
An Efficient Approximation of Concept
Stability Using Low-Discrepancy

Sampling

Mohamed-Hamza Ibrahim(B) and Rokia Missaoui

Département d’informatique et d’ingénierie, Université du Québec en Outaouais,
101, rue St-Jean Bosco, Gatineau, Québec J8X 3X7, Canada

{ibrm05,rokia.missaoui}@uqo.ca

Abstract. One key challenge in Formal Concept Analysis is the scal-
able and accurate computation of stability index as a means to identify
relevant formal concepts. Unfortunately, most exact methods for comput-
ing stability have an algorithmic complexity that could be exponential
w.r.t. the context size. While randomized approximate algorithms, such
as Monte Carlo Sampling (MCS), can be good solutions in some situa-
tions, they frequently lead to the slow convergence problem with an inac-
curate estimation of stability. In this paper, we introduce a new approx-
imation method to estimate the stability using the low-discrepancy sam-
pling (LDS) approach. To improve the convergence rate, LDS uses quasi-
random sequence to distribute the sample points evenly across the power
set of the concept intent (or extent). This helps avoid the clumping of
samples and let all the areas of the sample space be duly represented.
Our experiments on several formal contexts show that LDS can achieve
faster convergence rate and better accuracy than MCS.

Keywords: Formal Concept Analysis · Concept stability
Low-discrepancy sampling · Pattern relevancy

1 Introduction

Formal Concept Analysis (FCA) [10] is a theoretical framework based on lattice
and order theory [10], which is a formalization of concept lattice and hierarchy.
The concept lattice contains frequently substantial combinatorial structures that
are exploited for data mining and analysis purposes. However, a large amount
of such structures could be irrelevant, which in turn, potentially induce a high
complexity even for small datasets [4,11]. Thus, an important challenge in the
big data era is to discover only relevant concepts from a possibly very large and
complex lattice. Inspired by the FCA theory,, concept selection techniques are
commonly used to focus on only relevant parts of a concept lattice [16,17]. The
basic idea is to single out a subset of important concepts, objects or attributes
based on relevance measures. Several selection measures have been introduced as

c© Springer International Publishing AG, part of Springer Nature 2018
P. Chapman et al. (Eds.): ICCS 2018, LNAI 10872, pp. 24–38, 2018.
https://doi.org/10.1007/978-3-319-91379-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91379-7_3&domain=pdf

An Efficient Approximation of Concept Stability 25

clearly detailed in [17], such as stability [13,15], separation [11], probability [16]
and robustness [11]. While each selection measure exploits certain valuable char-
acteristics in the formal context, stability has been found to be more prominent
for assessing concept relevancy [16].

The stability index of the concept c = (A,B) quantifies how its intent B
depends on the set of objects in its extent A. Thus, the stability frequently
provides a robust indication of how much noise appears in the concept. Unfor-
tunately, computing the stability is #P-complete [2,15] approximating, and we
typically need to compute the set of all generators associated with the concept to
get its exact stability value. This could be problematic with large-sized concepts,
and thus, a practical solution to this problem could be the stability approxima-
tion. The authors in [2] introduced random MCS as a way to approximate the
stability. Although MCS might give a good approximation in some given cases
[18], it converges very slowly and needs more samples to reduce the sampling
error. This is due to the fact that MCS randomly chooses samples independently.
This leads MCS to end up with some regions in the power set space of the concept
intent (or extent) with too many samples tightly clumped, while other regions
have no samples. This weakens the convergence rate1 of the sampling process
and worsen the inaccuracy of stability [21,22]. In this paper, our main objective
is to use a low-discrepancy approach [7,24] to address the limitation of MCS.

In the following we first give a background, then we explain our general
LDS approach in Sect. 3 and illustrate its application to stability approximation.
Finally, we present experimental evaluations in Sect. 4, followed by our conclusion
in Sect. 5.

2 Background

2.1 Formal Concept Analysis

FCA is a mathematical formalism for data analysis [10] that uses a formal context
as input to construct a set of formal concepts organized in a concept lattice. A
formal context is a triple K = (G,M, I), where G is a set of objects, M a set of
attributes, and I a relation between G and M with I ⊆ G × M. For g ∈ G and
m ∈ M, (g,m) ∈ I holds iff the object g has the attribute m. Given arbitrary
subsets A ⊆ G and B ⊆ M, the Galois connection can be defined by the following
derivation operators:

A′ = {m ∈ M | ∀g ∈ A, (g,m) ∈ I}, A ⊆ G

B′ = {g ∈ G | ∀m ∈ B, (g,m) ∈ I}, B ⊆ M
where A′ is the set of attributes common to all objects of A and B′ is the set
of objects sharing all attributes from B. The closure operator (.)′′ implies the
double application of (.)′, which is extensive, idempotent and monotone. The

1 The convergence rate quantifies how quickly the sampling error decreases with an
increase in the number of samples.

26 M.-H. Ibrahim and R. Missaoui

subsets A and B are said to be closed when A′′ = A, and B′′ = B. If both A
and B are closed and A′ = B, and B′ = A, then the pair c = (A,B) is called a
formal concept of K with extent A and intent B. For a finite intent (or extent)
set of w elements, we use P(.) to denote its power set with a number of subsets
equals to n = 2w, i.e., the set of all its subsets, including the empty set and the
set itself.

2.2 Stability Index

The stability index σ(c) is an interestingness measure of a formal concept c for
selecting relevant patterns [5,11,15,23].

Definition 1. Let K = (G,M, I) be a formal context and c = (A,B) a formal
concept of K. The intensional stability σin(c) can be computed as [2,5]:

σin(c) =
| {e ∈ P(A)|e′ = B} |

2|A| (1)

In a dual way, the extensional stability σex(c) is defined as:

σex(c) =
| {e ∈ P(B)|e′ = A} |

2|B| (2)

In Eq. (1), intensional stability σin(c) measures the strength of dependency
between the intent B and the objects of the extent A. More precisely, it expresses
the probability to maintain B closed when a subset of noisy objects in A are
deleted with equal probability. The numerator of Eq. (1) can be calculated by
naively iterating through all the subsets in P(A) and counting the number of
those subsets whose derivation operator produces the intent B. This computation
needs a time complexity of O(2|A|). However, it had been shown in [23] and later
on in [25] that the numerator of σin(c) in Eq. (1) can be computed by identifying
and counting the minimal generators of the concept. Such computation takes a
time complexity of O(L2) [23,25], where L is the size of the concept lattice, and
requires the lattice construction which needs a time complexity of O(|G|2 ·|M|·L)
[14,20]. In a dual way, the extensional stability σex(c) (see Eq. (2)) measures
overfitting in the intent B. When it is high for the extent A of a given concept
c, it means that A would stay closed even when we discard noisy attributes
from its intent B. Similar to the intensional stability, σex(c) can be computed
by simply iterating through all the subsets in P(B) but counting the number
of those subsets for which the derivation operator produces the extent A. This
computation also needs exponential time complexity O(2|B|).2

2 Note that since both σin(c) and σex(c) provide dual measurements, we generally use
σ(c) throughout the rest of the paper.

An Efficient Approximation of Concept Stability 27

2.3 Approximating Stability

With a large-sized intent (or extent), the exponential time complexity of comput-
ing the stability represents a bottleneck for any exact method. For instance, to
exactly compute σ(c) of a concept with an intent size n = 21, we need to perform
more than two million computational comparisons. Thus, a practical solution is
to approximate the stability using MCS method [2,6] as shown in Algorithm 1.
Under a certain number of samples N , MCS iteratively picks up a random sub-
set from the intent power set P(B) and increments a counter when the picked
up subset satisfies the condition in the numerator of Eq. (2) (see lines 3–5). It
ultimately uses the counter to estimate the stability (see line 8). However, how
many samples are needed in the MCS to accurately estimate the stability? In
[2,5] the authors demonstrated that at least a sample size of N > 1

2ε2 ln 2
δ could

be sufficient for MCS to estimate the stability with precision ε and error rate δ.
This means that, with a probability 1 − δ, we can calculate an approximation
σ̃(c) of the exact stability σ(c) within the interval

[
σ̃(c) − ε, σ̃(c) + ε

]
. At a first

sight, this appears to be a low-cost computational time compared to the exact
computational one, but in fact it is not. For example, MCS needs a sample size
N > 3.8 × 106 to accurately estimate the stability with precision ε = 0.001 and
error rate δ = 0.001.

Algorithm 1. MCS for stability approximation
Input: Concept c = (A, B) and Sample size N .
Output: Estimated stability σ̃(c).
1: Count ← 0;
2: for i ← 1 to N do
3: Pick up a random subset e in P(B);
4: if e′ == A then
5: Count ← Count + 1;
6: end if
7: end for
8: σ̃(c) ← Count

N
;

3 LDS for Stability

In this section we will explain the usage of the LDS method for estimating
stability.

3.1 LDS Framework

Let us first reformulate the problem of computing stability so that the LDS
sampling can be easily comprehended. Given a formal concept c with extent A
and intent B, then the power set of B, P(B) = {bx1 , . . . , bxn

} is associated with
a set of indices X = {x1, . . . , xn}, where xi ∈ X is the index of bxi

∈ P(B). We
define 1(x) as an indicator function over X as follows:

28 M.-H. Ibrahim and R. Missaoui

1(x) =

{
1 If b′

x = A, bx ∈ P(B)
0 Otherwise

(3)

where 1(x) is equal to 1 when a randomly picked up subset bx ∈ P(B) satisfies
the condition in the numerator of stability in Eq. (2); and 0 otherwise. Note that
the concept stability in Eq. (2) is identical to the following quantity:

σ(c) ≡ p(b′
x = A | bx ∈ P(B)) (4)

where p(b′
x = A | bx ∈ P(B)) is the probability of randomly picking up a subset

bx and finding out that it satisfies the stability condition. This probability can be
computed by using the expectation E[.] of the indicator function 1(x) in Eq. (3)
as follows:

p(b′
x = A | bx ∈ P(B)) = E[1(x)] =

∑

x∈X

1(x)PX(x) (5)

where PX(x) is the (univariate) probability mass function of X. If we assume
that the subsets in P(B) are uniformly distributed, then

PX(x) =
1
n

, ∀x ∈ X (6)

where n = |X| is the size of the power set. Now if we use Eqs. (4) and (6) into (5),
then the stability in Eq. (2) can be computed as:

σ(c) = E[1(x)] =
1
n

∑

x∈X

1(x) (7)

The stability in Eq. (7) can be approximated by taking a set of samples S as:

σ(c) ≈ σ̃(c;N) =
1
N

∑

xs∈S
1(xs) (8)

where N = |S| is the sample size. Now, how can we select correlated N samples
(i.e., subsets), in Eq. (8), that are distributed across the power set space more
uniformly than uncorrelated random samples in MCS? The answer is the usage
of low-discrepancy sequence. In the following subsection, let us explain how to
generate low-discrepancy (also called quasi-random) sample points.

3.2 Generating Low-Discrepancy Sequences

Various deterministic methods can be typically used to generate low-discrepancy
sequences of N sample points {si}N

i=1. Here we focus on the two commonly used
sequences called Scrambled Van der Corput [9,24] and Sobol [12,19].

(I) Scrambled Van der Corput Sequence (VDC) is the simplest low
discrepancy sequence. Starting with a prime integer r ≥ 2 as a radical base
to represent the sequence, we can obtain the ith sample point si by calling

An Efficient Approximation of Concept Stability 29

the function GenerateSVdC(i,r) in Algorithm 2. We first represent the decimal
number i in radical base r (line 1). Then, we put a radical point in the front of
its reversal representation and convert it back to the decimal (Line 2). We finally
scramble the result by shifting it with a pseudo-random number (see lines 2–4).
For example, if we choose base r = 2 in Scrambled VDC, then we can get the 4th

sample point s4 as follows: (1) express i = 4 in base 2 as (100)2; (2) reverse the
digits and put a radix point in front of it to get (0.001)2; (3) convert it back to
a decimal number to get h4 = 0.375; (4) scramble h4 with any random number
(say d4 = 0.8) to obtain s4 = 0.375 + 0.8 (mod 1) = 0.175.

Algorithm 2. Generating a sample point in Scrambled VDC.
Function GenerateSVdC

Input: Number i and radical base r
Output: A point si ∈ [0, 1]

// Express i as a number in base r.
1: i → ∑l

j=0 ajr
j ;

// Reverse the digits, put a radix point and convert it back to

decimal.

2: hi ← ∑l
j=0 ajr

−j−1; // l = �logr i� .

// Scramble the number by randomized shifting.

3: di ← Generate a uniform random number ∈ [0, 1];
4: si ← hi + di (mod 1);
5: Return si;

(II) One-dimensional Sobol Sequence is often generated based on radi-
cal base r = 2. Unlike Scrambled VDC with base 2, it applies the permutations
based on a set of direction numbers (instead of reversing numbers). The function
GenerateSobol(i) in Algorithm 3 summarizes the pseudo-code of Sobol for gen-
erating a sample point si. We first compute the gray-code hi of the number i by
using the bit-by-bit exclusive-or operator (see line 1). Then we transform hi to
its binary representation (line 2). Subsequently, we sum up bit by bit exclusive-
or of the direction numbers associated with the digits of hi that are different
from zero (see line 3). Note that the set of direction numbers ({vj = zj

2j }, where
0 < zj < 2j) is a sequence of binary fractions with bits after the binary point.
Thus, they can be uniquely defined as v1 = (0.1)2, v2 = (0.11)2, v3 = (0.111)2,
and so on. Now, as a concrete example, to obtain the 2nd sample point s2 in
the Sobol sequence, we do the following: (1) compute the gray code of i = 2 as
h2 = 2 ⊕ 1 = (10)2 ⊕ (1)2 = (11)2; (2) apply exclusive-or to the first v1 = 0.1
and the second v2 = 0.11 direction numbers to get u2 = 0.1 ⊕ 0.11 = 0.01; (3)
convert u2 back to decimal to obtain Sobol point s2 = (0.01)2 = 0.25.

The limitation of q−dimensional Sobol sequence is that its convergence rate
O((log N)q

N) is smaller than O(1√
N

) of the MCS convergence rate only when the
problem dimension q is very small [19]. However, this limitation does not occur
in our algorithms because the power set P(B) of an intent B has often one

30 M.-H. Ibrahim and R. Missaoui

Algorithm 3. Generating a sample point in Sobol sequence.
Function GenerateSobol

Input: Number i
Output: A point si ∈ [0, 1]

// Compute the Gray Code of number i.
1: hi ← i ⊕ ⌈

i
2

⌉
;

// Express hi as a number in base 2.
2: hi → ∑l

j=0 aj2
j ; // l = �logr i� .

// Sum up the (XOR) of direction numbers associated with the digits of

hi.

3: ui ← a1v1 ⊕ . . . ⊕ alvl;
// Put a radix point in the front of ui and convert it back to

decimal.

4: si ← ∑l
j=0 aj2

−j−1 ← ui;
5: Return si;

dimension (i.e., q = 1). Now, let us continue back to the approximation of
stability in the next subsection.

3.3 LDS Algorithm for Estimating Stability

Here our goal is to improve the convergence rate by using LDS approach.
Algorithm 4 is the pseudo-code of the LDS procedure for approximating the

stability depicted in Eq. (8). The algorithm takes as input the number of samples
and the radical base, and then it applies two steps. In a first stage (see lines 1–
6), LDS generates a low-discrepancy sequence S by using either the Scrambled
VDC method (i.e., calling GenerateSVdC(i,r) in Algorithm 2) or Sobol method
(i.e., calling GenerateSobol(i) in Algorithm 3). In a second stage, LDS exploits
the obtained quasi-random sequence S to uniformly select correlated subsets
across all areas of the intent power-set. That is, LDS iteratively uses each sample
point si ∈ S to pick up a corresponding subset index xi by computing the
inverse cumulative function F−1(si) (see lines 9–10). Here, it is worth noting
that because X is uniformly distributed (refer to Eq. (6)), then it has a discrete
uniform cumulative distribution function F(X), in which its inverse F−1() can
be calculated as follows:

xi = F−1(si) = 	si × n
 (9)

Then, it uses the indicator function (see Eq. (6)) to check the stability condition
of the selected subset, and it consequently increments the count whenever the
condition is held (see lines 11–14). Thus, count often captures the number of
these selected subsets that satisfy the condition in the numerator of Eq. (8).
Finally, the stability can be estimated as the portion of those subsets, from the
N picked up ones, that satisfy the stability condition (line 15).

An Efficient Approximation of Concept Stability 31

Algorithm 4. LDS for stability approximation.
Input: Concept c = (A, B), sample size N and base r
Output: Stability σ̃(c).

// Stage 1: Generate low-discrepancy sequence of points

1: S ← ∅;
2: for i ← 1 to N do
3: si ← GenerateSVdC(i,r); // Case 1: using Scrambled VDC in Algo. 2.

// OR

4: si ← GenerateSobol(i); // Case 2: using sobol in Algo. 3.

5: S ← S ∪ {si};
6: end for

// Stage 2: Approximate the stability

7: Count ← 0;
8: for each si in S do

// pick up a subset using the inverse cdf F−1(.)
9: xi ←
si × n�;

10: bxi ← Subset in P(B) at index xi;
// Use 1(.) in Eq. (3) to check if the subset satisfies the stability

condition

11: if 1(bxi) == 1 then
12: Count ← Count + 1;
13: end if
14: end for
15: Return σ̃(c) ← Count

N
;

3.4 LDS Versus MCS

In its basic form MCS method uses pseudo-random sequences. The main limi-
tation that impacts its accuracy and scalability when estimating stability is the
clumping that occurs when selecting the subsets based on the random or pseudo-
random sequence. The reason for this clumping is that the different selected
subsets know nothing about each other, which in turn makes them lie very close
together in certain regions of the power set space while other regions have no
selected subsets. As it has been shown in [22], about

√
N out of N sample

points could lie in clumps. This means that we need four times as many samples
to halve the error, which dramatically influences the convergence rate. In fact, it
has been proven that MCS method often provides a convergence rate of O(1√

N
)

using N samples [21]. Our proposed LDS method avoids the clumping by using
low-discrepancy sequences instead of random or pseudo-random sequences. The
former sequences often produce correlated samples in a quasi-random and deter-
ministic fashion. Due to the correlations, those samples capture more uniformity
properties and are less versatile than those samples of random or pseudo-random
sequences. It has been proven in [7,21,22] that the usage of low-discrepancy
sequences in sampling provides a resulting convergence rate of O(log N

N). From a
theoretical perspective, we believe that this significant convergence rate makes
LDS often more accurate than MCS. For instance, after only N = 100 samples,

32 M.-H. Ibrahim and R. Missaoui

MCS could have a sampling error O(1√
100

) ≈ 0.1 whereas LDS has a sampling

error O(log 100
100) ≈ 0.02.

4 Experimental Evaluation

The main goal of our experimental evaluation is to investigate the following
key questions: (Q1) Is LDS more accurate than MCS for estimating stability
even with small formal contexts? (Q2) Is LDS scalable when approximating the
stability on large-sized concepts?

4.1 Methodology

We started our experiments by first selecting three real-life datasets: (1) Mush-
room which describes mushroom species according to a set of features [3]; (2)
Phytotherapy which presents diseases and medicinal plants that treat them [1];
(3) Woman-Southern-Davis3 which describes a set of Southern women and the
events they attended) [8]. Table 1 briefly summarizes these datasets.

Table 1. A brief description of tested datasets.

Dataset No. objs No. attrs Max. intent Lattice size

Mushroom 8416 128 22 238,710

Phytotherapy 142 108 11 304

WomenDavis 18 14 8 67

To evaluate our proposed LDS algorithm, we compared the results of the
following five tested algorithms:

– Sobol: LDS algorithm based on Sobol sequence.
– Scrambled VDC-2: LDS algorithm based on Scrambled Van der corput

sequence with radical base 2.
– Scrambled VDC-3: LDS algorithm based on Scrambled Van der corput

sequence with radical base 3.
– Scrambled VDC-5: LDS algorithm based on Scrambled Van der corput

sequence with radical base 5.
– Monte Carlo: MCS algorithm — which can serve as a good baseline here.

To find robust answers to the proposed questions, we conducted our empirical
study with the chosen algorithms under the following setting:

– Vary the number of samples N from 1 up to 100. This could be helpful to
precisely judge the convergence rate.

3 Publicly available: http://fimi.ua.ac.be/data/.

http://fimi.ua.ac.be/data/

An Efficient Approximation of Concept Stability 33

– Re-run Monte Carlo algorithm for a maximum number of 1000 iterations.
This is important to properly assess Monte Carlo which is purely random
and sensitive to the starting point.

– Consider the concepts with the maximum intent sizes in order to asses how
LDS can perform in extreme (or large) cases.

We then assess the accuracy and scalability of results by recording both the
estimated stability and the elapsed time obtained at each sample size. These
results are then used to calculate the following two metrics over intent sizes:

(1) The average absolute error ξa of estimated stability, which is computed as:

ξa =
1
|C|

∑

ck∈C
|σ̃(ck) − σ(ck)| (10)

where C is the set of concepts with the same intent size a, and |C| is its
cardinality. σ̃(ck) is the estimated stability of the concept ck and σ(ck) is
the exact value of stability.

(2) Average elapsed time τa, which is computed as:

τa =
1
|C|

∑

ck∈C
tk (11)

where tk is the elapsed time for approximating the stability of concept ck.

All the experiments were run on an Intel(R) Core(TM) i7-2600 CPU @
3.20 GHz computer with 16 GB of memory under Windows 10. We implemented
our LDS algorithm as an extension to the Concepts 0.7.11 package that is imple-
mented by Sebastian Bank.4 For generating low-discrepancy sequences, we used
SOBOL library.5

4.2 Results and Discussion

In terms of accuracy and performance, the results in Fig. 1 illustrate that MCS
is always less accurate than all the tested variants of LDS, including Sobol and
Scrambled VDC at bases 2, 3 and 5 on large data sets such as mushroom with
large-sized intents. The same conclusion applies for medium and small datasets
with concepts of small-sized intents such as Phytotherapy with intent size 3 (see
Fig. 2) and Woman-Southern-Davis with intent sizes 4, 5 and 7 (see Fig. 3).

In terms of convergence behavior, it is clear that Scrambled VDC-3 and
Scrambled VDC-5 compete at different intent sizes, both of them achieve the
most accurate convergence rate of all the algorithms compared on the three
underlying datasets. Scrambled VDC-2 and Sobol have frequently a similar accu-
racy and stable convergence behavior on large-sized intents. This may be due

4 Publicly available: https://pypi.python.org/pypi/concepts.
5 Publicly available: http://people.sc.fsu.edu/∼jburkardt/py src/sobol/sobol.html.

https://pypi.python.org/pypi/concepts
http://people.sc.fsu.edu/~jburkardt/py_src/sobol/sobol.html

34 M.-H. Ibrahim and R. Missaoui

Fig. 1. The average absolute error ξa of LDS and MCS on Mushroom with intent size
a ∈ {19, 20, 21, 22}. Each plot is labelled with the size of intent.

Fig. 2. The average absolute error ξa of LDS and MCS on Phytotherapy with intent
size a ∈ {3, 8, 10, 11}. Each plot is labelled with the size of intent.

An Efficient Approximation of Concept Stability 35

Fig. 3. The average absolute error ξa of LDS and MCS on Woman-Southern-Davis
with intent size a ∈ {4, 5, 7, 8}. Each plot is labelled with the size of intent.

Fig. 4. The average elapsed time τa (in mins) for LDS and MCS on Mushroom, Phy-
totherapy and Woman-Southern-Davis.

36 M.-H. Ibrahim and R. Missaoui

to the fact that both of them use a binary representation (i.e., base 2) in the
sequence generation process. MCS has often an unstable convergence rate when
the sample size is less than 90, which could explain its need to increase the
sample size for a better convergence behavior.

In terms of computational time, the results in Fig. 4 show that Scrambled
VDC-5 dominates all other tested algorithms on all intent sizes. This is due to
the fact that Scrambled VDC generates its sequence points using radical base 5
which requires less computational time than base 2 or 3. Apart from Scrambled
VDC-5, none of the tested algorithms—the Sobol, the scrambled VDC at bases
2 and 3 and MCS — shows its clear superiority over the others.

Overall, the results in Figs. 1, 2, 3 and 4 clearly show that LDS outperforms
MCS for approximating stability on all underlying datasets. Under the same
number of samples, LDS can converge to more accurate estimations than MCS
in the presence of large-sized concepts, and even with less computational time
using some LDS variants (e.g., Scrambled VDC-5).

5 Conclusion

We have proposed LDS, a two-stage method that exploits LDS to efficiently esti-
mate the stability index. To improve the accuracy of sampling, low-discrepancy
(or quasi-random) sequences are first generated in order to eliminate the clump-
ing of the sampled subsets and allow the uniform selection of correlated subsets
across all the areas of the intent (or extent) power set space. We focus here on
using Scrambled Van der Corput and Sobol sequences but the LDS method is
applicable to other low-discrepancy sequences in general. Experiments on real-
life datasets show that LDS is able to greatly bound the convergence rate by
several orders of magnitude compared to MCS, which is the commonly used
method in FCA to approximate stability. In the future we plan to integrate LDS
with other variance reduction techniques such as importance sampling and strat-
ification sampling. We also intend to perform an on-line sampling scenario of
LDS-based algorithm to tackle stream formal contexts.

Acknowledgment. We acknowledge the financial support of the Natural Sciences
and Engineering Research Council of Canada (NSERC).

References

1. Alpen, É.: Précis de Phytotérapie. Édition Alpen (2010). www.alpen.mc/precis-de-
phytotherapie

2. Babin, M.A., Kuznetsov, S.O.: Approximating concept stability. In: Domenach, F.,
Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS (LNAI), vol. 7278, pp. 7–15.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29892-9 7

3. Bache, K., Lichman, M.: Mushroom data set (2013). http://archive.ics.uci.edu/ml
4. Belohlavek, R., Macko, J.: Selecting important concepts using weights. In: Valtchev,

P., Jäschke, R. (eds.) ICFCA 2011. LNCS (LNAI), vol. 6628, pp. 65–80. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20514-9 7

www.alpen.mc/precis-de-phytotherapie
www.alpen.mc/precis-de-phytotherapie
https://doi.org/10.1007/978-3-642-29892-9_7
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-642-20514-9_7

An Efficient Approximation of Concept Stability 37

5. Buzmakov, A., Kuznetsov, S.O., Napoli, A.: Is concept stability a measure for
pattern selection? Procedia Comput. Sci. 31, 918–927 (2014)

6. Buzmakov, A., Kuznetsov, S.O., Napoli, A.: Scalable estimates of concept stability.
In: Glodeanu, C.V., Kaytoue, M., Sacarea, C. (eds.) ICFCA 2014. LNCS (LNAI),
vol. 8478, pp. 157–172. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07248-7 12

7. Caflisch, R.E.: Monte Carlo and quasi-Monte Carlo methods. Acta Numer. 7, 1–49
(1998)

8. Davis, A., Gardner, B., Gardner, M.: Deep South (1941). http://networkdata.ics.
uci.edu/netdata/html/davis.html

9. Faure, H., Tezuka, S.: Another random scrambling of digital (t, s)-sequences. In:
Fang, K.T., Niederreiter, H., Hickernell, F.J. (eds.) Monte Carlo and Quasi-Monte
Carlo Methods 2000, pp. 242–256. Springer, Heidelberg (2002). https://doi.org/10.
1007/978-3-642-56046-0 16

10. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, New York (1999). https://doi.org/10.1007/978-3-642-59830-2. Transla-
tor C. Franzke

11. Klimushkin, M., Obiedkov, S., Roth, C.: Approaches to the selection of relevant
concepts in the case of noisy data. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010.
LNCS (LNAI), vol. 5986, pp. 255–266. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-11928-6 18

12. Kuipers, L., Niederreiter, H.: Uniform distribution of sequences. Courier Corpora-
tion (2012)

13. Kuznetsov, S., Obiedkov, S., Roth, C.: Reducing the representation complexity
of lattice-based taxonomies. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS-
ConceptStruct 2007. LNCS (LNAI), vol. 4604, pp. 241–254. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73681-3 18

14. Kuznetsov, S.O.: Learning of simple conceptual graphs from positive and nega-
tive examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI),
vol. 1704, pp. 384–391. Springer, Heidelberg (1999). https://doi.org/10.1007/978-
3-540-48247-5 47

15. Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell. 49(1),
101–115 (2007)

16. Kuznetsov, S.O., Makhalova, T.P.: Concept interestingness measures: a compar-
ative study. In: Proceedings of the Twelfth International Conference on Concept
Lattices and Their Applications, Clermont-Ferrand, France, 13–16 October 2015,
pp. 59–72 (2015)

17. Kuznetsov, S.O., Makhalova, T.P.: On interestingness measures of formal concepts.
CoRR abs/1611.02646 (2016)

18. Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical
Physics. Cambridge University Press, Cambridge (2014)

19. Lemieux, C.: Monte Carlo and quasi-Monte Carlo sampling (2009)
20. Muangprathub, J.: A novel algorithm for building concept lattice. Appl. Math. Sci.

8(11), 507–515 (2014)
21. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods.

SIAM, Philadelphia (1992)
22. Owen, A.B.: Monte Carlo extension of quasi-Monte Carlo. In: Simulation Confer-

ence Proceedings Winter, vol. 1, pp. 571–577. IEEE (1998)
23. Roth, C., Obiedkov, S., Kourie, D.G.: On succinct representation of knowledge

community taxonomies with formal concept analysis. Int. J. Found. Comput. Sci.
19(02), 383–404 (2008)

https://doi.org/10.1007/978-3-319-07248-7_12
https://doi.org/10.1007/978-3-319-07248-7_12
http://networkdata.ics.uci.edu/netdata/html/davis.html
http://networkdata.ics.uci.edu/netdata/html/davis.html
https://doi.org/10.1007/978-3-642-56046-0_16
https://doi.org/10.1007/978-3-642-56046-0_16
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-642-11928-6_18
https://doi.org/10.1007/978-3-642-11928-6_18
https://doi.org/10.1007/978-3-540-73681-3_18
https://doi.org/10.1007/978-3-540-48247-5_47
https://doi.org/10.1007/978-3-540-48247-5_47

38 M.-H. Ibrahim and R. Missaoui

24. Schretter, C., He, Z., Gerber, M., Chopin, N., Niederreiter, H.: Van der corput and
golden ratio sequences along the hilbert space-filling curve. In: Cools, R., Nuyens,
D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods, vol. 163, pp. 531–544.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33507-0 28

25. Zhi, H.L.: On the calculation of formal concept stability. J. Appl. Math. 2014, 1–6
(2014)

https://doi.org/10.1007/978-3-319-33507-0_28

	An Efficient Approximation of Concept Stability Using Low-Discrepancy Sampling
	1 Introduction
	2 Background
	2.1 Formal Concept Analysis
	2.2 Stability Index
	2.3 Approximating Stability

	3 LDS for Stability
	3.1 LDS Framework
	3.2 Generating Low-Discrepancy Sequences
	3.3 LDS Algorithm for Estimating Stability
	3.4 LDS Versus MCS

	4 Experimental Evaluation
	4.1 Methodology
	4.2 Results and Discussion

	5 Conclusion
	References

