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Preface

This volume represents the refereed proceedings of the Twelfth International
Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific
Computing which was held at the Stanford University from August 14 to 19, 2016.
It contains a limited selection of articles based on presentations given at the
conference.

The conference was organized by Art Owen (chair), Peter Glynn, Wing Wong,
and Kay Giesecke, all of Stanford University. The conference program was
arranged by those organizers joined by an international committee consisting of:

• Dmitriy Bilyk (USA, Minnesota)
• Nicolas Chopin (France, ENSAE)
• Ronald Cools (Belgium, KU Leuven)
• Josef Dick (Australia, University of New South Wales)
• Arnaud Doucet (UK, Oxford)
• Henri Faure (France, Aix-Marseille Université)
• Mike Giles (UK, Oxford University)
• Paul Glasserman (USA, Columbia University)
• Michael Gnewuch (Germany, Universität Kaiserslautern)
• Stefan Heinrich (Germany, Universität Kaiserslautern)
• Fred Hickernell (USA, Illinois Institute of Technology)
• Aicke Hinrichs (Germany, Universität Rostock)
• Christophe Hery (USA, Pixar)
• Wenzel Jakob (Switzerland, ETH & Disney)
• Alexander Keller (Germany, NVIDIA)
• Frances Kuo (Australia, University of New South Wales)
• Dirk Kroese (Australia, The University of Queensland)
• Pierre L’Ecuyer (Canada, Université de Montréal)
• Erich Novak (Germany, Friedrich-Schiller-Universität Jena)
• Gareth Peters (UK, University College London)
• Aneta Karaivanova (Bulgaria, Bulgarian Academy of Sciences)
• Dirk Nuyens (Belgium, KU Leuven)
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• Faming Liang (USA, U Florida, Gainesville)
• Gerhard Larcher (Austria, Johannes Kepler Universität Linz)
• Christiane Lemieux (Canada, University of Waterloo)
• Makoto Matsumoto (Japan, Hiroshima University)
• Thomas Müeller-Gronbach (Germany, Universität Passau)
• Harald Niederreiter (Austria, Austrian Academy of Sciences)
• Klaus Ritter (Germany, Universität Kaiserslautern)
• Wolfgang Schmid (Austria, Universität Salzburg)
• Steve Scott (USA, Google)
• Xiaoqun Wang (China, Tsinghua University)
• Yazhen Wang (USA, Wisconsin)
• Grzegorz Wasilkowski (USA, University of Kentucky)
• Dawn Woodard (USA, Uber)
• Henryk Woźniakowski (Poland, University of Warsaw)
• Qing Zhou (USA, UCLA)

This conference continued the tradition of biennial MCQMC conferences initiated
by Harald Niederreiter, held previously at:

1. Las Vegas, USA (1994)
2. Salzburg, Austria (1996)
3. Claremont, USA (1998)
4. Hong Kong (2000)
5. Singapore (2002)
6. Juan-Les-Pins, France (2004)
7. Ulm, Germany (2006)
8. Montreal, Canada (2008)
9. Warsaw, Poland (2010)

10. Sydney, Australia (2012)
11. Leuven, Belgium (2014)

The next conference will be held in Rennes, France, in July 2018.
The proceedings of these previous conferences were all published by Springer

Verlag, under the following titles:

• Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing
(H. Niederreiter and P. J.-S. Shiue, eds.)

• Monte Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter,
P. Hellekalek, G. Larcher and P. Zinterhof, eds.)

• Monte Carlo and Quasi-Monte Carlo Methods 1998 (H. Niederreiter and
J. Spanier, eds.)

• Monte Carlo and Quasi-Monte Carlo Methods 2000 (K.-T. Fang,
F. J. Hickernell and H. Niederreiter, eds.)

• Monte Carlo and Quasi-Monte Carlo Methods 2002 (H. Niederreiter, ed.)
• Monte Carlo and Quasi-Monte Carlo Methods 2004 (H. Niederreiter and

D. Talay, eds.)
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• Monte Carlo and Quasi-Monte Carlo Methods 2006 (A. Keller, S. Heinrich and
H. Niederreiter, eds.)

• Monte Carlo and Quasi-Monte Carlo Methods 2008 (P. L’Ecuyer and A. Owen,
eds.)

• Monte Carlo and Quasi-Monte Carlo Methods 2010 (L. Plaskota and
H. Woźniakowski, eds.)

• Monte Carlo and Quasi-Monte Carlo Methods 2012 (J. Dick, F. Y. Kuo,
G. W. Peters and I. H. Sloan, eds.)

• Monte Carlo and Quasi-Monte Carlo Methods 2014 (R. Cools and D. Nuyens,
eds.)

The program included talks on a rich variety of topics centered around Monte Carlo,
quasi-Monte Carlo, discrepancy, Markov chain Monte Carlo, and related topics.
There were over 220 registrants and over 180 talks including 3 tutorials and 10
plenary talks. The tutorials by Pierre L’Ecuyer, Fred Hickernell, and Frances Kuo
introduced basic QMC ideas to participants from other fields. The plenary speakers
were Christoph Aistleitner, Jose Blanchet, Nicolas Chopin, Arnaud Doucet, Peter
Frazier, Michael Jordan, Frances Kuo, Christiane Lemieux, Dirk Nuyens, and
Andrew Stuart. As we write this, slides at mcqmc2016.stanford.edu include
all plenary and tutorial talks. That site also has a group photograph.

The heavy lifting of running a conference was carried out by many people.
Stanford statistics staff members Ellen van Stone, Emily Lauderdale, Heather
Murthy, and Joanna Yu looked after many organizational and some artistic details.
Students Keli Liu, Amir Sepehri, and Zeyu Zhang rang chimes and lead campus
tours. Stanford conference services people Suzette Escobar, Meredith Noe, John
Ventrella, and Dixee Kimball, lead by Brigid Neff, kept everything running
smoothly. Sunshine Cootauco of Stanford FedEx made sure that our program
booklet came out nicely.

Some fond memories include Jojo Styles and Rich Armstrong of Bossa Nuevo
performing at the reception, Fred Hickernell receiving the 2016 Joseph F. Traub
Prize for Achievement in Information-Based Complexity from Henryk
Woźniakowski at the banquet, and Ph.D. student Adrian Ebert of KU Leuven
winning the ‘know your point sets’ prize, a Bossa Nuevo CD provided by Carmen
Milagro. Pieterjan Robbe and Christian Robert also submitted notable entries.

The papers in this volume cover theory and applications of Monte Carlo and
quasi-Monte Carlo. We thank the reviewers for their careful and extensive reports.
We gratefully acknowledge financial support and support in kind from our spon-
sors: Google, Two Sigma, Uber, SAMSI, Intel, Stanford University’s statistics
department, and Yi Zhou (Stanford Ph.D. 1998) and Brice Rosenzweig. We had
promotional assistance from Xian’s Og, SIAM, and the IMS. Finally, we are
grateful to Springer Verlag for publishing this volume.

Stanford, CA, USA Art B. Owen
December 2017 Peter W. Glynn
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Part I
Tutorials



The Trio Identity for Quasi-Monte Carlo
Error

Fred J. Hickernell

Abstract Monte Carlo methods approximate integrals by sample averages of
integrand values. The error of Monte Carlo methods may be expressed as a trio iden-
tity: the product of the variation of the integrand, the discrepancy of the sampling
measure, and the confounding. The trio identity has different versions, depending on
whether the integrand is deterministic or Bayesian andwhether the samplingmeasure
is deterministic or random.Although the variation and the discrepancy are common in
the literature, the confounding is relatively unknown and under-appreciated. Theory
and examples are used to show how the cubature error may be reduced by employing
the lowdiscrepancy sampling that defines quasi-MonteCarlomethods. The errormay
also be reduced by rewriting the integral in terms of a different integrand. Finally,
the confounding explains why the cubature error might decay at a rate different from
that of the discrepancy.

Keywords Bayesian · Confounding · Deterministic · Discrepancy · Error
analysis · Randomized · Variation

1 Introduction

Monte Carlo methods are used to approximate multivariate integrals that cannot be
evaluated analytically, i.e., integrals of the form

μ =
∫
X

f (x) ν(dx), (INT)

F. J. Hickernell (B)
Department of Applied Mathematics, Illinois Institute of Technology,
10 W. 32nd Street, RE 208, Chicago, IL 60616, USA
e-mail: hickernell@iit.edu

© Springer International Publishing AG, part of Springer Nature 2018
A. B. Owen and P. W. Glynn (eds.), Monte Carlo and Quasi-Monte
Carlo Methods, Springer Proceedings in Mathematics & Statistics 241,
https://doi.org/10.1007/978-3-319-91436-7_1
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4 F. J. Hickernell

where f : X → R is a measurable function, X is a measurable set, and ν is a
probability measure. Here, μ is the weighted average of the integrand. Also, μ =
E[ f (X)], where the random variable X has probability measure ν. Monte Carlo
methods take the form of a weighted average of values of f at a finite number of
data sites, x1, . . . , xn:

μ̂ =
n∑

i=1

f (xi )wi =
∫
X

f (x) ν̂(dx). (MC)

The sampling measure, ν̂, assigns a weight wi to the function value at xi and lies in
the vector space

MS :=
{

n∑
i=1

wiδxi : w1, . . . ,wn ∈ R, x1, . . . , xn ∈ X , n ∈ N

}
, (1)

where δt denotes a Dirac measure concentrated at point t . The data sites, the weights,
and the sample size may be deterministic or random. Later, we impose some con-
straints to facilitate the analysis.

We are particularly interested in sampling measures that choose the data sites
more cleverly than independently and identically distributed (IID) with the aim of
obtaining smaller errors for the same computational effort. Such sampling measures
are the hallmark of quasi-Monte Carlo methods. It is common to choose w1 = · · · =
wn = 1/n, in which case the sampling quality is determined solely by the choice of
the data sites.

This tutorial describes how to characterize and analyze the cubature error,μ − μ̂,
as a trio identity:

μ − μ̂ = CNF( f, ν − ν̂)DSC(ν − ν̂)VAR( f ), (TRIO)

introduced by Xiao-Li Meng [30]. Each term in this identity contributes to the error,
and there are ways to decrease each.

VAR( f ) measures the variation of the integrand froma typical value. The variation
is positively homogeneous, i.e., VAR(c f ) = ∣∣c∣∣VAR( f ). The variation is not the
variance. Expressing μ in terms of a different integrand by means of a variable
transformation may decrease the variation.

DSC(ν − ν̂) measures the discrepancy of the sampling measure from the proba-
bility measure that defines the integral. The convergence rate of the discrepancy
to zero as n → ∞ characterizes the quality of the sampling measure.

CNF( f, ν − ν̂) measures the confounding between the integrand and the differ-
ence between the measure defining the integral and the sampling measure. The
magnitude of the confounding is bounded by one in some settings and has an
expected square value of one in other settings. When the convergence rate of
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Table 1 Different versions of the trio identity

Integrand, f Sampling Measure, ν̂

Deterministic Random

Deterministic Deterministic = D Randomized = R

Gaussian Process Bayesian = B Randomized Bayesian = RB

μ̂ → μ differs from the convergence rate of DSC(ν − ν̂) → 0, the confounding
is behaving unusually.

There are four versions of the trio identity corresponding to different models for
the integrand and for the samplingmeasure as depicted in Table1. The integrandmay
be an arbitrary (deterministic) element of a Banach space or it may be a Gaussian
stochastic process. The samplingmeasuremaybe an arbitrary (deterministic) element
ofMS or chosen randomly. Here we derive and explain these four different versions
of the trio identity and draw a baker’s dozen of key lessons, which are repeated at
the end of this article.

Lesson 1 The trio identity (TRIO) decomposes the cubature error into a product of
three factors: the variation of the integrand, the discrepancy of the samplingmeasure,
and the confounding. This identity showshow the integrandand the samplingmeasure
each contribute to the cubature error.

2 A Deterministic Trio Identity for Cubature Error

We start by generalizing the error bounds of Koksma [28] and Hlawka [25]. See
also the monograph of Niederreiter [32]. Suppose that the integrand lies in some
Banach space, (F , ‖·‖F ), where function evaluation at any point in the domain,X ,
is a bounded, linear functional. This means that sup f ∈F

∣∣ f (t)∣∣/ ‖ f ‖F < ∞ for all
t ∈ X and that

∫
X f (x) δt(dx) = f (t) for all f ∈ F , t ∈ X . For example, one

might choose F = C[0, 1]d , but F = L2[0, 1]d is unacceptable. Let T : F → R

be some bounded linear functional providing a typical value of f , e.g., T ( f ) = f (1)
or T ( f ) = ∫X f (x) ν(dx). If {T ( f ) : f ∈ F } �= {0}, thenF is assumed to contain
constant functions. The deterministic variation is a semi-norm that is defined as the
norm of the function minus its typical value:

VARD( f ) := ‖ f − T ( f )‖F ∀ f ∈ F . (2)

Let M denote the vector space of signed measures for which integrands in F
have finite integrals:M := {signed measures η : ∣∣∫X f (x) η(dx)

∣∣ < ∞∀ f ∈ F
}
.
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We assume that our integral of interest is defined, so ν ∈ M . Since function evalu-
ation is bounded, M includes MS defined in (1) as well. Define the subspace

M⊥ :=
{

{η ∈ M : η(X ) = 0} , {T ( f ) : f ∈ F } �= {0},
M , {T ( f ) : f ∈ F } = {0}. (3)

For example, if ν̂(X ) = ν(X ), which is common, then ν − ν̂ is automatically in
M⊥. However, in some situations ν̂(X ) �= ν(X ), as is noted in the discussion
following (8) below. A semi-norm on M⊥ is induced by the norm on F , which
provides the definition of discrepancy:

‖η‖M⊥ := sup
f ∈F : f �=0

∣∣∣∣
∫
X

f (x) η(dx)

∣∣∣∣
‖ f ‖F

, DSCD(ν − ν̂) := ‖ν − ν̂‖M⊥ . (4)

Finally, define the confounding as

CNFD( f, ν − ν̂) :=

⎧⎪⎪⎨
⎪⎪⎩

∫
X

f (x) (ν − ν̂)(dx)

VARD( f )DSCD(ν − ν̂)
, VARD( f )DSCD(ν − ν̂) �= 0,

0, otherwise.
(5)

The above definitions lead to the deterministic trio identity for cubature error.

Theorem 1 (Deterministic Trio Error Identity) For the spaces of integrands and
measures defined above, and for the above definitions of variation, discrepancy, and
confounding, the following error identity holds for all f ∈ F and ν − ν̂ ∈ M⊥:

μ − μ̂ = CNFD( f, ν − ν̂)DSCD(ν − ν̂)VARD( f ). (DTRIO)

Moreover,
∣∣CNFD( f, ν − ν̂)

∣∣ ≤ 1.

Proof The proof of this identity follows from the definitions above. It follows from
(INT) and (MC) that for all f ∈ F and ν − ν̂ ∈ M⊥, the cubature error can be
written as a single integral:

μ − μ̂ =
∫
X

f (x) (ν − ν̂)(dx). (6)

If VARD( f ) = 0, then f = T ( f ), and the integral above vanishes by the definition
of M⊥. If DSCD(ν − ν̂) = 0, then the integral above vanishes by (4). Thus, for
VARD( f )DSCD(ν − ν̂) = 0 the trio identity holds. If VARD( f )DSCD(ν − ν̂) �= 0,
then the trio identity also holds by the definition of the confounding.
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Next, we bound the magnitude of the confounding for VARD( f )DSCD(ν − ν̂)

�= 0:

∣∣CNF( f, ν − ν̂)
∣∣ =

∣∣∣∣
∫
X

f (x) (ν − ν̂)(dx)

∣∣∣∣
VARD( f )DSCD(ν − ν̂)

by (5)

=

∣∣∣∣
∫
X

[ f (x) − T ( f )] (ν − ν̂)(dx)

∣∣∣∣
‖ f − T ( f )‖F DSCD(ν − ν̂)

by (2) and (3)

≤ 1 by (4),

since VARD( f ) �= 0 and so f − T ( f ) �= 0. �

Because
∣∣CNFD( f, ν − ν̂)

∣∣ ≤ 1, the deterministic trio identity implies a deter-
ministic error bound:

∣∣μ − μ̂
∣∣ ≤ DSCD(ν − ν̂)VARD( f ). However, there is value

in keeping the confounding term as noted below in Lesson5.
The error in approximating the integral of c f is c times that for approximating

the integral of f . This is reflected in the fact that VARD(c f ) = |c|VARD( f ) and
CNF(c f, ν − ν̂) = sign(c)CNF( f, ν − ν̂), while DSCD(ν − ν̂) does not depend on
the integrand.

When F is a Hilbert space with reproducing kernel K , the discrepancy has an
explicit expression in terms of K . The reproducing kernel is the unique function,
K : X × X → R satisfying these two properties [3, Sect. 1]:

K (·, t) ∈ F and f (t) = 〈K (·, t), f 〉F ∀ f ∈ F , t ∈ X .

The Riesz Representation Theorem implies that the representer of cubature error is

ηerr(t) = 〈K (·, t), ηerr〉F =
∫
X

K (x, t) (ν − ν̂)(dx).

Thus, the deterministic trio identity for the reproducing kernel Hilbert space (RKHS)
case is

μ − μ̂ = 〈ηerr, f 〉F = 〈ηerr, f 〉F
‖ f − T ( f )‖F ‖ηerr‖F︸ ︷︷ ︸

CNFD( f,ν−ν̂)

‖ηerr‖F︸ ︷︷ ︸
DSCD(ν−ν̂)

‖ f − T ( f )‖F︸ ︷︷ ︸
VARD( f )

provided that
T ( f )[ν(X ) − ν̂(X )] = 0. (7)

The squared discrepancy takes the form [18]
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[DSCD(ν − ν̂)]2 = ‖ηerr‖2F = 〈ηerr, ηerr〉F
=
∫
X ×X

K (x, t) (ν − ν̂)(dx) (ν − ν̂)(dt)

=
∫
X ×X

K (x, t) ν(dx) ν(dt)

− 2
n∑

i=1

wi

∫
X

K (xi , t) ν(dt) +
n∑

i, j=1

wiw j K (xi , x j ).

Assuming that the single integral and double integral of the reproducing kernel can
be evaluated analytically, the computational cost to evaluate the discrepancy isO(n2)
unless the kernel has a special form that speeds up the calculation of the double sum.

Lesson 2 The deterministic discrepancy whenF is an RKHS has a simple, explicit
form involving three terms.

In the RKHS case, the confounding corresponds to the cosine of the angle between
f − T ( f ) and the cubature error representer, ηerr. This cosine is no greater than one
in magnitude, as expected.

The square deterministic discrepancy for an RKHS may be expressed in terms of
vectors and matrices:

w = (wi
)n
i=1, k0 =

∫
X

K (x, t) ν(dx) ν(dt), (8a)

k =
(∫

X
K (xi , t) ν(dt)

)n

i=1

, K = (K (xi , x j )
)n
i, j=1, (8b)

[DSCD(ν − ν̂)]2 = k0 − 2kTw + wTKw. (8c)

Given fixed data sites, the optimal cubature weights to minimize the discrepancy
are w = K−1k. If 1TK−1k = 1, which is possible but not automatic, then ν̂(X ) =
ν(X ) = 1 for these optimal weights, and (DTRIO) holds for general T . Otherwise,
one must define T ( f ) = 0 for all f ∈ F to satisfy condition (7) for these optimal
cubature weights.

A particular example of this RKHS setting corresponds to the uniform probability
measure ν on the d-dimensional unit cube,X = [0, 1]d , and the reproducing kernel
defined by [17]

K (x, t) =
d∏

k=1

[2 − max(xk, tk)]. (9)

In this example, T ( f ) = f (1), and the variation is

VARD( f ) = ‖ f − f (1)‖F =
∥∥∥(∥∥∂u f

∥∥
L2

)
∅�u⊆1:d

∥∥∥
�2

, ∂u f := ∂ |u| f
∂xu

∣∣∣∣
xū=1

.
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Here 1 :d means= {1, . . . , d}, xu means (xk)k∈u, and ū denotes the complement of u.
The square discrepancy for the equally weighted case with w1 = · · · = wn = 1/n is

[DSCD(ν − ν̂)]2 =
(
4

3

)d
− 2

n

n∑
i=1

d∏
k=1

(
3 − x2ik

2

)
+ 1

n2

n∑
i, j=1

d∏
k=1

[2 − max(xik , x jk)]

=
∥∥∥(‖ν([0, ·u]) − ν̂([0, ·u])‖L2

)
∅�u⊆1:d

∥∥∥
�2

. (10)

This discrepancy has a geometric interpretation: ν([0, xu]) corresponds to the
volume of the |u|-dimensional box [0, xu], and ν̂([0, xu]) corresponds to the propor-
tion of data sites lying in the box [0, xu]. The discrepancy in (10), which is called the
L2-discrepancy, depends on the difference between this volume and this proportion
for all x ∈ [0, 1]d and for all ∅ � u ⊆ 1 :d.

If the data sites x1, . . . , xn are chosen to be IID with probability measure ν, and
w1 = · · · = wn = 1/n, then the mean square discrepancy for the RKHS case is

E
{[DSCD(ν − ν̂)]2} = 1

n

[∫
X

K (x, x) ν(dx) −
∫
X ×X

K (x, t) ν(dx) ν(dt)
]

.

For the L2-discrepancy in (10) this becomes

E
{[DSCD(ν − ν̂)]2} = 1

n

[(
3

2

)d

−
(
4

3

)d
]

. (11)

Quasi-Monte Carlo methods generally employ sampling measures of the form
ν̂ = n−1∑n

i=1 δxi , but choose the data sites {xi }ni=1 to be better than IID in the
sense of discrepancy. For integration over X = [0, 1]d with respect to the uniform
measure, these low discrepancy data sites may come from

• adigital sequence [9], such as that proposedbySobol’ [48], Faure [10],Niederreiter
[31], or Niederreiter and Xing [33], or

• a sequence of node sets of an integration lattice [46].

The constructions of such sets are described in the references above and L’Ecuyer’s
tutorial in this volume. The L2-discrepancy defined in (10) and its relatives are
O(n−1+ε) as n → ∞ for any positive ε for these low discrepancy data sites [32].

Figure1 displays examples of IID and randomized low discrepancy data sites.
Figure2 shows the rates of decay for the L2-discrepancy for various dimensions.
The scaled discrepancy is the empirically computed root mean square discrepancy
divided by its value for n = 1. Although the decay for the low discrepancy points
is O(n−1+ε) for large enough n, the decay in Fig. 2 resembles O(n−1/2) for large
dimensions and modest n. The scaled discrepancy for IID samples in Fig. 2 does not
exhibit a dimension dependence because it is masked by the scaling. The dimension
dependence of the convergence of the discrepancy to zero is addressed later in Sect. 8.
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Fig. 1 IID points and three examples of low discrepancy points

Fig. 2 The root mean square L2-discrepancies given by (10) for randomly shifted lattice sequence
nodesets and randomly scrambled and shifted Sobol’ sequences points for a variety of dimensions

Lesson 3 Quasi-Monte Carlo methods replace IID data sites by low discrepancy
data sites, such as Sobol’ sequences and integration lattice nodeset sequences. The
resulting sampling measures have discrepancies and cubature errors that decay to
zero at a faster rate than in the case of IID sampling.

Nosampling schemecanproduce a faster convergence rate thanO(n−1) for the L2-
discrepancy. This is due to the limited smoothness of the reproducing kernel defined
in (9) and the corresponding limited smoothness of the corresponding Hilbert space
of integrands.

3 A Randomized Trio Identity for Cubature Error

For the randomized version of the trio identity, we again assume that the integrands
lie in a Banach space, (F , ‖·‖F ). This space is required to contain constant functions
if {T ( f ) : f ∈ F } �= {0}. We assume that

∫
X f (x) ν(dx) is defined for all f ∈ F ,

however, we do not require function evaluation to be a bounded linear functional
on F . The definitions of the bounded linear functional T and the variation in the
deterministic case in (2) apply here as well.
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Now endow the vector space of all sampling measures, MS, with a probability
distribution. This means that the placement of the data sites, the number of data
sites, and the choice of the weights may all be random. We require the following two
conditions:

Eν̂

∣∣∣∣
∫
X

f (x) ν̂(dx)

∣∣∣∣
2

< ∞ ∀ f ∈ F ,

{T ( f ) : f ∈ F } = {0} or ν̂(X ) = ν(X ) almost surely. (12)

The first condition implies that
∫
X f (x) ν̂(dx) exists almost surely for every f ∈ F .

The randomized discrepancy is defined as theworst normalized rootmean squared
error:

DSCR(ν − ν̂) := sup
f ∈F : f �=0

√
Eν̂

∣∣∣∣
∫
X

f (x) (ν − ν̂)(dx)

∣∣∣∣
2

‖ f ‖F
. (13)

The randomized discrepancy does not depend on the particular instance of the sam-
pling measure but on the distribution of the sampling measure.

Finally, define the confounding as

CNFR( f, ν − ν̂) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
X

f (x) (ν − ν̂)(dx)

VARD( f )DSCR(ν − ν̂)
, VARD( f )DSCR(ν − ν̂) �= 0,

0, otherwise.
(14)

Here, the confounding does depend on the particular instance of the sampling mea-
sure. The above definitions allow us to establish the randomized trio identity for
cubature error.

Theorem 2 (Randomized Trio Error Identity) For the spaces of integrands and
measures defined above, and for the above definitions of variation, discrepancy, and
confounding, the following error identity holds for all f ∈ F and ν̂ ∈ MS:

μ − μ̂ = CNFR( f, ν − ν̂)DSCR(ν − ν̂)VARD( f ) almost surely. (RTRIO)

Moreover, Eν̂

∣∣CNFR( f, ν − ν̂)
∣∣2 ≤ 1 for all f ∈ F .

Proof For all f ∈ F and ν̂ ∈ MS, the error can bewritten as the single integral in (6)
almost surely. If VARD( f ) = 0, then f = T ( f ), and μ − μ̂ vanishes almost surely
by (12). If DSCR(ν − ν̂) = 0, then μ − μ̂ vanishes almost surely by (13). Thus, for
VARD( f )DSCR(ν − ν̂) = 0 the trio identity holds. If VARD( f )DSCR(ν − ν̂) �= 0,
then the trio identity also holds by the definition of the confounding.
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Next, we analyze the magnitude of the confounding for VARD( f )DSCD(ν − ν̂)

�= 0:

E
∣∣CNFR( f, ν − ν̂)

∣∣2 =
E

∣∣∣∣
∫
X

f (x) (ν − ν̂)(dx)

∣∣∣∣
2

[VARD( f )DSCD(ν − ν̂)]2 by (14)

=
E

∣∣∣∣
∫
X

[ f (x) − T ( f )] (ν − ν̂)(dx)

∣∣∣∣
2

[‖ f − T ( f )‖F DSCD(ν − ν̂)]2 by (2) and (12)

≤ 1 by (13),

since VARD( f ) �= 0 and so f − T ( f ) �= 0. �

Consider simple Monte Carlo, where the approximation to the integral is an
equally weighted average using IID sampling x1, x2, . . . ∼ ν. Let the sample size
be fixed at n. Let F = L2,ν(X ), the space of functions that are square integrable
with respect to the measure ν, and let T ( f ) be the mean of f . Then the variation of
f is just its standard deviation, std( f ). The randomized discrepancy is 1/

√
n. The

randomized confounding is

CNFR( f, ν − ν̂) = −1√
n std( f )

n∑
i=1

[ f (xi ) − μ].

Unlike the deterministic setting, there is no simple expression for the randomized
discrepancy under general sampling measures and RKHSs. The randomized discrep-
ancy can sometimes be conveniently calculated or bounded for spaces of integrands
that are represented by series expansions, and where the randomized sampling mea-
sures for the bases of these expansions have special properties [16, 19].

It is instructive to contrast the variation, discrepancy, and confounding in the
deterministic and randomized settings. For some integrand, f , and some sampling
measure, ν̂, satisfying the conditions defining both (DTRIO) and (RTRIO):

• the variation in both settings is the same,
• the randomized discrepancymust be no greater than the deterministic discrepancy
by definition, and thus

• the randomized confounding must be no less than the deterministic confounding.

The deterministic confounding is never greater than one in magnitude. By contrast,
the randomized confounding may be arbitrarily large. However, Markov’s inequality
implies that it may be larger than 1/

√
α with probability no greater than α. The next

section illustrates the differences in the deterministic and randomized trio identities.
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4 Multivariate Gaussian Probabilities

Consider thed-variate integral corresponding to the probability of aN (0, 	) random
variable lying inside the box [a, b]:

μ =
∫

[a,b]

exp
(− 1

2 z
T	−1z

)
√

(2π)d det(	)
dz =

∫
[0,1]d−1

fGenz(x) dx, (15)

where 	 = LLT is the Cholesky decomposition of the covariance matrix, L =(
l jk
)d
j,k=1, is a lower triangular matrix, and

α1 = Φ(a1), β1 = Φ(b1),

α j (x1, . . . , x j−1) = Φ

⎛
⎝ 1

l j j

⎛
⎝a j −

j−1∑
k=1

l jkΦ
−1(αk + xk(βk − αk))

⎞
⎠
⎞
⎠ , j = 2, . . . , d,

β j (x1, . . . , x j−1) = Φ

⎛
⎝ 1

l j j

⎛
⎝b j −

j−1∑
k=1

l jkΦ
−1(αk + xk(βk − αk))

⎞
⎠
⎞
⎠ , j = 2, . . . , d,

fGenz(x) =
d∏
j=1

[β j (x) − α j (x)].

Here,Φ represents the cumulative distribution function for a standard normal random
variable. Genz [11] developed this clever transformation of variables above. Not only
is the dimension decreased by one, but the integrand is typically made less peaky
and more favorable to cubature methods.

The left plot of Fig. 3 shows the absolute errors in computing the multivariate
Gaussian probability via the Genz transformation for

a =
⎛
⎝−6

−2
−2

⎞
⎠ , b =

⎛
⎝52
1

⎞
⎠ , 	 =

⎛
⎝16 4 4

4 2 1.5
4 1.5 1.3125

⎞
⎠ , L =

⎛
⎝4 0 0
1 1 0
1 0.5 0.25

⎞
⎠ ,

by IID sampling, unscrambled Sobol’ sampling, and scrambled Sobol’ sampling
[39–41]. Multiple random scramblings of a very large scrambled Sobol’ set were
used to infer thatμ ≈ 0.6763373243578. For the two randomized samplingmeasures
100 replications were taken. The marker denotes the median error and the top of the
stem extending above the marker denotes the 90% quantile of the error.

Empirically, the error for scrambled Sobol’ sampling appears to be tending
towards a convergence rate of O(n−2). This is a puzzle. It is unknown why this
should be or whether this effect is only transient. In the discussion below we assume
the expected rate of O(n−3/2+ε).
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Fig. 3 The error of an example of the multivariate Gaussian probability in (15). The left side
shows the result of Genz’s transformation and different sampling measures. The right side shows
scrambled Sobol’ sampling using different transformations

The orders of the discrepancy and confounding in Table2 explain the rates of
decay of the error and the benefits of randomization. Note that in all cases

μ − μ̂ decay rate = CNF decay/growth rate × DSC decay rate.

We consider equally weighted cubature rules for two kinds of random sampling
measures, IID and scrambled Sobol’, and for both the deterministic and randomized
settings. Here, F is assumed to be the RKHS used to define the L2-discrepancy.

For IID sampling both the root mean square L2-discrepancy and the randomized
discrepancy are O(n−1/2). The confounding for typical IID sampling is O(1). In
the randomized setting one may have an atypically poor instance of data sites that
leads to an atypically high confounding of O(n1/2). On the other hand, unscrambled
Sobol’ sampling and scrambled Sobol’ sampling are atypically superior instances of
data sites under an IID sampling measure that yield atypically small confoundings
of O(n−1/2+ε) and O(n−1+ε), respectively.

Table 2 Confounding orders for deterministic randomized settings and two different sets of equi-
weighted random sampling measures. Sufficient smoothness of the integrand is assumed. The order
of the error equals the order of the discrepancy times the order of the confounding

Deterministic
setting

RMS
L2 − DSCD

ν̂ Worst Typical
IID

Unscr.
Sobol’

Typical Scr.
Sobol’

IID Sampling O(n−1/2) CNFD O(1) O(n−1/2+ε) O(n−1+ε)

Scr. Sobol’ Sampling O(n−1+ε) CNFD O(1) O(n−1/2+ε)

μ − μ̂ O(1) O(n−1/2) O(n−1+ε) O(n−3/2+ε)

Randomized setting DSCR

IID Sampling O(n−1/2) CNFR O(n1/2) O(1) O(n−1/2+ε) O(n−1+ε)

Scr. Sobol’ Sampling O(n−3/2+ε) CNFR O(n1/2+ε) O(1)
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For scrambled Sobol’ sampling, the root mean square L2-discrepancy is now only
O(n−1+ε), an improvement over IID sampling. However, the randomized discrep-
ancy is an even smaller O(n−3/2+ε) [16, 41]. In the deterministic setting, unscram-
bled Sobol’ sampling has a typical O(1) confounding, whereas typical scrambled
Sobol’ sampling has an atypically lowO(n−1/2) confounding. This is because scram-
bled Sobol’ sampling can take advantage of the additional smoothness of the given
integrand, which is not reflected in the definition of F . In the randomized setting,
unscrambled Sobol’ sampling has an atypically high O(n1/2) confounding. Thus,
unscrambled Sobol’ sampling is among the awful minority of sampling measures
under scrambled Sobol’ sampling.

Lesson 4 Randomizing the sampling measure may not only eliminate bias, but it
may help improve accuracy by avoiding the awful minority of possible sampling
measures.

Lesson 5 Although it has traditionally been ignored, the confounding helps explain
why the cubature error may decay to zero much faster or more slowly than the
discrepancy.

An alternative to the Genz transformation above is an affine transformation to
compute the multivariate Gaussian probability:

z = a + (b − a) ◦ x, faff(x) = exp
(− 1

2 z
T	−1z

)
√

(2π)d det(	)

d∏
j=1

(b j − a j ),

μ =
∫

[0,1]d
faff(x) dx,

where ◦ denotes the Hadamard (term-by-term) product. The right plot in Fig. 3 shows
that the error using the affine transformation is much worse than that using the Genz
transformation even though the two convergence rates are the same. The differ-
ence in the magnitudes of the errors is primarily because VARD( faff) is greater than
VARD( fGenz).

Lesson 6 Well-chosen variable transformations may reduce cubature error by pro-
ducing an integrand with a smaller variation than otherwise.

5 Option Pricing

The prices of financial derivatives can often be modeled by high dimensional inte-
grals. If the underlying asset is described in terms of a Brownian motion, B, at times
t1, . . . , td , then Z = (B(t1), . . . , B(td)) ∼ N (0, 	), where 	 = (min(t j , tk)

)d
j,k=1,

and the fair price of the option is
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μ =
∫

Rd

payoff(z)
exp
(− 1

2 z
T	−1z

)
√

(2π)d det(	)
dz =

∫
[0,1]d

f (x) dx,

where the function payoff(·) describes the discounted payoff of the option,

f (x) = payoff(z), z = L

⎛
⎜⎝

Φ−1(x1)
...

Φ−1(xd)

⎞
⎟⎠ .

In this example, L may be any square matrix satisfying 	 = LLT .
Figure4 shows the cubature error using IID sampling, unscrambled Sobol’ sam-

pling, and scrambled Sobol’ sampling for the Asian arithmetic mean call option with
the following parameters:

payoff(z) = max

⎛
⎝ 1

d

d∑
j=1

Sj − K , 0

⎞
⎠ e−rτ , Sj = S0 exp

(
(r − σ 2/2)t j + σ z j

)
,

τ = 1, d = 12, S0 = K = 100, r = 0.05, σ = 0.5,

t j = jτ/d, j = 1 : d.

The convergence rates for IID and unscrambled Sobol’ sampling are the same as
in Fig. 3 for the previous example of multivariate probabilities. However, for this
example scrambling the Sobol’ set improves the accuracy but not the convergence
rate. The convergence rate for scrambled Sobol’ sampling, ν̂, is poorer than hoped
for because f is not smooth enough for VARD( f ) to be finite in the case where
DSCR(ν − ν̂) = O(n−3/2+ε).

Lesson 7 The benefits of sampling measures with asymptotically smaller discrep-
ancies are limited to those integrands with finite variation.

Fig. 4 Cubature error for the price of an Asian arithmetic mean option using different sampling
measures. The left side uses the PCA decomposition and the right side contrasts the PCA with the
Cholesky decomposition
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The left plot in Fig. 4 chooses L = V�1/2, where the columns of V are the nor-
malized eigenvectors of 	, and the diagonal elements of the diagonal matrix � are
the eigenvalues of 	. This is also called a principal component analysis (PCA) con-
struction. The advantage is that the main part of the Brownian motion affecting the
option payoff is concentrated in the smaller dimensions. The right plot of Fig. 4 con-
trasts the cubature error for two choices of L: one chosen by the PCA construction
and the other coming from the Cholesky decomposition of 	. This latter choice
corresponds to constructing the Brownian motion by time differences. The Cholesky
decomposition of 	 gives a poorer rate of convergence, illustrating again Lesson6.
The superiority of the PCA construction was observed in [1].

6 A Bayesian Trio Identity for Cubature Error

An alternative to the deterministic integrand considered thus far is to assume that the
integrand is a stochastic process. Random input functions have been hypothesized
by Diaconis [8], O’Hagan [38], Ritter [45], Rasmussen and Ghahramani [43], and
others. Specifically, suppose that f ∼ GP(0, s2Cθ ), a zero mean Gaussian process.
The covariance of this Gaussian process is s2Cθ , where s is a scale parameter, and
Cθ : X × X → R is defined by a shape parameter θ . The sample space for this
Gaussian process,F , does not enter significantly into the analysis. Define the vector
space of measures

M =
{
η :
∣∣∣∣
∫
X 2

Cθ (x, t) η(dx)η(dt)

∣∣∣∣ < ∞,

∣∣∣∣
∫
X

Cθ (x, t) η(dt)

∣∣∣∣ < ∞ ∀x ∈ X

}
,

and let Cθ be such thatM contains both ν and the Dirac measures δt for all t ∈ X .
For a Gaussian process, all vectors of linear functionals of f have a multivariate

Gaussian distribution. It then follows that for a deterministic sampling measure,
ν̂ =∑n

i=1 wiδxi , the cubature error, μ − μ̂, is distributed as N
(
0, s2(c0 − 2cTw +

wTCw)
)
, where

c0 =
∫
X 2

Cθ (x, t) ν(dx)ν(dt), c =
(∫

X
Cθ (xi , t) ν(dt)

)n

i=1

, (16a)

C = (Cθ (xi , x j )
)n
i, j=1, w = (wi

)n
i=1. (16b)

The dependence of c0, c, andC on the shape parameter θ is suppressed in the notation
for simplicity. We define the Bayesian variation, discrepancy and confounding as

VARB( f ) = s, DSCB(ν − ν̂) =
√
c0 − 2cTw + wTCw, (17a)

CNFB( f, ν − ν̂) :=

∫
X

f (x) (ν − ν̂)(dx)

s
√
c0 − 2cTw + wTCw

. (17b)
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Theorem 3 (Bayesian Trio Error Identity) Let the integrand be an instance of a zero
mean Gaussian process with covariance s2Cθ and that is drawn from a sample space
F . For the variation, discrepancy, and confounding defined in (17), the following
error identity holds:

μ − μ̂ = CNFB( f, ν − ν̂)DSCB(ν − ν̂)VARB( f ) almost surely. (BTRIO)

Moreover, CNFB( f, ν − ν̂) ∼ N (0, 1).

Proof Although
∫
X f (x) ν(dx) and f (t) = ∫X f (x) δt(dx) may not exist for all

f ∈ F , these two quantities exist almost surely because E f [
∫
X f (x) ν(dx)]2 =

s2c0, and E f [ f (x)]2 = s2Cθ (x, x) are both well-defined and finite. The proof of the
Bayesian trio identity follows directly from the definitions above. The distribution
of the confounding follows from the distribution of the cubature error. �

The choice of cubature weights that minimizes the Bayesian discrepancy in
(17a) is w = C−1c, which results in DSCB(ν − ν̂) = √c0 − cTC−1c and μ − μ̂ ∼
N
(
0, s2(c0 − cTC−1c)

)
. However, computing the weights requires O(n3) opera-

tions unless C has some special structure. This computational cost is significant and
may be a deterrent to the use of optimal weights unless the weights are precom-
puted. For smoother covariance functions, Cθ , there is often a challenge of C being
ill-conditioned.

The conditional distribution of the cubature error,μ − μ̂, given the observed data
{ f (xi ) = yi }ni=1 is N

(
yT (C−1c− w), s2(c0 − cTC−1c)

)
. To remove the bias one

should again choose w = C−1c. This also makes the conditional distribution of the
cubature error the same as the unconditional distribution of the cubature error.

Because the cubature error is a normal random variable, we may use function
values to perform useful inference, namely,

P f
[∣∣μ − μ̂

∣∣ ≤ 2.58DSCB(ν − ν̂)VARB( f )
] = 99%. (18)

However, unlike our use of random sampling measures that are constructed via
carefully crafted random number generators, there is no assurance that our integrand
is actually drawn from a Gaussian process whose covariance we have assumed.

The covariance function, s2Cθ , should be estimated, and one way to do so is
through maximum likelihood estimation (MLE), using the function values drawn
for the purpose of estimating the integral. The log-likelihood function for the data
{ f (xi ) = yi }ni=1 is

�(s, θ | y) = log

(
exp
(− 1

2 s
−2 yTC−1

θ y
)

√
(2π)n det(s2Cθ )

)

= −1

2
s−2 yTC−1

θ y − 1

2
log
(
det(Cθ )

)− n

2
log(s2) + constants.
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Maximizing with respect to s2, yields the MLE scale parameter:

sMLE =
√
1

n
yTC−1

θMLE
y.

Plugging this into the log likelihood leads to the MLE shape parameter:

θMLE = argmin
θ

[
1

n
log
(
det(Cθ )

)+ log
(
yTC−1

θ y
)]

,

which requires numerical optimization to evaluate. Using MLE estimates, the prob-
abilistic error bound in (18) becomes

P f

[∣∣μ − μ̂
∣∣ ≤ 2.58

√
1

n

(
c0,θMLE − cTθMLE

C−1
θMLE

cθMLE

) (
yTC−1

θMLE
y
)]

=99%. (19)

Note that the value of θMLE and the aboveBayesian cubature error bound is unchanged
by replacing Cθ by a positive multiple of itself.

Let’s revisit the multivariate normal probability example of Sect. 4, and perform
Bayesian cubaturewith a covariance kernel withmodest smoothness from theMatérn
family:

Cθ (x, t) =
d∏
j=1

(
1 + θ

∣∣x j − t j
∣∣) exp (−θ

∣∣x j − t j
∣∣) (20)

Using 100 randomly scrambled Sobol’ samples, the Bayesian cubature method out-
lined above was used to compute the multivariate normal probability μ. We used
MLE scale and shape parameters and optimal cubature weights w = C−1

θMLE
cθMLE . The

actual errors are plotted in Fig. 5, which also provides a contrast of the actual error
and the probabilistic error bound. This bound was correct about 83% of the time.
Based on the smoothness of the integrand and the kernel, one might expect O(n−2)

convergence of the answer, but this is not clear from the numerical computations.

Lesson 8 Bayesian cubature provides data-based probabilistic error bounds under
the assumption that the integrand is a Gaussian process.

Bayesian cubature offers hope with a dose of caution. The theory is solid, but as
this example shows, one cannot know if the actual integrand under consideration is
a typical instance of the Gaussian process being assumed, even when using MLE to
determine the parameters of the distribution. The success rate of the probabilistic error
bound for this example is high, but not as high as the theory would suggest. One may
ask whether a larger candidate family of Gaussian processes needs to be considered,
but then this might increase the time required for estimation of the parameters.
This example was carried out to only a rather modest sample size because of the
O(n3) operations required to compute each μ̂. Efforts to reduce this operation count
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Fig. 5 The cubature errors for themultivariate normal probability example usingBayesian cubature
(left), and the Bayesian cubature error versus the probabilistic error bound in (19) (right)

have been made by Anitescu, Chen, and Stein [2], Parker, Reich and Gotwalt [42],
and others. Probabilistic numerics, http://www.probabilistic-numerics.org, of which
Bayesian cubature is an example, holds promise that deserves further exploration.

The formulas for the Bayesian trio identity are analogous to those for the deter-
ministic trio identity for reproducing kernel Hilbert spaces when T ( f ) = 0 for all
f ∈ F . Suppose that the reproducing kernel Kθ in the deterministic case is numer-
ically equivalent to the covariance function Cθ used in Bayesian cubature. The opti-
mal cubature weights in the Bayesian case then mirror those in the deterministic
case. Likewise, for these optimal weights DSCD(ν − ν̂) is numerically the same as
DSCB(ν − ν̂).

Lesson 9 The formula for theBayesian discrepancymimics that for the deterministic
discrepancy withF an RKHS.

7 A Randomized Bayesian Trio Identity for Cubature
Error

So far, we have presented three versions of the trio identity: a deterministic version in
Theorem1, a randomized version inTheorem2, and aBayesian version inTheorem3.
The fourth and final version is a randomized Bayesian trio identity. The variation
remains unchanged from the Bayesian definition in (17a). The randomized Bayesian
discrepancy and confounding are defined as follows:

DSCRB(ν − ν̂) =
√

Eν̂

(
c0 − 2cTw + wTCw

)
, (21a)

CNFRB( f, ν − ν̂) :=

∫
X

f (x) (ν − ν̂)(dx)

s
√

Eν̂

(
c0 − 2cTw + wTCw

) . (21b)

http://www.probabilistic-numerics.org
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The proof of the randomized Bayesian trio error identity is similar to the proofs of
the other trio identities and is omitted.

Theorem 4 (Randomized Bayesian Trio Error Identity) Let the integrand be an
instance of a zero mean Gaussian process with covariance s2Cθ and that is drawn
from a sample space F . Let the sampling measure be drawn randomly from MS

according to some probability distribution. For the variation defined in (17a), and
the discrepancy and confounding defined in (21), the following error identity holds:

μ − μ̂ = CNFRB( f, ν − ν̂)DSCRB(ν − ν̂)VARB( f ) almost surely. (RBTRIO)

Moreover, CNFRB( f, ν − ν̂) ∼ N (0, 1).

Lesson 10 The trio identity has four versions, (DTRIO), (RTRIO), (BTRIO), and
(RBTRIO), depending on whether the integrand is deterministic or Bayesian and
whether the sampling measure is deterministic or random.

8 Dimension Dependence of the Discrepancy, Cubature
Error and Computational Cost

The statements about the rates of decay of discrepancy and cubature error as the
sample size increases have so far hidden the dependence on the dimension of the
integration domain. Figure4 on the left shows a clear error decay rate of O(n−1+ε)

for low discrepancy sampling for the option pricing problem with dimension 12.
However, Fig. 2 shows that the discrepancy for these scrambled Sobol’ points does
not decay as quickly as O(n−1+ε) for moderate n.

There has been a tremendous effort to understand the effect of the dimension of the
integration problem on the convergence rate. Sloan and Woźniakowski [47] pointed
out how the sample size required to achieve a desired error tolerance could grow
exponentially with dimension. Such problems are called intractable. This led to a
search for settings where the sample size required to achieve a desired error tolerance
only grows polynomially with dimension (tractable problems) or is independent of
the dimension (strongly tractableproblems). The three volumemasterpiece byNovak
and Woźniakowski [35–37] and the references cited therein contain necessary and
sufficient conditions for tractability. The parallel idea of effective dimension was
introduced by Caflisch, Morokoff, and Owen [5] and developed further in [29].

Here we provide a glimpse into those situations where the dimension of the prob-
lem does not have an adverse effect on the convergence rate of the cubature error
and the discrepancy. Let’s generalize the reproducing kernel used to define the L2-
discrepancy in (9), as well as the corresponding variation and the discrepancy for
equi-weighted sampling measures by introducing coordinate weights γ1, γ2, . . .:
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K (x, t) =
d∏

k=1

[1 + γ 2
k {1 − max(xk, tk)}],

VARD( f ) =
∥∥∥(γ −1

u ‖∂u f ‖L2

)
u �=∅
∥∥∥
2

γu =
∏
k∈u

γk,

[
DSCD(ν − ν̂)

]2 =
d∏

k=1

(
1 + γ 2

k

3

)
−2

n

n∑
i=1

d∏
k=1

(
1 + γ 2

k (1 − x2ik)

2

)

+ 1

n2

n∑
i, j=1

d∏
k=1

[1 + γ 2
k (1 − max(xik, x jk))].

(22)

For γ1 = · · · = γd = 1, we recover the situation in Sect. 2, where the decay rate
of the discrepancy is dimension dependent for moderate sample sizes. However if
γ 2
k = k−3, then the discrepancies for randomly shifted lattice nodesets and scrambled

Sobol’ sequences show only a slight dimension dependence, as shown in Fig. 6.
When theweights γk decaywith k, the discrepancy depends less on how evenly the

data sites appear in projections involving the higher numbered coordinates. On the
other hand, the variation in this case gives heavierweight to the ∂u f withu containing
large k. For the cubature error decay to mirror the decay of the discrepancy shown
in Fig. 6, the integrand must depend only slightly on the coordinates with higher
indices, so that the variation will be modest.

Lesson 11 The cubature error for high dimensional problems can often be reduced
by arranging for the integrand to depend primarily on those coordinates with lower
indices.

Fig. 6 The root mean square weighted L2-discrepancies given by (22) with γ 2
k = k−3 for randomly

shifted lattice sequence nodesets and randomly scrambled and shifted Sobol’ sequences points.
A variety of dimensions is shown
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For some integration problems the dimension is infinite and so our problem (INT)
becomes

μ = lim
d→∞ μ(d), μ(d) =

∫
X (d)

f (d)(x) ν(d)(dx), (∞INT)

whereX (d)=X1 × · · · × Xd , ν(d) is ameasure onX (d) with independentmarginals
νk onXk , and f (1), f (2), . . . are approximations to an infinite-dimensional integrand.
The discrepancy and cubature error analysis for d → ∞ is similar to the large d
situation, but now the computational cost of the approximate integrand is a concern
[7, 20, 22, 34].

One could approximate μ by μ̂(d), the approximation to μ(d), for some large
d. However, the computational cost of evaluating f (d)(x) for a single x typically
requires O(d) operations. So this approach would require a high computational cost
of O(nd) operations to compute μ̂(d).

The often better alternative is to decompose the f (d) into pieces fu, for u ⊆ 1:d,
such that f (d) =∑u⊆1:d fu and the fu depend on u but not on d. Multi-level Monte
Carlo approximates (∞INT) by

μ̂ := μ̂
(
f (d1)

)+ μ̂
(
f (d2) − f (d1)

)+ · · · + μ̂
(
f (dL ) − f (dL−1)

)
,

for somechoice ofdl withd1 < · · · < dL . ThisworkswellwhenVAR
(
f (dl ) − f (dl−1)

)
decreases as l increases and when μ − μ(dL ) is small [12–15, 22, 34]. The compu-
tational cost of μ̂

(
f (dl ) − f (dl−1)

)
is O(nldl), and as dl increases, nl decreases, thus

moderating the cost. There is bias, since μ − μ(dL ) is not approximated at all, but
this can be removed by a clever randomized sampling method [44].

The Multivariate Decomposition Method approximates (∞INT) by

μ̂ = μ̂( fu1) + μ̂( fu2) + · · · + μ̂( fuL ),

where the ul are the important sets of coordinate indices as judged by VARD( fu) to
ensure that μ −∑u/∈{u1,...,uL } μ( fu) is small [49]. The computational cost of each
μ̂( ful ) is O(nl |ul |). If the important sets have small cardinality, |ul |, the computa-
tional cost is moderate.

Lesson 12 Infinite dimensional problems may be efficiently solved by multi-level
methods or multivariate decomposition methods, which approximate the integral by
a sum of finite dimensional integrals.

9 Automatic Stopping Criteria for Cubature

The trio identity decomposes the cubature error into three factors. By improving the
sampling scheme, the discrepancy may be made smaller. By re-writing the integral,
the variation of the integrand might be made smaller. For certain situations, we may
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find that the confounding is small. While the trio identity helps us understand what
contributes to the cubature error, it does not directly answer the question of how
many samples are required to achieve the desired accuracy, i.e., how to ensure that

|μ − μ̂| ≤ ε (ErrCrit)

for some predetermined ε.
Bayesian cubature, as described in Sect. 6, provides data-based cubature error

bounds. These can be used to determine how large n must be to satisfy (ErrCrit) with
high probability.

For IID Monte Carlo the Central Limit Theorem may be used to construct an
approximate confidence interval for μ, however, this approach relies on believing
that n is large enough to have (i) reached the asymptotic limit, and (ii) obtained
a reliable upper bound on the standard deviation in terms of a sample standard
deviation. There have been recent efforts to develop a more robust approach to fixed
width confidence intervals [4, 23, 26]. An upper bound on the standard deviationmay
be computed by assuming an upper bound on the kurtosis or estimating the kurtosis
from data. The standard deviation of an integrand can be confidently bounded in
terms of the sample standard deviation if it lies in the cone of functions with a known
bound on their kurtosis. A bound on the kurtosis also allows one to use a Berry–
Esseen inequality, which is a finite sample version of the Central Limit Theorem,
to determine a sufficient sample size for computing the integral with the desired
accuracy.

For low discrepancy sampling, independent random replications may be used to
estimate the error, but this approach lacks a rigorous justification. An alternative
proposed by the author and his collaborators is to decompose the integrand into a
Fourier series and estimate the decay rate of the Fourier coefficients that contribute
to the error [21, 24, 27]. This approach may also be used to satisfy relative error
criteria or error criteria involving a function of several integrals [24]. Our automatic
stopping criteria have been implemented in the Guaranteed Automatic Integration
Library (GAIL) [6].

Lesson 13 Automatic stopping criteria for (quasi-)Monte Carlo simulations have
been developed for integrands that lie in a cone of functions that are not too wild.

10 Summary

To conclude, we repeat the lessons highlighted above. The order may be somewhat
different.

The trio identity (TRIO) decomposes the cubature error into a product of three
factors: the variation of the integrand, the discrepancy of the sampling measure, and
the confounding. This identity shows how the integrand and the sampling measure
each contribute to the cubature error. The trio identity has four versions, (DTRIO),
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(RTRIO), (BTRIO), and (RBTRIO), depending on whether the integrand is deter-
ministic or Bayesian and whether the sampling measure is deterministic or random.
The deterministic discrepancy when F is an RKHS has a simple, explicit form
involving three terms. The formula for the Bayesian discrepancy mimics that for
the deterministic discrepancy with F an RKHS. Although it has traditionally been
ignored, the confounding helps explain why the cubature error may decay to zero
much faster or more slowly than the discrepancy.

How do good sampling measures, ν̂, make the error smaller? Quasi-Monte Carlo
methods replace IIDdata sites by lowdiscrepancydata sites, such asSobol’ sequences
and integration lattice nodeset sequences. The resulting sampling measures have dis-
crepancies and cubature errors that decay to zero at a faster rate than in the case of
IID sampling. Randomizing the sampling measure may not only eliminate bias, but
it may help improve accuracy by avoiding the awful minority of possible sampling
measures. The benefits of sampling measures with asymptotically smaller discrep-
ancies are limited to those integrands with finite variation.

How can the error be decreased by re-casting the problem with a different integrand,
f ? Well-chosen variable transformations may reduce cubature error by producing
an integrand with a smaller variation than otherwise. The cubature error for high
dimensional problems can often be reduced by arranging for the integrand to depend
primarily on those coordinateswith lower indices. Infinite dimensional problemsmay
be efficiently solved by multi-level methods or multivariate decomposition methods,
which approximate the integral by a sum of finite dimensional integrals.

How many samples, n, are required to meet a specified error tolerance? Bayesian
cubature provides data-based probabilistic error bounds under the assumption that
the integrand is a Gaussian process. Automatic stopping criteria for (quasi-)Monte
Carlo simulations have been developed for integrands that lie in a cone of functions
that are not too wild.
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47. Sloan, I.H., Woźniakowski, H.: An intractability result for multiple integration. Math. Comput.
66, 1119–1124 (1997)

48. Sobol’, I.M.: The distribution of points in a cube and the approximate evaluation of integrals.
U.S.S.R. Comput. Math. Math. Phys. 7, 86–112 (1967)

49. Wasilkowski, G.W.: On tractability of linear tensor product problems for ∞-variate classes of
functions. J. Complex. 29, 351–369 (2013)



Randomized Quasi-Monte Carlo: An
Introduction for Practitioners

Pierre L’Ecuyer

Abstract We survey basic ideas and results on randomized quasi-Monte Carlo
(RQMC) methods, discuss their practical aspects, and give numerical illustrations.
RQMC can improve accuracy compared with standardMonte Carlo (MC) when esti-
mating an integral interpreted as a mathematical expectation. RQMC estimators are
unbiased and their variance converges at a faster rate (under certain conditions) than
MC estimators, as a function of the sample size. Variants of RQMC also work for
the simulation of Markov chains, for function approximation and optimization, for
solving partial differential equations, etc. In this introductory survey, we look at how
RQMC point sets and sequences are constructed, how we measure their uniformity,
why they can work for high-dimensional integrals, and how can they work when
simulating Markov chains over a large number of steps.

Keywords QMC · Variance reduction · Multivariate integration · Stochastic
simulation · Simulation in finance · Array-RQMC

1 Introduction

We consider a setting in which Monte Carlo (MC) or quasi-Monte Carlo (QMC)
is used to estimate the expectation μ = E[X ] of a random variable X defined over
a probability space (Ω,F ,P). We assume that ω ∈ Ω can be identified with a
sequence of s independentU (0, 1) random variables (uniform over (0, 1)) for some
integer s > 0, so we can write X = f (U) and

μ =
∫ 1

0
· · ·

∫ 1

0
f (u1, . . . , us) du1 · · · dus =

∫
(0,1)s

f (u) du = E[ f (U)], (1)
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for some function f : Ω = (0, 1)s → R, whereu = (u1, . . . , us) ∈ (0, 1)s , andU ∼
U (0, 1)s (uniform over the unit hypercube). We can allow s to be random and
unbounded; then this model is very general [28].

The standard Monte Carlo (MC) method estimates μ by

X̄n = 1

n

n−1∑
i=0

Xi (2)

where Xi = f (Ui ) and U0, . . . ,Un−1 are n independent U (0, 1)s random vectors.
In implementations, these Ui are replaced by vectors of “random numbers” that
drive the simulation, but the MC theory developed under the above probabilis-
tic assumptions still works well. We have E[X̄n] = μ and Var[X̄n] = σ 2/n where
σ 2 := ∫

(0,1)s f 2(u) du − μ2. If σ 2 < ∞ then when n → ∞ we have X̄n → μ with

probability 1 by the strong law of large numbers and
√
n(X̄n − μ)/Sn ⇒ N (0, 1)

(the standard normal distribution) by the usual central limit theorem (CLT), where
S2n = 1

n−1

∑n−1
i=0 (Xi − X̄n)

2. This CLT is invoked routinely to compute a confidence
interval on μ based on a normal approximation. The width of this confidence inter-
val is asymptotically proportional to σ/

√
n, which means that for each additional

decimal digit of accuracy on μ, one must multiply the sample size n by 100.
Quasi-Monte Carlo (QMC) replaces the independent random points Ui by a set

of deterministic points Pn = {u0, . . . ,un−1} that cover [0, 1)s more evenly. (Here
we include 0 in the interval because some of these deterministic points often have
coordinates at 0.) It estimates μ by

μ̄n = 1

n

n−1∑
i=0

f (ui ).

Roughly speaking, Pn is called a highly-uniform point set or low-discrepancy point
set if some measure of discrepancy between the empirical distribution of Pn and the
uniform distribution converges to 0 faster than O(n−1/2), which is the typical rate
for independent random points, when n → ∞. QMC theory defines several types
of discrepancies, usually by defining function spaces (often Hilbert spaces) H in
which by applying the Cauchy–Schwarz inequality, one obtains the worst-case error
bound

|μ̄n − μ| ≤ D(Pn)V ( f ) (3)

for all f ∈ H , where V ( f ) = ‖ f − μ‖H is the norm of f − μ inH (it measures
the variation of f ), and D(Pn) is the discrepancymeasure of Pn associated with this
space [9, 18, 50]. For any fixed f ∈ H with V ( f ) 
= 0, this error bound converges
at the same rate as D(Pn). The error itself sometimes converges faster than the bound.
To capture this, Hickernell [21] considers a setting in which (3) is transformed into
an equality by introducing a third multiplicative factor on the right side. This new
factor is the confounding between f and the empirical distribution of the points ui ;
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it is always in [0, 1] and is equal to the left term divided by the right term in (3). The
resulting equality is named a trio identity.

In a well-known special case, D(Pn) is the star discrepancy D∗(Pn), defined
as follows: for each rectangular box [0,u) with opposite corners at 0 and u, let
Δ(u) be the absolute difference between the volume of the box and the fraction
of Pn that fall in that box. Then define D∗(Pn) as the supremum of Δ(u) over all
u ∈ (0, 1)s . There are known explicit constructions that can provide a Pn for each
n, for which D∗(Pn) = O(n−1(ln n)s−1). Variants of these constructions provide an
infinite sequence of points for which D∗(Pn) = O(n−1(ln n)s) if Pn comprises the
first n points of the sequence. One important limitation of (3) for this case is that the
corresponding V ( f ), known as theHardy–Krause variation of f , is infinite as soon as
f has a discontinuity that is not aligned with the axes. Computing D∗(Pn) explicitly
is also difficult: the best known algorithms are polynomial in n but exponential in s;
see [12] for a coverage of various types of discrepancies and their computation.

There are other interesting (Hilbert) spaces of periodic smooth functions forwhich
the corresponding D(Pn) in (3) converges asO(n−α+ε) for any ε > 0, for someα > 0
that depends on the space and can be arbitrarily large. Themain constructionmethods
for Pn are lattice rules and digital nets. We discuss them later and give examples.

With deterministic QMC, it is hard to estimate the integration error in practice.
Randomized quasi-Monte Carlo (RQMC) randomizes the QMC points in a way that
for the RQMC point set Pn = {U0, . . . ,Un−1} ⊂ (0, 1)s (which is now random),

(i) each point Ui has the uniform distribution over (0, 1)s ;
(ii) Pn as a whole is a low-discrepancy point set.

This turns QMC into a variance-reduction method. The RQMC estimator

μ̂n,rqmc = 1

n

n−1∑
i=0

f (Ui ) (4)

is an unbiased estimator of μ, with variance

Var[μ̂n,rqmc] = Var[ f (Ui )]
n

+ 2

n2
∑
i< j

Cov[ f (Ui ), f (U j )]. (5)

We want to make the last sum as negative as possible, by inducing pairwise negative
covariance.Well-knownways of creating such negative correlation include antithetic
variates (with n = 2), Latin hypercube sampling (LHS), and stratification. The first
two can reduce the variance under some conditions, but do not improve theO(n−1/2)

MC rate. Stratification and other RQMCmethods based for example on lattice rules
and digital nets can improve the rate; see Sect. 2. Some RQMC methods provide a
better convergence rate than the squared worst-case error, because the average over
the randomizations is sometimes better than the worst case [17, 48, 56].
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Note that because of the nonzero covariances, we cannot use the sample variance
of the f (Ui ) to estimate Var[μ̂n,rqmc] as for MC. To estimate the variance, we can
simulate m independent realizations X1, . . . , Xm of μ̂n,rqmc, then estimate μ and
Var[μ̂n,rqmc] by their sample mean X̄m and sample variance S2m . This can be used to
estimate the integration error. Itmay seemnatural to compute a confidence interval by
assuming that X̄m is approximately normally distributed, but one should be careful:
The CLT holds in general for m → ∞, but for fixed m and n → ∞ it holds only for
a few RQMC methods [38, 45]. When applying RQMC to estimate μ, for a given
total computing budgetmn, we prefer n as large as possible to benefit from the faster
convergence rate in n, and then m is small (e.g., 10 or 20) and X̄m may be far from
normally distributed. We give an example in Sect. 4.1.

In the remainder of this tutorial, we focus on RQMC to estimate an integral on the
unit cube, and we assume that the goal is to reduce the variance. For simplicity, we
assume that s and n are fixed. There are constructions (not discussed here) in which
the point sets can be expanded dynamically in dimension by adding new coordinates
and in size by adding new points without changing the existing points. There are
settings in which the criterion to minimize is not the variance. It can be the worst-
case error or the average error for some class of functions, for example. This may
give rise to various kinds of Hilbert (or Banach) spaces and discrepancies that we do
not examine here. We look at just a few RQMC settings to give illustrations. Another
interesting fact for practitioners is that the faster convergence rates of RQMC are
proved under conditions on f that are often not satisfied in applications, but despite
this, RQMC often reduces the variance by significant factors in those applications,
so it is worth giving it a try and comparing RQMC vs MC empirical variances.

RQMCmethods are best-known for estimating an integral, but they can effectively
apply much more widely, for example to estimate the derivative of an expectation,
or a function of several expectations, or a quantile, or a density, or the optimizer of a
parameterized expectation or function, etc. This tutorial does not (and cannot) cover
every aspect of RQMC. It gives more emphasis to what the author knows best. For
more on QMC and RQMC, see for example [9, 28, 33, 34, 41, 50, 55, 58]. Tutorials
on more advanced QMC topics can be found elsewhere in this book.

2 RQMC Point Set Constructions

2.1 Stratification

A first approach to obtain a negative sum of covariances in (5) is to stratify the unit
hypercube [16]. We partition axis j in k j ≥ 1 equal parts, for j = 1, . . . , s. This
determines n = k1 · · · ks rectangular boxes of volume 1/n. Then we draw n random
points, one per box, independently and uniformly in each box. Fig. 1 (left) gives an
illustration with s = 2, k1 = 12, k2 = 8, and n = 12 × 8 = 96.
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The stratified estimator in the general case is

Xs,n = 1

n

n−1∑
j=0

f (U j ).

The crude MC variance with n points can be decomposed as

Var[X̄n] = Var[Xs,n] + 1

n

n−1∑
j=0

(μ j − μ)2

where μ j is the mean over box j . The more the μ j ’s differ, the more the variance
is reduced. Stratification provides an unbiased estimator and never increases the
variance. One can estimate the variance by replicating the scheme m ≥ 2 times,
computing the empirical variance in each box, and averaging. If f ′ is continuous and
bounded, and all k j are equal to k (son = ks), then byusing aTaylor expansion in each
box one can show [16] that Var[Xs,n] = O(n−1−2/s). This may provide a significant
improvement when s is small, but for large s, the rate is not much better than for
MC, and the method quickly becomes impractical because n increases exponentially
with k. Nevertheless, it is sometimes effective to apply stratification to just a few
important (selected) coordinates.

It is interesting to note that for f ′ continuous and bounded, a (deterministic)
multivariate midpoint rule which takes one point at the center of each box, as shown
in the right panel of Fig. 1 for k1 = k2 = 8, gives the same rate as stratification for
the worst-case square integration error. For the midpoint rule, each one-dimensional
projection of Pn has only d distinct points, each two-dimensional projection has only
d2 distinct points, etc. This means that for integrating functions that depend (mostly)
on just a few of the s coordinates, many of the n points are identical with respect to
those important coordinates, so the scheme becomes inefficient.

0 1

1

ui,2

ui,1
0 1

1

ui,2

ui,1

Fig. 1 An illustration of stratified sampling (left) and a midpoint rule (right) over (0, 1)2
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2.2 Lattice Rules

An integration lattice is a vector space of the form

Ls =
⎧⎨
⎩v =

s∑
j=1

z jv j such that each z j ∈ Z

⎫⎬
⎭ ,

where v1, . . . , vs ∈ R
s are linearly independent overR andwhere Ls containsZs , the

vectors of integers. A lattice rule is a QMCmethod that takes Pn = {u0, . . . ,un−1} =
Ls ∩ [0, 1)s . It has rank 1 ifwe canwriteui = iv1 mod 1 for i = 0, . . . , n − 1,where
nv1 = a = (a1, . . . , as) ∈ {0, 1, . . . , n − 1}s . These are the most widely used rules
in practice. We have a Korobov rule if a = (1, a, a2 mod n, . . . , as−1 mod n) for
some integer a such that 1 ≤ a < n.

Figure2 shows the points of a two-dimensional Korobov lattice rule with n = 101
and a = (1, 12) on the left and a = (1, 51) on the right. In both cases the points have
a lattice structure. They are very evenly spread over the unit square for a = (1, 12),
but for a = (1, 51) all the points of Pn lie on two parallel straight lines! Thus, the
joint choice of n and a must be done carefully.

A lattice rule can be turned into an RQMC method simply by shifting the lattice
randomly, modulo 1, with respect to each coordinate [7, 33]. One generates a single
point U uniformly in (0, 1)s , and adds it to each point of Pn modulo 1, coordinate-
wise. This satisfies the two RQMC conditions. Figure3 gives an example in which
U = (0.40, 0.08), for the lattice rule of Fig. 2.

A good randomly-shifted lattice rule provides an unbiased estimator with points
that seem to cover the unit cube more evenly than independent points, but does it
make the variance converge faster with n than MC? The answer is yes, under some
conditions on the integrand f . Suppose f has Fourier expansion

f (u) =
∑
h∈Zs

f̂ (h)e2π
√−1htu.

0 1

1

ui,2

ui,1

v1

0 1

1

ui,2

ui,1

v1

Fig. 2 An integration lattice with s = 2, n = 101, with v1 = (1, 12)/n on the left and v1 =
(1, 51)/n on the right. In both cases, we can take v2 = (0, 1)
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0 1

1

ui,2

ui,1

U

0 1

1

ui,2

ui,1

Fig. 3 Random shift modulo 1 for the lattice of Fig. 2 (left), with U = (0.40, 0.08)

For a randomly shifted lattice, the exact variance is always (see [33]):

Var[μ̂n,rqmc] =
∑

0 
=h∈L∗
s

| f̂ (h)|2, (6)

where L∗
s = {h ∈ R

s : htv ∈ Z for all v ∈ Ls} ⊆ Z
s is the dual lattice. Thus, from

the viewpoint of variance reduction, an optimal lattice for any given f is one that
minimizes (6). But finding it for a given f is generally too hard and unrealistic.

Let α > 0 be an even integer. If f has square-integrable mixed partial derivatives
up to order α/2 > 0, and the periodic continuation of its derivatives up to order
α/2 − 1 is continuous across the boundaries of the unit cube modulo 1, then it is
known that | f̂ (h)|2 = O((max(1, h1) · · ·max(1, hs))−α). It is also known that for
any ε > 0, there is always a vector v1 = v1(n) such that

Pα :=
∑

0 
=h∈L∗
s

(max(1, h1) · · ·max(1, hs))
−α = O(n−α+ε). (7)

ThisPα has been proposed long ago as a figure of merit, often with α = 2 [58]. It is
the variance for a worst-case f having | f̂ (h)|2 = (max(1, |h1|) · · ·max(1, |hs |))−α.

A larger α means a smoother f and a faster convergence rate. ThisPα is defined by
an infinite sum, which cannot be computed exactly in general. However, when α is
an even integer, the worst-case f is

f ∗(u) =
∑

u⊆{1,...,s}

∏
j∈u

(2π)α/2

(α/2)! Bα/2(u j )

where Bα/2 is the Bernoulli polynomial of degree α/2 (e.g., B1(u) = u − 1/2), and
Pα can be written as a finite sum that is easy to compute and can be used as a
criterion to search for good lattices; see (9) in Sect. 3, where we give a more general
version.
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0 1
1/2

0 1
1/2

Fig. 4 Applying the baker transformation to the pointsUi is equivalent to transforming f as shown

Thus, under the above conditions on the periodic continuation of f , for all ε >

0 there is a sequence of integration lattices indexed by n for which the variance
converges as O(n−α+ε). What if f does not satisfy these conditions? One can often
change f to a continuous and/or smoother function that integrates to the sameμ over
[0, 1)s , usually via a change of variable. For example, suppose f is continuous in
[0, 1), but discontinuous at the boundary, i.e., f (. . . , u j = 0, . . . ) 
= f (· · · , u j =
1, . . . ). To simplify the exposition, suppose f is a function of a single real variable u
(the other ones are fixed). Consider the change of variable v = ϕ(u) = 2u if u ≤ 1/2
and 1 − 2u if u > 1/2. It is known as the baker transformation [20]: it stretches the
points by a factor of 2, from [0, 1) to [0, 2), and folds back the segment [1, 2) to
[1, 0). Its impact on the RQMC estimator (4) is exactly equivalent to compressing
the graph of f horizontally by a factor of 1/2, and then making a mirror copy on
the interval [1/2, 1). The transformed f is a continuous function. Figure4 gives an
illustration. In practice, it is more convenient to apply the baker transformation to the
randomized points Ui instead of changing f . Higher-order transformations can also
make the derivatives (up any given order) continuous and improve the asymptotic
rate even further, but they often increases the variance for “practical” values of n by
increasing V ( f ), so are not necessarily better in the end.

Note that the worst-case function for the bounds we discussed is not necessarily
representative of what happens in applications. Also, the hidden factor in theO may
increase quickly with s, so the rate result in (7) is not very useful for large s. To get
a bound that is uniform in s, the Fourier coefficients must decrease faster with the
dimension and “size” of vectors h; that is, f must be “smoother” in high-dimensional
projections [10, 59, 60]. This is typically what happens in applications for which
RQMC is effective. The criterion (9) will take that into account.

2.3 Digital Nets

Niederreiter [50] defines a digital net in base b as follows. Choose the base b, usually
a prime number or a power of a prime, and an integer k > 0. For i = 0, . . . , bk − 1
and j = 1, . . . , s, put
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i = ai,0 + ai,1b + · · · + ai,k−1b
k−1 = ai,k−1 · · · ai,1ai,0,⎛

⎜⎝
ui, j,1

...

ui, j,w

⎞
⎟⎠ = C j

⎛
⎜⎝

ai,0
...

ai,k−1

⎞
⎟⎠ mod b,

ui, j =
w∑

�=1

ui, j,�b
−�, ui = (ui,1, . . . , ui,s),

where the generating matrices C j are w × k with elements in Zb. This gives n = bk

points. In practice, w and k are finite, but there is no limit. The definition in [50]
is actually more general: One can define bijections between Zb and some ring R,
and perform the multiplication in R. Assuming that each C j has full rank, each
one-dimensional projection truncated to its first k digits is Zn/n = {0, 1/n, . . . ,

(n − 1)/n}. That is, each C j defines a permutation of Zn/n.
If eachC j is defined with an infinite number of columns, then we have an infinite

sequence of points, called a digital sequence in base b. One can always take the first
n = bk points of a digital sequence to define a digital net, for any k.

Measuring uniformity. A standard way of measuring the uniformity of a digital
net in base b with n = bk points is as follows [34, 50]. Suppose we divide axis j
in bq j equal parts for some integer q j ≥ 0, for each j . This determines a partition
of [0, 1)s into 2q1+···+qs rectangles of equal sizes. If each rectangle contains exactly
the same number of points from Pn , we say that Pn is (q1, . . . , qs)-equidistributed in
base b. This occurs if and only if the matrix formed by the first q1 rows ofC1, the first
q2 rows of C2, …, the first qs rows of Cs , is of full rank (mod b). The (q1, . . . , qs)-
equidistribution can be verified by constructing this matrix and checking its rank.We
say that Pn is a (t, k, s)-net in base b if and only if it is (q1, . . . , qs)-equidistributed
whenever q1 + · · · + qs = k − t . This is possible for t = 0 only if b ≥ s − 1. The
t-value of a digital net is the smallest t for which it is a (t, k, s)-net.

Figure5 gives an example of a (0, 6, 2)-net in base 2. The equidistribution can
be observed on the left with q1 = q2 = 3 and on the right with q1 = 4 and q2 = 2.
This point set is obtained by taking C2 as the identity matrix and C1 as the reverse
identity (with 1’s on the descending diagonal). The points are enumerated by their
first coordinate and the second coordinate follows the van der Corput sequence in
base 2.Many of the points sit exactly on the left or bottom boundary of their rectangle
in Fig. 5, because only the first six bits of each coordinate can be nonzero. For any
integer k > 0, this construction (with these C1 and C2) is a (0, k, 2)-net in base 2; it
is the two-dimensional Hammersley point set.

An infinite sequence {u0,u1, . . . } in [0, 1)s is a (t, s)-sequence in base b if for
all k > 0 and ν ≥ 0, Q(k, ν) = {ui : i = νbk, . . . , (ν + 1)bk − 1}, is a (t, k, s)-net
in base b. This is possible for t = 0 only if b ≥ s.

A key property that connects digital nets with the star discrepancy and QMC error
bounds is that for fixed s, if Pn is a (t, k, s)-net in base b for k = 1, 2, 3, . . . and t
is bounded, then D∗(Pn) = O(n−1(log n)s−1), and for any f having finite Hardy-
Krause variation V ( f ), the error bound (3) with these point sets converges at this
same rate.
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Fig. 5 The Hammersley point set (or Sobol net with appended first coordinate) for s = 2 and
n = 64
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Fig. 6 The first n = 64 Sobol points in s = 2 dimensions

Specific constructions. The most popular (and oldest) specific instance of digital
sequence was proposed by Sobol’ [61], in base b = 2. Each binary matrix C j is
upper triangular with ones on the main diagonal. The bits above the diagonal in any
given column form the binary expansion of an integer called a direction number. The
first few direction numbers are selected and the following columns are determined
by a bitwise linear recurrence across the columns. The choice of the initial direction
numbers is important for the quality of the points. For original values proposed by
Sobol’, in particular, the uniformity of several low-dimensional projections are very
poor. Better direction numbers are proposed in [26, 42], for example. Figure6 shows
the first 64 points of the Sobol sequence in base 2, for whichC1 is the identity matrix.
These points form a (0, 6, 2)-net in base 2, just like the Hammersley points of Fig. 5.

Faure [14] proposed digital sequences in base b for any prime b by taking C j

as the ( j − 1)th power of the Pascal matrix, modulo b. He proved that the resulting
sequence is a (0, s)-sequence in base b for any s ≤ b. The latter condition is a
practical limitation, because it imposes the choice of a large base when s is large.
Also, the arithmetic modulo a prime b > 2 is less convenient and generally slower on
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computers than arithmetic modulo 2. Other sequences and nets for arbitrary prime
power bases and nets in base 2 with better t-values than those of Sobol’ are also
available (see, e.g., [9, 51]), but they rarely outperform Sobol’ points in applications.

For all these sequences, if we fix n = bk , we can take the first coordinate of point i
as i/n, which corresponds to takingC1 as the reflected identity matrix, and then take
C j+1 as the old C j , for j ≥ 1. It turns out that by doing this with a (t, s)-sequence,
we can obtain a (t, k, s + 1)-net for any k. That is, we gain one coordinate in the net.
By doing this with the Sobol’ sequence with s = 1, we obtain the Hammersley net
illustrated in Fig. 5. Other types of digital net constructions can be found in [9, 43,
52] and the references given there.

Randomization. If we apply a random shift modulo 1 to a digital net, the
equidistribution properties are not preserved in general. However, a random dig-
ital shift in base b preserves them and also satisfies the two criteria that define
RQMC. It works as follows. As for the ordinary random shift, we generate a sin-
gle U = (U1, . . . ,Us) ∼ U [0, 1)s where Uj = ∑w

�=1Uj,� b−�. For coordinate j of
point i , before the shift we have ui, j = ∑w

�=1 ui, j,�b
−�. The digital shift replaces

each ui, j by Ũi, j = ∑w
�=1[(ui, j,� +Uj,�) mod b]b−�. It is not difficult to show that

if Pn is (q1, . . . , qs)-equidistributed in base b before the shift, it retains this property
after the shift. Moreover, if w = ∞, each randomized point Ũi has the uniform dis-
tribution over (0, 1)s . As a result, if f has finite Hardy-Krause variation and we use
(t, k, s)-nets with fixed s and bounded t for RQMC with a random digital shift, the
estimator μ̂n,rqmc is unbiased and by squaring the worst-case error we immediately
find that its variance converges asO(n−2(log n)2(s−1)). (Better rates are obtained for
certain classes of smooth functions and certain types of randomizations; see below.)

In base b = 2, the digital shift consists in applying a bitwise XOR betweenU and
each ui . To illustrate how the equidistribution is preserved, take for example k1 = 3
and k2 = 5. For the given U, the bits marked as “C” in the result have been flipped
and those still marked with ∗ are unchanged:

ui = (0.***, 0.*****)2

U = (0.101, 0.01011)2

ui ⊕ U = (0.C*C, 0.*C*CC)2

If the eight considered bits for ui take each of the 28 possible configurations exactly
the same number of times when i = 0, . . . , n − 1, then this also holds for ui ⊕ U.
More generally, for a digital net in base 2 with n = 2k points in s dimensions, this
preservation holds for any U and any non-negative integers k1, . . . , ks such that
k1 + · · · + ks ≤ k. Figure7 shows a digital shift in base 2 with

U = (0.10100101100 . . . , 0.01011001100 . . .)2

applied to the Hammersley points (Sobol’ net with one extra coordinate) of Fig. 5.
For this given U, for each point ui we flip the first, third, sixth, …, bits of the first
coordinate, and we flip the second, fourth, fifth, …, bits of the second coordinate.
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Fig. 7 A random digital shift with U = (0.10100101100 . . . , 0.01011001100 . . .)2 applied to a
Sobol net with 64 points. The original points are in upper left. Flipping the first bit of the first
coordinate permutes the left half with the right one, giving the upper right plot. Then flipping the
third bit of the first coordinate gives the lower left plot. The lower right shows the points after the
full digital shift of the two coordinates. One can follow the movement of the green and blue boxes
during the permutations. In the end, those two square boxes are permuted

The figure shows what happens when we flip the first bit of the first coordinate (top
right); it permutes the left half with the right half. If the second bit inU was a 1 (here
it is not), we would also permute the first (shaded) quarter with the second and the
third (shaded) with the fourth. Since the third bit in U is 1, we flip the third bit of
the first coordinate of each ui , The lower left plot shows the points after this flip,
which has permuted each lightly colored vertical stripe with the yellow one on its
right. After doing all the permutations specified by U for the first coordinate, we do
the same with the second coordinate. The points after the full digital shift are shown
in the lower right. Equidistribution is preserved because for each relevant partition
in dyadic rectangular boxes, the digital shift only permutes those boxes (by pairs).

A more powerful but more costly randomization for digital nets is the nested
uniform scramble (NUS) of Owen [53, 54]. The difference with the digital shift (in
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base 2) is as follows. For any given coordinate, with probability 1/2 we flip the first
bit of all points, just as before, then for the left half, we flip the second bit of all points
with probability 1/2, and we do the same for the right half, but independently. That is,
in the top right of Fig. 7, we would permute the first shaded area (first quarter) with
the light area on its right (second quarter) with probability 1/2, and independently
we would permute the second shaded area (third quarter) with the pink area on its
right (fourth quarter). Then we do this recursively, and we repeat for each coordinate.
For instance, in the lower left Fig. 7, we would use four independent random bits,
one for each pair of successive (light, yellow) columns. Doing permutations like this
for 31 bits or more would be very time-consuming, but in fact one can do it for the
first k bits only, and then generate the other bits randomly and independently across
points and coordinates. From a statistical viewpoint this is equivalent to NUS and
less time-consuming [48]. NUS also works in general base b: for each digit of each
coordinate, we generate a random permutation of b elements to permute the points
according to this digit. Owen proved that under sufficient smoothness condition on
f , for digital nets in base b with fixed s and bounded t , with this scrambling the
variance converges as O(n−3(log n)s−1), which is better than for the random digital
shift.

Simpler and less costly permutations than NUS have been proposed. One popular
example is the (left) linear matrix scramble [48, 56, 64]: left-multiply each matrix
C j by a random non-singular and lower triangular w × w matrix L j , mod b. With
this scrambling just by itself, each point does not have the uniform distribution (e.g.,
the point 0 is unchanged), but one can apply a random digital shift in base b after the
matrix scramble to obtain an RQMC scheme. There are other types of linear matrix
scrambles, such as the stripe scramble, ibinomial scramble, etc.; see [23, 48, 49, 56].
These non-nested scrambles use less randomization than NUS and none has a proved
convergence rate of O(n−3(log n)s−1) for the variance for s > 1, to my knowledge.

3 Anova Decomposition

Filling the unit hypercube very evenly requires an excessive number of points in
large dimension. For example, in s = 100 dimensions, it takes n = 2100 points to
have one in each quadrant; this is unrealistic. The reason why RQMC might still
work for large s is because f can often be well approximated by a sum of low-
dimensional functions, and RQMC with a well-chosen point set can integrate these
low-dimensional functions with small error. A standard way of formalizing this is as
follows [44, 62].

An ANOVA decomposition of f (u) = f (u1, . . . , us) can be written as

f (u) =
∑

u⊆{1,...,s}
fu(u) = μ +

s∑
i=1

f{i}(ui ) +
s∑

i, j=1

f{i, j}(ui , u j ) + · · · (8)
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where

fu(u) =
∫

[0,1)|ū|
f (u) duū −

∑
v⊂u

fv(uv),

and the Monte Carlo variance decomposes accordingly as

σ 2 =
∑

u⊆{1,...,s}
σ 2
u, where σ 2

u = Var[ fu(U)].

Getting a rough estimate of the variance σ 2
u captured by each subset u of coordinates

suffices to define relevant uniformity criteria that give more weight to the more
important projections. The σ 2

u can be estimated by MC or RQMC; see [47, 57].
One example of this is the following weighted version of Pα , with projection-

dependent weights γu, in which u(h) = u(h1, . . . , hs) = { j : h j 
= 0}:

Pγ,α =
∑

0 
=h∈L∗
s

γu(h)(max(1, |h1|) · · ·max(1, |hs |))−α.

If α/2 is a positive integer, for a lattice rule with ui = (ui,1, . . . , ui,s), we have

Pγ,α =
∑

∅
=u⊆{1,...,s}

1

n

n−1∑
i=0

γu

[−(−4π2)α/2

(α)!
]|u| ∏

j∈u
Bα(ui, j ), (9)

and the corresponding variation (squared) is

V 2
γ ( f ) =

∑
∅
=u⊆{1,...,s}

1

γu(4π2)α|u|/2

∫
[0,1]|u|

∣∣∣∣∂
α|u|/2

∂uα/2
fu(u)

∣∣∣∣
2

du,

for f : [0, 1)s → R smooth enough. Then,

Var[μ̂n,rqmc] =
∑

u⊆{1,...,s}
Var[μ̂n,rqmc( fu)] ≤ V 2

γ ( f )Pγ,α. (10)

ThisPγ,α with properly chosen α and weights γu is a good practical choice of figure
of merit for lattice rules [10, 19]. The weights γu are usually chosen to have a specific
form with just a few parameters, such as order-dependent or product weights [35,
60]. The Lattice Builder software [36] permits one to search for good lattices for
arbitrary n, s, and weights, using various figures of merit, under various constraints.
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4 Examples

The numerical results reported in this paper were obtained using the Java library
SSJ [29], which offers tools for RQMC and stochastic simulation in general. In the
examples, all random variates are generated by inversion.

4.1 A Stochastic Activity Network

This example is from [2, 33].We consider the stochastic activity network in Fig. 8, in
which Y j is the length of arc j , for j = 0, . . . , 12. The Y j are assumed independent
with cdf’s Fj given in [2, Sect. 4.1] and [35], and we generate them by inversion:
Y j = F−1

j (Uj )whereUj ∼ U (0, 1). Let T be the (random) length of the longest path
from node 0 to node 8. We compare RQMC and MC for two estimation problems:
(a) estimating P[T > x] for some constant x and (b) estimating E[T ].

To estimateE[T ]we simply use T , so s = 13. To estimate P[T > x], we consider
two base MC estimators. The first one is X = I[T > x] (where I[·] is the indicator
function) and the second one uses conditional Monte Carlo (CMC) as follows. We
generate the Y j ’s only for the 8 arcs that do not belong to the cutL = {4, 5, 6, 8, 9},
and replace I[T > x] by its conditional expectation given those Y j ’s,

XCMC = P
[
T > x | {Y j : j /∈ L }] = 1 −

∏
j∈L

P[Y j ≤ x − Pj ] (11)

where Pj is the length of the longest path that goes through edge j when we put
Y j = 0. This XCMC is easy to compute, as explained in [33], and is guaranteed to
have smaller variance than the indicator (the first one) under MC. A more important
advantage under RQMC is that CMC makes the estimator continuous as a function
of the Uj ’s, whereas the first one is discontinuous. It also reduces the dimension s
from 13 to 8. Figure9 shows the impact of CMC on the ANOVA decomposition. For
each estimator, the length of the white box is proportional to the variance captured
by one-dimensional projections, the second lightest box is for the two-dimensional
projections, etc. CMC pushes much of the variance to the projections over one and

Fig. 8 A stochastic activity
network
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Table 1 Empirical convergence rate ν and log10 of empirical variancewith n ≈ 220 (in parentheses)
for the stochastic activity network example

P[T > 60], MC P[T > 60], CMC E[T ], MC

ν log10 Var ν log10 Var ν log10 Var

Independent 1.00 (−6.6) 1.00 (−7.3) 1.04 (−3.5)

Lattice 1.20 (−8.0) 1.51 (−10.9) 1.47 (−6.3)

Sobol+LMS+DS 1.20 (−7.5) 1.68 (−11.2) 1.36 (−6.2)

Sobol+NUS 1.18 (−8.0) 1.65 (−11.2) 1.37 (−6.3)

two dimensions. The variance components σ 2
u were estimated using the algorithm of

[63] with RQMC (100 independent shifts of a lattice rule with n = 220 − 3 points);
see [35, Sect. 8] for the details. The bounds (3) and (10) are useless here because the
mixed derivatives are not defined everywhere, so the variation is infinite. It will be
interesting to see that RQMC nevertheless improves the variance. This is frequent in
applications.

In an experiment reported in [35], an integration lattice of rank 1 was constructed
for 50 different prime values of n ranging from 25 − 1 to 222 − 3, roughly uniformly
spread in log scale. For each n a generating vector a was found based on the criterion
(9), with weights selected based on estimates of the ANOVA components. The vari-
ance was estimated for each n and a linear regression was fitted for logVar[μ̂n,rqmc]
vs log n to estimate the rate ν for which Var[μ̂n,rqmc] ∝ n−ν in this range of values of
n. For the estimation of P[T > x] with x = 60, for example, we found ν ≈ 1.2 for
the standard estimator (indicator) and ν ≈ 1.5 with CMC. The log-log plot follows
pretty much a straight line. Based on an interpolation from the regression model,
for n ≈ 220, RQMC reduces the variance approximately by a factor of 27 with the
standard estimator and 4400 with CMC. This shows that the combined smoothing of
f and dimension reduction provided by CMC has a large impact on the effectiveness
of RQMC. For the estimation of E[T ] (without CMC), we had ν ≈ 1.47. Table1
reports the results for other RQMC schemes, namely Sobol’ points with a linear
matrix scramble and a random digital shift (LMS+DS), and Sobol’ points with NUS.
We see that the choice of scrambling makes almost no difference in this example.

0 20 40 60 80 100

x= 64

x= 100

CMC, x= 64

CMC, x= 100

% of total variance for each cardinality of

Fig. 9 ANOVA Variance captured by each projection order for estimators of P[T > x] for the
stochastic activity network example
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Fig. 10 Histogram ofMC and RQMC estimators with n = 8191 for the stochastic activity network
with CMC, for x = 100, based onm = 10000 replications of each estimator. The RQMC estimator
is a randomly shifted lattice rule with n = 8191

Figure10 shows histograms form = 10000 replications of theMC estimator with
n = 8191 (left) and for a particular randomly shifted lattice rulewith n = 8191 (right,
taken from [38]). The MC histogram resembles a normal distribution, as expected,
but the second one is far from normal. A confidence interval based on a normality
assumption is certainly inappropriate in this case. The limiting distribution of an
RQMC estimator based on a randomly-shifted lattice rule when n → ∞ is analyzed
in [38]; the properly scaled limiting distribution is usually a spline, not a normal
distribution. For a digital net with a digital random shift, the CLT does not apply
either (in one dimension it is equivalent to a randomly-shifted lattice), but the CLT
does apply for a digital net with NUS [45].

4.2 A Financial Option Under a Variance-Gamma Process

Alternative sampling schemes. Consider an asset price that evolves according to a
geometric variance-gamma (GVG) process S defined by [3, 4, 46]:

S(t) = S(0) exp [r t + X (G(t; 1, v), μ, σ ) + ωt] ,

where X is a Brownian process with drift and variance parameters μ and σ , G is a
gammaprocesswithmean andvarianceparameters 1 and v, X andG are independent,
and ω = ln(1 − μv − σ 2v/2)/v. The process Y (·) = X (G(·)) is a variance-gamma
process. We want to estimate by simulation the value of an Asian call option, given
by E[e−rT max(S̄ − K , 0)], where S̄ = (1/d)

∑d
j=1 S(t j ) and t j = jT/d for 0 ≤

j ≤ d.
The realization of Y (t) (and of S(t)) at the d observation points t j can be gen-

erated in the following three ways (among others), as explained in [3]: Brown-
ian and gamma sequential sampling (BGSS), Brownian and gamma bridge sam-
pling (BGBS), and difference of gammas bridge sampling (DGBS). BGSS generates
τ1 = G(t1), then X (τ1), then τ2 − τ1 = G(t2) − G(t1), then X (τ2) − X (τ1), etc., in
that order. This requires d gamma variates and d normal variates, so the dimension
is s = 2d. BGBS generates τd = G(td), X (τd), τd/2 = G(td/2), X (τd/2), τd/4 =
G(td/4), X (τd/4), τ3d/4 = G(t3d/4), X (τ3d/4), . . . , in that order, exploiting the fact
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Table 2 Empirical convergence rate ν and log10 of empirical variance for n = 220 (in parentheses)
for the option pricing example under a GVG process

BGSS BGBS DGBS

ν log10 Var ν log10 Var ν log10 Var

Independent 1.00 (−4.5) 1.00 (−4.5) 1.00 (−4.5)

Sobol+LMS+DS 1.26 (−6.5) 1.42 (−7.6) 1.34 (−7.6)

that for any given values ta < t < tb and τa < τ < τb, the distribution ofG(t) condi-
tional on (G(ta),G(tb)) is beta with known parameters, and the distribution of X (τ )

conditional on (X (τa), X (τb)) is normal with known parameters. BGBS requires one
gamma variate, d − 1 beta variates, and d normal variates, so s = 2d. DGBS uses the
fact that {S(t), t ≥ 0} can be written as a difference of two gamma processes, which
can be simulated via a bridge (conditional) approach as for BGBS. This requires two
gamma variates and 2d − 2 beta variates. When d is a power of 2, all the beta variates
are symmetric, and for that case there is a fast inversion algorithm [40]. The idea of
the bridge constructions is to reformulate the integrand f in a way that more of the
variance is captured by the low-dimensional projections on the first few coordinates
of the points (the first few coordinates already determine a sketch of the trajectory),
to make RQMC more effective.

For a numerical illustration, we take the following parameters from [4]: θ =
−0.1436, σ = 0.12136, v = 0.3, r = 0.1, T = 1, K = 101, and S(0) = 100. The
exact value and the MC variance are μ ≈ 5.725 and σ 2 ≈ 29.89. Table2 compares
the variance rates ν for RQMC (estimated from experiments with n = 29, . . . , 221)
and MC (for which ν = 1 and the variance is the same for all sampling schemes).
RQMC improves ν and reduces the variance in all three cases, BGBS gives the best
rate empirically, and for n = 220 it reduces the variance by a factor of about 1000.

For comparison, we ran a similar experiment with the GVG process replaced by
a geometric Brownian motion (GBM) process, for which

S(t) = S(0) exp
[
(r − σ 2/2)t + X (t, 0, σ )

]
,

with the same parameter values (v and θ are not used). We tried three sampling
methods: sequential sampling (SS), Brownian bridge sampling (BBS), and Brownian
samplingwith principal component analysis (PCA). SS and BBSwork as in the GVG
case. For PCA, to generate the multivariate normal vector (X (t1), . . . , X (td)), we
do a principal component decomposition of its covariance matrix, say σ = AAt, and
return X = AZ where Z is a vector of d independent standard normals. With this
decomposition, the first few coordinates of Z (i.e., the first few coordinates of the
RQMC points) capture a large fraction of the variance, even larger than with BBS.
The results are in Table3. SS does not improve the variance rate very much, BSS
does better, and PCA much better. For PCA, ν ≈ 1.9 and the variance is reduced by
a factor of over two millions for n = 220. Similar improvements were obtained in
[35] with lattice rules constructed by Lattice Builder [36].
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Table 3 Empirical convergence rate ν and log10 of empirical variance (in parentheses) for the
option pricing example under a GBM process

BSS BBS BPCA

ν log10 Var ν log10 Var ν log10 Var

No CV Independent 1.00 (−4.5) 1.00 (−4.5) 1.00 (−4.5)

Sobol+LMS+DS 1.19 (−7.2) 1.42 (−8.8) 1.90 (−11.0)

With CV Independent 1.00 (−7.8) 1.00 (−7.8) 1.00 (−7.8)

Sobol+LMS+DS 1.21 (−9.5) 1.17 (−10.1) 1.37 (−11.1)

Option pricing examples with multiple correlated assets, in up to 250 dimensions,
and inwhichPCA is very effective, can be found in [24, 27, 28]. Formore on changing
the sampling method of a Brownian motion to reduce the effective dimension and
make RQMC more effective, see, e.g., [5, 25].

Control variates. There are various ways of reducing the RQMC variance by
making the integrand smoother. Using control variates (CVs) is one of them. For the
Asian option under the GBM process, for instance, if we replace the arithmetic aver-
age S̄ by a geometric average S̃ = (

∏d
j=1 S(t j ))1/d , there is a closed-form formula

for the expected payoff, so this payoff can be used as a CVwith either MC or RQMC
[22, 33]. This is very effective in this example, especially when T and the volatility
σ are not too large. Table3 show some results for when we add this CV.

Importance sampling. Financial options for which the payoff is zero most of the
time and takes a large or significant value only once in a while are not rare. Many
options are indeed like insurance contracts, in which a nonzero claim is a rare event
(it has a small probability). The contract value is then an integral whose integrand
(the payoff function) has a peak in a small region and is zero elsewhere.MC performs
poorly in this situation, because an excessively large sample size n might be required
to obtain a sufficiently large number of occurrences of the rare event, and RQMC
does not solve this problem. One appropriate tool then is importance sampling (IS),
which can be seen as a change of variable that, when done properly, flattens out the
integrand to reduce its variation. It can help both MC and RQMC.

We illustrate this with an ordinary European call option under the GVG model.
We have d = 1 and S̄ = S(t1) in the payoff. We also take t1 = 1 and K = 180, so
a positive payoff is a rare event. We simulate the VG process via DGBS. To apply
IS, we will increase the mean of G+ and reduce the mean of G− so G+(1) − G−(1)
takes larger values. A standard IS strategy for this is exponential twisting (see [1]):
we multiply the density g+(x) of G+(1) by eθx and the density g−(y) of G−(1) by
e−θy , for some constant θ ≥ 0, and the re-normalize those densities. They are still
gamma, but with different means. Then the (unbiased) IS estimator is the payoff
multiplied by the likelihood ratio L of the old density product g+(y)g−(y) divided
by the new one. Since the payoff is nonzero only when S(1) ≥ K , i.e., when r + ω +
G+(1) − G−(1) = ln[S(1)/S(0)] > ln(K/S(0)), we (heuristically) choose θ so that
E[G+(1) − G−(1)] = ln(K/S(0)) − r − ω under IS. We write the expectation as a
(monotone) function of θ and find the root θ∗ of the equation numerically. For
K = 180, we find θ∗ = 25.56 and ρ ≈ 0.26. We can do even better, as follows.
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Table 4 Empirical variances per run for the European call option under a GVG process, with and
without IS, with MC and RQMC

MC Sobol+LMS+DS Sobol+NUS Lattice+S+B

no-IS 1.8 × 10−3 6.3 × 10−4 6.0 × 10−4 7.8 × 10−4

IS-twist 1.0 × 10−7 1.9 × 10−11 1.3 × 10−11 1.1 × 10−11

IS-twist-cond 2.8 × 10−8 7.1 × 10−13 7.4 × 10−13 7.4 × 10−13

First generate G−(1) under IS with θ∗, and then generate G+(1) from its original
gamma distribution but conditional on G+(1) > G−(1) + ln(K/S(0)) − r − ω (a
truncated gamma). This way the payoff is positivewith probability 1 and the resulting
IS estimator has an even smaller variation. We call the previous one IS-twist, this
one IS-twist-cond, and the original estimator no-IS. We can use RQMC with any
of these three estimators. We try a Sobol’ net with one extra coordinate (i.e., the
Hammersleypoint set)withn = 216 randomizedbyLMS+DS, the samepoint setwith
NUS, and also a randomly shifted lattice rule with a baker’s transformation, in two
dimensions, with the same n. With this we find that the option price is 1.601 × 10−4

(the given digits here are significant). Table4 reports the empirical variances for all
the estimators discussed above, with both MC and RQMC. For RQMC, the variance
of μ̂rqmc,n is multiplied by n to obtain the variance per run (for a fair comparison with
MC). We see that without IS, RQMC does not reduce the variance by much, and the
standard deviation is more than 300 times the mean in all cases. The combination of
IS and RQMC has a synergistic effect: IS first makes the function flatter, then RQMC
can shine. The difference between the three RQMC methods here is not significant.

5 RQMC for Markov Chains

When simulating a Markov chain over a large number of steps, if we use RQMC in
a standard way, the dimension s will be large and RQMC is then likely to become
ineffective. If each step requires d uniform random numbers and we simulate τ

steps, then we have s = τd. The Array-RQMC method, which we now summarize,
has been designed for this situation [31, 32, 37].

Consider a Markov chain with state space X ⊆ R
�, which evolves as

X0 = x0, X j = ϕ j (X j−1,U j ), j ≥ 1,

where the U j are i.i.d. uniform over (0, 1)d . Want to estimate

μ = E[Y ] where Y =
τ∑
j=1

g j (X j ).

Ordinary MC or RQMC would produce n realizations of Y and take the average.
Each realization requires s = τd uniforms.
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The idea of Array-RQMC is to simulate an array (or population) of n chains in
parallel, in a way that at any given step j , there is small discrepancy between the
empirical distribution of the n states Sn, j = {X0, j , . . . , Xn−1, j } and the theoretical
distribution of X j . At each step, an RQMC point set is used to advance all the chains
by one step.

To provide insight about the method, it is useful to assume for simplification that
X j ∼ U (0, 1)� for all j . This can be achieved conceptually by a change of variable,
and is not necessary for implementing the method. We estimate

μ j = E[g j (X j )] = E[g j (ϕ j (X j−1,U))] =
∫

[0,1)�+d

g j (ϕ j (x,u))dxdu

by

μ̂arqmc, j,n = 1

n

n−1∑
i=0

g j (Xi, j ) = 1

n

n−1∑
i=0

g j (ϕ j (Xi, j−1,Ui, j )).

This is (roughly) RQMC with the point set Qn = {(Xi, j−1,Ui, j ), 0 ≤ i < n}. We
want Qn to have low discrepancy (LD) over [0, 1)�+d .

However, we do not choose the Xi, j−1’s in Qn: they come from the simulation.
We can select a low discrepancy point set Q̃n = {(w0,U0, j ), . . . , (wn−1,Un−1, j )},
in which the wi ∈ [0, 1)� are fixed and each Ui, j ∼ U (0, 1)d . Then a key operation
is to permute the states Xi, j−1 so that Xπ j (i), j−1 is “close” to wi for each i (low
discrepancy between the two sets), and compute Xi, j = ϕ j (Xπ j (i), j−1,Ui, j ) for each
i . In particular, if � = 1, we can take wi = (i + 0.5)/n and just sort the states in
increasing order. For � > 1, there are various ways to define the matching (multi-
variate sorts). At the end, we return the average Ȳn = μ̂arqmc,n = ∑τ

j=1 μ̂arqmc, j,n as
an estimator of μ.

The array-RQMC estimator satisfies [32]: (i) Ȳn is an unbiased estimator of μ,
and (ii) the empirical variance of m independent realizations of Ȳn is an unbiased
estimator of Var[Ȳn]. Known convergence rate results for special cases are sum-
marized in [36]. For example, it is proved in [32] that for � = 1 and if the RQMC
points form a stratified sample, the variance converges asO(n−3/2). In higher dimen-
sions, it is show in [13] under some conditions that the worst-case error converges
asO(n−1/(�+1)). In a sequential QMC setting (with particle filters) in which a digital
net with NUS is used for RQMC and a Hilbert curve sort for mapping the states to
the points, Gerber and Chopin [15] show that the variance is o(n−1). Applications in
finance and computer graphics can be found in [31, 66]. There are combinations with
splitting techniques (multilevel and without levels), with importance sampling, and
with weight windows (related to particle filters) [8, 30], combination with “coupling
from the past” for exact sampling [39], and combination with approximate dynamic
programming and for optimal stopping problems [11].

Examples in which the observed convergence rate for the empirical variance is
O(n−2), or even O(n−3) in some cases, and does not depend on τ , can be found
in [31, 37]. For example, when pricing an Asian call option under a geometric
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Brownian motion, we observeO(n−2) convergence for the variance regardless of the
number τ of observation times that determine the payoff [31], both with lattice rules
and Sobol’ points, while with stratification the observed rate is more like O(n−3/2).
For this example, the state is in d = 2 dimensions and the RQMC points are in 3
dimensions.

A different way of usingQMC to simulateMarkov chains is studied in [6, 65]. The
main idea is to use an approximation of a completely uniformly distributed (CUD)
sequence, implemented by taking successive overlapping vectors of output values
produced by a small linear random number generator as a source of “randomness”
to simulate the chain (one vector per step).
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Application of Quasi-Monte Carlo
Methods to PDEs with Random
Coefficients – An Overview and Tutorial

Frances Y. Kuo and Dirk Nuyens

Abstract This article provides a high-level overview of some recent works on the
application of quasi-Monte Carlo (QMC)methods to PDEswith random coefficients.
It is based on an in-depth survey of a similar title by the same authors, with an
accompanying software package which is also briefly discussed here. Embedded in
this article is a step-by-step tutorial of the required analysis for the setting known as
the uniform case with first order QMC rules. The aim of this article is to provide an
easy entry point for QMC experts wanting to start research in this direction and for
PDE analysts and practitioners wanting to tap into contemporary QMC theory and
methods.

Keywords Quasi-Monte Carlo methods · PDEs with random
coefficients · Uniform · Lognormal · Multi-level · Randomly shifted lattice rules

1 Introduction

Uncertainty quantification is the science of quantitative characterization and reduc-
tion of uncertainties in both computational and real world applications, and it is the
source of many challenging high dimensional integration and approximation prob-
lems. Often the high dimensionality comes from uncertainty or randomness in the
data, e.g., in groundwater flow from permeability that is rapidly varying and uncer-
tain, or in financial mathematics from the rapid and often unpredictable changes
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within markets. The input data may be a random variable or a random field, in which
case the derived quantity of interest will in general also be a random variable or a
random field. The computational goal is usually to find the expected value or other
statistics of these derived quantities.

A popular example is the flow of water through a disordered porous medium,
modeled by Darcy’s law coupled with the mass conservation law, i.e.,

q(x, ω) + a(x, ω)∇ p(x, ω) = 0 ,

∇ · q(x, ω) = 0 ,

for x in a bounded domain D ⊂ R
d , d ∈ {1, 2, 3}, and for almost all events ω in the

probability space (Ω,A ,P). Here q(x, ω) is the velocity (also called the specific
discharge) and p(x, ω) is the residual pressure, while a(x, ω) is the permeability
(or more precisely, the ratio of permeability to dynamic viscosity) which is mod-
elled as a random field. Uncertainty in a(x, ω) leads to uncertainty in q(x, ω) and
p(x, ω). Quantities of interest include for example the breakthrough time of a plume
of pollution moving through the medium.

QMC for PDEs with Random Coefficients

There is a huge literature on treating these PDEs with random coefficients using
various methods, see e.g., the surveys [1, 23, 43] and the references therein. Here we
are interested in the application of quasi-Monte Carlo (QMC) methods, which are
equal-weight quadrature rules for high dimensional integrals, see e.g., [3, 5, 36–39,
44].

QMC methods are still relatively new to these PDE problems. It began with
the 2011 paper [21] which included comprehensive numerical experiments showing
promising QMC results, but without any theoretical justification. The first fully justi-
fied theorywas provided in the 2012 paper [32], and this has lead to a flood of research
activities. We will follow the recent survey [31] to provide a high-level overview of
how QMC theory can be applied to PDEs with random coefficients. The survey [31]
covered the detailed analysis from six papers [6, 8, 22, 32–34] in a unified view.
Different algorithms have been analyzed: single-level vsmulti-level, deterministic vs
randomized, and first order vs higher order, and theywere considered under different
models for the randomness as we explain below.

It is popular to assume that a(x, ω) is a lognormal random field, that is,
log(a(x, ω)) is a Gaussian random field on the spatial domain D with a speci-
fied mean and covariance function. Then one can use the Karhunen–Loève (KL)
expansion to write log(a(x, ω)) as an infinite series parametrised by a sequence
y j = y j (ω), j ≥ 1, of i.i.d. standard normal random numbers from R. Aside from
the lognormal case, often the simpler uniform case is considered, where a(x, ω) is
written as an infinite series that depends linearly on a sequence y j = y j (ω), j ≥ 1,
of i.i.d. uniform random numbers from a bounded interval of [−1, 1] or [− 1

2 ,
1
2 ]. In

both the lognormal and uniform cases the infinite series is truncated in practice to,
say, s terms. The expected value of any quantity of interest is then approximated by
an s-dimensional integral with respect to the parameters y j , which can in turn be
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approximated by QMC methods, combined with finite element methods for solving
the PDE.

The six papers surveyed in [31] all followed this KL-based general direction.With
respect to theQMCmethod they can be either first order or higher order, which refers
to the rate of convergence being close toO(n−1) orO(n−α), α > 1, with n being the
number of integrand evaluations. With respect to the approximation of the integrand
function they can be either single-level or multi-level, which refers to how spatial
discretization and dimension truncation are performed. A summary of the results is
given in the table below:

Uniform case Lognormal case
First order single-level analysis [32] [22]
First order multi-level analysis [33] [34]
Higher order single-level analysis [6]
Higher order multi-level analysis [8]

The first order results [22, 32–34] are based on randomly shifted lattice rules and
are accompanied by probabilistic error bounds. The higher order results [6, 8] are
based on interlaced polynomial lattice rules and are accompanied by deterministic
error bounds. The lognormal results [22, 34] require a non-standard function space
setting for integrands with domain R

s . A key feature in all these analysis is that the
QMC error bounds are independent of the number of integration variables s. There
is as yet no satisfactory QMC theory that can give higher order convergence for the
lognormal case with error bound independent of s.

Plan of this Article

In Sect. 2 we provide an overview of the different settings and algorithms covered
in the survey [31], with the goal to convey the overall picture while keeping the
exposition as simple and accessible as possible. In Sect. 3 we take a change of pace
and style to give a step-by-step tutorial of the required analysis for the uniform case
with first order QMC rules. That is, we zoom in and focus on the essence of the paper
[32] in such a way that the tutorial can be used to extend the analysis to other cases
by interested readers. Then in Sect. 4 we zoom out again and continue to provide
insights to the key analysis required for the six papers surveyed in [31]. In Sect. 5
we briefly discuss the software accompanying [31]. Finally in Sect. 6 we give a short
conclusion.

Beyond the Survey

There have been many developments beyond the scope of the survey [31].
Instead of using the KL expansion, in the lognormal case one can sample the

random field only at a discrete set of points with respect to the covariance matrix
inherited from the given covariance function of the continuous field. The random
field is then represented exactly at these points, thus eliminating completely the
truncation error associated with the KL-based approach. (Note that interpolation
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may be required at the finite element quadrature nodes.) The resulting large matrix
factorization problem could potentially be handled by circulant embedding and FFT,
if the covariance function is stationary and the grid is regular, see [10]. In fact, this
was the approach taken in the first QMC paper for PDEs with random coefficients
[21], and the corresponding analysis is being considered in [19, 20].

Another way to tackle the large matrix factorization is to make use of H-matrix
techniques, see [24], and this has been considered in [11].

The uniform framework can be extended from the elliptic PDE to the general
framework of affine parametric operator equations, see [42] as well as [6, 8]. A
different QMC theory for the lognormal case is offered in [26]. Further PDE com-
putations with higher order QMC are reported in [14], and with multi-level and
multi-index QMC in [40]. QMC has also been applied to PDEs on the sphere [35],
holomorphic equations [9], Bayesian inversion [4, 41], stochastic wave propagation
[12, 13], and eigenproblems [16].

Moreover, there has been some significant development in the use of functions
with local support in the expansions of a(x, ω) which leads to a simplified norm
estimate for the integrand and a reduced construction cost (pre-computation) for
QMC, see [15, 27, 29].

2 Overview

Throughout this article we refer to the number of integration variables s as the
stochastic dimension, which can be in the hundreds or thousands or more (and
controls the truncation error), in contrast to the spatial dimension d which is just
1, 2 or 3.

2.1 Uniform Versus Lognormal

For a given parameter y we consider the parametric elliptic Dirichlet problem

− ∇ · (a(x, y)∇u(x, y)) = κ(x) for x in D , u(x, y) = 0 for x on ∂D ,

(1)
for domain D ⊂ R

d a bounded, convex, Lipschitz polyhedron with boundary ∂D,
where the spatial dimensiond = 1, 2, or 3 is assumedgiven andfixed.The differential
operators in (1) are understood to be with respect to the physical variable x which
belongs to D. The parametric variable y = (y j ) j≥1 belongs to either a bounded or
unbounded domain, depending on which of the two popular formulations of the
parametric coefficient a(x, y) is being considered.
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Uniform Case

In the uniform case, we assume that the y j are independent and uniformly distributed
on [− 1

2 ,
1
2 ], and

a(x, y) = a0(x) +
∑

j≥1

y j ψ j (x) , (2)

with 0 < amin ≤ a(x, y) ≤ amax < ∞ for all x and y. We need further assumptions
on a0 and ψ j , see [31] for details. Here we mention only one important assumption
that there exists p0 ∈ (0, 1) such that

∑

j≥1

‖ψ j‖p0
L∞ < ∞ . (3)

The value of p0 reflects the rate of decay of the fluctuations in (2); later we will see
that it directly affects the QMC convergence rate.

Our goal is to compute the integral, i.e., the expected value, with respect to y, of
a bounded linear functional G applied to the solution u(·, y) of the PDE (1)

∫
[
− 1
2 ,

1
2

]N G(u(·, y)) d y := lim
s→∞

∫
[
− 1
2 ,

1
2

]s G(u(·, (y1, . . . , ys , 0, 0, . . .))) dy1 · · · dys .

(4)

Lognormal Case

In the lognormal case,we assume that the y j are independent standard normal random
numbers on R, and

a(x, y) = a0(x) exp

( ∑

j≥1

y j
√

μ j ξ j (x)

)
, (5)

where a0(x) > 0, the μ j > 0 are non-increasing, and the ξ j are orthonormal in
L2(D). This can arise from the KL expansion in the case where log(a) is a stationary
Gaussian random field with a specified mean and covariance function; a popular
choice is the Matérn covariance.

Our goal now is the integral of G(u(·, y)) over y ∈ R
N with a countable product

Gaussian measure μG(d y) (formally, we restrict the domain to some Y ⊂ R
N with

full measure μG(Y ) = 1, but we omit this in the notation)

∫

RN

G(u(·, y))
∏

j≥1

φnor(y j ) d y =
∫

[0,1]N
G(u(·, Φ−1

nor(w))) dw , (6)
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where φnor(y) := exp(−y2/2)/
√
2π is the univariate standard normal probability

density function, while Φ−1
nor denotes the inverse of the corresponding cumulative

distribution function, and is applied component-wise to a vector. The transformed
integral over the unit cube on the right-hand side of (6) is obtained by the change of
variables y = Φ−1

nor(w).

2.2 Single-Level Versus Multi-level

Single-Level Algorithms

We approximate the integral (4) or (6) in three steps:

i. Dimension truncation: the infinite sum in (2) or (5) is truncated to s terms.
ii. Finite element discretization: the PDE (1) in weak formulation (see (13) below)

is solved using a finite element method with meshwidth h.
iii. QMC quadrature: the integral of the finite element solution for the truncated

problem is estimated using a deterministic or randomized QMC method.

The deterministic version of this algorithm is

1

n

n∑

i=1

G(ush(·, yi )) , yi =
{
t i − 1

2 for uniform,

Φ−1
nor(t i ) for lognormal,

(7)

where t1, . . . , tn ∈ [0, 1]s are n QMC points from the s-dimensional standard unit
cube. In the uniform case, these points are translated to the unit cube [− 1

2 ,
1
2 ]s . In

the lognormal case, these points are mapped to the Euclidean space Rs by applying
the inverse of the cumulative normal distribution function component-wise.

A randomized version of this algorithm with random shifting is given by

1

r

r∑

k=1

1

n

n∑

i=1

G(ush(·, yi,k)) , yi,k =
{

{t i + Δk} − 1
2 for uniform,

Φ−1
nor({t i + Δk}) for lognormal,

(8)

where t1, . . . , tn ∈ [0, 1]s are n QMC points as above, and Δ1, . . . ,Δr ∈ [0, 1]s are
r independent random shifts generated from the uniform distribution on [0, 1]s . The
braces in {t i + Δk} mean that we take the fractional part of each component in the
vector t i + Δk . Other randomization strategies can be used analogously but need
to be chosen appropriately to preserve the special properties of the QMC points.
Randomized algorithms have the advantages of being unbiased as well as providing
a practical error estimate.

Multi-level Algorithms

The general concept of multi-level can be explained as follows (see e.g., [17]):
if we denote the integral (4) or (6) by I∞ and define a sequence I0, I1, . . . of
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approximations converging to I∞, then we can write I∞ as a telescoping sum
I∞ = (I∞ − IL) + ∑L

�=0(I� − I�−1), I−1 := 0, and then apply different quadrature
rules to the differences I� − I�−1, which we anticipate to get smaller as � increases.
Here we define I� to be the integral of G(us�h�

) corresponding to the finite element
solution with meshwidth h�, for the truncated problem with s� terms, where 1 ≤
s0 ≤ s1 ≤ s2 ≤ · · · ≤ sL ≤ · · · and h0 ≥ h1 ≥ h2 ≥ · · · ≥ hL ≥ · · · > 0, so that I�
becomes a better approximation to I∞ as � increases.

The deterministic version of our multi-level algorithm takes the form (remember-
ing the linearity of G)

L∑

�=0

(
1

n�

n�∑

i=1

G((us�h�
− us�−1

h�−1
)(·, y�

i ))

)
, y�

i =
{
t�i − 1

2 for uniform,

Φ−1
nor(t

�
i ) for lognormal,

(9)

where we apply an s�-dimensional QMC rule with n� points t�1, . . . , t
�
n�

∈ [0, 1]s� to
the integrand G(us�h�

− us�−1
h�−1

), and we define us−1
h−1

:= 0.
The corresponding randomized version can be obtained analogously to (8) by

taking r� random shifts at each level, noting that all shifts from all levels should be
independent.

2.3 First-Order Versus Higher-Order

Up to this point we have said very little about QMC methods, other than noting that
they are equal-weight quadrature rules as seen in (7). Actually, we will not say much
about QMC methods in this article at all. In this subsection we will mention three
different QMC theoretical settings which have been used for PDEs applications,
giving just enough details in the first setting needed for the tutorial in Sect. 3. These
three settings are discussed in slightly more detail in [30] in this volume, and more
comprehensively in [31]; see also the references in these papers.

First Order QMC Over the Unit Cube – Randomly Shifted Lattice Rules for
Weighted Sobolev Spaces

Suppose wewish to approximate the s-dimensional integral over the unit cube [0, 1]s
∫

[0,1]s
f ( y) d y , (10)

where the integrand f belongs to a weighted Sobolev space of smoothness one, with
the unanchored norm defined by (see e.g., [45])

‖ f ‖γ =
[ ∑

u⊆{1:s}

1

γu

∫

[0,1]|u|

(∫

[0,1]s−|u|

∂ |u| f
∂ yu

( y) d y{1:s}\u

)2

d yu

]1/2

. (11)
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Here {1 : s} is a shorthand notation for the set of indices {1, 2, . . . , s}, (∂ |u| f )/(∂ yu)
denotes the mixed first derivative of f with respect to the “active” variables yu =
(y j ) j∈u, while y{1:s}\u = (y j ) j∈{1:s}\u denotes the “inactive” variables. There is a
weight parameter γu ≥ 0 associated with each subset of variables yu to moderate
the relative importance between the different sets of variables.We denote the weights
collectively by γ .

In this setting we pair the weighted Sobolev space with randomly shifted lattice
rules; the complete theory can be found in [5]. They approximate the integral (10)
by

1

n

n∑

i=1

f (t i ), t i =
{
i z
n

+ Δ

}
,

where z ∈ Z
s is known as the generating vector, Δ is a random shift drawn from

the uniform distribution over [0, 1]s , and as in (8) the braces indicate that we take
the fractional parts of each component in a vector. It is known that good generating
vectors can be obtained using a CBC construction (component-by-component con-
struction), determining the components of z one at a time sequentially, to achieve
first order convergence in this setting, where the implied constant can be independent
of s under appropriate conditions on the weights γ .

Specifically, if n is a power of 2 then we know that the CBC construction yields
the root-mean-square error bound (with respect to the uniform random shift), for all
λ ∈ (1/2, 1],

r.m.s. error ≤
(
2

n

∑

∅=u⊆{1:s}
γ λ
u [ϑ(λ)]|u|

)1/(2λ)

‖ f ‖γ , (12)

where ϑ(λ) := 2ζ(2λ)/(2π2)λ, with ζ(a) := ∑∞
k=1 k

−a denoting the Riemann zeta
function. A similar result holds for general n. The best rate of convergence clearly
comes from choosing λ close to 1/2.

We need some structure in the weights γ for the CBC construction cost to be
feasible in practice. Fast CBC algorithms (using FFT) can find a generating vector
of a good n-point lattice rule in s dimensions in O(s n log n) operations in the case
of product weights, and inO(s n log n + s2 n) operations in the case of PODweights
(see (25) ahead).

First Order QMC Over Rs

Wecanpair randomly shifted lattice ruleswith a special function space setting overRs

to achieve first order convergence. The norm in this function space setting includes
some additional weight functions to control the behavior of the derivatives of the
functions as the components go to ±∞. The root-mean-square error bound takes the
same form as (12), but with a different definition of the norm and ϑ(λ).
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Higher Order QMC Over the Unit Cube

We can pair a family of QMC methods called interlaced polynomial lattice rules
with another special function space setting over the unit cube to achieve higher order
convergence. The norm in this function space setting involves higher order mixed
derivatives of the functions. The key advantage of this family of QMCmethods over
other higher order QMC methods is that, in the cost of finding a generating vector
which achieves the best theoretical convergence rate, the order or the interlacing
factor appears as a multiplying factor rather than sitting in the exponent of the
number of points n.

3 Tutorial

We conclude from the error bound (12) that the first step in applying QMC theory
is to estimate the norm of the practical integrand. We see from (7), (8), and (9) that
this means we need to estimate the norms

‖G(ush)‖γ and ‖G(us�h�
− us�−1

h�−1
)‖γ ,

for the single-level and the multi-level algorithms, respectively.
In this sectionwe provide a step-by-step tutorial on the analysis for the single-level

algorithm in the uniform case with first order QMC rules.

Differentiate the PDE

1. We start with the variational formulation of the PDE (1): find u(·, y) ∈ H 1
0 (D)

such that
∫

D
a(x, y)∇u(x, y) · ∇w(x) dx =

∫

D
κ(x)w(x) dx ∀w ∈ H 1

0 (D) . (13)

Here we consider the Sobolev space H 1
0 (D) of functions which vanish on the

boundary of D, with norm ‖w‖H 1
0

:= ‖∇w‖L2 , and together with the dual space
H−1(D) and pivot space L2(D).

2. We take themixed partial derivatives ∂ν with respect to ywithmulti-index ν = 0
(i.e., we differentiate ν j times with respect to y j for each j) on both sides of (13)
to obtain

∫

D
∂ν

(
a(x, y)∇u(x, y) · ∇w(x)

)
dx = 0 ∀w ∈ H 1

0 (D) . (14)

We canmove the derivatives inside the integrals because they operate on different
variables y and x, respectively. The right-hand side vanishes because it does not
depend on y.
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3. Next we apply the Leibniz product rule on the left-hand side of (14) to obtain

∫

D

( ∑

m≤ν

(
ν

m

)
(∂ma)(x, y) ∇(∂ν−mu)(x, y) · ∇w(x)

)
dx = 0 ∀w ∈ H1

0 (D) , (15)

where the sum is over all multi-indices m satisfying m ≤ ν (i.e., m j ≤ ν j for
all j), and

(
ν

m

) := ∏
j≥1

(
ν j

m j

)
. So far we have made no use of any assumption on

a(x, y).

4. For the uniform case, it is easy to see from the formula (2) of a(x, y) that

(∂ma)(x, y) =

⎧
⎪⎨

⎪⎩

a(x, y) if m = 0 ,

ψ j (x) if m = e j ,

0 otherwise ,

(16)

where e j denotes the multi-index whose j th component is 1 and all other com-
ponents are 0. Essentially, due to the linearity of a with respect to each y j , if we
differentiate once then we obtain ψ j , and if we differentiate a second time with
respect to any variable we get 0.

5. Substituting (16) into (15) and separating out the m = 0 term, we obtain

∫

D
a(x, y)∇(∂νu)(x, y) · ∇w(x) dx

= −
∑

j≥1

ν j

∫

D
ψ j (x)∇(∂ν−e j u)(x, y) · ∇w(x) dx ∀w ∈ H 1

0 (D) . (17)

6. Note that (17) holds for all test functions in H 1
0 (D). We now take the particular

choice of w = (∂νu)(·, y) (yes, it is allowed to depend on y) in (17). Applying
a(x, y) ≥ amin to the left-hand side, and |ψ j (x)| ≤ ‖ψ j‖L∞ and the Cauchy–
Schwarz inequality to the right-hand side, we obtain

amin

∫

D
|∇(∂νu)(x, y)|2 dx (18)

≤
∑

j≥1

ν j ‖ψ j‖L∞

( ∫

D
|∇(∂ν−e j u)(x, y)|2 dx

)1/2( ∫

D
|∇(∂νu)(x, y)|2 dx

)1/2

.

7. Canceling one common factor from both sides of (18) and then dividing through
by amin, we obtain the recurrence

‖∇(∂νu)(·, y)‖L2 ≤
∑

j≥1

ν j b j ‖∇(∂ν−e j u)(·, y)‖L2 , b j := ‖ψ j‖L∞
amin

.

(19)
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8. Finally we prove by induction that

‖∇(∂νu)(·, y)‖L2 ≤ |ν|! bν ‖κ‖H−1

amin
, (20)

where |ν| := ∑
j≥1 ν j and bν := ∏

j≥1 b
ν j

j .

a. Base step. We return to the variational form (13) and take w = u(·, y).
Applying a(x, y) ≥ amin to the left-hand side and estimating the right-hand
side using duality pairing |〈κ, u(·, y)〉| ≤ ‖κ‖H−1 ‖u(·, y)‖H 1

0
, we obtain

amin ‖∇u(·, y)‖2L2
≤ ‖κ‖H−1 ‖∇u(·, y)‖L2 ,

which can be rearranged to yield the case ν = 0 in (20).
b. Induction step. As the induction hypothesis, we assume that (20) holds

for all multi-indices of order < |ν|. Then we have

‖∇(∂ν−e j u)(·, y)‖L2 ≤ |ν − e j |! bν−e j ‖κ‖H−1

amin
.

Substituting this into (19) and noting that ν j |ν − e j |! = |ν|! and b j b
ν−e j =

bν , we obtain (20) and conclude the induction.

Estimate the Norm

9. We want to estimate the norm ‖G(ush)‖γ . We see from the definition of the
norm in (11) that we need to obtain estimates on the mixed first derivatives of
G(ush(·, y)) with respect to y. Using linearity and boundedness of G, we have

∣∣∣∣
∂ |u|

∂ yu
G(ush(·, y))

∣∣∣∣ =
∣∣∣∣G

(
∂ |u|

∂ yu
ush(·, y)

)∣∣∣∣ ≤ ‖G‖H−1

∥∥∥∥
∂ |u|

∂ yu
ush(·, y)

∥∥∥∥
H 1
0

. (21)

10. We can repeat the above proof of (20) for the truncated finite element solution ush
instead of the true solution u. Then we restrict the result to mixed first derivatives
(i.e., ν j ≤ 1 for all j) and deduce that

∥∥∥∥
∂ |u|

∂ yu
ush(·, y)

∥∥∥∥
H 1
0

≤ |u|!
(∏

j∈u
b j

)‖κ‖H−1

amin
, u ⊆ {1 : s} . (22)

11. Combining (21) with (22) and substituting the upper bound into the definition
of the norm (11), we conclude that

‖G(ush)‖γ ≤ ‖κ‖H−1‖G‖H−1

amin

( ∑

u⊆{1:s}

(|u|!)2 ∏
j∈u b

2
j

γu

)1/2

. (23)
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Choose the Weights

12. Nowwe apply the upper bound on the norm (23) in the error bound for randomly
shifted lattice rules (12), to yield (leaving out some constants as indicated by �)
for all λ ∈ (1/2, 1],

r.m.s. error �
(
2

n

∑

u⊆{1:s}
γ λ
u [ϑ(λ)]|u|

)1/(2λ)( ∑

u⊆{1:s}

(|u|!)2 ∏
j∈u b

2
j

γu

)1/2

.

(24)

13. With elementary calculus, for any λ, we can minimize the the upper bound in
(24) with respect to the weights γu to yield the formula

γu =
(

|u|!
∏

j∈u

b j√
ϑ(λ)

)2/(1+λ)

. (25)

This form of weights is called product and order dependent weights, or POD
weights in short, because of the presence of some product factors as well as the
cardinality of u.

14. We substitute (25) into (24) and simplify the expression to

r.m.s. error (26)

�
(
2

n

)1/(2λ)[ ∑

u⊆{1:s}

(
|u|!

∏

j∈u

(
b j [ϑ(λ)]1/(2λ)

))2λ/(1+λ)](1+λ)/(2λ)

.

15. We now derive a condition on λ for which the sum in (26) is bounded indepen-
dently of s. In an abstract form, we have

∑

u⊆{1:s}

(
|u|!

∏

j∈u
α j

)k

=
s∑

�=0

(�!)k
∑

u⊆{1:s}, |u|=�

∏

j∈u
αk
j ≤

s∑

�=0

(�!)k−1

( s∑

j=1

αk
j

)�

,

where the inequality holds because each term
∏

j∈u αk
j from the left-hand side of

the inequality appears in the expansion (
∑s

j=1 αk
j )

� exactly �! times and yet the
expansion contains other terms. The right-hand side is bounded independently
of s if

∑∞
j=1 αk

j < ∞ and k < 1, which can be verified by the ratio test. In our
case, we have k = 2λ/(1 + λ) and

∑∞
j=1 αk

j = [ϑ(λ)]1/(1+λ)
∑∞

j=1 b
k
j < ∞ if

k ≥ p0, where we recall that b j is defined in (19) and p0 is defined in (3). Hence
we require

p0 ≤ 2λ

1 + λ
< 1 ⇐⇒ p0

2 − p0
≤ λ < 1 . (27)
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16. Clearly the best rate of convergence is obtained by taking λ as small as possible.
Combining the original constraint of λ ∈ (1/2, 1] with (27), we now take

λ =

⎧
⎪⎨

⎪⎩

1

2 − 2δ
for δ ∈ (

0, 1
2

)
when p0 ∈ (

0, 2
3

]
,

p0
2 − p0

when p0 ∈ (
2
3 , 1

)
.

(28)

Fast CBC Construction

17. The chosen weights (25) with λ given by (28) are then fed into the CBC con-
struction to produce tailored randomly shifted lattice rules that achieve a root-
mean-square error of order

n−min(1/p0−1/2,1−δ), δ ∈ (
0, 1

2

)
,

with the implied constant independent of s, where p0 is given by (3). The fast
CBC construction with POD weights can then find a good generating vector in
O(s n log n + s2 n) operations.

4 Key Analysis

Having completed our embedded tutorial in the previous section, we now continue
to provide our overview of the analysis required in applying QMC to PDEs with
random coefficients.

Some Hints at the Technical Difficulties for the Multi-level Analysis

We have seen in the uniform case with the single-level algorithm that the key is to
estimate ‖G(ush)‖γ , and this is achieved by estimating (see (20) and [31, Lemma6.1])

‖∇∂νu(·, y)‖L2 .

For the multi-level algorithm, the key estimate is ‖G(us�h�
− us�−1

h�−1
)‖γ , and we need to

estimate in turn (see [31, Lemmas6.2–6.4])

‖Δ∂νu(·, y)‖L2 , ‖∇∂ν(u − uh)(·, y)‖L2 , and |∂νG((u − uh)(·, y))|.

All three bounds involve factors of the form (|ν|+a1)! bν
for a1 ≥ 0 and a sequence

b j similar to the previously defined b j . Assuming that both the forcing term κ and
the linear functional G are in L2(D), we obtain that the second bound is of order h
and the third bound is of order h2. The difficulty is that we need to establish these
regularity estimates simultaneously in x and y. We also use duality tricks to gain on
the convergence rate due to the linear functional G.
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Some Hints at the Technical Difficulties for the Lognormal Case

For the lognormal case the argument is quite technical due to the more compli-
cated form of a(x, y). In the single-level algorithm we need to estimate (see [31,
Lemma6.5])

‖∇∂νu(·, y)‖L2 by first estimating ‖a1/2(·, y)∇∂νu(·, y)‖L2 .

In the multi-level algorithm we need to estimate (see [31, Lemma6.6])

‖Δ∂νu(·, y)‖L2 by first estimating ‖a−1/2(·, y)∇ · (a(·, y)∇∂νu(·, y))‖L2 ,

and then estimate in turn (see [31, Lemmas6.7–6.8])

‖a1/2(·, y)∇∂ν(u−uh)(·, y)‖L2 and |∂νG((u − uh)(·, y))| .

All bounds involve factors of the form J ( y) (|ν|+a1)! βν for a1 ≥ 0 and some
sequence β j , where J ( y) indicates some factor depending on y which is not present
in the uniform case. The proofs are by induction, and the tricky part is knowing what
multiplying factor of a(·, y) should be included in the recursion. The growth of J ( y)
needs to be taken into account when estimating the norm.

Summary of Results

Nowwe summarize and compare the results from [6, 8, 32, 33] for the uniform case:

First-order single-level [33]

s−2(1/p0−1) + ht+t ′ + n−min(1/p0−1/2,1−δ) (r.m.s.)

First-order multi-level [34]

s−2(1/p0−1)
L + ht+t ′

L +
L∑

�=0

n−min(1/p1−1/2,1−δ)

�

(
θ�−1 s

−(1/p0−1/p1)
�−1 + ht+t ′

�−1

)
(r.m.s.)

Higher-order single-level [4]

s−2(1/p0−1) + ht+t ′ + n−1/p0

Higher-order multi-level [6]

s−2(1/p0−1)
L + ht+t ′

L +
L∑

�=0

n−1/pt
�

(
θ�−1 s

−(1/p0−1/pt )
�−1 + ht+t ′

�−1

)

For the first-order results, the “r.m.s.” in brackets indicates that the error is in the
root-mean-square sense since we use a randomized QMC method. The higher-order
results are deterministic.Without giving the full details, we simply say that the results
include general parameters t and t ′ for the regularity of κ and G, respectively. Recall
that p0 corresponds to the summability of ‖ψ j‖L∞ , see (3). Here p1 corresponds
essentially to the summability of ‖∇ψ j‖L∞ , while pt corresponds analogously to
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higher derivatives ofψ j . For the multi-level results we include the analysis for poten-
tially taking different s� at each level: θ�−1 is 0 if s� = s�−1 and is 1 otherwise.

In the single-level algorithms, the error is the sum of three terms. In the multi-
level algorithms, we see the multiplicative effect between the finite element error
and the QMC error. However, comparing p1 and pt with p0, we see that multi-level
algorithms need stronger regularity in x than single-level algorithms.

Going from first-order to higher-order results, we see that the cap of n−(1−δ) is
removed. We also see a gain of an extra factor of n−1/2; this benefit appears to arise
from the switch of function space setting to a non-Hilbert space.

The error versus cost analysis depends crucially on the cost assumptions. For the
single-level algorithms, we simply choose n, s and h to balance three errors. In the
multi-level algorithms, we choose n�, s�, h� to minimize the total cost for a fixed
total error using Lagrange multiplier arguments.

For the lognormal case we have similar first order results, see [22, 34]. There is
no higher order results for the lognormal case because presently there is no QMC
theory in this setting.

5 Software

The software package QMC4PDE accompanies the survey [31], see https://people.
cs.kuleuven.be/~dirk.nuyens/qmc4pde/. Here we very briefly outline its usage.

Construction of the Generating Vector in Python

In the analysis for the PDE problems we obtain generic bounds on mixed derivatives
of the form

|∂νF( y)| �
(
(|ν| + a1)!

)d1
s∏

j=1

(a2Bj )
ν j exp(a3Bj |y j |),

for some constants a1, a2, a3, d1 and some sequence Bj , where

F( y) =
{
G(ush) for single-level algorithms,

G(ush�
− ush�−1

) for multi-level algorithms,

and in particular {
a3 = 0 for the uniform case,

a3 > 0 for the lognormal case.

The Python construction script takes the number of points (as a power of 2), the
dimension, and all these parameters as input from the user, works out the appropriate
weights γu, and then constructs a good generating vector for the QMC rule. This
is either a lattice sequence (constructed following a minimax strategy as described

https://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/
https://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/
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in [2]) or an interlaced polynomial lattice rule. In the latter case the script also
assembles the interlaced generating matrices, because this is the most convenient
way to generate the points.

• To construct a generating vector for a lattice sequence (output written to file
z.txt)

## uniform case, 100-dim, 2ˆ10 points, with specified bounds b:

./lat-cbc.py --s=100 --m=10 --d2=3 --b="0.1 * j**-3 / log(j+1)"

## lognormal case, 100-dim, 2ˆ10 points, with algebraic decay:

./lat-cbc.py --s=100 --m=10 --a2="1/log(2)" --a3=1 --d2=3 --c=0.1

• To construct generating matrices for an interlaced polynomial lattice rule (output
written to file Bs53.col)

## 100-dim, 2ˆ10 points, interlacing 3, with bounds from file:

./polylat-cbc.py --s=100 --m=10 --alpha=3 --a1=5 --b_file=in.txt

Point Generators in Matlab/Octave (also available in C++ and Python)

Here are some Matlab/Octave usage examples for generating the actual QMC point
sets from the output files of the Python construction script.

• To generate a lattice sequence (specified by the file z.txt)

load z.txt % load generating vector

latticeseq_b2(’init0’, z) % initialize the generator

Pa = latticeseq_b2(20, 512); % first 512 20-dim points

Pb = latticeseq_b2(20, 512); % next 512 20-dim points

• To generate an interlaced polynomial lattice rule (specified by the file Bs53.col)

load Bs53.col % load generating matrices

digitalseq_b2g(’init0’, Bs53) % initialize the generator

Pa = digitalseq_b2g(100, 512); % first 512 100-dim points

Pb = digitalseq_b2g(100, 512); % next 512 100-dim points

The same function digitalseq_b2g can also be used to generate interlaced
Sobol′ points by specifying the corresponding interlaced generating matrices. The
parameters for generating Sobol′ points are taken from [28].
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• To generate an interlaced Sobol′ sequence (interlaced matrices specified by the
file sobol_alpha3_Bs53.col)

load sobol_alpha3_Bs53.col % load generating matrices

digitalseq_b2g(’init0’, sobol_alpha3_Bs53) % initialize

Pa = digitalseq_b2g(50, 512);} % first 512 50-dim

Pb = digitalseq_b2g(50, 512);} % next 512 50-dim

The last example produces interlaced Sobol′ points with interlacing factor α = 3.
They can provide third order convergence if the integrand has sufficient smoothness.

6 Concluding Remarks

QMC (deterministic or randomized) convergence rate and implied constant can be
independent of the dimension. This is achieved by working in a weighted function
space setting. To applyQMC theory,we need an estimate of the normof the integrand,
and in turn this can help us to choose appropriate weights for the function space. The
chosen weights then enter the fast CBC construction of the generating vector for the
QMC points. The pairing between the function space setting and the QMC method
is very important, in the sense that we want to achieve the best possible convergence
rate under the weakest assumption on the problem. In practice, it may be that an
off-the-shelf QMC rule works just as well, barring no theory.

In this article we considered multi-level algorithms. There are other cost saving
strategies for the lognormal case and for other general situations, see e.g., [7, 25] as
well as [18, 30] in this volume.Moreover, there have beenmany others developments
on the application of QMC to PDEs with random coefficients, for some examples
see the last part of the introduction.
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Malliavin-Based Multilevel Monte Carlo
Estimators for Densities of Max-Stable
Processes

Jose Blanchet and Zhipeng Liu

Abstract We introduce a class of unbiased Monte Carlo estimators for multivari-
ate densities of max-stable fields generated by Gaussian processes. Our estimators
take advantage of recent results on the exact simulation of max-stable fields com-
bined with identities studied in the Malliavin calculus literature and ideas developed
in the multilevel Monte Carlo literature. Our approach allows estimating multivari-
ate densities of max-stable fields with precision ε at a computational cost of order
O
(
ε−2 log log log (1/ε)

)
.

Keywords Max-stable process · Density estimation · Malliavin calculus

1 Introduction

Max-stable randomfields arise as the asymptotic limit of suitably normalizedmaxima
of many i.i.d. random fields. Intuitively, max-stable fields are utilized to study the
extreme behavior of spatial statistics. For instance, if the logarithm of a precipitation
field during a relatively short time span follows aGaussian randomfield, then extreme
precipitations over a long time horizon (which are obtained by taking themaximumat
each location of many precipitation fields) can be argued as long as enough temporal
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independence can be assumed to follow a suitable max-stable process. It is these
types of applications in environmental science that motivate the study of max-stable
processes (see, for example, [4] for a recent study of this type).

In order to estimate the parameters of amax-stable randomfield, for instance using
maximum-likelihood estimation, it is desirable to evaluate the density over a finite set
of locations (i.e. multivariate density of finite-dimensional coordinates of the max-
stable field). The recent work in [3] discusses the challenges involved in applying
maximum likelihood estimation of max-stable fields. We believe that the algorithms
and techniques thatwe develop in this paper can be used to studymaximum likelihood
estimators for max-stable fields. For example, our representations can be used to
obtain convenient expressions for the derivative of the density. In turn, as explained
in [3], differentiability of the density is useful in the asymptotic analysis of maximum
likelihood estimators. In addition, our algorithms can be implemented using common
random numbers under a wide range of parameters of the max-stable fields. Thus,
our algorithms can be used to perform approximate maximum-likelihood estimation
by optimizing over a wide range of parameters.

In order to precisely explain our estimators, we now introduce some basic facts
about max-stable processes.

We will focus on a class of max-stable random fields which are driven by Gaus-
sian processes. These max-stable fields are popular in practice because their spatial
dependence structure is inherited from the underlying Gaussian covariance structure.

To introduce the max-stable field of interest, let us first fix its domain T ⊆ R
m , for

m ≥ 1. We introduce a sequence, (Xn (·)), of independent and identically distributed
copies of a centered Gaussian random field, X (·) = (X (t) : t ∈ T ). We let (An)

be the sequence of arrivals in a Poisson process, with unit rate and independent of
(Xn (·)).

Finally, given a deterministic and bounded function, μ : T −→ R, we will focus
on developing Monte Carlo methods for the finite dimensional densities of the max-
stable field

M(t) = sup
n≥1

{− log An + Xn(t) + μ(t)
}
, t ∈ T . (1)

(The name max-stable is justified because M (·) turns out to satisfy a distributional
equation involving the maximum of i.i.d. centered and normalized copies of M (·),
see [9, Theorem2].)

An elegant argument involving Poisson point processes (see [15] and [2, Lemma
5.1]) allows us to conclude that

P (M (t1) ≤ x1, . . . , M (td) ≤ xd) (2)

= exp

(
−E

[
d

max
i=1

{exp (X (ti ) + μ (ti ) − xi )}
])

.

By redefining xi as xi − μ (ti ), we might assume without loss of generality, for
the purpose of computing the density ofM = (M (t1) , . . . , M (td))

T , thatμ (ti ) = 0.
We will keep imposing this assumption throughout the rest of the paper.
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Throughout the paper wewill keep the number of locations, d, over whichM (·) is
observed, fixed. So,M will remain a d-dimensional vector throughout our discussion.
To avoid confusion between M and M(·), note that we use M(·) when discussing
the whole max-stable field. We will maintain this convention throughout the rest of
the paper for the field M(·) as well as the fields Xn (·), n ≥ 1.

The joint density of M can be obtained by subsequent differentiation of (2) with
respect to x1, . . . , xd . However, the final expression obtained for the density contains
exponentially many terms. So, computing the density ofM using this direct approach
becomes quickly intractable, even for moderate values of d. For example, [15] argues
that even for d = 10, one obtains a sum of more than 105 terms.

We will construct an unbiased estimator for the density, f (x), of M evaluated
at x = (x1, . . . , xd) for d ≥ 3. The construction of our estimator, denoted as V (x),
is explained in Sect. 2.5. Implementing our estimator avoids the exponential growth
issues which arise if one attempts to directly evaluate the density. We concentrate on
d ≥ 3 because the case d = 2 leads to only four terms which can be easily computed
as explained in [8]. More precisely, our contributions are as follows:

1. The properties of V (x) are summarized in Sect. 3. In particular as shown in (16),
f (x) = E (V (x)), Var (V (x)) < ∞, and given a computational budget of size
b, we provide a limit theoremwhich can be used to estimate f (x)with complexity
O
(
(b · log log log (b))2

)
for an error of order O (1/b) – see Theorem1 and its

discussion.
2. As far as we know, this is the first estimator which uses Malliavin calculus in the

context of max-stable density estimation. We believe that the techniques that we
introduce are of independent interest in other areas in which Malliavin calculus
has been used to construct Monte Carlo estimators. For example, we highlight
the following techniques in this regard,

a. We introduce a technique which can be used to estimate the density of the
(coordinate-wise) maximum of multivariate variables. We apply this tech-
nique to the case of independent Gaussian vectors, but the technique can be
used more generally, see the development in Sect. 2.2.

b. We explain how to extend the technique in item 2(a) to the case of themaxima
of infinitely many variables. This extension, which is explained in Sect. 2.3,
highlights the role of a recently introduced record-breaking technique for the
exact sampling of variables such as M .

c. We introduce a perturbation technique which controls the variance of so-
called Malliavin–Thalmaier estimators (which are explained in Sect. 2.1).
These types of estimators have been used to compute densities of multivariate
diffusions (see [10]). Our perturbation technique, introduced in Sect. 2.4, can
be directly used to improve upon the density estimators in [10], enabling a
close-to-optimal Monte Carlo rate of convergence for density estimation of
multivariate diffusions.

3. The perturbation technique in Sect. 2.4 is combined with randomized multilevel
Monte Carlo techniques (see [13, 14]) in order to achieve the following: Starting
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from an infinite variance estimator, we introduce a perturbation which makes the
estimator biased, butwith finite variance. The randomizedmultilevelMonteCarlo
technique is then used to remove the bias while keeping the variance finite. The
price to pay is a small degradation in the rate of convergence in the associated
Central Limit Theorem for confidence interval estimation. Instead of an error rate
of order O(1/b1/2) as a function of the computational budget b, which is the
typical rate, we obtain a rate of order O

(
(log log log (b))1/2 /b1/2

)
. The Central

Limit Theorem is obtained using recently developed results in [18].

The rest of the paper is organized as follows: In Sect. 2 we explain step-by-step,
at a high level, the construction of our estimator. The final form of our estimator
is given in Sect. 2.5. The properties of our estimator are summarized in Sect. 3. A
numerical experiment is given in Sect. 4. Finally, the details of the implementation
of our estimator, in the form of pseudo-codes, are given in the Sect. 5 Appendix.

2 General Strategy and Background

The general strategy is explained in several steps. We first review the Malliavin–
Thalmaier identity by providing a brief explanation of its origins and connections
to classical potential theory. We finish the first step by noting that there are several
disadvantages of the identity having to do with variance properties of the estimator
and the implicit assumption that a great degree of information is assumed about the
density which we want to estimate. The subsequent steps in our construction are
designed to address these disadvantages.

In the second step of our construction, we introduce a series of manipulations
which enable the application of theMalliavin–Thalmaier indirectly, by working only
with the Xn’s. These manipulations are performed assuming that only finitely many
Gaussian elements are considered in the description of M .

The third step deals with the fact that the description of M contains infinitely
many Gaussian elements. So, first, we need to explain how to sample M exactly.
We utilize a recently developed algorithm (see [11]). Based on this algorithm, we
explain how to extend the construction from the second step in order to obtain a
direct Malliavin–Thalmaier estimator for the density of M .

The fourth step of our construction deals with the fact that a direct Malliavin–
Thalmaier estimator will generally have infinite variance. We introduce a small ran-
dom perturbation to remove the singularity appearing in the Malliavin–Thalmaier
estimator, which is the source of the poor variance performance. Unfortunately, such
a perturbation also introduces bias in the estimator.

In order to remove the bias, we then apply randomized multilevel Monte Carlo
methods (see [13, 14]). Our resulting estimator then is unbiased and has finite
variance as we explain in Sect. 3. The price to pay is a small degradation in the
rate of convergence of the associated Central Limit Theorem to obtain confidence
intervals.
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2.1 Step 1: The Malliavin–Thalmaier Identity

The initial idea behind the construction of our estimator comes from the Malliavin–
Thalmaier identity, which we shall briefly explain. First, recall the Newtonian poten-
tial, given by

G (x) = κd
1

‖x‖d−2
2

,

with κd = (d (2 − d) ωd)
−1, where ωd is the volume of a unit ball in d dimensions,

for d ≥ 3. It is well known, see [5], that G(·) satisfies the equation

ΔG (x − y) = δ (x − y)

in the sense of distributions (where δ (x) is the delta function). Therefore, if M ∈ Rd

has density f (·) we can write

f (x) =
∫

f (y) ΔG (x − y) dy = E (ΔG (x − M)) . (3)

But the previous identity cannot be implemented directly because G (·) is harmonic,
that is, one can easily verify that ΔG (x) = 0 for x 	= 0 (which is not surprising
given that one expects ΔG to act as a delta function). The key insight of Malliavin
and Thalmaier is to apply integration by parts in the expression (3). So, let us define

Gi (x) = ∂G (x)

∂xi
= (2 − d) κd

xi
‖x‖d2

,

and therefore write

ΔG (x − y) =
d∑

i=1

∂2G (x − y)

∂x2i
=

d∑

i=1

∂Gi (x − y)

∂xi
.

Consequently, because

∂Gi (x − y)

∂xi
= −∂Gi (x − y)

∂yi
,

we have that

E

(
∂Gi (x − M)

∂xi

)
=
∫

· · ·
∫

∂Gi (x − y)

∂xi
f (y1, . . . , yd) dy1dy2 . . . dyd

= −
∫

· · ·
∫

∂Gi (x − y)

∂yi
f (y1, . . . , yd) dy1dy2 . . . dyd
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=
∫

· · ·
∫

Gi (x − y)
∂ f (y1, . . . , yd)

∂yi
dy1dy2 . . . dyd

= E

(
Gi (x − M)

∂

∂yi
log f (M)

)
.

Therefore, using (3), we arrive at the following Malliavin–Thalmaier identity,

f (x) = E

(
d∑

i=1

∂Gi (x − M)

∂xi

)

=
d∑

i=1

E

(
Gi (x − M)

∂

∂yi
log f (M)

)
. (4)

Refer to [10, 12] for rigorous proof of this identity.
There are two immediate concerns when applying the Malliavin–Thalmaier iden-

tity. First, a direct use of the identity requires some basic knowledge of the density of
interest, which is precisely the quantity that we wish to estimate. The second issue,
which is not evident from (4), is that the singularity which arises when x = M in the
definition of Gi (x − M), causes the estimator (4) to typically have infinite variance.

2.2 Step 2: Applying the Malliavin–Thalmaier Identity
to Finite Maxima

Wenow shall explain how to address the first issue discussed at the end of the previous
subsection. Define

Mn (t) = max
1≤k≤n

{− log (Ak) + Xk (t)},

where Xk’s are i.i.d. centered Gaussian vectors with covariance matrix Σ , and put
Mn = (Mn (t1) , . . . , Mn (td))

T . Note that

∂Gi (x − Mn)

∂xi
= −∂Gi (x − Mn)

∂Mn (ti )
. (5)

In turn, by the chain rule,

∂Gi (x − Mn)

∂Xk (ti )
= ∂Gi (x − Mn)

∂Mn (ti )

∂Mn (ti )

∂Xk (ti )
. (6)

Further, with probability one (due to the fact that (A1, A2, . . . , Ak) has a density),

n∑

k=1

∂Mn (ti )

∂Xk (ti )
=

n∑

k=1

I (Mn (ti ) = Xk (ti ) − log (Ak)) = 1.

Consequently, from Eq. (6) we conclude that
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n∑

k=1

∂Gi (x − Mn)

∂Xk (ti )
= ∂Gi (x − Mn)

∂Mn (ti )
,

and therefore, from (5), we obtain

∂Gi (x − Mn)

∂xi
= −

n∑

k=1

∂Gi (x − Mn)

∂Xk (ti )
.

We now can apply integration by parts as we did in our derivation of (4). The
difference is that the density of Xk = (Xk (t1) , . . . , Xk (td))

T is known and therefore
we obtain that

E

(
∂Gi (x − Mn)

∂Xk (ti )

)
= E

(
Gi (x − Mn) · eTi Σ−1Xk

)
,

where ei is the i th vector in the canonical basis in Euclidean space.
Consequently, we conclude that

E

(
∂Gi (x − Mn)

∂xi

)
= −

n∑

k=1

E

(
∂Gi (x − Mn)

∂Xk (ti )

)

= −E

(

Gi (x − Mn) · eTi Σ−1
n∑

k=1

Xk

)

.

In summary, if fn is the density of Mn we have that

fn (x1, . . . , xd) = E

(
d∑

i=1

∂Gi (x − Mn)

∂xi

)

(7)

= −E

(
d∑

i=1

n∑

k=1

Gi (x − Mn) · eTi Σ−1Xk

)

.

The verification of this identity follows a very similar argument as that provided for
the proof of (4) in [12].

2.3 Step 3: Extending the Malliavin–Thalmaier Identity
to Infinite Maxima

In order to extend the definition of the estimator (7), we wish to send n → ∞ and
obtain a simulatable expression of an estimator. Because we will be using a recently
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developed estimator for M in [11], we need to impose the following assumptions on
Xn (·).
(B1) In addition to assuming E[Xn(t)] = 0, we write σ 2(t) = Var (X (t)).
(B2) Assume that σ̄ = supt∈T σ(t) < ∞.
(B3) Suppose that E

(
exp

(
supt∈T X (t)

))
< ∞.

A key element of the algorithm in [11] is the idea of record breakers. The
general idea is to utilize the properties of those record breakers to construct a
Malliavin–Thalmaier estimator for the infinite maxima with finite but random num-
ber of Gaussian vectors. In order to describe this idea, let us write ‖Xn‖∞ =
maxi=1,...,d |Xn(ti )|.

Following the development in [11], we can identify three random times as follows.
The first is NX = NX (a) < ∞, defined for any a ∈ (0, 1), and satisfying that for

all n > NX ,
‖Xn‖∞ ≤ a log n.

The time NX is finite with probability one because ‖Xn‖∞ is well known to grow at
rate Op

(
(log n)1/2

)
as n → ∞.

The second is NA = NA(γ ) < ∞ chosen for any given γ < E (A1), satisfying
that for n > NA

An ≥ γ n. (8)

The time NA is finite with probability one because of the Strong Law of Large
Numbers.

The third is Na such that, for all n > Na , we have

nγ ≥ A1 n
a exp(‖X1‖∞). (9)

It is immediate that Na is finite almost surely because a ∈ (0, 1).
By successively applying the preceding three equations, we find that for n > N :=

max(NA, NX , Na) and any t = t1, . . . , td , we have

− log An + Xn(t) ≤ − log An + ‖Xn‖∞
≤ − log An + a log n

≤ − log(nγ ) + a log n

≤ − log A1 − ‖X1‖∞ ≤ − log A1 + X1(t).

Therefore, we conclude that, for t = t1, . . . , td ,

sup
n≥1

{− log An + Xn(t)} = max
1≤n≤N

{− log An + Xn(t)} .

The work in [11] explains how to simulate the random variables NX , NA, and Na ,
jointly with the sequence (An)n≤N as well as (Xn)n≤N . Moreover, it is also shown in
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[11] that the number of random variables required to simulate NX , NA and Na (jointly
with X1, . . . , XN and A1, . . . , AN ) has finite moments of any order. Therefore, N
has finite moments of any order. Moreover, E(N ) = O(dε) for any ε > 0. In the
appendix, we reproduce the simulation procedure developed in [11].

Now, observe that conditional on X1, . . . , XNX , NX , for n > NX the random vec-
tors (Xk)k≥n are independent, but they no longer follow a Gaussian distribution.
Nevertheless, the Xn ’s still have zero conditional means, given that n > N . This is
because

E (Xn | ‖Xn‖∞ ≤ a log n)

= E (−Xn | ‖−Xn‖∞ ≤ a log n) = E (−Xn | ‖Xn‖∞ ≤ a log n) .

Consequently, we have that

E
(
eTi Σ−1Xn|n > N

) = 0.

Therefore, because M is independent of Xn conditional on n > N , we obtain that

E
(
Gi (x − M) · eTi Σ−1Xn|n > N

)
(10)

= E (Gi (x − M) |n > N ) · E (eTi Σ−1Xn|n > N
) = 0.

One can let n → ∞ in (7) and formally apply (10) leading to the following result,
which is rigorously established in [1].

Proposition 1 For any (x1, . . . , xd) ∈ Rd,

f (x1, . . . , xd) = −E

(
d∑

i=1

N∑

k=1

Gi (x − M) · eTi Σ−1Xk

)

. (11)

2.4 Step 4: Variance Control in Malliavin–Thalmaier
Estimators

We now explain how to address the second issue discussed in Sect. 2.1, namely,
controlling the variance when using the Malliavin–Thalmaier estimator (11).

Let us write

W (x) = −
d∑

i=1

N∑

k=1

Gi (x − M) · eTi Σ−1Xk,

and observe that

W (x) =
〈
M − x,

∑N
i=1 Σ−1Xk

〉

dwd ||M − x ||d .



84 J. Blanchet and Z. Liu

It turns out that the variance of W (x) blows up because of the singularity in the
denominator when M = x . This is verified in [1], but a similar calculation is also
given in the setting of diffusions in [10]. So instead, we consider an approximating
sequence defined via W̄0 (x) = 0, and

W̄n (x) =
〈
M − x,

∑N
i=1 Σ−1Xk

〉

dwd ||M − x ||d + dwdδn||M − x || , n ≥ 1,

where
δn = 1/ log log log

(
n + ee

)
. (12)

It is apparent that limn→∞ W̄n (x) = W (x) almost surely. The use of a perturba-
tion in the denominator of theMalliavin–Thalmaier estimator is not new. In [10] also,
a small positive perturbation in the denominator is added, but such perturbation is,
in their case, deterministic. The difference here is that our perturbation contains the
factor δn ‖M − x‖. We have chosen our perturbation in order to ultimately control
both the variance and the bias of our estimator.

In order to quickly motivate the variance implications of our choice, note that

∣
∣
∣
∣
∣∣

〈
M − x,

∑N
i=1 Σ−1Xk

〉

dwd ||M − x ||d + dwdδn ||M − x ||

∣
∣
∣
∣
∣∣
≤
∣
∣
∣
∣
∣∣

〈
M − x,

∑N
i=1 Σ−1Xk

〉

dwdδn ||M − x ||

∣
∣
∣
∣
∣∣
≤ 1

dwdδn

∥
∥
∥
∥∥

N∑

i=1

Σ−1Xk

∥
∥
∥
∥∥
2

,

leading to a bound that does not explicitly containM .Moreover,wementionedbefore
that N has finite moments of any order and Xk is normally distributed, therefore, one

can easily verify that
∥∥
∥
∑N

i=1 Σ−1Xk

∥∥
∥
2
has finite moments of any order, in particular

finite second moment and therefore W̄n (x) has finite variance.
The reader might wonder why choosing δn in the definition of W̄n (x), because

any function of n decreasing to zero will ensure the convergence almost surely of
W̄n (x) towardW (x). The previous upper bound, although not sharp when n is large,
might also hint to the fact that it is desirable to choose a slowly varying function of
n in the denominator (at least the reader notices a bound which deteriorates slowly
as n grows).

The precise reason for the selection of our perturbation in the denominator obeys
to a detailed variance calculationwhich can be seen in [1].Amore in-depth discussion
is given in Sect. 2.5 below. For the moment, let us continue with our development in
order to give the final form of our estimator.

Even though W̄n (x) has finite variance and is close to W (x), unfortunately, we
have that W̄n (x) is no longer an unbiased estimator of f (x). In order to remove the
bias, we take advantage of a randomization idea from [13, 14], which is related to
the multilevel Monte Carlo method in [7], as we shall explain next.
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2.5 Final Form of Our Estimator

Let us define W̄0 (x) = 0 and for n ≥ 1 let us write

Δn (x) = W̄n (x) − W̄n−1 (x) .

In order to facilitate the variance analysis of our randomized multilevel Monte Carlo
estimator, we further consider a sequence

(
Δ̄n (x)

)
n≥1 of independent random vari-

ables so that Δn (x) and Δ̄n (x) are equal in distribution.
We let L be a random variable taking values on n ≥ 1, independent of everything

else. Moreover, we let g (n) = P (L ≥ n) and assume that

g (n) = n−1 (log (n + e − 1))−1
(
log

(
log

(
n + ee − 1

)))−1
. (13)

Then, the final form of our estimator is

V (x) =
L∑

k=1

Δ̄k (x)

g (k)
. (14)

The randomized multilevel Monte Carlo idea applied formally yields that

E (V (x)) = E

( ∞∑

k=1

Δ̄k (x) I (L ≥ k)

g (k)

)

=
∞∑

k=1

E

(
Δ̄k (x) I (L ≥ k)

g (k)

)
(15)

=
∞∑

k=1

E
(
Δ̄k (x)

) = E (W (x)) − E
(
W̄0 (x)

) = E (W (x)) = f (x) .

In order to make the previous manipulations rigorous, wemust justify exchanging
the summation in (15). In addition, we also need to guarantee that V (x) has finite
variance. These and other properties will be used to obtain confidence intervals for
our estimates, given a computational budget via CLT for renewal processes. In turn,
it suffices to make sure the following two conditions hold:

(C1)
∑

k≥1 E
(∣∣Δ̄k (x)

∣∣) < ∞,

(C2)
∑

n≥1

E
(|Δ̄n(0)|2)

g(n)
< ∞.

We shall summarize the properties of V (x) in our main result given in the next
section. In particular, we will show that (C1) and (C2) hold with our choice of δn and
g(n). We also provide a discussion of the running time analysis, which is affected
by the choice of g (n).
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3 Main Result

Our main contribution is summarized in the following result, which is fully proved
in [1]. Our objective now is to give the gist of the technical development in order
to have at least an intuitive understanding of the choices behind the design of our
estimator (14). We measure computational cost in terms of the elementary random
variables simulated.

Theorem 1 Let ρ be the cost required to generate M so that V (x), defined in (14),
has a computational cost equal to C = ∑L

i=1 ρi + 1 (where L is independent of
ρ1, ρ2, . . ., which are i.i.d. copies of ρ). Let (V1 (x) ,C1) , (V2 (x) ,C2), . . . be i.i.d.
copies of (V (x) ,C) and set Tn = C1 + · · · + Cn with T0 = 0. For each b > 0 define,
B (b) = max{n ≥ 0 : Tn ≤ b}, then we have that

f (x) = E (V (x)) and Var (V (x)) < ∞. (16)

Moreover,

√
b

E (ρ1) · log log log (b)

(
1

B (b)

B(b)∑

i=1

Vi (x) − f (x)

)

⇒ N (0, Var (V (x))) .

Before we discuss the analysis of the proof of Theorem1, it is instructive
to note that the previous result can be used to obtain confidence intervals for
the value of the density f (x) with precision ε at a computational cost of order
O
(
ε−2 log log log (1/ε)

)
, given a fixed confidence level (see Sect. 4 for an example

of how to produce such a confidence interval).
The quantity B (b) denotes the number of i.i.d. copies of V (x)which can be sim-

ulated with a computational budget b, so the pointwise estimator given in Theorem1
simply is the empirical average of B (b) i.i.d. copies of V (x) .

The rate of convergence implied by Theorem1 is, for all practical purposes, the
same as the highly desirable canonical rate O

(
ε−2

)
, which is rarely achieved in

complex density estimation problems, such as the one that we consider in this paper.

3.1 Sketching the Proof of Theorem 1

At the heart of the proof of Theorem1 lies a bound on the size of |Δn (x)|. For
notational simplicity, let us concentrate on |Δn (0)| and note that for any β ≥ 1

|Δn (0)|β ≤
∥∥Σ−1

∥∥β

(dwd)
β

(
N∑

i=1

‖Xk‖
)β

(17)

×
∣
∣∣∣

‖M‖
||M ||d + ||M ||δn+1

− ‖M‖
||M ||d + ||M ||δn

∣
∣∣∣

β

.
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We have argued that, because N has finite moments of any order, the random variable∑N
i=1 ‖Xk‖2 is easily seen to have finite moments of any order. So, after applying

Hölder’s inequality to the right-hand-side of (17), it suffices to concentrate on esti-
mating, for any q > 1,

E

(∣
∣∣∣

1

||M ||d−1 + δn+1
− 1

||M ||d−1 + δn

∣
∣∣∣

βq
)1/q

= E

⎛

⎝

∣∣∣∣
∣

δn − δn+1(||M ||d−1 + δn+1
) (||M ||d−1 + δn

)

∣∣∣∣
∣

βq
⎞

⎠

1/q

.

Let us define

a (n) := δn − δn+1 ∼ δ2n
1

log log (n) · log (n) · n , (18)

and focus on

Dn,β (0) := E

⎛

⎝

∣∣
∣∣∣

1
(||M ||d−1 + δn+1

) (||M ||d−1 + δn
)

∣∣
∣∣∣

βq
⎞

⎠

1/q

. (19)

Assuming that M has a continuous density in a neighborhood of the origin (a fact
which can be shown, for example, from (2), using the Gaussian property of the Xns),
we can directly analyze (19) using a polar coordinates transformation, obtaining that
for some κ > 0

Dq
n,β (0) ≤ κ

∫ ∞

0

∫

θ∈S d−1

f (r · θ) rd−1

(
rd−1 + δn+1

)βq (
rd−1 + δn

)βq drdθ, (20)

whereS d−1 represents the surface of the unit ball in d dimensions. Further study of
the decay properties of f (r · θ) as r grows large, uniformly over θ ∈ S d−1, allows
us to conclude that

Dq
n,β (0) ≤ κ ′

∫ ∞

0

rd−1

(
rd−1 + δn+1

)βq (
rd−1 + δn

)βq dr, (21)

for some κ ′ > 0. Applying the change of variables r = uδ
1/(d−1)
n to the right-hand

side of (21), allows us to conclude, after elementary algebraic manipulations, that

Dq
n,β (0) = O

(
δd/(d−1)−2βq
n

)
,

therefore concluding that
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E
(|Δn (0)|β) = O

((
δn − δn+1

δ2n

)β

δd/(q(d−1))−2β
n

)

. (22)

Setting β = 1 we have (from (18) and the definition of δn) that

∑

n≥1

E (|Δn (0)|) = O

(
∑

n≥1

1

log log (n) · log (n) · n δd/(q(d−1))
n

)

< ∞, (23)

because d/(d − 1) > 1 and q > 1 can be chosen arbitrarily close to one. This esti-
mate justifies the formal development in (15) and the fact that EV (x) = f (x).

Now, the analysis in [14] states that Var (V (x)) < ∞ if

∑

n≥1

E
∣∣Δ̄n (0)

∣∣2

g (n)
< ∞. (24)

Once again, using (22) and our choice of g (n), we find that (24) holds because of
the estimate ∑

n≥1

n · log (n) · log log (n)

(log log (n) · log (n) · n)2
δd/(q(d−1))
n < ∞, (25)

which is, after immediate cancellations, completely analogous to (23).
Finally, because the cost of sampling M (in terms of the number of elementary

random variables, such as multivariate Gaussian random variables) has been shown
to have finite moments of any order [11, Theorem2.2], one can use standard results
from the theory of regular variation (see [16, Theorem3.2]) to conclude that

P

(
L∑

i=1

ρi + 1 > t

)

∼ P (L > t/E (ρ1)) ∼ E (ρ1) t
−1 log (t)−1 log log (t)−1 ,

as t → ∞. Now, the form of the Central Limit Theorem is an immediate application
of Theorem1 in [18].

4 Numerical Examples

In this section, we implement our estimator and compare it against a conventional
kernel density estimator. We measure the computational cost in terms of the num-
ber of independent samples drawn from Algorithm M. This convention translates
into assuming that E(ρ1) = 1 in Theorem1. Given a computational budget b, the
estimated density is given by
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Fig. 1 The estimated three-dimensional joint density of a max-stable process using our algorithm

f̂b(x) =
∑B(b)

i=1 Vi (x)

B(b)
.

According to Theorem1, we can construct the confidence interval for underlying
density f (x) with significance level α as

(
f̂b(x) − zα/2ŝ

√
a(b), f̂b(y) + zα/2ŝ

√
a(b)

)
,

where zα/2 is the quantile corresponding to the 1 − α/2 percentile,

ŝ2 =
∑B(b)

i=1

(
Vi (x) − f̂b(x)

)2

B(b)
,

and

a(b) = log log log (b)

b
.

We perform our algorithm to estimate the density of the max-stable process. We
assume that T = [0, 1] and Xn(·) is a standard Brownian motion. We are interested
in estimating the density of M = (M(1/3), M(2/3), M(1))T . That is, the spatial
grid is (1/3, 2/3, 1). The graph in Fig. 1 shows a plot of the density on the set {x ∈
R

3 : x1 ∈ (−2, 2), x2 ∈ (−2, 2), x3 = 0}. Our estimation of this three-dimensional
density has a computation budget of B = 106 samples from Algorithm M.
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Table 1 Density estimation with our algorithm

Values (x) (0, 0, 0) (0, 0.5, 0) (0.5, 0, 0) (0, −0.5, 0) (−0.5, 0, 0)

est. density
f̂b(x)

0.2126 0.106 0.1292 0.1039 0.1439

Lower CI 0.1916 0.0971 0.1180 0.0947 0.1311

Upper CI 0.2336 0.1149 0.14036 0.1131 0.1567

Relative error 5.05% 4.29% 4.41% 4.54% 4.53%

Table 2 Density estimation with KDE

Values (x) (0,0,0) (0,0.5,0) (0.5,0,0) (0,−0.5,0) (-0.5,0,0)

est. density
f̂ K DE
b (x)

0.2163 0.0846 0.1143 0.0938 0.1084

Lower CI 0.1953 0.0712 0.0999 0.0800 0.0934

Upper CI 0.2373 0.0980 0.1287 0.1076 0.1234

Relative error 4.94% 8.07% 6.43% 7.51% 7.05%

We calculate the 95% confidence interval of the density on several selected values
of the process M(·).

As a comparison, we also calculate the 95% confidence interval of the density
using the plug-in kernel density estimation (KDE) method with the same amount
(b = 106) of i.i.d. samples of M . We use the normal density function as the kernel
function and select the bandwidth according to [17]. The estimator is obtained as
follows. Sample M (1), M (2), . . . , M (d) i.i.d. copies of M , let hb = b−1/(2d+1) and
compute the sample covariance matrix, Σ̂ , based on (M (1), M (2), . . . , M (d)). Then,
let

f̂ K DE
b (x) = 1

bhdb

b∑

i=1

φ

(
A− 1

2
x − M (i)

hb

)
,

where A = Σ̂/det|Σ̂ |. We apply the method from [6] to evaluate the corresponding
confidence interval, thereby obtaining the estimates shown in Tables1 and 2.

From the above tables, we can see that our algorithm provides similar estimates to
those obtained using theKDE.However, our estimator also has a smaller relative error
when the estimated value is relatively small. Also, as discussed in [6], KDE is biased,
and one must carefully choose the bandwidth to obtain the optimal convergence rate
of mean squared error. In contrast, the construction of confidence intervals with our
estimator is straightforward, with a significantly better convergence rate.
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5 Appendix: A Detailed Algorithmic Implementation

In order to make this paper as self-contained as possible, we reproduce here the
algorithms from [11] which allow us to simulate the random variables NX , NA, and
Na , jointly with (An)n≤N and (Xn)n≤N .

5.1 Simulating Last Passage Times of Random Walks

Define the random walk Sn = γ n − An for n ≥ 0. Note that ESn < 0, by our choice
of γ < E (A1). The authors in [11], argue that the choice of γ is not too consequential
so we shall assume that γ = 1/2.

Here we review an algorithm from [11] for finding a random time NS such that
Sn < 0 for all n > NS . Observe that NS = NA.

The algorithm is based on alternately sampling upcrossings and downcrossings
of the level 0. We write ξ+

0 = 0 and, for i ≥ 1, we recursively define

ξ−
i =

{
inf{n ≥ ξ+

i−1 : Sn < 0} if ξ+
i−1 < ∞

∞ otherwise

together with

ξ+
i =

{
inf{n ≥ ξ−

i : Sn ≥ 0} if ξ−
i < ∞

∞ otherwise.

As usual, in these definitions, the infimum of an empty set should be interpreted as
∞. Writing

NS = sup{ξ−
n : ξ−

n < ∞},

we have by construction Sn < 0 for n > NS . The random variable NS − 1 is an
upward last passage time:

NS − 1 = sup{n ≥ 0 : Sn ≥ 0}.

Note that 0 ≤ NS < ∞ almost surely under P since (Sn)n≥0 starts at the origin and
has negative drift. We will provide pseudo-codes for simulating (S1, . . . , SNS+�) for
any fixed � ≥ 0, but first we need a few definitions.

First, we assume that the Cramér’s root, θ > 0, satisfying E(exp(θ S1)) = 1 has
been computed. We shall use Px to denote the measure under which (An)n≥1 are
arrivals of a Poisson processwith unit rate and S0 = x . Then,we define Pθ

x through an
exponential change of measure. In particular, on the σ -field generated by S1, . . . , Sn
we have

dPx
d Pθ

x

= exp(−θ(Sn − x)).
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It turns out that under Pθ
x , (An)n≥1 corresponds to the arrivals of a Poisson process

with rate 1 − θ and the random walk (Sn)n≥1 has a positive drift.
To introduce the algorithm to sample (S1, . . . , SNS+�) we first need the following

definitions:

τ− = inf{n ≥ 0 : Sn < 0}, τ+ = inf{n ≥ 0 : Sn ≥ 0}.

For x ≥ 0, it is immediate thatwe can sample a downcrossing segment S1, . . . , Sτ−

under Px due to the negative drift, and we record this for later use in a pseudocode
function.Throughout our discussion,‘sample’ in pseudocode stands for ‘sample inde-
pendently of anything that has been sampled already’.

Function SampleDowncrossing(x): Samples (S1, . . . , Sτ−) under Px for x
≥ 0

Step 1: Return sample S1, . . . , Sτ− under Px .
Step 2: EndFunction

Sampling an upcrossing segment is more interesting because it is possible that
τ+ = ∞. So, an algorithm needs to be able to detect this event within a finite amount
of computing resources. For this reason, we understand sampling an upcrossing
segment under Px for x < 0 to mean that an algorithm outputs S1, . . . , Sτ+ if τ+ <

∞, and otherwise it outputs ‘degenerate’. The following pseudo-code samples an
upcrossing under Px for x < 0.

Function SampleUpcrossing(x): Samples (S1, . . . , Sτ+) under Px for x < 0
Step 1: S ← sample S1, . . . , Sτ+ under Pθ

x
Step 2: U ← sample a standard uniform random variable
Step 3: If U ≤ exp(−θ(Sτ+ − x))
Step 4: Return S
Step 5: Else
Step 6: Return ‘degenerate’
Step 7: EndIf
Step 8: EndFunction

We next describe how to sample (Sk)k=1,...,n from Px conditionally on τ+ = ∞
for x < 0. Since τ+ = ∞ is equivalent to supk≤� Sk < 0 and supk>� Sk < 0 for any
� ≥ 1, after sampling S1, . . . , S�, by the Markov property we can use Sample-
Upcrossing(S�) to verify whether or not supk>� Sk < 0.

Function SampleWithoutRecordS(x, �): Samples (Sk)k=1,...,� from Px given
τ+ = ∞ for � ≥ 1, x < 0

Step 1: Repeat
Step 2: S ← sample (Sk)k=1,...,� under Px
Step 3: Until sup1≤k≤� Sk < 0 and SampleUpcrossing (S�) is ‘degenerate’
Step 4: Return S
Step 5: EndFunction
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Wesummarize our discussionwith the full algorithm for sampling (S0, . . . , SNS+�)

under P given some � ≥ 0.

Algorithm S: Samples S = (S0, . . . , SNS+�) under P for � ≥ 0
# We use Send to denote the last element of S.

Step 1: S ← [0]
Step 2: Repeat
Step 3: DowncrossingSegment ← SampleDowncrossing(Send)
Step 4: S ← [S,DowncrossingSegment]
Step 5: UpcrossingSegment ←SampleUpcrossing(Send)
Step 6: If UpcrossingSegment is not ‘degenerate’
Step 7: S ← [S, upcrossingSegment]
Step 8: EndIf
Step 9: Until UpcrossingSegment is ‘degenerate’
Step 10: If � > 0
Step 11: S ← [S,SampleWithoutRecordS(Send, �)]
Step 12: EndIf

5.2 Simulating Last Passage Times for Maxima of Gaussian
Vectors

The technique is similar to the randomwalk case using a sequence of record-breaking
times. The parameter a ∈ (0, 1) can be chosen arbitrarily, but [11] suggests selecting
a such that

exp

(
σ

a
Φ

−1
(

δ
√
2π

φ(σ/a)

dσ/a

)
+ σ 2

a2

)
= E

[(
A1 exp(‖X‖∞)

γ

) 1
1−a

]

,

where Φ(·) is the cumulative distribution function of a standard Gaussian random
variable and Φ = 1 − Φ.

Now, assume that η0 ≥ 0 is given (we will choose it specifically in the sequel).
Let (Xn)n≥1 be i.i.d. copies of X and define, for i ≥ 1, a sequence of record breaking
times (ηi ) through

ηi =
{
inf{n > ηi−1 : ‖Xn‖∞ > a log n} if ηi−1 < ∞
∞ otherwise.

.

We provide pseudo-codes which ultimately will allow us to sample (X1, . . . ,

XNX+�) for any fixed � ≥ 0, where

NX = max{ηi : ηi < ∞}.
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First, we shall discuss how to sample (Xn) up to a η1. In order to sample η1, η0 = n0
needs to be chosen so that P(‖X‖∞ > a log n) is controlled for every n > n0. Given
the choice of a ∈ (0, 1), select n0 such that

dΦ

(
a log n0

σ
− σ

a

)
≤ 1

2

√
π

2

φ(σ/a)

σ/a
.

Define
Tn0 = inf{k ≥ 1 : ‖Xk‖∞ > a log(n0 + k)}. (26)

We describe an algorithm that outputs ‘degenerate’ if Tn0 = ∞ and (X1, . . . , XTn0
)

if Tn0 < ∞.
First, we describe a simple algorithm to simulate from X conditioned on ‖X‖∞ >

a log n. Our algorithm makes use of a probability measure P (n) defined through

dP (n)

dP
(x) =

∑d
i=1 1(|x(ti )| > a log n)

∑d
i=1 P( |X (ti )| > a log n)

.

It turns out that the measure P (n) approximates the conditional distribution of X
given that ‖X‖∞ > a log n for n large.

Now, define w j (t) = Cov(X (t), X (t j ))/Var
(
X
(
t j
))

and note that X (·) − wν (·)
X (tν) is independent of X (tν) given ν. This property is used in [11] to show that the
following algorithm outputs from P (n). We will let U be a uniform random variable
in (0, 1) and J is independent ofU and such that P (J = 1) = 1/2 = P (J = −1).)

Function ConditionedSampleX (a, n): Samples X from P (n)

Step 1: ν ← sample with probability mass function

P(ν = j) = P(
∣∣X (t j )

∣∣ > a log n)
∑d

i=1 P( |X (ti )| > a log n)

Step 2: U ← sample a standard uniform random variable
Step3: X (tν) ← σ(tν) · J · Φ−1 (U + (1 −U )Φ (a (log n) /σ (tν)))#Conditions

on |X (tν)| > a log n
Step 4: Y ← sample of X under P
Step 5: Return Y (t) − wν(t)Y (tν) + X (tν)
Step 6: EndFunction

We now explain how ConditionedSampleX is used to sample Tn0 . Define, for
k ≥ 1,

gn0(k) =
∫ k
k−1 φ((a log(n0 + s))/σ )ds
∫∞
0 φ((a log(n0 + s))/σ )ds

,
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where φ(x) = dΦ(x)/dx . Note that gn0(·) ≥ 0 defines the probability mass function
of some random variable K . It turns out that if U ∼ U (0, 1) then we can sample

K =
⌈
exp

{
σ 2

a2
+ σ

a
Φ

−1
(
U Φ

(
a log n0

σ
− σ

a

))}
− n0

⌉
.

The next function samples (X1, . . . , XTn1
) for n1 ≥ n0.

Function SampleSingleRecord (a, n0, n1): Samples (X1, . . . , XTn1
) for a ∈

(0, 1), n1 ≥ n0 ≥ 0
Step 1: Sample K
Step 2: [X1, . . . , XK−1] ← i.i.d. sample from P
Step 3: XK ← ConditionedSampleX (a, n1 + K )

Step 4: U ← sample a standard uniform random variable
Step 5: If ‖Xk‖∞≤ a log(n1 + k) for k = 1, . . . , K − 1 and U gn0(K ) ≤

dP/dP (n1+K )(XK )

Step 6: Return (X1, . . . , XK )

Step 7: Else
Step 8: Return ‘degenerate’
Step 9: EndIf
Step 10: EndFunction

We next describe how to sample (Xk)k=1,...,n conditionally on Tn0 = ∞. This is a
simple task because the Xns are independent.

Function SampleWithoutRecordX (n1, �): Samples (Xk)k=1,...,� condition-
ally on Tn1 = ∞ for � ≥ 1

Step 1: Repeat
Step 2: X ← sample (Xk)k=1,...,� under P
Step 3: Until sup1≤k≤�[Xk − a log(n1 + k)] < 0
Step 4: Return X
Step 5: EndFunction

We now can explain how to sample (X1, . . . , XNX+�) under P given some � ≥ 0.
The idea is to successively apply SampleSingleRecord to generate the sequence
(ηi : i ≥ 1) defined at the beginning of this section. Starting from η0 = n0, then n1
is replaced by each of the subsequent ηi s.

Algorithm X: Samples (X1, . . . , XNX+�) given a ∈ (0, 1), σ > 0, � ≥ 0
Step 1: X ← [ ], η ← n0
Step 2: X ← sample (Xk)k=1,...,η under P
Step 3: Repeat
Step 4: segment ← SampleSingleRecord (a, n0, η)

Step 5: If segment is not ‘degenerate’
Step 6: X ← [X, segment]
Step 7: η ← length(X)

Step 8: EndIf
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Step 9: Until segment is ‘degenerate’
Step 10: If � > 0
Step 11: X ← [X,SampleWithoutRecordX(η, �)]
Step 12: EndIf

5.3 Algorithm to Sample X1, . . . , X N, N

The final algorithm for sampling M, X1, . . . , XN , N is given next.

Algorithm M: Samples M, X1, . . . , XN , N given a ∈ (0, 1), γ < E (A1), and σ

Step 1: Sample A1, . . . , ANA using Steps 1–9 from Algorithm Swith Sn = γ n −
An .

Step 2: Sample X1, . . . , XNX using Steps 1–9 from Algorithm X.
Step 3: Calculate Na with (9) and set N = max(NA, NX , Na).
Step 4: If N > NA

Step 5: Sample ANA+1, . . . , AN as in Step 10–12 from Algorithm S with
Sn = γ n − An .

Step 6: EndIf
Step 7: If N > NX

Step 8: Sample XNX+1, . . . , XN as in Step 10–12 from Algorithm X.
Step 9: EndIf
Step10:ReturnM(ti ) = max1≤n≤N {− log An + Xn(ti ) + μ(ti )} for i = 1, . . . , d,

and X1, . . . , XN , N .
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Sequential Quasi-Monte Carlo:
Introduction for Non-experts, Dimension
Reduction, Application to Partly
Observed Diffusion Processes

Nicolas Chopin and Mathieu Gerber

Abstract SMC (Sequential Monte Carlo) is a class of Monte Carlo algorithms for
filtering and related sequential problems. Gerber and Chopin (J R Stat Soc Ser B Stat
Methodol 77(3):509–579, 2015, [16]) introduced SQMC (Sequential quasi-Monte
Carlo), a QMC version of SMC. This paper has two objectives: (a) to introduce
Sequential Monte Carlo to the QMC community, whose members are usually less
familiar with state-space models and particle filtering; (b) to extend SQMC to the
filtering of continuous-time state-space models, where the latent process is a diffu-
sion. A recurring point in the paper will be the notion of dimension reduction, that is
how to implement SQMC in such a way that it provides good performance despite
the high dimension of the problem.

Keywords Diffusion models · Particle filtering · Randomised quasi-Monte
Carlo · Sequential Monte Carlo · State-space models

1 Introduction

SMC (Sequential Monte Carlo) is a class of algorithms that provide Monte Carlo
approximations of a sequence of distributions. The main application of SMC is the
filtering problem: a phenomenon of interest is modelled as a Markov chain {Xt },
which is not observed directly; instead one collects sequentially data such as e.g.
Yt = f (Xt ) + Vt , where Vt is a noise term. Filtering amounts to computing the
distribution of Xt given Y0:t = (Y0, . . . ,Yt ), the data collected up to time t . Filtering
and related problems play an important role in target tracking (where Xt is the
position of the target, say a ship), robotic mapping (where Xt is the position of the
robot), Epidemiology (where Xt is e.g. the number of infected cases), Finance (Xt

is the volatility of a given asset) and many other fields. See e.g. the book of [12].
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In [16], we introduced SQMC (Sequential quasi-Monte Carlo), a QMC version of
Sequential Monte Carlo. As other types of QMC algorithms, the main advantage of
SQMC is the better rate of convergence one may expect, relative to SMC methods.

It is difficult to write a paper that bridges the gap between two scientific commu-
nities; in this case, QMC experts on one side, and Statisticians working on Monte
Carlo methods (MCMC and SMC) on the other side.We realise now that [16] may be
more approachable by the latter than by the former. In particular, that paper spends
time explaining basic QMC notions to non-experts, but it does not do the same for
SMC.

To address this short-coming, and hopefully generate some interest about SQMC
in the QMC community, we decided to devote the first part of this paper to intro-
ducing the motivation and basic principles of SMC. We do so using the so-called
Feynman–Kac formalism, which is deemed to be abstract, but may be actually more
approachable to non-Statisticians.

The second part of this paper discusses how to extend SQMC to the filtering
of continuous-time state-space models; i.e. models where the underlying signal is
e.g. a diffusion process. These models are popular in Finance and in Biology. What
makes this extension interesting is that the inherent dimension of such models is
infinity, whereas the performance of SQMC seems to deteriorate with the dimension
(according to the numerical studies in [16]). However, by using the Markov property
of the latent process, we are able to make some parts of SQMC operate in a low
dimension, and, as result, to make it perform well (and significantly better than
SMC) despite the infinite dimension of the problem.

2 SMC

2.1 Basic Notions and Definitions

The state space X of interest in the paper is always an open subset of Rd , which we
equip with the Lebesgue measure.

We use the standard colon short-hand for collections of random variables and
related quantities: e.g. Y0:t denote Y0, . . . ,Yt , X1:N

t denote X1
t , . . . , X

N
t , and so on.

When such variables are vectors, we denote by Xt (k) their kth component.

2.2 Feynman–Kac Formalism

The phrase ‘Feynman–Kac model’ comes from Probability theory, where ‘model’
means distributions for variables of interest, and not specifically observed variables
(i.e. data, as in Statistics). A Feynman–Kac model consists of:
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1. The law of a (discrete-time) Markov process {Xt }, specified through an ini-
tial distribution M0(dx0), and a sequence of Markov kernels Mt (xt−1, dxt ); i.e.
Mt (xt−1, dxt ) is the distribution of Xt , conditional on Xt−1 = xt−1;

2. A sequence of so-called potential (measurable) functions, G0 : X → R
+, Gt :

X × X → R
+. (R+ = [0,+∞).)

From these objects, one defines the following sequence of probability distributions:

Qt (dx0:t ) = 1

Lt

{
G0(x0)

t∏
s=1

Gs(xs−1, xs)

}
M0(dx0)

t∏
s=1

Ms(xs−1, dxs)

where Lt is simply the normalising constant:

Lt =
∫
XT+1

{
G0(x0)

t∏
s=1

Gs(xs−1, xs)

}
M0(dx0)

t∏
s=1

Ms(xs−1, dxs).

(We assume that 0 < Lt < +∞.) A good way to think of Feynman–Kac models is
that of a sequential change of measure, from the law of the Markov process {Xt },
to some modified law Qt , where the modification applied at time t is given by
function Gt . In computational terms, one can also think of (sequential) importance
sampling: we would like to approximate Qt by simulating process {Xt }, and re-
weight realisations at time t by function Gt . Unfortunately the performance of this
basic approach would quickly deteriorate with time.

Example 1 Consider a Gaussian auto-regressive process, X0 ∼ N (0, 1), Xt = φ

Xt−1 + Vt , Vt ∼ N (0, 1), for t ≥ 1, and take Gt (xt−1, xt ) = 1R+(xt ). Then, if we
use sequential importance sampling, the number of simulated trajectories that would
get a non-zero weight would decrease quickly with time. In particular, the probability
of ‘survival’ at time t would be 2−(t+1) for φ = 0.

The successive distributions Qt are related as follows:

Qt (dx0:t ) = 1

�t
Qt−1(dx0:t−1)Mt (xt−1, dxt )Gt (xt−1, xt ) (1)

where �t = Lt/Lt−1. There are many practical settings (as discussed in the next
section) where one is interested only in approximating the marginal distribution
Qt (dxt ), i.e. the marginal distribution of variable Xt relative to the joint distribution
Qt (dx0:t ). One can deduce from (1) the following recursion for these marginals:
Qt (dxt ) is the marginal distribution of variable Xt with respect to the bi-variate
distribution

Qt (dxt−1:t ) = 1

�t
Qt−1(dxt−1)Mt (xt−1, dxt )Gt (xt−1, xt ). (2)

Note the dramatic dimension reduction: the initial definition ofQt involved integrals
with respect to Xt+1, but with the above recursion one may obtain expectations with
respect to Qt (dxt ) by computing t + 1 integrals with respect to X2.
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2.3 Feynman–Kac in Practice

The main application of the Feynman–Kac formalism is the filtering of a state-space
model (also known as a hidden Markov model). This time, ‘model’ has its standard
(statistical) meaning, i.e. a probability distribution for observed data.

A state-space model involves two discrete-time processes {Xt } and {Yt }; {Xt } is
Markov, and unobserved, {Yt } is observed, and is such that variable Yt conditional
on Xt and all (Xs,Ys), s �= t depends only on Xt . The standard way to specify this
model is through:

1. The initial distribution P0(dx0) and the Markov kernels Pt (xt−1, dxt ) that define
the law of the process {Xt };

2. The probability density ft (yt |xt ) of Yt |Xt = xt .

Example 2 The stochastic volatility model is a state-space model popular in Finance
(e.g., [19]). One observes the log-return Yt of a given asset, which is distributed
according to Yt |Xt = xt ∼ N (0, ext ). The quantity Xt represents the (unobserved)
market volatility, and evolves according to an auto-regressive process:

Xt − μ = φ(Xt−1 − μ) + σVt , Vt ∼ N (0, 1).

For X0, one may take X0 ∼ N
(
μ, σ 2/(1 − φ2)

)
to make the process {Xt } stationary.

Example 3 The bearings-only model is a basic model in target tracking, where Xt

represents the current position (in R2) of a target, and Yt is a noisy angular measure-
ment obtained by some device (such as a radar):

Yt = arctan

(
Xt (2)

Xt (1)

)
+ Vt , Vt ∼ N (0, σ 2),

where Xt (1), Xt (2) denote the two components of vector Xt . There are several
standard ways to model the motion of the target; the most basic one is that of a
random walk. See e.g. [2] for more background on target tracking.

Filtering is the task of computing the distribution of variable Xt , conditional on the
data acquired until time t , Y0:t . It is easy to check that, by taking a Feynman–Kac
model such that

• the process {Xt } has the same distribution as in the considered model; i.e.
M0(dx0) = P0(dx0), Mt (xt−1, dxt ) = Pt (xt−1, dxt ) for any xt−1 ∈ X;

• the potential functions are set to Gt (xt−1, xt ) = ft (yt |xt );
then one recovers asQt (dx0:t ) the distribution of variables X0:t , conditional on Y0:t =
y0:t ; in particular Qt (dxt ) is the filtering distribution of the model.

We call this particular Feynman–Kac representation of the filtering problem the
bootstrapmodel. Consider now a Feynman–Kacmodel with an arbitrary distribution
for the Markov process {Xt }, and with potential
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Gt (xt−1, xt ) = Pt (xt−1, dxt ) ft (yt |xt )
Mt (xt−1, dxt )

,

the Radon–Nikodym derivative of Pt (xt−1, dxt ) ft (yt |xt ) with respect to Mt (xt−1,

dxt ) (assuming the latter dominates the former). Whenever kernels Pt and Mt admit
conditional probability densities (with respect to a common dominating measure),
this expression simplifies to:

Gt (xt−1, xt ) = pt (xt |xt−1) ft (yt |xt )
mt (xt |xt−1)

. (3)

Then again it is a simple exercise to check that one recovers asQt (dxt ) the filtering
distribution of the considered model.We call any Feynman–Kacmodel of this form a
guided model. The bootstrap model corresponds to the special case where Pt = Mt .

We shall see in the following section that each Feynman–Kac model generates a
different SMC algorithm. Thus, for a given state-space model, we have potentially
an infinite number of SMC algorithms that may be used to approximate its sequence
of filtering distributions. Which one to choose? We return to this point in Sect. 2.5.

2.4 Sequential Monte Carlo

Consider a given Feynman–Kacmodel. Sequential Monte Carlo amounts to compute
recursive Monte Carlo approximations to the marginal distributions Qt (dxt ) of that
model. At time 0, we simulate Xn

0 ∼ M0(dx0) for n = 1, . . . , N , and weight these
‘particles’ according to function G0. Then

Q
N
0 (dx0) =

N∑
n=1

Wn
0 δXn

0
(dx0), Wn

0 = G0(Xn
0 )∑N

m=1 G0(Xm
0 )

is an importance sampling approximation of Q0(dx0), in the sense that

Q
N
0 (ϕ) =

N∑
n=1

Wn
0 ϕ(Xn

0) ≈ Q0(ϕ)

for any suitable test function ϕ.
To progress to time 1, recall from (2) that

Q1(dx0:1) = 1

�1
Q0(dx0)M1(x0, dx1)G1(x0, x1)

which suggests to perform importance sampling, with proposalQ0(dx0)M1(x0, dx1),
and weight function G1. But sinceQ0(dx0) is not available, we use insteadQN

0 : that
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is, we sample N times from

N∑
n=1

Wn
0 δXn

0
(dx0)M1(X

n
0 , dx1).

To do so, for each n, we draw An
1 ∼ M (W 1:N

0 ), the multinomial distribution which

generates value m with probability Wm
0 ; then we sample Xn

1 ∼ M1(X
An
1

0 , dx1). We

obtain in this way N pairs (X
An
1

0 , Xn
1 ), and we re-weight them according to function

G1. In particular

Q
N
1 (dx1) =

N∑
n=1

Wn
1 δXn

1
(dx1), Wn

1 = G1(X
An
1

0 , Xn
1 )∑N

m=1 G1(X
Am
1

0 , Xm
1 )

is our approximation of Q1(dx1).
We proceed similarly at times 2, 3, . . .; see Algorithm1. At every time t , we

sample N points from

N∑
n=1

Wn
t−1δXn

t−1
(dxt−1)Mt (X

n
t−1, dxt )

and assign weights Wn
t ∝ Gt (X

An
t

t−1, X
n
t ) to the so-obtained pairs (X

An
t

t−1, X
n
t ). Then

we may use
N∑

n=1

Wn
t ϕ(Xn

t )

as an approximation of Qt (ϕ), for any test function ϕ : X → R. The approximation
error of Qt (ϕ) converges to zero at rate OP(N−1/2), under appropriate conditions
[7, 9].

Algorithm 1 Generic SMC sampler, for a given Feynman–Kac model
Step 0:

(a) Sample Xn
0 ∼ M0(dx0) for n = 1, . . . , N .

(b) Compute weight Wn
0 = G0(Xn

0 )/
∑N

m=1 G0(Xm
0 ) for n = 1, . . . , N .

Recursively, for t = 1, . . . , T :

(a) Sample A1:N
t ∼ M (W 1:N

t−1 ); see AppendixA.

(b) Sample Xn
t ∼ Mt (X

An
t

t−1, dxt ) for n = 1, . . . , N .

(c) Compute weight Wn
t = Gt (X

An
t

t−1, X
n
t )/

∑N
m=1 Gt (X

Am
t

t−1, X
m
t ) for n = 1, . . . , N .
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2.5 Back to State-Space Models

We have explained in Sect. 2.3 that, for a given state-space model, there is an infinite
number of Feynman–Kac models such thatQt (dxt ) is the filtering distribution. Thus,
there is also an infinite number of SMC algorithms that may be used to approximate
this filtering distribution.

Example 4 The Feynman–Kac model defined in Example1 is such that Qt (dxt )
is the distribution of Xt conditional on Xs ≥ 0 for all 0 ≤ s ≤ t , where {Xt } is a
Gaussian auto-regressive process: Xt = φXt−1 + Vt , Vt ∼ N (0, 1). We may inter-
pret Qt (dxt ) as the filtering distribution of a state-space model, where {Xt } is the
same auto-regressive process, Yt = 1R+(Xt ), and yt = 1 for all t . Consider now the
following alternative Feynman–Kac model: Mt (xt−1, dxt ) is the Normal distribution
N (φxt−1, 1) truncated to R+, i.e. the distribution with probability density

mt (xt |xt−1) = ϕ(xt − φxt−1)

Φ(φxt−1)
1R+(xt )

where ϕ and Φ are respectively the PDF and CDF of a N (0, 1) distribution; and
Gt (xt−1, xt ) = Φ(φxt−1), as per (3). Again, quick calculations show that we recover
exactly the same distributions Qt (dxt ). Hence we have two SMC algorithms that
approximate the same sequence of distributions (one for each Feynman–Kac model).
Observe however that the latter SMC algorithm simulates all particles directly inside
the region of interest (R+), while the former (bootstrap) algorithm simulates particles
‘blindly’, and assigns zero weight to those particles that fall outside R+. As a result,
the latter algorithm tends to perform better. Note also that, under both Feynman–
Kac formulations, Lt is the probability that Xs ≥ 0 for all 0 ≤ s ≤ t , hence both
algorithms may be used to approximate this rare-event probability (see Sect. 2.8
below), but again the latter algorithm should typically give lower variance estimates
for Lt .

Of course, the previous example is a bit simplistic, as far as state-space models are
concerned. Recall from Sect. 2.3 that, for a given state-space model, any Feynman–
Kac model such that Gt is set to (3) recovers the filtering distribution of that model
for Qt . The usual recommendation is to choose one such Feynman–Kac model in a
way that the variance of the weights of the corresponding SMC algorithm is low. To
minimise the variance of the weights at iteration t , one should take [11] the guided
Feynman–Kac model such that

Mopt
t (xt−1, dxt ) ∝ Pt (xt−1, dxt ) ft (yt |xt ),

the distribution of Xt |
(
Xt−1 = xt−1,Yt = yt

)
. In words, one should guide particles

to a part of space X where likelihood xt → ft (yt |xt ) is high.



106 N. Chopin and M. Gerber

In fact, in the previous example, the second Feynman–Kac model corresponds
precisely to this optimal kernel. Unfortunately, for most models sampling from the
optimal kernel is not easy. One may instead derive an easy-to-sample kernel Mt that
approximates Mopt

t in some way. Again, provided Gt is set to (3), one will recover
the exact filtering distribution as Qt .

Example 5 In Example2, [25] observed that the bootstrap filter performs poorly at
iterations t where the data-point yt is an outlier (i.e. takes a large absolute value). A
potential remedy is to take into account yt in some way when simulating Xt . To sim-
plify the discussion, takeμ = 0, and consider the probability density of Xt |Xt−1,Yt :

pt (xt |xt−1, yt ) ∝ ϕ((xt − φxt−1)/σ )ϕ(yt ; 0, ext )
∝ exp

{
− 1

2σ 2
(xt − φxt−1)

2 − xt
2

− y2t
2ext

}
.

It is not easy to simulate from this density, but [25] suggested to approximate it
by linearizing exp(−xt ) around xt = φxt−1: exp(−xt ) ≈ exp(−φxt−1)(1 + φxt−1 −
xt ). This leads to proposal density

mt (xt |xt−1) ∝ exp

{
− 1

2σ 2
(xt − φxt−1)

2 − xt
2

− y2t
2eφxt−1

(1 + φxt−1 − xt )

}

which is clearly Gaussian (and hence easy to simulate from). Note that this linear
‘approximation’ does not imply that the resulting SMC algorithm is approximate
in some way: provided Gt is set to (3), the resulting algorithm targets exactly the
filtering distribution of the model, as we have already discussed.

2.6 Sequential Quasi-Monte Carlo

2.6.1 QMC Basics

As mentioned in the introduction, we assume that the reader is already familiar with
QMC and RQMC (randomised QMC); otherwise see e.g. the books of [21, 22].
We only recall briefly the gist of QMC. Consider an expectation with respect to
U

([0, 1]d), and its standard Monte Carlo approximation:

1

N

N∑
n=1

ϕ(Un) ≈
∫

[0,1]d
ϕ(u) du

where theUn are IID variables. QMCamounts to replacing theUn by N deterministic
points un,N that have low discrepancy. The resulting error converges faster than
with Monte Carlo under certain conditions, in particular regarding the regularity of
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function ϕ. This is an important point when it comes to apply QMC in practice:
rewriting a given algorithm as a deterministic function of uniforms, and replacing
these uniforms by a QMC point set, may not warrant better performance. One has
also to make sure that this deterministic function is indeed regular, and maintain low
discrepancy in some sense.

2.6.2 SQMC When d = 1

We explained in Sect. 2.4 that SMC amounts to a sequence of importance sampling
steps, with proposal distribution

N∑
n=1

Wn
t−1δXn

t−1
(dxt−1)Mt (xt−1, dxt ) (4)

at time t . To derive a QMC version of this algorithm, we must find a way to generate
a low-discrepancy sequence with respect to this distribution. The difficulty lies in
the fact that the support of (4) is partly discrete (the choice of the ancestor Xn

t−1),
partly continuous (the kernel Mt (xt−1, dxt )). We focus on the discrete part below.
For the continuous part, we assume that X ⊂ R

d , and that we know of a function
Γt : X × [0, 1]d → X such that, for any xt−1 ∈ X, Γt (xt−1,U ), U ∼ U

([0, 1]d),
has the same distribution as Mt (xt−1, dxt ). The choice of Γt is model-dependent,
and is often easy; the default choice would be the Rosenblatt transform associated
to Mt (xt−1, dxt ) (the multivariate inverse CDF).

Example 6 Consider a state-spacemodelwith latent process Xt = φXt−1 + Vt ,Vt ∼
N (0, σ 2). Then one would take typically Γt (xt−1, u) = φxt−1 + σΦ−1(u), whereΦ

is the CDF of a N (0, 1) distribution. In dimension d > 1, such a process would take
the form Xt = AXt−1 + Vt , Vt ∼ N (0,Σ), where A is a d × d matrix. Then one
would define Γt (xt−1, u) = Axt−1 + ΠΣ(u), where the second term may be defined
in several ways; e.g. (a) ΠΣ(u) is the Rosenblatt transform of N (0,Σ), i.e. first
component of ΠΣ(u) is Σ

1/2
11 Φ−1(u1) and so on; or (b) ΠΣ(u) = CΦ−1(u), where

C is the Cholesky lower triangle of Σ , CCT = Σ , and Φ−1 is the function which
assigns to vector u the vector

(
Φ−1(u(1)), . . . , Φ−1(u(d))

)T
. In both cases, function

Γt depends on the order of the components of Xt .

We now focus on the discrete component of (4). The standard approach to sam-
ple from such a finite distribution is the inverse CDF method: define FN

t−1(x) =∑N
n=1 W

n
t−11 {n ≤ x}, and set X̂ n

t−1 = X
An
t

t−1 with An
t = (

FN
t−1

)−1
(Un

t ), where Un
t ∼

U ([0, 1]) and (
FN
t

)−1
is the generalised inverse of FN

t . This is precisely how resam-
pling is implemented in a standard particle filter. See AppendixA for a description
of the standard algorithm to evaluate in O(N ) time function

(
FN
t−1

)−1
for N inputs.

A first attempt at introducing a QMC point set would be to set again An
t =(

FN
t

)−1
(Un

t ), but taking this time for Un
t the first component of a QMC point set
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(of dimension d + 1). The problem with this approach is that this defines a trans-
formation, from the initial uniforms to the points, which is quite irregular. In fact,
since the labels of the N particles are arbitrary, this distribution somehow involves
a random permutation of the N initial points. In other terms, we add some noise in
our transformation, which is not a good idea in any type of QMC procedure.

Now consider the special case X ⊂ R, and let σt−1 = argsort(X1:N
t−1), i.e. σt−1 is a

permutation of the N first integers such that:

Xσt−1(1)
t−1 ≤ . . . ≤ Xσt−1(N )

t−1

and, for x ∈ X, let

F̂ N
t−1(x) =

N∑
n=1

Wn
t−11

{
Xn
t−1 ≤ x

} =
N∑

n=1

W σt−1(n)

t−1 1
{
Xσt−1(n)

t−1 ≤ x
}

.

Note that F̂ N
t−1 does not depend on the labels of the N ancestors (like FN

t−1 does);

for instance, the smallest x such that F̂ N
t−1(x) > 0 is Xσt−1(1)

t−1 , the smallest ancestor
(whatever its label).

The first main idea in SQMC is to choose An
t such that X

An
t

t−1 = F̂ N
t−1(U

n
t ), where

Un
t is thefirst component of someQMCorRQMCpoint set. In thisway, the resampled

ancestors, i.e. the points X
An
t

t−1, may be viewed as a low-discrepancy point set with
respect to the marginal distribution of component xt−1 in distribution (4). In practice,
computing An

t amounts to (a) sort the N ancestors; and (b) apply the inverse CDF
algorithm of AppendixA to these N sorted ancestors.

2.6.3 SQMC for d > 1

When X ⊂ R
d , with d > 1, it is less clear how to invert the empirical CDF of the

ancestors

F̂ N
t−1(x) =

N∑
n=1

Wn
t−11

{
Xn
t ≤ x

}

as this function is Rd → [0, 1].
The second main idea in SQMC is to transform the N ancestors Xn

t−1 into N
scalars Zn

t−1, in a certain way that maintains the low discrepancy of the N initial
points. Then we may construct a QMC point relative to

F̂ N
t−1,h(z) =

N∑
n=1

Wn
t−1δZn

t−1
(dz), z ∈ [0, 1]

in the same way as described in the previous section.
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Fig. 1 Sequence of curves of which the Hilbert curve is the limit, for d = 2 (Source: Wikipedia)

To do so,we take Zn
t−1 = h ◦ ψ(Xn

t−1), where h : [0, 1]d → [0, 1] is the inverse of
the Hilbert curve, see below, andψ : X → [0, 1]d is model-dependent. (For instance,
if X = R

d , we may apply a component-wise version of the logistic transform.)
The Hilbert curve is a space-filling curve, that is a function H : [0, 1] → [0, 1]d

with the following properties: it is defined as the limit of the process depicted in
Fig. 1; it is Hölder with coefficient 1/d (in particular it is continuous); it ‘fills’ entirely
[0, 1]d ; the set of points in [0, 1]d that admit more than one pre-image is of measure
0. Thanks to these properties, it is possible to define a pseudo-inverse h : [0, 1] →
[0, 1]d , such that H ◦ h(u) = u for u ∈ [0, 1].

In addition, the pseudo-inverse h maintains low-discrepancy in the following
sense: if the N ancestors Xn

t−1 are such that ‖π N − π‖E → 0 where π N (dx) =∑N
n=1 W

n
t−1δXn

t−1
(dx), and π is some limiting probability distribution, then (under

appropriate conditions, see Theorem3 in [16]), ‖π N
h − πh‖E → 0, where π N

h and
πh are the images of π N and π through h. The extreme norm ‖ · ‖E in this theorem
is some generalisation of the QMC concept of extreme discrepancy; again see [16]
for more details.

We note that other functions [0, 1]d → [0, 1] (e.g. pseudo-inverse of other space-
filling curves, such as the Lebesgue curve) could be used in lieu of the inverse of the
Hilbert curve. However, our impression is that other choices would not necessarily
share the same property of “maintaining low discrepancy”. At the very least, our
proofs in [16] rely on properties that are specific to the Hilbert curve, and would not
be easily extended to other functions.

Algorithm2 summarises the operations performed in SQMC.
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2.7 Connection to Array-RQMC

In the Feynman–Kac formalism, taking G0(x0) = 1, Gt (xt−1, xt ) = 1 for all t ≥ 1,
makesQt the distribution of theMarkov chain {Xt }. In that case, SQMCmay be used
to approximate expectations with respect to the distribution of that Markov chain. In
fact, such a SQMC algorithm may be seen as a certain version of the array-RQMC
algorithm of [20], where the particles are ordered at every iteration using the inverse
of the Hilbert curve. In return, the convergence results established in [16] apply to
that particular version of array-RQMC.

Although designed initially for a smaller class of problems, array-RQMC is built
on the same insight as SQMC of viewing the problem of interest not a single Monte
Carlo exercise, of dimension d(T + 1) (e.g. simulating a Markov chain in X ⊂ Rd

over T + 1 time steps), but as T + 1 exercises of dimension d + 1. See also [14] for
a related idea in the filtering literature.

Algorithm 2 SQMC algorithm
At time 0,

(a) Generate a QMC point set u1:N0 of dimension d.
(b) Compute Xn

0 = Γ0(un0) for all n ∈ 1 : N .

(b) Compute Wn
0 = G0(Xn

0 )/
∑N

m=1 G0(Xm
0 ) for all n ∈ 1 : N .

Recursively, for time t = 1 : T,

(a) Generate a QMC or RQMC point set (u1:Nt , v1:Nt ) of dimension d + 1 (unt being the first
component, and vnt the vector of the d remaining components, of point n).

(b) Hilbert sort: find permutation σt such that h ◦ ψ(Xσt (1)
t−1 ) ≤ . . . ≤ h ◦ ψ(Xσt (N )

t−1 ) if d ≥ 2, or

Xσ(1)
t−1 ≤ . . . ≤ Xσ(N )

t−1 if d = 1.

(c) Generate A1:N
t using Algorithm3, with inputs sort(u1:Nt ) and W σ(1:N )

t , and compute Xn
t =

Γt (X
σt (An

t )

t−1 , vnt ).

(e) Compute Wn
t = Gt (X

σ(An
t )

t−1 , Xn
t )/

∑N
m=1 Gt (X

σ(Am
t )

t−1 , Xm
t ) for all n ∈ 1 : N .

2.8 Extensions

In state-space modelling, one may be interested in computing other quantities than
the filtering distributions: in particular the likelihood of the data up to t , pt (y0:t ), and
the smoothing distribution, i.e. the joint law of the states X0:T , given some complete
dataset Y0:T .

The likelihoodof the data pt (y0:t ) equals the normalising constant Lt in any guided
Feynman–Kac model. This quantity may be estimated at iteration t as follows:

LN
t =

(
1

N

N∑
n=1

G0(X
n
0)

)
t∏

s=1

(
1

N

N∑
n=1

Gs(X
An
s

s−1, X
n
s )

)
.
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A non-trivial property of SMC algorithms is that this quantity is an unbiased estimate
of Lt [8]. This makes it possible to develop MCMC algorithms for parameter esti-
mation of state-space models which (a) runs at each MCMC iteration a particle filter
to approximate the likelihood at given value of the parameter; and yet (b) targets the
exact posterior distribution of the parameters, despite the fact the likelihood is com-
puted only approximately. The corresponding PMCMC (particleMCMC) algorithms
have been proposed in the influential paper of [1]. If we use RQMC (randomised
QMC) point steps within SQMC, then LN

t remains an unbiased estimate of Lt . Thus,
SQMC is compatible with PMCMC (meaning that one may use SQMC instead of
SMC at every iteration of a PMCMC algorithm), and in fact one may improve the
performance of PMCMC in this way; see [16] for more details.

Smoothing is significantly more difficult than filtering. Smoothing algorithms
usually amount to (a) run a standard particle filter, forward in time; (b) run a second
algorithm, which performs some operations on the output of the first algorithm,
backward in time. Such algorithms have complexity O(N 2) in general. We refer the
readers to [3, 13] for a general presentation of smoothing algorithms, and to [15]
for how to derive QMC smoothing algorithms that offer better performance than
standard (Monte Carlo-based) smoothing algorithms.

Finally, we mention that SMC algorithms may also be used in other contexts
that the sequential inference of state-space models. Say we wish to approximate
expectations with respect to some distribution of interest π , but it is is difficult to
sample directly from π (e.g. the density π is strongly multimodal). One may define
a geometric bridge between some easy to sample distribution π0 and π as follows:
πt (x) ∝ π0(x)1−γt π(x)γt where 0 = γ0 < . . . < γT = 1. Then one may apply SMC
to the sequence (πt ), and use the output of the final iteration to approximate π . Other
sequence of distributions may be considered as well. For more background on such
applications of SMC see e.g. [6, 10, 23]. The usefulness of SQMC for such problems
remains to be explored.

2.9 A Note on the Impact of the Dimension

Reference [16] include a numerical study of the impact of the dimension on the
performance of SQMC. It is observed that the extra performance of SQMC (relative
to standard SMC) quickly decreases with the dimension.

Three factors may explain this curse of dimensionality:

1. The inherent curse of dimensionality of QMC: the standard discrepancy bounds
invoked as a formal justification of QMC deteriorate with the dimension.

2. Regularity of the Hilbert curve: the Hilbert curve is Hölder with coefficient 1/d.

Consequently, the mapping unt �→ X
σt (An

t−1)

t−1 induced by steps (a) and (b) of Algo-
rithm2 for time t ≥ 1 is less and less regular as the dimension increases. (We
however believe that this property is not specific to the use of the Hilbert curve
but is due to the resampling mechanism itself, where a single point in unt ∈ [0, 1]
is used to select the d-dimensional ancestor X

An
t

t−1.)
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3. SMC curse of dimensionality: SMCmethods also suffer from the curse of dimen-
sionality, for the simple reason that they rely on importance sampling: the larger
the dimension, the greater the discrepancy between the proposal distribution and
the target distribution. In practice, one observes in high-dimensional filtering
problem that, at each iteration, only a small proportion of the particles get a
non-negligible weight.

We thought earlier that factor 2was the ‘main culprit’.However, factor 3 seems to play
an important part as well. To see this, we compare below the relative performance of
SQMC and SMC for the filtering of the following class of linear Gaussian state-space
models (as in [17]): X0 ∼ Nd(0, Id), and

Xt = FXt−1 + Vt , Vt ∼ Nd(0, Id),

Yt = Xt + Wt , Wt ∼ Nd(0, Id),

with F = (α|i− j |)i, j=1:d , and α = 0.4. For suchmodels, the filtering distributionmay
be computed exactly using the Kalman filter [18]. We consider two Feynman–Kac
formalisms of that problem:

• The bootstrap formalism, where Mt is set to Nd(FXt−1, Id), the distribution of
Xt |Xt−1 according to the model, and Gt (xt−1, xt ) = ft (yt |xt ) = Nd(yt ; xt , Id),
the probability density at point yt of distribution Nd(xt−1, Id).

• The ‘optimal’ guided formalism where

Mt (xt−1, dxt ) ∝ Pt (xt−1, dxt ) ft (yt |xt ) ∼ Nd

(
Yt + FXt−1

2
,
1

2
Id

)

and, by (3),
Gt (xt−1, xt ) = Nd(yt ; Fxt−1, 2Id)

the probability density at point yt of distribution Nd(Fxt−1, 2Id).

In both cases, as already explained, we recover the filtering distribution as Qt . But
the latter formalism is chosen so as to minimise the variance of the weights at each
iteration.

We simulate T = 50 data-points from themodel, for d = 5, 10, 15 and 20. Figure2
compares the following four algorithms: SMC-bootstrap, SQMC-bootstrap, SMC-
guided, and SQMC-guided. The comparison is in terms of the MSE (mean square
error) of the estimate of the filtering expectation of the first component of Xt , i.e.
E[Xt (1)|Y0:t = y0:t ]. We use SMC-guided as the reference algorithm, and we plot
for each of the three other algorithms the variations of the gain (MSE of reference
algorithm divided by MSE of considered algorithm) for the T estimates. (We use
violin plots, which are similar to box-plots, except that the box is replaced by kernel
density estimates.) A gain gmeans that the considered algorithmwould need g times
less particles (roughly) to provide an estimate with a similar variance (to that of the
reference algorithm). Each algorithm was run with N = 104.
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Fig. 2 Violin plots of the gains of the considered algorithms when estimating the filtering expec-
tations E[Xt (1)|Y0:t ] for t = 0, . . . , T = 50. (Each violin plot represents the variability of the T
gains for these T estimates.) Gain isMSE (mean square error) of reference algorithm (guided-SMC)
divided by MSE of considered algorithm

First, we observe that guided algorithms outperforms bootstrap algorithms more
and more as the dimension increases. Second, for bootstrap algorithms, the perfor-
mancebetweenSMCandSQMCis onpar as soon asd ≥ 10. (In fact, the performance
is rather bad in both cases, owning to the aforementioned curse of dimensionality.)
On the other hand, for guided formalisms we still observe a gain of order O(101)
(resp. 100.5) for d = 10 (resp. d = 20).

The bottom line is that the amount of extra performance brought by SQMC (rel-
ative to SMC) depends strongly on the chosen Feynman–Kac formalism. If one is
able to construct a Feynman–Kac formalism (for the considered problem) that leads
to good performance for the corresponding SMC algorithm (meaning that the vari-
ance of the weights is low at each iteration), then one may expect significant extra
performance from SQMC, even in high dimension.

3 Application to Diffusions

3.1 Dimension Reduction in SQMC

We start this section by a basic remark, whichmakes it possible to improve the perfor-
mance of SQMCwhen applied to models having a certain structure. We explained in
Sect. 2.4 that SMC amounts to performing importance sampling at every step, using
as a proposal distribution:
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N∑
n=1

Wn
t−1δXn

t−1
(dxt−1)Mt (xt−1, dxt ) (5)

and as a target distribution, the same distribution times Gt (xt−1, xt ) (up to a con-
stant). We used this remark to derive SQMC as an algorithm that constructs a low-
discrepancy point-set with respect to the distribution above; i.e. to construct N points(
X

An
t

t−1, X
n
t

)
, the empirical distribution of which approximates well (5).

Now consider a situation where we know of a function Λ : X → R
k , with k < d,

such that (a) Gt depends only on Xt and Λ(Xt−1); and Markov kernel Mt (xt−1, dxt )
also depends only onΛ(xt−1). (In particular, it is possible to simulate Xt conditional
on Xt−1, knowing only Λ(Xt−1).) In that case, one may define the same importance
sampling operation on a lower-dimensional space. In particular, the new proposal
distribution would be:

N∑
n=1

Wn
t−1δΛ(Xn

t−1)
(dλt−1)M

Λ
t (λt−1, dxt )

where MΛ
t (λt−1, dxt ) is simply the Markov kernel which associates distribution

Mt (xt−1, dxt ) to any xt−1 such that Λ(xt−1) = λt−1. We may use exactly the same
ideas as before, i.e. generate a QMC point of dimension d + 1, and use the first
component to pick the ancestor. However, the Hilbert sorting is now applied to the N
pointsΛ(Xn

t−1), and therefore operates in a smaller dimension. Thus one may expect
better performance, compared to the standard version of SQMC.

This remark is related somehow to the QMC notion of “effective dimension”: the
performance of QMCmay remain good in high-dimensional problems, if one is able
to reformulate the problem in such a way that it depends “mostly” (or in our case,
“only”) on a few dimensions of the state-space.

3.2 Filtering of Diffusion Processes

We now consider the general class of diffusion-driven state-space models:

d X̃t = μX (X̃t ) + σX (X̃t )dW
X
t

dỸt = μY (X̃t ) + σY (X̃t )dW
Y
t

where (WX
t )t≥0 and (WY

t )t≥0 are possibly correlated Wiener processes. Functions
μX , μY , σX and σY may also depend on t , and μY , σY may also depend on Yt , but
for the sake of exposition we stick to the simple notations above.

Filtering in continuous time amounts to recover the distribution of X̃t conditional
on trajectory y[0:t] (i.e. the observation of process {Ỹt } over interval [0, t]). However,
in most practical situations, one does not observe process {Ỹt } continuously, but on a
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grid. To simplify, we assume henceforth that process {Ỹt } is observed at times t ∈ N

and we rewrite the above model as

d X̃t = μX (X̃t ) + σX (X̃t )dW
X
t

Ỹt+1 = Ỹt +
∫ t+1

t
μY (X̃s)ds +

∫ t+1

t
σY (X̃s)dW

Y
s . (6)

It is typically too difficult to work directly in continuous time. Thus, as standardly
done when dealing with such processes, we replace the initial process (X̃t ) by its
(Euler-) discretized version {Xt }, with discretisation step δ = 1/M , M ≥ 1. That is,
{Xt } is a RM−valued process, where Xt is a M-dimensional vector representing the
original process at times t, t + 1/M, . . . , t + 1 − 1/M , which is defined as:

Xt (1) = Xt−1(M) + δμX
(
Xt−1(M)

) + σX (Xt−1(M))
{
WX
t+δ − WX

t

}
...

Xt (M) = Xt (M − 1) + δμX (Xt (M − 1)) + σX (Xt (M − 1))
{
WX
t+1 − WX

t+1−δ

} (7)

and the resulting dicretization of (6) is given by

Yt+1 = Yt + δ

M∑
m=1

μY (Xt (m)) +
M∑

m=1

σY (Xt (m))
{
WY

t+δm − WY
t+δ(m−1)

}
. (8)

SQMC may be applied straightforwardly to the filtering of the discretized model
defined by (7) and (8). However, the choice of the δ = 1/M becomes problematic.
We would like to take M large, to reduce the discretization bias. But M is also the
dimension of the state-space, so a large M may mean a degradation of performance
for SQMC (relative to SMC).

Fortunately, the dimension reduction trick of the previous section applies here.
For simplicity, consider the bootstrap Feynman–Kac formalism of this particular
state-space model:

• Mt (xt−1, dxt ) is the distribution of Xt |Xt−1 defined by (7); observe that it only
depends on Xt−1(M), the last component of Xt−1;

• Gt (xt−1, xt ) is the probability density of datapoint yt given Xt = xt and Yt−1 =
yt−1, induced by (7) and (8); observe that it does not depend on xt−1 when (WX

t )

and (WY
t ) are uncorrelated and that it depends on xt−1 only through xt−1(M)when

these two processes are correlated (see the next subsection).

Hence we may define Λ(xt−1) = xt−1(M) ∈ R. The Hilbert ordering step may be
applied to the values Zn

t = Xn
t−1(M). In fact, since these values are scalars, there is

no need to implement any Hilbert ordering, a standard sorting is enough.
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3.3 QMC and Brownian Motion

We now briefly discuss how to choose Γt , the deterministic function such that
Γt (xt−1, v), for xt−1 ∈ X and v ∈ [0, 1]d , returns a variate from kernel Mt (xt−1, dxt ).

The distribution of Xt |Xt−1 defined in the previous section is a simple linear
transform of the distribution of a Brownian path on a regular grid. Thus, defining
functionΓt amounts to constructing a certain function [0, 1]M → R

M that transforms
U

([0, 1]M)
into the joint distribution of (WX

t+δ, . . . ,W
X
t+1), conditional on WX

t .
It is well known in the QMC literature (e.g. Sect. 8.2 of [22]) that there is more

than one way to write the simulation of a Brownian path as a function of uniforms,
and that the most obvious waymay perform poorly when applied in conjunction with
QMC. More precisely, consider the following two approaches:

1. Forward construction: simulate independently the incrementsWX
t+δm − WX

t+δ(m−1)
from a N (0, δ) distribution.

2. Brownian bridge construction [4]: Simulate (WX
t+δ, . . . ,W

X
t+1) givenW

X
t sequen-

tially according to theVan derCorput sequence:WX
t+δ�M/2�,W

X
t+δ�M/4�,W

X
t+δ�3M/4�

until all the components of vector (WX
t+δ, . . . ,W

X
t+1) are simulated. For instance,

for s < t ′ < u, we use

WX
t ′ |WX

s ,WX
u ∼ N1

(
u − t ′

u − s
W X

s + t ′ − s

u − s
W X

u ,
(u − t ′)(t ′ − s)

u − s

)

and the fact that (WX
t ) is a Markov process (i.e.WX

t |WX
s does not depend onWX

s ′
for s ′ < s).

In both cases, it is easy to write the simulation of (WX
t+δ, . . . ,W

X
t+1) as a function of

M uniform variates. However, in the first case, the obtained function depends in the
same way on each of the M variates, while in the second case, the function depends
less and less on the successive components. This mitigates the inherent curse of
dimensionality of QMC [4].

We shall observe the same phenomenon applies to SQMC; even so for a moderate
value of M , interestingly. We also mention briefly the PCA (principal components
analysis) construction as another interesting way to construct Brownian paths, and
refer again to Sect. 8.2 [22] for a more in-depth discussion of QMC and Brownian
paths.

Lastly, although we focus on univariate diffusion processes in this section for
the sake of simplicity, the above considerations also hold for multivariate models.
Notably, the Brownian bridge construction is easily generalizable to the case where
(WX

t ) is a d-dimensional vector of correlated Wiener processes. The dimension of
the QMC point set used as input of SQMC is then of size dM + 1 and the Hilbert
ordering would operate on a d-dimensional space.
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3.4 Numerical Experiments

To illustrate the discussion of the previous subsections we consider the following
diffusion driven stochastic volatility model (e.g. [5])

d X̃t =
{
κ(μX − eX̃t )e−X̃t − 0.5ω2e−Xt

}
dt + ωe−X̃t/2dWX

t

Ỹt+1 = Ỹt +
∫ t+1

t

{
μY + βeX̃z

}
dz +

∫ t+1

t
eX̃s/2dWY

s

where (WX
t ) and (WY

t ) areWiener processeswith correlation coefficientρ ∈ (−1, 1),
ω > 0, κ > 0 while the other parameters μY , β are in R.

To fit this model into the bootstrap Feynman–Kac formalism that we consider in
this section, note that, for t ≥ 0,

Ỹt+1|Ỹt , X̃ [t,t+1] ∼ N
(
Ỹt + μY + βσ 2

t+1 + ρZt+1, (1 − ρ2)σ 2
t+1

)

with σ 2
t+1 = ∫ t+1

t eX̃sds and Zt+1 = ∫ t+1
t eX̃s/2dWX

s , and thus, as explained in
Sect. 3.2,

Gt (xt−1, xt ) = G̃t (xt−1(M), xt )

:= N
(
Ỹt+1; Ỹt + μY + βσ̂ 2

t+1(xt ) + ρ Ẑt+1(xt−1(M), xt ), (1 − ρ2)σ̂ 2
t+1(xt )

)

where

σ̂ 2
t+1(xt ) = 1

M

M∑
m=1

ext (m), Ẑt+1(xt−1(M), xt ) =
M∑

m=1

e
xt (m)

2
(
WX

t+mδ − WX
t+(m−1)δ

)
.

Note that WX
t+mδ − WX

t+(m−1)δ depends on (xt−1(M), xt ) through (7). To complete
the model we take for M0(dx0), the initial distribution of process {Xt }, the density
of the N

(
μX , ω2/(2κ)

)
distribution.

We set the parameters of the model to their estimated values for the daily return
data on the closing price of the S&P 500 index from 5/5/1995 to 4/14/2003 [5] and
simulate observations {Yt }Tt=0 using the discretized model (7) and (8) with M =
20 000. The number of observations T is set to 4 000.

Below we compare SMC with SQMC based on the forward construction and on
the Brownian bridge construction of Brownian paths. In both cases, SQMC is imple-
mented using as input a nested scrambled [24] Sobol’ sequence. The performance
of these three algorithms is compared, for t = 1, . . . , T , for the estimation of (1) the
filtering expectation E[Xt |Y0:t ] and (2) of the log-likelihood function log(Lt ).

Figure3 shows the ratio of the SMC variance over the SQMC variance for the two
alternative implementations of SQMC. Results are presented for a discretization grid
of size M = 5 and for different number of particles N . Two observations are worth
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Fig. 3 Estimation of E[Xt |Y0:t = y0:t ] (top plots) and of log p(y0:t ) for t ∈ {0, . . . , T } and for
different values of N . SQMC is implemented with the forward construction (left plots) and with
the Brownian Bridge construction of Brownian paths (right plots), and M = 5

noting from this figure. First, the two versions of SQMC outperform SMC in terms
of variance. Second, the variance reduction is much larger with the Brownian bridge
construction than with the forward construction of Brownian paths, as expected
from the discussion of the previous subsection. Note that for both versions of SQMC
the ratio of variances increases with the number of particles, showing that SQMC
converges faster than the N−1/2 Monte Carlo error rate.

In Fig. 4 we perform the same analysis than in Fig. 3 but now with M = 10 and
M = 20 discretization steps. (M = 10 is considered as sufficient for parameter esti-
mation by [5].) Results are presented only for the Brownian bridge construction.
Despite the large dimension of the QMC point set used as input, we observe that
SQMC converges much faster than the N−1/2 Monte Carlo error rate. In particular,
we observe that the gains in term of variance brought by SQMC are roughly similar
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Fig. 4 Estimation of E[Xt |Y0:t = y0:t ] (top) and of log p(y0:t ) for t ∈ {0, . . . , T } and for different
values of N . SQMC is implemented with the Brownian Bridge construction of Brownian paths.
Results are presented for M = 10 (left plots) and for M = 20

whatever the choice of M is. As explained above, this observation suggests that the
effective dimension of themodel remains low (or even constant in the present setting)
even when the “true” dimension M increases.

Appendix A: Resampling

Algorithm3 below takes as input N sorted points u1 ≤ . . . ≤ un , and N weightsWn ,
and return as an output the N values

(
FN

)−1
(un), where

(
FN

)−1
is the inverse CDF

relative to CDF FN (z) = ∑N
n=1 W

n1{n ≤ z}, z ∈ R. Its complexity is O(N ).
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To compute the inverse CDF corresponding to the empirical CDF of N ancestors
(as discussed in Sect. 2.6.2), i.e.

FN (x) =
N∑

n=1

Wn1
{
Xn ≤ x

}

simply order the N ancestors, and apply the same algorithm to the sorted ancestors.

Algorithm 3 Resampling Algorithm (inverse transform method)

Input: u1:N (such that 0 ≤ u1 ≤ . . . ≤ uN ≤ 1, W 1:N (normalised weights)
Output: a1:N (labels in 1 : N )

s ← 0, m ← 0
for n = 1 → N do

repeat
m ← m + 1
s ← s + Wm

until s > un

an ← m
end for
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Hot New Directions for Quasi-Monte
Carlo Research in Step with Applications

Frances Y. Kuo and Dirk Nuyens

Abstract This article provides an overview of some interfaces between the theory
of quasi-Monte Carlo (QMC) methods and applications. We summarize three QMC
theoretical settings: first order QMC methods in the unit cube [0, 1]s and in R

s ,
and higher order QMC methods in the unit cube. One important feature is that their
error bounds can be independent of the dimension s under appropriate conditions
on the function spaces. Another important feature is that good parameters for these
QMC methods can be obtained by fast efficient algorithms even when s is large. We
outline three different applications and explain how they can tap into the different
QMC theory. We also discuss three cost saving strategies that can be combined with
QMC in these applications. Many of these recent QMC theory and methods are
developed not in isolation, but in close connection with applications.

Keywords Quasi-Monte Carlo methods · Uniform · Lognormal · Higher order
Randomly shifted lattice rules · Interlaced polynomial lattice rules

1 Introduction

High dimensional computation is a new frontier in scientific computing,with applica-
tions ranging from financial mathematics such as option pricing or risk management,
to groundwater flow, heat transport, and wave propagation. A tremendous amount
of progress has been made in the past two decades on the theory and application of
quasi-Monte Carlo (QMC) methods for approximating high dimensional integrals.
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See e.g., the classical references [64, 75] and the recent books [8, 60, 61]. One key
element is the fast component-by-component construction [6, 66–68] which pro-
vides parameters for first order or higher order QMC methods [8, 12] for sufficiently
smooth functions. Another key element is the careful selection of parameters called
weights [76, 78] to ensure that the worst case errors in an appropriately weighted
function space are bounded independently of the dimension. The dependence on
dimension is very much the focus of the study on tractability [65] of multivariate
problems.

We are particularly keen on the idea that new theory and methods for high dimen-
sional computation are developed not in isolation, but in close connection with appli-
cations. The theoretical QMC convergence rates depend on the appropriate pairing
between the function space and the class of QMC methods. Practitioners are free to
choose the theoretical setting or pairing that is most beneficial for their applications,
i.e., to achieve the best possible convergence rates under the weakest assumptions on
the problems. As QMC researchers we take application problems to be our guide to
develop new theory andmethods as the needs arise. This article provides an overview
of some interfaces between such theory and applications.

We begin in Sect. 2 by summarizing three theoretical settings. The first setting
is what we consider to be the standard QMC setting for integrals formulated over
the unit cube. Here the integrand is assumed to have square-integrable mixed first
derivatives, and it is paired with randomly shifted lattice rules [77] to achieve first
order convergence. The second setting is for integration over R

s against a product of
univariate densities. Again the integrands have square-integrable mixed first deriva-
tives and we use randomly shifted lattice rules to achieve first order convergence.
The third setting returns to the unit cube, but considers integrands with higher order
mixed derivatives and pairs themwith interlaced polynomial lattice rules [30] which
achieve higher order convergence. These three settings are discussed in more detail
in [50].

Next in Sect. 3 we outline three applications of QMC methods: option pricing,
GLMM (generalized linear mixed models) maximum likelihood, PDEs with random
coefficients – all with quite different characteristics and requiring different strate-
gies to tackle them. We explain how to match each example application with an
appropriate setting from Sect. 2. In the option pricing application, see e.g., [2, 27,
29], none of the settings is applicable due to the presence of a kink. We discuss the
strategy of smoothing by preintegration [38], which is similar to the method known
as conditional sampling [1]. In the maximum likelihood application [51], the change
of variables plays a crucial role in a similar way to importance sampling for Monte
Carlo methods. In the PDE application, see e.g., [5, 39, 50, 73], the uniform and
the lognormal cases correspond to integration over the unit cube and R

s , respec-
tively, and the two cases tap into different QMC settings. For the lognormal case we
briefly contrast three ways to generate the random field:Karhunen–Loève expansion,
circulant embedding [18, 32, 33, 35], and H-matrix technique [19, 40].

Then in Sect. 4 we discuss three different cost saving strategies that can be applied
to all of the above applications. First,multi-level methods [26] restructure the required
computation as a telescoping sum and tackle different levels separately to improve
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Fig. 1 The connection between different components of this article

the overall cost versus error balance, while more general multi-index methods [41]
allow different criteria to be considered simultaneously in a multi-index telescoping
sum. Second, the multivariate decomposition methods [53, 58, 79] work in a similar
way by making an explicit decomposition of the underlying function into functions
of only subsets of the variables [54]. The third strategy is fast QMC matrix-vector
multiplicationwhich carries out the required computation formultiple QMC samples
at the same time using an FFT [15].

We provide pointers to some software resources in Sect. 5 and conclude the article
in Sect. 6 with a summary and an outlook to future work. An overview of the various
components of this article is given in Fig. 1.

2 Three Settings

Here we describe three theoretical function space settings paired with appropriate
QMC methods. These three setting are also covered in [50]. Of course these three
pairs are not the only possible combinations. We selected them due to our preference
for constructive QMC methods that achieve the best possible convergence rates,
with the implied constant independent of dimension, under the weakest possible
assumptions on the integrands.
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2.1 Setting 1: Standard QMC for the Unit Cube

For f a real-valued function defined over the s-dimensional unit cube [0, 1]s , with s
finite and fixed, we consider the integral

I ( f ) =
∫

[0,1]s

f ( y) d y . (1)

Weighted Sobolev Spaces

We assume in this standard setting that the integrand f belongs to aweighted Sobolev
space of smoothness one in the unit cube [0, 1]s . Here we focus on the unanchored
variant in which the norm is defined by, see also [78],

‖ f ‖γ =
[ ∑

u⊆{1:s}

1

γu

∫
[0,1]|u|

(∫
[0,1]s−|u|

∂ |u| f

∂ yu
( y) d y{1:s}\u

)2

d yu

]1/2
, (2)

where {1 : s} is a shorthand notation for the set of indices {1, 2, . . . , s}, (∂ |u| f )/(∂ yu)
denotes the mixed first derivative of f with respect to the “active” variables yu =
(y j ) j∈u, while y{1:s}\u = (y j ) j∈{1:s}\u denotes the “inactive” variables.

There is a weight parameter γu ≥ 0 associated with each subset of variables yu
to model their relative importance. We denote the weights collectively by γ . Special
forms of weights have been considered in the literature. POD weights (product and
order dependent weights), arisen for the first time in [56], take the form

γu = Γ|u|
∏
j∈u

Υ j ,

which is specified by two sequences Γ0 = Γ1 = 1, Γ2, Γ3, . . . ≥ 0 and Υ1 ≥ Υ2 ≥
· · · > 0. Here the factor Γ|u| is said to be order dependent because it is determined
solely by the cardinality of u and not the precise indices in u. The dependence of the
weight γu on the indices j ∈ u is controlled by the product of terms Υ j . Each term
Υ j in the sequence corresponds to one coordinate direction; the sequence being non-
increasing indicates that successive coordinate directions become less important.
Taking all Γ|u| = 1 or all Υ j = 1 corresponds to the weights known as product
weights or order dependent weights in the literature [76, 78].

Randomly Shifted Lattice Rules

Wepair the weighted Sobolev space with randomly shifted lattice rules; the complete
theory can be found in [12]. Randomly shifted lattice rules approximate the integral
(1) by

Q( f ) = 1

n

n∑
i=1

f (t i ), t i =
{

i z
n

+ Δ

}
, (3)
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where z ∈ Z
s is known as the generating vector, Δ is a random shift drawn from the

uniform distribution over [0, 1]s , and the braces indicate that we take the fractional
parts of each component in a vector.

A randomly shifted lattice rule provides an unbiased estimate of the integral, i.e.,
E[Q( f )] = I ( f ), where the expectation is taken with respect to the random shiftΔ.
Its quality is determined by the choice of the generating vector z. By analyzing the
quantity known as shift-averaged worst case error, it is known that good generating
vectors can be obtained using a CBC construction (component-by-component con-
struction), determining the components of z one at a time sequentially, to achieve
nearly O(n−1) convergence rate which is optimal in the weighted Sobolev space of
smoothness one, and the implied constant in the big O bound can be independent of
s under appropriate conditions on the weights γ .

More precisely, if n is a power of 2 then we know that the CBC construction yields
the root-mean-square error bound, for all λ ∈ (1/2, 1],

√
E
[|I ( f ) − Q( f )|2] ≤

(
2

n

∑
∅�=u⊆{1:s}

γ λ
u [ϑ(λ)]|u|

)1/(2λ)

‖ f ‖γ , (4)

where ϑ(λ) := 2ζ(2λ)/(2π2)λ, with ζ(a) := ∑∞
k=1 k−a denoting the Riemann zeta

function. A similar result holds for general n. The best rate of convergence clearly
comes from choosing λ close to 1/2, but the advantage is offset by the fact that
ζ(2λ) → ∞ as λ → (1/2)+.

Choosing the Weights

To apply this abstract theory to a given practical integrand f , we need to first obtain
an estimate of the norm ‖ f ‖γ . Remember that at this stage we do not yet know how
to choose the weights γu. Assuming that bounds on the mixed first derivatives in (2)
can be obtained so that

‖ f ‖γ ≤
⎛
⎝ ∑

u⊆{1:s}

Bu

γu

⎞
⎠

1/2

, (5)

we can substitute (5) into (4) and then, with λ fixed but unspecified at this point and
Au = [ϑ(λ)]|u|, we choose the weights γu to minimizing the product

Cγ :=
⎛
⎝ ∑

u⊆{1:s}
γ λ
u Au

⎞
⎠

1/(2λ)⎛
⎝ ∑

u⊆{1:s}

Bu

γu

⎞
⎠

1/2

.

Elementary calculus leads us to conclude that we should take

γu :=
(

Bu

Au

)1/(1+λ)

, (6)



128 F. Y. Kuo and D. Nuyens

which yields

Cγ =
( ∑

u⊆{1:s}
A1/(1+λ)
u Bλ/(1+λ)

u

)(1+λ)/(2λ)

.

We then specify a value of λ, as close to 1/2 as possible, to ensure that Cγ can be
bounded independently of s. This in turn determines the theoretical convergence rate
which is O(n−1/(2λ)).

The chosen weights γu are then fed into the CBC construction to produce generat-
ing vectors for randomly shifted lattice rules that achieve the desired theoretical error
bound for this integrand. This strategy for determining weights was first considered
in [56].

Fast CBC constructions (using FFT) can produce generating vectors for an n-
point rule in s dimensions in O(s n log n) operations in the case of product weights
[66], and in O(s n log n + s2 n) operations in the case of POD weights [55]. Note
that these are considered to be pre-computation costs. The actual cost for generating
the points on the fly is O(s n) operations, no worse than Monte Carlo simulations.
Strategies to improve on the computational cost of approximating the integral are
discussed in Sect. 4.

The CBC construction yields a lattice rule which is extensible in dimension s. We
can also construct lattice sequences which are extensible or embedded in the number
of points n, at the expense of increasing the implied constant in the error bound [6,
11, 45, 46].

2.2 Setting 2: QMC Integration over R
s

QMC approximation to an integral which is formulated over the Euclidean space R
s

can be obtained by first mapping the integral to the unit cube as follows:

I ( f ) =
∫
Rs

f ( y)
s∏

j=1

φ(y j ) d y =
∫

[0,1]s

f (Φ−1(w)) dw (7)

≈ 1

n

n∑
i=1

f (Φ−1(t i )) = Q( f ) .

(With a slight abuse of notation we have reused I ( f ) and Q( f ) from the previous
subsection for integration over R

s in this subsection.) Here φ can be any general
univariate probability density function, and Φ−1 denotes the component-wise appli-
cation of the inverse of the cumulative distribution function corresponding to φ. Note
that in many practical applications we need to first apply some clever transformation
to convert the integral into the above form; some examples are discussed in Sect. 3.
The transformed integrand f ◦ Φ−1 arising frompractical applications typically does
not belong to the Sobolev space defined over the unit cube due to the integrand being
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unbounded near the boundary of the cube, or because the mixed derivatives of the
transformed integrand do not exist or are unbounded. Thus the theory in the pre-
ceding subsection generally does not apply in practice. Some theory for QMC on
singular integrands is given in [70].

We summarize here a special weighted space setting in R
s for which randomly

shifted lattice rules have been shown to achieve nearly the optimal convergence rate
of order one [52, 63]. The norm in this setting is given by

‖ f ‖γ =
[ ∑

u⊆{1:s}

1

γu

∫
R|u|

(∫
Rs−|u|

∂ |u| f

∂ yu
( y)
( ∏

j∈{1:s}\u
φ(y j )

)
d y{1:s}\u

)2

×
(∏

j∈u
� 2

j (y j )

)
d yu

]1/2
.

(8)

Comparing (8) with (2), apart from the difference that the integrals are now over the
unbounded domain, there is a probability density function φ as well as additional
weight functions � j which can be chosen to moderate the tail behavior of the mixed
derivatives of f .

The convergence results for the CBC construction of randomly shifted lattice rules
in this general setting depend on the choices of φ and � j . For n a power of 2, the
root-mean-square error bound takes the form, for all λ ∈ (1/(2r), 1],

√
E
[|I ( f ) − Q( f )|2] ≤

(
2

n

∑
∅�=u⊆{1:s}

γ λ
u

∏
j∈u

ϑ j (λ)

)1/(2λ)

‖ f ‖γ ,

with r (appearing in the applicable lower bound on λ) and ϑ j (λ) depending on φ and
� j , see [63, Theorem8]. Some special cases have been analyzed:

• See [36, Theorem15] or [50, Theorem5.2] for φ(y) = φnor(y) = exp(−y2/2)/√
2π being the standard normal density and � 2

j (y j ) = exp(−2α j |y j |) with
α j > 0.

• See [50, Theorem5.3] for φ = φnor and � 2
j (y j ) = exp(−α y2j ) with α < 1/2.

• See [74, Theorem2] for φ being a logistic, normal, or Student density and� j = 1.

To apply this abstract theory to a practical integral over R
s , it is important to

realize that the choice of φ can be tuned as part of the process of transformation
to express the integral in the form (7). (This point will become clearer when we
describe the maximum likelihood application in Sect. 3.2.) Then the choice of weight
functions� j arises as part of the process to obtain bounds on the norm of f , as in (5).
(This point will become clearer when we describe the PDE application in Sect. 3.3.)
Finally we can choose the weights γu as in (6) but now with Au = ∏

j∈u ϑ j (λ) for
the appropriate ϑ j (λ) corresponding to the choice of φ and� j . The choice of density
φ, weight functions � j , and weight parameters γu then enter the CBC construction
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to obtain the generating vector of good randomly shifted lattice rules that can achieve
the theoretical error bound for this integrand.

In practice, it may well be that the weights γu obtained in this way are not sensible
because we were working with theoretical upper bounds on the error that may be too
pessimistic. It may already be so in the standard setting of the previous subsection,
but is more pronounced in the setting for R

s due to the additional complication
associated with the presence of φ and � j .

2.3 Setting 3: Smooth Integrands in the Unit Cube

Nowwe return to the integration problemover the unit cube (1) and outline aweighted
function space setting from [14] for smooth integrands of order α. The norm is given
by

‖ f ‖γ = sup
u⊆{1:s}

sup
yv∈[0,1]|v|

1

γu

∑
v⊆u

∑
τu\v∈{1:α}|u\v|

∣∣∣∣
∫

[0,1]s−|v|
(∂(αv,τu\v,0) f )( y) d y{1:s}\v

∣∣∣∣ .
(9)

Here (αv, τu\v, 0) denotes a multi-index ν with ν j = α for j ∈ v, ν j = τ j for j ∈
u \ v, and ν j = 0 for j /∈ u. We denote the ν-th partial derivative of f by ∂ν f =
(∂ |ν| f )/(∂ν1

y1 ∂
ν2
y2 · · · ∂νs

ys
).

This function space setting can be paired with interlaced polynomial lattice rules
[30, 31] to achieve higher order convergence rates in the unit cube. A polynomial
lattice rule [64] is similar to a lattice rule (see (3) without the random shift Δ), but
instead of a generating vector of integers we have a generating vector of polynomi-
als, and thus the regular multiplication and division are replaced by their polynomial
equivalents. We omit the technical details here. An interlaced polynomial lattice rule
with n = 2m points in s dimensions with interlacing factor α is obtained by taking a
polynomial lattice rule in α s dimensions and then interlacing the bits from every suc-
cessive α dimensions to yield one dimension. More explicitly, for α = 3, given three
coordinates x = (0.x1x2 . . . xm)2, y = (0.y1y2 . . . ym)2 and z = (0.z1z2 . . . zm)2 we
interlace their bits to obtain w = (0.x1y1z1x2y2z2 . . . xm ym zm)2.

An interlaced polynomial lattice rule with interlacing factor α ≥ 2, with irre-
ducible modulus polynomial of degree m, and with n = 2m points in s dimensions,
can be constructed by a CBC algorithm such that, for all λ ∈ (1/α, 1],

|I ( f ) − Q( f )| ≤
⎛
⎝2

n

∑
∅�=u⊆{1:s}

γ λ
u [ϑα(λ)]|u|

⎞
⎠

1/λ

‖ f ‖γ ,

where ϑα(λ) := 2αλ(α−1)/2([1 + 1/(2αλ − 2)]α − 1). This result can be found in [50,
Theorem5.4], which was obtained from minor adjustments of [14, Theorem3.10].
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Given a practical integrand f , if we can estimate the corresponding integrals
involving the mixed derivatives in (9), then we can choose the weights γu so that
every term in the supremum is bounded by a constant, say, c. This strategy in [14]
led to a new form of weights called SPOD weights (smoothness-driven product and
order dependent weights); they take the form

γu =
∑

νu∈{1:α}|u|
Γ|νu|

∏
j∈u

Υ j (ν j ) .

If the weights γ are SPODweights, then the fast CBC construction of the generating
vector has cost O(α s n log n + α2 s2n) operations. If the weights γ are product
weights, then the CBC algorithm has cost O(α s n log n) operations.

3 Three Applications

Integrals over R
s often arise from practical applications in the form of multivariate

expected values

Eρ[q] =
∫
Rs

q( y) ρ( y) d y , (10)

where q is some quantity of interest which depends on a vector y = (y1, . . . , ys) of
parameters or variables in s dimensions, and ρ is some multivariate probability den-
sity function describing the distribution of y, not necessarily a product of univariate
functions as we assumed in (7), and so we need to make an appropriate transforma-
tion to apply our theory. Below we discuss three motivating applications with quite
different characteristics, andwewill explain how tomake use of the different settings
in Sect. 2.

3.1 Application 1: Option Pricing

Following the Black–Scholes model, integrals arising from option pricing problems
take the general form (10), with

q( y) = max(μ( y), 0) and ρ( y) = exp(− 1
2 y

TΣ−1 y)√
(2π)s det(Σ)

,

where the variables y = (y1, . . . , ys)
T correspond to a discretization of the under-

lying Brownian motion over a time interval [0, T ], and the covariance matrix has
entries Σi j = (T/s)min(i, j). For example, in the case of an arithmetic average
Asian call option [2, 27, 29], the payoff function q depends on the smooth function
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μ( y) = (1/s)
∑s

j=1 St j ( y) − K which is the difference between the average of the
asset prices St j at the discrete times and the strike price K .

The widely accepted strategy to rewrite these option pricing integrals from the
form (10) to the form (7) with product densities is to take a factorization Σ = AAT

and apply a change of variables y = A y′. This yields an integral of the form (7) with

f ( y′) = q(A y′) and φ = φnor.

The choice of factorization therefore determines the function f . For example, A
can be obtained through Cholesky factorization (commonly known as the standard
construction; in this case it is equivalent to generating the Brownian motions sequen-
tially in time), through Brownian bridge construction [4], or eigenvalue decomposi-
tion sometimes called the principal component construction [2]. Note that in practice
these factorizations are not carried out explicitly due to the special form of the covari-
ance matrix. In fact, they can be computed inO(s), O(s) and O(s log s) operations,
respectively [29].

The success of QMC for option pricing cannot be explained by most existing
theory due to the kink in the integrand induced by the maximum function. However,
for some factorizations it is shown in [37] that allANOVA terms of f are smooth, with
the exception of the highest order term. This hints at a smoothing by preintegration
strategy, where a coordinate with some required property is chosen, say yk , and we
integrate out this one variable (either exactly or numerically with high precision) to
obtain a function in s − 1 variables

Pk( f ) :=
∫ ∞

−∞
f ( y) φnor(yk) dyk .

Under the right conditions (e.g., integrating with respect to y1 in the case of the
principal components construction), this new function is smooth and belongs to the
function space setting of Sect. 2.2 (with one less variable) [38]. This strategy is related
to the method known as conditional sampling [1].

3.2 Application 2: Maximum Likelihood

Another source of integrands which motivated recent developments in the function
space setting of Sect. 2.2 is a class of generalized linear mixed models (GLMM) in
statistics, as examined in [51, 52, 74]. A specific example of the Poisson likelihood
time series model considered in these papers involves an integral of the form (10),
with

q( y) =
s∏

j=1

exp(τ j (β + y j ) − eβ+y j )

τ j ! and ρ( y) = exp(− 1
2 y

TΣ−1 y)√
(2π)s det(Σ)

.
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Here β ∈ R is a model parameter, τ1, . . . , τs ∈ {0, 1, . . .} are the count data, and
Σ is a Toeplitz covariance matrix with Σi j = σ 2

κ
|i− j |/(1 − κ

2), where σ 2 is the
variance and κ ∈ (−1, 1) is the autoregression coefficient.

An obvious way to rewrite this integral in the form (7) with product densities is to
factorizeΣ as discussed in the previous subsection for the option pricing applications,
but this would yield a very spiky function f . Instead, the strategy developed in [51]
recenters and rescales the exponent T ( y) of the product q( y)ρ( y) =: exp(T ( y)) as
follows:

1. Find the unique stationary point y∗ satisfying ∇T ( y∗) = 0.
2. Determine the matrix Σ∗ = (−∇2T ( y∗))−1 which describes the convexity of T

around the stationary point.
3. Factorise Σ∗ = A∗ A∗T.
4. Apply a change of variables y = A∗ y′ + y∗.
5. Multiply and divide the resulting integrand by the product

∏s
j=1 φ(y′

j ) where φ

is any univariate density (not necessarily the normal density).

These steps then yield an integral of the form (7) with

f ( y′) = c exp(T (A∗ y′ + y∗))∏s
j=1 φ(y′

j )

for some scaling constant c > 0. Note that the choice of A∗ and φ determines f .
The paper [74] provides careful estimates of the norm of the resulting integrand f

in the setting of Sect. 2.2 corresponding to three different choices of density φ, with
theweight functions taken as� j = 1, andgives the formula for theweight parameters
γu that minimize the overall error bound.

These GLMM problems are extremely challenging not only for QMC but also in
general the tools are still lacking. There is still lots of room to develop new QMC
methods and theory for these problems.

3.3 Application 3: PDEs with Random Coefficients

Our third application is motivated by fluid flow through a porous medium, typically
modelled using Darcy’s Law, with random coefficients. A popular toy problem is the
elliptic PDE with a random coefficient [5, 39, 73]

−∇ · (a(x, ω)∇u(x, ω)) = κ(x) for x ∈ D ⊂ R
d and almost all ω ∈ Ω,

with d ∈ {1, 2, 3}, subject to homogeneous Dirichlet boundary conditions. The coef-
ficient a(x, ω) is assumed to be a random field over the spatial domain D (e.g.,
representing the permeability of a porous material over D), and Ω is the probability
space. The goal is to compute the expected values E[G(u)] of some bounded linear
functional G of the solution u over Ω .
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For practical reasons it is often assumed that a(x, ω) is a lognormal random field,
that is, a(x, ω) = exp(Z(x, ω)), where Z(x, ω) is a Gaussian random field with
a prescribed mean and covariance function. This is known as the lognormal case.
However, researchers often analyze a simpler model known as the uniform case.

The Uniform Case

In the uniform case, we consider the parametric PDE

− ∇ · (a(x, y)∇u(x, y)) = κ(x) for x ∈ D ⊂ R
d , (11)

together with
a(x, y) = a0(x) +

∑
j≥1

y jψ j (x) , (12)

where the parameters y j are independently and uniformly distributed on the interval
[− 1

2 ,
1
2 ], and we assume that 0 < amin ≤ a(x, y) ≤ amax < ∞ for all x and y.

A (single-level) strategy for approximating E[G(u)] is as follows:
1. Truncate the infinite sum in (12) to s terms.
2. Solve the PDE using finite element methods with meshwidth h.
3. Approximate the resulting s-dimensional integral using QMC with n points.

So the error is a sum of truncation error, discretization error, and quadrature error.
For the QMC quadrature error in Step 3, we have the integral (1) with

f ( y) = G
(
us

h

(·, y − 1
2

))
,

where us
h denotes the finite element solution of the truncated problem, and the sub-

traction by 1
2 takes care of the translation from the usual unit cube [0, 1]s to [− 1

2 ,
1
2 ]s .

By differentiating the PDE (11), we can obtain bounds on the mixed derivatives of
the PDE solution with respect to y. This leads to bounds on the norm (2) of the
integrand f and so we can apply the theoretical setting of Sect. 2.1 to obtain up to
first order convergence for QMC. Under appropriate assumptions and with first order
finite elements, we can prove that the total error for the above 3-step strategy is of
order [56]

O(s−2(1/p0−1) + h2 + n−min(1/p0−1/2,1−δ)) , δ ∈ (0, 1
2

)
,

where p0 ∈ (0, 1) should be as small as possible while satisfying
∑

j≥1 ‖ψ j‖p0
L∞ <

∞. This part is presented as a step-by-step tutorial in the article [49] from this volume.
The bounds on the derivatives of the PDE with respect to y also allow us to obtain

bounds on the norm (9) and so we can also apply the theoretical setting of Sect. 2.3 to
obtain higher order convergence [14]. Specifically, the O(n−min(1/p0−1/2,1−δ)) term
can be improved toO(n−1/p0). Also theO(h2) term can be improved by using higher
order finite elements. See [49, 50] for more details.
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The Lognormal Case with Karhunen–Loève Expansion

In the lognormal case, we have the same parametric PDE (11), but now we use the
Karhunen–Loève expansion (KL expansion) of the Gaussian random field (in the
exponent) to write

a(x, y) = a0(x) exp

⎛
⎝∑

j≥1

y j
√

μ j ξ j (x)

⎞
⎠ ,

wherea0(x) > 0, theμ j are real, positive andnon-increasing in j , the ξ j are orthonor-
mal in L2(D), and the parameters y j ∈ R are standard N (0, 1) random variables.
Truncating the infinite series in a(x, y) to s terms and solving the PDE with a finite
element method as in the uniform case, we have now an integral of the form (7) with

f ( y) = G(us
h(·, y)) and φ = φnor .

One crucial step in the analysis of [36] is to choose suitable weight functions � j

so that the function f has a finite and indeed small norm (8), so that the theoretical
setting of Sect. 2.2 can be applied. Again see [49, 50] for more details.

In this lognormal case with KL expansion (and also the uniform case), the cost
per sample of the random field isO(s M) operations, where M is the number of finite
element nodes. This dominates the cost in evaluating the integrand function under
the assumption that assembling the stiffness matrix to solve the PDE (which depends
on the random field) is higher than the cost of the PDE solve which is O(M log M).
When s is large the cost of sampling the random field can be prohibitive, and this is
why the following alternative strategies emerged.

The Lognormal Case with Circulant Embedding

Since we have a Gaussian random field we can actually sample the random field
exactly on any set of M spatial points. This leads to an integral of the form (10) with
(assuming the field has zero mean)

q( y) = G(us
h(·, y)) and ρ( y) = exp(− 1

2 y
TR−1 y)√

(2π)s det(R)
,

where R is an M × M covariance matrix, and initially we have s = M . (Note the
subtle abuse of notation that the second argument in us

h(x, ·) has a different meaning
to the KL case, in the sense that there the covariance is already built in.) This integral
can be transformed into the form (7) with a factorization R = AAT and a change of
variables y = A y′, as in the option pricing example, to obtain

f ( y′) = G(us
h(·, A y′)) and φ = φnor .
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The advantage of this discrete formulation is that there is no error arising from the
truncation of the KL expansion. However, the direct factorization and matrix-vector
multiplication require O(M3) operations which can be too costly when M is large.

The idea of circulant embedding [18, 32, 33, 35] is to sample the random field
on a regular grid and to embed the covariance matrix of these points into a larger
s × s matrix which is nested block circulant with circulant blocks, so that FFTs can
be used to reduce the per sample cost toO(s log s) operations. Values of the random
field at the finite element quadrature nodes can be obtained by interpolation. Note
that this turns the problem into an even higher dimensional integral, and we can have
s � M . For this strategy to work we need to use regular spatial grid points to sample
the field and a stationary covariance function (i.e., the covariance depends only on
the relative distance between points). An additional difficulty is to ensure positive
definiteness of the extended matrix; this is studied in [32].

The Lognormal Case with H-Matrix Technique

Another approach for the discrete matrix formulation of the lognormal case is to
first approximate R by an H -matrix [40] and make use of H -matrix techniques to
compute the matrix-vector multiplication with the square-root of this H -matrix at
essentially linear cost O(M). Two iterative methods have been proposed in [19] to
achieve this (one is based on a variant of the Lanczos iteration and the other on
the Schultz iteration), with full theoretical justification for the error incurred in the
H -matrix approximation. An advantage of this approach over circulant embedding
is that it does not require the spatial grid to be regular nor that the covariance be
stationary.

Other Developments

A different QMC analysis for the lognormal case has been considered in [42]. QMC
for holomorphic equations was considered in [17], and for Baysesian inversion in
[9, 72]. Recently there is also QMC analysis developed for the situation where the
functions in the expansion of a(x, y) have local support, see [22, 43, 48].

4 Three Cost Saving Strategies

In this section we discuss the basic ideas of three different kinds of cost saving
strategies that can be applied to QMC methods, without going into details. Actually,
the circulant embedding and H -matrix technique discussed in the previous section
can also be considered as cost saving strategies. These strategies are not mutually
exclusive, and it may be possible to mix and match them to benefit from compound
savings.
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4.1 Saving 1: Multi-level and Multi-index

The multi-level idea [26] is easy to explain in the context of numerical integration.
Suppose that there is a sequence ( f�)�≥0 of approximations to an integrand f , with
increasing accuracy and cost as � increases, such that we have the telescoping sum

f =
∞∑

�=0

( f� − f�−1), f−1 := 0.

For example, the different f� could correspond to different number of time steps in
option pricing, different number of mesh points in a finite element solve for PDE,
different number of terms in a KL expansion, or a combination of aspects. A multi-
level method for approximating the integral of f is

AML( f ) =
L∑

�=0

Q�( f� − f�−1),

where the parameter L determines the number of levels, and for each level we apply
a different quadrature rule Q� to the difference f� − f�−1.

The integration error (in this simple description with deterministic quadrature
rules) satisfies

|I ( f ) − AML( f )| ≤ |I ( f ) − IL( fL)|
︸ ︷︷ ︸

≤ ε/2

+
L∑

�=0

|(I� − Q�)( f� − f�−1)|
︸ ︷︷ ︸

≤ ε/2

.

For a given error threshold ε > 0, the idea (as indicated by the underbraces) is that
we choose L to ensure that the first term (the truncation error) on the right-hand side
is ≤ ε/2, and we specify parameters for the quadrature rules Q� so that the second
term (the quadrature error) is also≤ ε/2. The latter can be achieved with a Lagrange
multiplier argument to minimize cost subject to the given error threshold. Our hope
is that the successive differences f� − f�−1 will become smaller with increasing �

and therefore we would require less quadrature points for the more costly higher
levels.

The multi-index idea [41] generalizes this from a scalar level index � to a vector
index � so that we can vary a number of different aspects (e.g., spatial/temporal
discretization) simultaneously and independently of each other. It makes use of the
sparse grid concept so that the overall cost does not blow up with respect to the
dimensionality of �, i.e., the number of different aspects being considered. A sim-
ple example is that we use different finite element meshwidths for different spatial
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coordinates. This is equivalent to applying sparse finite element methods within a
multilevel algorithm, see the article [28] in this volume.

Multi-level andmulti-index extensions ofQMCmethods for the applications from
Sect. 3 include e.g., [16, 27, 57, 59, 71].

4.2 Saving 2: Multivariate Decomposition Method

In the context of numerical integration, the multivariate decomposition method
(MDM) [23, 53, 58, 79] makes use of a decomposition of the integrand f of the
form

f =
∑

|u|<∞
fu ,

where the sum is over all finite subsets u ⊂ {1, 2, . . .} and each function fu depends
only on the integration variables with indices in the set u. Then MDM takes the form

AMDM( f ) =
∑
u∈A

Qu( fu)

whereA is known as the active set of subsets of indices, and for each u in the active
set we apply a different quadrature rule Qu to fu.

Analogously to the multi-level idea, the error of MDM satisfies

|I ( f ) − AMDM( f )| ≤
∑
u/∈A

|Iu( fu)|
︸ ︷︷ ︸

≤ ε/2

+
∑
u∈A

|(Iu − Qu)( fu)|
︸ ︷︷ ︸

≤ ε/2

,

where we choose the active setA to ensure that the truncation error is≤ ε/2, and we
use a Lagrange multiplier argument to specify parameters for the quadrature rules so
that the quadrature error is also≤ ε/2.Our hope is that, although the cardinality of the
active setA might be huge (e.g., tens of thousands), the cardinality of the individual
subsets u ∈ A might be relatively small (e.g., at most 8 or 10), and therefore we
transfer the problem into that of solving a large number of low dimensional integrals.

There are many important considerations in the implementation of MDM [25].
First, we need to decide on how to decompose the integrand f so that values of
the functions fu can be computed. One obvious choice is known as the anchored
decomposition which can be computed via the explicit formula [54]

fu( yu) =
∑
v⊆u

(−1)|u|−|v| f ( yv; a), (13)



Hot New Directions for Quasi-Monte Carlo Research in Step with Applications 139

where a is an anchor and ( yv; a) denotes a vector obtained from y by replacing
the component y j with the corresponding component a j when the index j does not
belong to the subset v. (This is similar to the well-known ANOVA decomposition
which, however, involves integrals that cannot be computed in practice.) Second, we
need to specify and construct the active setA and have an efficient data structure to
store the sets for later traversing. Third, we need to explore nestedness or embedding
in the quadrature rules, taking into account the sum in (13) and develop efficient
ways to reuse function evaluations.

4.3 Saving 3: Fast QMC Matrix-Vector Multiplication

There is a certain structure in some QMC methods that can allow for fast matrix-
vector multiplication using FFT. This structure has been exploited in the fast CBC
construction of lattice rules and polynomial lattice rules [66]. We now explain how
this same structure can also be used in more general circumstances [15].

For notational convenience, we denote all QMC points t i as row vectors in this
subsection. Given an arbitrary matrix A, suppose we want to

compute yi A for all i = 1, . . . , n ,

with the rowvectors yi = χ(t i ), whereχ denotes an arbitrary univariate function that
is applied to every component of the QMC point t i . Typically we have tn ≡ t0 = 0
so we can leave it out. Consider for simplicity the case n is prime and suppose we
can write

Y :=
⎡
⎢⎣

y1
...

yn−1

⎤
⎥⎦ = C P

where C is an (n − 1) × (n − 1) circulant matrix, while P is a matrix containing
a single 1 in each column and 0 everywhere else. Then we can compute Y a in
O(n log n) operations for any column a of A.

The desired factorization Y = C P is possible if we have deterministic lattice
points or deterministic polynomial lattice points, and if we apply the inverse cumu-
lative distribution function mapping or tent transform [7, 13, 44]. However, it does
not work with random shifting, scrambling [69], or interlacing. This strategy can be
used to generate normally distributed points with a general covariance matrix (no
need for stationarity as in circulant embedding), solving PDEs with uniform random
coefficients, or solving PDEs with lognormal random coefficients involving finite
element quadratures.
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5 Software Resources

We provide some software resources for the practical application of QMC methods:

• The Magic Point Shop: a collection of QMC point generators and generating vec-
tors.
https://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/

• Fast component-by-component constructions: a collection of software routines for
fast CBC constructions of generating vectors.
https://people.cs.kuleuven.be/~dirk.nuyens/fast-cbc/

• QMC4PDE: accompanying software package for the survey [50] on using QMC
methods for parametrized PDE problems.
https://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/

• A practical guide to QMC methods: a non-technical introduction of QMCmethods
with software demos.
https://people.cs.kuleuven.be/~dirk.nuyens/taiwan/

6 Summary and Outlook

In this articlewe summarized threeQMC theoretical settings: randomly shifted lattice
rules achieving first order convergence in the unit cube and in R

s , and interlaced
polynomial lattice rules achieving higher order convergence in the unit cube. One
important feature is that the error bound can be independent of the dimension under
appropriate conditions on the weights. Another important feature is that these QMC
methods can be constructed by fast CBC algorithms.

We outlined three different applications and explained how they can be pre-
processed to make use of the different theory. We also discussed three cost saving
strategies that can be combined with QMC in these applications.

This paper is not meant to be a comprehensive survey on QMC methods. There
are of course many other significant developments on QMCmethods and their appli-
cations. For example, we did not discuss tent transformation (also known as the
baker’s transform), which can yield second order convergence for randomly shifted
rules or first order convergence for deterministic lattice rules [7, 13, 44]. We also
did not discuss scrambling [69], which is a well-known randomization method that
can potentially improve the convergence rates by an extra half order.

For the futurewewould like to seeQMC in new territories, to tackle a significantly
wider range of more realistic problems. Some emerging new application areas of
QMC include e.g., Bayesian inversion [9, 72], stochastic wave propagation [20, 21],
quantum field theory [3, 47], and neutron transport [24, 34].

Looking ahead into future QMC developments, what would be on the top of our
wish list? We would very much like to have a “Setting 4” where we have QMC
methods that achieve higher order convergence in R

s , with error bounds that are

https://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/
https://people.cs.kuleuven.be/~dirk.nuyens/fast-cbc/
https://people.cs.kuleuven.be/~dirk.nuyens/qmc4pde/
https://people.cs.kuleuven.be/~dirk.nuyens/taiwan/
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independent of s, and for which fast constructions are possible. This open problem
has seen some partial solutions [10, 62] but there is more to be done!
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Stratified Bayesian Optimization

Saul Toscano-Palmerin and Peter I. Frazier

Abstract We consider derivative-free black-box global optimization of expensive
noisy functions, when most of the randomness in the objective is produced by a few
influential scalar random inputs. We present a new Bayesian global optimization
algorithm, called Stratified Bayesian Optimization (SBO), which uses this strong
dependence to improve performance. Our algorithm is similar in spirit to stratifica-
tion, a technique from simulation, which uses strong dependence on a categorical
representation of the random input to reduce variance. We demonstrate in numerical
experiments that SBO outperforms state-of-the-art Bayesian optimization bench-
marks that do not leverage this dependence.

Keywords Bayesian optimization · Gaussian processes · Simulation

1 Introduction

We consider derivative-free black-box global optimization of expensive noisy func-
tions,

max
x∈A⊂Rn

E [ f (x,w, z)] , (1)

where the expectation is taken over z ∈ R
d1 andw ∈ R

d2 , which have joint probability
density p, A is a simple compact set (e.g., a hyperrectangle, or simplex), and we can
directly observe only f (x,w, z) at some collection of chosen or sampled x,w, z, and
not its expectation, or the derivative of this expectation. The separation of the random
inputs to f (x,w, z) into two variables will be discussed in more detail below. We
suppose that f has no special structural properties, e.g., concavity, or linearity, that
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we can exploit to solve this problem, making it a “black blox.” We also suppose that
evaluating f is costly or time-consuming, making these evaluations “expensive”,
severely limiting the number of evaluations we may perform. This typically occurs
because each evaluation requires running a complex PDE-based or discrete-event
simulation, or requires training amachine learning algorithmon a large dataset.When
f comes from a discrete-event simulation, this problem is also called “simulation
optimization.”

Bayesian optimization is a popular class of techniques for solving this problem,
originating with the seminal paper [11], and enjoying early contributions from [12,
13]. This class of techniques was popularized in the 1990s by the introduction in
[9] of the most well-known Bayesian optimization method, Efficient Global Opti-
mization (EGO), relying on earlier ideas from [12]. Recently the machine learning
community has devoted considerable attention to Bayesian optimization for its appli-
cations to tuning computationally intensivemachine learningmodels, as in, e.g., [18].
Textbooks and surveys on Bayesian optimization include [1, 3].

Most work on Bayesian optimization assumes we can observe the objective func-
tion directly without noise, but a substantial number of papers, e.g. [1, 8, 17, 20], do
allow noise and thus consider (1). Thesemethods all build a statistical model (usually
using Gaussian processes) of the function x �→ G(x) := E[ f (x,w, z)] using noisy
observations, and then use an acquisition criterion, typically expected improvement
or probability of improvement [1], to decide where to sample next.

Existing work from Bayesian optimization for solving (1) relies on noisy evalu-
ations in which w and z are drawn iid from their governing joint probability distri-
bution p, and then f (x,w, z) is observed. However, in many applications, we have
the ability to choose not just x , but w as well, simulating the remaining components
z conditioning on these values. (The choice of which random inputs to include in
w instead of z can be made arbitrarily when using existing Bayesian optimization
algorithms, but the new algorithm we propose will assume they accommodate easy
sampling of z given w.)

This ability to simulate random inputs given the value of some of their values is
widely used in stratified sampling to estimate expectations with better precision [6].

For example, in a queuing simulation (we give a detailed example in our numerical
experiments), we can simulate the individual arrival times of customers z condition-
ing on the overall number of arrivals w. In a revenue management simulation, we
can simulate individual purchase decisions z conditioned on the overall demand w.
In an aerodynamic simulation, we can simulate fine-scale airflows z, conditioned on
average wind speed w.

We thus rephrase problem (1) into the equivalent problem

max
x∈A⊂Rn

E [F (x,w)] (2)

where F (x,w) := E [ f (x,w, z) | w], and the problems are equivalent because we
have that E[F(x,w)] = E [ f (x,w, z)] = G(x).
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This equivalent formulation suggests that standard approaches to Bayesian opti-
mization are wasteful from a statistical point of view, as they do not use past obser-
vations w to learn G(x) = E[F(x,w)], treating w only as an unobservable source of
noise.

Instead, one can use Bayesian quadrature [15], which builds a Gaussian process
model of the function F(x,w) using past observations of x,w, f (x,w, z), and then
uses the known relationshipG(x) = ∫ F(x,w)p(w) dw (where we assume p(w) :=∫
p(w, z) dz is known in closed form) to imply a second Gaussian process model on

G(x).
In this paper, we leverage this ability and develop an algorithm, called stratified

Bayesian optimization (SBO), which chooses not just the x at which to evaluate
f (x,w, z), but also thew. It chooses these using a one-stepBayes-optimal acquisition
function based on a value-of-information [7] analysis. It then samples z from its
conditional distribution givenw, and uses the resulting observationwithin a Bayesian
quadrature framework to update its Gaussian process posterior on both (x,w) �→
F(x,w) and x �→ E[F(x,w)]. By using more information, we make our statistical
model more powerful, and provide better answers with fewer samples.

This approach is similar in spirit to stratified sampling [6], where our goal is to
estimate G(x) = E[F(x,w)] = E[ f (x,w, z)] for a fixed x , and we choose which
values of w at which to sample rather than sampling them from their marginal dis-
tribution, and then compensate for this choice via a known relationship between
F(x,w) and G(x) to obtain lower variance estimates.

To choose x andw, SBO uses a decision-theoretic approach that models the utility
resulting from solutions to the optimization problem (2). SBO finds the pair of values
(x,w) at which to sample that maximizes the expected utility of the final solution,
under the assumption, made for tractability, that we may take only one additional
sample. Thus, our SBO algorithm is optimal in a decision-theoretic sense, in a one-
step setting.

This one-step decision-theoretic approach follows the development of acquisition
functions for other settings. In more traditional Bayesian optimization problems, the
well-known expected improvement acquisition function [9, 12] has this optimality
property when observations are noise-free and the final solution must be taken from
previously evaluated solutions [5], and the knowledge-gradient (KG) method [4, 17]
has this optimality property when the final solution is not restricted to be a previously
evaluated solution, in both the noisy and noise-free setting.

Our approach also builds on, and significantly generalizes, the previouswork [19],
which developed a similar method, but did not allow for the inclusion of unmodeled
random inputs z, instead requiring all inputs to be included and modeled statistically
inw. This introduces a heavy computational and statistical burden when dealing with
problems in which the combined dimension ofw and z is large, which includes many
complex stochastic models, significantly limiting its applicability.

This paper is organized as follows: Sect. 2 presents our statistical model. Section3
presents the SBO algorithm. Section4 describes the computation of the value of
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information. Section5 describes the computation of the gradient of the value of
information. Section6 presents simulation experiments. Section7 concludes.

2 Statistical Model

The SBO algorithm that we develop relies on a Gaussian process (GP) model of the
underlying function F , which then implies (because integration is a linear function) a
Gaussian processmodel overG. This statistical approachmirrors a standardBayesian
quadrature approach, but we summarize it here both to define notation used later,
and because its application to Bayesian optimization is new.

We first place a Gaussian process prior distribution over the function F :

F (·, ·) ∼ GP (μ0 (·, ·) ,Σ0 (·, ·, ·, ·)) ,

where μ0 is a real-valued function taking arguments (x,w), and Σ0 is a positive
semi-definite function taking arguments

(
x,w, x ′,w′). Common choices for μ0 and

Σ0 from the Gaussian process regression literature [14, 16], e.g., setting μ0 to a
constant and letting Σ0 be the squared exponential or Màtern kernel, are appropriate
here as well.

Our algorithm will take samples sequentially. At each time n = 1, 2, . . . , N ,
our algorithm will choose xn and wn based on previous observations. It will
then take M samples of f (xn,wn, z) and observe the average response. More
precisely, it will sample zn,m ∼ p (z | wn) for m = 1, . . . , M and observe yn =
1
M

∑M
m=1 f
(
xn,wn, zn,m

)
. The choice of M is an algorithm parameter, and should be

chosen large enough that the central limit theorem may be applied, so that we may
reasonably model the (conditional) distribution of yn as normal. We will then have,

yn|xn,wn ∼ N
(
F (xn,wn) , σ 2 (xn,wn) /M

)
,

where σ 2 (w, z) := Var ( f (x,w, z) | w). We assume that this conditional variance
is finite for all x andw. In updating the posterior, we also assume that we observe this
value σ 2 (xn,wn), although in practice we estimate it using the empirical variance
from our M samples.

Let Hn = (y1:n,w1:n, x1:n) be the history observed by time n. Then, the posterior
distribution on F at time n is

F (·, ·) | Hn ∼ GP (μn (·, ·) ,Σn (·, ·, ·, ·)) ,

where μn and Σn can be computed using standard results from Gaussian process
regression [16]. To support later analysis, expressions for μn and Σn are provided in
the appendix.

We denote by En , Covn , and Varn the conditional expectation, conditional covari-
ance, and conditional variance on F (and thus also on G, since G is specified
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by F) with respect to the Gaussian process posterior given Hn . By results from
Bayesian quadrature [15], which rely on the previously noted fact that G(x) =∫
F(x,w)p(w) dw,

En [G(x)] =
∫

μn(x,w)p (w) dw := an(x), (3)

Covn
(
G(x),G(x ′)

) =
∫ ∫

Σn
(
x,w, x ′,w′) p (w) p

(
w′) dwdw.′

The first line is derived using interchange of integral and expectation, as
in En [G(x)] = En

[∫
F(x,w)p(w) dw

] = ∫ En [F(x,w)p(w)] dw = ∫ μn(x,w)

p (w) dw. The second line is derived similarly, though with more effort, by writ-
ing the covariance as an expectation, and interchanging expectation and integration.

3 Stratified Bayesian Optimization (SBO) Algorithm

Our SBO algorithm will choose points to evaluate using a value of information
analysis [7], which maximizes the expected gain in the quality of the final solution
to (1) that results from a sample.

To support this value of information analysis, we first consider the expected solu-
tion quality resulting for a particular set of samples. After n samples, if we were to
choose the solution to (1) with the best expected quality with respect to the Bayesian
posterior distribution on G, we would choose

x∗
n ∈ arg maxxEn [G(x)] = arg maxxan(x).

This is the Bayes-optimal solution when we are risk neutral. This solution has
expected value (again, with respect to the posterior),

μ∗
n := max

x
En [G(x)] = max

x
an(x).

The improvement in expected solution quality that results from a sample at (x,w)

at time n is
Vn(x,w) = En

[
μ∗
n+1 − μ∗

n | xn+1 = x,wn+1 = w
]
. (4)

We refer to this quantity as the value of information, and if we have one evaluation
remaining, then choosing to sample at the point with the largest value of information
is optimal from a Bayesian decision-theoretic point of view. If we have more than
one evaluation remaining, then it is not necessarily Bayes-optimal, but we argue that
it remains a reasonable heuristic.

Thus, our Stratified Bayesian Optimization (SBO) algorithm is defined by
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(xn+1,wn+1) ∈ arg maxx,wVn (x,w) . (5)

Detailed computation of this value of information, and its gradient with respect
to x and w, is discussed below in Sect. 4. We use this gradient to solve (5) using
multi-start gradient ascent or multi-start sequential least squares programming [10].

The SBO algorithm is summarized in Algorithm1. The complexity of the SBO
algorithm is O(LN 2 + N 4) if it is run during N iterations, and L is the number of
points in the discretization of the domain of the points x , see Sect. 4.

Algorithm 1 SBO Algorithm
1: First stage of samples Evaluate F at n0 points, chosen uniformly at random from A. Use

maximum likelihood or maximum a posteriori estimation to fit the parameters of the GP prior
on F , conditioned on these n0 samples. Let μ0 and Σ0 be the mean function and covariance
kernel of the resulting GP posterior on F .

2: Main stage of samples:
3: for n = 1 to N do
4: Update our Gaussian process posterior on F using all samples from the first stage, and sam-

ples x1:n ,w1:n , y1:n . This allows computation of μn and Σn as described in the appendix,
computation of an through (3), and computation of Vn and ∇Vn as described in Sect. 4.

5: Solve (xn+1,wn+1) ∈ arg maxx,wVn (x,w)usingmulti-start sequential least squares program-
ming or multi-start gradient ascent and the ability to compute ∇Vn . Let (xn+1,wn+1) be the
resulting maximizer.

6: Evaluate yn+1 = 1
M

∑M
m=1 f

(
xn+1,wn+1, zn+1,m

)
where zn+1,m are iid draws from

p (z | wn+1), and p(z | w) = p(w, z)/p(w) is the conditional density of z given w.
7: end for
8: Return x∗ = arg maxxaN+1 (x) .

Figure1 illustrates how SBO works, showing one step in the algorithm applied to
a simple analytic test problem

maxx∈[− 1
2 , 12 ]E [ f (x,w, z)] = maxx∈[− 1

2 , 12 ]E
[
zx2 + w

]
(6)

where w ∼ N (0, 1) and z ∼ N (−1, 1). Direct computation shows F (x,w) =
−x2 + w and G(x) = −x2.

The figure shows the contours of F(x,w), themean of SBO’s posterior on F(x,w)

in the first row, and the value of information and SBO’s posterior on G(x) in the
second row, all after n = 7 samples.

SBO’s value of information is small nearwhere SBOhas already sampled, because
it has less uncertainty about F(x,w) in this region. Its value of information is also
smaller forw far away from 0 because they have smaller p(w), and thus their F(x,w)

have less influence on G(x). SBO’s value of information is also small for extreme
values of x , because its posterior onG suggests that these x are far from itsmaximum.
SBO’s value of information is thus largest for points that are far from previous
samples, closer to x = 0, and closer to w = 0, and SBO samples next at the point
with the largest value of information.
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(a) The contours of F (x,w). The objective G(x)
is E[F(x,w)|x].

(b) SBO: The contours of SBO’s estimate
μn(x,w) of F (x,w), at n= 7.

(c) SBO: The contours of the value of informa-
tion Vn(x,w) under SBO at n= 7. SBO’s value
of information depends on both x and w.

(d) SBO:The objective G(x), and SBO’s estimate
an(x) and 95% credible interval, at n= 7.

Fig. 1 Illustration of the SBO algorithm on an analytic test problem. SBO models F(x,w) while
benchmark methods (KG and EI) model G(x). (First row) The contours of F (x,w) (left) and of
SBO’s estimate of F (right). (Second row) Left shows the contours of SBO’s value of information,
which depends on both x and w, and which SBO uses to choose the pair (x,w) to sample next.
Right shows SBO’s estimates of G(x), which is based on the estimate of F(x,w) in the first row

Figure2 shows equivalent quantities for the KG method [4], which, like other
Bayesian optimizationmethods,modelsG(x) directly, ignoring valuable information
from w, and computes a value of information as a function of x only (it believes that
observing near x = 0.1 or x = 1 would be most useful), leaving the choice of w to
chance. Furthermore, after n = 7 observations, SBO’s use of w allows it to have a
much more accurate estimate of G(x), and the location of its maximum.
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(a) KG: The value of information under KG at
n= 7. KG’s value of information depends only
on x.

(b) KG: The objective G(x), and KG’s
estimate an(x) and 95% credible interval,
n= 7.at

Fig. 2 Illustration of the KG algorithm on an analytic test problem. SBO models F(x,w) while
benchmarkmethods (KGandEI)modelG(x). Left showsKG’s value of information,which depends
only on x , and which KG uses to choose the point x to sample next. Right shows KG’s estimates
of G(x). This estimate is of lower quality than SBO’s estimate above, because it does not use the
observed values of w

4 Computation of the Value of Information

In this section we discuss computation of the value information (4), to support imple-
mentation of the SBO algorithm. We focus on the most relevant high level ideas, and
the detailed computations are given in the appendix.

Table1 summarizes notation used in this section.
We first rewrite the value of information (4) as

Table 1 Table of notation

G(x) � E[ f (x,w, z)]
Vn � Value of Information at time n

an (x) � En [G(x)]

Hn � History observed by time n

Σ0 � Kernel of the Gaussian process prior distribution over the function F

B (x, i) �
∫

Σ0 (x,w, xi ,wi ) p(w)dw, for i = 1, . . . , n + 1

γ �

⎡

⎢
⎢
⎣

Σ0 (xn+1,wn+1, x1,w1)

.

.

.

Σ0 (xn+1,wn+1, xn,wn)

⎤

⎥
⎥
⎦

An �
(
Σ0
(
xi ,wi , x j ,wj

))n
i, j=1 + diag

((
σ 2 (xi ,wi )

)n
i=1

)
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Vn (xn+1,wn+1) = En
[
maxx ′∈Aan+1

(
x ′) | xn+1,wn+1

]− maxx ′∈Aan
(
x ′) . (7)

To calculate this expectation, wemust find the joint distribution of an+1 (x) across
all x conditioned on (xn+1,wn+1) and Hn for any x . This is provided by the following
lemma.

Lemma 1 There exists a standard normal random variable Zn+1 such that, for all x,

an+1 (x) = an (x) + σ̃n(x, xn+1,wn+1)Zn+1.

where

σ̃ 2
n (x, xn+1,wn+1) :=Varn [G (x)] − En

[
Varn+1 [G (x)] | xn+1,wn+1

]
.

To compute the value of information, we then discretize the feasible set A, over
which we take the maximum in (7), into L < ∞ points.We let A′ denote this discrete
set of points, so A′ ⊆ A and |A′| = L . For example, if A is a hyperrectangle, then
we may discretize it using a uniform mesh.

Then, we approximate (7) by

Vn(xn+1,wn+1) = En
[
maxx∈Aan (x) + σ̃ (x, xn+1,wn+1)Zn+1

]− maxx∈Aan (x)

≈ En
[
maxx∈A′an (x) + σ̃ (x, xn+1,wn+1)Zn+1

]− maxx∈A′an (x)

= h(an(A
′), σ̃n(A

′, xn+1,wn+1)),

where an(A′) = (an (xi ))
L
i=1, σ̃n (x,w) = (σ̃n (xi , x,w))

L
i=1, and h : RL × R

L → R

is a function defined by h (a, b) = E [maxi ai + bi Z ] − maxi ai , where a and b are
any deterministic vectors, and Z is a one-dimensional standard normal random vari-
able. By convenience, we will denote an (xi ) by ei and σ̃n (xi , x,w) by fi for each i
in {1, . . . , L}. If A = A′, which is possible if A is a finite set, then the approximation
in the second line above is exact.

In [4], it is also shown how to compute h. Using the Algorithm1 in that paper, we
can get a subset of indexes { j1, . . . , j�} from {1, . . . , L}, such that

Vn(xn+1,wn+1) = h(an(A
′), σ̃n(A

′, xn+1,wn+1))

=
�−1∑

i=1

(
f ji+1 − f ji

)
f (− |ci |)

where

f (z) := ϕ (z) + zΦ (z) ,

ci := e ji+1 − e ji
f ji+1 − f ji

, i = 1, . . . , � − 1,

and ϕ,Φ are the standard normal cdf and pdf, respectively. This shows how to
compute the Value of Information Vn .
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5 Computation of the Gradient of the Value of Information

In this section we show how to compute the gradient of the Value of Information Vn .
Observe that if � = 1, Vn (x,w) = 0 and so ∇Vn

(
x,w(1)

) = 0. On the other hand,
if � > 1, one can show via direct computation that

∇Vn (x,w) =
�−1∑

i=1

(−∇ f ji+1 + ∇ f ji
)
ϕ (|ci |) .

Consequently, we only need to compute ∇ f ji for each i in {1, . . . , �}. Another
direct computation shows that

∇σ̃n (x, xn+1,wn+1) =β1β3 − 1

2
β3
1β2 [β5 − β4]

where

β1 = [Σ0 (xn+1,wn+1, xn+1,wn+1) − γ T A−1
n γ
]−1/2

,

β2 = B (x, n + 1) − [B (x, 1) · · · B (x, n)] A−1
n γ,

β3 =
⎛

⎜
⎝∇B (x, n + 1) − ∇ (γ T

)
A−1
n

⎡

⎢
⎣

B (x, 1)
...

B (x, n)

⎤

⎥
⎦

⎞

⎟
⎠ ,

β4 = 2∇ (γ T
)
A−1
n γ,

β5 = ∇Σ0 (xn+1,wn+1, xn+1,wn+1) .

We now give expressions for an to compute the parameters of the posterior dis-
tribution of an+1. First, an can be computed using the following formula,

an (x) = E [μn (x,w)]

= E [μ0 (x,w)] + [B (x, 1) · · · B (x, n)] A−1
n

⎛

⎜
⎝

y1 − μ0 (x1,w1)
...

yn − μ0 (xn,wn)

⎞

⎟
⎠ .

In some cases it is possible to get a closed-form formula for B, e.g. if w follows a
normal distribution, the components of w are independent and we use the squared
exponential kernel.

Finally, a direct computation detailed in the appendix shows that the formula for
σ̃ 2
n (x, xn+1,wn+1) is

⎡

⎣
(
B (x, n + 1) − [B (x, 1) · · · B (x, n)] A−1

n γ
)

√(
Σ0 (xn+1,wn+1, xn+1,wn+1) − γ T A−1

n γ
)

⎤

⎦

2

.



Stratified Bayesian Optimization 155

6 Numerical Experiments

We now present simulation experiments illustrating how the SBO algorithm can be
applied in practice, and comparing its performance against some baseline Bayesian
optimization algorithms. We compare on a test problem with a simple analytic form
(Sect. 6.1), on a realistic problem arising in the design of the New York City’s Citi
Bike system (Sect. 6.2), and on a wide variety of problems simulated from Gaussian
process priors (Sect. 6.3) designed to provide insight into what problem characteris-
tics allow SBO to provide substantial benefit.

We consider two baseline Bayesian optimization algorithms. We use the
Knowledge-Gradient policy of [4] and Expected Improvement criterion [9], which
both place the Gaussian process prior directly on G(x), and use a standard sampling
procedure, in which w and z are drawn from their joint distribution, and f (x,w, z) is
observed. The Knowledge-Gradient policy is equivalent to SBO if all components of
w are moved into z. Thus, comparing against KG quantifies the benefit of SBO’s core
contribution, while holding constant standard aspects of the Bayesian optimization
approach.

We also solved the problems from (Sect. 6.1) and (Sect. 6.2) with Probability of
Improvement (PI) [1], but we did not include its results in our graphs because both
KG and EI substantially outperformed PI. Moreover, according to Brochu [1], “EI’s
acquisition function is more satisfying than PI’s acquisition function”.

When implementing the SBO algorithm, we use the squared exponential kernel,
which is defined as

Σ0
(
x,w, x ′,w′) = σ 2

0 exp

(

−
n∑

k=1

α
(k)
1

[
xk − x ′

k

]2 −
d1∑

k=1

α
(k)
2

[
wk − w′

k (1)
]2
)

,

where σ 2
0 is the common prior variance and α

(1)
1 , . . . , α

(n)
1 , α

(1)
2 , . . . , α

(d1)
2 ∈ R+ are

length scales. These values, σ 2 and the mean μ0 are calculated using maximum
likelihood estimation following the first stage of samples.

6.1 An Analytic Test Problem

In our first example, we consider the problem (6) stated in Sect. 3. Figure3 compares
the performance of SBO, KG and EI on this problem, plotting the number of samples
beyond the first stage on the x axis, and the average true quality of the solutions
provided, G(argmaxxEn[G(x)]), averaging over 3000 independent runs of the three
algorithms.

We see that SBO substantially outperforms both benchmark methods. This is
possible because SBO reduces the noise in its observations by conditioning on w,
allowing it to more swiftly localize the objective’s maximum.
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Fig. 3 Performance comparison between SBO and two Bayesian optimization benchmark, the KG
and EI methods, on the analytic test problem (6) from Sect. 3. SBO performs significantly better
than two benchmarks: knowledge-gradient (KG) and expected improvement (EI)

6.2 New York City’s Citi Bike System

We now consider a more realistic problem, using a queuing simulation based on
New York City’s Citi Bike system, in which system users may remove an available
bike from a station at one location within the city, and ride it to a station with an
available dock in some other location within the city. The optimization problem that
we consider is the allocation of a constrained number of bikes (6000) to available
docks within the city at the start of rush hour, so as to minimize, in simulation, the
expected number of potential trips in which the rider could not find an available
bike at their preferred origination station, or could not find an available dock at their
preferred destination station. We call such trips “negatively affected trips.”

We simulated in Python the demand of bike trips of a New York City’s Bike
System on any day from January 1st to December 31st between 7:00 AM and 11:00
AM. We used 329 actual bike stations, locations, and numbers of docks from the
Citi Bike system, and estimated demand and average time for trips for every day in
a year using publicly available data of the year 2014 from Citi Bike’s website [2].

We simulate the demand for trips between each pair of bike stations on a day using
an independent Poisson process, and trip times between pairs of stations follows an
exponential distribution. If a potential trip’s origination station has no available bikes,
then that trip does not occur, and we increment our count of negatively affected trips.
If a trip does occur, and its preferred destination station does not have an available
dock, then we also increment our count of negatively affected trips, and the bike is
returned to the closest bike station with available docks.
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We divided the bike stations in 4 groups using k-nearest neighbors, and let x be
the number of bikes in each group at 7:00 AM. We suppose that bikes are allocated
uniformly among stations within a single group.

The random variable w is the total demand of bike trips during the period of our
simulation. The random vector z contains all other random quantities within our
simulation.

Table2 provides a concrete mapping of SBO’s abstractions onto the CitiBike
example.

Figure4a compares the performance of SBO, KG and EI, plotting the number
of samples beyond the first stage on the x axis, and the average true quality of the
solutions provided, G(argmaxxEn[G(x)]), averaging over 300 independent runs of
the three algorithms. We see that SBO was able to quickly find an allocation of bikes
to groups that attains a small expected number of negatively affected trips.

Table 2 Table of notation for the citibike problem

x ∈ R
4 � Deterministic vector that represents the number of bikes in each group

of bike stations at 7:00 AM

w ∈ N � Poisson random variable that represents the total demand of bike trips
between 7:00 AM to 11:00 AM

z � Random vector that consists of: (i) day of the year where the simulation
occurs, (ii)

(329
2

)
-dimensional Poisson random vector that represents the

total demand between each pair of bike stations, (iii) exponential
random vector that represents the time duration of each bike trip

− f (x,w, z) � Negatively affected trips between 7:00 AM to 11:00 AM

G(x) � E[ f (x,w, z)]

(a) Performance comparison between SBO
and two Bayesian optimization benchmark,
the KG and EI methods, on the Citi Bike
Problem from Sect. 6.2

(b) Location of bike stations (circles) in New
York City, where size and color represent the
ratio of available bikes to available docks

Fig. 4 Performance results for the Citi Bike problem (plot 1), and a screenshot from our simulation
of the Citi Bike problem (plot b)
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6.3 Problems Simulated from Gaussian Process Priors

We now compare the performance of SBO against a benchmark Bayesian optimiza-
tion algorithm on synthetic problems drawn at random fromGaussian process priors.
We use the KG algorithm as our benchmark, as it performed as well or better than the
other benchmark algorithms (EI and Probability of Improvement) on the test prob-
lems in Sects. 6.1 and 6.2. In these experiments, SBO outperforms the benchmark on
most problems, in some cases offering an improvement of almost 1000%. On those
few problems in which SBO underperforms the benchmark, it underperforms by a
much smaller margin of less than 50%.

Our experiments also provide insight into how SBO should be applied in prac-
tice. They show that the most important factor in determining SBO’s performance
over benchmarks is the speed with which the conditional expectation F(x,w) =
E [ f (x,w, z) |w] varies with w. SBO provides the most value when this variation
is large enough to influence performance, and small enough to allow F(x,w) to be
modeled with a Gaussian process. Thus, users of SBO should choose a w that plays
a big role in overall performance, and whose influence on performance is smooth
enough to support predictive modeling.

We now construct these problems in detail. Let f (x,w, z) = h(x,w) + g(z) on
[0, 1]2 × R, where:

• g(z) is drawn, for each z, independently from a normal distribution with mean 0
and variance αd (we could have set g to be an Orstein–Uhlenbeck process with
large volatility, and obtained an essentially identical result).

• h is drawn from aGaussian Process withmean 0 andGaussian covariance function
Σ
(
(x,w) ,

(
x ′,w′)) = αh exp

(
−β
∥
∥(x,w) − (x ′,w′)∥∥2

2

)
.

• w is drawn uniformly from {0, 1/49, 2/49, . . . , 1} and z is drawn uniformly from
[0, 1].
We thus have a class of problems parametrized by αh , αd , β, the number of

samples per iteration n, and an outcome measure determined by the overall number
of samples. To reduce the dimensionality of the search space, we first set the number
of samples per iteration, n, to 1. (We also performed experiments with other n, not
described here, and found the same qualitative behavior described below.)

We reparameterize the dependence on αh and αd in a more interpretable way.
We first set Var[ f (x,w, z)|w, z] = αh + αd to 1, as multiplying both αh and
αd by a scalar simply scales the problem. Then, the variance reduction ratio
Var[ f (x,w, z)| f,w]/Var[ f (x,w, z)| f ] achieved by SBO in conditioning on w is
approximatelyαh/(αd + αh), with this estimate becoming exact as β grows large and
the values of h(x,w) become uncorrelated across w. We define A = αh/(αd + αh)

equal to this approximate variance reduction ratio.
Thus, our problems are parameterized by the approximate variance reduction ratio

A, the overall number of samples, and by β, which measures the speed with which
the conditional expectation E [ f (x,w, z) |w] varies with w.
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(a) Normalized performance difference
as a function of and A, when the over-
all number of samples is 50

(b) Normalized performance difference as a
function of and the overall number of iter-
ations, when A= 1/2

ββ

Fig. 5 Normalized performance difference between SBO and KG in problems simulated from a
Gaussian process, as a function of β, which measures how quickly E[ f (x,w, z)|w] varies with w,
the approximate variance reduction ratio A, and the overall number of samples. SBO outperforms
KG over most of the parameter space, and is approximately 10 times better when β is near exp(4)

Given this parameterization, we sampled problems from Gaussian process priors
using all combinations of A ∈ { 12 , 1

4 ,
1
8 ,

1
16

}
and β ∈ {2−4, 2−3, . . . , 29, 210

}
. We

also performed additional simulations at A = 1
2 for β ∈ {211, . . . , 215}.

Figure5 shows Monte Carlo estimates of the normalized performance difference
between SBO and KG for these problems, as a function of log(β) (log is the natural
logarithm), A, and the overall number of samples.

The normalized performance difference is estimated for each set of problem
parameters by taking a randomly sampled problem generated using those problem
parameters, discretizing the domain into 2500 points, running each algorithm inde-
pendently 500 times on that problem, and averaging (G(x∗

SBO) − G(x∗
KG))/|G(x∗

KG)|
across these 500 samples, where x∗

SBO is the final solution calculated by SBO, and
similarly for x∗

KG.
We see that the normalized performance difference is robust to A and the overall

number of samples, but is strongly influenced by β. We see that SBO is always
better than KG whenever β >= 1. Moreover, it is substantially better than KG when
log(β) ∈ (3, 5), with SBO outperforming KG by as much as a factor of 10. For
larger β, SBO remains better than KG, but by a smaller margin. This unimodal
dependence of the normalized performance difference on β can be understood as
follows: SBOprovides value bymodeling the dependence of F(x,w) onw.Modeling
this dependence ismost useful when β takesmoderate values because it is here where
observations of F(x,w) at one value of w are most useful in predicting the value
of F(x,w) at other values of w. When F varies very quickly with w (large β), it is
more difficult to generalize, and when F varies very slowly with w (β close to 0),
then modeling dependence on w is comparable with modeling F as constant.
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7 Conclusion

We have presented a new algorithm called SBO for simulation optimization of noisy
derivative-free expensive functions. This algorithm can be used with high dimen-
sional random vectors, and it outperforms the classical Bayesian approach to opti-
mize functions in the examples presented. Our algorithm can be 10 times better
than the classical Bayesian approach, which is a substantial improvement over the
standard approach.
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Appendix

Detailed Computations of the Equations
Used in the Statistical Model

In this section we compute the parameters of the posterior distribution of F and G.

Parameters of the Posterior Distribution of F

In this section we are going to calculate the posterior distribution of F (·, ·) given
that we have placed a Gaussian process (GP) prior distribution over the function F :

F (·, ·) ∼ GP (μ0 (·, ·) ,Σ0 (·, ·, ·, ·))

where

μ0 : (x,w) → R,

Σ0 : (x,w, x ′,w′)→ R,

andΣ0 is a positive semi-definite function.We chooseΣ0 such that closer arguments
are more likely to correspond to similar values, i.e. Σ0

(
x,w, x ′,w′) is a decreasing

function of the distance between (x,w) and
(
x ′,w′). Specifically, we can use the

squared exponential covariance function:

Σ0
(
x,w(1), x ′,w′(1)) = σ 2

0 exp

(

−
n∑

k=1

α1,k
[
xk − x ′

k

]2 −
d1∑

k=1

α2,k
[
wk − w′

k

]2
)
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where σ 2
0 is the common prior variance, and α1,1, . . . , α1,n, α2,1, . . . , α2,d1 ∈ R+ are

the length scales. These values are calculated using likelihood estimation from the
observations of F .

First, observe that standard results from Gaussian process regression provide the
following expressions for μn and Σn (the parameters of the posterior distribution of
F),

μn (x,w) = μ0 (x,w)

+ [Σ0 (x,w, x1,w1) · · · Σ0 (x,w, xn ,wn)] A−1
n ×

⎛

⎜
⎜
⎝

y1 − μ0 (x1,w1)

.

.

.

yn − μ0 (xn ,wn)

⎞

⎟
⎟
⎠

Σn
(
x,w, x ′,w′) = Σ0

(
x,w, x ′,w′)

− [Σ0 (x,w, x1,w1) · · · Σ0 (x,w, xn ,wn)] A−1
n

⎛

⎜
⎜
⎝

Σ0
(
x ′,w′, x1,w1

)

.

.

.

Σ0
(
x ′,w′, xn ,wn

)

⎞

⎟
⎟
⎠

where

An =
⎡

⎢
⎣

Σ0 (x1,w1, x1,w1) · · · Σ0 (x1,w1, xn,wn)
...

. . .
...

Σ0 (xn,wn, x1,wn) · · · Σ0 (xn,wn, xn,wn)

⎤

⎥
⎦

+diag
(
σ 2 (x1,w1) , . . . , σ 2 (xn,wn)

)
,

and σ 2 (x,w) = Var ( f (x,w, z) |w).

Parameters of the Posterior Distribution of G

In this section, we compute the parameters of the posterior distribution of G,
σ̃n (x, xn+1,wn+1) and an (x). We give close formulas for these parameters when
we use the squared exponential kernel, and w follows a normal distribution (wi ∼
N
(
μi , σ

2
i

)
) and its components are independent.

We first compute σ̃n (x, xn+1,wn+1),

σ̃ 2
n (x, xn+1,wn+1) = Varn [G (x)] − En

[
Varn+1 [G (x)] | xn+1,wn+1

]

= Varn
[
G (x) | xn+1,wn+1

]− Varn+1
[
G (x) | xn+1,wn+1

]

=
∫ ∫

Σn
(
x,w, x,w′) p (w) p

(
w′) dwdw′

−
∫ ∫

Σn+1
(
x,w, x,w′) p (w) p

(
w′) dw(1)dw′(1)
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=
∫ ∫

Σn (x,w, xn+1,wn+1)
Σn
(
x,w′, xn+1,wn+1

)

Σn (xn+1,wn+1, xn+1,wn+1)

×p (w) p
(
w′) dwdw′

=
[ ∫

Σn (x,w, xn+1,wn+1)√
Σn (xn+1,wn+1, xn+1,wn+1)

p (w) dw

]2

=
[ ∫

Σn (x,w, xn+1,wn+1)√
Σn (xn+1,wn+1, xn+1,wn+1)

p (w) dw

]2

=
⎡

⎣
(
B (x, n + 1) − [B (x, 1) · · · B (x, n)] A−1

n γ
)

√(
Σ0 (xn+1,wn+1, xn+1,wn+1) − γ T A−1

n γ
)

⎤

⎦ .2

We now compute an (x),

an (x) = E [μn (x,w)]

= E [μ0 (x,w)] + [B (x, 1) · · · B (x, n)] A−1
n

⎛

⎜
⎝

y1 − μ0 (x1,w)
...

yn − μ0 (xn,w)

⎞

⎟
⎠ .

In the particular case that we use the squared exponential kernel, and w follows a
normal distribution (wi ∼ N

(
μi , σ

2
i

)
) and its components are independent, we have

that

B (x, i) =
∫

Σ0 (x,w, xi ,wi ) dw

= σ 2
0 exp

⎛

⎝−
n∑

k=1

α1,k
[
xk − xi,k

]2

⎞

⎠
d1∏

k=1

∫
exp
(
−α2,k

[
wk − wi,k

]2
)
p (wk ) dwk

for i = 1, . . . , n.
We can also compute

∫
exp
(
−α2,k
[
wk − wi,k

]2)
p (wk) d (wk) for any k and i ,

∫
exp
(
−α2,k
[
wk − wi,k

]2)
p (wk) d (wk)

= 1√
2πσk

∫
exp

(

−α2,k
[
z − wi,k

]2 − [z − μk]2

2σ 2
k

)

dz

= 1√
2πσk

exp

⎛

⎜
⎝− μ2

k

2σ 2
k

− α2,kw
2
i,k −
(

μk

σ 2
k

+ 2α2,kwi,k

)2

4
(
−α2,k − 1

2σ 2
k

)

⎞

⎟
⎠
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×
∫

exp

⎛

⎝−
(

α2,k + 1

2σ 2
k

)
⎡

⎣z −
μk

σ 2
k

+ 2α2,kwi,k

2
(
b + 1

2σ 2
k

)

⎤

⎦

2⎞

⎠ dz

= 1√
2σk

1
√

α2,k + 1
2σ 2

k

exp

⎛

⎜
⎝− μ2

k

2σ 2
k

− α2,kw
2
i,k −
(

μk

σ 2
k

+ 2α2,kwi,k

)2

4
(
−α2,k − 1

2σ 2
k

)

⎞

⎟
⎠ .

Detailed Computations of the Equations Used
in the Computation of the Value of Information
and Its Gradient

In this section, we prove the Lemma1 of the paper.

Proposition 1 We have that

an+1 (x) | Fn, (xn+1,wn+1) ∼ N
(
an (x) , σ̃ 2

n (x, xn+1,wn+1)
)

where

σ̃ 2
n (x, xn+1,wn+1) = Varn [G (x)] − En

[
Varn+1 [G (x)] | xn+1,wn+1

]
.

Proof By Eq. (8),

an+1 (x) = E
[
μn+1 (x,w)

]
(8)

= E [μ0 (x,w)] (9)

+ [B (1) · · · B (n + 1)] A−1
n+1

⎛

⎜
⎝

y1 − μ0 (x1,w1)
...

yn+1 − μ0 (xn+1,wn+1)

⎞

⎟
⎠ . (10)

Since yn+1 conditioned onFn, xn+1,wn+1 is normally distributed, then an+1 (x) |
Fn, xn+1,wn+1 is also normally distributed. By the tower property,

En
[
an+1 (x) | xn+1,wn+1

] = En
[
En+1 [G (x)] | xn+1,wn+1

]

= En [G (x)]

= an (x)
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and

σ̃ 2
n (x, xn+1,wn+1) = Varn

[
En+1 [G (x)] | xn+1,wn+1

]

= Varn [G (x)] − En
[
Varn+1 [G (x)] | xn+1,wn+1

]
.

This proves the proposition.
Proof of Lemma1 Using the Eq. (8) and the previous proposition, we get the

following formula for an+1,

an+1 = an + σ̃n (x, xn+1,wn+1) Z

where Z ∼ N (0, 1), which is the Lemma1 of the paper.
We now compute the gradient of the value of information.
First, we compute the gradient in the general case,

∇Vn (xn+1,wn+1) = ∇h
(
an
(
A′) , σ̃n

(
A′, xn+1,wn+1

))

=
l−1∑

i=1

(
f ji+1 − f ji

)
(−Φ (− |ci |)) ∇ (|ci |)

− (∇ f ji+1 − ∇ f ji
)
f (− |ci |)

=
l−1∑

i=1

(∇ f ji+1 − ∇ f ji
)
(−Φ (− |ci |) |ci | − f (− |ci |))

=
l−1∑

i=1

(−∇ f ji+1 + ∇ f ji
)
ϕ (|ci |) .

We only need to compute ∇ f ji for all i ,

∇σ̃n (x, xn+1,wn+1) = ∇
(√(

Varn [G (x)] − En
[
Varn+1 [G (x)] | xn+1,wn+1

])
)

= β1

⎛

⎜
⎝∇B (x, n + 1) − ∇ (γ T

)
A−1
n

⎡

⎢
⎣

B (x, 1)
...

B (x, n)

⎤

⎥
⎦

⎞

⎟
⎠ (11)

−1

2
β3
1β2
[∇Σ0 (xn+1,wn+1, xn+1,wn+1) (12)

−2∇ (γ T
)
A−1
n γ
]

(13)
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where

β1 = [Σ0 (xn+1,wn+1, xn+1,wn+1) − γ T A−1
n γ
]−1/2

β2 = B (x, n + 1) − [B (x, 1) · · · B (x, n)] A−1
n γ.

Now,we give a closed formula for this gradient whenwe use the squared exponen-
tial kernel, andw follows a normal distribution (wi ∼ N

(
μi , σ

2
i

)
) and its components

are independent. Observe that we can compute (11) explicitly by plugging in:

∇xn+1, jΣ0 (xn+1,wn+1, xi ,wi )

=
{
0, i = n + 1

−2α1, j
[
xn+1, j − xi, j

]
Σ0 (xn+1,wn+1, xi ,wi ) , i < n + 1

∇wn+1, jΣ0 (xn+1,wn+1, xi ,wi )

=
{
0, i = n + 1

−2α2, j
[
wn+1, j − wi, j

]
Σ0 (xn+1,wn+1, xi ,wi ) , i < n + 1

where ∇xn+1, j is the derivative respect to the jth entry of xn+1. Finally, we only need
to compute

∇xn+1, j B (x, n + 1) = −2α( j)
1

(
x j − xn+1, j

)
B (x, n + 1)

∇wn+1,k B (x, n + 1) = σ 2
0 exp

(

−
n∑

i=1

α
(i)
1

[
xi − xn+1,i

]2
)

×
∏

j �=k

∫
exp
(
−α

( j)
2

[
wj − wn+1, j

]2)
p
(
wj
)
d
(
wj
)

×
∫ [(

−2α(k)
2

(
wk − wn+1,k

))
exp
(
−α

(k)
2

[
wk − wn+1,k

]2)

×p (wk) ] d (wk) .
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Tusnády’s Problem, the Transference
Principle, and Non-uniform QMC
Sampling

Christoph Aistleitner, Dmitriy Bilyk and Aleksandar Nikolov

Abstract It is well-known that for every N ≥ 1 and d ≥ 1 there exist point sets
x1, . . . , xN ∈ [0, 1]d whose discrepancy with respect to the Lebesgue measure is of
order at most (log N )d−1N−1. In a more general setting, the first author proved
together with Josef Dick that for any normalized measure μ on [0, 1]d there
exist points x1, . . . , xN whose discrepancy with respect to μ is of order at most
(log N )(3d+1)/2N−1. The proof used methods from combinatorial mathematics, and
in particular a result of Banaszczyk on balancings of vectors. In the present note we
use a version of the so-called transference principle together with recent results on
the discrepancy of red-blue colorings to show that for any μ there even exist points
having discrepancy of order at most (log N )d− 1

2 N−1, which is almost as good as the
discrepancy bound in the case of the Lebesgue measure.

Keywords Low-discrepancy sequences · Non-uniform sampling · combinatorial
discrepancy · Tusnády’s problem · Gates of Hell

1 Introduction and Statement of Results

Many problems from applied mathematics require the calculation or estimation of
the expected value of a function depending on several random variables; such prob-
lems include, for example, the calculation of the fair price of a financial derivative
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and the calculation of the expected loss of an insurance risk. The expected value
E

(
g(Y (1), . . . , Y (d))

)
can be written as
∫

Rd

g
(
y(1), . . . , y(d)

)
dν

(
y(1), . . . , y(d)

)
, (1)

where ν is an appropriate probability measure describing the joint distribution of the
random variables Y (1), . . . , Y (d). Since a precise calculation of the value of such an
integral is usually not possible, one looks for a numerical approximation instead.
Two numerical methods for such problems are the Monte Carlo method (MC, using
random sampling points) and the Quasi-Monte Carlo method (QMC, using cleverly
chosen deterministic sampling points). The QMC method is often preferred due to
a faster convergence rate and deterministic error bounds. However, in the QMC
literature it is often assumed that the problem asking for the value of (1) has at the
outset already been transformed into the problem asking for the value of

∫

[0,1]d

f
(
x (1), . . . , x (d)

)
dx (1) · · · x (d). (2)

Thus it is assumed that the integration domain is shrunk from R
d to [0, 1]d , and that

the integrationmeasure is changed from ν to the Lebesguemeasure. In principle, such
a transformation always exists – this is similar to the way how general multivariate
random sampling is reduced to sampling from the multivariate uniform distribu-
tion, using for example the Rosenblatt transform [28] (which employs sequential
conditional inverse functions).

The shrinking procedure is less critical, albeit also non-trivial – if one wishes to
avoid this shrinking process and carry out QMC integration directly on R

d instead,
then one way of doing so is to “lift” a set of sampling points from [0, 1]d toRd rather
than shrinking the domain of the function. See for example [15] and the references
there.

However, the change from a general measure to the uniform measure is highly
problematic, in particular becauseQMCerror bounds depend strongly on the regular-
ity of the integrand. Note that the change from ν to the Lebesgue measure induces a
transformation of the original function g to a new function f , and this transformation
may totally ruin all “nice” properties of the initial function g such as the existence
of derivatives or the property of having bounded variation. This is not the place to
discuss this topic in detail; we just note that the main problem is not that each of
Y (1), . . . , Y (d) may have a non-uniform marginal distribution, but rather that there
may be a strong dependence in their joint distribution (which by Sklar’s theorem
may be encoded in a so-called copula – see [26] for details). We refer to [12] for a
discussion of these issues from a practitioner’s point of view.

There are two possible ways to deal with the problems mentioned in the previous
paragraph, which can be seen as two sides of the same coin.

Firstly, one may try to transform the points of a classical QMC point set in such a
way that they can be used for integration with respect to a different, general measure,
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and such that one obtains a bound for the integration error in terms of the discrepancy
(with respect to the uniform measure) of the original point set – this is the approach
of Hlawka and Mück [18, 19], which has been taken up by several authors.

On the other hand, one may try to sample QMC points directly in such a way that
they have small discrepancy with respect to a given measure μ, and use error bounds
which apply in this situation. This is the approach discussed in [1, 2], where it is
shown that both key ingredients for QMC integration are given also in the setting of
a general measureμ: there exist (almost) low-discrepancy point sets, and there exists
a Koksma–Hlawka inequality giving bounds for the integration error in terms of the
discrepancy (with respect to μ) of the sampling points and the degree of regularity
of the integrand function. More precisely, let μ be a normalized Borel measure on
[0, 1]d , and let

D∗
N (x1, . . . , xN ;μ) = sup

A∈A

∣∣∣
∣∣
1

N

N∑

n=1

1A(xn) − μ(A)

∣∣∣
∣∣

(3)

be the star-discrepancy of x1, . . . , xN ∈ [0, 1]d with respect to μ; here 1A denotes
the indicator function of A, and the supremum is extended over the class A of all
axis-parallel boxes contained in [0, 1]d which have one vertex at the origin. Then in
[1] it is shown that for arbitrary μ there exist points x1, . . . , xN ∈ [0, 1]d such that

D∗
N (x1, . . . , xN ;µ) ≤ 63

√
d

(2 + log2 N )(3d+1)/2

N
. (4)

This improves an earlier result ofBeck [7],where the exponent of the logarithmic term
was 2d. Note the amazing fact that the right-hand side of (4) does not depend on μ

(whereas the choice of the points x1, . . . , xN clearly does). The estimate in (4) should
be compared with corresponding results for the case of the uniform measure, where
it is known that there exist so-called low-discrepancy point sets whose discrepancy
is of order at most (log N )d−1N−1.

(Remark: While preparing the final version of this manuscript we learned that
already in 1989, József Beck [8, Theorem1.2] proved a version of (4) with the
stronger upper bound O

(
N−1(log N )d+2

)
. However, the implied constant was not

specified in his result.)
A Koksma–Hlawka inequality for general measures was first proved by Götz [17]

(see also [2]). For any points x1, . . . , xN , any normalized measure μ on [0, 1]d and
any d-variate function f whose variation Var f on [0, 1]d (in the sense of Hardy–
Krause) is bounded, we have

∣∣∣∣∣

∫

[0,1]d

f (x)dμ(x) − 1

N

N∑

n=1

f (xn)

∣∣∣∣∣
≤ D∗

N (x1, . . . , xN ;μ) Var f. (5)

This is a perfect analogue of the original Koksma–Hlawka inequality for the uniform
measure. Combining (4) and (5) we see that in principle QMC integration is possible
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for the numerical approximation of integrals of the form

∫

[0,1]d

f
(
x (1), . . . , x (d)

)
dμ(x (1) . . . x (d)),

and that the convergence rate is almost as good as in the classical setting for the
uniformmeasure.However, it should be noted that for the case of the uniformmeasure
many explicit constructions of low-discrepancy point sets are known (see [16]),
whereas the proof of (4) is a pure existence result and it is not clear how (and if)
such point sets can be constructed with reasonable effort.

The purpose of the present note is to show that for anyμ there actually exist points
x1, . . . , xN whose discrepancy with respect to μ is of order at most (log N )d− 1

2 N−1.
This is quite remarkable, since it exceeds the corresponding bound for the case of
the uniform measure only by a factor (log N )

1
2 .

Theorem 1 For every d ≥ 1 there exists a constant cd (depending only on d) such
that the following holds. For every N ≥ 2 and every normalized Borel measure μ on
[0, 1]d there exits points x1, . . . , xN ∈ [0, 1]d such that

D∗
N (x1, . . . , xN ;μ) ≤ cd

(log N )d− 1
2

N
.

The proof of this theorem uses a version of the so-called transference principle,
which connects the combinatorial and geometric discrepancies, see Theorem2. The
novelty and the main observation of this paper lies in the fact that this principle is
still valid for general measures μ. This observation was made earlier by Matoušek
in [23], without providing any details, but otherwise it has been largely overlooked.
In addition we shall use new upper bounds for Tusnády’s problem due to the third
author (for the discussion of Tusnády’s problem, see Sect. 2.2). If one wants to refrain
from the application of unpublished results, one can use Larsen’s [20] upper bounds
for Tusnády’s problem instead, which yield Theorem1 with the exponent d + 1/2
instead of d − 1/2 for the logarithmic term (see also [25]). An exposition of the
connection between geometric and combinatorial discrepancies, together with the
proof of Theorem1, is given in the following section.

Before turning to combinatorial discrepancy, we want to make several remarks
concerning Theorem1.

Firstly, whereas the conclusion of Theorem1 is stated for finite point sets, one can
use a well-known method to find an infinite sequence (xn)n≥1 whose discrepancy is
of order at most (log N )d+1/2N−1 for all N ≥ 1. A proof can be modeled after the
proof of Theorem2 in [1].

Secondly, while the upper bound in Theorem1 is already very close to the cor-
responding upper bound in the case of the classical discrepancy for the uniform
measure, there is still a gap. One wonders whether this gap is a consequence of a
deficiency of our method of proof, or whether the discrepancy bound in the case of
general measures really has to be larger than that in the case of the uniform measure.
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In other words, we have the following open problem, which we state in a slightly
sloppy formulation.

Open problem: Is the largest upper bound for the smallest possible discrepancy
the one for the case of the Lebesgue measure? In other words, is there any measure
which is more difficult to approximate by finite atomic measures with equal weights
than the Lebesgue measure?

We think that this is a problem of significant theoretical interest. Note, however,
that even in the classical case of the Lebesgue measure the problem asking for the
minimal order of the discrepancy of point sets is famously still open; while in the
upper bounds for the best known constructions the logarithmic term has exponent
d − 1, in the best known lower bounds the exponent is (d − 1)/2 + εd for some
small εd > 0 (see [11] for the latter result, and [10] for a survey). This is known as
the Great Open Problem of discrepancy theory, see, e.g., [9, p. 8], and [24, p. 178].

It is clear that some measures are much easier to approximate than Lebesgue
measure – think of the measure having full mass at a single point, which can be
trivially approximated with discrepancy zero. On the other hand, if the measure
has a non-vanishing continuous component then one can carry over the orthogonal
functions method of Roth [29] – this is done in [14]. However, the lower bounds
for the discrepancy which one can obtain in this way are the same as those for the
uniform case (and not larger ones). Intuitively, it is tempting to assume that the
Lebesgue measure is essentially extremal – simply because intuition suggests that a
measure which is difficult to approximate should be “spread out everywhere”, and
should be “equally large” throughout the cube.

2 Combinatorial Discrepancy and the Transference
Principle

2.1 Combinatorial Discrepancy

Let V = {1, . . . , n} be a ground set and C = {C1, . . . , Cm} be a system of subsets
of V . Then the (combinatorial) discrepancy of C is defined as

discC = min
y∈{−1,1}n

disc(C , y),

where the vector y is called a (red-blue) coloring of V and

disc(C , y) = max
i∈{1,...,m}

∣∣∣∣
∣∣

∑

j∈Ci

y j

∣∣∣∣
∣∣

is the discrepancy of the coloring y. We may visualize the entries of the vector y
as representing two different colors (usually red and blue). Then disc(C , y) is the
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maximal difference between the number of red and blue elements of V contained in
a test set Ci , and discC is the minimal value of disc(C , y) over all possible colorings
y. For more information on this combinatorial notion of discrepancy, see [13, 24].

We will only be concerned with a geometric variation of this notion, i.e. the case
when V is a point set in [0, 1]d , and when the set system C is the collection of all
sets of the form G ∩ V , where G ∈ G and G is some collection of geometric subsets
of [0, 1]d : standard choices include, e.g., balls, convex sets, boxes (axis-parallel or
arbitrarily rotated) etc. Let disc(N ,G , d) denote the maximal possible discrepancy
in this setting; that is, set

disc(N ,G , d) = max
P

(discC ),

where the maximum is taken over all sets P of N points in [0, 1]d and where C =
G |P = {G ∩ P : G ∈ G }.

2.2 Tusnády’s Problem

Wedenote byA (as in Sect. 1) the class of all axis-parallel boxes having one vertex at
the origin. The problemof finding sharp upper and lower bounds for disc(N ,A , d) as
a function of N and d is known as Tusnády’s problem. For the history and background
of the problem, see [6, 23, 25].

We will use the following result, which has been recently announced by the third
author [27]. A slightly weaker result [5] (with exponent d) by Bansal and Garg has
been presented at MCQMC 2016 (and is also still unpublished). A yet weaker, but
already published result (with exponent d + 1/2) is contained in [20].

Proposition 1 For every d ≥ 1 there exists a constant cd (depending only on d) such
that for all N ≥ 2

disc(N ,A , d) ≤ cd(log N )d− 1
2 .

Finally, we want to note that Tusnády’s problem is still unsolved; the known (and
conjecturally optimal) lower bounds are of the order (log N )d−1, see [25]. As will
become clear from the next subsection, further improvements of the upper bounds
for Tusnády’s problem would directly imply improved upper bounds in Theorem1.
Note that actually Tusnády’s problem also falls within the framework of “discrepancy
with respect to a general measure μ”. Given N points, let μ be the discrete measure
that assigns mass 1/N to each of these points. Then Tusnády’s problem asks for a
set P of roughly N/2 points such that the discrepancy of P with respect to μ is
small – under the additional requirement that the elements of P are chosen from the
original set of N points. This additional requirement also explains why lower bounds
for Tusnády’s problem do not imply lower bounds for the problem discussed in the
present paper.
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2.3 Transference Principle

It is known that upper bounds for the combinatorial discrepancy of red-blue colorings
can be turned into upper bounds for the smallest possible discrepancy of a point set
in the unit cube. This relation is called the transference principle.

For a system G of measurable subsets of [0, 1]d , its (unnormalized) geometric
discrepancy is defined as

DN (G ) = inf
P: #P=N

sup
G∈G

∣∣
∣∣∣∣

∑

p∈P

1G(p) − Nλ(G)

∣∣
∣∣∣∣
, (6)

where the infimum is taken over all N -point sets P ⊂ [0, 1]d and λ(G) is the
Lebesgue measure of G. The transference principle, roughly speaking, says that
(under some mild assumptions on the collection G ) the geometric discrepancy is
bounded above by the combinatorial discrepancy, i.e. DN (G ) � disc(N ,G , d)with
the symbol “�” interpreted loosely. Thus upper bounds on combinatorial discrepancy
yield upper bounds for its geometric counterpart. This relation, in general, cannot be
reversed: in the case when G is the collection of all convex subsets of the unit cube,
we have that DN (G ) is of the order N 1− 2

d+1 , while disc(N ,G , d) is of the order N
as N → ∞ (see, e.g., [24]).

In [24, 25] it is mentioned that M. Simonovits attributes the idea of this principle
to Vera T. Sós. It was used in the context of Tusnády’s problem by Beck [6] in 1981,
and is stated in a rather general form in [22]. It can be found also in Matoušek’s
book [24, p. 20] and in [25]. In all these instances it is formulated in a version which
bounds the geometric discrepancy of point sets with respect to the Lebesgue measure
(as defined in (6)) in terms of the combinatorial discrepancy of red-blue colorings.

However, upon examination of the proof, it turns out that the argument carries
over to the case of the discrepancy with respect to an arbitrary measure (the only
significant requirement is that the measure allows an ε-approximation for arbitrary
ε; see below). Similar to (3) and (6), we define the geometric discrepancy of G with
respect to a Borel measure μ as

DN (G , μ) = inf
P: #P=N

D(P,G , μ), (7)

where

D(P,G , μ) = sup
G∈G

∣∣∣∣
∣∣

∑

p∈P

1G(p) − Nμ(G)

∣∣∣∣
∣∣
. (8)

Note that with this definition D∗
N (x1, . . . , xN ;μ), as defined in (3), satisfies

D∗
N (x1, . . . , xN ;μ) = 1

N
D

({x1, . . . , xN },A , μ
)
.
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Below we state and prove the transference principle in a rather general form for
arbitrarymeasures. The statement is similar to that in [24, 25] in the case of Lebesgue
measure, and the proof follows along the lines of [24].

Theorem 2 (Transference principle for general measures) Let μ be a Borel prob-
ability measure on [0, 1]d and let G be a class of Borel subsets of [0, 1]d such that
[0, 1]d ∈ G . Suppose that

DN (G , μ) = o(N ) as N → ∞. (9)

Assume furthermore that the combinatorial discrepancy of G satisfies

disc(N ,G , d) ≤ h(N ), N ≥ 1, (10)

for some function h with the property that h(2N ) ≤ (2 − δ)h(N ) for all N ≥ 1 for
some fixed δ > 0. Then

DN (G ,µ) = O(h(N )) as N → ∞, (11)

i.e., there is a constant C = C(δ) such that for every N ≥ 1 there exist points
x1, . . . , xN ∈ [0, 1]d so that D

({x1, . . . , xN },G , μ
) ≤ Ch(N ).

Proof Set ε = h(N )/N , and using (9) choose a positive integer k so large that there

exists a set P0 of 2k N points in [0, 1]d so that D(P0,G ,μ)

2k N ≤ ε. By (10) we can find
a red-blue coloring of the set P0 with discrepancy at most h(2k N ). The difference
between the total number of red and blue points is also at most h(2k N ), since the
full unit cube is an element of our class of test sets. Without loss of generality we
may assume that there are no more red than blue points (otherwise switch the roles
of the red and the blue points). We keep all the red points and only so many of the
blue points as to make sure that in total we have half the number of the original
points, while we dispose of all the other blue points. Write P1 for the new set. The
cardinality of P1 is 2k−1N . Furthermore,

D(P1,G , μ)

2k−1N
≤ ε + h(2k N )

2k−1N
.

To see why this is the case, note that an arbitrary set G ∈ G contains between
2k Nμ(G) − ε2k N and 2k Nμ(G) + ε2k N elements of P0. Thus it contains between

1

2

(
2k Nμ(G) − ε2k N − h(2k N )

)
and

1

2

(
2k Nμ(G) + ε2k N + h(2k N )

)

red elements of P0, and consequently between

1

2

(
2k Nμ(G) − ε2k N − h(2k N )

)
and

1

2

(
2k Nμ(G) + ε2k N + 2h(2k N )

)
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elements of P1, where the upper bound is increased by h(2k N )/2 since we have
to add at most so many blue points in order to make sure that P1 has the desired
cardinality. Repeating this procedure, we obtain a point set P2 of cardinality 2k−2N
whose discrepancy with respect to μ is at most

D(P2,G , μ)

2k−2N
≤ ε + h(2k N )

2k−1N
+ h(2k−1N )

2k−2N
.

We repeat this procedure over and over again, until we arrive at a point set Pk which
has cardinality N , and whose discrepancy with respect to μ satisfies

D(Pk,G , μ) ≤ εN︸︷︷︸
=h(N )

+
k∑

j=0

h(2k− j N )

2k− j−1
≤ Ch(N ),

where we have used the condition that h(2N ) ≤ (2 − δ)h(N ). Note that the value of
C does not depend on the measure μ. This finishes the proof.

2.4 Proof of Theorem1

Theorem1 now easily follows from the combinatorial discrepancy estimate in Tus-
nády’s problem (Proposition1) and the transference principle for general measures
(Theorem2) applied in the case G = A . The only point that needs checking is
whether μ satisfies the approximability condition (9) with respect to the collection
A of axis-parallel boxes with one vertex at the origin. But (9) follows trivially from
the prior result (4).

A slightly more direct way to prove (9) is to observe that the collectionA is a VC
class (its VC-dimension is d), see e.g. [13] for definitions. This implies (see [30])
that it is a uniform Glivenko–Cantelli class, i.e.

sup
μ

E sup
A∈A

∣∣∣
∣∣
1

N

N∑

n=1

1A(xn) − μ(A)

∣∣∣
∣∣
→ 0 as N → ∞,

where the expectation is taken over independent random points x1,...,xN with distri-
bution μ, and the supremum is taken over all probability measures μ on [0, 1]d . This
immediately yields (9).

In conclusion we want to make some remarks on possible algorithmic ways of
finding a point set satisfying the conclusion of Theorem1. Following the proof
of the transference principle, two steps are necessary. First one has to find the ε-
approximation of μ. The existence of such a point set is guaranteed in the proof as a
consequence of (4). However, this is not of much practical use since the point set for
(4) cannot be constructed explicitly. However, in Corollary 1 of [2] it is proved that a
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set of 226dε−2 random points which are sampled randomly and independently from
the distributionμwill have, with positive probability, a discrepancy with respect toμ

which is less than a given ε. This result is deduced from large deviation inequalities,
and thus for a larger value of the constant (say 235 instead of 226) the probability that
the random point set has discrepancy at most ε with respect to μ will be extremely
close to 1. We can think of ε as roughly 1/N ; for the cardinality of the random point
set, this would give roughly 235d N 2. Note, however, that in each iteration of the col-
oring procedure the number of points is halved; accordingly, starting with 235d N 2

points leads to a point set of cardinality N after a rather small number of steps.
Admittedly, by using random points for the ε-approximation the whole problem is
only shifted rather than solved; it is typically rather difficult to draw independent
random samples from a general multivariate distribution μ.

The second part of the proof (the coloring procedure) is less of a problem from an
algorithmic point of view, since in recent years much work has been done on algo-
rithms for actually finding balanced colorings in combinatorial discrepancy theory.
In particular, the recent bound [5] for Tusnády’s problem due to Bansal and Garg
mentioned in Sect. 2 is algorithmic in the following sense: they describe an efficient
randomized algorithm that, given a set V of N points in [0, 1]d , finds a red-blue
coloring of V which has discrepancy at most cd(log N )d with probability arbitrarily
close to 1. “Efficient” here means that the running time of the algorithm is bounded
by a polynomial in N . In another recent preprint, Levy, Ramadas and Rothvoss [21]
describe an efficient deterministic algorithm that achieves the same guarantees as
the randomized algorithm from [4] for the Komlós problem. Since the techniques
used in [5] are very closely related to those of [4], it seems likely that an efficient
deterministic algorithm to find colorings for Tusnády’s problem with discrepancy
bounded by cd(log N )d can be constructed via the methods of [21]. Unfortunately,
the stronger bound of cd(log N )d− 1

2 proved in [27] relies on an existential result
of Banaszczyk [3], and no efficient algorithm is currently known that achieves this
bound.
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Learning Light Transport the Reinforced
Way

Ken Dahm and Alexander Keller

Abstract We show that the equations of reinforcement learning and light transport
simulation are related integral equations. Based on this correspondence, a scheme to
learn importance while sampling path space is derived. The new approach is demon-
strated in a consistent light transport simulation algorithm that uses reinforcement
learning to progressively learn where light comes from. As using this information for
importance sampling includes information about visibility, too, the number of light
transport paths with zero contribution is dramatically reduced, resulting in much less
noisy images within a fixed time budget.

Keywords Rendering · Path tracing · Reinforcement learning · Integral
equations · Monte Carlo and quasi-Monte Carlo methods

1 Introduction

One application of light transport simulation is the computational synthesis of images
that cannot be distinguished from real photographs. In such simulation algorithms
[24], light transport is modeled by a Fredholm integral equation of the second kind
and pixel colors are determined by estimating functionals of the solution of the
Fredholm integral equation. The estimators are averages of contributions of sampled
light transport paths that connect light sources and camera sensors.

Compared to reality, where photons and their trajectories are abundant, a computer
may only consider a tiny fraction of path space, which is one of the dominant reasons
for noisy images. It is therefore crucial to efficiently find light transport paths that
have an important contribution to the image. While a lot of research in computer
graphics has been focussing on importance sampling [1, 3, 4, 18, 23], for long there
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p ∼ Le fs cosθ

Fig. 1 In the illustration, radiance is integrated by sampling proportional to the product of emitted
radiance Le and the bidirectional scattering distribution function fs representing the physical surface
properties taking into account the fraction of radiance that is incident perpendicular to the surface,
which is the cosine of the angle θ between the surface normal and the direction of incidence. As
such importance sampling does not consider blockers, light transport paths with zero contributions
cannot be avoided unless visibility is considered

has not been a simple and efficient online method that can substantially reduce the
number of light transport paths with zero contribution [33].

The majority of zero contributions are caused by unsuitable local importance
sampling using only a factor instead of the complete integrand (see Fig. 1) or by
trying to connect vertices of light transport path segments that are occluded, for
example shooting shadow rays to light sources or connecting path segments starting
both from the light sources and the camera sensors. An example for this inefficiency
has been investigated early on in computer graphics [30, 31]: The visible part of the
synthetic scene shown in Fig. 4 is lit through a door. By closing the door more and
more the problem can be made arbitrarily more difficult to solve.

We therefore propose a method that is based on reinforcement learning [27] and
allows one to sample light transport paths that are much more likely to connect
lights and sensors. Complementary to first approaches of applying machine learning
to image synthesis [33], in Sect. 2 we show that light transport and reinforcement
learning can bemodeled by the same integral equation.As a consequence, importance
in light transport can be learned using any light transport algorithm.

Deriving a relationship between reinforcement learning and light transport simula-
tion, we establish an automatic importance sampling scheme as introduced in Sect. 3.
Our approach allows for controlling the memory footprint, for suitable representa-
tions of importance does not require preprocessing, and can be applied during image
synthesis and/or across frames, because it is able to track distributions over time. A
second parallel between temporal difference learning and next event estimation is
pointed out in Sect. 4.

As demonstrated in Sect. 5 and shown in Fig. 8, already a simple implementation
can dramatically improve light transport simulation. The efficiency of the scheme
is based on two facts: Instead of shooting towards the light sources, we are guiding
light transport paths to where the light comes from, which effectively shortens path
length, and we learn importance from a smoothed approximation instead from higher
variance path space samples [9, 18, 22].
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Fig. 2 The setting for
reinforcement learning: At
time t , an agent is in state St
and takes an action At ,
which after interaction with
the environment brings him
to the next state St+1 with a
scalar reward Rt+1

Agent St

Environment

AtSt+1 Rt+1(At | St)

2 Identifying Q-Learning and Light Transport

The setting of reinforcement learning [27] is depicted in Fig. 2: An agent takes an
action thereby transitioning to the resulting next state and receiving a reward. In
order to maximize the reward, the agent has to learn which action to choose in what
state. This process very much resembles how humans learn.

Q-learning [39] is a model free reinforcement learning technique. Given a set of
states S and a set of actions A, it determines a function Q(s, a) that for any s ∈ S
values taking the action a ∈ A. Thus given a state s, the action a with the highest
value may be selected next and

Q(s, a) = (1 − α) · Q(s, a) + α ·
(
r(s, a) + γ · max

a′∈A
Q(s ′, a′)

)
(1)

may be updated by a fraction of α ∈ [0, 1], where r(s, a) is the reward for taking
the action resulting in a transition to a state s ′. In addition, the maximum Q-value of
possible actions in s ′ is considered and discounted by a factor of γ ∈ [0, 1).

Instead of taking into account only the best valued action,

Q(s, a) = (1 − α) · Q(s, a) + α ·
(
r(s, a) + γ ·

∑
a′∈A

π(s ′, a′)Q(s ′, a′)

)

averages all possible actions in s ′ and weighs their values Q(s ′, a′) by a transition
kernel π(s ′, a′), which is a strategy called expected SARSA [27, Sect. 6.6]. This is
especially interesting, as later it will turn out that always selecting the “best” action
does not perform as well as considering all options (see Fig. 4). For a continuous
space A of actions, we then have

Q(s, a) = (1 − α) · Q(s, a) + α ·
(
r(s, a) + γ ·

∫
A
π(s ′, a′)Q(s ′, a′)da′

)
. (2)

On the other hand, the radiance
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L(x, ω) = Le(x, ω) +
∫
S +(x)

L(h(x, ωi ),−ωi ) fs(ωi , x, ω) cos θi dωi (3)

in a point x on a surface into direction ω is modeled by a Fredholm integral equation
of the second kind. Le is the source radiance and the integral accounts for all radiance
that is incident over the hemisphere S +(x) aligned by the surface normal in x and
transported into direction ω. The hitpoint function h(x, ωi ) traces a ray from x into
direction ωi and returns the first surface point intersected. The radiance from this
point is attenuated by the bidirectional scattering distribution function fs , where the
cosine term of the angle θi between surface normal and ωi accounts for only the
fraction that is perpendicular to the surface.

A comparison of Eq.2 for α = 1 and Eq.3 reveals structural similarities of the for-
mulation of reinforcement learning and the light transport integral equation, respec-
tively, which lend themselves to matching terms: Interpreting the state s as a location
x ∈ R

3 and an action a as tracing a ray from location x into direction ω resulting in
the point y := h(x, ω) corresponding to the state s ′, the reward term r(s, a) can be
linked to the emitted radiance Le(y,−ω) = Le(h(x, ω),−ω) as observed from x .
Similarly, the integral operator can be applied to the value Q, yielding

Q(x, ω) = Le(y,−ω) +
∫
S +(y)

Q(y, ωi ) fs(ωi , y,−ω) cos θi dωi , (4)

where we identified the discount factor γ multiplied by the policy π and the bidi-
rectional scattering distribution function fs . Taking a look at the geometry and the
physical meaning of the terms, it becomes obvious that Q in fact must be the radi-
ance Li (x, ω) incident in x from direction ω and in fact is described by a Fredholm
integral equation of the second kind - like the light transport equation 3.

3 Q-Learning while Path Tracing

In order to synthesize images, we need to compute functionals of the radiance equa-
tion 3, i.e. project the radiance onto the image plane. For the purpose of this article,
we start with a simple forward path tracer [16, 24]: From a virtual camera, rays are
traced through the pixels of the screen. Upon their first intersection with the scene
geometry, the light transport path is continued into a scattering direction determined
according to the optical surface properties. Scattering and ray tracing are repeated
until a light source is hit. The contribution of this complete light transport path is
added to the pixel pierced by the initial ray of this light transport path when started
at the camera.

In this simple form, the algorithm exposes quite some variance as can be seen in
the images on the left in Fig. 3. This noise may be reduced by importance sampling.
We therefore progressively approximate Eq.4 using reinforcement learning: Once a
direction has been selected and a ray has been traced by the path tracer,
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Fig. 3 Comparison of simple path tracing without (left) and with (right) reinforcement learning
importance sampling. The top row is using 8 paths per pixel, while 32 are used for the bottom row.
The challenge of the scene is the area light source on the left indirectly illuminating the right part
of the scene. The enlarged insets illustrate the reduction of noise level

Q′(x, ω) = (1 − α) · Q(x, ω) (5)

+α ·
(
Le(y,−ω) +

∫
S +(y)

Q(y, ωi ) fs(ωi , y,−ω) cos θi dωi

)

is updated using a learning rate α. The probability density function resulting from
normalizingQ in turn is used for importance sampling adirection to continue thepath.
As a consequence more and more light transport paths are sampled that contribute
to the image. Computing a global solution to Q in a preprocess would not allow for
focussing computations on light transport paths that contribute to the image.

3.1 Implementation

Often, approximations to Q are tabulated for each pair of state and action. In com-
puter graphics, there are multiple choices to represent radiance and for the purpose of
this article, we chose the data structure as used for irradiance volumes [6] to approx-
imate Q. Figure5 shows an exemplary visualization of such a discretization during
rendering: For selected points y in space, the hemisphere is stratified and one value
Qk(y) is stored per sector, i.e. stratum k. Figure4f illustrates the placement of probe
centers y, which results from mapping a two-dimensional low discrepancy sequence
onto the scene surface (Fig. 5).

Now the integral

∫
S +(y)

Q(y, ωi ) fs(ωi , y,−ω) cos θi dωi ≈ 2π

n

n−1∑
k=0

Qk(y) fs(ωk, y,−ω) cos θk
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Fig. 4 Comparison at 1024 paths per pixel (the room behind the door is shown in Fig. 5): a A
simple path tracer with cosine importance sampling, b the Kelemen variant of the Metropolis light
transport algorithm, c scattering proportional to Q, while updating Q with the maximum as in Eq.1
and d scattering proportional to Q weighted by the bidirectional scattering distribution function and
updating accordingly by Eq.5. The predominant reinforcement approach of always taking the best
next action is inferior to selecting the next action proportional to Q, i.e. considering all alternatives.
A comparison to the Metropolis algorithm reveals much more uniform lighting, especially much
more uniform noise and the lack of the typical splotches. e The average path length of path tracing
(above image diagonal) is about 215, while with reinforcement learning it amounts to an average
of 134. The average path length thus is reduced by 40% in this scene. f Discretized hemispheres to
approximate Q are stored in points on the scene surfaces determined by samples of the Hammersley
low discrepancy point set. Retrieving Q for a query point results in searching for the nearest sample
of Q that has a similar normal to the one in the query point (see especially the teapot handles). The
red points indicate where in the scene hemispheres to hold the Qk are stored. The colored areas
indicate their corresponding Voronoi cells. Storing the Qk in this example requires about 2 MB
of memory. Scene courtesy (cc) 2013 Miika Aittala, Samuli Laine, and Jaakko Lehtinen (https://
mediatech.aalto.fi/publications/graphics/GMLT/)

https://mediatech.aalto.fi/publications/graphics/GMLT/
https://mediatech.aalto.fi/publications/graphics/GMLT/
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Fig. 5 The image shows parts of an example discretization of Q by a grid, where hemispheres are
uniformly distributed across the ground plane. The false colors indicate magnitude, where small
values are green and large values are red. The large values on each hemisphere point towards the
part of the scene, where the light is coming from. For example, under the big area light source on
the left, most radiance is incident as reflected radiance from the wall opposite to the light source

in Eq.5 can be estimated by using each one uniform random direction ωk in each
stratum k, where θk is the angle between the surface normal in y and ωk .

The method has been implemented in an importance driven forward path tracer as
shown in Algorithm1: Only two routines for updating Q and selecting a scattering
direction proportional to Q need to be added. Normalizing the Q in a point y then
results in a probability density that is used for importance sampling during scattering
by inverting the cumulative distribution function. In order to guarantee ergodicity,
meaning that every light transport path remains possible, all Q(y) are initialized to
be positive, for example by a uniform probability density or proportional to a factor
of the integrand (see Fig. 1). When building the cumulative distribution functions
in parallel every accumulated frame, values below a small positive threshold are
replaced by the threshold.

The parameters exposed by our implementation are the resolution of the dis-
cretization and the learning rate α.

3.2 Consistency

It is desirable to craft consistent rendering algorithms [16], because then all renderer
introduced artifacts, like for example noise, are guaranteed to vanish over time. This
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Algorithm 1 Given a camera and scene description, augmenting a path tracer by
reinforcement learning for importance sampling requires only two additions: The
importance Q needs to be updated along the path and scattering directions are sam-
pled proportional to Q as learned so far.

throughput ← 1
ray ← setupPrimaryRay(camera)
for i ← 0 to ∞ do

(y, n) ← intersect(scene, ray) // corresponds to y := h(x, ω)

// addition 1: update Q
if i > 0 then
Q(x, ω) ← (1 − α)Q(x, ω) + α

(
Le(y,−ω) + ∫

S 2+(y) fs(ωi , y,−ω) cos θi Q(y, ωi )dωi

)
end if
if isEnvironment(y) then
return throughput · getRadianceFromEnvironment(ray, y)

else if isAreaLight(y) then
return throughput · getRadianceFromAreaLight(ray, y)

end if
// addition 2: scatter proportional to Q
(ω, pω, fs) ← sampleScatteringDirectionProportionalTo(Q, y)
throughput ← throughput · fs · cos(n, ω)/pω

ray ← (y, ω)

end for

requires the Qk(y) to converge, which may be accomplished by a vanishing learning
rate α.

In reinforcement learning [27], a typical approach is to count the number of visits
to each pair of state s and action a and using

α(s, a) = 1

1 + visits(s, a)
.

The method resembles the one used to make progressive photon mapping consistent
[7], where consistency has been achieved by decreasing the search radius around a
query point every time a photon hits sufficiently close. Similarly, the learning rate
may also depend on the total number of visits to a state s alone, or even may be
chosen to vanish independently of state and action. Again, such approaches have
been explored in consistent photon mapping [12].

While the Qk(y) converge, they do not necessarily converge to the incident radi-
ance in Eq.4. First, as they are projections onto a basis, the Qk(y) at best only are
an approximation of Q in realistic settings. Second, as the coefficients Qk(y) are
learned during path tracing, i.e. image synthesis, and used for importance sampling,
it may well happen that they are not updated everywhere at the same rate. Never-
theless, since all operators are linear, the number of visits will be proportional to
the number of light transport paths [12] and consequently as long as Qk(y) > 0
whenever Li (y, ωi ) > 0 all Qk(y) will be updated eventually.
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3.3 Learning While Light Tracing

For guiding light transport paths from the light sources towards the camera, the
transported weight W of a measurement (see [29]), i.e. the characteristic function
of the image plane, has to be learned instead of the incident radiance Q. As W is
the adjoint of Q, the same data structures may be used for its storage. Learning
both Q and W allows one to implement bidirectional path tracing [29] with rein-
forcement learning for importance sampling to guide both light and camera path
segments including visibility information for the first time. Note that guiding light
transport paths this way may reach efficiency levels that even can make bidirectional
path tracing and multiple importance sampling redundant [33] in many common
cases.

4 Temporal Difference Learning and Next Event
Estimation

Besides the known shortcomings of (bidirectional) path tracing [17, Sect. 2.4 Prob-
lem of insufficient techniques], the efficiency may be restricted by the approximation
quality of Q: For example, the smaller the light sources, the finer the required res-
olution of Q to reliably guide rays to hit a light source. This is where next event
estimation may help [5, 13, 32].

Already in [38] the contribution of light sources has been “learned”: A probability
per light source has been determined by the number of successful shadow rays divided
by the total number of shadow rays shot. This idea has been refined subsequently [2,
14, 36, 37].

For reinforcement learning, the state space may be chosen as a regular grid over
the scene, where in each grid cell c for each light source l a value Vc,l is stored that
is initialized with zero. Whenever a sample on a light source l is visible to a point x
to be illuminated in the cell c upon next event estimation, its value

V ′
c,l = (1 − α)Vc,l + α · ‖Cl(x)‖∞ (6)

is updated using the norm of the contribution Cl(x). Building a cumulative distribu-
tion function from all values Vc,l within a cell c, light may be selected by importance
sampling. Figure6 shows the efficiency gain of this reinforcement learning method
over uniform light source selection for 16 paths per pixel.

It is interesting to see that this is another relation to reinforcement learning:While
the Q-learning equation 5 takes into account the values of the next, non-terminal state,
the next state in event estimation is always a terminal state and Q-learning coincides
with plain temporal difference learning [26] as in Eq.6.
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Fig. 6 Two split-image comparisons of uniformly selecting area light sources and selection
using temporal difference learning, both at 16 paths per pixel. The scene on the left has 5000
area light sources, whereas the scene on the right has about 15000 (San Miguel scene courtesy
Guillermo M. Leal Llaguno (http://www.evvisual.com/))

4.1 Learning Virtual Point Light Sources

The vertices generated by tracing photon trajectories (see Sect. 3.3) can be considered
a photon map [10] and may be used in the same way. Furthermore, they may be
used as a set of virtual point light sources for example the instant radiosity [15]
algorithm.

Continuously updating and learning the measurement contribution function W
[29] across frames and using the same seed for the pseudo- or quasi-random
sequences allows for generating virtual point light sources that expose a certain
coherency over time, which reduces temporal artifacts when rendering animations
with global illumination.

4.2 Learning Environment Lighting

Rendering sun and sky is usually done by distributing samples proportional to the
brightness of pixels in the environment texture. More samples should end up in
brighter regions, which is achieved by constructing and sampling from a cumula-
tive distribution function, for example using the alias method [35]. Furthermore,
the sun may be separated from the sky and simulated separately. The efficiency of
such importance sampling is highly dependent on occlusion, i.e. what part of the
environment can be seen from the point to be shaded (see Fig. 1).

Similar to Sect. 3.1 and in order to consider the actual contribution including
occlusion, an action space is defined by partitioning the environment map into tiles
and learning the importance per tile. Figure7 shows the improvement for an example
setting.

http://www.evvisual.com/
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Fig. 7 Sun and sky illumination at 32 paths per pixel. Top: simple importance sampling consid-
ering only the environment map as a light source. Bottom: Importance sampling with reinforce-
ment learned importance. The enlargements on the right illustrate the improved noise reduction.
Scene courtesy Frank Meinl, Crytek (http://graphics.cs.williams.edu/data/meshes/crytek-sponza-
copyright.html)

5 Results and Discussion

Figure4 compares the new reinforcement learning algorithm to common algorithms:
For the same budget of light transport paths, the superiority over path tracing with
importance sampling according to the reflection properties is obvious. A compari-
son with the Metropolis algorithm for importance sampling [11, 30] reveals much
more uniform noise lacking the typical splotchy structure inherent with the local
space exploration ofMetropolis samplers. Note, however, that the new reinforcement
learning importance sampling scheme could as well be combined with Metropolis
sampling. Finally, updating Q by Eq.1, i.e. the “best possible action” strategy is
inferior to using the weighted average of all possible next actions according to Eq. 5.
In light transport simulation this is not surprising, as the deviation of the integrand
from its estimatedmaximumvery often ismuch larger than from a piecewise constant
approximation.

http://graphics.cs.williams.edu/data/meshes/crytek-sponza-copyright.html
http://graphics.cs.williams.edu/data/meshes/crytek-sponza-copyright.html
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Fig. 8 Using reinforcement learning (RL), the number of paths actually connecting to a light
source is dramatically improved over classic importance sampling (IS) using only the bidirectional
scattering distribution function for importance sampling. As a result, more non-zero contributions
are accumulated for the same number of paths, see also Fig. 4

The big gain in quality is due to the dramatic reduction of zero contribution
light transport paths (see Fig. 8), even under complex lighting. In Fig. 4a–d, the
same number of paths has been used. In each iteration, for path tracing with and
without reinforcement learning one path has been started per pixel, while for the
Metropolis variant the number of Markov chains equals the number of pixels of the
image. Rendering the image at 1280× 720 pixels, each iteration takes 41ms for path
tracing, 49ms for Metropolis light transport [11, 30], and 51ms for the algorithm
with reinforcement learned importance sampling. Hence the 20% overhead is well
paid off by the level of noise reduction.

Shooting towards where the radiance comes from naturally shortens the average
path length as can be seen in Fig. 4e. Based on the approach to guide light paths
using a pre-trained Gaussian mixture model [33] to represent probabilities, in [34]
in addition the density of light transport paths is controlled across the scene using
splitting and Russian roulette. These ideas have the potential to further improve the
efficiency of our approach.

While the memory requirements for storing our data structure for Q are small, the
data structure is not adaptive.An alternative is an adaptive hierarchical approximation
to Q as used in [18, 22]. Yet, another variant would be learning parameters for lobes
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to guide light transport paths [1]. In principle any data structure that has been used in
graphics to approximate irradiance or radiance is a candidate. Which data structure
and what parameters are best, may depend on the scene to be rendered. For example,
using discretized hemispheres limits the resolution with respect to solid angle. If
the resolution is chosen too fine, learning is slow, if the resolution is to coarse,
convergence is slow.

Given that Q asymptotically approximates the incident radiance Li , it is worth-
while to investigate how it can be used for the separation of the main part as explored
in [18, 23] to further speed up light transport simulation or even as an alternative to
importance sampling.

Beyond what we explore, path guiding has been extended to consider product
importance sampling [8] and reinforcement learning [27] offers more policy evalu-
ation strategies to consider.

6 Conclusion

Guiding light transport paths has been explored in [1, 4, 9, 18, 22, 23, 33]. However,
key to our approach is that by using a representation of Q in Eq.5 instead of solving
the equation by recursion, i.e. a Neumann series, Q may be learned much faster and
in fact during sampling light transport paths without any preprocess. This results in a
new algorithm to increase the efficiency of path tracing by approximating importance
using reinforcement learning during image synthesis. Identifying Q-learning and
light transport, heuristics have been replaced by physically based functions, and the
only parameters that the user may control are the learning rate and the discretization
of Q.

The combination of reinforcement learning and deep neural networks [19–21, 28]
is an obvious avenue of future research: Representing the radiance on hemispheres
already has been successfully explored [25] and the interesting question is how well
Q can be represented by neural networks.

Acknowledgements The authors would like to thank Jaroslav Křivánek, Tero Karras, Toshiya
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34. Vorba, J., Křivánek, J.: Adjoint-driven Russian roulette and splitting in light transport simula-
tion. ACM Trans. Graph. (Proceedings of SIGGRAPH 2016) 35(4), 1–11 (2016)

35. Vose, M.: A linear algorithm for generating random numbers with a given distribution. IEEE
Trans. Softw. Eng. 17(9), 972–975 (1991)

36. Wald, I., Benthin, C., Slusallek, P.: Interactive global illumination in complex and highly
occluded environments. In: Christensen P., Cohen-Or D. (eds.) Rendering Techniques 2003
(Proceedings of the 14th Eurographics Workshop on Rendering), pp. 74–81 (2003)

37. Wald, I., Kollig, T., Benthin, C., Keller, A., Slusallek, P.: Interactive global illumination using
fast ray tracing. In: Debevec P., Gibson S. (eds.) Rendering Techniques 2002 (Proc. 13th
Eurographics Workshop on Rendering), pp. 15–24 (2002)

38. Ward, G.: Adaptive shadow testing for ray tracing. In: 2nd Eurographics Workshop on Ren-
dering. Barcelona, Spain (1991)

39. Watkins, C., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)

http://arxiv.org/abs/abs/1509.06461


Successive Coordinate Search
and Component-by-Component
Construction of Rank-1 Lattice Rules

Adrian Ebert, Hernan Leövey and Dirk Nuyens

Abstract The (fast) component-by-component (CBC) algorithm is an efficient tool
for the construction of generating vectors for quasi-Monte Carlo rank-1 lattice rules
in weighted reproducing kernel Hilbert spaces. We consider product weights, which
assign a weight to each dimension. These weights encode the effect a certain variable
(or a group of variables by the product of the individual weights) has. Smaller weights
indicate less importance. Kuo (J Complex 19:301–320, 2003 [3]) proved that CBC
constructions achieve the optimal rate of convergence in the respective function
spaces, but this does not imply the algorithm will find the generating vector with
the smallest worst-case error. In fact it does not. We investigate a generalization
of the component-by-component construction that allows for a general successive
coordinate search (SCS), based on an initial generating vector, and with the aim
of getting closer to the smallest worst-case error. The proposed method admits the
same type of worst-case error bounds as the CBC algorithm, independent of the
choice of the initial vector. Under the same summability conditions on the weights
as in (Kuo J Complex 19:301–320, 2003 [3]) the error bound of the algorithm can
be made independent of the dimension d and we achieve the same optimal order
of convergence for the function spaces from (Kuo, J Complex 19:301–320, 2003
[3]). Moreover, a fast version of our method, based on the fast CBC algorithm as in
Nuyens and Cools (Math Comput 75:903–920, 2006, [5]), is available, reducing the
computational cost of the algorithm to O(d n log(n)) operations, where n denotes the
number of function evaluations. Numerical experiments seeded by a Korobov-type
generating vector show that the new SCS algorithm will find better choices than the
CBC algorithm and the effect is better for slowly decaying weights.
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1 Introduction

In this article we study the numerical approximation of integrals of the form

I ( f ) =
∫

[0,1]d
f (x) dx

for d-variate functions f via quasi-MonteCarlo quadrature rules. Quasi-MonteCarlo
rules are equal-weight quadrature rules of the form

Qn,d( f ) = 1

n

n−1∑
k=0

f (xk) ,

where the quadrature points x0, . . . , xn−1 ∈ [0, 1]d are chosen deterministically.
Here, we consider integrands f : [0, 1]d → R which belong to some normed func-
tion space (H, ‖ · ‖H ). In order to assess the quality of a particular QMC rule Qn,d

with underlying point set Pn = {x0, . . . , xn−1}, we introduce the notion of the so-
called worst-case error, see, e.g., [1], defined by

en,d(Pn, H) = sup
‖ f ‖H≤1

∣∣∣∣∣
∫

[0,1]d
f (x) dx − 1

n

n−1∑
k=0

f (xk)

∣∣∣∣∣ .

In other words, en,d(Pn, H) is the worst error that is attained over all functions in the
unit ball of H using the quasi-Monte Carlo rule with quadrature points in Pn . It is
often possible to obtain explicit expressions to calculate en,d(Pn, H), see, e.g., [4].
In particular, we consider weighted Korobov and weighted shift-averaged Sobolev
spaces, which are both reproducing kernel Hilbert spaces, for details see, e.g., [1, 3,
8, 9]. In this paper wewill limit ourselves to the original choice of “product weights”.
In essence, the idea is to quantify the varying importance of the coordinate directions
x j with j = 1, . . . , d w.r.t. the function values by a sequence γ = {γ j }dj=1 of positive
weights.

There are many ways to choose the underlying point set Pn of a QMC rule,
ranging from lattice rules and sequences, digital nets and sequences and more recent
constructions such as interlaced polynomial lattice rules. In this paper, however,
we will restrict ourselves to rank-1 lattice rules. This type of QMC rules has an
underlying point set Pn ⊆ [0, 1]d of the form

Pn =
{{

k z
n

} ∣∣∣∣ 0 ≤ k < n

}
,
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where z ∈ Z
d is the generating vector of the rank-1 lattice rule and {·} denotes

the fractional part, componentwise if applied to a vector. It is clear that any vector
congruent modulo n is equivalent and so we only consider values modulo n. The
components of z are often restricted to the set of integers in {1, . . . , n − 1} that
are relatively prime to n, see, e.g., [3], such that one obtains n distinct points for
all one-dimensional projections, and as such for any projection. In this article we
consider generating vectors z ∈ Z

d
n with n prime and Zn = {0, 1, 2, . . . , n − 1}. For

rank-1 lattice rules in a weighted shift-invariant tensor-product reproducing kernel
Hilbert space H(K )with reproducing kernel K (x, y) = ∏d

j=1(β j + γ j ω(x j − y j ))
the squared worst-case error can be written as

e2n,d(Pn, H) = e2n,d(z) = −
d∏
j=1

β j + 1

n

n−1∑
k=0

d∏
j=1

(
β j + γ j ω

({
k z j
n

}))
,

with positive weights γ = {γ j }dj=1 and β = {β j }dj=1, and where
∫ 1
0 ω(t) dt = 0, see,

e.g., [5]. We note that the weights β j are to easily accommodate for some types of
shift-averaged Sobolev spaces. Moreover, the initial squared worst-case error in this
function space, i.e., using n = 0 samples and with the convention that Q0,d( f ) = 0,
is given by

e20,d(0, H) = e20,d =
d∏
j=1

β j .

Remark 1 It is always possible to consider the normalized worst-case error by divid-
ing by the initial worst-case error for the zero-algorithm. The squared normalized
worst-case error then takes the form

e2n,d(z)

e20,d
= −1 + 1

n

n−1∑
k=0

d∏
j=1

(
1 + γ j

β j
ω

({
k z j
n

}))
, (1)

with e20,d = ∏d
j=1 β j . This is equivalent to considering the worst-case error en,d(z)

with modified weight sequences β̂ j = 1 and γ̂ j = γ j/β j .

One of the most commonly considered methods to construct good rank-1 lat-
tice rules is the component-by-component (CBC) construction, see, e.g., [4], which
extends the generating vector one component at a time by selecting the next com-
ponents zs which minimizes the worst-case error of the s-dimensional rule. The
pseudo-code of the CBC algorithm is given below.
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Algorithm 1 Component-by-component construction (CBC)

Output: z ∈ Z
d
n

for s = 1 to d do
for all zs ∈ Zn do

e2n,s(z1, . . . , zs−1, zs) = −
s∏

j=1

β j + 1

n

n−1∑
k=0

s∏
j=1

(
β j + γ j ω

({
k z j
n

}))

end for
zs = argmin

z∈Zn

e2n,s(z1, . . . , zs−1, z)

end for

It was shown in [3] that the component-by-component construction generates
lattice rules which achieve optimal rates of convergence in weighted Korobov and
Sobolev function spaces. Additionally, a fast construction method is available, see
[5, 6], that reduces the construction cost to O(d n log(n)) operations.

Even though the CBC algorithm constructs generating vectors z which exhibit
the optimal error asymptotics, the constructed vector is not necessarily the one min-
imizing the worst-case error en,d(z). We will therefore introduce and investigate a
different construction method which can generate lattice rules with a smaller worst-
case error than the CBC construction.

The article is structured as follows. In Sect. 2 we introduce the successive coor-
dinate search (SCS) algorithm and analyse some properties. In Sect. 3 we prove that
the SCS construction achieves optimal rates of convergence in the weighted Korobov
and weighted shift-averaged Sobolev space. To get dimension-independent bounds,
i.e., achieve tractability, we show that the summability condition on the weights is
the same as for the normal CBC construction. Finally we report on various numerical
experiments in Sect. 4.

2 Formulation of the Successive Coordinate Search
Algorithm

In this section we introduce an algorithm of similar nature to the component-by-
component construction. One advantage of the component-by-component construc-
tion is that the algorithm is extensible in the dimension d, i.e., to find the (d + 1)-
dimensional generating vector, the algorithm does not need to restart but just starts
from the generating vector of dimension d. In our setting this also implies that a
d-dimensional vector, with d large enough, could be constructed and used for all
problems with less than d dimensions. This allows us to fix the maximum number
of dimensions to some large enough d and successively try to find the best s-th com-
ponent of a d-dimensional generating vector, keeping all other d − 1 choices fixed.
The pseudocode of the successive coordinate search (SCS) algorithm is given below.
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Algorithm 2 Successive coordinate search algorithm (SCS)

Input: z0 ∈ Z
d
n

Output: z ∈ Z
d
n

for s = 1 to d do
for all zs ∈ Zn do

e2n,d (z1, . . . , zs−1, zs , zs+1=z0s+1, . . . , zd = z0d )=−
d∏
j=1

β j+ 1
n

n−1∑
k=0

d∏
j=1

(
β j+γ j ω

({
k z j
n

}))

end for
zs = argmin

z∈Zn

e2n,d (z1, . . . , zs−1, z, z0s+1, . . . , z
0
d )

end for

Instead of increasing the dimension in each step of the algorithm, we keep d fixed
during all calculations. Based on a starting vector z0 ∈ Z

d
n = {0, 1, . . . , n − 1}d ,

the algorithm successively selects the coordinate zs ∈ Zn which minimizes the
squared worst-case error e2n,d(z1, . . . , zs−1, zs, z0s+1, . . . , z

0
d) while keeping all other

coordinates of z fixed. Thus, in the process of the SCS algorithm the coordinates of
the starting vector z0 are altered in each step of the algorithm. Our construction is
very similar to the component-by-component construction, with the only difference
being that an initial vector z0 is required as input for the algorithm. In fact, we can
prove that the successive coordinate search algorithm is a generalized version of the
CBC algorithm as the following theorem shows by starting from an initial vector
z0 = (0, . . . , 0) ∈ Z

d
n . We note that this is a degenerate vector as it generates only a

1-point rule, and thus is in some sense the worst possible choice for any n ≥ 1.

Theorem 1 The component-by-component (CBC) algorithm and the successive
coordinate search (SCS) algorithm with starting vector z0 = (0, . . . , 0) both yield
the same generating vector as outcome (with equivalent choices selected in the same
way in both algorithms).

Proof Denote by 0r the r -dimensional zero vector, where 1 ≤ r ≤ d. For an arbitrary
z ∈ Z

s
n with 1 ≤ s ≤ d and with z̃ = (z, 0d−s) ∈ Z

d
n , the squared worst-case error

equals

e2n,d( z̃) = e2n,d(z, 0
d−s) = −

d∏
j=1

β j + 1

n

n−1∑
k=0

d∏
j=1

(
β j + γ j ω

({
k z̃ j
n

}))

= −
d∏
j=1

β j + 1

n

n−1∑
k=0

s∏
j=1

(
β j + γ j ω

({
k z j
n

})) d∏
j=s+1

(
β j + γ j ω(0)

)

= −
d∏
j=1

β j + Cs

n

n−1∑
k=0

s∏
j=1

(
β j + γ j ω

({
k z j
n

}))

= −
d∏
j=1

β j + Cs

⎛
⎝e2n,s(z) +

s∏
j=1

β j

⎞
⎠ ,
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where Cs = ∏d
j=s+1 (β j + γ j ω(0)). Note that due to the non-negativity of the

squaredworst-case error e2n,d the functionω is such thatω(0) ≥ 0 and so the constants
Cs are positive for all s = 1, . . . , d.

Now, in each step 1 ≤ s ≤ d of the SCS algorithm with initial vector z0 =
(0, . . . , 0), we search for the zs ∈ Zn that minimizes e2n,d(z1, . . . , zs−1, zs, 0d−s),
where z1, . . . , zs−1 have been determined in the previous steps of the algorithm. By
the above identity we have that

e2n,d(z1, . . . , zs−1, zs, 0
d−s) = −

d∏
j=1

β j + Cs

⎛
⎝e2n,s(z1, . . . , zs−1, zs) +

s∏
j=1

β j

⎞
⎠ ,

and so, since the remaining terms on the right-hand side are independent of zs , this
is equivalent to finding zs ∈ Zn such that e2n,s(z1, . . . , zs−1, zs) is minimized. As this
is exactly the same quantity which is minimized in each step of the component-
by-component construction algorithm, we see that the CBC algorithm and the SCS
algorithmwith starting vector z0 = (0, . . . , 0) yield exactly the same outcome under
the assumption that both algorithms select the same minimizer whenever multiple
choices occur in a minimization step.

Furthermore, the formulation of the successive coordinate search construction
guarantees that the generating vector z obtained by the SCS algorithm with initial
vector z0 is never worse than the input vector z0.

Proposition 1 Let z0 ∈ Z
d
n be an arbitrary generating vector for a rank-1 lattice

rule and denote by z1 ∈ Z
d
n the generating vector constructed by the SCS algorithm

with starting vector z0. Then we have that en,d(z1) ≤ en,d(z0), i.e., the SCS method
constructs a generating vector with worst-case error smaller than or equal to the
worst-case error of the initial vector.

Proof The statement follows directly from the formulation of the algorithm. �	

Similar to the case of the component-by-component construction there is a fast ver-
sion available that allows for the construction of generating vectors with time com-
plexity O(d n log(n)). In case n is a prime number this results in the following
algorithm.
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Algorithm 3 Fast version of the SCS algorithm for prime n

Input: z0 ∈ Z
d
n

q0 = 1n×1 ∈ R
n

for s = 1 to d do
qs = (

βs 11×n + γs �
〈g〉
n (z0s , :)

)
.∗ qs−1  initialize q

end for
for s = 1 to d do
qd = qd ./

(
βs 11×n + γs �

〈g〉
n (z0s , :)

)  divide out initial choice z0s
E2
s = −βd 1n×1 + 1

n

(
βs 1n×n + γs �

〈g〉
n

)
qd  use FFT for matrix-vector product

zs = argminz∈Zn
E2
s (z)  select component

qd = (
βs 11×n + γs �

〈g〉
n (zs , :)

)
.∗ qd  update q with new choice zs

end for

Here we used the notations

βs =
s∏

j=1

β j , �n =
[
ω

({
k z

n

})]
z=0,...,n−1
k=0,...,n−1

and �
〈g〉
n denotes the reordering of �n w.r.t. a generator g for the cyclic group of

Zn . For more details see [4, 5]. The symbols .∗ and ./ denote componentwise vector
multiplication and division, respectively, and�

〈g〉
n ( j, :) stands for the j-th rowof�〈g〉

n .
Note that the computation is slightly more expensive than the fast CBC algorithm
since q has to be initialized and updated using z0, but the computational complexity
is still O(d n log(n)).

3 Error Bounds for the SCS Algorithm

In this section we derive worst-case error bounds and show that the previously intro-
duced successive coordinate search construction achieves optimal convergence rates
in the respective function space. Here, we consider two of the most common function
spaces in QMC theory, the weighted Korobov space and the weighted shift-averaged
(anchored) Sobolev space.

3.1 The Weighted Korobov Space

Let γ = {γ j } and β = {β j } be two weight sequences. The reproducing kernel of the
corresponding d-dimensional weighted Korobov space is then given by
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Kd,γ ,β(x, y) =
d∏
j=1

⎛
⎝β j + γ j

∞∑
0 �=h=−∞

e2π i h(x j−y j )

rα(h)

⎞
⎠ ,

where α > 1
2 is referred to as the smoothness parameter and we define

rα(h) =
d∏
j=1

rα(h j ), rα(h) =
{

|h|2α, if, h �= 0,

1, otherwise.

For integerα the smoothness can be interpreted as the number ofmixed partial deriva-
tives f (τ1,...,τd ) with (τ1, . . . , τd) ≤ (α, . . . , α) that exist and are square-integrable.
The space consists of functions which can be represented as absolutely summable
Fourier series with norm

‖ f ‖2Kd,γ ,β
=

∑
h∈Zd

| f̂h|2 rα(h)

d∏
j=1
h j �=0

γ j

d∏
j=1
h j=0

β j ,

where the f̂h denote the Fourier coefficients of f .
We prove that the successive coordinate search (SCS) algorithm achieves the

optimal rate of convergence for multivariate integration in the weighted Korobov
space for any initial vector. As is usual practice, we restrict ourselves to a prime
number of points to simplify the needed proof techniques. We need the following
lemma in the proof of the theorem.

Lemma 1 For s ∈ {1, . . . , d}, n prime, arbitrary integers z j , j ∈ {1: d} \ {s}, and
r(h) = ∏d

j=1 r(h j ) with r(h) > 0 such that for h �= 0 we have r(nh) ≥ nc r(h) for
c ≥ 1, then

0 ≤ 1

n

n−1∑
zs=0

∑
h∈(Z\{0})d

h·z≡0 (mod n)

r−1(h) ≤ 2

n

∑
h∈(Z\{0})d

r−1(h).

Proof The condition h · z ≡ 0 (mod n) can be written equivalently by

1

n

n−1∑
zs=0

∑
h∈(Z\{0})d

h·z≡0 (mod n)

r−1(h) = 1

n

n−1∑
zs=0

∑
h∈(Z\{0})d

r−1(h)

⎡
⎣1

n

n−1∑
k=0

d∏
j=1

e2π i k h j z j /n

⎤
⎦ .
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Further, for 0 ≤ k < n and n prime

1

n

n−1∑
z=0

e2π i khz/n =
{
1, if k = 0 or h ≡ 0 (mod n),

0, otherwise,

and hence for h ∈ Z

1

n

n−1∑
k=0

1

n

n−1∑
z=0

e2π i khz/n =
{
1, if h ≡ 0 (mod n),

1/n, if h �≡ 0 (mod n).

Thus

∑
h∈(Z\{0})d

r−1(h)
1

n

n−1∑
k=0

⎛
⎝ d∏

s �= j=1

e2π i k h j z j/n

⎞
⎠ 1

n

n−1∑
zs=0

e2π i k hs zs/n

≤
∑

h∈(Z\{0})d
r−1(h)

1

n

n−1∑
k=0

⎛
⎝ d∏

s �= j=1

∣∣e2π i k h j z j /n
∣∣
⎞
⎠

∣∣∣∣∣
1

n

n−1∑
zs=0

e2π i k hs zs/n
∣∣∣∣∣

≤
∑

h∈(Z\{0})d
r−1(h)

1

n

n−1∑
k=0

1

n

n−1∑
zs=0

e2π i k hs zs/n

=
∑

h∈(Z\{0})d
hs≡0 (mod n)

r−1(h) + 1

n

∑
h∈(Z\{0})d

hs �≡0 (mod n)

r−1(h)

≤ 1

n

∑
h∈(Z\{0})d

r−1(h) + 1

n

∑
h∈(Z\{0})d

hs �≡0 (mod n)

r−1(h) ≤ 2

n

∑
h∈(Z\{0})d

r−1(h) .

Which completes the proof.

Theorem 2 Let n be a prime number and z0 = (z01, . . . , z
0
d) ∈ Z

d
n be an arbitrary

initial vector. Furthermore, denote by z∗ = (z∗
1, . . . , z

∗
d) ∈ Z

d
n the generating vec-

tor constructed by the successive coordinate search method with initial vector z0.
Then the squared worst-case error e2n,d(z

∗) in the Korobov space with kernel Kd,γ ,β

satisfies

e2n,d(z
∗) ≤ Cd,λ n

−λ for all 1 ≤ λ < 2α ,

where the constant Cd,λ is given by

Cd,λ = 2λ

⎛
⎝ d∑

j=1

γ
1/λ
j

β
1/λ
j

⎞
⎠

λ
d∏
j=1

(
β
1/λ
j + γ

1/λ
j μα,λ

)λ

μλ
α,λ max

s=1,...,d

(
1 + γ

1/λ
s

β
1/λ
s

μα,λ

)−λ
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withμα,λ = 2ζ(2α/λ) . Additionally, if the weights satisfy the summability condition

∞∑
j=1

γ
1/λ
j

β
1/λ
j

< ∞

then Cd,λ ≤ Cλ < ∞, and the constant Cλ is bounded independent of the dimen-
sion d. Hence, the worst-case error en,d(z∗) is arbitrarily close to O(n−α), with the
implied constant independent of n, and independent of d if the summability condition
holds.

Proof We use the notation from [4]: for a subset u ⊆ {1: d} = {1, . . . , d}, we set
Zu = {h ∈ Z

d : h j �= 0 for all j ∈ u and h j = 0 for j /∈ u}, and define the dual lat-
tice L⊥

u (z, n) = L⊥
u (zu, n) = {h ∈ Zu : hu · zu ≡ 0 (mod n)} where we write zu

and hu to refer only to those components in z and h. For h ∈ Zu we will write
hu ∈ Zu and rα(hu) to explicitly denote the dependence on the dimensions in u
only. We also write γu = ∏

j∈u γ j and set γ∅ = 1. Now, without loss of generality,
we consider the case where β j = 1 for all j and correct the final expression after-
wards, see Remark 1. Then from (1), or, see, e.g., [4, p. 5, Eq. (6)] with q = 2 and
ϕ(xk) = e2π i k h·z/n , we have

e2n,d (z) =
∑

0 �=h∈Zd

∣∣∣∣∣
1

n

n−1∑
k=0

e2π i k h·z/n
∣∣∣∣∣
2

r−1
α (h)

d∏
j=1
h j �=0

γ j =
∑

∅�=u⊆{1:d}
γu

∑
hu∈L⊥

u(zu,n)

r−1
α (hu) .

Now define

gu(zu) = γu
∑

hu∈L⊥
u(zu,n)

r−1
α (hu) and Ts(z1, . . . , zs) =

∑
s∈u⊆{1:s}

gu(zu) ,

which gives

e2n,d(z) =
∑

∅�=u⊆{1:d}
gu(zu) =

d∑
s=1

∑
s∈u⊆{1:s}

gu(zu) =
d∑

s=1

Ts(z1, . . . , zs) .

Minimizing en,d(z) over zs ∈ Zn is equivalent to minimizing only those parts which
depend on zs , resulting in the auxiliary target function

θs(z) =
∑

s∈u⊆{1:d}
gu(zu) =

∑
s∈u⊆{1:d}

γu
∑

hu∈L⊥
u(zu,n)

r−1
α (hu) .

Wenote that in the standardCBCproofs this quantity only depends on the dimensions
up to s while here it depends on all d dimensions. Obviously
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e2n,d (z) =
d∑

s=1

Ts(z1, . . . , zs) =
d∑

s=1

∑
s∈u⊆{1:s}

gu(zu) ≤
d∑

s=1

∑
s∈u⊆{1:d}

gu( z̃u) =
d∑

s=1

θs( z̃) ,

where the tilde on top of z means that in replacing the sum over s ∈ u ⊆ {1: s} by
the sum over s ∈ u ⊆ {1: d} we choose arbitrary z j for j > s. We are free to do so
since we are just adding positive quantities. Furthermore, for 1 ≤ λ < ∞, using the
so-called Jensen’s inequality, we obtain

(
e2n,d (z)

)1/λ =
⎛
⎝ d∑

s=1

∑
s∈u⊆{1:s}

gu(zu)

⎞
⎠

1/λ

≤
⎛
⎝ d∑

s=1

∑
s∈u⊆{1:d}

gu( z̃u)

⎞
⎠

1/λ

=
(

d∑
s=1

θs(z1, . . . , zs−1, zs , ws+1, . . . , wd )

)1/λ

≤
d∑

s=1

θ
1/λ
s (z1, . . . , zs−1, zs , ws+1, . . . , wd ) ,

which holds for all choices of w.
Since inminimizing e2n,d(z

∗
1, . . . , z

∗
s−1, zs, z

0
s+1, . . . , z

0
d)we are in factminimizing

θs(z∗
1, . . . , z

∗
s−1, zs, z

0
s+1, . . . , z

0
d) we now use the standard reasoning that the best

choice zs = z∗
s makes θs at least as small as the average over all choices, and the

same reasoning holds if we raise θs to the power 1/λ. Therefore we obtain

θ1/λ
s (z∗

1, . . . , z
∗
s−1, z

∗
s , z

0
s+1, . . . , z

0
d) ≤ 1

n

∑
zs∈Zn

θ1/λ
s (z∗

1, . . . , z
∗
s−1, zs, z

0
s+1, . . . , z

0
d)

≤
∑

s∈u⊆{1:d}
γ 1/λ
u

1

n

∑
zs∈Zn

∑
hu∈L⊥

u( z̄u,n)

r−1/λ
α (hu) ≤ 2

n

∑
s∈u⊆{1:d}

γ 1/λ
u

∑
hu∈Zu

r−1/λ
α (hu) ,

where we used Jensen’s inequality to obtain the second line (and where z̄u means
we take z̄ = (z∗

1,…,z∗
s−1, zs, z

0
s+1, . . . , z

d
s+1)) and Lemma 1, relabeling the set u to be

{1, . . . , |u|}, d = |u|, and with r(h) = |h|2α/λ and c = 2α/λ ≥ 1, to obtain the last
line. For convenience we define

μα,λ =
∑

0 �=h∈Z
r−1/λ
α (h) = 2

∞∑
h=1

h−2α/λ = 2ζ(2α/λ) < ∞

from which it follows that 2α/λ > 1 and we thus need λ < 2α. Since for hu ∈ Zu

we have r−1/λ
α (hu) = ∏

j∈u r
−1/λ
α (h j ) we find

∑
hu∈Zu

r−1/λ
α (hu) = μ

|u|
α,λ.

In each step of the SCS algorithm we now have a bound on θ
1/λ
s which we insert

in our bound for the worst-case error, each time choosing the components of z0 for
w, to obtain
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(
e2n,d(z

∗)
)1/λ ≤

d∑
s=1

θ1/λ
s (z∗

1, . . . , z
∗
s , z

0
s+1, . . . , z

0
d) ≤ 2

n

d∑
s=1

∑
s∈u⊆{1:d}

γ 1/λ
u μ

|u|
α,λ

= 2

n

d∑
s=1

⎛
⎝ ∑

u⊆{1:d}\{s}
γ 1/λ
u μ

|u|
α,λ

⎞
⎠ (

γ 1/λ
s μα,λ

)

≤ 2

n

(
d∑

s=1

γ 1/λ
s

)
μα,λ max

s=1,...,d

⎛
⎝ ∑

u⊆{1:d}\{s}
γ 1/λ
u μ

|u|
α,λ

⎞
⎠

= 2

n

(
d∑

s=1

γ 1/λ
s

)
μα,λ max

s=1,...,d

⎛
⎝ d∏

s �= j=1

(
1 + γ

1/λ
j μα,λ

)⎞
⎠

= 2

n

(
d∑

s=1

γ 1/λ
s

)
μα,λ max

s=1,...,d

⎛
⎝

∏d
j=1

(
1 + γ

1/λ
j μα,λ

)

1 + γ
1/λ
s μα,λ

⎞
⎠

= 2

n

(
d∑

s=1

γ 1/λ
s

)
d∏
j=1

(
1 + γ

1/λ
j μα,λ

)
μα,λ max

s=1,...,d

(
1 + γ 1/λ

s μα,λ

)−1
.

To show that the summability condition
∑∞

j=1 γ
1/λ
j < ∞ gives a bound indepen-

dent of d we note that

d∏
j=1

(
1 + γ

1/λ
j μα,λ

)
< ∞ if and only if log

⎛
⎝ d∏

j=1

(
1 + γ

1/λ
j μα,λ

)⎞
⎠ < ∞ .

Now using that log(1 + x) ≤ x for x > −1, we find that

log

⎛
⎝ d∏

j=1

(
1 + γ

1/λ
j μα,λ

)⎞
⎠ =

d∑
j=1

log
(
1 + γ

1/λ
j μα,λ

)
≤ μα,λ

d∑
j=1

γ
1/λ
j ≤ μα,λ

∞∑
j=1

γ
1/λ
j ,

which implies the result.

3.2 The Weighted Sobolev Space

Again, let γ = {γ j } and β = {β j } be twoweight sequences. There is a close relation-
ship between the weighted Korobov space with smoothness parameter α = 1 and the
shift-averaged weighted Sobolev space. The shift-invariant kernel of the weighted
Sobolev space with anchor a = (a1, . . . , ad) of d-variate functions is given by
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K ∗
d,γ ,β(x, y) =

d∏
j=1

⎛
⎝β̂ j + γ̂ j

∞∑
0 �=h=−∞

e2π i h(x j−y j )

|h|2

⎞
⎠ ,

where β̂ j = β j + γ j

(
a2j − a j + 1

3

)
and γ̂ j = γ j

2π2 for anchor values a j . Further-

more, for c j = a2j − a j + 1
3 the shift-averaged squared worst-case error ê

2
n,d(z) with

generating vector z takes the following form

ê2n,d(z) = −
d∏
j=1

(
β j + γ j c j

) + 1

n

n−1∑
k=0

d∏
j=1

(
β j + γ j

[
B2

({
k z j
n

})
+ c j

])

= −
d∏
j=1

β̂ j + 1

n

n−1∑
k=0

d∏
j=1

⎛
⎝β̂ j + γ̂ j

∞∑
0 �=h=−∞

e2π i khz j/n

h2

⎞
⎠ .

Additionally, the initial worst-case error in the weighted Sobolev space is given by

ê0,d(0, Kd,γ ,β) =
d∏
j=1

β̂
1/2
j =

d∏
j=1

(
β j + γ j

(
a2j − a j + 1

3

))1/2

.

Since these are precisely the worst-case error expressions as for the weighted
Korobov space with α = 1 and weights β̂ j and γ̂ j , we obtain similar error bounds as
before.

Theorem 3 Let n be a prime number and z0 = (z01, . . . , z
0
d) ∈ Z

d
n be an arbitrary

initial vector. Furthermore, denote by z∗ = (z∗
1, . . . , z

∗
d) ∈ Z

d
n the generating vector

constructed by the successive coordinate search method with initial vector z0. Then
the squared worst-case error ê2n,d(z

∗) in the shift-averaged (anchored) Sobolev space
with kernel K ∗

d,γ ,β satisfies

ê2n,d(z
∗) ≤ Ĉd,λ n

−λ for all 1 ≤ λ < 2 ,

where the constant Ĉd,λ is given by the expression for Cd,λ from Theorem 2 with

α = 1 and weights β̂ j = β j + γ j

(
a2j − a j + 1

3

)
and γ̂ j = γ j

2π2 .

Additionally, if the weights satisfies the summability condition

∞∑
j=1

γ̂
1/λ
j

β̂
1/λ
j

< ∞

then Ĉd,λ ≤ Ĉλ < ∞, and the constant Cλ is bounded independent of the dimen-
sion d. Hence, the worst-case error ên,d(z∗) can be taken arbitrarily close to O(n−1),
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with the implied constant independent of n, and independent of d if the summability
condition holds.

Proof The theorem follows directly from the previous result in Theorem 2. �	

4 Numerical Results and Experiments

The idea regarding the SCS algorithm is to obtain generating vectors with smaller
error values than obtained by theCBCalgorithm, providedwe choose a suitable initial
vector z0 ∈ Z

d
n . The formulation of the algorithm suggests that the performance of

the SCS construction strongly depends on the starting vector z0 which we select
beforehand. In this section we conduct some numerical experiments in the same
setting as for the CBC algorithm in order to assess the performance of the SCS
algorithm. For the experiments we prefer to have n distinct points in each dimension
and so restrict our generating vector choices to exclude the choice zs = 0 for the
components of z for prime n, i.e., z ∈ {1, . . . , n − 1}d . Allowing the choice zs = 0
has effect on the results which depend on the weights since the CBC algorithm can
now pick a zero component when the weights γ j decay too slow.

4.1 Construction Methods

As we do not know how to best choose the initial vectors for the SCS algorithm,
we propose to start from randomly selected initial vectors. This is different from the
randomized CBC construction, see, e.g., [7], where in each minimization step the
number of possible candidates zs is restricted to r random integers in {1, . . . , n − 1}.
We consider the following two methods.

1. Uniform random vectors + SCS algorithm: Choose q initial vectors z0 ∈ Z
d
n

at random, apply the fast SCS algorithm to them and then select the one with the
smallest worst-case error en,d(z).

2. Korobov-type generating vector + SCS algorithm: Take q randomly cho-
senKorobov-type generating vectors z0 = z(a) ≡ (a0, a1, . . . , ad−1) (mod n),with
a ∈ {1, . . . , n − 1}, as initial vectors, apply the fast SCS algorithm to them and then
select the one with the smallest worst-case error en,d(z).

As the successive coordinate search algorithm has time complexity O(d n log(n)),
both proposed construction methods have time complexity O(q d n log(n)).

Remark 2 The obvious candidate for the initial vector z0 would of course be the
generating vector constructed by the CBC method since by Proposition1 one would
construct z1 such that en,d(z1) ≤ en,d(z0). However, experiments show that in most
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cases the CBC vector is a fixed point with respect to the SCS method, i.e., applying
the SCS algorithm to the CBC vector z0 leaves the coordinates of z0 unchanged.
Thus, this approach yields usually no further improvement.

4.2 Exhaustive Search in Low Dimensions

In order to test the effectivity of our method we perform some numerical experiments
in low dimensions and for a low number of points. Here, we can compute the best
generating vector for the respective function space via an exhaustive search over the
full set Zd

n and then compare its worst-case error to the error values of the generating
vectors obtained by our method.

For the weighted unanchored Sobolev space the squared worst-case error is given by

e2n,d(z) = −
d∏
j=1

β j + 1

n

n−1∑
k=0

d∏
j=1

(
β j + γ j B2

({
k z j
n

}))
,

where B2(x) = x2 − x + 1
6 denotes the Bernoulli polynomial of degree 2. Further-

more, zfull denotes the generating vector obtained by the full exhaustive search,
zcbc denotes the generating vector obtained via the CBC construction and z∗

rand and
z∗
kor are the best generating vectors obtained out of q = 100 initial random choices
by the above construction methods 1 and 2, respectively. For two different weight
sequences γ j and a selection of prime n we obtain the results in Tables1 and 2,
where γ j = (0.95) j and γ j = (0.7) j , respectively. To be able to find the global min-
imum zfull over the whole set we limited the dimensionality to d = 5 and the number
of points to n ≤ 199. This leads to exhaustive searches over about 6 to 96 million
possible choices for z, where we used the symmetry of the kernel and the fact that
we only need to consider generating vectors with z1 = 1 since multiplication by the
multiplicative inverse of the first component normalizes any generating vector to
have z1 = 1.

Table 1 Weighted unanchored Sobolev space: d = 5, β j = 1, γ j = (0.95) j , q = 100

n en,d (z∗kor) en,d (z∗rand) en,d (zcbc) en,d (zfull)

101 2.6003e-02 2.6000e-02 2.6022e-02 2.6000e-02

127 2.1794e-02 2.1834e-02 2.2180e-02 2.1751e-02

151 1.8886e-02 1.8893e-02 1.9175e-02 1.8843e-02

181 1.5963e-02 1.5937e-02 1.6453e-02 1.5928e-02

199 1.4813e-02 1.4808e-02 1.5368e-02 1.4802e-02
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Table 2 Weighted unanchored Sobolev space: d = 5, β j = 1, γ j = (0.7) j , q = 100

n en,d (z∗kor) en,d (z∗rand) en,d (zcbc) en,d (zfull)

101 1.0721e-02 1.0695e-02 1.0878e-02 1.0695e-02

127 8.7079e-03 8.6296e-03 8.6700e-03 8.6275e-03

151 7.4913e-03 7.4913e-03 7.5295e-03 7.4913e-03

181 6.2679e-03 6.2594e-03 6.3898e-03 6.2421e-03

199 5.7456e-03 5.7682e-03 5.8758e-03 5.7352e-03

The results in Tables 1 and 2 show that, even for a moderate value of q, the
randomized SCS method generates lattice rules which have a smaller worst-case
error than the one obtained via the CBC construction. Additionally, we see that our
method generates worst-case errors that lie in the region of the smallest worst-case
error en,d(zfull) and sometimes even constructs the best possible lattice rule. Although
we only show two small tables here, similar results were observed for other test
cases as well. In particular, we considered weight sequences of the form γ j = q j

with 0 < q < 1 and γ j = j−k with k ∈ {2, 3, 4}, for additional results see [2]. The
experiments showed that the SCS algorithm outperforms the CBC construction when
the decay of the weight sequence γ j is slow.

4.3 Numerical Experiments for Higher Dimensions

In higher dimensions and/or for higher number of points it is not possible to perform
an exhaustive search in order to obtain a reference value to measure the quality
of the constructed generating vectors. Thus, we compare the outcome of the SCS
method with the generating vector constructed by the CBC algorithm. Additionally,
the empirical numerical results suggested that the use of Korobov-type initial vectors
is to be preferred over uniform random vectors and we will therefore only consider
Korobov-type initial vectors in this section. We denote by en,d(zkor) the average over
the q random choices of the worst-case errors of the SCS constructed vectors zkor
and with en,d(z∗

kor) the best over the q random choices.
The numerical results presented in Tables3 and 4 are for a Korobov space with

dimension d = 100, α = 1 and two different choices of weights, being β j = 2
3 and

γ j = 2
3 (0.95)

j , and β j = 1 and γ j = (0.7) j , respectively, both with q = 100 ran-
dom initial Korobov-type vectors. Our experiments show that the SCS method can
construct good lattice rules for high dimensions and large n. For our choice of param-
eters, the SCS algorithm performsmoderately better than theCBC constructionwhen
the weight sequence γ = {γ j }dj=1 is slowly decaying, as can be seen by comparing
the relative difference between en,d(z∗

kor) and en,d(zcbc) for the two different weight
sequences in Tables3 and 4. For a more extensive analysis of this behaviour we refer
again to [2] where a wider range of weight sequences is considered.
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Table 3 Weighted Korobov space: d = 100, α = 1, β j = 2
3 , γ j = 2

3 (0.95) j , q = 100

n en,d (zkor) en,d (z∗kor) en,d (zcbc)

1009 1.6554e-02 1.6221e-02 1.6566e-02

2003 1.1759e-02 1.1474e-02 1.1719e-02

4001 8.3025e-03 8.1204e-03 8.2869e-03

8009 5.8655e-03 5.7730e-03 5.8500e-03

32003 2.9320e-03 2.8874e-03 2.9301e-03

Table 4 Weighted Korobov space: d = 100, α = 1, β j = 1, γ j = (0.7) j , q = 100

n en,d (zkor) en,d (z∗kor) en,d (zcbc)

1009 3.1185e-01 3.0834e-01 3.0931e-01

2003 2.0902e-01 2.0661e-01 2.0708e-01

4001 1.3894e-01 1.3713e-01 1.3658e-01

8009 9.1757e-02 9.0445e-02 8.9611e-02

32003 3.9467e-02 3.8763e-02 3.8528e-02

Fig. 1 Numerical results of
the SCS method in the
weighted Korobov space
with d = 100, α = 1,
β j = 2

3 , γ j = 2
3 (0.95) j

where n = 4001 and
q = 300 in comparison to
the CBC algorithm
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Figure1 illustrates the performance of the SCS method compared to the CBC
method. The blue dots represent the worst-case error values of lattice rules with
n = 4001 points constructed by the SCS method with q = 300 Korobov-type initial
vectors. The minimal error amongst the constructed lattice rules and the average
over the q random seed choices is indicated by the red or black line, respectively.
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The error corresponding to the CBC method is indicated by the green line. From
the figure it becomes evident that the CBC algorithm outperforms the average of the
SCS algorithm applied to randomly selected Korobov-type rules, but the best SCS
results clearly win over the generating vector constructed by the CBC method.

5 Conclusion

The results and experiments in the previous section, see [2] for additional results,
showed that it is possible to use the successive coordinate search algorithm to con-
struct good generating vectors for rank-1 lattice rules. They also confirmed that
randomized methods based on the SCS construction can provide generating vectors
with smaller worst-case errors than the CBC vector. However, the computational
cost of the SCS method can be several times higher while the gained improvement
depends on the weight sequence γ . Future research could help to find a selection
criterion for the starting vector z0 in order to reduce the construction cost of the
SCS algorithm. The SCS algorithm should further be regarded as a generalization
of the existing component-by-component construction rather than a completely new
algorithm. Due to the formulation of the successive coordinate search method it
can also be used to improve existing lattice rules. Numerical experiments show that
the improvements of the SCS method are higher when the decay of the weights
γ = {γ j }dj=1 is slow.
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Adaptive Euler–Maruyama Method
for SDEs with Non-globally Lipschitz
Drift

Wei Fang and Michael B. Giles

Abstract This paper, based on two main papers Fang and Giles (Adaptive Euler–
Maruyama method for SDEs with non-globally Lipschitz drift: Part I, finite time
interval, 2016, [2]), Fang and Giles (Adaptive Euler–Maruyama method for SDEs
with non-globally Lipschitz drift: Part II, infinite time interval, 2017, [3]) which
contains the full details of the literature review, numerical analysis and numerical
experiments, aims to give an overview of the adaptive Euler–Maruyama method for
SDEs with non-globally Lipschitz drift in a concise structure without any proof. It
shows that if the timestep is bounded appropriately, then over a finite time interval
the numerical approximation is stable, and the expected number of timesteps is finite.
Furthermore, the order of strong convergence is the same as usual, i.e. order 1

2 for
SDEswith a non-uniformgloballyLipschitz volatility, andorder 1 forLangevinSDEs
with unit volatility and a drift with sufficient smoothness. For a class of ergodic SDEs,
we also show that the bound for the moments and the strong error of the numerical
solution are uniform in T,which allow us to introduce the adaptive multilevel Monte
Carlo method to compute the expectations with respect to the invariant measure. The
analysis is supported by numerical experiments.

Keywords SDE · Euler–Maruyama · Strong convergence · Adaptive
timestep · Ergodicity · MLMC

1 Introduction

In this paper we consider an m-dimensional stochastic differential equation (SDE)
driven by a d-dimensional Brownian motion:
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dXt = f (Xt ) dt + g(Xt) dWt , (1)

with a fixed initial value x0. The standard theory assumes the drift f : Rm →R
m and

the volatility g : Rm →R
m×d are both globally Lipschitz. Under this assumption,

there is well-established theory on the existence and uniqueness of strong solutions,
and the numerical approximation ̂Xt obtained from the Euler–Maruyama discretiza-
tion

̂X(n+1)h = ̂Xnh + f (̂Xnh) h + g(̂Xnh)ΔWn

using a uniform timestep of size h with Brownian increments ΔWn , plus a suitable
interpolation within each timestep, is known [16] to have a strong error which is
O(h1/2) so that for any T, p > 0,

E

[

sup
0≤t≤T

‖̂Xt−Xt‖p

]

= O(h p/2).

The interest in this paper is in other cases in which g is again globally Lipschitz,
but f is only locally Lipschitz. If, for some α, β ≥ 0, f also satisfies the one-sided
growth condition

〈x, f (x)〉 ≤ α‖x‖2 + β,

where 〈·, ·〉 denotes an inner product, then it is again possible to prove the existence
and uniqueness of strong solutions (see Theorems 2.3.5 and 2.4.1 in [20]). Further-
more (see Lemma 3.2 in [10]), these solutions are stable in the sense that for any
T, p > 0, E

[

sup0≤t≤T ‖Xt‖p
]

< ∞. The problem is that the numerical approxima-
tion given by the uniform timestep Euler–Maruyama discretizationmay not be stable.
Indeed, for the SDE

dXt = −X3
t dt + dWt , (2)

it has been proved [13] that for any T >0 and p≥2, limh→0 E
[‖̂XT ‖p

] = ∞.

This behaviour has led to research on numerical methods which achieve strong
convergence for these SDEs with a non-globally Lipschitz drift, see [2, 10, 12, 14,
21, 22, 26, 32] and the references therein.

The othermotivation for this paper is the analysis of a class of ergodic SDEswhich
exponentially converge to some invariant measure π, for example, the FENE model
in [1]. Evaluating the expectation of some function ϕ(x) with respect to that invari-
ant measure π is of great interest in mathematical biology, physics and Bayesian
inference in statistics:

π(ϕ) �
∫

ϕ(x) dπ(x) = lim
t→∞E [ϕ(Xt )] ,

which drives us to consider the stability and strong convergence of the algorithm in
the infinite time interval. Different approaches to computing the expectation include
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numerical solution of the Fokker–Planck equation, see [30] and the reference therein,
and ergodic numerical solutions, see [9, 19, 23, 25, 27, 29, 31]. We assume that the
SDEs have a locally Lipschitz drift f : Rm →R

m satisfying the dissipative condition:
for some α, β > 0,

〈x, f (x)〉 ≤ −α‖x‖2 + β, (3)

and a bounded and non-degenerate volatility g : Rm →R
m×d .

In this paper, we propose instead to use the standard explicit Euler–Maruyama
method, but with an adaptive timestep hn which is a function of the current approxi-
mate solution ̂Xtn . Adaptive timesteps have been used in previous research to improve
the accuracy of numerical approximations, see [4, 11, 15, 17–19, 24, 28] and the
references therein. The idea of using an adaptive timestep in this paper comes from
considering the divergence of the uniform timestep method for the SDE (2). When
there is no noise, the requirement for the explicit Euler approximation of the corre-
sponding ODE to have a stable monotonic decay is that its timestep satisfies h< ̂X−2

tn .
An intuitive explanation for the instability of the uniform timestep Euler–Maruyama
approximation of the SDE is that there is always a very small probability of a large
Brownian increment ΔWn which pushes the approximation ̂Xtn+1 into the region
h>2 ̂X−2

tn+1
leading to an oscillatory super-exponential growth. Using an adaptive

timestep avoids this problem.
For the ergodic SDEs, by setting a suitable condition for h, we can show that,

instead of an exponential bound, the numerical solution has a uniform bound with
respect to T for both moments and the strong error. Then, multi-level Monte Carlo
(MLMC) methodology [5, 6] is employed and non-nested timestepping is used to
construct an adaptive MLMC [7]. Following the idea of Glynn and Rhee [8] to
estimate the invariant measure of some Markov chains, we introduce an adaptive
MLMC algorithm for the infinite time interval, in which each level � has a different
time interval length T�, to achieve a better computational performance.

The rest of the paper is organized as follows. The adaptive algorithm is presented
and the main theorems both in finite time interval and infinite time interval are
stated in Sect. 2. Section3 introduces theMLMCschemes, and the relevant numerical
experiments are provided in Sect. 4. Finally, Sect. 5 concludes.

In this paper we consider both the finite time interval [0, T ] with T >0 be a
fixed positive real number and the infinite time interval [0,∞). Let (�,F ,P) be
a probability space with normal filtration (Ft )t∈[0,∞) for Sect. 2 and (Ft )t∈(−∞,0]
for Sect. 3 corresponding to a d-dimensional standard Brownian motion Wt =
(W (1),W (2), . . . ,W (d))Tt . We denote the vector norm by ‖v‖ � (|v1|2 + |v2|2 +
· · · + |vm |2) 1

2 , the inner product of vectors v andw by 〈v,w〉 � v1w1 + v2w2 + · · · +
vmwm , for any v,w ∈ R

m and the Frobenius matrix norm by ‖A‖ �
√

∑

i, j A
2
i, j for

all A ∈ R
m×d .



220 W. Feng and M. B. Giles

2 Adaptive Algorithm and Theoretical Results

2.1 Adaptive Euler–Maruyama Method

The adaptive Euler–Maruyama discretization is

tn+1 = tn + hn, ̂Xtn+1 = ̂Xtn + f (̂Xtn ) hn + g(̂Xtn )ΔWn,

where hn � h(̂Xtn ) and ΔWn � Wtn+1 −Wtn , and there is fixed initial data t0=
0, ̂X0= x0.

One key point in the analysis is to prove that tn increases without bound as n
increases. More specifically, the analysis proves that for any T >0, almost surely for
each path there is an N such that tN ≥T .

We use the notation t � max{tn : tn ≤ t}, nt � max{n : tn ≤ t} for the nearest time
point before time t , and its index.

We define the piecewise constant interpolant process X̄t = ̂Xt and also define the
standard continuous interpolant [16] as

̂Xt = ̂Xt + f (̂Xt )(t−t) + g(̂Xt)(Wt−Wt ),

so that ̂Xt is the solution of the SDE

d̂Xt = f (̂Xt ) dt + g(̂Xt) dWt = f (X̄t ) dt + g(X̄t ) dWt . (4)

In the following two subsections, we state the key results on stability and strong
convergence in bothfinite and infinite time intervals, and related results on the number
of timesteps, introducing various assumptions as required for each. All the proofs
are in [2, 3].

2.2 Finite Time Interval

2.2.1 Stability

Assumption 1 (Local Lipschitz and linear growth) f and g are both locally Lips-
chitz, so that for any R>0 there is a constant CR such that

‖ f (x)− f (y)‖ + ‖g(x)−g(y)‖ ≤ CR ‖x−y‖

for all x, y ∈ R
m with ‖x‖, ‖y‖ ≤ R. Furthermore, there exist constants α, β ≥ 0

such that for all x ∈ R
m , f satisfies the one-sided linear growth condition:

〈x, f (x)〉 ≤ α‖x‖2 + β, (5)
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and g satisfies the linear growth condition:

‖g(x)‖2 ≤ α‖x‖2 + β. (6)

Together, (5) and (6) imply the monotone condition 〈x, f (x)〉 + 1
2‖g(x)‖2 ≤

3
2 (α‖x‖2+β), which is a key assumption in the analysis of Mao and Szpruch [22]
and Mao [21] for SDEs with volatilities which are not globally Lipschitz. However,
in our analysis we choose to use this slightly stronger assumption, which provides
the basis for the following lemma on the stability of the SDE solution.

Lemma 1 (SDE stability) If the SDE satisfies Assumption 1, then for all p>0

E

[

sup
0≤t≤T

‖Xt‖p

]

< ∞.

We now specify the critical assumption about the adaptive timestep.

Assumption 2 (Adaptive timestep) The adaptive timestep function h : Rm → R
+

is continuous and strictly positive, and there exist constants α, β > 0 such that for
all x ∈ R

m , h(x) satisfies the inequality

〈x, f (x)〉 + 1
2 h(x) ‖ f (x)‖2 ≤ α‖x‖2 + β. (7)

Note that if another timestep function hδ(x) is smaller than h(x), then hδ(x) also
satisfies the Assumption 2. Note also that the form of (7), which is motivated by the
requirements of the proof of the next theorem, is very similar to (5). Indeed, if (7) is
satisfied then (5) is also true for the same values of α and β.

Theorem 1 (Finite time stability) If the SDEsatisfiesAssumption 1, and the timestep
function h satisfies Assumption2, then T is almost surely attainable (i.e. for ω ∈ �,
P(∃N (ω) < ∞ s.t. tN (ω) ≥T ) = 1) and for all p>0 there exists a constant Cp,T

which depends solely on p, T and the constants α, β in Assumption 2, such that

E

[

sup
0≤t≤T

‖̂Xt‖p

]

< Cp,T .

2.2.2 Strong Convergence

Standard strong convergence analysis for an approximation with a uniform timestep
h considers the limit h→0. This clearly needs to bemodified when using an adaptive
timestep, andwewill instead consider a timestep function hδ(x) controlled by a scalar
parameter 0<δ≤1, and consider the limit δ→0.

Given a timestep function h(x) which satisfies Assumption 2, ensuring stability
as analysed in the previous section, there are two quite natural ways in which we
might introduce δ to define hδ(x):
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hδ(x) = δ min(T, h(x)), hδ(x) = min(δ T, h(x)).

The first refines the timestep everywhere, while the latter concentrates the compu-
tational effort on reducing the maximum timestep, with h(x) introduced to ensure
stability when ‖̂Xt‖ is large.

In our analysis, we will cover both possibilities by making the following assump-
tion.

Assumption 3 The timestep function hδ , satisfies the inequality

δ min(T, h(x)) ≤ hδ(x) ≤ min(δ T, h(x)), (8)

and h satisfies Assumption2.

Given this assumption, we obtain the following theorem:

Theorem 2 (Strong convergence) If the SDE satisfies Assumption1, and the
timestep function hδ satisfies Assumption3, then for all p>0

lim
δ→0

E

[

sup
0≤t≤T

‖̂Xt−Xt‖p

]

= 0.

To prove an order of strong convergence requires new assumptions on f and g:

Assumption 4 (Lipschitz properties) There exists a constant α>0 such that for all
x, y ∈ R

m , f satisfies the one-sided Lipschitz condition:

〈x−y, f (x)− f (y)〉 ≤ 1
2α‖x−y‖2, (9)

and g satisfies the Lipschitz condition:

‖g(x)−g(y)‖2 ≤ 1
2α‖x−y‖2. (10)

In addition, f satisfies the polynomial growth Lipschitz condition

‖ f (x)− f (y)‖ ≤ (

γ (‖x‖q+‖y‖q) + μ
) ‖x−y‖, (11)

for some γ, μ, q > 0.

Note that setting y=0 gives

〈x, f (x)〉 ≤ 1
2α‖x‖2 + 〈x, f (0)〉 ≤ α‖x‖2 + 1

2α
−1‖ f (0)‖2,

‖g(x)‖2 ≤ 2‖g(x)−g(0)‖2 + 2‖g(0)‖2 ≤ α‖x‖2 + 2‖g(0)‖2.

Hence, Assumption4 implies Assumption 1, with the same α and an appropriate β.
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Theorem 3 (Strong convergence order) If the SDE satisfies Assumption 4, and the
timestep function hδ satisfies Assumption3, then for all p>0 there exists a constant
Cp,T such that

E

[

sup
0≤t≤T

‖̂Xt−Xt‖p

]

≤ Cp,T δ p/2.

To bound the expected number of timesteps, we require an assumption on how
quickly h(x) can approach zero as ‖x‖ → ∞.

Assumption 5 (Timestep lower bound) There exist constants ξ, ζ, q>0, such that
the adaptive timestep function satisfies the inequality

h(x) ≥ (

ξ‖x‖q + ζ
)−1

.

Lemma 2 (Number of timesteps) If the SDE satisfies Assumption 1, and the
timestep function hδ(x) satisfies Assumption3, with h(x) satisfying Assumptions 2
and Assumption 5, then for all p>0 there exists a constant cp,T such that

E
[

(NT − 1)p
] ≤ cp,T δ−p.

where NT is again the number of timesteps required by a path approximation.

The conclusion from Theorem 3 and Lemma 2 is that

E

[

sup
0≤t≤T

‖̂Xt−Xt‖p

]1/p

≤ C1/p
p,T c1/21,T (E [NT ])

−1/2,

which corresponds to order 1
2 strong convergence when comparing the accuracy to

the expected cost.
First order strong convergence is achievable for Langevin SDEs in which m=d

and g is the identity matrix Im , but this requires stronger assumptions on the drift f .

Assumption 6 (Enhanced Lipschitz properties) f satisfies the Assumption 4 and in
addition, f is differentiable, and f and ∇ f satisfy the polynomial growth Lipschitz
condition

‖ f (x)− f (y)‖ + ‖∇ f (x)−∇ f (y)‖ ≤ (

γ (‖x‖q+‖y‖q) + μ
) ‖x−y‖, (12)

for some γ, μ, q > 0.

We now state the theorem on improved strong convergence.

Theorem 4 (Strong convergence for Langevin SDEs) If m=d, g ≡ Im, f satisfies
Assumption 6, and the timestep function hδ satisfies Assumption3, then for all T, p ∈
(0,∞) there exists a constant Cp,T such that
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E

[

sup
0≤t≤T

‖̂Xt−Xt‖p

]

≤ Cp,T δ p.

Comment: first order strong convergence can also be achieved for a general g(x)by
using an adaptive timestepMilstein discretization, provided∇g satisfies an additional
Lipschitz condition. However, this numerical approach is only practical in cases in
which the commutativity condition is satisfied and therefore there is no need to
simulate the Lévy areas which the Milstein method otherwise requires [16].

2.3 Infinite Time Interval

Now, we focus on a class of ergodic SDEs and show that the moment bounds and
strong error bound is uniform in T which is a stronger result than for the finite time
interval.

2.3.1 Stability

Assumption 7 (Dissipative condition) f and g satisfy the Assumption 1 and there
exist constants α, β > 0 such that for all x ∈ R

m , f satisfies the dissipative one-sided
linear growth condition:

〈x, f (x)〉 ≤ −α‖x‖2 + β, (13)

and g is globally bounded and non-degenerate:

‖g(x)‖2 ≤ β. (14)

Theorem 4.4 in [23] and Theorem 6.1 in [25] show that this Assumption ensures
the existence and uniqueness of the invariant measure. We can also prove the follow-
ing uniform moment bound for the SDE solution.

Lemma 3 (SDE stability in infinite time interval) If the SDE satisfies Assumption 7
with X0 = x0, then for all p ∈ (0,∞), there is a constant Cp which only depends
on x0 and p such that, ∀ t ≥ 0,

E
[‖Xt‖p

] ≤ Cp.

We now specify the critical assumption about the adaptive timestep for infinite
time interval.

Assumption 8 (Adaptive timestep for infinite time interval) The adaptive timestep
function h : Rm → (0, hmax ] is continuous and bounded, with 0 < hmax < ∞, and
there exist constants α, β > 0 such that for all x ∈ R

m , h satisfies the inequality
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〈x, f (x)〉 + 1
2 h(x) ‖ f (x)‖2 ≤ −α‖x‖2 + β. (15)

Note that if another timestep function hδ(x) is smaller than h(x), then hδ(x) also
satisfies this Assumption. Note also that the form of (15), which is motivated by the
requirements of the proof of the next theorem, is very similar to (7). Indeed, if (15)
is satisfied then (7) is also true for the same values of α and β. Compared with the
condition in the finite time analysis, we need additionally to bound h properly to
achieve the uniform bound.

Theorem 5 (Stability in infinite interval) If the SDE satisfies Assumption 7, and the
timestep function h satisfies Assumption8, then for all p ∈ (0,∞) there exists a con-
stant Cp which depends solely on p, x0, hmax and the constants α, β in Assumption8
such that, ∀t ≥ 0,

E
[‖̂Xt‖p

]

< Cp, E
[‖X̄t‖p

]

< Cp.

2.3.2 Strong Convergence

To prove an order of strong convergence requires new assumptions on f and g:

Assumption 9 (Contractive Lipschitz properties) f and g satisfyAssumption 4 and
for some fixed p∗ ∈ (1,∞), there exist constants λ>0 such that for all x, y ∈ R

m ,
f and g satisfy the contractive Lipschitz condition:

〈x−y, f (x)− f (y)〉+ p∗ − 1

2
‖g(x)−g(y)‖2≤ −λ ‖x−y‖2, (16)

Note that this Assumption ensures that two solutions to this SDE starting from
different places but driven by the same Brownian increment, will come together
exponentially, as shown in the following lemma.

Lemma 4 (SDE contractivity) If the SDE satisfies Assumption 9 and for some fixed
p∗ ∈ (1,∞), then for p ∈ (0, p∗] any two solutions to the SDE: Xt and Yt , driven
by the same Brownian motion but starting from x0 and y0, where x0 �= y0, satisfy
that, ∀ t > 0,

E
[‖Xt − Yt‖p

] ≤ e−λpt
E

[‖X0 − Y0‖p
]

.

This lemmameans the error made on previous time steps will decay exponentially
and then we can prove a uniform bound for the strong error.

Theorem 6 (Strong convergence order in infinite time interval) If the SDE satisfies
Assumption 9, and the timestep function hδ satisfies Assumption3 with h satisfying
Assumption8, then for all p ∈ (0, p∗] there exists a constant Cp such that, ∀t ≥ 0,

E
[ ‖̂Xt−Xt‖p

] ≤ Cp δ p/2.
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For the infinite time interval, we can show that the expected number of timesteps
per path is linear in T, which is the same as for uniform timesteps.

Lemma 5 (Number of timesteps) If the SDE satisfiesAssumption 9, and the timestep
function hδ satisfies Assumption3, with h(x) satisfying Assumption5 and Assump-
tion 8, then for all T, p ∈ (0,∞) there exists a constant cp such that

E
[

(NT − 1)p
] ≤ cp T

p δ−p.

where NT is again the number of timesteps required by a path approximation.

First order strong convergence is also achievable for Langevin SDEs in which
m=d and g is the identity matrix Im , but this requires stronger assumptions on the
drift f .

Assumption 10 (Enhanced contractive Lipschitz properties) f satisfies Assump-
tion 9 and in addition, f is differentiable, and f and ∇ f satisfy the polynomial
growth Lipschitz condition (12).

Theorem 7 (Strong convergence for Langevin SDEs in infinite time interval) If
m=d, g ≡ Im, f satisfies Assumption10, and the timestep function hδ satisfies
Assumptions 3 and 8, then for all p ∈ (0,∞) there exists a constant Cp such that,
∀ t ≥ 0,

E
[‖̂Xt−Xt‖p

] ≤ Cp δ p.

3 Multi-level Monte Carlo in Infinite Time Interval

We are interested in the problem of approximating:

π(ϕ) := Eπϕ =
∫

Rm

ϕ(x)π(dx), ϕ ∈ L1(π),

where π is the invariant measure of the SDE (1). Numerically, we can approximate
this quantity by simulating E [ϕ(XT )] for a sufficiently large T . In the following
subsections, we will introduce our adaptive multilevel Monte Carlo algorithm and
its numerical analysis.

3.1 Algorithm

To estimate E [ϕ(XT )] , the simplest Monte Carlo estimator is

1

N

N
∑

n=1

ϕ(̂X (n)
T ),
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where ̂X (n)
T is the terminal value of the nth numerical path in the time interval

[0, T ] using a suitable adaptive function hδ. It can be extended to Multilevel Monte
Carlo by using non-nested timesteps [7]. Consider the identity

E [ϕL ] = E [ϕ0] +
L

∑

�=1

E
[

ϕ� − ϕ�−1
]

, (17)

where ϕ� := ϕ(̂X �
T )with ̂X �

T being the numerical estimator of XT ,which uses adap-
tive function hδ with δ = M−� for some positive integer M > 1. Then the standard
MLMC estimator is the following telescoping sum:

1

N0

N0
∑

n=1

ϕ(̂X (n,0)
T ) +

L
∑

�=1

{

1

N�

N�
∑

n=1

(

ϕ(̂X (n,�)
T ) − ϕ(̂X (n,�−1)

T )
)

}

,

where ̂X (n,�)
T is the terminal value of the nth numerical path in the time interval [0, T ]

using a suitable adaptive function hδ with δ = M−�.

Unlike the standard MLMC with fixed time interval [0, T ], we now allow differ-
ent levels to have a different length of time interval T�, satisfying 0 < T0 < T1 <

· · · < T� < · · · < TL = T, which means that as level � increases, we obtain a better
approximation not only by using smaller timesteps but also by simulating a longer
time interval. However, the difficulty is how to construct a good coupling on each
level � since the fine path and coarse path have different lengths of time interval T�

and T�−1.

Following the idea ofGlynn andRhee [8] to estimate the invariantmeasure of some
Markov chains, we perform the coupling by starting a level � fine path simulation
at time t f0 = −T� and a coarse path simulation at time t c0 = −T�−1 and terminating
both paths at t = 0. Since the drift f and volatility g do not depend explicitly on time
t, the distribution of the numerical solution simulated on the time interval [−T�, 0]
is the same as one simulated on [0, T�]. The key point here is that the fine path and
coarse path share the same driving Brownian motion during the overlap time interval
[−T�−1, 0]. Owing to the result of Lemma 4, two solutions to the SDE satisfying
Assumption9, starting from different initial points and driven by the same Brownian
motion will converge exponentially. Therefore, the fact that different levels terminate
at the same time is crucial to the variance reduction of the multilevel scheme.

Our new multilevel scheme still has the identity (17) but with ϕ� = ϕ(̂X �
0) with

̂X �
0 being the terminal value of the numerical path approximation on the time interval

[−T�, 0] using adaptive function hδ with δ = M−�. The corresponding new MLMC
estimator is

̂Y � 1

N0

N0
∑

n=1

ϕ(̂X (n,0)
0 ) +

L
∑

�=1

{

1

N�

N�
∑

n=1

(

ϕ(̂X (n,�)
0 ) − ϕ(̂X (n,�−1)

0 )
)

}

, (18)
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where ̂X (n,�)
0 is the terminal value of the nth numerical path through time interval

[−T�, 0] using adaptive function hδ with δ = M−�.Algorithm 1 outlines the detailed
implementation of a single adaptive MLMC sample using a non-nested adaptive
timestep on level � with M = 2.

Algorithm 1 Outline of the algorithm for a single adaptive MLMC sample for scalar
SDE on level � in time interval [−T�, 0].
t := −T�; tc := −T�−1; t f := −T�

hc := 0; h f := 0
ΔWc := 0; ΔW f := 0
̂Xc = x0; ̂X f = x0
while t < 0 do
told := t
t := min(tc, t f )
ΔW := N (0, t − told )
ΔWc := ΔWc + ΔW
if t = −T�−1 then

ΔWc := 0
end if
ΔW f := ΔW f + ΔW
if t = tc then
update coarse path ̂Xc using hc and ΔWc

compute new adapted coarse path timestep hc = h2δ(̂Xc)

hc := min(hc,−tc)
tc := tc + hc

ΔWc := 0
end if
if t = t f then
update fine path ̂X f using h f and ΔW f

compute new adapted fine path timestep h f = hδ(̂X f )

h f := min(h f ,−t f )
t f := t f + h f

ΔW f := 0
end if

end while
return ̂X f − ̂Xc

3.2 Numerical Analysis

First, we state the exponential convergence to the invariant measure of the original
SDEs, which can help us to measure the approximation error caused by truncating
the infinite time interval.

Lemma 6 (Exponential convergence) If the SDE satisfies Assumptions 7 and 9, and
ϕ satisfies the Lipschitz condition: there exists a constant κ > 0 such that
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‖ϕ(x) − ϕ(y)‖ ≤ κ‖x − y‖, (19)

then there exists a constant μ > 0 depending on x0, κ and C1 in Lemma 3 such that

|E [ϕ(Xt ) − π(ϕ)]| ≤ μ e−λt . (20)

With this, we can bound the variance of the MLMC correction for each level.

Lemma 7 (Variance of MLMC corrections for bounded volatility) If ϕ satisfies the
Lipschitz condition (19), the SDE satisfies Assumption9 and the timestep function hδ

satisfies Assumption 3 with δ = M−� for each level, then for each level �, there exist
constants c1 and c2 such that the variance of correction V� := V

[

ϕ(̂X �
0) − ϕ(̂X �−1

0 )
]

satisfies
V� ≤ c1 M

−� + c2 e
−2λT�−1 . (21)

Note that if we set T� = logM
2λ (� + 1), then V� ≤ (c1 + c2)M−�, which has the

samemagnitude order as the standardMLMC. In some cases, λ needs to be estimated
numerically through Lemma 6. N� can be optimized following the same approach
in the MLMC theorem in [6].

Theorem 8 (MLMC for infinite time interval) If ϕ satisfies the Lipschitz condition
(19), the SDE satisfies Assumption9 and the timestep function hδ satisfies Assumption
3 with δ = M−� for each level, then by choosing suitable T�, N� for each level �,

there exists a constant c3 such that the MLMC estimator (18) has a mean square
error (MSE) with bound

E
[

(̂Y − π(ϕ))2
] ≤ ε2,

and a computational cost C with bound

E [C] ≤ c3 ε−2| log ε|3.

For Langevin SDEs, the computational cost can be reduced to O(ε−2).

Theorem 9 (Langevin SDEs) If ϕ satisfies the Lipschitz condition (19), and for the
SDE, m=d, g ≡ Im, f satisfies Assumption10, and the timestep function hδ satisfies
Assumption3 with δ = M−� for each level, then for each level �, there exist constants
c1 and c2 such that

Vl ≤ c1 M
−2� + c2 e

−2λT�−1 . (22)

By choosing suitable T� = logM
λ

(� + 1) and N� for each level � in the MLMC esti-
mator (18) such that it achieves the MSE bound ε2, there exists a constant c3 such
that
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E [C] ≤ c3 ε−2.

Note that the choice of T� for Langevin equation is different from the one for
SDEs with bounded volatility. In other words, the strong convergence result and the
contractive convergence rate λ determine T�.

4 Examples and Numerical Results

In this section we first discuss some example SDEs with non-globally Lipschitz drift,
then present the numerical result for finite time interval and its extension to infinite
time interval.

For scalar SDEs, the drift is often of the form

f (x) ≈ − c sign(x) |x |q , as |x | → ∞ (23)

for some constants c>0, q>1. Therefore, as |x |→∞, the maximum stable timestep
satisfying Assumption2 corresponds to 〈x, f (x)〉 + 1

2h(x) | f (x)|2 ≈ 0 and hence
h(x) ≈ 2|x |/| f (x)| ≈ 2 c−1|x |1−q . A suitable choice for h(x) and hδ(x) is therefore

h(x) = min
(

T, c−1|x |1−q
)

, hδ(x) = δ h(x). (24)

For example, the Ginzburg–Landau equation, which describes a phase transition
from the theory of superconductivity [13, 16], is

dXt = (

(η + 1
2σ

2)Xt − λX3
t

)

dt + σ Xt dWt ,

where η≥0, λ, σ >0. The drift and volatility satisfy Assumptions 1 and 4, and
therefore all of the theory is applicable, with a suitable choice for hδ(x), based on
(23) and (24), being

hδ(x) = δ min
(

T, λ−1x−2
)

.

For multi-dimensional SDEs, there are two cases of particular interest. For SDEs
with a drift which, for some β >0 and sufficiently large ‖x‖, satisfies the condition

〈x, f (x)〉 ≤ −β ‖x‖ ‖ f (x)‖,

one can take 〈x, f (x)〉 + 1
2h(x) | f (x)|2 ≈ 0 and therefore a suitable definition of

h(x) for large ‖x‖ is
h(x) = min(T, ‖x‖/‖ f (x)‖).

For SDEs with a drift which does not satisfy the condition, but for which ‖ f (x)‖ →
∞ as ‖x‖ → ∞, an alternative choice for large ‖x‖ is to use
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h(x) = min(T, γ ‖x‖2/‖ f (x)‖2), (25)

for some γ >0. For example, the Stochastic Lorenz equation, which is a three-
dimensional system modelling convection rolls in the atmosphere [12], is

dX (1)
t =

(

α1X
(2)
t − α1X

(1)
t

)

dt + β1X
(1)
t dW (1)

t

dX (2)
t =

(

α2X
(1)
t − X (2)

t − X (1)
t X (3)

t

)

dt + β2X
(2)
t dW (2)

t

dX (3)
t =

(

X (1)
t X (2)

t − α3X
(3)
t

)

dt + β3X
(3)
t dW (3)

t

where α1, α2, α3, β1, β2, β3 > 0. The diffusion coefficient is globally Lipschitz, and
since 〈x, f (x)〉 consists solely of quadratic terms, the drift satisfies the one-sided
linear growth condition. Noting that ‖ f ‖2 ≈ x21 (x

2
2 + x23 ) < ‖x‖4 as ‖x‖ → ∞, an

appropriate maximum timestep is h(x) = min(T, γ ‖x‖−2), for any γ >0. However,
the drift does not satisfy the one-sided Lipschitz condition, and therefore the theory
on the order of strong convergence is not applicable.

All the adaptive functions above satisfy the Assumptions 2 and 5. Other example
applications include the stochastic Verhulst equation and a large class of Langevin
equations.

The testcase taken from [14] is

dXt = −Xt − X3
t dt + dWt , x0 = 1,

with T =1. The three methods tested are the Tamed Euler scheme, the implicit
Euler scheme, and the new Euler scheme with adaptive timestep. We can set
hmax = 1, M = 2 and choose the adaptive function h, hδ to be

h(x) = max(1, |x |)
max(1, |x + x3|) , hδ(x) = 2−�h(x).

Figure1 shows the the root-mean-square error plotted against the average timestep.
The plot on the left shows the error in the terminal time, while the plot on the right
shows the error in the maximum magnitude of the solution. The error in each case is
computed by comparing the numerical solution to a second solution with a timestep,
or δ, which is 2 times smaller.

When looking at the error in the final solution, all 3methods have similar accuracy
with 1

2 order strong convergence. However, as reported in [14], the cost of the implicit
method per timestep is much higher. The plot of the error in the maximummagnitude
shows that the new method is slightly more accurate, presumably because it uses
smaller timesteps when the solution is large. The plot was included to show that
comparisons between numerical methods depend on the choice of accuracy measure
being used.
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Next, we extend it to adaptive MLMC for the infinite time interval, since it also
satisfies the dissipative condition (5) and the contractive condition (16). Our interest
is to compute π(ϕ) where ϕ(x) = ‖x‖ satisfies a Lipschitz condition.

First we need to determine T� for each level. By differentiating drift f we know
λ ≥ 1 and choose λ to be 1 in our numerical scheme to simulate a sufficiently long
time interval and control the truncation error. Then we choose

T� = log 2 (� + 1).
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The variance result (22) for the Langevin equation is illustrated in Fig. 2. The
exponential part dominates the variance at the beginning, so the variance decays
exponentially.As time increase, theM−2� termbecomes themajor part of the variance
and the variance stops decreasing.

For level 10,wehaveT10 = 7.62 and the variance already stoppeddecreasing since
T = 5 as shown in the Fig. 2, which shows that the setting of T� is sufficient. Then,
all the convergence results are the same as the standard MLMC and our algorithm
works well. For more detail, see [3].

5 Conclusion

The central conclusion from this paper is that by using an adaptive timestep it is
possible tomake the Euler–Maruyama approximation stable for SDEswith a globally
Lipschitz volatility and a drift which is not globally Lipschitz but is locally Lipschitz
and satisfies a one-sided linear growth condition. If the drift also satisfies a one-sided
Lipschitz condition then the order of strong convergence is 1

2 , when looking at the
accuracy versus the expected cost of each path. For the important class of Langevin
equations with unit volatility, the order of strong convergence is 1. For ergodic SDEs
satisfying the dissipative and contractive condition, we have shown that the moments
and strong error of the numerical solutions are bounded and independent of time T .

Moreover, we extend this adaptive scheme to MLMC for the infinite time interval by
allowing different lengths of time intervals and carefully coupling the fine path and
coarse path in each level �. All the schemes work well and numerical experiments
support the theoretical results.

References

1. Barrett, J.W., Süli, E.: Existence of global weak solutions to some regularized kinetic models
for dilute polymers. SIAM Multiscale Model. Simul. 6(2), 506–546 (2007)

2. Fang, W., Giles, M.B.: Adaptive Euler–Maruyama method for SDEs with non-globally Lips-
chitz drift: Part I, finite time interval (2016). arXiv preprint arXiv:1609.08101

3. Fang, W., Giles, M.B.: Adaptive Euler–Maruyama method for SDEs with non-globally Lips-
chitz drift: Part II, infinite time interval (2017). arXiv preprint arXiv:1703.06743

4. Gaines, J.G., Lyons, T.J.: Variable step size control in the numerical solution of stochastic
differential equations. SIAM J. Appl. Math. 57(5), 1455–1484 (1997)

5. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)
6. Giles, M.B.: Multilevel Monte Carlo methods. Acta Numerica 24, 259 (2015)
7. Giles, M.B, Lester, C., Whittle, J.: Non-nested adaptive timesteps in multilevel Monte Carlo

computations (2016)
8. Glynn, P.W., Rhee, C., et al.: Exact estimation for Markov chain equilibrium expectations. J.

Appl. Probab. 51, 377–389 (2014)
9. Hansen, N.R.: Geometric ergodicity of discrete-time approximations tomultivariate diffusions.

Bernoulli 9, 725–743 (2003)

http://arxiv.org/abs/1609.08101
http://arxiv.org/abs/1703.06743


234 W. Feng and M. B. Giles

10. Higham, D.J., Mao, X., Stuart, A.M.: Strong convergence of Euler-type methods for nonlinear
stochastic differential equations. SIAM J. Numer. Anal. 40(3), 1041–1063 (2002)

11. Hofmann, N., Müller-Gronbach, T., Ritter, K.: The optimal discretization of stochastic differ-
ential equations. J. Complex. 17(1), 117–153 (2001)

12. Hutzenthaler, M., Jentzen, A.: Numerical Approximations of Stochastic Differential Equa-
tions with Non-globally Lipschitz Continuous Coefficients, vol. 236. American Mathematical
Society, Providence (2015)

13. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of
Euler’s method for stochastic differential equations with non-globally Lipschitz continuous
coefficients. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 467(2130), 1563–1576 (2011)

14. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong convergence of an explicit numerical
method for SDEswith nonglobally Lipschitz continuous coefficients.Ann.Appl. Probab. 22(4),
1611–1641 (2012)

15. Kelly, C., Lord, G.J.: Adaptive timestepping strategies for nonlinear stochastic systems (2016).
arXiv preprint arXiv:1610.04003

16. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer,
Berlin (1992)

17. Lamba,H.:An adaptive timestepping algorithm for stochastic differential equations. J. Comput.
Appl. Math. 161(2), 417–430 (2003)

18. Lamba, H., Mattingly, J.C., Stuart, A.M.: An adaptive Euler–Maruyama scheme for SDEs:
convergence and stability. J. Numer. Anal. 27, 479–506 (2007)

19. Lemaire, V.: An adaptive scheme for the approximation of dissipative systems. Stoch. Process.
Appl. 117(10), 1491–1518 (2007)

20. Mao, X.: Stochastic Differential Equations and Applications. Horwood Publishers Ltd., Chich-
ester (1997)

21. Mao, X.: The truncated Euler–Maruyama method for stochastic differential equations. J. Com-
put. Appl. Math. 290, 370–384 (2015)

22. Mao, X., Szpruch, L.: Strong convergence and stability of implicit numerical methods for
stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Com-
put. Appl. Math. 238, 14–28 (2013)

23. Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: locally
Lipschitz vector fields and degenerate noise. Stoch. Process. Appl. 101(2), 185–232 (2002)

24. Mauthner, S.: Step size control in the numerical solution of stochastic differential equations.
J. Comput. Appl. Math. 100(1), 93–109 (1998)

25. Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes III: Foster–Lyapunov criteria for
continuous-time processes. Adv. Appl. Probab. 25, 518–548 (1993)

26. Milstein, G.N., Tretyakov,M.V.: Numerical integration of stochastic differential equationswith
nonglobally Lipschitz coefficients. SIAM J. Numer. Anal. 43(3), 1139–1154 (2005)

27. Milstein, G.N., Tretyakov, M.V.: Computing ergodic limits for Langevin equations. Phys. D
Nonlinear Phenom. 229(1), 81–95 (2007)

28. Müller-Gronbach, T.: Optimal pointwise approximation of SDEs based on Brownian motion
at discrete points. Ann. Appl. Probab. 14, 1605–1642 (2004)

29. Roberts, G.O., Tweedie, R.L.: Exponential convergence of Langevin distributions and their
discrete approximations. Bernoulli 2, 341–363 (1996)

30. Soize, C.: The Fokker–Planck Equation for Stochastic Dynamical Systems and its Explicit
Steady State Solutions, vol. 17. World Scientific, Singapore (1994)

31. Talay, D.: Second-order discretization schemes of stochastic differential systems for the com-
putation of the invariant law. Stoch. Int. J. Probab. Stoch. Process. 29(1), 13–36 (1990)

32. Wang, X., Gan, S.: The tamed Milstein method for commutative stochastic differential equa-
tions with non-globally Lipschitz continuous coefficients. J. Differ. Equ. Appl. 19(3), 466–490
(2013)

http://arxiv.org/abs/1610.04003


Monte Carlo with User-Specified
Relative Error

J. Feng, M. Huber and Y. Ruan

Abstract Consider an estimate â for a with the property that the distribution of the
relative error â/a − 1 does not depend upon a, but can be chosen by the user ahead
of time. Such an estimate will be said to have user-specified relative error (USRE).
USRE estimates for continuous distributions such as the exponential have long been
known, but only recently have unbiased USRE estimates for Bernoulli and Poisson
data been discovered. In this work, biased USRE estimates are examined, and it is
shown how to precisely choose the bias in order make the chance that the absolute
relative error lies above a threshold decay as quickly as possible. In fact, for Poisson
data this decay (on average) is slightly faster than if the CLT approximation is used.

Keywords Discrete scalable distribution · Gamma Bernoulli approximation
scheme · Gamma Poisson approximation scheme · Randomized approximation
scheme · Tootsie pop algorithm

1 Introduction

Consider the problem of generating an estimate â for a such that the relative error
(â/a) − 1 is bounded by user given ε, with user given failure rate δ.

Definition 1 Call an estimate â for a an (ε, δ)- randomized approximation scheme
or (ε, δ)- ras for nonnegative ε and δ if
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P

(∣∣∣∣ âa − 1

∣∣∣∣ > ε

)
< δ.

A stronger form is that the user actually knows precisely the distribution of the
relative error.

Definition 2 Say that an estimate â for a has user-specified relative error or USRE
if the distribution of â/a does not depend on a, but only on parameters specified by
the user in constructing â.

Until recently, the only data distributions with user-specified relative error esti-
mates were continuous and scalable.

Example 1 Say that X has an exponential distribution with rate λ (and mean 1/λ) if
the density of X is fX (s) = λ exp(−λs)1(s ≥ 0). Write X ∼ Exp(λ). (Here 1(·) is
the usual indicator function that is 1 if the argument is true and 0 if the argument is
false.) Given X1, X2, . . . , Xk independent identically distributed (iid) data Exp(λ),
an unbiased estimate for λ is

λ̂ = k − 1

X1 + · · · + Xk
.

Say Y has a gamma distribution with shape parameter k and rate λ (write Y ∼
Gamma(k, λ)) if Y has density fY (s) = λksk−1 exp(−λs)1(s ≥ 0)/Γ (k). Then it
is well known that λ/λ̂ has a gamma distribution with shape parameter k and rate
parameter k − 1. Therefore λ̂ is a USRE estimate.

Example 2 Say that X is uniform over [0, θ ] (write X ∼ Unif([0, θ ])) if X has den-
sity fX (s) = θ−11(s ∈ [0, θ ]). Suppose X1, X2, . . . , Xn are iid Unif([0, θ ]). Then

θ̂ = n + 1

n
max

i
{Xi }

is an unbiased USRE estimate of θ . This is because

θ̂

θ
= n + 1

n
max

i

{
Xi

θ

}
,

and it is well known that Xi/θ ∼ Unif([0, 1]). Therefore the maximum of the Xi/θ ,
which is a beta distributed random variable with parameters n and 1, does not depend
on θ̂ in any way. Such a variable has mean n/(n + 1), so multiplying by (n + 1)/n
makes the estimate unbiased.

Remark 1 Throughout this work, wewill always use k to denote the number of expo-
nential random variables used in constructing our estimate. The variable n will used
more generally to denote the number of samples drawn from any other distribution.
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1.1 Discrete Scalable Distributions

The output of Monte Carlo algorithms often come from discrete rather than con-
tinuous distributions, and so the creation of user-specified relative error estimates
seemed out of reach for many problems. One feature of Monte Carlo data, however,
it the ability to generate as much data as needed for the estimate. That is, unlike fixed
length experiments where the data output is X1, . . . , Xn , it is typically easy with
Monte Carlo output to have a stream of data and use X1, . . . , XT for some stopping
time T as the final set of data.

By carefully using this advantage and exploiting connections between discrete and
continuous distributions, it was shown how to build unbiased user-specified relative
error estimates for the means of Bernoulli [2] and Poisson [3] iid data.

We open here with a new estimate for the “German tank problem”, that is, estima-
tion of the integer θ where X1, X2, . . . are independent Unif({1, 2, . . . , θ}) random
variables.

Example 3 Let X1, X2, . . . be iid Unif({1, 2, . . . , θ}). Then it is well known that
for U1,U2, . . . iid Unif([0, 1]) and independent of the Xi , that Yi = Xi −Ui are iid
Unif([0, θ ]). Therefore, from Example 2, the estimate

θ̂USRE = n + 1

n
max

i
{Xi −Ui }

is a user-specified relative error unbiased estimate of θ for the {Xi }.
The new estimate smooths the data slightly in order to obtain our USRE for

θ . What do we lose by doing this? The answer is: a little, but not much. Con-
sider the classic minimum variance unbiased estimator for θ . Given X1, . . . , Xn ∼
Unif({1, 2, . . . , θ}),

θ̂mvue = 1

1 + 1/n
max

i
{Xi } − 1.

The variance of this estimate is

V(θ̂mvue) = (θ − n)(θ + 1)

n(n + 2)
.

Compare with the USRE, where

V(θ̂USRE) = θ2

n(n + 2)

When n � θ , the variances are very close together, but it always holds that the
variance of the mvue is smaller than that of the USRE.

So what is lost is a small amount of variance, What is gained is the ability to
give exact confidence intervals that depend very simply on the data. For instance,
for n = 35, it holds that a beta distributed random variable with parameters n and
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Table 1 Discrete distributions

Distribution Density fX (s) Notation

Bernoulli p1(s = 1) + (1 − p)1(s = 0) Bern(p)

Geometric p(1 − p)s−11(s ∈ {1, 2, . . .}) Geo(p)

Poisson [exp(−μ)μs/s!]1(s ∈ {0, 1, 2, . . .}) Pois(μ)

1 is within 10% of its maximum value with probability 1 − 0.02503. Therefore, the
same holds for θ̂usre, regardless of the true value of θ . Hence an exact 95% confidence
interval for θ is [θ̂usre[n/(n + 1)], θ̂usre[n/(n + 1)]/(1 − 0.1)].

Now consider data which is either geometric, Bernoulli, or Poisson. Table1 gives
the densities for these distributions.

Example 4 Consider G1,G2, . . . ,Gn ∼ Geo(p), so P(Gi = i) = p(1 − p)i−1 for
i ∈ {1, 2, . . .}. The method of moments estimator for p is

p̂mom = n

G1 + · · · + Gn

While biased, this does converge to p with probability 1 as k goes to infinity.
As noted in [2], a USRE is obtained for geometric random variables using the

following well known fact.

Lemma 1 If G ∼ Geo(p) and [A|G] ∼ Gamma(G, 1), then A ∼ Exp(p).

For each Gi , generate [Ai |Gi ] ∼ Gamma(Gi , 1). By Lemma 1, each Ai ∼
Exp(p), and then use p̂ for p from Example 1 to obtain the USRE for p.

Example 5 For B1, B2, . . . iid Bern(p), first use the {Bi } to generate {Gi }.

G1 = inf{t : Bt = 1}, Gi = inf{t : t > Gi−1, Bt = 1} − Gi−1.

Then use the {Gi } to give p̂ from the previous example.
Because this uses Bernoulli random variables together with gamma random vari-

ables to give the estimate, this is known as the Gamma Bernoulli Approximation
Scheme (GBAS). Each geometric requires (on average) 1/p Bernoulli random draws
to generate, so the expected number of Bernoulli random variables used by this al-
gorithm is k/p.

The final distribution considered here, Poisson, generates a random number of
exponential random variables with each Poisson by using the following well known
fact about Poisson point processes.

Lemma 2 Let P1, P2, . . . be iid Pois(μ). Then for each interval [i, i + 1] for i ∈
{0, 1, . . .}, let Ci be a set of Pi values drawn independently and uniformly over
[i, i + 1]. Let D1 ≤ D2 ≤ · · · be the sorted values of∪iCi . Then D1, D2 − D1, D3 −
D2, . . . form an iid sequence of Exp(μ) random variables.
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Example 6 For P1, P2, . . . iid Pois(μ) and fixed k, use Lemma 2 to generate
A1, A2, A3, . . . , Ak iid Exp(μ) and then proceed as in Example 1. This estimate
is called the Gamma Poisson Approximation Scheme, or GPAS for short.

Each draw of the Poisson generates (on average)μ exponential random variables,
and so between k/μ and k/μ + 1 Poisson draws are needed (on average) to generate
the exponential random variables.

1.2 Main Results

Let a denote the mean of the exponential, Bernoulli, geometric, or Poisson data used
to generate a random variable R ∼ Gamma(k, a), where k is chosen by the user.
Then it is simple matter to check that â = (k − 1)/R is unbiased.

Since the gamma distribution is skewed, this â estimate is more likely to be too
large than too small in the relative error sense. So a better estimate is

âc = k − 1

cR
,

where c is a fixed constant. When c = 1, the estimate is just â which is unbiased.
By choosing c > 1, it is possible to balance the upper and lower tails and return an
estimate where the relative error is at most ε with failure probability that decays at
the fastest possible rate.

The main result is the following.

Theorem 1 Let

c = 2ε

(1 − ε2) ln(1 + 2ε/(1 − ε))
.

and âc = (k − 1)/[cR] where R ∼ Gamma(k, a). Then define

c1 = 1

c(1 − ε)
, c2 = 1

c(1 + ε)
, b(t) = te1−t . (1)

Note that b(t) < 1 for t �= 1 and for this choice of c1 and c2, b(c1) = b(c2), so let b
equal this common value. Then

P

(∣∣∣∣ âca − 1

∣∣∣∣ > ε

)
≤ 1√

2π(k − 1)

[∣∣∣∣ c1
c1 − 1

∣∣∣∣ bk−1 +
∣∣∣∣ c2
c2 − 1

∣∣∣∣ bk−1

]

≤
√

2

πε2(k − 1)
exp

(
−(k − 1)

(
ε2

2
+ 11ε4

36

))
.
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Fig. 1 Given exponential random variables with rate a, consider an estimate of a a failure if the
relative error of the estimate is greater than ε. Both the problem of estimating themean of a Bernoulli
and the mean of a Poisson can be converted into this exponential problem. This plot compares the
use of k exponential draws to form the estimate of a. The solid line treats the sample average of the
exponentials as a normal random variable, while the dotted line uses a biased Gamma estimator.
For the same k, the biased Gamma is a better estimator in this sense than the CLT. These particular
failure rates use ε = 0.2. The CLT line has asymptotic slope against the log failure rate (to second
order in ε) equal to −ε2/2. The biased gamma line has asymptotic slope against the log failure rate
(to the fourth order in ε) equal to −ε2/2 − (11/36)ε4

By using this choice of c, it is often possible to generate an estimate with bounded
relative error using fewer samples on average than a CLT analysis. For example,
consider P1, P2, P3, . . . iid Pois(μ). The mean and variance of the {Pi } is both μ,
so consider estimating μ for W1,W2, . . . iid normal with mean and variance μ. The
GPAS algorithm uses on average k/μ samples to generate R ∼ Gamma(k, μ).

So setting n = 
k/μ�, the sample average μ̂n = (W1 + · · · + Wn) ∼ N(μ,μ/n),
and

P(|(μ̂n/μ) − 1| > ε) > P(|Z |/√k > ε),

where Z is a standard normal random variable. As shown in Sect. 2.1,

P(|Z | > ε
√
k) ≈

√
2

πε2k
exp

(
−k

ε2

2

)
,

so when k is large, the probability for the biased Gamma concentrates slightly faster
than for a normal.

For example,when ε = 0.1, to getP(|Z |/√k > ε) < 0.01 requires k ≥ 663.4897.
But using the value of c from Theorem 1, the value of k needed using GPAS is 661.
So GPAS requires on average at most 661/μ + 1 samples, while the normal requires
at least 663/μ. For small μ then, the biased estimator requires fewer samples on
average than the CLT approach. See Fig. 1 for the failure rates as a function of k for
ε = 0.2.
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The remainder of this work is organized as follows. The next section reviews
relevant bounds on the tails of gamma and normal distributions, and proves Theo-
rem 1. Finally, Sect. 3 looks at several applications of these results in Monte Carlo
integration.

2 Biased Estimates for Minimizing the Failure Probability

For both GBAS and GPAS, the first step is generating a random variable R ∼
Gamma(k, a), where a is the quantity to be estimated. Then âc = (k − 1)/(cR)

becomes the estimate. The goal is to make

P

(∣∣∣∣ âca − 1

∣∣∣∣ > ε

)
= P

(
(k − 1)

acR
> 1 + ε or

(k − 1)

acR
< 1 − ε

)

= P

(
k − 1

aR
> c(1 + ε)

)
+ P

(
k − 1

aR
< c(1 − ε)

)

as small as possible. Since (aR)/(k − 1) ∼ Gamma(k, k − 1), our work will focus
on developing good bounds for the upper and lower tails of this distribution.

Lemma 3 Let fX (s) = αβsα−1 exp(−βs)1(s ≥ 0)/Γ (k) be the density of X ∼
Gamma(α, β). Then

fX (t)
1

β
≤ P(X ∈ A) ≤ fX (t)

t

|βt − (α − 1)| .

for A = [0, t] where t < (α − 1)/β or A = [t,∞) where t > (α − 1)/β.

Proof Consider for s > 0,

f ′
X (s) = fX (s)β

[
α − 1

βs
− 1

]
.

For s ≥ t > (a − 1)/β, this gives

−β fX (s) ≤ f ′
X (s) ≤ fX (s)β[(α − 1)/(βt) − 1]

and
f ′
X (s)t/(βt − (α − 1)) ≥ fX (s) ≥ f ′

X (s)/(−β).

Integrating these inequalities for s running from t to infinity and 0 to t gives the
upper and lower bounds.
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The s ≤ t < (α − 1)/β case is similar. �
Now to understand how fX (s) behaves.

Lemma 4 For α = k and β = k − 1,

exp(−1/[12(k − 1)])
√
k − 1

2π

(
te1−t

)k−1 ≤ fX (t) ≤
√
k − 1

2π

(
te1−t

)k−1

Proof Let f1(k − 1) = √
2π(k − 1)((k − 1)/e)k−1. Then Stirling’s bound can be

written
f1(k − 1) ≤ Γ (k) ≤ f1(k − 1) exp(1/[12(k − 1)]).

The density of a Gamma(k, k − 1) at a is

fX (a) = (k − 1)k tk−1 exp(−(k − 1)t)/Γ (k).

Using Stirling’s bound on Γ (k) and simplifying gives the result. �
Let g(t) denote ln(P((k − 1)/(aR) > t)) for t > 1 and ln(P((k − 1)/(aR) < t))

for t < 1. From the previous lemma g(t) = (k − 1)[1 − t + ln(t)] plus lower or-
der terms. Setting w = 1 − t gives g(1 − w) = (k − 1)[w + ln(1 − w)]. The Taylor
series expansion of g(1 − w)/(k − 1) with respect to w is

w + ln(1 − w) = −w2

2
− w3

3
− w4

4
− · · · .

It is of course no surprise that the leading term of the logarithm of the tail probability
is −w2/2, as a Gamma(k, k − 1) is the sum of k independent Exp(k − 1) random
variables, and therefore the CLT gives that the result is approximately normally
distributed.

In the rest of this section it helps to define two values based on c and ε, as well as
a function that encapsulates our rate. Recall that

c1 = 1

c(1 − ε)
, c2 = 1

c(1 + ε)
, b(t) = te1−t

Lemma 5 For âc = (k − 1)/(acR), let c1, c2, and b be as in (1). Then P(|(âc/a) −
1| > ε) is in

1√
2π(k − 1)

[
b(c1)

k−1 + b(c2)
k−1,

∣∣∣∣ c1
c1 − 1

∣∣∣∣ b(c1)k−1 +
∣∣∣∣ c2
c2 − 1

∣∣∣∣ b(c2)k−1

]

Proof For âc = (k − 1)/(cR),

P

(∣∣∣∣ âca − 1

∣∣∣∣ > ε

)
= P

(
aR

k − 1
>

1

c(1 − ε)

)
+ P

(
aR

k − 1
<

1

c(1 + ε)

)
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Since aR/(k − 1) ∼ Gamma(k, k − 1), the rest follows from the previous two lem-
mas. �

Since b(t) is a unimodal functionwithmaximum at t = 1 that goes to 0 as t goes to
0 and infinity, the log of the probability in the tail is minimized when b(c1) = b(c2).

Lemma 6 When

c = 2ε

(1 − ε2) ln(1 + 2ε/(1 − ε))
, (2)

and âc = (k − 1)/(cR), then b(1/(c(1 − ε))) = b(1/(c(1 + ε))) = b and

P

(∣∣∣∣ âca − 1

∣∣∣∣ > ε

)
≤ 1√

2π(k − 1)

[
c1

c1 − 1
+ c2

1 − c2

]
bk−1.

Proof It is easy to verify that b(c1) = b(c2) for this choice of c. This choice makes
c1 > 1 and c2 < 1. Applying the previous lemma then finishes the proof. �

It helps to have an idea of how good this bound is in terms of ε. Recall that c1, c2,
and b = b(c1) = b(c2) are all functions of ε.

Lemma 7 For ε > 0,

c1
c1 − 1

+ c2
1 − c2

≤ 2

ε

and

b ≤ exp

(
−1

2
ε2 − 11

36
ε4

)
.

Proof This follows directly from the Taylor series expansions of these functions in
terms of ε, and the continuity of all higher derivatives for ε > 0. �

Combining this with the previous lemma gives the following.

Corollary 1 For c as in (2),

P

(∣∣∣∣k − 1

acR
− 1

∣∣∣∣ > ε

)
≤

√
2

πε2(k − 1)
exp

(
−ε2(k − 1)

2
− 11ε4(k − 1)

36

)
.

Therefore the log failure rate is asymptotically at most −(k − 1)(ε2/2 + (11/36)ε4).
This is smaller than the asymptotic log failure rate of −kε2/2 for a normally dis-
tributed random variable.
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2.1 Comparison to Normal Random Variables

APoisson random variable withmeanμ also has varianceμ. So consider X1, . . . , Xn

random variables that are normal with mean and variance μ. In Sect. 1 it was noted
that for such random variables the sample average μ̂n = ∑

i Xi/n satisfies

P(|(μ̂n/μ) − 1| > ε) = P(|Z | > ε
√
nμ)

where Z is a standard normal random variable.
Well known bounds connect the tail probabilities of a standard normal with the

density of a standard normal. For instance, Gordon [1] showed that for all s > 0

1

s + 1/s

1√
2π

exp(−s2/2) ≤ P(Z > s) ≤ 1

s

1√
2π

exp(−s2/2) (3)

For s = ε
√
nμ, this says

P(|μ̂n/μ − 1| > ε) = 
(ε−1(nμ)−1/2 exp(−ε2nμ/2)), (4)

(Recall that we write f (n) = 
(g(n)) if lim supn→∞ f (n)/g(n) > 0.) To compare
this to the failure probabilities for the Poisson random variable, note that the average
number of draws of the Poisson is k/μ where k is the parameter set by the user. So
if n ≈ k/μ, then the failure probability for the normal random variables will be


(ε−1k−1/2 exp(−ε2k/2),

while for the gamma based estimate,

P(| p̂/p − 1| > ε) = O(ε−1(k − 1)−1/2 exp(−[ε2/2 + 11ε4/36](k − 1)). (5)

So for fixed ε, as k → ∞, eventually the failure probability will fall below that for
the normals.

As seen in Sect. 1, this is not some far-off asymptotic range: for ε = 0.1 and
δ = 0.01, the gamma based method sets k = 661 but the normals require k > 663 to
achieve the same level of accuracy. This fact that gammas are more highly concen-
trated than normals about their center is to be expected, as gamma random variables
are always positive while for normals both tails are unbounded.

2.2 Biased Beta Estimates

Now consider the problem of estimating θ when X1, X2, . . . , Xn are iid
Unif({1, 2, . . . , θ}). The unbiased smoothing method generated U1, . . . ,Un inde-
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pendent of X1, . . . , Xn , and set X ′
i = Xi −Ui . This makes X ′

i uniform over [0, θ ].
Now an unbiased USRE estimate of θ is θ̂USRE = [(n + 1)/n]maxi (Xi −Ui ) (see
Example 2.)

As earlier, given ε > 0, the failure probability of an estimate θ̂ for θ is P(|θ̂/θ −
1| > ε). However, the unbiased estimate does not minimize the failure probability.

Instead, note that maxi (Xi −Ui ) ≤ θ , so θ̂ = (1 + ε)maxi (Xi −Ui ) can never
have relative error greater than ε. The only way the relative error can be less than −ε

is if (1 + ε)maxi (Xi −Ui ) < (1 − ε)θ , or equivalently, maxi (Xi −Ui )/θ < (1 +
ε)/(1 − ε). Recalling that each (Xi −Ui )/θ ∼ Unif([0, 1]), this gives the following
lemma.

Lemma 8 Given X1, . . . , Xn iid uniform over {1, 2, . . . , θ}, and U1, . . . ,Un iid
uniform over [0, 1] (and independent of the {Xi }), let

θ̂ = (1 + ε)max
i

(Xi −Ui )

Then

P(|(θ̂/θ) − 1| > ε) =
(
1 − ε

1 + ε

)n

.

Since ln((1 − ε)/(1 + ε)) = −2ε − (2/3)ε3 − · · · , to first order the number of
samples n necessary for an (ε, δ)-ras is (1/2)ε−1 ln(δ−1), which is verymuch smaller
than in the exponential or normal cases.

3 Applications

This section considers applications of the GBAS and GPAS algorithms. Suppose our
goal is to approximate the value of an integral of dimenson m:

I =
∫
x∈Rm

f (x) dx .

Here f (x) ≥ 0 and m is typically very large. For instance, f (x) could be the un-
normalized posterior distribution of a Bayesian model (so prior density times the
likelihood of data) or the solution to some #P complete problem.

Our approach is to build three sets,C ⊆ B ⊆ A. Set Awill haveLebesguemeasure
equal to the integral I . Set C will have Lebesgue measure that can be computed
exactly. Then, random samples will be used to estimate the ratio of the measure of A
to that of B, and the ratio of the measure of B to that ofC . The product then estimates
that ratio of the measure of A to that of C , and then multiply by the known measure
of C to estimate the measure of A which is just I .
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3.1 Acceptance Rejection Integration

Using acceptance rejection to approximately integrate functions goes back to at least
Von Neumann [7].

For a measure ν, say that X ∼ ν over B, if for all measurable F ⊆ B, P(X ∈
F) = ν(F)/ν(B).

Given a region A, and a region B that contains A from which is possible to
sample X ∼ ν over B, P(X ∈ A) = ν(A)/ν(B). Usually it is possible to compute
either ν(B) or ν(A) easily. Let p̂ be an estimate for P(X ∈ A) obtained using biased
GBAS.

If ν(B) is known, then p̂ν(B) is an estimate for ν(A). If ν(A) is known then
ν(A)/ p̂ is an estimate for ν(A). Either way, to obtain ν(A) (or ν(B)) within a fixed
relative error requires that p̂ estimate p within a fixed relative error.

Now consider how this idea can be turned into an algorithm for estimating I .
Suppose that f (x) is known through either analysis or numerical experiments to
have a local maximum at x∗, and f (x) ≤ f (x∗) for all x : ||x∗ − x ||2 ≤ α. Consider
three sets,

A = {(x, y) : x ∈ R
n, 0 ≤ y ≤ f (x)}

B = {(x, y) : ||x − x∗|| ≤ α, 0 ≤ y ≤ f (x)}
C = {(x, y:||x − x∗|| ≤ α, 0 ≤ y ≤ f (x∗)}.

For ν Lebesgue measure, ν(A) = I , the value of the integral that we are looking for.
It is easy to sample fromC : just generate x uniformly from the hypersphere about

x∗ of radius α, and then generate y uniformly from [0, f (x∗)].
Sampling from A is usually (approximately) accomplished using Markov chain

Monte Carlo, or in some instances using perfect simulation (see [4, 6]) methods.
Then B ⊆ A and B ⊆ C . For ν Lebesgue measure, ν(C) = f (x∗)αnVn , where

Vn is the volume of an n dimensional hypersphere under || · ||2.
So the strategy is to use two steps: estimate ν(B)/ν(C) with p̂1, and ν(B)/ν(A)

with p̂2 using biased GBAS. Then ν(C) p̂1/ p̂2 ≈ ν(A) = I , and the relative error
bounds for p̂1 and p̂2 can be used to find a relative error bound for the estimate of
ν(A).

Of course, it is not necessary to know the value of x∗ exactly. As an example,
consider the function f (x) = exp(−x2/2) + 1.5 exp(−(x − 4)2/2). Let x∗ = 0, and
α = 1. For x ∈ [−1, 1], f (x) ≤ 1.1. Then A = {(x, y) : 0 ≤ y ≤ f (x)}, B = {x ∈
[−1, 1], 0 ≤ y ≤ f (x)}, and C = {x ∈ [−1, 1], 0 ≤ y ≤ 1.1}. Then ν(C) = 2.2, so
ν(A) = 2.2(ν(B)/ν(C))/(ν(B)/ν(A)).

The value of ν(B)/ν(C) can be estimated by sampling points uniformly from
C , and letting the Bernoulli variables be the indicator that the points fall into B.
Similarly, the value of ν(B)/ν(A) can be estimated by drawing samples from A and
letting the Bernoulli random variables be the indicator that the points fall into B.

In this example ν(B)/ν(C) ≈ 0.7801 and ν(B)/ν(A) = 0.273886. So for a given
choice of k, on average k/0.7801 samples fromC are needed to get p̂1 an estimate for
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ν(B)/ν(C), and on average k/0.273886 samples from A are needed to get p̂2 an es-
timate for ν(B)/ν(A). Recall k = 661 gives ε = 0.1 and δ = 0.01. Therefore, using
the union bound, 2.2 p̂1/ p̂2 lies in [(0.9/1.1)ν(A), (1.1/0.9)ν(A)] with probability
at least 98%.

Suppose we use α = 0.1. Then ν(B)/ν(A) ≈ 0.03187, while ν(B)/ν(C) ≈
0.908047. The number of samples needed grows dramatically to get the p̂2 esti-
mate as α becomes smaller.

3.2 TPA Integration

Generally, as α becomes smaller ν(B)/ν(C) typically moves to 1 while ν(B)/ν(A)

becomes smaller. Therefore, it is helpful to have an alternate way to estimate
ν(B)/ν(A) when B is small relative to A. In fact, usually ν(B) is exponentially
smaller than ν(A) in the dimension of the problem.

A solution to this issue is to use the Tootsie Pop Algorithm (TPA) [5]. which in
this context operates as follows. Let A0 = A, and draw a sample X0 from ν over A0.
Let A1 = {(x, y) : ||x − x∗|| ≤ ||X0 − x∗||}. Draw X1 from ν over A1 in the same
way to get A2, and continue into this fashion until XT−1 /∈ B and XT ∈ B. That is,
T = inf{i : Xi ∈ B}.

Then Theorem 1 of [5] implies that T − 1 ∼ Pois(ln(ν(B)/ν(A))). GPAS gives
us an estimate â for a = ln(ν(B)/ν(A)), alongwith exact confidence intervals. These
in turn gives exact confidence intervals for exp(â)which estimates ν(B)/ν(A). Com-
bined with the exact confidence intervals for ν(C)/ν(B), the result is an exact con-
fidence interval for the estimate ν(C) p̂1 exp(−â) of ν(A).

Consider again our problem from earlier of estimating ν(B)/ν(A) when the true
answer is 0.0318787. Recall using k = 661 and directly drawing from A and forming
Bernoullis from the indicator that the points fall in B used on average k/0.0318787
to get an estimate within relative error 0.1 with probability at least 99%.

By using TPA with k = 661, we obtain an estimate for − ln(0.0318787) by
drawing −661/ ln(0.0318787) Poisson random variables, each of which requires
− ln(0.0318787) + 1 draws from various subsets of A. Note (− ln(0.0318787) +
1)/(− ln(0.0318787)) ≈ 1.290, much smaller than 1/0.0318787 ≈ 31.37.

However, the error bounds have changed. The estimate must be exponentiated to
get back to the original problem. Letting a = − ln(0.0318787), we will find â such
that â = aξ where ξ ∈ [0.9, 1.1] Hence exp(−a) ∈ [exp(−â/0.9), exp(−â/1.1)].

For instance, if â = 3.723 (off from the true value of a = − ln(0.0318787) =
3.445817) then we could say with 99% confidence that exp(a) = ν(B)/ν(A) ∈
[0.01597, 0.03390].

This is an exact confidence interval, but does not have relative error of 0.1 as
desired. Using the geometric mean of the endpoints at the best estimate, the relative
error could be up to 0.46. So we obtain an exact confidence interval, but not at the
level of relative accuracy that we desired.
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At this point, by knowing a lower bound on ν(B)/ν(A), a second run of TPA
could be undertaken that would guarantee our desired level of accuracy. Details of
this two-phase procedure are given in [5].
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Dimension Truncation in QMC for
Affine-Parametric Operator Equations

Robert N. Gantner

Abstract An application of quasi-Monte Carlo methods of significant recent
interest in the MCQMC community is the quantification of uncertainties in par-
tial differential equation models. Uncertainty quantification for both forward prob-
lems and Bayesian inverse problems leads to high-dimensional integrals that are
well-suited for QMC approximation. One of the approximations required in a gen-
eral formulation as an affine-parametric operator equation is the truncation of the
formally infinite-parametric operator to a finite number of dimensions. To date, a
numerical study of the available theoretical convergence rates for this error have to
the author’s knowledge not been published. We present novel results for a selec-
tion of model problems, the computation of which has been enabled by recently
developed, higher-order QMCmethods based on interlaced polynomial lattice rules.
Surprisingly, the observed rates are one order better in the case of integration over
the parameters than the commonly cited theory suggests; a proof of this higher rate is
included, resulting in a theoretical statement consistent with the observed numerics.

Keywords Quasi Monte Carlo · QMC · Dimension truncation · Interlaced
polynomial lattice rules

1 Introduction

An important application of quasi-Monte Carlo methods that has been of interest
to the MCQMC community in recent years is the quantification of uncertainties in
partial differential equation (PDE) models which depend on uncertain inputs, see
e.g. [2, 3, 6, 7, 14–16, 18] to name but a few. The goal of computation is usually
the mathematical expectation of a goal functional which depends on the solution to
the PDE, corresponding to an integral over the uncertain inputs. Especially in the
case where distributed uncertain inputs are considered, the problems often involve
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high-dimensional input parameter vectors,with the corresponding expectations being
integrals over high-dimensional spaces. This fits naturally into a quasi-Monte Carlo
framework, and various advances have been achieved in this field in recent years.

A large class of such problems can be formulated as so-called affine-parametric
operator equations, for which many general theoretical results are available. These
equations are formulated based on infinite parameter sequences, each corresponding
to a realization of the uncertain input. In order to make computations feasible, a
truncation to finitely many parameters is inevitable, and introduces an error into the
computation. This error is called the dimension truncation error, and its study is the
subject of this article.

Bounds on the dimension truncation error in this context are known [7, 15, 16],
but to the author’s knowledge, no numerical evidence has been published to support
their sharpness. One reason for this may be that obtaining conclusive measurements
is computationally very intensive, requiring approximations of integrals in a high
number of dimensions to possibly very high accuracy, where each evaluation addi-
tionally involves an approximation of the solution to the operator equation by some
numerical method, also with high precision. We fill this gap by providing mea-
surements of this error for selected PDE test problems, where we apply a recently
introduced higher-order quasi-Monte Carlo method based on interlaced polynomial
lattice (IPL) rules [7, 10, 13] to attain the required accuracy in the approximation of
the involved integral at reasonable cost. Combined with evaluation on a massively
parallel computer system, approximations with sufficient accuracy are obtained in
reasonable time.

Remarkably, the measured convergence rate of the error of an integral over the
parameters in terms of the truncation dimension s is found to be one order higher
than the current theoretical results as stated in e.g. [3, 7, 15, 16, 18]. This prompted a
more detailed investigation into this convergence rate, and a proof of this higher rate
is given below in Sect. 3 under someminor additional assumptions on the probability
measure which are often fulfilled in practice. The higher rate shown here is due to a
sharper analysis of the error, which was prompted by the reported numerical results.

We continue now by stating the setting of affine-parametric operator equations
and present in Sect. 3 our main result, a novel estimate of the dimension truncation
error which improves the known convergence rate by one order. In order to mea-
sure this error and verify the predicted rate, the higher-order QMC method used in
the experiments is briefly mentioned in Sect. 4. Results supporting sharpness of the
derived rate are then given in Sect. 5.

2 Affine-Parametric Operator Equations

LetX ,Y denote two separable Banach spaces with norms ‖ · ‖X , ‖ · ‖Y and duals
X ′,Y ′, respectively.Wedenote by y = (y1, y2, . . .) a sequence of parameters taking
values inU = [−1/2, 1/2]N, i.e. the set of sequences with entries y j ∈ [−1/2, 1/2].
For each y ∈ U , we denote by A( y) a bounded linear operator from X to Y ′,



Dimension Truncation in QMC for Affine-Parametric Operator Equations 251

i.e. A( y) ∈ L (X ,Y ′). In the following, we denote by Y ′ 〈·, ·〉Y the duality pairing
in Y . Then, for a given deterministic forcing function f ∈ Y ′ we seek for y ∈ U a
solution q( y) ∈ X to the problem

A( y)q( y) = f in Y ′ . (1)

In the following, wewill assume the operator A( y) to depend on the y j in an affine
manner. More specifically, for a nominal operator A0 and a sequence of fluctuation
operators (A j ) j≥1 we assume A( y) to be of the form

A( y) = A0 +
∑

j≥1

y j A j . (2)

We now state some assumptions on (A j ) j≥0 that are required for the well-posedness
of (1) with A( y) given by (2), or for the dimension truncation statements in Sect. 3.

Assumption 1 Assume that the nominal operator A0 ∈ L (X ,Y ′) is boundedly
invertible. Additionally, assume that the fluctuation operators (A j ) j≥1 are small
wrt. A0, i.e. there exists a κ < 2 such that for the sequence b = (b1, b2, . . .),
defined by b j := ‖A−1

0 A j‖L (X ) it holds that ‖b‖�1(N) := ∑
j≥1 b j ≤ κ < 2, cp. [18,

Assumption 2].

Assumption 2 Assume that there exists 0 < p < 1 such that for b = (b j ) j≥1 from
Assumption 1 it holds that b ∈ �p(N), i.e.

∑
j≥1 b

p
j < ∞.

Assumption 3 Assume the fluctuation operators (A j ) j≥1 to be arranged such that
b = (b j ) j≥1 from Assumption 1 is non-increasing.

Proposition 1 ([18,Theorem2])UnderAssumption1, for every parameter sequence
y ∈ U = [−1/2, 1/2]N the parametric operator A( y) is boundedly invertible. Fur-
thermore, for any y ∈ U and any f ∈ Y ′, the weak parametric equation

Y ′ 〈A( y)q( y), v〉Y = Y ′ 〈 f, v〉Y , ∀v ∈ Y

admits a unique solution q( y) and there holds the a-priori estimate

sup
y∈U

‖q( y)‖X ≤ C‖ f ‖Y ′ ,

where C > 0 is a constant independent of f .

Often, a quantity of interest (QoI) depending on the solution q( y) is to be com-
puted. We consider here as QoI a linear goal functional G ∈ X ′, and assume given
a product probability measure μ( y) = ∏

j≥1 μ j (y j ) onU . The goal of computation
is the mathematical expectation

E[G(q)] =
∫

U
G(q( y))μ(d y) . (3)
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Examples of the goal functional G are point evaluation of the solution, or an average
over (a subset of) the spatial domain. The following statement on the parametric
regularity of the solution, i.e. a bound on the partial derivatives of q( y) with respect
to the y j , will be required for the higher-order quasi-Monte Carlo method to be
presented in Sect. 4.

Proposition 2 ([7, Theorem2.2])LetF = {ν ∈ N
N

0 : |ν| := ∑
j≥1 ν j < ∞}denote

the set of finitely supported multiindices and denote by ∂ν
y partial derivatives of order

ν j with respect to coordinate y j and let q( y) be the solution to (1) with A( y) as in
(2) satisfying Assumption 1. Then, there exists a constant C > 0 and a sequence β

satisfying Assumption 2 such that for all f ∈ Y ′ and every y ∈ U it holds that

∀ν ∈ F : ‖∂ν
yq( y)‖X ≤ C |ν|!βν := C

( ∑

j≥1

ν j

)
!
∏

j≥1

β
ν j

j .

2.1 Approximation

In order to obtain a computable approximation to (3), three approximations are
required: (i) dimension truncation of the affine-parametric operator from (2), (ii)
Petrov–Galerkin discretization of the Eq. (1) based on the dimensionally truncated
operator, and (iii) quasi-Monte Carlo approximation of the integral over y ∈ U .

We denote by As( y) = A(y1, . . . , ys, 0, . . .) the dimensionally truncated operator,
and by qs( y) the solution to (1) based on As( y). Petrov–Galerkin discretization
yields for fixed y ∈ U a discrete solution qs

h( y) approximating qs( y), where the
discretization parameter h usually signifies the maximal meshwidth when using the
finite elementmethod. The third and final approximation is replacing the integral over
U by an N -point QMC quadrature rule with point set PN = { y(0), . . . , y(N−1)} ⊂
[0, 1]s , yielding the full approximation

E[G(q)] =
∫

U
G(q( y))μ(d y) ≈ 1

N

N−1∑

n=0

G(qs
h( y

(n) − 1/2)) . (4)

By the triangle inequality, we can write the total error Es,h,N as

Es,h,N =
∣∣∣
∫

U
G(q( y))μ(d y) − 1

N

N−1∑

n=0

G(qs
h( y

(n) − 1/2))
∣∣∣

≤
∣∣∣
∫

U
G(qs

h( y))μ(d y) − 1

N

N−1∑

n=0

G(qs
h( y

(n) − 1/2))
∣∣∣

+
∣∣∣
∫

U
G(qs( y)) − G(qs

h( y))μ(d y)
∣∣∣ +

∣∣∣
∫

U
G(q( y)) − G(qs( y))μ(d y)

∣∣∣ .

(5)
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The dimension truncation error is the last term in (5), which we will bound in
the following section and approximate computationally in Sect. 5. In order to do the
latter, we must still rely on an approximation of the form (4), in principle choosing
N and h large and small enough, respectively, to ensure that the first two errors are
negligible. We comment more on the choice of these values in Sect. 5 below.

3 Dimension Truncation Error Estimates

We begin by recalling existing estimates on the dimension truncation error pointwise
in y, i.e. ‖q( y) − qs( y)‖X . Then, we detail in Theorem 1 a novel result which gives
a statement on the convergence of the error of the integral

∣∣ ∫
U G(q( y) − qs( y)) d y

∣∣
in the truncation dimension s, improving upon known bounds.

Proposition 3 For every f ∈ Y ′, y ∈ U, s ∈ N, denote by qs( y) the solution
to a problem of the form As( y)qs( y) = f with As( y) = A(y1, . . . , ys, 0, . . .). Let
Assumptions 1 and 2 hold, and assume additionally that μ j is such that

∫
U y j μ j

(dy j ) = 0 for all j ≥ 1. Then, for a constant C > 0 which is independent of s and
f it holds that

∀ y ∈ U : ∥∥q( y) − qs( y)
∥∥
X

≤ C‖ f ‖Y ′s−1/p+1 . (6)

Proof See e.g. [1, 7, 15]. �

We now make the following additional assumption on the measure μ, noting that
the first part holds in particular for all symmetric distributions.

Assumption 4 Assume that μ( y) = ∏
j≥1 μ j (y j ) is a product probability measure

and that the factor measures μ j on the parameters y j are such that for all j ≥ 1
it holds that

∫ 1/2
−1/2 y j μ j (dy j ) = 0 and

∫ 1/2
−1/2 y

k
j μ j (dy j ) ≤ Ck < ∞ for all integers

k ≥ 2.

In [15], the bound
∣∣ ∫

U q( y) − qs( y) d y
∣∣ ≤ Cs−2(1/p−1) was shown for equations

of the type considered here under Assumption 2 and
∫ 1/2
−1/2 y j μ(dy j ) = 0, which we

improve here to O(s−2/p+1), which is one order better. We begin by proving the
following Lemma.

Lemma 1 Let As( y) denote the operator A( y) of the form (2) truncated after dimen-
sion s, i.e. As( y) = A(y1, . . . , ys, 0, . . .). Assume Assumptions 1 and 3. Then, for
sufficiently large s it holds that

sup
y∈U

‖(As( y))−1(A( y) − As( y))‖L (X ) ≤ 1

2 − κ

∑

j>s

b j < 1 . (7)
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Proof We have ‖(As)−1(A − As)‖L (X ) ≤ ‖(As)−1A0‖L (X )‖A−1
0 (A − As)‖L (X ),

which we bound individually. For the first factor, Assumption 1 implies that for all
y ∈ U it holds that ‖A−1

0 As‖L (X ) ≤ ∑s
j=1 y j‖A−1

0 A j‖L (X ) < 1, implying with
the Neumann series the bound

‖(As)−1A0‖L (X ) = ‖(A−1
0 As)−1‖L (X ) ≤ 1

1 − 1
2

∑s
j=1 b j

≤ 1

1 − 1
2‖b‖�1(N)

.

(8)
For the second factor, we have

‖A−1
0 (A − As)‖L (X ) = ‖A−1

0

∑

j>s

y j A j‖L (X ) ≤ 1

2

∑

j>s

‖A−1
0 A j‖L (X ) = 1

2

∑

j>s

b j .

Combining these two bounds and recalling ‖b‖�1(N) ≤ κ yields the first inequality.
The bound is less than 1 for sufficiently large s since b ∈ �1(N) and the b j are
assumed in Assumption 3 to be non-increasing. �

Theorem 1 For every s ∈ N, denote by qs( y) the solution to a problem of the form
Asqs = f with As as in (2)where y = (y1, . . . , ys, 0, . . .). Let Assumptions 1–4 hold.
Then, for any s ∈ N, f ∈ Y ′ and G ∈ X ′ there exists a constant C > 0 which is
independent of s, f and G such that

∣∣∣
∫

U
G(q( y) − qs( y))μ(d y)

∣∣∣ ≤ C‖G‖X ′ ‖ f ‖Y ′s−2/p+1 . (9)

Proof Assumption 1 implies bounded invertibility of A( y) and As( y) for any y ∈
U , thus we can write (omitting the argument y for legibility) A = As + A − As =
As(I + (As)−1(A − As)). We aim to write the inverse of A given in this form as a
Neumann series, which is justified for suitably large s by Lemma 1. Thus, we have

A−1 = (
I + (As)−1(A − As)

)−1
(As)−1 =

∑

k≥0

( − (As)−1(A − As)
)k

(As)−1 .

Fubini’s theorem, together with linearity of G and of the integral then implies

∫

U
G(q( y) − qs( y))μ(d y) =

∫

U
G

(
(A−1 − (As)−1) f

)
μ(d y)

=
∫

U
G

( ∑

k≥1

(
−

∑

j>s

y j (A
s)−1A j

)k
qs

)
μ(d y)

=
∑

k≥1

(−1)k
∫

U
G

(( ∑

j>s

y j (A
s)−1A j

)k
qs

)
μ(d y) .

(10)
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We assume now additionally Assumptions 2 and 3. Then, using a similar approach
as in [15], we obtain for k ′ ∈ N and a constant C f,G > 0 the bound

∣∣∣
∑

k≥k ′
(−1)k

∫

U
G

((∑

j>s

y j (A
s)−1A j

)k
qs

)
μ(d y)

∣∣∣ (11)

≤ C‖G‖X ′ ‖ f ‖Y ′ sup
y∈U

∑

k≥k ′

∥∥(As)−1(A − As)
∥∥k

L (X )
≤ C f,Gs

k ′(−1/p+1) .

The above gives a bound for the remainder of the sum over k, starting at term k ′;
our goal now is to bound the terms up to k ′ by a better estimate. To this end, we
use linearity of G and the integral, as well as the identity

( ∑
j>s y j (A

s)−1A j
)k =

∑
η∈{ j>s}k

∏k
i=1(yηi (A

s)−1Aηi ),which respects the generally non-commutative nature
of the operators. Denoting by Us = [−1/2, 1/2]s the truncated parameter domain
and setting μs( ys) := ∏s

j=1 μ j (y j ) we obtain

∫

U
G

(( ∑

j>s

y j (A
s)−1A j

)k
qs

)
μ(d y)

=
∑

η∈{ j>s}k

∫

U
G

(( k∏

i=1

yηi

) k∏

i=1

((As)−1Aηi )q
s
)

μ(d y)

=
∑

η∈{ j>s}k

∫

U

( k∏

i=1

yηi

)
μ(d y)

∫

Us

G
( k∏

i=1

((As)−1Aηi )q
s
)

μs(d ys) .

It is important to note that the functional G in the last statement is applied to an
expression that depends only on the first s dimensions (through As and qs), allowing
the integral with respect to y j for j > s to be separated out. See also the proof of
[11, Proposition 5.1] for a similar argument. For any η ∈ { j > s}k it holds that

∫

U
G

(( k∏

i=1

yηi

) k∏

i=1

((As)−1Aηi )q
s
)

μ(d y)

=
∫

U

∫

Us

( k∏

i=1

yηi

)
G

( k∏

i=1

((As)−1Aηi )q
s
)

μs(d ys)μ(d y)

=
∫

U

( k∏

i=1

yηi

) ∫

Us

G
( k∏

i=1

((As)−1Aηi )q
s
)

μs(d ys)μ(d y)

=
∫

U

( k∏

i=1

yηi

)
μ(d y)

∫

Us

G
( k∏

i=1

((As)−1Aηi )q
s
)

μs(d ys) .
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We will now introduce various definitions required below: let ν(η) := (#{i =
1, . . . , k : ηi = j}) j≥1, i.e. ν j (η) ∈ {0, . . . , k} for j ≥ 1, define the support of a mul-
tiindex ν ∈ F by supp(ν) := { j ∈ N : ν j = 0} and let #S denote the cardinality of a
set S. Note that min supp ν(η) > s as well as # supp(ν(η)) ≤ k for η ∈ { j > s}k as in
the sums above. Thus, for every such ηwe canwrite

∏k
i=1 yηi = ∏

j>s y
ν j (η)

j = yν(η),
where the product is over a finite set since ν(η) is finitely supported.

Assumption 4 now directly implies that all terms where ν j = 1 for at least
one j > s are zero. For k = 1, ν j ∈ {0, 1} for all j > s, thus all terms contain at
least one exponent equal to 1 and are zero. We consider in the following k ≥ 2,
and aim to rewrite the sum over η as a sum over the set Fk,s := {ν ∈ F : |ν| =
k,min supp(ν) > s, ν j = 1∀ j}. For all ν ∈ Fk,s it holds that # supp(ν) ≤ k/2, since
the smallest nonzero element is 2, and we have the condition |ν| = k. We define
cν := ∣∣ ∫

U yν μ(d y)
∣∣, which, since # supp(ν) ≤ k/2 and recalling the definition of

Ck from Assumption 4 fulfills cν ≤ ∏
j∈supp(ν) Cν j ≤ (

max j>s Cν j

)k/2
. Defining

C f,G := ‖G‖X ′ ‖ f ‖Y ′ and writing μ{1:s}( y) = ∏s
j=1 μ j (y j ), we have

∣∣∣
∑

η∈{ j>s}k

∫

U

(∏

j>s

y
ν j (η)

j

)
μ(d y)

∫

Us

G
( k∏

i=1

((As)−1Aηi )q
s
)

μ{1:s}(d y)
∣∣∣

≤ C f,G

∑

η∈{ j>s}k
cν(η)

∫

Us

k∏

i=1

∥∥((As)−1Aηi )
∥∥
L (X )

μ{1:s}(d y)

= C f,G

∑

ν∈F k,s

(
k

ν

)
cν

∫

Us

∏

j>s

∥∥((As)−1A j )
∥∥ν j

L (X )
μ{1:s}(d y) .

We bound sup y∈U ‖(As)−1A j‖L (X ) ≤ (1 − κ/2)−1b j =: b̃ j similar to (8) and(k
ν

)
cν ≤ ck := (max j>s Cν j )

k/2k!. Let F̃k,s := {ν ∈ F : |ν|∞ ≤ k, ν = 0,min
supp(ν) > s, ν j = 1∀ j}, where we observe that F̃k,s ⊃ Fk,s , which yields with
b̃ j ≥ 0 for all j ≥ 1

C f,G

∑

ν∈F k,s

(
k

ν

)
cν

∫

Us

∏

j>s

∥∥((As)−1A j )
∥∥ν j

L (X )
μ{1:s}(d y) ≤ ckC f,G

∑

ν∈F̃ k,s

∏

j>s

b̃
ν j

j .

We now rewrite the sum over F̃k,s as the product of a sum, since we notice
that every element of the set F̃k,s (resulting in a term b̃

ν
) corresponds to one term

of the product
∏

j>s(1 + ∑k
�=2 b̃

�
j ), with the exception of the additional term 1

(corresponding to ν = 0, which is excluded in F̃k,s), that we subtract. Defining
b̂ 2
j := b̃2j (1 − b̃ j )

−1, it holds that (̂b j ) j≥1 ∈ �p(N) and b̂ j < 1 for all j > s for suit-
ably large s. The first term in parenthesis below can thus be rewritten using basic
properties of the geometric series,
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∑

ν∈F̃ k,s

b̃
ν =

∏

j>s

(
1 +

k∑

�=2

b̃�
j

)
− 1 =

∏

j>s

(
1 + b̃ 2

j

1 − b̃k−1
j

1 − b̃ j

)
− 1 ≤

∏

j>s

(
1 + b̂ 2

j

)
− 1

= exp
(∑

j>s

log
(
1 + b̂ 2

j

)) − 1 ≤ C
∑

j>s

b̂ 2
j ≤ C

1 − s−2/p+1 s
−2/p+1 . (12)

We recall the Neumann series (10), for which the k = 1 term is zero, and split it
into a sum over k = 2, . . . , k ′ − 1 < ∞, where each term is bounded from above by
(12) times the constants ckC f,G < ∞, and a remainder with k ≥ k ′ for which we use
(11). For each p < 1, the choice k ′ = k ′(p) = �(2 − p)/(1 − p)� < ∞ ensures that
the remainder converges at least as rapidly as the estimate s−2/p+1. Collecting terms
then yields the statement. �

For fast decay of the sequence b fromAssumption 2, i.e. for small values of p, the
convergence rate of the dimension truncation error of the integral fromTheorem1 can
be quite high. Balancing the required finite element and quadrature approximation
errors with the possibly very small values of the dimension truncation error would
result in a large number of samples, and consequently a large amount of work, even
for moderate s. A standardMonte Carlomethod converging like N−1/2 in the number
of samples N is thus not feasible, as the number of required samples is much too
large. AQMCmethod converging at rate 1 is better, but for small p is still not accurate
enough to allow these computations to be executed in a reasonable amount of time.

Other approaches may converge more quickly, for example adaptive Smolyak or
sparse grid-type quadrature methods [12, 17]. However, these are inherently serial,
and the computational cost due to the involved internal bookkeeping overhead also
increases rapidly if high accuracies are required. Thus, the only method known to
the author to perform well enough (in terms of convergence rate and amenability to
parallel implementation) for such measurements to be performed for a large range of
values of 0 < p < 1 and in high enough dimension to yield conclusive results is the
higher-order QMC method of [7, 13] based on interlaced polynomial lattice rules,
which we now briefly describe.

4 Interlaced Polynomial Lattice Rules

For the presentation of interlaced polynomial lattice (IPL) rules, we require some def-
initions and notation. A polynomial lattice rule (without interlacing for the moment)
is an equal-weight quadrature rule with N = bm points for some prime number b
and positive integer m, and is given by a generating vector whose components are
polynomials of degree less than m over the finite field Zb. Let Zb[x] denote the set
of all polynomials over Zb, i.e. polynomials of the form

∑m−1
k=0 ξk xk with ξk ∈ Zb.

Then, the generating vector is denoted by q ∈ (Zb[x])s with q = (q j (x))sj=1. We

associate with each integer n = 0, . . . , bm − 1 a polynomial n(x) = ∑m−1
k=0 ξk xk ,

where ξk are the digits of n in base b, that is n = ξ0 + ξ1b + ξ2b2 + · · · + ξm−1bm−1.
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To obtain points in [0, 1]s from the generating vector q, we require the mapping
vm : Zb(x−1) → [0, 1) which is given for any integer w by

vm

( ∞∑

k=w

ξk x
−k

)
=

m∑

k=max(1,w)

ξkb
−k .

For an irreducible polynomial P ∈ Zb[x] of degree equal to m, the j th component
of the nth point of the point setPN = { y(0), . . . , y(N−1)} is given by

( y(n)) j = vm

(
n(x)q j (x)

P(x)

)
, n = 0, . . . , N − 1, j = 1, . . . , s.

To obtain orders of convergence higher than one, we require an additional inter-
lacing step. To this end, we denote the digit interlacing function of α ∈ N points as
Dα : [0, 1)α → [0, 1),

Dα(x1, . . . , xα) =
∞∑

a=1

α∑

j=1

ξ j,ab
− j−(a−1)α,

where ξ j,a is the ath digit in the expansion of the j th point x j ∈ [0, 1) in base
b−1, x j = ξ j,1b−1 + ξ j,2b−2 + . . . . For vectors in αs dimensions, digit interlacing is
defined block-wise and denoted by Dα : [0, 1)αs → [0, 1)s with

Dα(x1, . . . , xαs) = (
Dα(x1, . . . , xα), Dα(xα+1, . . . , x2α), . . . , Dα(x(s−1)α+1, . . . , xsα)

)
.

For a generating vector q ∈ (Zb[x])αs containing α components for each of the s
dimensions, the interlaced polynomial lattice point set is Dα(P̃N ) ⊂ [0, 1)s , where
P̃N ⊂ [0, 1)αs denotes the (classical) polynomial lattice point set in αs dimensions
with generating vector q. For more details on this method, see e.g. [7, 10, 13]. The
following proposition states the higher order rates that are obtainable under suitable
sparsity assumptions of the form stated in Proposition 2.

Proposition 4 ([7, Theorem 3.1]) For m ≥ 1 and a prime number b, denote by
N = bm the number of QMC points. Let s ≥ 1 and β = (β j ) j≥1 be a sequence of
positive numbers, and let βs = (β j )1≤ j≤s denote the first s terms of β. Assume that
β ∈ �p(N) for some p ∈ (0, 1).

If there exists a c > 0 such that for α := �1/p� + 1 a function F satisfies

∀ν ∈ {0, 1, . . . , α}s,∀s ∈ N : |(∂ν
yF)( y)| ≤ c |ν|!βν

s , (13)

then an interlaced polynomial lattice (IPL) rule of order α with N points can be
constructed in O(α s N log N + α2 s2N ) operations, such that for the quadrature
error it holds that
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|Is(F) − QN ,s(F)| ≤ Cα,β,b,p,F N−1/p, (14)

where the constant Cα,β,b,p,F < ∞ is independent of s and N.

5 Experiments

We consider three different examples that fit into the affine-parametric framework,
and measure the dimension truncation error for each one, both for the pointwise case
and for the integral case. For the latter, we verify in all three cases that the bound from
Theorem 1 corresponds to the measured rates, for various values of the fluctuation
summability exponent p. The results thus give concrete evidence supporting the
sharpness of both estimates. Below, we specify the fluctuation decay rate ζ > 1,
which implies p-summability for any p > 1/ζ . Using the limiting value p = 1/ζ ,
we expect the dimension truncation convergence rate s−ζ+1 for the pointwise case
and rate s−2ζ+1 for the integral case, cf. Proposition 3 and Theorem 1, respectively.
For the computations of the pointwise error, we use the parameter value y = e−21 =
e−2(1, 1, . . .) ∈ U .

5.1 Example 1: Test Integrand

The first example is designed to serve as a simplified test case that does not
require finite element discretization, since the operator equation simplifies to an
algebraic equation, see also [10, Eq.18]. We seek to approximate the integral over
U = [−1/2, 1/2]N of the “solution” q( y) which is given in this case by

q( y) =
(
1 +

∑

j≥1

y j c j
)−1

, c j = σ j−ζ , σ = 0.1 . (15)

We thus circumvent the finite element discretization error, but must still ensure
that the QMC error is small enough. For a rough estimate of the number of QMC
points N = 2m , consider decay rate ζ and truncation dimension s = 2β for some
β > 1. Then, by Theorem 1 the dimension truncation error is of order s−2ζ+1 =
2(−2ζ+1)β . By Proposition 4, the QMC error converges like N−ζ = 2−mζ . Assuming
the constants in the error estimates to be equal, we thus require 2−mζ < 2(−2ζ+1)β ,
implyingm > (2 − 1/ζ )β. For s = 1024 we have β = 10 and obtain with ζ = 2 the
condition m > 15. Below, we use m = 18, which suffices for the considered values
of ζ up to 3 and yields clear measurements of the integral dimension truncation error.

For this example, since no finite element solver is needed and efficiency is not
such an issue, the implementation was conducted in Python with the higher-order
QMC rules applied with the pyQMC library, see [8]. The required generating vectors
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Fig. 1 Dimension truncation error for the test integrand (15). a pointwise dimension truncation
error |q( y) − qs( y)| for y = e−21 with q( y) approximated by a reference value in s = 215 dimen-
sions, with expected rate −ζ + 1. b integral dimension truncation error | ∫U q( y) − qs( y) d y| with
reference dimension s = 1024 and expected rate −2ζ + 1. Higher-order QMC based on IPL rules
was used with N = 218 points.The expected rates are clearly observed in both cases

were obtained by fast CBC construction [10] and are available at [8] under the head-
ing “Standard SPODWeights”. For the computations below, we used the parameters
α = 2, C = 0.1, and θ = 0.2. The reference approximations in s = 1024 dimen-
sions with an IPL rule based on N = 218 points are given for ζ = 1.5, 2, 2.5, 3 by
1.0010038828766668, 1.0009035434306022, 1.0008655151823671, and1.0008491
110838873, respectively.

As shown in the results in Fig. 1, the expected convergence rates can be clearly
observed in both cases.We note that this example additionally allows straightforward
computation of the integrals in (10) for arbitrary k, allowing verification of the
individual estimates in the proof.

5.2 Example 2: Diffusion Equation in One Dimension

We formulate here a model diffusion equation in spatial dimension d = 1, 2 for use
in this and the next example. Denoting by D ⊂ R

d a bounded domain, for any y ∈ U
we seek q(·, y) ∈ X = Y = H 1

0 (D) such that

− ∇ · (u(x, y)∇q(x, y)
) = f (x) in D, q(x, y) = 0 on ∂D , (16)

where u(x, y) ∈ R denotes for each y a spatially varying diffusion coefficient. It is
well-known that the following assumption implies that there exists a unique solution
to (16) for any sequence y ∈ U .
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Assumption 5 (Uniform ellipticity) There exist constants u−, u+ > 0 such that for
all y ∈ U and for almost every x ∈ D it holds that 0 < u− ≤ u(x; y) ≤ u+.

An affine-parametric partial differential equation is obtained for example by the
following choice of coefficient parametrization,

u(x; y) = u0 +
∑

j≥1

y jψ j (x), x ∈ D, y ∈ U . (17)

In the one-dimensional case we use the parametric basis functions ψ2 j (x) = (2 j)−ζ

sin( jπx) and ψ2 j−1(x) = (2 j − 1)−ζ cos( jπx).
For simplicity of implementation, we compute the convergence of the pointwise

dimension truncation error by applying a linear goal functional G ∈ X ′ and observ-
ing with Proposition 3 that

∣∣G(q( y)) − G(qs( y))
∣∣ ≤ ‖G‖X ′ ‖(q − qs)( y)‖X ≤ C‖G‖X ′ ‖ f ‖Y ′s−1/p+1 .

We choose as goal functional integration over the spatial domain D, G(q( y)) =∫
D q(x, y) dx and set f (x) = 10x . Finite element discretization with standard piece-

wise linear finite elements on an equidistant mesh of D = [0, 1] with meshwidth h
is used. Since no exact solution is available, we resort to using a reference solution
with truncation dimension chosen to be twice the number of dimensions in the most
precise measurement, see the caption of Fig. 2 for details. The finite element mesh-
width was the same for all computations and chosen to be h = 2−18. Note that this
is not sufficient to completely remove the finite element error; in the plots below,
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Fig. 2 Dimension truncation error for the diffusion equation with d = 1. a pointwise dimension
truncation error |qh( y) − qsh( y)| for y = e−21 with qh( y) approximated by a reference value in
s = 215 dimensions, with expected rate−ζ + 1. b integral dimension truncation error | ∫U qh( y) −
qsh( y) d y| with reference dimension s = 1024 and expected rate −2ζ + 1. The expected rates are
clearly observed in both cases
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we consider convergence of
∫
U G(qs

h( y)) d y to
∫
U G(qh( y)) d y, for fixed h. In this

case, we can use the same generating vectors as for Example 1 but with m = 20.

5.3 Example 3: Diffusion Equation in Two Dimensions

We consider here again (16) as in Example 2, but in two spatial dimensions,
requiring a different choice of fluctuation basis, see also related experiments in
[4, 5]. The parametrization is given in terms of the eigenfunctions of the Dirich-
let Laplacian on D = (0, 1)2, where we choose the fluctuations ψ j (x) = (k21, j +
k22, j )

−ζ sin(πk1, j x1) sin(πk2, j x2) by reordering the tuples (k1, j , k2, j ) ∈ N
2 such that

(‖ψ j (x)‖L∞(D)) j≥1 is non-increasing. Choosing the deterministic right-hand side
f (x) = 100x1 results in an affine-parametric PDE satisfying Assumption 2 with
p > 1/ζ . The pointwise dimension truncation error is again computed by consider-
ing a goal functional as detailed in Example 2 above, where this time we choose as
goal functional the integral over D̃ = (1/2, 1)2 ⊂ D, i.e. G(q( y)) = ∫

Ũ q(x, y) dx .
For spatial discretization, we use a tensor product mesh with nodes obtained from

the Cartesian product of equidistant nodes on (0, 1), with standard piecewise bilinear
finite element basis functions. The one-dimensional meshwidth is 2−6, resulting in
O(212) degrees of freedom. In this example and the previous one, a C++ implemen-
tation was used for efficiency reasons. The IPL rules were applied using the gMLQMC
library [9] and the evaluation was conducted on the Piz Daint HPC system of CSCS
with up to 1440 parallel processes. The generating vectors used here are available at
[8] under the heading “SPOD Weights for 2d Diffusion Equation” (Fig. 3).
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Fig. 3 Dimension truncation error for the diffusion equation with d = 2. a pointwise dimension
truncation error |qh( y) − qsh( y)| for y = e−21 with qh( y) approximated by a reference value in
s = 215 dimensions, with expected rate−ζ + 1. b integral dimension truncation error | ∫U qh( y) −
qsh( y) d y| with reference dimension s = 1024 and expected rate −2ζ + 1. The expected rate is
clearly observed in b, while in a the rate seems to be one order better than expected
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6 Conclusions

We consider the error committed by truncating countably affine-parametric operator
equations to a finite number of terms, and prove the convergence rate s−2/p+1 where s
is the truncation dimension and p < 1 the summability of the sequence of fluctuation
operator norms, improving on the rate s2(−1/p+1) for the case of integration over a
sequence of parameters. Numerical experiments verify this rate for a test integrand
and two PDE examples, in one and two spatial dimensions, using up to s = 1024
parametric dimensions. Measurements of the pointwise dimension truncation error
are also given, confirming the established theory.
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Combining Sparse Grids, Multilevel MC
and QMC for Elliptic PDEs with
Random Coefficients

Michael B. Giles, Frances Y. Kuo and Ian H. Sloan

Abstract Building on previous research which generalized multilevel Monte Carlo
methodsusing either sparse grids orQuasi-MonteCarlomethods, this paper considers
the combination of all these ideas applied to elliptic PDEs with finite-dimensional
uncertainty in the coefficients. It shows the potential for the computational cost to
achieve an O(ε) r.m.s. accuracy to be O(ε−r )with r <2, independently of the spatial
dimension of the PDE.

Keywords Sparse grids · Multilevel · Quasi-Monte Carlo · Elliptic PDEs

1 Introduction

There has been considerable research in recent years into the estimation of the
expected value of output functionals P(u) arising from the solution of elliptic PDEs
of the form

− ∇ ·
(
a(x, y)∇u(x, y)

)
= f (x), (1)

in the unit hypercube [0, 1]d , with homogeneousDirichlet boundary conditions. Here
x represents the d-dimensional spatial coordinates and the gradients are with respect
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to these, while y represents the uncertainty. In this paperwewill consider the simplest
possible setting in which we have finite s-dimensional uncertainty where

a(x, y) = a0(x) +
s∑

j=1

y j a j (x),

with the y j independently and uniformly distributed on the interval [− 1
2 ,

1
2 ], with

0 < amin ≤ a(x, y) ≤ amax < ∞ for all x and y. This is the so-called “uniformcase”.
In this paper we consider several grid-based sampling methods, in all of which the

PDE (1) is solved approximately by full or sparse grid-based methods with respect to
x, for selected values of y.Wewill consider bothmultilevel andmulti-indexmethods
[10, 15], and compare Monte Carlo (MC) and Quasi-Monte Carlo (QMC) methods
for computing expected values with respect to y. We pay attention to the dependence
of the computational cost on the spatial dimension d, and we assume throughout this
paper that the stochastic dimension s is fixed, though possibly large, and we do not
track the dependence of the cost on s.

As a general approach in a wide range of stochastic applications, the multilevel
Monte Carlo (MLMC) approach [10] computes solutions with different levels of
accuracy, using the coarser solutions as a control variate for finer solutions. If the
spatial dimension d is not too large, this can lead to an r.m.s. accuracy of ε being
achieved at a computational cost which is O(ε−2), which is much better than when
using the standard MC method.

The earliest multilevel research on this problem was on the use of the MLMC
method for both this “uniform case” [1, 17] and the harder “lognormal case” [5,
6, 18, 25] in which a(x, y) has a log-normal distribution with a specified spa-
tial covariance so that log a(x, y) has a Karhunen-Loève expansion of the form
log a(x, y) = κ0(x) + ∑∞

j=1 y j
√

λ j κ j (x), where the y j are independentwith a stan-
dard normal distribution, and λ j and κ j (x) are the non-decreasing eigenvalues and
orthonormal eigenfunctions of integral operator involving the covariance kernel. For
simplicity we will restrict our discussions to the uniform case here in this paper, but
our results can be easily adapted for the lognormal case.

Subsequent research [7, 13, 19, 21, 22] combined the multilevel approach with
the use of QMC points, to form multilevel Quasi-Monte Carlo (MLQMC). In the
best cases, this can further reduce the computational cost to O(ε−r ) for r <2.

The efficiency of both MLMC and MLQMC suffers when d is large, and the
reason for this is easily understood. Suppose the numerical discretisation of the PDE
has order of accuracy p, so that the error in the output functional is O(h p), where h is
the grid spacing in each coordinate direction. To achieve an O(ε) accuracy requires
h=O(ε1/p), but if this is the grid spacing in each direction then the total number
of grid points is O(ε−d/p). Hence, the computational cost of performing just one
calculation on the finest level of resolution is O(ε−d/p), and this then gives a lower
bound on the cost of the MLMC and MLQMC methods.

This curse of dimensionality is well understood, and in the case of deterministic
PDEs (i.e., without the uncertainty y) it has been addressed through the development
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of sparse grid methods [4]. One variant of this, the sparse combination technique,
was the inspiration for the development of the multi-index Monte Carlo (MIMC)
method [15]. The latter is a generalization of MLMC which in the context of multi-
dimensional PDEs uses a variety of regular grids, with differing resolutions in each
spatial direction.

In this paper we have two main contributions:

• we present alternative ways of combining MLMC with sparse grids, and discuss
their relationship to the MIMC method;

• we extend these approaches by considering the use of randomised QMC points,
and derive the resulting computational cost if certain conditions are met.

The paper begins by reviewing sparse grid, MLMC/MIMC and randomised QMC
methods [4, 8, 11]. Next we consider the combination of MLMC with sparse grids,
before adding randomised QMC to the combination. In doing so, we present meta-
theorems on the resulting computational cost, based on key assumptions about the
asymptotic behaviour of certain quantities.

2 Sparse Grid Methods

There are two main classes of sparse grid methods for deterministic PDEs: sparse
finite elements and the sparse combination technique [4].

2.1 Sparse Finite Element Method

The sparse finite element method for elliptic PDEs uses a standard Galerkin finite
element formulation but with a sparse finite element basis. One advantage of this
approach is that most of the usual finite element numerical analysis remains valid;
the accuracy of the method can be bounded by using bounds on the accuracy in
interpolating the exact solution using the sparse finite element basis functions. The
main disadvantage of the approach compared to the sparse combination technique
(see the next subsection) is the difficulty of its implementation.

Following the very clear description of the method in [3], suppose that we are
interested in approximating the solution of an elliptic PDE in d-dimensions. For
a non-negative multi-index � = (�1, �2, . . . , �d), let V� be the finite element space
spanned by the usual d-linear hat functions on a gridwith spacing 2−� j in dimension j
for each j = 1, . . . , d. The difference space W� is defined by

W� = V� �
⎛
⎝

d⊕
j=1

V�−e j

⎞
⎠
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where e j is the unit vector in direction j . Thus,W� has the minimal set of additional
basis elements such that

V� = W� ⊕
⎛
⎝

d⊕
j=1

V�−e j

⎞
⎠ .

A sparse finite element space is then defined by
⊕

�∈L W�, for some index set
L . A simple and near-optimal choice for a given level of accuracy is the set L =
{� : ‖�‖1≤ L} for some integer L; this is discussed in [3] (that paper also presents
a slightly better choice). Having defined the finite element space used for both test
and trial functions, the rest of the formulation is the standard Galerkin finite element
method. In the following, the space H1 is the standard Sobolev space with mixed
first derivatives in x.

Theorem 1 (Sparse finite elementmethod) For fixed y, if thePDE (1) is solved using
the sparse finite element method with the index set specified by ‖�‖1≤ L, then the
computational cost is O(Ld−1 2L). Moreover, the H1 solution accuracy is O(2−L)

if the solution u has sufficient mixed regularity, and the accuracy of simple output
functionals P (such as smoothly weighted averages of the solution) is O(2−2L).
Hence, the cost to achieve a functional accuracy of ε is O(ε−1/2| log ε|d−1).

Proof The cost and H1 solution accuracy are proved in [3, 14]. The super-
convergence for output functionals is an immediate consequence of adjoint-based
error analysis [12]. �

2.2 Sparse Combination Method

The sparse combination method combines the results of separate calculations on
simple tensor product grids with different resolutions in each coordinate direction
[14]. For a given output functional P and multi-index � = (�1, . . . , �d), let P� denote
the approximate output functional obtained on a grid with spacing 2−� j in direction
j for each j = 1, . . . , d. For convenience, we define P� := 0 if any of the indices in
� is negative.

The backward difference in the j th dimension is defined as Δ j P� := P� − P�−e j ,

and we define the d-dimensional mixed first difference as

ΔP� :=
⎛
⎝

d∏
j=1

Δ j

⎞
⎠ P�.

For an arbitrary multi-index �′, it can be shown that

P�′ =
∑

0 ≤ � ≤ �′
ΔP�, (2)
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where the multi-index inequality � ≤ �′ is applied element-wise (i.e. � j ≤�′
j ,∀ j).

Taking the limit as �′ → ∞ (i.e. �′
j → ∞,∀ j) gives

P =
∑
� ≥ 0

ΔP�. (3)

The sparse combination method truncates the summation to a finite index set, with a
simple and near-optimal choice again being ‖�‖1≤�. This gives the approximation

P� :=
∑

‖�‖1≤�

ΔP�, (4)

where we are slightly abusing notation by distinguishing between the original P�

with a multi-index subscript (in bold type with a tilde underneath), and the new P�

on the left-hand side of this equation with a scalar subscript (which is not in bold).
If we now define

S� :=
∑

‖�‖1=�

P� (5)

and the backward difference ΔS� := S� − S�−1, then it can be shown [24] that

P� = Δd−1S� =
d−1∑
k=0

(−1)k
(
d−1

k

)
S�−k .

Hence, the computation of P� requires O(�d−1) separate computations, each on a
grid with O(2�) grid points. This leads to the following theorem.

Theorem 2 (Sparse combinationmethod) For fixed y, if the PDE (1) is solved using
the sparse combination method with the index set specified by ‖�‖1≤ L, then the
computational cost is O(Ld−1 2L). Moreover, if the underlying PDE approximation
has second order accuracy and the solution u has sufficient mixed regularity, then
ΔP� has magnitude O(2−2‖�‖1) so the error in PL is O(Ld−1 2−2L). Hence, the cost
to achieve a functional accuracy of ε is O(ε−1/2| log ε|3 (d−1)/2).

Proof For the results on the cost and accuracy see [24]. The cost result is an immediate
consequence. �

3 MLMC and MIMC

3.1 MLMC

The multilevel Monte Carlo (MLMC) idea is very simple. As explained in a recent
review article [11], given a sequence P�, �=0, 1, . . . of approximations of an output
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functional P , with increasing accuracy and cost as � increases, and defining P−1 := 0,
we have the simple identity

E[P] =
∞∑

�=0

E[ΔP�], ΔP� := P� − P�−1.

The summation can be truncated to

E[P] ≈ E[PL ] =
L∑

�=0

E[ΔP�], (6)

with L chosen to be sufficiently large to ensure that the weak error E[P−PL ] is
acceptably small. Each of the expectations on the r.h.s. of (6) can be estimated
independently using N� independent samples so that the MLMC estimator is

Y =
L∑

�=0

Y�, Y� = 1

N�

N�∑
i=1

ΔP (i)
� . (7)

The computational savings comes from the fact that on the finer levelsΔP� is smaller
and has a smaller variance, and therefore fewer samples N� are required to accurately
estimate its expected value.

The optimal value for N� on level � = 0, 1, . . . , L can be estimated by approxi-
mately minimising the cost for a given overall variance. This results in the following
theorem which is a slight generalization of the original in [10].

Theorem 3 (MLMC) Let P denote an output functional, and let P� denote the
corresponding level � numerical approximation. Suppose there exist independent
estimators Y� of E[ΔP�] based on N� Monte Carlo samples and positive constants
α, β, γ, c1, c2, c3, with α≥ 1

2 min(β, γ ), such that

(i)
∣∣∣E[P�−P]

∣∣∣ −→ 0 as � −→ ∞,

(ii)
∣∣∣E[ΔP�]

∣∣∣ ≤ c1 2
−α � ,

(iii) E[Y�] = E[ΔP�],
(iv) V[Y�] ≤ c2 N

−1
� 2−β �,

(v) cost(Y�) ≤ c3 N� 2
γ �.

Then there exists a positive constant c4 such that for any ε<e−1 there are values L
and N� for which the MLMC estimator (7) achieves the mean-square-error bound
E[(Y − E[P])2] < ε2 with the computational cost bound

cost(Y ) ≤
⎧⎨
⎩
c4 ε−2, β > γ,

c4 ε−2| log ε|2, β = γ,

c4 ε−2−(γ−β)/α, β < γ.
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The proof of this theorem uses a constrained optimisation approach to optimise
the number of samples N� on each level. This treats the N� as real variables, and then
the optimal value is rounded up to the nearest integer. This rounding up improves
the variance slightly, so that we still achieve our target mean-square-error accuracy,
but it also increases the cost by at most one sample per level. This additional cost
is dominated by the cost of one sample on the finest level, which is O(ε−γ /α) since
the weak convergence condition requires that the finest level satisfies 2−αL = O(ε).
The condition in the theorem that α ≥ 1

2 min(β, γ ) ensures that this additional cost
is negligible compared to the main cost.

When applied to our model elliptic PDE, if one uses a tensor product grid with
spacing 2−� in each direction, then if the numerical discretisation has second order
accuracy it gives α=2 and β =4, while with an ideal multigrid solver the cost is at
best proportional to the number of grid points which is 2d� so γ =d. Hence, the cost
is O(ε−r ) where r = max(2, d/2), except for d=4 for which β =γ and hence there
is an additional | log ε|2 factor. It is the dependence on d which will be addressed by
incorporating sparse grid methods.

3.2 MIMC

The multi-index Monte Carlo (MIMC) method [15] is inspired by the sparse com-
bination technique. Starting from (3), if each of the ΔP� is now a random variable
due to the random coefficients in the PDE, we can take expectations of each side and
truncate the sum to give

E[P] ≈ E[PL ] =
∑

‖�‖1≤L

E[ΔP�]. (8)

This is now very similar to the telescoping sum (6) inMLMC,with the difference that
the levels are now labelled by multi-indices, so allowing different discretizations in
different directions. We can independently estimate each of the expectations on the
r.h.s. of (8) using a number of independent samples N� so that the MIMC estimator
is

Y =
∑

‖�‖1≤L

Y�, Y� = 1

N�

N�∑
i=1

ΔP (i)
� . (9)

The numbers N� are optimised to minimise the cost of achieving a certain desired
variance or mean-square-error.

The original paper [15] considers much more general circumstances: the different
indices in � are not limited to the spatial discretizations in x but can also involve
quantities such as the number of particles in a system, or the number of terms in
a Karhunen–Loève expansion (arising from dimension truncation in the stochastic
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variables y). Here in the isotropic PDE case, in which the behaviour in each space
dimension is similar, this leads to the following theorem.

Theorem 4 (MIMC) Let P denote an output functional, and for each multi-index
� let P� denote the approximate output functional indexed by �. Suppose for each
multi-index � there exist independent estimators Y� of E[ΔP�] based on N� Monte
Carlo samples and positive constants α, β, γ, c1, c2, c3, with α≥ 1

2β, such that

(i)
∣∣∣E[P�−P]

∣∣∣ −→ 0 as � −→ ∞ (� j → ∞ ,∀ j ),

(ii)
∣∣∣E[ΔP�]

∣∣∣ ≤ c1 2
−α‖�‖1 ,

(iii) E[Y�] = E[ΔP�],
(iv) V[Y�] ≤ c2 N

−1
� 2−β‖�‖1 ,

(v) cost(Y�) ≤ c3 N� 2
γ ‖�‖1 .

Then there exists a positive constant c4 such that for any ε<e−1 there are values L
and N� for which the MIMC estimator (9) achieves the mean-square-error bound
E[(Y − E[P])2] < ε2 with the computational cost bound

cost(Y ) ≤
⎧⎨
⎩
c4 ε−2 , β > γ,

c4 ε−2 | log ε|e1 , β = γ,

c4 ε−2−(γ−β)/α | log ε|e2 , β < γ,

where

e1 = 2d, e2 = (d−1) (2+(γ −β)/α), if α> 1
2β,

e1 = max(2d, 3(d−1)), e2 = (d−1) (1+γ /α), if α= 1
2β.

Proof This is a particular case of the more general analysis in [15, Theorem 2.2].
�

In the case ofMIMC, there are O(Ld−1)multi-indices on the finest level on which
‖�‖1 = L . Hence the finest level is determined by the constraint Ld−12−αL = O(ε),
and the associated cost is O(ε−γ /α| log ε|(d−1)(1+γ /α)). Given the assumption that
α ≥ 1

2β, this is not asymptotically bigger than the main cost except when α= 1
2β, in

which case it is responsible for the e2 and the 3(d−1) component in the maximum
in e1.

When applied to our model elliptic PDE, if one uses a tensor product grid with
spacing 2−� j in the j th direction, and a numerical discretisation with second order
accuracy, then we are likely to get α=2 and β =4 if the solution has sufficient mixed
regularity [24]. (Note that this is a much stronger statement than the α=2, β =4 in
the previous section; taking the case with d=3 as an example, with grid spacing
h1, h2, h3 in the three dimensions, Sect. 3.1 requires only that ΔP� = O(h2) when
all three spacings are equal to h, whereas in this section we require the product form
ΔP� = O(h21 h

2
2 h

2
3) which is much smaller when h1, h2, h3 � 1.) With an ideal

multigrid solver, the cost is proportional to 2‖�‖1 , so γ =1. Since β >γ , the cost
would then be O(ε−2), regardless of the value of d.
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4 Randomised QMC and MLQMC

4.1 Randomised QMC Sampling

A randomized QMCmethod with N deterministic points and R randomization steps
approximates an s-dimensional integral over the unit cube [− 1

2 ,
1
2 ]s as follows

I :=
∫

[− 1
2 , 12 ]s

g( y) d y ≈ Q := 1

R

R∑
k=1

Qk, Qk = 1

N

N∑
i=1

g( y(i,k)).

For the purpose of this paper it suffices that we introduce briefly just a simple
family of randomized QMC methods – randomly shifted lattice rules. We have

y(i,k) =
{
i z
N

+ Δ(k)

}
− 1

2 ,

where z ∈ N
s is known as the generating vector; Δ(1), . . . ,Δ(R) ∈ (0, 1)s are R

independent random shifts; the braces indicate that we take the fractional part of
each component in the vector; and finally we subtract 1

2 from each component of the
vector to bring it into [− 1

2 ,
1
2 ]s .

Randomly shifted lattice rules provide unbiased estimators of the integral. Indeed,
it is easy to verify that EΔ[Q] = EΔ[Qk] = I , where we introduced the subscript Δ
to indicate that the expectation is taken with respect to the random shifts. In some
appropriate function space setting for the integrand function g, it is known (see
e.g., [8]) that good generating vectors z can be constructed so that the variance or
mean-square-error satisfies VΔ[Q] = EΔ[(Q − I )2] ≤ Cδ R−1 N−2(1−δ), for some
δ ∈ (0, 1/2] with Cδ independent of the dimension s. In practical computations, we
can estimate the variance by VΔ[Q] ≈ ∑R

k=1(Qk − Q)2/[R(R − 1)]. Typically we
take a large value of N to benefit from the higher QMC convergence rate and use
only a relatively small R (e.g., 20–50) for the purpose of estimating the variance.

There are other randomization strategies for QMCmethods. For example, we can
combine any digital net such as Sobol′ sequences or interlaced polynomial lattice
ruleswith digital shift orOwen scrambling, to get an unbiased estimatorwith variance
close to O(N−2) or O(N−3). We can also apply randomization to a higher order
digital net to achieve O(N−p) for p>2 in an appropriate function space setting for
smooth integrands. For detailed reviews of these results see see e.g., [8].

4.2 MLQMC

As a generalization of (7), the multilevel Quasi-Monte Carlo (MLQMC) estimator
is
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Y =
L∑

�=0

Y�, Y� = 1

R�

R�∑
k=1

(
1

N�

N�∑
i=1

ΔP (i,k)
�

)
. (10)

Later in Theorem 5 we will state the corresponding generalization of Theorem 3.
The use of QMC instead of MC in a multilevel method was first considered in

[13] where numerical experiments were carried out for a number of option pricing
problems and showed convincingly that MLQMC improves upon MLMC. A meta-
theorem similar to the MLMC theorem was proved in [9]. A slightly sharper version
of the theorem, eliminating some log(ε) factors, will be stated and proved later
in Sect. 6.

MLQMC methods have been combined with finite element discretizations for
the PDE problems in [7, 21, 22]. The paper [22] studied the uniform case for the
same elliptic PDE of this paper with randomly shifted lattice rules (which yield up
to order 2 convergence in the variance); the paper [7] studied the uniform case for
general operator equations with deterministic higher order digital nets; the paper
[21] studied the lognormal case with randomly shifted lattice rules. A key analysis
which is common among these papers is the required mixed regularity estimate of
the solution involving both x and y, see [20] for a survey of the required analysis in
a unified framework.

5 Combining Sparse Grids and MLMC

After this survey of the three component technologies, sparse grid methods, MLMC
and MIMC, and randomised QMC samples, the first novel observation in this paper
is very simple: MIMC is not the only way in which MLMC can be combined with
sparse grid methods.

An alternative is to use the standard MLMC approach, but with samples which
are computed using sparse grid methods. The advantage of this is that it can be used
with either sparse finite elements or the sparse combination technique.

5.1 MLMC with Sparse Finite Element Samples

In Theorem 3, if P� is computed using sparse finite elements as described in Sect. 2.1
based on grids with index set ‖�‖1 ≤ �, and if the accuracy and cost are as given in
Theorem 1, then we obtain α=2−δ, β =4−δ, and γ =1+δ for any 0<δ�1. Here
δ arises due to the effect of some additional powers of �. So β >γ and therefore the
computational cost is O(ε−2).

Recall that with the full tensor product gridwe hadα=2,β =4, and γ = d. Hence
the improvement here is in the removal of the dependence of the cost parameter γ

on d.
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5.2 MLMC with Sparse Combination Samples

The aim in this section is to show that the MIMC algorithm is very similar to MLMC
using sparse combination samples.

Suppose we have an MIMC application which satisfies the conditions of Theo-
rem 4. For the MLMC version, we use (4) to define the P� in Theorem 3. Since

E[ΔP�] =
∑

‖�‖1=�

E[ΔP�], (11)

the two algorithms have exactly the same expected value if the finest level for each
is given by ‖�‖1=L for the same value of L . The difference between the two algo-
rithms is that MIMC independently estimates each of the expectations on the r.h.s. of
(11), using a separate estimator Y� for each E[ΔP�] with independent samples of y,
whereas MLMC with sparse combination samples estimates the expectation on the
l.h.s., using the combination

Y� =
∑

‖�‖1=�

Y�,

with the Y� all based on the same set of N� random samples y.
There are no more than (�+1)d−1 terms in the summation in (11), so if the cost

of Y� for MIMC is O(N�2γ �) when ‖�‖1=�, then the cost of the sparse combination
estimator Y� for MLMC is O(N��

d−12γ �) = o(N�2(γ+δ)�), for any 0<δ�1.
Likewise,

|E[Y�] | ≤
∑

‖�‖1=�

|E[Y�] | ,

so if |E[Y�] | = O(2−α�) when ‖�‖1=�, then |E[Y�] | = o(2−(α−δ)�) for any
0<δ�1.

Furthermore, Jensen’s inequality gives

V [Y�] = E
[
(Y� − E[Y�])2

] = E

[( ∑
‖�‖1=�

(Y� − E[Y�])
)2]

≤ (�+1)d−1
∑

‖�‖1=�

E
[
(Y� − E[Y�])2

]

= (�+1)d−1
∑

‖�‖1=�

V[Y�],

so if V[Y�]=O(N−1
� 2−β�), then V[Y�]=o(N−1

� 2−(β−δ)�), for any 0<δ�1.
This shows that the α, β, γ values for the MLMC algorithm using the sparse

combination samples are almost equal to the α, β, γ for the MIMC method, which
leads to the following lemma.
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Lemma 1 If a numerical method satisfies the conditions for the MIMC Theorem 4,
then the corresponding MLMC estimator with sparse combination samples will have
a cost which is O(ε−2), if β >γ , and o(ε−2−(γ−β)/α)−δ), ∀ 0<δ�1, if β ≤γ .

As with MLMC with sparse finite element samples, the key thing here is that
the level � MLMC samples use a set of grids in which the number of grid points
is O(2‖�‖1)=O(2�). That is why the γ values for MIMC and MLMC are virtually
identical.

If there is substantial cancellation in the summation, it is possible thatV[Y�] could
be very much smaller than the V[Y�] for each of the � for which ‖�‖1=�. However,
we conjecture that this is very unlikely, and therefore we are not suggesting that the
MLMCwith sparse combination samples is likely to be better thanMIMC. The point
of this section is to show that it cannot be significantly worse. In addition, this idea
of combining MLMC with sparse grid samples works for sparse finite elements for
which there seems to be no natural MIMC extension.

5.3 Nested MLMC

Another alternative to MIMC is nested MLMC. To illustrate this in 2D, suppose we
start by using a single level index �1 to construct a standard MLMC decomposition

E[P] ≈ E[PL1] =
L1∑

�1=0

E[ΔP�1].

Now, for each particular index �1 we can take E[ΔP�1] and perform a secondary
MLMC expansion with respect to a second index �2 to give

E[ΔP�1] ≈
L2∑

�2=0

E[Q�1,�2 − Q�1,�2−1],

with Q�1,−1 :=0. If we allow L2 to possibly depend on the value of �1, this results
in an approximation which is very similar to the MIMC method,

E[P] ≈
∑
�∈L

E
[
Q�1,�2 − Q�1,�2−1

]
,

with the summation over some finite set of indices L . In contrast to the MIMC
method, here Q�1,�2 − Q�1,�2−1 is not necessarily expressible in the cross-difference
form ΔP� used in MIMC. Thus, this method is a generalization of MIMC.

This approach is currently being used in two new research projects. In one project,
the second expansion is with respect to the precision of floating point computations;
i.e. half, single or double precision. This follows ideas presented in Sect. 10.2 of
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[11] and also in [2]. In the other project [16], the second expansion uses Rhee and
Glynn’s randomised multilevel Monte Carlo method [23] to provide an unbiased
inner estimate in a financial nested expectation application.

6 MLQMC and MIQMC

The next natural step is to replace the Monte Carlo sampling with randomised QMC
sampling to estimate E[ΔP�] or E[ΔP�].

6.1 MLQMC (Continued from Sect. 4.2)

In the best circumstances, using N� QMCdeterministic points with R� = R randomi-
sation steps to estimateE[ΔP�] gives a variance (with respect to the randomisation in
the QMC points) which is O(R−1N−p

� 2−β�), with p>1. This leads to the following
theorem which generalizes Theorem 3.

Theorem 5 (MLQMC) Let P denote an output functional, and let P� denote the
corresponding level � numerical approximation. Suppose there exist independent
estimators Y� of E[ΔP�] based on N� deterministic QMC points and R� = R ran-
domization steps, and positive constantsα, β, γ, c1, c2, c3, p, with p > 1andα≥ 1

2β,
such that

(i)
∣∣∣E[P�−P]

∣∣∣ −→ 0 as � −→ ∞,

(ii) |E[ΔP�]| ≤ c1 2
−α � ,

(iii) EΔ[Y�] = E[ΔP�],
(iv) VΔ[Y�] ≤ c2 R

−1 N−p
� 2−β �,

(v) cost(Y�) ≤ c3 R N� 2
γ �.

Then there exists a positive constant c4 such that for any ε<e−1 there are values L
and N� for which theMLQMC estimator (10) achieves the mean-square-error bound
EΔ[(Y − E[P])2] < ε2 with the computational cost bound

cost(Y ) ≤
⎧⎨
⎩
c4 ε−2/p, β > pγ,

c4 ε−2/p| log ε|(p+1)/p, β = pγ,

c4 ε−2/p−(pγ−β)/(pα), β < pγ.

Proof We omit the proof here because the theorem can be interpreted as a special
case of Theorem 6 below for which we will provide an outline of the proof. �
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6.2 MIQMC

As a generalization of (9), the MIQMC estimator is

Y =
∑

‖�‖1≤L

Y�, Y� = 1

R�

R�∑
k=1

(
1

N�

N�∑
i=1

ΔP (i,k)
�

)
, (12)

where Y� is an estimator for E[ΔP�] based on N� deterministic QMC points and R�

randomization steps.
Suppose that Y� has variance and cost given by VΔ[Y�] = N−p

� v� and cost(Y�) =
N� c�. The variance and total cost of the combined estimator Y are

VΔ[Y ]=
∑

‖�‖1≤L

N−p
� v�, cost(Y )=

∑
‖�‖1≤L

N� c�.

Treating the N� as real numbers, the cost can be minimised for a given total variance
by introducing a Lagrangemultiplier andminimising cost(Y )+λVΔ[Y ], which gives

N� =
(

λ p v�

c�

)1/(p+1)

.

Requiring VΔ[Y ]= 1
2ε

2 to achieve a target accuracy determines the value of λ and
then the total cost is

cost(Y ) = (2 ε−2)1/p
( ∑

‖�‖1≤L

(
cp� v�

)1/(p+1)
)(p+1)/p

.

This outline analysis shows that the behaviour of the product cp� v� as � →
∞ is critical. If c� = O(2γ �) and v� = O(2−β�) where � = ‖�‖1, then cp� v� =
O(2(pγ−β)�).

If β > pγ , then the total cost is dominated by the contributions from the coarsest
levels, and we get a total cost which is O(ε−2/p).

If β = pγ , then all levels contribute to the total cost, and it is O(Ld(p+1)/pε−2/p).
If β < pγ , then the total cost is dominated by the contributions from the finest

levels, and we get a total cost which is O(L(d−1)(p+1)/p ε−2/p 2(pγ−β)L/p).
To complete this analysis, we need to know the value of L which is determined by

the requirement that the square of the bias is no more than 1
2ε

2. This can be satisfied
by ensuring that

bias(Y ) :=
∑

‖�‖1>L

|E[ΔP�]| ≤ ε/
√
2.

If |E[ΔP�]| = O(2−α‖�‖1), then the contributions to bias(Y ) come predominantly
from the coarsest levels in the summation (i.e. ‖�‖1 = L + 1), and hence bias(Y )=
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O(Ld−12−αL). The bias constraint then gives Ld−12−αL =O(ε) and so L=O
(| log ε|).

As discussed after the MLMC and MIMC theorems, the values for N� need
to be rounded up to the nearest integers, incurring an additional cost which is
O(ε−γ /α| log ε|(d−1)(1+γ /α)). If α> 1

2β it is always negligible compared to the main
cost, but it can become the dominant cost when α= 1

2β and β ≤ pγ . This corresponds
to the generalization of Cases C and D in Theorem 2.2 in the MIMC analysis in [15].

This outline analysis leads to the following theorem in which we make various
assumptions and then draw conclusions about the resulting cost.

Theorem 6 (MIQMC) Let P denote an output functional, and for each multi-
index � let P� denote the approximate output functional indexed by �. Suppose for
each multi-index � there exist independent estimators Y� of E[ΔP�] based on N�

deterministic QMC samples and R� = R randomization steps, and positive constants
α, β, γ, c1, c2, c3, p, with p>1 and α≥ 1

2β, such that

(i)
∣∣∣E[P�−P]

∣∣∣ −→ 0 as � −→ ∞ (� j → ∞ ,∀ j ),

(ii)
∣∣∣E[ΔP�]

∣∣∣ ≤ c1 2
−α‖�‖1

(iii) EΔ[Y�] = E[ΔP�]
(iv) VΔ[Y�] ≤ c2 R

−1N−p
� 2−β‖�‖1

(v) cost(Y�) ≤ c3 R N� 2
γ ‖�‖1 .

Then there exists a positive constant c4 such that for any ε<e−1 there are values L
and N� for which the MIQMC estimator (12) achieves the mean-square-error bound
EΔ[(Y − E[P])2] < ε2 with the computational cost bound

cost(Y ) ≤
⎧⎨
⎩
c4 ε−2/p , β > pγ,

c4 ε−2/p | log ε|e1 , β = pγ,

c4 ε−2/p− (pγ−β)/pα | log ε|e2 , β < pγ,

where

e1 = d(p+1)/p, e2 = (d−1)((p+1)/p + (pγ −β)/pα), if α> 1
2β,

e1 = max(d(p+1)/p, (d−1)(1+γ /α)), e2 = (d−1)(1+γ /α), if α= 1
2β.

Proof The detailed proof follows the same lines as [15, Theorem 2.2]. �

The key observation here is that the dimension d does not appear in the exponent
for ε in the cost bounds, so it is a significant improvement over theMLQMC result in
which the cost is of the form ε−r with r = max(2/p, d/2), which limits themultilevel
benefits even for d=3 if p>4/3.

It is interesting to compare the cost given by this theorem with that given by the
MIMC Theorem 4. If β > pγ , then the use of QMC improves the cost from O(ε−2)

to O(ε−2/p). This is because the dominant costs in this case are on the coarsest levels
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where many points have to be sampled, and therefore QMC will provide substantial
benefits.On theother hand, ifβ <γ thenboth approaches give a cost of approximately
O(ε−γ /α) because in this case the dominant costs are on the finest levels, and on the
finest levels the optimal number of QMC points is O(1), which is why the additional
cost of rounding up to the nearest integer often dominates the main cost. Hence the
use of QMC points is almost irrelevant in this case. Fortunately, we expect that the
favourable case β > pγ is likely to be the more common one. It is clearly the case
in our very simple elliptic model with β =4 and γ =1.

7 Concluding Remarks

In this paper we began by summarizing the meta-theorems for MLMC andMIMC in
a common framework for elliptic PDEs with random coefficients, where we applied
full or sparse grid methods with respect to the spatial variables x and used MC
sampling for computing expected values with respect to the stochastic variables y.

Following this, our novel contributions were

• showing that, in this context, MIMC is almost equivalent to the use of MLMC
with sparse combination samples;

• introducing the idea of (a)MLMCwith sparse finite element or sparse combination
samples, and (b) nested MLMC, as other alternatives to MIMC;

• deriving the corresponding meta-theorems for MLQMC and MIQMC in this con-
text, concluding that the computational cost to achieve O(ε) r.m.s. accuracy can
be reduced to O(ε−r ) with r < 2 independent of the spatial dimension d.

Natural extensions include allowing the different indices in � to cover also different
levels of dimension truncation in the stochastic variables y, as well as providing
verifications of the precise parameters α, β, γ and p for specific PDE applications.

Acknowledgements The authors acknowledge the support of the Australian Research Council
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AMethod to Compute an Appropriate
Sample Size of a Two-Level Test
for the NIST Test Suite

Hiroshi Haramoto and Makoto Matsumoto

Abstract Statistical testing of pseudorandom number generators (PRNGs) is indis-
pensable for their evaluation. A common difficulty among statistical tests is how
we consider the resulting probability values (p-values). When a suspicious p-value,
such as 10−3, is observed, it is unclear whether it is due to a defect of the PRNG or
merely by chance. In order to avoid such a difficulty, testing the uniformity of p-
values provided by a certain statistical test is widely used. This procedure is called a
two-level test. The sample size at the second level requires a careful choice because
too large sample leads to the erroneous rejection, but this choice is usually done
through experiments. In this paper, we propose a criterion of an appropriate sample
size when we use the Frequency test, the Binary Matrix Rank test and the Runs test
at the first level in the NIST test suite. This criterion is based on χ2-discrepancy,
which measures the differences between the expected distribution of p-values and
the exact distribution of those. For example, when we use the Frequency test with
the sample size 106 as the first level test, an upper bound on the sample size at the
second level derived by our criterion is 125,000.

Keywords Pseudorandom number generators · Statistical testing · NIST
SP800-22 · Two-level tests · Chi-square discrepancy

1 Introduction

Pseudorandom number generators (PRNGs) are computer programs whose purpose
is to produce sequences of numbers that seem to behave as if they were generated
randomly from a specified probability distribution. We here consider the case that
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the outputs of the PRNG imitate independent random variables from the uniform
distribution over the interval [0, 1) or over the integers in {0, 1, 2, . . . , N }.

Since PRNGs have a deterministic and periodic output, it is clear that they do
not produce independent random variables in the mathematical sense, and that they
cannot pass all possible statistical tests of uniformity and independence. But some
of them have huge period lengths and turn out to behave quite well in statistical tests
that can be applied in reasonable time. On the other hand, some PRNGs, which are
known to be defective, fail very simple tests [3].

Many statistical tests for PRNGs are proposed. Widely used examples are: the
test suite of the National Institute of Standards and Technology (NIST) [1], and
TestU01 by L’Ecuyer and Simard [4]. The usual way to test PRNGs is to generate
an n-bit sequence and analyze it with a statistical test (one-level test) and report a
probability value, called p-value. NIST and TestU01 suggest to check if the p-values
are uniformly distributed in the [0, 1] interval (two-level test).

These test suites have two-level tests, which may give a definitive p-value even
if the one-level tests report moderate p-values. However, one may suffer from accu-
mulated approximation error in computing p-values. We often compute p-values by
using approximation formula: for example, the p-value of χ2-test is computed by
using an approximation. Therefore, some computing error exists in every p-value.
Thus, if the p-values of the first level tests has 1% error in the same direction, and
if the two-level test uses a large number of these p-values, then it may detect the
systematic computing error, which may lead to a false rejection [10].

The aim of this paper is to give an appropriate sample size of the two-level tests
which use the Frequency test, the Binary Matrix Rank test, and the Runs test as the
one-level test implemented in the NIST test suite. The key of our criterion is χ2-
discrepancy which measures a discrepancy between two probability distributions.

The rest of this paper is organized as follows. Section 2 gives a brief explanation
on statistical testing for PRNGs, especially two-level tests. Section 3 reviews the
well-known χ2-test for goodness-of-fit, and introduces χ2-discrepancy. Section 4
shows the exact distribution of p-values of the Frequency test, the Binary Matrix
Rank test, and the Runs test, and experimental results of the two-level tests which
uses the above three tests as the one-level test.

2 Statistical Testing for PRNGs

Let (a1, . . . , an) be a sequence that each ai takes zero or one generated by a PRNG,
and let Zn be a test function of n variables from {0, 1}n to R. A statistical test (one-
level test) of (a1, . . . , an) by Zn is a function

TZn : {0, 1}n → [0, 1], (a1, . . . , an) �→ Pr(Zn(X1, . . . , Xn) > Zn(a1, . . . , an))

where X1, . . . , Xn are random variables with identical, independent, uniform dis-
tribution on {0, 1}. The probability Pr(Zn(X1, . . . , Xn) > Zn(a1, . . . , an)) is called
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the p-value of the test. If the p-value is extremely small (e.g., less than 10−10), then
the PRNG fails the test. On the other hand, if the p-value is suspicious but does not
clearly indicate rejection (e.g. 10−3), it is difficult to judge. When we apply several
tests to a PRNG, p-values smaller than 0.01 or larger than 0.99 are often observed
(since such values appear with probability 0.02). Therefore, users of test suites for
PRNGs are often troubled by the interpretation of suspicious p-values.

In order to avoid such difficulty, a two-level test is often used. In a two-level test,
we fix a test function Zn . At the first level, we apply the test TZn to the PRNG to be
tested consecutively N times, then we obtain N p-values. At the second level, we test
these N values under the null hypothesis of the uniform i.i.d. in the [0, 1] interval by
some statistical test such as a χ2-test, Kolmogorov-Smirnov test, Anderson-Darling
test, etc. The resulting p-value is the result of the two-level test. A merit of the
two-level test is that it tends to give a clearer result, by accumulating the possibly
existing deviation N times. Even if the one-level tests report moderate p-values, the
two-level test may give a definitive p-values such as 10−10.

On theother hand, onemajor problemof two-level tests is that in themost cases, the
exact distributionof the one-level test is often not available, but only an approximation
of it is. Hence, two-level testsmay detect the lack-of-fit of that approximation, leading
to rejection even if the PRNG is good. Moreover, in terms of the power of the test,
a one-level test with the sample size nN is typically powerful than a two-level test
with the same sample size. Therefore, for a given total computational budget nN , it
is usually better to take N as small as possible, see [5, 6] for more details. Therefore,
we are responsible for choosing an appropriate sample at the second level with the
given one-level test and its sample size.

TheNIST test suite is composedof 15 statistical tests at thefirst level. Furthermore,
it adopts a χ2 goodness-of-fit test at the second level: divide the interval [0, 1] into 10
subintervals I1 := [0.0, 0.1), I2 := [0.1, 0.2), . . ., I10 := [0.9, 1.0]. Determine the
number Y j of p-values in I j , where j = 1, 2, . . . , 10, then compute the χ2-value χ2

by

χ2 =
10∑

j=1

(Y j − N/10)2

N/10
.

Let p1, p2, . . ., p10 be the probabilities that the p-values at the first level fall in
each of the sub-intervals I1, I2, . . ., I10. Under the null hypothesis that

H0 : p1 = p2 = · · · = p10 = 0.1

is true, the above χ2 approximately has a χ2 distribution with 9 degrees of freedom
for large N . Let X be a random variable which conforms to a χ2 distribution with
9 degrees of freedom. If the probability Pr(X > χ2) < 0.0001, the null hypothesis
H0 (and hence the tested PRNG) is rejected. NIST recommends that the sample size
at the first level n is 106 and the sample size at the second level N is 103.

For the remainder of the paper, we write n for the sample size at the first level,
and N for the sample size at the second level.
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3 χ2-discrepancy

In this section, we introduce χ2-discrepancy that measures a discrepancy between
two probability distributions. See [9] for details.

Consider a set of events {1, 2, . . . , ν + 1}. Let {pk | k = 1, . . . , ν + 1} be a prob-
ability distribution on {1, 2, . . . , ν + 1}, i.e.,

0 ≤ pk ≤ 1 for k = 1, 2, . . . , ν + 1 and
ν+1∑

k=1

pk = 1.

Suppose that we make a null hypothesisH0 that one trial of a probabilistic event
conforms to the distribution {pk} and the different trials are independent identically
distributed. To test the null hypothesisH0, we perform N trials and count the number
Yk of occurrences of each event k ∈ {1, 2, . . . , ν + 1}. It is well known that the χ2-
value of this experiment defined as

χ2 :=
ν+1∑

k=1

(Yk − Npk)2

Npk

approximately conforms to the χ2-distribution with ν degrees of freedom under the
null hypothesisH0, if Npk is large enough for each k. The p-value corresponding to
the observed χ2-value χ2

obs is defined by Pr(X > χ2
obs), where X is a random variable

with χ2-distribution with ν degrees of freedom.
Suppose that the null hypothesis H0 is not correct, and the exact distribution

is {qk | k = 1, 2, . . . , ν + 1}. To measure the amount of discrepancy between two
distributions, we define:

Definition 1 The χ2-discrepancy δ between the two distributions {qk} and {pk} is
defined by

δ :=
ν+1∑

k=1

(qk − pk)2

pk
.

Theorem 1 ([9]) The absolute value of the difference between the expectation of χ2

under the nonnull hypothesis H0 and ν + Nδ is bounded by

|E(χ2) − (ν + Nδ)| ≤ ν max
k=1,...,ν+1

∣∣∣∣1 − qk
pk

∣∣∣∣ .

This theoremsupports the fact thatχ2-value is shifted by Nδ in average.Therefore,
the p-value at the second level tends to be 0 if δ �= 0 and the sample size N is
extremely large.

Definition 2 Letm := max
k=1,...,ν+1

∣∣∣∣1 − qk
pk

∣∣∣∣.We call the sample size N which satisfies
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Pr(X > ν + Nδ − νm) = 0.0001 (resp. Pr(X > ν + Nδ + νm) = 0.25, )

where X ∼ χ2
ν , the risky (resp. safe) sample size.

The risky (resp. safe) sample size can be computed by

(χ2
ν (0.9999) − ν + mν)/δ

(
resp.(χ2

ν (0.75) − ν − mν)/δ
)

where χ2
ν (α) represents the (100α)th percentile.

At the risky (resp. safe) sample size N , the expectation of theχ2-value corresponds
to the p-value p ∼ 0.0001 (resp. p ∼ 0.25). As stated in Sect. 1, the NIST test suite
rejects the PRNG when the p-value at the second level is smaller than 0.0001.
Therefore, the two-level test with the risky sample size will tend to reject even if it
the PRNG is good. Conversely, if we use the safe sample size, this erroneous rejection
is unlikely to occur on average. For these reasons, we recommend the safe sample
size as an upper bound on the sample size at the second level.

4 Computing of Exact Distributions and Experimental
Results

In this section, we review the Frequency test, the Binary Matrix Rank test, and the
Runs test. Recalling the purpose of these tests, we are able to compute the exact
distribution of p-values {qi } of each test.

In order to verify the validity of our criterion, we apply two-level tests to two
PRNGs: Mersenne Twister (MT) [8] and a PRNG from SHA1 implemented in the
NIST test suite, which are well-known reliable generators.

4.1 Frequency test

The Frequency test examines the proportion of ones within an n-bit sequence gener-
ated by a PRNG to be tested. Let Xi be the i th bit in the sequence. The central limit
theorem ensures that under the null hypothesis that Xi are independently identically
distributed Bernoulli random variable with the probability of ones is 1/2 is true, the
random variable

Z :=
X1+···+Xn

n − 1
2

1
2
√
n

= 2(X1 + · · · + Xn) − n√
n

is asymptotically normal with mean 0 and variance 1. Therefore for a realization z
of Z , the p-value can be approximated by
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Pr(|z| < W ) = 2

(
1 − 1√

2π

∫ |z|

−∞
e− t2

2 dt

)
,

where the random variable W conforms to N (0, 1).
Let qi (1 ≤ i ≤ 10) be the probabilities that the approximated p-value falls in the

interval Ii . Then qi is the probability that

2

(
1 − 1√

2π

∫ |Z |

−∞
e− t2

2 dt

)
∈ Ii

for i = 1, 2, . . ., 10. The exact distribution of the p-values {qi } can explicitly be
computed by

qi =
∑

0≤ j≤n,Pr( |2 j−n|√
n

<W )∈Ii

(
n

j

)
/2n.

For example, at sample size n = 106, the exact distribution of p-values is q1 =
0.099969, q2 = 0.100223, q3 = 0.099542, q4 = 0.100612, q5 = 0.099327, q6 =
0.099907, q7 = 0.100654, q8 = 0.100030, q9 = 0.100255, q10 = 0.099948. These
quantities are slightly different from the expected value 0.1. The χ2-discrepancy δ

is 1.86 × 10−5, hence the risky and safe sample size are 1,329,497 and 124,913
respectively. In the same way, the risky and safe sample sizes for n = 104 are 8874
and 592, and those for n = 105 are 48,986 and 3933.

We empirically test MT and SHA1 by the two level test with five different initial
values randomly. The resulting p-values of the two-level test are shown in Tables1,
2, and 3.

We also show the results of the two-level test to a Linear Congruential Generator
(LCG), based on the recurrence

xn+1 = 33,952,834,046,453 xn (mod 248)

and take the upper 32 bits. This generator is not an excellent generator; it is a toy-
model to explain how our criterion works.

Table 1 Results on the two-level test for MT (above) and SHA1 (below) with n = 104

N 1st 2nd 3rd 4th 5th

Risky 1.5e-03 6.1e-04 4.6e-03 7.7e-06 6.8e-04

Safe 1.7e-01 5.8e-01 4.5e-02 8.8e-01 3.7e-01

N 1st 2nd 3rd 4th 5th

Risky 9.9e-07 6.8e-05 7.9e-07 3.5e-02 1.2e-05

Safe 8.2e-01 7.7e-01 9.3e-01 3.5e-01 4.5e-01
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Table 2 Results on the two-level test for MT (above) and SHA1 (below) with n = 105

N 1st 2nd 3rd 4th 5th

Risky 7.8e-05 2.1e-06 1.8e-05 6.8e-04 1.8e-05

Safe 7.0e-01 5.2e-01 7.9e-01 3.0e-01 2.6e-01

N 1st 2nd 3rd 4th 5th

Risky 3.8e-05 3.4e-05 4.7e-02 1.5e-03 2.4e-02

Safe 9.4e-01 4.2e-01 8.8e-01 1.5e-01 1.6e-02

Table 3 Results on the two-level test for MT (above) and SHA1 (below) with n = 106

N 1st 2nd 3rd 4th 5th

Risky 7.7e-06 3.5e-03 6.3e-05 4.0e-03 1.4e-03

Safe 2.4e-01 6.3e-01 2.3e-03 1.9e-01 3.3e-02

N 1st 2nd 3rd 4th 5th

Risky 5.1e-06 6.4e-06 7.0e-04 3.5e-05 7.8e-07

Safe 5.4e-01 9.9e-01 8.3e-01 7.8e-01 5.4e-01

Table 4 Results on the two-level test for LCG with n = 106

N 1st 2nd 3rd 4th 5th

risky (1,329,497) <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16

safe (124,913) 6.2e-11 1.0e-04 2.7e-02 4.9e-05 3.2e-05

NIST’s recommendation
(1000)

3.6e-01 9.4e-01 5.8e-02 5.5e-01 8.5e-01

Table 4 shows the results corresponding empirical two-level test for risky, safe
and NIST’s recommendation sample size 1000.

These results show that the LCG tends to provide smaller p-values than those of
expected values, it indicates the defectiveness of the LCG, which is not revealed with
N = 1000.

4.2 Binary Matrix Rank test

The Binary Matrix Rank test is to check for linear dependence among fixed-length
subsequences of the original sequence to be tested.

We divide the n-bit sequence into k contiguous non-overlapping subsequences of
m2 bits. With these, build k of m × m matrices, and for each matrix, compute its
rank r of it over the two element field. The probability that the rank R of an m × m
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random binary matrix is r is given by

Pr(R = r) =

⎧
⎪⎪⎨

⎪⎪⎩

1

2m2 (r = 0)

2r(2m−r)−m2
r−1∏

i=0

(1 − 2i−m)2

1 − 2i−r
(1 ≤ r ≤ m)

(see [7]). Then it compares this empirical distributionwith the theoretical distribution
of the rank of a random matrix, via a χ2 test, after merging classes if needed.

The NIST test suite takes the size of matrix m = 32. Let Fm be the number of
matrices with rank m, Fm−1 the number of matrices with rank m − 1, and Fm−2 the
number of matrices remaining (i.e., Fm−2 = k − Fm − Fm−1). To apply a χ2-test,
we compute the statistic

X = (Fm − k Pr(R = m))2

k Pr(R = m)
+ (Fm−1 − k Pr(R = m − 1))2

k Pr(R = m − 1)
+ (Fm−2 − k Pr(R ≤ m − 2))2

k Pr(R ≤ m − 2)
.

Under the null hypothesis that the sequence is a sample of i.i.d. U {0, 1} random
variable, X has an approximate χ2-distribution with 2 degrees of freedom. Then the
reported p-value is exp

(− x
2

)
for a realization x of X .

The exact distribution of p-values {qi } can be derived by

qi =
∑ n!

s!t !u! Pr(R = m)s Pr(R = m − 1)t Pr(R ≤ m − 2)u,

for each i = 1, 2, . . . , 10, here the sum is taken over all non-negative integers s, t, u
such that s + t + u = k and exp(−x/2) ∈ Ii where x is a realization of X with
Fm = s, Fm−1 = t , and Fm−2 = u.

When k = 976, this test consumes m2 × k = 322 × 976 = 999,424 bits, which
is the nearest sample size for the NIST’s recommendation 106, at a time; the NIST
test suite admits the first 999,424 bits and discards the remaining 576 bits when
we specify the sample size 106. In this case, the exact distribution of p-values
is q1 = 0.099271, q2 = 0.100959, q3 = 0.100922, q4 = 0.099342, q5 = 0.101089,
q6 = 0.096403, q7 = 0.100313, q8 = 0.101222, q9 = 0.100023, q10 = 0.100451.
Then δ = 1.865737 × 10−4, the risky and safe sample size is 134,230 and 11,068
respectively.

Table5 shows the results of the two-level test using the Binary Matrix Rank test
at the first level with the sample size n = 999,424. Note that MT always fails the
BinaryMatrix Rank test when the matrix size large enough, this is in fact a limitation
of all F2-linear generators; in this case, m = 32 is small.

Tables6 and 7 show another type of results. We take the number of matrices k
from 151 to 300. Each number means the number of rejection when we apply the
two-level test with the corresponding risky sample size to MT and SHA1 five times.
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Table 5 Results on the two-level test for MT (above) and SHA1 (below) with n = 999,424

N 1st 2nd 3rd 4th 5th

Risky 2.1e-04 1.4e-02 1.4e-09 1.3e-06 1.7e-03

Safe 4.2e-01 5.7e-01 2.3e-01 7.6e-01 5.3e-01

N 1st 2nd 3rd 4th 5th

Risky 2.1e-04 2.4e-04 9.8e-05 8.3e-06 5.3e-05

Safe 7.9e-01 8.3e-01 9.0e-01 5.2e-01 7.4e-01

Table 6 The number of rejections of the two-level test for MT when k = 150–300

3 5 3 1 2 1 2 2 4 3 2 0 3 1 2 2 2 4 2 2 2 4 4 3 3 3 3 4 3 5 4 2 4 2 1 5 1 3 2 2 2 2 1 3 2 2 3 2 1 4

4 3 1 2 2 2 4 2 2 4 4 2 4 1 3 4 4 1 2 3 1 3 4 2 3 3 3 1 3 4 1 3 3 3 3 2 4 2 3 3 3 2 3 3 1 1 2 3 2 3

2 2 4 4 3 2 2 3 1 1 3 3 1 2 4 3 2 3 3 1 4 3 1 4 2 2 3 2 4 2 2 2 4 2 3 1 3 2 4 4 4 4 3 3 2 2 4 4 3 1

Table 7 The number of rejections of the two-level test for SHA1 when k = 150–300

0 3 1 4 2 0 5 1 4 3 5 4 2 3 4 4 3 1 4 2 2 4 1 4 4 4 3 3 3 0 4 2 3 1 4 4 2 1 5 5 1 2 2 1 1 4 3 3 2 3

4 4 3 2 4 1 2 3 2 4 3 3 3 4 2 2 3 3 2 3 3 3 2 2 3 5 2 1 4 2 1 3 3 2 5 4 1 1 4 3 2 4 2 3 3 5 2 2 3 4

3 3 1 3 3 1 3 2 2 3 2 2 2 2 3 2 5 3 3 2 1 2 0 2 3 3 2 1 1 2 0 1 1 3 3 2 0 3 4 2 2 2 3 3 3 4 3 4 3 3

The average number of rejection is 2.62 for MT, and 2.61 for SHA1 respectively. We
mention that no rejections occurred when the safe sample size is taken for each k.

4.3 Runs test

The purpose of the Runs test is to determine whether the number of runs of ones and
zeros of various lengths is as expected for a random sequence.

For r = 2, 3, . . . n, the probability distribution of R, the total number of runs of
n = n1 + n2, n1 of 1 and n2 of 0, in a random sample is

Pr(R = r) = 2

(
n1 − 1
r/2 − 1

) (
n2 − 1
r/2 − 1

)/ (
n
n1

)

if r is even, and

Pr(R = r) =
{(

n1 − 1
(r − 1)/2

) (
n2 − 1

(r − 3)/2

)
+

(
n1 − 1

(r − 3)/2

) (
n2 − 1

(r − 1)/2

)}/ (
n
n1

)

if r is odd [2].
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Table 8 Results on the two-level test for MT (above) and SHA1 (below) with n = 103

N 1st 2nd 3rd 4th 5th

Risky 3.9e-02 3.5e-03 5.0e-01 5.3e-01 3.5e-02

Safe 5.3e-01 4.8e-01 9.9e-01 3.8e-01 3.6e-01

N 1st 2nd 3rd 4th 5th

Risky 7.0e-07 1.9e-04 8.8e-02 2.8e-04 6.6e-03

Safe 5.3e-01 2.8e-01 5.9e-01 1.1e-01 4.7e-01

Table 9 Results on the two-level test for MT (above) and SHA1 (below) with n = 104

N 1st 2nd 3rd 4th 5th

Risky 2.8e-03 1.6e-05 4.6e-09 3.7e-04 1.1e-06

Safe 3.2e-01 2.2e-02 4.0e-01 4.4e-03 2.1e-01

N 1st 2nd 3rd 4th 5th

Risky 1.5e-04 1.0e-04 1.4e-07 9.8e-05 1.2e-02

Safe 7.1e-01 6.7e-01 1.1e-01 9.5e-01 1.9e-01

Table 10 Results on the two-level test for MT (above) and SHA1 (below) with n = 105

N 1st 2nd 3rd 4th 5th

Risky 1.1e-07 3.9e-05 1.8e-03 4.4e-05 7.5e-03

Safe 5.8e-02 9.2e-01 3.1e-01 7.3e-01 4.4e-01

N 1st 2nd 3rd 4th 5th

Risky 1.1e-04 2.9e-04 7.7e-06 1.1e-04 4.8e-03

Safe 4.0e-01 9.9e-01 2.9e-01 1.0e-02 4.6e-02

Let λ = n1/n. For large n, the random variable

Table 11 Results on the two-level test for MT (above) and SHA1 (below) with n = 106

N 1st 2nd 3rd 4th 5th

Risky 1.4e-03 1.3e-04 2.2e-04 1.1e-06 8.0e-05

Safe 9.2e-01 8.6e-01 2.6e-01 3.1e-01 3.8e-01

N 1st 2nd 3rd 4th 5th

Risky 1.4e-04 5.3e-03 1.7e-04 4.0e-02 1.3e-03

Safe 1.5e-01 4.3e-01 6.3e-01 6.7e-01 1.1e-01
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Z = R − 2nλ(1 − λ)

2
√
nλ(1 − λ)

is approximated by the standard normal distribution. Then we compute the p-value
by

Pr(|z| < W ) = 2

(
1 − 1√

2π

∫ |z|

−∞
e− t2

2 dt

)
,

where W ∼ N (0, 1) and z is a realization of Z . Therefore the exact distribution of
p-values {qi } is

qi =
∑

0≤n1≤n,1≤r≤n,Pr(|z|<W )∈Ii
N (r, n1, n)/2n

for i = 1, 2, . . . , 10, where N (r, n1, n) is the numerator of the previous probability
(i.e. the number of different sequences with r runs.)

It is difficult to calculate the χ2-discrepancy δ for n = 105 because δ takes O(n2)
computational cost. Pareschi, Rovatti, and Setti showed an approximation formula
of the cumulative distribution function of the p-values of the Runs test with O(n)

computational cost [11]. By using it, the risky and safe sample size are approxi-
mately 781,442 and 72,527. In the same way, the risky and safe size for n = 106

are 13,229,762 and 1,267,025 respectively. The corresponding results are shown in
Tables 8, 9, 10 and 11.

5 Conclusion

Although the exact distribution of the p-values of the Frequency test, the Binary
Matrix Rank test and the Runs test can be computed, the NIST test suite does not
use it but adopt a χ2 goodness-of-fit test at the second level. It forces us to choose
appropriate sample size, then we propose a criterion of an appropriate upper bound
on the sample size of the two-level test. Experimental results support its reliability
and statistical power.

On the other hand, we can hardly compute the exact distribution of p-values for
the others tests in the NIST test suite, because these tests seem to require brute-
force computation. Hence effective methods to compute or to approximate the exact
distribution of p-values are needed.

The test statistic of each of the three tests we treat has a discrete distribution, then
the p-value has a discrete distribution, it is not uniform over [0, 1]. If one wants
to develop a test which uses the discrete distribution directly, it should be better to
consider the left and right p-values separately, see, e.g., [4], Sect. 3.

In general, a Kolmogorov-Smirnov test is more appropriate than a χ2 test [12].
Further work is to extend our proposal to a Kolmogorov-Smirnov test to increase the
power of statistical tests for PRNGs, especially TestU01.



294 H. Haramoto and M. Matsumoto

Acknowledgements We are thankful to Editor Professor Art Owen and the referees, who informed
of numerous improvements on the manuscript. This research has been supported in part by JSPS
Grant-In-Aid #26310211, #15K13460, #16K13750, #17K14234, #18K03213, and JST CREST
“Theory of hyper uniformity and its development in randomness appeared in sciences.”

References

1. Bassham III, L.E., Rukhin, A.L., Soto, J., Nechvatal, J.R., Smid, M.E., Barker, E.B., Leigh,
S.D., Levenson, M., Vangel, M., Banks, D.L., Heckert, N.A., Dray, J.F., Vo, S.: Sp 800-22 rev.
1a. a statistical test suite for random and pseudorandom number generators for cryptographic
applications. Technical report, National Institute of Standards & Technology, Gaithersburg,
MD, United States (2010)

2. Gibbons, J.D., Chakraborti, S.: Nonparametric Statistical Inference, 5th edn. Chapman and
Hall/CRC, Boca Raton (2010)

3. L’Ecuyer, P.: Software for uniform random number generation: distinguishing the good and
the bad. In: Proceedings of the 2001 Winter Simulation Conference, vol. 95–105. IEEE Press
(2001). http://dl.acm.org/citation.cfm?id=564124.564139

4. L’Ecuyer, P., Simard, R.: TestU01: a C library for empirical testing of random number gener-
ators. ACM Trans. Math. Softw. 33(4), Art. 22, 40 (2007)

5. L’Ecuyer, P., Cordeau, J.F., Simard, R.: Close-point spatial tests and their application to random
number generators. Op. Res. 48(2), 308–317 (2000). https://doi.org/10.1287/opre.48.2.308.
12385

6. L’Ecuyer, P., Simard, R., Wegenkittl, S.: Sparse serial tests of uniformity for random number
generators. SIAM J. Sci. Comput. 24(2), 652–668 (2002)

7. Marsaglia, G., Tsay, L.H.: Matrices and the structure of random number sequences. Linear
Algebra Appl. 67, 147–156 (1985). https://doi.org/10.1016/0024-3795(85)90192-2

8. Matsumoto,M., Nishimura, T.:Mersenne twister: a 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

9. Matsumoto, M., Nishimura, T.: A nonempirical test on the weight of pseudorandom num-
ber generators. In: Monte Carlo and quasi-Monte Carlo methods 2000, pp. 381–395 (2000).
Springer, Berlin (2002)

10. Pareschi, F., Rovatti, R., Setti, G.: Second-level NIST randomness tests for improving test
reliability. In: 2007 IEEE International Symposium on Circuits and Systems, pp. 1437–1440
(2007). https://doi.org/10.1109/ISCAS.2007.378572

11. Pareschi, F., Rovatti, R., Setti, G.: On statistical tests for randomness included in the NIST
SP800-22 test suite and based on the binomial distribution. IEEE Trans. Inf. Forensics Secur.
7(2), 491–505 (2012). https://doi.org/10.1109/TIFS.2012.2185227

12. Simard, R., L’Ecuyer, P.: Computing the two-sided Kolmogorov-Smirnov distribution. J. Stat.
Softw. 39(11), 1–18 (2011). https://doi.org/10.18637/jss.v039.i11. https://www.jstatsoft.org/
v039/i11

http://dl.acm.org/citation.cfm?id=564124.564139
https://doi.org/10.1287/opre.48.2.308.12385
https://doi.org/10.1287/opre.48.2.308.12385
https://doi.org/10.1016/0024-3795(85)90192-2
https://doi.org/10.1109/ISCAS.2007.378572
https://doi.org/10.1109/TIFS.2012.2185227
https://doi.org/10.18637/jss.v039.i11
https://www.jstatsoft.org/v039/i11
https://www.jstatsoft.org/v039/i11


Lower Complexity Bounds for
Parametric Stochastic Itô Integration

Stefan Heinrich

Abstract We study the complexity of pathwise approximation of parameter
dependent stochastic Itô integration for Cr functions, with r ∈ R, r > 0. Both def-
inite and indefinite integration are considered. This complements previous results
(Daun and Heinrich (J Complex 40:100–122, 2017, [2]) for classes of functions with
dominatingmixed smoothness. Upper bounds are obtained by embedding of function
classes and applying some generalizations of these previous results. The emphasis
of the present paper lies on lower bounds. While in Daun and Heinrich (J Complex
40:100–122, 2017), [2] only nonadaptive deterministic algorithms were considered,
we prove here lower bounds for adaptive deterministic and randomized algorithms,
both for the classes considered here as for those fromDaun and Heinrich (J Complex
40:100–122, 2017), [2].

Keywords Stochastic integration · Complexity · Parametric problems ·
Deterministic and stochastic algorithms

1 Introduction

The complexity of stochastic integration of real-valued non-parametric functions
was investigated in [8, 12, 13, 15]. In [2] the complexity of definite and indefinite
stochastic Itô integration of parameter dependent random functions was studied.
Classes of functions with smoothness of dominating mixed type Cr,ρ with integer
degree of differentiability r were considered there. A multilevel Euler–Maruyama
schemewas developed and analyzed to obtain the upper bounds.Moreover, matching
lower bounds were shown in the deterministic nonadaptive setting. The present paper
extends and complements these results in a number of respects.
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First of all, we study standard isotropic Cr -smoothness (definitions are given in
the text below). This allows to compare the results with previous ones for (non-
stochastic) parametric integration obtained in [3–5] and also in [1]. However, we
consider real-valued r , thus differentiable functions whose derivatives of order �r�
satisfy suitable Hölder conditions. We discuss the extension of the results of [2] to
fractional indices of smoothness. Then we derive upper bounds for Cr classes by
studying their embedding into suitable Cr1,ρ classes and applying the algorithm and
its analysis from [2].

The main results of the present paper concern lower bounds. First an abstract
setting of algorithms and nth minimal errors is introduced, which extends respective
approaches for deterministic problems. Then we prove lower bounds for adaptive
algorithms both in the deterministic and randomized setting matching the upper
bounds derived before (up to logarithmic factors, in general). We present a new
technique, which involves exponential inequalities. It is also shown that the bounds
obtained in [2] for nonadaptive deterministic algorithms hold true for adaptive deter-
ministic and randomized algorithms, as well.

The structure of the paper is as follows: Sect. 2 contains notation and some pre-
liminaries, including the needed function classes. In Sect. 3 we recall the multilevel
Euler–Maruyama algorithm from [2] and derive error estimates. Section 4 is devoted
to lower bounds.

2 Preliminaries

Let N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }. Let X, Y be Banach spaces. The unit
ball of X is denoted by BX , the dual space by X∗, the σ -algebra of Borel subsets of
X by B(X), and the space of bounded linear operators from Y to X by L (Y, X).
Let d ∈ N. The space of real-valued continuous functions on a compact set Q ⊂ R

d

is denoted by C(Q) and is equipped with the supremum norm. Furthermore, if Q
is the closure of an open bounded set and k ∈ N, Ck(Q) denotes the space of all
functions which are k-times continuously differentiable in the interior of Q and
which together with their derivatives up to order k possess continuous extensions to
all of Q. This space is equipped with the norm ‖ f ‖Ck (Q) = sup|α|≤k, s∈Q |Dα f (s)|
with α = (α1, . . . , αd) ∈ N

d
0 and |α| = |α1| + · · · + |αd |. If k = 0, we put C0(Q) =

C(Q). For r ∈ R, r > 0, r /∈ N put k = �r�, σ = r − k, and let Cr (Q) be the space
of all f ∈ Ck(Q) satisfying ‖ f ‖Cr (Q) < ∞, where

‖ f ‖Cr (Q) := max

(
‖ f ‖Ck (Q),max|α|≤k

sup
s1 
=s2∈Q

|s1 − s2|−σ |Dα f (s1) − Dα f (s2)|
)

,

and | · | denotes the Euclidean norm on R
d . For 1 ≤ p < ∞ and (M,M , μ) an

arbitrary measure space, L p(M,M , μ, X), or shortly L p(M, X), is the space of
Bochner p-integrable functions, equipped with the usual norm.
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Throughout the paper the same symbol c, c1, c2, . . . may denote different con-
stants, even in a sequence of relations. Moreover, for nonnegative reals (an)n∈N and
(bn)n∈N we write an � bn if there are constants c > 0 and n0 ∈ N such that for all
n ≥ n0, an ≤ cbn . Furthermore, an  bn means that an � bn and bn � an . Finally,
an �log bn iff there are constants c > 0, n0 ∈ N, and θ ∈ R such that for all n ≥ n0

an ≤ cbn(log(n + 1))θ .
Throughout the rest of the paper we let Q = [0, 1]d . Let k ∈ N, m ∈ N, and let

�k,d
m = {

i
km : 0 ≤ i ≤ km

}d
. Let Pk be Lagrange interpolation of degree k with

respect to the uniform mesh of size 1/k on [0, 1], let Pk,d ∈ L (C(Q), C(Q)) be
its d-fold tensor product, and let Pk,d

m ∈ L (C(Q), C(Q)) be its composition with
respect to the partition of Q into subcubes of sidelength 1/m. Let r ∈ R, r > 0,
and set k = �r�. It is well-known that there are constants c0, c1 > 0 such that for all
m ∈ N

‖Pk,d
m ‖L (C(Q),C(Q)) ≤ c0, ‖J − Pk,d

m J‖L (Cr (Q),C(Q)) ≤ c1m−r , (1)

where J : Cr (Q) → C(Q) is the embedding.
Let (Ω,Σ,P) be a probability space, (Σt )0≤t≤1, Σt ⊆ Σ a filtration, let

(W (t))0≤t≤1, W (t) = W (t, ω) (ω ∈ Ω) be a Wiener process on (Ω,Σ,P) adapted
to (Σt ) and such that for 0 ≤ t1 ≤ t2 ≤ 1 the increments W (t2) − W (t1) are inde-
pendent of Σt1 . We assume w.l.o.g. that all trajectories of the Wiener process are
continuous.

Next we introduce the class of random functions which we will study here. Let
r ∈ R, r > 0, d ∈ N, 2 ≤ q < ∞ and letF r

q = F r
q (Q × [0, 1] × Ω; κ) denote the

set of all functions f : Q × [0, 1] × Ω → R such that for each s ∈ Q, f (s, t, ω)

is progressively measurable, in other words, for each τ ∈ [0, 1] the restriction
f (s, · , · )|[0,τ ]×Ω isB([0, τ ]) × Στ measurable,

f ( · , · , ω) ∈ Cr (Q × [0, 1]) (ω ∈ Ω), (2)(
E ‖ f ( · , · , ω)‖q

Cr (Q×[0,1])
)1/q ≤ κ. (3)

We need to recall the definition of related classes in [2]. Let r1 ∈ R, r1 > 0,
0 ≤ ρ ≤ 1 and let Fr1,ρ = Fr1,ρ(Q × [0, 1] × Ω; κ) denote the set of all functions
f : Q × [0, 1] × Ω → R such that for each s ∈ Q, f (s, t, ω) is progressively mea-
surable and

f ( · , t, ω) ∈ Cr1(Q) ((t, ω) ∈ [0, 1] × Ω), (4)(
E ‖ f ( · , 0, ω)‖2Cr1 (Q)

)1/2 ≤ κ, (5)(
E ‖ f (· , t1, ω) − f (· , t2, ω)‖2Cr1 (Q)

)1/2 ≤ κ|t1 − t2|ρ (t1, t2 ∈ [0, 1]). (6)

Let Fr1,ρ(Q × [0, 1] × Ω) = ∪κ>0Fr1,ρ(Q × [0, 1] × Ω; κ) be the respective lin-
ear space. Moreover, for 2 < q < ∞ let Fr1,ρ

q = Fr1,ρ
q (Q × [0, 1] × Ω; κ) be the

subset of those f ∈ Fr1,ρ(Q × [0, 1] × Ω; κ) which fulfill
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(
E max

t∈M
‖ f ( · , t, ω)‖q

Cr1 (Q)

)1/q

≤ κ (M ⊂ [0, 1], |M | < ∞). (7)

Let us consider the relation between the two types of function classes.

Lemma 1 Let r, r1 > 0, 0 ≤ ρ ≤ 1, r ≥ r1 + ρ, 2 < q < ∞. Then there are con-
stants c1, c2 > 0 such that

F r
2 (Q × [0, 1] × Ω; κ) ⊆ Fr1,ρ(Q × [0, 1] × Ω; c1κ) (8)

F r
q (Q × [0, 1] × Ω; κ) ⊆ Fr1,ρ

q (Q × [0, 1] × Ω; c2κ). (9)

Proof Let 2 ≤ q < ∞ and f ∈ F r
q (Q × [0, 1] × Ω; κ). Clearly, (4) follows from

(2), while (3) implies (5) and (7). It remains to show that (6) holds. We can assume
r = r1 + ρ. Let r = k + σ , r1 = k1 + σ1 (k, k1 ∈ N0, 0 ≤ σ, σ1 < 1). Fix ω ∈ Ω

and set κ(ω) = ‖ f ( · , · , ω)‖Cr (Q×[0,1]) . Let s1, s2 ∈ Q, s1 
= s2, t1, t2 ∈ [0, 1], t1 
=
t2, α ∈ N

d
0 , |α| ≤ k1, and put

Δ1(t1, t2, ω) := ‖ f ( · , t1, ω) − f ( · , t2, ω)‖Ck1 (Q)

Δα
2 (s1, s2, t1, t2, ω) := |Dα

s f (s1, t1, ω) − Dα
s f (s1, t2, ω)

−Dα
s f (s2, t1, ω) + Dα

s f (s2, t2, ω)|.

Using the definition of κ(ω) above, it is readily checked that

Δ1(t1, t2, ω) ≤ κ(ω)|t1 − t2|ρ. (10)

To estimate Δ2, we first we assume σ1 + ρ = σ , thus k1 = k. Then, taking into
account |t1 − t2| ≤ 1 ,

Δα
2 (s1, s2, t1, t2, ω)

≤ 2κ(ω)min(|s1 − s2|, |t1 − t2|)σ ≤ 2κ(ω)|s1 − s2|σ1 |t1 − t2|ρ. (11)

Now we assume σ1 + ρ = 1 + σ , hence k1 = k − 1. Let ei be the i th unit vector in
R

d . If |t1 − t2| ≥ |s1 − s2|, then, denoting s1 = (s1,i )d
i=1, s2 = (s2,i )d

i=1,

Δα
2 (s1, s2, t1, t2, ω)

=
∥∥∥∥
∫ 1

0

d∑
i=1

(
Dα+ei

s f (s2 + θ(s1 − s2), t1, ω)

−Dα+ei
s f (s2 + θ(s1 − s2), t2, ω)

)
(s1,i − s2,i )dθ

∥∥∥∥
Ck1 (Q)

≤ √
dκ(ω)|s1 − s2||t1 − t2|σ ≤ √

dκ(ω)|s1 − s2|σ1 |t1 − t2|ρ. (12)

Similarly, if |t1 − t2| < |s1 − s2|, then
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Δα
2 (s1, s2, t1, t2, ω)

=
∥∥∥∥
∫ 1

0

(
Dα,1

s,t f (s1, t2 + θ(t1 − t2), ω)

−Dα,1
s,t f (s2, t2 + θ(t1 − t2), ω)

)
(t1 − t2)dθ

∥∥∥∥
Ck1 (Q)

≤ κ(ω)|t1 − t2||s1 − s2|σ ≤ κ(ω)|s1 − s2|σ1 |t1 − t2|ρ. (13)

It follows from (10)–(13) and (3) that

(
E ‖ f ( · , t1, ω) − f ( · , t2, ω)‖2Cr1 (Q)

)1/2
=
⎛
⎝E max

(
Δ1(t1, t2, ω), max|α|≤k1

sup
s1 
=s2∈Q

Δα
2 (s1, s2, t1, t2, ω)

|s1 − s2|σ1

)2
⎞
⎠

1/2

≤ max(
√

d, 2)
(
E κ(ω)2

)1/2 |t1 − t2|ρ ≤ max(
√

d, 2)κ|t1 − t2|ρ,

which shows (6).

Now we consider parametric indefinite stochastic integration
∫ t
0 f (s, τ )dW (τ )

(s ∈ Q, t ∈ [0, 1]). This is a stochastic process indexed by Q × [0, 1]. It was shown
in [2] (for r ∈ N, but the argument is the same for real r > 0) that we can find a
continuous version in the sense that there is a mapping

Ŝ : Fr,0(Q × [0, 1] × Ω) → L2(Ω, C(Q × [0, 1]))

such that for s ∈ Q, t ∈ [0, 1]

(Ŝ ( f ))(s, t) =
∫ t

0
f (s, τ )dW (τ ). (14)

It follows from the linearity of the stochastic integral (and a standard density and
continuity argument) that the operator Ŝ is linear. For our purposes we need a
(pathwise) mapping

S : Fr,0(Q × [0, 1] × Ω) × Ω → C(Q × [0, 1]) (15)

such thatS ( f, · ) = Ŝ ( f ), with equalitymeant in L2(Ω, C(Q × [0, 1])), andS is
linear in f . Let ( fi )i∈I , I a suitable index set, be a Hamel basis of Fr,0(Q × [0, 1] ×
Ω) (i.e., each element can bewritten uniquely as linear combination of afinite number
of basis vectors). For each i ∈ I let gi = gi (ω) be a representative of the equivalence
class Ŝ ( fi ) ∈ L2(Ω, C(Q × [0, 1])). Then we setS ( fi , ω) = gi (ω) for i ∈ I and
ω ∈ Ω and extend the so-definedmappingby linearity to all of Fr,0(Q × [0, 1] × Ω).
It follows from the linearity of Ŝ that S is as required.



300 S. Heinrich

For parametric definite stochastic integration
∫ 1
0 f (s, τ )dW (τ ) (s ∈ Q)we define

S1 : Fr,0(Q × [0, 1] × Ω) × Ω → C(Q) by setting

(S1( f, ω))(s) = (S ( f, ω))(s, 1) (s ∈ Q, ω ∈ Ω). (16)

It follows that S1( f, · ) ∈ L2(Ω, C(Q)) and

(S1( f, · ))(s) =
∫ 1

0
f (s, τ )dW (τ ) (s ∈ Q), (17)

with equality (17) meant in L2(Ω). Due to Lemma 1, the operators S and S1 are
also defined on the respective setsF r

q (Q × [0, 1] × Ω; κ).

3 An Algorithm for Parametric Stochastic Integrals

Firstwe recall the algorithm from [2]. Let n ∈ N, tk = k/n (k = 0, . . . , n), and define
An( f, ω) ∈ C([0, 1]) for any function f : [0, 1 × Ω → R and ω ∈ Ω by

An( f, ω) = P1,1
n

⎛
⎝k−1∑

j=0

f (t j , ω)(W (t j+1, ω) − W (t j , ω))

⎞
⎠

n

k=0

.

This is the piecewise linear interpolation of the Euler–Maruyama scheme. Further-
more, we set An,1( f, ω) := (An( f, ω))(1). Next we pass to the multilevel scheme of
[2]. Put k = �r�, fix l1 ∈ N0, n0, . . . , nl1 ∈ N, let f : Q × [0, 1] × Ω → R be any
function and ω ∈ Ω . For the indefinite problem we define

A ( f, ω) =
l1∑

l=0

(
Pk,d
2l − Pk,d

2l−1

) (
Anl ( fs, ω)

)
s∈�

k,d
2l

,

where fs is given by fs(t, ω) := f (s, t, ω) (t ∈ [0, 1], ω ∈ Ω) and P2−1 := 0. In the
definite case we define A1( f, ω) analogously, using the Anl ,1. Let card(A ) denote
the number of evaluations of f and W used in algorithm A (see Section 4 for a
general definition). We have

card(A ) = card(A1) ≤ c
l1∑

l=0

nl2
dl .

On the basis of the considerations above and the results of [2] we can now derive
error estimates for algorithms A1 and A on the classes F r

q (Q × [0, 1] × Ω; κ).
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Theorem 1 Let r ∈ R, r > 0, d ∈ N, 2 < q < ∞, κ > 0. Then there are constants
c1−4 > 0 such that for each n ∈ N with n ≥ 2 there is a choice of l1 ∈ N0 and
n0, . . . , nl1 ∈ N0 such that card(A1) ≤ c1n and

sup
f ∈F r

2 (Q×[0,1]×Ω;κ)

(E ‖S1( f, ω) − A1( f, ω)‖2C(Q))
1/2

≤ c2

{
n− r

d+1 (log n)
r

d+1+ 3
2 if r

d+1 ≤ 1,

n−1 if r
d+1 > 1.

(18)

Moreover, for each n ∈ N with n ≥ 2 there are l1 ∈ N0 and n0, . . . , nl1 ∈ N0 such
that card(A ) ≤ c3n and

sup
f ∈F r

q (Q×[0,1]×Ω;κ)

(E ‖S ( f, ω) − A ( f, ω)‖2C(Q×[0,1]))
1/2

≤ c4

{
n− r

d+1 (log n)
r

d+1+ 3
2 if r

d+1 ≤ 1/2,

n− 1
2 (log n)

1
2 if r

d+1 > 1
2 .

(19)

Proof We shall use Theorem5.3 of [2], which was shown there for r1 ∈ N. It is easily
seen that it also holds for real r1 > 0. Indeed, Lemma5.1 and Proposition5.2 of [2]
are readily extended to non-integer r1 > 0, using (1) of the present paper. The proof
of Theorem5.3 in [2] relies only on Proposition 5.2 and does not use the assumption
of r1 being integer. We define

r1 = dr

d + 1
, ρ = min

(
r

d + 1
, 1

)
, (20)

hence r ≥ r1 + ρ and the conclusions (8)–(9) of Lemma 1 hold. Denote the left-hand
side of (18) and (19) by E1 and E , respectively.

First we derive (18). If r
d+1 ≤ 1, then r1

d = ρ, thus (8) together with the second
relation of (78) in [2] yields

E1 ≤ cn− r1
d (log n)

r1
d + 3

2 = cn− r
d+1 (log n)

r
d+1+ 3

2 ,

which is the first relation of (18). If r
d+1 > 1, we have by (20) r1

d > ρ = 1, so the
third relation of (78) in [2] gives E1 ≤ cn−1 and thus the second part of (18).

Next we prove (19). If r
d+1 ≤ 1

2 , we conclude from (20) r1
d = ρ = min(ρ, 1/2),

so (9) together with the second relation of (79) in [2] implies

E ≤ cn− r1
d (log n)

r1
d + 3

2 = cn− r
d+1 (log n)

r
d+1+ 3

2 ,

thus the first relation of (19). Finally, if r
d+1 > 1

2 , then by (20), ρ > 1/2, hence
r1
d > min(ρ, 1/2), and the third relation of (79) in [2] implies E ≤ cn− 1

2 (log n)
1
2 ,

showing the second relation of (19) and completing the proof. �
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4 Lower Bounds and Complexity

In this section we extend the approach of [6, 7] to stochastic problems. An abstract
stochastic numerical problem is described by a tuple P = (F, (Ω,Σ,P), G, S,

K ,Λ). The set F is an arbitrary non-empty set, (Ω,Σ,P) a probability space, G
is a Banach space and S : F × Ω → G an arbitrary mapping, the solution opera-
tor, which maps the input ( f, ω) ∈ F to the exact solution S( f, ω). We assume that
for each f ∈ F the mapping ω → S( f, ω) is Σ-to-Borel-measurable and P-almost
surely separably valued, the latter meaning that for each f ∈ F there is a separa-
ble subspace G f of G such that P{ω : S( f, ω) ∈ G f } = 1. Furthermore, K is a
nonempty set and Λ a set of mappings from F × Ω to K , the set of information
functionals.

A deterministic algorithm for P is a tuple A = ((Li )
∞
i=1, (τi )

∞
i=0, (ϕi )

∞
i=0) such

that L1 ∈ Λ, τ0 ∈ {0, 1}, ϕ0 ∈ G, and for i ∈ N

Li+1 : K i → Λ, τi : K i → {0, 1}, ϕi : K i → G

are arbitrarymappings, where K i is the i-foldCartesian product of K . Given ( f, ω) ∈
F × Ω , we associate with it a sequence (ai )

∞
i=1 defined as follows:

a1 = L1( f, ω), ai = (
Li (a1, . . . , ai−1)

)
( f, ω) (i ≥ 2). (21)

Define card(A, f, ω), the cardinality of A at input ( f, ω), to be 0 if τ0 = 1. If τ0 = 0,
let card(A, f, ω) be the first integer n ∈ N with τn(a1, . . . , an) = 1, if there is such
an n. If no such n ∈ N exists, set card(A, f, ω) = ∞. We define the output A( f, ω)

of algorithm A at input ( f, ω) as

A( f, ω) =
⎧⎨
⎩

ϕ0 if card(A, f, ω) = 0
ϕn(a1, . . . , an) if card(A, f, ω) = n < ∞
ϕ0 if card(A, f, ω) = ∞.

Informally, the algorithm starts with evaluating an information functional L1 ∈ Λ

at input ( f, ω), that is, L1( f, ω) := a1. Depending on this value, another functional
L2(a1) ∈ Λ is chosen and

(
L2(a1)

)
( f, ω) is evaluated, etc., until stopping, ruled by

the τi . Finally, a mapping ϕn is applied, representing the computations performed on
the information, leading to the approximation ϕn(a1, . . . , an) of S( f, ω) in G.

Given n ∈ N0, we defineA det
n (P) as the set of those deterministic algorithms A

forP with the followingproperties: For each f ∈ F themappingω → card(A, f, ω)

is Σ-measurable, E card(A, f, ω) ≤ n, and the mapping ω → A( f, ω) ∈ G is Σ-
to-Borel-measurable and P-almost surely separably valued. The cardinality of A ∈
A det

n (P) is defined as

card(A) = sup
f ∈F

E card(A, f, ω),
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the error of A in approximating S as

e(S, A, F × Ω, G) = sup
f ∈F

E ‖S( f, ω) − A( f, ω)‖G

and the deterministic nth minimal error of S is defined for n ∈ N0 as

edetn (S, F × Ω, G) = inf
A∈A det

n (P )
e(S, A, F × Ω, G).

It follows that no deterministic algorithm that uses (on the average with respect to P)
at most n information functionals can have a smaller error than edetn (S, F × Ω, G).

A randomized algorithm forP is a tuple A = ((Ω1,Σ1,P1), (Aω1)ω1∈Ω1),where
(Ω1,Σ1,P1) is another probability space and for each ω1 ∈ Ω1, Aω1 is a determin-
istic algorithm for P . Let (Ω1 × Ω,Σ1 × Σ,P1 × P) be the product probability
space. For n ∈ N0 we define A ran

n (P) as the class of those randomized algorithms
A for P which possess the following properties: For each f ∈ F the mapping
(ω1, ω) → card(Aω1 , f, ω) isΣ1 × Σ-measurable,E P1×P card(Aω1 , f, ω) ≤ n, and
the mapping (ω1, ω) → Aω1( f, ω) is Σ1 × Σ-to-Borel-measurable and P1 × P-
almost surely separably valued. We define the cardinality of A ∈ A ran

n (P) as

card(A) = sup
f ∈F

E P1×P card(Aω1 , f, ω),

the error as

e(S, A, F × Ω, G) = sup
f ∈F

E P1×P‖S( f, ω) − Aω1( f, ω)‖G

and the randomized nth minimal error of S as

erann (S, F × Ω, G) = inf
A∈A ran

n (P )
e(S, A, F × Ω, G).

Similarly to the above, this means that no randomized algorithm that uses (on the
average with respect to P1 × P) at most n information functionals can have a smaller
error than erann (S, F × Ω, G). Deterministic algorithms can be viewed as a special
case of randomized ones, namely by considering trivial one-point probability spaces
Ω1 = {ω1}. Hence,

erann (S, F × Ω, G) ≤ edetn (S, F × Ω, G). (22)

Now we study the complexity of definite and indefinite stochastic integration. Let
r, r1 > 0, 0 ≤ ρ ≤ 1, 2 < q < ∞. We set K = R and

Λ = Λ1 ∪ Λ2, Λ1 = {δst : s ∈ Q, t ∈ [0, 1]}, Λ2 = {δt : t ∈ [0, 1]}, (23)
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where δst ( f, ω) = f (s, t, ω) and δt ( f, ω) = W (t, ω) ( f ∈ F, ω ∈ Ω). For defi-
nite integration we choose F = F r

2 (Q × [0, 1] × Ω; κ) or F = Fr1,ρ(Q × [0, 1] ×
Ω; κ),G = C(Q), S = S1. For the indefinite problemwe set F = F r

q (Q × [0, 1] ×
Ω; κ) or F = Fr1,ρ

q (Q × [0, 1] × Ω; κ), G = C(Q × [0, 1]), S = S .

Theorem 2 Let r, r1 ∈ R, r, r1 > 0, 0 ≤ ρ ≤ 1, d ∈ N, κ > 0, and 2 < q < ∞.
Then

erann (S1,F
r
2 × Ω, C(Q)) � max

(
n− r

d+1 , n−1
)

(24)

erann (S1, Fr1,ρ × Ω, C(Q)) � max
(

n− r1
d , n−ρ

)
. (25)

erann (S ,F r
q × Ω, C(Q × [0, 1])) � max

(
n− r

d+1 , n− 1
2 (log n)

1
2

)
(26)

erann (S , Fr1,ρ
q × Ω, C(Q × [0, 1])) � max

(
n− r1

d , n− 1
2 (log n)

1
2 , n−ρ

)
. (27)

Theorem 1 above and Theorem 5.3 of [2] show that, up to logarithmic factors, these
bounds match the upper bounds.

Corollary 1 Relations (24)–(27) also hold with � replaced by �log.

Moreover, by (22) and since the algorithmsA andA1 are deterministic, the conclu-
sions of Theorem 2 and Corollary 1 hold for edetn in place of erann , as well.

To prove Theorem 2 we need a number of auxiliary results. For this we return
to the general setting. The first observation concerns the case that F consists of a
single element, in other words, S is essentially independent of F and P is a pure
average case problem. Then the above inequality (22) has a certain converse. This is
a version of the well-known principle that, in general, for pure average case problems
randomized algorithms do not bring essential gains.

Lemma 2 If F = F0 = { f0}, then

erann (S, F0 × Ω, G) ≥ 1

2
edet2n (S, F0 × Ω, G). (28)

Proof Let δ > 0 and A ∈ A ran
n (P) with

e(S, A, F0 × Ω, G) ≤ erann (S, F0 × Ω, G) + δ.

This means

E P1×P‖S( f0, ω) − Aω1( f0, ω)‖G ≤ erann (S, F0 × Ω, G) + δ,

E P1×P card(Aω1 , f0, ω) ≤ n.

Consequently, setting

Ω1,1 = {ω1 : E P‖S( f0, ω) − Aω1( f0, ω)‖G ≤ 2erann (S, F0 × Ω, G) + 2δ},
Ω1,2 = {ω1 : E P card(Aω1 , f0, ω) ≤ 2n},
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we conclude that P1(Ω1,1) > 1/2 and P1(Ω1,2) > 1/2. It follows that for ω1 ∈
Ω1,1 ∩ Ω1,2 
= ∅ we have Aω1 ∈ A det

2n (P) and

e(S, Aω1 , F0 × Ω, G) ≤ 2erann (S, F0 × Ω, G) + 2δ,

which implies (28). �

Next we explore the connection between the original stochastic problem and the
deterministic problem we obtain by fixing the random input. For this purpose, we
assume that we are given a decomposition of the set Λ

Λ = ΛF ∪ ΛΩ, ΛF 
= ∅, ΛF ∩ ΛΩ = ∅

such that for all λ ∈ ΛΩ we have λ( f, ω) = λ(g, ω) ( f, g ∈ F, ω ∈ Ω), that is, all
λ ∈ ΛΩ depend only on ω ∈ Ω (the λ ∈ ΛF may depend on both f and ω). For
λ ∈ ΛΩ we use both the notation λ( f, ω) as well as λ(ω). Note that there is always
the trivial splitting ΛF = Λ, ΛΩ = ∅. An example of a nontrivial splitting is (23)
above. Fix ω ∈ Ω . We define the restricted problem Pω = (F, G, Sω, K ,ΛF,ω) by
setting

Sω : F → G, Sω( f ) = S( f, ω), ΛF,ω = {λ( · , ω) : λ ∈ ΛF }.

To a given a deterministic algorithm A forP and ω ∈ Ω we want to associate a
restricted algorithm Aω for the respective problem Pω in a rigorous way.

Lemma 3 Let A be a deterministic algorithm for P and let ω ∈ Ω . Then there is
a deterministic algorithm Aω for Pω such that for all f ∈ F

card(Aω, f ) = card(A, f, ω), Aω( f ) = A( f, ω). (29)

Proof Let μ0 ∈ ΛF be any element, let A = ((Li )
∞
i=1, (τi )

∞
i=0, (ϕi )

∞
i=0), and fix

ω ∈ Ω . We define Aω = ((Li,ω)∞i=1, (τi,ω)∞i=0, (ϕi,ω)∞i=0) and a sequence (ξi )
∞
i=1 of

functions ξi : K i → K i by induction. Put

τ0,ω = τ0, ϕ0,ω = ϕ0, L1,ω =
{

L1( · , ω) if L1 ∈ ΛF

μ0( · , ω) if L1 ∈ ΛΩ
(30)

and define for z1 ∈ K

ξ1(z1) =
{

z1 if L1 ∈ ΛF

L1(ω) if L1 ∈ ΛΩ.
(31)

Now let i ≥ 1 and assume that (L j,ω) j≤i , (τ j,ω) j<i , (ϕ j,ω) j<i , and (ξ j ) j≤i have been
defined. Let z1, . . . , zi , zi+1 ∈ K and set
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λi+1 = Li+1(ξi (z1, . . . , zi )) (32)

Li+1,ω(z1, . . . , zi ) =
{

λi+1( · , ω) if λi+1 ∈ ΛF

μ0( · , ω) if λi+1 ∈ ΛΩ
(33)

τi,ω(z1, . . . , zi ) = τi (ξi (z1, . . . , zi )) (34)

ϕi,ω(z1, . . . , zi ) = ϕi (ξi (z1, . . . , zi )) (35)

ξi+1(z1, . . . , zi , zi+1) =
{

(ξi (z1, . . . , zi ), zi+1) if λi+1 ∈ ΛF

(ξi (z1, . . . , zi ), λi+1(ω)) if λi+1 ∈ ΛΩ.
(36)

Now let f ∈ F , let (ai )
∞
i=1 be the sequence given by (21) and define, respectively

a1,ω = L1,ω( f ), ai,ω = (
Li,ω(a1,ω, . . . , ai−1,ω)

)
( f ) (i ≥ 2). (37)

We show by induction that for all i ∈ N.

ξi (a1,ω, . . . , ai,ω) = (a1, . . . , ai ). (38)

For i = 1 this follows directly from (21), (30), (31), and (37). Now let i ∈ N and
assume that (38) holds. Let

λi+1 = Li+1(ξi (a1,ω, . . . , ai,ω)) = Li+1(a1, . . . , ai ). (39)

First assume λi+1 ∈ ΛF . Then by (37), (33), (39) and (21)

ai+1,ω = (
Li+1,ω(a1,ω, . . . , ai,ω)

)
( f ) = λi+1( f, ω)

= (
Li+1(a1, . . . , ai )

)
( f, ω) = ai+1.

With (36) this gives

ξi+1(a1,ω, . . . , ai,ω, ai+1,ω) = (ξi (a1,ω, . . . , ai,ω), ai+1,ω) = (a1, . . . , ai , ai+1).

In the case λi+1 ∈ ΛΩ we have, using (39) and (21)

λi+1(ω) = λi+1( f, ω) = (
Li+1(a1, . . . , ai )

)
( f, ω) = ai+1.

By (36),

ξi+1(a1,ω, . . . , ai,ω, ai+1,ω) = (ξi (a1,ω, . . . , ai,ω), λi+1(ω)) = (a1, . . . , ai , ai+1).

This proves (38). From (38) we conclude that for all i ∈ N0

τi,ω(a1,ω, . . . , ai,ω) = τi (a1, . . . , ai ), ϕi,ω(a1,ω, . . . , ai,ω) = ϕi (a1, . . . , ai ),

which implies (29). �
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Next we derive a lower bound for the randomized nth minimal errors. Analogous
to the classical one it uses the average setting with respect to a probability measure
on F . However, due to the additional stochastic component, it is somewhat more
involved. For the notation of the average case setting we refer to [6, 7],

∫ ∗ denotes
the upper integral.

Lemma 4 Let ν be a probability measure on F supported by a finite set. Then for
all n ∈ N0,

erann (S, F × Ω, G) ≥ 1

3
inf

D∈Σ,P(D)≥1/4

∫ ∗

D
eavg2n (Sω, ν, G)dP(ω). (40)

Proof Let A ∈ A ran
n (P), A = ((Ω1,Σ1,P1), (Aω1)ω1∈Ω1). Then

n ≥ sup
f ∈F

∫
Ω1×Ω

card(Aω1 , f, ω)dP1(ω1)dP(ω)

≥
∫

Ω1×Ω

∫
F
card(Aω1 , f, ω)dν( f )dP1(ω1)dP(ω). (41)

Let

B =
{
(ω1, ω) ∈ Ω1 × Ω :

∫
F
card(Aω1 , f, ω)dν( f ) ≤ 2n

}
(42)

and for ω1 ∈ Ω1, Bω1 = {ω : (ω1, ω) ∈ B}. Since ν is of finite support, it follows
that B ∈ Σ1 × Σ and Bω1 ∈ Σ . We also set B ′ = {ω1 : P(Bω1) ≥ 1/4}, then B ′ ∈
Σ1. Moreover, (41) and (42) yield (P1 × P)(B) ≥ 1/2, hence 1

2 ≤ P1(B ′) + 1
4 (1 −

P1(B ′)), which implies P1(B ′) ≥ 1/3.
Now we estimate the error of A = (Aω1)ω1∈Ω1 from below. For each ω1 ∈ Ω1 and

ω ∈ Ω , let Aω1,ω be the respective algorithm for Sω resulting from Aω1 according to
Lemma 3.

e(S, A, F × Ω, G) = sup
f ∈F

∫
Ω1×Ω

‖S( f, ω) − Aω1( f, ω)‖GdP1(ω1)dP(ω)

≥
∫

B ′

∫
Bω1

∫
F

‖Sω( f ) − Aω1,ω( f )‖Gdν( f )dP(ω)dP1(ω1)

≥ 1

3
inf

D∈Σ,P(D)≥1/4

∫
D

∫
F

‖Sω( f ) − Aω1,ω( f )‖Gdν( f )dP(ω)

≥ 1

3
inf

D∈Σ,P(D)≥1/4

∫ ∗

D
eavg2n (Sω, ν, G)dP(ω).

�

Let (γ j )
∞
j=1 be a sequence of independent standard Gaussian random variables.

For m ∈ N we setJm = {1, 2, . . . , m}.
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Lemma 5 There is a constant c > 0 such that for all m ∈ N

P

⎧⎨
⎩ω ∈ Ω : min

J ⊆Jm ,|J |≥m/2

( ∑
j∈J

γ j (ω)2
)1/2

≥ cm1/2

⎫⎬
⎭ ≥ 7/8.

Proof Let k = �m/2� and let c0 > 0 be a constant to be fixed later on. Then

P

{
min

J ⊆Jm ,|J |≥m/2

∑
j∈J

γ j (ω)2 ≥ c20m

}

= P

{
min

J ⊆Jm ,|J |=k

∑
j∈J

γ j (ω)2 ≥ c20m

}

≥ 1 −
∑

J ⊆Jm ,|J |=k

P

{ ∑
j∈J

γ j (ω)2 < c20m

}

≥ 1 − 22k
P

{ k∑
j=1

γ j (ω)2 < 2c20k

}
. (43)

Furthermore, let Bk
2 denote the unit ball of Rk , endowed with the Euclidean norm

| · |. There is a constant c1 > 0 such that for all k ∈ N

Vol
(
Bk
2

) ≤ ck
1k−k/2, (44)

see, e.g., [11], relation 1.18 on p. 11. Consequently,

P

{ k∑
j=1

γ j (ω)2 < 2c20k

}
= (2π)−k/2

∫
|x |≤c0(2k)1/2

e−|x |2/2dx

≤ Vol
(
c0(2k)1/2Bk

2

) = ck
0(2k)k/2Vol

(
Bk
2

) ≤ 2k/2ck
0ck

1. (45)

Joining (43) and (45) and setting c0 = 2−11/2c−1
1 , we arrive at

P

{
min

J ⊆Jm ,|J |≥m/2

∑
j∈J

γ j (ω)2 ≥ c20m

}
≥ 1 − 2−3k ≥ 7/8.

Proof of Theorem 2 Two parts of the lower bound estimates easily reduce to
known results. Let θ0 ∈ C(Q)∗ be defined by θ0( f ) = f (0) ( f ∈ C(Q)). Firstly,
we let f1(s, t, ω) = κt and put F1 := { f1}. Then F1 ⊆ F r

2 (Q × [0, 1] × Ω; κ). We
have

(θ0 ◦ S1)( f1, ω) = κ

(∫ 1

0
tdW (t)

)
(ω) (P-almost surely).

Consequently,
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erann (S1,F
r
2 × Ω, C(Q)) ≥ erann (θ0 ◦ S1, F1 × Ω,R) ≥ cn−1, (46)

where the last relation follows fromTheorem 1 in [15] (who considered deterministic
algorithms) and Lemma 2 above. Secondly, we set f2(s, t, ω) ≡ κ and F2 := { f2}.
We have

F2 ⊆ F r
q (Q × [0, 1] × Ω; κ), F2 ⊆ Fr1,ρ

q (Q × [0, 1] × Ω; κ),

and (
(θ0 ◦ S )( f2, ω)

)
(t) = κW (t, ω).

Therefore we get from [9, 14], using Lemma 2 again,

erann (S ,F r
q (Q × [0, 1] × Ω; κ) × Ω, C(Q × [0, 1]))

≥ erann (θ0 ◦ S , F2 × Ω, C([0, 1])) ≥ cn−1/2(log n)1/2, (47)

and similarly

erann (S , Fr1,ρ
q (Q × [0, 1] × Ω; κ), C(Q × [0, 1])) ≥ cn−1/2(log n)1/2. (48)

Now we consider a third subclass. For the purpose of constructing a suitable
measure ν in order to apply Lemma 4 we let ϕ0 be a C∞ function onRd with support
in Q and ‖ϕ0‖C(Q) = 1 and let ϕ1 be a C∞ function on R with support in [0, 1] and
‖ϕ1‖L2(R) = 1. Let m0, m1 ∈ N and let Qi (i = 1, . . . , md

0) be the subdivision of Q
into md

0 cubes of disjoint interior of side-length m−1
0 . Let si be the point in Qi with

minimal coordinates. Put t j = j/m1 and define for s ∈ Q, t ∈ [0, 1], i = 1, . . . , md
0 ,

j = 1, . . . , m1

ϕ0,i (s) = ϕ0(m0(s − si )), ϕ1, j (t) = ϕ1(m1(t − t j )), ψi j (s, t) = ϕ0,i (s)ϕ1, j (t).

Denote Km0m1 = {1, . . . , md
0} × {1, . . . , m1} and

Ψm0m1 =
⎧⎨
⎩

∑
(i, j)∈Km0m1

δi jψi j : δi j ∈ {−1, 0, 1}
⎫⎬
⎭ .

The stochastic integralm1/2
1

∫ 1
0 ϕ1, j (t)dW (t) is an element of L2(Ω), hence an equiv-

alence class of functions. Let the function γ j = γ j (ω) be any representative of it.
Since ‖ϕ1, j‖L2([0,1]) = m−1/2

1 , the (γ j )
m1
j=1 are independent standardGaussian random

variables. By (17) and the linearity of the stochastic integral, for (i, j) ∈ Km0m1 and
each s ∈ Q we have P-almost surely (S1(ψi j , ω))(s) = m−1/2

1 ϕ0,i (s)γ j (ω). Using
continuity and a density argument yields that there is an Ω0 ∈ Σ with P(Ω0) = 1
such that for all ω ∈ Ω0 and (i, j) ∈ Km0m1 we haveS1(ψi j , ω) = m−1/2

1 ϕ0,iγ j (ω).

We conclude, using the linearity of S1 that for all δi j ∈ {−1, 0, 1} and ω ∈ Ω0
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S1

( ∑
(i, j)∈Km0m1

δi jψi j , ω

)
= m−1/2

1

md
0∑

i=1

ϕ0,i

m1∑
j=1

δi jγ j (ω). (49)

Let {εi j : (i, j) ∈ Km0m1} be independent Bernoulli random variables with P2{εi j =
−1} = P2{εi j = +1} = 1/2 on a probability space (Ω2,Σ2,P2) and define the mea-
sure ν to be the distribution of theΨm0m1 valued random variable

∑
(i, j)∈Km0m1

εi jψi j .
Let n ∈ N be such that

md
0m1 ≥ 8n. (50)

Now we are ready to apply Lemma 4, which yields

erann (S1, Ψm0m1 × Ω, C(Q)) ≥ 1

3
inf

D∈Σ,P(D)≥1/4

∫ ∗

D
eavg2n (S1,ω, ν, C(Q))dP(ω).

(51)
Lemma 6 of [6] together with (49) and (50) allow to estimate the right-hand side in
terms of the γ j . For ω ∈ Ω0 we have

eavg2n (S1,ω, ν, C(Q))

≥ 1

2
min

K ⊆Km0m1 ,|K |≥md
0m1−4n

E P2

∥∥∥∥S1

( ∑
(i, j)∈K

εi jψi j , ω

)∥∥∥∥
C(Q)

≥ 1

2
min

K ⊆Km0m1 ,|K |≥md
0m1−4n

E P2

∥∥∥∥m−1/2
1

md
0∑

i=1

ϕ0,i

∑
j : (i, j)∈K

εi jγ j (ω)

∥∥∥∥
C(Q)

≥ 1

2
m−1/2

1 min
K ⊆Km0m1 ,|K |≥md

0m1−4n
E P2 max

1≤i≤md
0

∣∣∣∣∣∣
∑

j : (i, j)∈K
εi jγ j (ω)

∣∣∣∣∣∣
≥ 1

2
m−1/2

1 min
K ⊆Km0m1 ,|K |≥md

0m1−4n
max

1≤i≤md
0

E P2

∣∣∣∣∣∣
∑

j : (i, j)∈K
εi jγ j (ω)

∣∣∣∣∣∣ . (52)

By Khintchine’s inequality, see [10], Theorem 2.b.3,

E P2

∣∣∣∣ ∑
j : (i, j)∈K

εi jγ j (ω)

∣∣∣∣ ≥ c

( ∑
j : (i, j)∈K

γ j (ω)2
)1/2

.

So we obtain from (52)

eavg2n (S1,ω, ν, C(Q))

≥ cm−1/2
1 min

K ⊆Km0m1 ,|K |≥md
0m1−4n

max
1≤i≤md

0

( ∑
j : (i, j)∈K

γ j (ω)2
)1/2

.
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For eachK ⊆ Km0m1 with |K | ≥ md
0m1 − 4n we have by (50) |K | ≥ |Km0m1 |/2,

hence there is an i with 1 ≤ i ≤ md
0 such that |{ j : (i, j) ∈ K }| ≥ m1/2. With

Jm1 = {1, 2, . . . , m1} it follows that

eavg2n (S1,ω, ν, C(Q)) ≥ cm−1/2
1 min

J ⊆Jm1 ,|J |≥m1/2

( ∑
j∈J

γ j (ω)2
)1/2

,

and therefore, by (51) and Lemma 5, for n satisfying (50),

erann (S1, Ψm0m1 × Ω, C(Q))

≥ cm−1/2
1 inf

D∈Σ,P(D)≥1/4

∫
D

min
J ⊆Jm1 ,|J |≥m1/2

( ∑
j∈J

γ j (ω)2
)1/2

dP(ω) ≥ c. (53)

Let 2 ≤ q < ∞ and observe that there is a constant c0 > 0 such that for
m0, m1 ∈ N

c0(max(m0, m1))
−rΨm0m1 ⊆ F r

q (Q × [0, 1] × Ω; κ). (54)

For n ∈ N put m0 = m1 =
⌈
4n

1
d+1

⌉
, hence (50) is satisfied, and therefore (16), (53),

and (54) imply

erann (S ,F r
q (Q × [0, 1] × Ω; κ) × Ω, C(Q × [0, 1]))

≥ erann (S1,F
r
q (Q × [0, 1] × Ω; κ) × Ω, C(Q))

≥ c−1
0 m−r

0 erann (S1, Ψm0m1 × Ω, C(Q)) ≥ cn− r
d+1 . (55)

Combining (46)–(47) and (55) proves the lower bounds (24) and (26).
Next let 2 < q < ∞ and note that there is a constant c1 > 0 such that for all

m0, m1 ∈ N

c1m−r1
0 m−ρ

1 Ψm0m1 ⊆ Fr1,ρ
q (Q × [0, 1] × Ω; κ) ⊆ Fr1,ρ(Q × [0, 1] × Ω; κ). (56)

Let n ∈ N. First we putm0 =
⌈
8n

1
d

⌉
,m1 = 1. Again (50) is satisfied, thus (16), (53),

and (56) yield

erann (S , Fr1,ρ
q × Ω, C(Q × [0, 1])) ≥ erann (S1, Fr1,ρ

q × Ω, C(Q))

≥ c−1
1 m−r

0 erann (S1, Ψm0m1 × Ω, C(Q)) ≥ cn− r
d . (57)

Now we set m0 = 1, m1 = 8n. Clearly, (50) holds and, using again (16), (53), and
(56), we conclude
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erann (S , Fr1,ρ
q × Ω, C(Q × [0, 1])) ≥ erann (S1, Fr1,ρ

q × Ω, C(Q))

≥ c−1
1 m−ρ

1 erann (S1, Ψm0m1 × Ω, C(Q)) ≥ cn−ρ. (58)

Now the lower bounds (25) and (27) follow from (48) and (57)–(58),which completes
the proof. �
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QMC Algorithms with Product Weights
for Lognormal-Parametric, Elliptic PDEs

Lukas Herrmann and Christoph Schwab

Abstract We survey recent convergence rate bounds for single-level and multilevel
QMC Finite Element (FE for short) algorithms for the numerical approximation of
linear, second order elliptic PDEs in divergence form in a bounded, polygonal domain
D. The diffusion coefficient a is assumed to be an isotropic, log-Gaussian random
field (GRF for short) in D. The representation of the GRF Z = log a is assumed
affine-parametric with i.i.d. standard normal random variables, and with locally sup-
ported functions ψ j characterizing the spatial variation of the GRF Z . The goal of
computation is the evaluation of expectations (i.e., of so-called “ensemble averages”)
of (linear functionals of) the random solution. The QMC rules employed are ran-
domly shifted lattice rules proposed in Nichols, Kuo (J Complex 30:444–468, 2014,
[19]) as used and analyzed previously in a similar setting (albeit for globally in D sup-
ported spatial representation functions ψ j as arise in Karhunen-Loève expansions)
in Graham et al. (Numer Math 131:329–368, 2015, [9]), Kuo et al. (Math Comput
86:2827–2860, 2017, [14]). The multilevel QMC-FE approximation Q∗

L analyzed
here for locally supported ψ j was proposed first in Kuo, Schwab, Sloan (Found
Comput Math 15:411–449, 2015, [17]) for affine-parametric operator equations. As
shown in Gantner, Herrmann, Schwab (SIAM JNumer Anal 56:111–135, 2018, [7]),
Gantner, Herrmann, Schwab (Contemporary computational mathematics - a celebra-
tion of the 80th birthday of Ian Sloan. Springer, Cham, 2018, [6]), Herrmann, Schwab
(QMC integration for lognormal-parametric, elliptic PDEs: local supports and prod-
uct weights. Technical Report 2016-39, Seminar for Applied Mathematics, ETH
Zürich, Switzerland, 2016, [10]), Herrmann, Schwab (Multilevel quasi-Monte Carlo
integration with product weights for elliptic PDEs with lognormal coefficients. Tech-
nical Report 2017-19, Seminar for Applied Mathematics, ETH Zürich, Switzerland,
2017, [11]) localized supports of the ψ j (which appear in multiresolution repre-
sentations of GRFs Z of Lévy–Ciesielski type in D) allow for the use of product
weights, originally proposed in construction of QMC rules in Sloan, Woźniakowski
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(J Complex 14:1–33, 1998, [23]) (cf. the survey (Dick, Kuo, Sloan in Acta Numer
22:133–288, 2013, [4]) and references there). The present results from Herrmann,
Schwab (Multilevel quasi-Monte Carlo integration with product weights for elliptic
PDEs with lognormal coefficients. Technical Report 2017-19, Seminar for Applied
Mathematics, ETH Zürich, Switzerland, 2017, [11]) on convergence rates for the
multilevel QMC FE algorithm allow for general polygonal domains D and for GRFs
Z whose realizations take values in weighted spaces containing W 1,∞(D). Local-
ized support assumptions on ψ j are shown to allow QMC rule generation by the
fast, FFT based CBC constructions in Nuyens, Cools (J Complex 22:4–28, 2006,
[21]), Nuyens, Cools (Math Comput 75:903–920, 2006, [20]) which scale linearly
in the integration dimension which, for multiresolution representations of GRFs, is
proportional to the number of degrees of freedom used in the FE discretization in
the physical domain D. We show numerical experiments based on public domain
QMC rule generating software inGantner (A generic c++ library formultilevel quasi-
Monte Carlo. In: Proceedings of the Platform for Advanced Scientific Computing
Conference, PASC ’16, ACM, New York, USA, pp 11:1–11:12 2016, [5]), Kuo,
Nuyens (Found Comput Math 16:1631–1696, 2016, [13]).

Keywords Quasi-Monte Carlo methods · Multilevel quasi-Monte Carlo ·
Uncertainty quantification · Error estimates · High-dimensional quadrature ·
Elliptic partial differential equations with lognormal input

1 Introduction

The numerical solution of partial differential equations (PDEs for short) with random
input data is a core task in the field of computational uncertainty quantification. Par-
ticular models of randomness in the PDEs’ input parameters entail particular require-
ments for efficient computational uncertainty quantification algorithms. A basic case
arises when there are only a finite number of random variables whose densities have
bounded support and which parametrize the uncertain input in the forward PDE
model: computation of statistical moments of responses and also Bayesian inversion
then amounts to numerical integration over a bounded domain of finite dimension s.
Statistical independence and scaling implies numerical integration over the unit cube
[0, 1]s against a product probability measure. In the context of PDEs, so-called
distributed random inputs such as spatially heterogeneous diffusion coefficients,
uncertain physical domains, etc. imply, via uncertainty parametrizations (such as
Fourier- , B-spline orwavelet expansions) in physical domains D, a countably-infinite
number of random parameters (being, for example, Fourier- or wavelet coefficients).
This, in turn, renders the problem of estimation of response statistics of solutions of
a problem of infinite-dimensional numerical integration. Assuming again statistical
independence of the system of (countably many) random input parameters results in
the problem of numerical integration against a product measure. In case of Gaussian
random field (GRF for short) inputs under consideration in this note, in addition
the domain of integration is the countable product of real lines RN, endowed with a
Gaussian measure (GM for short); see, e.g., [3] for details on GMs on R

N.



QMC Algorithms with Product Weights for Lognormal-Parametric, Elliptic PDEs 315

Here, as in [9, 14] and the references there, we analyze QMC quadratures in the
FE solution of linear, second order elliptic PDEs in a bounded, polygonal domain
D, with isotropic, log-Gaussian diffusion coefficient a = exp(Z), where Z is a GRF
in D. As in [9, 14], we confine the analysis to first order, randomly shifted lattice
rules proposed originally in [19], and to continuous, piecewise linear “Courant” FE
methods in D. We adopt the setting of our analysis [10] of the single-level QMC-FE
algorithm: consider

− ∇ · (a∇u) = f in D, u = 0 on ∂D (1)

where D is a bounded interval in space dimension d = 1 or a bounded polygon with
J straight sides and J corners c j , i = 1, . . . , J , in space dimension d = 2.We endow
Ω := R

N with the Gaussian product measure and the corresponding product sigma
algebra, cf. [3]

μ(d y) :=
⊗

j≥1

1√
2π

e− y2j
2 dy j , y = (y j ) j≥1 ∈ Ω.

The random input is modelled on (Ω,
⊗

j≥1 B(R), μ) which is a probability
space (cf. for example [3, Example2.3.5]). The GRF Z = log(a) : Ω → L∞(D)

is assumed to be affine-parametric:

Z :=
∑

j≥1

y jψ j . (2)

In order to render the random coefficient a = exp(Z) in (1) meaningful, we imposed
in [10] on the (ψ j ) j≥1 in (2) the summability condition

∥∥∥∥∥∥

∑

j≥1

|ψ j |
b j

∥∥∥∥∥∥
L∞(D)

< ∞ (A1)

such that (b j ) j≥1 ∈ �p0(N) for some p0 ∈ (0,∞), and the positive sequence (b j ) j≥1

encodes decay of (ψ j ) j≥1. We observe that (A1) is weaker than the summability
conditions imposed in [9, 14] in the case that theψ j have local supports, as observed
in [2] in the context on N -term polynomial chaos approximation rate analysis of
the random field solution u of (1). The assumption of local supports in (A1) allows
for the use of product weights, cf. [6, 7, 10, 11]. The QMC points result from
generating vectors that are constructed with the component-by-component (CBC
for short) construction. The CBC construction for product weights, cf. [20, 21],
has computational cost which scales linearly with respect to the dimension s of the
domain of integration. Reproducing kernel Hilbert spaces (RKHS for short) with
product weights were introduced in [23]. For general surveys on QMC we refer to
[4, 15] and the references there. A finite dimension s of integration results from the
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truncation of the expansion of the GRF Z which, if e.g. (ψ j ) j≥1 is a multiresolution
analysis, couples with the FE discretization. The main theoretical results on single-
level andmultilevel QMCwith product weights that we survey in this note are proven
in our manuscripts [10, 11], which are in review at the time of writing the present
paper. These are backed here with numerical experiments whose implementation
uses public domain software [13].

2 Spatial Approximation

The spatial approximation of the PDE (1) by the FE method is based on its (primal)
variational formulation in D, while considering the coefficient sequence y in the
random input as “a parameter”. Let V := H 1

0 (D) with dual V ∗. Find u : Ω → V
such that ∫

D
a∇u · ∇vdx = f (v), v ∈ V . (3)

The Assumption (A1) and that for some p0 ∈ (0,∞), (b j ) j≥1 ∈ �p0(N) implies that
Z ∈ Lq(Ω; L∞(D)) for every q ∈ [1,∞), cf. [10, Theorem2]. This implies that μ-
a.s. 0 < ess inf x∈D{a(x)} ≤ ‖a‖L∞(D) < ∞. For the ensuing presentation, we define
the random variables

amin := ess inf x∈D{a(x)} and amax := ‖a‖L∞(D) .

Hence, the random bilinear form (w, v) �→ ∫
D a∇w · ∇vdx on V × V is continuous

and coercive with coercivity constant amin and continuity constant amax. By the Lax–
Milgram lemma, the solution u exists and solves (3) uniquely. Also due to [10,
Corollary 6 and Eq. (16)], we obtain the estimate for every q ∈ [1,∞),

‖u‖Lq (Ω;V ) ≤ ‖1/amin‖Lq (Ω)‖ f ‖V ∗ < ∞,

where the strong measurability of u follows, since u depends continuously on a (by
the second Strang lemma). To obtain a finite dimensional integration domain, we con-
sider dimension truncation. For every s ∈ N, let as := exp(Zs) = exp(

∑s
j=1 y jψ j )

denote the truncated lognormal field and define the random variables

asmin := ess inf x∈D{as(x)} and asmax := ‖as‖L∞(D).

Let us : Ω → V be the solution with respect to the coefficient as , i.e.,

∫

D
as∇us · ∇vdx = f (v), v ∈ V .
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Assuming that (b j ) j≥1 ∈ �p0(N) for some p0 ∈ (0,∞) by [10, Proposition7], for
every ε > 0, there exists a constant Cε > 0 such that for every G(·) ∈ V ∗

|E(G(u)) − E(G(us))| ≤ Cε‖G(·)‖V ∗‖ f ‖V ∗ sup
j>s

{b1−ε
j }. (4)

Approximationswith Finite Elements in a polygon D ⊂ R
2 with respect to uniformly

refined triangulations may result in suboptimal convergence rates. We therefore
consider certain weighted Sobolev spaces, cf. [1]. For a J -tuple β = (β1, . . . , βJ )

of weight exponents, we define the corner weight function Φβ(x) := ∏J
i=1 |ci −

x |βi , x ∈ D, where βi ∈ [0, 1), i = 1, . . . , J , and {c1, . . . , cJ } ⊂ ∂D are the cor-
ners of D. Here and in the following, the Euclidean norm in R

2 is denoted by
| · |. We define the function spaces L2

β(D) and H 2
β (D) as closures of C∞(D)

with respect to the norms ‖v‖L2
β (D) := ‖vΦβ‖L2(D) and ‖v‖2

H 2
β (D)

:= ‖v‖2H 1(D)
+

∑
|α|=2 ‖|∂α

x v|Φβ‖2L2(D)
.

Lemma 1 There is C > 0 such that for every f ∈L2
β(D) holds ‖ f ‖V ∗≤C‖ f ‖L2

β (D).

Proof The statement of the lemma is equivalent to the continuity of the embedding
L2

β(D) ⊂ V ∗. By duality, this is equivalent to the continuity of the embedding V ⊂
(L2

β(D))∗. We therefore identify L2(D) with its dual (L2(D))∗, and obtain for an
arbitrary w ∈ (L2

β(D))∗ with the Cauchy–Schwarz inequality

‖w‖(L2
β (D))∗ = sup

v∈L2
β (D),‖v‖L2

β
(D)

=1

w(v) = sup
v∈L2

β (D),‖v‖L2
β

(D)
=1

∫
wvdx

≤ ‖w/Φβ‖L2(D) = ‖w‖L2
−β (D) .

By the Hardy inequality (see, e.g., [22, Theorem21.3] with the choices p = q =
2, α = −p, β = 0, κ = 1), there exists a constant C ′ > 0 such that for every w̃ ∈ V ,
with dist∂D(x) denoting for x ∈ D the regularized distance of x to the (Lipschitz)
boundary ∂D, as defined e.g. in [24, Chap.6.2], ‖w̃/dist∂D‖L2(D) ≤ C ′‖w̃‖V , we
conclude that the embedding V ⊂ (L2

β(D))∗ is continuous. This implies the assertion
of this lemma. �

In the weighted spaces H 2
β (D) there holds a full regularity shift for the Dirichlet

Laplacean, cf. [1, Theorem3.2]: there exists a constant C > 0 such that for every
w ∈ V with Δw ∈ L2

β(D),

‖w‖H 2
β (D) ≤ C‖Δw‖L2

β (D), (5)

provided that theweight exponent J -tupleβ satisfies 0 ≤ βi and 1 − π/ωi < βi < 1,
i = 1, . . . , J . The interior angle of the corner ci is denoted byωi , i = 1, . . . , J . Since
in [1] the Poisson boundary value problem with a zero order term is considered, i.e.,
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−Δw + w = f , we also used the estimate that for constants C1,C2,C3 > 0 inde-
pendent of w ∈ V ∩ H 2

β (D), ‖w‖L2
β (D) ≤ C1‖w‖L2(D) ≤ C2‖w‖V = C2‖Δw‖V ∗ ≤

C3‖Δw‖L2
β (D), which is a consequence of Lemma1. Also in FE spaces V� := {v ∈

V : v|K ∈ P
1(K ), K ∈ T�} there is an approximation property, cf. [1, Lemmas4.1

and4.5], where P1(K ) are the affine functions on K and {T�}�≥0 are sequences of
regular, simplicial triangulations with proper mesh refinement near the corners ci of
D. Specifically, there exists a constant C such that for every w ∈ H 2

β (D) there is
w� ∈ V� satisfying

‖w − w�‖V ≤ CM−1/d
� ‖w‖H 2

β (D), (6)

where M� := dim(V�). Let us,T � : Ω → V� be the FE solution, i.e.,

∫

D
as∇us,T � · ∇vdx = f (v), ∀v ∈ V�. (7)

LetW 1,∞
β (D) denote the Banach space of measurable functions v : D → R that have

finite W 1,∞
β (D)-norm, where ‖v‖W 1,∞

β (D) := max{‖v‖L∞(D), ‖|∇v|Φβ‖L∞(D)}. We

introduce the following mixed sparsity assumption on the function system (ψ j ) j≥1.
Let (b̄ j ) j≥1 be a positive sequence such that

∥∥∥∥∥∥

∑

j≥1

max{|∇ψ j |Φβ, |ψ j |}
b̄ j

∥∥∥∥∥∥
L∞(D)

< ∞. (A2)

TheAssumption (A2) (which is stronger than (A1)) is essential in obtaining improved
error vs. work bounds for the multilevel QMC approximation Q∗

L as compared to the
bounds for the single-level QMC approximation in [10, Theorem17]. The following
proposition is obtained as [10, Theorem2], we omit the details of its proof here.

Proposition 1 Let the assumption in (A2) be satisfied for some sequence (b̄ j ) j≥1

such that (b̄ j ) j≥1 ∈ �p0(N) for some p0 ∈ (0,∞). For every ε > 0 and q ∈ [1,∞)

there exists a constant C > 0 such that for every s ∈ N,

‖Z − Zs‖Lq (Ω:W 1,∞
β (D)) ≤ C sup

j>s
{b̄1−ε

j } .

We obtain with [10, Corollary6], that the identity (∇a)Φβ = (a∇Z)Φβ holds in
L∞(D)d , μ-a.s. With the Cauchy–Schwarz inequality, it implies that for every q ∈
[1,∞) there exists a constant C > 0 such that for every s ∈ N,

‖a‖Lq (Ω;W 1,∞
β (D)) < ∞ and ‖as‖Lq (Ω;W 1,∞

β (D)) ≤ C < ∞.

We observe thatμ-a.s holds, that for every subset D̃ ⊂⊂ D, |∇a| ∈ L∞(D̃) and also
that for everyq ∈ [1,∞), |∇a| ∈ Lq(Ω; L∞(D̃)).We assume that f,G(·) ∈ L2

β(D).
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Then, by the divergence theorem and product rule

∫

D
f vdx =

∫

D
a∇u · ∇vdx = −

∫

D
[aΔu + ∇a · ∇u]vdx, ∀v ∈ C∞

0 (D).

Formally testing the corresponding pointwise identity (which holds for pointwise
a.e. x ∈ D) with −ΔuΦ2

β/a, we obtain the following estimate, valid μ-a.s.

‖Δu‖L2
β (D) ≤

‖ f ‖L2
β (D)

amin
+ ‖Z‖W 1,∞

β (D)‖u‖V ≤ C
‖ f ‖L2

β (D)

amin
(1 + ‖Z‖W 1,∞

β (D)). (8)

Note that we may test with −ΔuΦ2
β/a, since it can be approximated by elements of

C∞
0 (D) in L2(D). Here we used Lemma1, i.e., ‖ f ‖V ∗ ≤ C‖ f ‖L2

β (D) with a constant
C > 0 depending only on the domain D, which is independent of f . By an Aubin–
Nitsche argument, by (4), (5), (6), Proposition1, and (8), for every ε > 0 there exists
a constant C > 0 such that for every s ∈ N, � ∈ N0

|E(G(u)) − E(G(us,T � ))| ≤ C

(
sup
j>s

{b1−ε
j } + M−2/d

�

)
‖G(·)‖L2

β (D)‖ f ‖L2
β (D). (9)

Remark 1 The regularity shift in (5) and the estimate in (8) can be interpolated
between the interpolation couple L2

β(D) ⊂ V ∗ as well as the approximation property
in (6). If f ∈ (V ∗, L2

β(D))t,∞ and if G(·) ∈ (V ∗, L2
β(D))t ′,∞ for some t, t ′ ∈ [0, 1],

then the estimate (9) holds with the term M−2/d
� that bounds the error contribution

from the FE discretization replaced by M−(t+t ′)/d
� . Here and throughout what fol-

lows, interpolation spaces shall be understood with respect to the real method of
interpolation; we refer to [25, Chap.1] and the references there for definitions and
basic properties of interpolation spaces.

3 Single-Level QMC

Dimension independent convergence rates of QMC with randomly shifted lattice
rules can be shown by estimating the worst-case error of a particular weighted
Sobolev space of type Wγ and the norm in this Sobolev space of the integrand. We
generally seek to approximate s-dimensional integralswith respect to themultivariate
normal distribution

Is(F) :=
∫

Rs

F( y)
s∏

j=1

φ(y j )d y,

where the univariate, standard normal density is denoted by φ(·).
For every s ∈ N and product weights γ = (γu)u⊂N, we introduce the weighted

Sobolev spaces Wγ (Rs), which are given by the norm



320 L. Herrmann and C. Schwab

‖F‖W γ (Rs )

:=
⎛

⎝
∑

u⊂{1:s}
γ −1
u

∫

R|u|

∣∣∣∣∣∣

∫

Rs−|u|
∂u
y F( y)

∏

j∈{1:s}\u
φ(y j )d y{1:s}\u

∣∣∣∣∣∣

2
∏

j∈u
w2

j (y j )d yu

⎞

⎠

1/2

.

(10)
The consideredweights γ are of product type, i.e., for some positive sequence (γ j ) j≥1

γu =
∏

j∈u
γ j , u ⊂ N, |u| < ∞.

The weight functions in (10) are either unnormalized Gaussians or exponentially
decaying, i.e.,

w2
g, j (y) := e− y2

2αg , y ∈ R, j ≥ 1, and w2
exp, j (y) := e−αexp|y|, y ∈ R, j ≥ 1,

whereαg > 1 andαexp > 0. TheQMCquadrature in s ∈ N dimensionswith N points
is denoted by Qs,N (·). Using randomly shifted lattice rules, there exist QMC points
such that for every F ∈ Wγ (Rs) the mean squared error integrated over all random
shifts Δ (w.r. to the uniform measure, cf. [19]) satisfies

√
EΔ(|Is(F) − Qs,N (F)|2) ≤ Cγ (ϕ(N ))−1/(2λ)‖F‖W γ (Rs ), (11)

where the constantCγ is finite if (γ j ) j≥1 ∈ �λ(N) and then uniformly bounded in the
dimension s (and in particular independent of F) for λ ∈ (1/(2r), 1]. This follows
by [19, Theorem8], [16, Lemma6.3], and [18, Examples4 and5], where

r =
{
1 − 1/(2αg) for Gaussian weight functions,

1 − δ for exponential weight functions and any δ ∈ (0, 1/2).

The Euler totien function is denoted by ϕ(·). In the following, the solution us and the
coefficient as are viewed as mappings fromR

s to V and L∞(D), respectively. In the
analysis of bounds of theWγ (Rs)-norm of the specific integrand F( y) = G(us( y)),
y ∈ R

s , global bounds of the function system (ψ j ) j≥1 have been used in [9]with POD
weights. The theory in [2] is able to derive parametric regularity estimates taking
into account possible locality of the supports of ψ j . Specifically, [2, Theorem4.1]
states that if for a positive sequence (ρ j ) j≥1

∥∥∥∥∥∥

∑

j≥1

ρ j |ψ j |
∥∥∥∥∥∥
L∞(D)

< log(2), (12)

then there exists a constant C that is independent of s such that for every y ∈ R
s ,
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∑

u⊂{1:s}
‖∂u

y u
s( y)‖2as ( y)

∏

j∈u
ρ2
j ≤ C‖us( y)‖2as ( y), (13)

where ‖ · ‖a( y) denotes the parametric energy norm. In [10], this estimate is used to
prove dimension independent convergence rates of randomly shifted lattice ruleswith
product weights. The product weights will be defined using the sequence (b j ) j≥1,
where the smallness assumption in (12) does not affect the QMC weights nor the
function system (ψ j ) j≥1. Some of the sparsity of the sequence (b j ) j≥1 is used to
control the weight functions in the norm (10).

Theorem 1 ([10, Theorems11 and13]) For p′ ∈ (0, 1], consider the weight
sequence

γ j := b2p
′

j , j ≥ 1.

Let the Assumption (A1) be satisfied and let the conditions below hold, respectively:

1. Gaussian weight functions: (b j ) j≥1 ∈ �p(N) for some p ∈ (2/3, 2) with χ =
1/(2p) + 1/4 − δ. The weight sequence (γ j ) j≥1 is applied with p′ = p/4 +
1/2 − δp for δ ∈ (0, 3/4 − 1/(2p)).

2. Exponential weight functions: (b j ) j≥1 ∈ �p(N) for some p ∈ (2/3, 1] with χ =
1/p − 1/2. The weight sequence (γ j ) j≥1 is applied with p′ = 1 − p/2.

Then, there exists a constant C independent of N and s such that

√
EΔ(|Is(G(us)) − Qs,N (G(us))|2) ≤ C(ϕ(N ))−χ .

4 Multilevel QMC

The multilevel QMC quadrature is for a maximum level L ∈ N0 defined by a tele-
scoping sum expansion

Q∗
L(G(uL) :=

L∑

�=0

Qs�,N�
(G(u�) − G(u�−1)), (14)

where G(u−1) := 0 and u� := us�,T � , � ≥ 0. It requires choices of dimensions
(s�)�=0,...,L and numbers of QMC points (N�)�=0,...,L . The random shifts between
the different levels in (14) are assumed to be independent. This implies with (11)

E
Δ(|IsL (G(uL )) − Q∗

L (G(uL ))|2) ≤ C2
γ

L∑

�=0

(ϕ(N�))
−1/λ‖G(u�) − G(u�−1)‖2Wγ (Rs� )

.

According to this error estimate, it is crucial to find suitable bounds of theWγ (Rs� )-
norm of the differenceG(u�) − G(u�−1) in order that themultilevel QMCquadrature
benefits from the coupling between the levels � = 1, . . . , L .
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4.1 Error Estimate

Parametric regularity estimates of the type of (13) can be shown for dimensionally
truncated and FE differences between two consecutive levels.

Proposition 2 Let a positive sequence (ρ j ) j≥1 satisfy (12) and for some η > 0

Kη :=
∥∥∥∥∥∥

∑

j≥1

ρ
1+η

j |ψ j |
∥∥∥∥∥∥
L∞(D)

< ∞.

Then, there exists a constant C > 0 such that for every s ′ < s ∈ N0 and every y ∈ R
s ,

∑

u⊂{1:s}
‖∂u

y (u
s( y) − us

′
( y))‖2as ( y)

∏

j∈u
ρ2
j

≤ C

⎛

⎝
∥∥∥∥∥
as( y) − as

′
( y)

as( y)

∥∥∥∥∥

2

L∞(D)

‖us ′
( y)‖2as ( y) + sup

j>s ′
{ρ−2η

j }‖us ′
( y)‖2as ( y)

⎞

⎠ .

Proposition 3 Let G(·) ∈ L2
β(D) and let a positive sequence (ρ j ) j≥1 satisfy

∥∥∥∥∥∥

∑

j≥1

ρ j max{|∇ψ j |Φβ, |ψ j |}
∥∥∥∥∥∥
L∞(D)

< sup
{
c > 0 : cec ≤ 1

} 1√
2
.

Then, there exists a constant C > 0 such that for every s ∈ N0, � ∈ N0, and for every
y ∈ R

s ,

∑

u⊂{1:s}
|∂u

y (G(us( y)) − G(us,T � ( y)))|2
∏

j∈u
ρ2
j

≤ C

(‖as( y)‖2L∞(D)

(asmin( y))4
(1 + ‖Zs( y)‖2

W 1,∞
β (D)

)

)2

M−4/d
� ‖G(·)‖2L2

β (D)
‖ f ‖2L2

β (D)
.

Propositions2 and3 are versions restricted to first order mixed derivatives ∂u
y of [11,

Theorems4.3 and4.8]. The parametric regularity estimates in Propositions2 and3
are used to show the following multilevel QMC error estimate analogously to the
proof of [10, Theorems11, and13].

Theorem 2 ([11, Theorem5.1]) For p′ ∈ (0, 1], θ ∈ (0, 1), consider the weight
sequence

γ j := (b1−θ
j ∨ b̄ j )

2 p̄′
, j ≥ 1.

Consider sequences (s�)�=0,...,L and (N�)�=0,...,L , L ∈ N0, under the conditions:
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1. Gaussian weight functions: (b1−θ
j ∨ b̄ j ) j≥1 ∈ � p̄(N) for some p̄ ∈ (2/3, 2) with

χ̄ = 1/(2 p̄) + 1/4 − δ̄. The weight sequence in (γ j ) j≥1 is applied with p̄′ =
p̄/4 + 1/2 − δ̄ p̄ for δ̄ ∈ (0, 3/4 − 1/(2 p̄)).

2. Exponential weight functions: (b1−θ
j ∨ b̄ j ) j≥1 ∈ � p̄(N) for some p̄ ∈ (2/3, 1]

with χ̄ = 1/ p̄ − 1/2. The weight sequence in (γ j ) j≥1 is applied with p̄′ =
1 − p̄/2.

Then, for any ε ∈ (0, 1), there exists a constant C > 0 that is in particular indepen-
dent of (s�)�=0,...,L , (N�)�=0,...,L and L ∈ N0 such that, with ξ�,�−1 := 0 if s� = s�−1

and ξ�,�−1 := 1 otherwise,

√
EΔ(|E(G(u)) − Q∗

L(G(uL))|2)

≤ C

(
sup
j>sL

{b2(1−ε)
j } + M−4/d

L

+
L∑

�=0

(ϕ(N�))
−2χ̄

(
ξ�,�−1 sup

j>s�−1

{b2θj } + M−4/d
�−1

))1/2

.

Remark 2 For f ∈ (V ∗, L2
β(D))t,∞ and G(·) ∈ (V ∗, L2

β(D))t ′,∞, with some t, t ′ ∈
[0, 1], the error estimate in Theorem2 holds with the term M−4/d

� that bounds the FE
discretization error replaced by M−2τ/d

� , � = 0, . . . , L , where τ = t + t ′.

4.2 Error Versus Work

We discuss in some detail the use of Multiresolution Analyses (MRAs for short) to
model the GRF log(a) = Z , analogous to the Lévy–Ciesielski representation of the
Wiener process. To this end, we assume that (ψλ)λ∈� constitute a MRA which is
generated by a finite number of sufficiently smooth mother wavelets, i.e.,

ψλ(x) = ψ(|λ|,k))(x) := ψ(2|λ|x − k), k ∈ �|λ|, x ∈ D.

We use the usual notation, where in the index λ = (|λ|, k) refers to the level |λ| ∈ N0

and the translation k ∈ �|λ|. The index set�� has cardinality | �� | = O(2d�), � ∈ N0.
We assume that the overlap on a fixed level � ∈ N0 is uniformly bounded, i.e., there
exists K such that for every � ∈ N0 and every x ∈ D,

|{λ ∈ � : |λ| = �, ψλ(x) �= 0}| ≤ K .

Additionally, we introduce the scaling that for some α̂, σ > 0,

‖ψλ‖L∞(D) ≤ σ2−α̂|λ|, λ ∈ �,
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and assume that there exists a constant C > 0 such that the mother wavelet satisfies
‖|∇ψ |‖L∞(D) ≤ C‖ψ‖L∞(D). For this MRA the Assumption (A1) is satisfied with
the sequence

b j (λ) = bλ := 2−β̂|λ|, λ ∈ �,

for α̂ > β̂ > 0, where j : N → � is a suitable enumeration. In this setting the work
to compute one sample of the stiffness matrix is O(M� log(s�)), where s� denotes
the truncation level of the coefficient. We assume that the work to solve the linear
system resulting from the FE discretization satisfies that for some η ≥ 0

workPDEsolve = O(M1+η

� ). (A3)

Therefore, the overall work of the multilevel QMC quadrature satisfies for L ∈ N0,

work = O

(
L∑

�=0

N�(M� log(s�) + M1+η

� )

)
.

The cost of theCBCconstruction is here excluded from theworkmodel for simplicity.
We refer to [11, Sect. 6] for a discussion of a work model that considers the cost of
the CBC construction. For α̂ > β̂ > 1, the MRA (ψλ)λ∈� and the sequence

b̄ j := b(β̂−1)/β̂
j , j ∈ N,

satisfies the Assumption (A2). We assume in this section

f ∈ (V ∗, L2
β(D))t,∞ and G(·) ∈ (V ∗, L2

β(D))t ′,∞, t, t ′ ∈ [0, 1], (A4)

and set τ := t + t ′. Also, assume that M� = O(2d�), � ∈ N0. We suppose that
(s�)�=0,...,L , θ , and (M�)�≥0 are given such that the truncation error in the multi-
level QMC error estimate in Theorem2 is controlled by the FE discretization error
on levels � = 0, . . . , L . Specifically, we suppose that s� depends algebraically onM�;
two concrete strategies on how to choose s� are discussed in [11, Sect. 6]. Analogous
to the analysis in [11, Sect. 6] (see also [6, 14, 17]), explicit expressions for the QMC
sample numbers (N�)�=0,...,L are found by optimizing work versus the (estimated)
error:

N� =

⎧
⎪⎨

⎪⎩

⌈
N0M

−(2τ/d+1+η)/(1+2χ̄ )

�

⌉
if η > 0,

⌈
N0

(
M−1−2τ/d

� log(s�)−1
)1/(1+2χ̄ )

⌉
if η = 0,

� = 1, . . . , L . (15)

and
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N0 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�2τ L/χ̄� if 1 + η < τ/(dχ̄ ),

�2τ L/χ̄ L1/(2χ̄ )� if 1 + η = τ/(dχ̄ ), η > 0,

�2τ L/χ̄ L(1+4χ̄ )/(χ̄(2+4χ̄))� if d = τ/χ̄, η = 0,

�2(2τ+d(1+η))L/(1+2χ̄ ) if 1 + η > τ/(dχ̄ ), η > 0,

�2(d+2τ)L/(1+2χ̄ )L1/(1+2χ̄ )� if d > τ/χ̄, η = 0.

(16)

Theorem 3 ([11, Theorem6.2]) Let the Assumptions (A4) and (A3) be satisfied for
η ≥ 0. The sample numbers for Q∗

L(·) are given by (15) and (16), L ∈ N0.

1. Gaussian weight functions: for p̄ ∈ (max{2/3, d/(β̂ − 1)}, 2), χ̄ = 1/(2 p̄) +
1/4 − δ̄ for δ̄ > 0 sufficiently small assuming d/(β̂ − 1) < 2.

2. Exponential weight functions: for p̄ ∈ (max{2/3, d/(β̂ − 1)}, 1], χ̄ = 1/ p̄ −
1/2 assuming d/(β̂ − 1) < 1.

For an error threshold ε > 0, we obtain
√
EΔ(|E(G(u)) − Q∗

L(G(uL))|2) = O(ε),

which is achieved with

work =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

O(ε−1/χ̄ ) if 1 + η < τ/(dχ̄ ),

O(ε−1/χ̄ log(ε−1)(1+2χ̄ )/(2χ̄ )) if 1 + η = τ/(dχ̄ ), η > 0,

O(ε−1/χ̄ log(ε−1)(1+4χ̄ )/(2χ̄ )) if d = τ/χ̄, η = 0,

O(ε−d/τ(1+η)) if 1 + η > τ/(dχ̄ ), η > 0,

O(ε−d/τ log(ε−1)) if d > τ/χ̄, η = 0.

5 Numerical Experiments

Consider (1) in space dimension d = 1 with D = (0, 1), i.e.,

− ∂x (a ∂xu) = f in D, u(0) = u(1) = 0. (17)

The coefficient a is given by a = exp(Z), where Z = ∑
j≥1 y jψ j . We consider two

possible cases for the MRA (ψ j ) j≥1: the Haar system and a family of biorthogonal,
continuous, piecewise linear spline wavelets.

5.1 Single-Level QMC

We suppose that the GRF Z is represented by the Haar system (ψ j (�,k)) j≥1, i.e.,
it is generated by the mother wavelet ψ(x) = 1[0,1/2)(x) − 1[1/2,1)(x), x ∈ R. Haar
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wavelets are for α̂ > 0 and σ > 0 given by

ψ�,k(x) := σ2−α̂�ψ(2�x − k), � ≥ 0, k = 0, . . . , 2� − 1.

In our computations, we consider truncated fields Zs with s = 2L+1 − 1, L ≥ 0.
In this way, the expansion of Zs consists of full partial sums over activated lev-
els. Realizations of the coefficient as are piecewise constant on D. For a constant
right hand side f ≡ constant, the solution us of (17) takes values in the piecewise
quadratic functions on D. Hence, for such as , the corresponding FE solution of (17)
also solves (17) ifP2 Lagrange FE is applied. Therefore, in this example we are able
to study the QMC error in the absence of spatial discretization errors.

This Haar system (ψ j ) j≥1 and the sequence (b j ) j≥1 given by

b j (�,k) := c2−β̂�, � ≥ 0, k = 0, . . . , 2� − 1,

satisfy the Assumption (A1) for every β̂ such that α̂ > β̂ > 0 and c > 0. The enu-
meration j : N → ∇ is given by j (�, k) = 2� + k, � ≥ 0, k = 0, . . . , 2� − 1. Since

b j ∼ j−β̂ , j ≥ 1, (b j ) j≥1 ∈ �p(N) for every p > 1/β̂. For p > 1/β̂ and exponential
weight functions, we will use the product weights γ = (γu)u⊂N given by

γu =
∏

j∈u
b2−p
j , u ⊂ N, |u| < ∞.

For the computation of the QMC generating vectors, we use the Python code
QMC4PDE, cf. [13], which is also able to compute generating vectors for product
weights with exponential weight functions, where we take c = 0.1 as the scaling of
the sequence (b j ) j≥1. It has been observed in [8] (there for interlaced polynomial
lattice rules) that using QMC weight sequences that are scaled by a constant smaller
than one, may result in better suited generating vectors. In our experiments, for
dimensions of the order O(103) the value c = 0.1 resulted in better suited generat-
ing vectors than c = 1. Any scaling of the sequence (b j ) j≥1 is justified by our theory.
However, a smaller value of cmay lead to larger dimension-independent constants in
the presented error estimates. We observe that the theoretical bounds for αexp may be
overly conservative and the resulting generating vectors may be ill-suited for prac-
tical QMC quadrature; we refer to the discussion in [8]. Therefore, smaller values
of αexp are considered, i.e., the code QMC4PDE uses parameter-dependent values α j

(in the notation of [13]) according to [13, p. 1672], where we have set a3 = 1.
We present results for a right hand side f ≡ 15 and G(·) is the function evalua-

tion at x̄ = 0.7, which is not a FE node for all discretization levels. Convergence of
the QMC approximation using randomly shifted lattice rules with N = 2m points,
m = 1, . . . , 18, is presented in Fig. 1a, b. The results with m = 19 averaged over R0

random shifts is used as the reference value Q̄. The mean squared error over R ≥ 2
random shifts is approximated by the unbiased estimator

∑R
j=1(Q j − Q̄)2/(R −

1) ≈ E
Δ(|E(G(us)) − Qs,N (G(us))|2), where Q j , j = 1, . . . , R, are the results of
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Fig. 1 Here, sL = 8191, R0 = R = 20. The convergence rates expected from our error analysis in
these examples are 1 − δ and 0.76 − δ, respectively

Qs,N (G(us)) for R i.i.d. random shifts. For all data points, the truncations level
L = 12 is used. This results in sL = 213 − 1 = 8191 dimensions of integration and
FEMmeshwidth h = 2−13. In Fig. 1a and 1b, we observe that the convergence rate is
depending on the variance of log(a) = Z , which is equal to σ 2/(1 − 2−2α̂). Also the
convergence rate is in both cases little different and not larger than 0.95. A depen-
dence of the convergence rate on the variance has also been observed in numerical
experiments with randomly shifted lattice rules using POD weights in [9, Tables1
and2].

5.2 Multilevel QMC

The multilevel QMC convergence analysis requires higher spatial regularity of the
solution, which may not hold if the coefficient is expanded in the Haar system.
We consider here continuous, piecewise linear spline wavelets (ψ j ) j≥1, e.g. [12,
Chap. 12], and assume that Z is expanded in this MRA. We suppose the decay for
α̂ > 1

‖ψ j (�,k)‖L∞(D) = σ2−α̂�, � ≥ 0, k = 1, . . . , 2�.

These (ψ j ) j≥1 and the sequences

b j (�,k) := c2−β̂�, � ≥ 0, k = 1, . . . , 2�, and b̄ j := b(̂β−1)/β̂
j , j ≥ 1,

satisfy the assumption in (A1) and in (A2), if β̂ is such that α̂ > β̂ > 1. We present
numerical experiments for a right hand side f ≡ 15 and G(·) is the function evalua-
tion at the point x̄ = 0.7. Note that G(·) ∈ H−1/2+ε for every ε > 0, which implies a
FE convergence rate of τ = 3/2 − ε for every ε > 0. We will use the limiting value
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Fig. 2 Parameter choices
α̂ = 3.11, β̂ = 3.01,
σ = 0.1, R0 = R = 20. The
convergence rate for
multilevel QMC expected
from our error vs. work
analysis in this example is
0.9 − δ

τ = 3/2 for the sample numbers (N�)�≥0. Let us assume that MRA and FE meshes
are aligned. This refers to Strategy 2 in [11, Sect. 6] or [6, Sect. 6] and requires β̂ > τ .
Hence, for θ = τ/β̂, the product weights are considered with respect to the sequence

(b1−θ
j ∨ b̄ j ) j≥1 = (b1−θ

j ) j≥1.

For simplicity, we will consider sample numbers N� = 2m� , which upper bound the
choices from (15) and (16), where

m� = max

{⌈
τ

χ̄
L − 1 + 2τ

1 + 2χ̄

(
� + log2(� + 1)

)⌉
, 1

}
, � = 0, . . . , L .

Convergence of single-level and multilevel QMC is presented in Fig. 2 for L =
2, . . . , 11. There multilevel and single-level QMC is applied to the same integration
problem with respect to continuous, piecewise linear spline wavelets. Here, we use
piecewise linear P1 FE. For the single-level QMC, the QMC sample numbers NL

are chosen to equilibrate the errors N−χ

L and h−τ
L , cf. [10, Theorem17], which leads

to the choice NL = 2�τ L/χ�. The measured error vs. work convergence rates are
displayed in Fig. 2 for comparison. As a reference solution, the approximation on the
level L = 12 with a total of sL = 8191 dimensions was used, respectively. For the
single-level QMC, the same weight sequence may be applied. Since the generating
vector is constructed by CBC iterating over the dimension, the generating vector for
the highest dimension may be truncated and used for smaller dimensional randomly
shifted lattice rules aswell. Themeasured rateswere obtained by a linear least squares
fit on the last 7 data points. The total work (for one realization of the random shift
per discretization level) is, for multilevel QMC, given by
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WML
L = N0h

−1
0 log2(s0) +

L∑

�=1

N�(h
−1
� log2(s�) + h−1

�−1 log2(s�−1))

and for single-level QMC by WSL
L = NLh

−1
L log2(sL). The convergence result in

Theorem3 is asymptotic and implies a convergence rate of 1 − δ for multilevel QMC
in Fig. 2. The error estimate in Theorem2 and the chosen work model for multilevel
QMC are used to monitor error vs. work in numerical experiments which are then
fitted with least squares. For the range of L corresponding to the data points in Fig. 2,
which are used in the computation of the measured convergence rate, this results in a
“predicted” rate of 0.9 − δ for arbitrary small δ > 0. Predicted rates have been used
in the literature e.g. [5, Table1].
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QMC Designs and Determinantal Point
Processes

Masatake Hirao

Abstract In this paper, we deal with two types of determinantal point processes
(DPPs) for equal weight numerical integration (quasi-Monte Carlo) rules on the
sphere, and discuss the behavior of the worst-case numerical integration error for
functions fromSobolev space over the d-dimensional unit sphereSd . As by-products,
we know the spherical ensemble, a well-studied DPP on S2, generates asymptotically
on average QMC design sequences for Sobolev space over S2 with smoothness 1 <

s < 2. Moreover, compared to i.i.d. uniform random points, we also know harmonic
ensembles on S

d for d ≥ 2, which are DPPs defined by reproducing kernels for
polynomial spaces over Sd , generate on average faster convergent sequences of the
square worst-case error for Sobolev space over Sd with smoothness d/2 + 1/2 <

s < d/2 + 1.

Keywords QMC design · Determinantal point process · Spherical ensemble ·
Harmonic ensemble

1 Introduction

Let Rd+1 be the (d + 1)-dimensional Euclidean space with the usual inner product
and norm; x · y = x1y1 + · · · + xd+1yd+1 and |x| = √

x · x for x = (x1, . . . , xd+1),

y = (y1, . . . , yd+1) ∈ R
d+1, d ≥ 2. Let S

d = {x ∈ R
d+1 | |x| = 1} be the

d-dimensional unit sphere, and X N = {x1, . . . , xN } be a finite subset of Sd with
N points. We denote by Pt (S

d) the vector space of all polynomials of degree at
most t in d + 1 variables restricted to Sd .

We first give the definition of spherical design introduced in the fundamental
paper Delsarte et al. [11]; see also, e.g., the recent survey by Bannai and Bannai [3].

M. Hirao (B)
Department of Information and Science Technology, Aichi Prefectural University, 1522-3
Ibaragabasama, Nagakute, Aichi 480-1198, Japan
e-mail: hirao@ist.aichi-pu.ac.jp

© Springer International Publishing AG, part of Springer Nature 2018
A. B. Owen and P. W. Glynn (eds.), Monte Carlo and Quasi-Monte
Carlo Methods, Springer Proceedings in Mathematics & Statistics 241,
https://doi.org/10.1007/978-3-319-91436-7_18

331

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91436-7_18&domain=pdf


332 M. Hirao

Definition 1 (spherical design) Let t be a natural number. Then X N is a spherical
t-design, if the following condition is satisfied:

1

N

N∑

i=1

f (xi ) =
∫

Sd

f (x) dσd(x)

for any polynomial f ∈ Pt (S
d), where σd is the normalized surface measure on Sd .

A fundamental question concerns the explicit construction of spherical designs.
Seymour and Zaslavsky [18] show there always exists a spherical t-design X N on
S

d for sufficiently large points N . In fact, Bondarenko et al. [4] show the following
conjecture of Korevaar and Meyers [14]: Given d ≥ 2, there exists a spherical t-
design on S

d with N points for every N ≥ cd td , where the constant cd does only
depend on d; see also [6] for the recent progress. However, their results give no
information about how to explicitly construct such designs. Although there exist
manyarticles onnumerical searchof spherical designs, e.g.,Chen andWomersly [10],
Chen et al. [9], it seems to be not easy to give constructions of such designs in general.

Brauchart et al. [7] discuss the asymptotic behavior of the bounds of theworst-case
numerical integration error for functions from Sobolev space Hs(Sd) with smooth-
ness s > d/2, and introduce the new concept of QMC (quasi-Monte Carlo) design
sequences for Hs(Sd). (The definition of Sobolev space is introduced in Sect. 2.2.)

Definition 2 Let s > d/2. A sequence {X N } of N -point configurations on S
d with

N → ∞ is said to be a QMC design sequence forHs(Sd) if there exists c(s, d) > 0,
independent of N , such that

sup
f ∈Hs (Sd )
‖ f ‖Hs ≤1

∣∣∣∣∣
1

N

N∑

i=1

f (xi ) −
∫

Sd

f (x) dσd(x)

∣∣∣∣∣ ≤ c(s, d)

N s/d
, (1)

where ‖ · ‖Hs is the Hs(Sd)-norm.

Brauchart et al. [7] show that i.i.d. random points on the sphere give a slower rate
of convergence for the expected worst-case error as given in (1), and hence do not
form QMC designs. However, if one compartmentalizes the random point selection
process with respect to a partition of the sphere into N equal area regions with small
diameter, then one does get an average worst-case error rate appropriate to QMC
designs for d/2 < s < d/2 + 1 but not for s > d/2 + 1.

Thus in this paper, we also focus on the behavior of the worst-case numerical
integration error forHs(Sd) with smoothness d/2 < s < d/2 + 1 by using determi-
nantal point processes(DPPs). We show that two types of DPPs give a faster rate of
convergence for the expected square worst-case error for Sobolev spaces over the
sphere (Theorems 1 and 2). By using these results, we know the spherical ensem-
ble, a well-studied DPP on S

2, generates asymptotically on average QMC design
sequences for Sobolev spaceHs(S2) with 1 < s < 2. Moreover, in comparison with
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Fig. 1 Simulations of 300
random points on S

2 (see
Example 1)

i.i.d. uniform random points, we also know harmonic ensembles on S
d for d ≥ 2,

which are DPPs defined by reproducing kernels for polynomial spaces over Sd , gen-
erate on average a faster rate of convergent sequence of the square worst-case error
for Hs(Sd) with d/2 + 1/2 < s < d/2 + 1.

Example 1 Here, we give two simulations of 300 random points on S
2. The left

display shows independently and uniformly distributed random points whereas the
right display the points thrown on the sphere by a DPP. It is easy to see that the points
of a determinantal point process are distributed more evenly (Fig. 1).

Outline of the paper.

The next section provides some preliminaries for QMCdesign sequences for Sobolev
space Hs(Sd) and two types of DPPs, i.e., spherical ensemble and harmonic ensem-
bles on the sphere. Section3 is the main section. We discuss the square worst-case
error for Sobolev spaces over the sphere by using some sequences given by spherical
and harmonic ensembles.

2 Preliminaries

2.1 Spherical Harmonics

LetHarm�(S
d) be the vector space of all the harmonic and homogeneous polynomials

of exact degree � in d + 1 variables restricted to Sd . Let {Y�,k | k = 1, . . . , Z(d, �)}
be a real orthonormal basis of Harm�(S

d), where

Z(d, �) = dim(Harm�(S
d)) =

(
d + �

�

)
−

(
d + � − 2

� − 2

)
.

The set {Y�,k | k = 1, . . . , Z(d, �), � = 0, 1, . . .} forms a complete orthonormal sys-
tem for the Hilbert space L2(S

d) with the usual inner product and induced norm

〈 f, g〉L2(Sd ) =
∫

Sd

f (x)g(x) dσd(x), ‖ f ‖L2(Sd ) = √〈 f, f 〉L2(Sd ).
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The identity

Z(d,�)∑

k=1

Y�,k(x)Y�,k( y) = Z(d, �)P (d)
� (x · y), x, y ∈ S

d ,

is known as addition theorem, where P (d)
� is the normalized Gegenbauer polynomial,

orthogonal on the interval [−1, 1] with respect to the weight function (1 − x2)d/2−1,
and normalized by P (d)

� (1) = 1.
For any positive integer L , we denote by

KL(x, y) = RL(x · y), RL(x) =
L∑

�=0

Z(d, �)P (d)
� (x), (2)

the Lth reproducing kernel for the polynomial space PL(Sd). The polynomial RL

is a multiple of the Jacobi polynomial P (d/2,d/2−1)
L of degree L and parameters d/2

and d/2 − 1 with standard normalizations; see, e.g., [11, 12];

RL(x) = 2L(d + 2L − 1)!!(d + L − 1)!
(d − 1)!!(d + 2L − 1)! P (d/2,d/2−1)

L (x). (3)

Thus, the polynomials R0, R1, . . . are also orthogonal on the interval [−1, 1] with
respect to the weight function (1 − x)d/2(1 + x)d/2−1. Moreover, it holds that

RL(1) =
L∑

�=0

Z(d, �) = dim(PL(Sd)) =
(

d + L

d

)
+

(
d + L − 1

d

)
.

The following lemma is useful to show Theorem 2; see also, e.g., [19].

Lemma 1 ([12]) Let L be a nonnegative integer. For any α, β ≥ 0, there exists a
constant C > 0 such that

(
sin

θ

2

)α+1/2 (
cos

θ

2

)β+1/2

|P (α,β)

L (cos θ)|

≤ C√
2
(2L + α + β + 1)−1/4

(
Γ (L + α + 1)Γ (L + β + 1)

Γ (L + 1)Γ (L + α + β + 1)

)1/2

, 0 ≤ θ ≤ π,

where Γ is the Gamma function.

2.2 Sobolev Space

The Sobolev space H
s(Sd) with smoothness s is the vector space of all functions

f ∈ L2(S
d), whose Laplace-Fourier coefficients
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f̂�,k = 〈 f, Y�,k〉L2(Sd ) =
∫

Sd

f (x)Y�,k(x) dσd(x)

satisfy
∞∑

�=0

Z(d,�)∑

k=1

(1 + λ�)
s | f̂�,k |2 < ∞,

where λ� = �(� + d − 1). We note thatH0(Sd) = L2(S
d) andHs(Sd) ⊂ H

s ′
(Sd) for

s > s ′.
An inner product on Hs(Sd) is defined by

〈 f, g〉Hs =
∞∑

�=0

Z(d,�)∑

k=1

1

a(s)
�

f̂�,k ĝ�,k,

and the corresponding norm in the Sobolev space is

‖ f ‖Hs =
[ ∞∑

�=0

Z(d,�)∑

k=1

1

a(s)
�

| f̂�,k |2
]1/2

,

where {a(s)
� }�≥0 is a sequence of positive real numbers satisfying

a(s)
�  (1 + λ�)

−s  (1 + �)−2s .

Here we write an  bn to mean that there exist positive constants c1 and c2 indepen-
dent of n such that c1an ≤ bn ≤ c2an for all n.

2.3 Worst-Case Errors and Reproducing Kernels in H
s(Sd)

For an integer L > 0, we let

Vd−2s(S
d) =

∫

Sd

∫

Sd

|x − y|2s−d dσd(x)dσd( y) = 22s−1 Γ ((d + 1)/2)Γ (s)√
πΓ (d/2 + s)

,

α
(s)
� = Vd−2s(S

d)
(−1)L+1(d/2 − s)�

(d/2 + s)�
, � ≥ 1,

where (a)� is the Pochhammer symbol defined by

(a)0 = 1, (a)�+1 = (a)�(� + a) = Γ (� + a)

Γ (a)
, � = 0, 1, . . . .
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It is mentioned in [7] that α(s)
� satisfies

α
(s)
� ∼ 22s−1 Γ ((d + 1)/2)Γ (s)√

π [(−1)L+1Γ (d/2 − s)]�
−2s as � → ∞.

Here, the notation an ∼ bn means that limn→∞ an/bn = 1. Thus, when choosing
the above sequence {α(s)

� }�≥0, Sobolev space Hs(Sd) is a reproducing kernel Hilbert
space. In this case, Brauchart andWomersley [8] introduce the “generalized distance"
kernel as follows (see also [7]): For d/2 < s < d/2 + 1,

K (s)
gd (x, y) = 2Vd−2s(S

2) − |x − y|2s−d , x, y ∈ S
d . (4)

Now, we define the worst-case error in H
s(Sd) for a cubature sum Q[X N ]( f ) =

N−1 ∑
x∈X N

f (x) for an integral I ( f ) = ∫
Sd f (x) dσd(x) as follows:

wce(Q[X N ];Hs(Sd)) = sup
f ∈Hs (Sd )
‖ f ‖H≤1

|Q[X N ]( f ) − I ( f )| .

It satisfies a Koksma–Hlawka type inequality:

|Q[X N ]( f ) − I ( f )| ≤ wce(Q[X N ];Hs(Sd))‖ f ‖Hs .

By using the kernel (4), we have the following worst-case errors with X N as
follows (see also [7]): For d/2 < s < d/2 + 1,

wce(Q[X N ];Hs(Sd)) =
⎛

⎝Vd−2s(S
d) − 1

N 2

∑

i �= j

|x j − xi |2s−d

⎞

⎠
1/2

. (5)

Remark 1 For s ≥ d/2 + 1, one can also choose {a(s)
� }�≥0 in such a way to have a

very simple yet technically more involved closed formula for reproducing kernel and
this general case will be left for future work.

2.4 Determinantal Point Processes on the Sphere

In this section we give a brief overview of determinantal point processes. Readers are
referred to, e.g., Hough et al. [13], Krishnapur [15], Lavancier et al. [16] for further
details.

Let S be a locally compact Hausdorff space with a countable basis and μ be a
Radon measure on S. We mainly consider the cases S = C and S = S

d in this paper.
We denote by X a random point process on S. X is said to be simple if there are
no coincidence points almost surely. For any simple point process X , X can be
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identified with a random discrete subset of S and X (D) is to specify the random
variable of the number of points fallen in D; see, e.g.,Møller andWaagepetersen [17]
for measure theoretical details.

Let K (x, y) : S2 → C be a measurable function.

Definition 3 A point process X on S is said to be a determinantal point process
with kernel K if it is simple and its k-point correlation functions ρk : Sk → R≥0

with respect to the measure μ satisfy

ρk(x1, . . . , xk) = det(K (xi , x j ))1≤i, j≤k,

for every k ≥ 1, that is, for any Borel function h : Sk → [0,∞), we have

E
[ �=∑

x1,...,xk∈X
h(x1, . . . , xk)

] =
∫

S
· · ·

∫

S
ρk(x1, . . . , xk)h(x1, . . . , xk) dμ(x1) · · · dμ(xk).

Here
∑�=

x1,...,xk∈X means a multi-sum over the n-tuples ofX whose components are
all pairwise distinct.

In the next subsections, we prepare two typical types of determinantal point pro-
cesses.

2.4.1 Spherical and Harmonic Ensembles

We first consider the spherical ensemble. There are several studies on the spherical
ensemble; see, e.g., [1, 13, 15]. Let AN and BN be independent N × N random
matrices with independent and identically distributed standard complex Gaussian
entries. Then, the set of eigenvalues {λ1, λ2, . . . , λN } of A−1

N BN form a DPP on the
complex plane with kernel

K (z, w) = (1 + zw̄)N−1

with respect to the measure N
π(1+|z|2)N+1 dm(z) and m denotes the Lebesgue measure

on the complex plane C. We note that A−1
N BN has N eigenvalues almost surely; see

also Krishnapur [15].
Moreover, let g be the stereographic projection of the sphere S2 from the North

Pole onto the plane {(t1, t2, 0) | t1, t2 ∈ R}. Then, the set {xi = g−1(λi ) | 1 ≤ i ≤ N }
form a DPP on the sphere S2. We call such a DPP a spherical ensemble on S

2. For
example, we know that 2-point correlation function on S

2 is given as the follows:

ρ2(x, y) = N 2

{
1 −

( |x − y|2
4

)N−1
}

, x, y ∈ S
2;

see also Alishahi and Zamani [1] for further details.
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Next we consider another types of DPPs associated by reproducing kernels for
polynomial spaces over Sd . We use the following two lemmas for the existence of
this type of DPP.

Lemma 2 ([13]) Suppose {φk}n
k=1 is an orthonormal set in L

2(S). Then there exists
a determinantal process with kernel K (x, y) = ∑n

k=1 φk(x)φk( y).

Lemma 3 ([13]) Suppose X is a determinantal point process on S, with kernel
K (x, y) = ∑n

k=1 φk(x)φk( y), where {φk}1≤k≤n is a finite orthonormal set in L
2(S).

Then the number of points in X is equal to n, almost surely.

By using Lemmas 2 and 3, for the Lth reproducing kernelKL(x, y) forPL(Sd),
there exist DPPs XN on S

d , associated with KL(x, y), with N = dim(PL(Sd))

 Ld points, almost surely. Such DPPs are known as harmonic ensembles on S
d by

Beltrán et al. [5] and have been studied on, e.g., the relationships of Riesz energies.
In this case, by (2) we can calculate the 2-point correlation function as follows:

ρ2(x, y) = det

[
RL(1) RL(x · y)

RL(x · y) RL(1)

]
= RL(1)2 − RL(x · y)2. (6)

We deal with such DPPs in the next section.

3 DPPs and Worst-Case Errors

In this section we discuss the rates of convergence for the expected square worst-
case error for Sobolev spaces over the sphere by using two types of DPPs, spherical
and harmonic ensembles. As I mentioned before, Brauchart et al. [7] show that i.i.d.
uniform random pointsXN on the sphere give the following rate of convergence for
the expected square worst-case error: Given s > d/2,

E
[{wce(Q[XN ];Hs(Sd))}2] = c′(s, d)

N
,

for some explicit constant c′(s, d) > 0. Compared to the above i.i.d. case, we show
that sequences generated by the two types of DPPs give a faster rate of convergence
for the expected square worst-case errors.

3.1 Spherical Ensemble on S
2

Theorem 1 Let N ≥ 2 be an integer. Let XN be an N-point spherical ensemble on
S
2. For 1 < s < 2, we have
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E
[{wce(Q[XN ];Hs(S2))}2] = 22s−2B(s, N ),

where B is the Beta function.

Remark 2 For a given s, by using Stirling’s formula, we have B(s, N ) ∼ Γ (s)N−s

as N → ∞. Thus, for sufficient large N , we obtain an average worst case error (1)
appropriate to QMC design for any d/2 < s < d/2 + 1.

In order to prove this theorem, we use the following lemma. For any γ ∈ R, the
Riesz γ -energy of n-points x1, x2, . . . , xn on S2 is defined by

Eγ (x1, . . . , xn) =
∑

i �= j

|xi − x j |−γ . (7)

Lemma 4 ([1]) Let x1, . . . , xN form a spherical ensemble on S
2. For any γ ∈

(−2, 0), we have

EEγ (x1, . . . , xN ) = 21−γ

2 − γ
N 2 − 2−γ Γ (N )Γ (1 − γ /2)

Γ (N + 1 − γ /2)
N 2. (8)

Proof of Theorem 1. By combining (5), (7) and (8), we obtain

E[E2−2s(x1, . . . , xN )] = E

[ ∑

i �= j

|x j − xi |2s−2

]
= 22s−2

s
N 2 − 22s−2B(s, N )N 2.

Thus we have

E[{wce(Q[XN ];Hs(S2))}2] = 22s−2

s
− 1

N 2
E[

∑

i �= j

|x j − xi |2s−2]

= 22s−2

s
− 22s−2

s
+ 22s−2B(s, N )

= 22s−2B(s, N ).

�

3.2 Harmonic Ensembles on S
d

Theorem 2 Let L be a positive integer. LetXN be a harmonic ensemble on Sd , asso-
ciated with the Lth reproducing kernel KL(x, y), with N = dim(PL(Sd)) points.
For d/2 + 1/2 < s < d/2 + 1, there exists C(s, d) > 0, independent of N , such that

E[{wce(Q[XN ];Hs(Sd))}2] ≤ C(s, d)

N 1+1/(2d)
.
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Proof By recalling (5) and (6), for d/2 + 1/2 < s < d/2 + 1, we have

E[{wce(Q[XN ];Hs(Sd))}2]
= Vd−2s(S

d) − 1

N 2
E[

∑

i �= j

|x j − xi |2s−d ]

= Vd−2s(S
d) − 1

N 2

∫

Sd×Sd

|x − y|2s−dρ2(x, y) dσd(x)dσd( y)

= Vd−2s(S
d) −

∫

Sd×Sd

|x − y|2s−d dσd(x)dσd( y)

+ 1

N 2

∫

Sd×Sd

RL(x · y)2|x − y|2s−d dσd(x)dσd( y)

= 1

N 2

∫

Sd×Sd

RL(x · y)2 (2 − 2x · y)s−d/2 dσd(x)dσd( y),

where the last equality follows from |x − y|2 = 2 − 2x · y for all x, y ∈ S
d . Letting

a = (0, . . . , 0, 1) ∈ S
d , by using Funk–Hecke formula, we have

E[{wce(Q[XN ];Hs(Sd))}2]
= 1

N 2

∫

Sd

RL(x · a)2 (2 − 2x · a)s−d/2 dσd(x)

= |Sd−1|
|Sd |N 2

∫ 1

−1
RL(x)2 (2 − 2x)s−d/2 (1 − x2)d/2−1 dx

= |Sd−1|2s−d/2

|Sd |N 2

∫ 1

−1
RL(x)2(1 − x)s−1(1 + x)d/2−1 dx .

Here by using Lemma 1 and (3), we have

∫ 1

−1
RL(x)2(1 − x)s−1(1 + x)d/2−1 dx

= 2s+d/2−1
∫ π

0
RL(cos θ)2(sin

θ

2
)2s−1(cos

θ

2
)d−1 dθ

= 2s+d/2−1+2L

{
(d + 2L − 1)!!

(d − 1)!!
(d + L − 1)!
(d + 2L − 1)!

}2

×
∫ π

0

{
P (d/2,d/2−1)

L (cos θ)2(sin
θ

2
)d+1(cos

θ

2
)d−1

}
(sin

θ

2
)2s−d−2 dθ

≤ C22s+d/2−1+2L

{
(d + 2L − 1)!!

(d − 1)!!
(d + L − 1)!
(d + 2L − 1)!

}2

×
∫ π

0

{
1

2
√
2L + d

Γ (L + d/2 + 1)Γ (L + d/2)

L!(L + d − 1)!
}

(sin
θ

2
)2s−d−2 dθ
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= C22s+d/2+2L−2

√
2L + d

{
(d + 2L − 1)!!

(d − 1)!!
(d + L − 1)!
(d + 2L − 1)!

}2
Γ (L + d/2 + 1)Γ (L + d/2)

L!(L + d − 1)!
×

∫ π

0
(sin

θ

2
)2s−d−2 dθ.

Thus we have

E[{wce(Q[XN ];Hs(Sd))}2]

≤ C222s−2
∫ π

0 (sin θ
2 )

2s−d−2 dθ

N 2(d − 1)!! ∫ π

0 sind−1 θ dθ

× 22L

√
2L + d

{
(d + 2L − 1)!!(d + L − 1)!

(d + 2L − 1)!
}2

Γ (L + d/2 + 1)Γ (L + d/2)

L!(L + d − 1)! .

Now, in order to estimate the above, we divide into two parts (i) d = 2m, m ≥ 1
case, and (ii) d = 2m + 1, m ≥ 1 case.
(i) By letting d = 2m, we have

22L

√
2L + d

{
(d + 2L − 1)!!(d + L − 1)!

(d + 2L − 1)!
}2

Γ (L + d/2 + 1)Γ (L + d/2)

L!(L + d − 1)!
= (2m + L − 1)!(L + m)

22m−2L!√2L + 2m
 Ld−1/2  N (d−1/2)/d .

(ii) By letting d = 2m + 1, we have

22L

√
2L + d

{
(d + 2L − 1)!!(d + L − 1)!

(d + 2L − 1)!
}2

Γ (L + d/2 + 1)Γ (L + d/2)

L!(L + d − 1)!
= π(2m + L)!(2L + 2m + 1)

22m+1
√
2L + 2m + 1L!  Ld−1/2  N (d−1/2)/d .

Therefore, by combining the above two cases and some calculations, we obtain

E[{wce(Q[XN ];Hs(Sd))}2] ≤ C(s, d)

N 1+1/(2d)
.

�

Remark 3 Since
∫ π

0 (sin θ
2 )

2s−d−2 dθ does not converge to a finite value for d/2 <

s ≤ d/2 + 1/2, we restricted to consider d/2 + 1/2 < s < d/2 + 1 in the above
theorem.

Remark 4 Recalling the definition of harmonic ensembles, we know that there exist
DPPs on othermanifolds, e.g., the unit cube, the unit ball and so on. In fact, there exist
a few articles on numerical computations by using DPPs. For example, Bardenet and
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Hardy [2] discuss Monte Carlo methods by using DPPs on the cube. Thus we believe
that our approach will be generalized so as to deal with other function spaces.

On the other hand, there exist many types of DPPs even when we only consider
the sphere case. Moreover, the present paper only discuss an equal weight numerical
integration rule on the sphere. Once again focusing on Bardenet and Hardy [2], they
deal with DPPs defined by a specific measure on the cube, and give very efficient
results by using a stochastic analog of Gaussian quadrature or a similar method of
importance sampling. Can we find the best DPP for numerical integration the sphere
and the best way to use DPPs effectively? This problem is left for future works.
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Efficient Monte Carlo for Diffusion
Processes Using Ornstein–Uhlenbeck
Bridges

Adam W. Kolkiewicz

Abstract Wepresent an extension of a recently proposedmethod of samplingBrow-
nian paths conditionally on integrated bridges. By combining the Brownian bridge
constructionwith conditioning on integrals, themethod turns out to be a very effective
way of capturing important dimensions in problems that involve integral function-
als of Brownian motions. In this paper we show that by conditioning on integrated
Ornstein–Uhlenbeck bridges, combined with a proper change of measure, we can
eliminate variability due to integrals of the squared process. This result forms the
theoretical basis for an efficient Monte Carlo method applicable to problems involv-
ing exponential functions of integrated diffusion processes. We illustrate the method
by applying it to the problem of bond pricing under the exponential Vasicek model.

Keywords Sampling Brownian motion · Dimension reduction · Bond pricing

1 Introduction and Motivation

In this paper we propose a new method of sampling an underlying process with the
objective of constructing efficient Monte Carlo simulation methods for estimating
expectations of the form

E[e
∫ T
0 g(t,U (t))dt ], (1)

where g is a given function and {U (t), t ≥ 0} is either an Ornstein–Uhlenbeck (OU)
process or an Ornstein–Uhlenbeck bridge. The former, which we shall denote by
{X (t), t ≥ 0}, solves the following stochastic differential equation

dX (t) = θ(μ − X (t))dt + σdW (t), X (0) = x, (2)
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where σ > 0 and {W (t); t ∈ [0, T ]} is a standard Brownian motion. In many cases
of interest, the process {U (t), t ≥ 0} in (1) will be just Brownian motion, but the
main motivation for including OU-processes is the fact that they arise naturally in
the context of the method proposed in this paper.

Recently [7] has introduced an efficient method of sampling Brownian paths for
integrands that involve an integratedBrownianmotion.Themethod, towhichwe shall
refer as BBI and explain in greater detail in Sect. 2.1, combines the Brownian bridge
construction with sampling bridges conditionally on their integrals. In a nutshell,
it takes advantage of the observation that if g is a smooth function, then for small
values of T most of the variability of

G

(∫ T

0
g(t,WT

x,y(t))dt

)

, (3)

where G is a given function and WT
x,y is a Brownian bridge from x to y, is due to the

integral
∫ T
0 WT

x,y(t)dt . Therefore, efficient simulationmethods can be constructed by
applying, for example, a low-discrepancy sequence to integrate with respect to the
distribution of

∫ T
0 WT

x,y(t)dt , and then sampling paths of the process conditionally
on a value of this integral. The method that we are proposing in this paper enhances
efficiency of the BBI method by combining it with importance sampling, where
instead of sampling Brownian bridges we rather sample OU-bridges. When G is
an exponential function, this technique eliminates variability due to integrals of the
squared process.

One area of applications where expectations of the form (1) arise frequently
is modern finance, where popular models for short interest rates solve stochastic
differential equations of the form

dr(t) = μ(r(t))dt + σ(r(t))dW (t), t ≥ 0, (4)

with r(0) equal to the current interest rate r0. The well-know examples include the
Vasicek model, where μ(x) = k[θ − x] and the diffusion term is constant, and the
Cox-Ingersol-Ross model, which has the same drift term but σ(x) = σ

√
x . In the

context of fixed incomemarkets, the basic problem is the one of pricing bonds, which
in the case of default-free bonds amounts to finding

P(t, T ) := E
[
e− ∫ T

t r(s)ds |Ft

]
, t < T, (5)

where {Ft } is the filtration generated by {r(t)}.
The two particular models mentioned above allow for analytical bond prices, but

most others do not. The latter include the exponential Vasicek (EV) model, which
assumes that the logarithm of the short interest rate follows an OU-process. For this
model, the dynamic of the short rate {r(t)} is described by the stochastic differential
equation

dr(t) = r(t)[η − α ln r(t)]dt + σr(t)dW (t), r(0) = r0, (6)
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solution of which admits the following explicit form

r(t) = exp

[

ln r0 · e−αt + η − σ 2/2

a
(1 − e−αt ) + σ

∫ t

0
eα(s−t)dW (s)

]

. (7)

This can be rewritten as
r(t) = c(t)eσ Z(t) (8)

with

c(t) := exp

[

ln r0 · e−αt + η − σ 2/2

α
(1 − e−αt )

]

, Z(t) :=
∫ t

0
e−α(t−s)dW (s).

(9)
It can be verified that {Z(t)} is an Ornstein–Uhlenbeck process with μ = 0 and
θ = α, and hence finding a bond price amounts to finding

E[e− ∫ T
0 r(t)dt ] = E[e− ∫ T

0 c(t)eσ Z(t)dt ], (10)

which is of the form (1).
Although the expectation in (5) involves an integral of the diffusion process (4), it

is possible to modify the problem so that (5) reduces to (1) withU being a Brownian
motion or a Brownian bridge. To see this, we first use the transformation β(x) :=∫ x 1/σ(z)dz to obtain a process with constant diffusion term. By the Itô’s formula,
the process Y (t) := β(r(t)) satisfies the following equation

dY (t) = μ̄(Y (t))dt + dW (t), Y (0) = β(r(0)),

where

μ̄(y) = μ(α(y))

σ (α(y))
− 1

2
σ ′(α(y))

and α is the inverse function of β. From the Girsanov theorem we can find that the
likelihood ratio of the measure Q generated by the process {Y (t)}with respect to the
one induced by the Brownian motion {Y (0) + W (t)} is given by1

dQ

dP
(ω) := exp

[∫ T

0
μ̄(ω(u))dω(u) − 1

2

∫ T

0
μ̄2(ω(u))du

]

. (11)

By applying the Itô’s formula to D(W (t)), with D(x) := ∫ x
μ̄(z)dz, the likelihood

can be rewritten as

dQ

dP
(ω) := exp

[

D(ω(T )) − D(Y (0)) − 1

2

∫ T

0
σ̄ (ω(u))du

]

(12)

1For regularity conditions, we refer to Beskos et al. [2].
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with σ̄ := μ̄2 + μ̄′. Thus, we arrive at the following representation of the expectation
(5) with t = 0:

E[e− ∫ T
0 r(u)du |F (0)]

= E

[

exp

[

D(W (T )) − D(Y (0)) −
∫ T

0
(α(W (u)) + 1

2
σ̄ (W (u)))du

]]

, (13)

which, by conditioning on W (T ), can be reduced to the form (1) with {U (t), t ≥ 0}
being a Brownian bridge.

Expectations of the form (1)with {U (t), t ≥ 0} being aBrownian bridge also arise
in the context of maximum likelihood estimation methods for diffusion processes
sampled at discrete time intervals. For details, we refer to [2, 3].

The remainder of the paper is organized as follows. In Sect. 2.1 we outline the
BBI method and motivate further our approach. In Sect. 2.2 we gather some facts
aboutOU-bridges. Section3presents theoretical foundations of the proposedmethod,
which is formulated in Sect. 4. In Sect. 5 we illustrate the method by applying it to
the problem of bond pricing under the EV model.

2 Preliminaries

2.1 Dimension Reduction by Conditioning on Integrals.

Here we specialize the BBI method proposed in [7] to the case of expectations of
the form (1). Let Wa,b

x,y := {Wa,b
x,y (t); t ∈ [a, b]} denote a Brownian bridge from x to

y on the interval [a, b]. To simplify the notation, in cases when it does not lead to
any ambiguity, we will use Wb

x,y when a = 0, or remove the superscript completely.
LetWBB

d0 := (W (t1), . . . ,W (td0)), for ti ≡ ti (d0) := iT/d0, i = 1, . . . , d0, andd0 :=
d/2, where d is an even integer. We also define a vector of integrals along path of a
process as

Ad0 := (A(0, t1), A(t1, t2), . . . , A(td0−1, T ))

with

(t, s) ≡ A(t, s)(ω) :=
∫ s

t
ω(z)dz, for t, s ∈ [0, T ], t < s .

The BBI method of sampling Brownian paths is motivated by the following repre-
sentation

E

[

G

(∫ T

0
g(s,W (s))ds

)]

= E

[

E

[

G

(∫ T

0
g(s,W (s))ds

)

|WBB
d0 , Ad0

]]

.

(14)
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The basic fact behind the method is that conditionally on the vectorWBB
d0 the integral

∫ T
0 g(s,W (s))ds depends onBrownianmotion only through local Brownian bridges.
Therefore, for functions g that locally can be closely approximated by linear func-
tions, conditioning jointly on WBB

d0 and the integrals
∫ ti
ti−1

W (z)dz, i = 1, . . . , d0,

eliminates most of the variability of
∫ T
0 g(s,W (s))ds. This observation suggests

applying more efficient integration methods to the vector V (d) := (WBB
d0 , Ad0), like

quasi-Monte Carlo, and then randomly sampling Brownian paths conditionally on
V (d).

Quasi-Monte Carlo (QMC) integration methods have deterministic error bound
typically in the order O(n−1(log n)d), where n is the number of integration points
and d is the dimension of the integration region. Hence, QMC may not be supe-
rior to Monte Carlo if d is large (the role the dimension plays in financial appli-
cations, and methods of identifying important coordinates, are discussed, among
others, by Sloan and Wang [8–10]). However, as demonstrated in [7], the vector
V (d) with small values of d will often capture a large part of the overall variability
of G(

∫ T
0 g(s,W (s))ds). This finding explains high efficiency of the BBI method

when compared with other methods of sampling Brownian paths, like the Brownian
bridge construction.

When G is an exponential function, Eq. (14) reduces to

E[e
∫ T
0 g(s,W (s))ds] = E

[

E

[
d0∏

i=1

e
∫ ti
ti−1

g(s,W (s))ds |WBB
d0 , Ad0

]]

= E

[
d0∏

i=1

E
[
e
∫ ti
ti−1

g(s,W (s))ds |W (ti−1),W (ti ), A(ti−1, ti )
]
]

, (15)

where in (15) we have used conditional independence of the bridges Wti−1,ti
W (ti−1),W (ti )

,

i = 1, . . . , d0, givenWBB
d0 . Under the assumption that locally g can be closely approx-

imated by polynomials, the integrand for the i th interval [ti−1, ti ] will depend on
Brownian motion mostly through the variables

I (i)
q,p :=

∫ ti

ti−1

sqW ti−1,ti
x,y (s)pds for q, p = 0, 1, 2, . . . , (16)

where x and y are fixed. In order to describe the impact each variable in (16) has
on the overall variability of the integrand, it is convenient to represent (16) in terms
of a standard Brownian bridge over the interval [0,Δ], with Δ := T/d0. Using the
following well-known representation of Brownian bridge

Wti−1,ti
x,y (s) = x + y − x

Δ
(s − ti−1) + WΔ

0 (s − ti−1), s ∈ [ti−1, ti ], (17)
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where {WΔ
0 (s), s ∈ [0,Δ]} is a standard Brownian bridge, it is easy to verify that

the variables I (i)
q,p can be represented as linear functions of

Iq,p :=
∫ Δ

0
sqWΔ

0 (s)pds for q, p = 0, 1, 2, . . . . (18)

If we consider only terms Iq,p, q + p ≤ 2, then the following lemma describes the
rates at which the variances of Iq,p converge to zero. The proof of this result is similar
to the one presented in [7] for I0,1, and hence is omitted.

Lemma 1 As Δ → 0, we have

Var[
∫ Δ

0
WΔ

0 (s)ds] = O(Δ3) (19)

Var[
∫ Δ

0
WΔ

0 (s)2ds] = O(Δ4) (20)

Var[
∫ Δ

0
sWΔ

0 (s)ds] = O(Δ5). (21)

These results suggest that by conditioning on I (i)
0,1 we can eliminate completely

the main source of variability in the subinterval [ti−1, ti ], i = 1, . . . , d0. The same
technique, however, does not work so well for the terms I (i)

0,2, i = 1, . . . , d0, since

conditioning on I (i)
0,1, i = 1, . . . , d0, reduces their variability only by a constant [7].

Clearly, the variability due to the quadratic term I0,2 can be reduced by increasing
the dimension d of the conditioning vector V (d), which leads to smaller values
of Δ. However, in Sect. 3 we present a method that entirely eliminates variability
due to this term. The method combines conditioning on integrals with changes of
measure in each subinterval, and it relies on the existence of an efficient sampling
method for Ornstein–Uhlenbeck bridges conditioned on integrals, whichwe describe
in Sect. 2.2.

2.2 Ornstein–Uhlenbeck Bridge Conditioned on Its Integral.

It is well known that the solution to (2) admits the following explicit form

X (t) = xe−θ t + μ(1 − e−θ t ) + σ

∫ t

0
eθ(u−t)dW (u), t ≥ 0, (22)

which can be used to find
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E[X (t)] = xe−θ t + μ(1 − e−θ t ), (23)

Cov[X (s), X (t)] = σ 2

2θ
e−θ(s+t)(e2θs∧t − 1). (24)

When we condition {X (s), s < T } on X (T ), we get an Ornstein–Uhlenbeck
bridge. For X0 = x and X (T ) = y, we shall denote it by XT

x,y ≡ {XT
x,y(t)}, while a

similar bridge over a general interval [t, s], t < s, will be denoted by Xt,s
x,y . Since

by (22) the process {X (t)} is Gaussian, it can be shown that XT
x,y is also Gaussian

with the following moments for θ 
= 0:

E[XT
x,y(s)] = μ + (x − μ)e−θs + eθ(s−T ) − e−θ(s+T )

1 − e−2θT

[
y − (x − μ)e−θT − μ

]

(25)

Cov[XT
x,y(s), X

T
x,y(t)] = σ 2

2θ

[

e−θ(s+t)(e2θs∧t − 1) − (eθ t − e−θ t )(eθs − e−θs)

e2θT − 1

]

, (26)

where s, t ∈ [0, T ]. When θ = 0, then {Xt } is a Brownian motion with zero drift,
and (25)–(26) must be replaced with x + (y − x)s/T and σ 2(s ∧ t − st/T ), respec-
tively. In the remainder of this paper, we shall denote the mean E[XT

x,y(s)] byμx,y(s)
and the covariance Cov[XT

x,y(s), X
T
x,y(t)] by Kx,y(s, t).

It can be verified that the integral

I ≡ I (x, y, T ) :=
∫ T

0
XT

x,y(u)du

is normally distributed with the following moments when θ 
= 0:

E[I ] = μT + (x − μ)
1 − e−θT

θ
+ eθT + e−θT − 2

(eθT − e−θT )θ

[
y − (x − μ)e−θT − μ

]
(27)

Var[I ] = σ 2

2θ3

[

2θT − e−2θT + 4e−θT − 3 − e2θT − 4eθT − 4e−θT + e−2θT + 6

e2θT − 1

]

.

(28)

When θ = 0, we have

E[I ] = x + y

2
T and Var[I ] = σ 2

12
T 3. (29)

In the method we describe in Sect. 4, we need the law of {XT
x,y(t)} conditional on

I (x, y, T ). Suppose that ν is a given function on [0, T ], and let

k(t) :=
∫ T

0
Kx,y(t, s)ν(s)ds and k̄(t) := k(t)/

∫ T

0
k(s)ν(s)ds, t ∈ [0, T ]. (30)
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By the result presented in [7] for Gaussian processes, the conditional law of {XT
x,y(t)}

given
∫ T
0 XT

x,y(s)ν(s)ds = l, l ∈ R, coincides with the law of the following process:

Zl
x,y(t) := XT

x,y(t) − k̄(t)

[∫ T

0
XT

x,y(s)ν(s)ds − l

]

, t ∈ [0, T ]. (31)

This characterization provides a practical way of generating paths of an Ornstein–
Uhlenbeck bridge conditioned on

∫ T
0 XT

x,y(s)ν(s)ds = l, since it suffices to add to
a path of the OU-bridge a function of t that depends on the bridge only through the
integral

∫ T
0 XT

x,y(s)ν(s)ds.
It can be shown, through direct calculations, that k̄ defined in (30) for ν ≡ 1 is of

the following form

k̄θ (t) := 1 + eθT − eθ(T−t) − eθ t

(1 + eθT )T + 2
θ
(1 − eθT )

, t ∈ [0, T ]. (32)

This function has the property that k̄θ (0) = k̄θ (T ) = 0, and it converges to

k̄0(t) := 6
t (T − t)

T 3
, t ∈ [0, T ], (33)

as θ → 0, which recovers the corresponding function k̄ for a standard Brownian
bridge over the interval [0, T ].

In the rest of the paper we will deal mostly with the particular case of an OU
process corresponding to μ = 0, x = 0, and σ = 1. We will refer to this case as a
basic OU-process.2 Similarly, a basic OU-process conditioned on its terminal value
will be referred to as the basic OU-bridge.

3 Dimension Reduction by Change of Measure

Motivated by our discussion in Sect. 2.1, here we consider the problem of eliminating
variability due to the quadratic term in the expectation of the form

E[eλ0
∫ s
t X t,s

x,y(u)du−λ
∫ s
t X t,s

x,y(u)2du], (34)

where λ0 ∈ R and λ ∈ R̄+ := R+ ∪ {0}. Themethod that we are proposing is based
on a change of measure for Ornstein–Uhlenbeck bridges, which include Brownian
bridges as particular cases. We first present results for an Ornstein–Uhlenbeck pro-

2The description “standard OU-process” is usually applied to the case when μ = 0, θ = 1, and
σ = √

2 (e.g., Baldeaux and Platen [1]).
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cess, and then for an Ornstein–Uhlenbeck bridge. For ease of notation, we consider
the processes on the interval [0, T ].

Let us denote by Q(θ) the probability measure induced on the space of continuous
functions by a basic OU process with parameter θ .We use the superscript Q(θ)when
an expectation is taken with respect to this measure, and no superscript when θ = 0
(i.e., when the process is a standard Brownian motion).

Proposition 1 For λ ∈ R̄+ and an integrable functional G on the space of contin-
uous functions, we have

EQ(θ)[G(ω)e−λ
∫ T
0 (a0+ω(u))2du]

= e−λa20T EQ(θ∗)[G(ω)e− 1
2 (θ−θ∗)(ω2(T )−T )−2λa0

∫ T
0 ω(u)du], (35)

where θ∗ := −√
2λ + θ2.

Proof Let λ̄ := λ + θ2/2. We have

eλa20TEQ(θ)[G(ω)e−λ
∫ T
0 (a0+ω(u))2du]

= EQ(θ)[G(ω)e−2λa0
∫ T
0 ω(u)du−λ

∫ T
0 ω(u)2du]

= E[G(W )e−2λa0
∫ T
0 W (u)du−λ

∫ T
0 W (u)2du−θ

∫ T
0 W (u)dW (u)− θ2

2

∫ T
0 W (u)2du]

= E[G(W )e−2λa0
∫ T
0 W (u)du− θ

2 [W (T )2−T ]−λ̄
∫ T
0 W (u)2du]

= E[G(W )e−2λa0
∫ T
0 W (u)du− θ

2 [W (T )2−T ]−∫ T
0

√
2λ̄W (u)dW (u)+∫ T

0

√
2λ̄W (u)dW (u)−λ̄

∫ T
0 W (u)2du]

= EQ(θ∗)[G(ω)e−2λa0
∫ T
0 ω(u)du− 1

2 (θ+√
2λ+θ2)(ω2(T )−T )],

where in the third line we use the Girsanov theorem with the likelihood ratio (11)
corresponding to the basic OU process. In the fourth line we use

∫ T
0 W (u)dW (u) =

(W (T )2 − T )/2, while in the fifth line we add and subtract the same term in the
exponent. In the last line we use again the Girsanov theorem. �

According to this result, we can eliminate an integral of the squared OU-process
by properly changing the parameter θ . Therefore, if we ignore for amoment the func-
tional G, the integrand on the right-hand side of (35) depends on the path of the pro-
cess only through two jointly normally distributed variables, ω(T ) and

∫ T
0 ω(u)du,

and hence, for integration purposes, the dimension of the integrand has been reduced
to just two. This reduction of the dimension will also lead to efficient simulation
methods for non-constant G under the assumption that conditionally on ω(T ) and∫ T
0 ω(u)du its variability is relatively low.
We would like to note that effectiveness of any Monte Carlo method that takes

advantage of the representation (35) can be further improved by using a biased OU
bridge, where the distribution of the terminal value of the process ω(T ) is modified
by including the term exp[− 1

2 (θ − θ∗)ω(T )2] into the density of ω(T ).
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Corollary 1 When we apply Proposition 1 to a standard Brownian motion we get
for λ0 ∈ R and λ ∈ R̄+:

E
[
G(W )eλ0

∫ T
0 W (u)du−λ

∫ T
0 W (u)2du

]
= EQ(−√

2λ)
[
G(ω)eλ0

∫ T
0 ω(u)du−

√
λ
2 (ω(T )2−T )

]
.

(36)

We would like to have analogous results for an OU bridge. Let us denote the
transition density of the OU process (2) with μ = 0 and σ = 1 by pθ . By (22)–(24)
we have

pθ (y; x, T ) = 1
√
2πσ 2

θ

e
− 1

2σ2
θ

(y−μθ )
2

, (37)

where

μθ = xe−θT and σ 2
θ = 1 − e−2θT

2θ
,

with σ 2
0 := T . In addition, let Q(θ, x, y) be the probability measure induced on the

space of continuous functions by the basic OU bridge from x to y over [0, T ].
Proposition 2 For any functional G on the space of continuous functions for which
the expectations below exist, we have

EQ(θ,x,y)[G(ω)e−λ
∫ T
0 ω(u)2du] = C · EQ(θ∗,x,y)[G(ω)], (38)

where λ ∈ R+, θ∗ := −√
2λ + θ2, and

C = pθ∗(y; x, T )

pθ (y; x, T )
e− 1

2 (θ+√
2λ+θ2)(y2−x2−T ). (39)

The above result can be proven by combining themethodwe use in Proposition 1with
an explicit form of the likelihood ratio for conditioned diffusion processes obtained
by Dacunha-Castelle and Florens-Zmirou [5].

Corollary 2 By properly selecting G in (38), we get the following formula

EQ(θ,x,y)[e
∫ T
0 g(ω(u))du] = C · EQ(θ∗,x,y)[e

∫ T
0 g(ω(u))du+λ

∫ T
0 ω(u)2du], (40)

where C is defined in (39), and g and λ ∈ R+ are such that the expectations in (40)
exist.

Corollary 3 When we apply Proposition 2 to the Brownian bridge {WT
x,y}, then, for

λ0 ∈ R and λ ∈ R̄+, we get

E[G(WT
x,y)e

λ0
∫ T
0 WT

x,y(u)du−λ
∫ T
0 WT

x,y(u)2du] = C0 · EQ(θ̄ ,x,y)[G(ω)eλ0
∫ T
0 ω(u)du], (41)
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where θ̄ := −√
2λ and

C0 ≡ C0(x, y, T, λ) := pθ̄ (y; x, T )

p0(y; x, T )
e−

√
λ
2 (y2−x2−T ). (42)

Analogously to (40), by properly selecting G, formula (41) becomes

E[e
∫ T
0 g(WT

x,y(u))du] = C0 · EQ(θ̄ ,x,y)[e
∫ T
0 g(ω(u))du+λ

∫ T
0 ω(u)2du], (43)

where g and λ ∈ R̄+ are such that the expectations in (43) exist.

4 The Method

In the method we are proposing in this paper we also combine the Brownian bridge
construction with conditioning on integrals, but in each subinterval we change the
measure according to (40) to eliminate variability due to the quadratic component
in the function g. We shall refer to this method as OUBIM (Ornstein–Uhlenbeck
Bridges with Integrals and Measure change). For ease of explanation, we present the
method assuming that {U (t)} in (1) is a standard Brownian motion, but in the next
section we extend the method to the case when {U (t)} is a basic OU-process.

Using the notation of Sect. 2.1, the method is based on the following modification
of (15)

E
[
e
∫ T
0 g(u,W (u))du

]
= E

[
d0∏

i=1

E
[
e
∫ ti
ti−1

g(u,WWi−1 ,Wi (u))du |Wi−1,Wi

]
]

(44)

= E

[
d0∏

i=1

Ci · EQ(θ̄ ,Wi−1,Wi )
[
e
∫ ti
ti−1

g(u,ω(u))du+λi
∫ ti
ti−1

ω(u)2du |Wi−1,Wi , A
mi (ti−1, ti )

]
]

,

(45)

where Wi = W (ti ), i = 1, . . . , d0, and under the measure Q(θ̄ ,Wi−1,Wi ) the pro-
cess {ω(t)} is the basic OU-bridge with the end values given byWi−1 andWi , and the
parameter θ̄ equal to −√

2λi . In (45), the coefficient Ci is defined according to (42)

Ci = C0(Wi−1,Wi , ti − ti−1, λ), (46)

and the variable Ami (ti−1, ti ) is

Ami (ti−1, ti ) =
∫ ti

ti−1

mi (u)ω(u)du, (47)

wheremi is a non-stochastic function of time. The outer expectation in (45) is taken
with respect to the join distribution of W1, . . . ,Wd0 and Am1(t0, t1), . . . , Amd0 (td0−1,
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td0), which is Gaussian and can be determined in a similar waywe use for (WBB
d0 , Ad0)

in the BBI method.
For each i , i = 1, . . . , d0, the parameters λi and functions mi are allowed to

depend on Wi−1 and Wi . In the next section we discuss some methods of selecting
them.

4.1 Selection of λi and mi

In (45) we use the following representation for the i th subinterval:

E[e
∫ ti
ti−1

g(u,Wxi ,yi (u))du]
= Ci · EQ(θ̄ ,xi ,yi )

[
EQ(θ̄ ,xi ,yi )[e

∫ ti
ti−1

g(u,ω(u))du+λi
∫ ti
ti−1

ω(u)2du |Ami (ti−1, ti )]
]

(48)

where θ̄ = −√
2λi , and xi and yi are fixed. To device a simulation method based

on such a representation, we need to select λi and mi , with the objective of elimi-
nating variability of the integrand due to terms of the form

∫ ti
ti−1

n(u)Wx,y(u)du and
∫ ti
ti−1

Wx,y(u)2du, where n is a deterministic function of time. Results presented in
Sect. 3 show how to select λi when g is a quadratic function. Below we discuss a
possible approach for more general functions g. For ease of notation we remove the
subscript i from xi , yi , mi , and λi .

A simple way of identifying a quadratic component in g is to use its Taylor series
expansion in a neighborhood of a selected point pe = (te, ze) from [ti−1, ti ] × [x, y],
where we assume without loss of generality that x ≤ y. Assuming that g(u, z) :
[ti−1, ti ] × R → R is smooth enough to admit such an expansion, we have

∫ ti

ti−1

g(u, ω(u))du = a0 +
∫ ti

ti−1

(g(1)
z (pe) − g(2)

zz (pe)ze + g(2)
uz (pe)(u − ue))ω(u)du

+ 1

2
g(2)
zz (pe)

∫ ti

ti−1

ω(u)2du +
∫ ti

ti−1

ε(ω(u))du, (49)

where a0 includes all the terms that do not depend on {ω(t)}, ε is the remainder
term, and g(2)

zz , g(2)
uz denote partial derivatives of g. By substituting (49) into (48)

and ignoring the remainder term, it is easy to verify that we can eliminate integrals
involving ω(u) and ω(u)2 by selecting λ and m equal respectively to

λE (x, y) := −1

2
g(2)
zz (pe) (50)

and
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mE (u) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if g(1)
z (pe) − g(2)

zz (pe)ze = 0 and g(2)
uz (pe) = 0,

u − ue if g(1)
z (pe) − g(2)

zz (pe)ze = 0 and g(2)
uz (pe) 
= 0,

1 + g(2)
uz (pe)(u−ue)

g(1)
z (pe)−g(2)

zz (pe)ze
if g(1)

z (pe) − g(2)
zz (pe)ze 
= 0.

(51)
In (50) we assume that g(2)

zz (pe) ≤ 0, otherwise we do not change the measure. When
g does not depend on time, and g(1)

z (pe) − g(2)
zz (pe)ze 
= 0, we have

mE ≡ mC := 1. (52)

In the case of a constantm, as in (52), sampling the basic OU-bridge conditionally
on its integral can be carried out by using the method described in Sect. 2.1 with k̄
given by (32).

For other selections of m, finding the corresponding k̄ defined in (30) is more
difficult. This is still possible for the linear function defined in (51), but the resulting
function k̄ is significantly more involved that the one given in (32). We can expect,
however, that in some situations the use of mC will lead to a method that has sim-
ilar efficiency as that of methods that utilize linear functions m. In the context of
conditioning on Brownian bridges, this can be explained by two facts. Firstly, by
(19)–(21), the contribution to the overall variance given by

∫ ti
ti−1

(u − ti−1)W0(u)du

is of two order smaller than that of
∫ ti
ti−1

W0(u)du, and hence, in presence of the latter

term, conditioning on
∫ ti
ti−1

W0(u)du should always be considered first. In such cases,

additional conditioning on
∫ ti
ti−1

(u − ti−1)W0(u)du increases the dimension of the
conditioning vector, which potentially may lead to a deterioration of the efficiency
of the integration method we apply to this vector.

Secondly, conditioning on
∫ ti
ti−1

W0(u)du not only eliminates variability due to

this term, but it also reduces variance due to the term
∫ ti
ti−1

(u − ti−1)W0(u)du. This
is captured more formally by the following result. Let

J1 =
∫ ti

ti−1

(u − ti−1)W0(u)du and J0 =
∫ ti

ti−1

W0(u)du.

By using the fact that J0 and J1 are jointly normally distributedwith knownmoments,
one can quantify the reduction of variance when conditioning on J0 as follows.

Lemma 2 As ti − ti−1 → 0, we have

E[Var[J1|J0]] = 1

16
Var[J1] + ε1, (53)

where ε1 converges to zero faster than Var[J1].
This result shows that although conditioning on

∫ ti
ti−1

W0(u)du does not elimi-

nate completely variability due to
∫ ti
ti−1

(u − ti−1)W0(u)du, it reduces its magnitude
significantly.
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The above arguments led us to use in our numerical study the values of λ and
m given in (50) and (52), respectively. We should mention that it is possible to
devise a more accurate than (49) expansion, which, in the context of a Brownian
bridge, is based on the observation that values of the process at any time s ∈ [ti−1, ti ]
are centered around the mean x + y−x

ti−ti−1
(s − ti−1). Due to the space constraint, and

the fact that the selection given by (50) and (52) works well in the cases we have
considered, we leave a detailed study of the problem of proper selection of m as a
topic for future research.

4.2 The Algorithm

We denote the Brownian bridge construction that uses conditioning onWBB
d as BBd,

the construction that uses conditioning on (WBB
d/2, Ad/2) as BBId, and the proposed

method, described at the beginning of this section, as OUBIMd. In all cases, d refers
to the dimension of the conditioning vector.

Since the BBId method is described in [7], below we only outline the OUBIMd
algorithm, and for this we assume that the functional of interest is ω → G (ω) :=
exp{∫ T

0 g(u, ω(u))du} and {U (t)} in (1) is a standard Brownian motion. In the next
sectionwepresent amodification of the algorithmwhen {U (t)} is a basicOU-process.

In order to approximate integrals along paths of the process, we divide T into
L equally spaced subintervals, where we assume that L is a multiple of d/2. We
represent the mesh points at which the integrand G is evaluated as

M := {m T

L
: m = 1, . . . , L} = ∪d0

l=1Ml , Ml := M ∩ (tl−1, tl ], tl := l
T

d0
, l = 1, . . . , d0.

By NLD we denote the number of low-discrepancy points used to evaluate the
expectation in (45) with respect to the distribution of the conditioning vector, and by
NMC the number of random paths used for each internal expectation in (45).

Algorithm for the OUBIMd method Set Res = 0 and d0 = d/2.
For i = 1, . . . , NLD do

Step 1. Obtain ui := (ui (1), . . . , ui (d)) from a d-dimensional LD sequence.
Step 2. Using the first d0 coordinates of ui , find Φ−1((ui (1)), . . . , Φ−1(ui (d0))
and then compute values of the process at T/d0, 2T/d0, . . . , T using the Brownian
bridge construction. Denote these values as w1, . . . ,wd0 . Set w0 = 0.
Step 3. For subinterval l, l = 1, . . . , d0, calculate λl from (50) and Cl from (46).
Use the last d0 coordinates of ui to obtain

al = μl + σlΦ
−1(ui (d0 + l)), l = 1, . . . , d0,
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where for each λl > 0 the values μl and σl are obtained from the formulae (27)–
(28) with x = 0, μ = 0, T = tl − tl−1 and θ equal to θ̄ = −√

2λl . When λl = 0,
the corresponding values μl and σl are obtained from (29).
Step 4. For j = 1, . . . , NMC do
• For each subinterval [tl−1, tl ], l = 1, . . . , d0, conditionally on ω(tl−1) = wl−1,
ω(tl) = wl , and

∫ tl
tl−1

ω(u)du = al , generate a random path ω at the mesh points

Ml using representation (31), with k̄ given by k̄θ in (32) modified to the current
sub-interval.
• Take

Res ← Res +
d0∏

k=1

Ck · exp
⎧
⎨

⎩

d0∑

l=1

∑

u∈Ml

[g(u, ω(u)) + λlω(u)2]T/L

⎫
⎬

⎭
/(NLDNMC ).

end for

end for

In Step 3 of the algorithm, we change the measure only if λl > 0. Otherwise we
sample the process using formulae in Sect. 2.2 corresponding to a Brownian bridge.

5 Numerical Example: EV Model

Motivated by the example given in Sect. 1, here we consider the problem of finding

E[e− ∫ T
0 c(u)eσ Z(u)du], (54)

where c is given in (9) and {Z(t)} is a basic Ornstein–Uhlenbeck process with θ = α.
For this we use three methods, which we refer to as OUBd, OUBId, and OUBIMd.
The first two methods are the same as the Brownian bridge construction BBd and
the BBId method described in Sect. 2.1, except that now we use the process {Z(t)}
instead of aBrownianmotion. TheOUBIMd method follows the algorithmdescribed
in Sect. 4, with the modification that {U (t)} is now the basic OU-process {Z(t)}.
Below we provide additional details about each method.

For the OUBd method, we sample first the terminal value Z(T ) using the normal
distribution with

E[ZT ] = 0 and Var[Z(T )] = 1

2α
[1 − e−2αT ], (55)

and then the remaining points using conditional normal distributions. In particular,
Z(tl) is sampled conditionally on Z(tl−1) = xl and Z(T ) = y, tl > tl−1, by using
normal distribution with the moments
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E[Zxl ,y(tl)] = xle
−αΔ + eα(Δ−(T−tl−1)) − e−α(Δ+(T−tl−1))

1 − e−2α(T−tl−1)
[y − xle

−α(T−tl−1)],
(56)

Var[Zxl ,y(tl)] = 1

2α

[

(1 − e−2αΔ) − (eαΔ − e−αΔ)2

e2α(T−tl−1) − 1

]

, (57)

where Δ = tl − tl−1 and {Zxl ,y} is the process Z conditioned on its values at the
end-points. In order to make the method comparable with OUBId and OUBIMd,
we obtain Z(t1), . . . , Z(td) using a d-dimensional point from a low-discrepancy
sequence, and then the remaining points, for each of the NMC paths, are sampled
using a pseudo-random generator.

For the OUBId method, we sample Z(t1), . . . , Z(td0) using the OUBd0 construc-
tion described above. Then, for the lth subinterval [tl−1, tl ], l = 1, . . . , d0,we gener-
ate, using the d0 + lth coordinate of a low-discrepancy point, a value al of the integral∫ tl
tl−1

Zxl ,yl (u)du. For this, we use normal distribution with moments given by the for-
mulae (27)–(28) with x = 0, μ = 0, σ = 1, T = tl − tl−1, and θ equal to α. Then,
NMC paths are simulated randomly and conditionally given

∫ tl
tl−1

Zxl ,yl (u)du = al by

using (31) with k̄ of the form (32) modified to the current sub-interval.
The method OUBIMd follows the algorithm described in Sect. 4 with the follow-

ing modifications. In Step 2 we obtain Z(t1), . . . , Z(td0) using the OUBd0 construc-
tion described above. For each subinterval [tl−1, tl ], with Z(tl−1) = xl and Z(tl) = yl ,
l = 1, . . . , d0, sampling of the process is based on the following representation
derived from Proposition 2:

E
[
e− ∫ tl

tl−1
c(u)eσ Zxl ,yl (u)du

]

= Cl · E
[

E

[

e
∫ tl
ti−l

[−c(u)eσ Zxl ,yl (u)+ 1
2 c(tl−1)eu

∗
σ 2Zxl ,yl (u)2]du |

∫ tl

tl−1

Zxl ,yl (u)du

]]

, (58)

where u∗ is selected from [xl, yl ], {Zxl ,yl (u)} is a basic OU-bridge with θ equal to

θ∗ = −
√
c(tl−1)eu

∗
σ 2 + α2, (59)

and

Cl = pθ∗(yl; xl ,Δ)

pα(yl; xl ,Δ)
e− 1

2 (α−θ∗)(y2l −x2l −Δ). (60)

Based on (58), Steps 3 and 4 of the algorithm are modified as follows:

Step 3. Use the last d0 coordinates of ui to obtain

al = μl + σlΦ
−1(ui (d0 + l)), l = 1, . . . , d0,

where μl and σl are obtained from (27)–(28) with x = 0, μ = 0, σ = 1, T =
tl − tl−1, and θ equal to θ∗ given in (59).
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Table 1 Estimates of ratios of variances

Method of
sampling

LD-sequence Maturity T

1 4 7 10

OUB2 Faure 12 3 4 4

OUBI2 Faure 130 22 27 16

OUBIM2 Faure 946 75 69 54

OUB2 Halton 9 4 4 4

OUBI2 Halton 181 30 23 16

OUBIM2 Halton 768 98 59 48

Table 2 Estimates of ratios of variances when c is constant (Faure sequence)

Method of
sampling

Maturity

1 4 7 10

OUB2 11 3 4 4

OUBI2 239 51 47 18

OUBIM2 2389 314 158 107

Step 4. For j = 1, . . . , NMC do

• For each subinterval [(tl−1, tl], l = 1, . . . , d0, conditionally on wl−1, wl , and∫ tl
tl−1

ω(u)du = al , generate a random path ω at the mesh points Ml by using (31),

with k̄ given in (32) modified to the current sub-interval.
• Take

Res ← Res +
d0∏

k=1

Ck · exp
⎧
⎨

⎩

d0∑

l=1

∑

u∈Ml

[−c(u)eσω(u) + 1

2
c(tl−1)e

u∗
σ 2ω(u)2]]T/L

⎫
⎬

⎭
/(NLDNMC ),

with Cl, l = 1, . . . , d0, obtained from (60).

In our implementation, we used parameters from Table3.2 in [4] 3 which in our
parametrization of the model are: α = 0.4512, η = −1.2321, σ = 0.6927, and r0 =
1.0094. To sample normal variates, we used the inverse transform method, where
the inverse cumulative normal distribution was approximated using the algorithm
presented in [6]. The parameters for the three methods were: d = 2, L = 250 ∗ T ,
NMC = 20, NLD = 1000, and T varied from 1 to 10. In each subinterval, the point
u∗ in (58) was taken equal to (xl + yl)/2. Each experiment was repeated 50 times,
and the ratios of crude Monte Carlo variances divided by the estimated variances of
each of the threemethods are reported in Table 1. The results show that by combining
conditioning on integrals with the proposed change of measure we can significantly

3They were derived from the model calibration to the actual Euro ATM caps volatility curve.



362 A. W. Kolkiewicz

improve efficiency of the OUBI2 method, which already is quite competitive when
compared with some of the existing methods.

For comparison, in Table 2 we present results of a similar experiment but now
we assume that c in (54) is constant. The results show that in this case the UOBIM2
method leads to even more pronounced reduction of variance.
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Optimal Discrepancy Rate of Point Sets
in Besov Spaces with Negative
Smoothness

Ralph Kritzinger

Abstract We consider the local discrepancy of a symmetrized version of Hammer-
sley type point sets in the unit square. As a measure for the irregularity of distribution
we study the norm of the local discrepancy in Besov spaces with dominating mixed
smoothness. It is known that for Hammersley type points this norm has the best pos-
sible rate provided that the smoothness parameter of the Besov space is nonnegative.
While these point sets fail to achieve the same for negative smoothness, we will
prove in this note that the symmetrized versions overcome this defect. We conclude
with some consequences on discrepancy in further function spaces with dominating
mixed smoothness and on numerical integration based on quasi-Monte Carlo rules.

Keywords Besov spaces · Discrepancy · Hammersley point set · Haar functions
1 Introduction

For a multiset P of N ≥ 1 points in the unit square [0, 1]2 we define the local
discrepancy as

DP (t) := 1

N

∑

z∈P
1[0,t)(z) − t1t2.

Here 1I denotes the indicator function of an interval I ⊆ [0, 1)2. For t = (t1, t2) ∈
[0, 1]2 we set [0, t) := [0, t1) × [0, t2) with volume t1t2. To obtain a global measure
for the irregularity of a point distribution P , one usually considers a norm of the
local discrepancy in some function space. A popular choice are the L p spaces for
p ∈ [1,∞], which are defined as the collection of all functions f on [0, 1)2 with
finite L p([0, 1)2) norm. For p = ∞ this norm is the supremum norm, i.e.

∥∥ f |L∞([0, 1)2)∥∥ := sup
t∈[0,1]2

| f (t)|,
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and for p ∈ [1,∞) these norms are given by

∥∥ f |L p([0, 1)2)
∥∥ :=

(∫

[0,1)2
| f (t)|pdt

) 1
p

.

Throughout this note, for functions f, g : N → R
+, we write g(N ) � f (N ) and

g(N ) � f (N ), if there exists a constant C > 0 independent of N such that g(N ) ≤
C f (N ) or g(N ) ≥ C f (N ) for all N ∈ N, N ≥ 2, respectively. We write f (N ) �
g(N ) to express that g(N ) � f (N ) and g(N ) � f (N ) holds simultaneously. It is a
well-known fact that for every p ∈ [1,∞] and N ∈ N any N -element point set P
in [0, 1)2 satisfies ∥∥DP |L p([0, 1)2)

∥∥ � N−1(log N )
1
2 . (1)

This inequality was shown by Roth [12] for p = 2 (and therefore for p ∈ (2,∞]
because of the monotonicity of the L p norms) and Schmidt [13] for p ∈ (1, 2). From
the work of Halász [3] we know that it also holds for p = 1. In recent years several
other norms of the local discrepancy have been studied. In this note we would like to
investigate the discrepancy of certain point sets in Besov spaces Srp,q B([0, 1)2) with
dominating mixed smoothness. The parameter p describes the integrability of func-
tions belonging to this space, while r is related to the smoothness of these functions.
The third parameter q is a regulation parameter. A definition of Srp,q B([0, 1)2) can be
found in Sect. 2. We denote the Besov norm of a function f by ‖ f |Srp,q B([0, 1)2)‖.
The study of discrepancy in function spaces with dominating mixed smoothness was
initiated by Triebel [14, 15], since it is directly connected to numerical integration
(see Sect. 4). He could show lower and upper bounds on the Besov norm of the local
discrepancy of point sets in the unit square. His results are valid for the parameter
range 1 ≤ p, q ≤ ∞, where q < ∞ if p = 1 and q > 1 if p = ∞, and for those
r ∈ R such that 1

p − 1 < r < 1
p . For these choices of p, q and r he proved that for

all N ∈ N the local discrepancy of any N -element point set P in [0, 1)2 satisfies
∥∥DP |Srp,q B([0, 1)2)∥∥ � Nr−1(log N )

1
q . (2)

Concerning lower bounds of this kind, the natural question arises whether there exist
point sets which match such a bound. Triebel was able to show that for any N ≥ 2
there exists a point set P in [0, 1)2 with N points such that

∥∥DP |Srp,q B([0, 1)2)∥∥ � Nr−1(log N )

(
1
q +1−r

)

.

Hence, there remained a gap between the exponents of the lower and the upper
bounds. This gap was closed by Hinrichs in [5] for the smoothness range 0 ≤ r < 1

p ,
showing that the lower bound (2) is sharp in this case.He usedHammersley type point
setsRn as introduced below. It follows from his proof that these point sets can not be
used to close the gap also for the parameter range 1/p − 1 < r < 0. It remained an
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open problem to find a point set which closes this gap for negative smoothness. This
problem was again mentioned in [6, Problem3] (here also for higher dimensions)
and [16, Remark 6.8]. It is the aim of this note to show that a solution is possible
by applying some simple modifications to the point sets Rn , which will lead to the
main result of this note.

In [5] Hinrichs studied the class of Hammersley type point sets

Rn :=
{(

tn
2

+ tn−1

22
+ · · · + t1

2n
,
s1
2

+ s2
22

+ · · · + sn
2n

)
|t1, . . . , tn ∈ {0, 1}

}

for n ∈ N, where si = ti or si = 1 − ti depending on i . It is obvious that Rn has 2n

elements. We fix Rn and introduce three connected point sets by

Rn,1 := {(x, 1 − y)|(x, y) ∈ Rn},
Rn,2 := {(1 − x, y)|(x, y) ∈ Rn},
Rn,3 := {(1 − x, 1 − y)|(x, y) ∈ Rn}.

We set R̃n := Rn ∪ Rn,1 ∪ Rn,2 ∪ Rn,3 and call R̃n a symmetrized Hammersley
type point set. In literature one often finds a symmetrization in the sense of Dav-
enport [1], which would be Rn ∪ Rn,1. However, for our purposes we need to
work with the point sets R̃n , which have N = 2n+2 elements, where some points
might coincide. With the point sets R̃n we have the following main result of this
note.

Theorem 1 Let 1 ≤ p, q ≤ ∞ and r ∈ R such that 1/p − 1 < r < 1/p. Then the
point sets R̃n in [0, 1)2 with N = 2n+2 elements satisfy

‖DR̃ n
|Srp,q B([0, 1)2)‖ � Nr−1(log N )1/q .

We would like to stress again that our result improves on [5, Theorem 1.1] in
the sense that we extended the range for the smoothness parameter r to negative
values.

The rest of this note is structured as follows. In Sect. 2 we introduce the Besov
spaces Srp,q B([0, 1)2) of dominating mixed smoothness and explain how these func-
tion spaces can be characterized in terms of Haar functions. We will employ this
characterization in Sect. 3 to proof Theorem1. While Sects. 2 and 3 only cover the
Besov spaces, we introduce further functions spaces with dominating mixed smooth-
ness in Sect. 4, namely Triebel–Lizorkin spaces Srp,q F([0, 1)2) and Sobolev spaces
SrpH([0, 1)2). It is possible to derive discrepancy results in these function spaces
from Theorem1 via embedding theorems. In the same section, we also explain the
relation between discrepancy and numerical integration of functions in thementioned
spaces using quasi-Monte Carlo algorithms.We close with a discussion on a possible
generalization of Theorem1 to higher dimensions in the final Sect. 5.
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2 Preliminaries

We give a definition of the Besov spaces with dominating mixed smoothness. Let
therefore S (R2) denote the Schwartz space and S ′(R2) the space of tempered
distributions on R

2. For f ∈ S ′(R2) we denote by F f the Fourier transform of f
and byF−1 f its inverse. Let φ0 ∈ S (R) satisfy φ0(t) = 1 for |t | ≤ 1 and φ0(t) = 0
for |t | > 3

2 . Let
φk(t) = φ0(2

−k t) − φ0(2
−k+1t),

where t ∈ R, k ∈ N, and φk(t) = φk1(t1)φk2(t2) for k = (k1, k2) ∈ N
2
0, t = (t1, t2) ∈

R
2. We note that

∑
k∈N2

0
φk(t) = 1 for all t ∈ R

2. The functions F−1(φkF f )

are entire analytic functions for any f ∈ S ′(R2). Let 0 < p, q ≤ ∞ and r ∈ R.
The Besov space Srp,q B(R2) with dominating mixed smoothness consists of all
f ∈ S ′(R2) with finite quasi-norm

∥∥ f |Srp,q B(R2)
∥∥ =

⎛

⎝
∑

k∈N2
0

2r(k1+k2)q
∥∥F−1(φkF f )|L p(R

2)
∥∥q

⎞

⎠

1
q

,

with the usual modification if q = ∞. LetD([0, 1)2) be the set of all complex-valued
infinitely differentiable functions onR2 with compact support in the interior of [0, 1)2
and let D ′([0, 1)2) be its dual space of all distributions in [0, 1)2. The Besov space
Srp,q B([0, 1)2) of dominating mixed smoothness on the domain [0, 1)2 consists of
all functions f ∈ D ′([0, 1)2) with finite quasi norm

∥∥ f |Srp,q B([0, 1)2)∥∥ = inf
{∥∥g|Srp,q B(R2)

∥∥ : g ∈ Srp,q B(R2), g|[0,1)2 = f
}
.

These function spaces are independent of the choice of φ0, as mentioned for instance
in [14, Remark 1.39].

Actually, we will not make use of this technical definition. For our approach it is
more convenient to employ a characterization of Besov spaces via Haar functions,
which we define in the following.

A dyadic interval of length 2− j , j ∈ N0, in [0, 1) is an interval of the form

I = I j,m :=
[
m

2 j
,
m + 1

2 j

)
for m = 0, 1, . . . , 2 j − 1.

We also define I−1,0 = [0, 1). The left and right half of I j,m are the dyadic intervals
I j+1,2m and I j+1,2m+1, respectively. For j ∈ N0, the Haar function h j,m is the function
on [0, 1)which is+1 on the left half of I j,m ,−1 on the right half of I j,m and 0 outside
of I j,m . The L∞-normalized Haar system consists of all Haar functions h j,m with
j ∈ N0 andm = 0, 1, . . . , 2 j − 1 together with the indicator function h−1,0 of [0, 1).
Normalized in L2([0, 1)) we obtain the orthonormal Haar basis of L2([0, 1)).
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LetN−1 = N0 ∪ {−1} and defineD j = {0, 1, . . . , 2 j − 1} for j ∈ N0 andD−1 =
{0}. For j = ( j1, j2) ∈ N

2−1 and m = (m1,m2) ∈ D j := D j1 × D j2 , the Haar func-
tion h j ,m is given as the tensor product h j ,m(t) = h j1,m1(t1)h j2,m2(t2) for t =
(t1, t2) ∈ [0, 1)2. We speak of I j ,m = I j1,m1 × I j2,m2 as dyadic boxes.

We have the following crucial result [14, Theorem 2.41].

Proposition 1 Let 0 < p, q ≤ ∞, 1 < q ≤ ∞ if p = ∞, and 1
p − 1 < r < min{

1
p , 1

}
. Let f ∈ D ′([0, 1)2). Then f ∈ Srp,q B([0, 1)2) if and only if it can be repre-

sented as
f =

∑

j∈N2−1

∑

m∈D j

μ j ,m2
max{0, j1}+max{0, j2}h j ,m

for some sequence (μ j ,m) satisfying

⎛

⎜⎝
∑

j∈N2−1

2
( j1+ j2)

(
r− 1

p +1
)
q

⎛

⎝
∑

m∈D j

∣∣μ j ,m

∣∣p
⎞

⎠

q
p

⎞

⎟⎠

1
q

< ∞,

where the convergence is unconditional inD ′([0, 1)2) and in any Sρ
p,q B([0, 1)2)with

ρ < r . This representation of f is unique with the Haar coefficients

μ j ,m = μ j ,m( f ) =
∫

[0,1)2
f (t)h j ,m(t)dt.

The expression on the left-hand-side of the above inequality provides an equivalent
quasi-norm on Srp,q B([0, 1)2), i.e.

∥∥ f |Srp,q B([0, 1)2)∥∥ �
⎛

⎜⎝
∑

j∈N2−1

2
( j1+ j2)

(
r− 1

p +1
)
q

⎛

⎝
∑

m∈D j

∣∣μ j ,m

∣∣p
⎞

⎠

q
p

⎞

⎟⎠

1
q

.

Wewill follow the same approach as Hinrichs and first estimate the Haar coefficients
of DR̃ n

and then apply Proposition1. This note is therefore similar in structure to [5]
and uses several results from there.

3 Proof of Theorem1

To begin with, we state several auxiliary results from [5, Lemmas 3.2–3.4, 3.6].

Lemma 1 Let f (t) = t1t2 for t = (t1, t2) ∈ [0, 1)2. For j ∈ N
2−1 and m ∈ D j let

μ j ,m be the Haar coefficients of f . Then
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(i) If j = ( j1, j2) ∈ N
2
0 then μ j ,m = 2−2( j1+ j2+2).

(ii) If j = (−1, k) or j = (k,−1) with k ∈ N0 then μ j ,m = −2−(2k+3).

Lemma 2 Fix z = (z1, z2) ∈ [0, 1)2 and let f (t) = 1[0,t)(z) for t = (t1, t2) ∈
[0, 1)2. For j ∈ N

2−1 and m = (m1,m2) ∈ D j let μ j ,m be the Haar coefficients of

f . Then μ j ,m = 0 whenever z /∈ I̊ j ,m, where I̊ j ,m denotes the interior of I j ,m. If
z ∈ I̊ j ,m then

(i) If j = ( j1, j2) ∈ N
2
0 then

μ j ,m = 2−( j1+ j2+2)(1 − |2m1 + 1 − 2 j1+1z1|)(1 − |2m2 + 1 − 2 j2+1z2|).

(ii) If j = (−1, k), k ∈ N0, then μ j ,m = −2−(k+1)(1 − z1)(1 − |2m2 + 1 − 2k+1

z2|).
(iii) If j = (k,−1), k ∈ N0, then μ j ,m = −2−(k+1)(1 − z2)(1 − |2m1 + 1 − 2k+1

z1|).
Lemma 3 LetRn be a Hammersley type point set with 2n points. Let j = ( j1, j2) ∈
N

2
0 and m = (m1,m2) ∈ D j . Then, if j1 + j2 < n,

∑

z∈R n∩ I̊ j ,m

(1 − |2m1 + 1 − 2 j1+1z1|) =
∑

z∈R n∩ I̊ j ,m

(1 − |2m2 + 1 − 2 j2+1z2|) = 2n− j1− j2−1

and, if j1 + j2 < n − 1,

∑

z∈R n∩ I̊ j ,m

(1 − |2m1 + 1 − 2 j1+1z1|)(1 − |2m2 + 1 − 2 j2+1z2|) = 2n− j1− j2−2 + 2 j1+ j2−n .

Now we are ready to compute the Haar coefficients of DR̃ n
.

Proposition 2 Let R̃n be a symmetrized Hammersley type point set with N = 2n+2

elements and let f be the local discrepancy of R̃n and μ j ,m the Haar coefficients of
f for j ∈ N

2−1 and m = (m1,m2) ∈ D j .
Let j = ( j1, j2) ∈ N

2
0. Then

(i) if j1 + j2 < n − 1 and j1, j2 ≥ 0 then |μ j ,m| = 2−2(n+1).
(ii) if j1 + j2 ≥ n − 1 and 0 ≤ j1, j2 ≤ n then |μ j ,m| ≤ 2−(n+ j1+ j2) and |μ j ,m| =

2−2( j1+ j2+2) for all but at most 2n+2 coefficients μ j ,m with m ∈ D j .
(iii) if j1 ≥ n or j2 ≥ n then |μ j ,m| = 2−2( j1+ j2+2).

Now let j = (−1, k) or j = (k,−1) with k ∈ N0. Then

(iv) if k < n then μ j ,m = 0.
(v) if k ≥ n then |μ j ,m| = 2−(2k+3).

Finally,

(vi) μ(−1,−1),(0,0) = 0.
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Proof The cases (i i i) and (v) follow from the fact that no elements of R̃n are
contained in the interior of a dyadic box I( j1, j2),m if j1 ≥ n or j2 ≥ n, together with
Lemma1. We consider the case (i i). For a fixed j = ( j1, j2) the interiors of the
dyadic boxes I j ,m for m ∈ D j are mutually disjunct and at most 2n+2 of these boxes
can contain points from R̃n . We have μ j ,m = 2−2( j1+ j2+2) if the corresponding box
I j ,m is empty. The other boxes contain at most 8 points (because the volume of I j ,m is
at most 2−(n−1) due to the condition j1 + j2 ≥ n − 1 and because of the net property
of Rn and its connected point sets). Together with the first part of Lemma2 and
the triangle inequality this yields |μ j ,m| ≤ 8 · 2−(n+2)2−( j1+ j2+2) + 2−2( j1+ j2+2) ≤
2−(n+ j1+ j2).

The case (vi) can be seen as follows:

μ(−1,−1),(0,0) =
∫ 1

0

∫ 1

0
DR̃ n

(t1, t2)dt1dt2 = 1

N

∑

z∈R̃ n

∫ 1

z1

∫ 1

z2
1dt1dt2 −

∫ 1

0

∫ 1

0
t1t2dt1dt2

= 1

2n+2

∑

z∈R̃ n

(1 − z1)(1 − z2) − 1

4

= 1

2n+2

∑

(x,y)∈R n

[(1 − x)(1 − y) + (1 − x)y + x(1 − y) + xy] − 1

4

= 1

2n+2

∑

(x,y)∈R n

1 − 1

4
= 1

2n+2 2
n − 1

4
= 0.

To show the claim in (iv) for the case j = (k,−1) with k ∈ N0, k < n, we have to
consider the expression

S :=
∑

z∈R̃ n∩ I̊(k,−1),(m1 ,0)

(1 − |2m1 + 1 − 2k+1z1|)(1 − z2)

for any m1 ∈ {0, . . . , 2k − 1}. We can write

S =
∑

(x,y)∈R n∩ I̊(k,−1),(m1 ,0)

(1 − |2m1 + 1 − 2k+1x |)(1 − y)

+
∑

(x,1−y)∈R n∩ I̊(k,−1),(m1 ,0)

(1 − |2m1 + 1 − 2k+1x |)y

+
∑

(1−x,y)∈R n∩ I̊(k,−1),(m1 ,0)

(1 − |2m1 + 1 − 2k+1(1 − x)|)(1 − y)

+
∑

(1−x,1−y)∈R n∩ I̊(k,−1),(m1 ,0)

(1 − |2m1 + 1 − 2k+1(1 − x)|)y

=
∑

(x,y)∈R n∩ I̊(k,−1),(m1 ,0)

(1 − |2m1 + 1 − 2k+1x |)
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+
∑

(1−x,y)∈R n∩ I̊(k,−1),(m1 ,0)

(1 − |2m1 + 1 − 2k+1(1 − x)|) =: S1 + S2,

where we used the obvious equivalences (x, y) ∈ Rn ∩ I̊(k,−1),(m1,0) if and only if
(x, 1 − y) ∈ Rn ∩ I̊(k,−1),(m1,0) as well as (1 − x, y) ∈ Rn ∩ I̊(k,−1),(m1,0) if and only
if (1 − x, 1 − y) ∈ Rn ∩ I̊(k,−1),(m1,0) in the last step. Since the interval I̊(k,−1),(m1,0)

is the same as I̊(k,0),(m1,0), we obtain S1 = 2n−k−1 from the first part of Lemma3. To
evaluate S2 we observe that

1 − x ∈ I̊k,m1 ⇔ m1

2k
< 1 − x <

m1 + 1

2k
⇔ 2k − 1 − m1

2k
< x <

2k − m1

2k
⇔ x ∈ I̊k,m̃1 ,

where we set m̃1 = 2k − 1 − m1. This yields the equivalence of (1 − x, y) ∈ Rn ∩
I̊(k,−1),(m1,0) and (x, y) ∈ Rn ∩ I̊(k,−1),(m̃1,0). We also find

|2m1 + 1 − 2k+1(1 − x)| = |2(m1 + 1 − 2k) − 1 + 2k+1x |
= | − 2m̃1 − 1 + 2k+1x | = |2m̃1 + 1 − 2k+1x |

and hence we obtain

S2 =
∑

(x,y)∈R n∩ I̊(k,−1),(m̃1 ,0)

(1 − |2m̃1 + 1 − 2k+1x |) = 2n−k−1,

where we regarded the first part of Lemma3 again. Altogether, we have

μ(k,−1),(m1,0) = − 1

N
2−(k+1)(S1 + S2) − (−2−(2k+3))

= − 2−(n+2)2−(k+1)2n−k + 2−(2k+3) = 0

with Lemmas1 and 2, and this part of the proposition is verified. It is clear that the
result for μ(−1,k),(0,m2) if k < n can be shown analogously.

Finally, we prove (i) and therefore have to analyze the sum

T :=
∑

z∈R̃ n∩ I̊ j ,m

(1 − |2m1 + 1 − 2 j1+1z1|)(1 − |2m2 + 1 − 2 j2+1z2|),

where j = ( j1, j2) ∈ N
2
0 with j1 + j2 < n − 1. We have

T =
∑

(x,y)∈R n∩ I̊ j ,m

(1 − |2m1 + 1 − 2 j1+1x |)(1 − |2m2 + 1 − 2 j2+1y|)

+
∑

(x,1−y)∈R n∩ I̊ j ,m

(1 − |2m1 + 1 − 2 j1+1x |)(1 − |2m2 + 1 − 2 j2+1(1 − y)|)

+
∑

(1−x,y)∈R n∩ I̊ j ,m

(1 − |2m1 + 1 − 2 j1+1(1 − x)|)(1 − |2m2 + 1 − 2 j2+1y|)
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+
∑

(1−x,1−y)∈R n∩ I̊ j ,m

(1 − |2m1 + 1 − 2 j1+1(1 − x)|)(1 − |2m2 + 1 − 2 j2+1(1 − y)|)

=: T1 + T2 + T3 + T4.

We obtain directly from the second part of Lemma3 that T1 = 2n− j1− j2−2 + 2 j1+ j2−n .
With the same arguments as in the proof of (iv) we can show

T2 =
∑

(x,y)∈R n∩ I̊ j ,(m1 ,m̃2)

(1 − |2m1 + 1 − 2 j1+1x |)(1 − |2m̃2 + 1 − 2 j2+1y|),

T3 =
∑

(x,y)∈R n∩ I̊ j ,(m̃1 ,m2)

(1 − |2m̃1 + 1 − 2 j1+1x |)(1 − |2m2 + 1 − 2 j2+1y|),

T4 =
∑

(x,y)∈R n∩ I̊ j ,(m̃1 ,m̃2)

(1 − |2m̃1 + 1 − 2 j1+1x |)(1 − |2m̃2 + 1 − 2 j2+1y|),

where m̃i = 2 ji − 1 − mi for i ∈ {1, 2}. But from this and Lemma3 we see that
T2 = T3 = T4 = T1 and together with Lemmas1 and 2

μ j ,m = 1

N
2−( j1+ j2+2)(T1 + T2 + T3 + T4) − 2−2( j1+ j2+2)

= 2−(n+2)2−( j1+ j2+2)(2n− j1− j2 + 2 j1+ j2−n+2) − 2−2( j1+ j2+2) = 2−2(n+1)

as claimed. The proof of the proposition is complete. �

Now we are able to prove Theorem1.

Proof We consider any symmetrized Hammersley type point set R̃n (we do not have
to specify the dependence of the si on ti in the definition of Rn). For j ∈ N

2−1 and
m ∈ D j let μ j ,m be the Haar coefficients of the local discrepancy of R̃n . According
to Proposition1, it suffices to show that for all p, q, r satisfying the conditions in
Theorem1 we have

⎛

⎜⎝
∑

j∈N2−1

2
( j1+ j2)

(
r− 1

p +1
)
q

⎛

⎝
∑

m∈D j

∣∣μ j ,m

∣∣p
⎞

⎠

q
p

⎞

⎟⎠

1
q

� 2n(r−1)n1/q . (3)

This yields

‖DR̃ n
|Srp,q B([0, 1)2)‖ � 2−2(r−1)2(n+2)(r−1)(n + 2)1/q � Nr−1(log N )1/q .

To verify (3), we split the sum over j in six cases according to Proposition2 (and
thereby applying Minkowski’s inequality). We remark that the cases (i), (i i), (i i i)
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and (v) have already been treated in [5, Sect. 4], since in these cases the bounds on the
Haar coefficients of DR n are (basically) the same as those for the Haar coefficients
of DR̃ n

. In all cases Hinrichs obtained an upper bound of the form c2n(r−1)n1/q with
c independent of n for the whole parameter range 1/p − 1 < r < 1/p. The only
cases where the condition r ≥ 0 was necessary were (iv) and (vi). However, the
symmetrization ofRn has the effect that the corresponding Haar coefficients of DR̃ n

vanish in these two cases, and the result follows. �

Remark 1 Let f be the local discrepancy of the point set Rn ∪ Rn,1 and μ j ,m

for j ∈ N
2−1 and m ∈ D j be the corresponding Haar coefficients. Then one can

show that μ(−1,−1),(0,0) = 2−(n+2) and μ(−1,k),(0,m2) = −2−(n+2k+3) + 2−(2n+2)Tk for
k ∈ N0, k < n. Here, Tk = 1 if sk+1 = tk+1 and Tk = −1 if sk+1 = 1 − tk+1 in the
definition ofRn . Hence, the proof of Theorem1 does not work for this class of point
sets.

4 Discrepancy in Further Function Spaces and Numerical
Integration

As pointed out in [9, 10, 14] one can easily deduce results on the discrepancy of point
sets in Triebel–Lizorkin spaces from the discrepancy estimates in Besov spaces. Let
0 < p < ∞, 0 < q ≤ ∞ and r ∈ R. The Triebel–Lizorkin space Srp,q F(R2) with
dominating mixed smoothness consists of all f ∈ S ′(R2) with finite quasi-norm

‖ f |Srp,q F(R2)‖ =
∥∥∥∥∥∥

⎛

⎝
∑

k∈N2
0

2r(k1+k2)q |F−1(φkF f )(·)|q
⎞

⎠
1/q

|L p(R
2)

∥∥∥∥∥∥

with the usual modification if q = ∞. The space Srp,q F([0, 1)2) can be introduced
analogously to Srp,q B([0, 1)2). For 0 < p, q < ∞ and r ∈ Rwehave the embeddings

Srmax{p,q},q B([0, 1)2) ↪→ Srp,q F([0, 1)2) ↪→ Srmin{p,q},q B([0, 1)2), (4)

which were proven in [10, Corollary 1.13], based on other embedding theorems from
[14, Remark 6.28] and [4, Proposition 2.3.7]. From the first embedding together with
Theorem1 we obtain

Corollary 1 Let 1 ≤ p, q < ∞ and 1
max{p,q} − 1 < r < 1

max{p,q} . Then the point sets
R̃n in [0, 1)2 with N = 2n+2 elements satisfy

‖DP |Srp,q F([0, 1)2)‖ � Nr−1(log N )1/q .

This corollary improves on [9, Theorem 6.1], where Hammersley type point sets
in arbitrary base b ≥ 2 have been considered, by extending again the range of r to
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negative values. There exist corresponding lower bounds for the norm of the local
discrepancy in Triebel–Lizorkin spaces for 1

min{p,q} − 1 < r < 1
p as shown in [10,

Corollary 4.2].
For 1 < p < ∞ the spaces SrpH([0, 1)2) := Srp,2F([0, 1)2) are called Sobolev

spaces with dominating mixed smoothness. By choosing q = 2 in Corollary1
we obtain an analogous result on Sobolev spaces. Further, it is well known that
S0pH([0, 1)2) = L p([0, 1)2). Regarding this fact we derive from Corollary1 that
the symmetrized Hammersley type point sets achieve an L p discrepancy of order
N−1(log N )1/2 for all p ∈ [1,∞), which is best possible in the sense of (1). This
however is not so surprising, since in [8, Theorem 3] it has been shown that already a
Davenport type symmetrization ofRn achieves the best possible rate of L p discrep-
ancy for all p ∈ [1,∞), i.e. ‖DR n∪R n,1 |L p([0, 1)2)‖ � N−1(log N )1/2. By different
means as used in this note, a certain type of symmetrized Hammersley point sets
with the optimal order of L p discrepancy in a prime base b has been studied by
Goda [2, Theorem 3], which matches our construction of R̃n for b = 2. We observe
that the construction of point sets with the optimal rate of discrepancy in Besov,
Triebel–Lizorkin or Sobolev spaces with negative smoothness is even more subtle
than to find point sets with the optimal order of L p discrepancy.

Finally, we would like to add a few words concerning errors of quasi-Monte
Carlo (QMC) methods for numerical integration in spaces with dominating mixed
smoothness. For a function f in a normed space F of functions on [0, 1)2 we
would like to approximate the integral I ( f ) := ∫

[0,1)2 f (x)dx by a QMC algorithm

QN (P, f ) = 1
N

∑N
i=1 f (xi ), where P = {x1, . . . , xN } is a set of N points in the

unit square. The minimal worst-case error of QMC algorithms with respect to a class
of functions F is defined as

errN (F) := inf
#P=N

sup
‖ f |F‖≤1

|I ( f ) − QN (P, f )|.

The infimum is extended over all point sets in [0, 1)2 with N elements and the
supremum is extended over all functions in the unit ball of F . We state a remarkable
connection between discrepancy and integration errors in Besov spaces. Let therefore

discN (Srp,q B([0, 1)2)) := inf
#P=N

‖DP (·)|Srp,q B([0, 1)2)‖.

It is known that S1−r
p′,q ′ B([0, 1)2)� with 1/p + 1/p′ = 1/q + 1/q ′ = 1 is the dual

space of Srp,q B([0, 1)2), where S1−r
p′,q ′ B([0, 1)2)� is the class of all functions in

S1−r
p′,q ′ B([0, 1)2) with zero boundary on the upper and right boundary line. Let

1 ≤ p, q ≤ ∞ (q < ∞ if p = 1 and q > 1 if p = ∞) and 1/p < r < 1/p + 1.
Then we have for every integer N ≥ 2

errN (Srp,q B([0, 1)2)�) � discN (S1−r
p′,q ′ B([0, 1)2)), (5)

which follows from [14, Theorem 6.11]. This relation leads to the following result:
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Theorem 2 Let 1 ≤ p, q ≤ ∞ (q < ∞ if p = 1 and q > 1 if p = ∞) and 1/p <

r < 1 + 1/p. Then for N = 2n+2 with n ∈ N we have

errN (Srp,q B([0, 1)2)�) � N−r (log N )1−1/q .

Proof From (5) we have

errN (Srp,q B([0, 1)2)�) � discN (S1−r
p′,q ′ B([0, 1)2))

for 1/p < r < 1 + 1/p. Theorem1 yields further

discN (S1−r
p′,q ′ B([0, 1)2)) � N 1−r−1(log N )1/q

′ = N−r (log N )1−1/q

for 1/p′ − 1 < 1 − r < 1/p′. The last condition on r is equivalent to 1/p < r <

1 + 1/p and the result follows. �

We remark that there exists a corresponding lower bound on errN (Srp,q B([0, 1)2)
which shows that the rate of convergence in this theorem is optimal. The novelty
of Theorem2 is the fact that in the two-dimensional case for 1 < r < 1 + 1/p the
optimal rate of convergence can be achieved with QMC rules (based on symmetrized
Hammersley type point sets). Previously, this has only been shown for the smaller
parameter range 1/p < r < 1 in [10, Theorem 5.6] (but for arbitrary dimensions).
The smoothness range, forwhich theoptimal order for theworst-case integration error
is achieved, can be further extended if one either considers one-periodic functions
only (see [16] for the case s = 2 and [7] for a generalization to higher dimensions)
or if one allows more general cubature rules that are not necessarily of QMC type.
Results in this directions can be found for instance in [16], where Hammersley type
point sets were used as integration nodes of non-QMC rules, and [17], where Frolov
lattices were proven to yield optimal convergence rates also for higher dimensions
and for all r > 1/p.

With similar arguments as above we obtain an analogous result on integration
errors in Triebel–Lizorkin spaces (and hence in Sobolev spaces).

Corollary 2 Let 1 ≤ p, q ≤ ∞ and 1/min{p, q} < r < 1 + 1/min{p, q}. Then
for N = 2n+2 with n ∈ N we have

errN (Srp,q F([0, 1)2)�) � N−r (log N )1−1/q .

Proof This result is a consequence of the second embedding in (4), which implies

errN (Srp,q F([0, 1)2)�) ≤ errN (Srmin{p,q},q B([0, 1)2)�),

and Theorem2. �
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5 Concluding Remarks

In this notewe proved optimal results for theBesov normof the local discrepancy also
in cases where the smoothness parameter r is negative. We only considered the two-
dimensional case. However, the situation in higher dimensions s in the case r < 0
remains unsolved. According to Triebel, the Besov norm of the local discrepancy of
an arbitrary N element point setP in [0, 1)s satisfies

∥∥DP |Srp,q B([0, 1)s)∥∥ � Nr−1(log N )
s−1
q ,

where 1 ≤ p, q ≤ ∞ and 1
p − 1 < r < 1

p . For nonnegative smoothness parameters,
optimal discrepancy results for point set in [0, 1)s have been obtained by Markhasin
in [10, 11] based on certain digital nets. Considering the ideas in this note, one
might wonder whether an 2s-fold symmetrization of suitable digital nets would yield
optimal discrepancy results for r < 0 in dimension s. We leave this as an open
problem, but remark that a proof might be difficult and technical. Due to the simple
structure of the Hammersley point set it is possible to provide exact formulas for
the sums in Lemma3, which appear in the computation of the Haar coefficients.
The precise values of these sums were important to show that the essential Haar
coefficients of DR̃ n

vanish. It is probably much harder to find formulas for similar
sums in higher dimensions.
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A Reduced Fast Construction of
Polynomial Lattice Point Sets with Low
Weighted Star Discrepancy

Ralph Kritzinger, Helene Laimer and Mario Neumüller

Abstract The weighted star discrepancy is a quantitative measure for the perfor-
mance of point sets in quasi-Monte Carlo algorithms for numerical integration. We
consider polynomial lattice point sets, whose generating vectors can be obtained by a
component-by-component construction to ensure a small weighted star discrepancy.
Our aim is to significantly reduce the construction cost of such generating vectors by
restricting the size of the set of polynomials from which we select the components of
the vectors. To gain this reduction we exploit the fact that the weights of the spaces
we consider decay very fast.

Keywords weighted star discrepancy · polynomial lattice point sets· quasi-Monte Carlo integration · component-by-component algorithm

1 Introduction

A convenient way to approximate the value of an integral Is(F) := ∫
[0,1)s F(x) dx

over the s-dimensional unit cube is to use a quasi-Monte Carlo rule of the form

QN ,s(F) := 1

N

N−1∑

n=0

F(xn). (1)
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The integrand F usually stems from some suitable (weighted) function space and the
multisetP of integration nodes x0, x1, . . . , xN−1 in the algorithm QN ,s(F) is cho-
sen deterministically from [0, 1)s . For comprehensive information on quasi-Monte
Carlo algorithms consult, e.g., [4, 9, 12]. The quality of a quasi-Monte Carlo rule is
for instance measured by some notion of discrepancy. In this paper we consider the
weighted star discrepancy, which has been introduced by Sloan andWoźniakowski in
[20], exploiting the insight that the weights reflect the influence of different coordi-
nates on the integration error. Let [s] := {1, 2, . . . , s} and consider aweight sequence
γ = (γu)u⊆[s] of nonnegative real numbers, i.e., every group of variables (xi )i∈u is
equipped with a weight γu. Roughly speaking, a small weight indicates that the
corresponding variables contribute little to the integration problem. For simplic-
ity, throughout this paper we only consider product weights, defined as follows.
Given a non-increasing sequence of positive real numbers (γ j ) j≥1 with γ j ≤ 1 we
set γu := ∏

j∈u γ j and γ∅ := 1.

Definition 1 Let γ = (γu)u⊆[s] be a weight sequence and P = {x0, . . . , xN−1} ⊆
[0, 1)s be an N -element point set. The local discrepancy of the point set P at t =
(t1, . . . , ts) ∈ (0, 1]s is defined as

Δ(t,P) := 1

N

N−1∑

n=0

1[0,t)(xn) −
s∏

j=1

t j ,

where1[0,t) denotes the characteristic function of [0, t) := [0, t1) × · · · × [0, ts). The
weighted star discrepancy of P is then defined as

D∗
N ,γ (P) := sup

t∈(0,1]s
max

∅�=u⊆[s]
γu|Δ((tu, 1),P)|,

where (tu, 1) denotes the vector (t̃1, . . . , t̃s)with t̃ j = t j if j ∈ u and t̃ j = 1 if j /∈ u.

A relation between the integration error of quasi-Monte Carlo rules and the weighted
star discrepancy is given by the Koksma-Hlawka type inequality (see [20])

|QN ,s(F) − Is(F)| ≤ D∗
N ,γ (P)‖F‖γ ,

where ‖ · ‖γ is some norm which depends only on the weight sequence γ but not on
the point setP .

It turns out that lattice point sets (see, e.g., [12, Chap. 5], [9]) and polynomial
lattice point sets (see, e.g., [12, Chap. 4], [11], [4, Chap. 10]) are often a good choice
as sample points in (1). These two kinds of point sets are strongly connected and
have a lot of parallel tracks in their analysis. However, there are some situations
were one type of point set is superior to the other in terms of error bounds or the
size of the function classes where they yield good results for numerical integration.
Thus it is beneficial to have constructions at hand for lattice point sets as well as
for polynomial lattice point sets. For a detailed comparison of lattice point sets
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and polynomial lattice point sets see, e.g., [18]. In this paper we study polynomial
lattice point sets, a special class of point sets with low weighted star discrepancy,
introduced by Niederreiter in [12, Chap. 4], [11]. For a prime number p, let Fp be the
finite field of order p. We identify Fp with the set {0, 1, . . . , p − 1} equipped with
the modulo p arithmetic. We denote by Fp[x] the set of polynomials over Fp and
by Fp((x−1)) the field of formal Laurent series over Fp with elements of the form
L = ∑∞

l=ω tl x−l ,whereω ∈ Z and tl ∈ Fp for all l ≥ ω. For a given dimension s ≥ 2
and some integerm ≥ 1we choose a so-calledmodulus f ∈ Fp[x]with deg( f ) = m
as well as polynomials g1, . . . , gs ∈ Fp[x]. The vector g = (g1, . . . , gs) is called the
generating vector of the polynomial lattice point set. Further, we introduce the map
φm : Fp((x−1)) → [0, 1) such that

φm

( ∞∑

l=ω

tl x
−l

)

=
m∑

l=max{1,ω}
tl p

−l .

With n ∈ {0, 1, . . . , pm − 1} we associate the polynomial n(x) = ∑m−1
r=0 nr xr ∈

Fp[x], as each such n can uniquely be written as n = n0 + n1 p + · · · + nm−1 pm−1

with digits nr ∈ {0, 1, . . . , p − 1} for all r ∈ {0, 1, . . . ,m − 1}. With this notation,
the polynomial lattice point set P(g, f ) is defined as the set of N := pm points

xn =
(

φm

(
n(x)g1(x)

f (x)

)

, . . . , φm

(
n(x)gs(x)

f (x)

))

∈ [0, 1)s

for 0 ≤ n ≤ pm − 1. See also [4, Chap. 10].
In the following, by Gp,m we denote the set of all polynomials g over Fp with

deg(g) < m. Further we define

Gp,m( f ) := {g ∈ Gp,m | gcd(g, f ) = 1}. (2)

For the weighted star discrepancy of a polynomial lattice point set we simply write
D∗

N ,γ (g, f ).
Niederreiter [12] proved the existence of polynomial lattice point sets with low

unweighted star discrepancy by averaging arguments. Generating vectors of good
polynomial lattice point sets can be constructed by a component-by-component
(CBC) construction. The standard structure of CBC constructions is as follows. We
start by setting the first coordinate of the generating vector to 1. After this first step
we proceed by increasing the dimension of the generating vector by one in each step
until we have a generating vector (g1, . . . , gs) of full size s. That is, all previously
chosen components stay the same and one new component is added. This new coor-
dinate is chosen from a predefined search set, most commonly from Gp,m( f ) given
by (2). Usually it is determined such that the weighted star discrepancy of the lattice
point set, corresponding to the generating vector, consisting of all previously chosen
components plus one additional component, is minimized as a function of this last
component.
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Such constructionswere provided in [3] for an irreduciblemodulus f and in [1] for
a reducible f . In these papers, the authors considered the unweighted star discrepancy
as well as its weighted version, which we study here. It is the aim of the present paper
to speed up these constructions by reducing the search sets for the components of the
generating vector g according to each component’s importance. It is the nature of
product weighted spaces that the components g j of the generating vector have less
and less influence on the quality of the corresponding polynomial lattice point as j
increases. Roughly speaking this is due to the weights (γ j ) that are becoming ever
smaller with increasing index j . We want to exploit this property in the following
way. As the components’ influence is decreasing with their indices we want to use
less and less time and computational cost to choose these components. To achieve
this we choose them from even smaller search sets, which are defined as follows. Let
w1 ≤ w2 ≤ · · · be a non-decreasing sequence of nonnegative integers. This sequence
of wj ’s is determined in accordance with the weight sequence γ . Loosely speaking,
the smaller γ j , the bigger wj is chosen. For w ∈ N0 with w < m we define Gp,m−w

and Gp,m−w( f ) analogously to Gp,m and Gp,m( f ), respectively. Further we set

Gp,m−w( f ) :=
{
Gp,m−w( f ) ifw < m,

{1 ∈ Fp[x]} ifw ≥ m

for anyw ∈ N0. Forw < m these sets have cardinality pm−w − 1 in the case of an irre-
ducible modulus f and pm−w−1(p − 1) for the special case f : Fp → Fp, x �→ xm .
We will consider these two cases in what follows. Finally, for d ∈ [s], we define
G d
p,m−w( f ) := Gp,m−w1( f ) × · · · × Gp,m−wd ( f ). The idea is to choose the i th com-

ponent of g of the form xwi gi , where gi ∈ Gp,m−wi ( f ), i.e., the search set for the i th
component is reduced by a factor p−min{wi ,m} in comparison to the standard CBC
construction. We will show that under certain conditions on the weights γ and the
parameters wi a polynomial lattice point set constructed according to our reduced
CBC construction has a low weighted star discrepancy of order N−1+δ for all δ > 0.
The standard CBC construction (cf. [19]) can be done in O(sN 2) operations. To
speed up the construction, in a first step, making use of ideas from Nuyens and
Cools [16, 17] on fast Fourier transformation, the construction cost can be reduced
toO(sN log N ), as for example done in [3]. Combining this with our reduced search
sets we obtain a computational cost that is independent of the dimension eventually.
Reduced CBC constructions have been introduced first by Dick et al. in [2] for lattice
and polynomial lattice point sets with a small worst case integration error in Korobov
andWalsh spaces, respectively, and have also been investigated in [7] for lattice point
sets with small weighted star discrepancy.

An interesting aspect of the discrepancy of high dimensional point sets is the
so-called tractability of discrepancy (see e.g. [13–15]). For N , s ∈ N let

disc∞(N , s) := inf
P⊆[0,1)s
#P=N

D∗
N ,γ (P)
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denote the N th minimal star discrepancy. To introduce the concept of tractabil-
ity of discrepancy we define the information complexity (also called the inverse of
the weighted star discrepancy) as N ∗(s, ε) := min{N ∈ N | disc∞(N , s) ≤ ε}. Thus
N ∗(s, ε) is the minimal number of points required to achieve a weighted star discrep-
ancy of at most ε. To keep the construction cost of our generating vector low, it is, of
course, beneficial to have a small information complexity and thus to stand a chance
to have a polynomial lattice point set of small size. We say that we achieve strong
polynomial tractability if there exist constants C, τ > 0 such that N ∗(s, ε) ≤ Cε−τ

for all s ∈ N and all ε ∈ (0, 1). Roughly speaking, a problem is considered tractable
if its information complexity’s dependence on s and ε−1 is not exponential. Taking
weights into account in the definition of discrepancy can sometimes overcome the
so-called curse of dimensionality, i.e., an exponential dependence of N ∗(s, ε) on s.
We will show that our reduced fast CBC algorithm finds a generating vector g of
a polynomial lattice point set that achieves strong polynomial tractability provided
that

∑∞
j=1 γ j pw j < ∞ with a construction cost of

O

(

N log N + min{s, t}N + N
min{s,t}∑

d=1

(m − wd)p
−wd

)

operations, where t = max{ j ∈ N | wj < m}.

Before stating our main results we would like to discuss a motivating example.
Consider first the standard CBC construction as treated in [1, 3], where wj = 0 for
all j ≥ 0. In this case, a sufficient condition for strong polynomial tractability is∑∞

j=1 γ j < ∞, which for instance is satisfied for the special choices γ j = j−2 and
γ j = j−1000. However, in the second example the weights decay much faster than in
the first. We can make use of this fact by introducing the sequence w = (wj ) j≥0 such
that the condition

∑∞
j=1 γ j pw j < ∞ holds, while still achieving strong polynomial

tractability (see Corollary2). This way, we can reduce the size of the search sets for
the components of the generating vector if theweightsγ j decayvery fast. Consider for
example the weight sequence γ j = j−k for some k > 1. For wj = (k − α) logp j�
with arbitrary 1 < α < k we find

∞∑

j=1

γ j p
w j ≤

∞∑

j=1

j−k j k−α =
∞∑

j=1

j−α = ζ(α) < ∞,

where ζ denotes the Riemann Zeta function. Observe that for large k, i.e., fast decay-
ing weights, we may choose smaller search sets and thereby speed up the CBC
algorithm.
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2 A Reduced CBC Construction

In this section we present a CBC construction for the vector (xw1g1, . . . , xws gs) and
an upper bound for the weighted star discrepancy of the corresponding polynomial
lattice point set.

First note that if g ∈ Gs
p,m , then it is known (see [3]) that

D∗
N ,γ (g, f ) ≤

∑

u⊆[s]
u �=∅

γu

(

1 −
(

1 − 1

N

)|u|)

+ Rs
γ (g, f ), (3)

where in the case of product weights we have

Rs
γ (g, f ) =

∑

h∈Gs
p,m\{0}

h·g≡0 mod f

s∏

i=1

rp(hi , γi ). (4)

Here, for elements h = (h1, . . . , hs) and g = (g1, . . . , gs) in Gs
p,m we define the

scalar product by h · g := h1g1 + · · · + hsgs . The numbers rp(h, γ ) for h ∈ Gp,m

and γ ∈ R are defined as

rp(h, γ ) =
{
1 + γ if h = 0,

γ rp(h) otherwise,

where for h = h0 + h1x + · · · + haxa with ha �= 0 we set rp(h) = 1

pa+1 sin2
(

π
p ha

) .

Thus, in order to analyze the weighted star discrepancy of a polynomial lattice point
set it suffices to investigate the quantity Rs

γ (g, f ). This is due to the result of Joe [6],
who proved that for any summable weight sequence (γ j ) j≥1 we have

∑

u⊆[s]
u �=∅

γu

(

1 −
(

1 − 1

N

)|u|)

≤ max(1, Γ )e
∑∞

i=1 γi

N
with Γ :=

∞∑

i=1

γi

1 + γi
.

Algorithm 1
Let p ∈ P,m ∈ N, f ∈ Fp[x] and let (wj ) j≥1 be a non-decreasing sequence of nonnegative integers
and consider product weights (γ j ) j≥1. Construct (g1, . . . , gs) ∈ G s

p,m−w( f ) as follows:

1. Set g1 = 1.
2. For d ∈ [s − 1] assume that (g1, . . . , gd ) ∈ G d

p,m−w( f ) is already found. Choose gd+1 ∈
Gp,m−wd+1 ( f ) such that Rd+1

γ ((xw1g1, . . . , xwd gd , xwd+1gd+1), f ) is minimized as a function
of gd+1.

3. Increase d by 1 and repeat the second step until (g1, . . . , gs) is found.
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Remark 1 Of course we have G s
p,m−w( f ) ⊆ Gs

p,m , and thus in Algorithm1 it indeed
suffices to consider Rd+1

γ rather than the weighted star discrepancy.

In the algorithmabove, the search set is reduced for each coordinate of (g1, . . . , gs)
according to its importance, since with increasingwj the search set becomes smaller,
as the weight γ j and thus the corresponding component’s influence on the quality of
the generating vector decreases. For this reason we call Algorithm1 a reduced CBC
algorithm. We will now study Algorithm1 for different choices of f .

2.1 Polynomial Lattice Point Sets for f (x) = xm

We will now study the interesting case where f : Fp → Fp, x �→ xm . Throughout
the rest of this section we write xm instead of f to emphasize our special choice of
f . Note that for g ∈ Fp((x−1)) the Laurent series g/ f can be easily computed in this
case by shifting the coefficients of g m times to the left. This is why the choice xm for
the modulus is the most frequently used in practise. Furthermore, the mathematical
analysis of the reduced CBC algorithm is slightly less technical in this case, since the
proof of the following discepancy bound requires to compute a sum over all divisors
of the modulus f . This is much easier for the special case f (x) = xm than for a
general modulus f . It is the aim of this section to prove the following theorem:

Theorem 1 Let γ = (γ j ) j≥1 be positive real numbers and w be nonnegative real
numbers with 0 = w1 ≤ w2 ≤ · · · . Let further (g1, . . . , gs) ∈ G s

p,m−w(xm) be con-
structed using Algorithm1. Then we have for every d ∈ [s]

Rd
γ ((xw1g1, . . . , x

wd gd), x
m) ≤ 1

pm

d∏

i=1

(

1 + γi + γi2p
min{wi ,m}m

p2 − 1

3p

)

.

As a direct consequence we obtain the following discrepancy estimate.

Corollary 1 Let N = pm and γ , w and (g1, . . . , gs) be as in Theorem1. Then
the polynomial lattice point set P ((xw1g1, . . . , xws gs), xm) has a weighted star
discrepancy

D∗
N ,γ

(
(xw1g1, . . . , x

ws gs), x
m
)

≤
∑

u⊆[s]
u �=∅

γu

(

1 −
(

1 − 1

N

)|u|)

+ 1

N

s∏

i=1

(

1 + γi + γi2p
min {wi ,m}m

p2 − 1

3p

)

. (5)

Knowing the above discrepancy bound, we are now ready to ask about the size
of the polynomial lattice point set required to achieve a weighted star discrepancy
not exceeding some ε threshold. In particular, we would like to know how this size
depends on the dimension s and on ε.
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Corollary 2 Let N = pm, γ , and w be as in Theorem1 and consider the problem of
constructing generating vectors for polynomial lattice point sets with small weighted
star discrepancy. Then

∑∞
j=1 γ j pw j < ∞ is a sufficient condition for strong polyno-

mial tractability. This condition further implies D∗
N ,γ ((xw1g1, . . . , xws gs), xm) =

O(N−1+δ), with the implied constant independent of s, for any δ > 0, where
(g1, . . . , gs) ∈ G s

p,m−w(xm) is constructed using Algorithm1.

Proof Construct a generating vector (g1, . . . , gs) ∈ G s
p,m−w(xm) by applying Algo-

rithm1 and consider its weighted star discrepancy, which is bounded by (5). Fol-
lowing closely the lines of the argumentation in [7, Sect. 5] and noticing that
2m p2−1

3p = O(log N ) we obtain the result. More precisely, provided that the γ j pw j ’s
are summable, we have a means to construct polynomial lattice point sets P(g, f )
with D∗

N ,γ (g, f ) ≤ ε, whose sizes grow polynomially in ε−1 and are independent
of the dimension. As a result the problem is strongly polynomially tractable. The
discrepancy result D∗

N ,γ ((xw1g1, . . . , xws gs), xm) = O(N−1+δ) also follows directly
from [7]. �

In order to show Theorem1 we need several auxiliary results.

Lemma 1 Let a ∈ Fp[x] be monic. Then we have

∑

h∈Gp,m\{0}
a|h

rp(h) = (m − deg(a))
p2 − 1

3p
p− deg(a).

In particular, for a = 1 this formula yields
∑

h∈Gp,m\{0} rp(h) = m p2−1
3p .

Proof This fact follows from [1, p. 1055] (by setting γd+1 = 1). The special case
a = 1 also follows from [3, Lemma 2.2] by setting s = 1. �

For our purposes, it is convenient to write Rs
γ (g, f ) from (4) in an alternative

way. To this end, we introduce some notation. For a Laurent series L ∈ Fp((x−1))

wedenote by c−1(L) its coefficient of x−1, i.e., its residuum.Further,we set X p(L) :=
χp(c−1(L)), whereχp is a non-trivial additive character ofFp . One could for instance
choose χp(n) = e(2π i/p)n for n ∈ Fp (see, e.g., [10]). It is clear that X p(L) = 1 if L
is a polynomial and that X p(L1 + L2) = X p(L1)X p(L2) for L1, L2 ∈ Fp((x−1)).
From [12, p. 78] we know that for some q ∈ Fp[x] we have

∑

v∈Gp,m

X p

(
v

f
q

)

=
{
pm if f | q,

0 otherwise.
(6)

With this, it is an easy task to show the following formula.
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Lemma 2 We have

Rs
γ (g, f ) = −

s∏

i=1

(1 + γi ) + 1

pm
∑

v∈Gp,m

s∏

i=1

⎛

⎝1 + γi + γi
∑

h∈Gp,m\{0}
rp(h)X p

(
v

f
hgi

)
⎞

⎠ .

Now we study a sum which will appear later in the proof of Theorem1 and show
an upper bound for it.

Lemma 3 Let w ∈ N0 and v ∈ Gp,m. Let

Ypm ,w(v, xm) :=
∑

g∈G p,m−w(xm )

∑

h∈Gp,m\{0}
rp(h)X p

( v

xm
hxwg

)
,

where xw denotes the polynomial f (x) = xw. Then we have

1

#Gp,m−w(xm)

∑

v∈Gp,m

|Ypm ,w(v, xm)| ≤ 2pmin{w,m}m
p2 − 1

3p
.

Proof Let us first assume thatw ≥ m. Thenwe haveGp,m−w(xm) = {1} and therefore

Ypm ,w(v, xm) =
∑

h∈Gp,m\{0}
rp(h)X p(vhx

w−m) =
∑

h∈Gp,m\{0}
rp(h) = m

p2 − 1

3p

with Lemma1. Hence, in the case w ≥ m we obtain

1

#Gp,m−w(xm)

∑

v∈Gp,m

|Ypm ,w(v, xm)| = pmm
p2 − 1

3p
≤ 2pmin{w,m}m

p2 − 1

3p
.

For the rest of the proof let w < m. We abbreviate #Gp,m−w(xm) by #G and write

1

#G

∑

v∈Gp,m

|Ypm ,w(v, xm)| = 1

#G

∑

v∈Gp,m

xm−w |v

|Ypm ,w(v, xm)| + 1

#G

∑

v∈Gp,m

xm−w�v

|Ypm ,w(v, xm)|.

In what follows, we refer to the latter sums as

S1 := 1

#G

∑

v∈Gp,m

xm−w |v

|Ypm ,w(v, xm)| and S2 := 1

#G

∑

v∈Gp,m

xm−w�v

|Ypm ,w(v, xm)|.

Wemay uniquely write any v ∈ Gp,m \ {0} in the form v = qxm−w + �,where q, � ∈
Fp[x] with deg(q) < w and deg(�) < m − w. Using the properties of X p it is clear
that Ypm ,w(v, xm) = Ypm ,w(�, xm) and hence
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S1 = 1

#G

∑

v∈Gp,m

xm−w |v

|Ypm ,w(0, xm)| =
∑

v∈Gp,m

xm−w |v

1

#G

∑

g∈G p,m−w(xm )

∑

h∈Gp,m\{0}
rp(h)

=
∑

v∈Gp,m

xm−w |v

m
p2 − 1

3p
= pmin{w,m}m

p2 − 1

3p
.

We move on to S2. Let e(�) := max{k ∈ {0, 1, . . . ,m − w − 1} : xk | �}. With
this definition we may display S2 as

S2 = pw

#G

m−w−1∑

k=0

∑

�∈Gp,m−w\{0}
e(�)=k

|Ypm ,w(�, xm)|. (7)

We compute Ypm ,w(�, xm) for � ∈ Gp,m−w \ {0}with e(�) = k. Letμp be theMöbius
function on the set of monic polynomials over Fp, i.e., μp : Fp[x] → {−1, 0, 1} and

μp(h) =
{

(−1)ν if h is squarefree and has ν irreducible factors,

0 else.

We call h squarefree if there is no irreducible polynomial q ∈ Fp[x] with deg(q) ≥
1 such that q2 | h. The fact that μp(1) = 1, μp(x) = −1 and μp(xi ) = 0 for i ∈
N, i ≥ 2, yields the equivalence of

∑
t |gcd(xm−w,g) μp(t) = 1 and gcd(xm−w, g) = 1.

Therefore we can write

Ypm ,w(�, xm) =
∑

h∈Gp,m\{0}
rp(h)

∑

g∈Gp,m−w

X p

(
�

xm−w
hg

) ∑

t |gcd(xm−w,g)

μp(t)

=
∑

h∈Gp,m\{0}
rp(h)

∑

t |xm−w

μp(t)
∑

g∈Gp,m−w
t |g

X p

(
�

xm−w
hg

)

=
∑

h∈Gp,m\{0}
rp(h)

∑

t |xm−w

μp(t)
∑

a∈Gp,m−w−deg(t)

X p

(
�

xm−w
hat

)

=
∑

h∈Gp,m\{0}
rp(h)

∑

t |xm−w

μp

(
xm−w

t

) ∑

a∈Gp,deg(t)

X p

(a

t
h�

)

=
∑

h∈Gp,m\{0}
rp(h)

∑

t |xm−w

t |h�

μp

(
xm−w

t

)

pdeg(t)

=
∑

t |xm−w

μp

(
xm−w

t

)

pdeg(t)
∑

h∈Gp,m\{0}
t |h�

rp(h).
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The equivalence of the conditions t | h� and t
gcd(t,�) | h yields

Ypm ,w(�, xm) =
∑

t |xm−w

μp

(
xm−w

t

)

pdeg(t)
∑

h∈Gp,m\{0}
t

gcd(t,�) |h

rp(h).

We investigate the inner sum and use Lemma1 with a = t
gcd(t,�) to find

∑

h∈Gp,m\{0}
t

gcd(t,�) |h

rp(h) =
(

m − deg

(
t

gcd(t, �)

))
p2 − 1

3p
p

− deg
(

t
gcd(t,�)

)

.

Now we have

Ypm ,w(�, xm) = p2 − 1

3p

∑

t |xm−w

μp

(
xm−w

t

)(

m − deg

(
t

gcd(t, �)

))

pdeg(gcd(t,�))

= p2 − 1

3p
m

∑

t |xm−w

μp

(
xm−w

t

)

pdeg(gcd(t,�))

− p2 − 1

3p

∑

t |xm−w

μp

(
xm−w

t

)

deg

(
t

gcd(t, �)

)

pdeg(gcd(t,�)).

From the fact that e(�) = k ≤ m − w − 1weobtain gcd(xm−w, �) = gcd(xm−w−1, �)

= xk . This observation leads to

∑

t |xm−w

μp

(
xm−w

t

)

pdeg(gcd(t,�)) = pdeg(gcd(x
m−w,�)) − pdeg(gcd(x

m−w−1,�)) = 0

and

∑

t |xm−w

μp

(
xm−w

t

)

deg

(
t

gcd(t, �)

)

pdeg(gcd(t,�))

= deg

(
xm−w

gcd(xm−w, �)

)

pdeg(gcd(x
m−w,�)) − deg

(
xm−w−1

gcd(xm−w−1, �)

)

pdeg(gcd(x
m−w−1,�))

=(m − w − k)pk − (m − w − k − 1)pk = pk .

Altogether we have Ypm ,w(�, xm) = − p2−1
3p pk . Inserting this result into (7) yields
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S2 = pw

#G

p2 − 1

3p

m−w−1∑

k=0

pk
∑

�∈Gp,m−w\{0}
e(�)=k

1.

Since

#{� ∈ Gp,m−w \ {0} : e(�) = k}
=#{� ∈ Gp,m−w \ {0} : xk | �} − #{� ∈ Gp,m−w \ {0} : xk+1 | �}
=pm−w−k − 1 − (pm−w−k−1 − 1) = pm−w−k−1(p − 1),

we have

S2 = pw

pm−w−1(p − 1)

p2 − 1

3p

m−w−1∑

k=0

pk pm−w−k−1(p − 1)

=pw
p2 − 1

3p
(m − w) ≤ pmin{w,m}m

p2 − 1

3p
.

Summarizing, we have shown

1

#G

∑

v∈Gp,m

|Ypm ,w(v, xm)| = S1 + S2 ≤ 2pmin{w,m}m
p2 − 1

3p
,

which completes the proof. �

Now we are ready to prove Theorem1 using induction on d.

Proof We show the result for d = 1. From Lemma2 we have

R1
γ ((xw1 ), xm) = − (1 + γ1) + 1

pm
∑

v∈Gp,m

⎛

⎝1 + γ1 + γ1
∑

h∈Gp,m\{0}
rp(h)X p

( v

xm
hxw1

)
⎞

⎠

= γ1

pm
∑

v∈Gp,m

∑

h∈Gp,m\{0}
rp(h)X p

( v

xm
hxw1

)
.

If w1 ≥ m, then

R1
γ ((xw1), xm) = γ1

pm
∑

v∈Gp,m

∑

h∈Gp,m\{0}
rp(h) = γ1

pm
pmin{w1,m}m

p2 − 1

3p

≤ 1

pm

(

1 + γ1 + γ12p
min{w1,m}m

p2 − 1

3p

)

.

If w1 < m, then we can write
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R1
γ ((xw1), xm) = γ1

pm
∑

v∈Gp,m

∑

h∈Gp,m\{0}
rp(h)X p

( v

xm
hxw1

)

= γ1

pm
∑

h∈Gp,m\{0}
xm−w1 |h

rp(h)
∑

v∈Gp,m

X p

( v

xm
hxw1

)

+ γ1

pm
∑

h∈Gp,m\{0}
xm−w1 �h

rp(h)
∑

v∈Gp,m

X p

( v

xm
hxw1

)
= γ1

∑

h∈Gp,m\{0}
xm−w1 |h

rp(h),

where we used (6) in the latter step. We use Lemma1 with a = xm−w1 to compute

∑

h∈Gp,m\{0}
xm−w1 |h

rp(h) = 1

pm
pw1w1

p2 − 1

3p
≤ 1

pm
pmin{w1,m}m

p2 − 1

3p
,

which leads to the desired result also in this case.
Now let d ∈ [s − 1]. Assume that we have some (g1, . . . , gd) ∈ G d

p,m−w(xm) such
that

Rd
γ ((xw1g1, . . . , x

wd gd), x
m) ≤ 1

pm

d∏

i=1

(

1 + γi + γi2p
min{wi ,m}m

p2 − 1

3p

)

.

Let g∗ ∈ Gp,m−wd+1(x
m) be such that Rd+1

γ ((xw1g1, . . . , xwd gd , xwd+1gd+1), xm) is
minimized as a function of gd+1 for gd+1 = g∗. Then we have

Rd+1
γ ((xw1g1, . . . , x

wd gd , x
wd+1g∗), xm) = −(1 + γd+1)

d∏

i=1

(1 + γi )

+ 1

pm
∑

v∈Gp,m

d∏

i=1

⎛

⎝1 + γi + γi
∑

h∈Gp,m\{0}
rp(h)X p

( v

xm
hxwi gi

)
⎞

⎠

×
⎛

⎝1 + γd+1 + γd+1

∑

h∈Gp,m\{0}
rp(h)X p

( v

xm
hxwd+1g∗

)
⎞

⎠

=(1 + γd+1)R
d
γ ((xw1g1, . . . , x

wd gd), x
m) + L(g∗), (8)

where

L(g∗) =γd+1

pm
∑

v∈Gp,m

∑

h∈Gp,m\{0}
rp(h)X p

( v

xm
hxwd+1g∗

)

×
d∏

i=1

⎛

⎝1 + γi + γi
∑

h∈Gp,m\{0}
rp(h)X p

( v

xm
hxwi gi

)
⎞

⎠ .
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A minimizer g∗ of Rd+1
γ ((xw1g1, . . . , xwd gd , xwd+1gd+1), xm) is also a minimizer

of L(gd+1). Combining (4) and (8) we obtain that Rd
γ (g, f ) ∈ R for all d ∈ [s].

With the ideas in the proof of [3, Theorem 2.7], we see that L(g) ∈ R
+ for all g ∈

Gp,m−wd+1(x
m). Thus we may bound L(g∗) by the mean over all g ∈ Gp,m−wd+1(x

m):

L(g∗) ≤ 1

#Gp,m−wd+1(xm)

∑

gd+1∈G p,m−wd+1 (x
m )

L(gd+1)

≤γd+1

pm
∑

v∈Gp,m

1

#Gp,m−wd+1(xm)

×
∣
∣
∣
∣
∣
∣

∑

gd+1∈G p,m−wd+1 (x
m )

∑

h∈Gp,m\{0}
rp(h)X p

( v

xm
hxwd+1gd+1

)
∣
∣
∣
∣
∣
∣

×
d∏

i=1

⎛

⎝1 + γi + γi
∑

h∈Gp,m\{0}
rp(h)

∣
∣
∣X p

( v

xm
hxwi gi

)∣
∣
∣

⎞

⎠

≤γd+1

pm

d∏

i=1

(

1 + γi + γim
p2 − 1

3p

) ∑

v∈Gp,m

|Ypm ,wd+1(v, x
m)|

#Gp,m−wd+1(xm)
,

where we used the estimate
∣
∣X p

(
v
xm hx

wi gi
)∣∣ ≤ 1 in the last step. With the induction

hypothesis and Lemma3 this leads to

Rd+1
γ ((xw1g1, . . . , x

wd gd , x
wd+1g∗), xm)

≤(1 + γd+1)
1

pm

d∏

i=1

(

1 + γi + γi2p
min{wi ,m}m

p2 − 1

3p

)

+ γd+1

pm

d∏

i=1

(

1 + γi + γim
p2 − 1

3p

)

2pmin{wd+1,m}m
p2 − 1

3p

≤ 1

pm

d∏

i=1

(

1 + γi + γi2p
min{wi ,m}m

p2 − 1

3p

)

×
(

1 + γd+1 + γd+12p
min{wd+1,m}m

p2 − 1

3p

)

= 1

pm

d+1∏

i=1

(

1 + γi + γi2p
min{wi ,m}m

p2 − 1

3p

)

.

�
The Reduced Fast CBC Construction

So far we have seen how to construct a generating vector g of the point setP(g, xm).
In fact Algorithm1 can be made much faster using results of [2, 16, 17]. In this
section we are investigating and improving Algorithm1 and additionally analyzing
the computational cost of the improved algorithm.
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Walsh functions are a suitable tool for analyzing the computational cost of CBC
algorithms for constructing polynomial lattice point sets. Let ω = e2π i/p, x ∈ [0, 1)
and h a nonnegative integer with base p representation x = x1/p + x2/p2 + . . . and
h = h0 + h1 p + . . . + hr pr , respectively. Then we define

walh : [0, 1) → C,walh(x) := ωh0x1+...+hr xr+1 .

The Walsh function system {walh | h = 0, 1, . . .} is a complete orthonormal basis
in L2([0, 1)) which has been used in the analysis of the discrepancy of digital nets
(an important class of low-discrepancy point sets which contains polynomial lattice
point sets) several times before, see for example [3, 5, 8]. For further information
on Walsh functions see [4, Appendix A].

Let d ≥ 1, N = pm . For P(g, f ) = {x0, . . . , x pm−1} with xn = (x (1)
n , . . . , x (s)

n )

we have the formula (see [3, Sect. 4])

1

pm

pm−1∑

n=0

s∏

i=1

walhi (x
(i)
n ) =

{
1 if g · h ≡ 0 (mod f ),

0 otherwise,
(9)

where hi are nonnegative integers with base p representation hi = h(i)
0 + h(i)

1 p +
. . . + h(i)

r pr .We identify these nonnegative integers hi with the polynomials hi (x) =
h(i)
0 + h(i)

1 x + . . . + h(i)
r xr , which are elements of Gp,m . The vectors h in (9) are

then from G s
p,m such that h = (h1(x), . . . , hs(x)). Equation (9) allows us to rewrite

Rd
γ (g, xm) in the following way:

Rd
γ (g, xm) = −

d∏

i=1

(1 + γi ) + 1

pm

pm−1∑

n=0

d∏

i=1

pm−1∑

h=0

rp(h, γi )walh

(

φm

(
nxwi gi
xm

))

.

Note that rp(h, γ ) is defined as in (4) and we identify the integer in base p represen-
tation h = h0 + h1 p + . . . + hr pr with the polynomial h(x) = h0 + h1x + . . . +
hr xr . If we set ψ(

nxwi gi
xm ) := ∑pm−1

h=1 rp(h)walh(φm(
nxwi gi
xm )) we get that

Rd
γ (g, xm) = −

d∏

i=1

(1 + γi ) + 1

pm

pm−1∑

n=0

d∏

i=1

(

1 + γi + γiψ

(
nxwi gi
xm

))

= −
d∏

i=1

(1 + γi ) + 1

pm

pm−1∑

n=0

ηd(n), (10)

where ηd(n) = ∏d
i=1

(
1 + γi + γiψ(

nxwi gi
xm )

)
.

In [3, Sect. 4] it is proved that we can compute the at most N different values of
ψ( r

xm ) for r ∈ Gp,m in O(N log N ) operations.
Let us study one step of the reduced CBC algorithm. Assuming we already

have found (g1, . . . , gd) ∈ G d
p,m−w(xm)wehave tominimize Rd+1

γ ((xw1g1, . . . , xwd+1
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gd+1), xm) as a function of gd+1 ∈ Gp,m−wd+1(x
m). If wd+1 ≥ m then gd+1 = 1 and

we are done. Let now wd+1 < m. From (10) we have that

Rd+1
γ ((xw1g1, . . . , x

wd+1gd+1), x
m)

= −
d+1∏

i=1

(1 + γi ) + 1

pm

pm−1∑

n=0

(

1 + γd+1 + γd+1ψ

(
nxwd+1gd+1

xm

) )

ηd(n).

In order to minimize Rd+1
γ ((xw1g1, . . . , xwd+1gd+1), xm) it is enough to minimize

Td(g) := ∑pm−1
n=0 ψ(

nxwd+1 g
xm )ηd(n). As in [2, Sect. 4] we can represent this quantity

using some specific (pm−wd+1−1(p − 1) × N )-matrix A and exploiting its additional
structure. Let therefore

A =
(

ψ

(
nxwd+1g

xm

))

g∈Gp,m−wd+1 (xm ),

n∈{0,...,N−1}
and ηd = (ηd(0), . . . , ηd(N − 1))�.

First of all observe that we get (Td(g))g∈Gp,m−wd+1 (x
m ) = Aηd . Secondly the matrix A

is a block matrix and can be written in the following form

A = (
Ω(m−wd+1) . . . Ω(m−wd+1)

)
, where Ω(l) =

(

ψ

(
nxwd+1g

xm

))

g∈Gp,m−wd+1 (xm ),

n∈{0,...pl−1}
.

If x is any vector of size pm then we compute

Ax = Ω(m−wd+1)x1 + . . . + Ω(m−wd+1)x(pwd+1 ) = Ω(m−wd+1)(x1 + . . . + x(pwd+1 )),

where x1 is the vector consisting of the first pm−wd+1 components of x, x2 is the
vector consisting of the next pm−wd+1 components of x and so on. Now we apply
the machinery of [16, 17] and get that multiplication with Ω(m−wd+1) can be done in
O((m − wd+1)pm−wd+1) operations. Summarizing we have:

Algorithm 2
1. Compute ψ( r

xm ) for r ∈ Gp,m .

2. Set η1(n) = ψ(
nxw1 g1
xm ) for n = 0, . . . , pm − 1.

3. Set g1 = 1, d = 2 and t = max{ j ∈ [s] | wj < m}. While d ≤ min{s, t},
a. Partition ηd−1 into pwd vectors η

(1)
d−1, . . . , η

(pwd )
d−1 of length pm−wd and let η′ = ∑pwd

i=1 η
(i)
d−1.

b. Let (Td−1(g))g∈Gp,m−wd (xm ) = Ω(m−wd )η′.
c. Let gd = argmingTd−1(g).

d. Let ηd (n) = (1 + γd−1 + γd−1ψ(
nxwd gd

xm ))ηd−1(n)

e. Increase d by 1.

4. If s ≥ t then set gt = gt+1 = . . . = gs = 1.
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Similar to [2] we obtain from the results in this section the following theorem:

Theorem 2 Let N = pm then the cost of Algorithm2 is

O

(

N log N + min{s, t}N + N
min{s,t}∑

d=1

(m − wd)p
−wd

)

.

2.2 Polynomial Lattice Point Sets for Irreducible f

For this section let f be an irreducible polynomial over Fp with deg( f ) = m. The
proof of the following result is similar to the proof of [3, Theorem 2.7]. If f is
irreducible, then the congruence h · g ≡ −hd+1xwd+1gd+1 (mod f ), which comes
from the definition of Rγ (g, f ), has at most one solution gd+1 ∈ Gp,m−wd+1( f ) for
fixed g ∈ G d

p,m−w( f ), h ∈ Gd
p,m and hd+1 ∈ Gp,m \ {0}. This fact simplifies the proof

compared to the xm case, as there is no need to deal with the Möbius function again.

Theorem 3 Let γ andw as in Theorem1and let f ∈ Fp[x] be an irreducible polyno-
mial with deg( f ) = m. Let further (g1, . . . , gs) ∈ G s

p,m−w( f ) be constructed accord-
ing to Algorithm1. Then we have for every d ∈ [s]

Rd
γ ((xw1g1, . . . , x

wd gd), f ) ≤ 1

pm

d∏

i=1

(

1 + γi + γi p
min{wi ,m}m

p + 1

3

)

.

As a consequence of (3) and Theorem3 we obtain analogous results to Corollaries1
and 2 for an irreducible modulus f .
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Randomized Sobol’ Sensitivity Indices

David Mandel and Giray Ökten

Abstract Classical Sobol’ sensitivity indices assume the distribution of a model’s
parameters is known completely for a given model, but this is usually difficult to
measure in practical problems. What is measurable is the distribution of parameters
for a particular data set, and the Sobol’ indices can significantly vary as different data
sets are used in the estimation of the parameter distributions. To address this issue,
we introduce a hierarchical probabilistic framework where Sobol’ sensitivity indices
are random variables. An ANOVA decomposition in this hierarchical framework is
given. Someanalytical examples and an application to interest ratemodeling illustrate
the use of the randomized Sobol’ indices framework.

Keywords Global sensitivity analysis · Quantitative finance · Monte Carlo

1 Introduction

In the classical setup [10, 11], Sobol’ indices measure the sensitivity of a mathe-
matical model to its parameters assuming the parameters have a fixed probability
distribution. These distributions should accurately reflect the likelihood of the model
parameters realizing values in their domain and must be provided in order to imple-
ment global sensitivity analysis (GSA).According to Saltelli et al. [9], the distribution
for each parameter is assumed to have come from either an expert opinion, who has
professional knowledge of the distributions of parameters, or from a calibration,
from which distributions are approximated using statistical theory. In particular to
the classical setup, the tacit assumption is that the parameter distributions are com-
pletely known for a given model, and thus could be viewed as a component of the
model.
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There is a practical shortcoming with this approach, however, which is now illus-
trated by an example from mathematical finance. Consider pricing a US Treasury
bill with a maturity of one year (a one-year T-bill) assuming a stochastic short rate
model (see Bolder [1] for an introduction to interest rate models). There are a number
of models in the literature for the task, but two of the most studied and simplest are
the Vasicek [12] and CIR [3] models. Both describe the evolution of the short rate
by a stochastic differential equation, which are given in Eqs. (1) and (2). They are
parametrized by three variables: a > 0, the mean reversion speed; b > 0, the long-
term mean; and σ > 0, the volatility. The function W (t) is the standard Brownian
motion. In practice, the parameters are estimated by an optimization method that
finds the parameters for which the model has the best fit to some historical data. This
procedure is known as calibration. The closed-form bond price for either model may
then be computed using the parameter estimates (see Brigo and Mercurio [2] for a
derivation of the closed-form bond prices under either model).

Vasicek: dr(t) = a(b − r(t))dt + σdW (t) , (1)

CIR: dr(t) = a(b − r(t))dt + σ
√
r(t)dW (t) . (2)

The calibration procedure should be considered as part of themodel—if the length
of data or estimation technique is changed, the model changes as well. Suppose a
financial engineer decides to use one year of interest rate data (specifically, yields
on one-year US T-bills) in a calibration. For concreteness, assume that it is currently
Dec 31, 1974, and a one-year T-bill is to be priced with maturity Dec 31, 1975.
Using yields of one-year T-bills from 1974, parameter estimates and standard errors
are obtained for each model: the results are displayed in Table1. (Parameter values
assume interest rates are expressed in percent. For example, b = 7.61 means the
long-term short rate parameter is 7.61%.) The parameter estimation is done using
the maximum likelihood estimation (MLE) technique following Duan [4], which
implies an asymptotically-normal distribution for the parameter estimators. The point
estimate and standard error are exactly themean and standard deviation, respectively,
of the corresponding normal distribution. Together, the mean and standard deviation
constitute the hyperparameters; these are the parameters of the distribution of the
model parameters.

Consider repeating this procedure using 1987 data, and again using 2006 data.
The parameter estimates and standard errors for this data are also listed in Table1.
Different point estimates are expected as the US economy is sampled during distinct
time periods; however, together with the changing standard errors, this implies differ-
ent sampling distributions for each parameter estimator. In other words, the hyper-
parameters describing the parameter distributions are not fixed throughout model
applications, and hence a particular parameter distribution is not a fixed component
of the model.

How can we perform a global sensitivity analysis (GSA) of the Vasicek and CIR
interest rate models? Imagine this is year 1975, and we want to use data from 1974 to
price bonds. The first step is calibration as discussed earlier: estimate the parameters
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Table 1 Parameter estimates and standard errors for three calibrations

Year Parameter Vasicek CIR

1974 a 4.05 (2.62) 3.36 (0.96)

b 7.61 (0.46) 2.21 (0.54)

σ 1.06 (4.53) 1.07 (0.47)

1987 a 4.73 (2.54) 2.72 (0.92)

b 7.02 (0.33) 1.49 (0.60)

σ 1.05 (3.65) 1.08 (0.37)

2006 a 6.26 (2.14) 4.32 (1.07)

b 2.72 (0.08) 0.90 (0.12)

σ 1.02 (0.94) 1.02 (0.21)

Table 2 Sensitivity indices for three calibrations

Year Sensitivity Vasicek CIR

1974 Sa 0.57 0.25

Sb 0.43 0.76

Sσ 0.004 0.0

1987 Sa 0.38 0.23

Sb 0.63 0.78

Sσ 0.002 0.0

2006 Sa 0.005 0.007

Sb 0.99 0.99

Sσ 0.0002 0.0

a, b, σ of the model using an appropriate method and the data. Using the calibration
approach of Duan [4], which is based on maximum likelihood estimation, we obtain
the mean and standard errors for each parameter (see Table1). We also know that
the parameter estimators are asymptotically normal. Step 2 is to apply the GSA
to the model (function) F (a, b, σ ), where F is the closed-form bond formula for
the corresponding Vasicek or CIR model. We compute the upper Sobol’ sensitivity
indices using Monte Carlo simulation with 106 samples (we will discuss Sobol’
indices in detail in the next section; see Eq. (6)), assuming that the parameters are
independent, and they are normally distributedwith themean and variances that were
obtained from the calibration step. Then we repeat this procedure using data from
1987 and 2006, and report the estimated upper Sobol’ indices of each parameter, for
each interest rate model, in Table2.

A close look at Table2 reveals that sensitivity indices vary significantly from year
to year. For example, if we consider the sensitivity results from 2006, we may decide
to freeze the mean reversion speed a in either model due to its negligible Sobol’
upper index, Sa ; however, a is the most influential parameter in the Vasicek model
using 1974 parameters, and is certainly non-negligible for CIR in 1974. Thus relying
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Fig. 1 Upper Sobol’ sensitivity indices for Vasicek and CIR models across years

on only one sensitivity analysis would lead to an error. As a side remark, we note
that it is not immediately intuitive why the volatility parameter σ appears to be non-
influential to either model. Some insight is provided by the fact that doubling the
variance of the volatility sampling distribution resulted in only 1% increase in the
total model variance on average, indicating the models mute the effect of volatility.

We extend the results presented in Table2, and compute the upper Sobol’ indices
by calibrating to one-year US T-bills from 1962 through 2015. Figure1 plots the
upper Sobol’ indices as a function of year. (Several calibrations were not included
due to potential losses of accuracy in parameter estimation, meaning the Hessian
used to approximate the Fisher information matrix was not, or nearly not, positive-
definite. See Remillard [8], “Sequential Quasi-Monte Carlo: Introduction for Non-
experts, DimensionReduction, Application to PartlyObservedDiffusion Processes”,
for more details.) A closer look at Fig. 1, and the behavior of the upper Sobol’
indices across different years, illustrates the conundrum of classical GSA: conclu-
sions regarding ranking or freezing parameters differ from year-to-year, sometimes
significantly. Thus, one cannot make sweeping inferences about the sensitivity of a
model in general; rather, one is limited to a particular application (data set) for which
one has fixed parameter distributions.

It is this restriction to a particular model application we aim to remove, so that the
modeler may feel confident in his/her conclusions regarding the sensitivity patterns
of a model in general. Our framework analyzes the Sobol’ indices not as constant
quantities, but as random variables that take on values for each particular model
application. The joint distribution of the upper Sobol’ indices will then be used to
arrive at more robust conclusions about sensitivity.

Section2 introduces the hierarchical framework and establishes an ANOVA
decomposition used in our analysis. Section3 provides some analytical examples,
which serve to emphasize the need to model the joint distribution of the randomized
Sobol’ indices (as opposed to marginal distributions). A Monte Carlo algorithm is
discussed in Sect. 4. Section5 applies the framework to the interest rates models pre-
sented earlier, and provides practical considerations for randomized Sobol’ analysis.
In Sect. 6 we summarize our results.
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2 Randomized Sobol’ Sensitivity Analysis

In the previous section, classical Sobol’ indices were shown to be limited to a partic-
ular model application (more specifically, to fixed parameter distributions), and are
insufficient for generalizing to themodel itself. The calibrationmethod,which is used
to obtain the parameter distributions, should be viewed as a component of the model.
In other words, for the sensitivity indices presented in Table2, the model is not, “the
Vasicek model” (or, the “CIR” model), but rather, “the Vasicek model using MLE on
one year of Treasury yields in 1974.” If the length, type, or actual data is changed,
or a different calibration technique is used, then the sensitivity results will change as
well. In our proposed framework—randomized Sobol’ sensitivity analysis—the aim
is to remove the dependence on the particular data.

2.1 Hierarchical Framework

To set up the framework of randomized Sobol’ sensitivity analysis, fix a probability
space (Ω,F , P) and define the random vector of model parameters X : Ω → R

d ,
where d ∈ N is the number of model parameters. In classical GSA, the joint distri-
bution of the model parameters �X is defined in terms of the probability measure P;
that is, �X(B) = P(X ∈ B) for all B ∈ B(Rd), whereB denotes the Borel sigma-
algebra. Given the evidence that Sobol’ indices change across model applications,
however, we seek an analysis that both accommodates this fact and allows one to draw
general conclusions about a model’s sensitivity pattern. With this in mind, introduce
the random vector of hyperparameters Y : Ω → R

m , where m ∈ N is the number
of hyperparameters for the model. For example, in the interest rate models (1) and
(2), there are three normally-distributed parameters, each of which have two hyper-
parameters: the mean and standard deviation of the normal distribution. Thus there
are d = 3 model parameters and m = 6 hyperparameters for these models. Define
the joint distribution of hyperparameters as�Y(A) = P(Y ∈ A) for all A ∈ B(Rm).
In the new framework, the distribution of the model parameters is specified only in
terms of the conditional probability P(X | Y).

As an example, let f = f (x1, . . . , xd) be a mathematical model and suppose,
based on the calibration technique, each model parameter is found to follow an
exponential distribution. In the classical sensitivity analysis, we would specify Xi ∼
exp(βi ) for fixed βi > 0, i = 1, . . . , d. Assuming the random variables {Xi }di=1 are
mutually independent, the probability of the event {X ∈ B} for any B ∈ B(Rd) is
computed using the P-measure as

P(X ∈ B) =
∫

B

(
d∏

i=1

1

βi
e−xi /βi

)

dx .

In the new framework, we instead specify
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Xi | βi = bi ∼ exp(bi ) , βi ∼ �βi , (3)

for some distribution �βi , where i = 1, . . . , d. The left-hand side of (3) means
Xi is exponentially distributed with mean parameter bi , given that βi = bi . In this
example, Y = (β1, . . . , βd) is the random vector of hyperparameters with a real-
ization y = (b1, . . . , bd), and m = d. In this new setup, independence of {Xi }di=1
is in terms of the conditional distribution �X|Y(· | y) for each y ∈ R

m , i.e., for any
B = B1 × . . . × Bd ⊂ R

d and y ∈ R
m , we have�X|Y(B | y) = ∏d

i=1 �Xi |Y(Bi | y).
Then, the probability of the event {X ∈ B} is computed using the conditional prob-
ability measure P(· | Y) as

P(X ∈ B | Y = y) =
∫

B

(
d∏

i=1

1

yi
e−xi /yi

)

dx .

Thus we have constructed a hierarchical relationship between model calibration
and model parameters. Once a calibration has been performed, Y = y has been
determined, and the joint probability of model parameters changes depending on the
realization of the hyperparameters y. If a new calibration is performed on a different
data set, a new realization of hyperparameters Y = y′ for y′ �= y will (likely) be
obtained, which determines the joint probability of model parameters for this new
application of the model.

2.2 Hierarchical ANOVA

To measure the variance contributed by each parameter, classical Sobol’ indices rely
on the ANOVA decomposition of a square integrable function f : [0, 1]d → R. To
accommodate randomized Sobol’ analysis, wewill show theANOVAdecomposition
may be applied to compositions of the form ( f ◦ X) : Ω → R, where X : Ω → R

d

is a random vector (of model parameters) and f is square integrable. This is carried
out in the state space (Rd ,B(Rd)) using the change of variables theorem and the
conditional distributions �X|Y. As described above, the hyperparameters Y will be
random variables, and will be used as an index for a particular model application in
which Y = y. Again, the randomness in the hyperparameters describes the varying
distributions of model parameters across applications, whereas the randomness in
the model parameters describes the uncertainty inherent in statistical estimation of
parameters. To be more specific, the realization of hyperparameters y will serve as an
index to a particular model application, and wewill prove an ANOVAdecomposition
for a particular model application f y(X).

LetD = {1, . . . , d}denote the index set for a function f : Rd → R and letu ⊆ D .
To be consistent with theGSA literature, wewill denote complements of such subsets
as −u = D \ u. We will write f (Xu, x−u) to mean the outcome of the function f
where Xu is random and X−u is fixed at the value x−u .
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Theorem 1 Fix a probability space (Ω,F , P) and let Y : Ω → R
m be a random

vector. For fixed y ∈ R
m, let f y : Rd → R be square-integrable, and X1, . . . , Xd

be mutually independent, real-valued random variables with finite variance, where
independence is conditional on Y, i.e., with respect to the joint distribution �(· | y).
Then for each y ∈ R

m, there exists a unique representation of f as

f y(X) =
∑

u⊆D

f y
u (Xu) (4)

where each component function f y
u satisfies

∫

R

f y
u (x j , X−{ j})�(dx j | y) = 0 (5)

if j ∈ u.

Proof Once Y = y, the construction of the components functions is identical to the
classical construction [10] if the uniform measure is replaced with the conditional
distributions �(· | y). �

In the classical setup, the model variance D := Var( f (X)) is decomposed into a
sum of partial variances Du := Var( fu(Xu)) through the ANOVA decomposition as

D =
∑

u⊆D

Du .

With the generalized ANOVA decomposition (4)–(5), the model variance may again
be decomposed into a sum of component variances; however, each component vari-
ance, as well as the model variance is now a random variable taking on values for
each y. Indeed, letting DY = Var( f (X) | Y) and DY

u = Var( f Y
u (Xu) | Y), we obtain

DY =
∑

u⊆D

DY
u .

Clearly, for each fixed model application Y = y, we get different model variances
and component variances, and thus a different decomposition.

In the classical setup, the component functions may be written succinctly in terms
of conditional expectations as

fu(Xu) = E( f (X) | Xu) −
∑

v�u

E( f (X) | Xv) .

In particular, the component functions are only a function of the model parameters
X. The lower and upper Sobol’ sensitivity indices, Su and Su , are then defined by
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Su = Var(E( f (X) | Xu))

Var( f (X))
, Su = E(Var( f (X) | X−u))

Var( f (X))
, (6)

where Var( f (X)) is assumed to be nonzero. (See [9] for an intuitive derivation of
Sobol’ indices as conditional expectations and variances.) The lower indices are also
known as closed or first-order effects, and the upper indices are also known as total
effects.

In the new framework, component functions may analogously be written as con-
ditional expectations if the hyperparameters are included as conditioning variables:

f Y
u (Xu) = E( f Y(X) | Xu, Y) −

∑

v�u

E( f Y(X) | Xv, Y) .

In the new framework the component functions explicitly depend not only on the
model parameters, but also on the hyperparameters Y. Sobol’ sensitivity indices in

the new framework are the random variables SY
u and S

Y
u defined next.

Definition 1 Let f : Rd → R be a square integrable function and X = (X1, ..., Xd)

a vector of independent random variables, where the independence is with respect
to the conditional joint distribution �(· | y) for each y ∈ R

m . Then for any u ⊆ D ,
the randomized lower and upper Sobol’ indices are

SY
u := Var(E( f (X) | Xu, Y))

Var( f (X) | Y)
, (7)

S
Y
u := E(Var( f (X) | X−u, Y))

Var( f (X) | Y)
, (8)

where it is assumed that Var( f (X) | Y = y) > 0 for all y.

The randomized Sobol’ indices take on values for each Y = y; i.e., for each
particularmodel application. Themean of the randomizedSobol’ indiceswith respect
to the joint distribution of Y, i.e.,

E(SY
u ) =

∫

Rm

Sy
u �(dy) , E(S

Y
u ) =

∫

Rm

S
y
u �(dy) , (9)

can be used as an aggregate measure of model sensitivity.
How do we determine the distribution of Y in practice? Unlike classical GSA,

relying on expert opinion is an unlikely possibility for the distribution of hyperpa-
rameters. Instead, such a distribution will likely need to be estimated from multiple
calibrations of a model. A practical method is to perform a nonparametric density
estimation of the distribution of the Sobol’ indices across multiple calibrations of a
model. Assuming samples can be drawn from such a density, a Monte Carlo estimate

of E(SY
u ) and E(S

Y
u ) may be computed. This also has the benefit of circumventing
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the need for analytical formulas for the randomized Sobol’ indices. Details of this
procedure are given in Sect. 5.

3 Examples

In this section, we discuss some examples that yield analytical formulas for ran-
domized Sobol’ indices. These serve to illustrate the need for modeling the joint
distribution of randomized Sobol’ indices, as opposed to modeling only the marginal
distributions. The formulas for only the first order indices are given (subsets u ⊂ D
such that |u| = 1); it is a widely held belief that in most physical problems, first order
terms provide a sufficient characterization of the sensitivity pattern of themodel (see,
for example, Saltelli et al. [9]). The distribution of Y is left unspecified for now.

Example 1 Consider the model given by

f (X) =
d∑

i=1

Xi ,

where {Xi }di=1 is a collection of mutually independent random variables, each with
marginal conditional distribution

Xi | (Mi ,Σi ) = (μi , σi ) ∼ N (μi , σ
2
i ) , i = 1, . . . , d . (10)

The random hyperparameters areY = (M1,Σ1, . . . , Md ,Σd) for some random vari-
ables Mi , and positive random variables Σi . It can be shown that the component
functions are

f Y
∅ =

d∑

i=1

Mi ,

f Y
{i}(Xi ) = Xi − Mi ,

for i = 1, . . . , d and f Y
u ≡ 0 for all |u| ≥ 2. In addition, for i = 1, . . . , d, the first

order variances and total variance, respectively, are

DY
{i} = Σ2

i DY = Σ2
1 + Σ2

2 + . . . + Σ2
d .

Thus for i = 1, . . . , d, the first order randomized Sobol’ indices are

SY
{i} = S

Y
{i} = DY

{i}
DY

= Σ2
i

Σ2
1 + Σ2

2 + . . . + Σ2
d

. (11)
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The distribution of the i th randomized Sobol’ index is given by the distribution
of Σ2

i /
(
Σ2

1 + Σ2
2 + . . . + Σ2

d

)
. Although in this example each randomized Sobol’

index is a function only of the variance hyperparametersΣi , in general, a randomized
Sobol’ index may be a function of the full hyperparameter vector Y. Once a distri-

bution is specified for Y, the average randomized Sobol’ indices E(SY
{i}) and E(S

Y
{i})

may be computed, either analytically or via Monte Carlo. Note also the dependence
of the randomized Sobol’ indices on allΣ hyperparameters. This illustrates the need
to specify the joint distribution of hyperparameters for randomized Sobol’ indices,
as opposed to marginal distributions.

Example 2 Consider the function

f (X) =
d∏

i=1

Xi , Xi | Yi = yi ∼ exp(yi ) , i = 1, . . . , d ,

where the random variables {Xi }di=1 are mutually independent. Here Y = (Y1, . . . ,
Yd) for some positive random variables Yi , i = 1, . . . , d. It can shown that the first
order component functions are

f Y
∅ =

d∏

i=1

Yi ,

f Y
{ j}(X j ) = (

X j − Y j
) d∏

i=1
i �= j

Yi ,

for j = 1, . . . , d, and the first order variances and the total variance are

DY
{ j} =

d∏

i=1

Y 2
i , DY = (2d − 1)

d∏

i=1

Y 2
i .

Therefore the first order randomized Sobol’ indices are

SY
{ j} = 1

2d − 1
, S

Y
{ j} = 2d−1

2d − 1
(12)

for j = 1, . . . , d. Notice that although the partial and total variances are random
variables, the randomized Sobol’ indices are constant. This illustrates that in some
instances, it may be beneficial to derive formulas of the randomized Sobol’ indices
in place of numerical approximation; however, as the next example emphasizes, the
distribution of randomized Sobol’ indices is, of course, dependent on the model
parameter distribution.
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Example 3 Consider again the function

f (X) =
d∏

i=1

Xi ,

but now specify the mutually independent random variables Xi as

Xi | (Mi ,Σi ) = (μi , σi ) ∼ N (μi , σ
2
i ), i = 1, . . . , d .

Here Y = (M1,Σ1, . . . , Md ,Σd), as in the first example. It can be shown that

f Y
∅ =

d∏

i=1

Mi ,

f Y
{ j}(X j ) = (X j − Mj )

d∏

i=1
i �= j

Mi ,

and

DY
{ j} = Σ2

j

d∏

i=1
i �= j

M2
i , DY =

d∏

i=1

(Σ2
i + M2

i ) −
d∏

i=1

M2
i ,

for j = 1, . . . , d.

The first order randomized Sobol’ indices, for j = 1, . . . , d, are

SY
{ j} = Σ2

j

∏d
i=1,i �= j M

2
i

∏d
i=1(Σ

2
i + M2

i ) − ∏d
i=1 M

2
i

, (13)

S
Y
{ j} = Σ2

j

∏d
i=1,i �= j (M

2
i + Σ2

i )
∏d

i=1(Σ
2
i + M2

i ) − ∏d
i=1 M

2
i

. (14)

The distributions of (13) and (14) will likely be difficult to derive analytically for
most distributions for Y, and hence their expected values will be approximated by
Monte Carlo.

4 Monte Carlo Estimates

Even if the randomized Sobol’ indices can be computed in closed form as in (11)–

(14), it is likely that the expected value of the indices, E(SY
u ) and E(S

Y
u ), are analyt-

ically intractable, making a Monte Carlo approximation necessary.
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If the randomized Sobol’ indices are known in closed form and it is possible to

sample from Y, then the Monte Carlo estimation of E(SY
u ) and E(S

Y
u ) is straight-

forward, and is not discussed further. Similarly, if the Sobol’ indices from multiple
calibrations of a model are available, a multivariate kernel density estimator can be
used to estimate the joint density of the upper Sobol’ indices. We can then draw
samples from the kernel density, and estimate expected values using Monte Carlo.
An example of this procedure is given in Sect. 5.

An interesting scenario is when the distribution of Y is provided and the Sobol’
indices are analytically intractable or not known in closed form. In this case, both the
Sobol’ indices and their Y-expected value may be approximated via Monte Carlo
using the following algorithm, assuming that we have a method to sample from
the necessary distributions. For i = 1, . . . , N1, let y(i) ∈ R

m be a random vector
drawn from the joint distribution �Y. With this fixed y(i), for j = 1, . . . , N2 draw
two independent random vectors ξ (i, j), η(i, j) ∈ R

d , each from the conditional joint
distribution �X|Y(· | y(i)). Set ξ (i, j) = (ξ

(i, j)
u , ξ

(i, j)
−u ) and η(i, j) = (η

(i, j)
u , η

(i, j)
−u ). For

each i = 1, . . . , N1, the standard Monte Carlo algorithms for computation of Sobol’

indices may be used to approximate Sy(i)

u and S
y(i)

u . See Owen [7], Kucherenko et
al. [6] or Sobol’ [10] for the standard algorithms. We then obtain the Monte Carlo
estimates

E(SY
u ) ≈ 1

N1

N1∑

i=1

Sy(i)

u , E(S
Y
u ) ≈ 1

N1

N1∑

i=1

S
y(i)

u .

The above expected value estimations involve double application of Monte Carlo,
and as a result, the computations could be costly. Some possible ideas to speed up the
computations are the use of ametamodel (see [9]), and quasi-MonteCarlo simulation.

5 Application to Interest Rate Models

We revisit the interest rate problem from Sect. 1, where the upper Sobol’ indices
were shown to vary considerably depending on the particular interest rate model
application (see Fig. 1).Nowwe can use the randomizedSobol’ framework to analyze
the randomized sensitivity indices using statistical tools; in particular, assess the
average sensitivity indices of the interest rate models by estimating E(SY

{i}) and

E(S
Y
{i}), where i = a, b, σ . To this end, we first approximate the joint distribution of

the upper Sobol’ indices using aGaussian kernel density estimator on the calibrations
of the models from 1962–2015. A kernel density estimator was chosen to model the
joint density to capture any dependencies among the randomized Sobol’ indices;
see Givens et al. [5] for details on such estimators. As the dimension increases, the
accuracy of the kernel density estimation method will be a point of concern; an
analysis of this is left for future work. As an illustration of the density estimation,
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Fig. 2 Heatmap of joint pdf
of the pair of randomized
upper Sobol’ indices

(S
Y
a , S

Y
b )

Table 3 Approximated mean of randomized Sobol’ indices for interest rate models

Sensitivity Vasicek CIR

E(S
Y
a ) 0.52 0.43

E(S
Y
b ) 0.44 0.63

E(S
Y
σ ) 0.005 0.0

Fig. 2 plots a heatmap of the estimated joint pdf of (S
Y
a , S

Y
b ). The circles in this figure

depict joint realizations of the given pair of Sobol’ indices from the Vasicek model.
Table3 displays the expected value of the randomized upper Sobol’ indices for

the Vasicek and CIR models, using the estimated joint density of (S
Y
a , S

Y
b , S

Y
σ ) from

the multiple calibrations. The results show that, on average, both the mean reversion
speed a and long-term mean b are influential in either model; however, the volatility
σ is unimportant. Because these averaged sensitivity indices take into account all
applications of the model to one-year T-bills, the modeler should feel confident in
freezing the volatility parameters in either model with negligible loss of information.

6 Conclusions

In the classical sensitivity analysis, we usually assume the distribution of a model’s
parameters is completely known. Using an example from interest rate modeling, we
showed how changes in this distribution across different model applications (cal-
ibrations) can result in significant changes in the sensitivity pattern of the model
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parameters. To better analyze changes in model sensitivities, we presented a hier-
archical framework where the hyperparameters of a model parameters’ distribution
are themselves random variables. In this framework, the Sobol’ sensitivity indices
become random variables, and their statistical properties can offer new insights to
the model in consideration.

Acknowledgements We thank Art Owen and the anonymous referee for their valuable comments
that improved the paper.
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Supervised Learning of How to Blend
Light Transport Simulations

Hisanari Otsu, Shinichi Kinuwaki and Toshiya Hachisuka

Abstract Light transport simulation is a popular approach for rendering photorealis-
tic images. However, since different algorithms have different efficiencies depending
on input scene configurations, a user would try to find the most efficient algorithm
based on trials and errors. This selection of an algorithm can be cumbersome because
a user needs to know technical details of each algorithm. We propose a framework
which blends the results of two different rendering algorithms, such that a blend-
ing weight per pixel becomes automatically larger for a more efficient algorithm.
Our framework utilizes a popular machine learning technique, regression forests, for
analyzing statistics of outputs of rendering algorithms and then generating an appro-
priate blending weight for each pixel. The key idea is to determine blending weights
based on classification of path types. This idea is inspired by the same common
practice in movie industries; an artist composites multiple rendered images where
each image contains only a part of light transport paths (e.g., caustics) rendered by
a specific algorithm. Since our framework treats each algorithm as a black-box, we
can easily combine very different rendering algorithms as long as they eventually
generate the same results based on light transport simulation. The blended results
with our algorithm are almost always more accurate than taking the average, and no
worse than the results with an inefficient algorithm alone.
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1 Introduction

Rendering based on light transport simulation is a popular approach for photorealistic
image synthesis. Since such rendering algorithms solve the samegoverning equations
(e.g., the rendering equation [16]), rendering with light transport simulation should
give us the same result regardless of the choice of an algorithm. It is however well
known that some algorithms are more efficient at rendering certain light transport
effects. For example, photon density estimation [5, 14] is often efficient at rendering
caustics, andMarkov chain Monte Carlo algorithms [12, 31] are considered efficient
at resolving complex occlusions.

Because of the varying efficiency of different algorithms on different light trans-
port effects, it is common practice to select an algorithm based on the type of light
transport effect that one wants to render. In the movie industry, an artist often decom-
poses light transport effects into separate images, renders each with a most efficient
algorithm, and composites the resulting images into the final one. Selecting appropri-
ate algorithms and composting the results, however, can be difficult and cumbersome
tasks. For selection, an artist either needs to know why some algorithms work well
for some effects, or briefly tries all the available algorithms to see which one works
well. For composition, an artist also needs to pay attention not to double count a
certain type of paths such as caustics.

We propose a framework which automates this selection of the algorithms and
composition of the resulting images. Our work is inspired by the superhuman perfor-
mance of recent machine learning algorithms on classification tasks. We apply the
same idea to select and composite two different rendering algorithms based on the
classification of light transport effects. To be concrete, we use regression forests [1]
to learn the relationship between blending weights that minimize the error and the
classification of light transport effects. While multiple importance sampling [30]
also allows us to blend results of different rendering techniques, the key difference
is that our framework treats each rendering algorithms as a black-box. Accordingly,
our framework can be easily applied to very different algorithms such as SPPM and
MLT without any algorithmic or theoretical modifications for each. To summarize,
our contributions are:

• The use of machine learning to automatically blend the results of different render-
ing algorithms based on path types.

• A blending framework which is independent from how the underlying rendering
algorithms work.

• First successful application of regression forests to light transport simulation.

2 Overview

Our goal is to blend the results of two different rendering algorithms such that the
error of the blended result is as small as possible. Our algorithm is separated into
two phases; the training phase and runtime. Figure1 illustrates the algorithm.
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MLT

SPPM

Path features

Regression forest

SPPM

MLT

Blended image

Reference

Optimal
blending weight

Training phase

Runtime

Path features

…

…

+ +

…

Learning features

…

Blending weights

1w φ )( )2w φ(

Fig. 1 General idea of blending the results of two different rendering algorithms using regression
forests. In the training phase (top), we first calculate the optimal blending weight per pixel, given the
reference image and rendered images with different approaches. These weights and the correspond-
ing path features become one training sample for the regression forest for each scene.We iterate this
process for various scenes. Our framework thus learns the relationship between input path features
and optimal weights during this learning phase. At runtime (bottom), the trained regression forest
returns approximated optimal blending weights based on path features of a new scene

In the training phase,we use regression forests [1] (Sect. 4) to learn the relationship
between a feature vector of lighting effects extracted from the rendered images and
the optimal weights for blending. For each training scene, we render the reference
solution, and the two images with both algorithms allocating the same rendering
time. Based on the rendered images, we extract path features as the relative pixel
contributions of different light transport paths according to Heckbert’s notation [9].
Modern shader languages often support the same mechanism [3]. We then calculate
the optimal blending weights based on the reference solution and the results of the
two different rendering algorithms. The optimal blending weight is defined such that
the error of the blended result is minimized at each pixel. A pair of path features
and the optimal blending weight forms one training sample for regression forests.
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If a rendering algorithm is based on Monte Carlo methods (which is the case in our
experiments), we generate multiple training samples for the same scene in order to
avoid the influence of the randomness of rendered images.

At runtime, we use the trained regression forest to approximate the optimal blend-
ing weights for a given new scene. The path features extracted from the rendered
images are used to traverse the regression forest to obtain the blending weights. The
final result is a blended image with the obtained weights. Since the trained regression
forest expresses the relationship between path features and the optimal weights, a
blended image is expected to have small error, even for a scene that was not included
in the training phase.

3 Automatic Blending with Path Features

3.1 Path Features

Our definition of a feature vector for rendering algorithms is inspired by how artists
decompose a rendered image into several images with specific lighting effects for
each. In order to define the feature vectors, we begin with the formulation of the light
transport known as the path integral formulation [28]. According to the formulation,
the pixel intensity I observed at each pixel is expressed as

I =
∫

Ω

f (x̄)dμ(x̄), (1)

where x̄ is a light transport path, f is the measurement contribution function, and μ

is the path measure. Ω is the space of paths of all different path lengths.
The path space Ω can be partitioned into a union of disjoint spaces according to

the classification by Heckbert [9]:

Ω = ΩLDE ∪ ΩLSE ∪ ΩLDSE ∪ ΩLSDE ∪ · · · , (2)

where each Ω∗ is a subspace of Ω defined with the paths represented by the Heck-
bert’s notation ∗. For instance, the subspace ΩLDSE with path length 3 is defined as
a set of paths x̄ = x0x1x2x3 where x0 is on a sensor, x1 is on a diffuse surface, x2
is on a specular surface, and x3 is on an emitter. A glossy interaction is classified to
either D or S depending on its BRDF.

We thus define a part of the intensity I∗ contributed only with the subspace Ω∗ as

I∗ =
∫

Ω∗
f (x̄)dμ(x̄). (3)
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Since the partition in Eq.2 is disjoint, the pixel intensity I is additive:

I = ILDE + ILSE + ILDSE + ILSDE + · · · . (4)

We thus define the path features φ as a vector of the intensities I∗ relative to I :

φ ≡ (ILDE, ILSE, ILDSE, ILSDE, . . . )

I
. (5)

The definition uses relative intensities such that φ is independent from the absolute
intensity. We fixed the maximum path length to ten, which makes φ a 2(10−1) =
512 dimensional feature vector. The training phase uses an estimate φ̂ instead of
the analytical value of φ for a given rendering time. We selected the number of
dimensions such that all the data fits within the main memory. For instance, the
scene rendered with 720p resolution requires a storage of 512 × 1280 × 720 × 4
bytes ≈ 1.8GB.

3.2 Optimal Blending Weights

In the training phase, we need to determine the optimal blending weight. This weight
is used as an answer associated with a path feature vector. A pair of a path feature
vector and the optimal blendingweight thus becomes a training sample for supervised
learning via regression forests.

We define the optimal blending weight wopt that gives the minimum error as

wopt = argmin
w

∣∣∣
(
wÎα + (1 − w) Îβ

)
− I

∣∣∣ , (6)

where Îα and Îβ are the results of two different rendering algorithms α and β respec-
tively, and I is the reference solution. This equation can be easily solved as

wopt = I − Îβ

Îα − Îβ
. (7)

If the solution of Eq.6 is not in the range of [0, 1], it is clamped to the nearest side
such that wopt ∈ [0, 1]. We apply this clamping such that the blending operation
becomes a convex combination of the results. The blended result wÎα + (1 − w) Îβ
is thus guaranteed to be more accurate than one of Îα and Îβ since

|wÎα + (1 − w) Îβ − I | ≤ max(| Îα − I |, | Îβ − I |) (8)
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by definition if w ∈ [0, 1]. Intuitively, this clamping process sets wopt = 1 when Îα
and Îβ both either underestimate or overestimate I and Îα is closer to I (vice versa
for Îβ). If one of the Îα and Îβ underestimates and the other overestimates I , we set
wopt such that the blended result is exactly equal to I . Note that Eq.8 only guarantees
that an error per pixel does not become worse, not the sum of errors over an image.
For example, collecting pixels with worse errors (with w = 0 or w = 1) still satisfies
Eq.8, but the sum of errors would increase.

The intensities Îα and Îβ are the relatively rough estimates of I in practice. If an
algorithm is based on Monte Carlo ray tracing, an estimated intensity is an instance
of the random variable for each run. Using samples only from a single run of the
algorithm causes overfitting to this specific run. For example, it might be that Îα
happens to be closer to I than Îβ for the single run used in the training phase.

In order to deal with this issue, we use multiple training samples even for the
same scene and the same algorithm. In fact, machine learning techniques (including
regression forests) are naturally designed for dealing with such variations in the
training data.

Problem Statement: Given the definitions above, the goal of our algorithm is to find
a function wapprox such that

wopt ≈ wapprox(φ), (9)

for given path features φ and two rendering algorithms α and β. This functionwapprox

basically expresses the preference of the algorithm α over the other algorithm β for
paths with a feature vector of φ. In order to learn wapprox, we use a machine learning
algorithm called regression forests.

Difference from Multiple Importance Sampling: Conceptually, our proposed
blending approach is similar to multiple importance sampling (MIS) [30]. MIS also
combines two or more different estimators to improve the efficiency of the combined
estimator.

MIS combines multiple sampling strategies by decomposing the measurement
contribution function f in Eq.1 into a weighted sum of M different weights. The
estimate of the pixel intensity I by MIS can be written as

I =
∫

Ω

M∑
t=1

wt (x̄) f (x̄)dμ(x̄) =
M∑
t=1

∫
Ω

wt (x̄) f (x̄)dμ(x̄) (10)

≈
M∑
t=1

1

Nt

Nt∑
i=1

wt (x̄t,i )
f (x̄t,i )

pt (x̄t,i )
(11)

where pi (x̄) is the pdf of the i th strategy, wi (x̄) is the weighting function satisfying∑M
t=1 wi (x̄) = 1 for all x̄ ∈ Ω with f (x̄) �= 0, and wi (x̄) = 0 for all x̄ ∈ Ω with

pi (x̄) = 0. In order to use MIS, however, we need to know the probability densities
of path sampling techniques for arbitrary sample locations. Such information can be



Supervised Learning of How to Blend Light Transport Simulations 415

difficult to obtain without modifying an implementation or sometimes impossible
due to the formulation of each algorithm.

4 Regression Forests

The basic idea of regression forests is to use a set of binary trees for approximating
a multivariate function of the feature vector. This multivariate function expresses
the relationship between feature vectors and the corresponding value. Each binary
tree is called a regression tree where the inner nodes (split nodes) express branching
conditions on an input feature vector. Each regression tree takes an input feature
vector and outputs a value associated with the corresponding leaf node. Regression
forests return the average of the outputs of regression trees as the final output.

4.1 Construction

For the construction of regression forests, we need a large number of training samples
which associate feature vectors (a set of path features) and output values (optimal
weights). We generate these samples by rendering several training scenes. We then
extract the path features and the corresponding optimal weights for each scene. The
regression forest is trained to approximate the optimal weights even for a new scene,
based only on the path features.

We define a training sample t ≡ (φt ,wt
opt) ∈ T as a tuple of path features φt and

the optimal weight wt
opt. T is a set of all training samples. The construction process

begins from the root node of the regression forest. Each step of the construction
process recursively splits training samples into left and right nodes. We denote the
subset of the training samples in the currently processed node as T ⊆ T and we
start from T = T . The algorithm is similar to a top-down construction of a kd-tree
for ray tracing [7, 21].

Node Splitting: The construction process continues splitting the current node until
the number of training samples in the current set T is smaller than a threshold, or
the depth of the tree has reached the maximum depth. If the recursion terminates,
the current node becomes a leaf node. Each leaf node stores the average over the set
of the optimal weights in this node as wleaf . This average weight approximates the
optimal weight at runtime.

If the recursion continues, we split the current set of samples T into two disjoint
subsets TL and TR according to a threshold θ and an index k of the path features:

TL(θ, k) = {t ∈ T |φt (k) ≥ θ} (12)

TR(θ, k) = T \ TL(θ, k) (13)
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where φt (k) is the kth element of the path features φt . The threshold θ and
the index k at each step are defined as (θ, k) = argmaxθ ′,k ′ V (θ ′, k ′, T ), where
V (θ ′, k ′, T ) = Var(T ) − Var(TL(θ ′, k ′)) − Var(TR(θ ′, k ′)). Here Var(T ) is the vari-
ance of the optimal weights in T . The function V is used to define the most discrim-
inative pair of the threshold θ and the index of the path feature k according to the
variance.

4.2 Runtime

In our framework, we first render a given new scene with two different algorithms
Îα and Îβ with the same computation time. We also extract the path features φ

according to the definition by Eq.5. Using these path features, we can now evaluate
each trained regression tree by traversing down the tree according to the branching
condition defined in Eq.12, which eventually reaches a leaf node and the weightwleaf

is recorded in the leaf node. By repeating this process for all regression trees in the
trained regression forest, we obtain a set of weights wleaf recorded in the leaf nodes
for each tree. We define wr (φ) as the output of the r th tree in the trained regression
forest, given the path features φ. The approximated optimal weight wapprox(φ) with
M trees is given as

wapprox(φ) = 1

M

M∑
r=1

wr (φ). (14)

Blending at each pixel is wapprox(φ) Îα + (1 − wapprox(φ)) Îβ . This evaluation process
is repeated for all the pixels. The use of forests can alleviate the discontinuity of the
resulting weights. Even if one tree suddenly returns a totally different value due to
hard classification, it is likely that other trees still return similar weights. As a result,
returning weights will be smoothly changing.

4.3 Refinement

A trained regression forest is sometimes too optimized for given training samples. In
order to reduce overfitting, we follow the refinement technique for regression forests
proposed by Ren et al. [24] and Ladický et al. [19]. The main idea is to split a set of
training samples into two subsets and use one for constructing the structure of each
treewhile using the other for defining the outputs. After the construction step, we first
discard the values wleaf assigned to the leaf nodes while keeping the tree structure.
The refinement process then updates wleaf using the additional training samples.



Supervised Learning of How to Blend Light Transport Simulations 417

For each additional training sample φ, we execute the evaluation of the tree until
the evaluation process reach to the leaf node. After collecting the set of training
samples Φ reached to the leaf node, the updated weight w∗

r can be computed as

w∗
r = 1

|Φ|
∑

(φ,wopt)∈Φ

wopt(φ). (15)

We iterate this refinement process for each tree in the regression forest using the
sample training set for the refinement. Since the training samples are taken from
the different portion of the training set independent of the samples assigned for the
initial construction, the final weights associated to the leaf node could become more
generic, which alleviates overfitting to the initial training set.

5 Results

We selected the two combinations of the rendering algorithms to show the effective-
ness of our framework: (1) stochastic progressive photon mapping (SPPM) [4] and
Metropolis light transport (MLT) [31]withmanifold exploration [12] shown in Fig. 2,

Relative Error Blending Weights
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Relative Error Blending Weights Relative Error Blending Weights
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Fig. 2 Equal-time comparison (20min) of the average and our automatic blending of the images
rendered by SPPM [4] and MLT [31] with manifold exploration [12]. We highlighted three scenes
with different characteristics from our test cases (box, cryteck-sponza, and water). The top row
shows the reference images. The bottom two rows visualize errors, the optimal blending weights,
and the output blending weights of our framework. Depending on the types of lighting effects, the
optimal blending weights for SPPM and MLT that result in the minimal error vary significantly.
Simply taking the average of SPPM and MLT thus produces a suboptimal result in terms of RMS
error
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Relative Error Blending Weights
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Fig. 3 Comparison of errors, the optimal weights and the approximations by our framework for
the combination of BDPT and SPPM. The selection of the scenes and meaning of the images are
same as Fig. 2. Similar to the combination ofMLT and SPPM, our framework generally captures the
preference to the scene according to the characteristics of the scenes, although some difference can
be observed, e.g., preference to the scene dominated with specular material is weaker (box scene)

(2) SPPM and bidirectional path tracing (BDPT) [20, 29] shown in Fig. 3. We chose
these algorithms because both the algorithm and the performance are distinguishably
different.One famous characteristic of SPPM is the ability to handle specular-diffuse-
specular paths efficiently. A caustic that can be seen through a water surface is an
example of such paths. MLT is based onMarkov chain Monte Carlo sampling which
utilizes a sequence of correlated samples that forms aMarkov chain. The sequence of
the samples is generated such that the resulting sample distribution follows an arbi-
trary user-defined target function such as the measurement contribution function.
MLT is known to be effective for the scenes with complex occlusion. BDPT can uti-
lize various sampling technique by the combination of paths traced from the sensor
and the lights. These sampling techniques are combined with multiple importance
sampling [30]. The combination of SPPM and BDPT would exhibit the good trade-
off because BDPT is not efficient at handling specular-diffuse-specular paths [18]
and while being more efficient at rendering diffuse surfaces [2, 6].

For the implementations of rendering algorithms, we used the Mitsuba ren-
derer [11]. Mutation techniques used for MLT are bidirectional, lens, caustic, multi-
chain, andmanifold perturbation [12]. All the images except for the reference images
are rendered on a machine with Intel Core i7-4720HQ at 2.6GHz. The training phase
is computed with a machine with Intel Core i7-3970X at 3.5GHz and 16GB of main
memory. We utilized only a single core for rendering in order to alleviate the differ-
ence of performance between SPPM and MLT according to the parallelization. In
order to facilitate the future work, we publish our implementation on our website.

Training Samples: Our training set consists of 10 scenes with various characteristics
in order to cover as many types of paths as possible. We render all the scenes with
each rendering algorithm for 5, 10, 15, and 20min. Each scene is rendered five times,
in order to alleviate overfitting as discussed in Sect. 3.2. Given this whole training
data, we generate a regression forest for each scene by excluding the scene from the
training data. We thus have 10 different regression forests as a result. Each forest
is tested against the corresponding scene that was excluded from its training. It is
essentially leave-one-out cross-validation in machine learning.
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Fig. 4 Comparison of the optimalweights and the approximations byour framework for the selected
five scenes combining MLT and SPPM. The first row shows the reference images. The bottom two
rows visualize the optimal weights and the approximated weights via trained regression forests. For
many scenes, our framework largely reproduces the optimal weights, without any information other
than rough estimates of path features per pixel. The RMS errors between the blended images and
the references are improved compare to taking the average (Average). We also show RMS errors
for MLT and SPPM with the same total rendering time

While it is possible to have a single forest for all the training scenes and test this
forest against the same set of scenes, we found that this kind of experiment is prone
to overfit to the training scenes. Our regression forest consists of five trees and the
maximum depth of each tree is 15. The construction time of the regression forest is
30min.

ApproximatedOptimalWeights: Figure4 shows blending weights and RMS errors
for selected five scenes with the combination of SPPMandMLT. Figure2 shows such
results with visualization of the error per pixel for three other scenes. We compare
approximated optimal weights via a trained regression forest with the average of
five different runs for each scene. The blending weight is fixed to 0.5 when a pixel
has no information on path features (e.g., background images). We blended two
images rendered by SPPM and MLT by taking the average (Average) or by using
the approximated optimal weight per pixel (Proposed). The running time of our
framework is less than 50ms for all the scenes. The storage cost of our regression
forest is 100KB. Both the running time and the storage cost are independent of the
geometric complexity of the scenes. We can see that optimal weights and weights
suggested by our framework are very similar to each other in almost all the cases.
Our framework thus successfully learned the preference of an algorithm only based
on path features.
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RMS Errors: Figure5 shows RMS errors for 10 scenes for the combination of MLT
and SPPM. We plot RMS errors of MLT, SPPM, their average, and our blended
result for each scene with the total rendering time of 20min for all the methods.
The plots are scaled such that the values for the average is one. We can observe that
our blending is superior to the average in all scenes. The reduction of error by our
blending is larger when the difference of RMS errors between SPPM and MLT is
large. Moreover, the blended solution by our framework sometimes outperforms a

Sc
al

ed
 R

M
SE

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

split chess water crytek-sponza clocks cornell torus conference sibenik box

MLT SPPM Average Proposed

Fig. 5 Scaled RMS errors of MLT, SPPM, Average, and blending with our framework over 10
scenes. All the methods use the total rendering time of 20min. The average and our blending
spends 10min for both MLT and SPPM, keeping the total rendering time equal to 20min. We
scaled RMS errors such that the average is always one. The scenes are sorted roughly according to
the difference of RMS errors between MLT and SPPM
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Fig. 6 Visualization of approximated optimal weights for the box scene with different tree depth
(top) and the corresponding plot of the approximation errors (bottom). The RMS errors of the
blended images are shown under each image. As the depth of the tree increases, the color indicating
the preference to MLT becomes a bit more explicit, but not significantly after a certain depth. The
plot of the variance shows how approximation errors of the optimal weights change according to
the tree depth, which also stops converging around the depth of 15
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better algorithm with the same total rendering time. Such a result is not trivial since
our framework spends only half of the total rendering time for each algorithm. We
should also note that just taking the average can in fact increase the error for the
same reason (e.g., Cornell scene). In contrast, we did not find any such cases using
our framework. This result supports that our framework can improve the robustness
of light transport simulation in practice.

Effect of Tree Depth: The images in Fig. 6 show the approximated optimal weights
for the box scene with different depths of the regression trees in the runtime. As the
depth increases, we can observe that the preference to each technique becomes more
explicit. Yet another observation is that the approximated weights are converged
around the tree depth of 15. The graph in Fig. 6 shows the RMS error between the
optimal weight and the approximated weight with our framework for this scene. We
can observe that the RMS error converges around the depth of 15, and we found that
it is similar for the other scenes as well. Along with the saturation of the weights, we
thus conservatively set the tree depth to 15 in our experiments.

6 Discussion

6.1 Alternative to Blending

While we found that blending is a practical approach to combine different rendering
algorithms, it is tempting to try selecting one of the different algorithms instead of
blending such that we can spend all the allocated rendering time to one algorithm.
This alternative solution, however, is not feasible for two major reasons. Firstly, as
shown in Fig. 2, a better algorithm can change even within a single image. Even
though MLT looks converged in many regions, it can entirely miss certain lighting
effects such as specular reflections of caustics. As such, resolving all the effects by
a single algorithm can take a significant amount of rendering time as compared to
combining the results of two algorithms. Recent work on robust rendering algorithms
are based on the same observation [2, 6].

Secondly, defining useful features for this selection is not trivial and algorithm-
dependent. In order to select an efficient algorithm for a specific input scene, we
would need a feature vector of a whole configuration of the rendering process. This
information includes parameters of each rendering algorithm that affects the perfor-
mance, which in turn makes the whole framework algorithm-dependent. It is also not
obvious how to encode input scenes as feature vectors. Unlike images, which con-
tain a set of pixels in a structured manner, scene data contains a set of very different
information such as material data, textures, and triangle meshes. There is no single
data structure common to all of data necessary to define input scenes. This lack of
a common structured input form is a striking differences to applications of machine
learning for images.



422 H. Otsu et al.

One might also consider finding a distribution of total rendering time, such that
we do not spend too much computation for an algorithm with small weights. This
deceivingly obvious improvement, however, is not possible since our regression
forest is trained under the assumption that each algorithm spends the same rendering
time. Even if we can find such a distribution of rendering time somehow, optimal
blending weights are now different from those at the training phase since rendering
time for each algorithm is also different. To implement this idea, we would need to
have multiple regression forests for all the possible distributions of total rendering
time, which is likely infeasible.

6.2 Comparison to Neural Networks

We used regression forests as a machine learning technique to learn the relationship
between path features and the optimal blending weights. One possible option is to
replace it by neural networks. Given its success in the computer vision community,
a deep neural network [10] is a possible candidate. We tested replacing regression
forests by a fully-connected four layer’s neural network using Caffe [15] on GPU
as additional experiments. As shown in Fig. 7, we found that a neural network can
achieve similar performance to regression forests. We discarded this approach in the
end since even its running time is multiple orders of magnitudes slower (3min) than
regression forests (60ms) without much improvement in terms of RMS errors.

R
el

at
iv

e 
Er

ro
r

0.0
1.0

RMSE
0.019074

RMSE
0.004790

M
LT

SPPM

RMSE
0.040405

B
le

nd
in

g 
W

ei
gh

ts

Fig. 7 Approximated blending weights (top) and the relative errors (bottom) for the selected three
scenes (box, crytek-sponza, and water) by replacing regression forests via a neural network
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Fig. 8 RMS errors for a test scene that is only slightly different from a training scene. This test
scene is made by changing the environment light and the camera configuration while retaining the
geometry and materials of the torus scene in Fig. 2. For this experiment, we used the original torus
scene for training, and the modified torus scene at runtime

6.3 Limitations

Preparing Training Scenes: In general, a machine learning technique needs a large
number of training samples to avoid overfitting. While we carefully designed a set
of training scenes, it is not guaranteed that the prepared training scenes are indeed
sufficient for learning. This situation is in contrast to the computer vision community;
there are several standardized large datasets such as ImageNet [25].Althoughweused
some standard models and scenes often seen in other rendering research, it would be
interesting as future work to generate training scenes based on procedural modeling.
This proceduralmodeling should include not only shapes, but alsomaterials, lighting,
and camera parameters.

Dependency on Training Scenes: We found that our method works especially well
if there are only slight differences between training scenes and test scenes. Figure8
shows the torus2 scene which uses the same geometry and materials as the torus
scene in Fig. 2, but with a slightly different camera configuration and an environment
map. For this experiment, we used only the torus scene for the training phase, and
rendered the torus2 scene. We can observe that reduction of RMS error is significant
in this case. This experiment indicates an interesting use case of our framework in
practice: when an artist is modeling a new scene based on existing ones, we can train
a regression forest with existing scenes beforehand.

7 Related Work

Light Transport Simulation in Rendering: Since the development of path trac-
ing [16], the number of light transport simulation algorithms have been developed.
Among many rendering algorithms, we used the two representative approaches in
our tests: SPPM [4] and MLT [31] with manifold exploration [12]. We chose these
two approaches because their algorithms are completely different and have different
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characteristics as rendering algorithms. SPPM works by tracing a number of light
paths and estimates density of light path vertices at a visible point through each pixel.
MLT on the other hand traces a whole path by a Markov chain from the previously
generated path and estimates the histogram of this Markov chain at all the pixels.
SPPM is generally considered good at rendering caustics, while MLT is considered
efficient at resolving complex visibilities from light sources. Our framework however
is not restricted to use very different algorithms, since it is independent of how each
algorithm works internally.

MachineLearning inRendering: Several researchers have already appliedmachine
learning to rendering. One popular application of machine learning in rendering is
regression models. Among others, Jacob et al. [13] utilized unsupervised online-
learning of a Gaussian mixture model (GMM) to represent a radiance distribution in
participating media. Vorba et al. [32] also used online learning of GMM to represent
probability density functions for importance sampling. Ren et al. [23] introduced a
realtime rendering algorithm using non-linear regression to represent precomputed
radiance data. The precomputed radiance data is modeled as a multi-layered neural
network [8]. The idea is to learn the relationship between scene configurations and the
resulting radiance distribution based on off-line rendering with random attributes.
While we also use machine learning for regression, we propose to use machine
learning to combine existing rendering algorithms without any modification to them.
Our framework thus can be applied on top of any of the previous work mentioned
above. More recently, Nalbach et al. [22] showed how to use CNN to approximate
screen-space shaders. While the goal of their work is completely different from
ours, their work demonstrate the powerful potential of applying machine learning to
rendering.

Kalantari et al. [17] recently proposed a image filtering technique to reduceMonte
Carlo rendering noise based on the multilayer perception [8]. The idea is to learn the
relationship between the scene features such as a shading location or texture values
and a set of filtering parameters. Our work is inspired by their successful application
and we also use machine learning to find the relationship between path features and
the optimal blending weights. The difference is that their work focuses to improve
the result of a single image by filtering, while we consider a situation where there
are multiple rendering algorithms available for a user.

The aim of our work is to use machine learning to blend the results of different
rendering algorithms. Such blending is often done by multiple importance sam-
pling [30], and there have been many recent works on this approach [2, 6]. Our work
differs from multiple importance sampling in that we treat each rendering algorithm
as a black-box and does not require any detailed algorithmic information such as
path probability densities.

Regression Forests: Regression forests [1] are actively used in many applications.
One famous example is Kinect body segmentation [26]. By simply fetching neigh-
boring depth values and parse the regression forest, this algorithm can label each
pixel by 31 different body parts quite accurately in realtime. For face recognition,
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Ren et al. [24] showed that regression forests can be used to detect major features
such as eyes, a mouth, and a nose. Tang et al. [27] used regression forests to extract
a skeletal hand model from an RGB-depth image.

For applications in computer graphics, Ladický et al. [19] used regression forest
for fluid simulation and achieved×200 speed up. They trained a regression forest via
position-based fluid simulation by defining several features around each particle. The
trained regression forest is used to update the state of particles at the next time step,
without relying on costly simulation. Inspired by the success of regression forests
in many applications, we also utilize regression forests instead of a more popular
convolution neural network [10]. As far as we know, our work is the first application
of regression forests in rendering.

8 Conclusion

We presented a framework to automatically blend results of different light transport
simulation algorithms. The key idea is to learn the relationship between a class of light
transport paths and the performanceof each algorithmoneach class. For classification
of paths, we introduced a feature vector based on relative contributions from different
types of paths according to Heckbert’s notation. We then calculate optimal blending
weights such that a resulting image has minimal errors on average after blending.
Using regression forests, we approximate a function that takes a feature vector of
light transport paths and outputs the optimal blending weight per pixel. The resulting
framework is independent from how each algorithm works, which makes it easily
applicable to different rendering algorithms.
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32. Vorba, J., Karlík, O., Šik, M., Ritschel, T., Křivánek, J.: On-line learning of parametric mixture
models for light transport simulation. ACM Trans. Graph. (Proceedings of SIGGRAPH) 33(4)
(2014)



A Dimension-Adaptive Multi-Index
Monte Carlo Method Applied to a Model
of a Heat Exchanger

Pieterjan Robbe, Dirk Nuyens and Stefan Vandewalle

Abstract We present an adaptive version of the Multi-Index Monte Carlo method,
introduced by Haji-Ali, Nobile and Tempone (2016), for simulating PDEs with coef-
ficients that are random fields. A classical technique for sampling from these random
fields is theKarhunen–Loève expansion.Our adaptive algorithm is based on the adap-
tive algorithm used in sparse grid cubature as introduced by Gerstner and Griebel
(2003), and automatically chooses the number of terms needed in this expansion, as
well as the required spatial discretizations of the PDE model. We apply the method
to a simplified model of a heat exchanger with random insulator material, where the
stochastic characteristics are modeled as a lognormal random field, and we show
consistent computational savings.

Keywords Multi-Index Monte Carlo · Dimension-adaptivity · PDEs with random
coefficients

1 Introduction

A key problem in uncertainty quantification is the numerical computation of sta-
tistical quantities of interest from solutions to models that involve many random
parameters and inputs. Areas of application include, for example, robust optimiza-
tion, risk analysis and sensitivity analysis. A particular challenge is solving problems
with a high number of uncertainties, leading to the evaluation of high-dimensional
integrals. In that case, classical methods such as polynomial chaos [19, 20] and
sparse grids [2] fail, and one must resort to Monte Carlo-like methods. Recently, an
efficient class of such Monte Carlo algorithms was introduced by Giles, see [1, 4,
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9, 10]. Central to these multilevel algorithms is the use of a hierarchy of numerical
approximations or levels. By redistributing the available computational budget over
these levels, taking into account the bias and variance of the different estimators, the
error in the final result is minimized.

A significant extension of the multilevel methodology is the Multi-Index Monte
Carlo (MIMC) method, see [14, 15]. MIMC generalizes the scalar hierarchy of
levels to a larger, multidimensional hierarchy of indices. This is motivated by the
observation that in some applications, changing the level of approximation can be
done in several ways, for example in time dependent problems where both time step
size and spatial resolution canbevaried. Each refinement then corresponds to an index
in a multidimensional space. The optimal shape of the hierarchy of indices, based on
a priori assumptions on the problem, is analyzed in [15]. However, in most practical
problems, such knowledge is not available. Hence the need for efficient algorithms
that automatically detect important dimensions in a problem. Such adaptivity has also
been used for deterministic sparse grid cubature in [7]. We will develop a similar
approach for MIMC.

The paper is organized as follows. In Sect. 2, we introduce a particular example
of a PDE with random coefficients: the heat equation with random conductivity. The
Multi-Index Monte Carlo method and our adaptive variant are presented in Sect. 3.
Next, in Sect. 4, we introduce a model for a heat exchanger, in which the heat flow
is described by the heat equation with random conductivity. We use our adaptive
method to compute expected values of the temperature distribution inside the heat
exchanger. We show huge computational savings compared to nonadaptive MIMC.
We conclude our work in Sect. 5.

2 The Heat Equation with Random Conductivity

In this section, we study the linear anisotropic steady state heat equation defined on a
domain D ⊂ R

m , with boundary ∂D. The temperature field T : D → R : x �→ T (x)

satisfies the partial differential equation (PDE)

−∇ · (k(x)∇T (x)) = F(x) for x ∈ D, (1)

with k(x) > 0 the thermal conductivity, F ∈ L2(D) a source term, and boundary
conditions

T (x) = T1(x) for x ∈ ∂D1,

n(x) · (k(x)∇T (x)) = T2(x) for x ∈ ∂D2,

where ∂D1 and ∂D2 are two disjoint parts of ∂D such that ∂D = ∂D1 ∪ ∂D2. Here,
n(x) denotes the exterior unit normal vector to D at x ∈ ∂D2.
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Consider now the casewhere Eq. (1) has a conductivitymodeled as a randomfield,
i.e., k : D × Ω → R : (x, ω) �→ k(x, ω) also depends on an eventω of a probability
space (Ω,F , P). Then, the solution T (x, ω) is also a randomfield and solves almost
surely (a.s.)

−∇ · (k(x, ω)∇T (x, ω)) = F(x) for x ∈ D and ω ∈ Ω, (2)

T (x, ω) = T1(x) for x ∈ ∂D1,

n(x) · (k(x, ω)∇T (x, ω)) = T2(x) for x ∈ ∂D2.

For simplicity, we only study the PDE subject to deterministic boundary conditions.
In what follows, we will develop efficient methods to approximate the expected

value

I (g(ω)) := E[g(ω)] =
∫

Ω

g(ω) dP(ω),

where g(ω) = f (T (·, ω)) is called the quantity of interest. Typical examples of g(ω)

include the value of the temperature at a certain point, themean value in (a subdomain
of) D, or a flux through (a part of) the boundary ∂D.

A commonly usedmodel for the conductivity k(x, ω) in (2) is a lognormal random
field, i.e.,

k(x, ω) = exp(Z(x, ω)),

where Z is an underlying Gaussian random field with given mean and covariance.
The exponential ensures that the condition k(x, ω) > 0 is satisfied for all x ∈ D and
ω ∈ Ω , a.s.

In the following, we recall some details about Gaussian random fields that can be
found in literature, such as [16, 17]. A Gaussian random field Z(x, ω) is a random
field where every vector z = (Z(xi , ω))Mi=1 follows a multivariate Gaussian distri-
bution with given covariance function for every xi ∈ D and M ∈ N. Specifically,
we write z ∼ N (μ, �), with μi = μ(xi ) the mean, and with �i, j = C(xi , x j ) :=
cov(Z(xi , ω), Z(x j , ω)) for every xi , x j ∈ D, and C the covariance function.

An example of such a covariance function is theMatérn covariance

C(xi , x j ) = σ 2 1

2ν−1Γ (ν)

(√
2ν

‖xi − x j‖p

λ

)ν

Kν

(√
2ν

‖xi − x j‖p

λ

)
, xi , x j ∈ D, (3)

whereΓ is the Gamma function and Kν is the modified Bessel function of the second
kind. The parameter λ is the correlation length, σ 2 is the (marginal) variance, and ν

is the smoothness of the random field.
Samples of the Gaussian random field can be computed via the Karhunen–Loève

(KL) expansion
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Z(x, ω) = μ(x) +
∞∑
r=1

√
θr fr (x)ξr (ω). (4)

In this expansion, the ξr (ω), r ≥ 1, are independent standard normally distributed
random numbers and fr and θr are the solutions to the eigenvalue problem

∫
D
C(xi , x j ) fr (x j )dx j = θr fr (xi ), xi , x j ∈ D, (5)

where the eigenfunctions fr need to be normalized for (4) to hold. With every event
ω ∈ Ω we can associate the (infinite-dimensional) vector ξ(ω) = (ξr (ω))r≥1 and,
hence, a realization of the random field k(x, ω). There exist other methods to gen-
erate samples of a random field with given covariance function, such as circulant
embedding [11, 16]. Here we choose the KL expansion because of the best approx-
imation property described below.

In practice, the infinite sum in (4)must be truncated after a finite number of terms s,
that is, ξ(ω)must be truncated to a vector of finite length. TheKL expansion gives the
best (in MSE sense) s-term approximation of the random field if the eigenvalues are
ordered in decreasing magnitude [8, 16]. The value of s to reach a certain accuracy
depends on the decay rate of the eigenvalues θr . The more terms are retained in
the expansion, the better the approximation of the random field, but also, the more
costly the expansion. This cost involves both the composition of the sum in (4),
and the (numerical) solution of the eigenvalue problem (5). When a lot of terms are
required to model the random field, i.e., when the decay of θr is slow, this cost can
no longer be ignored compared to the cost of solving the deterministic PDE in every
sample of (2). Hence, it is necessary to construct algorithms that take advantage of
the best approximation property, and only increase the number of KL terms when
required. In Sect. 3.3 below, we present an algorithm for such a dimension-adaptive
construction of the KL expansion.

3 The Multi-Index Monte Carlo Method

In Sects. 3.1 and 3.2 we introduce the Multi-Index Monte Carlo (MIMC) method
which was presented and analyzed in [15]. Following that, in Sect. 3.3 we discuss an
adaptive version of the method based on techniques used in generalized sparse grids,
see [2, 7]. See also [12] for the combination technique on which MIMC is based.

3.1 Properties of Monotone Sets

The formulation of the MIMC method uses the notion of indices � ∈ S and index
sets I ⊆ S, where S := N

d
0 = {� = (�i )

d
i=1 : �i ∈ N0}, with N0 = {0, 1, 2, . . .} and

d ≥ 1. A monotone set is a nonempty set I ⊆ S such that for all
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τ ≤ � ∈ I ⇒ τ ∈ I , (6)

where τ ≤ � means τ j ≤ � j for all j , see [3]. Property (6) is also known as down-
ward closedness. An index set that is monotone is also called a downward closed or
admissible index set. In the remainder of the text, the index set I will always be
constructed in such a way that it is an admissible index set.

Using the definition of the Kronecker sequence ei := (δi j )
d
j=1, a monotone setI

can also be defined using the property

(
� ∈ I and �i �= 0

) ⇒ � − ei ∈ I for all i = 1, 2, . . . , d.

In other words, for every index � �= (0, 0, . . .) in a monotone set, all indices with
a smaller (but positive) entry in a certain direction are also included in the set. In
the following, we also use the concept of forward neighbors of an index �, i.e., all
indices {� + ei : i = 1, 2, . . . , d}, and backward neighbors of an index �, i.e., all
indices {� − ei : i = 1, 2, . . . , d}.

Examples of monotone sets are rectangles

R(�) := {τ ∈ S : τ ≤ �}

and simplices

Tρ(L) := {τ ∈ S : ρ · τ ≤ L} ,

with ρ ∈ R
d+ and where · denotes the usual Euclidean scalar product in R

d .

3.2 Formulation

Webriefly review the basics of theMIMCmethod and indicate some of its properties.
Consider the approximation of the expected value of a quantity of interest g,

I (g) := E[g] =
∫

Ω

g dP,

by an N -point Monte Carlo estimator

Q(g) := 1

N

N−1∑
n=0

g(ωn).

Here, the ωn, n = 0, 1, . . . refer to N random samples from the probability space Ω .
Hence, the estimator itself is also a random quantity. In our application, the quantity
of interest g cannot be evaluated exactly, and we need to resort to discretizations
g�, where the different components of � = (�1, . . . , �d) are different discretization
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levels of those quantities that need discretization. Note that the dimensionality of the
integral s and the number of discretization dimensions d are not to be confused.

For a given index �, define the difference operator in a certain direction i , denoted
by Δi , as

Δi g� :=
{
g� − g�−ei if �i > 0,

g� otherwise,
i = 1, . . . , d.

The MIMC estimator involves a tensor product Δ := Δ1 ⊗ · · · ⊗ Δd of difference
operators, where the difference is taken with respect to all backward neighbors of
the index �.

Using this definition, the MIMC estimator for I (g) can be formulated as

QL(g) :=
∑

�∈I (L)

Q (Δg�) =
∑

�∈I (L)

1

N�

N�−1∑
n=0

(Δ1 ⊗ · · · ⊗ Δd) g�(ω�,n), (7)

where I (L) is an admissible index set. The parameter L governs the size of the
index set.

Note that the Multilevel Monte Carlo (MLMC) estimator from [4, 9, 10] is a
special case of the MIMC estimator, where d = 1. That is, the summation involves
a loop over a range of scalar levels �, and there is no tensor product involved:

Q(ML)
L (g) :=

L∑
�=0

Q (Δg�) =
L∑

�=0

1

N�

N�−1∑
n=0

Δg�(ω�,n).

For convenience, we use the following shorthand notation: E� := |E[Δg�]| for
the absolute value of the mean and V� := V[Δg�] for the variance. ByW� we denote
the amount of computational work to compute a single realization of the difference
Δg�. The total work of estimator (7) is

Total Work =
∑

�∈I (L)

W�N�. (8)

In (7), one still has the freedom to choose the index set I (L) and the number of
samples N� at each index �. In the following, we will show how these two parameters
can be quantified.

The objective is to find an index set I (L) and sample sizes N� such that (7)
achieves amean square error (MSE) smaller than a prescribed tolerance ε2, with the
lowest possible cost. From standard statistical analysis, it is known that the MSE can
be expressed as a sum of a stochastic error and a discretization error, i.e.,

E
[
(QL(g) − I (g))2

] = E
[
(QL(g) − E[QL(g)])2

] + (E[QL(g)] − I (g))2 . (9)
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The first term in (9) is the variance of the estimator, which, by independence of the
events ω�,n , is given by

V[QL(g)] =
∑

�∈I (L)

V�

N�

. (10)

It can be reduced by increasing the number of samples N�. The second term in (9)
is the square of the bias. It can be reduced by augmenting the index set I (L). A
sufficient condition to ensure an MSE smaller than ε2, is that both terms in (9) are
smaller than ε2/2:

V[QL(g)] = E
[
(QL(g) − E[QL(g)])2

] ≤ ε2/2, and (C1)

|E[QL(g)] − I (g)| ≤ ε/
√
2. (C2)

As in [5, 15], we will also use an alternative error splitting, based on a splitting
parameter. The value of this parameter is then computed using a Bayesian approach.
This alternative splitting will also be used in our numerical experiments later.

The error splitting in (9) will prove to be essential in the algorithm presented
below. Since the total error is the sum of two independent contributions, we can
solve for both unknowns N� and I (L) independently. Minimizing the total cost
subject to the statistical constraint (C1) will give the optimal number of samples.
Minimizing the total cost subject to the bias constraint (C2) will yield the optimal
shape of the index set. When using these optimal values for N�,I (L), and the error
splitting parameter, the cost of the MIMC estimator is minimal, for a given value of
ε2.

3.2.1 Minimizing the Stochastic Error: Optimal Number of Samples

Consider an MIMC estimator with a sufficiently large index setI (L), such that the
bias constraint (C2) is satisfied. Then, one still has to decide the number of samples
for each � ∈ I (L). This freedom can be used to minimize the cost of the MIMC
estimator (8) while assuring that the statistical constraint (C1) is satisfied, i.e.,

min
N�∈R+

∑
τ∈I (L)

NτWτ (11)

s.t.
∑

τ∈I (L)

Vτ

Nτ

≤ ε2

2
.

Thisminimization problem can be solved usingLagrangemultipliers. The optimal
number of samples at each index such that the total cost is minimized, is
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N� = 2

ε2

√
V�

W�

∑
τ∈I (L)

√
VτWτ for all � ∈ I (L). (12)

In practice, this number is rounded up to the nearest integer number of samples. Also,
sample variances and estimates for the cost can be used to replace the true variance
V� and true cost W� at each index. Using (12), we can rewrite the total cost of the
MIMC estimator as

Total Work = 2

ε2

⎛
⎝ ∑

�∈I (L)

√
V�W�

⎞
⎠

2

. (13)

3.2.2 Minimizing the Discretization Error: Optimal Index Sets

The most simple multi-index method considers indices that are contained in cubes
I (L) = R((L , L . . .)) or simplicesI (L) = T(1,1...)(L). It is possible to extend the
latter to the class of general simplices Tρ(�). An a priori analysis could then identify
important directions in the problem and choose a suitable vector ρ. However, this
approach suffers from two drawbacks. First, such an analysis may be difficult or
prohibitively expensive. Furthermore, it is possible that the class of general simplices
is inadequate to represent the problem under consideration, especially when mixed
directions are involved. In our estimator, we will allow general monotone index
sets in the summation (7). The algorithm we designed adaptively detects important
directions in the problem. By a careful construction of the corresponding admissible
index set, we hope to achieve an estimator for which the MSE, for a given amount
of work, is at least as small as for these classical constructions. Note that as with all
adaptive algorithms, the algorithm could be fooled by a quantity of interest for which
it seems there is no benefit of extending the index set at some point, and for which
essential contributions are hidden at an arbitrary further depth in the index set.

Since the index set is finite, the discretization error is equal to the sum of all
neglected contributions, i.e.,

|E[QL(g)] − I (g)| =
∣∣∣∣∣∣

∑
�/∈I (L)

E[Δg�]
∣∣∣∣∣∣ ≤

∑
�/∈I (L)

E�.

Similar to (11), we search for the index set that minimizes the (square root of the)
total amount of work (13). Here, we impose that the bias constraint (C2) is satisfied,
i.e.,
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min
I (L)⊆S

∑
�∈I (L)

√
V�W�

s.t.
∑

�/∈I (L)

E� ≤ ε/
√
2.

This problem can be formulated as a binary knapsack problem by assigning a
profit indicator to each index. Define this profit as the ratio of the error contribution
and the work contribution, i.e.,

P� = E�√
V�W�

, (14)

see [15]. A binary knapsack problem is a knapsack problem where the number of
copies of each kind of item is either zero or one, i.e., we either include or exclude
an index � from the set I (L). In the next section, we introduce an adaptive greedy
algorithm that solves this knapsack problem, where the profits P� are used as item
weights.

3.3 An Adaptive Method

The goal is to find an admissible index set such that the correspondingMSE is as small
as possible subject to an upper bound on the amount of work. Starting from index
(0, 0, . . .), we will successively add indices to the index set such that (a) the resulting
index set remains monotone and (b) the error is reduced as much as possible. That
is, we requireI (0) = {(0, 0, . . .)} andI (L) ⊆ I (L + 1) for all L ≥ 0. Using the
definition of profit above, we can achieve this by always adding the index with the
highest profit to the index set. An algorithm that uses this strategy in the context of
dimension-adaptive quadrature using sparse grids is presented in [7]. We recall the
main ideas below.

The complete algorithm is sketched in Algorithm1. We assume the current index
set I is partitioned into two disjoint sets, containing the active indices A and old
indicesO , respectively. The active setA contains all indices for which none of their
forward neighbors are included in the index setI = A ∪ O . These indices form the
boundary of the index set I and will actively be adapted in the algorithm. The old
index set O contains all other indices of the index set, they have at least one forward
neighbor inI = A ∪ O . Equivalently, this means that all backward neighbors of an
index inI = A ∪ O are always in O , which meansI and O are admissible index
sets. Initially, we setO = ∅ andA = {(0, 0, . . .)}. In every iteration of the adaptive
algorithm, the index �̄ with the largest profit P�̄ is selected from the active set A .
This index is moved from the active set to the old set. Next, all forward neighbors τ

of �̄ are considered. If the neighbor is admissible in the old index set O , the index is
added to the active set A . A number of warm-up samples are taken at index τ to be
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Algorithm 1 Dimension-Adaptive Multi-Index Monte Carlo
� := (0, . . . , 0)
O := ∅

A := {�}
P� := 0
repeat
Select index �̄ from A with largest profit P�̄

A := A \ {�̄}
O := O ∪ {�̄}
for k in 1, 2, . . . , d do

τ := �̄ + ek
if τ − e j ∈ O for all j = 1, 2, . . . , d for which τ j > 0 then
A := A ∪ {τ }
Take N � warm-up samples at index τ

Set Qτ := Q(Δgτ )

Estimate Vτ by (10) and Eτ by |Qτ |
end if

end for
for � ∈ O ∪ A do
Compute optimal number of samples N� using (12)
Ensure that at least min(2, �N��) samples are taken at each index � and re-evaluate Q�

Update the estimate of V� and E�

(Re)compute profit indicator P� using (14)
end for

until
∑

�∈A |Q�| < ε/
√
2

return
∑

�∈O∪A Q�

used in the evaluation of (12). After that, we ensure that at least N� samples are taken
at all indices in the index set I = A ∪ O . Using the updated samples, the profit
indicators, as well as the estimates for V� and E�, are recomputed for all indices in
I . The algorithm continues in the next iteration by selecting the index with the now
largest profit, until the condition on the discretization error (C2) is satisfied. Similar
to the approach in [15], we use the heuristic bias estimate

∣∣∣∣∣∣
∑

�/∈I (L)

E[Δg�]
∣∣∣∣∣∣ ≈

∑
�∈A

|Q(Δg�)| . (15)

Thus, the absolute value of the Monte Carlo estimators for the differences associated
with the indices in the active setA act as an estimate for the bias. Finally, note that as
soon as an index is added to the active setA , it is also used in the evaluation of (7).
Indeed, it does not make sense to take samples at these indices only to evaluate the
profit indicator, and then exclude these samples in the evaluation of the telescoping
sum.
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Fig. 1 Setup for the heat exchanger problem. Hot fluid flows through the left-hand pipe, where a
constant heat fluxΦh is applied. The cooling fluid in the right-hand pipe has a constant temperature
Tc. The exterior temperature is Te. The conductivity of the interior conducting material is kint , while
the conductivity of the exterior insulating material is kext
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Fig. 2 Decay of the eigenvalues θ int and θext

4 A Simple Model for a Heat Exchanger

We study the behavior of the adaptive algorithm by applying it to the heat equa-
tion with random conductivity from (2). A numerical example, using the strongly
simplified model for a heat exchanger from [17] is presented below. Note that this
example, including the choice of its stochastic characteristics, is used for numerical
illustration purposes only.

4.1 The Model

We refer to Fig. 1 for a visualization of the description in this section. A two-
dimensional heat exchanger consists of a rectangular piece of material perforated
by two circular holes. The first hole contains a hot fluid that injects heat at a con-
stant and known rate �h = 125/π , and the second hole contains a cooling fluid at
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−3

0

3

Fig. 3 Example realizations of the (zero-mean) Gaussian fields Z int and Z ext used in the heat
exchanger problem. The insulator material has a lower correlation length and smoothness, and a
higher variance. The associated conductivity is k = exp(Z int ∪ Z ext). The number of terms used in
the KL expansions for Z int and Z ext is 512 and 8 192, respectively

the coarsest mesh an intermediate mesh a fine mesh

Fig. 4 Some finite-element meshes used in the heat exchanger problem. The coarsest mesh has
102 points (144 elements), the intermediate mesh has 309 points (640 elements), and the fine mesh
has 1619 points (2887 elements). The finest mesh used in the simulations is not shown

a constant temperature Tc = 7.5. The conductivity of the heat exchanger material is
modeled as a lognormal random field k int = exp(Z int), where Z int is a Gaussian ran-
domfieldwithmeanμint = 0 andMatérn covariancewith correlation lengthλint = 1,
standard deviation σ int = √

0.1, norm p = 1 and smoothness ν int = 1, see (3).
A layer of insulator material is added to the heat exchanger, to thermally insulate it

from its surroundings,which has a constant temperature Te = 20. The conductivity of
the insulatormaterial ismodeled as a lognormal randomfield kext = exp(Z ext), where
Z ext is a Gaussian random field with mean μext = log(0.01) and Matérn covariance
with correlation length λext = 0.3, standard deviation σ ext = 1, norm p = 1 and
smoothness νext = 0.5.

Samples of both random fields are generated using a truncated KL expansion,
see (4). Figure2 shows the decay of the two-dimensional eigenvalues for both the
conductor (interior) and insulator (exterior) material. These eigenvalues and corre-
sponding eigenfunctions are computedonce for themaximal number of terms allowed
in the expansion. Every realization of the conductivity k = exp(Z) is formed using a
sample of the Gaussian random fields Z int and Z ext. Three samples of the (Gaussian)
random field Z are shown in Fig. 3. Note that Z int only varies mildly in comparison
to Z ext.

For the spatial discretization, we use eleven different nonnested finite-element
(FE) meshes with an increasing number of elements. For every mesh, the number of
points is roughly twice the number of points of its predecessor. That way, the size of
the finite-element system matrix doubles between successive approximations. The
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coarsest mesh has 102 points (144 elements), and the finest mesh has 94614 points
(186268 elements). Three examples are shown in Fig. 4.

The heat flow through the exchanger is described by (2), with source term F := 0.
As a quantity of interest, we consider the value of the temperature at the leftmost
point on the boundary of the hot fluid pipe. As shown in Fig. 6, this corresponds to
the highest expected temperature in the heat exchanger. Note that we have made sure
that this point is included on every FE mesh, to avoid an interpolation error.

4.2 Numerical Results

We set up an adaptiveMIMC algorithmwith three refinement dimensions, i.e. d = 3.
The first dimension corresponds to the spatial discretization, the second dimension
is the number of terms in the KL expansion of the conductor material, and the last
dimension is used for the number of terms in the KL expansion of the insulator
material. The number of terms in either KL expansion doubles between subsequent
approximations, similar to the connection between the different spatial discretiza-
tions. If the effect of adding more KL terms to the approximation of the quantity of
interest was known in advance, one could derive the optimal relation between the
different approximations, similar to [13]. This relation will, amongst others, depend
on the decay rate of the eigenvalues of the KL expansion, hence, it will be different
for the insulator and conductor material. However, in the absence of this knowledge,
doubling the number of terms (a geometric relation, following [13]) seems an obvi-
ous thing to do. Note that the slow eigenvalue decay rate for the insulator material
in Fig. 2 is reflected in the number of terms used in the coarsest approximation: index
(·, 0, 0) corresponds to an approximation using s int0 = 4 terms in the KL expansion
of the heat exchanger material and sext0 = 64 terms in the expansion of the insulator
material.

In practice, we do not start the algorithm from index (0, . . . , 0) as is indicated
in Algorithm1, but start with an index set T(1,1,1)(2), to ensure the availability of
robust estimates for the profit indicator on the coarsest approximations.

The total cost of the computation ofG� is equal to the sumof the cost of composing
the random field using the KL expansion and the cost of the finite-element compu-
tation. For a given index � = (�1, �2, �3), we assume that there are elements(�1)

elements and nodes(�1) nodes in the discretization. TheKL expansions at that index
use s int0 2�2 terms for the conductor and sext0 2�3 terms for the insulator. We propose the
cost model

C1(elements(�1))(s
int
0 2�2 + sext0 2�3) + C2(nodes(�1))

γ , (16)

for some suitable constants C1, C2 and γ . We numerically found the values C1 =
1.596e-8,C2 = 1.426e-6 and γ = 1.664. There is no cost involved in computing the
quantity of interest G� from the solution T (x, ·), since no interpolation is required.
The cost W� of computing a single sample of ΔG� can be computed by expansion
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old set active set highest profit

L= 3 L= 4 L= 5

L= 8 L= 12 L= 16

L= 23 L= 25 L= 29

L= 33 L= 37 L= 40

Fig. 5 Examples of nontrivial index sets in the heat exchanger problem for selected iterations in
the adaptive algorithm
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of the tensor product Δ = Δ1 ⊗ Δ2 ⊗ Δ3. Note that it is also possible to use actual
simulation times as measures for the cost. However, since the cost estimate appears
in the profit indicator, and thus determines the shape of the index set, one should
ensure that the estimates are stable and reliable. Finally, we use the continuation
approach from [5] and run the MIMC algorithm for a sequence of larger tolerances
than required, to obtainmore accurate estimates of the sample variances, and to avoid
having to take warm-up samples at every index.

We run our adaptive algorithm for a relative tolerance of εrel = 1 · 10−3. Note
that Algorithm1 is formulated in terms of an absolute tolerance ε. We adapt for
(estimated) relative tolerances by using the current estimate for the expected value
of the quantity of interest as a scaling factor. The mean value of the quantity of
interest was computed by our algorithm as QL(g) = 133.71 with a standard error
of 10.45 in L = 40 iterations. The standard deviation of the estimator is 0.0975,
and the estimated bias is 0.0782, giving a total (root mean square) error (RMSE)
estimate of 0.125 < εrel · QL(g). Figure5 shows the shape of the index set for some
selected iterations. We see that the adaptive algorithm mainly exploits the spatial
resolutions, until the addition of more spatial levels is estimated to be too expensive
(L = 8). After that, the approximations for the conductor and insulator material are
improved up to 256 and 8192 terms respectively. From L = 25 and beyond, the
mixed directions that improve the approximation for both conductor and insulator
material, and the approximation for the conductor material and the mesh refinement,
are activated. Observe that the final shape of the index set (L = 40) is far from trivial,
and is also not immediately representable by an anisotropic simplex.

Finally, we investigate the performance of our adaptive method compared to stan-
dardMIMCwith the common choice of simplices T(1,1,1)(L) as index sets. The mean
value, RMSE and runtime for all tolerances are shown in Table1. All simulations
are performed on a 2.6GHz Intel Xeon CPU with 64GB of RAM. Observe that both
methods converge to the same value. The adaptive algorithm outperforms the non-
adaptive MIMC method for all values of εrel considered. Note that we are not able
to solve for smaller tolerances using the nonadaptive MIMC method, because of the
increasing memory requirement of the available spatial resolutions.

The adaptive algorithm is not limited to scalar quantities of interest. It is also
possible to include multiple quantities of interest in a single simulation. We then
take the worst value of the profit over all quantities considered to compute the next
iterate, see [10]. As an example, Fig. 6 shows the mean value of the temperature in
the heat exchanger on amesh with 1524 elements, for a relative tolerance of 1 · 10−3.
The highest expected temperature is located at a point on the boundary of the hot
fluid pipe, opposite to the pipe containing the coolant fluid. This is what might have
been anticipated from physical considerations, assuming that the heat flux�h is large
enough to heat the material around the left-hand pipe to a temperature higher than
Te. The effect of the insulator material is obvious from the large temperature gradient
present at the left side of the insulator.
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Table 1 Mean, RMSE and running time for MIMC on the left, and for adaptive MIMC on the
right. The nonadaptive version uses simplices T(1,1,1)(L) as index set

Nonadaptive MIMC Adaptive MIMC

εrel Mean RMSE Time (s) Mean RMSE Time (s)

2.890e-2 135.20 1.948e-0 622 133.77 2.107e-0 591

1.927e-2 134.46 1.293e-0 1175 132.56 1.545e-0 1228

1.285e-2 134.10 1.100e-0 2667 132.47 1.412e-0 1228

8.564e-3 133.04 9.767e-1 11951 132.38 1.115e-0 7034

5.710e-3 133.76 4.430e-1 30552 133.20 4.744e-1 20725

3.806e-3 133.74 4.321e-1 38997 133.61 1.027e-1 28335

2.538e-3 133.72 3.521e-1 92223 133.63 1.723e-1 81711

1.692e-3 133.73 2.789e-1 257698 133.70 1.396e-1 233458

Fig. 6 Mean temperature
field of the heat exchanger
on a 890-point mesh as an
example of a nonscalar
quantity of interest

5 Discussion and Future Work

We have presented a dimension-adaptive Multi-Index Monte Carlo (MIMC) method
for the approximation of the expected value of a quantity of interest that is a function
of the solution of a PDE with random coefficients. The method, which can be seen
as a generalization of the classical MIMC method, automatically finds important
directions in the problem. These directions are not limited to spatial dimensions only,
as is demonstrated by a numerical experiment. We have demonstrated an efficient
implementation of the method, based on a similar construction used in dimension-
adaptive integration with sparse grids.

The adaptive algorithm is particularly interesting when the optimal shape of the
MIMC index set is unknown or nontrivial, since it does not require a priori knowledge
of the structure of the problem. In these situations, themethodmay include or exclude
certain indices to achieve an estimator that minimizes computational effort needed
to obtain a certain tolerance.



A Dimension-Adaptive Multi-Index Monte Carlo Method Applied … 445

Finally, adaptivity can be used in combination with other techniques, such as
Quasi-Monte Carlo, see [6], or [18] for the multi-index setting. We expect similar
gains as outlined in this paper.
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Towards Real-Time Monte Carlo
for Biomedicine

Shuang Zhao, Rong Kong and Jerome Spanier

Abstract Monte Carlo methods provide the “gold standard” computational tech-
nique for solving biomedical problems but their use is hindered by the slow conver-
gence of the sample means. An exponential increase in the convergence rate can be
obtained by adaptively modifying the sampling and weighting strategy employed.
However, if the radiance is represented globally by a truncated expansion of basis
functions, or locally by a region-wise constant or low degree polynomial, a bias is
introduced by the truncation and/or the number of subregions. The sheer number of
expansion coefficients or geometric subdivisions created by the biased representation
then partly or entirely offsets the geometric acceleration of the convergence rate. As
well, the (unknown amount of) bias is unacceptable for a gold standard numerical
method. We introduce a new unbiased estimator of the solution of radiative transfer
equation (RTE) that constrains the radiance to obey the transport equation. We pro-
vide numerical evidence of the superiority of this Transport-Constrained Unbiased
Radiance Estimator (T-CURE) in various transport problems and indicate its promise
for general heterogeneous problems.
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1 Introduction

Monte Carlo simulation has provided the “gold standard” numerical method for
solving biomedical problems for the past thirty years [22]. Nevertheless, its slow
convergence (at the rate N−1/2 where N equals sample size) inhibits use of Monte
Carlo on a routine basis. Instead, diffusion-based numerical methods are often used
because of their superior speed of execution, even though they may provide very
poor descriptions of the radiant light field in many situations. Consequently, there
has been a lot of interest in accelerating the convergence ofMonte Carlo simulations,
especially within the biomedical community, where accuracy is a primary focus.

Conventional density function estimation methods [6, 16, 17] are widely used
with success where photorealism—not image perfection—is the goal. Such methods
have revolutionized the rendering of scenes for electronic games and movies [7].
Density estimation methods avoid the need to represent the radiance in a functional
expansion, but they introduce the need for “smoothing parameters”which also causes
a bias in the density estimator. This precludes convergence to the exact solution and
is unacceptable as a gold standard method for biomedicine or biology. The question
we then asked was: Can any of these ideas be used in such a way that the radiance
it produces actually satisfies the governing radiative transport equation? If so, might
that produce a candidate to serve as a gold standard for biomedical simulations? That
investigation has led to the publication [12] and to this paper.

2 Radiative Transport Fundamentals

Before proceeding with this line of thinking we want to establish our notation and
clarify our goals.

The rigorous transport of light in tissue usually begins with the integro-differential
form of the equation which is then transformed to the integral form [18] of the RTE:

L(P) =
∫

Γ

K (P ′ → P) L(P ′) dω′dρ + S(P), (1)

where P := (r,ω), P ′ := (r ′,ω′), r ′ := r − ρω and

K (P ′ → P) := μs(r ′)
μt (r ′)

f (r ′; ω′ → ω) T (r ′ → r; ω), (2)

T (r ′ → r; ω) := μt (r ′) e− ∫ ‖r−r′‖
0 μt (r−τω)dτ , (3)

with source function
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S(P) := e− ∫ R
0 μt (r−τω)dτ Q0(r − Rω,ω) +

∫ R

0
e− ∫ ρ

0 μt (r−τω)dτ Q(r − ρω,ω) dρ.

(4)
Appendix 7 provides details on how Eq. (1) arises from the integro-differential equa-
tion (24) in the time-independent case.

To complete the mathematical description,

• Γ := V × S
2 (V ⊆ R

3) denotes the phase space of vectors (r,ω);
• μs and μa are respectively the scattering and absorption coefficients;
• μt := μs + μa is the total attenuation coefficient;
• f is the single-scattering phase function (that scatters photons from direction ω′
to ω at location r ′);

• L denotes photon radiance.

2.1 Role of Eqs. (1)–(4) in Generating Samples

We now indicate how the Eqs. (1)–(4) play a role in generating photon biographies;
i.e., samples drawn from our sample space B.

Figure1 depicts a hypothetical photon biography that is launched from the light
source at the left, makes collisions at the locations r1, r2, r3 and r4, then exits the
tissue at the detector on the right. If we assume that there is no internal volumetric
source, (Q ≡ 0 in Eq. (4)), but there is a nonzero source of light Q0 on the boundary,
then the launch position and direction P0 = (r0,ω0) are drawn by sampling Q0,
while the first collision location r1 is drawn by sampling the exponential probability
density function with exponent

∫ ‖r0−r1‖
0 μt (r0 − τω0) dτ (see Eq. (3)). Provided that

the photon is scattered at r1 (with probabilityμs/μt ), the directionω0 is scattered into
the direction ω1 by sampling from the single-scattering phase function f (r1; ω0 →
ω1). This process of locating successive collision points and unit directions continues
until the photon biography P0 = (r0,ω0), P1 = (r1,ω1), . . . either terminates by
absorption (with probability 1 − μs/μt ) at some collision point or escapes from the
tissue, either at the detector or elsewhere on ∂V .

2.2 Equivalence Between Physical/Analytic and Stochastic
Models

The physical/analytic RTE model consists of the equations of radiative transport
in tissue, together with a linear functional Li of the solution L of the RTE for each
detector:

Li =
∫

Γ

di (r,ω)L(r,ω) dr dω, (i = 1, . . . , d).



450 S. Zhao et al.

Scattering medium

Source Detector

Fig. 1 Illustration of a photon biography comprising four collision points at r1, r2, r3, r4. When
entering a collision r i , the direction ωi−1 of the photon changes to ωi according to the single-
scattering phase function at r i (indicated as green ellipses)

The stochastic/probabilistic RTE model used to characterize the Monte Carlo
solution of this system consists of a probability measure spaceB, a set of measurable
subsets � of B, and a probability measure M on B together with d random variables
�i : B → R for i = 1, . . . , d, each of which describes the contribution (tally) of any
photon biography b̄ to the detector Li . Here,

• B is the sample space of all possible photon biographies b̄ (that are termed as light
transport paths in computer graphics [20], as illustrated in Fig. 1);

• �i (b̄) is the tally/score associated with biography b̄ for detector i ;
• E[�i ] is the expected value of �i with respect to M;
• V is the physical domain of the phase space Γ .

If the measure M on B is induced by the analog simulation (by launching photons
according to the physical source Q, transporting them from r ′ to r along ω by
sampling T , absorbing them at r with probability 1 − μs/μt , scattering them at r
with probability μs/μt and changing their direction from ω′ to ω by sampling f ), it
is the case that for i = 1, 2, . . . , d:

E[�i ] =
∫
B

�i (b̄) dM(b̄) =
∫

Γ

di (r,ω)L(r,ω) dr dω = Li . (5)

The equality (5) establishes that the probabilistic model (the left-hand side) and the
analytic model (the right-hand side) both represent the quantities Li being estimated.

The same equality shows that each �i is a theoretically unbiased estimator of
Li for every N :

1

N

N∑
j=1

�i (b̄ j )
N→∞−−−→

∫
B

�i (b̄) dM(b̄) = Li . (6)

The symbol � is reserved here for a random variable on the space B of all possible
photon biographies b̄ (i.e., the sample space), N is the total number of photons
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released from the source, and M denotes the probability measure induced on B by
the process associated with generating b̄ ∈ B. That is, the measure M is constructed
from the choice of probability density functions used to launch, transport, scatter and
absorb each biography b̄, whether these are analog or not.

3 Our Goal and Current Status

Our previous research (see [8–11, 14]) on adaptive Monte Carlo algorithms for
radiative transport problems resulted in the development of several geometrically
convergent algorithms for global transport solutions L . By geometric convergence,
we mean

Es < λEs−1 < λs E0, (0 < λ < 1),

where s is the stage number and Es is the sth stage error; e.g.,

Es =
∥∥∥L(P) − L̃s(P)

∥∥∥∞
,

and L̃s(P) is an approximation obtained in the sth stage to L(P), the solution of
the radiative transport equation (RTE). The geometric convergence means that the
rate of convergence of the approximate solution L̃s(P) to the solution L(P) is
exponentially greater than the central limit theorem-constrained rate of non-adaptive
methods. However, taking into account both variance and time, our true goal for
adaptive methods is to exponentially increase the computational efficiency

Eff := 1

Var × T
,

when compared with non-adaptiveMonte Carlo, where Var is the estimator variance,
and T denotes total computation time.

We have demonstrated geometric convergence using both correlated sampling
and importance sampling as the stage-to-stage variance reduction mechanisms. Our
algorithms, as well as others developed at Los Alamos [1–3], also achieve geometric
convergence but each faces implementation challenges and limitations. For example,
for SequentialCorrelatedSampling (SCS), the evaluation of the residual (i.e., theRTE
equation error) and its use in generating a distributed source for each new adaptive
stage creates unavoidable new sources of approximation errors. However, SCS is fast
and very robust because each adaptive stage produces a correction to the estimate
of the solution obtained from all of the previous stages. For Adaptive Importance
Sampling (AIS), there is both a cost and loss of precision involved in sampling from
the complex importance-modified expressions that result from altering the kernel K
at each adaptive stage. On the plus side, AIS is very powerful and seems to produce
the most rapid error reduction per adaptive stage of those adaptive methods we know.
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Table 1 Comparison of the convergence characteristics of GWAS and AIS when each is used to
estimate the solution of a 1D bidirectional RTE for which an exact solution is known

Method S Est. ‖R‖ σ 2 t Rel. Eff

Exact – 0.8964537768861041 – – – ∞
GWAS 60 0.8964537768857454 5.95

×10−13
4.29
×10−21

203,940 1.142
×1015

AIS 20 0.8964537768868207 5.36
×10−12

6.08
×10−19

743,100 2.212
×1012

In [19]we introduced anewadaptiveMonteCarlomethod—GeneralizedWeighted
Analog Sampling (GWAS)—for the solution of RTEs. The idea behind GWAS is to
combine the power of importance sampling with strategies that loosen the restric-
tions associated with sampling from importance-modified transport kernels. In this
way, we hoped to combine rapid error reduction with fast algorithm execution in
order to exponentially increase the computational efficiency. The price we pay for
the flexibility of GWAS is that it biased. The fact that GWAS is biased (though
asymptotically unbiased) greatly complicates the proof that it produces geometri-
cally convergent estimates of RTE solutions. However, we have recently proved a
new theorem that establishes that geometric convergence does obtain forGWAS [13].
As well, GWAS is able to provide increased computational efficiency compared with
AIS, as we showed in [13]. The complete numerical results are provided in this recent
publication, but here we repeat the table that summarizes this behavior.

We note that GWAS has amuch higher computational efficiency thanAIS because
of its speed of execution. Note, too, that even though the variance of GWAS is more
than 100 times as large as that of AIS, the efficiency of GWAS is more than 5,000
times that of AIS.

Each of these three adaptive methods:

1. generates biographies in stages, each of which consists of the same number of
biographies;

2. applies variance reduction (correlated sampling, importance sampling, and
GWAS) in each stage, linking stage s output to stage (s + 1) input in an intrinsic
way;

3. makes use of an analytic representation of the radiance.

Detailed examination of the behavior of these three adaptive algorithms reveals
that the need to represent theRTEsolutionbymeans of a formula introduces bias in its
adaptive estimates. This, in turn, prevents each algorithm from achieving unlimited
precision as the number of adaptive stages tends to infinity. Thus, even though we
don’t need unlimited precision in order to make our adaptive algorithms useful,
introducing an unknown amount of bias in our estimates falls short of our goal to
create a newgold standard simulation tool for adoption by the biomedical community.
In fact, the central obstacle to creating a real-time transport-rigorous Monte Carlo
simulator is estimator bias (Table1).
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4 The Role of Bias in Estimating Radiance

The theoretical bias of an estimator �(b̄) of a linear functional

I =
∫
V×S2

d(r,ω) L(r,ω) dr dω,

of the radiance L(r,ω) defined on the sample space B is

E[�(b̄)] − I =
∫
B

�(b̄) dM(b̄) − I.

Theoretical bias introduces a component of systematic error in the mean integrated
square error:

MISE = E

[∫
B

(�(b̄) − I )2 dM(b̄)

]

=
∫
B

(
E[�(b̄)] − I + �(b̄) − E[�(b̄)])2 dM(b̄)

=
∫
B

BIAS2[�(b̄)] dM(b̄) +
∫
B

Var[�(b̄)] dM(b̄).

(7)

Here E[] is the expected value operator and b̄ ∈ B is a photon biography (i.e., a
sample). In contrast with theoretical bias, we will say that computational bias re-
sults from the accumulation of small errors due to the computer’s limited precision.
Computational bias is unavoidable inmost cases. However, with sufficient care, com-
putational sources of error can be controlled and estimated, whereas the source of
error from theoretical bias is largely unknown and therefore much more difficult to
estimate and to control.

The first term of the right hand side of (7) is the integral of the squared bias, while
the second term is the integrated variance. Thus, for biased estimators it is necessary
to control both the bias and the variance to exhibit geometric convergence.

Our approach to the avoidance of biased RTE estimators was to see whether
the biased estimators often used in the graphics community could be improved or
modified sufficiently to serve as the engine of a “gold standard” RTE solver. One of
the conventional tools used for achieving realistic-looking scenes rapidly is kernel
density estimation [17].

Kernel density estimation is a non-parametric method (i.e., no assumptions are
made about the unknown underlying pdf) for recovering an unknown probability den-
sity function f (x) by drawing samples x1, x2, . . . , xn that are distributed according
to f (x). The kernel estimator with kernel k (satisfying

∫ ∞
−∞ k(x) dx = 1) produces

the estimate f̃ (x) of the pdf f (x) according to
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f̃ (x) = 1

nh

n∑
i=1

k

(
x − Xi

h

)
. (8)

where X1, . . . , Xn are samples drawn independently from f (x) and h is the window
width (or smoothing parameter) that controls the influence of the kernel k near each
sample point Xi . The kernel k can be chosen in a variety of ways: for example, as a
standard Gaussian density

kG(x) = 1√
2π

e−x2/2,

if x ranges over the entire real line, or as the Epanechnikov density

kE (x) =
{
6
(
1
4 − x2

)
x2 < 1

4 ;
0 otherwise,

or in various other ways. Kernel Density Estimation is consistent: i.e., f̃h(x) con-
verges to f (x) as the number of samples n increases without limit, provided that the
smoothing parameter h tends to 0 in such a way that the product hn tends to ∞. This
last requirement means roughly that there are sufficiently many samples within the
support sets of the kernel as the smoothing parameter is reduced.

Instead of applying conventional (unconstrained) density estimation to the RTE,
we took the approach of constraining our method; i.e., to relate the RTE solution
expansion directly to the random walks actually generated, treating these as the
“samples” of the Monte Carlo simulation. Indeed, the sample space B is defined
in this way [18], and the new Transport-Constrained Unbiased Radiance Estimator
(T-CURE)does exactly this: it describes the expected contribution to theRTEsolution
at any point of phase space from each collision point of every photon biography. This
creates an unbiased representation of the global RTE solution for all sample sizes
that requires no smoothing parameters nor any special treatment of boundaries.

In the following section we will show how the T-CURE estimator can be derived
as an extension of the conventional collision estimator [18].

4.1 T-CURE

We return to the integral equation characterized by Eq. (1), together with Eqs. (2),
(3) and (4). The scattering integrals appearing on the right hand side of Eq. (1) are
functions defined on the problem phase space Γ that are closely related to the RTE
solution itself. We establish an unbiased estimator for those functions (hence, the
RTE solutions) that extends the “conventional” collision estimators [18] to produce
estimates of the entire RTE solution.

First, however, we consider the problem of computing the inner product of L , the
solution of Eq. (1), and some S∗ : Γ → R:
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I = 〈S∗, L〉 :=
∫

Γ

S∗(r,ω)L(r,ω) dω dr. (9)

Instead of estimating Eq. (9) directly, one can equally well solve its dual problem
which leads to the same answer I :

I = 〈S, L∗〉 :=
∫

Γ

S(r,ω)L∗(r,ω) dω dr, (10)

where L∗ is the solution to the adjoint integral equation:

L∗(P) =
∫

Γ

K ∗(P → P ′) L∗(P ′) dρ dω′ + S∗(P), (11)

with K ∗ being the adjoint of K satisfying K ∗(P → P ′) = K (P ′ → P).
The conventional collision estimators for Eqs. (9) and (10) are

η(b̄) := S(P1)

p1(P1)

k∑
i=1

S∗(P i ) and η∗(b̄) := S∗(P1)

p∗
1(P1)

k∑
i=1

S(P i ), (12)

where b̄ := (P1, P2, . . . , Pk) is a biography consisting of collision points P i =
(r i ,ωi ) and k is the number of collisions made by b̄ in the interior of the physical
domain V of Γ . For the estimator η in Eq. (12), b̄ is created using the following
random walk process. The first collision P1 is drawn from a pre-defined density
p1 (which is normally selected to be proportional to S). At each collision P i , the
next state, which can either be the next collision P i+1 or the termination of the
random walk (leading to k = i), is determined using K ∗. Similarly, when η∗ is used,
the photon biography b̄ should be generated in the adjoint manner by sampling P1

based on S∗ and the next state at collision P i using K .
These conventional collision estimators (12) can be highly inefficient when S

or S∗ are concentrated in small subsets of Γ and vanishes everywhere else. This,
unfortunately, is usually the case in biomedicine since many applications involve
optical sources and/or detectors with small physical sizes (e.g., lasers and optical
fibers). In particular, when the support of S∗ is small, S∗(P i ) will be zero with high
probability, making the estimator η inefficient. On the other hand, when S vanishes
almost everywhere in the phase space, η will offer limited efficiency. Further, S and
S∗ can contain delta functions, making direct evaluations of S∗(P i ) in η and S(P i )

in η∗ problematic.
To ease this problem, we introduce T-CURE estimators as an extension of the

conventional collision estimators (12). For notational convenience, define operators
K and K ∗ as functionals on h : Γ → R as
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(K h)(P) :=
∫

Γ

K (P ′ → P) h(P ′) dω′ dρ, (13)

(K ∗h)(P) :=
∫

Γ

K ∗(P → P ′) h(P ′) dρ dω′, (14)

where the use of ρ is the same as in Eqs. (1)–(4). Then, Eqs. (1) and (11) respectively
simplify to

L = K L + S, (15)

L∗ = K ∗L∗ + S∗. (16)

It follows that

〈S∗, L〉 = 〈S∗, K L + S〉 = 〈S∗, H〉 + 〈S∗, S〉, (17)

〈S, L∗〉 = 〈S, K ∗L∗ + S∗〉 = 〈S, H∗〉 + 〈S, S∗〉, (18)

with H := K L and H∗ := K ∗L∗. In Eqs. (17) and (18), 〈S∗, S〉 contains only
known quantities and can be easily evaluated. Thus, we now focus on estimating the
remaining terms 〈S∗, H〉 and 〈S, H∗〉.

By respectively applyingK andK ∗ to both sides of Eqs. (15) and (16), we have

H = K H + K S, (19)

H∗ = K ∗H∗ + K ∗S∗. (20)

Notice that Eqs. (19) and (20) differ from Eqs. (15) and (16) only by the source
terms. Therefore, 〈S∗, H〉 and 〈S, H∗〉 can be estimated using Eq. (12) with updated
source terms, yielding

ηNE(b̄) := S(P1)

p1(P1)

k∑
i=1

(K ∗S∗)(P i ),

η∗
NE(b̄) := S∗(P1)

p∗
1(P1)

k∑
i=1

(K S)(P i ).

(21)

Thanks to the integrals involved in K and K ∗, as defined in Eqs. (13) and (14),
K S and K ∗S∗ generally have much greater supports than S and S∗, making our
T-CURE estimators (21) significantly more effective than the conventional ones (12)
when S and S∗ vanish almost everywhere in the phase space.

Since both K and S (as well as K ∗ and S∗) are known, we can, in principle,
evaluate these new extended next-event estimators (21) exactly. In particular, given
Eqs. (13) and (14), it holds that
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Fig. 2 Illustration of T-CURE Mechanism: Photon biography b̄ moving in direction ωi collides
at r i in the blow-up at the right. Our estimator ηNE from Eq. (21) involves evaluating K ∗S∗ at
each collision (r i ,ωi ). We estimate (K ∗S∗)(r i ,ωi ) by selecting some ω ∈ S

2 and r ∈ V based
on K ∗(r i ,ωi → r,ω) S∗(r i ,ωi ) but independent of (r i+1,ωi+1)

(K ∗S∗)(r i ,ωi ) :=
∫

Γ

K ∗(r i ,ωi → r i + ρω,ω) S∗(r,ω) dρ dω, (22)

(K S)(r i ,ωi ) :=
∫

Γ

K (r i − ρωi ,ω → r i ,ωi ) S(r,ω) dω dρ. (23)

In practice, the integrals in Eqs. (22) and (23) can be evaluated analytically or nu-
merically depending on the exact forms of S and S∗. Lastly, the evaluation of the
T-CURE tallies from every collision at (r i ,ωi ) can be accomplished either on-the-fly
or by post-processing all of the biography collision points saved from the generation
of the photon biographies. This is because the T-CURE tally at (r i ,ωi ) is indepen-
dent of the process that generates the next collision at (r i+1,ωi+1). See Fig. 2 for an
illustration of this process.

Besides offering superior computational efficiency, our new T-CURE estimators
also enjoy the following properties:

• They require the imposition of no mesh on the phase space, so they provide the
basis for plotting or otherwise displaying features of the RTE solution over any
desired mesh, or of several such, based on a single set of biographies.

• They can be implemented either with “on-the-fly” computation or, after generating
a “smallish” number N0 of biographies, by post-processing key data stored from
the N0 “baseline” set of biographies, or by a combination of these two methods.

The power of T-CURE estimation derives from replacing occasional contributions
to reflectance from biographies that are actually detected (i.e., the terminal estimate
of reflectance) by sums of analytic formulas over all the collisions of biographies,
whether or not they ultimately reach the detector. Not surprisingly, this replace-
ment often (though not always!) achieves variance reduction in estimates of reflec-
tance.
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Fig. 3 Comparison of transport-constrained density estimation with both histogram and Epanech-
nikov density estimators. The exact solution of this 1D problem is known and constitutes the black
curve, while the twomore conventional density estimators are indicated in blue and green. Estimated
standard deviations are shown as error bars

Previously, we have shown that T-CURE is unbiased for all sample sizes, in
sharp contrastwith the conventional (unconstrained) density estimators [12]. Aswell,
T-CURE is roughly an order of magnitude more accurate than the conventional ones
found in the statistical literature [6, 15, 16]. Figure3 (from our prior work [12])
illustrates these gains in a 1-D model RTE problem that plots the (scalar) intensity
of the light field against distance, x , from the light source.

5 Recent Numerical Studies: T-CURE in Multi-dimensions

The comparison of T-CUREperformancewith that of the histogram and theEpanech-
nikov density estimators was motivated by the desire to compare its computational
efficiency as a constrained “density estimator” with that of the more conventional
unconstrained density estimators that are widely used by the graphics community.
The bidirectional problem is especially simple since it involves only one spatial
dimension and two discrete scattering directions. In order to investigate how the
T-CURE estimator behaves when applied to more challenging problems, we turned
to multilayer tissue problems. For all of these numerical experiments we used input
data typical of normal cervical tissue. The tissue was represented as two layers: a
top epithelial layer and the stromal layer below. Optical data for this 5-D problem is
shown in the table:
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Layer Optical data Layer thickness
μs μa g

Epithelium ∼80/cm [5] 0.12/cm 0.95 360 µm [21]
Stroma 150/cm [4] 0.15–1.2/cma 0.88 ∞

Particular value for μa depends on whether there is Hb absorption at that wavelength

Intuitively, we do not expect the performance of T-CURE to degrade significantly
as the dimension of the underlying phase space increases. This is because the over-
head associated with T-CURE depends mainly on the number of collisions, which is
determined by the optical properties, not the dimension of the phase space.

Next we illustrate the use of T-CURE to estimate spatially resolved reflectances
in two tissue problems. Both experiments used the two-layer data for normal cervical
tissue shown in the table above but ignore possible refractive index mismatches at
the interfaces (Fig. 4).

Note especially the graininess of the terminal estimator and also how the infor-
mation degrades as the source-detector distances increase. This graininess contrasts
with the much greater smoothness of the T-CURE images, even at 10.0cm from the
source where the signal is quite low. Note also the scales along the y-axis of the
images. Even though the magnitude of the signal falls by about two orders of mag-
nitude as the source and detector radii shrink, the T-CURE 95% relative confidence
interval sizes remain below 3.5% over the entire range of source-detector distances,
while the terminal 95% confidence interval sizes grow from 15 to 100% as the s-d
distances grow from 1.0 to 10.0cm (Fig. 5).

Fig. 4 5-D Cervical Tissue Problem. This example displays another advantage of T-CURE when
compared to more traditional estimators: one can generate a “smallish” initial set of biographies,
show the output from that, and then refine the output mesh by post-processing the initial set without
generating any new biographies. For example, the plot on the right was produced by processing
biographies “on the fly” (6min), while the refined plot on the left was obtained by post-processing
stored data from these biographies (few seconds)
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Fig. 5 In this problem, there is a single source at (0, 0, 0) and six detectors spaced at distances
1.0, 1.5, 2.0, 3.0, 5.0 and 10.0cm from the source. Both the source and detector are discs with
identically small radii R = 0.0025cm.We applied both the terminal (top) and our T-CURE (bottom)
estimators to this problem by letting them run for approximately 1700s for each data point. In both
experiments, the left plot shows estimation results and the right plot shows the relative size of
95% confidence intervals (obtained using twice the standard deviation of the sample data). These
confidence intervals are also drawn in the left plots (as error bars). Lastly, the red dashed lines
indicate the solution obtained using the other estimator, demonstrating that our analog and T-CURE
estimators converge to the same answer

6 Summary and Future Work

Wehave advanced our earlierwork [12] by examining the computational efficiency of
T-CURE onmultidimensional, heterogeneous (multilayer) tissue problems involving
5 independent variables: 3 for position and 2 for unit direction. We observe that the
advantages of T-CURE are maintained in the higher dimensional cases. We believe
that this new estimator has the potential to be the computational engine of an adaptive
(geometrically convergent) algorithm.
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We will turn our attention next to the fully general multilayer tissue problem,
including the possibility of refractive index mismatches at the layer interfaces. This
introduces new challenges that call for a strategy that controls the run time con-
sumption caused by photon biographies that can cross refractive-index-mismatched
layer interfaces in both directions a very large number of times. Provided that this
degradation of the computational power of the adaptive algorithm can be controlled,
the resulting T-CURE-based adaptive algorithm should serve as a new gold standard
Monte Carlo solver for biomedical problems.
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7 Appendix: Transport Equations

The time independent transport equation can be written as

(ω · ∇)L + μt (r)L(r,ω) =
∫
S2

μs(r) f (r ′; ω′ → ω) L(r,ω′) dω′ + Q(r,ω),

(24)
for all r ∈ V ⊆ R

3 and
L(r,ω) = Q0(r,ω), (25)

for all r ∈ ∂V and ω ∈ S
2 satisfying ω · n(r) < 0 as the boundary condition. In

Eqs. (24) and (25), r := (x, y, z) and n(r) denotes the outward unit normal on the
boundary ∂V at r . Note that

ω = ωx i + ωy j + ωzk = sin θ cosφ i + sin θ sin φ j + cos θ k, (26)

ω · ∇ = sin θ cosφ
∂

∂x
+ sin θ sin φ

∂

∂y
+ cos θ

∂

∂z
, (27)

we now convert Eq. (24) to an integral equation using the method of characteristics.
Consider the following characteristic system for Eq. (24):

dx

dρ
= −ωx ,

dy

dρ
= −ωy,

dz

dρ
= −ωz . (28)
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Solving Eq. (28) produces

x = x0 − ωxρ, y = y0 − ωyρ, z = z0 − ωzρ. (29)

We can then write Eq. (24) in the following form:

− dL(r ′,ω)

dρ
+ μt (r ′)L(r ′, ω) =

∫
S2

μs(r ′) f (r ′; ω′ → ω) L(r ′, ω′) dω′ + Q(r ′, ω),

(30)
where r ′ := r0 − ρω, which can in turn be rewritten as:

− d

dρ

[
e− ∫ ρ

0 μt (r0−τω) dτ L(r ′, ω)
]

= e− ∫ ρ

0 μt (r0−τω) dτ

[∫
S2

μs(r ′) f (r ′; ω′ → ω)L(r ′, ω′) dω′ + Q(r ′,ω)

]
,

(31)

We now integrate the two sides of Eq. (30) with respect to ρ from ρ = 0 to ρ = R
and replace r0 with r to produce:

L(r,ω)

=
∫ R

0
e− ∫ ρ

0 μt (r−τω) dτ

[
μs(r ′)

∫
S2

f (r ′; ω′ → ω) L(r ′,ω′)dω′ + Q(r ′,ω)

]
dρ

+ e− ∫ R
0 μt (r−τω) dτ Q0(r − Rω, ω).

(32)
or

L(P) =
∫

Γ

K (P ′ → P) L(P ′) dω′ dρ + S(P), (33)

where P := (r,ω), P ′ := (r ′,ω′),

K (P ′ → P) := μs(r ′)
μt (r ′)

f (r ′;ω′ → ω) T (r ′ → r; ω),

T (r ′ → r; ω) := μt (r ′) exp

(
−

∫ ‖r−r ′‖

0
μt (r − τω) dτ

)
,

S(P) := e− ∫ R
0 μt (r−τω) dτ Q0(r − Rω, ω)

+
∫ R

0
e− ∫ ρ

0 μt (r−τω) dτ Q(r − ρω, ω)dρ.

Eqs. (32) and (33) are the integral forms of the RTE that we seek.
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Rates of Convergence and CLTs
for Subcanonical Debiased MLMC

Zeyu Zheng, Jose Blanchet and Peter W. Glynn

Abstract In constructing debiased multi-level Monte Carlo (MLMC) estimators,
one must choose a randomization distribution. In some algorithmic contexts, an
optimal choice for the randomization distribution leads to a setting in which the
mean time to generate an unbiased observation is infinite. This paper extends the
well known efficiency theory for Monte Carlo algorithms in the setting of a finite
mean for this generation time to the infinite mean case. The theory draws upon
stable law weak convergence results, and leads directly to exact convergence rates
and central limit theorems (CLTs) for various debiased MLMC algorithms, most
particularly as they arise in the context of stochastic differential equations. Our CLT
theory also allows simulators to construct asymptotically valid confidence intervals
for such infinite mean MLMC algorithms.

Keywords Monte Carlo estimator efficiency · Central limit theorems
Subcanonical convergence rates · Infinite mean generation time · Infinite variance

1 Introduction

In comparing Monte Carlo algorithms, a key result in the literature concerns the
efficiency trade-off between the variance of an estimator, and the computer time
required to compute that estimator. In particular, suppose that a quantity z = E(X)

is to be computed. The associatedMonte Carlo estimator is constructed by generating
independent and identically distributed (iid) copies X1, X2, . . . of X ; the computer
time required to generate Xi is given by τi , a positive random variable (rv). The
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(Xi , τi ) pairs are then iid in i , where Xi and τi are generally correlated. Given a
computer time budget c, let N (c) be the number of Xi ’s generated in c units of
computer time, so that N (c) = max{n ≥ 0 : τ1 + · · · + τn ≤ c}. The estimator for z
that is available with computational budget c is then X̄ N (c), where X̄n = n−1(X1 +
· · · + Xn). It is well known that when E(τ1) < ∞ and Var(X1) < ∞, the central
limit theorem (CLT)

c1/2
(
X̄ N (c) − z

) ⇒ √
E(τ1) · Var(X1) N (0, 1) (1)

holds as c → ∞, where⇒ denotes weak convergence, and N (0, 1) denotes a normal
rv with mean 0 and variance 1. With (1) in hand, one can now compare the efficiency
of different algorithms (as associated with two rv’s X and Y for which E(X) = z =
E(Y )) for a given (large) computational budget c. The result (1) is discussed in [7],
but is worked out in much greater detail in [5]. In the latter reference, the theory
focuses on settings in which E(τ1) < ∞; an extension to Var(X1) = ∞ can also be
found there.

In this paper, we extend this efficiency framework to the setting in which
E(τ1) = ∞. As we shall argue in Sect. 3, this extension is useful in some applica-
tions of debiased MLMC; see [10]. In particular, there are various debiased MLMC
algorithms which lead naturally to E(τ1) = ∞; such algorithms are believed to con-
verge at a rate slower than the “canonical” c−1/2 rate associated with (1), so that they
exhibit “subcanonical rates.” However, theoretical analysis of such algorithms has
been hampered by the fact that no analog to (1) existswhen E(τ1) = ∞. For example,
much of the theory on subcanonical MLMC establishes upper bounds on the rate of
convergence, but not lower bounds. Such lower bounds would follow automatically,
in the presence of an analog to (1). Other references which study estimators based on
Multilevel Monte Carlo (MLMC) via weak convergence methods include [1, 6, 9]
(but they do not analyze debiased estimators, nor do they focus on the subcanonical
case studied here).

It is worth noting that the act of terminating a debiased computation at a fixed
computational budget inevitably introduces bias. This bias is theoretically inevitable,
since any part of the sample space for the underlying random variables that takes
more computation than provided by the budget can not be sampled within the given
budget. Fortunately, the bias of the estimators discussed here typically goes to zero
rapidly; see [4]. Furthermore, in the limit theorems described in this paper, the bias
is always of smaller order than the sampling variability, as suggested by the fact that
the limit random variables in all our theorems have mean zero.

This paper establishes limit theory for such subcanonical rate algorithms in Sect. 2
for both the case in which X has finite variance (Theorems 1 and 2) and when X is in
the domain of attraction of a finitemean stable law (Theorem 3). Section3 shows how
the theory applies specifically to the debiased MLMC setting, and provides theory
that slightly improves upon the known convergence rates for such algorithms in the
stochastic differential equation context, and shows how the theory can be used to
obtain asymptotically valid confidence intervals for such infinite mean procedures.
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2 The Key Limit Theorems When E(τ1) = ∞

In the setting inwhich E(τ1) = ∞, limit theory for sums and averages typically fail to
hold unless onemakes strong assumptions about the tail behavior of τ1. Consequently,
we now require that τ1 satisfy the tail condition:

A1. There exists α ∈ (0, 1] and a slowly varying function L(·) such that

P(τ1 > x) = x−αL(x)

for x ≥ 0.

Remark 1 We note that a function L(·) is said to be slowly varying if for each q > 0,
L(qx)/L(x) → 1 as x → ∞.

The assumption A1 is a strong requirement on the tail of τ1 that comes close to
asserting that τ1 has a parametric-type Pareto tail. For typical Monte Carlo algo-
rithms, there is no reason to believe that A1 will hold. However, in the debiased
MLMC setting, the simulator must specify a randomization that strongly controls
the distribution of τ1. In this specific context, the randomization can be designed so
that Var(X1) < ∞, with A1 describing the tail behavior of τ1; see Sect. 3 for further
discussion. (Requiring that Var(X1) < ∞ simplifies the construction of confidence
intervals and the development of sequential procedures; see [10]).

In viewof the above,wewill focusfirst on the casewhereA1holdswithVar(X1) <

∞. The case in which α = 1 is qualitatively different from the case in which α ∈
(0, 1). As it turns out, themost important applications of our theory in Sect. 3 concern
the α = 1 setting. Consequently, we start with this case. We assume here that L(·)
takes the specific form

L(x) = a(log x)γ (log log x)δ (2)

for x ≥ x0 and a > 0. If γ < −1 or if γ = −1 with δ < −1, E(τ1) < ∞ and so this
is covered by the theory presented in [5]. We therefore restrict our analysis to the
case where γ > −1 or γ = −1 with δ ≥ −1.

Let Sα(σ, β, μ) be a stable rvwith indexα, scale parameter σ , skewness parameter
β, and shift parameter μ, with corresponding characteristic function

E(exp(iθ Sα(σ, β, μ)))

=
{
exp (−σα |θ |α (1 − iβ(sign θ) tan(πα/2)) + iμθ) , α �= 1;
exp

(−σ |θ | (1 + iβ 2
π
(sign θ) log(|θ |)) + iμθ

)
, α = 1.

Theorem 1 Suppose σ 2 = Var(X1) < ∞. If α = 1 and L(·) is as in (2), then
√

c

r(c)

(
X̄ N (c) − z

) ⇒ σ N (0, 1)

as c → ∞, where
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r(c) =
⎧
⎨

⎩

a
1+γ

(log c)1+γ (log log c)δ, γ > −1;
a

1+γ
(log log c)1+δ, γ = −1 < δ;

a log log log c, γ = −1 = δ.

Proof We start by noting that Theorem 4.5.1 of [11] implies that

∑n
i=1 τi − mn

cn
⇒ S1(1, 1, 0) (3)

as n → ∞, where (cn : n ≥ 1) is any sequence for which

nL(cn)

cn
→ 2

π
(4)

as n → ∞, and (mn : n ≥ 1) is chosen as

mn = ncnE(sin(τ1/cn)). (5)

Given (2), (4) is satisfied by setting

cn = πa

2
n(log n)γ (log log n)δ.

As for mn , fix w > 0 and write

mn = ncn (E(sin(τ1/cn)I (τ1 ≤ wcn)) + E(sin(τ1/cn)I (τ1 > wcn))) ,

where I (A) denotes the indicator functionwhich is 1when A occurs and 0 otherwise.
Note that

ncn |E(sin(τ1/cn)I (τ1 > wcn))| ≤ ncn P(τ1 > wcn) = O(cn) (6)

as n → ∞, where O(an) denotes any sequence for which (|O(an)| /an : n ≥ 1) is
bounded.

On the other hand,

ncnE(sin(τ1/cn)I (τ1 ≤ wcn))

= ncnE

(∫ τ1/cn

0
cos(y)dy I (τ1 ≤ wcn)

)

= ncn

∫ w

0
cos(y)P(ycn < τ1 ≤ wcn)dy

= ncn

∫ w

0
cos(y)P(τ1 > ycn)dy − ncn sin(w)P(τ1 > wcn)
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= ncn

∫ w

0
cos(y)P(τ1 > ycn)dy + O(cn) (7)

as n → ∞. But

n cos(w)

∫ wcn

0
P(τ1 > y)dy ≤ ncn

∫ w

0
cos(y)P(τ1 > ycn)dy (8)

≤ n
∫ wcn

0
P(τ1 > y)dy

for w ∈ [0, π/2]. The upper and lower bounds in (8) follows from a change-of-
variable arguement and the fact that cos(w) ≤ cos(y) for any 0 ≤ y ≤ w ≤ π/2. We
shall argue below that ∫ wcn

0
P(τ1 > y)dy ∼ r(cn) (9)

as n → ∞, where we write an ∼ bn as n → ∞ whenever an/bn → 1 as n → ∞. It
is easily verified that nr(cn)/cn → ∞, so it follows from (6), (7), and (8) that

cos(w) ≤ lim
n→∞

mn

nr(cn)
≤ lim

n→∞
mn

nr(cn)
≤ 1. (10)

By sending w → 0 in (10), we conclude that

mn ∼ nr(cn)

as n → ∞.
Because mn/cn → ∞, (3) implies that

1

mn

n∑

i=1

τi ⇒ 1

as n → ∞, from which we find that

1

cη


cη/r(cη)�∑

i=1

τi ⇒ 1 (11)

as c → ∞ for any η > 0, where 
x� is the floor of x . If we choose η = 1 + ε and
η = 1 − ε in (11), and use the fact that r(·) is slowly varying, we are led to the
conclusion that

N (c)r(c)

c
⇒ 1 (12)

as c → ∞.
Donsker’s theorem implies that
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√
c

r(c)

(
X̄
tc/r(c)� − z

) ⇒ σ
B(t)

t

as c → ∞ in D(0,∞), where B(·) is standard Brownian motion; see [2]. A standard
random time change argument (see, for example, Sect. 14 of [2]) then proves that

√
c

r(c)

(
X̄ N (c) − z

) ⇒ σ B(1)

as c → ∞ proving our theorem.
It remains only to prove (9). For γ > −1, write

∫ wcn

0
P(τ1 > y)dy =

∫ wcn

wcε
n

P(τ1 > y)dy +
∫ wcε

n

0
P(τ1 > y)dy

for 1 > ε > 0. On [wcε
n,wcn], log log y/ log logwcn → 1 uniformly in y, so

∫ wcn

wcε
n

P(τ1 > y)dy ∼ a(log log cn)
δ

∫ wcn

wcε
n

(log y)γ

y
dy ∼ a(log log cn)

δ (log cn)γ+1

γ + 1
(13)

as n → ∞. On the other hand,

∫ wcε
n

x0∨1
P(τ1 > y)dy ≤ a(log logwcε

n)

∫ wcε
n

x0∨1
(log y)γ

y
dy

= a(log logwcε
n)

(ε log cn + logw)γ+1

γ + 1
. (14)

Since the right-hand side of (14) can be made arbitrarily small relative to the right-
hand side of (13), by choosing ε small enough, we obtain (9) for γ > −1.

As for the cases where γ = −1, F̄(·) can then be exactly integrated, and the exact
integration yields the rest of (9). �

We turn next to the casewhereα ∈ (0, 1). To simplify our discussion, we assume here
that the algorithm has been designed so that L(x) ≡ a for x ≥ x0. For 0 < α < 1,
define the constant Cα as

Cα = 1 − α

Γ (2 − α) cos(πα/2)
; (15)

here Γ (·) is the gamma function.

Theorem 2 Suppose σ 2 = Var(X1) < ∞ and assume α ∈ (0, 1). Set κ =
(a/Cα)1/α . Then,

(c/κ)α/2
(
X̄ N (c) − z

) ⇒ σ B(να)

να
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as c → ∞, where να is independent of the standard Brownian motion B and has the
distribution of 1/Sα(1, 1, 0)α .

Proof We start by noting that Theorem 4.5.3 of [11] implies that

Yn(·) �
∑
n·�

i=1 τi

cn
⇒ Yα(·)

as n → ∞ in D[0,∞), where Yα = (Yα(t) : t ≥ 0) is a Lévy process with Yα(1)
D=

Sα(1, 1, 0) and
D= means “equality in distribution.” The constants cn are given by

cn = (a/Cα)1/αn1/α = κn1/α.

Let

Zn(·) =
∑
n·�

i=1 Xi − ze(n·)√
n

,

where e(t) = t . We will now prove that Zn is asymptotically independent of Yn as
n → ∞. To establish the independence, we will “Poissonify.” Specifically, let R =
(R(t) : t ≥ 0) be a unit rate Poisson processwith associated event times (Tn : n ≥ 1).
Put

Z̃n(t) = Zn(R(nt)/n), Ỹn(t) = Yn(R(nt)/n)

and set

Z̃ (1)
n (t) =

R(nt)∑

i=1

(Xi − z)I (τi ≤ an)/n
1/2,

Ỹ (1)
n (t) =

R(nt)∑

i=1

τi I (τi ≤ an)/cn,

Z̃ (2)
n (t) =

R(nt)∑

i=1

(Xi − z)I (τi > an)/n
1/2,

Ỹ (2)
n (t) =

R(nt)∑

i=1

τi I (τi > an)/cn.

Because of the Poissonification, Z̃ (1)
n is independent of Ỹ (2)

n . Note that

E

(
sup
0≤s≤t

Ỹ (1)
n (s)

)
= E

(
Ỹ (1)
n (t)

)
≤ nt E(τ1 I (τ1 ≤ an))

cn
.

If we choose an = n1/(2α)−1/2, we find that nE(τ1 I (τ1 ≤ an))/cn → 0, so that
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sup
0≤s≤t

Ỹ (1)
n (s) ⇒ 0

as n → ∞. Similarly, Kolmogorov’s inequality implies that

sup
0≤s≤t

|Z̃ (2)
n (s)| ⇒ 0

as n → ∞. Since
Z̃n = Z̃ (1)

n + Z̃ (2)
n ⇒ σ B

and
Ỹn = Ỹ (1)

n + Ỹ (2)
n ⇒ Yα

as n → ∞ in D[0,∞),
(Z̃n, Ỹn) ⇒ (σ B,Yα)

as n → ∞, where B is independent of Yα . We now recover Zn and Yn via the
representation

Zn(t) = Z̃n(T
nt�/n),

Yn(t) = Ỹn(T
nt�/n).

Since T
n·�/n ⇒ e(·) in D[0,∞), it follows that

(Zn,Yn) ⇒ (σ B,Yα) (16)

as n → ∞; see Theorem 13.2.2 of [11].
If f is a bounded continuous function on D[0,∞), (16) implies that

E
(
f (Z
(c/κ)α�)I (Y
(c/κ)α�(y) > 1)

) → E ( f (σ B)I (Yα(y) > 1)) (17)

as c → ∞, since Yα(y) is a continuous rv (so its distribution is continuous); see [3,
11]. But

{Y
(c/κ)α�(y) > 1} =
{
(c/κ)α y�∑

i=1

τi > κ(
(c/κ)α�)1/α
}

and hence (17) implies that

E

(
f (Z
(c/κ)α�)I

(
N (c)

(c/κ)α
< y

))
→ E( f (σ B))P(Yα(y) > 1) (18)

as c → ∞. Also,
Y
(c/κ)α�(y) = Y
(c/κ)α y�(1)(y1/α + o(1))
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(where o(an) is a function for which o(an)/an → 0 as n → ∞), so that

E( f (Z
(c/κ)α y�)I (Y
(c/κ)α�(y) > 1)) → E( f (σ B))P(Yα(1) > y−1/α)

= E( f (σ B))P(Sα(1, 1, 0) > y−1/α)

= E( f (σ B))P(να < y) (19)

as c → ∞. Combining (18) and (19), we have that

E

(
f (Z
(c/κ)α y�)I

(
N (c)

(c/κ)α
< y

))
→ E ( f (σ B)) P(να < y)

as c → ∞, so that (
Z
(c/κ)α�,

N (c)

(c/κ)α

)
⇒ (σ B, να)

as c → ∞, where να is independent of σ B. The continuousmapping principle, based
on a time substitution, then yields the theorem. �

We finish this section with a brief discussion of the rate of convergence of Monte
Carlo algorithms in the setting in which Var(X1) = ∞ = E(τ1), when both X1 and
τ1 lie in the domain of attraction of a stable law. Of course, we need E(|X1|) < ∞
in order that z = E(X1) be well-defined, so we are considering here a stable index
ρ for X1 lying in the interval (1, 2). To simplify our exposition, we postulate that X1

is in the normal domain of attraction of Sρ(1, β, 0), so that

P(|X1| > x) ∼ bx−ρ (20)

as x → ∞, where b > 0.

Let Yρ = (Yρ(t) : t ≥ 0) be the Lévy process in which Yρ(1)
D= Sρ(1, β, 0).

Theorem 3 Suppose that X1 lies in the domain of attraction of Sρ(1, β, 0) and
satisfies (20).

(a) If τ1 satisfies the hypotheses of Theorem 1, then

(
c

r(c)

)1−1/ρ (
X̄ N (c) − z

) ⇒ d Yρ(1)

as n → ∞, where d = (b/Cρ)
1/ρ .

(b) If τ1 satisfies the hypotheses of Theorem 2 (so that α ∈ (0, 1)), then

( c

κ

)α(1−1/ρ) (
X̄ N (c) − z

) ⇒ d Yρ(να)

να

as c → ∞, where Yρ is independent of να .
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Proof We note that under our hypotheses,

(
c

r(c)

)1−1/ρ (
X̄
 c

r(c) ·� − z
)

⇒ d Yα(·)
e(·)

in D[0,∞). We now utilize (12) and the stochastic continuity of Yρ to apply the
continuous mapping principle, thereby obtaining (a).

For part (b), we argue as in Theorem 2 that

(

n1−1/ρ (
X̄
n·� − z

)
,

∑
n·�
i=1 τi

n1/α

)

⇒
(
d Yρ(·)
e(·) , κYα(·)

)

as n → ∞, where Yρ and Yα are independent and Yα is as in Theorem 2. It follows
that (

(c/κ)α(1−1/ρ)
(
X̄
(c/κ)α ·� − z

)
,

N (c)

(c/κ)α

)
⇒

(
d Yρ(·)
e(·) , να

)

as c → ∞, where να is independent of Yρ . We finish the proof with a continuous
mapping argument based on use of the obvious composition mapping. �

We remark that this theorem is more challenging to apply in the Monte Carlo setting,
than are Theorems 1 and 2, because it requires verifying that X1 is in the domain of
attraction of a stable law.

3 Applications to Debiased MLMC

Suppose that z = E(W ), whereW can not be simulated in finite time, but an approx-
imating sequence (Wn : n ≥ 1) is available, in which the Wn’s can be simulated in
finite time. In particular, suppose that Wn converges to W in L2, so that

‖Wn − W‖2 → 0

as n → ∞, where ‖U‖2 = √
E(U 2) for a generic rv U .

SetW0 = 0 andputΔi = Wi − Wi−1 for i ≥ 1. Then, under appropriate regularity
conditions (see below),

X =
M∑

i=1

Δi

P(M ≥ i)
(21)

is an unbiased estimator for z, when M is generated independently of the Δi ’s.
Specifically, Theorem 1 of [10] shows that if
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∞∑

n=1

‖Wn−1 − W‖22
P(M ≥ n)

< ∞,

then X is unbiased, and

E(X2) =
∞∑

n=1

‖Wn−1 − W‖22 − ‖Wn − W‖22
P(M ≥ n)

.

An important application of such “debiasedMLMC” estimator is numerical com-
putation for stochastic differential equations (SDE’s). In that context, the simplest
and most natural approximation to W is to use the sequence {Wn : n ≥ 1} obtained
by Euler discretization of the SDE. Specifically, we letWn be the Euler discretization
to W associated with a time step of order 2−n , and couple the Wn’s via the use of a
common driving Brownian motion across all the approximations in n. If we do this,
it is known in significant generality that for problems involving Lipschitz functions
of the final value, ‖Wn − W‖22 = O(2−n) as n → ∞; see [8].

Hence, a sufficient condition on the distribution of M ensuring that Var(X) < ∞
is to choose M so that ∞∑

n=1

2−n

P(M ≥ n)
< ∞. (22)

However, we also need to consider the computer time τ for generating X . If we
take the (reasonable) view that generating a discretization with time step 2−n takes
computational effort 2n , then τ = 2M . So,

P(τ > x) = P(M > 
log2 x�).

Suppose we now choose M so that P(M > n) = 2−αn for n ≥ n0, with α ∈ (0, 1);
this choice of α guarantees that Var(X) < ∞. Hence, P(τ > x) = 2−
log2 x�α for x
sufficiently large. However, τ does not have a regular varying tail, so the theory of
Sect. 2 does not directly apply. But we can always choose to randomly delay the
completion time of X . Specifically suppose that we start by generating τ so that

P(τ > x) = x−α (23)

for x ≥ 1. With τ in hand, we set M = 
log2 τ�. Note that P(M > i) = P(τ ≥ 2i )
so P(M ≥ i) = P(τ ≥ 2i−1) = 2(1−i)α for i ≥ 1.We now delay the completion of X
from time 2M = 2
log2 τ� to time τ . With this convention in place, our theory applies
and Theorem 2 establishes that

(c/κ)α/2
(
X̄ N (c) − z

) ⇒ σ B(να)

να
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as c → ∞, where κ = C−1/α
α . Hence, the rate of convergence of X̄ N (c) to z is of order

c−α/2 with this choice of randomization for M .
The above CLT-type theorem also allows us to construct confidence intervals

for z in this setting in which E(τ ) = ∞. In particular, if we select ã such that
P (−ã ≤ B(να)/να ≤ ã) = 0.9 (say), then the interval

[
X̄ N (c) − ãσ̂ (c)

(κ

c

)α/2
, X̄ N (c) + ãσ̂ (c)

(κ

c

)α/2
]

(24)

is an asymptotic 90% confidence interval for z, where σ̂ (c) is the sample standard
deviation estimator given by

σ̂ (c) =
√√√√ 1

N (c) − 1

N (c)∑

i=1

(
Xi − X̄ N (c)

)2
. (25)

Other choices for the randomization distribution are also possible. In the case α,
suppose that we generate τ so that

P(τ > x) = x−1(log x)γ (log log x)δ

for x sufficiently large. Again, we let M = 
log2 τ� and again note that P(M > i) =
P(τ ≥ 2i−1) for i ≥ 1. In order that Var(X) < ∞, we choose either γ > 1 or γ = 1
with δ > 1. Applying Theorem 1, we find that

√
c

r(c)

(
X̄ N (c) − z

) ⇒ σ N (0, 1) (26)

as c → ∞, where r(c) = (1 + γ )−1(log c)1+γ (log log c)δ . The best convergence rate
is attained when γ = 1 with δ > 1 but close to 1. In this case, the exact convergence
rate is of order c−1/2(log c)(log log c)δ/2, and the computational budget required to
obtain an accuracy ε is of order ε−2(log(1/ε))2(log log(1/ε))δ with δ > 1. This
complexity estimate for debiased MLMC is slightly better than that provided by
Proposition 4 of [10], in which the estimate takes the form ε−2(log(1/ε))q with
q > 2.

As for the case where τ is chosen so that (23) holds, confidence intervals for z
can again be generated. The CLT (26) implies that if ã is chosen so that P(−ã ≤
N (0, 1) ≤ ã) = 0.9, then

[

X̄ N (c) − ãσ̂ (c)

√
r(c)

c
, X̄ N (c) + ãσ̂ (c)

√
r(c)

c

]

is an asymptotic 90% confidence interval for z, as c → ∞.
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If one prefers an analysis in which no delay in generating X is introduced, one can
observe that τ/2 ≤ 2M ≤ τ when M = 
log2 τ�. If N∼ (c) = max{n ≥ 0 : ∑n

i=1 τi ≤
c} andwemodel the time required to generate Xi as 2Mi , then N∼ (c) ≤ N (c) ≤ N∼ (2c)

for c ≥ 0. Furthermore, when α = 1 so that Theorem 1 applies, then

√
c

r(c)
|X̄ N (c) − z| ≤

√
c

r(c)
|X̄ N∼ (c) − z|

N∼ (2c)

N∼ (c)
+

√
c

r(c)

| ∑N (c)
k=N∼ (c)(Xi − z)|

N (c)
.

(27)
Now, Theorem 1 applies to (c/r(c))1/2|X̄ N∼ (c) − z| and so is stochastically bounded

(i.e. tight) in c. In addition, the proof of Theorem 1 shows that both N∼ (c)r(c)/c and

N∼ (2c)r(c)/c are tight, so that the first term on the right-hand side of (27) is stochas-

tically bounded. Furthermore, Kolmogorov’s maximal inequality and Var(X) < ∞
imply that

√
r(c)

c
|

N (c)∑

k=N∼ (c)

(Xi − z)| ≤
√
r(c)

c
max

N∼ (c)≤k≤N∼ (2c)
|

k∑

i=N∼ (c)

(Xi − z)|

is stochastically bounded, so that the tightness of N (c)r(c)/c yields the stochastic
boundedness of the left-hand side of (27).

This proves that X̄ N (c) (with no delay introduced) does indeed converge to z at
a rate that is at most (r(c)/c)1/2 as c → ∞. Note, however, that we can not get an
asymptotic confidence interval for z directly from this bounding argument.

4 A Numerical Example

In this section, we implement a debiased MLMC estimator with finite variance and
infinite expected computer time and use our theory to construct asymptotically valid
confidence intervals. We consider an option pricing problem in the SDE context,
where the underlying diffusion process obeys the SDE

dX (t) = r X (t)dt + σ X (t)dB(t),

in which the parameters are the interest rate r = 0.05, volatity σ = 0.2 and initial
asset price X (0) = 100. We focus on pricing a European call option with payoff
max(X (t) − K , 0) atmaturity t = 1 at three different strike prices K = 90, 100, 110.
We implement the debiased MLMC estimator described in Sect. 3 Eq. (21), in which
the approximating sequence (Wn : n ≥ 1) is obtained by Euler discretization with
step size 2−nt and the integer-valued randomization M is chosen as P(M > n) =
2−2αn for n ≥ 1with α = 1/2.We delay the completion time such that it has a regular



478 Z. Zheng et al.

Table 1 Computational result for a debiased MLMC estimator with E(τ ) = ∞ and Var(X) < ∞
Strike
price

True
value

Computation
budget

Debiased MLMC estimator

C.I. Coverage (%)

K = 90 16.70 20,000 16.75 ± 4.46 89.0 ± 1.62

80,000 16.73 ± 3.21 89.4 ± 1.60

3,20,000 16.71 ± 2.29 90.1 ± 1.55

K = 100 10.45 20,000 10.41 ± 3.72 88.9 ± 1.63

80,000 10.43 ± 2.70 88.8 ± 1.67

3,20,000 10.43 ± 1.83 89.3 ± 1.60

K = 110 6.04 20,000 6.01 ± 2.95 87.9 ± 1.69

80,000 6.09 ± 2.13 88.9 ± 1.63

3,20,000 6.05 ± 1.52 91.2 ± 1.47

varying tail P(τ > x) = x−α . Our theory applies and Theorem 2 shows that

(c/κ)1/4
(
X̄ N (c) − z

) ⇒ σ B(να)

να

as c → ∞, where κ = C−1/α
α and Cα is defined in Eq. (15). This result establishes

an exact convergence rate of order c−1/4 for the estimator and allows us to construct
confidence intervals following the procedure in Sect. 3; see Eqs. (24) and (25). For
each strike price, we implement the algorithmwith computational budget c = 10000,
20000, 80000 and 320000. Finally, in each experiment, we construct an approximate
90% confidence interval for the mean, based on the limit distribution above, and then
run 1000 independent replications of each experiment.

In Table1, we report the computational results. The columns labeled C.I. report
the average midpoint of the 1000 intervals, together with the average confidence
interval half-width, again averaged over the 1000 replications. The columns labeled
Coverage report 90% confidence intervals (based on the normal approximation) for
the percentage of the 1000 replications in which the confidence interval contains the
true option price. As shown in the table, the confidence intervals are asymptotically
valid. We further note that this debiased MLMC estimator (with parameter α = 1/2)
demonstrates a convergence rate of order c−1/4, as the length of the confidence
interval roughly halves when the sample size is multiplied by a factor of sixteen.
This result agrees with the exact convergence rate established by our CLT.
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