach
based on k-automorphism model. When a directed data graph G is given, we
firstly transform it to an “undirected” graph G∗ by introducing noise edges.
Then we convert G∗ into graph Gk, where Gk satisfies the k-automorphic graph
model.

Definition 5 k-automorphic Graph [12]. A k-automorphic graph Gk is
defined as Gk =

{
V (Gk), E(Gk)

}
, where V (Gk) can be divided into k blocks

and each block has
⌈

V (Gk)
k

⌉
vertices.

Intuitively, for any vertex v in a k-automorphic graph Gk, there are k − 1
symmetric vertices. An adversary can hardly distinguish v from its structurally
equivalent counterparts. Thus, the structural privacy in data graphs can be well
preserved. According to Definition 5, we can transform G∗ to a k-automorphic
graph Gk as follows.

Firstly, we adopt the METIS algorithm [12,26] to partition the graph G∗ into
k blocks. In order to guarantee that each block has exactly

⌈
V (Gk)

k

⌉
vertices,

some noise vertices will be introduced if V (G∗) can not be divided into k blocks.
There is an efficient method to build Alignment Vertex Table (AVT) after the
partition [19]. For example, we divide the graph Gk in Fig. 2(b) into two blocks
and build the corresponding AVT, which is presented in Fig. 3(a). Each row in
AVT denotes they are symmetric vertices, such as p1 and p7 in Fig. 2(b). Each
column in AVT contains the vertices in one block, such as (p1, p2, p3, p4, p5, p6)
in the first block of Gk. According to the AVT, we define the k-automorphic
function Fk1 , as shown in Fig. 3(b).
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(a) Alignment Vertex Table (b) Automorphic Function

1p 7p
2p
3p
4p
5p
6p

9p
8p

12p
11p
10p

1 1 7( )kF p p
1 7 1( )kF p p

1 2 9( )kF p p
1 9 2( )kF p p

1 3 8( )kF p p
1 8 3( )kF p p

1 4 12( )kF p p
1 12 4( )kF p p

1 5 11( )kF p p
1 11 5( )kF p p

1 6 10( )kF p p
1 10 6( )kF p p

Fig. 3. The Alignment Vertex Table (AVT) and automorphic function.

Secondly, we perform block alignment and edge copy [19] to obtain the
k-automorphic graph Gk. For example, we can obtain 2 isomorphic blocks:
B0(p1, p2, p3, p4, p5, p6) and B1(p7, p8, p9, p10, p11, p12) by adding noise edges
(p8, p10) and (p11, p12) via block alignment in Fig. 2. According to the cross-
ing edge (p6, p7) between 2 blocks, we add an edge (p1, p10) based on the edge
copy techniques.

4.2 Label Privacy

Since the k-automorphism model based method can only protect structural pri-
vacy of the original graph G, we define a cost-model based label generalization
method to protect label privacy of both data graph G and pattern graph Q.
The method considers two factors: label matching and searching space, while
estimating the number of candidates of a vertex u in Q0, denoted as sim(u).

According to the definition of strong simulation [11], when a vertex v in graph
Gk matches the vertex u in pattern Q0, it must firstly contain u’s label groups.
We let

∣
∣Vg(Gk, i)

∣
∣ and

∣
∣Vg(Q0, i)

∣
∣ denote the set of vertices with the label group i

in Gk and Q0 that are obtained after the label generalization respectively. Then,
we can define:

P g
Gk(i) =

|Vg(Gk, i)|
|V (Gk)| , P g

Q0(i) =
|Vg(Q0, i)|
|V (Q0)| (1)

P g
Gk(i) and P g

Q0(i) estimate the probability of a vertex in Gk and Q0 having an
i-th label group after the label generalization, respectively. Then, the estimat-
ing number of vertices that can match vertex u in Q0 while considering label
matching can be defined as follows:

|V (Gk)|
α∑

i=1

P g
Gk(i) · P g

Q0(i) (2)

Next we need to consider the search space of checking whether each of u’s par-
ent vertices and child vertices can find matching vertices. We define the average
in-degree Di(Gk) and average out-degree Do(Gk) to represent the in-degree and
out-degree of vertex v (u’s matching vertex) respectively. Similarly, Di(Q) and
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Do(Q) represent the in-degree and out-degree of vertex u in Q0 separately. Note
that Do(Q0) = Do(Q), and Di(Q0) = Di(Q). Therefore, the maximum potential
searching space of u’s first child vertex is Do(Gk)2dQ , and that of the second child
vertex is (Do(Gk)−1)Do(Gk)2dQ−1. Thus, the total searching space of u’s child
vertices can be estimated as Do(Gk)2dQ · (Do(Gk)−1)Do(Gk)2dQ−1 · · · (Do(Gk)−
Do(Q)+1)Do(Gk)2dQ−1. We estimate it as Do(Gk)Do(Q) ·Do(Gk)(2dQ−1)Do(Q)

for
simplicity, i.e., Do(Gk)Do(Q)+(2dQ−1)Do(Q)

. Similarly, we can define the searching
space of u’s parent vertices as Di(Gk)Di(Q)+(2dQ−1)Di(Q)

. Thus, the estimation
of searching space can be defined as follows:

{

Do(Gk)

[
α∑

i=1

P g
Gk(i)P g

Q0(i)

]}Do(Q)+(2dQ−1)Do(Q)

·
{

Di(Gk)

[
α∑

i=1

P g
Gk(i)P g

Q0(i)

]}Di(Q)+(2dQ−1)Di(Q)
(3)

We assume the total labels in original graph G can be divided into α groups,
each group contains θ different labels without loss of generality. We define
〈p1, p2, p3, . . . , pαθ〉 to form a permutation of 〈1, 2, 3, . . . , αθ〉. According to [12],
we can obtain that P g

Gk(i) ≤ ∑θ
j=1 PG(pθ(i−1)+j). Thus, we can define the cost

model :

|sim(u)| = |V (Gk)|
[

α∑
i=1

P g

Gk (i)P
g

Q0 (i)

]
·
{
Do(G

k)

[
α∑

i=1

P g

Gk (i)P
g

Q0 (i)

]}Do(Q)+(2dQ−1)Do(Q)

·

{
Di(G

k)

[
α∑

i=1

P g

Gk (i)P
g

Q0 (i)

]}Di(Q)+(2dQ−1)Di(Q)

= |V (Gk)|Do(G
k)

Do(Q)+(2dQ−1)Do(Q)
·Di(G

k)
Di(Q)+(2dQ−1)Di(Q)

·[
α∑

i=1

P g

Gk (i)P
g

Q0 (i)

]Do(Q)+Di(Q)+(2dQ−1)Do(Q)+(2dQ−1)Di(Q)+1

≤|V (Gk)|Do(G
k)

Do(Q)+(2dQ−1)Do(Q)
·Di(G

k)
Di(Q)+(2dQ−1)Di(Q)

·⎧⎨
⎩

α∑
i=1

⎡
⎣ θ∑

j=1

PG(pθ(i−1)+j)

⎤
⎦

⎡
⎣ θ∑

j=1

PQ(pθ(i−1)+j)

⎤
⎦

⎫⎬
⎭

Do(Q)+Di(Q)+(2dQ−1)Do(Q)+(2dQ−1)Di(Q)+1

(4)
According to the cost model in Eq. (4), an effective permutation of

〈1, 2, 3, . . . , αθ〉, i.e., 〈p1, p2, p3, . . . , pαθ〉, can decrease the cost of the searching
space of pattern graph Q over G. We choose the component that concerns the
label combination to define Label Combination Cost.

cost(L) =
α∑

i=1

⎡

⎣
θ∑

j=1

PG(pθ(i−1)+j)

⎤

⎦ ·
⎡

⎣
θ∑

j=1

PQ(pθ(i−1)+j)

⎤

⎦ (5)
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There is an iterative solution that can explore the optimal permutation to
decrease cost(L) according to Eq. (5). Firstly, a random label combination is
generated; then, we try to swap two labels in two different label groups for each
iteration. If the swap leads to smaller cost, we will keep the swap; otherwise,
we will ignore that. When there is no swap that can lead to smaller cost, the
iteration stops and we can obtain an effective permutation.

4.3 Outsourced Graph

After obtaining an anonymous k-automorphic graph Gk, a basic solution is to
upload Gk to cloud directly. However, Gk is more larger than the original graph
G since Gk contains large number of noise edges. Therefore, we only upload the
outsourced graph, which is only a subset of Gk, denoted as G0, to the cloud
platform. The definition of G0 is given below.

Definition 6 Outsourced Graph. An outsourced graph is defined as G0 =
{V (G0), E(G0), LG0(V (G0))} where (1)V (G0) is the set of vertices in the first
block of Gk (i.e. block B0), denoted as V (B0), together with their neighbors
within 2dQ-hops, denoted as V (N2dQ

); (2)E(G0) is the set of edges that connected
vertices within V (B0) and vertices between V (B0) and V (N2dQ

); (3)LG0(V (G0))
is the set of vertex labels in graph G0.

Outsourced Graph G0

p7

p9

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

p8p3p2

p1

p5 p6

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<School: D>

<Occupation: A>
<Gender: B>
<State: C>

<Occupation: A>
<Gender: B>
<State: C>

p4

<Occupation: A>
<Gender: B>
<School: D>

10p 11p

Fig. 4. The outsourced graph G0 for Gk

According to Definition 6, we can generate an outsourced graph G0 based on
the graph Gk and upload it to cloud. For example, an outsourced graph G0 (as
shown in Fig. 4) can be generated based on graph Gk in Fig. 2. Although G0 is a
part of Gk, we can easily recover Gk based on G0 together with k-automorphic
functions Fki

(i = 1, 2, . . . , k − 1).
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4.4 Result Processing

When G0 and Q0 are uploaded, the cloud executes subgraph pattern matching
via strong simulation to obtain the matching result r(Q0, G0) and transmits it
to client. There are two steps for the client side to process the result.

Firstly, the client computes r(Q0, Gk) based on r(Q0, G0) together with k-
automorphic functions Fki

(i = 1, 2, . . . , k − 1) (Lines 1–3 in Algorithm 1). For
each subgraph Gs in r(Q0, G0), we can compute Fki

(Gs) (i = 1, 2, . . . , k−1) and
add them to r(Q0, Gk). Then, we obtain the final r(Q0, Gk) by adding r(Q0, G0)
(Line 4 in Algorithm1).

ALGORITHM 1. Result Processing Algorithm
Input: r(Q0, G0) (The matching subgraphs of G0 w.r.t. Q0) and AVT
Output: r(Q, G)

1 r(Q0, Gk) := ∅ ;
2 for i := 1 to k − 1 do

3 r(Q0, Gk) := r(Q0, Gk) ∪ Fki
(r(Q0, G0));

4 r(Q0, Gk) := r(Q0, Gk) ∪ r(Q0, G0);
5 r(Q, G) := ∅ ;

6 for each subgraph Gs ∈ r(Q0, Gk) do
7 for each vertex v ∈ V (Gs) do
8 if v �∈ V (G) then
9 remove node v from Gs;

10 else if LG(v) do not match the corresponding vertex on pattern Q then
11 remove node v from Gs;

12 for each edge e ∈ E(Gs) do
13 if e �∈ E(G) then
14 remove edge e from Gs;

15 if Gs contains the connected component that matches to pattern Q then
16 r(Q, G) := r(Q, G) ∪ Gs;

17 return r(Q, G)

Secondly, the client needs to filter out the false matches in r(Q0, Gk) accord-
ing to the original data graph G and pattern Q. For each matching subgraph
Gs in r(Q0, Gk), if there exist vertices that are not contained in graph G or
whose labels cannot match those of the corresponding vertices in the original
pattern Q (We have anonymized the vertex labels in pattern Q via label gen-
eralization method), remove them from Gs (Lines 7–11 in Algorithm 1). Note
that we have introduced noise edges when generating “undirected” graph G∗

and k-automorphic graph Gk, if Gs contains edges that do not exist in the orig-
inal graph G, remove them from Gs (Lines 12–14 in Algorithm 1). When all the
noise vertices or edges and unmatch vertices are filtered out from Gs, we need
to consider whether Gs is a candidate. We define that if there exists a subgraph
which is a match (meets the requirements of strong simulation) to pattern Q
in Gs, it is a right positive and we need to add it to r(Q,G) (Lines 15–16 in
Algorithm 1).
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5 Experimental Study

5.1 Datasets and Setup

We evaluate our method in three real-world datasets in our experiments. The
statistics on these datasets are given in Table 2.

Table 2. Real-world data graphs

Dataset |V | |E| Number of labels

p2p-Gnutella08 6301 20777 62

Brightkite-edges 58228 428156 134

Web-NotreDame 325729 1090108 208

p2p-Gnutella08. p2p-Gnutella08 is a sequence of snapshots of the Gnutella
peer-to-peer file sharing network collected in August 8, 2002. Nodes represent
hosts in the Gnutella network topology and edges represent connections between
the Gnutella hosts.

Brightkite-edges. Brightkite-edges is the friendship network collected using
Brightkite’s public API. Nodes correspond to users having checked-in Brightkite
and directed edges correspond to relationships among them.

Web-NotreDame. Web-NotreDame is a web graph collected in 1999. Nodes
represent pages from University of Notre Dame and directed edges represent
hyperlinks between them.

SETUP. In our experiments, we compare four methods All Ran, All Eff,
Part Ran, and Part Eff, where All Ran applies the random label generaliza-
tion method and upload Gk to cloud; All Eff applies the cost-model based label
generalization method introduced in Sect. 4.2 and upload Gk to cloud; Part Ran
applies the same label generalization approach with All Ran but only upload
G0 to cloud; Part Eff applies same label generalization method with All Eff but
upload G0 to cloud.

All methods are implemented in C++. We use a Windows 10 PC with
2.30 GHz Intel Core i5 CPU and 8 GB of memory as the client side. The cloud
server is on a virtualized Linux machine within Microsoft Azure Cloud with 4
CPU cores and 200 GB main memory.

5.2 Experiments Analysis

We evaluate the cost of our experiments from three aspects: time cost of gener-
ating Gk, time cost of pattern matching, and time cost of result processing in
client.

Time Cost of Generating Gk. We first evaluate the performance of the pro-
posed methods while generating graph Gk. In these experiments, we define that
each label group contains two labels, i.e. the default value of θ is 2.
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(a) p2p-Gnutella08 (b) Brightkite-edges (c) Web-NotreDame

Fig. 5. Time cost in generating Gk

According to Fig. 5, the cost-model based label generalization method and the
random label generalization method have similar performance while generating
graph Gk, i.e., the four proposed methods have similar time cost. The reason
is that all of them need to generate graph Gk firstly despite the ultimately
uploaded graph is either Gk or G0. We note that the time cost on the three
datasets increases when k goes from 2 to 5. The reason is that when k increases,
more and more noise edges are added to Gk, as shown in Table 3. Note that each
“undirected” edge in Gk represents two directed edges. We can intuitively see
that the number of noise edges has slightly difference when using different label
generalization methods and increases with k.

Table 3. Number of noise edges in generating Gk

Dataset k = 2 k = 3 k = 4 k = 5

p2p-Gnutella08 All Ran 16417 × 2 34267 × 2 53195 × 2 71388 × 2

Part Ran

All Eff 16309 × 2 34309 × 2 53195 × 2 71443 × 2

Part Eff

Brightkite-edges All Ran 178278 × 2 367859 × 2 553810 × 2 753265 × 2

Part Ran

All Eff 178674 × 2 368399 × 2 554794 × 2 752677 × 2

Part Eff

Web-NotreDame All Ran 923266 × 2 1829324 × 2 2749760 × 2 3747812 × 2

Part Ran

All Eff 923382 × 2 1846433 × 2 2745792 × 2 3767437 × 2

Part Eff

Time Cost of Pattern Matching. Then we pay attention to the time cost of
subgraph pattern matching via strong simulation in cloud. Firstly, we evaluate
the time cost of the proposed methods while varying the number of edges in
pattern Q, i.e., |E(Q)|. Pattern graphs are generated by randomly extracting
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subgraphs from the original data graph G. We use |E(Q)| to control the size
of pattern graphs. In these experiments, the value of k is set to 3. According
to Fig. 6, we can clearly find out that Part Eff performs better than the other
three approaches on the three datasets. The one reason is that Part Eff only
uploads G0 to cloud. Note that Part Ran and Part Eff are only different in label
generalization. Thus, the results demonstrate the effectiveness of our cost-based
label generalization method. The matching time increases with |E(Q)| varying
from 4 to 10, since the searching space will become larger for subgraph pattern
matching when |E(Q)| increases.

(a) p2p Gnutella08 (b) Brightkite edges (c) Web-NotreDame

Fig. 6. Matching time vs. |E(Q)|. (k = 3)

(a) p2p-Gnutella08 (b) Brightkite-edges (c) Web-NotreDame

Fig. 7. Matching time vs. k. (|E(Q)| = 6)

Next, we evaluate the running time of subgraph pattern matching while vary-
ing the parameter k. The time cost increases with k varying from 2 to 5, as shown
in Fig. 7. This is because

∣
∣E(G0)

∣
∣ increases with k varying from 2 to 5, since more

noise edges will be inserted when k becomes larger. The method Part Eff, which
uses the cost-model based label generalization method and uploads G0 to cloud,
has better performance than other methods in all three datasets. It demonstrates
the superiority of our cost-model based generalization method as well.

Time Cost of Result Processing in Client. At last, we evaluate the perfor-
mance of four methods involving result processing in the client side while varying
parameters k and |E(Q)| respectively. According to Fig. 8, the result processing
time increases with k varying from 2 to 5 for all four methods, since client need
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to filter out more noise edges when k becomes larger. Note that both All Ran
and All Eff upload Gk to cloud, the step to obtain r(Q0, Gk) on the basis of
r(Q0, G0) together with Fki

(i = 1, 2, . . . , k − 1) can be omitted. Thus, the time
cost of result processing with All Ran and All Eff are smaller than the other two
methods. However, the method Part Eff that uses our cost-model based label
generalization method still performs better than the Part Ran.

(a) p2p Gnutella08 (b) Brightkite edges (c) Web-NotreDame

Fig. 8. Result processing time vs. k. (|E(Q)| = 6)

(a) p2p Gnutella08 (b) Brightkite edges (c) Web-NotreDame

Fig. 9. Result processing time vs. |E(Q)|. (k = 3)

The result processing time increases with |E(Q)| varying from 4 to 10, as
shown in Fig. 9. The reason lies in that the search space will become larger for the
filtering process when |E(Q)| increases. Similarly, the time cost of All Ran and
All Eff are smaller than other two methods. However, the gap is small compared
to the time cost of pattern matching. As shown in Table 4, Part Eff runs faster

Table 4. Overall running time (s) (|E(Q)| = 6 and k = 3)

Dataset p2p-Gnutella08 Brightkite-edges Web-NotreDame

Part Eff 40 81.02 119.05

Part Ran 49.1 91.55 140.22

All Eff 56.02 98.93 160.89

All Ran 70.12 114.42 181.56
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than other three methods in terms of the overall running time. Note that the
overall running time consists of the subgraph pattern matching time in cloud
and the result processing time in the client side.

6 Conclusion

In this paper, we propose an effective framework to protect privacy of subgraph
pattern matching via strong simulation in the cloud. Without losing utility, the
framework protects structural and label privacy of both data graphs and pattern
graphs. We introduce noise edges to transform a directed graph to an “undi-
rected” graph so that the k-automorphism model based method can be applied
to protect structural privacy of the data graph. We apply a cost-model based
label generalization method to protect label privacy in both data graphs and pat-
tern graphs additionally. In our framework, we only upload the outsourced graph
to cloud so that the time cost of subgraph pattern matching can be decreased.
Experiments on three real-world datasets illustrate the superior performance of
our method.
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