
Towards Executable Representations
of Social Machines

Dave Murray-Rust1(B) , Alan Davoust1 , Petros Papapanagiotou1 ,
Areti Manataki1 , Max Van Kleek2 , Nigel Shadbolt2, and Dave Robertson1

1 University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
{d.murray-rust,adavoust,pe.p,a.manataki,dr}@inf.ed.ac.uk

2 University of Oxford, Parks Rd, Oxford OX1 3QD, UK
{max.van.kleek,nigel.shadbolt}@cs.ox.ac.uk

Abstract. Human interaction is increasingly mediated through tech-
nological systems, resulting in the emergence of a new class of socio-
technical systems, often called Social Machines. However, many systems
are designed and managed in a centralised way, limiting the participants’
autonomy and ability to shape the systems they are part of.

In this paper we are concerned with creating a graphical formalism
that allows novice users to simply draw the patterns of interaction that
they desire, and have computational infrastructure assemble around the
diagram. Our work includes a series of participatory design workshops,
that help to understand the levels and types of abstraction that the
general public are comfortable with when designing socio-technical sys-
tems. These design studies lead to a novel formalism that allows us to
compose rich interaction protocols into functioning, executable architec-
ture. We demonstrate this by translating one of the designs produced
by workshop participants into an a running agent institution using the
Lightweight Social Calculus (LSC).

Keywords: Social machines · Diagrammatic interface
Rapid assembly · Prototyping

1 Introduction

Ubiquitous computation and digital communication systems have produced new
forms of socio-technical systems, vast networks where people achieve coordi-
nated action at scale. Examples include Wikipedia, Twitter, Ushahidi and so
on. Characterising such systems requires thinking beyond their software infras-
tructure: one unified lens for viewing them is Berners-Lee’s concept of social
machines [2,7], that describes systems in which humans and computation play
complementary roles.

In this paper, we explore the design and construction of social machines
through a diagrammatic language. Our main design goals for the language are
(i) to be accessible to non-specialists, enabling them to craft their own social

c© Springer International Publishing AG, part of Springer Nature 2018
P. Chapman et al. (Eds.): Diagrams 2018, LNAI 10871, pp. 765–769, 2018.
https://doi.org/10.1007/978-3-319-91376-6_77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91376-6_77&domain=pdf
http://orcid.org/0000-0001-6098-7861
http://orcid.org/0000-0002-3423-0942
http://orcid.org/0000-0003-0928-6108
http://orcid.org/0000-0003-3698-8535
http://orcid.org/0000-0003-3873-6366


766 D. Murray-Rust et al.

machines themselves, and (ii) to be sufficiently formal to be able to turn into
executable code, so that designers can create running systems directly from dia-
grams. The language we propose has been shaped by a series of design workshops
where non-expert participants designed Social Machines with limited guidance,
using some suggested constructs based on the notions of roles and protocols –
and their own free-form diagramming skills.

From the outcomes of these workshops we designed a diagrammatic lan-
guage and methodology to design Social Machines as Electronic Institutions,
formalized with the Lightweight Social Calculus (LSC [5]) to provide executable
infrastructures. We present an intuitive design process for users to construct
Social Machine models using this formalism, and demonstrate the execution of
a model using a generic LSC engine.

2 Design Method

Our language has been refined based on four participatory design workshops,
mostly involving non-experts (who were new to the concept of social machines),
where participants collaboratively designed their own social machines from
scratch, using paper and markers. At the beginning of each session, partici-
pants were provided handouts with example diagrammatic primitives that we
designed (Fig. 1a), that they could (optionally) use to help them sketch their
social machines.

Figure 1b shows one ad-hoc diagram created by non-specialists, showing roles,
coordination, interactions, implementation hints and social aspects of the system
concisely and comprehensibly. From such diagrams we extracted the following
key elements: People, playing a range of roles: restaurants that provide waste
food, informants who spot people in need, madres that mediate the interactions
and so on; Infrastructure, whether physical or computational, that coordinates
the activity of humans around their purpose; and finally connecting arrows,
representing the transmission of messages or physical objects (‘gives food’); more
general geo-spatial interactions (‘detects’); and bundles of possible operations on
computational systems (‘make announcements’) that implicitly include access
control, posting, retracting and updating information etc.

At the conclusion of each session, each group was asked to present their social
machine; photos were captured of diagrams made, and verbal descriptions were
recorded, transcribed, and archived. We then analysed the graphical vocabu-
lary used in the diagrams, along with descriptions, to identify where graphical
primitives were appropriated, reused, and extended. This enabled us to identify
robust components, eliminate and refine components that were not used or mis-
understood. For the final workshop, we presented the participants with a paper
based version of the diagram tool discussed in this paper, prompting them to
investigate and define the interactions between actors.



Towards Executable Representations of Social Machines 767

(a) (b)

Fig. 1. (a) Some of the graphical elements from the first Sociograms workshop. (b) The
Cybermadres social machine, sketched by workshop participants. This Social Machine
would support the activities of volunteers in Mexico, who collect excess food from
restaurants and distribute it to people in need.

3 Diagram Language

Our diagrammatic language contains the following elements, with a full demon-
stration given in Fig. 2:

Nodes represent actors in the system, whether computational or human.
Edges define the interactions between these actors, by specifying interaction
protocols (Fig. 2a).
Protocols are specified as generic activities (e.g. ASK, ESCROW), and spe-
cialised to define the kinds of data that flows through them. For example,
a simple communication protocol might carry a specification of the kinds of
messages to be transferred, which then implies that the roles involved in the
interaction are capable of providing or processing that type of information.

The diagram shown in Fig. 2c details the key interactions of a particular social
machine infrastructure—in this case, a system that supports the CyberMadres
example in Fig. 1b. Our interface mock-ups sketch the design process and the
extra information needed to create a working system.

3.1 From Diagrams to Executable Systems

Diagrams created in this manner can be automatically transformed into the
Lightweight Social Calculus (LSC) [4,6], a high level protocol language. An LSC
protocol consists of the roles that each participating agent may play, by exe-
cuting the part of the protocol that corresponds to their role locally. Each role
may involve message passing and computation, tied together with conditions
(If ... then) and temporal sequencing (Then and Or). Computation involves input



768 D. Murray-Rust et al.

(a) Definition of actors in the system, with protocols
describing interactions between them

(b) Specialisations of the protocols to carry appropriate
data for the given interaction

(c) A complete system, with multi-way interactions and
composed capabilities

(d) Eliciting connections between the inputs and outputs
of different actors

Fig. 2. Example operation of the Sociogrammer tool, from initial specification of actors
through to linking predicates

predicates e(), and output predicates k(). Inputs elicit information, typically
through a local knowledge base, or by “asking a human” via an interface, at which
point human decision making can enter the computational system. Output predi-
cates indicate that the agent now knows something, which implies that the agent
be capable of processing the information, e.g. storing it in a local knowledge base
or otherwise changing the state of the world in a representative way.

The design process (Fig. 2d) involves connecting inputs from one protocol to
outputs of another, or else flagging particular inputs to be fulfilled by processes
outside the scope of the system.

4 Discussion and Conclusions

There are two key questions behind this work: (i) Can we develop a diagrammatic
language for designing social machines, accessible to non-experts? and (ii) Can we
design this language in such a way that it produces executable infrastructures?

A key design challenge is to find the correct, composable units to build these
diagrams from. Here we have used interaction protocols, as a way to cover com-
plex patterns of activity that unfold in time using simple, human identifiers,



Towards Executable Representations of Social Machines 769

e.g. “arrange a meeting”. Our workshops have shown that participants see real
possibilities in designing such systems, and their ad-hoc diagrams show some
of the key concepts needed to describe interaction protocols. Participants to
produce meaningful and plausible social machine designs in a 2–3 h workshop,
from a standing start. Designs included social interventions that help the home-
less, shared diaries for nomads, crowdsourced traffic reports and interpersonal
archives.

Relative to the second question, we have shown a prototype interface, where
a version of the simple, at-hand iconography can be used to specify enough
detail to create executable infrastructures. This demonstrates the potential for
a translation from simple readable diagrams into working systems.

The question remains as to what a meaningful set of interaction primitives
might be, simple yet expressive enough to describe most social machines. Our
initial analysis has brought up a range of useful constructs, which allowed us to
fulfil the designs created by workshop participants.

This leaves us with a form of extremely concise Model Driven Development
[1,3] that supports a democratic, participatory approach that allows a wide
range of people to design a profusion of small social machines, adapted to their
particular communities of practice.

This proof of concept indicates that there is a level of representational com-
plexity that allows people to make their intentions clear about complex systems
that would otherwise be beyond their ability to design.

References

1. Agüero, J., Rebollo, M., Carrascosa, C., Julián, V.: MDD for virtual organization
design. In: Demazeau, Y., et al. (eds.) Trends in Practical Applications of Agents
and Multiagent Systems. Advances in Intelligent and Soft Computing, vol. 71, pp.
9–17. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12433-4 2

2. Berners-Lee, T., Fischetti, M., Foreword By-Dertouzos, M.L.: Weaving the Web:
The Original Design and Ultimate Destiny of the World Wide Web by Its Inventor.
HarperInformation, New York City (2000)

3. France, R., Rumpe, B.: Model-driven development of complex software: a research
roadmap. In: 2007 Future of Software Engineering, pp. 37–54. IEEE Computer Soci-
ety (2007)

4. Murray-Rust, D., Papapanagiotou, P., Robertson, D.: Softening electronic institu-
tions to support natural interaction. Hum. Comput. 2(2), 34 (2015)

5. Murray-Rust, D., Robertson, D.: LSCitter: building social machines by augmenting
existing social networks with interaction models. In: Chung, C., Broder, A.Z., Shim,
K., Suel, T. (eds.) 23rd International World Wide Web Conference, WWW 2014,
Seoul, Republic of Korea, 7–11 April 2014, Companion Volume, pp. 875–880. ACM
(2014). http://doi.acm.org/10.1145/2567948.2578832

6. Robertson, D.: A lightweight coordination calculus for agent systems. In: Leite, J.,
Omicini, A., Torroni, P., Yolum, I. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp.
183–197. Springer, Heidelberg (2005). https://doi.org/10.1007/11493402 11

7. Shadbolt, N., Van Kleek, M., Binns, R.: The rise of social machines: the development
of a human/digital ecosystem. IEEE Consum. Electron. Mag. 5(2), 106–111 (2016)

https://doi.org/10.1007/978-3-642-12433-4_2
http://doi.acm.org/10.1145/2567948.2578832
https://doi.org/10.1007/11493402_11

	Towards Executable Representations of Social Machines
	1 Introduction
	2 Design Method
	3 Diagram Language
	3.1 From Diagrams to Executable Systems

	4 Discussion and Conclusions
	References




