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Abstract. Topological sorting is a fundamental problem in graph anal-
ysis. Given the fact that real world graphs grow rapidly so that they
cannot entirely reside in main memory, in this paper, we study exter-
nal memory algorithms for the topological sorting problem. We propose
a contraction-expansion paradigm and devise an external memory algo-
rithm based on the paradigm for the topological sorting problem. Our
new algorithm is efficient due to the introduction of the new paradigm
and can be implemented easily by using the fundamental external mem-
ory primitives. We conduct extensive experiments on real and synthesis
graphs and the results demonstrate the efficiency of our proposed algo-
rithm.

1 Introduction

Graphs have been widely used to represent the relationships of entities in a
large spectrum of applications such as social networks, web search, collaboration
networks, and biology. With the proliferation of graph applications, research
efforts have been devoted to many problems in managing and analyzing graph
data. Among them, topological sorting is a fundamental one. Given a directed
graph G, topological sorting aims to compute a node numbering in which each
node in G is assigned with a non-negative number such that if G contains an
edge (u, v), then the assigned number of u is smaller than that of v.

Applications. Topological sorting can be used in many real-world applications:

(1) Graph structure analysis in social network. Topological sorting can be used
to compute the node importance when analyzing the graph structure in
social network [5].

(2) Job planning and scheduling. In job planning, the jobs are represented by
nodes, and there is an edge from u to v if job u must be completed before
job v can be started. Then, a topological sorting gives an order in which to
perform the jobs [9].

c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10827, pp. 203–220, 2018.
https://doi.org/10.1007/978-3-319-91452-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91452-7_14&domain=pdf


204 Z. Qing et al.

(3) A key step to solve other graph problems. Topological sorting is also an
important building block for other graph algorithms, such as separator par-
titions of planar graphs [11], contour tree simplification [4], multi-objective
shortest path computation [12].

Motivation. In the literature, there are efficient in-memory algorithm and semi-
external algorithm to compute topological sorting [2,9]. An in-memory algorithm
assumes that the graph is resident in main memory while a semi-external algo-
rithm assumes that all nodes of G are kept in main memory. Nevertheless, as the
sizes of many real graphs keep growing rapidly, even the nodes of a graph can-
not reside entirely in main memory. For example, the Facebook social network
contains 1.32 billion nodes and 140 billion edges1; and a sub-domain of the web
graph of the EU countries contains 1.07 billion nodes and 91 billion edges2. In [2],
the authors propose an external memory topological sorting algorithm in which
the nodes of G cannot fit entirely in memory. It iteratively computes a partial
topological sorting of G until the final topological sorting of G is obtained. How-
ever, the algorithm involves other complex external memory subroutines which
makes it hard to implement and it cannot effectively utilize the available memory
to further improve its performance, even when the memory is abundant.

Our Approach. In order to address the drawbacks of the existing solutions, we
propose a new paradigm for topological sorting in this paper. Our paradigm con-
tains two phases, namely, graph contraction phase and graph expansion phase.
In graph contraction phase, we contract the nodes of the graph iteratively until
all nodes of the contracted graph can fit in main memory. Then, we compute
the topological sorting for the contracted graph using the efficient semi-external
algorithm. In graph expansion phase, the removed nodes are added back into
the graph in a reverse order of their removal and the topological sorting for the
graph with the new added nodes is computed. Our new approach just uses the
fundamental external memory primitives and can effectively utilize the avail-
able memory due to the contraction of the input graph and the exploiting of
semi-external topological sorting algorithm.

Contributions. In this paper, we make the following contributions:

(1) A new paradigm for topological sorting. We investigate the drawbacks of
existing semi-external and external topological sorting algorithms and pro-
pose a new contraction-expansion paradigm for the topological sorting prob-
lem, which can overcome the drawbacks of existing solutions.

(2) A new external memory topological sorting algorithm. Following the
contraction-expansion paradigm, we devise a new external memory topologi-
cal sorting algorithm. Our new algorithm just uses the fundamental external
memory primitives and exploits the high efficiency of semi-external topolog-
ical sorting algorithm. Besides, we also analyze the correctness and I/O
complexity of our approach.

1 http://newsroom.fb.com/company-info.
2 http://law.di.unimi.it/datasets.php.
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(3) Extensive performance studies on large real and synthetic datasets. We con-
duct extensive performance studies using large real and synthetic graphs.
The experimental results demonstrate the efficiency of our proposed algo-
rithm.

2 Preliminaries

We model a directed graph as G(V,E), where V (G) represents the set of nodes
and E(G) represents the set of directed edges in G. We denote the number of
nodes and the number of edges of G by n and m, respectively, i.e., n = |V (G)| and
m = |E(G)|. We use |G| to denote the sum of n and m, i.e., |G| = |V (G)|+|E(G)|.
Each node u ∈ V (G) has a unique identity, denoted by id(u). If there is a directed
edge (u, v) in G, we say u is the tail and v is head, u is an in-neighbor of v and v
is an out-neighbor of u. For each node u ∈ G, we use nbr−(u,G) and nbr+(u,G)
to denote the set of u’s in-neighbors and out-neighbors in G, respectively. For
a node u, the in-degree of u, denoted by deg−(u,G), is the number of u’s in-
neighbors and the out-degree of u, denoted by deg+(u,G), is the number of u’s
out-neighbors. And the degree of u, denoted by deg(u,G), is the sum of u’s
in-degree and out-degree. For simplicity, we omit G from the notations if the
context is self-evident. Given a directed graph G, a path p = (v1, v2, · · · , vk) is a
sequence of k nodes in V (G) such that, for each vi(1 ≤ i < k), (vi, vi+1) ∈ E(G).
In a directed graph, a path (v1, v2, · · · , vk) forms a directed cycle if v1 = vk.

Definition 1 (Directed Acyclic Graph). Given a directed graph G, G is a
directed acyclic graph (DAG) if and only if there exist no directed cycles in G.

Definition 2 (Topological Sorting). Given a DAG G, a topological sorting
of G is a node numbering in which each node is assigned with a non-negative
number such that if G contains an edge (u, v), then the assigned number of u is
smaller than that of v.

We use Ω to denote an arbitrary node numbering and Ω(u) to denote the
number assigned to a node u by Ω. For a graph G, we use ΩG to denote the
topological sorting of G and ΩG(u) to denote the number assigned to a node u
by ΩG. We also call ΩG(u) the topological sorting number of u.

Problem Statement. In this paper, we study the problem of computing the
topological sorting for a given DAG G in an external memory model, namely,
not only G but also V (G) cannot reside entirely in main memory. We use the
standard external memory model proposed in [1]. It assumes that the main
memory can only keep M elements while the remaining are kept in blocks on disk,
where one block contains B elements. Suppose one I/O access will read/write B
elements (one block) from/into disk into/from main memory. External memory
model contains two fundamental primitives: scanning N elements (scan(N)) and
sorting N elements (sort(N)). The I/O complexity of scan(N) is Θ(NB ) I/Os, and
the I/O complexity of sort(N) is O(NB · logM

B

N
B ) I/Os.
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3 Existing Solutions

3.1 Semi-external Topological Sorting Algorithm

In this section, we first introduce the semi-external topological sorting algo-
rithm SemiTS [2], which assumes that the nodes of the graph can reside in main
memory. It is based on the following property: given a graph G, a post-order
traversal on a depth first search tree of G visits nodes in the reverse order of
a topological sorting of G. Therefore, SemiTS computes the topological sorting
in a semi-external manner by using the existing semi-external depth first search
algorithm. SemiTS is shown in Algorithm 1.

Algorithm 1. SemiTS(Graph G)
1: compute a DFS tree T of G with root r using the semi-external DFS algorithm

[18];
2: ΩG ← ∅; i ← 1; Stack S ← ∅;
3: PostOrder(r, T );
4: while S �= ∅ do
5: u ← S.pop(); ΩG(u) ← i; i ← i + 1;
6: return ΩG;

7: Procedure PostOrder(TreeNode t, Tree T )
8: if t = NULL then return;
9: for each child tc of t in the corresponding DFS order do

10: PostOrder (tc, T );
11: S.push(t);

SemiTS first computes a DFS tree T of G by using the state-of-the-art semi-
external depth first search algorithm [18] (line 1). To facilitate the reversing of the
post-order, SemiTS utilizes a stack S initializing with ∅ (line 2). Then, it conducts
a post-order traversal on T (line 3). When the traversal finishes, SemiTS pops
the nodes in S and assigns ΩG(u) to u (line 4–6). Procedure PostOrder performs
a post-order traversal on a DFS tree T starting from t. For a given tree node
t, it first visits all its children in the corresponding DFS order (line 9–10) and
then pushes t into the stack S (line 11).

3.2 External Memory Topological Sorting Algorithm

The state-of-the-art external memory algorithm, IterTS, is proposed in [2]. The
main idea of IterTS is that if we have an arbitrary node numbering Ω, we
can obtain the topological sorting ΩG based on Ω by repeatedly adjusting the
assigned numbers of such nodes u and v that (u, v) ∈ E(G) but Ω(u) > Ω(v).

For an arbitrary node numbering Ω, Algorithm 2 calls an edge (u, v) ∈ E(G)
topological sorted edge if Ω(u) < Ω(v) and use |Ω| to denote the number of
topological sorted edges for Ω. Algorithm 2 starts with an initial node numbering
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Algorithm 2. IterTS(Graph G)
1: Ω ← InitOrder(G);
2: while |Ω| < m do
3: Ω ← ImproveOrder(G, Ω);
4: return Ω;

5: Procedure InitOrder(G)
6: compute an out-tree T of G from s; // s is the only node in G with

deg−(s) = 0.
7: compute two orderings Ωl and Ωr by Euler Tour [8] on T ;
8: if |Ωl| < |Ωr| then return Ωr;
9: else return Ωl;

10: Procedure ImproveOrder(G, Ω)
11: compute an out-tree T of G from s based on Ω; // s is the only node in G with

deg−(s) = 0.
12: for each edge (u, v) following the pre-order traverse of T do
13: Ω′(v) → max{Ω(v), Ω′(u) + 1};
14: for each topological sorted edge (u, v) w.r.t Ω in increasing order according to

Ω(v) do
15: Ω′′(v) → max{Ω′(v), Ω′′(u) + 1};
16: compute Ωnew by sorting nodes based on Ω′′;
17: return Ωnew;

by invoking InitOrder (line 1). After obtaining the initial Ω, it iteratively improves
Ω by invoking ImproveOrder until |Ω| is m (line 2–4). For brevity, Algorithm2
assumes G has only a single node s with deg−(s) = 0. Procedure InitOrder aims
to compute a node numbering Ω with a big |Ω| heuristically. It computes an
out-tree T rooted at s of G (line 6), computes two node numbering Ωl and Ωr

through Euler Tour [8] on T (line 7) and returns the node numbering with a
bigger number of topological sorted edges (line 8–9).

Procedure ImproveOrder intends to compute a new Ωnew based on Ω such
that |Ωnew| > |Ω|. It first computes an out-tree T rooted at s such that for each
node u, its parent in T has the maximum assigned number among all its in-
neighbors in G (line 11). After that, it adjusts the assigned number for each node
based on the tree edges in T and the topological sorted edges and generates two
temporary node numberings Ω′ and Ω′′, respectively. For each tree edge (u, v)
in T , it iterates them following the pre-order traverse of T and adjusts Ω′(v) by
setting it as max{Ω(v), Ω′(u)+1} (line 12–13). For each topological sorted edge
(u, v) w.r.t Ω, it iterates them in the increasing order according to their Ω(v)
and adjusts the assigned number of v by setting it as max{Ω′(v), Ω′′(u) + 1}
(line 14–15). In this way, the edges in T and the topological sorted edges w.r.t
Ω are still topological sorted edge w.r.t Ω′′. Then, it computes Ωnew by sorting
the nodes based on Ω′′ and returns Ωnew (line 16–17). Note that Algorithm2
just shows the main idea of IterTS and omits the details about I/O issues. Given
a graph G, Algorithm 2 finishes the topological sorting of G in O(n · sort(|G|))
I/Os.
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3.3 Drawbacks of Existing Solutions

Regarding SemiTS, although it is significantly efficient in terms of computing
topological sorting compared with IterTS [2]. It assumes that the nodes of the
graph can fit in main memory, which does not satisfy our requirements. Regard-
ing IterTS, although IterTS addresses the topological sorting problem upon the
external memory model, it has the following two drawbacks: (1) Underutilization
of available memory. As shown in Algorithm 2, IterTS does not take the avail-
able memory into consideration when computing ΩG, which renders the algorithm
unable to benefit from the availability of extra memory to further improve its per-
formance, even when the memory is abundant. (2) Involvement of other complex
external memory subroutines. Besides the two fundamental primitives scan and
sort in external memory model, IterTS involves other complex external memory
subroutines, such as, external list ranking, external Euler tour and external pri-
ority queue. All these subroutines are complex and hard to implement.

4 A New Approach

4.1 Contraction-Expansion Paradigm

As discussed in Sect. 3, SemiTS is efficient and can fully utilize the available
memory, but it cannot handle the scenario that the nodes of the graph cannot
be loaded in main memory. On the other hand, IterTS is an external memory
solution. However, it cannot use the available memory effectively, limiting the
improvement of its performance from the availability of extra memory. Motivated
by this, we propose a new paradigm combining the merits of these two existing
solutions. Our paradigm has two phases, namely, graph contraction phase and
graph expansion phase.

In the graph contraction phase, we generate a list of graph G1, G2, · · · , Gk,
where G1 = G, and for each 1 ≤ i < k, Gi+1 is generated by removing a
batch of nodes from Gi. The contraction phase stops when the nodes of the
newly generated graph can fit in memory. In the graph expansion phase, after
computing the topological sorting of Gk using SemiTS, the removed nodes are
added back to the graph in the reverse order of their removal during the graph
contraction phase, i.e., the lastly removed nodes in the graph contraction phase
are firstly added back in the graph expansion phase. When a batch of nodes are
added back, we compute the topological sorting for the graph with the new added
nodes. More specifically, given that the topological sorting of Gk is computed
using SemiTS, we compute the topological sorting of Gk−1, Gk−2, · · · , G1 in order
and the topological sorting of Gi is computed based on the topological sorting
of Gi+1. Since G1 = G, the topological sorting of the original graph is obtained
when the expansion phase finishes.

Advantages of Our Paradigm. Compared with the existing solutions, the
advantages of our approach are twofold: (1) Regarding SemiTS, due to the
introduction of contraction and expansion phases, our approach can handle sce-
nario that the memory can not fit the nodes of the given graph. Therefore, our
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Fig. 1. Contraction phase

approach is a genuine external memory solution. (2) In contrast to IterTS, our
approach can utilize the available memory effectively. In our approach, we stop
the contraction phase once the available memory can fit the nodes of the con-
tracted graph and directly use the SemiTS to compute the topological sorting of
the contracted graph. In other words, the more available memory we have, the
less contraction we would conduct. As a result, our approach is sensitive to the
memory size and can significantly benefit from the extra memory considering
the high performance of SemiTS. Besides, our contraction-expansion paradigm
can be achieved by just using scan and sort, which makes our approach easy to
implement.

Due to the adoption of contraction-expansion paradigm, our approach can
obtain the merits of existing solutions. However, to make our paradigm prac-
tically applicable, the following issues should be addressed when designing our
algorithm:

• Contractility: For a given Gi, the number of nodes in the contracted graph
Gi+1 should be smaller than that in Gi, i.e., V (Gi+1) ⊂ V (Gi).

• Expandability: For a given Gi+1 and ΩGi+1 , we should be able to compute
ΩGi

based on ΩGi+1 .
• External-Memory Feasibility: All the algorithms should be able to be imple-

mented in an external-memory manner.

In the following, we will introduce how to address these issues one by one.

4.2 Contraction Phase

In the contraction phase, we focus on solving the contractility issue. It is trivial
if we just consider the contractility alone. For example, we can arbitrarily select
a batch of nodes and generate a new graph by removing those un-selected nodes.
However, this approach makes satisfying the expandability requirement hard in
the expansion phase. Taking the contractility and expandability into considera-
tion simultaneously, we propose a vertex cover based contraction method, which
is based on the following definition:

Definition 3 (Vertex Cover). Given a graph G, a vertex cover of graph is a
subset V ′ of V (G) such that each edge of the graph is incident to at least one
node of the set, i.e., (u, v) ∈ E(G) ⇒ u ∈ V ′ ∨ v ∈ V ′.
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Example 1. Consider the graph Gi in Fig. 1, the node set {v1, v2, v4, v5, v7, v8}
is a vertex cover of Gi, which are shown with grey shadow. And each edge of Gi

is incident to at least one node in the vertex cover, for example, edge (v0, v1) is
incident to v1.

In the contraction phase, for an input graph Gi, we compute a vertex cover
V ′ of Gi and consider the node in V ′ as V (Gi+1). The benefits of choosing a
vertex cover V ′ of Gi as V (Gi+1) are twofold: (1) Based on Definition 3, we can
easily get a vertex cover V ′ such that V ′ ⊂ V (Gi). Therefore, the contractility
is satisfied. (2) As we choose V ′ as V (Gi+1), for any edge (u, v) ∈ E(Gi), either
u ∈ V (Gi+1) or v ∈ V (Gi+1). Therefore, if we know ΩGi+1 , then, for a node
w ∈ V (Gi) \ V (Gi+1), the relative numerical magnitudes of its in-neighbors and
out-neighbors in ΩGi

can be determined. As a result, we can obtain ΩGi
by just

considering w together with its neighbours, which satisfies the expandability
requirements (the details will be discussed in Sect. 4.3).

We can obtain V (Gi+1) by computing a vertex cover V ′ of Gi. However,
just taking the edge of Gi induced by V ′ as E(Gi+1) is not sufficient for the
topological sorting problem. For example, in Fig. 1, if we just keep the edges
induced by {v1, v2, v4, v5, v7, v8} as E(Gi+1), the information that ΩGi+1(v1)
should be smaller than ΩGi+1(v4) is lost. Therefore, we include two types of
edges in E(Gi+1):

Definition 4 (Induced Edge). Given a graph Gi and its vertex cover V ′, let
u, v ∈ V ′. If (u, v) ∈ E(Gi), then (u, v) is an induced edge for Gi+1.

Definition 5 (Contracted Edge). Given a graph Gi and its vertex cover V ′,
let u, v, w be three nodes in V (Gi) and u, v ∈ V ′ ∧ w /∈ V ′. If (u,w) ∈ E(Gi) ∧
(w, v) ∈ E(Gi) ∧ (u, v) /∈ E(Gi), then (u, v) is a contracted edge for Gi+1.

Example 2. Consider Gi in Fig. 1 again, the contracted graph Gi+1 is shown
on the right of Fig. 1. V (Gi+1) is the vertex cover of Gi. E(Gi+1) consists of
two types of edges: the induced edges which are shown with solid line, such as
(v1, v2), and the contracted edges which are shown with dotted line, such as
(v1, v4).

Algorithm Design. Our contraction algorithm, Contract, is shown in Algo-
rithm3. It first computes V (Gi+1) by computing a vertex cover in an external-
memory manner (line 1), then it computes E(Gi+1) by invoking conEdge (line 2).

Regarding computing the vertex cover, in order to reduce the number of iter-
ations in the contraction phase, |Vi+1| should be as small as possible. This leads
to the minimum vertex cover problem which is NP-hard [9]. In the literature,
[3] proposes an external memory algorithm to find a vertex cover V ′ with an
approximation ratio

√
Δ(G)/2+3/2, where Δ(G) is the maximum degree of G.

It defines a total order ≺ for all nodes in the graph based on the node’s degree.
For each edge (u, v) in E(Gi), if u ≺ v, then u is added to V ′, otherwise, v
is added to V ′. Its I/O complexity is O(sort(Gi)). Since we focus on external-
memory topological sorting in this paper, we just use the algorithm in [3] directly
to compute the vertex cover.
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Algorithm 3. Contract(Graph Gi)
1: V (Gi+1) ← compute a vertex cover of Gi in an external-memory manner by [3];
2: E(Gi+1) ← conEdge(Gi, V (Gi+1));

3: Procedure conEdge(Gi, V (Gi+1))
4: E− ← sort (u, v) ∈ E(Gi) by (id(v), id(u));
5: E+ ← sort (u, v) ∈ E(Gi) by (id(u), id(v));
6: Eind ← (u, v) ∈ E(Gi) with u ∈ V (Gi+1) by sequential scan V (Gi+1) and E+;
7: Eind ← sort (u, v) ∈ Eind by (id(v), id(u));
8: Eind ← (u, v) ∈ E(Gi) with u, v ∈ V (Gi+1) by sequential scan V (Gi+1) and Eind;
9: Erem ← (u, v) ∈ E(Gi) with v /∈ V (Gi+1) by sequential scan V (Gi+1) and E−;

10: Erem ← (u, v, nbr+(v, Gi)) with v /∈ V (Gi+1) by sequential scan Erem and E+;
11: for each edge (u, v) ∈ Erem do
12: for each w ∈ nbr+(v, Gi) by sequential scan of Erem do
13: Econ ← Econ ∪ (u, w);
14: E(Gi+1) ← Eind ∪ Econ;
15: return E(Gi+1);

Procedure conEdge computes E(Gi+1) externally for a given Gi and V (Gi+1).
As discussed above, E(Gi+1) consists of two types of edges, namely, the induced
edges and the contracted edges. We denote them as Eind and Econ, respectively.
E−and E+ be the edges of Gi by grouping in-coming and out-going edges for each
node in Gi, which can be obtained by external sorting based on (id(v), id(u)) and
(id(u), id(v)), respectively (line 4–5). Here, sorting based on (id(v), id(u)) means
when sorting edges (u, v), we sort them based on id(v). If two edges have the
same id(v), we sort them based on id(u). conEdge first constructs Eind (line 6–8)
and Econ (line 9–13), and then unions Econ and Eind to construct E(Gi+1) (line
14–15).

To construct Eind, conEdge first computes the edges (u, v) with u ∈ V (Gi+1)
by a sequential scan of V (Gi+1) and E+ simultaneously. When scanning V (Gi+1)
and E+, for each edge (u, v) ∈ E+, if u ∈ V (Gi+1), then (u, v) is added to Eind

(line 6). Then, it sorts all edges (u, v) ∈ Eind based on (id(v), id(u)) (line 7). At
last, it computes the edges (u, v) with u, v ∈ V (Gi+1) by a sequential scan of
V (Gi+1) and Eind simultaneously (line 8). conEdge constructs Econ based on the
set of edges that will be removed from E(Gi). It first computes the edges Erem

in which each edge (u, v) with v /∈ V (Gi+1). Erem can be computed by a single
sequential scan of V (Gi+1) and E− on disk (line 9). When scanning V (Gi+1)
and E−, for each edge (u, v) ∈ E−, if v /∈ V (Gi+1), then (u, v) is added to
Erem. After constructing Erem, for each edge (u, v) ∈ Erem, we compute the out-
neighbors of v, which can be obtained by a single sequential scan of Erem and
E+ (line 10). Then, conEdge constructs Econ using a single sequential scan of all
edges in Erem (line 11–13). In Erem, for each node v removed from Gi, each of its
in-neighbors u in Gi and its out-neighbors nbr+(v,Gi) are stored together in the
form (u, v, nbr+(v,Gi)). When scanning each removed in-coming edge (u, v) of
v, the removed out-going edge (v, w) of v can be obtained in the same sequential
scan of Erem. Then, conEdge adds a contracted edge (u,w) into Eind.
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Lemma 1. Let Gi be the input graph and Gi+1 be the contracted graph for
Algorithm3, respectively, then, V (Gi+1) ⊂ V (Gi).

Proof. Let v be the node in Gi such that for any other node u ∈ V (Gi), we
have u ≺ v. Based on the method in [3] to compute the vertex cover, v cannot
be added into V (Gi+1), because there does not exits an edge (u, v) or an edge
(v, u) with v ≺ u. Thus, the lemma holds. 
�
Lemma 2. Let Gi be the input graph and Gi+1 be the contracted graph for Algo-
rithm3, respectively, assume u and v be two nodes in V (Gi+1), then ΩGi+1(u) <
ΩGi+1(v) if and only if ΩGi

(u) < ΩGi
(v).

Proof. We can prove the lemma based on the procedure of Algorithm 3 directly.

�

Lemma 3. Let Gi be the input graph and Gi+1 be the contracted graph, the I/O
complexity of Algorithm3 is O(sort(|Gi|) + scan(|Gi+1|)).
Proof. This lemma can be proved directly based on the procedure of Algorithm3.


�

4.3 Expansion Phase

In expansion phase, we aim to obtain ΩGi
through the computed ΩGi+1 . Based

on Definition 3, we can divided the nodes in V (Gi) into three types:

• Type-I: the nodes in V (Gi) \ V (Gi+1) without in-neighbors in Gi, i.e., u ∈
V (Gi) \ V (Gi+1) ∧ deg−(u,Gi) = 0.

• Type-II: the nodes in V (Gi) \ V (Gi+1) with in-neighbors in Gi+1 and the
nodes in V (Gi+1) with out-neighbors in Gi, i.e., {u ∈ V (Gi) \ V (Gi+1) ∧
deg−(u,Gi) > 0} ∪ {u ∈ V (Gi+1) ∧ deg+(u,Gi) > 0}.

• Type-III: the nodes in V (Gi+1) without out-neighbors in Gi, i.e., u ∈
V (Gi+1) ∧ deg+(u,Gi) = 0.

For the Type-I nodes, since they have no in-neighbors in Gi, we can obtain
their topological sorting numbers in Gi by assigning their numbers first. For the
Type-II nodes, we consider two types of edges: (1) (u, v) ∈ E(Gi)∧u ∈ V (Gi+1)∧
v ∈ V (Gi) \ V (Gi+1) (2) (u, v) ∈ E(Gi) ∧ u ∈ V (Gi+1) ∧ v ∈ V (Gi+1). We use
Eexp to denote these edges. By sorting the edges in Eexp based on ΩGi+1(u), we
can observe:

Observation 1. For the Type-II nodes of V (Gi) which are also in V (Gi+1),
they appear in the tail position of edges in Eexp and their appearing order in the
tail position of edges in Eexp is consistent with their numerical magnitude in the
topological sorting.
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Algorithm 4. Expand (Graph Gi, Graph Gi+1, TopologicalSorting ΩGi+1)
1: num ← 1; vpos ← 1; k ← 1; curr ← ∅;
2: compute E− and E+ as line 4-5 of Algorithm 3;
3: Erem ← (u, v) ∈ E(Gi) with v ∈ V (Gi) \ V (Gi+1) by sequential scan V (Gi+1) and

E−;
4: V −

zero ← v ∈ V (Gi) \ V (Gi+1) with deg−(v, Gi) = 0 by sequential scan V (Gi) \
V (Gi+1) and Erem;

5: for each u ∈ V −
zero do

6: ΩGi(u) = num; num ← num + 1;
7: Eind ← compute as line 6-8 of Algorithm 3;
8: Erem ← (u, v,REM) for each (u, v) ∈ Erem; Eind ← (u, v, IND) for each (u, v) ∈ Eind;
9: Eexp ← Erem ∪ Eind;

10: Eexp ← sort (u, v,FLAG) ∈ Eexp based on (ΩGi+1(u), id(v));
11: for each (u, v,FLAG) ∈ Eexp do
12: if FLAG = REM then
13: Evpos ← (v, vpos);
14: vpos ← vpos + 1;
15: Evpos ← sort (v, vpos) ∈ Evpos by (id(v), vpos);
16: Evpos ← (v, v′

pos) ∈ Evpos with v′
pos = max{vpos} for v by sequential scan Evpos ;

17: Eexp ← sort (u, v,FLAG) ∈ Eexp based on (id(v), id(u));
18: Eexp ← (u, v,FLAG, v′

pos) by sequential scan Evpos and Eexp;
19: Eexp ← sort (u, v,FLAG, v′

pos) ∈ Eexp based on (ΩGi+1(u), id(v));
20: for each (u, v,FLAG, v′

pos) ∈ Eexp do
21: if curr �= u then
22: ΩGi(u) = num; num ← num + 1; curr ← u;
23: if k = v′

pos then
24: ΩGi(v) = num; num ← num + 1;
25: k ← k + 1;
26: for each u not assigned topological sorting number by sequential scan V (Gi) and

ΩGi do
27: ΩGi(u) = num; num ← num + 1;

Observation 2. For the Type-II nodes of V (Gi) which are in V (Gi)\V (Gi+1),
they only appear in the head position of edges in Eexp and for a specific node
in this case, its last appearance in Eexp is after the first appearances of its in-
neighbors and before the first appearances of its out-neighbors in the tail position
of edges in Eexp.

Following these two observations, we can obtain the topological sorting of
Type-II nodes in Gi based on their appearing orders in Eexp. For the Type-III
nodes, since they have no out-neighbors in Gi, we can obtain their topological
sorting numbers in Gi by handling them at last. By combining the above three
cases together, we can obtain ΩGi

.

Algorithm Design. Our expansion algorithm, Expand, is shown in Algorithm4.
Expand first computes the topological number for the Type-I nodes. It first
computes E− and E+ similarly as Algorithm 3 (line 2). By a simultaneous
sequential scan of V (Gi+1) and E−, it obtains the edges (u, v) ∈ E(Gi) with
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Gi

u v FLAG v’pos
v1 v2 IND -
v1 v3 REM 3
v2 v3 REM 3
v2 v5 IND -
v4 v5 IND -
v4 v6 REM 6
v7 v8 IND -
v8 v9 REM 8

Node (u)
v0 1
v1 2
v2 3
v3 4
v4 5
v6 6
v7 7
v8 8
v9 9
v5 10

Node (u)
v1 1
v2 2
v4 3
v5 4
v7 5
v8 6

2

4

5

3

10 6

7 8 9

Fig. 2. Expansion phase (Color figure online)

v ∈ V (Gi) \ V (Gi+1) and stores them as Erem (line 3). After that, Expand com-
putes the nodes without in-neighbors in Gi by a simultaneous sequential scan of
V (Gi) \ V (Gi+1) and Erem and assigns topological sorting number to them (line
4–6).

Then, Expand handles the topological sorting number assignment for the
Type-II nodes. To obtain their topological sorting numbers, Expand first com-
putes the two types of edges discussed above. The edges (u, v) ∈ E(Gi) ∧ u ∈
V (Gi+1) ∧ v ∈ V (Gi) \ V (Gi+1) has been computed in line 3. For the edges
(u, v) ∈ E(Gi) ∧ u ∈ V (Gi+1) ∧ v ∈ V (Gi+1), they can be computed similarly
as Algorithm 3 (line 7). After that, Expand aims to compute the last appear-
ance for the Type-II nodes in V (Gi) \ V (Gi+1) in the edge sets Eexp sorted by
ΩGi+1(u). To achieve this goal, Expand first arguments the edges in Erem and
Eind with an indicator FLAG, which contains two values: REM and IND, and
combines Erem and Eind together in Eexp (line 8–9). After that, Expand sorts
the edges (u, v,FLAG) ∈ Eexp based on (ΩGi+1(u), id(v)) and computes the last
appearance position for the Type-II nodes in V (Gi) \ V (Gi+1) in Eexp in line
11–18. Note that for the edges with FLAG value IND, we only set their v′

pos as
null in line 18 and sorting by (ΩGi+1(u), id(v)) can be achieved by first augment-
ing the edges with ΩGi+1(u), we omit the details for brevity. After sorting edges
(u, v,FLAG, v′

pos) ∈ Eexp based on (ΩGi+1(u), id(v)) (line 19), Expand sequen-
tially scans edge (u, v,FLAG, v′

pos) ∈ Eexp (line 20). If u is the first time to scan,
it assigns the topological sorting number for u (line 21–22). If v reaches its last
position, it assigns the topological sorting number for v (line 23–25).

For the Type-III nodes, Expand just conducts a simultaneous sequential scan
on V (Gi) and Ω(Gi) and assigns their topological sorting numbers to them (line
26–27).

Example 3. Figure 2 shows an example of expansion phase for Gi. The nodes
in V (Gi) are divided into three types: v0 is the Type-I node, which is shown
in blue. v5 is the Type-III node, which is shown in aqua. The remaining nodes
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Algorithm 5. CoExTS(Graph G)
1: G1 ← G; i ← 1;
2: while M < c × |V (Gi)| do
3: Gi+1 ← Contract(Gi); i ← i + 1;
4: ΩGi ← SemiTS (Gi);
5: while i > 1 do
6: i ← i − 1; ΩGi ← Expand (Gi, Gi+1, ΩGi+1);
7: output topological sorting ΩG of G;

are Type-II nodes. The Type-II nodes in V (Gi+1), such as v1, are shown in
dark grey. The Type-II node in V (Gi) \ V (Gi+1), such as v3, are shown in light
grey. ΩGi+1 shows the computed topological sorting for Gi+1. Eexp consists of
two types of edges: (1) the edges (u, v) with u ∈ V (Gi+1) ∧ v ∈ V (Gi+1), such
as (v1, v2), which are shown with an FLAG value IND. (2) the edges (u, v) with
u ∈ V (Gi+1) ∧ v ∈ V (Gi) \ V (Gi+1), such as (v1, v3), which are shown with an
FLAG value REM. The edges in Eexp are sorted by ΩGi+1(u). The v′

pos value for
an IND edge is null, which is shown as −. The v′

pos value for an REM edge (u, v)
is the last appearance position of v. For example, the v′

pos value for (v1, v3) is
3 as the last appearing position of v3 in Eexp is 3. When computing ΩGi

, we
first compute the topological sorting number for Type-I nodes and v0 is assigned
with topological sorting number 1. When computing the topological number for
Type-II nodes, we scan (u, v,FLAG, v′

pos) ∈ Eexp. If current u is different from
last u, we assign the topological sorting number for u. And if current position
is v′

pos, we assign the topological sorting number for v. At last, we assign the
topological sorting number of Type-III nodes. ΩGi

is shown on the right of Fig. 2.

Lemma 4. Algorithm4 computes ΩGi
correctly.

Proof. The correctness of Algorithm 4 can be directly derived from above
analysis. 
�
Lemma 5. The I/O complexity of Algorithm4 is O(sort(|Gi|) + scan(|Gi+1|)).
Proof. This lemma can be proved directly based on the procedure of Algorithm4.


�

4.4 Our Approach

Our complete algorithm CoExTS is shown in Algorithm 5. It follows the
contraction-expansion paradigm as discussed above. For a given graph G, it
iteratively contracts G until the nodes of the contracted graph Gi can be loaded
in memory (line 2–3). In line 2, M represents the size of available memory size
and c is a constant factor. After computing ΩGi

with the semi-external algorithm
SemiTS (line 4), CoExTS conducts the expansion phase in the reverse order for
the graphs generated in the contraction phase (line 5–6). At last, it outputs ΩG

of the original input graph G (line 7).
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Theorem 1. Given a graph G, Algorithm5 computes ΩG correctly.

Proof. The correctness of Algorithm 5 can be directly derived from above
analysis. 
�
Theorem 2. Given a graph G, let G1, G2, · · · , Gk be the graphs generated in the
contraction phase and IOsemi is the I/O complexity of SemiTS, the I/O complexity
of Algorithm5 is O((

∑k
i=1 sort(|Gi|)) + IOsemi).

Proof. This theorem can be proved according to Lemmas 3 and 5 directly. 
�
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Fig. 3. UK-2007

5 Performance Studies

In this section, we conduct experimental studies by comparing two external
memory algorithms for topological sorting, namely, IterTS (Algorithm 2) and
CoExTS (Algorithm 5). All algorithms are implemented using Visual C++ and
STXXL3 and tested on a Laptop with Intel Core i7 2.8 GHz CPU and 3.5 GB
memory running Windows 7.

Dataset. In our experiments, we use a real world graph and two synthetic
graphs. The real world graph is UK-20074, which contains the webpages and
their hyperlinks information in the .UK domain. The original UK-2007 consists
of 105,895,908 nodes and 3,738,733,568 edges. Since the original UK-2007 con-
tains cycles, we collapse the cycles in UK-2007 and the generated DAG contains
105,895,908 nodes and 1,238,766,251 edges. For synthetic graphs, we generate a
graph by fixing the number of its nodes first and randomly add edges that can-
not form cycles in the graph. We generate two synthetic graphs Random1 and
Random2. Random1 contains 100M nodes with average degree 10 and Random2
contains 100M nodes with average degree 20.

Exp-1: Performance on Real Graph UK-2007. In this experiment, we com-
pare the running time and number of I/Os of IterTS and CoExTS on UK-2007
3 http://stxxl.org/.
4 http://chato.cl/webspam/datasets/uk2007/links/.

http://stxxl.org/
http://chato.cl/webspam/datasets/uk2007/links/


External Topological Sorting in Large Graphs 217

 0

 5

 10

 15

 20

256M 512M 768M 1G

Ti
m

e(
hr

s)
IterTS

CoExTS

(a) Time (Vary Memory)

 0

 0.2

 0.4

 0.6

 0.8

 1

256M 512M 768M 1G

I/O
s(

m
illi

on
s) IterTS

CoExTS

(b) I/Os (Vary Memory)

Fig. 4. Random1

 0

 10

 20

 30

 40

256M 512M 768M 1G

Ti
m

e(
hr

s)

IterTS
CoExTS

(a) Time (Vary Memory)

 0

 0.5

 1

 1.5

 2

256M 512M 768M 1G

I/O
s(

m
illi

on
s) IterTS

CoExTS

(b) I/Os (Vary Memory)

Fig. 5. Random2

when we vary the size of available memory from 256M to 1G. The results are
shown in Fig. 3.

Figure 3(a) shows that (1) The running time of IterTS and CoExTS decrease
as the size of available memory increases and CoExTS outperforms IterTS in all
cases. This is because CoExTS adopts the contraction-expansion paradigm and
uses SemiTS as a subroutine and SemiTS is very efficient for topological sorting
compared with CoExTS. The performance improvement by introducing SemiTS
surpasses the time consumption of graph contraction and expansion. (2) the
performance gap between IterTS and CoExTS increases as the size of available
memory increases. This is because as the size of available memory increases,
the iterations in contraction phase and expansion phase in CoExTS decrease
and we can further exploit the efficiency of SemiTS. On the other hand, IterTS
does not take available memory into consideration during processing. Combining
these two factors together, the performance gap increases as the size of available
memory increases. For the same reasons, Fig. 3(b) shows similar trends on the
number of I/Os when we vary the size of available memory.

Exp-2: Performance on Synthetic Graphs. In this experiment, we compare
the running time and the number of I/Os of IterTS and CoExTS on Random1
and Random2 when we vary the size of available memory from 256M to 1G. The
results are shown in Figs. 4 and 5, respectively.

For the synthetic graphs, we have similar conclusions from the performance
study upon UK-2007. CoExTS also outperforms IterTS in all test cases. When
available memory increases, the running time and I/Os for both IterTS and
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Fig. 6. Scalability

CoExTS decrease. As the size of available memory increases, it is clear that the
performance gap between IterTS and CoExTS increases as well. The reason is
similar as that presented Exp-1.

Exp-3: Scalability. In this experiment, we evaluate the scalability of IterTS
and CoExTS. To test the scalability, we vary the number of nodes from 25M
to 125M in synthetic graphs and record the running time and number of I/Os
of IterTS and CoExTS, respectively. In the first test, the average degree of the
synthetic graphs is 10 and the results are shown in Fig. 6(a) and (b). In the
second test, the average degree of the synthetic graphs is 20 and the results are
shown in Fig. 6(c) and (d). The available memory in this experiment is 512M.

As shown in Fig. 6, the running time and I/Os of both two algorithms increase
as |V | increases. This is because, as |V | increases, IterTS needs more iterations
to adjust the assigned numbers for the nodes incident to the edges which are
not topological sorted edges. In the meantime, the iterations in the contraction
phase and expansion phase of CoExTS also increase as |V | increases. CoExTS
outperforms IterTS for all cases due to the introduction of contraction-expansion
paradigm and the efficiency of SemiTS. From Fig. 6, it is clear that CoExTS has
a better scalability than IterTS.

6 Related Work

Topological sorting is a fundamental problem in graph analysis and has been
extensively studied in the literature. For the in-memory topological sorting algo-
rithms, [9] describes an algorithm by iteratively removing the nodes with in-
degree number 0. [13] proposes a depth first search based algorithm whose idea
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is used in the semi-external topological algorithm. The state-of-the-art external
topological sorting algorithm is proposed in [2]. We introduce it in Sect. 3 and
use it as our baseline in the experiments.

Several other graph algorithms focusing on I/O efficiency are proposed in
the literature. [6] describes an I/O efficient algorithm for the core decomposition
problem. I/O efficient algorithm for the maximal clique enumeration problem is
proposed in [7]. [15] proposes an I/O efficient algorithm for the diversified top-k
clique search problem in large graphs. [3] studies three I/O efficient algorithms
for vertex cover. I/O efficient algorithms for the triangle enumeration problem
are presented in [10]. The I/O efficient algorithm for the k-truss problem is inves-
tigated in [14]. A semi-external algorithm for the depth first search is proposed in
[18]. [16] presents three I/O efficient algorithms for edge connectivity decomposi-
tion problem. [17] studies the Steiner Maximum-Connected Components search
problem in semi-external memory model.

7 Conclusion

In this paper, we study the external topological sorting algorithm in large graphs.
We propose a new contraction-expansion paradigm and devise an external-
memory algorithm CoExTS for the topological sorting problem. The experimen-
tal results demonstrate the efficiency of our proposed algorithm.
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