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Abstract This article provides a high-level overview of some recent works on the
application of quasi-Monte Carlo (QMC)methods to PDEswith random coefficients.
It is based on an in-depth survey of a similar title by the same authors, with an
accompanying software package which is also briefly discussed here. Embedded in
this article is a step-by-step tutorial of the required analysis for the setting known as
the uniform case with first order QMC rules. The aim of this article is to provide an
easy entry point for QMC experts wanting to start research in this direction and for
PDE analysts and practitioners wanting to tap into contemporary QMC theory and
methods.
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1 Introduction

Uncertainty quantification is the science of quantitative characterization and reduc-
tion of uncertainties in both computational and real world applications, and it is the
source of many challenging high dimensional integration and approximation prob-
lems. Often the high dimensionality comes from uncertainty or randomness in the
data, e.g., in groundwater flow from permeability that is rapidly varying and uncer-
tain, or in financial mathematics from the rapid and often unpredictable changes
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within markets. The input data may be a random variable or a random field, in which
case the derived quantity of interest will in general also be a random variable or a
random field. The computational goal is usually to find the expected value or other
statistics of these derived quantities.

A popular example is the flow of water through a disordered porous medium,
modeled by Darcy’s law coupled with the mass conservation law, i.e.,

q(x, ω) + a(x, ω)∇ p(x, ω) = 0 ,

∇ · q(x, ω) = 0 ,

for x in a bounded domain D ⊂ R
d , d ∈ {1, 2, 3}, and for almost all events ω in the

probability space (Ω,A ,P). Here q(x, ω) is the velocity (also called the specific
discharge) and p(x, ω) is the residual pressure, while a(x, ω) is the permeability
(or more precisely, the ratio of permeability to dynamic viscosity) which is mod-
elled as a random field. Uncertainty in a(x, ω) leads to uncertainty in q(x, ω) and
p(x, ω). Quantities of interest include for example the breakthrough time of a plume
of pollution moving through the medium.

QMC for PDEs with Random Coefficients

There is a huge literature on treating these PDEs with random coefficients using
various methods, see e.g., the surveys [1, 23, 43] and the references therein. Here we
are interested in the application of quasi-Monte Carlo (QMC) methods, which are
equal-weight quadrature rules for high dimensional integrals, see e.g., [3, 5, 36–39,
44].

QMC methods are still relatively new to these PDE problems. It began with
the 2011 paper [21] which included comprehensive numerical experiments showing
promising QMC results, but without any theoretical justification. The first fully justi-
fied theorywas provided in the 2012 paper [32], and this has lead to a flood of research
activities. We will follow the recent survey [31] to provide a high-level overview of
how QMC theory can be applied to PDEs with random coefficients. The survey [31]
covered the detailed analysis from six papers [6, 8, 22, 32–34] in a unified view.
Different algorithms have been analyzed: single-level vsmulti-level, deterministic vs
randomized, and first order vs higher order, and theywere considered under different
models for the randomness as we explain below.

It is popular to assume that a(x, ω) is a lognormal random field, that is,
log(a(x, ω)) is a Gaussian random field on the spatial domain D with a speci-
fied mean and covariance function. Then one can use the Karhunen–Loève (KL)
expansion to write log(a(x, ω)) as an infinite series parametrised by a sequence
y j = y j (ω), j ≥ 1, of i.i.d. standard normal random numbers from R. Aside from
the lognormal case, often the simpler uniform case is considered, where a(x, ω) is
written as an infinite series that depends linearly on a sequence y j = y j (ω), j ≥ 1,
of i.i.d. uniform random numbers from a bounded interval of [−1, 1] or [− 1

2 ,
1
2 ]. In

both the lognormal and uniform cases the infinite series is truncated in practice to,
say, s terms. The expected value of any quantity of interest is then approximated by
an s-dimensional integral with respect to the parameters y j , which can in turn be
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approximated by QMC methods, combined with finite element methods for solving
the PDE.

The six papers surveyed in [31] all followed this KL-based general direction.With
respect to theQMCmethod they can be either first order or higher order, which refers
to the rate of convergence being close toO(n−1) orO(n−α), α > 1, with n being the
number of integrand evaluations. With respect to the approximation of the integrand
function they can be either single-level or multi-level, which refers to how spatial
discretization and dimension truncation are performed. A summary of the results is
given in the table below:

Uniform case Lognormal case
First order single-level analysis [32] [22]
First order multi-level analysis [33] [34]
Higher order single-level analysis [6]
Higher order multi-level analysis [8]

The first order results [22, 32–34] are based on randomly shifted lattice rules and
are accompanied by probabilistic error bounds. The higher order results [6, 8] are
based on interlaced polynomial lattice rules and are accompanied by deterministic
error bounds. The lognormal results [22, 34] require a non-standard function space
setting for integrands with domain R

s . A key feature in all these analysis is that the
QMC error bounds are independent of the number of integration variables s. There
is as yet no satisfactory QMC theory that can give higher order convergence for the
lognormal case with error bound independent of s.

Plan of this Article

In Sect. 2 we provide an overview of the different settings and algorithms covered
in the survey [31], with the goal to convey the overall picture while keeping the
exposition as simple and accessible as possible. In Sect. 3 we take a change of pace
and style to give a step-by-step tutorial of the required analysis for the uniform case
with first order QMC rules. That is, we zoom in and focus on the essence of the paper
[32] in such a way that the tutorial can be used to extend the analysis to other cases
by interested readers. Then in Sect. 4 we zoom out again and continue to provide
insights to the key analysis required for the six papers surveyed in [31]. In Sect. 5
we briefly discuss the software accompanying [31]. Finally in Sect. 6 we give a short
conclusion.

Beyond the Survey

There have been many developments beyond the scope of the survey [31].
Instead of using the KL expansion, in the lognormal case one can sample the

random field only at a discrete set of points with respect to the covariance matrix
inherited from the given covariance function of the continuous field. The random
field is then represented exactly at these points, thus eliminating completely the
truncation error associated with the KL-based approach. (Note that interpolation
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may be required at the finite element quadrature nodes.) The resulting large matrix
factorization problem could potentially be handled by circulant embedding and FFT,
if the covariance function is stationary and the grid is regular, see [10]. In fact, this
was the approach taken in the first QMC paper for PDEs with random coefficients
[21], and the corresponding analysis is being considered in [19, 20].

Another way to tackle the large matrix factorization is to make use of H-matrix
techniques, see [24], and this has been considered in [11].

The uniform framework can be extended from the elliptic PDE to the general
framework of affine parametric operator equations, see [42] as well as [6, 8]. A
different QMC theory for the lognormal case is offered in [26]. Further PDE com-
putations with higher order QMC are reported in [14], and with multi-level and
multi-index QMC in [40]. QMC has also been applied to PDEs on the sphere [35],
holomorphic equations [9], Bayesian inversion [4, 41], stochastic wave propagation
[12, 13], and eigenproblems [16].

Moreover, there has been some significant development in the use of functions
with local support in the expansions of a(x, ω) which leads to a simplified norm
estimate for the integrand and a reduced construction cost (pre-computation) for
QMC, see [15, 27, 29].

2 Overview

Throughout this article we refer to the number of integration variables s as the
stochastic dimension, which can be in the hundreds or thousands or more (and
controls the truncation error), in contrast to the spatial dimension d which is just
1, 2 or 3.

2.1 Uniform Versus Lognormal

For a given parameter y we consider the parametric elliptic Dirichlet problem

− ∇ · (a(x, y)∇u(x, y)) = κ(x) for x in D , u(x, y) = 0 for x on ∂D ,

(1)
for domain D ⊂ R

d a bounded, convex, Lipschitz polyhedron with boundary ∂D,
where the spatial dimensiond = 1, 2, or 3 is assumedgiven andfixed.The differential
operators in (1) are understood to be with respect to the physical variable x which
belongs to D. The parametric variable y = (y j ) j≥1 belongs to either a bounded or
unbounded domain, depending on which of the two popular formulations of the
parametric coefficient a(x, y) is being considered.



Application of Quasi-Monte Carlo Methods to PDEs with Random … 57

Uniform Case

In the uniform case, we assume that the y j are independent and uniformly distributed
on [− 1

2 ,
1
2 ], and

a(x, y) = a0(x) +
∑

j≥1

y j ψ j (x) , (2)

with 0 < amin ≤ a(x, y) ≤ amax < ∞ for all x and y. We need further assumptions
on a0 and ψ j , see [31] for details. Here we mention only one important assumption
that there exists p0 ∈ (0, 1) such that

∑

j≥1

‖ψ j‖p0
L∞ < ∞ . (3)

The value of p0 reflects the rate of decay of the fluctuations in (2); later we will see
that it directly affects the QMC convergence rate.

Our goal is to compute the integral, i.e., the expected value, with respect to y, of
a bounded linear functional G applied to the solution u(·, y) of the PDE (1)

∫
[
− 1
2 ,

1
2

]N G(u(·, y)) d y := lim
s→∞

∫
[
− 1
2 ,

1
2

]s G(u(·, (y1, . . . , ys , 0, 0, . . .))) dy1 · · · dys .

(4)

Lognormal Case

In the lognormal case,we assume that the y j are independent standard normal random
numbers on R, and

a(x, y) = a0(x) exp

( ∑

j≥1

y j
√

μ j ξ j (x)

)
, (5)

where a0(x) > 0, the μ j > 0 are non-increasing, and the ξ j are orthonormal in
L2(D). This can arise from the KL expansion in the case where log(a) is a stationary
Gaussian random field with a specified mean and covariance function; a popular
choice is the Matérn covariance.

Our goal now is the integral of G(u(·, y)) over y ∈ R
N with a countable product

Gaussian measure μG(d y) (formally, we restrict the domain to some Y ⊂ R
N with

full measure μG(Y ) = 1, but we omit this in the notation)

∫

RN

G(u(·, y))
∏

j≥1

φnor(y j ) d y =
∫

[0,1]N
G(u(·, Φ−1

nor(w))) dw , (6)
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where φnor(y) := exp(−y2/2)/
√
2π is the univariate standard normal probability

density function, while Φ−1
nor denotes the inverse of the corresponding cumulative

distribution function, and is applied component-wise to a vector. The transformed
integral over the unit cube on the right-hand side of (6) is obtained by the change of
variables y = Φ−1

nor(w).

2.2 Single-Level Versus Multi-level

Single-Level Algorithms

We approximate the integral (4) or (6) in three steps:

i. Dimension truncation: the infinite sum in (2) or (5) is truncated to s terms.
ii. Finite element discretization: the PDE (1) in weak formulation (see (13) below)

is solved using a finite element method with meshwidth h.
iii. QMC quadrature: the integral of the finite element solution for the truncated

problem is estimated using a deterministic or randomized QMC method.

The deterministic version of this algorithm is

1

n

n∑

i=1

G(ush(·, yi )) , yi =
{
t i − 1

2 for uniform,

Φ−1
nor(t i ) for lognormal,

(7)

where t1, . . . , tn ∈ [0, 1]s are n QMC points from the s-dimensional standard unit
cube. In the uniform case, these points are translated to the unit cube [− 1

2 ,
1
2 ]s . In

the lognormal case, these points are mapped to the Euclidean space Rs by applying
the inverse of the cumulative normal distribution function component-wise.

A randomized version of this algorithm with random shifting is given by

1

r

r∑

k=1

1

n

n∑

i=1

G(ush(·, yi,k)) , yi,k =
{

{t i + Δk} − 1
2 for uniform,

Φ−1
nor({t i + Δk}) for lognormal,

(8)

where t1, . . . , tn ∈ [0, 1]s are n QMC points as above, and Δ1, . . . ,Δr ∈ [0, 1]s are
r independent random shifts generated from the uniform distribution on [0, 1]s . The
braces in {t i + Δk} mean that we take the fractional part of each component in the
vector t i + Δk . Other randomization strategies can be used analogously but need
to be chosen appropriately to preserve the special properties of the QMC points.
Randomized algorithms have the advantages of being unbiased as well as providing
a practical error estimate.

Multi-level Algorithms

The general concept of multi-level can be explained as follows (see e.g., [17]):
if we denote the integral (4) or (6) by I∞ and define a sequence I0, I1, . . . of
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approximations converging to I∞, then we can write I∞ as a telescoping sum
I∞ = (I∞ − IL) + ∑L

�=0(I� − I�−1), I−1 := 0, and then apply different quadrature
rules to the differences I� − I�−1, which we anticipate to get smaller as � increases.
Here we define I� to be the integral of G(us�h�

) corresponding to the finite element
solution with meshwidth h�, for the truncated problem with s� terms, where 1 ≤
s0 ≤ s1 ≤ s2 ≤ · · · ≤ sL ≤ · · · and h0 ≥ h1 ≥ h2 ≥ · · · ≥ hL ≥ · · · > 0, so that I�
becomes a better approximation to I∞ as � increases.

The deterministic version of our multi-level algorithm takes the form (remember-
ing the linearity of G)

L∑

�=0

(
1

n�

n�∑

i=1

G((us�h�
− us�−1

h�−1
)(·, y�

i ))

)
, y�

i =
{
t�i − 1

2 for uniform,

Φ−1
nor(t

�
i ) for lognormal,

(9)

where we apply an s�-dimensional QMC rule with n� points t�1, . . . , t
�
n�

∈ [0, 1]s� to
the integrand G(us�h�

− us�−1
h�−1

), and we define us−1
h−1

:= 0.
The corresponding randomized version can be obtained analogously to (8) by

taking r� random shifts at each level, noting that all shifts from all levels should be
independent.

2.3 First-Order Versus Higher-Order

Up to this point we have said very little about QMC methods, other than noting that
they are equal-weight quadrature rules as seen in (7). Actually, we will not say much
about QMC methods in this article at all. In this subsection we will mention three
different QMC theoretical settings which have been used for PDEs applications,
giving just enough details in the first setting needed for the tutorial in Sect. 3. These
three settings are discussed in slightly more detail in [30] in this volume, and more
comprehensively in [31]; see also the references in these papers.

First Order QMC Over the Unit Cube – Randomly Shifted Lattice Rules for
Weighted Sobolev Spaces

Suppose wewish to approximate the s-dimensional integral over the unit cube [0, 1]s
∫

[0,1]s
f ( y) d y , (10)

where the integrand f belongs to a weighted Sobolev space of smoothness one, with
the unanchored norm defined by (see e.g., [45])

‖ f ‖γ =
[ ∑

u⊆{1:s}

1

γu

∫

[0,1]|u|

(∫

[0,1]s−|u|

∂ |u| f
∂ yu

( y) d y{1:s}\u

)2

d yu

]1/2

. (11)
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Here {1 : s} is a shorthand notation for the set of indices {1, 2, . . . , s}, (∂ |u| f )/(∂ yu)
denotes the mixed first derivative of f with respect to the “active” variables yu =
(y j ) j∈u, while y{1:s}\u = (y j ) j∈{1:s}\u denotes the “inactive” variables. There is a
weight parameter γu ≥ 0 associated with each subset of variables yu to moderate
the relative importance between the different sets of variables.We denote the weights
collectively by γ .

In this setting we pair the weighted Sobolev space with randomly shifted lattice
rules; the complete theory can be found in [5]. They approximate the integral (10)
by

1

n

n∑

i=1

f (t i ), t i =
{
i z
n

+ Δ

}
,

where z ∈ Z
s is known as the generating vector, Δ is a random shift drawn from

the uniform distribution over [0, 1]s , and as in (8) the braces indicate that we take
the fractional parts of each component in a vector. It is known that good generating
vectors can be obtained using a CBC construction (component-by-component con-
struction), determining the components of z one at a time sequentially, to achieve
first order convergence in this setting, where the implied constant can be independent
of s under appropriate conditions on the weights γ .

Specifically, if n is a power of 2 then we know that the CBC construction yields
the root-mean-square error bound (with respect to the uniform random shift), for all
λ ∈ (1/2, 1],

r.m.s. error ≤
(
2

n

∑

∅
=u⊆{1:s}
γ λ
u [ϑ(λ)]|u|

)1/(2λ)

‖ f ‖γ , (12)

where ϑ(λ) := 2ζ(2λ)/(2π2)λ, with ζ(a) := ∑∞
k=1 k

−a denoting the Riemann zeta
function. A similar result holds for general n. The best rate of convergence clearly
comes from choosing λ close to 1/2.

We need some structure in the weights γ for the CBC construction cost to be
feasible in practice. Fast CBC algorithms (using FFT) can find a generating vector
of a good n-point lattice rule in s dimensions in O(s n log n) operations in the case
of product weights, and inO(s n log n + s2 n) operations in the case of PODweights
(see (25) ahead).

First Order QMC Over Rs

Wecanpair randomly shifted lattice ruleswith a special function space setting overRs

to achieve first order convergence. The norm in this function space setting includes
some additional weight functions to control the behavior of the derivatives of the
functions as the components go to ±∞. The root-mean-square error bound takes the
same form as (12), but with a different definition of the norm and ϑ(λ).
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Higher Order QMC Over the Unit Cube

We can pair a family of QMC methods called interlaced polynomial lattice rules
with another special function space setting over the unit cube to achieve higher order
convergence. The norm in this function space setting involves higher order mixed
derivatives of the functions. The key advantage of this family of QMCmethods over
other higher order QMC methods is that, in the cost of finding a generating vector
which achieves the best theoretical convergence rate, the order or the interlacing
factor appears as a multiplying factor rather than sitting in the exponent of the
number of points n.

3 Tutorial

We conclude from the error bound (12) that the first step in applying QMC theory
is to estimate the norm of the practical integrand. We see from (7), (8), and (9) that
this means we need to estimate the norms

‖G(ush)‖γ and ‖G(us�h�
− us�−1

h�−1
)‖γ ,

for the single-level and the multi-level algorithms, respectively.
In this sectionwe provide a step-by-step tutorial on the analysis for the single-level

algorithm in the uniform case with first order QMC rules.

Differentiate the PDE

1. We start with the variational formulation of the PDE (1): find u(·, y) ∈ H 1
0 (D)

such that
∫

D
a(x, y)∇u(x, y) · ∇w(x) dx =

∫

D
κ(x)w(x) dx ∀w ∈ H 1

0 (D) . (13)

Here we consider the Sobolev space H 1
0 (D) of functions which vanish on the

boundary of D, with norm ‖w‖H 1
0

:= ‖∇w‖L2 , and together with the dual space
H−1(D) and pivot space L2(D).

2. We take themixed partial derivatives ∂ν with respect to ywithmulti-index ν 
= 0
(i.e., we differentiate ν j times with respect to y j for each j) on both sides of (13)
to obtain

∫

D
∂ν

(
a(x, y)∇u(x, y) · ∇w(x)

)
dx = 0 ∀w ∈ H 1

0 (D) . (14)

We canmove the derivatives inside the integrals because they operate on different
variables y and x, respectively. The right-hand side vanishes because it does not
depend on y.
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3. Next we apply the Leibniz product rule on the left-hand side of (14) to obtain

∫

D

( ∑

m≤ν

(
ν

m

)
(∂ma)(x, y) ∇(∂ν−mu)(x, y) · ∇w(x)

)
dx = 0 ∀w ∈ H1

0 (D) , (15)

where the sum is over all multi-indices m satisfying m ≤ ν (i.e., m j ≤ ν j for
all j), and

(
ν

m

) := ∏
j≥1

(
ν j

m j

)
. So far we have made no use of any assumption on

a(x, y).

4. For the uniform case, it is easy to see from the formula (2) of a(x, y) that

(∂ma)(x, y) =

⎧
⎪⎨

⎪⎩

a(x, y) if m = 0 ,

ψ j (x) if m = e j ,

0 otherwise ,

(16)

where e j denotes the multi-index whose j th component is 1 and all other com-
ponents are 0. Essentially, due to the linearity of a with respect to each y j , if we
differentiate once then we obtain ψ j , and if we differentiate a second time with
respect to any variable we get 0.

5. Substituting (16) into (15) and separating out the m = 0 term, we obtain

∫

D
a(x, y)∇(∂νu)(x, y) · ∇w(x) dx

= −
∑

j≥1

ν j

∫

D
ψ j (x)∇(∂ν−e j u)(x, y) · ∇w(x) dx ∀w ∈ H 1

0 (D) . (17)

6. Note that (17) holds for all test functions in H 1
0 (D). We now take the particular

choice of w = (∂νu)(·, y) (yes, it is allowed to depend on y) in (17). Applying
a(x, y) ≥ amin to the left-hand side, and |ψ j (x)| ≤ ‖ψ j‖L∞ and the Cauchy–
Schwarz inequality to the right-hand side, we obtain

amin

∫

D
|∇(∂νu)(x, y)|2 dx (18)

≤
∑

j≥1

ν j ‖ψ j‖L∞

( ∫

D
|∇(∂ν−e j u)(x, y)|2 dx

)1/2( ∫

D
|∇(∂νu)(x, y)|2 dx

)1/2

.

7. Canceling one common factor from both sides of (18) and then dividing through
by amin, we obtain the recurrence

‖∇(∂νu)(·, y)‖L2 ≤
∑

j≥1

ν j b j ‖∇(∂ν−e j u)(·, y)‖L2 , b j := ‖ψ j‖L∞
amin

.

(19)
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8. Finally we prove by induction that

‖∇(∂νu)(·, y)‖L2 ≤ |ν|! bν ‖κ‖H−1

amin
, (20)

where |ν| := ∑
j≥1 ν j and bν := ∏

j≥1 b
ν j

j .

a. Base step. We return to the variational form (13) and take w = u(·, y).
Applying a(x, y) ≥ amin to the left-hand side and estimating the right-hand
side using duality pairing |〈κ, u(·, y)〉| ≤ ‖κ‖H−1 ‖u(·, y)‖H 1

0
, we obtain

amin ‖∇u(·, y)‖2L2
≤ ‖κ‖H−1 ‖∇u(·, y)‖L2 ,

which can be rearranged to yield the case ν = 0 in (20).
b. Induction step. As the induction hypothesis, we assume that (20) holds

for all multi-indices of order < |ν|. Then we have

‖∇(∂ν−e j u)(·, y)‖L2 ≤ |ν − e j |! bν−e j ‖κ‖H−1

amin
.

Substituting this into (19) and noting that ν j |ν − e j |! = |ν|! and b j b
ν−e j =

bν , we obtain (20) and conclude the induction.

Estimate the Norm

9. We want to estimate the norm ‖G(ush)‖γ . We see from the definition of the
norm in (11) that we need to obtain estimates on the mixed first derivatives of
G(ush(·, y)) with respect to y. Using linearity and boundedness of G, we have

∣∣∣∣
∂ |u|

∂ yu
G(ush(·, y))

∣∣∣∣ =
∣∣∣∣G

(
∂ |u|

∂ yu
ush(·, y)

)∣∣∣∣ ≤ ‖G‖H−1

∥∥∥∥
∂ |u|

∂ yu
ush(·, y)

∥∥∥∥
H 1
0

. (21)

10. We can repeat the above proof of (20) for the truncated finite element solution ush
instead of the true solution u. Then we restrict the result to mixed first derivatives
(i.e., ν j ≤ 1 for all j) and deduce that

∥∥∥∥
∂ |u|

∂ yu
ush(·, y)

∥∥∥∥
H 1
0

≤ |u|!
(∏

j∈u
b j

)‖κ‖H−1

amin
, u ⊆ {1 : s} . (22)

11. Combining (21) with (22) and substituting the upper bound into the definition
of the norm (11), we conclude that

‖G(ush)‖γ ≤ ‖κ‖H−1‖G‖H−1

amin

( ∑

u⊆{1:s}

(|u|!)2 ∏
j∈u b

2
j

γu

)1/2

. (23)
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Choose the Weights

12. Nowwe apply the upper bound on the norm (23) in the error bound for randomly
shifted lattice rules (12), to yield (leaving out some constants as indicated by �)
for all λ ∈ (1/2, 1],

r.m.s. error �
(
2

n

∑

u⊆{1:s}
γ λ
u [ϑ(λ)]|u|

)1/(2λ)( ∑

u⊆{1:s}

(|u|!)2 ∏
j∈u b

2
j

γu

)1/2

.

(24)

13. With elementary calculus, for any λ, we can minimize the the upper bound in
(24) with respect to the weights γu to yield the formula

γu =
(

|u|!
∏

j∈u

b j√
ϑ(λ)

)2/(1+λ)

. (25)

This form of weights is called product and order dependent weights, or POD
weights in short, because of the presence of some product factors as well as the
cardinality of u.

14. We substitute (25) into (24) and simplify the expression to

r.m.s. error (26)

�
(
2

n

)1/(2λ)[ ∑

u⊆{1:s}

(
|u|!

∏

j∈u

(
b j [ϑ(λ)]1/(2λ)

))2λ/(1+λ)](1+λ)/(2λ)

.

15. We now derive a condition on λ for which the sum in (26) is bounded indepen-
dently of s. In an abstract form, we have

∑

u⊆{1:s}

(
|u|!

∏

j∈u
α j

)k

=
s∑

�=0

(�!)k
∑

u⊆{1:s}, |u|=�

∏

j∈u
αk
j ≤

s∑

�=0

(�!)k−1

( s∑

j=1

αk
j

)�

,

where the inequality holds because each term
∏

j∈u αk
j from the left-hand side of

the inequality appears in the expansion (
∑s

j=1 αk
j )

� exactly �! times and yet the
expansion contains other terms. The right-hand side is bounded independently
of s if

∑∞
j=1 αk

j < ∞ and k < 1, which can be verified by the ratio test. In our
case, we have k = 2λ/(1 + λ) and

∑∞
j=1 αk

j = [ϑ(λ)]1/(1+λ)
∑∞

j=1 b
k
j < ∞ if

k ≥ p0, where we recall that b j is defined in (19) and p0 is defined in (3). Hence
we require

p0 ≤ 2λ

1 + λ
< 1 ⇐⇒ p0

2 − p0
≤ λ < 1 . (27)
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16. Clearly the best rate of convergence is obtained by taking λ as small as possible.
Combining the original constraint of λ ∈ (1/2, 1] with (27), we now take

λ =

⎧
⎪⎨

⎪⎩

1

2 − 2δ
for δ ∈ (

0, 1
2

)
when p0 ∈ (

0, 2
3

]
,

p0
2 − p0

when p0 ∈ (
2
3 , 1

)
.

(28)

Fast CBC Construction

17. The chosen weights (25) with λ given by (28) are then fed into the CBC con-
struction to produce tailored randomly shifted lattice rules that achieve a root-
mean-square error of order

n−min(1/p0−1/2,1−δ), δ ∈ (
0, 1

2

)
,

with the implied constant independent of s, where p0 is given by (3). The fast
CBC construction with POD weights can then find a good generating vector in
O(s n log n + s2 n) operations.

4 Key Analysis

Having completed our embedded tutorial in the previous section, we now continue
to provide our overview of the analysis required in applying QMC to PDEs with
random coefficients.

Some Hints at the Technical Difficulties for the Multi-level Analysis

We have seen in the uniform case with the single-level algorithm that the key is to
estimate ‖G(ush)‖γ , and this is achieved by estimating (see (20) and [31, Lemma6.1])

‖∇∂νu(·, y)‖L2 .

For the multi-level algorithm, the key estimate is ‖G(us�h�
− us�−1

h�−1
)‖γ , and we need to

estimate in turn (see [31, Lemmas6.2–6.4])

‖Δ∂νu(·, y)‖L2 , ‖∇∂ν(u − uh)(·, y)‖L2 , and |∂νG((u − uh)(·, y))|.

All three bounds involve factors of the form (|ν|+a1)! bν
for a1 ≥ 0 and a sequence

b j similar to the previously defined b j . Assuming that both the forcing term κ and
the linear functional G are in L2(D), we obtain that the second bound is of order h
and the third bound is of order h2. The difficulty is that we need to establish these
regularity estimates simultaneously in x and y. We also use duality tricks to gain on
the convergence rate due to the linear functional G.
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Some Hints at the Technical Difficulties for the Lognormal Case

For the lognormal case the argument is quite technical due to the more compli-
cated form of a(x, y). In the single-level algorithm we need to estimate (see [31,
Lemma6.5])

‖∇∂νu(·, y)‖L2 by first estimating ‖a1/2(·, y)∇∂νu(·, y)‖L2 .

In the multi-level algorithm we need to estimate (see [31, Lemma6.6])

‖Δ∂νu(·, y)‖L2 by first estimating ‖a−1/2(·, y)∇ · (a(·, y)∇∂νu(·, y))‖L2 ,

and then estimate in turn (see [31, Lemmas6.7–6.8])

‖a1/2(·, y)∇∂ν(u−uh)(·, y)‖L2 and |∂νG((u − uh)(·, y))| .

All bounds involve factors of the form J ( y) (|ν|+a1)! βν for a1 ≥ 0 and some
sequence β j , where J ( y) indicates some factor depending on y which is not present
in the uniform case. The proofs are by induction, and the tricky part is knowing what
multiplying factor of a(·, y) should be included in the recursion. The growth of J ( y)
needs to be taken into account when estimating the norm.

Summary of Results

Nowwe summarize and compare the results from [6, 8, 32, 33] for the uniform case:

First-order single-level [33]

s−2(1/p0−1) + ht+t ′ + n−min(1/p0−1/2,1−δ) (r.m.s.)

First-order multi-level [34]

s−2(1/p0−1)
L + ht+t ′

L +
L∑

�=0

n−min(1/p1−1/2,1−δ)

�

(
θ�−1 s

−(1/p0−1/p1)
�−1 + ht+t ′

�−1

)
(r.m.s.)

Higher-order single-level [4]

s−2(1/p0−1) + ht+t ′ + n−1/p0

Higher-order multi-level [6]

s−2(1/p0−1)
L + ht+t ′

L +
L∑

�=0

n−1/pt
�

(
θ�−1 s

−(1/p0−1/pt )
�−1 + ht+t ′

�−1

)

For the first-order results, the “r.m.s.” in brackets indicates that the error is in the
root-mean-square sense since we use a randomized QMC method. The higher-order
results are deterministic.Without giving the full details, we simply say that the results
include general parameters t and t ′ for the regularity of κ and G, respectively. Recall
that p0 corresponds to the summability of ‖ψ j‖L∞ , see (3). Here p1 corresponds
essentially to the summability of ‖∇ψ j‖L∞ , while pt corresponds analogously to
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higher derivatives ofψ j . For the multi-level results we include the analysis for poten-
tially taking different s� at each level: θ�−1 is 0 if s� = s�−1 and is 1 otherwise.

In the single-level algorithms, the error is the sum of three terms. In the multi-
level algorithms, we see the multiplicative effect between the finite element error
and the QMC error. However, comparing p1 and pt with p0, we see that multi-level
algorithms need stronger regularity in x than single-level algorithms.

Going from first-order to higher-order results, we see that the cap of n−(1−δ) is
removed. We also see a gain of an extra factor of n−1/2; this benefit appears to arise
from the switch of function space setting to a non-Hilbert space.

The error versus cost analysis depends crucially on the cost assumptions. For the
single-level algorithms, we simply choose n, s and h to balance three errors. In the
multi-level algorithms, we choose n�, s�, h� to minimize the total cost for a fixed
total error using Lagrange multiplier arguments.

For the lognormal case we have similar first order results, see [22, 34]. There is
no higher order results for the lognormal case because presently there is no QMC
theory in this setting.

5 Software

The software package QMC4PDE accompanies the survey [31], see https://people.
cs.kuleuven.be/~dirk.nuyens/qmc4pde/. Here we very briefly outline its usage.

Construction of the Generating Vector in Python

In the analysis for the PDE problems we obtain generic bounds on mixed derivatives
of the form

|∂νF( y)| �
(
(|ν| + a1)!

)d1
s∏

j=1

(a2Bj )
ν j exp(a3Bj |y j |),

for some constants a1, a2, a3, d1 and some sequence Bj , where

F( y) =
{
G(ush) for single-level algorithms,

G(ush�
− ush�−1

) for multi-level algorithms,

and in particular {
a3 = 0 for the uniform case,

a3 > 0 for the lognormal case.

The Python construction script takes the number of points (as a power of 2), the
dimension, and all these parameters as input from the user, works out the appropriate
weights γu, and then constructs a good generating vector for the QMC rule. This
is either a lattice sequence (constructed following a minimax strategy as described

https://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/
https://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/
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in [2]) or an interlaced polynomial lattice rule. In the latter case the script also
assembles the interlaced generating matrices, because this is the most convenient
way to generate the points.

• To construct a generating vector for a lattice sequence (output written to file
z.txt)

## uniform case, 100-dim, 2ˆ10 points, with specified bounds b:

./lat-cbc.py --s=100 --m=10 --d2=3 --b="0.1 * j**-3 / log(j+1)"

## lognormal case, 100-dim, 2ˆ10 points, with algebraic decay:

./lat-cbc.py --s=100 --m=10 --a2="1/log(2)" --a3=1 --d2=3 --c=0.1

• To construct generating matrices for an interlaced polynomial lattice rule (output
written to file Bs53.col)

## 100-dim, 2ˆ10 points, interlacing 3, with bounds from file:

./polylat-cbc.py --s=100 --m=10 --alpha=3 --a1=5 --b_file=in.txt

Point Generators in Matlab/Octave (also available in C++ and Python)

Here are some Matlab/Octave usage examples for generating the actual QMC point
sets from the output files of the Python construction script.

• To generate a lattice sequence (specified by the file z.txt)

load z.txt % load generating vector

latticeseq_b2(’init0’, z) % initialize the generator

Pa = latticeseq_b2(20, 512); % first 512 20-dim points

Pb = latticeseq_b2(20, 512); % next 512 20-dim points

• To generate an interlaced polynomial lattice rule (specified by the file Bs53.col)

load Bs53.col % load generating matrices

digitalseq_b2g(’init0’, Bs53) % initialize the generator

Pa = digitalseq_b2g(100, 512); % first 512 100-dim points

Pb = digitalseq_b2g(100, 512); % next 512 100-dim points

The same function digitalseq_b2g can also be used to generate interlaced
Sobol′ points by specifying the corresponding interlaced generating matrices. The
parameters for generating Sobol′ points are taken from [28].
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• To generate an interlaced Sobol′ sequence (interlaced matrices specified by the
file sobol_alpha3_Bs53.col)

load sobol_alpha3_Bs53.col % load generating matrices

digitalseq_b2g(’init0’, sobol_alpha3_Bs53) % initialize

Pa = digitalseq_b2g(50, 512);} % first 512 50-dim

Pb = digitalseq_b2g(50, 512);} % next 512 50-dim

The last example produces interlaced Sobol′ points with interlacing factor α = 3.
They can provide third order convergence if the integrand has sufficient smoothness.

6 Concluding Remarks

QMC (deterministic or randomized) convergence rate and implied constant can be
independent of the dimension. This is achieved by working in a weighted function
space setting. To applyQMC theory,we need an estimate of the normof the integrand,
and in turn this can help us to choose appropriate weights for the function space. The
chosen weights then enter the fast CBC construction of the generating vector for the
QMC points. The pairing between the function space setting and the QMC method
is very important, in the sense that we want to achieve the best possible convergence
rate under the weakest assumption on the problem. In practice, it may be that an
off-the-shelf QMC rule works just as well, barring no theory.

In this article we considered multi-level algorithms. There are other cost saving
strategies for the lognormal case and for other general situations, see e.g., [7, 25] as
well as [18, 30] in this volume.Moreover, there have beenmany others developments
on the application of QMC to PDEs with random coefficients, for some examples
see the last part of the introduction.
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