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Abstract. Extension and intension are two ways of indicating the fun-
damental meaning of a concept. The extent of a concept, C, is the set of
objects which correspond to C whereas the intent of C is the collection of
attributes that characterise it. Thus, intension defines the set of objects
corresponding to C without naming them individually. Mathematicians
switch comfortably between these perspectives but the majority of logi-
cal diagrams deal exclusively in extension. Euler diagrams indicate sets
using curves to depict their extent in a way that intuitively matches the
relations between the sets. What happens when we use spatial diagrams
to depict intension? What can we infer about the intension of a concept
given its extension, and vice versa? We present the first steps towards
addressing these questions by defining extensional and intensional Euler
diagrams and translations between the two perspectives. We show that
translation in either direction leads to a loss of information, yet preserves
important semantic properties. To conclude, we explain how we expect
further exploration of the relationship between the two perspectives could
shed light on connections between diagrams, extension, intension, and
well-matchedness.

1 Introduction

A general term (e.g. “country”, “circle”, “horse”, etc.) is commonly understood
to refer to a collection of individuals who share one or more attributes. The set of
individuals to which the term refers is called its extension (or extent), while the
set of attributes shared by those individuals is called the intension (or intent) of
the term. The trio (term, intent, extent) and its structure can be represented by
a triangle (Fig. 1). Various names have been used in logic literature to capture
this distinction. Intent is sometimes referred to as the connotation of a term
while extent is said to be its denotation. Hence, a term is said to connote its
intent and denote its extent. These two names can be used to characterize the
two sides of our triangle that connect a term to its intent and extent. The object
of this paper is to diagrammatically investigate the third side of the triangle
which depicts the relation between the intent and the extent of a given term.
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Intent Extent

Term

Fig. 1. Term-intent-extent. Fig. 2. Extension. Fig. 3. Intension.

To illustrate, the diagram in Fig. 2 represents three sets containing invididu-
als: People (P ), Children (C), and Dogs (D). It therefore presents an extensional
view. The set of People, for example, comprises the individuals that have the
attributes that define what it means to be a person. By contrast, Fig. 3 presents
an intensional view, representing the sets of attributes of people, Att(P ) and so
forth. We can see, from Fig. 3, that all children have all of the person attributes,
including having eyes. Moreover, dogs possess attributes that no child or person
has, such as having a tail. So, the dog Spot has a tail but the child Finn does
not.

The distinction between intent and extent (known under various denomina-
tions) has played a significant but often undervalued role in the development of
modern logic. Although it is sometimes traced in earlier writings, the distinc-
tion itself is often attributed to Antoine Arnauld and Pierre Nicole’s Logique de
Port Royal (1662). Since then, logicians who have designed logical calculi oscil-
lated between the two interpretations. For instance, Gottfried Leibniz generally
favoured the intensional interpretation while George Boole privileged the exten-
sional interpretation, with various motivations being offered to justify the supe-
riority of each view over the other [3]. In his 1918 survey of symbolic logic, Lewis
explained the successes of Boole and his (mainly English-speaking) followers by
their appeal to extent unlike their (German-speaking) predecessors who favored
intent [6, pp. 35–37]. Although Gottlob Frege’s logic was primarily intensional,
Venn declared in 1894 that “the true intensive view is practically abandoned
now, though verbally it is from time to time espoused” [13, p. 453]. Extensional
logics apparently became dominant at the beginning of the twentieth century.
Intensional logic was then generally believed to be at best cumbersome, if not
entirely impossible [2, p. 387] [9, p. 141]. The rise and fall of intensional logics can
also be traced in the development of logic diagrams. Indeed, Leibniz and several
of his followers aimed at a scheme that could stand within both views, depending
on whether it was the intent or the extent that was represented [1]. However,
extensional diagrams shortly became dominant as geometrical relations of the
diagrams appeared to match better with the logical relations of the extents than
those of the intents [7]. Despite the declared superiority of extensional logic,
interest in intensional logics has resurfaced in the twentieth century, notably in
the footsteps of Alonzo Church and Rudolph Carnap [4]. Today, the distinction
between intent and extent is commonplace and is frequently met with in modern
logic textbooks [5, pp. 91–94].
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There are several difficulties in determining precisely what the intent and
the extent of a term involve and logicians have long considered various views on
this question. Regarding intent, an objective standpoint includes any attribute
possessed by the individuals to whom the term refers, whether that attribute is
known or unknown to the people who use the term. A subjective view, on the
other hand, supports the claim that intent should include merely the attributes
that come to the mind of those who use the term. However, since different people
might have different collections of attributes in mind, logic textbooks often adopt
a conventional attitude in which the intent of a term refers to what is commonly
attributed to it. The description of the extent of a term also involves some
complications. A major difficulty concerns the definition of what counts as an
individual. If we are to determine the extent of the concept “animal”, should
one list general species (elephants, penguins, sharks, etc.) or rather point to
every specific animal considered individually? The latter technique often leads to
long or infinite enumerations while the former has obvious practical advantages,
although it does requires the formation of sub-classes.

The relation between intent and extent is also complex. It is first noted
that, though the intent of a term might remain fixed, extent can change over
time. The extent of the term “President of France” regularly changes when
elections introduce new individuals with the salient attributes. Extents might
also be empty; we may think, for instance, of the term “current king of France”.
However, equivalent extents do not necessarily indicate equivalence of intents.
For example, there are various sets of attributes that can be offered to form the
intent of the term whose extent contains the individuals Spain and Portugal.
One might think of the term as those countries through which the Douro River
flows. Alternatively, the term could be thought of as the countries through which
the Tagus River flows. It could also be said that they are the last two winners
to-date of the UEFA European Championship. All these intensional definitions
denote the same extent, {Spain,Portugal}.

The relation between extent and intent is usually addressed through the
principle of their inverse variation, whereby increasing the intent of a term by
adding an attribute to it generally entails a decrease of its extent. If one thinks
of the intent of the term “triangle” and adds to it the attribute of being isosceles,
we remove from the extent of this term all the triangles which do not have the
latter attribute (i.e. are not isosceles). Hence, the increase of intent produced a
decrease of extent. In this example, the intent of a triangle is included in that
of an isosceles triangle. Yet, it is the inverse that is observed for the extents,
since the extent of isosceles triangles is included within the extent of triangles.
It might be that an increase of intent does not produce a decrease of extent. This
is the case for instance if one adds the attribute of being crossed by the Douro
River to the intent whose attributes define the countries which are crossed by
the Tagus River. The extent, {Spain,Portugal}, remains the same. Similarly, if
a given extent is empty it does not decrease if new attributes are added to its
intent. Still, in all these examples, when intent increases, extent is observed to
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decrease or remain stable, but definitely not increase. Similar principles are found
for decreasing intents and for comparable changes in the scope of an extent.

As interesting as these principle can be, they only account for the specific case
where a term is increased (respectively, decreased), meaning that it is entirely
included (respectively, includes) another term. In the following, we attempt a
more systematic consideration of the relations between intent and extent. In
the next section we present two systems of Euler diagrams with ⊗-sequences:
one in which curves denote the extent of terms (as is usually the case), and
one in which curves denote intent. In Sect. 3 we establish a connection between
interpretations of extensional and intensional diagrams, linking the semantics of
the two systems through a relation that embodies the notion of one interpre-
tation being respectful of another. In Sects. 4 and 5 we define translations from
extensional and intensional diagrams to their respective counterparts. We show
that these translations necessarily involve the loss of information yet preserve
important semantic properties. Finally, we conclude with some thoughts on the
implications for this work.

2 Syntax and Semantics

We follow a standard approach to formalizing the syntax and semantics of Euler
diagrams containing ⊗-sequences (see Stapleton [11] for an overview of formal-
ization techniques). We illustrate the key ideas via the example in Fig. 4. This
diagram contains three curves, each of which has a label. The curves give rise
to zones: a zone is a region of the plane inside some (possibly no) curves and
outside the remaining curves. There are four zones inside this diagram, such as
the one inside just the curve P but outside Q and R, and another zone outside
all three curves. Sometimes, zones are shaded. In this example, the zone inside
R but outside P and Q is shaded. There are two ⊗-sequences. One of them is
inside a single zone and the other comprises two ⊗ symbols joined by a line.

Fig. 4. An Euler diagram with ⊗-
sequences.

Fig. 5. Removing a curve: zonal
regions.

We formalize diagrams at the abstract syntax level. Curves can be identified
by their labels which are chosen from some given set L. Zones are then formally
defined as a pair of disjoint sets of labels, (Li, Lo). In Fig. 4, the four zones
are (∅, {P,Q,R}), ({P}, {Q,R}), ({P,Q}, {R}) and, lastly, the shaded zone
({R}, {P,Q}). The formalization of the ⊗-sequences is similar: they are identified
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at the abstract level by the set of zones in which they are placed. In our example,
the two ⊗-sequences are {({P}, {Q,R})} and {(∅, {P,Q,R}), ({P,Q}, {R})}. We
now provide a formal definition of these important concepts.

Definition 1. Given L, we define a zone over L to be a pair, (Li, Lo), where
Li ∪ Lo ⊆ L, and Li ∩ Lo = ∅. The set of all zones formed from L is denoted
ZL. A set of zones formed over L is called a region formed over L and the
set of all regions is denoted RL.

It is notable that the above definition makes the set of labels, L, over which
zones and regions are formed explicit. Later, we will be working with two distinct
systems of diagrams that draw their labels from distinct sets. So it is important
to be clear about over which label set a diagram and its components are formed.

Definition 2. An Euler diagram with ⊗-sequences, dL, formed over L is
a tuple dL = (L,Z,Z∗, S) where

1. L is a finite subset of L.
2. Z is a set of zones such that for each zone, (Li, Lo), in Z, Li ∪ Lo = L,
3. Z∗ is a subset of Z whose elements are called shaded zones, and
4. S is a set of regions that identify the ⊗-sequences: S ⊆ PZ\{∅}.

We will sometimes simply say Euler diagram with ⊗-sequences or L-diagram,
in place of Euler diagram with ⊗-sequences formed over L. Furthermore, we will
similarly omit saying ‘formed over L’ when referring to other syntactic items.

Our attention now turns to semantics. Referring again to Fig. 4, intuitively
this diagram tells us that Q ⊆ P and P ∩ R = ∅ due to the spatial relation-
ships between the curves. The shading is used in the same fashion as for Venn
diagrams [12], and as seen in Shin’s Venn-I and Venn-II systems [10]: shaded
zones represent empty sets. So, the set R is empty in our example. Again, also
following Shin’s use of ⊗-sequences, regions containing an entire ⊗-sequence are
non-empty (see Moktefi and Pietarinen [8] for the origins and development of
this notation). So, we see that P\(Q ∪ R) �= ∅ and, taking the universal set to
be U , (U\(P ∪ Q ∪ R)) ∪ ((P ∩ Q)\R) �= ∅. Given these insights, we proceed
with our formalization following a standard model-theoretic approach. In our
case, labels are interpreted as sets, which we then extend to interpret zones and
regions:

Definition 3. An interpretation over L, denoted IL, is a pair, IL = (U , Ψ),
where U is a set and Ψ is a function, Ψ : L ∪ ZL ∪ RL → PU , mapping labels,
zones and regions to sets such that

1. for each zone, (Li, Lo),

Ψ(Li, Lo) =
( ⋂

l∈Li

Ψ(l)
)

\
( ⋃

l∈Lo

Ψ(l)
)

, and

2. for each region, r, Ψ(r) =
⋃
z∈r

Ψ(z).
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The last remaining consideration, when defining the semantics, is to provide
conditions under which an interpretation ‘agrees’ with the intended meaning
of the diagram. We have already seen that shaded zones represent empty sets
and that regions containing entire ⊗-sequences represent non-empty sets. Addi-
tionally, the relationship between the curves (in a drawn diagram) is entirely
captured by the set of zones (at the abstract level). In particular, between them,
all of the (abstract) zones must represent the universal set. If these three condi-
tions are all met then the interpretation is a model :

Definition 4. Given an Euler diagram with ⊗-sequences, dL = (L,Z,Z∗, S),
and an interpretation, IL = (U , Ψ), we say that I is a model for d provided

1. between them, the zones in dL represent the universal set: Ψ(Z) = U ,
2. the shaded zones in dL represent the empty set: Ψ(Z∗) = ∅, and
3. each ⊗-sequence is placed in a region that represents a non-empty set: for all

r in S, Ψ(r) �= ∅.

Having now defined the syntax and semantics, we introduce several further
syntactic notions that will be of use later. The first focuses on the zones that
are not present, (called missing zones), given the labels used in a diagram:

Definition 5. Let dL = (L,Z,Z∗, S) be an Euler diagram with ⊗-sequences.
The missing zones of dL are elements of

MZ(dL) = {(Li, Lo) ∈ ZL : L = Li ∪ Lo}\Z.

In our running example, Fig. 4, there are four missing zones:

MZ(dL) = {({Q}, {P,R}), ({P,R}, {Q}), ({Q,R}, {P}), ({P,Q,R}, ∅)}.

Just as zones play a central role in our understanding of Euler diagrams, so
too do regions that become zones when curves are removed. Figure 5 shows the
result of removing Q from Fig. 4. The zone inside just P in Fig. 5 arises from two
zones in Fig. 4. Regions that become zones when curves are removed are called
zonal regions and, just like zones, can be identified by the curves that contain
the region and those which do not contain the region:

Definition 6. Let IN , OUT and L be sets of labels drawn from L. A zonal
region given IN , OUT and L is a set of zones, denoted 〈IN ,OUT , L〉, where

〈IN ,OUT , L〉 = {(Li, Lo) : IN ⊆ Li ∧ OUT ⊆ Lo ∧ L = Li ∪ Lo}.

For example, in Fig. 4, the zonal region inside P but outside R is given by

〈{P}, {R}, {P,Q,R}〉 = {({P}, {Q,R}), ({P,Q}, {R})}.

Having formally defined the syntax and semantics of Euler diagrams with ⊗-
sequences, and various related notions, we are in a position to explore extensional
and intensional viewpoints using Euler diagrams.
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3 Sets of Individuals and Their Attributes

Euler diagrams are typically used to represent sets containing individuals and,
therefore, visualize an extensional view of the world. An intensional viewpoint,
however, considers the attributes that characterise the individuals in sets. Con-
sider the example in Fig. 6. The diagram dEX represents sets of individuals who
are members of four sports clubs and, so, is extensional. We can see that everyone
who is in the Triathlon club (represented by the curve labelled T ) is also a mem-
ber of the Swimming club. However, nobody in the Swimming club is in either
the Cycling or Football clubs. Each club imposes the condition on its members
that they must be active participants in the relevant sport; so, members of the
swimming club must be able to swim, and those in the cycling and football clubs
are all cyclists and, respectively, footballers. Individuals who are members of the
Triathlon club have the attributes of being a cyclist, a swimmer and a runner, as
well as the attribute of Triathlon club membership. As it happens, all members
of the Cycling club are active runners. These sets of attributes therefore cor-
respond to the intensional viewpoint. Therefore, dIN (where Int(T ) is the set
of attributes that characterise set T and so forth), represents the relationships
between the attributes possessed by the individuals in the sets represented by
dEX , given the particular situation just described.

Fig. 6. Sports clubs and their members’ attributes. Fig. 7. Alternative attributes.

Whilst this example is suitable for providing intuition about the relationship
between individuals and their attributes, the diagram dIN just derived was, we
emphasise, particular to the interpretation given. We could have had an alter-
native situation where all of the footballers are runners and cyclists but are not
members of the triathalon or swimming clubs since none of them is able to swim.
This situation would give rise to the diagram in Fig. 7. Our goal is to define a
respectful translation from diagrams representing individuals to diagrams repre-
senting their attributes that ensures their models correspond entirely. Likewise,
we also seek a respectful translation from diagrams representing attributes to
diagrams representing individuals so that their models correspond. The purpose
of this section is to set up a framework that allows these translations to be
defined formally and for us to establish that the resulting diagrams’ model sets
correspond in an appropriate way.
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To this end, we investigate two parallel systems of Euler diagrams with ⊗-
sequences. We define the first system to be formed over a set of labels that we call
EX (so EX is a particular choice of L), whose elements are called extensional
labels. Further, we define the second system to be formed over a set of labels
that we call IN , whose elements are called intensional labels. Importantly,
we assume that EX and IN are disjoint and have the same cardinality. We now
syntactically link these two systems.

Definition 7. A bijective function Int : EX → IN , which maps each exten-
sional label to an intensional label is called an intensional label allocation
function. The function Ext : IN → EX is the inverse of Int.

From this point forward, we assume an intensional label allocation function,
Int , has been defined but we also need a semantic link. EX -diagrams and IN -
diagrams are taken to have semantics where the universal sets contain individuals
and, respectively, attributes. To this end, the set of individuals is denoted IND
and the attributes AT T . Consequently, for example, given IEX = (U , Ψ), we
have U ⊆ IND. All interpretations over EX have universal sets that are subsets
of IND whereas those over IN have universal sets that are subsets of AT T . As
our intention is to explore the relationship between information about individuals
and information about their attributes, we further define a function between the
sets IND and AT T to formalize this notion.

Definition 8. A function, att : IND → P(AT T ) is called an attribute iden-
tification function.

As with the function Int , we assume from this point forward that a specific
att is given. We now use att to define a link between interpretations, thus linking
the semantics of the two systems:

Definition 9. Let IEX = (UEX , ΨEX ) and IIN = (UIN , ΨIN ) be interpretations
over EX and IN respectively. We say that IIN is respectful of IEX and att
provided for all i ∈ UEX , and for all P ∈ EX

i ∈ ΨEX (P ) ⇔ att(i) ⊇ ΨIN (Int(P )).

This definition is illustrated in Fig. 8, in the case where ΨEX (P ) is not empty
(it contains i1) and neither is complement (which contains i2). The attributes
of individual i1 are att(i1) and, intuitively, since i1 is in P (blurring the distinc-
tion between syntax and semantics), i1 must have all of the attributes that are
required of individuals in P . In Fig. 8, this is visually indicated by the arrow
from i1 targeting a superset of ΨIN (Int(P )). Likewise, the individual i2 must
be missing an attribute, say a, that characterises P . From this point forward,
in general we will refer to the attributes that characterise P as P -attributes and
so forth.
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Fig. 8. Illustrating respectful interpretations.

4 From Extensional to Intensional Diagrams

Consider the example in Fig. 9, where dEX indicates that P\(Q ∪ R) is non-empty
using an ⊗-sequence. Therefore, we know that there is an element in P that has
all of the P -attributes but is missing at least one of the Q-attributes and at least
one of the R-attributes. So, more formally, given a model IEX = (UEX , ΨEX ) for
dEX , ΨEX (P ) contains an individual, say i, that is not in ΨEX (Q) nor in ΨEX (R).

Moreover, given a respectful interpretation, IIN = (UIN , ΨIN ), att(i)
ensures att(i) ⊇ ΨIN (Int(P )), att(i) � ΨIN (Int(Q)) and att(i) � ΨIN (Int(R)).
From att(i) � ΨIN (Int(Q)) we can deduce that there is a Q-attribute that is
not a P -attribute. Likewise, there is an R-attribute that is not a P -attribute,
which may or may not be the same as the Q-attribute. This situation is captured
by dIN , where two ⊗-sequences are placed in zonal regions. For instance, one
of the ⊗-sequences is in 〈{Int(Q)}, {Int(P )}, {Int(P ), Int(Q), Int(R)}〉 (i.e. the
⊗-sequence is inside Int(Q) but outside Int(P )).

Fig. 9. A respectful translation from extensional to intensional diagrams. (Color figure
online)

In general, given a single ⊗ placed in a zone, (Li, Lo), of an EX -diagram
we know that there is an element (in the set represented by) (Li, Lo); in what
follows we frequently blur the distinction between syntax and semantics as we
have just done here. This element has all of the attributes in (the sets denoted by
the) intensional labels arising from Li; in our previous example, the ⊗-sequence
in dEX was in the zone ({P}, {Q,R}) and, informally, had all the P -attributes.
Importantly, such an element is missing at least one attribute from each of the
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intensional labels arising from Lo; in the previous example, informally, the ⊗-
sequence in dEX was missing a Q-attribute and an R-attribute. This means we
know that each intensional label arising from Lo contains an attribute that is not
in any of the intensional labels arising from Li. This leads to our next definition
which identifies, for any zone, a corresponding zonal region such that if the zone
in a P -diagram contains an ⊗ then the zonal region will contain an ⊗-sequence:

Definition 10. Let (Li, Lo) be a zone formed over EX . Let 〈IN ,OUT , I〉 be
a zonal region formed over IN . Then 〈IN ,OUT , I〉 is a corresponding IN -
region of (Li, Lo) provided

1. IN contains a single intensional label arising from Lo:

IN = {Int(p)} for some p ∈ Lo,

2. OUT contains the intensional labels arising from Li:

OUT = {Int(p) : p ∈ Li}, and

3. I contains the intensional labels arising from Li ∪ Lo:

I = {Int(p) : p ∈ Li ∪ Lo}.

Given (Li, Lo), the set of zonal regions which are corresponding IN -regions is
denoted ZR(Li, Lo).

Referring again to Fig. 9, given I = {Int(P ), Int(Q), Int(R)}, we have

ZR({P}, {Q,R}) = {〈{Int(Q)}, {Int(P )}, I〉, 〈{Int(R)}, {Int(P )}, I〉}.

Fig. 10. A more complex ⊗-sequence case.
(Color figure online)

Fig. 11. The impact of shading.

Whilst this gives us insight into how to translate the information provided
by a single ⊗-sequence placed in a zone, we need to consider the more general
case where ⊗-sequences are placed in multiple zones. Extending the example in
Figs. 9 and 10, we obtain d′

IN from d′
EX . Here, we have ZR({P}, {Q,R}) (as

given above) from the (blue) ⊗ in ({P}, {Q,R}) and

ZR({Q,R}, {P}) = {〈{Int(P )}, {Int(Q), Int(R)}, {Int(P ), Int(Q), Int(R)}〉}
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from the (red) ⊗ in ({Q,R}, {P}). The blue ⊗s in d′
IN arise from the blue ⊗ in

d′
EX . Likewise for the red ⊗s. Given that ⊗-sequences provide disjunctive infor-

mation, there are a range of possibilities for the presence of attributes as shown
in d′

IN ; essentially, the ⊗-sequences in d′
IN capture this range of possibilities

in a conjunctive normal form. Definition 11 makes this insight precise, where
r = {z1, . . . , zn} can be thought of as a region containing an entire ⊗-sequence:

Definition 11. Let r = {z1, . . . , zn} be a region formed over EX . The elements
of the set of regions, R(r), given by

R(r) = {zr1 ∪ . . . ∪ zrn : zr1 ∈ ZR(z1) ∧ . . . ∧ ∪ zrn ∈ ZR(zn)}

are correspondingIN -regions of r.

Having considered the presence of ⊗-sequences in EX -diagrams, our atten-
tion now turns to shading. In Fig. 11, shading has been placed in the zones
({Q,R}, {P}) and ({P,R}, {Q}). This provides information beyond the ⊗-
sequence, such as that ({Q,R}, {P}) represents the empty set. Therefore, from
the ⊗-sequence and the shading, we know that ({P}, {Q,R}) represents a non-
empty set. Thus, the information we gain about the presence of attributes arising
from the ⊗-sequence in d′′

EX reverts to what we found in Fig. 9. Consider now
the shading in ({P,R}, {Q}). This shading tells us that there are no elements
in both P and R but outside Q but does not provide any information about
attributes.

Importantly, it is true in general that the absence of individuals in a set does
not provide any information about the absence of attributes. This is a major
point: shading in EX -diagrams does not provide information about attributes
beyond its interaction with ⊗-sequences. The same is true of missing zones.
Having considered ⊗-sequences, shading, and missing zones, we are in a position
to define the IN -diagram that is a respectful translation of a EX -diagram.

Definition 12. Let dEX = (E,ZE , Z∗
E , SE) and dIN = (I, ZI , Z

∗
I , SI) be Euler

diagrams formed over EX and IN respectively. We say that dIN is the respect-
ful translation of dEX given the intensional label allocation function, Int, pro-
vided:

1. the intensional labels in dIN arise from the extensional labels in dEX :

I = {Int(p) : p ∈ E}.

2. there are no missing zones in dIN : MZ(dIN ) = ∅.
3. there are no shaded zones in dIN : Z∗

I = ∅.
4. the ⊗-identifiers in dIN arise from those in dEX :

SI = {rIN ⊆ ZI : ∃rEX ∈ SE rIN ∈ RIN (rEX \Z∗
E)}.

In Fig. 9, dIN is the respectful translation of dEX . Likewise, d′
IN is the

respectful translation of d′
EX in Fig. 10. Interestingly, dIN , Fig. 9, is the respectful
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translation of d′′
EX in Fig. 11. This illustrates that the translation from exten-

sional diagrams to intensional diagrams inherently loses information. Theorem1,
below, establishes that respectful translations ensure, given any model for dEX
that any interpretation which is respectful of it is a model for dIN ; the theorem
is illustrated in Fig. 121.

Fig. 12. The relationship between models.

Theorem 1. Let dEX = (E,ZE , Z∗
E , SE) be an Euler diagram formed over

EX . Let dIN = (I, ZI , Z
∗
I , SI) be a respectful translation of dEX . Let IEX =

(UEX , ΨEX ) be a model for dEX . Let IIN = (UIN , ΨIN ) be an interpretation
over IN that is respectful of IEX . Then IIN is a model for dIN .

5 From Intensional to Extensional Diagrams

Our task now is to consider what, if any, information we can derive about sets of
individuals from information about attributes. We start by focusing on Fig. 13.
We see that there is an attribute in A that is not in B. However, this does
not imply that there are any individuals with that attribute: the presence of
attributes tells us nothing about the presence of individuals. By contrast, the
absence of attributes does provide information about the absence of individuals.
In our example, the shading inside B but outside A intuitively tells us that the
attributes in A include all of those in B. Therefore, any individual with all of
the attributes in A also has all of the attributes in B, so any such individual
must also be in the set Ext(B). This implies that Ext(A) is a subset of Ext(B),
as indicated by the shading in dEX .

Having established that ⊗-sequences in IN -diagrams provide no information
about individuals in EX -diagrams, our focus is now exclusively on shading and
missing zones. In Fig. 14, d′

IN contains three shaded zones. From the shading
in ({A}, {B,C}) we can see that all attributes in A are all in B or C. This
implies that any individual in both Ext(B) and Ext(C) has all attributes in A.
This insight allows us to shade the zone ({Ext(B),Ext(C)}, {Ext(A)}). Being in
just one of Ext(B) and Ext(C) need not imply membership of Ext(A), however.

1 Proofs of Theorems 1 and 2 are omitted for reasons of space but can be found in an
appendix on our website at http://readableproofs.org/looking-glass.

http://readableproofs.org/looking-glass
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Fig. 13. A respectful translation from intensional to extensional diagrams.

Fig. 14. A more complex shading case.

Consider next the shaded zone ({A,B}, {C}). Taking this shaded zone in iso-
lation tells us that individuals with the common attributes of A and B possess
all attributes in C. From this we cannot infer anything about the absence of
individuals in the sets represented by zones of d′

EX . A little more formally, from
this shaded zone in d′

IN , any individual, i, where

att(i) ⊇ ΨIN (A) ∩ ΨIN (B)

ensures att(i) ⊇ ΨIN (C). But there is no zone in d′
EX whose individuals are

guaranteed to have all of the attributes common to both A and B. This is
because individuals in a zone, say (Li, Lo), in d′

EX , have all of the attributes in
⋃

p∈Li

Ψ(Int(p))

as opposed to an intersection of attribute sets. From this it follows that this
shaded zone does not (in isolation) give rise to shading in d′

EX .
However, if we consider this shaded zone together with the shaded zone

({A}, {B,C}), we form a zonal region, namely 〈{{A}, {C}, {A,B,C}〉. This
shaded zonal region tells us that all individuals with attributes in A have all
attributes in C: there cannot be Ext(C) individuals that are not Ext(A) indi-
viduals. This allows us to shade the zonal region

〈{Ext(C)}, {Ext(A)}, {Ext(A),Ext(B),Ext(C)}〉

(of course, some of this shading in d′
EX was already obtained from the shading

in ({A}, {B,C})). Lastly, just as taking ({A,B}, {C}) in isolation did not yield
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Fig. 15. The impact of missing zones. Fig. 16. The relationship between
models.

information in dEX , the shading in ({B,C}, {A)}) gives rise to no information
about individuals. In summary, we gain information about the absence of indi-
viduals in EX -diagrams is when IN -diagrams contain shading in zonal regions
whose IN set contains a single label.

For our final example in the build-up to defining a respectful translation from
IN -diagrams to EX -diagrams, we consider Fig. 15. Here, there is one shaded
zone in d′′

IN and also one missing zone. These two zones form a zonal region,
namely 〈{C}, {B}, {A,B,C}〉. Consistent with our earlier examples, this gives
rise to the shading in dEX . This leads to our next definition:

Definition 13. Let 〈IN ,OUT , I〉 be a zonal region formed over IN such
that |IN | = 1. Let 〈IN ′,OUT ′, E〉 be a zonal region formed over EX . Then
〈IN ′,OUT ′, I〉 is a corresponding EX -region of 〈IN ,OUT , L〉, denoted

〈IN ,OUT , I〉 ≡c 〈IN ′,OUT ′, E〉

provided

1. IN ′ contains a label arising from OUT: IN ′ = {Ext(a) : a ∈ OUT},
2. OUT ′ contains the label arising from IN : OUT ′ = {Ext(a) : a ∈ IN }, and
3. E contains the intensional labels arising from I: E = {Ext(a) : a ∈ I}.

We are now in a position to define a respectful translation from IN -diagrams
to EX -diagrams:

Definition 14. Let dIN = (I, ZI , Z
∗
I , SI) and dEX = (E,ZE , Z∗

E , SE) be Euler
diagrams formed over IN and EX respectively. We say that dEX is the respect-
ful translation of dIN given the intensional label allocation function Int pro-
vided:

1. the extensional labels in dEX arise from the intensional labels in dIN : E =
{Ext(a) : a ∈ I}.

2. there are no missing zones in dEX : MZ(dEX ) = ∅.



Euler Diagrams: Extent to Intent 379

3. the shaded zones dEX arise from some shaded and missing zones in dIN :

Z∗
E = {zE ∈ 〈IN ′,OUT ′, E〉 : ∃〈IN ,OUT , I〉 ⊆ Z∗

I ∪ MZ(dI)
|IN | = 1 ∧ 〈IN ,OUT , I〉 ≡c 〈IN ′,OUT ′, E〉},

4. there are no ⊗-identifiers in dEX : SE = ∅.

In Fig. 13, dIN is the respectful translation of dEX , which illustrates that
the translation from IN -diagrams to EX -diagrams inherently loses information
provided by ⊗-sequences. We have a similar situation with shading, where d′

IN
is the respectful translation of d′

EX in Fig. 14; here the shading could only be
partially translated. Lastly, d′′

IN in Fig. 15 highlights the role of missing zones
when respectfully translating to dEX . Theorem 2, below, establishes that respect-
ful translations ensure that models for dIN respect only interpretations which
are models for dEX ; the theorem is illustrated in Fig. 16.

Theorem 2. Let dIN = (I, ZI , Z
∗
I , SI) be an Euler diagram formed over IN .

Let dEX = (E,ZE , Z∗
E , SE) be a respectful translation of dIN . Let IIN =

(UIN , ΨIN ) be a model for dIN . Let IEX = (UEX , ΨEX ) be an interpretation
over EX such that IIN is respectful of IEX . Then IEX is a model for dEX .

We now move on to summarise the results of the paper and look forward to
possible directions in which it could be taken.

6 Conclusion

In this paper we have formalised the idea of extensional and intensional Euler
diagrams, providing a systematic study of the extent and intent of a term. We
established several basic results about the relationship between the two perspec-
tives; Theorems 1 and 2 demonstrate the symmetry of the respectfulness relation,
used to give the definitions of the translations in both directions between extent
and intent. In essence our translations maintain the (minimal) information which
must be true in either perspective. These results show the inevitability of infor-
mation loss when translating from one system to the other.

Concerning information loss, it will be interesting to precisely characterise
its nature in future work. In this context, we envisage defining an equivalence
relation that syntactically characterises when two extensional diagrams (resp.
intensional diagrams) give rise the same intensional diagram. Clearly, two exten-
sional diagrams which differ only in their missing zones and shading give rise
to the same intensional diagram (resp. extensional diagram). In Fig. 17, dEX1

and dEX2 differ in this way and both translate to dIN . In addition, dEX3, which
contains an additional ⊗ in shaded zone, also gives rise to dIN . This is because
shaded zones always represent the empty set, even if they contain an ⊗ symbol.

The inspiration for exploring the relationship between extensional and inten-
sional Euler diagrams came from a thought experiment in Moktefi’s 2015
paper [7]. The subject of that article is the “iconicity” of using circles to represent
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Fig. 17. Extensional diagrams translating to the same intensional diagram.

extent, a topic beyond scope for this discussion. However, iconicity depends on
resemblances between notation and meaning; the kind of resemblance involved
in this case is said to be between spatial relations of circles (e.g. one within
another, two placed apart) and relations of sets (e.g. subsumption, disjointness).
That is, the article [7] argues that circles are iconic to extents of terms because
circles have the relations that sets do and that we want to depict. The thought
experiment involves a hypothetical intensional Euler diagram notation without
defining it, and illustrates that Euler diagrams are less iconic (i.e. do not possess
the relevant relations) when used to depict the intent of terms.

Although this paper does not do so, the purpose of creating this formalism
is to carry on the work of the thought experiment: if we accept that a notation
based on circles (or, generally, closed curves) arranged in space is an effective lan-
guage for reasoning about extent, what happens to this effectiveness when we use
a similar notation to reason about intent? What, if anything, does the transition
from extensional to intensional spatial diagrams tell us about the “effectiveness”
(whether explained as iconicity, well-matchedness or using other terminology)
of using space to depict extent? What form would a notation take which “has”
the salient relations of intension? Would translating from extensional Euler dia-
grams to such an intensional notation involve the necessary loss of information?
These open questions can be considered from numerous points of view, and the
work we have presented is the first step towards a formal logical perspective.
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