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Preface

The 10th International Conference on the Theory and Application of Diagrams (Dia-
grams 2018) was hosted by Edinburgh Napier University during June 18–22, 2018. For
the first time, Diagrams was co-located with the 23rd International Conference on
Conceptual Structures (ICCS), which stimulated discussion between researchers of
both communities.

Submissions to Diagrams 2018 were solicited in the form of long papers, short
papers, posters and, for the first time in the conference’s history, Abstracts. The
Abstracts category was introduced to encourage participation from authors working in
fields where publications at conferences are not as prestigious as those appearing in
journals.

The peer-review process involved all papers and abstracts receiving at least three
reviews (at least two for posters) by members of the Program Committee or a nomi-
nated sub reviewer. After reviews were received, authors had the opportunity to submit
a rebuttal. The reviews and rebuttals led to a lively discussion involving the Program
Committee and the conference chairs to ensure the highest-quality submissions, cov-
ering a broad range of topics, were accepted for the conference.

We would like to thank the Program Committee members and the additional
reviewers for their considerable contributions. The robust review process, in which
they were so engaged, is a crucial part of delivering a major conference. In total, 124
submissions were received. Of these, 26 were accepted as long papers. A further 28
were accepted as short papers, 20 as Abstracts, and 20 for poster presentation.

Diagrams 2018 sought to expand the research community, and introduced two
special submission tracks on Philosophy and Psychology after noting their underrep-
resentation in past editions of the conference. This action was extremely successful
with 20, out of the total 124, submissions made to the Psychology track and 54
submissions to the Philosophy track. In addition, 28 Abstracts were submitted across
the main track and the two special tracks, with strong representation from both
philosophers and psychologists.

Alongside the technical program, Diagrams 2018 included a Graduate Symposium,
the Set Visualization and Reasoning Workshop, and six tutorials covering a diverse set
of topics on diagrams. There were two keynote speakers. Professor Ahti-Veikko
Pietarinen, from Tallinn University of Technology, gave an excellent keynote talk on
philosophical aspects of diagrams. Professor Keith Stenning, from the University of
Edinburgh, gave a joint keynote with ICCS covering research on diagrams from a
cognitive perspective.

There are, of course, many people to whom we are indebted for their considerable
assistance in making Diagrams 2018 a success. We thank Sarah Perez-Kriz, for her role
as Abstracts Chair, and Renata de Freitas, for her role as Workshops and Tutorials
Chair. We are grateful to Andrew Blake for organizing the Graduate Symposium,
which supported the next generation of researchers. Atsushi Shimojima did an



outstanding job as Publicity Chair, no doubt reflected by the number of submissions.
Francesco Bellucci took on the demanding role of Proceedings Chair, for which we are
immensely grateful. We are grateful to the NSF for providing significant funding,
which supported graduate students from US-based institutions with their participation.
Our institutions, Edinburgh Napier University, the University of Brighton, and Tallinn
University of Technology, also provided support for our participation, for which we are
grateful. Amirouche Moktefi was further supported by the ERC project “Abduction in
the Age of Uncertainty” (PUT 1305, Principal Investigator: Prof. Ahti-Veikko
Pietarinen). Lastly, we thank the Diagrams Steering Committee for their continual
support, advice, and encouragement.

June 2018 Peter Chapman
Gem Stapleton

Amirouche Moktefi
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Keynote Contributions



Diagrams and Nonmonotonic Logic:
What Is the Cognitive Relation?

Keith Stenning(B)

University of Edinburgh, Edinburgh, UK
k.stenning@ed.ac.uk

[9] summarised a program of research into diagrammatic reasoning based on
the semantics of diagrams. It distinguished direct diagrams from indirect ones
by whether there was a direct semantic interpretation of some spatial relations
in the diagram or whether all the interpreted spatial properties were mediated
by a concatenation relation, as is the case in written natural language. So an
Euler diagram is direct because its spatial property of containment in a labelled
closed curve is directly interpreted as membership in a set designated by the
label. In a typical abstract network diagram, such as a semantic graph, the
nodes-and-link configurations take the place of the concatenation operator (as
well as other matters), and play similar roles in determining the semantics of
the diagram indirectly as the concatenation operator does in written natural and
logical languages. The hallmark of indirectness is that the concatenation relation
(whether one- or two-dimensional) has itself no semantic interpretation—only a
syntactic one.

Directness gives rise to specific inexpressiveness of direct diagrammatic sys-
tems, and while indirect diagrammatic systems may be inexpressive, the lim-
itation on that expressiveness is not a result of the properties of the ‘spatial
concatenation operator’. The program’s argument was that this limitation of
expressiveness played important roles in determining the cognitive properties of
direct diagrammatic systems. Inexpressiveness generally leads to tractability of
reasoning (in the computer science sense), and tractability of reasoning gener-
ally leads to ease of cognitive use. One kind of example is that the reasoning to
an interpretation of direct diagrams may be simple, and gaining a grip on the
interpretation may be nine-tenths of the problem naive users have with some
direct diagrammatic systems.

This ease of interpretation is possibly what gives rise to the widespread illu-
sion that there is no need to interpret diagrams: they provide their interpretation
‘on their face’. This may be the case in examples where the interpretation is ‘cul-
turally available’, but is in general not true, even in very simple cases such as
Euler’s diagrams. Notably, these diagrams were widely misinterpreted by a range
of psychologists, leading to ‘demonstrations’ that these diagrams could not pro-
vide the psychological basis for syllogism solution. Euler had a specific strategy
for the use of his diagrams that remained largely implicit in [3], but which is
absolutely essential to the diagram’s advantage in tractability of reasoning. With
the flat-footed interpretation proposed by the psychologists (the one that pro-
vides the proof that the diagrams are not used mentally), the reasoning becomes

c© Springer International Publishing AG, part of Springer Nature 2018
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quite intractable, at least for a reasoner with the architecture of human working
memory. For example, the syllogism Some A are B. Some B are C. Some A are C
requires consideration of about 60 candidate models, and an auxilliary search for
propositions true in all of them, of which, of course, there are none. With more
careful experimentation, and a one-slide introduction to how to interpret the dia-
grams (what Euler does in his letters to the Princess), the diagrams are highly
beneficial, because they induce the understanding of the syllogism required, an
interpretation that few undergraduate subjects faced with the usual task adopt.

This approach to diagrams was mainly explored empirically in the teach-
ing of logic more generally, through a collaboration with Jon Barwise and John
Etchemendy using their computer environment for heterogeneous reasoning to
teach first order logic Hyperproof. The most striking empirical finding of this
program was the discovery of deep individual differences in the ways that under-
graduates on their first logic course used the diagrams, with resulting improve-
ments in their ‘general reasoning’. Apart that is, from the demonstration that
real logic courses can make large improvements in the reasoning of even highly
selected undergraduates, an idea that was, and still is, routinely dismissed in
psychology, on little evidence. For those interested in the teaching or instruc-
tion of diagrammatic reasoning, these results are probably the most important
take-home. For the ‘weak expressiveness’ approach, they were a complication. It
looked superficially, as if the theory worked for half the class. It forced more care
in the statement of the theory. Interpretation is everything might be a slogan for
the change of emphasis. To understand the effects of direct diagrams required
painstaking attention to the details of the interpretations that they induced: not
a bad slogan for the psychology of reasoning generally?

This talk is about what happened next. Diagrams originally caught my atten-
tion while I was, as usual, researching natural language discourse. They offered
a counterpoint to language. Being told that using logical analysis of natural
language discourse means the psychology is limited to linguistic reasoning had
grown tedious. My first love had been the idea that there was an alternative
logic for the construction of models for narratives. The counterpoint of diagrams
reinforced the idea that interpretation had to be central. But in natural language
narrative processing, the involvement of interpretation is far more all encompass-
ing. Unlike the situation in classical logic where interpretation is a starter for the
real meal, in discourse processing, interpretation is the main course. The problem
had been in the early years [8], that classical logic was obviously the wrong logic,
but there wasn’t as yet a suitable alternative. Nonmonotonic logics had been
invented [4] but it wasn’t easy to see how they could be applied. Although they
had been invented to make ‘ordinary’ reasoning with general knowledge easy, it
had turned out that their tractability was even worse than classical logic, and
here it wasn’t clear that they could be fitted to small problems, because they
could immediately explode by demanding the retrieval of just about any piece
of human knowledge to connect the first two sentences of a discourse.

At this point, Seeing Reason was just being shepherded to the publisher,
when I met Michiel van Lambalgen in Amsterdam. Michiel is a logician and
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a probabalist, and a Kant scholar. A logician was what I needed for the non-
monotonic logic; a probabilist for dealing with what had become the opposition;
and Kant was my first philosophical hero. More immediately relevant was that
Michiel announced that he wanted to understand the experimental approach to
cognitive issues. I quoted my exalted supervisor’s reply to a related question
I had asked him years earlier: “When I get an idea for an experiment nowa-
days, I lie down in a dark room and wait for it to go away” was his reply. This
didn’t seem to put Michiel off. From Michiel I learned how much logic had hap-
pened while I did my diagrams-blink. Now there was preferred model semantics
for nonmonotonic logics [7], and PROLOG (which I only knew as a program-
ming language) had been recognised as a tractable nonmonotonic logic [2]. With
these two, one had a hope of explaining how natural language narrative was,
in its logical properties, nearly the opposite of the classical logic with which I,
and more importantly Grice, had been inappropriately struggling to understand
cooperative communication. But even more than the tools, Michiel (collaborat-
ing with Fritz Hamm) [12], had shown that Constraint Logic Programming plus
Kowalski’s Event Calculus [6] could give a nonmonotonic semantics for natural
language narrative. Matters were just waiting for a psychologist to do a lot of
learning.

So the real purpose of this talk to this audience is to explore the similari-
ties between the multiple-logics program that grew out our encounter, and the
‘weakly expressive direct diagrams’ work already introduced. Logic Programming
(LP), the nonmonotonic logic that grew out of PROLOG, is ‘weak’ in a number
of ways. It’s birth gives the most general hint. How did PROLOG arise? From
the gleam in the eye that logic ought to be usable for programming computers at
a much higher level than the then available imperative languages, combined with
the ghastly realisation that classical logic was fundamentally intractable. Much
of our understanding of computation came from the study of the undecidability
of classical logic. So LP is based on the ‘Horn-clause fragment’ of classical logic,
which was the most promising fragment that is tractable. So weakness was the
fundamental desideratum (coupled of course with just enough expressiveness for
a programming language).

LP has a conditional with an abnormality clause ab, which is negated. So
(p ∧ ¬ab) → q is read as “If p, and nothing is abnormal, then q”. This makes
LP’s conditional exception tolerant. If, in the context of processing, something is
abnormal, then ¬ab becomes false, and the antecedent conjunction p ∧ ¬ab also
becomes false, which blocks the inference to q. How does one know there is an
abnormality? Well, there is an abnormality list: a disjunction of exceptions, the
truth of any one of which makes ab (the abstract abnormality proposition) true.

It is therefore important to understand the status of such a conditional in this
case. It does not become false: it becomes inapplicable. These conditionals are
organised into potentially very large collections (knowledgebases (KBs)) (think
human semantic memory) which can be expressed as feedforward networks [10].
A retrieval in the task of answering a query leads to flow through this feedforward
network (analogous to psychology’s informal concept of ‘spreading activation’).



6 K. Stenning

In fact, an implementation of procedural memory such as ACT-R [1] is close to an
LP network, though its applications are different from ours. So if there is evidence
that ab is true (one of the disjoined list of particular abnormalities is true) then
the truth of p will not trigger the conclusion q. That is all. The conditional
remains in place. If the evidence of abnormality is subsequently overridden then
the conditional will fire in successive retrievals. In fact, the conditionals function
more like contentful inference rules than the propositions of classical logic. To
accommodate this behaviour, a 3-valued Kleene semantics is used in which the
‘intermediate’ truth-value I is read ‘indeterminate’ rather than the ‘intermediate’
familiar from say Lukasiewicz logic. Indeterminate is needed because the vast
majority of conditionals in a KB are inactive during any episode of reasoning.

The existence of a KB means that search for propositions can have a much
stronger interpretation than in classical logic. Not finding p as a premiss just
means you can’t use p in inferences. In LP, failure-to-find p can be interpreted as
establishing that it is true that ¬p. This inference is called ‘negation-as-failure’.
If a discourse starts: “Once upon a time there was a cat”, then a search for
giraffes, at this point, will yield the truth of “There is no giraffe”. So spreading
activation search through the LP-net yields all the propositions entailed by the
givens in the current model, and the current model is updated by the addition
of any new ones. Despite the technical complexities needed to achieve it, LP has
the property that a unique minimal model (the preferred model) results at every
addition of a proposition to the input. This should be immediately attractive to
psychologists who know the psycholinguistic literature on peoples’ construction
of models for discourses. If we cannot get a single model of the gist of a story, we
typically feel we have no understanding, and demonstrably can remember little
of the sentences that made it up.

So the differences with classical logic are stark. Instead of infinitely many
models existing for many sets of premisses, we get a single model for any coher-
ent pair of KBs. In classical logic the conclusions can contain nothing new (noth-
ing that wasn’t implicit in the premisses). In LP every sentence needs to add
something new (and maybe subtract things) to/from the preferred model, and
so the interpretation changes at every point. This is cooperative reasoning to an
interpretation (a unique minimal preferred model) in counterpoint to classical
logic’s adversarial reasoning from an interpretation to a propositional conclusion.

LP is nomonotonic as opposed to classical logic’s monotonicity, and whatever
is in common between Euler’s circles reasoning to a classical logical syllogism
conclusions, and LP reasoning to a preferred model of a story, the logics are
different. We need multiple logics for the incompatible things that people do
in reasoning. The answer lies in interpretation. To understand the process of
arriving at an interpretation of Euler diagrams (the one we need to do syllogisms
easily), then we need LP to model that process. If we look at the ‘one slide
tutorial’ that explains Euler’s tactics/strategy for using his circles to at least a
good proportion of our subjects [5], then we could implement it in LP, though
to give a serious implementation we’d need to do some empirical work on what
other interpretations there are, which one is the one our students jump to, and so
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on. The output of that process would be an account of the interpretative process
in this particular situation with these particular students, which would output a
model of Euler’s interpretation which would constitute the decision. Even once
a subject has that interpretation, there may be considerable tactical skill needed
in applying it to difficult syllogisms. In classical logic there is a separable theorem
prover which tells you which proof rules to apply at each point. This calculation
and the skill of applying it, are separable from the conceptual knowledge of
validity embodied in the logic. [11] shows that there is at least one algorithm
which is abstract with regard to whether it is implemented in a sentential logical
account, or a diagrammatic Euler account, and which can explain how people
can do the reasoning once the interpretation is understood. Many psychological
experiments have proceeded on the assumption that the reasoning has to be
different on the two implementations. Different it is in the superficial detail, but
the same it is when one gets below to the logical core.

So LP and Euler’s circles are utterly different even though they are both
chosen for their weak expressivity. But LP’s design to output unique minimal
preferred models, rather than single sentence conclusions, and the enforcement
of the provision of information by direct diagrams such as Euler’s circles share
this feature. The talk will close with some expansion of this point. In classical
logic, logicians define models simply as sets of sentences. And any consistent set
of sentences is a model of some set of premisses. But in LP, and more fastid-
iously, Constraint LP + the Event Calculus, there are certain ‘connectedness’
and ‘coherence’ constraints that have to be applied to filter out sets of sen-
tences which have no models, despite being consistent. So, in narrative, there
are constraints that certain temporal, spatial, referential and identity informa-
tion is provided, that generally is not all explicitly in the discourse. One can
see these constraints operating in simple examples like Max fell. John pushed
him. In classical logic, in the obvious interpretation, these two sentences express
propositions that are logically unrelated. As initial in a story context, they typi-
cally induce an interpretation in which Max’s pushing causes John’s falling, and
therefore precedes it. Neither sentence alone entails this information: only as a
discourse are they consequences in CLP, and contained in its preferred model,
at this point. They may of course nonmonotonically disappear with certain con-
tinuations. This required coherence and completeness of models (as opposed to
incoherent or incomplete sets of sentences) is like the completeness of specifi-
cation of sets by the primitive topological structure of the circles in an Euler
diagram that does not permit any vagueness about which types are represented
as possible by any of the permissible diagrams. Euler’s ‘theorem prover’ which
is then laid on top of this minimal diagrammatic structure, circumvents this
enforcement of the representation of all possible types, and eases the identifica-
tion of conclusions. And the structure can be a useful aid to teaching the ideas
that ‘searching all possible types’ is necessary for Euler’s theorem prover to work
by exploiting the weakness of syllogistic semantics: any valid syllogism can be
modelled with a model containing only a single element. So weakness of expres-
sion does turn out to be an important commonality, and to have implications
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for the practical uses of diagrams, if only one gets the comparison at the right
levels. However trivially simple are Euler’s diagrammatic method and the syllo-
gisms it was invented for, they provide a structure for the study of at least direct
diagrammatic systems of a wide variety.
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ing notational simplicity, multi-modality and normativity. This paper
aims at understanding the nature of Peirce’s graphical method and its
implications to philosophy of logic.

Keywords: Logical graphs · Existential graphs · Beauty · Logicality

1 Introduction

Adapting Russell’s words on the beauty of mathematics, a study of Peirce’s
method leaves little doubt that “a logical graph, rightly viewed, possesses not
only truth, but supreme beauty”. This beauty has not merely or even predomi-
nantly an aesthetic but an exact logical and intellectual quality. The continuity
of the sheet on which logical graphs are scribed makes the sheet in Peirce’s
terms a “perfect sign” (R 283(s)). Being perfect, it has got to be the “quasi-
mind” that unifies symbol, index and icon. Graphs are propositional symbols
(“phemes”), and thus picture one or more of the three categories: intellectual
concepts, thoughts, or generalities.

Our exploration on the beauty of graphs comes in three parts. First, the-
ories of logical graphs can exploit notational simplicity. Graphical representa-
tions of logical constants perform well when they unify the notational apparatus
of the theory. With such notational simplicity, other things then follow. Nota-
tional advances contribute to the development of science. Changes—sometimes
radical—in notations facilitate discovery and innovation. Advances in science are
invariably preceded by representational advances in systems of signs as much as
they are in methods of communication. Obviously notations and communication
methods co-evolve.

The concept of notational parsimony is itself not a simple one. The movement
of a double pendulum is described by unassuming formulas whose predictions are
tedious to compute. A three-body system is simple but has no formalization that
we could solve out without infinities. The two are very different cases. Peirce’s
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higher-order graphs that represent anteriority and posteriority relations are large
and occupy several bridges, but the meaning of these relations is not complicated.
They are pictures of generality. Yet the logic consisting of such graphs would be
incomplete and undecidable. To describe a concept by measuring the simplicity
of graphs by the number and size of the areas it needs to enclose, plus the
number of non-connected lines that cross each other, we can get one measure of
simplicity; this has no correlation with the simplicity in the alphabet that uses
only few, and minimally just one, notational primitives.

Notation that simplifies representation of logical constanthood yields
advances in the following sense. When the same sign, such as an oval, signifies
both the scope (parentheses) and an operation, the system gains in analyticity.
The precise notion of analyticity is crucial. Graphs in the Beta notation use lines
that abut ovals. Disconnected and resting on different areas with loose ends they
increase the quantificational depth of the graph. Graphs in the Alpha notation
consist of nested ovals that represent both the scope of logical constants and
one-place operations such as negation or involution. There may or may not be
a sign for the conditional. Illation suggests that there is.

Alternatively, nests or the scroll may mean the presence only of an implica-
tion, thus analyzing the relation of illation in its ultimate details. The smallest
axiom for implicational graph calculus emerges from insertions and iterations
and has 13 areas, yielding syntactic completeness. The freedom one gains is an
increase in analytic virtue: these minutest steps of logical reasoning are sus-
pended well in the graphical method.

Second, the beauty of graphs lies in the fact that they are multi-modal. They
need not appeal to the eye, not even predominantly so. It may be misleading
to think logical graphs as unique because of their allegedly superior ocularity
over other logical notations [6]. Notations aid the course of interpretation of
the relations of its parts. Those relations have to be perceived and conceived in
some sensible way. For example, a diagrammatic Alpha can work with sounds,
polyphony and silence, where the sheet is white noise [5].

Conventions of a tactile logic can appeal to a variety of sensations. Ambi-
ent space could be that of texture, density, state, depth, temperature or vibra-
tion. Values could be represented by haptic, cutaneous and muscular polarities
between rough and smooth, hard and soft, dry and wet, and so on. The degrees
of freedom are immense, with practical thrust [2]. Peirce’s tinctured graphs were
a preliminary exploration of these unusual representational spaces for various
sensations, moods and modalities.

Perception of beauty is also a moral experience. If graphs make a good instru-
ment of logical analysis of meaning and mind, this would be a great benefit in
value. No child currently reads a diagram unless trained to do so. Does it pre-
suppose linguistic competence? At least rhematic, skeletal level comprehension
may be needed. But if graphs can help discern truth better than other systems,
would we have a duty to teach them to the young? Do they do that? There seems
to be a gain also in synthetic virtues. We can run a Kantian thought-experiment
which takes graphs as objects of reasoning and construe imagined objects (now
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taking graphs as interpolants) for a particularly non-analytic example of quan-
tificational reasoning. Our observation of those constructions in the imagination
has immediately shown the validity of this example. It does so without recourse
to complex diagrammatic constructions that interpret objects in the universe of
discourse. Phenomenality of transformations enlightens logicality.

All three faces of beauty emerge from certain fundamental departures from
the conventions of traditional logical notation. The three most important ones
are the following. First, one begins with the sheet. This ambient space is a
continuous manifold upon which graphs are scribed. Yet the blank is itself also
an assertion in the language of graphs and represents the graph of coexistence.

The uses and significations of the sheet can vary. They make it evident that
different logical behaviours will ensue. Peirce used the sheet to signify not only
truth but assertion, proof, possibility, the future, the destined, and even imper-
ative and interrogative moods. We can choose from his palette, say, epistemic,
temporal, provability or illocutionary graphs and develop them further than he
managed to do.

In the other direction, we can disrobe the sheet of certain meanings. We
can conceive that it cannot be cut, for example. We will get systems that no
longer entertain certain basic logical truths. Either way, the sheet motivates the
emergence of wildly different systems.

Second, transformations exploit deep inference. This falls from the dimen-
sionality of the sheet. As it is a feature lacking in the way ordinary notations are
set up, attempts to improve those notations have not yet come to terms with the
full meaning of the depth of proofs. Since applying permissive moves in graphs
means that we can dive deep into their areas, the graphical notation may solve
problems that have troubled commonplace inferential systems.

Third, there is unity and continuity in the two perfect signs of system: the
sheet and the lines of identity. The lines show the connectivity of areas and
bonding of spots. This leads to the supposition that Wittgenstein was indeed
right: notions of the quantifier and identity should not have gotten separated in
the first place. We could do well to eliminate equality from logical notations and
express identity of the object by identity of the sign, not by the sign of identity.

If asserting identity of two objects is in Wittgenstein’s words “nonsense”, self-
identity is a pseudo-graphical form like an empty cut is a non-asserted boundary
or symmetry and transitivity rules that “cannot even be written down” (Tr.
5.534). Self-identity is in Beta shown as a thick loop of the line of identity. Thus
well-defined objects are represented not by extremities of lines but by loops or
“swellings” (R 493) at their ends. In addition to the blank, the line is in Peirce’s
theory that other sign which is both continuous and perfect.

Several further elements partake of this constitution of beauty. That contin-
uous predicates are indecomposable, that there is a fundamental role for graphs
of teridentity in the method, and the fact that Peirce’s theory of logical graphs is
the only known method in which logical and material (topological) continuities
are strictly correlated [1], contribute to the purely logical beauty of graphs.
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The sheet itself is internal to the language of graphs, and can be a represen-
tation of all truths (or assertions, transformations), or else a representation of
everything being false (or denials, disproofs). The former emerged in late 1896
as “Positive Logical Graphs” (R 488). Shortly afterwards, Peirce renamed them
existential graphs, to emphasize assertions of facts that positively exist in the
universe. The latter, namely the case where the blank means falsity, are the
entitative graphs. They give rise to the system of contradictions.

Ultimately Peirce did not think that either is the proper language of graphs.
Philosophical (logical) and psychological (phenomenological) considerations are
values complementary to each other. This gives rise to the Existential–Entitative
Duality: a function f mapping existential to entitative graphs and g mapping
entitative to existential graphs form a Galois connection. Indeed Peirce wrote
in his long Christmas gift to James that logic analyzes the generalization of the
“direct perception of what we are immediately aware of” (R L 224, December
25, 1909). In this letter Peirce predicts his analytic method to be “the Logic of
the Future” [4].

The leverage of graphs on the philosophy of logic is high. As scope and
duality belong together, so does quantification and identity. The very idea of
the leading principle of reasoning (Peirce’s Rule a.k.a. residuation) arises from
observing certain areas of logical diagrams spread on the sheet as blank. The
problem of justifying deductive reasoning resolves itself at once. The gap between
vision and reason is fulfilled. One might hope that the graphical method provides
unity and overarching analogies to discussions on logical pluralism when they
become occupied with things like axioms, proofs and computations. Going spatial
harbors non-trivial results and drives conceptual change. Many mathematicians
try to find adequate geometrical languages for physics.

Last, I conjecture that logical graphs excite those Brodmann areas that are
responsible for emotional experiences, whereas traditional (non-graphical) logical
notations may fail to do so. The two do not share the same experiences of beauty.
To see the beauty of graphs is to see the change in view; the change is to see it
as a theory that is simple, homogenous and unusually uberous.
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Abstract. Immanuel Kant had understood some deep facts about
mathematical knowledge that have mostly been ignored by recent
researchers on cognition, especially intrinsic connections between many
everyday actions and mathematical competences, e.g. competences con-
cerned with the fact that organisms inhabit environments with complex
mathematical structures, some produced by activities of life forms, others
not. I’ll present a variety of examples, to be discussed with the audience,
with deep implications for future research in artificial and natural cogni-
tion, and raise questions about the diagram-like information structures
many cognitive processes seem to be concerned with: “diagrams in the
mind”. I suspect that Alan Turing’s 1952 paper on chemical morphogen-
esis, published two years before he died is connected with this. Perhaps
if he had lived several more decades he would have worked on what I
call the Meta-Morphogenesis project, which was inspired by Turing and
has deep connections with mathematical structures important for animal
cognition and future machine cognition. However it is an open question
that current forms of (digital) computation will need to be enhanced
using chemistry-based computation similar to sub-neural mechanisms in
brains, or whether the required forms of reasoning can occur in virtual
machines implemented in digital machinery. Von Neumann’s last little
book, written as he was dying in 1958, raises similar questions.
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Biological foundations for mathematics
Evolution: the blind mathematician
Forms of representation for intelligent machines
Examples of toddler and non-human mathematical competences

1 Introduction

I believe that by 1781 Immanuel Kant had understood some deep facts about
mathematical knowledge that had been implicitly denied by David Hume, and
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have mostly been ignored by recent researchers, especially intrinsic connec-
tions between many everyday actions and mathematical competences. Examples
include competences concerned with the fact that organisms inhabit environ-
ments with complex and varied mathematical structures. Some of the structures
are produced by activities of life forms, such as honeycombs, spider-webs, and
many plant forms, whereas others arise out of inanimate processes, including
solar and lunar effects, weather, volcanoes, erosion, rainfall, wave actions, etc.

I shall use much of the tutorial to present examples for discussion, in the
hope that some of those attending will have important new ideas. Anyone think-
ing of attending can find out about some of the examples from a collection
of freely available online web pages produced over several years, and recently
incorporated into the framework of the Turing inspired Meta-Morphogenesis
project, presented here: http://www.cs.bham.ac.uk/research/projects/cogaff/
misc/meta-morphogenesis.html.

Participants will be invited to comment on several types of example relevant
to this project, some of them already presented online, e.g. in

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/toddler-theorems.
html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-sum.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/torus.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/deform-triangle.
html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/rubber-bands.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/trisect.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/cardinal-ordinal-
numbers.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/cup-saucer-
challenge.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/shirt.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/rings.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/cardinal-ordinal-
numbers.html.

In 1969 McCarthy and Hayes [1] published a logicist manifesto for AI, sug-
gesting that intelligent machines (and by implication humans and other animals)
could in principle perform all required information processing using logical forms
of representation, based entirely on Fregean forms of representation (using only
formalisms based on functions applied to arguments).

I criticised this at IJCAI in [2] suggesting that what I (misleadingly) called
“analogical” representations, in which properties and relations represent prop-
erties and relations (often in context-sensitive ways that rule out isomorphism
with what is represented) could often have greater heuristic power than Fregean
representations. Similar ideas have been reinvented several times, especially in
the context of research on diagrammatic reasoning.

Since the 1980s, there has been increasing interest in rival mechanisms based
on neurally inspired models of computation (e.g. [3]) given an enormous boost
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by advances in speed and reductions in price of computers (a process limited
by the end of Moore’s law). Rival waves of enthusiasm have been concerned
with embodied cognition, situated cognition, and no doubt several others, often
apparently based on personal preferences and a tiny sample of examples, rather
than careful analysis of requirements.

I suggest that we should try to learn from biological evolution: what were
the challenges and opportunities faced at various stages of evolution, and in
various kinds of environment, and how did genetic changes arise in response.
This requires very careful comparative analysis of requirements for organisms
with different capabilities and environments with different opportunities and
challenges. This is the goal of the Meta-Morphogenesis project.

The tutorial will present aspects of this project, including the importance for
evolution of the concept of a “construction kit”. The physical/chemical universe
provides a fundamental construction kit (FCK), but biological evolution created
and used increasingly varied and complex derived construction kits (DCKs) of
many forms, discussed in this long, incomplete, highly speculative paper (an
earlier version of which was published in 2017): http://www.cs.bham.ac.uk/
research/projects/cogaff/misc/construction-kits.html.

This approach criticises not only the purely logicist approach to AI, but
also reliance on neural theories that are inadequate because they cannot explain
mathematical discoveries (e.g. by Archimedes, Euclid, Zeno, etc.). Related theo-
ries over-emphasising embodied cognition also fail to address some of the deepest
aspects of perception, learning, and development, especially the growth of dif-
ferent competence layers based on genetic mechanisms that evolved at different
times and instead of all being expressed at birth are “staggered” in ways proposed
in collaboration with biologist Chappell and Sloman [4]. See also http://www.
cs.bham.ac.uk/research/projects/cogaff/misc/meta-configured-genome.html.

Some of the facts about geometrical and topological competences based on
understanding mathematical impossibilities and necessary connections also seem
to challenge current models of deep learning and current theories of brain func-
tion neither of which seems able to explain how impossibility and necessity can
be represented and reasoned about: they are not extremes of probability!

A recent extension to the M-M project is based on analysis of differences in
requirements for logical and algebraic theorem proving, which are now very well
established technologies, and requirements for the kinds of reasoning mechanisms
that seem to be essential for the ancient topological and geometrical discoveries.
Early ideas about this are presented in discussion of a conjectured multi-layer
“Super-Turing membrane machine” able to support ancient mathematical rea-
soning, with precursor versions in other species and pre-verbal human toddlers.
It is not clear yet whether these can be implemented as virtual machines run-
ning on digital computers or whether something very different is required, e.g.
perhaps chemical computation involving a mixture of discrete and continuous
processing. Some preliminary thoughts, based on partial analysis of geomet-
ric reasoning examples can be found here: http://www.cs.bham.ac.uk/research/
projects/cogaff/misc/super-turing-geom.html.
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Statistical/probabilistic learning must be contrasted with discovery of pos-
sibilities, necessities and impossibilities (recognized in Kant’s Critique of Pure
Reason (1781) as central to mathematical knowledge). Both forms of learning
can be useful but proposers of mechanisms sometimes ignore complementary
mechanisms.

Whether the “diagrammatic” mechanisms can be implemented as virtual
machines running on digital computing machinery is not yet clear. I suspect
Turing’s interest in “The chemical basis of morphogenesis” (published in 1952,
two years before his death) may have been related to these questions.

Researchers interested in how animals or machines interact with their envi-
ronments tend to make assumptions that I shall challenge. E.g. it is often
assumed that the information used is largely numerical, and that knowledge
about the environment is either about particular measurements or about statis-
tical regularities derived from percepts at different times and places.

Intelligent reasoning and decision making can often use the fact that very
powerful constraints are connected with certain structures and processes that
are impossible (A is further than B, B is further than C, and C is further than A)
and some connections that are necessary, e.g. transitivity of many comparisons,
and transitivity of containment. http://www.cs.bham.ac.uk/research/projects/
cogaff/misc/impossible.html.

A particular sub-class is concerned with one-one correlations: the basis of
concepts of cardinal and ordinal numbers. Despite spurious evidence suggesting
that humans and some animals have innate concepts of cardinality, these abilities
seem not to develop in children until they are 5 or 6 years old.

The tutorial will present examples, discussed interactively with the audience,
raising questions about the mechanisms required for use of the information, and
implications for future research. I’ll try to draw attention to largely unnoticed
mathematical competences that are not innate, but are nevertheless products of
deep features of biological evolution. Some of the themes will be summarised in
my short talk during the main conference. I believe the talk by Catherine Legg
on “The Epistemology of Mathematical Necessity” will also be directly relevant.

Before the tutorial, I’ll make available an expanded version of this
document, with many more links and references, including examples
(with diagrams!), here: http://www.cs.bham.ac.uk/research/projects/cogaff/
misc/diagrams-tutorial.html.
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Abstract. How do we know what people perceive in a diagram? A diagram can
be an excellent medium for communicating complex facts and relationships.
Users may be able to learn a lot just from a quick glance at a well-designed
diagram. Unfortunately, what users take from a diagram may not always be the
same as what its designers intended to communicate. This tutorial explores the
use of verbal protocol analysis in the area of diagram interpretation, and offer
practical support for systematic analysis procedures. This includes a close look
at the way people formulate their thoughts about a design, which can reveal
underlying conceptualisations and perspectives that the speakers may not be
aware of.

Keywords: Diagram design � Verbal protocols � Miscommunication
Cognitive Discourse Analysis

1 Overview

How do we know what people perceive in a diagram? A diagram can be an excellent
medium for communicating complex facts and relationships. Users may be able to
learn a lot just from a quick glance at a well-designed diagram. Unfortunately, what
users take from a diagram may not always be the same as what its designers intended to
communicate. This can have enormous consequences, ranging from misinterpretation
of research outputs to false representation in the media, to the point of misguided policy
decisions coming from miscommunication of central research insights.

In this tutorial, we will look at the use of verbal protocols as a tool in the diagram
design process. The way people talk about a diagram can reveal how they understand it,
what they misinterpret, and what kinds of design features could be amended to enhance
clarity, ensuring successful communication. This is supported by the methodology of
Cognitive Discourse Analysis (CODA; Tenbrink 2015), which uses an in-depth lin-
guistic approach to protocol analysis. Besides the (often quite revealing) content of
what people say, the features of their language (how they say it) point to underlying
conceptualisations and aspects that the speakers themselves may not be aware of: their
focus of attention, aspects that are taken for granted or perceived as new, levels of
granularity or detail, conceptual perspectives and switches between them, inferences
and (possibly premature) conclusions, and so on.

The tutorial will start by briefly looking at the kinds of problems that frequently
arise in diagram interpretation, such as cognitive biases, misinterpretation of accidental
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features (e.g. color, shape, or size of a symbol), and effects of lack of expertise. Then
we will turn to the practical aspects of verbal data collection procedures, techniques for
data preparation towards systematic analysis, features of content analysis, linguistic
feature annotation (specific to CODA), reliability of annotation procedures, and
identification of patterns in the results.

2 Background

Like other visualisation tools, diagrams can be excellent for facilitating the under-
standing of complex phenomena, in some areas more so than extensive descriptions in
words (Larkin and Simon 1987). Since such tools represent relevant aspects of a
situation in a schematic way, they are designed to support the perceiver in drawing
strategical conclusions and making decisions based on useful heuristics, without nec-
essarily considering every single aspect of the represented facts (Todd and Gigerenzer
2000).

When looking at a diagram, humans do not perceive all features and elements
equally or objectively (as a computer might do). Instead, the perceiver’s attention is
drawn towards visually salient elements (Fine and Minnery 2009) just as well as
towards elements that are pertinent to a current task (Henderson et al. 2009). As a
consequence, some aspects may remain entirely outside the perceiver’s consciousness.

Understanding these principles is vital for designing the visualisation of informa-
tion in diagrams in a cognitively supportive way (Fabrikant and Goldsberry 2005). The
mere inclusion of relevant information is not sufficient if it is not cognitively accessible
in the way needed by the perceiver. Apart from failing to identify vital information,
perceivers may also misinterpret the representation – for instance, they might confuse
accidental features of a diagram as representing actual states or relationships in the real
world. In this respect, conventions and expertise play a major role. Regular users of a
particular type of diagram are less likely to be misguided than first-time observers.
Likewise, the ability to extract relevant information from expert domain visualisations
strongly depends on experience (Jee et al. 2009). Thus, perceivers of displayed
information are biased by their background as well as by their perception of relevance
in a given context. This will affect the inferences and decisions made on the basis of
visualised information, leading to either desired or undesired outcomes.

Unfortunately, phenomena of this kind are not directly accessible to observation,
since they concern structures and processes in the mind. Instead, access to internal
processes is only possible indirectly, through analysis of external representations and
measures. Methods to investigate the principles of understanding visualisations and
diagrams along with their effectiveness for users encompass eye movement (Fabrikant
and Goldsberry 2005) and sketch map (Jee et al. 2009) analysis, field usability studies
(Sarjakoski and Nivala 2005), descriptions and arrow use (Heiser and Tversky 2006), etc.

One readily available external representation of cognition is language. Humans are
used to speaking about their thoughts, and can normally express their understanding of
a diagram in words. Nevertheless, interviewing people concerning their thoughts, as
such, may not be sufficient; associated problems include issues around reliability,
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validity, and systematicity. Often, information gathered this way does not make its way
into scientific reports, even if it serves to inform researchers on an informal basis.

Remedying these issues to some extent, Ericsson and Simon (1993) developed a
systematic method to address higher-level cognitive processes by eliciting and ana-
lysing verbal protocols produced along with cognitively complex tasks, such as
problem solving or decision-making. Think-aloud protocols and retrospective reports
provide procedural information that systematically complements other data, such as
decision outcomes and behavioural performance results. However, as the analysis of
verbal reports in this paradigm typically remains on the content level, in many cases the
insights gained in this way still remain illustrative and anecdotal, rather than being
treated as substantial evidence. Also, since Ericsson and Simon (1993) primarily aimed
to identify the sequence of cognitive steps taken to solve a problem or reach a decision,
their approach may not be directly applicable to addressing the interpretation of dia-
grams. In this domain, the cognitively complex challenges do not necessarily emerge in
distinct cognitive steps, even if there is a problem to solve and decisions to be made.

Cognitive Discourse Analysis (CODA; Tenbrink 2015) extends Ericsson and
Simon’s (1993) approach in several respects. It provides an operationalised way of
capturing verbalised content using linguistic insights, particularly from two areas that
have been extensively studied and tested in English and some other Indo-European
languages: Systemic Functional Linguistics (SFL; Halliday and Matthiessen 2014), and
Cognitive Linguistics (CL; Talmy 2000, 2007; Evans and Green 2006). In particular,
lexicogrammatical structures in language are systematically related to cognitive
structures and processes. This structural fact carries over to principles of language in
use: the way we think is related to the way we talk. This is true both generally in terms
of what we can do with language, and specifically with respect to what we actually do –
for example when verbalising thought related to visualisations such as expert domain
diagrams.

When asked to verbalise their thoughts, speakers draw in systematic ways from
their linguistic repertory to express currently relevant aspects. Their choices in relation
to a cognitively demanding situation reveal crucial elements of their underlying con-
ceptualisations and thought patterns. For instance, seemingly synonymous expressions
such as over and above carry different implications and underlying concepts (Talmy
2007). While above clearly refers to the vertical dimension in There is a poster above
the hole in the wall, over is actually polysemous. In There is a poster over the hole in
the wall it seems reasonable to infer a functional sense of covering – a fundamentally
different concept than verticality, and therefore a significant choice in the verbalisation.

In a verbal protocol describing the interpretation of a diagram, subtle differences
such as that between over and above can become critical. It might matter to a high
extent whether a particular feature of the diagram is perceived as geometrically vertical
relative to another, or rather as functional in some sense, such as covering it.

A systematic analysis of such linguistic details provides a useful pathway to access
cognition, drawing on knowledge about relevant features of language supported by
grammatical theory, cognitive linguistic semantics, and other linguistic findings.
Although linguistic expertise thus provides useful background, the general approach, to
start with, is simple enough to be adopted by non-linguistic experts, with the most
important feature being operationalisation and systematisation of language analysis.
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The methodological steps of CODA (Tenbrink 2015) are straightforwardly accessible
to researchers across disciplines; they will be discussed in detail in this tutorial.

Besides building on established insights about the significance of particular linguistic
choices, validating evidence for the relationship between patterns of language use and the
associated cognitive processes can be gained by triangulation, i.e., the combination of
linguistic analysis with other types of evidence such as memory or behavioural perfor-
mance data, reaction times, eyemovements, decision outcomes, or any other relevant data
that can be collected in relation to diagrams. The outcome of a CODA-based analysis
combined with such data is then a validated account of systematic features of diagram
interpretation that may feed directly into design improvement.
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Abstract. Charles Sanders Peirce (1839–1914) is one of the “grounding
fathers” of mathematical logic, having developed all of the key formal results of
modern logic. He did it firstly (from 1860 on) in the algebraic tradition of
mathematical logic stemming from Boole, combining it with the logic of rela-
tions, explicitly developed by Augustus De Morgan. From this, Peirce obtained
a system that included quantifiers—a term he seems to have invented—and
relative predicates. Developing his own system of relative terms, Peirce started
from Boole’s system, trying to apply it to De Morgan’s logic of relations.
Indeed, Peirce’s aim is to include the logic of relations into the calculus of
algebra using his own system of algebraic signs. On the one hand, Peirce’s
algebraic notation will be presented, specially: (a) relative terms as iconic rep-
resentations of logical relations; (b) Peirce’s quantifiers and the passage from a
linear notation to a diagrammatic one. On the other hand, Peirce’s graphical
notation will be presented, specially: (a) his Alpha and Beta systems, which are
fully compatible with what is nowadays called first-order logic, (b) and his
unfinished Gamma system, designed for second-order logic and modal logic.

Keywords: Relatives � Quantifiers � Diagrammatic Reasoning
Existential Graphs � Semeiotic

1 Introduction: Peirce’s Early Algebraic Logic

Peirce refuses Boole’s identification of logical relations with equations. Holding that
inclusion between classes is previous to identity, and implication is previous to both,
Peirce aims to develop an abstracter calculus so that all logical relations can be defined
solely upon the formal characters of one single fundamental relation. So, he replaces
the identity sign “=” used by Boole by the specific sign “−<” (the ‘craw foot’) for the
fundamental subsumptive operation of illation, which encompasses the logical relations
of conditionality, inclusion and consequence [1: 360].

Next, Peirce deals with the composition of relations with classes, and not strictly
relational composition, that is, composition of a relation with another, as in De
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Morgan’s system. So, Peirce works with expressions like “lover of ____”, or “giver to
____ of ____”, rather than De Morgan’s expressions with verbs like “____ loves ____”
or “____ gives ____ to ____”. Thus, the traditional interpretation of propositions as
subject-predicate structures is maintained, but transformed, since not restricted to the
predication of only one subject. A proposition is a blank-predicate-form, a kind of icon,
from which the subject-terms are dropped of, with resulting gaps for the insertion of
individual variables, the signs for which are indexes. Quantifiers can then be intro-
duced, since to express Boole’s algebra in relative terms, particularly hypothetical and
particular propositions, existential quantification is needed, e.g., a relative term for case
of the existence of _____; or for what exists only if there is not _____; or else case of
the non-existence of ____; or still what exists only if there is not____ [1: 423].

Peirce’s fully-fledged theory of multiple quantification in algebraic notation uses
the Greek letters

Q
—for logical product—and

P
—for logical sum—respectively to

designate the universal quantifier and the existential quantifier. Then, there are jux-
taposed subscript letters functioning as indexes, that is, specific deictic signs indicating
specific items within the defined universe of discourse. As individual variables, indexes
show which terms are bound together by a certain relation and in which specific order.
For instance, if l denotes the relation of loving, then lij signifies “i loves j”, with “i” and
“j” as indexes for whatever individuals are in this love relation. So, a propositions like,
e.g., “Everybody loves Chaplin”, can be symbolized as

Q
iliC (C as an index for the

individual Chaplin); or else “Everyone loves someone” is rendered as
Q

i
P

jlij (j for
jemand, German for someone). Peirce elsewhere remarks a proper notation necessarily
includes icons and indexes, so

Q
and

P
were chosen to make the notation as iconic as

possible. For him, “every algebraical equation is an icon, in so far as it exhibits, by
means of the algebraical signs (which are not themselves icons), the relations of the
quantities concerned” [2: 13]. In Peirce’s semeiotic, an icon is a sign that formally
resembles its object. So, it better conveys the very movement of thought by “carrying
the mind from one point to another”, e.g., from the premises to the conclusion [2: 10].

Towards the end of the 19th century, Peirce developed a diagrammatical system he
himself considered his chef d’oeuvre in logic: his Existential Graphs (EG). Developing
it more or less at the same time as his conception of logic as semiotic, that is, the
“quasi-necessary” and general doctrine of signs, Peirce considered it as the logic of the
future, abandoning his early algebraic attempts for philosophical reasons.

As special kinds of icons, diagrams resemble their objects only in the aspects that
attention needs to be drawn upon, that is, “only in respect to the relations of their parts
that their likenesses consists” [2: 13]. So, the EG system is more capable than linear
notations to lay bare the inferential movement of thought, showing how formal rela-
tions can be inter-derived from one another. Generalizing, all logical inferences can be
semiotically interpreted as a sort of diagrammatic experimentation upon signs, which
are essentially iconic. This point inserts Peirce in a long Western tradition of symbolic
thought not restricted to linguistic analysis [3].

Peirce’s graphical system includes: (a) his Alpha and Beta systems, which are fully
compatible with what is nowadays called first-order logic, (b) and his unfinished
Gamma system, designed for second-order logic and modal logic. The system has only
three rules—scroll, cut, and line of identity—that permit experimentation and trans-
formation of diagrams. The Existential Graphs system is truly a topovisual logical

Peirce on Diagrammatic Reasoning and Semeiotic 25



system [4], where only the connections and relations between parts are important, the
rules of transformation of which make up the laws of the system. From this, Peirce
developed inference rules that anticipated more recent and known systems of
diagrammatization.

A less known subject is Peirce’s distinction between mathematic and logic, which
the graphs make more explicit. Mathematics is for Peirce the science that draws
necessary conclusions from hypothetical diagrammatic structures, while logic is the
science of drawing necessary conclusions. In other words, mathematics is the most
abstract exercise of reasoning itself, based on a principle of parsimony, the most
general of all theoretical activities. Logic, in its turn, is a normative science seeking to
determine how we ought to reason, with concerns that can be said of a rhetorical nature
[5]. Logic analyses reasoning, breaking it in its least constitutive steps to understand its
logical movement. So, a formal system of signs has different uses for each science.
Notwithstanding the difference, both logic and mathematics find diagrams most prof-
itable, because all necessary reasoning is iconic, as said. As icons exhibiting the logical
connexions among relations, diagrams allow for passing from simultaneity to
sequentiality. Peirce’s distinction between theorematic and corollarial deductions is
understandable in this context: a theorematic deduction consists in adding elements to
the diagram to see what would result of such modification. It is thus a creative
abductive experimentation upon the diagram, “the heuretic part of mathematical pro-
cedure” [6: 49]. In corollarial deduction, the procedure starts from the observation of a
diagram such as it is, without any modification, to affirm the conclusion. The con-
clusion, therefore, is necessarily obtained only without any further adjunction just by
logical development of the diagram. Now, for Peirce, “reasoning essentially consists in
the observation that where certain relations subsist certain others are found” [7: 164].
The distinction between the two forms of deductive reasoning shows that necessary
reasoning is not limited to the strict drawing of consequences, but it is also a con-
structive activity of formal representations, by means of observing and modifying other
such representations. Both mathematics and logic are experimental activities upon
signs in general, and diagrams particularly. By studying and experimenting upon
diagrams, we come to understand the very semiotic nature of mind itself. Thus, Peirce’s
arguments for iconicity also work for stressing creativity and discovery in mathematical
and logical sciences.

References

1. Peirce, C.S.: Description of a notation for the logic of relatives, resulting from an
amplification of the conceptions of Boole’s Calculus of logic (1867). In: Moore, E., et al.
(eds.) Writings of Charles Sanders Peirce: A Chronological Edition, vol. 2: 1867–1971,
pp. 359–429. Indiana University Press, Bloomington (1984)

2. Peirce, C.S.: Of reasoning in general (1895). In: The Peirce Edition Project (ed.) The Essential
Peirce: Selected Philosophical Writings, vol. 2: 1893–1913, pp. 11–26. Indiana University
Press, Bloomington (1998)

26 J. Legris and C. T. Rodrigues



3. Legris, J.: Peirce’s diagrammatic logic and the opposition between logic as calculus vs. logic
as Universal language. Rev. Port. De Filos. 73(3/4), 1095–1114 (2017). https://doi.org/10.
17990/RPF/2017_73_3_1095

4. Harel, D.: On visual formalisms. In: Glasgow, J., Narayanan, N.H., Chandrasekaran, B. (eds.)
Diagrammatic Reasoning: Cognitive and Computational Perspective, pp. 235–271.
The AAAI Press/The MIT Press, Menlo Park, Cambridge (1995)

5. Rodrigues, C.T.: The method of scientific discovery in Peirce’s philosophy: deduction,
induction, and abduction. Log. Univ. 5(1), 127–164 (2011)

6. Peirce, C.S.: Carnegie application (L 75, 1902). In: Eisele, C. (ed.) The New Elements of
Mathematics, vol. 4, pp. 36–73. Mouton Publishers/Humanities Press, The Hague, Atlantic
Highlands (1976)

7. Peirce, C.S.: On the algebra of logic: contribution to a philosophy of notation (1885). In: Fisch,
M.H., Kloesel, C.J.W., et al. (eds.) Writings of Charles Sanders Peirce: A Chronological
Edition, vol. 5: 1884–1886, pp. 161–190. Indiana University Press, Bloomington (1993)

Peirce on Diagrammatic Reasoning and Semeiotic 27

http://dx.doi.org/10.17990/RPF/2017_73_3_1095
http://dx.doi.org/10.17990/RPF/2017_73_3_1095


Picturing Quantum Processes

A First Course on Quantum Theory
and Diagrammatic Reasoning

Bob Coecke1 and Aleks Kissinger2(B)

1 Quantum Foundations, Logics, and Structures, Department of Computer Science,
Oxford University, Oxford, UK

coecke@cs.ox.ac.uk
2 Quantum Structures and Logic, Institute for Computing and Information Sciences,

Radboud University, Nijmegen, Netherlands
aleks@cs.ru.nl

http://www.cs.ox.ac.uk/people/bob.coecke

http://www.cs.ru.nl/A.Kissinger/

Abstract. We provide a self-contained introduction to quantum the-
ory using a unique diagrammatic language. Far from simple visual aids,
the diagrams we use are mathematical objects in their own right, which
allow us to develop from first principles a completely rigorous treatment
of ‘textbook’ quantum theory. Additionally, the diagrammatic treatment
eliminates the need for the typical prerequisites of a standard course on
the subject, making it suitable for a multi-disciplinary audience with no
prior knowledge in physics or advanced mathematics.

By subscribing to a diagrammatic treatment of quantum theory we
place emphasis on quantum processes, rather than individual systems,
and study how uniquely quantum features arise as processes compose and
interact across time and space. We introduce the notion of a process the-
ory, and from this develop the notions of pure and mixed quantum maps,
measurements and classical data, quantum teleportation and cryptogra-
phy, models of quantum computation, quantum algorithms, and quantum
non-locality. The primary mode of calculation in this tutorial is diagram
transformations, where simple local identities on diagrams are used to
explain and derive the behaviour of many kinds of quantum processes.

This tutorial roughly follows a new textbook published by Cambridge
University Press in 2017 with the same title.

1 Rationale

The past ten years have witnessed a flurry of activity and change in the way we
visualise and reason about quantum processes, coming largely from two direc-
tions: the program of categorical quantum mechanics initiated by Abramsky
and Coecke in 2004, and work in quantum foundations and particularly in the
axiomatic reconstruction of quantum theory a la Hardy and the Pavia group.
What these two programs have in common is a shift from studying individual
c© Springer International Publishing AG, part of Springer Nature 2018
P. Chapman et al. (Eds.): Diagrams 2018, LNAI 10871, pp. 28–31, 2018.
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quantum systems concretely to studying properties of interaction and informa-
tion flow through compound systems. More concretely, this program has seen a
shift from using symbolic languages, where composition and connectivity remain
hidden, to diagrammatic ones.

More recently, these category-theory inspired diagrammatic representations
have started to be used in many application areas, which include computer
science, quantum theory, natural language modelling, and many others. There
are now many dedicated conferences and workshops, dedicated research groups,
a large international community, and a dedicated journal in the making.

Most of the prior literature required either a working background in the
foundations of physics or in category theory, so was not accessible to a wider
audience. Our book Picturing Quantum Processes is a first exception to this,
aiming at a wide multidisciplinary audience. The rational behind this tutorial is
to bring several communities together, the one of this conference series, and the
ones discussed above, in order to see where there are overlaps and opportunities
for cross-fertilisation.

The language we use is that of string diagrams, which came from mathe-
matical physics as a succinct method of performing calculations in the tensor
calculus for (multi-)linear algebra and differential geometry.

CA

D

B

g

A

f h

A fA1A2gB1C1
A2D1

hD1
A3

It was later discovered that these form a sound and complete language for
describing a very general family of mappings, specifically: morphisms in any
monoidal category. Roughly speaking, monoidal categories are the most general
definition of a ‘family of processes closed under vertical (i.e. time-like) and hor-
izontal (i.e. space-like) composition’. Thus, string diagrams give an ideal start-
ing point for studying properties of a physical theory while building in as few
assumptions as possible. At the same time, a shift to diagrammatic language
yields big benefits, by subsuming many non-trivial equations into simple dia-
gram deformations, e.g.

f g g f
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The methodology of the tutorial eschews concrete, low-level calculation wher-
ever possible, choosing instead to highlight how the diagrammatic properties of
quantum processes give rise to quantum phenomena. We will see in this tutorial
that central concepts such as non-separability of quantum states and complemen-
tarity of quantum measurements will be captured in simple diagram identities:

Using such basic identities, one can express, and prove properties about, more
elaborate quantum processes, computations, and communication protocols. For
example, the following is a derivation of the quantum teleportation protocol,
whereby Aleks communicates an arbitrary quantum state to Bob by means of
quantum entanglement (thick wires) and classical communication (thin wires):

Bob

U

Aleks

ρ

U

U

Aleks

ρ

Bob

U

Bob

ρ

Aleks

This tutorial will introduce the fundamentals of this diagrammatic language,
and survey its applications in various areas of quantum theory, computation,
and beyond.

No particular pre-requisites are assumed, except a level of general mathe-
matical knowledge. As such, this tutorial is particularly well-suited to the multi-
disciplinary nature of the participants in the Diagrams conference.

2 References

The main reference for this tutorial is the textbook with the same title [1], pub-
lished in 2017 by Cambridge University Press. A condensed version of approxi-
mately the first 2/3 of the book are available in a series of journal articles:

– Categorical Quantum Mechanics I: Causal Quantum Processes.
arXiv:1510.05468

– Categorical Quantum Mechanics II: Classical-Quantum Interaction.
arXiv:1605.08617

For those interested in some of the categorical underpinnings of this course, the
following is some (strictly optional) extra reading: [2–5].

http://arxiv.org/abs/1510.05468
http://arxiv.org/abs/arXiv:1605.08617
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Abstract. The use of diagrams in logic is old. Euler and Venn schemes are
among the most popular. Carroll diagrams are less known but are occasionally
mentioned in recent literature. The objective of this tutorial is to expose the
working of Carroll’s diagrams and their significance from a triple perspective:
historical, mathematical and philosophical. The diagrams are exposed, worked
out and compared to Euler-Venn diagrams. These schemes are used to solve the
problem of elimination which was widely addressed by early mathematical
logicians: finding the conclusion that is to be drawn from any number of
propositions given as premises containing any number of terms. For this pur-
pose, they designed symbolic, visual and sometimes mechanical devices. The
significance of Venn and Carroll diagrams is better understood within this
historical context. The development of mathematical logic notably created the
need for more complex diagrams to represent n terms, rather than merely 3 terms
(the number demanded by syllogisms). Several methods to construct diagrams
for n terms, with different strategies, are discussed. Finally, the philosophical
significance of Carroll diagrams is discussed in relation to the use of rules to
transfer information from a diagram to another. This practice is connected to
recent philosophical debates on the role of diagrams in mathematical practices.

Keywords: Carroll diagram � Venn diagram � Universe of discourse
Diagram for n terms � Rules � Elimination

1 Introduction

Logic diagrams have a long history [16]. New schemes are regularly invented to solve
old and new logic problems. Euler popularized the scheme which uses circles to
represent classes and their relations [6]. Venn, subsequently, introduced a modified
version to overcome some difficulties faced by the users of the original Eulerian
scheme [17]. Several diagrams were invented in the immediate post-Venn period,
among which a very interesting scheme introduced by Carroll [3].

Carroll’s diagrams are roughly Venn-type diagramswhere the universe is represented
with a square. It is not clear whether Carroll worked his scheme as a modification of
Venn’s. Yet, it stands as a “mature” method summing up several improvements intro-
duced by his predecessors and contemporaries. It represents the universe of discourse [4],
it includes a syntactical device for existential import [15] and it has an easy method to
construct diagrams for a high number of terms [9, 11]. Although it is not rare to meet with
these diagrams in modern textbooks, they have seldom been used in a systematic way
together or instead of Euler-Venn diagrams [7, 8].
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The objective of this tutorial is to expose the working of Carroll diagrams and their
significance from a triple perspective: historical, mathematical and philosophical. In the
following, the main design of the diagrams is presented, then, the organisation of the
tutorial is sketched to indicate the main directions that are explored.

2 Carroll Diagrams

Carroll first represents the universe of discourse with a square, then successive divi-
sions introduce terms (x, y, m, etc.) and their opposites (x′, y′, m′, etc.). For 2 terms,
Carroll obtains 4 compartments as shown in the biliteral diagram (Fig. 1a). For 3 terms,
one gets the triliteral diagram (Fig. 1b). In order to represent propositions on these
diagrams, one has to add syntactical devices: ‘0’ for emptiness and ‘I’ for occupation
(non-emptiness). For instance, to represent the proposition “No x is y”, one simply puts
‘0’ on the x y compartment. Similarly, to represent “Some x are y”, one just puts ‘I’ on
the x y compartment.

In order to solve a simple problem such as a syllogism, Carroll first represents the
premises on the triliteral diagram, then information is transferred to the biliteral dia-
grams which is supposed to represent the conclusion. This transfer is made by fol-
lowing two main rules:

1- If the quarter of the triliteral diagram has ‘I’ in either Cell, then it is occupied. One
has to mark the corresponding quarter of the biliteral diagram with “I”.

2- If the quarter of the triliteral diagram has two “0”s, one in each cell, then it is
empty. One has to mark the corresponding quarter of the biliteral diagram with “0”.

Suppose we are offered the premises “No m is y” and “Some x are m”. They are
represented on the triliteral diagram in (Fig. 2a). Then, information is transferred to the
biliteral diagram (Fig. 2b) which gives the conclusion “Some x are not-y”.

Fig. 1. Carroll’s biliteral and triliteral diagrams.
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3 Directions

The tutorial opens with a brief historical introduction to Carroll diagrams, both within
the history of logic diagrams and within Carroll’s logical theory [1, 2, 10, 12]. The
diagrams are then exposed, worked out to solve specific logic problems and compared
to Euler-Venn diagrams. This discussion engages in three main directions: historical,
mathematical and philosophical.

First, Carroll diagrams are confronted to the problem of elimination which was
widely addressed by the mathematical logicians of the time. Indeed, in George Boole’s
footsteps, logicians worked on general methods for finding the conclusion that is to be
drawn from any number of propositions given as premises containing any number of
terms. For this purpose, they designed symbolic, visual and sometimes mechanical
devices. The significance of Venn and Carroll diagrams is better understood within this
historical context.

Second, Carroll diagrams are discussed in relation to the problem of constructing
diagrams for n terms. Unlike syllogisms which demand only 3 terms, and therefore
3-term diagrams, elimination requires complex diagrams for more than 3 terms. Several
methods to construct diagrams for n terms, with different strategies were invented in
Venn’s time [14]. The problem of constructing ‘nice’ Venn diagrams for n terms
remained open however and has been recently addressed in mathematical literature [5].

Finally, the philosophical significance of Carroll diagrams is discussed. Venn
extracted conclusions ‘directly’ while Carroll introduced transfer rules. Hence, Venn
appealed to imagination to work out the conclusion with a single diagram while Carroll
applied rules on a diagram to derive others. The former method can be said to lack
rigor, but the latter can be accused of lacking naturalness and economy. This difference
of practices, and the philosophical views that they embody, resurfaces in recent debates
on the role of diagrams in mathematical practices [13].

4 Organization and Practicalities

The tutorial is designed to run on 90 min and is divided in 3 parts. The first part (30
min) provides the historical background to understand the needs and constraints that
shaped Euler, Venn and Carroll diagrams. The second part (30 min) exposes Carroll’s

Fig. 2. The solution of a syllogism with Carroll diagrams.
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diagrams, the justification of their design, and their use to work out the elimination
problem. Finally, the third part (30 min) discusses the significance of the diagrams and
what they teach us on the role of diagrams in mathematical practice.

The tutorial requires only a minimal preliminary knowledge on logic diagrams and
their working to solve basic logic problems such as syllogisms. Participants are invited
to bring a notebook and pencils to participate to the activities proposed in the tutorial.
They will be asked to work out some exercises in logic using Carroll diagrams. No
preliminary readings are required but participants are encouraged to consult Carroll’s
little book The Game of logic (1887, several modern reprints and translations).
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Abstract. Euler diagrams are used for visualizing categorized data,
with applications including crime control, bioinformatics, classification
systems and education. Various properties of Euler diagrams have been
empirically shown to aid, or hinder, their comprehension by users. There-
fore, a key goal is to automatically generate Euler diagrams that possess
beneficial layout features whilst avoiding those that are a hindrance.
The automated layout techniques that currently exist sometimes pro-
duce diagrams with undesirable features. In this paper we present a novel
approach, called iCurves, for generating Euler diagrams alongside a pro-
totype implementation. We evaluate iCurves against existing techniques
based on the aforementioned layout properties. This evaluation suggests
that, particularly when the number of zones is high, iCurves can outper-
form other automated techniques in terms of effectiveness for users, as
indicated by the layout properties of the produced Euler diagrams.

1 Introduction

Visualizing data can be highly effective due to the human brain processing visual
information significantly quicker than textual information [19]. Data items that
are grouped into sets can be visualized by a variety of techniques, including Line-
Sets [1] and linear diagrams [9,18], with by far the most prominent being Euler
diagrams [2]. They are widely used for visualizing sets in numerous application
areas, including genetics [11], crime control [6], education [10] and classification
systems [24]. The Euler diagram in Fig. 1 conveys information about modules
being studied by students. For instance, those who study Web also study Archi-
tecture and those who study Logic all study Maths but not Architecture or
Programming. This diagram has features that are known to be effective for
cognition, such as circular curves each of which is a unique colour [3]. Empiri-
cal studies have identified (in)effective features (further details are given later)
including their so-called well-formedness properties [16], that are topological in
nature, as well as their graphical properties [3]. In the context of automated lay-
out tools, the difficulty of producing visualizations is compounded by the desire
to produce effective drawings.
c© Springer International Publishing AG, part of Springer Nature 2018
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Fig. 1. An Euler diagram.
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Fig. 2. Venn-4: iCircles.Fig. 3. Venn-4: GED-L.

Given the extensive practical uses of Euler diagrams, it is unsurprising that
many automated layout techniques exist for drawing them, with the first one
being produced in 2002 [7]. However, all existing methods have limitations, such
as not being able to represent all data sets, producing diagrams that inaccurately
represent the data, or breaking well-formedness properties. Indeed, it is impos-
sible to exactly visualize some sets in a completely well-formed way [7]. Con-
sequently, layout methods have to prioritise which desirable features to enforce
in their layouts and which to compromise. It is unknown which Euler diagram
layout method produces the most effective diagrams.

The contribution of this paper is two-fold. Firstly, we introduce a new general
Euler diagram drawing technique, called iCurves, that aims to ensure desirable
properties hold (the diagrams are well-formed) at the expense of sometimes
introducing extra zones into the diagrams. Secondly, we empirically compare
the diagrams produced by iCurves against selected state-of-the-art techniques
to gain insight into their relative effectiveness. Section 2 gives a brief summary of
effective layout properties and existing techniques for automated Euler diagram
layout. In Sect. 3 we cover the concrete (drawn) and abstract Euler diagram
syntax. Section 4 presents the theoretical underpinning of our method, iCurves,
which we have implemented. A comparative evaluation of iCurves with existing
techniques, using real-world data, is given in Sect. 5. We conclude and discuss
future work in Sect. 6. The iCurves software and the diagrams on which our
evaluation is conducted can be found at https://github.com/AlmasB/d2018.

2 Euler Diagrams: Background

As indicated in the introduction, effective Euler diagrams should be well-formed
and possess other desirable graphical properties such as the use of circles and
colours that are perceptually distinguishable. Five well-formedness properties
have been identified and established to impact user understanding [16], which
are as follows. Simple curves: no curve self-intersects. Non-concurrent curves: no
parts of the curves run along the same path. Only two-points: whenever a point
is passed through by curves, it is passed through at most twice; points that
fail this condition are called triple points. Connected zones: all of the zones1

1 A zone is a maximal region of the plane inside a subset of the curves and outside
the remaining curves.

https://github.com/AlmasB/d2018
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in the diagram are connected components of the plane; a zone which is not
connected is called disconnected. Distinct labels: no two curves have the same
label; curve labels that occur more than once are called duplicated curve labels.
An example with duplicated curve labels is in Fig. 2, which depicts Venn-4 (a
Venn diagram representing four sets) using two curves for the set P ; it was drawn
using iCircles [21], with labels manually added for readability. A diagram which
does not break any well-formedness property is called well-formed.

Rodgers et al. performed two comparative user studies which revealed that
Euler diagrams with duplicated curve labels gave rise to significantly worse per-
formance than those without [16]. They also found that disconnected zones caused
significantly worse performance than the remaining properties. Thus, it is particu-
larly important that drawing algorithms avoid disconnected zones and duplicated
curve labels. The remaining well-formedness properties were shown to cause sig-
nificantly worse performance using diagrams as compared to those which are well-
formed. So, they should also be avoided where possible, but not at the expense
of disconnected zones or duplicated curve labels. Therefore we can see, from the
perspective of well-formedness, that Fig. 2 is less desirable than Fig. 3, which was
generated using the General Euler Diagram drawing method in [15] extended to
include a library of simple cases [17]; we call the extended method GED-L.

It has been suggested that the use of curves of particular geometric shapes
impacts effectiveness [3]: circles were found to be more effective than ellipses,
squares or rectangles. The choice of shape is a core part of layout algorithms,
as well as routing the curves in order to display the correct set of zones. This
is certainly no easy task and the resulting efficacy of the drawn diagrams is
inherently intertwined with the design of the algorithms. By contrast, the use of
colour applied to a diagram’s curves is easily altered post-layout. Therefore, in
this paper we will judge the efficacy of diagram layouts, in Sect. 5, by focusing
on the five well-formedness properties that impact understanding and the use
of circles. We acknowledge that this does not take into consideration diagram
aesthetics but there are currently no comprehensive results that indicate users’
aesthetic preferences. One of our goals is to provide insight into the relative
effectiveness of the diagrams produced by automated layout tools using known
results concerning task performance, not user preference.

Fig. 4. Venn-4: Bubble Sets. Fig. 5. Venn-4: iCurves.
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As well as iCircles and GED-L, a large number of other layout tools for Euler
diagrams have been provided, such as [5,14,20,23]; see [2] for a comprehensive
overview. All of these techniques have problems. For example, the first Euler dia-
gram drawing method only produces well-formed diagrams but many sets cannot
be visualised in this way [7]. Moreover, Bubble Sets [5] produces concurrency and
disconnected zones (see Fig. 4). Ultimately, there is no ‘ideal’ technique and it
is necessary to accept some ineffective features in Euler diagram layouts. The
ambition should be to minimise the ineffective features, whilst ensuring the dia-
gram represents the desired sets. Our technique, iCurves (see Fig. 5), sets out to
avoid layout features known to be detrimental to task performance.

3 Euler Diagrams

We present prerequisite theory for iCurves. The definitions are the same as, or
adaptations of, the material, found in [21–23]. An Euler diagram is a collection
of closed curves, each of which has a label from some given set of labels, L.

Definition 1. An Euler diagram is a pair, d = (C, l), where C is a finite set
of closed curves drawn in the plane, each curve has a non-empty interior, and
l : C → L is an injective function that returns the label of each curve.

Note that this definition is, for simplicity, more strict than some given for Euler
diagrams, such as [21], which do not require non-empty curve interiors or l to
be injective (i.e. when duplicated curve labels are allowed).

The closed curves partition the plane into minimal regions, which are con-
nected components of the plane. In Fig. 6, the eight minimal regions are enu-
merated. Another important concept is that of zones. A zone is a set of minimal
regions that is inside certain curves (possibly none) and outside the remaining
curves [23]. In Fig. 6, minimal regions 7 and 8 form a single (disconnected) zone,
inside P and Q, but outside R, representing the set (P ∩ Q)\R. In total, there
are seven zones. A minimal region is a purely topological notion related to a
drawn Euler diagram, whereas zones represent the intersection of sets.

Euler diagram drawing techniques, including iCurves, produce diagrams from
descriptions. A description includes a list of abstract zones, where each abstract
zone describes a zone. For example, in Fig. 6, the zone formed from minimal
regions 7 and 8 is described by {P,Q} since it is inside P and Q only.

Fig. 6. Minimal regions and zones. Fig. 7. A nested Euler diagram.
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Definition 2. A description, D, is a pair, (Z,L), where L is a subset of L and
Z ⊆ P(L) such that ∅ ∈ Z and each label in L appears in at least one abstract
zone in Z. We define Z(D) = Z and L(D) = L.

In Fig. 7, the diagram, d, has a zone inside the curve P only, described by
the abstract zone {P}, and a zone inside precisely P and Q, described by {P,Q}
and so on. So the description, D, of d has labels L = {P,Q,R} and abstract
zones Z = {∅, {P}, {Q}, {P,Q}, {Q,R}}, where ∅ describes the zone outside all
curves. We say that d is a drawing of D. Furthermore, we will abuse notation
for conciseness and write D as {∅, P,Q, PQ,QR}.

Some automated layout techniques, such as iCircles, draw diagrams with
additional zones which are not indicated in the description. Such extra zones
can be shaded, following the use of shading in Venn diagrams [25], to show that
they represent empty sets. Our technique, iCurves, includes extra zones and uses
shading in this way.

The concept of nesting is of use to us [8]. If the curves of an Euler diagram,
d, form more than one connected component of the plane, as in Fig. 7 where the
curve R is separate from P and Q, then d is nested, otherwise d is atomic (as in
Fig. 6). Each connected component is called an atomic component [22]. So Fig. 7
has two atomic components, whereas Fig. 6 has one. Given a description, D, it
is possible to identify abstract atomic components [22]. These abstract compo-
nents correspond to atomic components in some drawing of D. In Fig. 7, the two
atomic components have the following (atomic) descriptions: {∅, P,Q, PQ} and
{∅, R}. Whilst this identification is an essential part of our drawing algorithm,
we omit the (complex) theoretical details. What is important here is that the
abstract atomic components can be computed. Our algorithm draws the atomic
components separately and combines them to form the final diagram. We will
refer to atomic and nested descriptions in the obvious way.

4 The iCurves Euler Diagram Generation Technique

The goal of the iCurves method is to draw well-formed diagrams, using circles
where possible and with extra zones if needed. The drawing process of an abstract
atomic component is described by the following sequence of steps:

1. Produce a decomposition of the abstract atomic component.
2. Draw the first curve as a circle.
3. Draw the next curve either as a circle or using a modified dual graph of the

diagram so far. Repeat this step until all curves are drawn.

Given a description, D, a decomposition of D is a sequence of descriptions,
(Dn, ...,D0), each with one fewer curve label than the previous, where Dn = D
and L(D0) = ∅. In addition, Di = (Zi, Li) is formed from Di+1 = (Zi+1, Li+1) by
removing a curve label, λi+1, from Li+1, (so Li = Li+1 \ {λi+1}) and from each
abstract zone in Zi+1 to give Zi; we write Di = Di+1 −λi+1. One of our goals is
to sensibly choose a decomposition that allows us to build an effective diagram.
A reversed decomposition is called a recomposition and corresponds to the order
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of curve addition described in step 3 above. The use of a decomposition in Euler
diagram generation is not new [21,23], but the order of curve label removal can
have a profound impact on the effectiveness of the final diagram, as can the
method used to draw the curves. We introduce a new strategy for producing a
decomposition that takes into account the process by which we draw curves. We
also introduce a new technique for drawing the curves themselves.

4.1 Drawing Curves in Euler Diagrams

Here, we demonstrate how to draw a new non-circular curve given an existing
drawing of an atomic Euler diagram, d. This process constructs a modified dual
graph [23] of d and then finds an appropriate cycle for curve addition. To illus-
trate, given Fig. 8, we produce an Euler graph [4], shown in Fig. 9. From this a
dual graph is created, shown in Fig. 10. The dual is modified to yield the graph
in Fig. 11. The cycle highlighted in Fig. 11 can be used to add a new curve, S,
as shown in Fig. 12.

Constructing a Modified Dual Graph. First, we obtain an Euler graph, EG(d),
from an Euler diagram, d: vertices are points at which the curves cross and
the edges are the curve segments that connect the vertices. Next, we obtain a
(standard) dual, EGD(d), of an Euler graph. Finally, from EGD(d) we obtain a
modified Euler dual, MED(d): for each edge, e, incident with the vertex, v∅, in
the zone outside all of the curves, a new vertex is placed onto e; v∅ is deleted
along with its incident edges; new edges are added which join the newly inserted
vertices, so that the new vertices together with these new edges form a simple
cycle that properly encloses the Euler graph.

Using a Cycle for Curve Addition. Cycles in MED(d) are used to add curves. In
essence, a cycle’s edges become curve segments which combine to form a curve.
Our method is to use a simple cycle, s, to add new curves: a simple cycle does
not pass through any vertex more than once.

Definition 3 (adapted from [23]). Let d = (C, l) be an atomic Euler diagram
with a modified Euler dual MED(d). Let s be a simple cycle in MED(d) and let
λ be a label not already used in d. Then d extended by s and λ is an Euler
diagram, denoted d + (s, λ), where d + (s, λ) = (C ∪ {c}, l ∪ {(c, λ)}) such that c
is a closed curve, not in C, that traverses the cycle s and has label λ.

Fig. 8. Venn-3. Fig. 9. An Euler
graph.

Fig. 10. A dual. Fig. 11. A mod-
ified dual.

Fig. 12. Added
S.
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Of course we cannot use any simple cycle to add a curve, since we have a descrip-
tion that we are aiming to draw. Consider

D = {∅, P,Q,R, PQ,QR,PR,PQR,PS, PQS,QS,QRS,PRS}
which will be used as a running example; it is drawn, with an extra zone,
PQRS, in Fig. 12. Any decomposition of D is of the form (D4,D3,D2,D1,D0),
where D4 = D. Suppose that the first label we remove is S, giving D3 =
{∅, P,Q,R, PQ,QR,PR,PQR}. A drawing, d3, of D3 can be seen in Fig. 8,
alongside its modified Euler dual, Fig. 11. We now illustrate how we find a cycle
in MED(d3) to create a drawing (with an extra zone) of D4:

1. Identify the abstract zones in D4 that contain S: {PS, PQS,QS,QRS,PRS}.
Remove S from these abstract zones to give {P, PQ,Q,QR,PR}. These
abstract zones necessarily occur in D3.

2. Identify vertices in MED(d3) (Fig. 11) that are placed in the zones with
descriptions {P, PQ,Q,QR,PR}.

3. Next, seek a cycle that passes through at least these vertices. No cycle passes
through exactly these vertices, but the cycle, which we call s, highlighted in
Fig. 11, passes through them all. Use s to add the curve, seen in Fig. 12.

We call the diagram, d4, in Fig. 12, a relaxed drawing of D4, as it contains an
extra zone; iCurves will shade this non-required zone.

Definition 4. Let d be an atomic Euler diagram. Let ZON be a non-empty set
of zones in d. Let s be a simple cycle in MED(d). If (i) vertices that arise from
zones in ZON are in s and (ii) all vertices in s that are located in the zone
outside all curves form one path in s then s is a curve-adding cycle for d
respecting ZON .

Importantly, curves added using curve-adding cycles ensure that the resulting
diagram is well-formed, provided the diagram to which the curve is added is also
well-formed. In our running example, the cycle used to create d4 (Fig. 12) respects
ZON , where ZON contains the five zones with descriptions {P, PQ,Q,QR,PR}.
In Fig. 11, in addition to the cycle we used to add the curve S, we observe that
there exist other curve-adding cycles for d3 respecting {P, PQ,Q,QR,PR}. The
choice of cycle profoundly impacts the layout of the final diagram. For example,
using an alternative cycle to add the new curve could result in the diagram d′

4,
in Fig. 13, which contains three extra zones. We note that the more vertices
included in the chosen cycle, the more extra zones the resulting diagram will
have. Therefore, iCurves strategically chooses a cycle respecting ZON which has
few vertices. We now formalize the notions of a super description and a relaxed
drawing.

Definition 5. Let D1 = (Z1, L) and D2 = (Z2, L) be descriptions. If Z1 ⊆ Z2

then D2 is a super description of D1.

Definition 6. Let D1 be a description with super description D2. If d2 is a
drawing of D2 then d2 is a relaxed drawing of D1.
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Fig. 13. A relaxed draw-
ing.

Fig. 14. A non-valid cycle. Fig. 15. A Hamiltonian
dual. (Color figure online)

H-extendible Euler Diagrams. It is important that iCurves can draw any descrip-
tion. Yet some curve-adding cycles respecting a given ZON set need not ensure
we can add the next curve to the resulting diagram. We observe that given a
pair of descriptions, (Di,Di+1), in a recomposition, the existence of a Hamil-
tonian cycle in the Euler graph dual of di (a relaxed drawing of Di) ensures
we can find a cycle in the modified Euler dual to add a curve that splits each
zone in two and ensures the resulting Euler graph dual is Hamiltonian. Once a
curve is added using a Hamiltonian cycle, we can shade any extra zones to give
a relaxed drawing of Di+1. Clearly, we want to use our curve adding strategy to
minimize the number of extra zones. So the chosen cycle need not be Hamilto-
nian. However, the presence of a Hamiltonian cycle guarantees that there exists
at least one curve-adding cycle and, thus, ensures the drawability of any Di+1

given (Di,Di+1). We want to ensure that the Hamiltonian property is preserved.

Definition 7. Let d be an atomic Euler diagram. If an Euler graph dual of d is
Hamiltonian then d is H-extendible.

In this context, we place an additional constraint on curve-adding cycles.
Such cycles partition the plane into two subspaces: bounded and unbounded. A
vertex, v, is inside s if v is in the bounded subspace. It is possible for cycles that
have vertices inside them not to give rise to diagrams with Hamiltonian duals.
For example, in Fig. 14, if we use the highlighted cycle to add a new curve then
the resulting diagram will not have a Hamiltonian dual.

In addition, we place a stronger condition on edges of curve-adding cycles,
which guarantees that, after adding a curve, the resulting diagram has a Hamilto-
nian dual. In Fig. 15, the Euler graph dual includes a Hamiltonian cycle, shown
using dashed (red) edges. A curve-adding cycle, s, in the Euler graph dual is
highlighted by a semi-translucent path (in yellow). If s is used to add a new
curve, the Euler graph dual would need to be updated for the new diagram.
The resulting new edges and vertices are shown in grey. The dashed grey edges
together with the dashed red edges, excluding e, form a Hamilitonian cycle in
the new Euler graph dual. Notice the edge e and how its incident vertices are
used to join the red and grey paths to form the new Hamiltonian cycle thus
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extending the Hamiltonian property to the new dual. The presences of e in a
Hamiltonian cycle is important: it ensures that we can join the dashed paths
together using its incident vertices to create a new Hamiltonian cycle. In gen-
eral, the existence of an edge in both a Hamiltonian cycle in EGD(d) and in the
curve-adding cycle, is sufficient to ensure that a Hamiltonian cycle exists in the
new dual after adding a curve.

Definition 8. Let d be an atomic Euler diagram. Let ZON be a non-empty set
of zones in d. A curve-adding cycle, s, for d respecting ZON is valid if there
are no vertices inside s and there is an edge, e, in s such that there exists a
Hamiltonian cycle in EGD(d) that contains e.

Lemma 1. Let d be an atomic Euler diagram that is H-extendible. Let ZON be
a non-empty set of zones in d. Then there exists a valid curve-adding cycle for
d respecting ZON .

It follows that at each step in our diagram generation process we want to
generate an H-extendible diagram, so that there exists at least one valid curve-
adding cycle for the next step.

Theorem 1. Let (Di,Di+1) be a pair of descriptions in a recomposition. Let
di = (C, l) be an H-extendible Euler diagram which is a drawing of Di. There
exists an H-extendible relaxed drawing, di+1, of Di+1 and obtained from di by
adding a curve using a valid curve-adding cycle.

We can readily show that given any description, D, there exists a relaxed
drawing of D by appealing to Venn diagrams, which are known to have Hamil-
tonian duals [13]. For example, in Fig. 16 we can shade any zone in a Venn-5
diagram and obtain a relaxed drawing of any description with five curve labels.

Lemma 2. Let D be a description. There exists an atomic Euler diagram that
is H-extendible which is a relaxed drawing of D.

In summary, to guarantee drawability using iCurves, we select the shortest
valid curve-adding cycles respecting ZON which ensures the resulting diagram
is H-extendible. Shortest cycles lead to fewer extra zones being introduced when
producing a relaxed drawing. The validity and H-extendible conditions ensure
that we can continue adding curves to create a well-formed relaxed drawing of
the required description.

4.2 Producing a Decomposition

We have now seen how iCurves adds curves, taking into account extra zones and
drawability. The choice of decomposition also impacts on the quality of the final
diagram. We present our strategy that leads to a particular choice for the order of
curve label removal. Note that given an atomic description, D, iCurves draws an
atomic diagram. Our strategy ensures that all descriptions in the decomposition
of D are atomic. This is achieved by always choosing to remove a label that
results in an atomic description, i.e. a non-disconnecting label.
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Fig. 16. Venn-5. Fig. 17. A bad choice of
decomposition.

Fig. 18. A good choice of
decomposition.

Lemma 3. Let D be an atomic description. There exists a label, λ, in D that,
when removed, results in an atomic description.

This is an important part of our strategy, since removing disconnecting labels,
yielding a nested description, necessarily leads to extra zones being included
when drawing the diagram. For example, in Figs. 17 and 18, the diagrams were
generated from the same description. In Fig. 17 the diagram has four extra zones
and was drawn using a decomposition which first removed label S, giving a nested
diagram; iCurves will not produce this layout as the decomposition violates our
strategy. Figure 18 was drawn with iCurves using only atomic descriptions in the
decomposition and has no extra zones. Our decomposition strategy to remove a
label from Di+1 to give Di is as follows:

1. If there is only one non-disconnecting label in Di+1, remove it.
2. Else, see if any non-disconnecting label might be drawable as a circle that ‘cuts

across’ one curve: for each non-disconnecting label, λ, see if {az ∈ Z(Di+1) :
λ ∈ az} = {az , az ∪ {λ1}} for some az ∈ Z(Di+1) and λ1 ∈ L(Di+1). If there
are such labels, randomly choose one of them to remove.

3. Else, see if any non-disconnecting label might be drawable as a circle that
‘cuts across’ two curves, possibly adding one or two extra zones: for each
non-disconnecting label, λ, see if {az ∈ Z(Di+1) : λ ∈ az} ⊆ {az , az ∪
{λ1}, az ∪ {λ2}, az ∪ {λ1, λ2}} for some az ∈ Z(Di+1) and λ1, λ2 ∈ L(Di+1).
If there are such labels, randomly choose one of them to remove.

4. Else, remove a label whose addition is likely to introduce the fewest extra
zones: for each non-disconnecting label, λ, first compute n = |{az ∈
Z(Di+1) : λ ∈ az ∧ az \ {λ} /∈ Z(Di+1)}|, which gives the number of abstract
zones that contain λ and do not have neighbours2. Next, compute m by find-
ing the smallest set of abstract zones, Z ′, where Z ′ ⊆ Z(Di+1 − λ) such that
the graph (V,E), defined by V = {az ∈ Z(Di+1−λ) : az∪{λ} ∈ Z(Di+1)}∪Z ′

and E = {{az , az ′} : az = az ′ ∪ {λ′}} for some λ′ ∈ L(Di+1 − λ), is a simple

2 Two abstract zones are neighbours if their symmetric difference has one element.
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Fig. 19. d1. Fig. 20. d2. Fig. 21. d3. Fig. 22. d4.

cycle; set m = |Z ′|. Remove the label with the smallest n + m; if there is a
choice, randomly choose one of them to remove.

A decomposition of our running example, D, can be formed by removing S,
then R, followed by Q and P . The drawings of D1–D3 are in Figs. 19, 20 and 21.
The diagram d4, in Fig. 22, is a relaxed drawing of D4 and, therefore, of D. In
D, all four labels are non-disconnecting and cannot be identified as (possibly)
drawable with circles. Hence, we compute n + m for each label. The value of n
for P is 2 since there are two abstract zones, PS and PRS, where corresponding
abstract zones, S and RS, are not in D. To compute m for P , we obtain the set
V , which is formed from two sets V ′ ∪ Z ′, where V ′ arises from abstract zones
in D that contain P . So, we have V ′ = {QR,R, ∅, Q,QS, S,RS}. The smallest
set that can be added to V ′ to give a simple cycle is {QRS}. Thus, m for P is
|{QRS}| = 1 and we have n + m for P is 3. Similarly, n + m for Q, R and S is
3, 2 and 1 respectively. S has the smallest n + m and, so, is removed from D.
Next, P , Q and R can be removed in any order as they are all drawable as circles.

4.3 Drawing Algorithm

To generate an atomic Euler diagram from an atomic description, D, using
iCurves, call Algorithm 1 (page 12) with D as input.

Theorem 2. Let D be an atomic description. Applying Algorithm1 to D pro-
duces an atomic Euler diagram, d, that is a relaxed drawing of D.

To draw a nested description, D, iCurves starts by splitting D into its atomic
parts, say D1, D2, ..., Dn. Each Di is then drawn using Algorithm1. The dia-
grams are then displayed appropriately, reflecting the nested properties of D;
the formal details are omitted due to space constraints. An example of a nested
diagram drawn by iCurves can be seen in Fig. 23. We are now in a position to
state our main theorem:

Theorem 3. Let D be a description. Then iCurves produces an Euler diagram,
d, that is a relaxed drawing of D.



50 A. Baimagambetov et al.

Algorithm 1. Draw atomic component.
Input : An atomic description, D.
Output: An atomic Euler diagram, d, which is a relaxed drawing of D.
begin

Set dec(D) = (Dn, ..., D0), removing labels using the strategy given above.
D0 has no labels and D1 has a single label, λ1. Draw the first curve as a
circle with label λ1. Call the resulting Euler diagram d1. Trivially, d1 is
atomic, H-extendible and a drawing of D1. Set i = 1.
while i < n do

Set λi+1 to be the label such that Di = Di+1 − λi+1.
if i == 1 then

Add a circle with label λi+1 to di, resulting in di+1.
else

Set ZON = Fi(IN (Di, Di+1)), where IN (Di, Di+1) is the set
{az ∈ Z(Di) : az ∪ {λi+1} ∈ Z(Di+1)} and Fi maps abstract zones
of Di to zones of di in the obvious way.
Construct MED(di).
if |ZON | = 2 and the zones in ZON are adjacent and the edge
between the zones is in a Hamiltonian cycle in EGD(di) or
|ZON | = 2 and we can add two extra zones to ZON to form a valid
curve-adding cycle or |ZON | = 3 and we can add one extra zone to
ZON to form a valid curve-adding cycle or |ZON | = 4 and the zones
in ZON form a valid curve-adding cycle then

Add a circle with label λi+1 to di, resulting in di+1.
else

Set si to be a valid curve-adding cycle for di respecting ZON ,
selected using the strategy given above.
Set di+1 = di + (si, λi+1).

end

end
di+1 is atomic and a relaxed drawing of Di+1.
Increment i by 1.

end
To finish, set d = dn.

end

5 Evaluation

We now set out to evaluate the layouts produced by iCurves against competing
state-of-the-art techniques. It is not possible to evaluate against all implemented
techniques as there are a large number of them. We selected techniques such that
(a) the software is freely available, and (b) they could theoretically draw any
description, even though the implementation may fail. So, the methods selected
for comparison with iCurves are: Bubble Sets [5], GED-L [17], and iCircles [21].

We selected a stratified random sample of 40 data sets from the SNAP (Stan-
ford Network Analysis Project) collection, which are derived from Twitter ego-
networks [12]. The 40 data sets had between four and eight sets. The number of
zones varied too: for each number of sets, we randomly selected two data sets
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Fig. 23. A nested Euler
diagram with 8 curves.

Fig. 24. iCircles. Fig. 25. iCurves.

Fig. 26. GED-L. Fig. 27. Bubble Sets.

from each quartile based on the number of zones. For example, the eight-set
data sets in the SNAP collection had between 8 and 48 zones, with ‘number of
zones’ quartiles 8–12, 13–14, 15–18 and 19–48; we randomly chose two data sets
from each quartile. This approach to sampling was designed to provide insight
into how the effectiveness of the layouts changed as the complexity of the data
changed, as measured by the number of sets and the number of zones.

Each selected data set was drawn using each of the four techniques. We
counted the number of times each well-formedness property was broken. For
each curve label, we counted the number of ‘extra’ times it was used. For each
disconnected zone we counted the number of extra minimal regions it comprised
(i.e. one fewer than the number of minimal regions of which the zone comprised)
on the basis that one minimal region per zone is needed. For concurrency, we
counted the number of cases where two or more curve segments run along the
same path and we also counted the number of triple points. There were no occur-
rences of non-simple curves. We also counted the number of non-circular curves.
These counts provide a measure of the relative effectiveness of the diagrams.
Lastly, we counted the number of extra zones present in the diagrams (i.e. zones
whose abstraction is not in the drawn description). Sometimes the techniques
failed to draw a given description, so our discussion below accounts for that.

The diagrams generated from the data sets, using all four techniques, are
available from https://github.com/AlmasB/d2018. They are marked to show
how we counted violations of the well-formedness properties. For example,
Figs. 24, 25, 26 and 27 illustrate the same data set drawn using each of the

https://github.com/AlmasB/d2018
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Table 1. Total counts and averages for the diagram features broken by the techniques.

Techniques iCircles (40) Bubble Sets (40) GED-L(29) iCurves (38)

c a n c a n c a n c a n

Duplicated labels 45 1.1 17

Disconnected zones 146 3.7 21 2 0.1 2

Concurrency 51 1.3 12 12 0.4 5

Triple points 36 0.9 15 20 0.7 7

Non-circles 240 6.0 40 46 1.6 7 11 0.3 8

Extra zones 5 0.1 2 87 2.2 20 63 1.7 15
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Fig. 28. The averages for the diagram features broken by the techniques.

four techniques (the labels are manually added for readability). In Fig. 24 there
are two duplicate curve labels. In Fig. 25 there are two extra zones. In Fig. 26,
there is one case of concurrency and two triple points. In Fig. 27, there are two
cases of disconnected zones, one triple point and one case of curve concurrency.

The data we collected are summarised in Table 1. The column headings show
how many of the 40 data sets the technique successfully drew; GED-L failed
to generate 11 diagrams out of 40 and iCurves failed to generate 2. In most of
the failed drawing attempts the number of zones was high. For each property,
the total count, c, is given, together with the average number, a, of violations
for each drawn diagram, and the number of diagrams, n, in which the violation
occurs. When the count is 0, no entry is given to avoid clutter.

The data are also displayed in line charts in Fig. 28. The two charts on the
left show the average number of violations of the five well-formedness properties
plus the average number of non-circular curves; one graph is by number of sets,
the other by quartile. The other two charts show the number of extra zones by
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number sets and quartile respectively. Bubble Sets often produces diagrams with
disconnected zones and extra zones. Furthermore, none of the curves are circles.
In iCircles all of the curves are circles, but as the number of zones increases
iCircles produces duplicated labels and GED-L produces curve concurrency and
triple points. Unsurprisingly, as the diagrams increased in complexity, as indi-
cated by number of sets or zone quartile, the diagrams produced by all four
techniques exhibited an increasing number of bad properties.

In summary, we can see that iCircles and Bubble Sets have particularly prob-
lematic features, such as duplicated curve labels and, respectively, disconnected
zones. These data suggest that GED-L and iCurves strongly outperform iCircles
and Bubble Sets based on these two well-formedness properties. GED-L often
breaks other well-formedness properties (although not as many times as Bubble
Sets) unlike iCurves. Considering effectiveness based just on the well-formedness
properties, these data suggest that iCurves should be used rather than GED-L.
In addition, iCurves more often used circular curves than GED-L, again point-
ing favourably towards iCurves. Of course, we must be mindful that the effective
features of iCurves come at the expense of extra zones being present.

6 Conclusion and Future Work

Our technique, iCurves, generates well-formed diagrams, in contrast with other
techniques. The evaluation has shown that iCurves can outperform other tech-
niques with respect to layout features that are detrimental to task performance.

In the future, it would be beneficial to determine the effects of extra zones
on diagram comprehension. Understanding the effects would allow us to gain
deeper insight into the trade-off between duplicated labels and extra zones, for
example in Figs. 24 and 25. Moreover, whilst GED-L did not break any par-
ticularly problematic properties, the overall aesthetic qualities of the diagram
were questionable. As can be seen from Fig. 26, use of jagged lines makes the
diagram convoluted. Currently there are no clear aesthetic criteria we can use to
evaluate the diagrams, but properties such as symmetry and curve smoothness
can be considered. Finally, we plan to extend iCurves to include graphs, so we
can visualize grouped network data (elements joined with lines). Extending the
technique in a way that primary spatial rights [5] are not assigned to either the
sets or the network represents a considerable challenge.
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Abstract. Diagrams and pictures are a powerful medium to communi-
cate ideas, designs, and art. However, authors of pictures are forced to
use rudimentary and ad hoc techniques in managing multiple variants of
their creations, such as copying and renaming files or abusing layers in
an advanced graphical editing tool. We propose a model of variational
pictures as a basis for the design of editors and other tools for managing
variation in pictures. This model enjoys a number of theoretical proper-
ties that support exploratory graphical design and can help systematize
picture creators’ workflows.

1 Introduction

Visual media such as diagrams and pictures are ubiquitous in the modern world.
These take many forms and are employed by a variety of professionals, rang-
ing from architects and industrial designers using CAD tools, graphic designers
and photographers using photo editing tools, to scientists and business owners
creating charts and technical diagrams to analyze and share data.

While the software tools for these applications are quite sophisticated, they
offer little or no support for managing variation in the produced artifacts, forcing
users to employ rudimentary techniques to manage multiple versions of their
work. For example, a graphic designer who might want to showcase changes to
a logo design might be forced to overuse the layer system in their editing tools
or simply create multiple copies of the picture file. A data scientist generating
a series of similar or related charts and tables might have to manually copy
files or images and rename them meaningfully to be able to view and compare
them. Architects and engineers frequently make revisions to their drawings and
designs and their tools offer minimal, if any support, forcing them to adopt ad
hoc approaches.

The need for variation comes in two different forms. First, one might want
to create several concurrent variants of an artifact. Second, one might need
some kind of version control for pictures. We propose variational pictures as
an underlying model to support both forms of picture variation. A variational
picture is simply a picture (here a grid of pixel values) that offers an explicit way
of representing and selecting different variant pictures. For example, a picture
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along with its history (or undo) states can be viewed as a variational picture.
Similarly, a collection of related but different designs is also a variational picture.
It is even possible to view an animation as a variational picture in which the
variants are the frames with a temporal ordering.

Consider a landscape architect working on the plan for a new city park, the
features of which are not fully decided yet. For example, an additional wooded
area may be cleared to make more space for the park if the budget is determined
to allow for it. In another part of the park, a pavilion may be added to provide
covered seating. Finally, on the condition that the trees are cleared, a small
fountain may be installed where they were. Even with such a small number of
undetermined features, this already means there are six possible park layouts. It
is easy to imagine this growing out of control rather quickly with more options.
By using a model of variational pictures, the architect could produce a single plan
with the areas of variability clearly marked that also allows toggling between the
options to show them to the final decision makers. We show a sequence of such
variational pictures in Fig. 1.

The example does not only show that variational pictures are useful, it also
illustrates that managing variability is a nontrivial matter that requires a number
of operations for creating, eliminating, and adapting variability. We will return
to this example later.

Trees

(a)

Trees

Pavilion

(b)

Trees

Pavilion

Fountain

(c)

Fig. 1. A sequence of variational pictures showing the design of a park. In (a) we have
one area of variability for the potential removal of trees, in (b) we have an independent
dimension for a pavilion area, and in (c) we have a nested dimension for a small fountain
that can only exist if the trees are removed.

Since variational pictures have a significantly more complicated structure
than plain pictures, their precise meaning should be captured in a formal model
that can serve as a specification for guiding the implementation of editors and
other tools. In particular, a variational picture model should explain the exact
behavior of operations for creating, modifying, and navigating variational pic-
tures, as well as for the splitting and merging of variational pictures.
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In the following we will present a model for variational pictures and show
how it supports editors and other tools for creating and managing variational
pictures. Specifically, this work makes the following contributions:

1. A model of variational pictures based on the choice calculus [1]. We will
present the required background of the choice calculus and how it is used to
define a model of variational pictures in Sect. 2.

2. A set of properties that describe the generality and usefulness of the presented
variational picture model. We will present these properties in Sect. 3.

3. Requirements for maintaining variational pictures and a demonstration how
the presented model satisfies these requirements. We will discuss the require-
ments and how they are supported by our variational picture model in Sect. 4.

4. Variational area trees to explore and navigate variational pictures diagram-
matically, which are presented in Sect. 5.

In Sect. 6 we discuss related work, and we present conclusions and directions for
future work in Sect. 7.

2 Representing Variational Pictures

The definition of variational pictures is based on a generic model of variational
values that is discussed in Sect. 2.1, which we then apply to a model of plain
pictures described in Sect. 2.2. The resulting model of variational pictures is then
presented in Sect. 2.3. The different degrees of variability in a variational picture
give rise to a notion of variation type, introduced in Sect. 2.4, and a corresponding
notion of region, which is discussed in Sect. 2.5. Finally, in Sect. 2.6 we introduce
an operation that can create variational pictures automatically from a sequence
of plain pictures.

2.1 A Formal Model of Variation

In order to model and provide structure to variational values we make use of the
choice calculus [1], a formal system for managing variation based on the core
notion of a choice.

Choices represent sets of alternatives associated with names called dimen-
sions. For example, we can define a variational integer A〈1, 2〉 as a choice between
the two values 1 and 2. In this paper we consider only binary choices, that is,
choices of two alternatives. This is not an essential restriction, since choices can
be nested to represent a larger number of alternatives. For example, the vari-
ational integer vx = A〈B〈1, 2〉, 3〉 contains three total alternatives and has an
outer choice in dimension A and a nested choice in dimension B. Choice expres-
sions such as this form binary tree structures where n dimension names in the
internal nodes lead to n + 1 plain values at the leaves.

Each dimension D in a choice expression gives rise to two selectors D.l and
D.r. Selectors can be used to extract alternatives from choices via a selection
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operation defined as follows (we use x to range over plain, non-variational values,
vl and vr to range over (potentially) variational values, and s to range over
selectors):

�D〈vl, vr〉�s =

⎧
⎨

⎩

�vl�s if s = D.l
�vr�s if s = D.r
D〈�vl�s, �vr�s〉 otherwise

�x�s = x

For example, �A〈1, 2〉�A.l = 1, �vx�A.l = B〈1, 2〉 and �vx�B.r = A〈2, 3〉. Dimen-
sions synchronize choices, which means selecting an alternative in dimension
D selects that same alternative in all occurrences of D. For example, we have
�B〈A〈1, 2〉, A〈3, 4〉〉�A.l = B〈1, 3〉.

Since one selector can eliminate only choices in one dimension, we generally
need a set of selectors, called a decision, to extract a plain value from a variational
one. This is done by repeated selection with the selectors from the decisions. With
δ = {s1, s2, . . . , sn}, we have:

�vx�δ = ��. . . �vx�s1 . . .�sn−1�sn

A decision that eliminates all choices from a variational value is said to be
complete. The order of selection is irrelevant. That is, for any variational value
vx and pair of selectors D.d and D′.d′ (with d, d′ ∈ {l, r}):

D �= D′ =⇒ ��vx�D′.d′�D.d = ��vx�D.d�D′.d′

This will be an important property for variational pictures. As areas of variability
will be represented by choices, we can make decisions about optional features in
pictures in any order. In the example from the Introduction we could decide, for
example, about the fountain before or after we decide about removing the trees.

However, the nesting of the choices does matter because it defines dependen-
cies among the decisions to be made. In that same example, having the fountain
area nested inside the tree area means that it is possible the outer one will make
the inner one irrelevant. This has important consequences for the design of a
variational picture editor.

The semantics of a choice calculus expression is given as a mapping from
decisions to plain expressions. (This will be made precise in Sect. 2.3.) In general,
one variational value can be represented by different choice calculus expressions,
which gives rise to a notion of equivalence for expressions that denote the same
variational values. For example, choice synchronization is the reason for the
choice domination laws that allow the elimination of nested choices in the same
dimension:

D〈D〈vx, vy〉, vz〉 ≡ D〈vx, vz〉 D〈vx,D〈vy, vz〉〉 ≡ D〈vx, vz〉
Moreover, idempotent choices have no effect on variability:

D〈vx, vx〉 = vx
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We also have choice commutation rules, that is, for D �= D′:

D′〈D〈x, y〉, z〉 ≡ D〈D′〈x, z〉,D′〈y, z〉〉
D′〈x,D〈y, z〉〉 ≡ D〈D′〈x, y〉,D′〈x, z〉〉

Although choice commutation preserves the choice calculus semantics, it is still
an important consideration for variational pictures, since the nesting of choices
relates directly to their structure.

2.2 Plain Pictures

We base our model of variational pictures on a model of plain pictures that is
basically defined as a set of pixels.

Specifically, given a finite domain of locations Loc, a picture is a finite map-
ping from Loc to some type T . Here T typically is a set of colors, but it can be
any type that has an equality predicate defined on it. Moreover, in most cases
pictures are given by fixed, rectangular grid of pixels, which means that the type
of locations is of the form Locn,m = {1, . . . , n} × {1, . . . , m}. However, the def-
initions that follow do not depend on this particular structure, so that we can
simply assume a finite set Loc of elements on which equality is defined.1

Thus the type of T pictures over the domain Loc is defined as PicT = Loc →
T . A picture is an element of that type, and a pixel of a picture p ∈ PicT is
given by a pair (l, x) ∈ p with l ∈ Loc and x ∈ T .

Here is a small example of a 2×2 picture over a type of symbols S = {◦, •, �}:
p = ◦••◦. Since the structure of T doesn’t really matter, we will mostly omit it in
the following and consider this parameter implicitly fixed, that is, we simply use
the type Pic.

2.3 Adding Choices to Pictures

A variational picture of type T is a mapping from locations to variational T
values, that is, VPicT = Loc → V (T ). One could consider a more general
definition that also allows variability in the location domain. However, such a
type would complicate the following definitions considerably without gaining
much. In fact, if the type T contains some unit or null value, one can simulate
differently sized pictures using such a designated value. On the other hand, the
chosen definition still facilitates the local application of variability, which is an
important feature of our model to be discussed later.

Corresponding to plain pictures, a variational pixel is an element of a vari-
ational picture vp ∈ VPicT where vp = (l, vx) with l ∈ Loc and vx ∈ V (T ).
Again, we omit the T parameter from the type in the following.

Here is a variational 2 × 2 picture over type S that varies the pixels in vp’s
second column in dimension A: vpA = ◦A〈•,◦〉•A〈◦,◦〉. Since vpA contains only choices

1 This generality follows from the fact that our picture model doesn’t require a notion
of connectedness.
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in one dimension, it encodes two plain variant pictures that can be extracted
using selection, that is, �vpA�A.l = p = ◦••◦ and �vpA�A.r = ◦◦•◦.

In general, a variational picture may contain multiple choices in different
dimensions. Here is a picture that varies the upper right pixel in vpA again
using a nested B choice in A’s left alternative: vpAB = ◦A〈B〈•,�〉,◦〉•A〈◦,◦〉 . Selecting the
left alternative of A in vpAB now does not produce a plain picture, since the B
choice has not been eliminated: �vpAB�A.l = ◦B〈•,�〉•◦ . This means that we need
to also perform a selection for B. In the example we get �vpAB�{A.l,B.l} = p and
�vpAB�{A.l,B.r} = ◦�•◦. On the other hand, selecting only the right alternative
still produces a plain picture �vpAB�A.r = ◦◦•◦.

The semantics of a variational picture is a mapping from decisions to plain
pictures. The semantics definition iterates over all variational pixels and extracts
and lifts the decisions to the level of pictures, effectively commuting decisions
and locations.

�·� : VPic → V (Pic)
�vp� = {(δ, (l, x)) | (l, vx) ∈ vp, (δ, x) ∈ vx}

The type of the semantic function helps explain its definition: since V (X) =
Dec → X, Pic = Loc → T , and VPic = Loc → V (T ), the type of the semantic
function reads in expanded form as (Loc → (Dec → T )) → (Dec → (Loc → T )).

As the examples vpA and vpAB illustrate, the ability to apply choices to
individual pixels, makes variability a localized feature. This is an important
property, since it allows only those parts to be varied that need it and keeps non-
variable picture parts constant across different variant pictures, which supports
editing by avoiding update anomalies [2]. For example, if we change the upper
left pixel in vpAB from ◦ to •, this change has to be done only once and will still
correctly affect all variants of the picture.

In order to support precise operations to create and modify the variability in
a variational picture, we employ the notion of a view decision, which is simply
a choice calculus decision that specifies the plain picture variant that is cur-
rently visible in the editor. View decisions are always complete, that is, they
contain exactly one selector for each unique dimension contained anywhere in
the variational picture.

2.4 Variability Types

The inclusion of choices in pictures suggests a classification of pixels according
to their variability and the grouping of pixels with the same variability into
regions. To formalize this idea we first define the notion of a variability type.
The type of a plain, non-variational value is � (called unit), and the type of a
variational value is given by its choice structure, which is obtained by replacing
all plain values in it by �. The variability type of a value can be determined by
the function ϕ, which is defined as follows.
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ϕ : V (T ) → V ({�})
ϕ(D〈vx, vy〉) = D〈ϕ(vx), ϕ(vy)〉

ϕ(x) = �
The type of a pixel is given by the type of its value, that is, ϕ(l, vx) = (l, ϕ(vx)).

With this definition, all pixels in ◦••◦ have type �. In vpAB = ◦A〈B〈•,�〉,◦〉•A〈◦,◦〉 , the
pixels in the left column have type �, the lower right pixel has type A〈�, �〉, and
the upper right pixel has type A〈B〈�, �〉, �〉. For notational convenience we also
write more succinctly A for a type A〈�, �〉. With this abbreviation we can say
that the lower right pixel has type A and the upper right pixel has type A〈B, �〉.

A variability type tells us exactly what decisions are needed to extract all
plain values from a variational value. For example, the set of plain values con-
tained in vpAB is given by {�vpAB�{A.l,B.l}, �vpAB�{A.l,B.r}, �vpAB�A.r}. We
can compute the set of decisions required for extracting all plain values from a
variational value a particular type with the following function decs.

decs : V ({�}) → 2Dec

decs(D〈vx, vy〉) = {δ ∪ {D.l} | δ ∈ decs(vx)} ∪ {δ ∪ {D.r} | δ ∈ decs(vy)}
decs(x) = ∅

Based on the function decs we can define a variability type equivalence that holds
for types that describe the same variability.

φ ∼ φ′ :⇐⇒ decs(φ) = decs(φ′)

Note that ∼ is not a simply derived from ≡. For example, whereas D〈x, x〉 ≡ x
(due to idempotency), ϕ(D〈x, x〉) = D �∼ � = ϕ(x). We can generalize the notion
to type equivalence naturally to a refinement ordering on variability types, again
based on the decisions that are represented by the variability types.

φ � φ′ :⇐⇒ ∀δ′ ∈ decs(φ′) : ∃δ ∈ decs(φ) : δ ⊇ δ′

We have, for example, A〈B,B〉 � A〈B, �〉 and A〈�, B〉 � A. The variability
refinement is a partial order that give rise to a lattice structure. Here is a small
excerpt of this lattice involving the two dimensions A and B. Note the two types
A〈B,B〉 and B〈A,A〉 are equivalent. This means that the nesting is not relevant,
and we can write the type more accurately as AB to indicate that neither A nor
B is in any way privileged over the another.

AB

A〈B, �〉 A〈�, B〉 B〈A, �〉 B〈�, A〉

A B

�
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This diagram indicates that the nesting of dimensions does not matter in
fully variationalized values, since the types are equivalent. This is an important
property we will come back to in Sect. 3.

We write more shortly D ∈ δ whenever D.l ∈ δ or D.r ∈ δ, and say that
a dimension D depends on dimension D′ in a type φ, written as D′ ←φ D, if
D ∈ decs(φ) =⇒ D′ ∈ decs(φ), that is, in order to make a selection in D one
also has to make a selection in D′. For example, B depends on A in A〈B, �〉. We
notice that in the type AB (which is equal to A〈B,B〉 and B〈A,A〉), B depends
on A and A depends on B. In such situations, when two dimensions D and D′

depend on one another in a type φ, we say that D and D′ are co-dependent in
φ, written as D′ ↔φ D.

2.5 Variability Regions

Based on variability types we can define a notion of regions that have the same
variability. All pixels with the same type have the same variability structure,
which means that they are mapped to plain variants by the same set of decisions.
This property partitions the set of all pixels (or more precisely, their locations)
into a set of disjoint regions. Specifically, for each variation type φ ∈ V ({�}) we
define the region of φ-variability (or φ-region for short) as follows.

Rφ(vp) = {(l, vx) ∈ vp | ϕ(vx) ∼ φ}
In the park example from the Introduction, the part of the image affiliated with
the fountain is given by the region RTrees〈�,Fountain〉.

The following lemma is a direct consequence of the definition of φ-regions.

Lemma 1. For every variational picture vp, the set of (non-empty) regions
Rφ(vp) forms a partition of vp.

Since regions are identified by the common types of their pixels/locations, we
can derive a refinement relation for regions based on the type refinement defined
earlier. Specifically, Rφ′ � Rφ if and only if φ′ � φ.

As indicated by the example scenario in the Introduction, (variational) pic-
tures are typically the result of a sequence of operations performed in an editor.
In particular, variability is introduced into a picture by marking an area and
assigning a dimension to it. After that the resulting two alternatives can be
edited in different ways and will generally contain different content.

In many cases, however, not every pixel in the marked area will be different
in both alternatives. Consider again the picture vpA = ◦A〈•,◦〉•A〈◦,◦〉. Both pixels in
the right column are variational: they are both of type A and thus belong to the
same region. However, only the upper pixel differs in its alternatives. Since both
alternatives of the lower pixel are equal, we could apply the idempotency law of
the choice calculus and replace A〈◦, ◦〉 by ◦ without changing the semantics of the
variational picture. Such a change would, however, change the region partition
for vpA. By systematically applying transformations for eliminating idempotent
choices (D〈x, x〉 �→ x) as well as dominated choices (D〈D〈x, y〉, z〉 �→ D〈x, z〉
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and D〈x,D〈y, z〉〉 �→ D〈x, z〉) to all pixels in a variational picture, we can shrink
regions and thus increase the sharing in the picture. We can define a corre-
sponding region shrinking operation as follows. First, we define the operations
on variational values. Note that pattern matching on dominated choices is insuf-
ficient, since they can occur at arbitrary depths, so we use selection to avoid
them instead.

ρ̇(D〈vx, vy〉) =
{

ρ̇(vx) if ρ̇(vx) = ρ̇(vy)
D〈ρ̇(�vx�D.l), ρ̇(�vy�D.r)〉 otherwise

ρ̇(x) = x

Region shrinking of variational pictures then simply works by applying the oper-
ation ρ̇ to all values in all pixels.

ρ : VPic → VPic
ρ(vp) = {(l, ρ̇(vx)) | (l, vx) ∈ vp}

Note that a variational picture obtained by ρ is not guaranteed to have max-
imized the sharing of values and thus is not minimal. Consider, for exam-
ple, the variational value vx = A〈B〈x, z〉, B〈y, z〉〉. The definition of ρ̇ cannot
extract and share the value z, since ρ̇(vx) = vx. However, the variational value
vy = B〈A〈x, y〉, z〉, which is equivalent to vx, is smaller than vx and does share
z.

Note that the redundant value could occur deeply nested in the two alter-
natives, which means that a simple one-level dimension rotation is, in general,
insufficient to expose redundant values. Nevertheless, redundant choices in idem-
potent or dominated choices will be eliminated by the region shrinking operation.
It checks explicitly for identical alternatives and, at every step, uses selection on
both branches to ensure no nested choices in matching dimensions.

2.6 Distilling Variational Pictures

Given two plain pictures p and p′, we can automatically merge them and produce
a variational picture that captures the differences between p and p′ in choices
of some dimension D and keeps all common parts as plain values. First, we
define an operation Δ̇ for comparing individual pixel values. If we only needed
Δ̇ for generating one variational picture from two plain pictures, its type could
be T × T → V (T ), but since we actually want to apply the merge operation
repeatedly to a number of pictures, its type should be T ×V (T ) → V (T ), which
allows a plain picture to be merged with a variational picture. The operation
can, of course, still be used with two plain pictures since a plain picture is just
a special case of a variational one.

Δ̇ : T × V (T ) → V (T )

Δ̇(x, vx) =
{

x if x = vx
D〈x, vx〉 otherwise
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Note that the equality between x and vx can only hold when vx is a plain value.
Note also that we have not specified which dimension D is to be used in the
definition, since the concrete name does not really matter. We have to postulate
however, that D has not been used in any of the vx values that Δ̇ is applied to.
Effectively, we want to use a new dimension for every new picture that is merged
into a variational picture.

Using Δ̇, the operation Δ for merging a plain picture into a variational one
and capturing their differences in choices can be defined as follows. We assume
that both pictures are defined over the same domain of locations. Note that we
use the same l in both qualifiers of the set comprehension to express a parallel
iteration over all pixels in both pictures.

Δ : Pic × VPic → VPic

Δ(p, vp) = {(l, Δ̇(x, vx)) | (l, x) ∈ p, (l, vx) ∈ vp}
We can generalize the definition of Δ to work on not just two but a whole

set of pictures in a straightforward way. The only side condition, which is not
formalized here, is that the a fresh dimension is used in each new call to Δ̇.
This could be formalized by threading a set of dimension names through the
successive applications of Δ and Δ̇, but this doesn’t contribute much to the
understanding of the operations, and we therefore omit it here for brevity.

Δ∗ : 2Pic → VPic
Δ∗({p}) = p

Δ∗({p} ∪ P) = Δ(p,Δ∗(P))

We can see this in action using the small plain pictures p1 = ◦••◦, p2 = ◦◦••,
and p3 = ◦�••. Now we need to evaluate Δ∗({p1, p2, p3}), which we can expand to
Δ(p3,Δ(p1, p2)). Evaluating Δ(p1, p2) produces p12 = ◦A〈•,◦〉•A〈◦,•〉. Finally, we can
evaluate Δ(p3, p12) and get the variational picture ◦B〈�,A〈•,◦〉〉•B〈•,A〈◦,•〉〉.

3 Properties of Variational Pictures

In this section we collect a number of general properties of variational pictures
that serve as additional characterizations of the concept and also justify the
chosen design.

The first observation is that variational picture distillation and semantics
are in some sense inverse operations of each other. Distillation is, in fact, what
users do when they have a set of pictures in mind that they want to represent
in a variational one. Of course, users typically won’t encode the differences as
efficiently as the operation Δ∗, which will often result in a variational picture
with maximal sharing. Now we can show that the semantics of a variational
picture that is generated by Δ∗ from a set of plain pictures produces exactly the
original plain pictures.

Theorem 1. ∀P ∈ 2Pic : range(�Δ∗(P)�) = P.
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This theorem states that the semantics of variational pictures are correct; it
says that distilling a variational picture from a set of plain pictures does not
lose any information, because the original set of pictures can be extracted by
the semantics.

Since a choice tree with n leaves contains n − 1 dimensions (as mentioned in
Sect. 2.1), that also means that n pictures are distilled into a variational picture
with n − 1 dimensions.

A closely related result is that from the plain pictures encoded in a variational
picture we can recover an equivalent variational picture using Δ∗. Note that the
reconstructed variational picture may not be identical to the original one in terms
of how the variation is represented, that is, in general we have Δ∗(range(�vp�)) �=
vp; all we can guarantee is that the reconstructed picture has the same semantics.

Theorem 2. ∀vp ∈ VPic : �Δ∗(range(�vp�))� = �vp�.

As the example scenario in the Introduction has shown, areas of variability are
often nested, which leads to correspondingly nested choices in the pixel values.
This is the case, for example, for the optional fountain. The fountain itself is an
area of variability, but it is also nested inside one alternative of another area in
which a wooded area is cleared. If we call these dimensions Trees and Fountain,
we would expect to see many pixel values with the type Trees〈�,Fountain〉.

One concern is that the initially chosen area and thus choice nesting commits
a user to a particular nesting that cannot be changed at a later stage of editing.
The next theorem shows that this is actually not the case and that variation
creation, in particular, the nesting of choices, does not lead to a premature
commitment to a particular variation structure.

Consider the situation that an area for choice B has been created inside
an area for choice A, and let’s assume that the B choice lives inside A’s left
alternative (just as in the example vpAB from Sect. 2.3). The type of the pixels
inside the B area is A〈B, �〉, and the type of the pixels outside of B but inside
of A is simply A. We call a pair of regions such as RA and RA〈B,�〉 a region
refinement pair, since A〈B, �〉 � A (and thus RA〈B,�〉 � RA), and write such a
pair as RA[RA〈B,�〉] to indicate that it was probably the result of creating a B
choice in an A area (or creating an A choice around a B area).2

We can observe that for the pixels in RA〈B,�〉, B depends on A. If we consider
the dual case of a region refinement pair RB [RB〈A,�〉], we can see that the depen-
dency is the other way around, since for the pixels in RB〈A,�〉, A depends on B.
So it seems that the chosen nesting for the areas and dimensions determines two
incompatible dependencies among the dimensions. However, there is a straight-
forward way to reconcile these different refinement pairs by refining the region
RA〈B,�〉 to RA〈B,B〉 = RAB (or dually refining RB〈A,�〉 to RB〈A,A〉 = RAB).

2 Since regions are derived from the pixel types, such region pairs do not necessarily
occur in any particular geometric relationship. However, such region pairs typically
result from editor actions that create one choice area within another.
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A region refinement RA〈B,�〉 to RAB can be achieved by simply expanding
the right alternative of all A choices in the region’s pixels into idempotent B
choices, that is, by replacing A〈B〈x, y〉, z〉 with A〈B〈x, y〉, B〈z, z〉〉.3

We can then apply a similar region refinement to RA, turning it as well
into a region of type AB. This automatically merges the region refinement pair
RA[RA〈B,�〉] into one region RAB , and if we assume that the region is not nested
within another area, we can consider it together with the surrounding non-
variational pixels of type � as a new, bigger region refinement pair R�[RAB ].
Next we can refine (part of) the region R� to RB , leading to RB[RAB ]. We can
summarize the sequence of transformations as follows.

RA[RA〈B,�〉] � RA[RAB ] � RAB [RAB ] � RAB � R�[RAB ] � RB[RAB ]

We can perform a similar transformation for the region pair RB [RA〈B,�〉]:

RB [RA〈B,�〉] � RB[RAB ] � RAB [RAB ] � RAB � R�[RAB ] � RA[RAB ]

This shows that while we can’t turn RA[RA〈B,�〉] into RB[RA〈B,�〉] (or vice versa)
without removing information, we can invert the nesting of choices if we refine
the innermost region sufficiently.

Theorem 3. RA[RA〈B,�〉] �∗ RB[RAB ] and RB [RA〈B,�〉] �∗ RA[RAB ]

We consider an application of this theorem in the next section.

4 Maintenance of Variational Pictures

It is unrealistic to expect variational picture authors to know the precise and
final locations of variability they will need from the outset. This means that our
model of pictures should support changing areas of variability that have already
been defined.

Consider the park example from the Introduction. Suppose that, after cre-
ating the design shown, the architect is told that the Fountain area needs to
include pipes connecting from the water main. This means that the associated
area needs to not only grow, but grow such that the nesting order with the Trees
area is reversed. The final result can be seen in Fig. 2.

Fortunately, we have already seen in Sect. 3 that region refinement allows us
to change the nesting order without issue. We just need to transform the appro-
priate pixels by expanding them all with an outer Fountain choice. There are
three transformations to make, namely for those pixels originally non-variational
which are now contained in Fountain, those which were originally in Trees but
outside of Fountain, and those inside of Fountain. They are transformed as fol-
lows.

3 There are situations in which other transformations, such as A〈B〈x, y〉, B〈z, y〉〉 may
be more appropriate, but the point is that a region refinement is easy to achieve.
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Trees

Pavilion

Fountain

Fig. 2. The variational picture
after resizing the previously
nested Fountain area to contain
the Trees area, in order to depict
the connecting water pipes.

Fig. 3. A Variational Area Tree (VAT) that
showing an entire variational picture at
once. Here the VAT for the view decision
{Trees.l,Fountain.l,Pavilion.r} is shown.

x �→ Fountain〈x, x〉
Trees〈x, y〉 �→ Fountain〈Trees〈x, y〉,Trees〈x, y〉〉

Trees〈x,Fountain〈y, z〉〉 �→ Fountain〈Trees〈x, y〉,Trees〈x, z〉〉

Although we do not depict it here, we could similarly envision scenarios where
we want to shrink regions. The swapping works in exactly the opposite way
to expanding. The only difference is we must remove part of the variability by
performing a selection of the dimension that we are shrinking. Since we need to
choose one alternative or the other to select, we defer to the value of the view
decision. This gives the user control over the different possibilities.

5 Variational Area Trees

Although the described model of variational pictures is sufficiently flexible to
build variational pictures, so far we have limited ourselves to viewing a single
variant at a time. While this simplifies editing operations, there is still a need
to produce overviews to better understand and navigate the pictures, which
calls for a visual language with a graphical domain [3]. To this end, we present
variational area trees (VATs), a diagrammatic approach to viewing an entire
variational pictures simultaneously.

VATs show the currently selected variant in its entirety as a root node, and
then also all of the other possible selections as branches. Left and right alter-
natives are always connected via a dotted line and shown either to the left and
right of one another or above and below, in order to use space more efficiently
(we assume a reasonable layout algorithm). Dotted outlines show unselected
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variants and solid outlines indicate selected ones. A variational area tree for the
view decision {Trees.l,Fountain.l,Pavilion.r} the park example are shown in
Fig. 3.

VATs have a number of use cases. Obviously, they provide a concise overview
of an entire variational pictures including all of its variants. In addition, the
design of VATs has a number of useful properties.

(a) (b)

Fig. 4. Additional configurations of the park picture VAT. In (a) we see the view deci-
sion {Trees.r,Fountain.r,Pavilion.r}, and (b) shows the case after the commuting of
the Trees and Fountain regions for the view decision {Trees.l,Fountain.l,Pavilion.r}.

First, the total number of regions shown gives the total number of different
drawing areas and provides a clue to the variability of the picture. Second,
since unselected areas are never nested and thus all unselected areas are always
placed on the top level, counting all top-level unselected areas provides a concrete
measure of what is hidden in the current view. Third, the number of boundaries
that are crossed by a (horizontal or vertical) connector line indicates the nesting
level of that choice/variational area, and the types of the crossed boundaries
(unselected vs. selected) tell immediately what decisions have to be flipped (at
minimum) to make the area visible. Fourth, VATs illustrate nicely where in the
choice tree the current variant is located. For example, the VAT in Fig. 4(a) is
located rightmost/bottommost, which means that the right alternative must be
selected in all dimensions.

VATs can also serve as quick navigation tools. It is easy to conceive of an
interface in which a user can zoom out to a VAT and then change the selection
of arbitrary dimensions quickly. Finally, VATs could also support compound
operations or queries. For example, a picture creator may want to view the parts
of the picture that are not variational or all the areas affected by a particular
dimension. These kinds of operations could be supported by a simple filtering
operation on VATs. Figure 4 demonstrates some additional examples for different
selections and after expanding the Fountain region as done in Sect. 4.



Variational Pictures 69

6 Related Work

Although there are a large number of potential applications for variational pic-
tures, the research in this area is limited in scope. There are many tools design
to offer digital image version control and asset management, although most are
proprietary and do not describe their specific model. Examples of these include
Adobe Drive and AutoDesk Vault. Some more general version control tools offer
support for image diff operations including Perforce and Git via services such as
Github.

This topic also emerges in the field of information visualization, Heer et al. [4]
performed a large survey of graphical history tools from the context of informa-
tion visualization and exploratory analysis which covers this topic well beyond
the scope of our work. Chen et al. [5] proposed a graph-based revision control
system for images. Being based on graphs, it focuses on paths of editing opera-
tions rather than pixels or image objects, and challenges such as diff and merge
are solved with graph operations. They also offer support for selective undo and
“nonlinear exploration”, in which the user can adjust parameters to operations
that have already been performed. Gleicher et al. [6] demonstrated compara-
tive visualization as a fundamental idea, which can be viewed as an application
of variability to pictures within the scope of information visualization. To our
knowledge, none of this work describes a general variability-aware model either.

Another related body of work is on model difference techniques. Kolovos et
al. [7] includes an overview of the topic. Specific examples include Ohst et al. [8]
who described an approach to model difference in UML and Cicchetti et al. [9]
who showed a technique for representing differences between models independent
of the metamodel. As models are generally expressed using graphs, none of this
work describes a pixel-based approach.

Terry and Mynatt proposed Side Views [10] for previewing commands such as
image rotation and coordinate transformations, which makes use of variational
pictures but does not model them explicitly. Terry et al. [11] expanded on this by
managing variations more explicitly. Their tool, Parallel Paths, allows operations
to be applied to individual picture variants or groups of them and also tracks
history to navigate throughout their notion of a variational picture. That work is
primarily focused on a specific user interface, however, and not on a formal model
of variational pictures. Hartmann et al. [12] described an approach to creating
variational interactions and user interfaces based on editing linked source code
alternatives and parallel execution. Finally, Foo et al. [13] summarize existing
work and propose new ideas in the challenge of identifying similar (in the sense
of different resolutions, compression techniques, fragments, etc.) images. This
work focuses on identifying similar images rather than explicitly managing the
variability.

7 Conclusions and Future Work

In this work we have introduced the notion of a variational pictures and intro-
duced a formal model that captures their functionality and behavior based on
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the choice calculus. We have established several basic properties of the model
that support tools for editing and transforming variational pictures. The gen-
erality of the presented model (as reflected, for example, by the general types
Loc and T ) allows more specific models of variational pictures to be targeted at
specific application domains, which provides a rich area for future work.
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Abstract. Many visual languages based on node-link diagrams use edge
labels. We describe different strategies of placing edge labels in the con-
text of the layered approach to graph drawing and investigate ways of
encoding edge direction in labels. We also report on the results of exper-
iments conducted to investigate the effectiveness of the strategies.

1 Introduction

Visual programming languages based on node-link diagrams, such as Sequen-
tially Constructive Charts (SCCharts) [13] (a synchronous state charts dialect,
see Fig. 1), have become mainstream in several industries. Many share a number
of similarities: first, being based on a notion of either data flow (data is produced,
processed, and consumed by nodes and transmitted between them through links
or edges) or control flow (nodes represent states that can be active or not, with
transitions transferring control between them); second, deriving some of their
semantics through textual labels; and third, requiring users to spend a consid-
erable amount of time on laying out their diagrams [7] for them to properly
readable [9], giving rise to automatic layout algorithms [12].

A popular layout approach for flow-based diagrams is the layered approach
introduced by Sugiyama et al. [11], which tends to emphasize data or control
flow by making the majority of edges point in the same direction. The original
description of the layered approach did not mention edge labels. Not taking them
into account, however, will lead to layouts with too little space available for their
placement, resulting in overlaps with other diagram elements—something that
may well cause users to refrain from using automatic layout in the first place.
This paper is about making labels first-class citizens during automatic layout.

Due to its prevalence in flow-based diagrams, we will limit our discussions to
horizontal layout directions. While the question of how well-suited the methods
are to vertical layouts is interesting, it is outside the scope of this paper due to
space constraints.

Contributions. We show different ways of placing labels within the layered
approach, including the selection of layers to place labels in and the side of their
edge to place them on. We also investigate ways of encoding an edge’s direction
c© Springer International Publishing AG, part of Springer Nature 2018
P. Chapman et al. (Eds.): Diagrams 2018, LNAI 10871, pp. 71–78, 2018.
https://doi.org/10.1007/978-3-319-91376-6_10
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TrafficLight

input signal Error, Ok, Sec
signal Pgo, Pstop
output int Pgrn, Pred, Cgrn, Cred, Cyel

init

Pred
Pgreen

 / Pred = 1; Pgrn = 0

Pgo / Pred = 0; Pgrn = 1

Pstop / Pred = 1; Pgrn = 0

[-] PedestrianLight

Cinit Cred
Credyel Cgrn

Cyel/ Cred = 1; Cyel = 0; Cgrn = 0
3 Sec / Pstop; Cyel = 1 Sec / Cred = 0; Cyel = 0; Cgrn = 1 5 Sec / Cyel = 1; Cgrn = 0

Sec / Pgo; Cred = 1; Cyel = 0

[-] CarLight

Fig. 1. An SCChart laid out with the methods we propose in this paper. This drawing
uses a horizontal layout with edges routed as splines.

through label placement or additional decorations, intended to be of particular
help in use cases where only parts of a diagram can be displayed on screen.
We summarize results of a controlled experiment as to the effectiveness of the
proposed strategies.

Related Work. Label placement in general has a long history in cartography.
In a classic paper [4], Imhof lays down six principles for good map labeling,
which Kakoulis and Tollis [5] apply to edge labeling as the following three rules:

1. No overlaps between labels and other diagram elements.
2. It should be clear which diagram element a label belongs to. Imhof calls this

“clear graphic association”.
3. Among all acceptable positions, a label should be placed in the best possible.

Kakoulis and Tollis also provide a definition of the edge label placement problem,
which is about placing edge labels in diagrams whose elements have already been
placed. Existing algorithms, of which Kakoulis and Tollis provide an overview [12,
Chap. 15], usually either run the risk of violating rules 1 or 2 or may resort to
hiding or at least scaling down labels to avoid violations—both undesirable for
visual programming languages.

In this paper we consider label placement a part of automatic layout, thereby
ensuring that there will always be enough space available to satisfy rules 1 and
2. Klau and Mutzel [6] do this for the topology-shape-metrics approach to graph
drawing, although their results do not always seem to satisfy rule 2. The Graphviz
dot1 algorithm, an implementation of the layered approach, handles edge labels
by introducing dummy nodes [2], an approach we follow as well. However, they
do not describe any strategies regarding where edge labels end up with regard
to their edge. Castelló et al. [1] place labels on edges, which is also one of our
label placement strategies. However, they do not discuss graphical design con-
siderations and do not evaluate whether doing so may have a negative impact
on the ability of users to read the resulting drawing.

1 http://www.graphviz.org/.

http://www.graphviz.org/
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There have been more radical proposals, most notably by Wong et al. [15]
who replace an edge by its label. That approach would not work with long
edges or orthogonal edge routing, but our on-edge label placement strategy to
be introduced in Sect. 3 can be seen as a less extreme version of this technique.

Different methods have been proposed to indicate edge direction, such as
using curvature, or color and thickness gradients from an edge’s tail to its
head [3,16]. These will cease to work in use cases where users only see a small
part of a larger diagram and changes in such features are subtle. Animating
edges or rendering them as sequences of arrows [3], may work well, but increase
visual clutter and require the rendering of edges to be changed, which may be
impossible if it carries semantical meaning (as, for example, it does in LabVIEW
by National Instruments). Our methods do not require such design changes.

Outline. We describe label placement techniques in Sects. 2 and 3, respectively,
before introducing directional decorators in Sect. 4. We evaluate the techniques
in Sect. 5 and conclude in Sect. 6.

An extended version of this paper that includes detailed descriptions of the
experiments we report on is available as a technical report [10].

2 Layer Selection

The layered approach is split into five phases. Cycle breaking reverses edges in the
input graph to make the graph acyclic, to be restored again once the algorithm
has finished. Layer assignment partitions the set of nodes into a sequence of
layers such that edges only point to layers further down the sequence. Edges
that span multiple layers are broken by introducing dummy nodes such that
edges always connect nodes in adjacent layers. Crossing reduction orders the
nodes in each layer to reduce the number of edge crossings. Node placement
computes vertical node coordinates and thereby determines the height of the
diagram. Edge routing finally computes bend points for the edges according to
the preferred edge routing style. For flow-based diagrams, this will usually be
orthogonal edge routing or spline edge routing. The methods to be described in
this paper work with both.

The aim of integrating edge label placement into the layout algorithm is to
reserve enough space for the edge labels to be placed without overlaps and with
clear graphic association. Similar to Graphviz dot, we break each edge that has
labels by introducing a label dummy node to represent them. We compute the
size of the dummy node such that all edge labels fit into it, stacked upon each
other with a configurable amount of space between them, plus spacing to be left
between the labels and their edge. Once edge routing has finished, label dummies
are replaced by the labels they represent.

Label dummies need to be inserted before the layer assignment step to ensure
that each dummy is assigned to a layer (which might end up existing only because
of the label dummy). After layer assignment, we can move each label dummy to
a layer of our choice, if necessary. That choice is obvious if the edge is so short
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that there is only one layer to choose from. If the edge is longer, however—such
as the edge from cyel to cred in Fig. 1—we need a strategy that defines what
constitutes the best choice.

If the edge spans layers L1 through Ln, two simple strategies are obvious.
The median strategy places the label dummy in layer L�n/2�, while the end layer
strategy places it either in layer L1 (source layer strategy) or Ln (target layer
strategy).

The most appropriate strategy depends on the visual language. In SCCharts,
for example, edges represent transitions from a source to a target state that are
eligible to be taken based on some condition, which is part of each transition’s
label. If edge labels are placed using the median strategy, a user might have to
search a large area of an SCChart in order to understand a single transition. In
this case, the source layer strategy may be more helpful.

An optimization goal might be to assign labels to layers such that the draw-
ing’s width is minimized. While taking layer widths into account seems easy
enough, it is complicated by the fact that the widths may be changed by the
assignment itself. Finding good algorithms to solve this problem is the subject
of ongoing research and transcends the scope of this paper.

3 Label Side Selection

An edge label can be placed above, below, or even on the edge it belongs to, and
we can think of different strategies to make a decision.

3.1 Same-Side Strategy

The same-side strategy places all labels either above or below their edge, as
shown in Fig. 2a. The simplest strategy to implement, it may also be the easiest
for users to understand due to its consistency.

For clear graphic association to be achieved, it does require the spacing
between a label and its edge to be noticeably smaller than the spacing between
the label and other edges, in accordance with the Gestalt principle of perceptual
grouping [14]. Donald Norman would call this “knowledge in the world” [8] in
that users do not require further information to decipher the diagram.

If spacings are chosen badly, the same-side strategy can still work if the user is
aware of it. Norman, however, claims that such additional information required
to understand the world—what he calls “knowledge in the head”—should be
avoided when possible, making properly chosen spacings the preferred method.

3.2 Directional Strategy

The same-side strategy works well in terms of clear graphic association, but does
not encode the direction an edge is heading towards. Since a label may be far
removed from the end points of its edge (which, depending on the graph’s size
and the way it is displayed, may not even be on screen), any clue as to the edge
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e1

Label 1

Label 2

Label 3

e2

e3e4

e5

e6

a: Same-side strategy.

e1

Label 1

Label 2

Label 3

e2e3e4

e5

e6

b: Directional strategy.

Fig. 2. Two different label side selection strategies. Both place labels closer to their
edge than to other edges. Note that this is only an excerpt of a graph, which explains
the absence of edge arrows or nodes.

direction may help a user navigate the diagram. The directional strategy aims to
do just that by placing labels above edges running rightwards and below edges
running leftwards.

Figure 2b shows an example of this strategy in action. Knowing about this
placement method lets us deduce that e2 is headed rightwards while e4 and e5 are
going off to the left. If spacings are chosen well, this additional piece of knowledge
is not required for clear graphic association, but offers clues to advanced users of
a visual language who know about the convention. If spacings are chosen badly,
however, the directional strategy ceases to work due to the ambiguity it would
produce.

Of course, this strategy requires knowledge in the head, which we will improve
upon in Sect. 4.

3.3 On-Edge Strategy

We have thus far focused on placing labels next to their edge, which is the
standard edge labeling strategy in the vast majority of graphical modeling tools,
such as Papyrus (Eclipse Foundation) or Simulink (MathWorks). There is a case
to be made, however, for placing them on their edge.

When placing labels next to their edge, one of our main concerns has to be
clear graphic association. Wong et al. [15] respond to that challenge by replacing
the edge with its label. We will not follow their proposal, for several reasons.
First, for the approach to work without introducing distortion or very different
font sizes, the length of an edge would have to be a function of the text it
is labeled with—a prerequisite not compatible with the layered approach. And
second, the orthogonal edge routing style (or any routing style that employs
bend points, for that matter) would degrade label legibility even further.

On-edge label placement achieves optimal graphic association without com-
pletely replacing edges by their label. If the layout direction is horizontal, we
may also reduce the diagram’s height slightly because there is no edge-label
spacing anymore, and since each label sits on its edge the space between the
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Simple

Rectangle

Lined

Bracketed

Solid

Label

Label

Label

Label

Translucent

Label

Label

Label

Label

Fig. 3. Four examples on-edge label designs.

label and unrelated edges can be much smaller than it could otherwise. For on-
edge label placement to work, the graphical representation of edge labels has
to be designed accordingly. Labels must have either a solid background or at
least cause the background to be sufficiently faded for the edge not to interfere
with the text’s legibility. This requirement is easy to meet, and many designs
for on-edge labels are possible, which may even reflect different edge semantics.
Figure 3 shows four simple examples of on-edge label representations. Castelló
et al. [1] use a simple solid design when drawing statecharts, but do not discuss
their motivation for doing so. Interrupting the edge, however, may cause users
to have a harder time following it through the diagram.

4 Directional Decorators

The directional label side selection strategy had the advantage of encoding infor-
mation about the direction of an edge, but suffered from both potential graphic
association problems as well as knowledge in the head for its proper interpreta-
tion. An alternative is to communicate through the label’s design instead of its
placement. Figure 4 shows examples of on-edge labels decorated with an addi-
tional arrow which points towards the edge’s head. Such decorations work with
any label side selection strategy, thus allowing the same-side strategy to commu-
nicate the same amount of information as the directional strategy while being
slightly clearer in terms of graphic association.

Label LabelLabel Label

Fig. 4. Labels can be decorated with arrows to point at where the edge is heading.
While this example only shows on-edge labels, such decorations can of course also be
added to labels placed next to their edge.

An interesting problem concerns the implementation of directional decora-
tors. Whether the arrow should point leftwards or rightwards is subject to the
diagram’s layout, which implies that the viewing framework needs to support
changes to the visualization after automatic layout has run. How this can be
done depends on the viewing framework and is outside the scope of this paper.
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5 Evaluation

We conducted a controlled within-participants experiment with 48 participants
in order to answer two research questions (a detailed account of the experiment
is available in the expanded technical report [10]).

First, are users better at inferring edge directions with directional label place-
ment or with on-edge label placement with directional decorators? We showed
users random images with lines labeled using one of the two strategies, intended
to simulate seeing excerpts of larger diagrams. We found that they had a sig-
nificantly faster response time and significantly lower error rate with on-edge
labels.

Second, does on-edge label placement have a negative impact on the ability
of users to follow edges through a diagram? We showed users graphs that had
a start node highlighted and asked how many nodes were reachable from that
node in two steps. Among three conditions (same-side, directional, and on-edge)
we could not find significant differences in response time or error rate.

In a concluding interview we asked participants to rank four label placement
strategies (same-side, directional, on-edge without and with directional decora-
tors). The latter was ranked significantly higher than the other three strategies,
among which we did not find significant differences. The directional strategy was
often described as being confusing. Some participants mentioned that the value
of on-edge label placement with directional decorators increases with a diagram’s
size, noting that the additional arrows can add visual clutter to small diagrams.

6 Conclusion

We presented different placement strategies for placing edge labels in flow-based
diagrams. On-edge label placement yields clearest graphical association, and usu-
ally slightly smaller diagrams. With directional decorators added it was largely
preferred by users. Some did complain about the fact that on-edge labels inter-
rupt their edges, but we did not find significant performance differences in a task
that required participants to follow edges through a diagram.

Future Work. Some visual languages tend to produce rather long edge labels
that make the assignment of labels to layers a crucial influence on the width
of drawings. Finding a heuristic that yields assignments that produce smaller
drawings seems necessary.

Clear graphic association of on-edge labels may be impaired if labels span
multiple lines of text. This issue should be investigated further.
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Abstract. Kolam-designs are diagrams used to decorate the floor, espe-
cially in front of a house in South India. Methods of generation of the
kolam diagrams were developed based on two-dimensional picture gen-
erating models, broadly known as array grammars, introduced for the
description and analysis of picture patterns. Rewriting array P system,
a membrane computing model based on array rewriting has been devel-
oped to evolve picture arrays, based on context-free array rewriting rules.
In contrast to this array P system, another P system model called contex-
tual array P system (CAP) using contextual array rules for the evolution
or generation of picture arrays has been proposed and its power in gen-
erating picture arrays investigated. Here we develop an application of
CAP for the generation of the kolam diagrams. The advantage of using
CAP is that kolam diagrams that cannot be handled by array grammars
can be generated by the CAP model.

Keywords: Floor-designs · Kolam patterns · Array grammars
Array P system · Contextual array rules

1 Introduction

Kolam-designs are visually pleasing geometric diagrams that are drawn in the
ground mostly at the entrance of a home [1,5], with this age-old tradition being
more prevalent in South India. A kolam is generally drawn starting with a cer-
tain number of points arranged in a particular pattern, with curly lines being
drawn around these points, resulting in the intended “kolam” drawing. In fact
there are very intricate and complicated kolam patterns used by the kolam prac-
titioners. Motivated by these “kolam” floor-designs Siromoney et al. [8], in the
years 1972–74, proposed picture generating models, called array grammars, and
described a technique [8], referred to as Narasimhan’s method, for the generation
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of kolam patterns using these array grammars. Subsequently, several researchers
have developed a variety of picture-array models. These grammars make use of
two-dimensional extension of Chomsky type of string grammars or contextual
type of string grammars [7] in the area of formal languages. On the other hand a
bio-inspired computing model with a generic name of P system was introduced
by Paun [6] which has turned out to be a versatile model with applications in
different areas, with the area of picture array generation being one among these
application areas. Several P system models have been proposed for picture array
generation [2,9]. Based on contextual type array generating rules [4], an array P
system, called contextual array P system (CAP ) has been introduced in [3]. Here
we construct CAP for generation of kolam patterns that cannot be handled by
contextual array grammars [4] utilizing the technique of Narasimhan’s method
of kolam generation.

2 Preliminaries

We recall needed notions and related results [3,4]. A point p = (m,n) in the
two-dimensional digital plane with integer coordinates m,n, is identified with
a unit closed square and is called a pixel or cell. The pixels p1 = (m − 1, n),
p2 = (m + 1, n), p3 = (m,n − 1) and p4 = (m,n + 1), are neighbours of the
pixel p = (m,n). Now let V be a finite set of symbols, referred to as an alphabet
and # a symbol not belonging to V . A two-dimensional picture array (or simply
called an array) over V is a finite set of connected pixels labeled by the symbols
of V. It is sufficient for our purposes to give an array in pictorial form without
mentioning the coordinates of the pixels. Note that by connected picture array
we mean that every pixel labelled by a symbol of V has at least another labelled
pixel of the picture array as a neighbour. The symbol # is used as a label of a
pixel to indicate that it is empty i.e. it is not occupied by any label of V. When
specifying a picture array we can list the coordinates of the pixels of the array
with their labels in a formal manner but it is enough to specify the labels of the
pixels of the array. We denote the set of all non-empty connected finite picture
arrays over V by V ++. A subarray Y of an array X is a connected part of X.
As an illustration, the picture array in Fig. 1(A) with each pixel having label a,
denotes a digitized form of the letter H while in Fig. 1(B), a labelled square array
is shown with d1, d2, f1, f2, pv, d being the labels of the pixels. A “kolam” pattern
can be thought of as a picture array in the two-dimensional plane as described in
[5] with the cells of the picture array labelled by primitive “kolam” patterns [5],
a list of which as shown in Fig. 2 and an example “kolam” is shown in Fig. 3. We
note that based on the “Narasimhan’s method” of “kolam” generation described
in [8], a “kolam” pattern, which is composed of primitive “kolam” patterns, can
be transformed into a picture array over the symbols of the primitive patterns
and conversely. As an example, the picture array in Fig. 1(B) corresponds to
the “kolam” in Fig. 3. Nagata and Robinson [5] propose an interesting view of a
“kolam” as being composed of primitive kolam patterns, a partial list of which
is given in Fig. 2.
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a a
a a
a a
a a a a a a a a
a a
a a
a a

(A)

d1 d1 d1 d1 d1
f1 d d d f2
pv pv pv pv pv
f1 d d d f2
d2 d2 d2 d2 d2

(B)

Fig. 1. (A) An array representing the letter H; (B) a square array

Fig. 2. Kolam primitive patterns. Fig. 3. A kolam pattern.

3 Contextual Array P System and “Kolam” Pattern
Generation

In [3], contextual array P system is considered and several theoretical properties
of this system are established. We first illustrate the manner of application of a
rule of a contextual array grammar (CAG) [4] and then recall contextual array
P system [3]. In a contextual array grammar (CAG) rule of the form r : (α, β),
the arrays α and β are referred to as “selector” and “context” respectively.
We restrict ourselves to the case with the “selector” and the “context” in the
contextual array grammar rule not having empty pixels i.e. the “selector” and
the “context” are connected and labeled only by symbols from an alphabet V
and not by the blank symbol #. For arrays X,Y ∈ V ++ where V is the alphabet,
intuitively, if in X, we find a subarray that corresponds to the selector α, and if
the places (i.e. unit squares in the two-dimensional plane) corresponding to β are
labeled only by the blank symbol #, then we can add the context β to α, thus
deriving an array M and we write X =⇒G M. If an array Z is obtained from
an array X, by a sequence of such steps, we write X =⇒∗

G Z. A maximal mode
or t-mode of derivation, denoted =⇒t

G corresponds to collecting only the arrays
produced by blocked derivations, namely, derivations which cannot be continued.
For a formal definition of CAG we refer to [4]. In the ∗-mode of derivation, all
picture arrays derivable from an axiom are taken in the picture language (also
called, array language) generated by G while in the t-mode of derivation, all
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picture arrays produced by blocked derivations constitute the picture language.
We give an example of a contextual array grammar working in t-mode generating
the array language L1 consisting of all picture arrays which are squares of side
lengths 2n + 3, n ≥ 1, with the label pixels of the picture arrays belonging to V.
In such a picture array of L1, the first row is of the form d2n+3

1 , the last row is of
the form d2n+3

2 and every two adjacent rows starting from the second row are of
the form f1d

2n+1f2 and p2n+3
v respectively. A 5 × 5 picture array of L1 is shown

in Fig. 1(B) and represents the “kolam” in Fig. 3. We consider a contextual array
grammar G with an axiom picture array A1, which is given in pictorial form:

A1 :=
f1
d2 d2

The contextual array rules of G are given by the following pictorial

forms where the pixels and symbols of the selector are indicated by enclosing
them in boxes. In other words the rules pi(1 ≤ i ≤ 17) are given as follows:

p1 :=

p

f1 d d

d2 d2

, p2 :=
d

p p p

d d

, p3 :=
p

d d d
p p

, p4 :=
d1

d d f2
p p

, p5 :=
d1 d1

d f2

p6 :=
f1 d
p p

f1

, p7 :=
p p

f1 d
, p8 :=

d d
p p

d

, p9 :=
p p

d d
, p10 :=

d1 d1

f1 d
,

p11 :=
d1 d1

d d
, p12 :=

d d

d2 d2
, p13 :=

d
p p

d d

, p14 :=
d

p p

p p

, p15 :=
d f2

d2 d2
,

p16 :=
f2

p p

d f2

, p17 :=
d f2
p p

A maximal (that is, t-mode) derivation in G generating a 5 × 5 pic-
ture array of the language L1 is done by the application of the rules
p1, p2, p4, p5, p7, p8, p6, p11, p11, p10, p12, f13, p17, p16, p12, p15 in this order. The

first two steps of the derivation are shown below:
f1
d2 d2

=⇒p1

p
f1 d d
d2 d2

=⇒p2

d
p p p

f1 d d
d2 d2

It can be seen that the contextual array grammar rules of G generate

the picture language L1. In an array M of L1 if we replace each of the symbols
by the corresponding primitive “kolam” pattern as in Fig. 2, then we obtain the
“kolam” itself. For example the rectangular array in Fig. 1(B) yields the “kolam”
in Fig. 3, when the symbols are substituted in this manner.
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Informally expressed, the basic model of a rewriting array P system has a
membrane structure μ of a P system with m membranes, denoted by a well-
formed expression of parentheses over the alphabet of left and right parentheses
[i and ]i, 1 ≤ i ≤ m. For example, [1 [2 ]2 [3 ]3 ]1 means that membrane 1 is the
outermost membrane (also called skin membrane), which contains membranes 2
and 3. The membranes (also called regions) have arrays as objects and rewriting
rules as evolution rules, which can be applied to the objects. The application of a
rule at the level of a membrane is sequential but the objects in all the membranes
are rewritten in a maximal parallel way in the sense that all objects that can
be rewritten in the membranes should be rewritten. There is a target indication
here, in or out associated with every rule. The evolved array in a membrane is
retained in the same membrane if the target is here and sent to an immediately
inner membrane or outer membrane according as the target is in or out.

We now recall contextual array P system that has in its membranes, picture
array objects and contextual array rules as in a contextual array grammar [4].

Definition 1 [3]. A contextual array P system with m ≥ 1 membranes is a
construct Π = (V,#, μ,X1, . . . , Xm, R1, . . . , Rm, io), where V is the alphabet; #
is the blank symbol; μ is a membrane structure with m membranes or regions,
labeled by 1, . . . ,m, in a one-to-one manner; X1, . . . , Xm are finite sets of arrays
over V associated with the m regions of μ; R1, . . . , Rm are finite sets of contextual
array rules over V associated with the m regions of μ; the rules have attached
targets here, out, in, or inj, 1 ≤ j ≤ m; io is the label of a membrane called
output membrane, wherein the results of successful computations are collected.

A computation step in a contextual array P system is done as follows: for each
array A in each region of the system, if a contextual array production p in the
region can be applied to A, then it should be applied which means that the
application of a rule is sequential at the level of arrays, but maximally parallel
at the level of the whole system. If more than one rule is applicable at the same
time, then one is chosen in a nondeterministic way. The resulting array, if any,
is placed in the region indicated by the target associated with the rule having
been applied with interpreting the attached target as follows: here means that
the array remains in the same region, out means that the array exits the current
membrane and is placed in the immediately outer membrane if one exists (we do
not allow the target out to be used by a rule assigned to the skin membrane), inj

means that the array is immediately sent to the directly inner membrane with
label j, and in means that the array is immediately sent to one of the directly
inner membranes, chosen in a nondeterministic way if several such membranes
exist (if no inner membrane exists, then a rule with the target indication in
cannot be used). A computation is called successful if and only if it halts, which
means that a configuration has been reached where no rule can be applied to
the existing arrays. The result of a halting computation consists of the arrays
collected in the membrane with label io in the halting configuration.

A variant of contextual array P system is considered in [10]. In this variant,
instead of a sequential application of a contextual array grammar rule, a set of
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Fig. 4. P system “kolam”.

d1
d3 d d4

pv
d1 pv d1

d3 d ph ph d ph ph d d4
d2 pv d2

pv
d3 d d4

d2

Fig. 5. Array representing P system
“kolam”.

rules in a membrane with the same target is applied in parallel. The resulting
array P system is called Parallel contextual array P system (PCAP ). It has been
shown in [10], that the advantage of this kind of a PCAP system is that the
number of membranes required in the construction of such systems in generating
picture languages, is reduced in comparison with the sequential CAP .

3.1 “Kolam” Generation Using PCAP

We now make use of PCAP in generating “Kolam” patterns. We consider
the kind of “kolam” shown in Fig. 4. This kind of a kolam can be repre-
sented by an array as shown in Fig. 5. We consider the picture language L2

whose elements are picture arrays, one member of which is shown in Fig. 5.
In fact in an array in L2, the middle vertical column is a word of the form
d1(dpvpv)n−1d(pvpvd)n−1d2, n ≥ 1 but written vertically while every symbol d
in this column except the central symbol d has the symbol d3 to its immediate
left and the symbol d4 to its immediate right. Also, the middle horizontal row
is a word of the form d3(dphph)n−1d(phphd)n−1d4, n ≥ 1 while every symbol d
in this row except the central symbol d has the symbol d1 immediately above
it and the symbol d2 immediately below it. The picture language L2 is gener-
ated by a PCAP Π with a membrane structure [1 [2 ]2 ]1 as in Fig. 6. The region
labelled 1 has an axiom array d while the region 2 has no array inside it initially.
The region 2 is the output membrane where the picture arrays generated are
collected which constitute the arrays in L2. Region 1 has four rules r1, r2, r3, r4

Fig. 6. Membrane structure
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with target here and another four rules r5, r6, r7, r8 with target in while region
2 has no rules. The rules are given below:

r1 :=

d3 d d4

pv
pv
d

, r2 :=
d1
d ph ph d
d2

, r3 :=

d
pv
pv

d3 d d4

, r4 :=
d1

d ph ph d
d2

r5 :=
d1
d

, r6 := d3 d , r7 := d
d2

, r8 := d d4

The generation of an array in L2 as in Fig. 5 in the PCAP Π takes place as
follows: Starting with the axiom array d in region 1, the rules r1, r2, r3, r4 are
applied in parallel generating the array

d3 d d4

pv
d1 pv d1
d ph ph d ph ph d
d2 pv d2

pv
d3 d d4

.

The array remains in region 1 as the target indication of the rules r1, r2, r3, r4
is here. The process can be repeated. When the rules r5, r6, r7, r8 are applied in
parallel, then the array generated is sent to region 2, due to the target in in the
rules r5, r6, r7, r8. Since region 2 is the output membrane and does not contain
any rule, the array is collected in the picture language L2.

In every array in L2 if we replace as in Narasimhan’s method [8], the label (or
symbol) of every pixel by the corresponding primitive “kolam” pattern from the
list in Fig. 2, then we obtain a “kolam” which will be an enlarged version of the
“kolam” in Fig. 4. In fact when the rules r1, r2, r3, r4 are applied in parallel once
and the rules r5, r6, r7, r8 are then applied once in parallel, the array generated
is as in Fig. 5. The “kolam” derived from this array by Narasimhan’s method is
indeed the “kolam” shown in Fig. 4.

We have shown that a class of “kolams”, an example of which is shown
in Fig. 4, can be generated by the P system, namely, parallel contextual array
P system (PCAP ) [10]. It can be shown that the same “kolam” class can be
generated by a contextual array P system (CAP ) [3] but it will require more
number of membranes while the PCAP considered requires only two membranes
and thus is a simpler model for “kolam” generation. But a PCAP with one
membrane is not enough to generate this “kolam” class as the rules can have the
only target here and so the rules r1 to r8 need not be applied in the combination
of rules mentioned earlier, namely, r1, r2, r3, r4 together and r5, r6, r7, r8 together
in parallel. But then the number of pixels in the vertical middle column in Fig. 4
above and below the central symbol d as well as in the horizontal middle row in
Fig. 4, in the right and left of the central d, need not be the same.
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4 Concluding Remarks

We have considered the problem of generation of kolam-designs, in the framework
of the computability model of P system. The intricate kolam designs are very
good examples of visual expressions of creative thought [1] and can be considered
as diagrams that could be classified under “art” in a very broad sense. The
contextual array P (CAP ) system model considered here makes use of certain
kinds of rules of object generation, thus providing a novel approach to handle
such kolam designs. It will be of interest to consider more complex “kolam”
patterns and examine the ability of the contextual array P system in handling
such patterns.
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Abstract. A knot diagram looks like a two-dimensional drawing of a
knotted rubberband. Proving that a given knot diagram can be untangled
(that is, is a trivial knot, called an unknot) is one of the most famous
problems of knot theory. For a small knot diagram, one can try to find
a sequence of untangling moves explicitly, but for a larger knot diagram
producing such a proof is difficult, and the produced proofs are hard
to inspect and understand. Advanced approaches use algebra, with an
advantage that since the proofs are algebraic, a computer can be used
to produce the proofs, and, therefore, a proof can be produced even
for large knot diagrams. However, such produced proofs are not easy to
read and, for larger diagrams, not likely to be human readable at all.
We propose a new approach combining advantages of these: the proofs
are algebraic and can be produced by a computer, whilst each part of
the proof can be represented as a reasonably small knot-like diagram
(a new representation as a labeled tangle diagram), which can be easily
inspected by a human for the purposes of checking the proof and finding
out interesting facts about the knot diagram.

1 Introduction

A knot diagram looks like a two-dimensional drawing of a knotted rubberband. In
the simplest case, consider a knot diagram (or a rubberband) without crossings
(e.g. see the lower right diagram in Fig. 1); this knot diagram is known as the
trivial knot or unknot. For this and other basic concepts of knot theory, see any
of the textbooks [1,9,10,12,13,16]. A knot diagram which looks knotted may be
really knotted, or it may be then the unknot in disguise, with the diagram (think
rubberband) being able to be untangled by gently pulling some of its parts in
some order, until the diagram does not have any crossings (at which point it is
obvious that it is a trivial knot). An example of a sequence of such untangling
steps is shown in Fig. 1; intuitively these correspond to moving a rubberband in
the 3-dimensional Euclidean space without cutting it.
c© Springer International Publishing AG, part of Springer Nature 2018
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Fig. 1. An example of a step-by-step untangling of a diagram of a trivial knot.

The problem of deciding whether a given knot diagram can be untangled
(that is, is a trivial knot) is one of the most famous problems of knot theory. It
is an interesting problem, having attracted diverse approaches from a number of
different areas of mathematics, whilst having an immediate aesthetic appeal.

The immediate, naive approach to the problem is trying to find a sequence of
untangling moves explicitly; then the process of untangling can be represented
as a sequence of diagrams (as in Fig. 1). For small knot diagrams this can be a
preferred method, but for larger knot diagrams producing such proofs is difficult
[2], and the produced proof becomes hard to inspect (as you can see, even the
relatively small proof in Fig. 1 has some steps that are not so easy to follow).

A number of more advanced approaches are based on using algebra. Some of
these approaches are based on denoting each arc (that is, a continuous unbroken
line segment of the diagram) by a letter, as shown in the example in Fig. 2,
and then proving that all these letters are equal to each other in a certain
algebra. Some of the authors’ previous research concentrated on such methods
of untangling [4,5,11], and this paper presents a new twist in this research. (For
completeness, note that not all algebraic approaches to untangling are based on
labelling arcs; see [3], for example.)

a cf d e

g

b

Fig. 2. A labelled knot diagram

e

b

g

d

a

c

c

f

Fig. 3. A labelled tangle diagram

The advantage of such an approach is that since proofs are purely algebraic,
a computer can be used to produce the proofs, and, therefore, a proof can be
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produced even for a large knot diagram. However, the produced proof, consisting
of long chains of abstract equalities, is not easy to read and, for larger diagrams,
is not human readable at all. For example, here is a proof showing that the
diagram in Fig. 2 is a trivial knot (adapted from [19]):

“bc = ca = gc, hence, b = g; bf = fc = df , hence, b = d; gg = gb = gd = eg,
hence, g = e; dg = fd = fb = fg, hence, d = f ; cf = fd = dg = db = dd = df ,
hence, c = d; ab = ad = ac = cb, hence, a = c.”

In this paper, we propose a new approach, which combines the advantages
of the above approaches. Our proofs are produced algebraically (and can be
produced by a computer), as in the example above, but they are produced in
such a way that the proof of the equality of each two letters (say, a and b) can be
represented as a reasonably small knot-like diagram (with two free ends, labelled
a and b), which can be easily inspected by a human for the purposes of checking
the proof and finding out interesting facts about the knot diagram. For instance,
instead of reading the proofs of b = g, b = d and g = e above, one can inspect
the diagram in Fig. 3; we shall revisit this example in Sect. 4.

The following sections explain how such labelled tangle diagrams are related
to the knot diagram, and why the existence of certain labelled tangle diagrams
proves that a knot diagram represents the trivial knot.

Since this research involves considering many types of diagrams, it may be
useful to highlight how different diagrams are used for different purposes in this
paper.

– There are knot diagrams, such as in Fig. 2.
– There are tangle diagrams with two free ends, such as in Fig. 3; the existence

of certain tangle diagrams with two free ends (such as, for example, in Figs. 11,
12, 13, 14, 15 and 16) proves that the knot diagram is the trivial knot.

– We have proved Theorem 3 which establishes a connection between knot dia-
grams and tangle diagrams by considering certain more complicated dia-
grams, which look like tangle diagrams with one special strand which we
call a virtual ruler; see Sect. 3.

– In practice, finding suitable tangle diagrams with two free ends involves con-
sidering other tangle diagrams (not only with two free ends), as described in
Sects. 5 and 6.

2 Groups Induced by a Knot Diagram

This section presents definitions, together with an expanded and corrected expo-
sition of Fact 1 and the subsequent discussion in [11].

By an arc we mean a continuous line in a knot diagram from one undercross-
ing to another undercrossing. For example, consider the knot diagram in Fig. 2;
it has seven arcs, denoted by a, b, . . . , g.

For a given knot diagram D, the π-orbifold group OD of the knot is a group
generated by the arc letters with the following relations. For each arc x of the
diagram D, introduce a relation x2 = 1. At every crossing where x and z are the
two arcs terminating at the crossing and y is the arc passing over the crossing,



92 A. Fish et al.

introduce a defining relation xy = yz (or, equivalently, yx = zy, or yxy = z, or
yzy = x). Let A denote the generating set of OD (i.e. the set of labels of the arcs
of D), and consider the natural homomorphism from the free semigroup A+ onto
OD. It is easy to see that, for each element g of OD, either only words of an odd
length are mapped to g or only words of an even length are mapped to g under
the homomorphism. Accordingly, let us say that g is an element of odd (even)
length in the former (latter) case. A subgroup of OD consisting of the set of all
elements of even length is called the fundamental group of the 2-fold branched
cyclic cover space of a knot [15,20]; we shorten this name to the two-fold group
of a knot, and denote the group by TD.

Another well-known algebraic construction associated with a knot diagram
d is its knot group, which we denote by GD. This is historically the first and the
best known construction (see, for example, Sect. 6.11 in [6] or Chap. 11 in [10]).
We do not need to define GD here, but we note that OD is a factor-group of
GD produced from GD by introducing the additional relations x2 = 1 for each
arc x.

Trivial knots can be characterised via certain algebraic constructions associ-
ated with them.

Theorem 1. The following are equivalent:

– A knot diagram D is a diagram of the trivial knot.
– The two-fold group TD is trivial [15,20]. In other words, for each pair of arc

labels x and y, we have x = y in the two-fold group of the knot.
– The group GD is infinite cyclic [1]. In other words, for each pair of arc labels

x and y, we have x = y in the knot group.

Since the π-orbifold group OD is ‘sandwiched’ between the two-fold group of the
knot TD and the group of the knot GD, the following conclusion can be made
concerning π-orbifold groups.

Corollary 1. A knot diagram D is a diagram of the trivial knot if and only if
its π-orbifold group OD is the two-element cyclic group. In other words, D is a
diagram of the trivial knot if and only if for each pair of arc labels x and y, we
have x = y in OD.

The rest of the theoretical discussion in the paper concentrates on discussing
how one can prove, for any two given arc labels x and y, that x = y in the
π-orbifold group of the knot.

3 Reading Tangles

Tangle diagrams have been used for untangling knot diagrams; see, for example,
[8]; in this paper we introduce a completely new way of using tangles to untangle
knot diagrams. In this section, we develop the theory of reading tangles. This
takes the form of flexible rulers, called virtual rulers, each of which gives rise to a
word in the π-orbifold group. Then, the passing of such a ruler through a tangle
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Fig. 4. An example of passing a virtual ruler over a tangle diagram to produce a proof.
Reading the words induced by the rulers starting in the top row from left to right,
followed by the bottom row gives rise to the proof: a = cca = cbc = cdb = ccd = d.

diagram corresponds to a proof in the group. We first provide some examples to
illustrate the core idea, before moving into the theoretical developments ensuring
that the intuitive use of these tangle diagrams and virtual rulers is well-founded.

Figure 4 shows an example of passing a virtual ruler (the line across the
tangle, from left to right, with meeting points of the ruler and the diagram
accentuated with dots) over a tangle diagram to produce a proof. The tangle
diagram has its arcs labeled, and the labels on the ruler concatenate the labels
encountered as it passes through the tangle, starting with 1 on the left hand
side of the ruler playing the role of the empty word. The tangle diagrams in all
six cases in Fig. 4 are the same and the rulers differ in a specific way (details
to follow). We obtain a proof consisting of equalities of the words from each of
the six cases. In this example, reading the words induced by the rulers starting
in the top row from left to right, followed by the bottom row gives rise to the
proof: a = cca = cbc = cdb = ccd = d.
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Later on, we will see that each step between diagrams can be viewed precisely
as a certain type of move, called a TR2 or a TR3 move (these will be defined
soon), and we will use this characterization to ensure the equalities we claim
in the proof are correct. Alternate choices of application of the TR2 and TR3

moves can give rise to different proofs, as demonstrated in Fig. 5. The first four
diagrams and rulers in the sequences are the same in Figs. 4 and 5, but the
fifth is different, effectively by applying a different TR3 move to the fourth
diagram in the sequence. From Fig. 5, we obtain the slightly different proof:
a = cca = cbc = cdb = dbb = d.

Fig. 5. A different proof obtained by applying a different TR3 move to the 4th diagram
in the sequence in Fig. 4. We obtain the proof: a = cca = cbc = cdb = dbb = d.

3.1 The Theory of Reading Tangles

A tangle diagram T is like a knot diagram, except that its arcs may have free ends
(commonly arranged at the top and bottom of a bounding box of the diagram –
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this is not essential, as can be seen from some examples in the rest of the paper,
but we adopt this convention here to make the exposition more straightforward).
The arcs are labeled by elements of the group. For our construction, we require
that each labeled crossing matches exactly with one of the labeled crossings of
the original knot diagram.

Figure 6 shows an example of a tangle diagram with one free end at the top
and one at the bottom. This is the tangle considered in Figs. 4 and 5. In this
paper, we only need to consider tangles with one free end at top and bottom, but
the concept generalizes, as does the theory of reading tangles developed here.

Fig. 6. The tangle diagram which is used in all cases of the Figs. 4 and 5 – the additional
part of those figures that changed was the virtual ruler.

Definition 1. A virtual ruler v for T is an additional strand with one free
end at the left and one at the right of T , which only meets T transversely at
points that are not classical crossings.

This means that the ruler can be viewed as a line drawn through a tangle
diagram from the left to the right of the tangle, which crosses the tangle diagram
properly (so no tangential meetings or concurrency of line segments) and does
not pass through any already existing classical crossing of the tangle diagram.
The meeting points between tangle diagram and the ruler are clearly indicated
via blobs (which may be called virtual crossings).

Definition 2. Let T be tangle diagram and v a virtual ruler for T . Then the arcs
of v have labels in the group induced from T by assigning the identity (denoted
by 1 here) to the leftmost free arc of v, and concatenating the labels on the arcs
of T that v crosses as one traverses the virtual ruler from left to right. The word
w obtained as the label on the rightmost free end of v is the interpretation of
v in T .
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The arcs of v end at the blobs. Here, since we are considering a group we
made use of the identity as the leftmost label of the ruler (whilst the empty word
ε can be used here for the more general setting).

In Fig. 7, we present moves of virtual rulers over tangles (the definition fol-
lows). These will be precisely the moves of virtual rulers and tangles that encap-
sulate equivalence (see Theorem 2).

Fig. 7. The TR-moves, indicating permissible moves of a virtual ruler over a tangle.

Definition 3. Let T be tangle diagram and v a virtual ruler for T . Define two
moves of a virtual ruler over T , denoted TR2 and TR3, as shown in Fig. 7. For
TR2, the w1 and w2 are words on the labels of the arcs of the virtual ruler shown;
the case in which either (or both) of w1 and w2 are empty is also permitted (if
the left or right virtual crossing shown, respectively, is not present). For TR3,
the analogous move with a different classical crossing, shown in Fig. 8 is also
permitted.

Theorem 2. Given any two virtual rulers v1 and v2 for T , the interpretation
of v1 in T and the interpretation of v2 in T are equal in OD.

Proof. In the same way that one can pass a strand of a knot diagram over the rest
of the diagram by repeated application of Reidemeister moves R2 and R3, one
can pass a virtual ruler over T by the repeated application of the TR2 and TR3

moves. We see that each of these moves induces an equality in OD by precisely
the application of one of the defining relations. For TR2, it is the application
of the relation a2 = 1, with a a generator. For TR3 it is the relation ab = ca,
obtained from the labeled crossing in T , which by construction occurred in OD
(see the matching crossing which is the second on the left in Fig. 10).
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Fig. 8. An analogous T3 move (we do not distinguish in naming convention).

Lemma 1. The rules TR2 and TR3 are sufficient to pass a virtual ruler over a
tangle.

Proof. Consider the stepwise process of moving a virtual ruler over a fixed tangle
by moving segments down the tangle from the top to the bottom. By segment
here we refer to a connected part of the virtual ruler, not necessarily starting or
ending at virtual crossings, which contains at most two virtual crossings. Any
such segment considered contains 0, 1 or 2 virtual crossings. In the case of 0
virtual crossings, only TR2 can be applied (see top row of Fig. 9). In the case of
2 virtual crossings, either we are in the case where TR3 can be directly applied
(if there is a Δ with the two virtual crossings and a classical crossing at the
corners and there are no other strands meeting the Δ, as in the middle row of
Fig. 9), or not. If not, then consider a segment containing only one of the strands
meeting the virtual ruler at one of these two virtual crossings, reducing to the
case of 1 virtual crossing. In this case, apply a nearby TR2 move, which enables
the subsequent application of a TR3-move (see bottom row of Fig. 9). Any TR3-
move applied reduces the number of classical crossings remaining to pass over.
The process terminates.

Recall that a proof in OD is a sequence of equalities of elements of OD such
that each consecutive element differs by the application of one of the relators in
OD.

Proposition 1. Let T be a tangle diagram, and let v1, . . . , vk be a sequence of
virtual rulers for T , with interpretations i(v1), . . . , i(vk). Then:

1. The sequence of equalities i(v1) = . . . = i(vk) holds in OD.

2. If, in addition, for each j ∈ {1, . . . , k − 1} we have that vj differs from vj+1

by a TR move (either TR2 or TR3), then the sequence of equalities i(v1) =
. . . = i(vk) is a proof in OD.

Proof. The first part follows from Theorem 2, whilst the second part follows from
the observation in the proof of Theorem2 about the matching of the TR moves
with the relators.
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Fig. 9. The process of moving a virtual ruler over a tangle.

Corollary 2. There exist different proofs obtained from one fixed T correspond-
ing to different sequences of virtual rulers over T .

Proof. See Figs. 4 and 5.

Fig. 10. Relations, from left to right: ac = ba, ab = ca, ba = ac, ca = ab.

4 Untangling: The Main Result and an Example

The theory we developed gives us a practical method for proving that a knot
diagram is a diagram of the trivial knot by drawing certain tangle diagrams.

Theorem 3. A knot diagram D (with unique labels) represents the trivial knot
if and only if for each pair of its labels a, b there is a labelled tangle diagram T
which has exactly two free-end arcs labelled a and b, with the property that each
crossing in T is labelled in the same way as some crossing in D.

Proof. The ‘if’ direction follows directly from Corollary 1 and Theorem 2. The
‘only if’ direction follows from the fact that every derivation of an equality of
two letters x = y in OD naturally induces a tangle diagram with two free ends
x and y, with relations of OD being transformed into crossings as in Fig. 10.
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We present a small example, produced manually. In the next section we report
on our progress with building tangle diagrams using the computer.

Example 1. The knot diagram in Fig. 2 represents the trivial knot.

The proof splits into several lemmas, each demonstrating that two arc labels
(that is, two generators of OD) are equal. The lemmas and their proofs are
presented in Figs. 11, 12, 13, 14, 15 and 16; note that these diagrams are not
illustrations of proofs, but actual proofs: that is, the existence of a diagram
presented in Fig. 11 is, according to Theorem 3, a proof that b = g, and so on.
For brevity of presentation, in some of the lemmas, a rectangle marked i is used
as shorthand, meaning that the diagram from Lemma i should be substituted
for this rectangle. This convention enables us to make diagrams more compact.
As an example of the use of rectangles, compare the diagram in the lemma in
Fig. 13 with the equivalent diagram in Fig. 3, which presents the same step in the
proof. Whilst the equalities are immediate from the earlier results, the interested
reader can also directly compare the equalities read off from each tangle diagram
as one traverses from one free end to the other (e.g. from b to g in Fig. 13) and
compare with the algebraic proof presented earlier (e.g. “bc = ca = gc, hence,
b = g”).

b
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a g

Fig. 11. b = g
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c d
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Fig. 16. a = c
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5 Manipulating Tangle Diagrams with the Computer

One can observe that the tangle diagrams in proofs (for example, like those in
Fig. 3) may be assembled from copies of individual crossings of the original knot
diagram by applying steps of the following two types:

– Given a labelled tangle diagram which has, among its end arcs, two adjacent
end arcs labelled with the same letter, connect these two arcs.

– Given two labelled tangle diagrams T and U such that both T and U have
an end arc labelled with the same letter, connect these two arcs.

To do this using the computer, instead of tangle diagrams themselves, we
consider words which one can read on end arcs around a tangle diagram (clock-
wise or anticlockwise, starting from any point outside the diagram). To start
with, we list all words which one can read around individual crossings of the
knot diagram such as, for example, acbc around the top crossing of the diagram
on Fig. 2 (for the top crossing walking in a small circle around the crossing meet
four arcs and the labels are recorded in the order the arcs are met). Whenever we
have a word a1a2 . . . an−1an, we also produce the word a2 . . . an−1ana1 (which is
a cyclic shift of the original word, corresponding graphically to starting reading
from a different point outside the diagram) and the word anan−1 . . . a2a1 (which
is the original word inverted, corresponding graphically to reading around the
tangle in the opposite direction)1. In addition to these two ‘trivial’ ways of pro-
ducing new words, we have two more, corresponding to the graphical moves
above. Whenever we have a word a1a2a3 . . . an and a1 = a2, we produce the
word a3 . . . an (which corresponds to connecting two adjacent arcs with identical
labels). Whenever we have two words a1a2 . . . an and b1b2 . . . bn and a1 = b1, we
produce the word a2 . . . anb2 . . . bn (which corresponds to connecting two tangle
diagrams)2.

1 In the implementation presented in Sect. 6 we did not use word reversion because,
although reversing a word may make a proof shorter, it is not easy to implement it
in the prover software we used.

2 Another approach that we tested (as presented in Sect. 6) is simply to place two tan-
gle diagrams next to each other without connecting them by an arc; this corresponds,
in terms of labelling words, to concatenating the words.
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The aim of this process is to produce all (or, to be more precise, ‘suffi-
ciently many’) two-letter words ab. In our computer experiments (as presented
in Sect. 6), we enumerated all arc labels of the knot diagram in some order and
proved each equality ai = ai+1 by proving that we can produce the word aiai+1.

6 Automated Proofs

We experimented with the procedure described in Sect. 5 by using its reduction
to automated theorem proving. To a given knot diagram D we can associate a
first-order theory TD in a vocabulary which consists of unary predicate symbol
T , binary functional symbol ∗ and constants e and a1, . . . , ak for all of the labels
of D. The axioms of TD include:

I. Axioms of monoid for (∗, e):
– (x ∗ y) ∗ z = x ∗ (y ∗ z) (associativity of multiplication)
– x ∗ e = e ∗ x = x (e is a unit of the monoid)

II. – a2
i = e for all labels ai

III. Initial state axioms:
– T (ai ∗ aj ∗ ak ∗ aj) for all crossings in D, where the over-crossing arc is

labelled by aj and the under-crossing arcs are labelled by ai and ak.
IV. Transition axioms:

– T (ai ∗ x) → T (x ∗ ai) for all arc labels ai

– T (x) & T (y) → T (x ∗ y).

The ground terms are built from constants by the monoid operation, and are
meant to represent words read on the ends of arcs around the tangle diagrams.
The intended meaning of T (w) for a word w is a corresponding diagram (i.e.
with w read on its end arcs) which can be built following the rules in Sect. 5.
The initial state axioms declare that the original crossings present us with the
initial building blocks of the tangle diagrams to be able to start construction.
The transition axioms describe permissible operations for building new tangles.
The following result holds.

Proposition 2. A knot diagram D with arcs labelled by a1, . . . , ak is a diagram
of trivial knot (unknot) if and only if TD � ∧

1≤i≤k−1 T (ai ∗ ai+1), where �
denotes first-order logic derivability.

Proof. Due to Theorem 3 it is sufficient to show that TD � T (ai ∗ ai+1) iff a
labelled tangle diagram can be built for D with two free end arcs labelled by ai

and ai+1 using the procedure from Sect. 5.
⇐: Assume that a tangle diagram with free ends labelled by a word w is built

by the procedure. Then straightforward induction on the length of construction
shows that TD � T (tw), where tw is a term encoding of w, that is a term built
from a1, . . . , ak using ∗. Indeed, the statement holds for initial tangle diagrams
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formed by original crossings due to axioms III, which are included in TD. For
the inductive step, we assume that the statement holds for two tangle diagrams
labelled by words w1 and w2, so we have that TD � T (tw1) and TD � T (tw2).
Then, if w′ labels a tangle diagram obtained by connecting two adjacent arcs
in the tangle labelled by w1 we have that TD � T (tw′), using the induction
hypothesis for w1 and the axioms II and I. If a tangle diagram labelled by w′′ is
obtained by connecting tangle diagrams labelled by w1 and w2 then TD � T (tw′′)
using the inductive hypothesis for w1 and w2 and the transition axioms IV.

⇒: By induction on the number of applications of Modus Ponens rule using
a transition axiom T (x)&T (y) → T (x ∗ y) we show that if TD � T (tw) then
a tangle diagram can be constructed by the procedure from Sect. 5, which is
labelled by w′ such that I, II � tw = tw′ . Indeed, for the base of induction
we notice that the only formulae of the form T (. . .) derivable form TD without
applying Modus Ponens to T (x)&T (y) → T (x ∗ y) are formulae T (tw′) with tw′

such that I, II � tw = tw′ for some tw from an initial state axiom T (tw). Then
the crossing corresponding to this axiom provides with the required tangle.

For the step of induction consider a derivation T (tw ∗ tw′) from already
derived T (tw) and T (tw′) and the transition axiom T (x)&T (y) → T (x ∗ y).
By the induction assumption we have required tangle diagrams constructed for
T (tw) and T (tw′), that is diagrams labelled by w and w′, respectively. Then the
tangle diagram for T (tw ∗ tw′) is constructed by placing latter diagrams next
to each other, and it is labelled by ww′. Further derivations of formulae of the
form T (..) from T (tw ∗ tw′) using axioms I, II and first transition axiom are
possible. In all such cases the required tangle diagram will be either the same as
for T (tw ∗ tw′), or reduced by connecting two adjacent arcs with equal labels.

Proposition 2 suggests a procedure for establishing unknottedness by using
automated provers for first-order logic. Given a knot diagram D, specify a theory
TD and apply an automated theorem prover to TD � ∧

1≤i≤k−1 T (ai ∗ ai+1).
In Table 1 we report on experiments3 using the automated prover Prover9 [14]

on a few well-known unknot diagrams.
The authors have used the same software to implement other algebraic tech-

niques (similar to the one described in Corollary 1) for proving unknottedness of
knot diagrams [4,11]. For the diagrams listed in Table 1, other techniques prove
unknottedness faster (as expected). However (also as expected), the proofs of
unknottedness produced by the methods proposed in this paper are more trans-
parent and more amenable to the interpretation as untangling sequences.

3 System used in experiments: Intel(R) Core(TM) i7-4790 CPU 3.60 Ghz, RAM 32
GB, Windows 7 Enterprise.



Visual Algebraic Proofs for Unknot Detection 103

Table 1. Time taken to prove unknottedness of some known diagrams

Name of unknot Reference # of crossings Time, s

“Trivial” Trefoil [8] 3 0.01

No name Fig. 2 7 0.09

Culprit [8] 10 5.16

Goerlitz [7] 11 6.38

Thistlethwaite [18] 15 321.0

Ochiai, I [17] 16 1286.1

7 Conclusion and Future Work

In the paper, we proposed a novel use of labelled tangle diagrams as a means of
representing certain algebraic proofs. This provides the opportunity for provid-
ing a visual readable proof instead of an algebraic textual proof, such that the
proof notation is of a similar type to the original type of diagrams considered.
We developed theory to demonstrate the equivalence of the use of these tangle
diagrams to express correct algebraic equalities, in effect showing that proofs in
the algebra can be represented visually via these labelled tangles. This was per-
formed making use of some new, reusable machinery (virtual rulers, TR-moves)
that will have independent uses. Whilst such proofs for small scale diagrams can
be manually developed (as per the example in Sect. 4), there is a definite need
for computer assistance on the larger scale. To this end, we present progress in
automating the production of such proofs. We provide an indication of the time
taken for the automate search for such proofs, and we observe a likely trade-off
in the form of a slow-down of unknot detection in order to be able to develop
the new visual proofs rather than algebraic proofs only.

This work opens us several avenues for future research. Firstly, extracting
readable proofs from the output of a general-purpose prover software is very
difficult. To help with this task, after the prover software has produced proofs,
another script is needed to convert the proofs into a readable form. Alternatively,
we can write our own specialist prover code. Secondly, producing nice-looking
tangle diagrams from proofs manually is time consuming. For larger diagrams,
the actual diagrams must be produced by the computer. After such tool sup-
port is present, an exploration of the utility of the representation and the tool
by different possible user groups (e.g. undergraduate students versus research
mathematicians) will also become feasible.
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Abstract. In this paper, we develop and discuss a classification scheme that
allows us to distinguish between the types of diagrams used in mathematical
research based on the cognitive support offered by diagrams. By cognitive
support, we refer to the gain that research mathematicians get from using dia-
grams. This support transcends the specific mathematical topic and diagram type
involved and arises from the cognitive strategies mathematicians tend to use.
The overall goal of this classification scheme is to facilitate a large-scale
quantitative investigation of the norms and values governing the publication
style of mathematical research, as well as trends in the kinds of cognitive
support used in mathematics. This paper, however, focuses only on the devel-
opment of the classification scheme.
The classification scheme takes its point of departure from case studies known

from the literature, but in this paper, we validate the scheme using examples
from a preliminary investigation of developments in the use of diagrams.
Building on these results, we discuss the potential and pitfalls in using one
generic classification scheme, as done in this analysis. This approach is con-
trasted with attempts that respect and build on individual diagram types, and as
part of this discussion, we report the problems we experienced when using that
strategy. The paper ends with a description of possible next steps in using text
corpora as an empirical approach to understanding the nature of mathematical
diagrams and their relation to mathematical culture.

Keywords: Classification of diagrams � Corpus analysis
Mathematical cognition

1 Introduction: Why Classify Mathematical Diagrams
from a Cognitive Perspective

With this paper, we wish to develop a framework that allows us to characterize
mathematical diagrams based on the kind of cognitive support they offer to mathe-
matics. Furthermore, we aim to construct a classification scheme that bracket both the
mathematical content represented by the diagram and the practice of specific mathe-
maticians and to consider the diagram only as it presents itself on the page. Such a
classification scheme will enable large-scale quantitative analysis of corpora of pub-
lished mathematics papers that would otherwise be difficult to process.
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There are a number of good reasons for analyzing the use of diagrams in mathe-
matical publications. The prominence of social norms governing the use of diagrams in
publications was one result of an interview study with working mathematicians the two
first authors of this paper conducted [1]. As a general trend, the mathematicians to
whom we spoke considered various forms of diagrams and drawings to be vital to their
work practices, but nevertheless, they tended to leave out such representations in their
published papers.

Such results are hardly surprising to research mathematicians. Indeed, they gen-
erally confirm the point made nearly three decades ago by Hersh [2]: mathematics has a
frontstage and a backstage; there is in mathematics a huge difference between the way a
dish is prepared and the way it is presented to the public. However, recent work in the
philosophy of mathematical practice indicates that the value and validity of inferences
based on diagrams and figures should not be neglected, and the formalistic claim that
such inferences are insecure and obsolete (e.g. [3: 43]) has been questioned by a
number of scholars in the field [4, 5]. This vindication of diagrammatic reasoning was
also confirmed in the interview study mentioned above as several of the interviewed
mathematicians expressed the view that diagrams and other visual representations can
constitute good arguments, and that it was a shame they were not allowed to be used in
published papers.

Furthermore, investigations of historical cases have shown that diagrams and fig-
ures have played (and still play) a crucial role both in the conceptual development of
mathematics [6–8] and in the framing and development of new areas of mathematics
research [9, 10]. Such results might be seen as a call for a revision of the norms and
values that govern publication practice. If inferences based in diagrams are (in some
cases) valid, and if diagrams play a crucial part in the conceptual development of
mathematics, perhaps we should allow diagrams in published papers to a greater extent.

To the working mathematician, the more pressing question is: are the norms and
values of publication changing in mathematics? There are indications that we are in the
midst of major changes in publication practice. In the year 1992 the mathematics
journal Experimental Mathematics was launched with the direct intention to bring the
behind-the-scene processes leading to mathematical discovery to the fore [11]. While
Experimental Mathematics is mainly aimed at methodological developments connected
to the use of computers as experimental tools, there are signs that a similar change in
attitudes toward diagrams is underway. At least, diagrams seem to be brought more
frequently to the frontstage of mathematics. It is not unusual for textbook expositions,
even on advanced topics, to rely heavily on diagrams and drawings (e.g. [12]), and it
also seems that mathematics journals contain more diagrams of still more varied types
than they did at the height of the formalist movement in the middle of the 20th century.
This, however, is merely an impression. We do not have substantial evidence to
support the claim that the use of diagrams in mathematics journals is on the rise, and if
it is, we do not know the shape or size of the change, when it started, or if all or only
certain types of diagrams are being published more frequently. One way to address
such questions in a thorough, empirical way is to track developments in the use of
diagrams in mathematics research papers over time. This could be done by counting the
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number of diagrams included in research papers in selected influential mathematical
journal over a long period of time (e.g., a century). However, in mathematics, a
diagram is not simply a diagram. Diagrams are different and play varied cognitive roles
in mathematical research; therefore, it would be interesting to track not only the number
of diagrams but also the types of diagrams used.

To carry out such a large-scale empirical investigation of the use of diagrams in
mathematics journals, an instrument that allows for counting and classifying diagrams
with relative ease needs to be constructed. The objective of this paper is to describe and
discuss a first attempt at building such an instrument. This leads to the following
research question:

How can we classify mathematical diagrams published during the past century in a way that
distinguishes among their different cognitive functions?

To answer this question, we build on work by the first author of this paper. In [13]
Johansen distinguishes between diagrams, symbols, and figures based in the different
cognitive roles these representational forms play in mathematical practice. In the fol-
lowing, we introduce Johansen’s distinction, adapt it by adding the category of
Cartesian diagrams, and discuss the possible inclusion of a fourth category of matrices
and tables. We demonstrate the classification scheme by describing how it worked and
the problems we encountered when we used it in a systematic pilot investigation of the
journal Annals of Mathematics. We should note that the focus of this paper is the
development of the classification scheme, not developments in the use of diagrams. For
this reason, we discuss only how well the classification scheme worked and not the
preliminary results we obtained from using it.

2 Mathematical Diagrams and Figures

Although concepts such as diagram and figure are frequently discussed in the phi-
losophy of mathematics, there is no consensus on precise definitions of the terms.
Definitions range from the extreme, such as Peirce’s [14: 90] functional definition of
diagrams as any representation that allows the deduction of new information not used
in its construction, to more restrictive definitions that come closer to the everyday use
of the word, such as Larkin and Simon’s [15] definition requiring a representation to
involve an element of two-dimensionality to be considered a diagram.

Although Peirce’s functional definition captures and justifies a central aspect of
mathematical practice, namely, that mathematical work frequently involves translation
between different representational types, it is too broad and does not allow for making
cognitively and practically meaningful distinctions in the category of diagrams [16].
Moreover, Peirce’s definition does not make it possible to distinguish between algebraic
and diagrammatic representations (in the pre-theoretical sense of the words), so it is
impossible to track the very changes in norms and publication practices that we are
interested in here. Here, we are interested in actual mathematical practice and the cog-
nitive role diagrams may play herein. For that reason, we use the less inclusive definition,
which understands diagrams as representations that require two-dimensionality and uses
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this two-dimensionality in a non-trivial way (e.g. [15: 68, 17: 162]; see also [18] for a
discussion). This definition comes closer to the everyday use of the word but also inherits
some of the fuzziness of the pre-theoretical concept. When confronted with real-life
examples of two-dimensional representations, choices have to be made to establish the
precise boundaries of the concept, as we will see in the following.

Furthermore, when diagrams are defined in this way, the concept covers a rather
inhomogeneous category of representations. To make useful distinctions in the concept
of diagram, we will take departure in Johansen [13], where an attempt is made (a) to
divide the class of diagrams into two subclasses (called ‘diagrams’ and ‘figures’) on the
basis of cognitive function and (b) to explain how the cognitive functions provided by
these two subclasses differ from those provided by symbols. It thus is pointed out that
mathematical symbols can produce new knowledge by being subjected to purely
syntactic manipulations. Some diagrams and figures may in the same way be subjected
to purely syntactic manipulation, but what sets these representations apart from sym-
bols from a cognitive perspective is that they can also be used for contentual and
intuitive reasoning by relating mathematical objects to the everyday experience of the
mathematician. The point in [13] is that members of the two subclasses of diagrams
create this relation in different ways. One subclass (which Johansen calls ‘figures’)
consists of representations such as Euclidian diagrams. When operating on a Euclidian
diagram, the representation has a direct resemblance to the physical objects that con-
stitute the abstraction class for the corresponding mathematical concept. When oper-
ating on a drawing of a triangle, for example, the representation has a direct
resemblance to other perceptible triangles that make up the abstraction class for the
general mathematical concept of ‘triangle’. With the other subclass (which Johansen
calls ‘diagrams’), it is not possible to establish this kind of direct resemblance. Instead,
diagrams display the mathematical objects they represent only if the objects are
understood within a particular conceptualization. To give an example, a commutative
diagram cannot be said to resemble neither the mathematical objects it represents
(typically mathematical sets and maps between sets), nor the abstraction class of such
objects. However, if the mathematical sets are conceptualized as objects located in
space and the maps between them are conceptualized as movements between locations
in space, the commutative diagram can be said to resemble such a situation. Similarly,
Venn diagrams do not function via simple resemblance. The objects represented by
such diagrams are typically not located in bounded regions of space and may not even
have inherent spatial properties. The resemblance is only established it the objects are
conceptualized as if they were bounded regions of space [c.f. 13: 100]. In other words,
Johansen claims that diagrams in this second subclass function as material anchors for
conceptual maps that relate mathematical content to concrete experiences in the
physical world. We further refer to [19] for direct empirical evidence that research
mathematicians in actual practice conceptualize the mathematical objects represented
by diagrams in the way described (see also [17] for a further discussion of commutative
diagrams’ function as maps).
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2.1 A Classification Scheme

In the following, we build on the basic idea from [13] but refine it. In particular, we do
not follow Johansen in renaming a subclass of diagrams ‘figures’. Instead, we introduce
the following subclasses of diagrams:

1. Resemblance diagrams: This class roughly corresponds to Johansen’s first sub-class
of diagrams. That is, it includes diagrams that have a direct likeness to the physical
objects that the corresponding mathematical concepts are supposed to model. This
likeness can be geometric (as in Euclidian diagrams) or topological (as in knot
diagrams).

2. Abstract diagrams: This class corresponds to Johansen’s second class of diagrams.
That is, it includes diagrams that are only meaningful if the mathematical content
they represent is understood through a particular conceptual map.

In addition to these two subclasses, we will introduce a third subclass:

3. Cartesian diagrams: This subclass includes shapes and figures drawn in a coordinate
system.

The reason for introducing this third subclass is largely pragmatic and grounded in our
exploratory work with corpora of mathematical texts. The use of coordinate systems
builds on conceptual blending allowing mathematical objects to simultaneously possess
geometric and numerical properties [20: 385]. This function is not clearly included in
the two categories introduced so far; therefore, we believe it necessary to propose this
third subclass.

Furthermore, various forms of schemas, tables, and matrices can be said to con-
stitute a fourth, independent category of two-dimensional visual inscriptions, and we
discuss whether to include such representations as a fourth subclass. In this subclass,
mathematical symbols are arranged in a way so that patterns in the physical layout of
the representations may reveal mathematically relevant information (c.f. [13, 19]). This
way of creating and using representations opens cognitive possibilities other than the
three subclasses of diagrams described above, and such schemas fall outside the cat-
egories we have introduced. Tables and matrices, however, are not encompassed by the
everyday concept of diagrams, and including such representations in the concept of
diagrams might force us to broaden it further to include, say, the two-dimensional
arrangement of numeral symbols in pen-and-paper multiplication. Here, therefore, a
choice will clearly have to be made.

2.2 Applying the Scheme

The motivation for the development of the classification scheme is the need to carry out
large-scale, empirical investigations of the use of diagrams in mathematics journals.
Applying the scheme for such a purpose leads to a trade-off between reliability and
quantity: on one hand, reliable classification of a given diagram in the scheme requires
in-depth case studies exploring how mathematicians conceive of and use the diagram in
actual practice, but on the other hand, an investigation of the general trends in diagram
use requires the classification of large quantities of diagrams. Because the suggested
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classification scheme takes the way mathematicians perceive diagrams as its point of
departure we believe that an examination of the typographical features of a given
diagram and a minimum of mathematical context will give a clear indication of how the
diagram should be classified in the scheme. Of course, misclassifications are inevitable,
but we are primarily interested in general trends in the frequency and types of diagrams
used, so a few misclassifications will not be detrimental to achieving the overall
objective of the investigation. However, it is clear that transparency and reflections
about reliability and error margins must be a constant, important concern in quantitative
analysis of this type.

Finally, it should be noted that the move to quantitative analysis of diagram use
suggested here is new in the philosophy of mathematical diagrams. In certain respects,
it stands in contrast to core values of the paradigm, where careful case studies are the
norm. We do hope the reader will appreciate the possible benefits of deviating from this
norm.

3 Examples

In the following, we give a few representative examples of the diagrams we encoun-
tered during our pilot study on the diagrams used in Annals of Mathematic. The
selection represents the different kinds of diagrams we found by investigating the
journal over ten-year intervals in the period from 1885 to 2005. For each year (e.g.
1885, 1895), we analyzed all the research papers published in the journal, marked all
the two-dimensional representations, and tried to apply the classification scheme to
them. All the diagrams we present in the following sections are reproduced with kind
permission from Annals of Mathematics.

3.1 Prototypical Diagrams

Most diagrams we encountered were easily classified using the suggested scheme. We
begin with three prototypical examples illustrating how the subclasses of the scheme
function when confronted with representations from real-life publications.

As a first example, we consider a figure from [21] (Fig. 1). Notice that the repre-
sentation is classified as a figure in the original text (and not as a diagram, Euclidian
diagram, or similar terms). This illustrates the confusion in nomenclature discussed
above. In the classification scheme suggested here, however, the representation clearly
belongs to the subclass of resemblance diagrams as it displays a circle and geometric
constructions involving chords within the circle. From a cognitive point of view, the
diagram supports reasoning with these objects by anchoring the conceptual structure in
a stable medium (the paper) so that the mathematical objects are represented by shapes
that geometrically resemble the class of physical objects modelled by the mathematical
concepts. In other words, in this case, our categories allow for a clear and obvious
classification of the diagram.
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As our second example, we consider a representation from [22] (Fig. 2). In this
case, the representation is not labeled, but the accompanying text refers to it as a
commutative diagram.

We consider the diagram to belong to the class of abstract diagrams and claim that,
in contrast to the diagram in Fig. 1, this diagram does not directly resemble any aspect
of physical reality modelled by the mathematical objects involved. Rather, the diagram
only resembles the mathematical objects if they are viewed from a particular con-
ceptualization. We, however, refrain from identifying or describing the conceptual-
ization because that requires the kind of in-depth contextual analysis we are trying to
avoid here (see [13, 19] for examples).

As a third example, we look at the following representation from [23] (Fig. 3):

Fig. 1. A resemblance diagram. Reproduced with permission from [21: 175].

Fig. 2. An abstract diagram. Reproduced with permission from [22: 216].

Fig. 3. A Cartesian diagram. Reproduced with permission from [23: 43].
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This diagram involves a construction in a coordinate system, and we interpret it as
representing a conceptual blend, where points are simultaneously considered to be
locations on the geometric plane and elements in a set of ordered pairs of numbers (x, y).
In other words, we see the diagram as belonging to the subclass of Cartesian diagrams.

3.2 Is This a Diagram?

Most of the diagrams we inspected fall neatly into one of the three categories of the
classification scheme, but we also encountered diagrams challenging the scheme. In
this and the following section, we discuss two types of challenges: cases where the
representations in question are on the borderline of being considered a (mathematical)
diagram at all and cases where a diagram is on the borderline of two of the subclasses
in our classification scheme.

Beginning with the first type of concern, we return to the commutative diagram
presented in Fig. 2. Interestingly, this diagram is preceded by the following repre-
sentation (Fig. 4):

In many ways, this representation seems similar to the diagram presented in Fig. 2.
Letters representing mathematical objects are connected with arrows representing maps
between these objects. Why is this not a diagram? The answer is simply that the
representation is not two dimensional but one dimensional (in the sense that it can be
read linearly). Although this distinction between one- and two-dimensional represen-
tations may seem arbitrary, it, at least in this case, connects to a real distinction in the
language used in mathematical practice. In the text, Fig. 2 is referred to as a (com-
mutative) diagram, while the representation in Fig. 4 is referred to as something dif-
ferent: an exact sequence. This furthermore illustrates a fundamental difficulty
connected to delaminating diagrams as a distinct type of representations. Functional
categories, such as the one introduced by Peirce [14] or the one attempted in [13], tend
to clash with the pre-theoretical language used by practitioners. From a cognitive
perspective, it is very difficult to point to the operative difference between an exact
sequence and a commutative diagram, but in mathematical practice, the two repre-
sentations appear to have different statuses, at least judging from the language (one is
labeled a diagram, and the other is not). It is our goal in this paper to create an
instrument that makes it possible to track and understand aspects of mathematical
practice, so we have to make pragmatic compromises. One such compromise is to
adopt the criterion that a diagram has to be two dimensional, even if this criterion may
seem arbitrary from a theoretical perspective (as the classification of commutative
diagrams as diagrams and exact sequences as non-diagrams illustrates).

As a second example of a representation that is on the borderline of being con-
sidered a mathematical diagram, we can look at the following representation (Fig. 5):

Fig. 4. Exact sequence. Reproduced with permission from [22: 216].
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The circles marked Wn to W1 represent water-filled vessels, C represents a fulcrum,
and the overall diagram represents a mathematical problem expressed in terms of
balancing weights around a fulcrum. The diagram pictures the structure of an (imag-
ined) physical mechanism. As a first approximation, it might be taken to be a resem-
blance diagram, similar to Euclidian diagrams picturing geometric structures. However,
mathematical resemblance diagrams typically involve only geometric and/or topolog-
ical features of the represented objects, whereas the diagram in Fig. 5 also involves
physical features, such as weight, equilibrium, and movement. For this reason, it is
questionable whether the diagram is a mathematical diagram. Perhaps it is a physics
diagram, which might not be the same as those used in mathematics. In other words,
the diagram in Fig. 5 challenges us to draw another (more or less arbitrary) border
between the diagrams used in mathematics and those used in physics. Although the
diagram is on the borderline, we need a clear border; we would not consider, say,
Feynman diagrams to be mathematical diagrams, although they are clearly diagrams.

During the pilot study, we also frequently encountered schemas and matrices such
as that reproduced in Fig. 6:

As noted, it can be argued from a cognitive perspective that such representations
play a different role in mathematical practice than diagrams, in particular, they allow
abstract mathematical structures to be visualized as patterns in the physical arrange-
ments of symbols on the paper. However, although such representations clearly exploit
their two-dimensionality, they are traditionally not considered to be diagrams, and for
that reason, we decided not to include them in our pilot study. This can again be seen as
a somewhat arbitrary choice. However, as argued, including matrices and similar
schemas in our category of diagrams would introduce a demarcation problem: if we
consider matrices and schemas to be diagrams, we would also have to consider, say, the
arrangement of numerals used for pen-and-paper multiplication as diagrams. Although

Fig. 5. Cartesian diagram. Reproduced with permission from [24: 73].

Fig. 6. Matrix. Reproduced with permission from [25: 198].
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this might make sense from a purely functional perspective, important aspects of the
distinction between mathematical discourse and diagrams would cease to exist. The
distinctions we consider here are based on both the two-dimensional aspect of diagrams
and established practice among mathematicians, which usually does not consider
matrices and schemas to be diagrams. The example of matrices and schemas, however,
clearly and interestingly illustrates once again that the pre-theoretical concept of dia-
grams found in mathematical practice does not correspond with purely functional or
theoretical categories.

3.3 What Kind of Diagram Is This? Examples that Challenge
the Classification Scheme

Another type of challenge came from diagrams that did not fall clearly into the cate-
gories in the classification scheme. We begin by considering the following represen-
tation from [24] (Fig. 7):

We see this as a Cartesian diagram, but the identification of the diagram as
something involving a coordinate system is less straightforward than in the prototypical
example above (Fig. 3). The construction of unity in the part of the diagram marked
“Fig. 2” indicates that we are dealing with a Cartesian construction, but to make sure
that it is not a resemblance diagram, we have to consider the textual context. Here, it is
made clear that the diagram indicates the pointwise construction of the graph of a
polynomial. It, therefore, is most sensible to classify the diagram as Cartesian because
the overall framework of the diagram involves a Cartesian blend.

As a second example of a diagram challenging the subclasses of our scheme, we
can look at the following representation (Fig. 8) from [26]:

Fig. 7. Cartesian diagram. Reproduced with permission from [24: 66].
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Once more, the categorization is not straightforward, but as an educated guess, we
consider the diagram to be what we call an abstract diagram. The reason for this
categorization is partly positive and partly negative. The diagram does seem to involve
abstract elements, such as sets represented as locations in space, and although it also
includes geometric elements, we do not believe these to resemble the mathematical
objects in any straightforward way. In other words, the diagram seems to be concep-
tualized, although a contextual analysis is necessary to identify the exact conceptual-
ization. A similar analysis can be extended to other diagrams, such as the following
(Fig. 9):

As our final example, we look at two diagrams from [28]. The first one is the
following diagram (Fig. 10):

As we see it, this is a resemblance diagram displaying a particular situation.
If we look at the textual context, we furthermore can see that, in this case, the resem-
blance is topological, not geometric, although the particular type of resemblance is not

Fig. 8. Abstract diagram. Reproduced with permission from [26: 107].

Fig. 9. Abstract diagram. Reproduced with permission from [27: 223].

Fig. 10. Resemblance diagram. Reproduced with permission from [28: 609].
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consequential in our classification scheme. However, if we continue to read the paper
[28], we encounter the following figure (Fig. 11):

If we know that we are dealing with topology, it is not difficult to decode the
diagrams as resemblance diagrams (based on topological resemblance), but without
such knowledge, we believe it would be very difficult to make a meaningful classifi-
cation of these diagrams in our scheme. In difficult cases such as this, it is, in other
words, not possible to completely bracket the intellectual context of the diagram and
the classification cannot be more than an educated guess.

4 Discussion: Balancing the Resolution
of Diagram Classification

Our experience from the pilot study indicates that the classification scheme we have
presented makes it possible to handle most of the diagrams published over a century in
a leading mathematical journal. Although most classifications are straightforward, we
also encountered cases where we had to involve the textual or intellectual context of
diagrams to classify them, and in other cases, we could only give educated guesses.

It, therefore, might be worthwhile contemplating possible alternatives. When we
began the pilot study, we initially set out to use a classification based on the standard
names given to various diagram types (e.g., commutative diagrams, Dynkin diagrams,
and simplex diagrams). Although such a classification gave a more fine-grained res-
olution in the diagram classification—which allowed tracking trends in the use of
specific diagram types—it turned out to be difficult to carry out in practice, at least on a
large scale. Mathematicians do not consistently name diagrams, and often diagrams are
not referred to in the text by their standard names. Consequently, counting the number
of diagrams of a specific type requires making judgements based on the visual
appearance of diagrams to classify them correctly. Furthermore, although mathemati-
cians tend to express themselves using a relatively small number of standard types of
diagrams, they also occasionally use their own idiosyncratic representations. Although

Fig. 11. Resemblance diagram. Reproduced with permission from [28: 613].
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such cases are difficult to handle in the proposed classification scheme, they are in
principle out of the reach of a classification taking departure in standard names.

In another alternative, one might consider counting the number of diagrams without
attempting to classify them further. This would reduce some of the uncertainty we
encountered, but at the price of a similar reduction in information. The subclasses in
our classification scheme delineate three very different kinds of diagrams, ranging from
direct geometric representations (e.g., Euclidian diagrams) to completely abstract
representations (e.g., commutative diagrams). The ability to track the development not
only of the frequency of diagrams but also of the relative frequency of the different
subclasses of diagrams could yield valuable information about the norms governing the
use of diagrams in mathematical practice. Furthermore, even a simple count of the
number of diagrams without attempting to classify them further, is not without
uncertainty. As we have seen, the concept of mathematical diagrams is not well
defined, and many of the challenges we faced concerned not how to classify diagrams
within the scheme but whether to count a given representation as a mathematical
diagram.

Finally, it should be noted that the classification of diagrams can be performed
using dimensions other than those suggested here, such as Stenning’s [18] distinction
between directness and indirectness or de Toffoli’s [17] distinctions among expres-
siveness, calculability, and transparency. Our choice of classification scheme is mainly
pragmatic. We believe that it will work because its point of departure is mathemati-
cians’ conception of diagrams and for that reason it will provide relevant information
about the changes and trends in the use of diagrams in mathematics publications. This,
of course, does not rule out the possibility of including other dimensions in the cate-
gorization and quantitative analysis of diagram use. Furthermore, we cannot rule out
that the classification scheme will have to be augmented or adjusted in order to be
applied to other corpora of mathematical texts; we have tested the scheme only on a
single journal.

5 Conclusion

In this paper, we have argued for a change in the philosophy of mathematical diagrams.
We believe it will be productive to augment in-depth, qualitative case-studies of dia-
grams with quantitative investigations tracking overall trends in diagram use. We have
developed the first version of an instrument that can be used to classify diagrams in
large-scale, quantitative studies, and we have demonstrated the function of the
instrument by reporting on a pilot investigation on a mathematical journal. The
instrument generally seems to give reliable results, but as we have also seen, the
quantitative approach proposed here also leads to a number of dilemmas. A choice
between the reliability of the investigation and the relevance of the generated knowl-
edge must be made. Furthermore, the pre-theoretical concept of mathematical diagram
is not well defined, and choices have to be made between the use of a well-defined
theoretical concept of diagrams and the ability to track and speak into actual mathe-
matical practice and mathematicians’ understanding of this practice. However, as we
see it—and as our pilot study confirms—the challenges confronting a quantitative
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approach are manageable, and the full-scale application of the proposed instrument has
the potential to generate valuable information about long-term developments in the
norms governing the use and publication of mathematical diagrams.
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Abstract. In a recent paper, De Toffoli and Giardino analyzed the prac-
tice of knot theory, by focusing in particular on the use of diagrams to
represent and study knots [1]. To this aim, they distinguished between
illustrations and diagrams. An illustration is static; by contrast, a dia-
gram is dynamic, that is, it is closely related to some specific inferential
procedures. In the case of knot diagrams, a diagram is also a well-defined
mathematical object in itself, which can be used to classify knots. The
objective of the present paper is to reply to the following questions: Can
the classificatory function characterizing knot diagrams be generalized to
other fields of mathematics? Our hypothesis is that dynamic diagrams
that are mathematical objects in themselves are used to solve classifica-
tion problems. To argue in favor of our hypothesis, we will present and
compare two examples of classifications involving them: (i) the classifi-
cation of compact connected surfaces (orientable or not, with or without
boundary) in combinatorial topology; (ii) the classification of complex
semisimple Lie algebras.

Keywords: Diagrammatic reasoning · Knot diagrams
Mathematical classifications · Combinatorial topology
Compact connected surfaces · Lie algebras

1 Introduction: Diagrams and Classifications

In a recent paper, De Toffoli and Giardino discussed the practice of a partic-
ular branch of topology, knot theory, by focusing in particular on the use of
diagrams to represent and study knots [1]. A knot K in tridimensional space is
a submanifold that is diffeomorphic to a circle. The main aim of knot theory
consists in classifying the different knots that are embedded in ambient tridi-
mensional space. Two knots K and K ′ in R

3 are ambient isotopic if there exists
a continuous map h : [0, 1] × R → R

3 such that h0 = IdR3 , h1(K) = K ′ and
ht is a diffeomorphism. A knot K (embedded in R

3) can be represented by
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means of a knot diagram, which is a particular projection of K onto R
2. The

authors proposed to distinguish between illustrations and diagrams. An illustra-
tion is a static representation that can of course convey some information about
what it represents, in this case a knot type; however, its possible transforma-
tions are not well-defined. By contrast, a diagram is a dynamic representation,
that means, a representation that is closely related to some specific inferential
procedures. Differently from mere illustrations, diagrams would not only sug-
gest effective problem-solving strategies, but, more interestingly, they would end
up being themselves part of the proof of a mathematical result. A knot dia-
gram is a dynamic tool because an expert imagines performing some movements
on it according to some specific inferential procedures. However, it is also a
mathematical object in itself, which is well-defined and intended to solve a
classification problem. Knot diagrams have thus a classificatory function: they
determine the classification of knots via ambient isotopies and at the same time
they are themselves the objects of such a classification.

The objective of the present paper is to reply to the following questions: Can
the classificatory function characterizing knot diagrams be generalized to other
parts of mathematics? To clarify, our hypothesis is that if we intend diagrams
as dynamic tools allowing for some inferential procedures that are at the same
time mathematical objects, then we can find other cases of diagrams having a
classificatory function. To argue in favor of our hypothesis, in the remainder of
the paper we will present two examples of classifications that involve the use of
diagrams. In Sect. 2 we will consider combinatorial topology and discuss the use
of diagrammatic and symbolic representations for the classification of compact
connected surfaces (orientable or not, with or without boundary), ranging from
Dyck’s diagrams to Alexander and Hilbert fundamental polygons. In Sect. 3, we
will turn to algebraic structures and consider the diagrammatic representations
that were introduced for the classification of complex semisimple Lie algebras,
ranging from Artin-van der Waerden’s vector diagrams to Dynkin diagrams.
In Sect. 4, we will discuss and compare these two examples, and draw some
conclusions.

2 The Classification of Compact Surfaces

In this section, we focus on the classification of topological surfaces1 (with or
without boundary) that are compact (each of their open covers has a finite
subcover). First, we will very briefly recall the main historical steps that led
to this classification. In particular, we will mention the special cases of com-
pact Riemann surfaces and of compact orientable topological surfaces (without
boundary). Second, we will introduce Dyck’s diagrams, which allow for a com-
plete treatment of the general case (i.e. topological surfaces with or without
boundary, orientable or not). Finally, we will describe another diagrammatic
representation related to the classification of such objects.
1 A surface is supposed to be a connected two-dimensional topological manifold, that

is it cannot be represented as the union of two disjoint nonempty open sets.
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2.1 First Classification

The interest for the properties of analysis situs that some surfaces imply arose
with the publication of Bernhard Riemann’s dissertation (1851) and of his
memoir on Abelian integrals (1857). Riemann was interested in making alge-
braic functions of a complex variable uniform, and to this aim he introduced a
particular class of Riemann surfaces2 (compact Riemann surfaces), which in the
end became his main research object. In particular, to classify them, he con-
ceived some “paradigmatic” surfaces (the sphere and the tori with g holes) and
individuated a fundamental topological invariant: the genus g. Two Riemann
surfaces of the same genus that are holomorphically equivalent are also topo-
logically equivalent; however, the classification implies that the opposite is not
always true. A crucial result states that every compact surface without boundary
and orientable is homeomorphic to the sphere S

2 (which is simply connected) or
to the connected sum of g � 1 tori T2 (with g being the genus of such a surface).
The classification so obtained amounts to reducing all compact surfaces without
boundary to paradigmatic surfaces that are pairwise non-homeomorphic.

However, some compact surfaces without boundary are non-orientable. There
are two fundamental examples:

1. The real projective plane P2(R) = (R3\{0})/R where R designates the rela-
tion “to be collinear with”, which is homeomorphic to S

2\(x ∼ −x), i.e. to
the quotient of the sphere of R3 by antipodal relation.3

2. The Klein bottle K, described by Klein in 1882.4

The representations of such surfaces in R
3 are characterized by auto-

intersections, which means that they cannot be embedded in R
3.

2.2 Dyck’s Classification

A first classification of compact surfaces with or without boundary (no matter
if orientable or not) is due to a disciple of Klein, Walther von Dyck, who put
forward two kinds of related representations for non-orientable surfaces with
or without boundary [4]: the “fundamental forms” (Grundformen) in R

2, which
display the instructions on how to construct the “normal forms” (Normalformen)
in R

3. These representations allow for the classification of non-orientable surfaces
whose genus g is between 1 and 3.

Following Dyck’s numbering in the table shown in Fig. 1, Fig. 5 corresponds
to the real projective plane, with the Steiner surface as normal form, which
is a mapping of P2(R) into R

3; Fig. 6 corresponds to the Möbius band and
Fig. 7 to the Klein bottle. Therefore, Figs. 5 and 7 represent two non-orientable

2 A Riemann surface is an analytic manifold of (complex) dimension 1. From the point
of view of the analysis situs, a Riemann surface is orientable.

3 See for reference [2, pp. 550–551].
4 [3, p. 80]. From this booklet, it does not seem that Klein has used any figure to

illustrate this description.
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Fig. 1. Dyck’s diagrams from Fig. 1, to Fig. 5 in Tafel II in Mathematische Annalen,
volume 32.

surfaces without boundary, i.e. where the number of boundary components is
r = 0. The number K designates in Dyck’s table the Euler characteristic χ(S).
In the case of a compact, non-orientable surface, χ(S) is given by the formula
χ(S) = 2 − g, where g is the genus of S: (i) the real projective plane P2(R) is
of genus 1, and therefore χ(P2(R)) = 1; (ii) the Klein bottle is of genus 2, and
therefore in this case χ(S) = 0. If S admits a boundary, then χ(S) = 2 − r − g,
where r is the number of boundary components. The Euler characteristic of
the Möbius band is therefore equal to zero, because in this case g = 1 and
r = 1. The two normal forms a and b associated to Fig. 7 allow considering
the Klein bottle as the “connected sum” of two copies of the real projective
plane. Following now Dyck’s numbering in the table shown in Fig. 2, Figs. 8 and
9 correspond to surfaces with boundary, and Fig. 10 to Dyck’s surface, which
has no boundary. The (non-orientable with boundary) surface corresponding to
Fig. 8 admits r = 2 boundary components. It is of genus 1 and in this case
χ(S) = −1. The (non-orientable with boundary) surface corresponding to Fig. 9
admits r = 1 boundary components. It is of genus 2 and χ(S) = −1. The (non-
orientable without boundary) surface corresponding to Fig. 10 is of genus g = 3
and χ(S) = −1. The three normal forms a, b, c show that this surface D (“D” for
“Dyck’s surface”) corresponds to: (i) the connected sum of a torus and P2(R);
(ii) the connected sum of a Klein bottle and P2(R); (iii) the connected sum of
three copies of P2(R).
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Fig. 2. Dyck’s diagrams from Fig. 6 to Fig. 10 in Tafel II in Mathematische Annalen,
volume 32.

These representations are all well-defined. In the case of the Grundformen,
the arrows indicate that one has to identify the points that are diametrically
opposed. For example, the real projective plane can be interpreted as a hemi-
sphere such that the points that are diametrically opposed on its equator are
identified. Moreover, a continuous deformation of this hemisphere leads us back
to the closed disk D = {(x, y) ∈ R | x2 + y2 � 1}. The real projective plane
is thus a closed disk such that the points that are diametrically opposed on its
boundary are identified: this procedure corresponds exactly to the Grundform as
presented in Fig. 5. In the case of compact non-orientable surfaces that have no
boundary, a fundamental “building block” clearly emerges: the real projective
plane P2(R). In fact, K ∼= P2(R)#P2(R) and D ∼= T

2#P2(R) ∼= K#P2(R) ∼=
P2(R)#P2(R)#P2(R),5 where # is the connected sum.6 Dyck gets to the fol-
lowing result [4, p. 488]: two compact surfaces are homeomorphic if and only
if: (a) they have the same Euler characteristic; (b) they are both orientable or
both non-orientable; (c) they have the same boundary component r (that can be
put aside when the surfaces in question have no boundary). As a consequence,
non-orientable surfaces corresponding to Figs. 5, 6, 7, 8, 9 and 10 are pairwise

5 Note that the equivalence T
2#P2(R) ∼= K#P2(R) does not entail T2 ∼= K. In fact,

T
2 is orientable while K is not.

6 The connected sum of two surfaces Σ1 and Σ2, is obtained by deleting from Σ1 a disk
with boundary circle c1 and from Σ2 a disk with boundary circle c2 before regluing
c1 and c2. In particular, χ(Σ1#Σ2) = χ(Σ1) + χ(Σ2) − 2, a formula which allows
inferring that χ(K) = 0, by knowing that χ(P2(R)) = 1.



The Classificatory Function of Diagrams 125

non-homeomorphic. Dyck shows with no difficulties that two surfaces that do
not satisfy at the same time conditions (a), (b) and (c) are non-homeomorphic.7

The representations used by Dyck satisfy the properties of a mathematical
diagram as we intend it: they are well-defined, dynamic, and associated to some
inferential procedures. However, they must be interpreted in relation to a text,
without which it would be impossible to understand the meaning of the constants
K and r (in Dyck’s notation) that are crucial for the organization of the classi-
fication, going from K = 1 to K = −18. Moreover, they are arranged in a table
that encourages us to compare them: if one reads Dyck’s table from left to right,
the relation between Grundform and Normalform, but also between equivalent
Normalformen is seen9; if one reads Dyck’s table from above to below, (i) the
real projective plane appears as the fundamental building block for Figs. 7 and
10, thus leading us from simpler to more complex compact, non-orientable sur-
faces without boundary and (ii) the surfaces are recognized as pairwise non-
homeomorphic, i.e. there is no redundancy. The diagrammatic representations
used by Dyck reveal that his aim was to find a solution to the classifica-
tion problem for surfaces in general, i.e. for compact surfaces with or without
boundary, orientable or not. The case of the real projective plane, initially prob-
lematic because of the absence of a representation without auto-intersection in
R

3, becomes now generic: it is the building block thanks to which all compact
non-orientable surfaces without boundary can be constructed and classified.

2.3 The “Fundamental Polygon”

In this section we will present another diagrammatic representation for compact
surfaces that was introduced independently from Dyck’s diagrams and made
widely popular by Seifert and Threlfall [5]. In their monograph on topology, the
authors showed that a compact surface can be reduced to its Poincaré fundamen-
tal polygon (Poincarésche Fundamentalpolygon). To clarify, this expression is to
some extent misleading. In fact, Poincaré [6, p. 47] was not primarily concerned
with the classification of compact surfaces; his main goal was rather to show
how a three-dimensional topological manifold could be represented by a family
of polyhedra. However, in order to illustrate such a representation to the reader,
he referred to surfaces and described the particular procedure of obtaining a
torus from a rectangle, by identifying its opposite sides in a specific way. In his
words:

Consider a rectangle ABCD and a torus on which we draw two cuts,
namely, latitudinal and longitudinal circles; let H be their point of inter-
section. The surface of the torus will then be homeomorphic to the rectan-
gle; the two sides of the cut formed by the longitudinal circle correspond

7 Dyck conjectured but did not prove that all compact surfaces can be reduced to the
normal forms he had identified.

8 For instance, in the case of Figs. 6 and 7, K = 0 but r = 1 for Fig. 6 and r = 0 for
Fig. 7; therefore, the two surfaces are non-homeomorphic.

9 Note that the figure next to the Normalform of the Möbius band is a Möbius band
cut along its middle line. We are not sure why Dyck put this figure here.
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to the two sides AB and CD, while the two sides of the cut formed by the
latitudinal circle correspond to the sides AD and BC [7, p. 32].

Seifert and Threlfall [5, p. 3] offered a visual representation for this procedure,
which is shown in Fig. 3.

Fig. 3. The meridian circumference is represented by a and the parallel conference by
b. The point of intersection is labeled here H.

Is it possible to generalize this procedure to other compact surfaces, no matter
if they are orientable or not? Is there a way to go from this dynamic representa-
tion to a well-defined diagram? In other words, can all ambiguities be excluded?
Moreover, in this case, would such diagrams lead to an exhaustive classifica-
tion of compact surfaces? Poincaré’s description alone does not allow replying
positively to these questions. However, three topologists working at Princeton
University, James Waddell Alexander, Henri Roy Brahana and Oswald Veblen,
introduced for the first time and then systematized some diagrammatic and
symbolic representations that replaced it.10

Alexander aimed at reducing any “closed surface”, i.e. a compact surface
that has no boundary, to a fundamental polygon, since he believed that a pre-
cise treatment of the two-dimensional case would help solving the problem of
classifying closed manifolds of higher dimensions [8]. In his words:

In view of the difficulties that are still to be overcome before normal forms
can be obtained for manifolds of more than two dimensions, a simplified
treatment of the analogous problem for closed surfaces may be worth men-
tioning. We shall prove that all one-sided surfaces of a given connectivity
k are topologically equivalent and can therefore be reduced to a single nor-
mal form; also, that the same is true of all closed surfaces of a given genus
p = (k − 1)/211. Wherever the reasoning is of an intuitional character,

10 Alexander and Brahana were both Veblen’s students at Princeton University.
Alexander obtained his PhD in 1915, Brahana in 1920.

11 The “connectivity” or connection order k of a compact surface S is related to its
Euler characteristic χ(S) being χ(S) = 3 − k. For the sphere S

2, χ(S) = 2 and
k = 1. In the case of non-orientable, “one-sided” in Alexander’s terms, surfaces, the
χ(S) = 2 − g and thus the genus g = k − 1; in the case of orientable or “two-sided”
surfaces, χ(S) = 2 − 2g and thus g = (k − 1)/2 (note that Alexander uses p instead
of g).
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it may readily be put into perfectly rigorous form by means of known the-
orems ([8], p. 158, emphasis added).

Therefore, he proposed to reduce the normal forms to some diagrammatic
representations that allow simplifying the reasoning. Orientable surfaces, after
a sequence of “cuts” along closed paths and appropriate deformations, can be
transformed into a simply connected surface bounded by a chain of arcs

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 , . . . , apbpa
−1
p b−1

p

which may be in turn deformed into a polygon. Alexander did not only reduce
any closed surface to a fundamental polygon, but, most importantly, invited the
reader to reason on and starting from the diagrams in order to classify closed
surfaces. The diagrams are accompanied by symbolic representations in the form
of a combination of letters, called “words” (see Fig. 4); the user can thus perform
operations both on the polygonal forms and on the words.

Fig. 4. A simplified version of the diagrams originally used by Alexander and Brahana,
in [9, pp. 11–12].

In Fig. 4(a), the word abab corresponds to the diagrammatic representation
annotated with a of the real projective plane. The arrows go in the same coun-
terclockwise direction and therefore the same exponent +1 is associated to each
letter. The diagrammatic representation b is instead similar to the one used by
Dyck in Fig. 5. The (reduced) word associated to P2(R) is aa. In Fig. 4(b), the
word aba−1b is associated to the diagrammatic representation a of the Klein bot-
tle. Interestingly enough, we can cut this diagram along c and obtain two pieces
abc and bc−1a−1 that can be glued back along b; thanks to this transformation,
we obtain a second diagrammatic representation b of the real projective plan to
which is associated the word aacc.

Cohn-Vossen and Hilbert showed how in the case of the Möbius band one can
go from one of Dyck’s Grundform to a polygonal form by “cuts, deformations
and re-gluing” [10] (see Fig. 5). As they explain,

We can get a model of the Möbius strip from the region between two con-
centric circles by identifying all the diametrically opposite pairs of points
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of the smaller circle [Dyck’s Grundform]. At first sight it certainly would
not appear that this figure represents the same surface as the square model
(...). However, the square model can be obtained from [Dyck’s model] by
cutting the ring into two halves (Fig. 312), deforming the parts (Fig. 313),
turning one half over (so as to interchange the positions of e and b′ in
Fig. 313), and finally physically re-uniting some of the pairs of edges that
originally belonged together while abstractly identifying the rest (Fig. 314)
([10]. p. 317).

These representations, having a classificatory function, are thus diagrams:
they are well-defined, dynamic and mathematical objects on which to calculate.
We will go back to this first example in the discussion.

Fig. 5. Figures taken from [10], p. 317.

3 An Example from Algebra: Complex Semisimple Lie
Algebras

3.1 Root Systems and the Classification of Simple Lie Algebras

Our second example of the classificatory function of diagrams is taken from
algebra and concerns in particular the classification of complex semisimple Lie
algebras.12 A Lie algebra g over the field C of complex numbers is a complex
vector space provided with a bilinear map [·, ·] : g × g → g that satisfies the
following properties

– [X,X] = 0 for all X ∈ g (which is equivalent to [X,Y ] = −[Y,X] for all X,
Y of g),

– [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for all X, Y , Z of g (Jacobi identity).

An ideal h of g is a Lie subalgebra such that, for Y ∈ h and for all X ∈ g,
[X,Y ] ∈ h. A Lie algebra g is simple if dim g ≥ 2 and g does not contain any non
trivial ideal (i.e. different from (0) and g). A Lie algebra g of finite dimension is
called semisimple if it does not contain any non-zero Abelian ideal.

12 For an historical study on the classification of semisimple Lie algebra, see [11].
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A first problem consists in characterizing complex semisimple Lie algebras.
One possible characterization is to write a semisimple Lie algebra as a direct sum
of simple Lie algebras. On this basis, Wilhelm Killing and Elie Cartan obtained
a first classification of simple Lie algebras13. Note that here they did not use
any diagrammatic representation or reasoning, but only work with the notion of
root system that we will define below. In a nutshell, there are four families of
classical simple Lie algebras:

– For l ≥ 1, Al = sl(l + 1)
– For l ≥ 2, Bl = so(2l + 1)
– For l ≥ 3, Cl = sp(2l)
– For l ≥ 4, Dl = so(2l)

to which one should add five simple Lie algebras of an exceptional kind. Let g be
a (complex) semisimple algebra and h a Cartan subalgebra of g, i.e. an Abelian
maximal subalgebra of g. The dimension n of h is called the rank of g. A root α
of g (relatively to h) is a linear form on h that satisfies the following property:
there is a non-zero element X ∈ g such that [X,H] = α(H)X for all elements
H ∈ h. The set R of roots of g that is so obtained is called a root system of
g relatively to h. Such a system is independent, up to isomorphisms, of h. The
classification of simple Lie algebras is thus reduced to a classification of such
root systems.

A root system R spans a vector space V of dimension n that can natu-
rally be provided with a Euclidean space structure. It becomes now possible to
geometrically interpret the system.14 The geometric meaning of a root system
becomes then explicit with the following definition: Let V be a real vector space
of finite dimension, with the Euclidean inner product (·, ·). We say that a finite
subset R of V is a root system in V if the following four axioms are satisfied:

(i) R does not contain 0 and it spans V ,
(ii) Let α ∈ R and t ∈ R; if tα ∈ R, then t = ±1,
(iii) For all α in R, the set R is stable by reflection σα through the hyper-plane

orthogonal to α; in other terms, for all α, β ∈ R,

σα(β) = β − 2
(β, α)
(α, α)

∈ R

(iv) Let α, β be two elements of R and p(β) the projection of β onto the line
spanned by α, then p(β) = (β,α)

(α,α)α is an integer or half-integer multiple of

α. In other words, 2 (β,α)
(α,α) ∈ Z.

13 See in particular, Elie Cartan’s doctoral Thesis [12].
14 For example, let sl(3,C) = A2 be the vector space of 3 × 3 matrices with complex

coefficients of zero trace (i.e. such that the sum of the diagonal coefficients is zero),
with a bracket defined by [A, B] = AB − BA. This would be a Lie algebra of
dimension 32 − 1 = 8. The commutative subalgebra h ⊂ sl(3,C), constituted by the
diagonal matrices of zero trace is a Cartan subalgebra of sl(3,C). The dimension of
h is 3 − 1 = 2. The 32 − 3 = 6 roots of sl(3,C) (relatively to h) span a Euclidean
space of dimension 2.
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This definition is the starting point of Artin’s and van der Waerden’s
investigations on simple Lie algebras around 1932–193315. In the case of sim-
ple Lie algebras of rank n = 2, they represented each root system by a so-called
“vector diagram”, which satisfies the four axioms listed above.

3.2 Artin’s Presentation

Our aim is now to present the diagrams that were used by Artin in a series of
lectures given at the University of Göttingen in July 1933.16

In his presentation, Artin starts by illustrating some geometrical properties
characterizing a root system17; then, he constructs Vektordiagramme, “vector
diagrams”, that satisfy the geometrical conditions arising from the axioms 1–
4. These diagrams are thus well-defined mathematical objects; moreover, they
are dynamic, because it is possible to perform transformations on them such
as reflections and orthogonal projections. The user has to track these geometric
transformations on the diagrams, in order to verify that a root system is stable
for some of them, for example for all reflections on the hyper-plan orthogonal to
a root, no matter which root is taken: the diagrams represent stability proprieties
through their possible dynamic transformations. Artin reasons on these vector
diagrams, by enumerating all the possible cases (in a two-dimensional Euclidean
space)18. More precisely, he enumerates the diagrams corresponding to each
irreducible root system according to the dimension n of the space V that R
generates. Let R be a root system and V the vector space spanned by R, the
root system R is said to be reducible in V if V can be written as a non trivial
direct sum V = V1 ⊕ V2 where R1 = R ∩ V1 and R2 = R ∩ V2 are root systems in
V1 and V2. If not, R is irreducible. Moreover, a system R is irreducible if and only
if its corresponding Lie algebra is simple. As a consequence, the classification of
such diagrams leads to the classification of (complex) simple Lie algebras. From
the fact that a vector diagram represents an irreducible or a reducible root
system, it is possible to infer whether the corresponding Lie algebra is simple
or not. For n = 1, the only possible diagram consists of the vectors ±a and
corresponds to the simple Lie algebra sl(2,C) = A1. For n = 2, Artin enumerates
three possible diagrams (see Fig. 6). The diagram in Fig. 6(a) corresponds to the
classical simple Lie algebra sl(3,C) = A2, with the angle formed by vectors α
and β measuring 2π/3. The diagram in Fig. 6(b) corresponds to the classical
simple Lie algebra so(5,C) = B2

∼= sp(4,C) = C2, with the angle formed by
15 See in particular van der Waerden ([13], pp. 448–449) and Artin ([14], p. 4).
16 Emmy Noether, Hermann Weyl and Ernst Witt belonged to the audience of these

lectures. A written version of Artin’s presentation has been recently rediscovered
by Christophe Eckes and Norbert Schappacher thanks to Ina Kersten. See their
commentary on the Oberwolfach Photo Collection website, https://owpdb.mfo.de/
detail?photo id=9265.

17 He uses the term Veranschaulichung, which means illustration as well as visualiza-
tion.

18 Ch. II of his lecture is entitled Aufzählung der Diagramme (“”enumeration of the
diagrams).

https://owpdb.mfo.de/detail?photo_id=9265.
https://owpdb.mfo.de/detail?photo_id=9265.
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vectors α and β measuring 3π/4.19 The diagram in Fig. 6(c) corresponds instead
to the exceptional simple Lie algebra g2 = G2, with the angle formed by vectors
α and β measuring 5π/6.

Fig. 6. Diagrams associated to simple Lie algebras of rank 2.

By contrast, the diagram in Fig. 7 represents a reducible root system R of
rank 2 (i.e. which spans a vector plane V ) and is thus implicitly excluded by
Artin. Indeed, in that case, R can be decomposed into two systems R1 = ±α
which spans a vector line V1 and R2 = ±β which spans a vector line V2, so that
the vector plane V can be written as a direct sum of V1 and V2. As a consequence,
this diagram is attached to the semisimple Lie algebra sl2 ⊕ sl2 (direct sum of
two simple Lie algebras).

Fig. 7. A diagram associated to a semisimple (but not simple) Lie algebra of rank 2.

Starting from n = 3, it becomes very difficult to use two-dimensional repre-
sentations of vector diagrams. Despite this difficulty, Artin and van der Waerden,
by using these diagrams, were able to define an exhaustive classification of simple
Lie algebras.
19 The simple Lie algebra (so(5,C) consists of the 5 × 5 antisymmetric matrices with

complex coefficients.
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3.3 Dynkin Diagrams

Starting from the vector diagrams presented in the previous section, it is pos-
sible to construct very elementary diagrammatic representations called Dynkin
diagrams, corresponding to simple Lie algebras of an arbitrary given rank n.
Roughly speaking, a Dinkyn diagram is a graph, whose edges can be doubled or
even tripled; a simple edge is never directed, whereas a doubled or a tripled edge
is. Dynkin diagrams are simplier than Artin’s vector diagrams; most importantly
they are two-dimensional, whatever the rank of a simple Lie algebra might be.20

Before arriving at Dynkin diagrams, we need to recall some mathematical
definitions. Let R be a root system spanning the vector space V . A set Δ con-
tained in R forms a base of R if it satisfies the three following properties: (i) Δ
is a base of V , (ii) each root α of R can be written as a linear combination of
elements of Δ with integer coefficients, (iii) these coefficients are either all non-
negative or all non-positive. In the diagrams in Fig. 6, {α, β} represents a base
for each of the investigated root systems. The elements of Δ are called simple
roots of R (relatively to Δ).

The Cartan matrix of R (relatively to a base Δ) is the matrix (n(α, β))α,β∈Δ,
with n(α, β) = 2‖α‖

‖β‖ cos ϕ, where ϕ is the non oriented angle formed by vectors
α and β. In the diagram in Fig. 6(a) corresponding to sl(3,C) = A2, ‖α‖ = ‖β‖
and the angle formed by vectors α and β measures 2π/3; as a consequence
n(α, β) = n(β, α) = 2 cos(2π/3) = −1 represent the non diagonal coefficients in

the Cartan matrix
[

2 −1
−1 2

]
attached to this system. In the diagram in Fig. 6(b)

corresponding to so(5,C) ∼= sp(4,C), ‖β‖ =
√

2‖α‖ and the angle formed by

vectors α and β measures 3π/4; the Cartan matrix of this system is
[

2 −1
−2 2

]
.

In the diagram in Fig. 6(c) corresponding to g2, ‖β‖ =
√

3‖α‖ and the angle
formed by vectors α and β measures 5π/6; the Cartan matrix of this system is[

2 −1
−3 2

]
.

We can now define a Dynkin diagram of R (relatively to the base Δ) as a
graph whose vertexes are the (simple) roots of Δ. Two vertexes α and β are
related

– by a simple edge if n(α, β) = n(β, α) = −1,
– by a double edge if n(α, β) = −1 and n(β, α) = −2,
– by a triple edge if n(α, β) = −1 and n(β, α) = −3.

Edges are oriented from α to β if α is strictly longer than β i.e. if |n(α, β)| >
|n(β, α)|.
20 Similar diagrammatic representations were introduced by Coxeter [15], Witt [16] and

finally Dynkin [17,18]. However, these diagrams do not have the same semantics and
correspond to different approaches in the investigation of root systems. Despite the
fact that they look similar, they have a different “dynamicity”, that means one
reasons differently by using them.
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It is now possible to underline the classificatory function of Dynkin diagrams.
First, a Dynkin diagram is connected if and only if R is irreducible. Moreover,
to each (non empty) connected Dynkin diagram corresponds one and only one
irreducible root system (up to isomorphisms). Finally, it is possible to establish
an exhaustive list of possible Dynkin diagrams, to which the classification of
complex simple Lie algebras exactly corresponds (see Fig. 8). Dynkin diagrams
are thus at the same time objects of and instruments for a classification. These
diagrams, which were primarily introduced in order to represent in a very sim-
ple and convenient way the classification of simple Lie algebras, also appear in
various other branches of mathematics and they are systematically related to
classification theorems.21

Fig. 8. Dynkin diagrams displaying the classification of simple Lie algebras, with the
classical Lie algebras and the five exceptional ones.

4 Discussion

In the previous sections, we presented two examples of classifications of
mathematical objects from two distinct branches of mathematics in which dia-
grams play a crucial role. A first result is that diagrams can have a classificatory
function also for objects that, differently from those of topology, are purely alge-
braic, as in the case of simple Lie algebras.

The two examples have some common features. First, they both make use
of diagrams, in the sense proposed by De Toffoli and Giardino [1]. Not only
the diagrams but also the transitions from one diagrammatic representation to
the other are well-defined, as for example the transition from Dyck diagrams
to polygonal forms in the case of compact surfaces, or from vector diagrams to
Dynkin’s diagrams in the case of Lie algebras. However, in order to be dynamic,
21 See for reference [19].
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diagrams are indissolubly linked with some text. Second, diagrams allow isolating
and characterizing the fundamental building blocks of the respective classifica-
tions, once ambiguities and redundancies are excluded. Third, diagrams allow
conceiving the very objects belonging to the classification – think for example of
the connected sum operation and of the possibility of representing it by means of
diagrams, or of the Artin diagram representing a reducible root system. This is
possible because diagrams are at the same time an instrument to represent some
mathematical object and mathematical objects in themselves. Fourth, diagrams
have a generic significance or support generality. In the case of surfaces, they
allow envisioning cases that are initially problematic as generic cases – think of
the real projective plane. As a whole, they amount to simplifying the forms of
reasoning and the results. In the case of simple Lie algebras, diagrams allow treat-
ing uniformly the general case (classical Lie algebras) and the exceptional cases
(the five simple exceptional Lie algebras), to which it would be difficult without
them to associate concrete realizations a priori. Fifth, in both cases, we have to
learn how to imagine performing some actions on the diagrams, thus developing
a form of manipulative imagination, again in line with the case of knot diagrams
(see [1]). For all these reasons diagrams, differently from illustrations such as
Seifert and Threlfall’s tori that are not well-defined and potentially ambiguous,
appear to be particularly appropriate to serve a classificatory function. It is also
interesting to point out that the fundamental polygons have become nowadays
the notation that is commonly used in topology and vector diagrams are gen-
erally considered as a teaching model for understanding the meaning of Dynkin
diagrams.

There are however some differences to consider between the two discussed
examples. We showed that in the case of compact surfaces, the classification is
discovered by means of the diagrams. In fact, the introduced representations
allow understanding the case of non-orientable surfaces thus giving the classifi-
cation theorem its final shape. Diagrams serve as an interface between symbolic
representations such as the “words”, and the procedures that one can imagine
applying to some fundamental shape – a torus, the real projective plane, and so
on. Such an imagined procedure, as the one described by Poincaré, is one of a
kind, and remains in isolation from other mathematical representations until a
well-defined diagram is introduced to replace it. However, in the case of complex
simple Lie algebras, Killing and Cartan, who were the first to provide a classi-
fication, did not make use of any diagrammatic representation. In fact, vector
diagrams were introduced afterwards to the aim of simplifying manipulations
on root systems, for the reason that they display the information onto the two-
dimensional space, and as a consequence in a more compact and synoptic way
that allows for comparisons. Another difference is in the relation between the
diagrams and the text. In the case of compact surfaces, the information on how
to transform and manipulate the diagrams is present in the very representation,
thanks to a careful use of arrows. However, in the case of Lie algebras, the infor-
mation on how to manipulate the diagrams lies “outside” the diagrams, and for
this reason much more background knowledge is needed in order to interpret
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the representations and understand to what their spatial features refer. This is
of course related to the fact that in this case we are dealing with objects that
are purely algebraic, and therefore the representations used are inevitably more
abstract.

5 Conclusions

In light of these findings, some lessons can be drawn. First, we hope to have
shown the interest in a collaboration between philosophy of mathematics and
history of mathematics, for example by looking at the historical genesis of dia-
grammatic representations, in particular at standardization phenomena. Second,
one promising strategy resides in the search of other examples that would allow
proving the general impact of the classificatory function of diagrams by diver-
sifying the envisaged domains of mathematics. Third, in general terms, more
attention should be paid to the connection between the diagrammatic and the
symbolic representations, and to the imagined procedures that may bring to
new forms of reasoning and as a consequence to new forms of diagrammatic and
symbolic representations. This is matter of current and future research.
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16. Witt, E.: Spiegelungsgruppen und Aufzählung halbeinfacher Liescher Ringe. Abh.
Math. Sem. Univ. Hamburg 14, 289–322 (1941)

17. Dynkin, E.: Classification of the simple Lie groups. Mat. Sb. 18(60), 347–352 (1946)
18. Dynkin, E.: The structure of semi-simple Lie algebras. Uspekhi Mat. Nauk

2(4(20)), 59–127 (1947)
19. Hazewinkel, M., Hesselink, W., Siersma, D., Veldkamp, F.D.: The ubiquity of

Coxeter-Dynkin diagrams. Nieuw Archief voor Wiskd. 25(3), 257–307 (1977)



Mathematical Pictures

Axel Arturo Barceló Aspeitia(&)

Instituto de Investigaciones Filosóficas, UNAM, Mexico City, Mexico
abarcelo@filosoficas.unam.mx

Abstract. There is still debate as to whether Euclidean diagrams are symbols,
indexes or icons, and of what sort. I hold them to be pictorial icons that
reproduce at least some visual features of their objects. This hypothesis has been
directly challenged by Sherry [36] and Panza [29] among others. My aim on this
paper is defending this thesis against Macbeth’s [24–26] claim that if diagrams
were pictures their content could not shift the way it does in Euclidean proof. To
this goal I will present a broadly Gricean account of pictorial representation,
where visual resemblance constraints but no fully determines reference, and then
show how this account ratifies Macbeth’s insights about the importance of the
author’s intentions in determining a diagram’s content, in a way that allows for
the sort of content-shifting that she has identified as key to understanding the
role of diagrams in Euclidean proof.

Keywords: Euclidean diagrams � Icons � Representation � Resemblance
Euclides

1 Introduction

Philosophers have long been intrigued by the many devices we have developed for
mathematical practice, in particular, by the striking differences between formulas and
diagrams. However, pinning down the exact difference between them has proved to be
elusive, to say the least. One common-sensical way of making the distinction is arguing
that diagrams are pictures while formulas are symbols. This commonsensical way of
drawing the distinction can be made more precise by appealing to Peirce’s [31] dis-
tinction between symbols, indices and icons. In this classification, symbols and indices
roughly correspond, on Grice’s distinction, to signs that have artificial and natural
meaning, respectively, while icons are representations linked to their referents via “a
mere community in some quality” or likeness [18]. In this classification, icons occupy
an intermediate position between symbols and indices. Like symbols, they represent
because of an artificial and intentional act – the act of artificially reproducing relevant
aspects of their referents –, but like indices they relay on something that is naturally
linked to what they depict – the features of their referents they reproduce. Paradigmatic
examples of icons are figurative pictures, and other depictions [8]. However, it is not
necessary for a sign to perceptually resemble its referent to be an icon. Many scientific
models, for example, reproduce structural features of their target systems only, and
therefore, they are icons that do not look like their referents.
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Euclidean diagrams are an interesting case of mathematical representations. There
is still some debate as to whether they are symbols, indices or icons, and of what sort.
For Giardino [16], MacBeth [24–26] and French [14], Euclidean diagrams are struc-
tural icons, i.e., they are fruitful in the discovery, understanding and proof of geo-
metrical facts because of their homomorphism with genuine geometrical objects. In
contrast, I hold them to be pictorial icons just like other paradigmatic cases of pictures,
like realistic paintings or architectural models. This means that they represent their
geometrical referents at least in part, because of salient visual features they share with
them. This hypothesis has been directly challenged by Sherry [36] and Panza [29]
among others. I have addressed some of these challenges elsewhere, and now want to
focus on this paper on defending this thesis against Macbeth’s [24–26] claim that
Euclidean diagrams can be successfully used to prove theorems about geometrical
objects they do not resemble and thus cannot be pictures of. I will argue that Macbeth’s
arguments misconstruct the role resemblance plays in this sort of icons – what from
now on I will simply call “pictures” [3] – and thus present no challenge to my main
thesis.

Before getting to Macbeth’s challenge it is important to get an obvious hurdle out
of the way. One might think that the very idea of geometrical pictures should be a
non-starter since geometrical objects are abstract, and as such have no visual features
that may be iconically reproduced. If similarity of visual or spatial features underlies
the kind of resemblance that mediates pictorial iconicity, as I claim, then abstract
objects cannot be pictorially represented, for they have no visual or spatial features. My
response is as follows: The hypothesis I defend here does require that geometrical
entities have visual features; in particular, it requires geometrical entities to be shaped
in certain ways, similar to those of geometrical diagrams. I expect circles to be round,
for example – not round in some sui-generis sense, but in a way that is at least similar
to the way wheels and vinyl records are also round. So much is true. However, the
metaphysical claim that geometrical objects cannot have sensible properties is far from
a settled matter. On the contrary, it is a common thesis among historians and
philosophers that the objects of Euclidean geometry are quasi-empirical [12, 16, 17, 19,
30] and that not all abstract objects and universals lack sensible features akin to those of
everyday concrete objects [11, 13, 15, 23, 33, 34, 37, 38]. I will not argue for these
claims here, but my forthcoming arguments ought to be read within this quasi-
empirical framework.

2 Macbeth’s Challenge

The hypothesis that Euclidean diagrams are pictures han been challenged by Macbeth
[24–26] on her excellent study of Euclidean diagrams. According to Macbeth, “a drawn
circle in Euclid is not usefully thought of as giving us a picture … of the thing that the
word “circle” names.” [26] For her, the role of diagrams in Euclidean proof largely
consists in the de- and reconfiguration of content displayed by geometrical drawings,
not in the analysis of a given static picture. According to Macbeth, if diagrams were
pictures, no diagram representing one kind of object could be used to draw conclusions
about another. A diagram of an isosceles triangle, for example, could be used to draw
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conclusions about isosceles triangles or about triangles in general, but not about circles
or pyramids. However, argues Macbeth, there are clear cases of mathematical proof in
Euclid where this is exactly what happens. Consider, for example, the proof of
Euclid I.1.

In order for Euclide’s proof to go through, it is essential that we regard one and the
same drawn line, AB, in different stages of the proof, first as the radius of a circle, and
then as the side of a triangle. Any philosophical account of the role of diagrams in
Euclidean proof has to allow for content shifting of this sort.

In a Euclidean demonstration, what is at first taken to be, say, a radius of a circle is later in the
demonstration seen as a side of a triangle. But how could an icon of one thing become an icon
of another? How, for example, could an icon of a radius of a circle turn into an icon of a side of
a triangle? [26]

According to Macbeth, this is incompatible with the hypothesis that geometrical
diagrams are pictures, since she thinks that the content of a picture cannot change in the
course of reasoning about what it represents. Thus, to account for the shifting content
of Euclidean diagrams, Macbeth endorses a pragmatic account where the author’s
intentions, as manifest in the diagram’s accompanying text, play an essential role in
determining its content. According to her,

…the Euclidean diagram can mean or signify some particular sort of geometrical entity only in
virtue of someone’s intending that it do so and intending that that intention be recognised.
One’s intention in making the drawing—an intention that can be seen to be expressed in the
setting out (in those cases in which there is one) and throughout the course of the kataskeue—is,
in that case, indispensable to the diagram’s playing the role it is to play in a Euclidean
demonstration. [24]

Furthermore, one’s intention can override what the diagram shows, so that if the
geometer draws an angle with the intention “merely to draw an angle,… that which he
draws… will necessarily be right, or acute, or obtuse; but [what it represents] will be
neither right nor acute nor obtuse. It will simply be an angle.” [24].

According to Macbeth [24], the recognition that intentions play an essential role in
determining the content and role of Euclidean diagrams entails that they cannot be
pictures, i.e., that even though many figures in Euclidean diagrams share some visual
and spatial features with their referents, they do not represent them in virtue of this
resemblance. Macbeth recognises that diagrams of circles, for example, look like cir-
cles, but argues that it is not because of this that they represent circles, but because of
the interplay between pragmatic mechanisms and the structural homomorphism
between the diagrams and their geometrical referents.

Thus, for Macbeth, an account of diagrammatic representation that takes seriously
the importance of intentions is incompatible with the hypothesis that diagrams are
pictures [26].

Drawn figures in Euclid do not just picture various geometrical figures (any more than Arabic
numerals picture collections of things); instead they display the contents of the concepts of
figures in plane geometry, themselves understood in terms of relations of parts, in a mathe-
matical tractable way. A drawn circle in Euclid is not just a picture or instance of a circle but
instead an iconic display of the relation of parts that is constitutive of something being a circle.
[25]
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In the following, I aim to show that Macbeth is wrong in thinking that the content
of pictures is fixed previously and independently of any pragmatic considerations
regarding the intentions of the author. On the contrary, I will show that an adequate
account of the interpretation of pictures, in general, ought to incorporate intentional
concerns and, therefore, that the hypothesis that diagrams are pictures is compatible
with Macbeth’s recognition that intentions play an essential role in determining a
diagram’s content. This will allow me to show that Macbeth is wrong in assuming that
pictures cannot shift content and thus, that her argument for the claim that Euclidean
diagrams cannot be pictures is unsound.

3 A Pragmatic Account of Pictures

Resemblance guides, but does not fully determine our interpretation of pictorial icons:
how a picture looks is never sufficient to determine what it represents. This means that
resemblance is a necessary, but not sufficient, condition for pictorial representation.
This basic insight should be enough to meet Macbeth’s challenge.

Even though there is a broad debate regarding exactly what it takes for something
to represent something else, there is a growing consensus in the philosophical literature
that, at least in the case of what Grice called non-natural meaning – and Macbeth
recognises that diagrams have non-natural meaning in this very sense –, intention and
context are heavily involved [1, 2, 5, 7, 35]. Thus, in order to meet Macbeth’s chal-
lenge, all I need to do is to give an account of pictorial representation as non-natural
meaning and show that Euclidean diagrams are pictures in this very sense. If pictorial
content is non-natural meaning, as I will argue it is, it must not come as a surprise that
intention and context play an important role in the interpretation of pictures.

With this purpose in mind, I will define pictorial iconicity by extending Grice’s
characterization of non-natural meaning thus: a picture p depicts an object or state of
affairs o iff p was made to look like object o in such a way that, under normal
conditions, its audience is able to work out, on the basis of what p looks like, the
rational assumption that it was used with a representational purpose (i.e. that it was
used to represent some particular object, or objects, to a certain audience), and other
background assumptions (about how the represented object looks like, about the
conventions of the media, etc.) that it would be very unlikely that the user would have
given it the appearance it has, resembling object o, unless she wanted us to recognize
her intention to depict o.

On this account, a stick figure, for example, can be used to represent a person (to a
particular audience in a given context), if it would be rational to expect from such an
audience, in such a context, to figure out that, assuming that the stick figure was used
with the intention of representing something and assuming certain background infor-
mation both about how people look, and about what resources were available to the
user (for example, how much time she had to make such a drawing), that her most
likely intention in making it look roughly like a person was to represent a person.

One must be very careful in noticing that to say that a picture looks like or visually
resembles its subject does not mean that looking at the picture is just like looking at its
referent. All it means is that the picture shares enough visually salient properties with
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its referent for the author’s referential intentions to be recognized. Consequently, when
I say that a figure f in a diagram depicts a geometrical object o in a proof, all I mean is
that f represents o at least partially in virtue of being drawn so as to show at least a
visually salient property p – most commonly, its shape – that it shares with (or is
sufficiently similar with the analogous property in) its referent o, so that the readers of
the proof can be rationally expected to use this information to work out that it was
drawn with the manifest intention of representing o (most likely, because, in the
context, o is the most relevant object to have such shape p, and there is no conflicting
evidence in the context about another representational intention by the author).

For this Gricean account to work, the relevant resemblance cannot be just the
sharing of any visual property. It is also not enough that the relevant property be
perceptually perspicuous – “syntactically salient” in Kulvicki’s [21] terminology. Such
conditions are too weak to trigger the Gricean mechanism. It is necessary that the
common visual properties be clearly not accidental, and instead denote intentionality.
In other words, it must be at least obvious to any person (in the intended audience) who
looks at the figure that it was drawn intentionally so as to exhibit such properties. For
example, the roundness of the figures we use to represent the circles in Euclides I.1 is
salient in this sense, because it is a feature that curves do not usually have unless they
are intentionally drawn to look that way. It is this manifest intentionality of the
roundness of the figure that triggers the Gricean mechanism of interpretation. In other
words, the audience hypothesizes that the author intended his drawing to represent a
circle because that would explain her intention in making it patently round.

Besides being visually salient, the resemblance involved has to ideally strike a
balance between representational costs and benefits. In the case of diagrams, it must
strike a balance between how hard it would be to draw and how much it would make
interpreting the diagram easier – how much it would contribute to the immediacy of its
content, in Kulvicki’s [21] terminology. In the context of Euclidean proof, for example,
it is necessary to determine both what geometrical information needs to be represented
and how best to represent it. To determine what must be represented, one must consider
what is given in the initial conditions of the proof, what is to be proved, etc. To
determine how to represent it, in contrast, one has to evaluate the informational and
cognitive advantages and disadvantages of the available means [6]. In particular, one
must decide what information is worth representing in the diagram, and what infor-
mation is better left in the text. To determine which features of the geometrical situation
are worth reproducing in the diagram, one must weigh both its cognitive and infor-
mational costs and benefits. Continuing with out example of Euclid’s Theorem I.1., for
instance, we use a roundish closed curve to represent a circle, instead of a perfect circle,
because drawing it perfectly round would require too much effort without making it
much easier to recognize as representing a circle. On the other hand, if the line was not
closed, but open, it would lack a central feature of circles key to the proof’s validity (as
Macbeth has shown). Furthermore, if the line were not roundish but polygonal, the
resulting diagram would be too confusing. Thus, roundness is a feature of the circle that
is worth trying to reproduce in the diagram, but not perfectly.

Of course, being confusing, is not a logical defect, it is a pragmatic one. However,
according to Macbeth, as long as the diagram contains the relevant information, i.e., as
long as the figure is homomorphic to a circle in the relevant respects, there is nothing
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affecting the validity of the proof; and for this, all that is required is for it to be a closed
line. Nevertheless, the closest the closed line looks to an actual circle, the easiest it is
for us to identify its referent. It is not that the line looking like a circle is part of what
makes it a valid means for proving stuff about circles –Macbeth is right about this – but
it is part of what makes it represent a circle; and this is part of why we use round curves
instead of, say, crooked closed lines to represent circles in Euclidean geometry. This is
an important feature of Euclidean diagrams that is not captured by a structural account
like Macbeth’s.

In general, what features we decide to include in a picture will depend on the costs
and benefits of including or excluding them. When we cannot include in the diagram all
the information given in the setting of the problem, we have to choose which infor-
mation to exclude and make sure there are enough indications, mostly in the accom-
panying text, as to what information is missing from the diagram. This is why the
resemblance between diagrams and their referents is rarely total: Most of the times, it is
not worth reproducing all the properties of the represented object in the picture; it might
even be disadvantageous. Accordingly, most pictures have properties (including per-
ceptual ones) that their referents do not have, and vice versa. This is why, for example,
two-dimensional pictures can be used to represent three-dimensional objects, figures in
Euclidean space can be used to represent figures in Non-Euclidean space, as long as
there are other similarities and contextual clues that allow the interpreter to identify the
diagram’s content. I will explain in detail how context contributes to fixing the content
of a diagram in the following section. This will allow me to show how a pragmatic
account like mine can incorporate Macbeth’s insights about the important role of
manifest intentions in the interpretation of Euclidean diagrams and ultimately show that
pictures can indeed shift content the way Euclidean diagrams do.

4 Context and Interpretation

According to the account of pictorial representation I have developed so far, how a
picture looks is just part of the information the interpreter exploits in order to determine
what is being represented. What a picture represents strongly depends on its context of
use. As Bantinaki [5], Calderola [9], Dilworth [10], Hyman [19] and many others have
insisted, visual resemblance is a many-to-many relation, i.e. different images may
resemble the same object, and the same image can resemble many objects. As such,
visual resemblance may restrict the kind of objects a picture can represent, but it cannot
determine what it is being used to represent in every situation of use. Determining the
content of a picture is not a matter of determining what it resembles the most. Extra
background information is usually necessary, and depending on what background or
contextual information is given, the same picture can depict one referent or another.
This is why, in geometry, the same figure can be used to represent different entities or
states of affairs in different contexts, even at different stages of the same proof.

To explain how context helps fix the content of pictures in their interpretation, it might
prove helpful to say a little bit more about how context is exploited in human communi-
cation. For the purposes of this paper, let me adopt the well known Gricean account [18],
according to which, whenever we engage in conversations, our communication is guided by
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a set of assumptions or maxims. These maxims include: (maxim of quality) say only what
you believe to be true and of which you have enough adequate evidence; (maxim of
quantity) be as informative as necessary; (maxim of relation) contribute only relevant
information to the conversation; (maxim of manner) and be clear. These maxims together
constitute what is known as the cooperative principle: “Make your conversational contri-
bution such as required, at the stage at which it occurs, by the accepted purpose of the talk
exchange in which you re engaged” [18]. Appealing to this maxim has proved to be helpful
in explaining how we exploit contextual information to resolve ambiguities, fix extension to
predicates, understand sarcasm, etc.

Assume now that our use of diagrams follows Grice’s cooperative principle. In
particular, assume Fig. 1 above is used in the Euclidean Proof of I.1 to communicate
that AB and AC are radii of the same circle with center A. As drawn, points B and
C stand on a closed curve that completely surrounds point A. This curve shows, among
other salient properties, its round shape. It resembles a circle, but it also resembles
(among other things, and to a lesser degree) other sorts of curves and therefore, at least
in principle, could be used to represent them. Thus, it is necessary to consider which of
these possible interpretations is most likely to be the one intended by the author.
Without further information, the most promising hypothesis is that the diagram rep-
resents a simple figure very much like itself, i.e., a circle. Furthermore, after reading the
accompanying text, we realise that this was the author’s representational intention.
Thus we infer that points B and C lie on the circumference of a circle entered at A.

Sometimes, however, in order to provide a consistent interpretation of the diagram
that takes in consideration both what the accompanying text says and how the diagram
looks, one must reject not what the diagram shows, but what the text says instead.
Consider for example, Fig. 2 as used in Euclid’s reductio proof in I.6 [28].

In the diagram we see two triangles sharing one side (BC) and one angle (DBC), as
sated in the initial conditions of the proof. We also see that one of the triangles (BCD)
is inside the other (ABC) and, consequently, is smaller. Finally, we also see that angles
ABC and ACB are more or less equal. The accompanying text confirms that the angles
they represent are equal. It also asks us to work under the hypothesis that DB = AC.

Fig. 1. Euclides I.1
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Thus, we assume that the represented triangles ABC and BCD are of different sizes,
have two equal sides (BC = BC and DB = AC) and one equal angle (ABC = DBC).
However, we know from previously proved results, that if two triangles have two equal
sides and one equal angle, one cannot be larger than the other, which contradicts what
we see in the diagram. We have reached a contradiction. Since we need to restore
consistency in order to determine the diagram’s reference, and the contradiction is
easily avoided if we reject the hypothesis under consideration, we do that. Once we
stop trying to interpreting lines DB and AC as equal in length, we can easily identify the
represented figures as two triangles ABC and BCD such that ABC > BCD, ABC =
DBC, BC = BC and AB > DB. These, of course, are not impossible triangles, but
regular possible triangles. This way, we can make sense of what happens in reductio
proofs without having to postulate impossible geometrical objects. In general, in
reductio proofs of this sort, the diagram does not represent the hypothesis to be reduced
(or the contradiction reached from it), but the positive conclusion we obtain from the
reductio. If a reductio proof assumes that not-P to get to a contradiction and thus show
that P, we can expect its diagram to represent a situation where P holds, not one where
the reduced hypothesis not-P holds, for this is impossible.

For Macbeth, “one cannot picture something that is impossible” [25] and, thus, the
diagrams in Euclidean reductio proofs cannot be pictures; however, in a pictorial
account like mine what is depicted in these diagrams is not the impossible state of
affairs to be reduced, but the very situation that the reductio aims to prove, which is not
impossible at all! Euclid’s diagram for I.6 is mysterious only under the wrong
impression that it is sufficient to look at a diagram to get to its content [22]. Yet, once
we recognize the importance of context in determining the content of pictures, we
realize that there is nothing mysterious here. Without a proper understanding of the role
of contextual information in the interpretation of pictures, one might not see how a
diagram can change its content, even within a single diagrammatic proof. However,
once we understand that how a diagram looks underdetermines what it represents, the
phenomenon of content-shifting in Euclidean diagrams is no longer surprising. Given
the importance of context in helping interpreters identify the author’s referential
intentions, and given the importance of the author’s intentions in fixing a picture’s
referent, it is not surprising that the content of pictures can shift the way they do in
Euclidean diagrams. Thus, Macbeth’s challenge poses no real threat to the thesis that
geometrical diagrams are pictures.

Fig. 2. Euclid I.6
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The account of diagrams in Euclidean proof that I have presented so far takes as
starting point the recognition that the representations we use to draw inferences about
the world are shaped by two Gricean constraints: to include as much relevant infor-
mation in the representation as possible with as little noise as possible, and to make the
representation as easy to make, manipulate and interpret as possible. I have assumed,
following a growing body of empirical evidence [4, 20, 27, 32] that one way to make a
representation easy to interpret is by making it similar to what it represents. However,
many times, making a representation resemble its referent has its costs: while making
the representation easy to interpret, it can make the representation difficult to produce.
It can also introduce noise, i.e., it can suggest irrelevant or misleading information. If
there is relevant information that needs to be put across, but it is impractical or
impossible to represent pictorially, we have to communicate it some other way. The
most common way is by adding an accompanying text. Similarly, if the representation
includes false information, this is also something we can fix in the accompanying text.
But then, we have two different sources of information about the relevant subject; this
opens the door to possible inconsistency. When inconsistencies occur, they can be
resolved appealing to general pragmatic principles. They may be resolved by rejecting
some of the information contained in the diagram or by rejecting some of the infor-
mation contained in the text (Euclid’s reduction proof of I.6 is an example). This
explains why we can use the same diagram to represent different things in different
contexts and why we can use a diagram in a reductio proof without having to postulate
impossible objects.

5 Conclusions

In this paper I have defended a Gricean account of Euclidean diagrams as pictures.
According to this account, Euclidean diagrams are pictorial icons and, as such, they
exploit perceptual resemblance to fix their reference. I have also shown how this
account can throw some new light on questions, like “how is it possible for the same
diagram to be used in different contexts to represent different things?”, “how do text
and diagram interact in Euclidean proof?”, and “what does the diagram in a reductio
proof represent?” I have tried to show that as a consequence of the informational and
cognitive constraints that shape diagrams, their visual resemblance to what they rep-
resent is usually just partial, and this results in referential underdetermination. In other
words, I have tried to show that, in Euclidean diagrams, just as in pictures in general,
visual resemblance constraints but does not fully determine reference. Most times, the
figures in the diagram will resemble objects of more than one kind, and we will need
extra information to identify the intended referent among them. Thus, it is necessary to
combine the information we perceive in the diagram with information from the
accompanying text. This allows for a more dynamic and malleable use of diagrams, as
is manifested in Euclidean proofs where the same figure in a diagram is used to
represent different geometrical objects (like Euclid’s I.1) or a diagram is used to reduce
a hypothesis to contradiction without actually depicting any impossible situation (as on
Euclid’s I.6).
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Abstract. Mathematical problem solving typically involves manipulating
visual symbols (e.g., equations), and prior research suggests that those symbols
serve as diagrammatic representations (e.g., Landy and Goldstone 2010). The
present work examines the ways that instructional design of student engagement
with these diagrammatic representations may impact student learning. We report
on two studies. The first describes systematic cross-cultural differences in the
ways that teachers use mathematical representations as diagrammatic supports
during middle school mathematics lessons, finding that teachers in two higher
achieving regions, Hong Kong, and Japan, more frequently provided multiple
layers of support for engaging with these diagrams (e.g. making them visible for
a longer period, using linking gestures, and drawing on familiarity in those
representations), than teachers in the U.S., a lower achieving region. In Study 2,
we experimentally manipulated the amount of diagrammatic support for visually
presented problems in a video-based fifth-grade lesson on proportional rea-
soning to determine whether these multiple layers of support impact learning.
Results suggest that learning was optimized when supports were used in com-
bination. Taken together, these studies suggest that providing visual, temporal,
and familiarity cues as supports for learning from a diagrammatic representation
is likely to improve mathematics learning, but that administering these supports
non-systematically is likely to be overall less effective.

Keywords: Mathematics learning � Comparison
Diagrammatic representations � Analogy � Cognitive supports

1 Introduction

Teaching students mathematics that is flexible, transferrable, and connected across
topics is crucial to high quality instruction; however, despite decades of agreement to
this pedagogical goal, many students struggle with such mathematical thinking (e.g.,
Polya 1954; Bransford et al. 1999; National Mathematics Panel 2008). Given the
difficulties students experience in learning mathematics, a key goal is to improve
instruction.

Improving mathematics instruction requires an understanding of the cognitive
processes involved in acquiring mathematics knowledge and skills. In this paper, we
highlight one challenge to thinking mathematically: learning to perceive mathematical
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problems and symbolic equations as sets of relationships (arithmetic, proportional,
inequality, etc.) (see Richland et al. 2012). The ability to perceive the relational
structure of mathematics allows the problem solver to more easily draw connections
across problems or mathematical ideas, and to think more conceptually about
mathematics.

Mathematical representations are diagrammatic if they convey structural properties
through their spatial and perceptual attributes. As an illustration, in the equa-
tion 3 + (4 − 5), a learner must know to subtract 5 from the 4 before adding three
because the parentheses convey priority in carrying out the operations. Thus, part of the
student’s task in working with mathematical representations is to perceive the relevant
structural relations that are embedded in the perceptual representations. Effective
mathematical instruction, therefore, requires attention to how perceptual representa-
tions are presented in order to support students’ understanding of mathematical con-
cepts (Kellmann and Massey 2013; Richland and McDonough 2010).

Considering mathematical equations and symbolic representations as diagrams
allows one to formulate insights into how to best support learners in identifying the
core relationships within these representations. Diagrams can use spatial cues and
sparse representations to highlight relationships rather than simply depict iconic
information (Ainsworth 2006; Michal et al. 2016), however it is not the case that
students learn from any and all experiences with a diagram (Rau 2017). Rather, it is
clear that not only must the diagram be informative and relevant, but also pedagogical
practices for supporting students’ thinking and must improve the likelihood that stu-
dents notice and attend to the key relationships being depicted (e.g., Richland and
McDonough 2010). To improve students’ attention to relationships, we can draw on
strategies for ensuring that students learn from diagrams to inform mathematical
pedagogy.

In the present paper, we begin by reviewing principles deriving from perceptual
learning, mathematics, and reasoning literatures to highlight strategies for how to
improve attention to relationships within diagrams: (a) use visual representations, make
them visible while discussing them and subsequent representations, (b) use hand
movements (linking gestures) to move between instructional diagrams, and (c) draw on
material that is familiar to learners (see below for more detail). We then describe two
sets of data suggesting that combining these strategies systematically may be the most
potent way to improve student learning from mathematical diagrams. First, we describe
an analysis of cross-national data collected as part of the Third International Mathe-
matics and Science Study (TIMSS, Hiebert 2003) showing that teachers in two regions
that outperform the United States, Hong Kong and Japan, used these pedagogical
principles in combination more systematically than did U.S. teachers. These data
suggest both that these strategies must be considered in combination, rather than as
separable practices, but also that these may be correlated with student learning. In a
second study, we report an experimental design in which we tested the efficacy of them
being used together. The results support the correlational data identified in study one,
together providing consistent indications that these are important pedagogical practices
that can support students’ attention during engagement with mathematical diagrams,
and that doing so has consequences for student learning even when the mathematical
diagram and the audio-stream of the lessons are identical.
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1.1 Perceptual Learning in Mathematics

Though mathematics has traditionally been viewed as involving conceptual learning,
there is evidence that mathematics learning is highly perceptual (e.g., Kellman and
Massey 2013). For instance, mathematical concepts are frequently represented in the
form of symbolic notations, which themselves contain perceptual attributes that are
connected to structural properties. As an illustration, Landy and Goldstone (2010) had
subjects solve simple equations that were presented either spatially consistent with the
order of operations (e.g., solving 3 þ ð4� 5ÞÞ or spatially inconsistent (e.g., solving
3þð4 � 5ÞÞ – these authors found that the spatial distance between influenced
problem solving: Subjects were less accurate at solving simple equations when they
were spaced in ways that were inconsistent with the order of operations, suggesting that
even adults represent simple equations as types of diagrams.

As another illustration of perceptual learning in mathematics, interventions that
support perceptual learning processes have shown some promise for improving stu-
dents learning outcomes. For example, Kellman et al. have developed visual matching
exercises that engage learners in linking different representations of mathematical
concepts. In these exercises, students do not formally solve problems or conduct cal-
culations; rather, students learn to identify the attributes that connect different mathe-
matical representations. Despite never formally solving problems, students who engage
in these linking activities are more accurate and at later problem solving than students
that do not engage in them (Kellman et al. 2008; Kellman et al. 2010). A related
perceptual learning intervention that allows students to perform physical manipulations
of equations that are consistent with the grammatical rules of algebra has shown
promise for supporting students’ algebraic understanding (Ottmar et al. 2012).

Because mathematics involves perceiving the relevant structure in representations,
diagrammatic supports that highlight structure can be a powerful tool to promote
mathematical understanding and fluency (Rau et al. 2009; Rittle-Johnson et al. 2009). At
the same time, simply providing diagrams may not result in successful learning (Rau
2017). Often domain leaners fail to notice relevant correspondences between repre-
sentations unless highly supported in doing so (e.g., Alfieri et al. 2013; Gick and
Holyoak 1980, 1983; Richland and McDonough 2010). Children and domain novices
(both characteristics of k-12 school children) are most susceptible to missing key ele-
ments of comparisons and attending to irrelevant salient features that impede relational
thinking, in part due to low cognitive processing resources (e.g., Richland et al. 2006).
We next review research on how to support reasoning with diagrams in mathematics.

1.2 Diagrammatic Supports

While diagrams can serve as effective cognitive supports for learning in mathematics,
students need support in comprehending diagrammatic representations before they can
benefit from them. Understanding of visualizations in mathematics can be supported by
cognitive aids that highlight relevant structural properties in the representations. The
science of learning has made advances in understanding of how students best learn with
diagrammatic representations. These principles for supporting diagrammatic fluency
are discussed, below.
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Making Representations Visible Simultaneously. Research suggests that learning in
general is facilitated by the use of simultaneous diagrammatic representations (Gadgil
et al. 2012; Gentner 2010; Matlen et al. 2011; Richland and McDonough 2010). In the
domain of mathematics, Rittle-Johnson and Star (2007) found that middle-school age
students were more likely to improve in solving algebraic equations when students
compared multiple worked out equations as compared to studying them in isolation.
Simultaneous presentation prompted students to compare the two domains and high-
lighted the relevant structural attributes of the equations. Other mathematics studies
have shown learning gains when two visual representations are displayed simultane-
ously versus sequentially, leading to gains in procedural knowledge, flexibility, and
conceptual understanding (e.g., Richland and Begolli 2015; Rittle-Johnson et al. 2009).

Use Spatial Organization to Highlight Key Relations. Whenever two representa-
tions are compared there are many similarities and differences that could be attended to.
Learning is enhanced when the spatial organization of the representations highlights the
alignments. For example, Kurtz and Gentner (2013) found participants were faster and
more accurate at detecting differences in skeletal structures when two skeletal images
were presented in the same orientation relative to when they were presented in a
symmetrical orientation. Further, Matlen et al. (2014, in prep) found that placing
images in direct spatial alignment, such that a student need not move through one
object to find alignments with another, optimized the speed and accuracy with which
analogies were processed. In contrast, impeded alignments were slower and led to more
errors.

Use Linking Gestures to Move Between Spatial Representations. Linking gestures
are hand movements that move between two (or more) representations that are being
compared, sometimes highlighting the specific alignments between these representa-
tions, and other times simply providing support for noticing the relevance of one
representation to another (Alibali and Nathan 2007, Alibali et al. 2011; Richland 2016).
For instance, Richland and McDonough (2009) provided undergraduates with exam-
ples of permutation and combination problems that incorporated visual cueing, such as
gesturing back and forth between problems and allowing the examples to remain in full
view, versus comparisons that did not incorporate visual cueing. Students who studied
the problems with visual cueing were more likely to succeed on difficult transfer
problems. Linking gesture use is correlated with high mathematics learning in students
(Richland 2016) and teacher gesture is well known to improve learning outcomes (see
Goldin-Meadow 2003).

Don’t Overload Learners’ Cognitive Resources. Reasoning with multiple repre-
sentations requires adequate working memory (WM) and executive function (EF) re-
sources, leading to reasoning failure and lower rates of learning when resources are
overloaded or non-functioning (e.g., Richland et al. 2006; Walz et al. 2000; Cho et al.
2007). When the contributions of working memory (WM) and inhibitory control
(IC) were examined separately on children’s successful learning and transfer from a
classroom lesson based on an instructional analogy, we found that both explained
distinct variance for predicting improvements in procedural knowledge, procedural
flexibility, and conceptual knowledge after a 1-week delay (Begolli et al. in Press).
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WM & IC were less predictive at immediate post-test, suggesting that these functions
are not simply correlated with mathematics skill, but may be particularly important in
the process of durable schema-formation (Begolli and Richland 2015). To reduce
cognitive load during comparison, visual representations from familiar examples or
domains can be used when possible in order to help students understand unfamiliar
examples or domains (Duit 1991).

1.3 Implementing Supports in Practice

The above supports provide guidance for instructional decisions in classrooms.
However, many mechanisms of learning operate simultaneously in everyday class-
rooms, and may augment or undermine each other, meaning that theories that explain
learning in isolation may actually differ from those that explain learning in classrooms.
Despite a large research base on what supports reasoning with diagrammatic repre-
sentations, little research has explored the combinatorial use of supports, and this is
particularly true in the context of authentic classrooms learning environments.

One reason why this may be important is that some supports may seemingly
contradict one another. For instance, supports 1-3 described above are hypothesized to
function because they reduce the cognitive processing load on reasoners to notice and
draw inferences based on similarities between the representations; however, it is
possible that adding simultaneous visual representations, spatial alignments, and ges-
tures to process simultaneously could instead augment processing load. Thus, studying
the integration of these principles is key to understanding how supports function in
combination, resulting in more informed recommendations for how to best structure
diagrammatic supports for classroom learning.

1.4 The Present Studies

The present studies examine the combinatorial use of diagrammatic supports both
descriptively and experimentally. Study 1 consisted of a cross-cultural examination of
the use of diagrammatic supports in middle school classrooms. The study builds on
prior research by Richland et al. (2006) who coded the frequency of diagrammatic
supports using a sample of eighth-grade mathematics lessons taught in the U.S., Hong
Kong, and Japan from the Third International Mathematics and Science Video Study
(TIMSS, Hiebert et al. 2005). These authors found that U.S. teachers regularly use
comparison and contrasting cases in mathematics instruction, yet they do so without
using diagrammatic supports as frequently as East Asian teachers. However, in this
research, the frequency of co-occurrence of the supports was not examined. Thus, the
present investigation re-analyzed lessons from the U.S., Hong Kong, and Japan to
understand the combinatorial use of diagrammatic principles in these regions. In Study
2, we experimentally examine the impact of different combinations of diagrammatic
supports on middle school students’ mathematics learning.
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2 Study 1

2.1 Method

Videodata were collected as part of the Third International Mathematics and Science
Video Study (TIMSS, Hiebert et al. 2005) through a randomized probability sample of
all eighth-grade mathematics lessons taught in the U.S. and seven higher achieving
regions internationally. These data were analyzed and reported in a previous study (see
Richland et al. 2007). The current study involved a re-analysis of codes from a set of
thirty lessons that were randomly selected from the U.S., Hong Kong, and Japan. Each
lesson was taught by a different teacher, and all verbalized or visually presented
comparisons were identified and then coded for their presence of principles for sup-
porting student comparison efforts.

• sourceVisAvail = the source domain of the comparison was visually available
• gestureComp = use of linking gestures for comparison
• visualAlignment = problems were spatially aligned
• sourceUnfamiliar = whether the source of the comparison was unfamiliar.

The data for the present study were re-analyzed to explore the extent to which
diagrammatic supports were used in combination cross-culturally in western and
eastern regions. Prior reports of this data indicated that teachers in Japan and Hong
Kong were more likely to use diagrammatic supports than teachers in the U.S.
(Richland et al. 2007). Thus, in the present study we combined Japanese and Hong
Kong lessons in the present analysis.

The data set consisted of 588 previously coded analogies in 30 lessons from each of
the three regions listed above (n = 10 each). Codes for the diagrammatic supports for
each analogy relative to the total number of analogies presented were averaged within
each lesson.

2.2 Results

To determine the extent to which diagrammatic supports co-occurred with one another,
Pearson correlations were conducted between the supports within each region. The
results of this analysis for East Asian and U.S. lessons are presented in Figs. 1 and 2,
respectively. As can be seen from Fig. 1, in East Asian lessons, supports evidenced
moderate to high positive correlations (ranging from .45 to .68), indicating that sup-
ports are used moderately often in combination. In addition, all correlations within East
Asian lessons were statistically significant from a zero correlation (ps < .05). In con-
trast, correlations between supports in the U.S. were inconsistent in their direction
(ranging from −.48 to .29; see Fig. 2). Moreover, no correlations in U.S. lessons were
statistically different from a zero correlation (all ps > .15). Though we view these
findings as primarily descriptive, the results suggest that in addition to using dia-
grammatic supports less frequently in the U.S. than in East Asian countries (Richland
et al. 2007), U.S. teachers are also less likely to use supports in combination.

Prior research suggested that U.S. teachers regularly use comparison and con-
trasting cases in mathematics instruction, yet they do so without adequately supporting
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students in drawing these connections (Hiebert 2003; Richland et al. 2007). Impor-
tantly, teachers’ rates of supporting students in drawing connections between mathe-
matical ideas or problems during problem solving was the single factor that

Fig. 1. Pearson correlations between diagrammatic supports in East Asian mathematics lessons
(i.e., Hong Kong and Japan, N = 20). All correlations are statistically significant at alpha < .05.

Fig. 2. Pearson correlations between diagrammatic supports in U.S. mathematics lessons
(N = 10). No correlations are statistically significant (all ps > .15).
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differentiated all higher and lower achieving peer countries in the Trends in Interna-
tional Mathematics and Science 1999 Video Study (Hiebert 2003). Though NCTM and
disciplinary panels have long recommended helping students make mathematical
connections (see National Mathematics Panel 2008; Polya 1954), this is still a serious
challenge for teachers (Hiebert et al. 2005). The present study suggests that U.S.
teachers also use these supports less frequently in combination than in east Asian
countries – this was particularly true when the source problem was unfamiliar. This
finding contrasts to East Asian teachers, who were more likely to use supports when the
source problem was unfamiliar.

3 Study 2

Study 1 revealed that teachers in two higher achieving regions, Hong Kong and Japan,
more frequently provided multiple layers of support for engaging with these diagrams
in systematic ways, such that if one support strategy were used another was often used
(i.e. making representations visible for a longer period, spatial alignment between
diagrams, using linking gestures, and drawing on familiarity in those representations).
This correlated use of support strategies mapped onto student achievement patterns,
such that teachers in Hong Kong and Japan used these practices more than teachers in
the U.S., which is a lower achieving region. This trend was suggestive of a relationship
to achievement, but not conclusive. Thus in Study 2, we experimentally manipulated
the amount of diagrammatic support provided for visually presented problems in a
video-based fifth-grade lesson on proportional reasoning, to determine whether these
multiple layers of support impact learning.

3.1 Method

The present experiment, we independently manipulated the familiarity of a source
example problem with the amount of diagrammatic support provided to assess the
influence of familiarity and visual supports together, separately, and in comparison to
instruction without either of them. Specifically, the design was a 2 (familiarity con-
dition: Unfamiliar or Familiar) � 2 (support condition: All Support or No Support)
between subjects randomized trial.

Participants. Two hundred sixty-seven 5th grade students participated in this study.
Forty-nine participants (18%) were excluded because they did not complete either the
familiarity manipulation or one of the three math assessments. Of the remaining 218
participants, 61 were in the Familiar-All Support condition, 50 were in the Familiar-No
Support condition, 56 were in the Unfamiliar-All Support condition, and 51 were in the
Unfamiliar-No Support condition (See Table 1 for demographic representations of
students). The study was run in nine total classrooms in five schools in the Chicago
area. Four of these schools were public charter schools, while one was a Catholic
school.

Procedure. Classrooms were visited after permission from the school’s administration
and teachers was granted. Each participating classroom was visited three times over a
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two-week period. Students were told that the goal of the study was to understand the
best ways to teach kids math.

Visit 1. The first visit to the classroom lasted approximately 1 h. Students completed
two baseline measures, and then were randomly assigned to either a familiarity training
condition or a no familiarity training condition. The baseline measures were the
following:

1. Patterns of Adaptive Learning Survey (PALS). This 24-item measured goal
orientation, and consisted of three scales (Mastery Goal Orientation, Performance-
Approach Goal Orientation, and Performance-Avoid Goal Orientation) (Midgley
et al. 2000). One question about students’ level of math anxiety (“Math makes me
feel nervous”) and two questions about students’ long division abilities (“I’ve been
taught long division before” and “I can do long division”) were added to the end of
this survey.

2. Content Knowledge Assessment. This assessment was a researcher-designed test
consisting of 7 items that assessed students’ baseline level of knowledge of rate and
ratio concepts and long division abilities (see Richland and Begolli (2015) for test
properties).

On the content knowledge pre-test, students were instructed to attempt each
problem and were asked to show all of their work, even if they weren’t able to get a
final answer. The pre-measures took approximately 45 min for students to complete.

After students completed the pre-measures, they were randomly assigned to one of
the two familiarity conditions. Half of the students in each classroom were given long
division instruction (Familiar condition) while the other half was given practice with
long division problems (Unfamiliar condition). All students had been previously
instructed in long division, these were simply opportunities to retrieve and strengthen
the familiarity of these procedures. Students in both familiarity conditions were given a
worksheet containing the same three long division problems. For students in the
Familiarity condition, the first problem was worked out for them step-by-step, with
instructions for each step. Students were asked to solve the second problem themselves,
but were given those same step-by-step instructions with space next to each instruction
for students to complete that step. Students were then asked to solve the third problem
on their own. Students in the Control condition were given the 3 long division prob-
lems and were simply asked to solve each problem and show their work.

Table 1. Demographics of participating students in the analytic sample.

Demographic Percent in sample Number in sample
total N = 218

Females 58% 126
African-American 16% 34
Hispanic 57% 124
White 13% 29
Other race(s) 14% 31
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Visit 2. Researchers returned to each classroom 2–7 days later (mean = 4.3 days,
median = 4.5 days), for a 90 min session. Students were assigned to one of two
video-based instruction conditions: All Supports or No Supports. Assignment was
random but with the constraint that one problem on the baseline test was scored and
used in order to minimize any differences between baseline performance across
conditions.

All of the videos contained the identical audio stream of information, and the
lessons were the same teacher and classroom, but one video included more visual
access to the mathematical diagrams on the board and to linking gestures, while the
other video did not have these pedagogical supports.

The lesson content involved a lesson about ratio, centered on a comparison between
multiple ways that different students solved a word problem involving a set of ratios.
Both video lessons began with a teacher asking students to solve a ratio problem any
way they would like (see Table 2). Two students in the video were then asked to share
the method they used to solve the problem. The first student in the video indicated that
he used the Least Common Multiple (LCM) method to solve the problem. The teacher
then solved the problem on the board using the LCM method described by the student.
A second student in the video told the class how he used division to solve the problem.
The teacher solved the problem on the board using the division method described by
the student. Finally, the teacher discussed the definitions of rate and ratio, summarized
the lesson, and compared the two solution methods. Students in the study completed
problems and answered teacher questions in a packet along with students who appeared
in the video lesson.

The All Support and No Support videos differed in three ways (see Fig. 3): (1) In the
All Support video, the two methods of solving the problem (LCM and division) remained
visible on the board throughout the lesson. In the No Support video, the LCM solution was
not visible again once the discussion of the division method began. (2) In the All Support
video, these two solution methods were presented on the board in a parallel structure so
that comparisons between the two solution methods could be made more easily. In the No
Support video, the two solution methods were not shown at the same time, so this way of
organizing the board could not support students in making comparisons between the two
solution methods. (3) In the All Support video, the teacher used linking gestures while
comparing the two solution methods. Gestures were not used in the No Support video.
After the video lesson, students in the study completed an immediate post-test to assess
how much they learned from the video lesson. Finally, students completed a 10-item
survey that tested their level of engagement with the lesson.

Table 2. Students were provided the following prompt (accompanied by the table, below) in
each video lesson: Ken and Yoko shot several free throws in their basketball game. The result of
their shooting is shown in the table. Who is better at shooting free throws?

Shooter Shots made Shots tried

Ken 12 20
Yoko 16 25
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Visit 3. Researchers returned for a third visit 4–9 days later (mean = 6.7, median = 7).
Students completed 3 tasks during this visit, which lasted 1 h. As a group, students
completed the d2 Test of Attention, a paper and pencil test that measures concentration
and selective attention (Brickencamp and Zilmer 1998). Next, students completed the
delayed post-test to assess how much they remembered from the video lesson during
our second visit. Finally, students completed a demographics questionnaire.

3.2 Results

Outcomes of interest in the present investigation concerned students’ performance on
the content knowledge assessment. Specifically, we were interested in increases in the
correct strategy use at post-test vs. pre-test (students’ use of either the LCM or division
strategies), and decreases in the incorrect subtraction strategy from pre- to post-test. For
this reason, we concentrated our analyses on the problems that required students to
choose a strategy and solve the problem on their own (this analysis does not include
student responses to multiple choice questions). Outcome scores represent an average
across all non-multiple choice questions.

Correct Strategy Use. To explore the presence of correct strategy use across conditions,
we conducted separate 2 (familiarity condition) � 2 (support condition) between subjects
ANOVAs on students’ gains from pre-test to post-test (Visit 1 vs. Visit 2) and from gains
from pre-test to delayed post-test (Visit 1 vs. Visit 3), using the correct use of either the
LCM or division strategy as the outcome variable. The analysis for the pre- to post-test
ANOVA revealed significant main effects of support condition (F(1,214) = 11.52,
p = .001) and familiarity condition (F(1,214) = 4.36, p = .04), and a marginally

Fig. 3. Screen shots of identical points in the AS and NS videos during which the teacher
compared two solution strategies. Parallel organization on the board, two visible solution strategies,
and gesture were used in the All Support condition, but not in the No Support condition.
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significant interaction between support and familiarity conditions (F(1,214) = 3.11,
p = .08) on correct strategy use. Games-Howell post-hoc tests revealed that these effects
were primarily driven by the performance of students in the Familiar-All Supports con-
dition, who performed significantly better than students in the three other conditions
(ps < .02).

At delayed post, the ANOVA analysis revealed a significant main effect of support
condition (F(1,214) = 6.73, p = .01), no main effect of familiarity condition (F
(1,214) = .90, p = .35), and a marginally significant interaction between support and
familiarity conditions (F(1,214) = 2.76, p = .10) on correct strategy use. We show
delayed post performance in Fig. 4, as this time-point represents learning that is sus-
tained over time, and is arguably the strongest test of our hypotheses. To explore the
interaction, we conducted Games-Howell post-hoc tests to make comparisons between
conditions. This analysis revealed that the interaction was driven primarily by higher
performance in the Familiar-All Support condition relative to the Familiar-No Support
condition (p = .02) and the Unfamiliar–No Support condition (p = .09).

Decreases in Use of The Incorrect, Subtraction Strategy. A common incorrect
strategy for comparing ratios involves the use of subtraction, where students subtract
part of the whole (e.g., shots made from the total amount tried) (see Begolli and
Richland 2015). To explore the use of this strategy, we conducted a 2 (familiarity
condition) � 2 (support condition) between subjects ANOVA on students’ decreases
in use of the subtraction strategy from pre to post-test and from pre- to
delayed-post-test. The ANOVA on decreases from pre to post-test revealed a main
effect of support (F(1,214) = 6.35, p = .01) but no effect of familiarity condition and no
interaction between support and familiarity. Post-hoc Games-Howell tests revealed a
marginally significant effect for students in the Familiarity-All Support condition to
decrease their use of the misconception more often than students in the
Unfamiliarity-No Support condition (p = .06).
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Fig. 4. Average percent change in correct strategy use from pre-test to delayed post-test by
condition.
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The ANOVA on decreases from pre to delayed post-test revealed only a significant
main effect of the support condition (F(1,214) = 7.98, p = .005) (see Fig. 5). Marginal
differences in the decreased use of the subtraction strategy were found for pair-wise
comparisons between the Familiar-All Support condition vs Unfamiliar-No Support
condition (p = .10) and the Unfamiliar-All Support condition vs the Unfamiliar-No
Support condition (p = .06).

4 General Discussion

The studies presented here involved an observational and experimental exploration of
the use of diagrammatic supports in combination in middle school mathematics
classrooms. Study 1 involved a cross-cultural examination of teachers’ use of dia-
grammatic supports and find that teachers in Hong Kong and Japan more frequently
combine diagrammatic supports in mathematics lessons, whereas U.S. teachers com-
bine supports less systematically in mathematics lessons. Study 2 manipulated the
amount of diagrammatic support for visually presented problems in a fifth-grade lesson
on proportional reasoning. Results suggest that learning about proportions is optimized
when supports are used in combination. Though we did not explore whether combi-
nations of supports aid learners more than single supports, these studies together
suggest that providing visual, temporal, and familiarity cues as supports for learning
from a diagrammatic representation is likely to improve mathematics learning.

The present research is an early attempt to explore how cognitive supports for
diagrams interact in authentic environments, and is consistent with recent calls to
explore instructional complexity in authentic contexts. For example, Koedinger et al.
(2013) estimate that there are on the order of trillions of instructional decisions that
must be made during the course of classroom teaching, and suggest that more inves-
tigations are needed that explore how instructional principles interact with one another,
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as well as how they interact with the content to be learned. These authors suggest that
educational technology environments can used to test a large number of permutations
of instructional combinations to address this problem (e.g., Koedinger et al. 2013).
Similarly, we use video methodology to deeply situate this work in authentic student
learning environments that are complex and that routinely combine multiple peda-
gogical principles, while maintaining internal validity of our experimental approach. In
doing so, we attempt to understand how instructional combinations impact learning of
mathematics in both an internally and ecologically valid way.

Though our approach directly examines the relationship between principle enact-
ment and student learning, future work can more directly examine the issues that
teachers confront during the course of enacting principles. For example, teachers must
enact principles while they are attempting to hold both the content of the lesson and
students’ understanding of the content of the lesson in mind – presumably a high
demand on cognitive resources – nevertheless, little work has addressed how enactment
of principles influences teacher cognition. Explorations of this issue in future work
might better inform theory on how principles can be optimally used in applied contexts.
Moreover, our future reports will examine relationships between student characteristics
known to correlate with mathematics learning, such as anxiety and executive function,
to exposure to combinatorial support use and learning. This work will shed light on
ways in which diagrammatic supports interact with other factors in applied contexts.
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Abstract. Automated geometry theorem provers start with logic-based
formulations of Euclid’s axioms and postulates, and often assume the
Cartesian coordinate representation of geometry. That is not how the
ancient mathematicians started: for them the axioms and postulates
were deep discoveries, not arbitrary postulates. What sorts of reasoning
machinery could the ancient mathematicians, and other intelligent species
(e.g. crows and squirrels), have used for spatial reasoning? “Diagrams
in minds” perhaps? How did natural selection produce such machinery?
Which components are shared with other intelligent species? Does the
machinery exist at or before birth in humans, and if not how and when
does it develop? How are such machines implemented in brains? Could
they be implemented as virtual machines on digital computers, and if not
what human engineered “Super Turing” mechanisms could replicate what
brains do? How are they specified in a genome? Turing’s work on chemical
morphogenesis, published shortly before he died suggested to me that he
might have been considering such questions. Could deep new answers vin-
dicate Kant’s claim in 1781 that at least some mathematical knowledge
is non-empirical, synthetic and necessary? Discussions of mechanisms of
consciousness should include ancient mathematical diagrammatic reason-
ing, and related aspects of everyday intelligence, usually ignored in AI,
neuroscience and most discussions of consciousness.

Keywords: Geometrical/topological reasoning · Evolution · Kant
Turing · AI

1 Introduction

Some theories of consciousness make use of mathematics, e.g. mathematical mod-
els of neural processes, but no theory that I have encountered explains how brains
enable great mathematical discoveries to be made, e.g. the deep discoveries in
geometry and topology, made many centuries ago, some of which, in Euclid’s Ele-
ments, are still in regular use world-wide.1 AI geometry theorem provers since
1 A 16 page paper introducing aspects of the Turing-inspired Meta-Morphogenesis

project http://goo.gl/9eN8Ks submitted to the 2018 Diagrams conference, was
accepted as a short paper. The original version is at http://goo.gl/39DRCT.

c© Springer International Publishing AG, part of Springer Nature 2018
P. Chapman et al. (Eds.): Diagrams 2018, LNAI 10871, pp. 164–171, 2018.
https://doi.org/10.1007/978-3-319-91376-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91376-6_17&domain=pdf
http://goo.gl/9eN8Ks
http://goo.gl/39DRCT
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the 1960s start with logical formulations of Euclid’s axioms, whereas for ancient
mathematicians the axioms and postulates were not arbitrarily chosen starting
points but deep discoveries, selected as “axioms” because other geometrical facts
could be derived from them, even if originally discovered independently. More-
over, such mathematical discoveries concern necessary truths and impossibilities,
which are not discoverable (or even representable) by statistics-based learning
mechanisms. Necessity is not extreme probability. However, it is important not
to confuse the necessity/impossibility in the content of mathematical discoveries
with any claim that human mathematical reasoning is infallible. Many mathe-
maticians have made mistakes that were later corrected by mathematical reason-
ing, sometimes triggered by empirically discovered counter examples. (However,
the forms of consciousness involved in those discoveries seem to have been ignored
by philosophers and scientists studying consciousness in recent decades.)

Not all geometrical reasoning is based on Euclid’s axioms. Standard proofs
that angles of a triangle sum to 180◦ use Euclid’s parallel postulate, but around
1970 Mary Pardoe discovered, while teaching school mathematics, that it can be
proved without using parallel lines, by considering an arrow lying on one side of
the triangle then rotated in turn through each (internal) angle of the triangle.
It must end up on the initial side pointing in the opposite direction, after turns
totalling half a rotation, as shown in Fig. 12 What brain mechanisms allow such
discoveries to be made and understood? As far as I know, nothing in current
neuroscience or in current AI explains such discovery capabilities.

Fig. 1. Mary Pardoe’s proof of the triangle sum theorem. Her pupils understood and
remembered this more easily than the standard proof, using parallel lines. See http://
www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-sum.html

Many important geometrical discoveries can be made without starting from
Euclid’s axioms. For example, Origami techniques allow forms of reasoning that
go beyond what is provable in Euclidean geometry. Extensions of Euclidean
geometry include the Neusis construction, known to ancient mathematicians,
but not included in Euclid’s Elements. It involves use of a movable straight edge
with two marks, and allows arbitrary angles to be trisected easily.3 The discovery
of non-euclidean geometries was another important example, famously used by
Einstein in his General Theory of Relativity.

Topological reasoning seems to be even more widespread, as discussed in
[1]. Young children who have never studied logic or algebra can tell that it is
2 See http://www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-sum.html.
3 http://www.cs.bham.ac.uk/research/projects/cogaff/misc/trisect.html.

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-sum.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-sum.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-sum.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/trisect.html
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impossible for two linked rings made of solid, impermeable matter to become
unlinked without at least one of them changing shape (e.g. ceasing to be a ring).
This can be seen in their responses to clever stage magicians who make it look
as if the impossible has been achieved. What brain mechanisms enable us to see
that such things are impossible?

Some researchers seem to believe that given appropriate training, deep learn-
ing mechanisms could replicate all ancient geometrical discoveries. But statistics-
based mechanisms and can only discover that certain generalisations have high,
or low, probabilities. They cannot discover necessities and impossibilities, as
Kant [2] showed when he pointed out gaps in Hume’s classification of types of
knowledge. Neural nets cannot even express the idea of something being impos-
sible, or necessarily the case. Kant argued that there are important types of
non-empirical mathematical knowledge about necessary truths and impossibili-
ties, for which statistical evidence can never suffice.4 What enables humans to
understand these concepts, if neural nets cannot express necessity or impossi-
bility? Is there a spatial configuration in which a planar triangle and a circle
have have exactly seven boundary points in common? You can do mental exper-
iments with imagined triangles and circles to answer this, unlike AI systems that
use Hilbert’s axiomatisation of geometry, and cartesian coordinates, to answer
such questions, unknown to ancient mathematicians. Cartesian coordinates were
not discovered until centuries later. Can any current AI system replicate that
discovery?

2 Why Is Non-empirical Knowledge of Non-contingent
Truths Important?

The kind of mathematical knowledge under discussion, is not just a philosophi-
cal oddity. It is of great practical importance to intelligent agents. Knowledge of
impossibility makes it possible to rule things out without testing. Likewise know-
ing that having one feature of an object or process necessarily implies another
allows complex decisions to be taken and used with confidence, including choice
of routes in a cluttered environment, and many others.

Not only humans benefit from this kind of reasoning. Evolution has used many
mathematical discoveries in selecting both physical or chemical structures and
control mechanisms for those structures. Negative feedback control is used in
many “homeostatic” control mechanisms from the very simplest organisms to con-
trol of blood pressure, temperature, chemical balances etc., in complex organisms.
This required evolved construction kits with mathematical properties.5

A particular example of non-spatial mathematical intelligence in young
humans is the ability to create subsuming generative grammars after many pat-
terns of verbal communication have been found to work in the environment. This
4 However, modal operators, e.g. “necessary”, “impossible” should be analysed using

“possible configuration” not “possible world” semantics.
5 Some speculations about evolved construction kits are online here: http://www.cs.

bham.ac.uk/research/projects/cogaff/misc/construction-kits.html.

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/construction-kits.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/construction-kits.html
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has the great benefit of allowing novel linguistic structures to be created, or to
be understood, without first learning them all from examples.

In language development, this process is followed by a further level of compe-
tence in adjusting the mechanisms to cope with exceptions to the grammatical
rules. That is a rather messy kind of mathematical process. Unlike other forms
of mathematical reasoning, the ability to derive new linguistic utterances to
communicate novel thoughts is not guaranteed to be successful because of its
dependence on the competences and vagaries of other humans.

3 Meta-Level Competences

A creative engineer requires additional layers of competence: meta-meta- knowl-
edge about how to search spaces of mathematical structures to find new techniques
when faced with novel problems. I don’t claim that evolution produces built-in
knowledge of all the kinds of mathematical knowledge used by humans: some are
products of individual discovery or cooperative cultural evolution, including full
understanding of cardinal numbers, which requires understanding that one-one
correspondence is a transitive and symmetric relation, which Piaget’s work sug-
gests does not develop in young humans for five or six years [3].

I suspect various types of mathematical development are special cases
of staggered gene expression: over time, brains develop new layers of meta-
competence that evolved later than others, and which provide new forms of learn-
ing/discovery applicable to products of layers that evolved earlier and develop
earlier in individuals, as suggested crudely in Fig. 2, allowing greater develop-
mental leaps across generations, based on a “Meta-configured” genome. (This is
very different from fashionable deep learning mechanisms.)

Individual multi-layered development seems to depend on the features
of genome expression in intelligent animals summarised (roughly) in Fig. 2,6

Recently developed genetic abstractions from previously evolved competences
can be instantiated in novel ways in each generation, illustrated crudely in the
figure, allowing greater developmental variety in products of a shared genome,
including greater leaps across generations than could be achieved by a fixed
learning mechanism provided by the genome. The history of human uses of var-
ious types of diagram seems to provide examples of this mechanism.

Current AI, including logic-based reasoning mechanisms (argued by
McCarthy and Hayes to be adequate for intelligent systems [5]) and the fash-
ionable “brain-inspired” mechanisms based on statistical learning, e.g. those
surveyed by Schmidhuber in [6], cannot match the spatial insight-ful reason-
ing capabilities produced by these mechanisms. Current neural models deal with
networks of nodes with numerical attributes and linked numerical relationships,
whereas for the kinds of mathematical discovery I am discussing it is not neces-
sary to collect statistical data from samples. E.g. mathematicians often reason
using spatial manipulations of represented spatial structures: “diagrams in the

6 goo.gl/3N1yQV gives more detail (still expanding).

http://goo.gl/3N1yQV
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Fig. 2. Staggered “waves of expression” of the Meta-Configured Genome: lower layers
begin development earliest via genetic influences crudely depicted on the left. Processes
further to the right and higher up occur later, building on records of earlier processes
that help to instantiate more recently evolved genetic abstractions that are expressed
later in development, including new motive-generators. (Based on [4].)

mind” [7]. Perception and use of spatial affordances, by humans and other ani-
mals acting in natural environments, require abilities to perceive and reason
about spatial structures and spatial relationships, including topological relation-
ships such as containment and overlap, and partial orderings (nearer, wider,
more curved, etc.), rather than precise measures [8].

4 Back to Ancient Mathematical Reasoning/Discovery

By examining examples of the spatial (diagrammatic) reasoning involved in
ancient mathematical discoveries we may hope to gain some insights into what
is missing from current forms of computation. An example that has a number of
interesting features, including very easy comprehension by non-mathematicians
is looking at a configuration of cup and spoon on a saucer and thinking about
how to get the saucer and spoon onto the cup, using only one hand.

Similar points could be made about various stages of nest construction by
birds, e.g. weaver birds,7 that require abilities to perceive structures, select items
to manipulate, moving them to new required locations, and then taking actions
to enable the new items to be part of a growing stable structure.

Conjecture: Information processing mechanisms required for practical purposes
in structured environments evolved in many species, mainly using reasoning
7 Illustrated by the BBC here https://www.youtube.com/watch?v=6svAIgEnFvw.

https://www.youtube.com/watch?v=6svAIgEnFvw
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about topological structures and relationships and partial orderings (e.g. of dis-
tance, size, speed, angle, etc.) rather than metrical information. In humans, the
mechanisms were used in new ways, in conjunction with new meta-cognitive and
meta-meta-cognitive mechanisms, leading eventually to explicit mathematical
reasoning, discussion, and teaching, about topological and geometrical aspects
of structures and processes in the environment.

As organisms evolve to cope with more complex structures and processes in
the environment, they use increasingly complex abilities to create and manipu-
late new internal information structures, representing parts and relationships
of external structures and processes, and supporting reasoning about conse-
quences of possible actions, as hypothesised by Craik in 1943 [9]. Later, newly
evolved meta-cognitive mechanisms, for reflecting on and comparing successes
and failures of such reasoning processes, allowed new, mathematical, aspects of
the structures and relationships to be discovered, thought about, and, in some
cultures, communicated and used in explicit teaching and discussion. Much later,
via social and cultural processes for which I suspect historical records are not
available, the materials came to be organised systematically, recorded in vari-
ous external “documents”, such as Euclid’s Elements and taught in specialised
sub-communities.

If, as I suspect, understanding of cardinality depends on such mechanisms,
then psychological evidence purporting to show innate understanding of car-
dinality, shows nothing of the kind: only that there are some simpler pattern
recognition abilities that give observers the illusion that young children or other
animals understand cardinality.

5 Towards a Super-Turing Geometric Reasoner

There are deep, largely unnoticed, aspects of the ways human and non-human
animal minds work that are closely connected with the mechanisms underly-
ing important non-numerical mathematical discoveries by ancient mathemati-
cians, i.e. topological and geometrical discoveries. For ancient mathematicians
the axioms and postulates in Euclidean geometry were not arbitrarily chosen
starting formulae from which conclusions were derived: the axioms were all major
discoveries, using mechanisms still available to us. And they did not use the
arithmetisation of Geometry based on Cartesian coordinates.

What mechanisms allow you to discover what happens to angles of a trian-
gle as it gets stretched by motion of one vertex relative to the other two. E.g.
what will happen to planar triangle ABC, such as the triangle depicted in Fig. 3,
if vertex A continually moves further from the opposite side, BC, along a line
through A that intersects BC, as illustrated in Fig. 3. Even non-mathematicians
can work out that as A moves further from BC the angle BAC will steadily
decrease, without knowing exact lengths of lines and sizes of angles. Despite
being so obvious to non-mathematicians, this answer has surprising mathemati-
cal sophistication. It involves both the continuum of locations of the angle A, and
the continuum of sizes for the angle A, and a systematic relationship between the
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Fig. 3. How does the angle at A change as A moves further from BC, along a straight
line that passes between B and C, e.g. moving to A′? What brain mechanisms allow
reasoning about such questions?

two continua: as the distance increases the angle size decreases. It is not obvious
exactly how the angle size and the length are related, though it is obvious that as
one increases the other decreases, unless the line along which A moves intersects
the line through B and C outside the segment BC.8 What mechanisms would
enable a future robot to find the relationships in Fig. 3 as obvious as we do?
Brains seem to do much that is not explained by current neural net mechanisms
nor by current AI models of spatial reasoning using logic or logic plus algebra,
trigonometry etc. How might the mechanisms differ from a Turing machine,with
its linearly ordered tape, divided into locations each of which can contain exactly
one symbol?

6 Conclusion

A challenging research problem is to find a way to specify a type of machine that
could replace a Turing machine’s tape, tape-head, and symbol table, with some-
thing like a membrane on which marks can be made and which can be stretched,
rotated, translated, and its new position compared with the old position, to
see what has changed, with at least two layers of meta-cognition detecting and
reasoning about what does and does not, and what can and cannot change.
Humans thinking about the triangle problem seem to construct imagined states
8 The case where A moves along a line that intersects BC outside the triangle is

discussed in another document. See http://www.cs.bham.ac.uk/research/projects/
cogaff/misc/apollonius.html. Surprising additional complexities are discussed
in that and http://www.cs.bham.ac.uk/research/projects/cogaff/misc/deform-
triangle.html.

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/apollonius.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/apollonius.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/deform-triangle.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/deform-triangle.html
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on which very much more complex operations can be performed, including two or
more co-ordinated continuous changes, and two or more levels of meta-cognition
operating in parallel: e.g. one detecting and summarising changes, and another
reasoning about the nature of those changes – e.g. discovering necessities and
impossibilities. Is there a minimal set of basic mechanisms (perhaps chemical
mechanisms in brains?) from which all the forms of spatial reasoning required
for an intelligent animal can be derived?9

The Meta-Configured genome hypothesis sketched above implies that intel-
ligent animals do not have a uniform innate learning mechanism that operates
from birth on increasingly complex and varied data sets. Different mechanisms,
with different evolutionary origins modified to fit the individual’s environment,
come into operation at different stages of development over an extended time
period. Compare language development and Karmilof-Smith’s ideas about “Rep-
resentational Re-description” [10].

I suspect Alan Turing may have been working on a problem of this sort when
he wrote “The chemical basis of morphogenesis” [11], now his most cited paper.
What would he have done if he had not died two years after it was published?
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Abstract. Diagrams are frequently used in mathematics, not only in geometry
but also in many other branches such as analysis or graph theory. However, the
distinctive cognitive and methodological characteristics of mathematical practice
with diagrams, as well as mathematical knowledge acquired using diagrams,
raise some philosophical issues – in particular, issues that relate to the
empiricism-realism debate in the philosophy of mathematics. On the one hand, it
has namely been argued that some aspects of diagrammatic reasoning are at odds
with the often assumed a priori nature of mathematical knowledge and with other
aspects of the realist position in philosophy of mathematics. On the other hand,
one can claim that diagrammatic reasoning is consistent with the realist episte-
mology of mathematics. Both approaches will be analyzed, referring to the use of
diagrams in geometry as well as in other branches of mathematics.

Keywords: Philosophy of mathematics � Diagrammatic reasoning
Epistemology

1 Introduction

Diagrams have been used in mathematics since its very beginnings and are still a
crucial aspect of mathematical practice. Geometry is the branch of mathematics that is
naturally associated with the use of diagrams, however, various diagrammatic repre-
sentations are also used in almost all mathematics, including, e.g., analysis, graph
theory, topology or even algebra. Moreover, use of diagrams and more generally
visualization has increased in recent years due to the possibilities offered by computers.
Diagrams have a reputation of being effective heuristic tools, greatly facilitating our
intuition and understanding of mathematical objects, as well as taking part in such
aspects of mathematical practice as discovery, explanation or reasoning. Many char-
acteristics of diagrammatic representation which are opposed to those of sentential
representation (in general – not only in mathematics) have been pointed at, as well as
many ways to define the notion of the diagram itself1. It is beyond the scope of this text
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1 Properties of diagrams as opposed to sentential representation have been analyzed, among others, in
[10, 11].
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to analyze those differences in depth, its primary aim being to investigate how the
differences between diagrammatic and sentential representations affect certain aspects
of our philosophical view of mathematics. In particular, I will consider to which extent
certain aspects of diagrammatic reasoning, as well as of other uses of diagrams and
visualization in mathematics, have relevance to the empiricism-realism debate in the
philosophy of mathematics. Some characteristics of diagrams, e.g., the role of per-
ceptual experience in gaining knowledge about them or experimentation with diagrams
might seem to be inconsistent with the a priori character of mathematics and to suggest
that diagrammatic reasoning has at least partly empirical character. In my paper I will
firstly try to elucidate reasons for such claims and secondly to consider if the empirical,
or quasi-empirical aspects of diagrammatic reasoning pose a problem for the realist and
how they fit into the realist epistemology of mathematics in general.

Before we go on, some initial remarks about realism and empiricism in mathe-
matics have to be made. Even though there are many versions of both the realist and
empiricist standpoints, it is possible to list the following main assumptions of realism,
each of which is typically rejected by a quasi-empiricist2:

R1. The subject-matter of mathematics consists of mathematical objects and/or
structures which exist independently of the mathematician. In the radical, Platonic form
of realism it is claimed that this subject-matter is immaterial and eternal.
R2. Mathematical truth is objective – mathematical propositions have truth values
independently of human cognition and language.
R3. Mathematical propositions are not only precise and certain but also necessary and
in consequence – irrefutable.
R4. Mathematics is fundamentally different from the other sciences. The apriority and
necessity of their propositions as well as ideal character of their subject-matter are in
sharp contrast with the character and objects of empirical knowledge.

The first characteristic of realism is the strongest and is rejected or modified by
some philosophers, R2–R4 are typically defended within most versions of realism3.
Philosophers that sympathize with any form of empiricism typically reject the above
claims. And so they would claim, that: all mathematical cognition stems from sensual
experience, that mathematical truth is relative to language and perhaps even culture,
that there is no such thing as “absolute” necessity or apriority (mathematical knowledge
changes over time) and finally – that mathematics is not fundamentally different from
empirical sciences but rather the difference between them is a matter of degree. Those

2 It has to be noted that realism is typically opposed to anti-realism, in that the latter claims that
mathematical objects do not exist. The dichotomy empiricism-rationalism, on the other hand,
concerns the source and nature of mathematical knowledge. However, every realist is an apriorist in
that he claims that we come to know mathematical objects independently of physical experience. In
that sense it is possible to oppose realism and empiricism.

3 It should be noted that R1-R3 are independent of each other (although clearly strongly related) and so
any combination of them can be held within one position.
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will be the two opposing views about mathematics, constituting the philosophical
background against which the nature of diagrammatic reasoning will be discussed.4

In the remaining part of the paper I will first briefly discuss some empirical aspects
of geometry, turning to the quasi-empirical characteristics of diagrammatic reasoning
in mathematics in general. In the last Sect. 1 will try to point at problematic issues
related with giving a positive account of diagrammatic reasoning within realist phi-
losophy of mathematics.

2 Diagrams in Geometry

Geometry can be – and has been – claimed to have empirical character in a global and
local sense. In the first sense, the whole of geometry can be attributed empirical
character, in the second one only particular reasoning types. Whereas the empiricist
will naturally locate the source of geometrical knowledge in sense experience, the
realist has to explain to what extent the sensual experience takes part in learning of
geometric concepts and in what sense geometry grants us with a priori knowledge,
making use of spatial representations which are the geometric diagrams5. According to
Plato, the proponent of the most radical version of realism, immaterial mathematical
objects are accessed by a faculty called dianoia, which however is indirect in the sense
of being mediated by the use of mathematical concepts and representations. Those
representations are not the actual subject matter of mathematics, their physical form
drawing us away from the true, eternal subject matter of mathematics6, being, however,
indispensable in mathematical practice7. On the other hand, many apriorists of the
modern period, like Descartes, held that the subject matter of geometry is physical
extension, which at the same time provides us with certain and general knowledge.

In the remaining part of this Sect. 1 will take a closer look at selected reasoning
types in geometry, and consider whether one can raise objections as to their a priori
character. As it is known, geometry became fully formalised and it is no longer pos-
sible to claim that diagrams are indispensable for formulation of any geometrical proof
(as Kant has claimed) and thus that any geometrical proposition is a posteriori in some
absolute sense. However, one can still ask if particular reasoning types, as they have

4 I will intentionally omit the two other big families of views on mathematics – varieties of
neo-Kantian positions and logical positivism, in order to focus my attention on the
empiricism-realism debate. Both claim that mathematics is a priori, but just as the followers of
Kant hold that the apriority rests on in-born structure of our minds, the followers of logical
positivism defend the view that they rest on the analyticity of mathematics.

5 As far as ontology is concerned, it is has been claimed that the subject-matter of geometry is
extension, empirical space or shape. John Stuart Mill, in turn, argued that the subject matter of
geometry are the actual physical diagrams.

6 “These things themselves that they mold and draw, of which there are shadows and images in water,
they now use as images, seeking to see those things themselves, that one can see in no other way than
with thought” [7].

7 Plato names five aspects of a circle: “The first is the name, the, second the definition, the third. the
image, and the fourth the (…) knowledge, intelligence and right opinion” [8], stressing that each of
them is a necessary step in forming our knowledge of the true geometrical objects.
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been conducted before the XIX century and are still conducted now, can be claimed to
be a posteriori. Let us assume the most commonly accepted definition of the a priori,
relating it to reasoning types8:

A reasoning is a priori iff it is justified independently of experience.

Assessing, whether a particular reasoning is a priori will fall into two stages: firstly,
it has to be determined which aspect of the reasoning can be classified as “experience”
or referring to experience. Secondly, one has to ask, whether the experience was in fact
used in the justification, and if so – what role exactly it played.

Geometry abounds with arguments, in which certain visual properties of diagrams,
that is their physical characteristics like shape, location of certain points, etc. are used
during the reasoning process by reading them off the diagram9. In this case, we can
understand experience to be observation of the diagram and noticing the appropriate
relations between its parts. Many authors have stressed that experience is used in such
cases in a different way than “usual” sense experience is used when analysing empirical
objects. First of all, we are not using it as inductive support of any claim about physical
objects. Secondly, the subject of geometric arguments is not the physical diagram itself,
but rather what we take it to be using our precise geometrical concepts. This point is
stressed by Annalisa Coliva, who claims that proofs in Euclidean geometry are a priori,
as “the justification for holding a given theorem they provide us with depends merely
on the geometrical concepts involved” [2]10.

Second type of argument I would like to mention involves using imagery to per-
form dynamic visualisation. A famous example of such reasoning is called reasoning
by superposition and can be found in the proof of theorem I.4. in Euclid’s Elements.
Within it, the reasoner is asked to apply one triangle to another by moving it in visual
imagination, the possibility of performing the movement being used as a crucial ele-
ment in the reasoning. The experience used in this case seems to be of fundamentally
different type than in the previously analysed case. We are not only reading topological
characteristics off the diagram, but using visual imagery in moving geometric objects in
our inner visual space. This has raised doubts of some philosophers, especially those
who claim that mathematical objects are static and should not be associated with
motion. A sixteenth century philosopher Jacques Peletier for example raises the
objection that “the method of superposition does not suit the dignity of geometry
because it has something mechanical about it” [5]. Although proofs by superposition

8 By a “reasoning” I will understand the whole psychological process that starts with assumptions and
a given diagram (or diagrams) and results in appearing of a belief state which is the conclusion of the
reasoning.

9 Visual characteristics typically fall into two categories: topological and metric. Metric properties
refer, e.g., to the length of lines or size of angles. Topological properties in turn, include
betweenness, incidence and inclusion. It has been claimed that only topological properties have been
used in Euclid’s Elements.

10 According to Coliva we can distinguish between perceptual concepts which correspond to
deliverances of the senses and geometrical concepts which are of purely mathematical nature and for
example used when we take a straight line that is not perfectly drawn, to represent a straight line.
A similar distinction has been made and analyzed by Marcus Giaquinto who has also argues that
geometrical arguments that use diagrams in a significant way are a priori [3].
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are now a historical peculiarity, the role of motion in mathematics can still be said to
raise epistemological issues11.

In conclusion, let me repeat that the term “experience” can be differently under-
stood when related to geometrical arguments. If observation and mechanical visual
imagery are to be seen as experience, then some Euclidean arguments make use of
experience. However, they are not used as usual perception in getting to know about
physical objects and they are always used in Elements in a way that avoids proving
false statements. However, it can be noted that the character of the experience may
matter in judging the value of a particular reasoning from a given philosophical
standpoint – in particular mechanical intuitions can be claimed to be suspect from the
Platonic point of view.

3 Diagrams in Mathematics and Quasi-empiricism

The above mentioned definition of a priori refers strictly to the role of justification and
has so far been discussed only in relation to geometry. However, as it is well known,
diagrams are mostly used in mathematical practice in other contexts: they are excellent
heuristic tools often used to discover new facts, to explain or simply to broaden our
understanding of mathematical concepts. Considering a broader context of this large
variety of epistemic functions of diagrams will allow us to take into account diagrams
in other branches of mathematics which do not share geometry’s proximity to sensual
experience. Those aspects of mathematical practice will not directly affect the theses
about the a priori nature of mathematics, but can be viewed as quasi-empirical. In
particular, they can be claimed to share some characteristics with the methodology of
empirical sciences.

Before we go on, some clarifications have to made. The first point is that diagrams,
as applied in most other branches of mathematics, do not have to be related in any way
to space, shape, extension or any other object of the empirical world.12 Instead, they are
used as a possible representation of mathematical objects, that has its specific char-
acteristics, advantages and disadvantages, hinted at in the introduction to this paper. In
representing a mathematical object by a diagram we specify semantic rules by choosing
specific shapes, dots, colours, etc. to represent mathematical objects such as relations,
groups or numbers, which by themselves need not have spatial character.

In such case what we will call diagrammatic reasoning will typically consist of
three stages. The first is translation of mathematical concepts into diagrammatic ones
(shapes, lines, etc.). In the second stage we observe the diagram, manipulate it or
experiment with it. In the third stage, we translate the effect of those activities back to
sentential language. The fact of using diagrams in this way by itself does not of course

11 Mark Greaves notes for example, that according to Helmholtz, “kinematic properties are not given a
priori, but rather are derived empirically from the subject’s own perceptions of bodily movements,
and thus that there is a necessary linkage between the truths of geometry and the laws of
mechanics”[4].

12 An exception could be e.g. topology, which studies properties of shape in a more general and
abstract way that geometry.
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have to be interpreted as having any consequences to the empiricism-realism debate.
However, different methods used in the second stage of diagrammatic reasoning may
be considered to have quasi-empirical character in the sense of being similar to the
study of empirical objects rather than to deductive methods typical of mathematical
practice. Quasi-empirical methods include, in particular, “visual” experimentation,
understood to be any manipulations of diagrams or creation of multiple diagrams in
order to gain knowledge about them, which activities are currently mainly performed
on computers. Such experiments often include gathering data and observation, as well
as using induction to confirm hypotheses, thus resembling the study of an object
existing independently of the reasoner. Similarly as with experiments in the empirical
sciences, we also often do not know “in advance” what the outcome of the calculation
will be. In this sense, methodology of experiments can be called quasi-empirical.

4 Towards a Positive Realist Account of Diagrammatic
Reasoning

In the previous sections it was discussed whether diagrammatic reasoning in mathe-
matics can be said to have some empirical or quasi-empirical characteristics. In the last
section we will consider how a positive account of diagrammatic reasoning within a
realist position may be formulated. Should the realist give a separate account of
knowledge gained with use of diagrams or does it not differ from other types of
mathematical knowledge? Does she face any problems when trying to formulate such
an account?

Answering those questions, let us first remind that realism, in claiming that
mathematics is a priori, postulates that we have access to its objects other than just
sense perception. Realists such as Kurt Gödel have claimed that this access can be
gained with the use of intuition, understood as a special cognitive power enabling us to
“see” truths about immaterial mathematical objects. One possible consequence of such
a view seems to be that choice of representation type should not at all be significant for
the realist. If mathematical objects exist independently of our cognition and in par-
ticular – of our language, mathematicians should be able to choose whichever notation
suits them13. Diagrams would then simply provide us with another type of access to the
realm of mathematical objects. Some realistically inclined philosophers have indeed
claimed that some diagrams (especially well-designed computer visualisations) allow
them to glimpse into the Platonic world of mathematical objects. However, it remains
unclear how the realist should explain the role of perception in diagrammatic reasoning
and the way in which diagrams refer to abstract mathematical objects. Gödel has
formulated a well-known analogy between perception and mathematical intuition,
which however only provides a metaphor that is intended to help us understand how we
come to know mathematical objects, but does not explain the role of actual perception
in the analysis of visualisation. One possible answer could be that the diagram is in
some way similar (or at least homomorphic) to the actual mathematical object. Such

13 In a similar vein, realism allows the use of Axiom of Choice or impredicative definitions.
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interpretation may initially seem appealing, however, on closer look, one can doubt
how it is possible to state anything about similarity of a physical object, a man-made
representation, with the ideal object of mathematics. In fact, radical realists such as
Plato himself, would not at all be ready to admit such similarity. In addition to that, it is
hardly possible to claim that diagrams point to mathematical objects “by themselves”.
One diagram can represent many objects, depending on how the semantic rules
translating the physical characteristics into mathematical properties are formulated14.
An account of the role of observation has been given by James Robert Brown,
according to whom diagrams can grant us access to the objects of mathematics – “as
telescopes help the unaided eye, so some diagrams are instruments (rather than rep-
resentations) which help the unaided mind’s eye” [1]. Brown does not, however,
explain how diagrams allow us to learn about non-material mathematical objects,
suggesting, however, that perception of a diagram induces mathematical intuition or
perception of mathematical objects.

Realism also faces problems when explaining the nature of mathematical experi-
ments. On the one hand, one can interpret them in a realist setting as giving us insight
into the Platonic world of mathematical forms. In fact, when generating the Mandelbrot
set we can have a sense of facing something external to us which has properties that are
objective. However, it does not seem that we are experimenting with the actual
mathematical objects – in whichever way we understand them. Instead, we seem to be
experimenting with the mathematical notation itself, finding out which consequences
will follow from adopting specific semantic rules in creation of a visualization. Finally,
it seems that realism should account for the role of spatial intuition in mathematics,
specifying how it relates to perception on the one hand and to mathematical intuition on
the other. Spatial intuition, outside of the realist setting, is usually considered to be a
cognitive faculty that allows us to consider spatial representation of mathematical
objects, employing the senses in a constructive way in order to analyse precise
mathematical concepts.15 However, most realists, including Plato or Gödel, only refer
to perception and intuition that connects us “directly” with non-material objects16. It
seems that an account of spatial intuition could explain how perceptual content links
with the objective subject-matter of mathematics.

In conclusion, it seems that quasi-empirical aspects of the use diagrams and
visualisation in mathematics can be interpreted within both the empiricist and realist
positions. The quasi-empiricist might claim that they only show how the boundary
between mathematics and the empirical sciences is not sharp. Mathematical realist, in
turn, can hold that diagrams are just one way of accessing the objective realm of

14 This point has been made by David Sherry, who claims that the Platonist cannot explain “use of the
same diagram in proving theorems about radically incompatible figures” [9].

15 To give just one example, Felix Klein used the notion of “refined intuition” which made use of
sensual experience, but was “armed’ with precise mathematical concepts.

16 One exception was Proclus, who adds another cognitive faculty to the ones postulated by Plato,
which he calls imagination (phantasia). In words of Dmitri Nikulin, imagination is “intermediate
between sense perception and discursive reason: with the former, imagination shares the capacity to
represent geometrical figures as extended; with the latter, it shares the capacity to represent its object
as unchangeable according to its properties” [6].
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mathematical objects. An analogy with perception of physical objects can be evoked
here, in that visualisation allows us partial glimpses into that realm, giving the math-
ematician an impression of looking at it from a distance. It is, however, not clear, if
such impressions should be treated only as metaphors or if they are to be attributed to
particular semantic properties of diagrams as representation types, like their being able
to present many relations in a simultaneous way. Thus, it seems that the realist should
provide an account of how diagrammatic reasoning is consistent with (R1) – in par-
ticular, how we come to know the ideal mathematical objects with the use of spatial
representations, explaining at the same time how their use relates to empiricist
methodology (which will bear on (R4))17. The shape of such an account will depend on
the view on the nature of mathematical objects, but also their relation to mathematical
language. Summing up, I hope to have shown that in giving any realist account of the
nature of mathematical knowledge and mathematical objects, an explanation of how
diagrammatic reasoning fits into the picture is also necessary.
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Abstract. A graphical abstract (GA) provides a concise visual sum-
mary of a scientific contribution. GAs are increasingly required by jour-
nals to help make scientific publications more accessible to readers. We
characterize the design space of GAs through a qualitative analysis of
54 GAs from a range of disciplines, and descriptions of GA design prin-
ciples from scientific publishers. We present a set of design dimensions,
visual structures, and design templates that describe how GAs commu-
nicate via pictorial and symbolic elements. By reflecting on how GAs
employ visual metaphors, representational genres, and text relative to
prior characterizations of how diagrams communicate, our work sheds
light on how and why GAs may be distinct. We outline steps for future
work at the intersection of HCI, AI, and scientific communication aimed
at the creation of GAs.

Keywords: Graphical abstract · Diagram · Information visualization

1 Introduction

The overwhelming scale of scientific publishing—partly accelerated though dig-
ital publishing [15]—increases the number of articles that must be consulted
in the research process. In an effort to make it easier for readers to grasp the
gist of publications, multiple scientific publishers have mandated that authors
prepare a graphical representation of their primary findings. This form of Graph-
ical Abstract (GA) represents a “single, concise, pictorial and visual summary
of the main findings of the article” [5] (Fig. 1). By leveraging the efficiency of
visual communication for portraying the essence of complex information, the
assumption is that GAs will make scientific publications more accessible and
understandable for in- and out-of-domain researchers as well as “lay” audiences
like students, journalists, or members of the public.

Graphical abstracts are becoming more common, either as a requirement or
suggestion, among journals spanning scientific domains. Several scientific jour-
nals have been publishing GAs for nearly a decade [24]. However, relatively lit-
tle is known about what visual and textual mechanisms GAs employ, and how,
c© Springer International Publishing AG, part of Springer Nature 2018
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to express scientific research. While prior studies of diagrammatic communica-
tion can inform understanding of GAs (e.g., [8–10,33,34,36]), GAs are unique
based on their focus on communicating scientific contributions specific to single
publications. GAs can be thought of as a specific form of overview figure—a
summative diagram used to aid readers in deciphering research contributions
and methods across many scientific and empirical disciplines. Consequently, a
deeper understanding of GAs is beneficial outside the specific cases in which they
are required. The fact that scientists—who are not typically trained in graphic
communication—are responsible for creating GAs means that a better under-
standing of the design space of these diagrams could lead to important contribu-
tions to design support. More specific design guidelines can be proposed than the
high level suggestions currently provided by publishers [5,25,41] (e.g., “empha-
size the new finding from the paper” [25]). Additionally, better authoring tools
for GA design could help address the huge body of existing publications that
lack GAs and better support the needs of those creating them. Techniques from
automated and mixed-initiative graphic design (e.g., [22,23]) could be adapted
to support the unique needs of scientists as designers.

Fig. 1. Examples of layouts in GAs. (a) GA using a zigzag layout with illustrations and
data visualizations to depict a research method for studying protein interactions. (b)
GA combining elements of a unidirectional and a forking layout to illustrate findings
about the fly genome. (Color figure online)

We are interested in identifying a repertoire of common structures and pat-
terns in GAs. We believe that many GA authors arrive at patterns (e.g. choice
of layout) without necessarily understanding how a given pattern relates to their
communication goals. By surfacing common patterns, our work can contribute to
helping authors of GAs to make more informed decisions in the future. We con-
tribute the findings from a qualitative analysis of a sample of 54 GAs drawn from
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a range of scientific disciplines. Our primary contribution is an analysis of the
pictorial, symbolic, and textual elements used in GAs. Our analysis characterizes
design patterns associated with common GA design choices including the use of
spatial layout, the type of picture or visual representation, how time is visual-
ized, and how text is incorporated. We identify underlying design dimensions,
including the linearity of spatial layouts, the degree of iconicity in picture types,
and the degree to which text stands for versus narrates content. We describe
how our results confirm, as well as problematize, prior conceptions of how scien-
tific diagrams convey meaning. We reflect on how the unique status of scientists
as graphic designers may impact the effectiveness of GAs, and present a set of
design recommendations based on our study results. We conclude by motivating
a research and development agenda for promoting the more effective design and
use of GAs. We contrast the current state of GAs with a set of possible (imag-
ined) functions of GAs as a form of scientific communication. We describe how
research in Human-Computer-Interaction (HCI), Artificial Intelligence (AI), and
science communication can be applied to facilitate the creation of effective GAs
across disciplines.

2 Related Work

As a first step toward understanding the design of GAs, Yoon and Chung [42]
recently examined the frequency and forms of GA use in the social sciences. Their
coding process (“tagging”) differentiated the scientific discipline, basic form of
the GA (e.g., tables, charts (data visualizations), and diagrams), the content of
the GA (e.g., the background, method, or results of the research), and whether
the GA content was newly created or taken from an existing visualization in the
publication. Their analysis surfaces patterns in overall forms of representations
used and their relation to the content of the GA. Namely, schematic diagrams
were most commonly used for presenting methods, background, or overviews of
research, while data-driven charts were slightly more common than diagrams for
depicting research results. Based on the prevalence of diagrams, our work takes
a deeper look at the rich pictorial and symbolic space of GAs, which we find
often transcends simple notions of representational genre (e.g., a large space of
possible image schemas can be utilized within a diagrammatic GA). We also
analyze a sample of GAs that includes a larger range of scientific disciplines.

The study of diagrammatic communication can inform our reading of how
basic visual structures convey meaning in GAs. At a high level, diagrams schema-
tize thought, using place and forms in space to convey both concrete and abstract
meanings [34]. Certain “privileged” symbols (arrows, lines, boxes, crosses, and
circles) and dimensions of the page (horizontal, vertical) are commonly used to
convey meaning in diagrammatic contexts [33,36]. For example, arrows have
been found to strongly imply the functional (as opposed to the structural)
organization of mechanical systems (e.g., the temporal, dynamic, and causal
aspects) [10]. Graphic space itself is described as naturally conveying relations
being elements, including nominal, ordinal, and interval and ratio relations [32].
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Temporal information has been found to be more commonly mapped to the hori-
zontal dimension [35]. The prevalence of temporal processes in scientific methods
makes techniques and interpretive models of diagrammatic depictions of change
such as Arnheim’s notion of implied motion [1] relevant.

More generally, a number of visual metaphors, or image schemas, have been
identified by cognitive psychologists and others [2,11,14]. Image schemas, such
as “more is up, less is down,” center-periphery, or containment are apparent in
language as well as visual communication [14]. Image schemas are thought to
metaphorically structure our thinking pre-conceptually [14]. As a result, space is
“not neutral”, even to children [31]. Understanding the “logic” of these schema
is critical to effectively using them in visual compositions like GAs to convey
complex concepts. We are interested in more specific conventions in the use of
spatial layout and other schematizing elements used to convey the contributions
of single publications, as a point of comparison to prior studies of graphical
communication focused on textbooks or other educational diagrams [32,38].

Another goal of our work is to identify how research on automated and mixed-
initiative (i.e., human in the loop) design at the intersection of AI and HCI could
be applied to support the design of GAs. Prior work in automated construction of
diagrams visualizing scientific research has focused on producing a high level rep-
resentation ideas in papers [27]. Approaches to representing individual research
documents like PDFs include thumbnails of extracted images [4], or summary
graphics that incorporate key terms and important images extracted from the
paper [28]. However, these approaches rely on combining existing imagery from
the publication, and cannot create a new, synthesizing representation.

3 GA Sample and Coding Process

As an initial step toward characterizing how GAs communicate scientific findings,
we gathered a convenience sample of 54 GAs. Our goal was to build a sample
that included some diversity in the visual structures employed, so as to serve our
goal of demarcating a design space. We found that writing and guidelines about
GAs often referenced examples that captured such diversity. We therefore seeded
our sample with examples cited in prior writings about GAs, including examples
included in design guidelines for GAs from scientific publishers [5,25] (20 GAs),
examples contained in editorials about GAs [26] (1 GAs), and an example GA for
a prior article about GAs (1, from [42]). As a secondary concern, we wanted to
include GAs from varying disciplines. We added examples from papers retrieved
through Google and Google Scholar searches on “graphical abstract” (14 GAs)
and by browsing journal archives that require GAs (18 GAs), continuing to select
examples that were diverse in visual structures and discipline.

We employed an open coding approach [17] informed by past analysis of
graphical abstracts [42], visual semiotics [18], and visual structures common to
diagrams and metaphor [2,10,11,14,33,34,36]. Each author first independently
analyzed a subset of the sample (6 GAs), making notes of the visual structures,
text, and other elements used in the GA, and what higher level dimensions best
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described distinctions between GAs. For context, we read the research publica-
tion associated with each GA. Through discussion, we arrived at an initial set
of codes related to the spatial composition or layout of GAs and their use of
symbols, pictorial elements, and text. Through further parallel coding of a new
subset (10 GAs) and subsequent discussion, we refined these codes. We merged
categories that seemed redundant and creating new categories to capture emerg-
ing dimensions of the design space. We repeated this process three more times
until our scheme stabilized around four high level design aspects, each of which
was associated with 4–9 individual codes. We then divided the GAs and each
author independently coded half in a final coding. All codes were discussed and
agreed upon.
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Fig. 2. Design patterns organized into four aspects: layout, depiction of time, text
usage, and representational genre.

4 The GA Design Space

At a high level, our coding scheme acknowledges the way in which GAs employ
graphical entities and text to communicate features of the research content at
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various levels of abstraction. Prior work describes how diagrams can convey both
functional and structural information [10]. How the space of a diagram is used
(structure), and the reader’s eye is guided in a sequential way (function), are
often strongly influenced by the content being depicted. However, authors of
diagrams also face a number of more arbitrary choices about how abstractly
they wish to communicate their content. For example, text is highly abstract in
how it refers to meanings, whereas photographs are highly concrete.

Our coding scheme operationalizes these aspects of both content and com-
munication style by defining four design aspects to capture the diversity of visual
mechanisms that GAs employed in our sample (Fig. 2):

– Layout describes the organization of graphical elements in the 2D space of
the GA. Layouts vary in the degree to which they imply a reading order
(linear to free). Layout result from symbols (e.g., arrows), spatial mappings
(e.g., organizing visual elements to extend from the center of the composition
outward), or other implied relationships between elements (e.g., nesting one
picture inside another).

– Depiction of time describes how the GA conveys a temporal process, a
common function we observed in many GAs. With layout, depiction of time
tends to be influenced by the scientific content that a GA is intended to
communicate.

– Text usage differentiates ways of incorporating text in GAs, such as
labels, paragraphs, or annotations (denominative to narrative). Most GAs
we observed combined text with visual elements. The choice of whether to
use text versus visual means of communication is also relatively independent
from the scientific content being expressed than choices related to layout or
time depiction.

– Representational genre describes types of representations that comprise
a GA. These can vary in their degree of abstraction and style, and include
photographs and screenshots, illustrations, scientific visualizations, abstract
data visualizations, and schematic diagrams (iconic to symbolic). Represen-
tational genres can be correlated with the content of the research displayed
in a GA in some cases (e.g., microscopy-based studies will more often present
images in a GA). However, in many cases representational genre is relatively
independent from the content being displayed.

Codes were not mutually exclusive: a GA could demonstrate multiple codes
(design patterns) associated with the same aspect (e.g., layout, time). The fre-
quency of each design pattern in our sample is indicated in the respective section.

5 Design Patterns

We describe the results of our analysis in terms of sets of design patterns we
observed: standard solutions employed to solve a specific design problem. We
identified distinct sets of design patterns associated with the design aspects of
layout, depiction of time, text usage, and representational genre. We include
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example GAs and provide references to additional GAs in our sample which we
include as supplemental material (SM 1, 2).

5.1 Layout

Layout design patterns describe ways in which an author can use the graphic
space of a GA to represent relations between pictures and concepts. As the
fundamental means of organizing the space of a GA, layout is critical: prior
work describes how cognitively, space is “not neutral”, even to children [36]. How
scientists choose to use layout sets up the implied “logic” that a GA conveys
about a piece of research, whether intentionally or accidentally. The layouts we
observed can be organized along a continuum, from linear layouts that convey an
explicit reading order, to non-linear layouts that can be read in various orders
(Fig. 2 top). Whether a GA layout is more linear or parallel is a function of
how the layout uses common symbols (e.g., arrows or boxes) as well as spatial
schemas (e.g., center-periphery, linear) to relate the components of the GA.

LINEAR (19 GAs,35%): At the linear end of the spectrum, we
observed simple linear layouts that used arrows or other visual cues
to designate a clear reading order.

ZIG-ZAG (3 GAs,5.5%): Some layouts imply reading order through
the use of both horizontal and vertical space. A zig-zag layout (e.g.,
Fig. 1(a)) consists of multiple rows, each of which implies the same

horizontal reading order. Typically these layouts are designed to be read left-to-
right and top-to-bottom [39].

FORKING (10 GAs,18.5%): Other layouts include both cues to a lin-
ear reading order and cues that break the implied linearity. For example,
we observed multiple GAs using forking layouts, where entities or nodes

are connected with paths (typically arrows) (e.g., Fig. 1(b), bottom half). In a
forking layout, the process being represented branches in multiple directions at
least once, such that it is not strictly linear.

NESTING (16 GAs,29.6%): Nesting is a common layout strategy that
can also conflict with cues to linear reading order. Nesting in GAs is
analogous to footnoting in text, where a nested frame within the larger

GA composition contributes additional contextual information that would not
otherwise have appeared. For example, nesting can be used to emphasize an
intermediate step in a process by relegating it to a separate frame than the rest
of the depiction (e.g., SM#51 ).

A common use of nesting is to incorporate representations that vary the scale
or level of detail. The difference in scale is depicted by a boundary around the
nested frame(s) using either color, borders, or other visual differentiation (e.g.,
dotted circles in Fig. 3(a)). When used to vary scale or level of detail, nesting

1 http://faculty.washington.edu/jhullman/GA Sample Images Source Info.pdf.
2 http://faculty.washington.edu/jhullman/GA Table.pdf.

http://faculty.washington.edu/jhullman/GA_Sample_Images_Source_Info.pdf
http://faculty.washington.edu/jhullman/GA_Table.pdf
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can problematize an otherwise clear reading order, by adding ambiguity about
which level of detail should be examined first.

PARALLEL (20 GAs,37%): Layouts that used nesting could also fall
near the parallel end of the spectrum, such as when several frames were
juxtaposed, each with a nested component (e.g., Fig. 3(a)). Parallel lay-

outs consist of side-by-side or vertical juxtapositions of multiple alternatives
(which might be structures, processes, outcomes, etc.) for comparison, or mul-
tiple different representations juxtaposed without a clear indication of reading
order (e.g., Fig. 3(b)).

ca

b

Fig. 3. GAs showing parallel (a and b), orthogonal (c), and nested (a) layouts. (Color
figure online)

ORTHOGONAL (9 GAs,16.6%): Similar to parallel layouts, orthogo-
nal layouts do not always indicate one clear reading order, but map
different information to both the horizontal and vertical dimensions

of the GA (e.g., Fig. 3(c)). Orthogonal layouts impose a grid on the space of
the GA, which, in the absence of indicators of reading order, is analogous to the
“anti-narrative” effect of grids in modern art [13]. Visual cues as to the hierarchy
of the four quadrants may counteract the ambiguity, and conventional reading
orders based on culture may compel readers to adopt certain orders. However,
the lack of explicit order indicators in the GA design nonetheless subtly implies
the equivalence and non-temporal relationships among the information being
depicted.

CENTRIC (4 GAs,7.4%): Centric layouts are have ambiguous reading
orders. A centric layout divides the space of the GA into a center and
a periphery, typically mapping elements to both types of position such

that it is unclear which direction should be examined after the center.
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SINGLE (8 GAs,14.4%): Finally, some GAs used a single layout, con-
sisting of a picture that was not clearly differentiable into sub-pictures.
We observed single diagrams (e.g., SM#4 ), single data visualizations

(e.g., SM#37 ), and single photographs (e.g., SM#41 ).

Vertical Versus Horizontal Dominance. Prior work describes how graphical
displays in the sciences tend to be remarkably constrained in their use of space,
relying most heavily on vertical space unless a neutral dimension like time is
shown. For instance, a prior analysis of scientific diagrams in textbooks provided
quantitative evidence of the dominance of vertical arrays over horizontal. Only
2 out of 48 charts (4%) found in biology, geology, and linguistics textbooks
in the Stanford Undergraduate Library used the horizontal dimension as the
primary organizing direction [32]. We compared the frequency with which GAs
in our sample utilized the vertical, horizontal, or both dimensions for comparison.
Only three of the 17 GAs in our sample that relied on a single dimension used
the vertical dimension. Two of these GAs used vertical layout to depict a non-
evaluative dimension, including to display several alternative models and several
graphical representations of results. Of the much larger proportion of GAs in our
sample that utilized both vertical and horizontal layout (28/54 or 52%), several
used visual cues to prioritize the vertical dimension while using the horizontal
dimension to show alternative views as might be predicted by the prior work.
However, three of these 28 GAs used vertical layout to depict time, which prior
work suggests is typically mapped to horizontal layout [32]. The 14 GAs that
used only horizontal layout were, on the other hand, more likely than not to use
space for a neutral dimension like time or to show alternatives.

5.2 Depiction of Time

A majority of GAs (83%) depicted processes, including both natural processes
like cellular division or engineered processes like technical pipelines. Processes
are by definition temporal, requiring strategies for representing time in the 2D
graphical plane. Of all 54 GAs in our sample, only 9 (17%) did not represent
any temporal information. We observed GAs employing several specific strate-
gies to depict temporal information spanning symbolic and spatial approaches.
The most prevalent depictions of time used arrows (72%); however, arrows nec-
essarily involve a spatial mapping as well. Spatial mappings (without additional
schematics to convey time) were also prevalent, with 54% of GAs using space.

SPATIAL (29 GAs,53.7%): To map time to space is to essentially
“unfold” a temporal process onto the 2D space of the GA. The steps
in a process or temporal snapshots of a system can be represented in

pictures like visualizations, schemas, or photographs, and laid out with a specific
reading ordering. The implicit reading order in western culture is left-right and
top-down, though the presence of other visual cues such as arrows can change
the implied order. These types of spatial mappings can use any of the linear
layouts described in Sect. 5.1.
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Prior work suggests that the horizontal dimension is more frequently used
to depict time in diagrams [35], as an example of a more general convention of
using the horizontal to depict neutral, as opposed to evaluative, dimensions [32].
Among those 29 GAs that used space to convey a temporal process, 13 GAs
(45%) used the horizontal dimension, and 4 GAs (14%) used the vertical dimen-
sion. The remaining 12 GAs used both dimensions.

ENUMERATION (4 GAs,7.4%): Enumerations such as roman numer-
als (i, ii, iii), letters (a, b, c) or others can reinforce the reading order
in spatial mappings where it is otherwise ambiguous.

ARROWS (39 GAs,72.2%): More common than enumerations are
arrows, a widely used symbol to indicate the intended direction in which
visual elements should be examined. We observed GAs using arrows in

two ways: 1) to indicate sequence between pictures in a spatial mapping (e.g.,
SM#7 ), and 2) to indicate direction of movement or action in a depiction of a
dynamic process (SM#3 ).

SYMBOLIC (5 GAs,9.3%): Other forms of symbolic representations
for depicting time are relatively rare in GAs. For example, change can
be depicted through blur atop a changing object (e.g., SM#29 ) .

5.3 Text Usage

Many GAs combined visual representations with text. Research indicates that
combining visual and text modalities promotes better understanding of complex
phenomena, presumably because of the benefits of the cognitive work required to
integrate information across modalities [19]. In particular, prior work has shown
that to clearly convey a process often necessitates both text and diagrams [8].

We observed a range of uses of text in GAs. Text served multiple functions
across GAs in our sample, ranging from concise use of text to denote objects
or processes that were not otherwise represented, to longer descriptions used to
narrate or reason about a depicted phenomena (similar to those studied in prior
work on diagrams). Text usage also varied in how “anchored” the text was to
the visual element. For example, labels were clearly anchored to their referents,
while the intended referent of a commentary was generally ambiguous.

INDEX (8 GAs,14.8%): Some GAs substituted text for visual repre-
sentations of an entity. In these examples, text is used as an index,
either for an organism or substance (e.g., Fig. 1(b)) or process (e.g.,

Fig. 1(a)).

LABEL (43 GAs,79.6%: The most common use of text in the GAs in
our sample is to label a visually-represented object, process, or state
in a process (e.g., Fig. 3(a)). When used as labels, the primary func-

tion of the text is to name. Labels can describe simple atomic pictures (e.g.,
SM#7, SM#20 ) or more complex composites comprised of multiple pictures
(e.g., Fig. 1(a) ‘stable complexes’). Some GAs labels color coded labels so that
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they perform the additional function of associating objects, process states or
labels with one another (e.g., Fig. 4).

LEGENDS (11 GAs,20.4%): Legends provide global explanations,
explaining symbols in visual notation (e.g., SM#9 ) or visual encod-
ings in data visualizations (e.g., Fig. 3b).

CAPTION (37 GAs,68.5%): Some GAs used text to describe a set
of visually-represented entities, as opposed to simply naming individ-
ual elements. These captions varied from providing concise descriptive

information such as measurements (e.g., Fig. 1(a) ‘3,990 runs’) to complete sen-
tences describing processes or states (e.g., Fig. 1(a) text in center and bottom
panels). Captions varied in how explicitly they were related to the represen-
tations they described. For example, some GAs used multiple parallel frames,
each had a similarly-styled caption in the same location from the frame (e.g.,
SM#23, SM#50 ). In other cases, captions are more implicitly associated with
sets of representations through proximity (e.g., Fig. 1(a) center left).

COMMENTARY (3 GAs,5.6%): While captions were used to describe
distinguishable subsets of a GA, text could also be used to describe
without clearly referencing parts of the GA. Instead, text as commen-

tary added explanation or context for the GA without any apparent anchor (e.g.,
SM#23 center).

Only 3 of the GAs in our sample used no text.

5.4 Representational Genre

Most GAs combine two or more types of representations, each conveying a par-
ticular type of information. Examples include photographs, hand-drawn illus-
trations, computer generated visualizations, or schematic representations. Each
representational genre may be associated with a plethora of subtypes, e.g., differ-
ent types of data visualizations or different types of schemata. For our purposes
of describing the design space of GAs, we are primarily interested in the broader
distinctions between the genres used, including what types of information each
conveys.

Fig. 4. A GA using a schema to show activa-
tion patterns in the nervous system. (Color
figure online)

We differentiate representational
genres according to their Iconicity,
the degree to which they show real
world elements or conceptual and
abstract ideas. Structuralists differ-
entiated between icons as precise
representation of real objects, and
symbols being abstract visual con-
structs (e.g. cross, circle) but refer-
ring to general ideas (e.g., Christian-
ity, women’s bathroom) [20]. A high
iconicity representation focuses on a
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specific real world entity such as a specific cell (SM#3 ) or crystalline formation
(SM#19 ). Representations with high iconicity depict real world objects that are
potentially visible to the human eye and captured through cameras or micro-
scopes. These representations can be used to imply the individuality or detail
of the entity pictured. On the other side of the spectrum are pictures with a
low iconicity: schemas depicting abstract or general constructs such as center
periphery (e.g., SM#22 ) or flow diagrams (e.g., Fig. 4).

The representational genre—such as photo, scientific visualization, illustra-
tion, data visualization, symbolic notation, and schema—is in many cases influ-
enced by the information to be shown. However, the level of iconicity can imply
information and meaning beyond what is shown. For example, a visualization of
an fMRI scan can refer to a single patient, implying an exemplary or abnormal
case. A hand-draw illustration of the same “data” can imply a class of cases.

GAs in our sample employed a spectrum of representations that lay between
photos and schemas in iconicity. We describe these in order of decreasing
iconicity.

PHOTOGRAPHS (7 GAs,13%): Photographs include photographs
taken with an ordinary camera (e.g. or a study setup), or through a
microscope (e.g., Fig. 3(b) left).

SCIENTIFIC VISUALIZATIONS (7 GAs,13%): Scientific visualization
is concerned with the representation, rendering, and exploration of
intrinsically “spatial” three-dimensional data: anatomical body scans,

particle flows, architecture, or machinery. The visualizations are intended to
faithfully represent these objects to allow exploration and analysis of their struc-
tures; for example, brain tumors or functional MRI data. Scientific visualizations
have become a standard method in many scientific domains. Their iconicity is
high; however, as the data may be incomplete (sampling rate, sampling errors),
it is possible that detail about the real world object may have been lost. In GAs,
scientific visualizations have been used to show MRI (e.g., SM#14 ) and other
anatomical data (e.g., SM#15, SM#16 ), as well as 3D protein structures (e.g.,
SM#19 ) and tectonic structures (e.g., SM#35 ).

ILLUSTRATIONS (37 GAs,68.5%): Illustrations are hand-drawings
(using tools such as, e.g., Adobe Illustrator) showing objects in some-
what higher abstraction and less detail. Examples include animals (e.g.,

Fig. 1(b)), cells (e.g., Fig. 3(a)), and tools (e.g., Fig. 3(c), top). Illustrations are
not meant to replicate specific real-world elements, but to represent a class of
these objects, or the general idea: e.g., “hormone injected in mouse”. Illustra-
tions appearing in our GA sample were often used to show processes such as
the interaction between biological entities (e.g., SM#1, SM#3 ) or to illustrate
a specific research methodology (e.g., Fig. 1(b)).

DATA VISUALIZATIONS (11 GAs,20.4%): Data visualizations are
representations of abstract data, i.e., data that is not associated with
an inherent three-dimensional representation. Abstract data involves

numeric values such as scientific measures and statistics, but can also refer to
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more complex data structures such as trees (e.g. taxonomies), networks, and
temporal data. GAs in our sample used data visualizations in the context of
measurement presentation (charts in Figs. 1(a); 3(b) right) and gene expression
levels (SM#24 ), among others. Data visualizations can be snapshotted directly
from a visualization program (e.g. python), or further abstracted by recreating
using, e.g., Adobe Illustrator.

SYMBOLIC NOTATION (13 GAs,24.1%): Symbolic notation refers to
graphical codes that use mostly domain specific symbols and compo-
sitions. Symbolic notation is used, e.g., to depict chemical molecules

(e.g., SM#32 ) or convey information about genes (e..g, symbols on the bottom
line of the green charts in SM#24 ). Symbolic notation is similar to data visual-
ization but rather than showing a particular real-world instance (that the data
is describing), these symbols often express non-existing concepts (e.g., SM#17 )
and even processes (e.g., SM#24 ).

SCHEMAS (29 GAs,53.7%): Schemas are the most abstract repre-
sentational genre used in GAs. Schemas employ various common sym-
bols and spatial mappings to express ideas, concepts, and processes.

Schematic elements can span an entire GA, effectively turning the entire GA
into a schema (e.g., Fig. 4). More than other genres, schemas employ layout
devices that help convey the logic behind the depiction (e.g., linear to denote a
process, parallel to denote alternatives, etc.).

6 Discussion

6.1 Scope and Results

Our analysis is based on 54 GAs. While many journals require GAs, identifying
a diverse sample of GAs is challenging. We aimed to retrieve GAs from a variety
of domains our sample remains dominated by GAs from biology and chemical
sciences. However, we believe the design patterns that we identified are not
specific to any domain. Moreover, we suspect that our design patterns could also
be applied to other genres of scientific presentations such as posters, infographics,
or data comics [3]. As GAs become a more common requirement, future work
should seek more reliable ways of collecting graphical abstracts across disciplines.

The patterns and dimensions that our analysis identified (layout, depiction of
time, text usage, and representational genre) were arrived at through consider-
able discussion. These patterns and dimensions represent those that both authors
determined best discriminated between differences in GAs in the sample. Addi-
tional dimensions could include color or visual styling, though we found these
dimensions where less related to the content and the message of the graphical
abstract.

While various publishers [5,25,41] and online guides [6,37] provide high level
design advice to GA authors (e.g., “Use subtle colors” [6,25], “use captions” [41],
“designate a clear reading order” [5,25]), it may be unrealistic to expect scientists
who have little prior experience or training in graphic design to implement these
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guidelines. Our patterns provide a much more concrete starting point to assess
what makes for an efficient and effective GA. Our framework can facilitate the
process of developing guidelines; e.g., the effectiveness of a particular pattern can
be assessed for different intentions (e.g., unidirectional layout for demonstrating
sequential steps) or critiqued from a perspective that assumes more general goals
like designating a clear reading order and clearly conveying the contribution of
the research.

6.2 Ambiguity in the Design of GAs

Many prior studies have focused on professionally created diagrams such as those
appearing in textbooks [30,32]. Relative to Tversky’s [32] study of charts in
textbooks, the design of GAs is more diverse in its use of spatial layout than the
textbook diagrams, which were presumably created by professional artists.

Fig. 5. A GA published with a paper on
an inference method for articulated spine
model [12], presented as an exemplar GA by
Elsevier [5].

Only 27 out of the 54 GAs in
our sample used a vertical organiza-
tion, and only three of those GAs
used a vertical organization alone.
Instead, many of the layouts used
in GAs in our sample that made
use of both vertical and horizontal
space (28/54 or 52%) lacked visual
features that would prioritize one
of the dimensions to guide reading.
Figure 5 depicts one such GA. Sim-
ilarly, of the GAs that used spatial
layout to depict time, while horizon-
tal time was more common (by roughly 3 to 1 odds) only 4 GAs used vertical
alone, while the others used both dimensions, lending ambiguity in reading order
in some cases.

In addition to unclear reading orders, we observed various other violations
across multiple GAs in our sample. Unclear relationships between pic-
tures make it ambiguous whether multiple pictures refer to a natural, tem-
poral sequence, or a methodology based on human intervention, or whether they
represented equal alternatives. Missing annotations make it hard to explain
and interpret visual elements in illustrations or pictures, including data visu-
alizations. Inconsistent visual styles for text and graphical elements raise
questions about whether the differences are intended to convey information or
are arbitrary.

6.3 Toward Mixed-Initiative GA Design Tools

We suspect that many GA authors currently use general visual design tools, like
Adobe Illustrator, Adobe Photoshop, or even simpler tools such as MS Pow-
erpoint and Keynote. Authors in certain disciplines are likely to use domain
specific programs to create diagrams (e.g., molecular structures). However, the
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GAs that we observed that appeared to be created using specialized programs
were more likely to lack clear labeling, reading order, and other visual cues to
support reading, perhaps because the program used does not offer or empha-
size such functions. To enable effective GA design among the many untrained
graphic designers who are tasked with creating GAs may require a new breed of
GA authoring tools that are customized to the communication intents of GAs.

Design templates that organize or style information according to different
patterns or themes (e.g., [29,40]) are one possible solution for lowering the barrier
for visual design of GAs. The design patterns we identify suggest a set of design
templates, common configurations of pictorial and symbolic elements, that might
be used to constrain the large space of possibilities available to authors. For
instance, patterns that we observed which seem indicative of differences in the
style of research include:

– Process illustrations: The majority of GAs depicted processes using (hand-
crafted) illustrations on a linear or forking layout. Labels were used to name
elements while arrows connected between the individual stages and pictures.

– Result representations: Many GAs incorporated data visualizations to
depict research results in the form of line charts (e.g., Fig. 3(c)), often in the
context of a larger flow diagram or another spatial mapping used to depict a
temporal process.

– Parallel layouts: Some GAs consisted of parallel pictures laid out horizon-
tally on the GA plane (e.g., Fig. 3(c)). These GAs were frequently associated
with survey and review type articles, as well as research that contributed
a comparison between alternative forms of a process or structure. In these
examples, both pictures are intended to be of equal importance, with no
indication of sequence between them.

We envision a system that presents a designer with an initial choice of tem-
plates like those above. Such a system could integrate examples (e.g., GAs plus
text abstracts for context) to better allow an author to identify the right pat-
tern for the type of contributions their work makes. Exposure to examples in
the design process can help designers realize important structures and transfer
these to other situations [7], and has been shown to improve design quality [16].
Given techniques for extracting and sufficiently annotating GAs with contextual
information, authors could search a GA example library directly or receive auto-
matic suggestions of relevant designs in the design process from GAs expressing
similar research contributions or visual elements.

Mixed initiative tools are those in which a human creator is given access to
system recommendations to help his or her work. Mixed initiative tools for visual
design have included authoring tools for single page graphic designs like posters
and flyers (e.g., [23]). As complex visual compositions that contain schematic
elements, photographs, visualizations, and text, GA designers could likely benefit
from system suggestions regarding different design aspects.

For example, a template and example-oriented approach can be combined
with automated suggestions to improve features of a GA as an author creates
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it. Interactive layout suggestions, including changes in the position, scale, and
alignment of elements, have been shown to help novices produce better quality
designs, as rated by other novices [21]. Such suggestions can include refinements
aimed at improving an author’s current design, or larger proposed changes to
the style of a design, including the layout [21]. A “design validator” tool could
allow GA authors who are not confident in their graphic design skills to get
suggestions and feedback on aspects of a design like font choices [22] or color
choices.

Automatic tools that generate GAs by extracting content and structure from
a scientific article are another possible direction. For example, the Document-
Cards [28] creates a visual summary of a paper. However, DocumentCards rely
on a simple “formula” designed to fit the structure of the average research paper,
and cannot take into account differences between the research content or pur-
poses of papers. The difficulty of extracting an expert’s notion of which contri-
butions of a work are critical or how they differ from other works suggest that
a hybrid approach combining judgments from a human scientist with automatic
features may be most effective for facilitating GA design.

7 Conclusion

Graphical Abstracts (GAs) are increasingly required by publishers to make sci-
entific findings more accessible across and within disciplines. We contributed the
first analysis of the pictorial and symbolic design space of GAs. By applying
visual communication knowledge and qualitative coding, our analysis aims to
pave the way for future empirical work and authoring systems focused on GA
design. We identified four design aspects–layout, depiction of time, text usage,
and representational genre–differentiating a range of design patterns associated
with each. We describe how the design choices made in GAs point to common
design templates and the design advice they imply. We outline directions for
future study and development to facilitate GA design.
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Abstract. A systematic method is presented that describes comprehensively the
very broad design space of visualizations and the interrelationships between
their constituents. The framework offered here includes three representational
modes and fifteen visual encodings principles as the proposed universal building
blocks of all types of diagrams and information graphics. The framework pro-
vides: 1. A vocabulary and a method for thoroughly analyzing the full spectrum
of visual representations of information. 2. A mechanism for exploring previ-
ously unexploited combinations of visual encoding principles for representing
information. 3. A potential tool for creating alternative representations for any
given visualization or data set.

Keywords: Visual encoding � Types of visual representations
Design space � Building blocks � Graphic language � Graphic relationships
Nature of diagrams

1 Introduction

A number of authors have offered frameworks for the analysis and design of diagrams
and information graphics, notably Bertin (1967, 1977); Twyman (1979); Johnson
(1987); Lakoff (1987); Tversky (1995); Card and Mackinlay (1997) and Ware (2008).
Each has contributed to our understanding of how information can be represented
graphically. The present authors have reviewed these and other previous contributions,
and identified gaps in what they cover. Previous frameworks:

1. Cover only some aspects of visual representation (such as depiction, visual
encoding, mode of correspondence, etc., see Table 1).

2. Cannot be applied to all types of visualizations (e.g. clock faces, technical draw-
ings, family trees, heatmaps, comic strips, 3D data sculptures, Isotype charts, etc.).

3. Cannot be used to show how every type of visualization can be constructed from the
universal building blocks of diagrams and information graphics.

The framework we present here fills these gaps, offering a systematic way to
describe comprehensively the very broad design space of visualizations and the
interrelationships between their constituents (see also Richards and Engelhardt forth-
coming). In the terminology of ‘A taxonomy for diagram research’ (Blackwell and
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Engelhardt 2002) the scope of the framework proposed here covers the ‘signs that are
the components of a diagram’, the ‘graphic structure’ of a diagram and the ‘meaning’
represented in a diagram, but not ‘context-related aspects’ (e.g. diagram use).1

This framework has its origins in Diagrammatics (Richards 1984) and The Lan-
guage of Graphics (Engelhardt 2002). In synthesizing our separate investigations and
developing them further, we have broadened the scope of our analysis. In addition to
the collections examined previously we have now also analyzed specimens from
corpuses including datavizcatalogue.com (60 visualization types) and datavizproject.-
com (154 visualization types).

Starting from an information design perspective the framework was produced in
two steps. In step one we thoroughly reviewed and analyzed the distinctions drawn in
the existing literature and applied them to the analysis of example specimens of dia-
grams and graphics, identifying overlaps, gaps and inconsistencies. Step two consisted
of developing what we believe to be a more comprehensive system for identifying
distinctive features and principles, in an iterative cycle of challenging the evolving
framework by applying it to a broad range of example specimens, while continuously
refining it.

We distinguish diverse aspects of visual representations. It is the relationships and
dependencies between these aspects that form the core of the framework. Our key terms
for these aspects are shown in Table 1, along with corresponding distinctions made by
a selection of previous authors. In this paper our key terms appear in bold type when
first used, and in italics in most subsequent appearances.

2 Graphic Relationships Between Graphic Components

Various authors have pointed out that relationships, both displayed and represented, are
central to the nature of diagrams and graphics. According to the logician Charles
Sanders Peirce “A diagram is a representamen which is predominantly an icon of
relations and is aided to be so by conventions” (Peirce 1903, 4.418). In the 11th edition
of the Encyclopaedia Britannica the physicist, James Clerk Maxwell (1910), defined
‘Diagram’ as: “… a figure drawn in such a manner that the geometrical relations
between the parts of the figure illustrate relations between other objects”. The car-
tographer Jacques Bertin noted that “The aim of graphics is to make relationships …
appear. … The transcription of relationships does not utilize ‘signs’; it utilizes only the
relationship between signs” (Bertin 1977/1981, 176–177). And the philosopher Ber-
trand Russell observed that “a map, for instance, is superior to language, since … a
relation is represented by a relation” (Russell 1923, 84–92).

In line with this emphasis on relationships, a visual representation of information
can be regarded as expressing meaning by way of graphic relationships between
graphic components. Graphic components may be shapes, lines, symbols, pictures or

1 Our framework applies to any ‘visual representations (of information)’, ‘diagrams and (information)
graphics’ or ‘visualizations’ – terms which are used interchangeably here.
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words. They may be organized into graphic relationships by their respective spatial
positions, by having the same color or different sizes, by being connected by lines, etc.

A graphic component can be involved in several different graphic relationships at
the same time, i.e. simultaneously involving several visual encoding principles, which
we introduce below.

Sometimes a graphic component of a visualization may be regarded as consisting of
graphic components at a more detailed level (which also express meaning through the
graphic relationships between them), thus allowing for nested visual structures.

3 Modes of Visual Encoding, Depiction, and Correspondence

The way components within visual representations display graphically their relation-
ships we describe as the mode of visual encoding (involving depicting, scaling,
ordering, grouping, or linking).

Each visual encoding can be characterized by its mode of correspondence (being
literal or non-literal). The mode of correspondence refers to how the relationships
displayed may correspond to the relationships that are represented.

The mode of depiction (realistic/precise to schematic) describes how depictions
may range from being spatially or visually realistic and precise to being spatially or
visually synoptic and edited.

These three representational modes, visual encoding, correspondence, and depic-
tion are now introduced in more detail, with a particular emphasis on the mode of visual
encoding, the key feature of the framework presented here.

4 Mode of Visual Encoding

Graphic relationships in diagrams and graphics can be characterized by their mode of
visual encoding. Five broad types of visual encoding can be identified (depicting,
scaling, ordering, grouping, linking), which can be further broken down into fifteen
principles of visual encoding. Principles of visual encoding include the use of ‘visual
variables’ (Bertin 1967), ‘image schemata’ (Johnson 1987; Lakoff 1987) and Colin
Ware’s (2008) ‘graphical codings’ (see Table 1). In this context we propose to dis-
tinguish nine different types of information that can be encoded visually, together with
the kind of questions that are answered by these types of information. See Fig. 1.

• Depicting is used to represent aspects of the visual appearance and/or spatial
location of entities in the physical world (existing or imagined). This type of
information answers questions such as What does it look like? and Where is it?
Depictions – pictures as well as maps – may range in a spectrum from
realistic/precise to schematic, which we discuss later in the section titled ‘Mode of
depiction’.
– Picturing can answer What does it look like? as well as Where is it? questions.

This can be done by representational methods such as perspective projection.
Picturing is the key visual encoding principle used in technical illustrations and
other pictorial representations.
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– Mapping is used to display the two-dimensional layout of physical configura-
tions (spatial location). Mapping answers Where? questions. This can be done
by representational methods such as cartographic projection. Mapping is the key
visual encoding principle in world maps, street maps and floor plans.

• Scaling is used to represent quantitative attributes of entities (e.g. amounts,
numerical values), or percentage of total, or point in time. Scaling can answer
questions such as How many?, How much?, What proportion? or When?
– Positioning along an axis can be used to represent and answer all of the above,

and is the key visual encoding principle in timelines, clock faces, line charts and
scatter plots. An axis can be embedded in rectangular coordinates (horizontal,
vertical) or in polar coordinates (angular, radial).

– Sizing is used to represent quantitative attributes or percentage of total and is
the key visual encoding principle in bar charts and word clouds.

– Repeating is the use of multiples of graphic components arranged into arrays of
proportional size. Like sizing, repeating is used to represent quantitative attri-
butes or percentage of total. Repeating is the key visual encoding principle in
Isotype charts and dot matrix charts.

– Proportioning is used to represent percentage of total and answers What pro-
portion? questions. Proportioning is done by dividing a given surface area into
proportional segments and is the key visual encoding principle in pie charts,
stacked bars and ‘treemaps’.

• Ordering is used either to represent ordinal attributes of entities, such as level or
rank, or to represent chronological order. Ordering can answer questions such as
Which level?, Which ranking? or Which chronological order?
– Ordering by position is a key visual encoding principle in comic strips, pic-

torial assembly instructions, ordered lists and ‘bump charts’.
– Ordering by gradient is the key visual encoding principle in maps with

grayscale or other brightness gradients and in tabular heatmaps.
• Grouping is used to represent nominal attributes of entities, i.e. category mem-

bership. Grouping answers questions such as Which group? and Which category?
– Grouping by proximity is a visual encoding principle in all information

graphics that use spatial clustering.
– Grouping by alignment is a key visual encoding principle in indented lists and

tabular representations.
– Grouping by boundary can be done by separating graphic components by a

demarcating line, enclosure or shared background. Grouping by boundary is the
key visual encoding principle in quadrant diagrams and Venn diagrams.

– Grouping by color is a visual encoding principle in all information graphics
that use color-coding to identify categories.

– Grouping by shape is a visual encoding principle in all information graphics
that use shapes to identify categories.

• Linking is used to represent the presence or absence of relationships between
entities, such as connections, pathways, chronological order or hierarchies. Linking
answers the question Does a given relationship hold (between two entities)? (e.g. ‘is
a friend of’, ‘is a part of’).
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– Connecting graphic components can be done by other graphic components that
function as joining devices such as lines or arrows. Connecting is the key visual
encoding principle in flow charts, family trees and network graphs. The rela-
tionships between entities that can be represented by connecting include nominal
attributes (relationship: ‘is in the same category as’) and chronological order
(relationship: ‘precedes’).

– Nesting is usually used in combination with either grouping or connecting.

(a) In combination with grouping, nesting can be done by grouping a subset of
graphic components (by proximity or boundary) which together form a
component within a higher-level group. For example, grouping by bound-
ary, nesting and proportioning are the three key visual encoding principles
in ‘treemap’ and ‘circle packing’ visualizations. In combination with
grouping by alignment, nesting can be done by indenting a graphic com-
ponent below another graphic component. These are key visual encoding
principles in indented lists.

(b) In combination with connecting, nesting is a key visual encoding principle
in tree structures. Tree structures achieve nesting by combining connecting,
ordering by position (usually vertically) and often also grouping by align-
ment (usually horizontal alignment).

This may seem to be a limited set of visual encoding principles, however, these can
be used in an enormous range of combinations. The framework can thus offer a
potential tool for creating alternative representations. For any given visualization or
data set a decision-tree can be followed (along the colored lines in Fig. 1) from
information types to possible choices of visual encodings, resulting in a more diverse

Fig. 2. On the right: diagram showing the number of seats per political party in Dutch
parliament for the last 71 years, displayed on an angular time axis. The color-coded political
parties are ordered from smallest on the inside to largest on the outside. (Visualization by
Frédérik Ruys.) On the left: types of information that are represented and visual encoding
principles that are used.
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range of combinatorial possibilities than provided by other frameworks (Richards and
Engelhardt forthcoming). The combining of these visual encoding principles is part of
what makes visual representations so powerful. One combinatory possibility is shown
in Fig. 2.

5 Mode of Correspondence

Each visual encoding can be characterized by its mode of correspondence. The mode of
correspondence refers to how the graphic relationships displayed may correspond to
the relationships that are represented. A visual encoding may involve either a literal
(physical) or a non-literal mode of correspondence (e.g. by metaphor or convention).

Literal visual encodings display graphic relationships that show a degree of
structural similarity to actual physical relationships that they represent – or they
display graphic qualities or objects that show a degree of resemblance to actual visual
appearances of physical objects (existing or imagined) that they represent. (Also see
Table 1.)

Non-literal visual encodings display graphic relationships that do not represent
actual physical relationships, but rather conceptual relationships – or they display
graphic qualities or objects that stand for what is meant by metaphor or convention.

In the case of connecting for example, the lines in a wiring diagram show physical
connections, thus involving literal correspondence, whereas the lines in a family tree
represent links between family members metaphorically, thus involving non-literal
correspondence.

6 Mode of Depiction

The mode of depiction describes the possibilities regarding the type of visual encoding
identified as depicting (picturing and mapping). The mode of depiction ranges from the
realistic/precise (e.g. spatially or visually realistic and/or precise) to the schematic
(e.g. spatially or visually synoptic and/or edited).

In the case of picturing, a detailed realistic drawing is an example of a
realistic/precise mode of depiction, while a stick figure or a smiley face are examples
of a schematic mode of depiction. In the case of mapping, a detailed topographic map
of a mountain range is an example of a realistic/precise mode of depiction, while a
subway map or a cartogram are examples of a schematic mode of depiction.

If (a component of) a visual representation involves neither picturing nor mapping,
than we refer to it as non-depictive.

7 Conclusions

Based on a thorough analysis of previous frameworks and of specimens from two
corpuses of visualization types, we conclude that the framework presented here pro-
vides a comprehensive taxonomy for analyzing, codifying and comparing the key
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distinguishing features of diagrams and graphics. It offers a potential method for
identifying unexplored combinations of visual encoding principles, and for creating
alternative representations for any given visualization or data set.
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Abstract. Classifications are useful for describing existing phenomena and
guiding further investigation. Several classifications of diagrams have been
proposed, typically based on analytical rather than empirical methodologies.
A notable exception is the work of Lohse and his colleagues, published in
Communications of the ACM in December 1994. The classification of diagrams
that Lohse proposed was derived from bottom-up grouping data collected from
sixteen participants and based on 60 diagrams. Mean values on ten Likert-scales
were used to predict diagram class. We follow a similar methodology to Lohse,
using real-world infographics (i.e. embellished data charts) as our stimuli. We
propose a structural classification of infographics, and determine whether
infographics class can be predicted from values on Likert scales.

Keywords: Infographics � Classification � Empirical studies

1 Introduction

Infographics present quantitative data (like that in bar charts or scatterplots), and are
typically embellished with graphic elements or pictures. Infographics can increasingly
be found in popular media, online, in public presentations and organisations’ bro-
chures, making data more visible, engaging, and memorable. Several researchers
investigate the effect of using embellishments in data presentation by conducting
empirical studies, the stimuli sometimes “real” (sourced from media publications) and
sometimes “fabricated” (created by researchers for the purposes of their experiment).

With increasing infographics research, classification is useful. “A carefully
designed classification can serve to show not only the full range of available possi-
bilities but also the relationships between these, and … acts more as an instrument
rather than simply as a ‘filing cabinet’” (Rankin [1]). Kwasnik [2] explores the rela-
tionship between classifications and knowledge discovery: “Classification is a way of
seeing. Phenomena of interest are represented in a context of relationships that, at their
best, function as theories by providing description, explanation, prediction, heuristics,
and the generation of new questions.”

Classifications can be generated by thorough and systematic analysis of a range of
stimuli [3–5], or by soliciting the views of human participants (Lohse et al. [6]). The
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research reported in this paper takes the latter approach: we conducted an empirical
study to create a classification of infographics, based on “real” stimuli.

2 Prior Research

Garcia and Cox [4] considered diagrams in the UK National School Curriculum,
classifying them into 20 types, and discussing them with respect to children’s
“graphical readiness” to interpret diagrams. Purchase [3] analysed diagrams from the
proceedings of the first seven conferences on the Theory and Application of Diagrams:
her primary classification is abstract vs concrete and embellishments are defined as
‘additional visual elements’. Novic [7] classes scientific diagrams as “iconic”, “charts
and graphs” and “schematic diagrams”. Blackwell and Engelhardt [8] surveyed several
diagram taxonomies, noting differences according to the nature of the visual elements
used, their positioning, their semantics, and context of use. Rankin [1] commented on
the diversity of classification criteria used by different researchers, distinguishing
between two types of diagrammatic classification: functional (focusing on purpose) and
structural (focusing on form). Our motivator is the CACM article by Lohse et al. [6],
who presented the first structural classification of diagrams based on empirical data,
collected from 16 participants.

The term ‘infographic’ is defined in many different ways. Saleh et al. [11] write:
“Infographics are complex graphic designs integrating text, images, charts and sket-
ches”. Albers [5] writes: “an infographic takes a large amount of information in text or
numerical form and condenses it into a combination of text images and with a goal of
making the information presentable.” We wished to focus on the metaphorical use of
graphical elements (e.g. pictures of coins, cakes, monkeys, suitcases, wine glasses) as a
means of depicting data: that is, if these graphical elements were removed from the
image, then this would remove the representation of the data. So, a bar chart with a
picture of the moon in the background is not an infographic; a bar chart where each bar
is represented by a picture of a space shuttle of a different height is. Haroz et al. [12]
discovered that superfluous images not used for representing data were distracting, and
so we insist that any graphics items directly depict data values.

Albers [5] used an ‘open-ended card sort’ method on 25 infographics to devise four
categories: bullet list equivalent, snapshot with graphic needs, flat information with
graphic needs, and information flow/process – a categorisation formed from the
author’s personal view. Borkin et al. [10] do not describe how they created the 12
categories in their ‘visualisation taxonomy’; Saleh et al. [11] investigate the ‘stylistic
similarity’ of infographics, but do not explicitly identify or name different ‘styles’.
Popular websites (e.g. excelcharts [13], juiceanalytics [14]) propose classifications of
data charts, but do not include charts with graphical embellishments.
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3 Methodology

We follow the empirical and data analysis methodology of Lohse et al. [6] closely, our
objectives being to create a hierarchical taxonomy of different types of infographics,
and devise a means of predicting the class of an infographic, based on the responses to
ten Likert scales. Our empirically-derived classification structure can inform further
empirical research on infographics.

We use the following ‘infographic’ definition: “An image that presents a data set,
where the data quantities are depicted using pictures of recognisable common items.”

3.1 Materials

We used existing data sets: Saleh et al.’s [11] set of 19,594 infographics, and Borkin
et al.’s [9] 5,693. In addition, we looked at 55 infographics from the Times Higher
Education magazine and a set of 174 infographics previously gathered from a range of
sources. Most images were eliminated quickly because they presented more than one
data set, were of poor resolution, were duplicates, had an extreme aspect ratio, had text
not in English, were photographs, or were data charts not embellished with images. We
eliminated those where the images or pictures used to embellish the data chart were not
integral to the presentation of data. We chose 60 infographics to ensure data presen-
tation method variety (see www.dcs.gla.ac.uk/*hcp/infographics).

Our starting point for devising our Likert scales was Lohse et al.’s original ten [6],
although we also drew from those used by Quispel [15], Loroco et al. [16], and
Harrison et al. [17]. Our scales are: spatial/non-spatial; non-temporal/temporal; hard to
understand/easy to understand; concrete/abstract; attractive/unattractive; emphasizes
the whole/emphasizes parts; informative/uninformative; minimal/cluttered; shows
patterns/does not show patterns; literal/metaphorical.

3.2 Experimental Procedure

Twenty participants took part (10 female, mean age = 33, 9 students, 3 high school
graduates, 8 university graduates). Three were studying computer science, and the rest
were a mixture of a variety of subjects (e.g. Law, Social Work, Business); none were
studying visualization, graphic design or art. Each experiment was conducted
one-on-one, and took approximately 90 min.

Table 1 shows how our procedure differs from that of Lohse et al. [6]. Each
participant was given the 60 infographics in a pile, in a different random order for each
participant, and asked to describe briefly, aloud, what each infographic was about.
They then laid all the infographics out on the table and grouped them according to
“visual design.” If participants were not sure what was meant by the phrase “visual
design”, this was explained to them using phrases like “the way in which the graphic
has been designed”, or “the overall visual design of the infographic.” They could have
as many groups as they liked, as many infographics in each group as they liked, and
could take as long as they wished. They then explained their rationale behind each
group. After a break, the participants rated each infographic on the ten Likert scales.
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3.3 Data Analysis

We follow the data analysis procedure of Lohse et al.

(1) Outlier pruning. We calculate the distance between pairs of participants using
Jaccard coefficients: the distance between participants Pi and Pj is 1 − A/(N − B)
where N is the number of infographic pairs (60 * 59/2 = 1770), A is the number
of infographic pairs that appear together in both Pi and Pj’s groupings, and B is
the number of infographic pairs that appear in separate groups in both Pi and Pj’s
groupings. Complete linkage hierarchical clustering on the matrix of Jaccard
coefficients produced a tree: participants on singleton branches until final merg-
ings are considered outliers.

(2) Classification of Infographics. We derive a hierarchical cluster tree of infographics
using complete linkage hierarchical clustering. The similarity matrix comprises
similarity scores for infographics pairs: the number of participants who put the
pair in the same group. We normalized the similarity and subtracted from one to
convert to distances for clustering. The existence of ties in distance scores leads to
different hierarchical clusterings based on the ordering of infographics in the
matrix. Following Lohse et al., we computed six hierarchical clusterings, per-
muting the matrix each time.

(3) Predicting the classification. We use average Likert scores for each infographic.
We perform a principal components analysis (PCA) on the rating scales to
determine if any scales should be removed due to explaining little of the variance.
With the remaining scales, we then build two classifiers, one using classification
and regression trees (CART) and one using linear discriminant analysis (LDA).

Table 1. Experimental procedure.

Lohse et al. [6] Our experiment

Stimuli 60 diagrams, chosen to be
“representative…within the domain
of static, two-dimensional graphic
representations”

Infographics with primary aim of
presenting quantitative data,
embellished with images

Familiarisation Participants named each diagram
(step 1)

Participants described what each
infographic is “about” (step 1)

Rating Participants rated each diagram on
ten nine-point Likert scales (step 2)

Participants rated each diagram on
ten nine-point Likert scales (step 4)

Grouping Participants performed a bottom-up
sorting task on randomly laid out
diagrams, grouping items with
respect to “similarity” (step 3)

Participants performed a bottom-up
sorting task on randomly laid out
diagrams, grouping items with
respect to “visual design” (step 2)

Explanation Participants gave the rationale for
their grouping (step 4)

Participants gave the rationale for
their grouping (step 3)
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Per the requirements of the scikit-learn library and following Lohse et al., we
input cluster priors through the ‘class_weight’ parameter for CART and as a
passed parameter for the LDA. Both the CART and LDA were evaluated using
11-fold cross-validation (as in Lohse et al.). We used the default Gini index as the
splitting criterion for the CART analysis.

4 Results

Outliers are participants on singleton branches until the final stages of merging; our
clustering yielded one such participant who grouped by subject matter rather than
design. Further analysis of the reasons participants gave for their grouping indicated
three others focused on attributes other than ‘visual design’ (e.g. colour, semantics,
audience). We removed these four participants’ data, leaving 16 valid data sets.

We set the similarity distance threshold to 0.9, resulting in seven to eight clusters
for each of the six cluster trees. We inspected these six clusterings to form a
meta-clustering by grouping infographics that appeared in the same cluster in the
majority. Our classification analysis revealed six top-level categories, two of which are
comprised of two second-level sub-categories. Two infographics appeared with similar
frequency in two categories (in the ‘area-as-quantity’ and ‘single circle’ classes): they
both presented two sets of data. We had attempted to ensure that each infographic only
presented one data set – these two had slipped through the net of our filtering process
so were removed from further analysis. Two other multiply-classified infographics
were both based on flags – we therefore created a separate ‘flag’ category for them, the
seventh top-level category. The seven categories are:

• Bar Charts (16). A bar chart is the main data presentation form.
• Geographical (4). The primary shape is a geographical map.
• Units (6). The quantity of the data is represented by several small graphic images,

each representing an amount of data.
• Area-as-Quantity. Different data quantities are represented by the areas of shapes.

In some cases, these are Familiar Shapes (e.g. circles, triangles) (9); in others
Uncommon Shapes are used (e.g. dinosaurs, mail boxes) (5).

• Single Circle (5). Data is represented within a singular circular form.
• Proportion-as-Quantity. The data quantities are shown as proportions of a larger

object. Divisions of Rectangular Shapes are most common (6), although Irregular
Shapes (e.g. banana, wine glass) are also used (5).

• Flags (2). The primary shape used is that of national flags.

The first three principal components accounted for 91.1% of the variance. Each
Likert scale had a squared factor loading >10% in at least one of the first three principal
components. Thus, we chose to keep all of the scales. To avoid overfitting the CART
tree, we set the maximum number of leaves to 10, similar in detail to Lohse et al. [6].
The resulting tree correctly classifies 55.2% of the infographics with a cross validation
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mean accuracy of 28%. Examining the CART tree and the distribution of average
Likert values for all of the infographics, we observed there is a high degree of variance
within many of the clusters for each Likert. For example, paired bar charts often
represent before and after, giving them a higher temporal score than the non-paired bar
charts in the bar chart group. The LDA resulted in a slightly more accurate classifier
(63.8%, with cross validation mean accuracy of 38%).

5 Discussion

Some specific infographics produced surprising results. A line chart (i03, see website in
Sect. 3.1) was consistently grouped as a bar chart; its source was The Times Higher
magazine, as was the case for several bar charts – perhaps there is a common generic
‘Times Higher’ visual style that led it to be grouped with others from the same source?
Alternatively, since this was the only infographic based on a ‘line chart’, it may have
been grouped with bar charts so as to not be a singleton group. The cartogram (i19) was
the extreme on several Likert scales, and was not classified as ‘Geographic’. We believe
that some participants did not recognise it as representing a world map. An infographic
which represented money as piles of poker chips (i57) was not classified as a bar chart;
however, since the individual piles of chips have no meaning, and it is the comparative
area of the two piles that is important, ‘Area-as-Quantity’ is indeed the best classification
for it. The map of Africa showing how its area compared to that of other countries (i23)
was predominantly classified as Geographical, although it might also reasonably be in
the Proportion-as-Quantity (Irregular Shapes) or Area-as-Quantity (Uncommon Shapes)
categories. i58 might have better been classified in the Area-as-Quantity class (Familiar
Shapes) –we believe that the highly rectangular nature of the items depicted in it led it to
be grouped with the other Rectangular Shapes as part of Proportion-as-Quantity. We
deliberately included an infographic that depicted a single data point (i26) as an extreme
example; it was classified as Proportion-as-Quantity since, we believe, the range was
implicitly interpreted as [−40°F, 140°F], the common range of thermometers of that
design.

Our classification is richer than those of Albers [5] and Borkin et al. [10], which are
based on popular categories of data charts (e.g. donut chart, stacked area chart, line,
scatter plot, tree [10]) or are vague (e.g. “flat information with graphic needs” [5]).
Some of our empirically-derived classifications are similar to common data charts (e.g.
Bar Charts, Geographical), but they also include categories based on how the space on
the page is used to depict data (e.g. Proportion-as-Quantity). Unlike other classifica-
tions, our results show that participants were not only aware of how data was being
depicted (e.g. using proportions to show quantity), but were also highly sensitive to the
types of shapes used – familiar, uncommon, rectangular, irregular. No other classifi-
cation considers the form or shape of the graphical embellishments used.

There is a strong prevalence of infographics that rely on area comparisons to show
difference in data values: 14 Area-as-Quantity and 11 Proportion-as-Quantity. It is well
known that perception of area is less accurate than perception of length or position [18].
This phenomenon might actually serve infographics designers who wish mislead
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readers: Tufte [19, pp. 69–70] gives examples where perception of area rather than
length can easily lead to incorrect inferences.

The Likert scales were poor predictors of class, in contrast to Lohse et al’s results.
The data indicates that the Likert scales are orthogonal to the classifications – that is,
their values bear little relation to the groupings created by the participants. Thus,
whether an infographic is attractive or not, or easy to understand, or temporal etc. does
not reflect its visual form. In many ways, this is reassuring news for infographics
designers – they are not obliged to use any of the nine specified categories if they wish
to emphasise any of these Likert properties. In addition, Lohse et al. suggested that
their successful predictions might have been a result of participants doing the Likert
scales before the grouping task, and then implicitly using these scales in their grouping.
Our participants completed the Likert scales after the grouping task, so as to mitigate
against this possibility. Having the two tasks done by different participants of similar
demographic profile might be a more reliable way of testing the predictions: that way,
there would be no cross-contamination between tasks.

Any empirical study is subject to limitations. Our classification results are bound by
the scope of the 60 infographics we chose (from a total set of 25,516), and our
prediction results by our choice of Likert Scales. The demographic profile of our
participants is reasonably well-spread, although slightly skewed towards younger ages.
Future work can validate our hierarchy with other infographics and participants.

6 Conclusion

The prevalence of infographics in the popular media, advertising, public notices and
organizational brochures makes them a rich source for diagrammatic research. There is
still a great deal of empirical work to be done in this area: what makes infographics
memorable or engaging? Do graphical embellishments inhibit interpretation – both of
individual data points or the overall message? How can deliberately misleading mes-
sages be presented without being obvious? Classifications provide frameworks for
research, and are particularly useful if based on real-world examples and created
through human experimentation. Our novel classification of infographics provides an
empirically derived basis for researchers in this area – who no longer need to create
their own analytical classifications.
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Appendix: The Infographics Classification Tree
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Abstract. Vignelli’s 1972 diagrammatic subway map is hailed as a design
classic, but was dropped by the Metropolitan Transportation Authority
(MTA) after just seven years’ usage. Following an absence of a generation, a
diagrammatic map of the New York City subway system has been reintroduced
into the MTA’s information provision. A digital version came back in 2011 and
continues in use with weekly updates on the MTA Weekender website; print
editions were issued in 2012, 2014, 2015, and 2017 for special occasions and
from 2017 onwards for travel advisory notices. To see this in context, we need
to understand why New York City adopted a diagrammatic map (Salomon
map 1958), route colour-coded it (D’Adamo map 1967), stylized it (Vignelli
map 1972), replaced it with a geographic map (Tauranac map 1979), and
re-imagined it for the digital era (Waterhouse-Cifuentes map 2011). Using
primary sources, we characterise the birth, death, and rebirth of the diagram-
matic map of the New York City subway.

Keywords: Metro maps � New York City subway � Salomon
Vignelli � MTA

1 Introduction

The two most famous metro maps are probably the London Underground map by
Henry C. Beck (1933, with derived versions continuing today), and the New York City
subway map by Massimo Vignelli (1972 to 1978). The brevity of the Vignelli map in
contrast with the longevity of the Beck map begs explanation, as does the reimagining
of the Vignelli map thirty-two years later by Waterhouse and Cifuentes (Lloyd 2012).
Against a worldwide trend for metro maps to be diagrammatic (Ovenden 2015), the
adoption of a geographic design as the official subway map of the MTA (Metropolitan
Transportation Authority) for more than three decades stands out as an anomaly. In this
paper, we address the question of why it underwent these several transitions. This paper
is based on information collected from primary sources during the period 2003 to 2018:
acquisition of publicly issued maps; face-to-face interviews with surviving individuals
involved in the main transitions of the official subway map; inspection of contemporary
manuscript and typescript documents, and contemporary news reports.
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Designation of the Maps. Since the New York Transit Authority (TA)’s first in-house
map, in 1958, the official subway map has been anonymous—except for 1998 to 2009,
when Michael Hertz put his design firm’s name on it. Before the Salomon map of 1958,
the municipal authority anonymized its map, while private firms indicated individual
authorship: the IRT printed the initials of its map’s designers (“HLS” and “JWG”); the
BMT printed the name of its map’s designer (“G. V. Plachy”), the Hagstrom maps—
which were adopted by the Board of Transportation (BoT) and the TA—had the
cartographic firm’s name (“Hagstrom Map Co.”), and the Voorhies map adopted by the
TA had “Stephen Voorhies”. Formally, the TA and from 1972 its parent the MTA was
‘the designer’ of the subway map. For the purposes of this paper, however, official
designs of the subway map will be referred to by the individual who instigated the
distinguishing features. This is a convenient label rather than an ascription of an auteur
to a map. So, ‘the Salomon map’ refers to editions of the official map of the New York
City subway from Winter 1958 to Spring 1967; ‘the D’Adamo map’ refers to editions
from Autumn 1967 to 1969 inclusive; ‘the Vignelli map’ refers to those from August
1972 to 1978 inclusive; ‘the Tauranac map’ refers to editions from June 1979 to 2011,
and that series continued to the present times; and ‘the Waterhouse-Cifuentes map’
refers to the Weekender map and print renderings thereof.

Large changes of a map herald a new design, while the smaller increments intro-
duce versions and variants, although Roberts (2018) advocates a strict notion of design
succession, in which any non-trivial changes constitutes a new design. Here we deem
that the New York City subway shifted to new designs in October 1958 (Salomon),
November 1967 (D’Adamo), August 1972 (Vignelli), June 1979 (Tauranac), and
September 2011 (Waterhouse-Cifuentes), and other editions are deemed to be versions.

2 Findings

Before the First Diagrammatic Map. The subway in New York City was built by
three companies (IRT, BMT, and IND), who ran their networks independently until
they were unified under municipal control (the BoT) in the summer of 1940. Until then,
each company made a map showing only its own services. Private cartographers (such
as Hagstrom, Nostrand, Voorhies, General Drafting) made maps of the complete net-
work, which were either sold to passengers through newsagents, or overprinted with
promotional material and circulated free of charge by hotels, banks, conventions and
other businesses. After unification under the BoT in 1940, almost two decades passed
before they commissioned a new map: black-and-white versions of the former oper-
ating companies’ maps continued to be issued by the BoT for a few years. Then they
started issuing Hagstrom’s map of the integrated system, and the TA continued this
practice from 1953—alongside, from 1954, Voorhies’ map (overprinted the Union
Dime Bank’s promotional material). These topographic maps continued until the
autumn of 1958.

1958: The Salomon Map—The First Diagram. George Salomon (1920–1981) came
as an émigré via London and in 1940 settled in New York City. He was inspired by
London Underground’s signage and map to create a systematic service nomenclature,
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colour-coding scheme, signage system, and network map for the New York City
subway (Salomon 2006, Salomon 2003). His nomenclature also resembled the
trunk-and-branch scheme of the early 1950s Berlin U-Bahn map which he probably
received copies of. Salomon aligned himself with the Bauhaus school, and with
modernist artists, especially Mondrian, who settled in New York in the same year
(Salomon 2004).

By 1948, Salomon was actively working on his concepts for way finding in the
subway, which was at first a private project (Salomon 2006). In 1953, the TA suc-
ceeded the BoT, bringing a proactive approach to promotion and information delivery.
Salomon approached the TA immediately (Salomon 1956b), and by 1956 had sub-
mitted two prospectuses outlining his concept for an overhaul of wayfinding: renaming
the routes and colour-coding them using a trunk-and-branch structure, systematising
the signage, and creating a diagrammatic map (Salomon 1955, 1956a). What he pro-
posed to them was the culmination of
several years of his personal research.
In September 1956, the TA selected
Salomon’s map (Salomon 1956b), but
kept the nomenclature and tricolour
scheme of the long-gone IRT, BMT,
IND. They issued their first diagram-
matic pocket map, designed by Salo-
mon, in October 1958 (Fig. 1), which
also appeared in carriages and on sta-
tion walls over the months from December onwards. The TA had commissioned the
map to solve problems with outsourced maps, which had been apparent under the BoT
(Daly 1952) and would be exacerbated by increased print runs from about 50,000 maps
(at $32.50 per thousand) a year (BoT 1952) to about 500,000 a year. The use of Union
Dime’s free Voorhies maps from 1954 could solve the cost problem, but the map leaflet
was dominated by Union Dime rather than the subway body. Moreover, the lack of
direct control over editorial content and the slowness of updates remained problematic.
Salomon’s overtures, motivated by his passion for better wayfinding, converged with
the TA’s desire for cheaper and easier in-house mapmaking. Internal memoranda reveal
this as the actual motivation, while public-facing documents indicate a post hoc
rationalization: “A new subway map has been designed to simplify the problems of
those who seek to find their way around the city on rapid transit lines,” from the Annual
Report a few months before the map was launched. (TA 1958a; see also TA 1958b and
TA 1959).

1958: Colours. There was no prior official colour coding: from 1943, the BoT had
used the Hagstrom map with spot red (IRT), process blue (BMT), and process orange
(IND), although the latter had changed to spot yellow by 1948. From 1953, the TA
continued using that map and, from 1954, added the Voorhies map, which had spot
blue (IRT), process orange (BMT), and spot red (IND). So, when Salomon prepared his
report, he had no official constraint on possible colour schemes. He proposed a
nomenclature that he based on the main trunks running north-south in Manhattan,
giving each trunk a letter code and a colour (Fig. 2a). Where routes branched off from

Fig. 1. Excerpt from Salomon 1958 map
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the trunk, they retained the letter and col-
our of the trunk, but acquired a numeric
suffix. (Figure 2b shows the trunk-and-
branch structure for the E train (red), for-
merly known as the IRT Seventh Avenue.)
Stations would be uniquely identified by
the route label, route colour, and the sta-
tion name in signs displayed in stations
and carriages (Fig. 3). That system was
rejected, but we can see what might have
been in Roberts’ (2012) reconstruction.
Although the TA made Salomon keep the
three-colour principle, he did choose his
own colours: key black (IRT), spot green
(BMT), and spot red (IND). They paid
$3000 for his map, but sought neither his involvement in managing the map, nor his
signage, nomenclature, or colour coding. Salomon’s proposed trunk-coloured map
would have been clearer than the tricolour map, but the cost of changing the signage to
match his trunk-and-branch nomenclature would have been prohibitive.

1967: The D’Adamo Map. A year after its birth, the TA announced a massive pro-
gramme of infrastructure works to ease the major bottlenecks in the subway network
(Ingalls 1954). One of these works was a two-mile tunnel under Chrystie Street, which
was contracted nine years later (Anon 1963). That tunnel allowed the inter-working of
trains on the former BMT and IND networks, which undermined the principle of a
three-colour map that had been the common convention since the early 1930s.

By 1964, it was believed that completion was imminent and in late summer the TA
opened up a Subway Map Contest to seek from the general public ideas on how best to
revise the map, which they expected to need the following year.

Shaw (2011) suggested that it was not the Chrystie Street connection that triggered the
SubwayMapContest, but theWorld’s Fair, which NewYork City hosted fromMay 1964
to September 1965, and which led to a surge in the use of public transportation. In fact the
TA had already put in place a comprehensive wayfinding programme by April (Anon
1964) including the ‘blue streak’ on the Salomon map, new route numbers on all buses,
and new bus-stop signs (Perlmutter 1964), by the time theyfirstmentioned a SubwayMap
Contest (Perlmutter 1964). The first year of the Fair closed in Septemberwhen theContest
was ending, and they expected the newmap to be out in autumn 1965. So theMapContest
can hardly have been aimed at the World’s Fair.

Although the contest was intended to accommodate the inter-working of the BMT
and IND networks, the materials sent to applicants made no mention of the Chrystie
Street connection but included a copy of the 1964 pocket map as a reference. In May
1966, when the new map was quite advanced, Harold McLaughlin presented a paper on
it at the annual meeting of the American Transit Association, but the TA immediately
withdrew it and confiscated every copy they could find (Anon 1966), and it was
omitted from the archives of the ATA. The TA remained reticent about the changes
until very late, at which point it caused a lot of dissent, including attempted legal action

Fig. 2. (a) Trunks (b) branch scheme in
Salomon’s report (Color figure online)

Fig. 3. Station identifiers in Salomon’s report
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to stop the opening of the Chrystie Street connection. It seems that the TA correctly
expected a strong adverse reaction to the route changes that were concomitant with the
opening of this new tunnel—which, as we shall see, had lasting ramifications.

In October 1964, the TA awarded $4000 to each of three winners (R. Raleigh
D’Adamo, Harris Schechtman, and John & Mary Condon), but their maps were
shelved and lost. (Fifty years later, Reka Komoli used a colour photograph to recon-
struct D’Adamo’s hand-drawn map as a vector file (Rhodes 2015).)

One winner, D’Adamo, submitted a report, explaining his principle of drawing each
route in a distinct colour, and splicing together differently coloured routes running
along a trunk. The TA hired Stanley Goldstein, a rocket scientist at Hofstra University,
and passed D’Adamo’s report to him. Goldstein submitted his report a year later: he
and his students prepared four prototypes, and recommended #4, in which each route
was drawn in a distinct colour (as proposed by D’Adamo) but routes running in parallel
on a trunk were drawn side-by-side rather than spliced. Station stops were represented
by squares (express) and circles (local), and transfers by proximity (the “no dot, no
stop” rule). In #3 Goldstein reinvented Salomon’s trunk-colour scheme: each trunk had
a distinct colour, and each station was
represented by a square in which was
written the route codes of all the trains
that stop there. Goldstein also took
over D’Adamo’s use of route identi-
fiers in line-coloured rectangles at
termini. In January 1966, Jerome
Adler (Division Engineer in the TA
Designs Division) decreed that the
new map would combine Goldstein’s
prototypes #3 and #4. Each route
would be drawn in a separate colour
(as in #4) but each station was to be a box containing the route labels (as in #3). After a
usability study in June (Barrington 1966), which yielded pink rectangles around
transfers, the map passed to Diamond Packaging for editing and printing. There, Dante
Calise selected the route colours and typeface, and the station maps were printed and
installed for 26th November 1967, when the Chrystie Street opened (Fig. 4).

1967–1970: The Aftermath. Although the new infrastructure eased the bottlenecks,
the launch of the D’Adamo map was flawed. By announcing the changes just ten days
before the opening (Perlmutter 1967), the TA left passengers no time to absorb the
changes, or for the TA to absorb feedback. As only wall maps were printed on time,
passengers had no pocket maps to study at home. By not updating the signage in
subway cars and stations, they prevented passengers from relating the map to the
platforms and services. The TA got many complaints, nominally about the new map
but really prompted by the circumstances of its introduction. Also, the map itself was
criticised: as a result of Adler’s merging Goldstein’s prototypes #3 and #4, the map was
more fragmented and cluttered than necessary. D’Adamo himself sent in a critique of
the new map, prompting TA to at least replace the pink boxes with clearer, station
boxes.

Fig. 4. Downtown excerpt from D’Adamo map,
issued November 1967
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1972: The Vignelli Map. A year after
Chrystie Street, the TA was subsumed
under a new state organization, the MTA,
under the chair of William Ronan, and
efforts soon commenced on a new subway
map. What prompted the TA to seek a new
subway map so soon after the three-year
development of the D’Adamo map?
Probably: (a) Bad press around the 1967
map might have motivated them to try
again, this time with an outside firm rather
than in-house. (b) As a new body, the
MTA needed some early wins to build its
brand in the public perception. (c) Uni-
mark’s signage project was concluding in
1970 with the release of the Graphic
Standards Manual, and this created a nat-
ural opportunity to hire Unimark again to
redesign the map as well. (d) Although the
City of New York had only indirect
influence over the TA, they were very
critical of information delivery. For example, the City’s Transportation Commissioner,
wrote in the autumn of 1968, “The history of the TA’s efforts to straighten out their
graphics and designations is pitiful. […] We could proceed […] by simply telling the
TA and the MTA that their present system is cockeyed and should be revised.”
(Sidamon-Eristoff 1968). Massimo Vignelli, head of the Unimark New York office,
was already in touch with the TA on the signage project with Bob Noorda. He was
scathingly critical of the 1967 map, and initiated a project to create a new, modernist
map. With Joan Charysyn as graphic designer under Vignelli’s direction, a comp was
prepared by the summer of 1970 (Fig. 5), and quickly approved, with a contract signed
between the TA and Unimark on 31st July 1970. The TA paid Unimark $17,600 for the
map, but after it was issued in August 1972, neither Unimark nor Vignelli had any
further involvement in the map. All modifications were handled in-house. In 1974, the
map was completely redrawn, moving more of the map content into the empty
north-east corner, and changing the typeface. A total of seven editions were issued
(detailed by Lloyd 2012). The map was honoured as a ‘design classic’ and as ‘iconic’,
but had vociferous critics who desired a return to a topographic map.

1979: The Tauranac Map. Ronan, who had championed the Vignelli map, was
replaced in April 1974 by David Yunich, a Macy’s marketing executive (Burks 1974).
He created the MTA Marketing Department, and hired his former Macy’s colleague
Fred Wilkinson, who in 1975 formed the Subway Map Committee to supplant the
Vignelli map with one that would lure in more passengers: subway maps had become
primarily a marketing tool. For its first year, the Subway Map Committee had no vision
of what should replace the Vignelli map, and even mooted a return to a tricolor scheme.
In 1976, John Tauranac took the Chair, with an agenda of creating a topographic map,

Fig. 5. 1970 comp: design director M. Vig-
nelli, graphic designer J. Charysyn (Lloyd
2012)
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starting from that of the new guidebook
(MTA 1976). With Tauranac as design
director and Mike Hertz as graphic
designer, and inputs from other mem-
bers of the committee, by January 1978
a prototype map was publicly pre-
sented. As Tauranac knew, the map was
flawed by using a single colour for all
routes. In September, however, new
funds became available and Tauranac was able to realise his vision of switching the
subway from route colours to trunk colours, and hence deliver a topographically
realistic map with trunk colour coding. This was issued on 25th June 1979 (Fig. 6).
Basically the same concepts continue in the current MTA subway map: a
trunk-coloured topographic map with the stopping routes listed alongside each station.

2011: Waterhouse-Cifuentes Map. In
2011, the MTA re-introduced a diagram-
matic map in the style of Vignelli,
designed by Yoshiki Waterhouse and
Beatriz Cifuentes, to report temporary
outages and re-routings because of engi-
neering works. The intention was simply
that the route-drawn diagram facilitated
showing visually which individual routes
were affected. This cannot be done visu-
ally in a trunk-drawn map such as Tau-
ranac’s, where outages must be listed as
text. For example, in Fig. 7, if the N train
had a weekend outage, then that route’s
line would be greyed out to show at a glance that service change. In the Tauranac map,
this would require a textual note alongside each station where the N would normally
stop. Originally existing only on the MTA Weekender web site (MTA 2017), the map
is now routinely used in printed advisory notices that are displayed in stations.

3 Conclusion

The initial leap from geography to diagrams was driven chiefly by the TA’s desire to
cut costs and streamline map production, which fortuitously coincided with Salomon’s
long-standing desire for a clear London-style wayfinding system. The shift from the
tri-colour company-based colour scheme to route colouring was driven by the need to
keep the map legible after the BMT and IND merged. And the famous transformation
into Vignelli’s minimalist design was motivated by a corporate desire for rebranding
after the creation of the MTA. Finally, the exit from the ‘diagram decades’ was

Fig. 6. Tauranac map, 1979

Fig. 7. Excerpt from MTA Weekender map
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instigated by Tauranac’s vision of a ‘didactic’ map. Latterly, the Vignelli-style diagram
was brought back because its separate route lines made it easier to show outages
visually.

There is no grand narrative of the transitions of the diagrammatic subway map of
New York City. Each change was made by individuals either to solve pragmatic
problems or to express personal preferences. The simplistic notion that diagrammatic
maps somehow do not suit New York is not supported by a close examination of the
map’s history, nor is the naïve notion that New York must inexorably follow an
evolutionary trend from geographic maps to diagrams. Diagrammatic maps of the
subway have specific advantages and disadvantages, and their comings and goings in
NYC reflect this.
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Abstract. Identifying auditory correlates of the graphic-linguistic dis-
tinction informs our design of an auditory display based on Charles
Minard’s depiction of Napoleon’s Russia campaign – the gold standard
for visual (graphic) information design and therefore a grand challenge
for auditory display design. We identify viable alternatives to the text-
only translations currently employed in making graphics accessible to
blind and/or low-vision individuals by introducing sounds bearing strong
ecological resemblances to Minard’s depictions. Our integration of the-
oretical work about classic distinctions with common properties across
diagrammatic and auditory display communities reveals practical oppor-
tunities for designing inclusive and accessible graphics.

1 Translation from Graphics to Text for Accessibility

Charles Minard’s Figurative Map of the Successive Losses in Men of the French
Army in the Russian Campaign 1812–1813 [19] (Fig. 1) is remarkable for repre-
senting six types of data in two dimensions [26]. Two “flow lines” represented the
troops’ journey – an upper tan-colored line traces the army’s invasion of Russia,
while a black lower line traces their retreat from Moscow back to Poland. The
black “retreat” line is also linked to a temperature scale with dates and tem-
perature readings (numbers). The positions of each point along the flow lines
convey troop position (latitude and longitude), troop direction, and troop dis-
tance. Troop quantities are represented both by written numbers, at various
points along the flow lines, and by the thickness of the flow lines themselves,
with each millimeter of thickness representing 10,000 troops.

While a sighted individual can perceive the graphical content as an effi-
cient integration of words, numbers and undulating graphical shapes, a blind or
low-vision individual would typically access a sonic translation of it, consisting
entirely of temporally sequenced streams of words (Fig. 2c).

Many blind and low-vision individuals depend on approaches like the Web
Content Accessibility Guidelines (WCAG) to translate graphics into text descrip-
tions which are then accessed aurally (through speech synthesis) via screen
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Fig. 1. Charles Minard’s Figurative Map of the Successive Losses in Men of the French
Army in the Russian Campaign 1812–1813 (1869). Public domain.

(a) (b)

(c)
River, and 100,000 men remained. They

continued advancing towards the city of

Moscow towards the northeast. At Moscow

100,000 men remained. They started retreating

southwards towards the city of Malo-jarosewli,

via the city of Tarantino. On October 18 they

reached Malo-jarosewli and the temperature

was zero degrees Réaumur. The remaining

(d)

advancing towards

towards the northeast.

retreating

southwards towards

On

Fig. 2. Deconstruction of Minard’s map. The original map (Fig. 1) comprises parts
conveyed via text (a) and parts conveyed via shapes (b), but in a text description
(c) parts originally conveyed via shapes are also conveyed via text (d). Adapted from
Charles Minard’s Figurative Map of the Successive Losses in Men of the French Army
in the Russian Campaign 1812–1813 (1869). Public domain.

readers. Such text descriptions are essentially interpretations meant to convey
the author’s intended meaning of the infographic.

Certainly, the text labels conveying discrete troop quantities, isolated tem-
perature readings and various landmarks (names of rivers, towns, battle sites)
in [19] (Fig. 2a) lend themselves to text-only descriptions. However, the precise
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spatial relations between these elements across the 2D map – as well as their
moment-by-moment changes – are conveyed graphically (Fig. 2b). Moreover, an
important correlation between the changing temperature readings and troop
quantities is also conveyed graphically.

This fundamental difference can be understood as the “graphic-linguistic dis-
tinction” [24] (G-L distinction). One might predict the parts originally conveyed
via shapes (Fig. 2b) to be “lost in translation.” Minimizing what is lost in trans-
lation, our target design problem requires identifying auditory correlates for the
graphic-linguistic distinction. This is our target theoretical problem.

Although touch (cf. [13]) might be a more natural fit than sound, if the state
of the art is primarily aural, a sound-based solution is probably more immediately
applicable and aligns better with our target design problem. While screen readers
can deliver text descriptions tactilely as braille, refreshable braille displays are
expensive compared to audio hardware.1 As well, [14] have shown that conveying
information tactilely via touch screens also suffers from challenges related to
haptic perception. Touch screens are also not as ubiquitous and inexpensive as
audio hardware.

2 Identifying Auditory Correlates of the G-L Distinction

In [5], we reviewed four of the seven distinctions identified by Shimojima [24] and
predicted what would be required for translation into the sonic domain, namely
2D versus Sequential, Relation Symbols versus Object Symbols, Analog Versus
Digital and Intrinsic versus Extrinsic Constraints.

2.1 2D vs. Sequential, Analog vs. Digital and Intrinsic vs. Extrinsic

Larkin and Simon [16] distinguish between diagrammatic (“a data structure in
which information is indexed by two-dimensional location”) and sentential rep-
resentations (“a data structure in which elements appear in a single sequence”)
(p. 68): in Minard’s graphic, by definition, the text (Fig. 2c) is sentential, due
to its arrangement as a linear sequence of marks, whereas the marks that are
indexed to the 2D plane are diagrammatic. The spatial relations among the
labeled marks enable visual perception of the contour of the line or the relative
positions of marks scattered across the 2D surface, conveying values and trends
that are not conveyed via labels (cf. [1]).

The sentential properties of Minard’s graphic are easily conveyed via text-
to-speech. However, for sonic diagrammatics, in [5] we predicted that the
formation of a 2D space in the sonic domain requires two properties of sound
that can be independently manipulated and perceived.

1 The Orbit Reader, “the first ever affordable refreshable braille reader that is
portable,” costs $499 Canadian. As of December 2017 the device is still only available
as a pre-order [4].
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Auditory Display Design. Just as graphic designers arrange combinations of
visual variables (lines, shapes, colors, textures) across a 2D surface to convey
information, auditory display designers employ sonic variables including pitch,
loudness, spectral brightness (or timbre), tempo, duration and spatial position
within a stereo (or surround-sound) listening environment [15,17,21,25].

Thus, our design solution translates the 2D visual plane of Minard’s graphic
to a horizontal, auditory “ground plane” so as to recruit a fundamental affor-
dance of human hearing – the ability to localize and isolate sonic events within a
360◦ radius. Our selected auditory icons (sonic correlates on the graphic side and
detailed next), earcons (correlates on the linguistic side) and text-to-speech label
translations (conveying troop quantities, geographic landmarks and tempera-
ture readings) are then mapped to the horizontal auditory plane by translating
the vertical and horizontal coordinates of their corresponding markings on the
visual map to the corresponding azimuth and distance coordinates of the audi-
tory ground plane. From a fixed listening position (the auditory equivalent to the
centre point of the infographic), the marching footsteps of the advancing army
move from left to right towards Moscow in front of the listener, while the march-
ing footsteps of retreating army move from right to left, behind the listener.
Simultaneously, text-to-speech descriptions denoting discrete troop quantities,
geographic landmarks, and temperature readings are also spatially mapped to
their corresponding coordinates on the infographic.

The foregoing also aligns with the distinction between Intrinsic and
Extrinsic Constraints [24]: representations that obey “inherent constraints”
to be graphical (p. 332). Drawing from [1], Shimojima reinforces the notion that
“diagrams are physical situations” (p. 22) that adhere to their own intrinsic set
of constraints. When the diagram’s constraints are appropriately matched to the
constraints of the situation described, an appropriate representational has been
chosen.

As noted above, we recruited a fundamental affordance of human hearing
– the ability to localize and isolate sonic events within a 360◦ radius. Via our
sonic translation, the horizontal constraints of a stereo or binaurally-encoded
audio environment map appropriately to the constraints of the infographic’s hor-
izontal dimensions, thus utilizing intrinsic constraints. Likewise, the constraints
of pitch/frequency are appropriate for representing vertically-spaced relations
between markings within various categories, such as the temperature readings.

Correlates of Analog Versus Digital. The Analog Versus Digital distinction
(most commonly associated with [10]) describes analog systems as continuous
and capable of changing the meaning of a representation by placing new ele-
ments between any two other elements ad infinitum. By contrast, digital systems
are discontinuous and differentiated throughout. Under this distinction, pictures
are considered analog and more replete; diagrams are also analog though less
replete; and linguistic systems are partially digital. As linguistic-symbolic prop-
erties bear little or no resemblance to the item they represent, they are described
as having a conventionalized relationship with the items they represent. In the
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context of auditory display design, this description most closely corresponds to
the arbitrary or conventionalized relationships that earcons typically have with
the data-derived items they represent.

In distinguishing the properties of auditory icons and earcons, [15] established
a representational continuum with the “analogic” properties of auditory icons
at one end and the “symbolic” properties of earcons at the other. [7,9] further
defined this continuum by establishing a taxonomy comprised of the signal-
referent relations described above.

Overall, this approach to auditory mapping aims to preserve Larkin and
Simon’s principle observation about the role of diagrammatic representations in
explicitly preserving information about topographical and geometric relations
among the components. . . ” (p. 66). (Figure 2, upper right) and [ANALG DIG].

2.2 Relation Symbols and Object Symbols

Russell’s distinction between Relation Symbols and Object Symbols [23] identifies
“words which mean relations are not themselves relations, but just as substantial
or insubstantial as other words. In this respect, a map is superior to language,
since one location is to the west of another is represented by the fact that the
corresponding place on the map is to the left of the other; that is to say, a
relation is represented by a relation.” (p. 90)

Minard’s graphic includes relations among troop locations, troop quantities,
and temperatures. Relations among troop locations are conveyed by relation
symbols that consist of visually perceived relations among points on the x or y-
axis of the graphic where the various points on the x or y-axis represent the
relations among troop locations relative to space-time. In the visual version,
relations among troop quantities relative to space-time are conveyed by
visually perceiving relations among line thicknesses relative to distance. In the
visual version, relations among temperatures over space-time are conveyed
by visually perceiving relations among line elevations relative to locations on the
y-axis.

Auditory Display Design of Relation Symbols. Parameter Mapping Soni-
fication describes how selected dimensions of a dataset may be represented son-
ically as perceivable changes to one or more sonic variables [3,11]. Usability
testing reveals the relative strengths and weaknesses of each sonic variable in
representing dimensions of data in different applications and design situations
[2,8,20]. In representing temperature changes for example, pitch is considered
more effective than tempo [27], whereas loudness is considered to be much less
effective [22]. Effective combinations of sonic variables are referred to as earcons -
“short, structured musical phrases that can be parameterized to communicate
information in an Auditory Display” ([18], p. 339).

By contrast, parameterized auditory icons [3] are digitally recorded or compu-
tationally generated sounds whose sonic characteristics, behaviors and variabil-
ities bear a direct or indirect ecological or metaphorical resemblance to a target
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referent – real-world sounds [12] and one or more dimensions of data to be repre-
sented. Direct signal-referent relations denote sounds possessing a direct resem-
blance to the target referent. Indirect signal-referent relations provide a “surro-
gate sound” for the target referent. Indirect relations are further subdivided into
two subcategories: Indirect-ecological relations denote surrogate sounds and tar-
get referents that actually coexist in the world. Indirect-metaphorical relations
denote surrogate sounds and target referents that relate to each other through
similarities in audio-visual appearance or functions.

By way of example, our sonic translation employs two instances of parameter-
ized auditory icons. The first possesses direct-ecological signal-referent relations
– a parameterized recording of footsteps marching on a variety of seasonally
related ground surfaces. Larger troop quantities are represented by layering mul-
tiple instances of the auditory icon to create a sonic representation of Napoleon’s
army. As troop quantities diminish and seasonal temperatures drop, these lay-
ers are reduced, marching tempo slows, and audible changes to the surfaces
underfoot occur (i.e., gravel, water, ice, snow). The second auditory icon pos-
sesses indirect-metaphorical signal-referent relations – a computationally gener-
ated sound of a container filled with small objects being shaken. The number
of objects heard rattling around inside the container is mapped to changes in
troop quantity. Importantly, our mapping of the marching footsteps auditory
icon attempts to address the challenge of preserving information conveyed via
spatial relations between graphical shapes rather than labels (cf. [1]).

3 Conclusion

Our design prototype explores the 2D versus sequential distinction through the
use of binaural (surround-sound) encoding methods to assign precise spatial
coordinates to each auditory icon, earcon, or text-to-speech label. In doing so, the
spatial relations between markings on the infographic – and their communication
of spatial, geometric, or topological information – is preserved. Our spatial posi-
tioning of auditory icons offers an additional affordance – characterized by the
relation symbols and object symbols distinction – wherein continuously chang-
ing numerical values (troop quantities, locations) may be mapped to perceptual
dimensions. This suggests that analog and spatial properties of sound could be
recruited in mapping numerical values to perceptual dimensions. This highly spa-
tialized approach to sonic translation is further strengthened by matching the
intrinsic constraints (versus extrinsic constraints) of the infographic’s physical
situation with the intrinsic constraints of spatial auditory perception capabili-
ties in the majority of potential users. Finally the our selection of parameterized
auditory icons (marching footsteps), earcons (descending pure tone representing
changing temperatures), and text-to-speech label translations illustrates distinc-
tions between analog and digital systems.
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Abstract. The aim of this paper is to lay out the foundations of a typol-
ogy of diagrams in linguistics. We draw a distinction between linguistic
parameters — concerning what information is being represented — and
diagrammatic parameters — concerning how it is represented. The six
binary linguistic parameters of the typology are: (i) mono- versus multi-
lingual, (ii) static versus dynamic, (iii) mono- versus multimodular, (iv)
object-level versus meta-level, (v) qualitative versus quantitative, and
(vi) mono- versus interdisciplinary. The two diagrammatic parameters
are (i) iconic/concrete versus symbolic/abstract representation and (ii)
static versus dynamic representation. We briefly illustrate how different
types of linguistic diagrams can be analysed in terms of the interaction
between the linguistic and the diagrammatic parameters.

Keywords: Typology · Linguistics · Modularity
Object vs metalevel · Iconic representation · Symbolic representation

1 Diagrams and Linguistics

In order to put the present paper in a somewhat broader context, let us start off
by briefly considering three different perspectives which the Diagrams research
community has taken upon the relationship between diagrams on the one hand
and language or linguistics on the other hand. The first perspective — namely
Diagrams versus Linguistics — adopts a primarily ‘negative’ relation of contrast
between the two. The second and third perspectives both establish ‘positive’
relations, but they differ from one another in terms of their directionality, namely
Linguistics for Diagrams as opposed to Diagrams for Linguistics.

Diagrams versus Linguistics. At least since the seminal paper of Larkin and
Simon [9], research into reasoning systems – at the interface of Logic, Cognitive
Science and Artificial Intelligence — has been concerned with similarities and
differences between reasoning based on diagrammatic or visual information and
reasoning based on sentential, propositional or linguistic information [5,16,18,
19]. Also outside the context of reasoning research, diagrammatic information

c© Springer International Publishing AG, part of Springer Nature 2018
P. Chapman et al. (Eds.): Diagrams 2018, LNAI 10871, pp. 236–244, 2018.
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is often distinguished from, and opposed to, linguistic information, e.g. when
diagrams are said to occupy an intermediate position in between ‘description’
and ‘depiction’ [11], or when the category of ‘non-picture visuals’ is further
divided into ‘linguistic forms’ — such as text, tables or notations — and ‘non-
picture graphical forms’ — such as diagrams, graphs, charts and maps [4].

Linguistics for Diagrams. One way of establishing a more positive relation
between a diagrammatic and a linguistic perspective involves using concepts
from the field of linguistics to study or explain properties of diagrams. The key
idea of the research field on Visual Languages and Computation is precisely
that graphical representations resemble (natural or formal) languages in having
a vocabulary and a grammar. As Mackinlay put it, “graphical presentations are
actually sentences of graphical languages that have precise syntactic and seman-
tic definitions” [10]. This concept of the ‘grammar’ or ‘language’ of graphics
and visual design is worked out in great detail by Kress and van Leeuwen [8] as
well as Engelhardt [6]. Interestingly, the first two perspectives on the relation-
ship between diagrams and linguistics are integrated in Howse et al. [7], where
the linguistic concept of a type-token distinction is taken to play a bigger role
in diagrammatic systems than in linguistic systems, thus arguing for a more
fine-grained syntax for diagrammatic representations.

Diagrams for Linguistics. An alternative way of connecting diagrams and lin-
guistics proceeds by taking concepts from the field of diagrams research in order
to study the visual representations used in linguistics to describe the properties
of natural language expressions. Judging from the contributions to the proceed-
ings of the nine Diagrams Conferences (2000–2016), this third perspective has
received surprisingly little attention. The ones that do occur, however, testify of
the fact that diagrams show up in various areas of linguistic research, ranging
from phonological features [14], over tree representations for syntactic struc-
tures [3], to scales and sets for the semantic representation of tenses [2] and
quantifiers [15].

Aim of the paper. The aim of the present paper is precisely to contribute to
this third perspective, by laying out the foundations of a typology of diagrams in
linguistics. To the best of our knowledge, such a typology has not been proposed
so far. We draw a distinction between linguistic parameters in Sect. 2 — con-
cerning what information is being represented — and diagrammatic parameters
in Sect. 3 — concerning how that information is represented. In Sect. 4 we briefly
illustrate how different types of linguistic diagrams can be analysed in terms of
the interaction between linguistic and diagrammatic parameters. In future work,
the validity of the proposed parameters will be empirically tested by means of
large-scale corpus research. In the long run, the resulting typology is hoped to
contribute to the emerging field of philosophy of linguistics, and hence to the
broader area of philosophy of science, in which the heuristic and didactic value
of visualisation techniques is a well-established research topic [17].
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2 Linguistic Parameters

As to the question of what information is being represented, the first four binary
parameters of the typology receive an intrinsically linguistic characterisation,
namely: (i) mono- versus multilingual, (ii) static versus dynamic, (iii) mono-
versus multimodular, and (iv) object-level versus meta-level information. The
remaining two binary parameters — (v) qualitative versus quantitative, and (vi)
mono- versus interdisciplinary information — are of a more general nature.

Monolingual versus multilingual information. The first parameter distin-
guishes between the — monolingual — study of ‘language’ and the— mul-
tilingual — study of ‘languages’. The study of language refers to expressions
in a particular natural language — such as the simple English main clause The
cat is sitting on the mat — on different levels of complexity. This complexity
is traditionally related to the ‘size’ of the units under scrutiny, ranging from
very small to very big, in particular from sounds over words and clauses to
discourse. The study of languages, by contrast, is concerned with family rela-
tionships between (groups of) natural languages — such as the Germanic versus
the Celtic language families. This field of study — often called ‘linguistic typol-
ogy’ — crucially involves the dimensions of space and time, since it aims to chart
the geographical distribution of language families as well as their chronology, i.e.
their genetic resemblance and descendance. Both the monolingual analysis of
natural language expressions and the multilingual classification and comparison
of language families very often make use of visual representations of various
kinds.

Static versus dynamic information. The second parameter — which con-
cerns the opposition between static and dynamic information — can first of
all straightforwardly be connected to the linguistic contrast between synchrony
and diachrony. The synchronic perspective considers the contemporary situation
both ‘internally’, for any given individual language, and ‘externally’, for language
families as a whole. The diachronic perspective, by contrast, investigates the his-
torical changes and evolutions, again both language-internally and on the level of
entire language families. It is important to stress, however, that the distinction
between static and dynamic information is not restricted to the synchronic ver-
sus diachronic perspectives in linguistics. In general, static information concerns
a stable situation or state of an object or concept, whereas dynamic information
concerns processes, i.e. temporal or structural changes in the object or concept.
For instance, in theoretical frameworks which assume that certain components of
a natural language expression are moved to different positions in the structure.

Monomodular versus multimodular information. As already hinted at
above, natural language expressions can be analysed on different levels, depend-
ing on the size of the units or components under investigation. Standardly, the
following six linguistic modules are distinguished:
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phonetics the articulation, acoustics and perception of speech sounds
phonology abstract sound segments, syllables and prosody
morphology the internal structure of words (derivation, compounding)
syntax sentence structure and word-order
semantics the meaning of words (lexical) and sentences (propositional)
pragmatics speech acts, interaction in conversation, discourse structure

According to the third parameter, monomodular information restricts the focus
to properties, relations or concepts within one of the six modules above, whereas
multimodular information is at issue as soon as properties, relations or concepts
from at least two modules are shown to interact in the representations.

Object-level versus meta-level information. As a fourth parameter, we pro-
pose a binary opposition between object-level information and meta-level infor-
mation. In linguistics, the key ‘objects’ of investigation are natural language
expressions: sounds, syllables, words, constituents, clauses, conversations and so
on. Visual representations that explicitly contain (components of) such natural
language expressions and their properties will be called object-level diagrams.
Quite often, however, visual representations are concerned with properties of, or
relations between, the linguistic concepts or the applied terminology, irrespective
of any concrete natural language expression. Such representations will be called
meta-level diagrams.

Qualitative versus quantitative information. With the fifth parameter —
which relates to the opposition between qualitative and quantitative information
— we reach a more general, no longer intrinsically linguistic level. On the one
hand, the analysis of properties of natural language expressions (object-level) or
relations between linguistic concepts (meta-level) often yields qualitative or
non-numerical data/information, concerning — for instance — linear ordering
relations or hierarchical structures. On the other hand, linguistic analyses very
often also generate quantitative information, in the form of numerical values
for certain parameters or attributes (or any other statistical properties). The
latter receive visual representations such as tables or charts (bar charts, line
charts, pie charts and so on) which are omnipresent in the scientific literature,
but not specifically linguistic in nature [13, p. 61].

Monodisciplinary versus interdisciplinary information. As is the case in
so many scientific areas, the field of linguistics interacts with a whole range of
neighbouring disciplines, such as sociology, psychology, neuroscience, computer
science (among many others), thus giving rise to the corresponding interdis-
ciplinary fields of sociolinguistics, psycholinguistics, neurolinguistics, and com-
putational linguistics. The sixth and final linguistic parameter therefore distin-
guishes between monodisciplinary information on the one hand — i.e. ‘purely
linguistic’ information restricted to the core modules (or levels) for the analysis of
linguistic expressions — and interdisciplinary information on the other hand.
After all, since those many interdisciplinary fields not only borrow concepts and
methods from their non-linguistic source disciplines, but very often also adopt
the corresponding visualisation strategies, we will need to take visualisations of
‘mixed origin’ into account as well.
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3 Diagrammatic Parameters

Following the characterisation by Purchase [13, p. 59], a diagram is taken to
be “a composite set of marks or visual elements — including lines, geometric
shapes and individual words — on a two-dimensional plane, that — when taken
together — represent a concept or object in the mind of the viewer. Diagrams are
meant to depict appearance, structure, or workings of something, and are usually
employed to support viewers’ tasks, such as learning, designing, communicating,
or simply understanding the concept depicted.”

As a number of overview papers have demonstrated [1,13], it is notoriously
difficult to provide an adequate set of visual principles for setting up a typology
of diagrams. Nevertheless, as was the case in the previous section, a number
of binary oppositions turn out to play a crucial role. In order to answer the
question of how the linguistic information is being represented visually, two
diagrammatic parameters are taken to underlie the typology. The main dia-
grammatic parameter is the classical, semiotic contrast between iconic/concrete
and symbolic/abstract representations. On a secondary level, we draw a further
distinction between static and dynamic representations.

Iconic versus symbolic representation. The central diagrammatic parame-
ter to underlie the envisaged typology, is taken from the field of semiotics (the
science of signs), namely the distinction between two major classes of signs —
icons and symbols — which basically corresponds to the opposition between
concrete and abstract representations [13, p. 59]. A diagram is called iconic or
concrete if there is a direct perceptual relationship of similarity or resemblance
between the sign — i.e. the diagram or representation — and the referent —
i.e. the object being represented. A diagram is called symbolic or abstract if
the relationship between the sign and the referent is purely arbitrary, based on
sets of conventions within a given community.

Iconic diagrams depict their objects in a form similar to their physical
attributes or depict physical positional relationships between objects [13, p. 60].
Typical examples are anatomic illustrations, maps, or seating arrangements.
Symbolic diagrams, by contrast, have no perceptual relationship to the con-
cepts that they represent. Three broad categories can be distinguished [13, p. 60]:
(i) graphs use geometric shapes to represent objects, and lines to depict rela-
tionships between objects, (ii) set diagrams use overlapping geometric shapes
to depict set membership, and (iii) charts — as mentioned above — present
numerical or quantitative information1. Note that specific diagrams may be of a
composite type in that they combine notational properties of different (abstract
and/or concrete) diagram subtypes [13, p. 61].

1 In the field of Information Graphics or Data Visualisation, the different ways in which
information can be structured have been captured under the acronym latch (=
Location Alphabet Time Category Hierarchy), according to whether the elements are
organised spatially, organised alphabetically, organised against a time line, divided
into classes or ranked in order of priority [21]. The Location dimension typically
yields concrete diagrams, whereas the others standardly yield abstract diagrams.
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Within the symbolic category of graphs, the subtype of trees — think of
the classical genealogical or family tree — deserves special mention here. The
notion of hierarchical structure obviously plays a crucial role in many scientific
disciplines [12,20]. Also in the field of linguistics, trees pop up all over the place,
first of all in the genealogical sense, as representations of the internal structure
of language families. Secondly, also on the level of language — i.e. the properties
of concrete natural language expressions — the idea of hierarchical organisation
is absolutely essential, with varying sizes for the units of analysis, depending on
the particular linguistic module under consideration.

Static versus dynamic representation. Independently of the above oppo-
sition between iconic and symbolic diagrams, we will also distinguish between
static diagrams and dynamic diagrams [13, p. 62]. A dynamic diagram rep-
resents a succession or sequence of states or processes, either as a series of indi-
vidual diagrams2, or by using graphical elements such as arrows. By contrast,
a static diagram contains no graphical elements representing a succession or
sequence. Note that it is possible for a static diagram to represent dynamic infor-
mation, as long as it does not contain any dedicated graphical elements for this
purpose (such as arrows). However, such a mismatch between the diagram and
the information that it represents typically has a negative effect on the quality
of the visual representation.

4 Illustrating and Applying the Parameters

In this section we briefly illustrate how different types of linguistic diagrams can
be analysed in terms of the interaction between the linguistic parameters (LP)
from Sect. 2 and the diagrammatic parameters (DP) from Sect. 3. Figure 1(a)
iconically represents the tongue movement in the vowel space of the two dipthong
sounds in Dutch words such as bruin (‘brown’) and koud (‘cold’), whereas the
spectrogram (from acoustics/physics) in Fig. 1(b) provides quantitative infor-
mation on the distribution of frequency over time (with intensity as gray scale),
when pronouncing the Dutch expression aja (‘yes indeed’). Figure 1(c) repre-
sents the historical development of the Insular branch of the Celtic language
family, and Fig. 1(d) represents the multimodular mismatches between the syn-
tactic and morphological structures of the West Flemish subclause . . . da-k eet-n
(‘. . . that I am eating’). In Table 1, the linguistic and diagrammatic parameters
proposed above, are applied to the four linguistic diagrams from Fig. 1. Notice
that the genealogical tree structure in Fig. 1(c) is a typical example of dynamic
information (viz. the evolution of certain languages over time) being represented
by means of a static diagram.

2 Notice that such a series of diagrams can develop as an animation through time, or
by juxtaposition in space.
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Fig. 1. Diagrams in Linguistics

Table 1. Linguistic and diagrammatic parameters applied to Fig. 1

[−] [+] (a) (b) (c) (d)

LP Monolingual Multilingual − − + −
Static Dynamic + + + −
Monomodular Multimodular − − − +

Object-level Meta-level − − + −
Qualitative Quantitative − + − −
Monodisciplinary Interdisciplinary − + − −

DP Iconic Symbolic − + + +

Static Dynamic + + − −

5 Conclusions and Future Work

In this paper we have laid out the foundations of a typology of diagrams in lin-
guistics by looking at the interaction between six linguistic parameters and two
diagrammatic parameters. In future work, the validity of the proposed param-
eters will be empirically tested by means of large-scale corpus research, based
on a broad range of general linguistics journals and handbooks dedicated to
the various linguistic modules. This will allow us to check whether the pro-
posed parameters are sufficiently fine-grained to capture and classify all actually
occurring diagrams, or whether further modifications are necessary. Ultimately,
the resulting typology will help to clarify the heuristic and didactic value of
visualisation techniques in linguistics, thus contributing to the emerging field of
philosophy of linguistics.
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Abstract. High-tech systems are ubiquitous and often safety and secu-
rity critical: reasoning about their correctness is paramount. Thus, pre-
cise modelling and formal reasoning are necessary in order to convey
knowledge unambiguously and accurately. Whilst mathematical mod-
elling adds great rigour, it is opaque to many stakeholders which leads
to errors in data handling, delays in product release, for example. This is
a major motivation for the development of diagrammatic approaches to
formalisation and reasoning about models of knowledge. In this paper, we
present an interactive theorem prover, called iCon, for a highly expressive
diagrammatic logic that is capable of modelling OWL 2 ontologies and,
thus, has practical relevance. Significantly, this work is the first to design
diagrammatic inference rules using insights into what humans find acces-
sible. Specifically, we conducted an experiment about relative cognitive
benefits of primitive (small step) and derived (big step) inferences, and
use the results to guide the implementation of inference rules in iCon.

1 Introduction

The long-held assumption that using diagrams makes modelling and reasoning
accessible, goes back to ancient times (e.g., Euclid’s Elements). Despite this, the
development of automated diagrammatic reasoning tools (e.g., Hyperproof [2],
Diamond [8] and Speedith [22]) has been rare in comparison to sentential theorem
provers. One of the main areas yet to be explored in diagrammatic reasoning
is the level of abstraction employed when constructing proofs, which relies on
inference rule style. The ‘right’ level of abstraction can facilitate interaction
between users and the system as well as increase the readability of the generated
proofs [3,11]. But what is the ‘right’ level of abstraction for a human user? In this
paper we introduce a diagrammatic reasoning system, iCon, for concept diagrams
[19], which is designed so that the level of abstraction for diagrammatic inference
rules is based on empirical results of what humans find accessible.

In sentential theorem proving, tactics, tacticals, proof strategies, proof meth-
ods and ‘derived rules’ are all attempts to achieve higher level of abstraction in
c© Springer International Publishing AG, part of Springer Nature 2018
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logical reasoning [5]: they enable applying a sequence of inference rules all in one
go. Tools such as Isabelle [13] exploit tactical reasoning to provide a high level of
abstraction and some level of automation. But the use of tactics in diagrammatic
logics is largely unexplored. One attempt at controlling the level of abstraction
in diagrammatic theorem proving is seen in Speedith [22] (a theorem prover for
spider diagrams [4]) which uses tactics [11]. The choice of tactics in [11] is guided
by metrics, which are informed by empirical studies [10] related to readability
such as proof length and diagram clutter.

We focus on concept diagrams, which are based on spider diagrams but are
more expressive. They were developed as a formal visualisation method for defin-
ing and reasoning about ontologies. Empirical evidence suggests [6] that concept
diagrams are more accessible than the standard ontology language1 OWL 2 and
description logic [1]. In addition, cognitive theories support their effectiveness
over common node-link ontology representation approaches [18].

Our goal is to develop a diagrammatic theorem prover for concept diagrams
whose inference rules are designed to be accessible to users. We conducted an
experiment to assess what level of abstraction users find accessible. We studied
10 inference tasks, based on practically relevant ontology inference problems
formulated in [12]. The tasks were presented in two variations: using primitive
inference steps and using derived inference steps, where the latter are coarser and
more abstract than the former. User performance was measured in terms of their
accuracy in identifying the validity of inference tasks. The level of abstraction
(i.e., primitive vs. derived) that resulted in significantly higher accuracy rate was
interpreted as the ‘right’ level of abstraction. We found that an appropriate level
of abstraction was rule dependent. These results serve as the basis of design and
implementation of inference rules in our interactive theorem prover iCon.

One of the unique selling points of iCon, and the main contribution of this
paper, is the fact that the design of inference rules is guided by empirical studies
of what inference rules people performed more accurately with, rather than being
motivated by meta-level considerations such as completeness, which is often the
case in formal systems. Although tactics incorporated in Speedith [22] are based
on metrics that are found empirically, in this paper we have taken a step further
by empirically testing the inferences themselves.

We give an overview of concept diagrams in Sect. 2, and introduce iCon in
Sect. 3. In Sect. 4 we report on the empirical study that compares primitive vs.
derived inference tasks. How the results of the empirical study inform the design
of diagrammatic inference rules in iCon is discussed in Sect. 5. We compare our
contributions to related work in Sect. 6 and finally, conclude in Sect. 7.

2 Concept Diagrams: Background and Overview

Concept diagrams were introduced for the purpose of visualising and specifying
ontologies, and they are expressive enough to handle binary predicates [19]. They

1 https://www.w3.org/TR/owl2-direct-semantics/.

https://www.w3.org/TR/owl2-direct-semantics/
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Fig. 1. Concept diagrams: (a) toys are either ghosts, dogs, or both; (b) there is nothing
which is not a ghost or a dog; (c) all ghosts see only dogs; (d) all individuals in the
world see only dogs; (e) all ghosts see at least one dog.

consist of syntactic objects such as rectangles, closed curves, and shading (as seen
in Euler and Venn diagrams) as well as other additional objects such as dots,
solid arrows and dashed arrows.

Rectangles are used to represent all individuals in the world. By combin-
ing curves inside a rectangle, we can represent several cases. For example, in
Fig. 1(a), the circle toy is inside two circles, ghost and dog. Thus, toys are either
ghosts, dogs, or both. Note that concept diagrams do not adopt the existential
import assumption: the presence of a minimal region says nothing about whether
there are some individuals in it (for details, see [15]). Shading is used to repre-
sent that there is nothing (i.e., to assert set emptiness). In Fig. 1(b), the region
outside of ghost and dog is shaded. This means that there is nothing which is not
a ghost or a dog. That is, everything is a ghost or a dog. The syntax described
so far should be familiar in that concept diagrams with only rectangles, closed
curves and shading are Euler diagrams.

Concept diagrams add syntactic objects to Euler diagrams, including arrows
which are used to express verb relations. There are two kinds of arrows: solid
and dashed ones. Solid arrows mean that the source is related to only the target.
For example, in Fig. 1(c), the solid arrow labelled sees connects from the circle
ghost to the unlabelled circle inside dog. This means that all ghosts see only
dogs. Figure 1(d) is another example where the solid arrow sees connects from
the rectangle to the unlabelled circle inside the circle dog. This means that all
individuals in the world see only dogs. On the other hand, dashed arrows mean
that the source is related to at least the target. That is, the source may be also
related to other targets. For example, in Fig. 1(e), the dashed arrow sees connects
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the circle ghost to the unlabelled circle inside the circle dog. Together with the
arrow annotation ≥1, this means that all ghosts see at least one dog.

Here is an informal overview of the syntax and semantics of concept dia-
grams; for formalisation, see [20]. A concept diagram is a collection of boundary
rectangles including the syntax contained by them, and all arrows connecting
them. Each boundary rectangle properly contains some (possibly empty) set of
closed curves, some of which (possibly none or all) are labelled. Labelled closed
curves represent specific sets (e.g., the set of dogs in Fig. 1(d)) or an anonymous
set (e.g., some unnamed subset of dogs in Fig. 1(d)). The closed curves within a
rectangle partition the plane into zones: a zone is a region inside some (possi-
bly no) curves and outside the rest of the curves. For example, in Fig. 1(d), the
concept diagram comprises two boundary rectangles, one of which contains no
curves, the other contains two curves; these two curves give rise to three zones.
In general, a set of zones inside a boundary rectangle is called a region.

Zones can be shaded and they may also contain dots. In addition, dots can
be joined together by straight lines to form spiders. Each spider represents an
individual. If the spider is labelled, it represents a specific individual. An unla-
belled spider, just like an unlabelled curve, represents an anonymous individual.
Distinct spiders represent distinct individuals, unless joined by = to assert their
equality, or by ?== to indicate that it is unknown whether they represent the same
individual. Also, the individual represented by a spider is an element of the sets
represented by the region in which the spider is placed.

The last major component of concept diagrams is arrows, which are of two
types, dashed and solid. Arrows are sourced and targeted on boundary rectan-
gles, closed curves, or spiders. Each arrow has a label, p, which represents a
binary relation. The source and target of any given arrow need not be inside
the same boundary rectangle. In addition, the label can be annotated with −

to indicate the inverse of the relation, or with cardinality constraints: ≤ n, ≥ n
or = n, where n is a natural number. Semantically, a solid arrow with source
s, label p (resp. p−) and target t expresses (blurring the distinction between
syntax and semantics) that if the domain of p (resp. p−) is restricted to the
source s then the image is t. If, however, the arrow is instead dashed, then it
expresses that if the domain of p (resp. p−) is restricted to the source s then the
image is a superset of t. In Fig. 1(c), the solid arrow expresses that, under the
relation sees with domain restricted to ghost, the image is an anonymous subset
of dog. Intuitively, this means that ghosts see only dogs. In Fig. 1(e), the dashed
arrow expresses that, under the relation sees with domain restricted to ghosts,
the image includes some anonymous subset of dog. Intuitively, this does not tell
us anything. It is only through the use of the additional annotation, ≥1, that
this arrow provides information: each ghost sees at least one dog.

Each rectangle, and its contents, in a concept diagram is called a class and
object property diagram. This is because its curves represent classes (which are
sets of individuals) and its arrows give information about properties (which are
binary relations). Thus, a concept diagram is a set of class and object property
diagrams, along with any connecting arrows.
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3 iCon: A Concept Diagrams Interactive Theorem Prover

We built an interactive theorem prover2 for concept diagrams, iCon, that can
be used to reason, for example, about ontologies. iCon consists of the reason-
ing engine and the graphical user interface (GUI). We based iCon’s design on
Speedith [22], a theorem prover for spider diagrams [4], since concept diagrams
are based on spider diagrams. In Speedith, the design of inference rules was
based on obtaining soundness and completeness, whereas the design of inference
rules in iCon is guided by an experiment (Sect. 4) into what abstraction level
of deduction steps do people perform more accurately with. This approach to
designing iCon improves the readability of the resulting proofs.

3.1 Reasoning Engine

The iCon reasoning engine (i) contains a collection of inference rules; (ii) handles
the application of inference rules to diagrams expressed in an abstract syntax;
and (iii) manages proofs. iCon only applies valid inference rules, and, since these
are sound, proofs generated in iCon are guaranteed to be correct.

Proofs. A proof in iCon starts with the initial proof state, denoted as Δ0 which
is of form (d1∧· · ·∧dm) ⇒ dn, where di are concept diagrams. This means that if
d1, · · · , dm (referred to as goals, and denoted as set G) hold, then dn holds. Proofs
are linear and constructed by applying sequences of inference rules on goals.
Starting from Δ0, the proof continues by applying inference rules to a goal d ∈ G.
The result of applying an inference rule (with the exception of the inference rule
Identity that will be explained in the next section) is a diagram d′, such that d
semantically entails d′ (d � d′). In a proof, P = Δ0, · · · ,Δk s.t. 0 ≤ i < k, there
has to be a goal d in the set of goals in proof state Δi and d′ in the set of goals
in proof state Δi+1 such that d′ is the result of applying one of the inference
rules to d. Proof P is finished if the final proof state Δk is of the form dn ⇒ dn,
which means dn implies dn, and is trivially true.

Figure 2 shows a proof where proof states are separated by red bars. The
inference rules are applied on the proof states above the lines and result in the
proof states below the lines (stated as “Applied inference”). In the final proof
state, as expected, the diagram on the left hand side is identical to the one on
the right hand side. Finally, the proof is finished by applying Identity. The rest
of inference rules used in this figure will be formally defined in Sect. 5 (page 11).

Inference Rule Design. Inference rules are divided into logical and diagram-
matic rules, where the former correspond to entailments and equivalences of
propositional logic, while the latter rewrite the diagrams representing the goals.
The fragment of concept diagrams used in this paper only uses ∧ operator; there-
fore, the logical rules applicable are: Conjunction Elimination ((d1 ∧ d2) ⇒ d1

2 Available at: https://github.com/ZohrehShams/iCon.

https://github.com/ZohrehShams/iCon
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Fig. 2. An example of a proof.

and (d1 ∧ d2) ⇒ d2), Conjunction Idempotency ((d ∧ d) ⇔ d), and Identity
(applied to the final proof state to express that d ⇒ d is trivially true, and thus
concludes the proof). The diagrammatic inference rules are motivated by the
domain in which the reasoner is intended to be used: we chose ontology reason-
ing and debugging. We focus on a study [12] that provides statistical evidence
for the practical significance, commonality and coverage of inference rules that it
introduces for ontology entailment reasoning.3 There are 51 inferences (referred
to as ontology deduction patterns) identified in [12] and are ranked based on
their accessibility measured through user studies. Each inference rule consists of
up to four premises and a single conclusion and can often be broken down to
more fine grained inference rules by introducing intermediate steps.

When designing the chosen diagrammatic inference rules, there are important
choices with regards to the level of abstraction for these rules. To inform these
choices, we conducted an empirical study (see Sect. 4) that compares two vari-

3 Any ontology reasoning task can be reduced to entailment reasoning.
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ations of diagrammatic inference rules, with different levels of abstraction and
granularity in a number of deduction patterns. One variation takes the premises
and conclusion of the deduction patterns in [12], and introduces an interme-
diate step; we call this variation primitive. The other variation is identical to
the inference rules in [12], consisting of premises and conclusion only without
an intermediate step; we call this variation derived – it is more abstract than
the primitive version. The findings of the experiment comparing primitive and
derived diagrammatic inference steps guides the process of implementing them,
and it will be further discussed in Sect. 5.

3.2 Graphical User Interface

iCon provides a graphical user interface that allows visualising diagrams and
applying inference rules on them interactively. Visualisation of diagrams is based
on iCircles [21] – a Java library for drawing Euler diagrams using circles. iCircles
was extended in Speedith [22] to represent spiders (existential elements). Here
we extended it further to visualise unlabelled and labelled spiders and curves,
and also to visualise solid and dashed labelled arrows with possible cardinali-
ties. Users can select via a graphical point-and-click mechanism any part of the
diagram to apply a diagrammatic inference rule on. This changes the diagram’s
abstract representation, and the new abstract representation is visualised using
the visualiser. For screenshot of iCon, see Fig. 2.

4 Empirical Experiment for the Design of Inference Rules

To determine the right level of abstraction for diagrammatic rules, we compared
participants’ performance in inference tasks with concept diagrams in examples
proved using primitive rules with those proved by derived inference rules.

4.1 Method

Fifty-one undergraduate students from seven classes on elementary computer
science at the University of Brighton were recruited. The mean age was 24.12
(SD = 5.89) with a range of 19–48 years. All participants gave informed consent
and were paid for their participation. The experiment method was approved by
the CEM School Research Ethics Panel of University of Brighton. In order to
provide an inference system that is accessible to a broad range of people, not just
ontology experts, none of the participants had any prior knowledge of ontology
engineering. One participant withdrew, so their data was excluded. Participants
were randomly divided into two groups: the primitive group (N = 25) and the
derived group (N = 25).

The participants in the primitive group were given tasks with intermediate
step diagrams as well as premise and conclusion diagrams (i.e., primitive rules are
applied in the proof; see Fig. 3 on page 9). The participants in the derived group
were given tasks with only premise and conclusion diagrams without intermedi-
ate steps (i.e., derived rules are applied). Participants were asked to determine if
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Table 1. List of inference tasks (#01–10 are valid; #11–20 are invalid. #01–05/#11–
15 are Euler-Venn diagram level; #06–10/#16–20 are concept diagram level) and their
accuracy rates (* refers to a significant difference between the two groups at p < 0.05;
+ refers to p < 0.10).

Number Premises ⇒ Conclusion Primitive% Derived%

01 (A � B) ∧ (Dis(A,B)) ⇒ (A � ⊥) 95.0 80.1

02 (Dis(A,B)) ∧ (C � A) ∧ (D � B) ⇒ (Dis(C,D)) 80.0 85.7

03 (A � (B � C)) ∧ (B � C) ⇒ (A � C) 60.0 + 85.7

04 (� � B) ∧ (Dis(A,B)) ⇒ (A � ⊥) 60.0 66.7

05 (A � B) ∧ (A � ¬B) ⇒ (A � ⊥) 70.0 76.2

06 (A � ∃R.B) ∧ (Rang(R,C)) ⇒ (C � ∃R.(B � C)) 75.0 80.1

07 (A � ∃R.(B � C)) ∧ (Dis(B,C)) ⇒ (A � ⊥) 70.0 85.7

08 (A �≥ 3R.B) ∧ (A �≤ 1R.B) ⇒ (A � ⊥) 50.0 52.4

09 (A � ∃R.B) ∧ (B � ⊥) ⇒ (A � ⊥) 65.0 57.1

10 (A �≥ 4R.B) ∧ (Fun(R)) ⇒ (A � ⊥) 20.0 + 47.6

11 (B � A) ∧ (Dis(A,B)) ⇒ (A � ⊥) 75.0 71.4

12 (Dis(A,B)) ∧ (C � A) ∧ (B � D) ⇒ (Dis(C,D)) 70.0 52.4

13 (A � (B � C)) ∧ (B � C) ⇒ (A � B) 55.0 47.6

14 (� � B) ∧ (A � B) ⇒ (A � ⊥) 60.0 66.7

15 (A � B) ∧ (¬B � A) ⇒ (A � ⊥) 50.0 * 85.7

16 (A � ∃R.B) ∧ (Rang(R,C)) ⇒ (Rang(R,C � ¬B)) 40.0 38.1

17 (A � ∃R.(B � C)) ∧ (Dis(B,C)) ⇒ (A � ⊥) 85.0 85.7

18 (A �≥ 1R.B) ∧ (A �≤ 3R.B) ⇒ (A � ⊥) 70.0 66.7

19 (A � ∃R.B) ∧ (A � ⊥) ⇒ (B � ⊥) 60.0 66.7

20 (A �≥ 1R.B) ∧ (Fun(R)) ⇒ (A � ⊥) 90.0 81.0

the diagram transformations were valid or not. We presented 20 items in total:
10 consisted only of valid transformations of diagrams (#01–10) and 10 items
included invalid transformations of diagrams (#11–20). The valid 10 items were
selected from the medium difficulty amongst the 51 patterns given in [12]. This
is because in any study, tasks that are too easy (leading to ceiling effect) or
too hard (floor effect) reveal no insights. Minimal changes were made to the
valid items (e.g., a set name, relation, cardinality) to create invalid ones. The
tasks were further divided into the so-called Euler-Venn diagram level (#01–05;
#11–15; they include only labelled curves and shading), and the concept dia-
gram level (#06–10; #16–20; they include arrows and other syntax); the tasks
are summarised using stylised description logic syntax in Table 1.4 Tasks #01
and #06 are semantically equivalent and can be expressed by the same diagram-

4 For unfamiliar readers, informally the DL syntax has the following interpretation:
A � B: A is a subset of B; ⊥: the empty set; ∃R.A: the set of things related
to something in set A under binary relation R; Rang(R.A): the range of R is A;
Fun(R): R is functional; ≥ nR.A: the set of things related to at least n things in A
under R; ≤ nR.A: the set of things related to at most n things in A under R.
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matic representation. Thus, #01 was expressed by Venn diagrams and #06 was
expressed by Euler diagrams. The tasks were presented in one of three random
orders as a paper-and-pencil test. There was no time limit for completing the
tasks, although the approximate time (30 min) for taking the experiment was
instructed.

Fig. 3. A task (#10) in the primitive group. In the derived group, the intermediate
diagram was removed.

All participants were gathered in a room. First, the participants were pro-
vided with three pages of instructions on the basic meaning of concept diagrams,
but not on particular rules to solve inference tasks. Second, a pretest was con-
ducted to check whether they understood the instructions correctly; they were
asked to choose, from a list of three possibilities, the sentence corresponding to
the meaning of a given diagram (for the importance of pretest settings, see [15]).
Third, the participants were provided with one page of instruction on the mean-
ing of a valid transformation (entailment), with two examples of diagrams: one
was valid and one was not valid.5 After the instruction phase, the participants
were asked to solve the main reasoning tasks of the experiment.

4.2 Results

The data for participants who made mistakes in more than two items (out of
five) in the pretest was removed. In our analysis, 5 out of 25 in the primitive
group, and 4 out of 25 participants in the derived group were removed.

5 See https://sites.google.com/site/myardproject/exp/MateInst2.zip?aredirects=0
&d=1 for full instructions.

https://sites.google.com/site/myardproject/exp/MateInst2.zip?aredirects=0&d=1
https://sites.google.com/site/myardproject/exp/MateInst2.zip?aredirects=0&d=1
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The accuracy data for each task was analysed using a χ2 test. In task #15,
accuracy rates in the derived group were significantly higher than those in the
primitive group (47.1% vs. 88.2%, p = 0.014). In task #03, accuracy rates in
the derived group were significantly higher than those in the primitive group,
at a reduced threshold of p < 0.10 (64.7% vs. 88.2%, p = 0.063). In task #10,
accuracy rates in the derived group were significantly higher than those in the
primitive group, at a reduced threshold of p < 0.10 (23.5% vs. 47.1%, p = 0.062).
In other tasks, there were no significant differences between both groups.

In the comparison between #01 (expressed with Venn diagrams) and #05
(expressed with Euler diagrams), a significant difference was found in the prim-
itive group (95.0% vs. 70.0%, p = 0.037), but not in the derived group (80.1%
vs. 76.2%, p = 0.432). Overall, the comparison of accuracy data between the
primitive group and the derived group revealed no significant difference.6

4.3 Discussion

In task #10, shown in Fig. 3 (described as (A �≥ 4R.B)∧(Fun(R)) ⇒ (A � ⊥)),
80% of participants incorrectly judged the validity of diagram transformation
using primitive rules. In comparison to the (random) chance level of 50%, there
was a significant difference in the primitive group (p = 0.047), but not in the
derived group (p = 0.877). In the diagram transformation using primitive rules,
the solid arrow from the rectangle is explicitly rewritten into the dashed arrow
from the curve inside the rectangle. On the other hand, there is no explicit
rewriting of solid and dashed arrows in the diagram transformation using derived
rules. Since this difference is found in task #10, it is a candidate to explain
the result of task #10 where better accuracy was achieved with the derived
rule. Therefore, a resulting heuristic suggests that we should not design diagram
transformations where solid arrows are replaced by dashed arrows.

On the other hand, what causes the significant differences in tasks #03 and
#15 between the primitive and the derived groups? In the diagram transfor-
mation in task #03, as shown in Fig. 4 (left), it is important that the curves
crossing between lizardfolk and kobold in the first premise diagram mean that
the semantic relationship between them is indeterminate (see the existence-free
assumption for minimal regions, mentioned in Sect. 2). Therefore, the unifica-
tion between the premise diagrams results in the diagram where (i) lizardfolk is
inside kobold, (ii) merfolk is inside kobold, (iii) the relation between lizardfolk and
merfolk is unknown. Here, understanding crossing curves plays an essential role
in both deducing (i–iii) using a primitive rule and deducing (ii) using a derived

6 65.0% vs. 69.1% (Mann-Whitney U = 179, p = 0.416) for overall (#01–20), 64.5%
vs. 71.9% (U = 179, p = 0.159) for valid transformations (#01–10), 65.5% vs.
66.2% (U = 208, p = 0.958) for invalid ones (#11–20), 73.0% vs. 79.1% (U = 166,
p = 0.232) for valid Euler ones (#01–05), 56.0% vs. 64.8% (U = 166.5, p = 0.242) for
valid concept ones (#06–10), 52.0% vs. 64.8% (U = 199, p = 0.769) for invalid Euler
ones (#11–15), and 69.0% vs. 67.6% (U = 194.5, p = 0.673) for invalid concept ones
(#15–20).
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Fig. 4. Task #03 (left) and task #15 (right) in the primitive group. In the derived
group, the intermediate diagrams were removed.

rule. Thus, the meaning of crossing curves cannot explain the performance dif-
ference between both groups. In the case of task #15, as shown in Fig. 4 (right),
shading plays an important role in solving the task. However, the same can be
said for tasks #01, 04, 11, and 14, where significant differences in accuracy per-
formances were not found. Thus, it is not clear why the difference between both
groups was found only in task #15.

As stated before, tasks #01 and #05, which are semantically equivalent, were
expressed by Venn and Euler diagrams, respectively, as shown in Fig. 5. The
result that the accuracy rate for #01 was higher than for #05 in the primitive
group suggests that Venn diagrams are more suitable than Euler for reasoning
about the emptiness of a set.7 In #05 (using Euler diagrams), the derivation
of the shaded curve labelled darkmantle, meaning darkmantle � ⊥, requires not
only spatial operation on diagrammatic objects, but also meta-level information
concerning semantic values (cf. the discussion in [16]). Whether for primitive
rules or derived rules, reasoning with Euler diagrams in this case can require
more cognitive effort than with Venn diagrams. Note that the effectiveness of
Venn over Euler diagrams is distinct from previous empirical findings [15].

5 Inference Rules: Design and Implementation Guidelines

We chose ontology reasoning and debugging for the first application domain
of iCon. In order to develop a theorem prover with practical relevance in this

7 Note that in ontology engineering, sets that are necessarily empty are called inco-
herent.
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Fig. 5. Task #01 (left) and task #05 (right) in the primitive group. In the derived
group, the intermediate diagrams were removed.

domain, we focused on the 51 inferences found in [12]. However, there are a lot
of choices when designing the diagrammatic version of these inferences in iCon.
For example, the inference patterns are large and can often be broken down into
smaller steps, but what is the right level of granularity for the diagrammatic
inference rules? To ensure accessibility, this granularity level was informed by
our experiment where we translate the results into design and implementation
guidelines. Note that in the user study we tested the accessibility of 10 inferences
out of 51 from [12], but the design guidelines are general and can be used in the
implementation of any concept diagram inference rules.

Overall, no significant difference was observed between primitive and derived
rules, which suggests that the level of abstraction in the implementation is a
choice that the users ought to have and use as they see appropriate. Thus, the
first guideline we extract from the experiment is to implement both primitive
and derived versions of the inference rules.

The second guideline is related to the heuristic (Sect. 4.3, first paragraph)
that suggests that inference rules should not transform solid arrows into dashed
arrows. In the user study, tasks #6–10 involve arrows, with only task #10 trans-
forming arrows in its primitive version (Fig. 3). Thus, we adopted the primitive
version of task #10, such that in the intermediate step diagram, the arrow with
cardinality ≤1 stays solid (right hand premise in Fig. 3). For the remaining 41
inferences, we employ this heuristic and ensure that their diagrammatic versions
retain the arrow type.

The third guideline is based on the heuristic (Sect. 4.3, last paragraph) that
Venn seems to be a more effective representation than Euler when proving inco-
herence of a set. More than 20% of 51 inferences from [12] prove incoherence, and
thus should employ this heuristic. Concretely, in our study, tasks #1,#4, #5,
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and #7–10 deduce that a set is incoherent. Out of these, tasks #1,#4, #5, and
#7 can be alternatively represented in Euler or Venn form. In the experiment,
apart from task #5, which used Euler form (see Fig. 5 (right)), the rest of them
were presented in Venn form. We revised task #5 accordingly, such that it is
presented in Venn form.

We now exemplify how these guidelines are put into practice in iCon. We
focus on the design and implementation of inference rules for task #5 in Fig. 5
(right). Following the first design guideline, inference rules for both, primitive
and derived version of this task are implemented. In fact, the proof in Fig. 2
(page 6) shows the implementation of the primitive version, while Fig. 6 shows
the implemented derived version, where A is darkmantle and B is gorgon. The
second design guideline does not apply here, as there are no arrows. As seen in
Figs. 2 and 6, following the third guideline presents the premises in Venn instead
of the Euler form that was originally used in our study. We now formally define
of the diagrammatic inference rules used in Figs. 2 and 6. These rules can be
proved sound as in [17]. In addition to diagrammatic rules, the two logical rules
used are Conjunction Elimination and Identity (see Sect. 3.1).

Fig. 6. Proof of task # 5 using derived rule.

The first diagrammatic rule we define copies shading from one region to
another. It relies on syntactically identifying when two regions represent the same
set. This has been extensively studied for Euler diagrams [7] and spider diagrams
[22]. Thus, the syntactic identification of regions that represent the same sets can
be identified using the underlying Euler diagram (i.e., the boundary rectangle
containing only the labelled curves). Given a set of labelled curves, C , a fixed
zonal region is the set of zones that are inside all of the curves in C and possibly
other curves; note the name ‘fixed’ since such regions represent particular, that
is, ‘fixed’ sets and are not anonymous. Given a region, r, in a concept diagram,
d, we say that r is fixed if it is formed from a union of fixed zonal regions. Fixed
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regions are said to be corresponding if, informally, they represent the same set
(the details of how this can be identified syntactically can be found in [22]). We
can now define the Copy Shading inference rule.

Definition 1 (Copy Shading). Let d1 and d2 be two concept diagrams con-
taining corresponding fixed regions r1 and r2, respectively, where:

1. r1 comprises only shaded zones and r2 has at least one non-shaded zone,
2. any spider with a dot in r1 (resp. r2) is completely contained by zones in r1

(resp. r2), and
3. the spiders in r1 match the spiders in r2.

Let d′
2 be a copy of d2 except that r2 is entirely shaded. From d1 ∧ d2 we can

infer d1 ∧ d′
2 and vice versa.

The Next rule needed for task #5 deletes a curve from a concept diagram.

Definition 2 (Erase Curve). Let c be a curve in a concept diagram d. Then
c can be removed from d, resulting in a new diagram, d′, with modified shaded
zones, spider habitats and arrows. In particular, if upon erasure of c, a shaded
zone merges with a non-shaded zone then the shading is removed, otherwise the
shading is preserved. Also, if a spider s has a foot in two zones that collapse
into one, then the spider will have a foot in the collapsed zone in d′. In addition,
arrows that have c as target or source are deleted when forming d′. From d we
can infer d′.

Unlike the Copy Shading rule, which preserves semantics and is an equivalence,
Erase Curve weakens information and can be applied only in one direction.

Our next rule, Incoherence is used in the derived version of task #5. It allows
deducing that a curve, say c, is entirely shaded, by copying shading from a
conjunct diagram in which the corresponding non-shaded region of c are shaded.

Definition 3 (Incoherence). Let d1 and d2 be two concept diagrams contain-
ing curves c1 and c2, respectively, such that: c1 and c2 have the same label as each
other; c1 and c2 do not contain any spiders; and the non-shaded zones inside c1
in d1 form a fixed region that corresponds to some entirely shaded, fixed region
contained by c2 in d2. Let d3 be a concept diagram comprising a single boundary
rectangle containing a curve, c3, with the same label as c1 and c2 whose interior
is entirely shaded. From d1 ∧ d2 we can infer d3.

Currently, iCon implements 7 out of 10 inferences from [12] that were used in
the user study, plus additional rules that enable the user to vary the granularity
of the proof. To provide the same coverage as in [12], we are currently building
both primitive and derived variations for the remaining inferences in [12].
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6 Related Work and Evaluation

Like iCon, DIAMOND [8] and Cinderella [9] are diagrammatic theorem provers,
however they operate in different domains of inductive theorems of natural num-
bers and geometry, respectively. In contrast, iCon deals with theorems about sets.
Unlike DIAMOND and iCon, proof steps in Cinderella may not be sound and
have to be verified externally by an automatic symbolic theorem prover.

iCon’s concept diagrams are a more expressive extension of Speedith’s spider
diagrams. Similarly to Speedith, the inference rules in iCon are purely logical or
diagrammatic. However, in Speedith the choice of inference rules is motivated by
the completeness property. In contrast, in iCon the focus is on the commonality
of the inference rules in the ontology domain. In addition, the design and imple-
mentation of inference rules in iCon is informed by empirical studies of what
people find intuitive, and in particular, what level of granularity of rules enables
human users to reason most accurately. This is in line with one of the most
challenging areas of theorem proving, which is reducing the gap between user’s
model of the proof and the actual proof constructed by mechanised theorem
provers [3]. The proof steps in the user’s model are often coarser and have intu-
itive semantics, whereas the prover’s steps tend to be much more fine grained.
Our user study presented inference rules at different levels of granularity. The
derived ones, which are coarser than the primitive ones, can be seen as tactics,
as is common in sentential theorem proving. However, the role of tactics in sen-
tential theorem proving is typically to provide some level of automation, and
rarely to reduce the gap between user’s reasoning and that of a prover. Our
work addresses both, automation as well as human approach to constructing
proofs. For instance, in Fig. 6 the tactic Incoherence reduces the length of proof
in comparison with Fig. 2, while it still remains accessible by allowing the user
to choose a curve and establish its incoherence.

Speedith deploys diagrammatic tactics to facilitate user interactions and
devise a higher abstraction level in proofs which renders them more self-
explanatory [11]. The choice of tactics is guided by metrics related to the read-
ability of proofs (e.g. length of proof, the amount of clutter) and are informed
by empirical studies. Our work presents a step change in that we directly test
the accessibility of inferences themselves.

7 Conclusion and Future Work

Usability and accessibility of reasoning systems is paramount to harness their
utility in diverse domains. By developing an interactive diagrammatic theorem
prover iCon, we demonstrated that it is possible to build a formal reasoning
system that is based on empirical studies of what humans find accessible.

iCon implements the logic of concept diagrams and can be applied in vari-
ous domains (e.g., for reasoning in ontology engineering as presented here). We
focused on deduction patterns found in [12], which also discusses their signifi-
cance in terms of commonality and coverage. In order to gain an insight into
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how to implement the concept diagrams version of these patterns, we conducted
an empirical study that identified that the level of abstraction and granularity
of inference rules did not affect what human reasoners find accessible in general,
but was rule specific. We used this result and others explained in Sect. 4.3 to
guide the design and implementation of iCon’s inference rules.

Displaying the application of inferences via the GUI presents many challenges
and avenues for future work. Laying out the drawn diagrams after each inference
requires analysing the invariant parts of the diagrammatic statement, because
these are the syntactic elements that must remain unchanged before and after
the application of the inference rule. But there are choices and trade-offs between
what elements could or should be preserved. We are planning to conduct a user
study that will investigate where this trade-off lies with the human users. Fur-
thermore, the layout algorithms of iCon should preserve certain wellformedness
properties of the diagrams [14]. For example, ideally a curve should not be split
into two disjoint curves with the same label. Improving layout algorithms for
iCon’s GUI remains future work.
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Abstract. In developing mechanistic explanations for biological phenomena,
researchers have their choice of several different types of diagrams. First, a
mechanism diagram spatially represents a proposed mechanism, typically using
simple shapes for its parts and arrows for their operations. Beyond this repre-
sentational role, such diagrams can provide a platform for further reasoning.
Published diagrams in circadian biology show how question marks support
reasoning about the proposed molecular mechanisms by flagging where there
are knowledge gaps or uncertainties. Second, an annotated mechanism diagram
can support computational modeling of the dynamics of a proposed mechanism.
Each variable and parameter needed for the model is added to the diagram
adjacent to the appropriate part or operation. Anchoring the model in this way
helps with its construction, revision, and interpretation. Third, a network dia-
gram fosters a different approach to mechanistic reasoning. Layout algorithms
are applied to data generated by high-throughput experiments to reveal modules
that correspond to mechanisms. We present examples in which network dia-
grams enable viewers to advance hypotheses about previously unknown
mechanisms or unknown parts and operations of known mechanisms as well as
to develop new understanding about how a given mechanism is situated in a
larger environment.

Keywords: Mechanistic explanation � Mechanism diagrams
Network diagrams � Question marks � Computational model
Biological mechanism � Circadian rhythms

1 Introduction

Much research in the life sciences is devoted to developing mechanistic explanations of
specific biological phenomena such as circadian rhythms and cell division. What
distinguishes mechanistic explanations is that they associate a delineated phenomenon
with an identified mechanism and propose a decomposition of that mechanism into
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parts and operations that, when appropriately organized, are claimed to produce the
phenomenon of interest [3, 14]. A mechanistic explanation can be represented spatially
in what we call a mechanism diagram, usually using simple shapes (and/or words) for
the parts of the proposed mechanism and arrows for their operations. Tversky [22, 23]
refers to these shapes and arrows as morphoglyphs or glyphs. As she emphasizes, “Like
words in language, morphoglyphs can be combined in various ways to create varying
meanings.” The diagrams constructed by combining these elements often appear as the
final figure in research articles, where they show how the findings have yielded a new
or improved understanding of the responsible mechanism. Mechanism diagrams play a
more prominent role in review papers, textbooks, and lectures, where displaying
contrasting mechanism diagrams is an effective way to compare alternative explana-
tions or to show how understanding has changed over time. It should be noted that
published diagrams are the final product of an often extensive process of development,
a process we examined using one laboratory’s unpublished drafts of the diagrams they
eventually published [4, 20]. Here we focus on final, published diagrams and argue that
these are offered not just as conclusions, but also as a basis for further reasoning.

The diagram research community is multidisciplinary. Our own way of investi-
gating diagrams is grounded in the new mechanistic philosophy of science. [2, 3, 6]
Those taking this approach have given considerable attention to the strategies by which
scientists develop mechanistic explanations, and some have noted that scientists often
include mechanism diagrams in their publications. With few exceptions, though,
mechanists have not focused on how scientists rely on diagrams in their own reasoning
about mechanisms.

Cognitive science is a field with the potential to pursue this question via experi-
ments and other empirical methods. In fact, though, most cognitive scientists who study
diagrammatic reasoning have tended to focus on relatively simple diagrams constructed
or interpreted by participants in brief experiments, not the complex diagrams that have
been painstakingly developed and modified by scientists or science educators. There
are a few exceptions. Nersessian [16] drew novel insights about reasoning about
physical forces from a close examination of Faraday’s and Maxwell’s diagrams, and
since then has extended her work into systems biology. Hegarty [21], with an ongoing
focus on reasoning with diagrams, recently examined the molecular diagrams of
organic chemistry and how students learn to use them. Cheng [5] has explored new
diagrammatic formats that support better learning about probability and electricity.
There should be more such studies, but also initiation of research on how mechanism
diagrams in particular support reasoning in biology and other sciences.

To whet the appetite of diagram researchers in philosophy, cognitive science, and
other fields, we introduce three types of diagrams and their role in biological reasoning.
In Sect. 2 we discuss mechanism diagrams that include multiple question marks to
signify where further research is needed to fill a lacuna or to provide better supporting
evidence. In Sect. 3, we show how a mechanism diagram is linked to a computational
model of the mechanism’s dynamics by annotating it with variables and parameters
from the model. In Sect. 4 we turn to a different type of diagram that increasingly is
being used to make inferences about mechanisms: network diagrams. We show how
such diagrams are employed to formulate new hypotheses about parts and operations of
mechanisms or how mechanisms are situated in larger environments.
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2 Using Question Marks in Mechanism Diagrams

Question marks occur with surprising frequency in published mechanism diagrams.
They are used to indicate knowledge gaps: uncertainty about the existence or identity
of parts or operations needed to achieve a working mechanism. By visually pinpointing
where further research is needed, the question marks in a mechanism diagram highlight
that it cannot be regarded as a finished explanation but rather captures one moment in a
process of inquiry. Here we discuss three cases illustrating how question marks can aid
biologists’ reasoning as they engage in that process.

First, a major paper by two recipients of the 2017 Nobel Prize in Physiology and
Medicine includes a simple mechanism diagram with no fewer than five question marks
(Fig. 1). The prize was awarded for research leading to a molecular mechanism
hypothesized to be responsible for circadian rhythms. Two of the Laureates, Hall and
Rosbash, were selected for their work identifying the role of the gene period. They
were not the discovers of the gene or its crucial role in circadian rhythms—it was
already recognized as crucial to circadian rhythms through the research of Konipka and
Banzer [13], who induced mutations in fruit flies and screened for effects on circadian
rhythms. Mutations in the gene they named period (abbreviated per) resulted in a
circadian period that was shorter or longer than 24 h or was absent. What Hall and
Rosbash’s team added was cloning of the per gene to enable quantitative analysis of its
expression. Crucially, they found that the cyclic rise in concentration of per mRNA
preceded that of the PER protein by approximately four hours. Based on these findings,
Hardin et al. [8] proposed the molecular mechanism shown in Fig. 1, in which PER
proteins feed back into the nucleus to inhibit the transcription of their own gene (per).
(For understanding Fig. 1 and other figures, it is helpful to know that typically gene
names are italicized in lower case and protein names are either capitalized or written
entirely in upper case.)

One important use of a mechanism diagram is to support reasoning about how the
mechanism is capable of generating the phenomenon of interest. In particular, the
diagram in Fig. 1 helps with mentally animating the functioning of the per feedback
mechanism. Hegarty [10] presented undergraduates with a reasoning task based on a
diagram of a different mechanism—a pulley system—to study this animation process.
She found convincing evidence that her participants solved problems by mentally
progressing stepwise through the diagram, attending to each operation in turn.
Researchers benefit from diagrams of circadian mechanisms in the same way. Assume
that PER is initially in low concentration. Then the operations in the upper left of Fig. 1
proceed as shown: first the transcription of per into its mRNA and then translation into
the protein PER. But as PER reaches higher concentrations, negative feedback slows
down those operations. Although not shown in the diagram (the reader was expected to
supply such knowledge), PER molecules break down over time, gradually releasing per
from inhibition so that transcription and translation ramp up again. The overall result is
a cycle in which the abundance of PER waxes and wanes every 24 h.

While the basic idea of a feedback loop is clear enough and easy to represent in a
diagram, Hardin et al. did not know where the feedback originated and whether it
inhibited only translation into mRNA or transcription into the PER protein. When they
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presented their proposed mechanism diagrammatically, therefore, they made liberal use
of question marks. For the uncertain source of the feedback they showed three options
(numbered 1–3 in Fig. 1), each flagged by a question mark: (1) PER itself (X),
(2) another protein (Y) that PER acted on, or (3) a behavior of the organism affected by
PER (mediated by a protein Z). They also inserted question marks into the upper right
arrows to indicate uncertainty as to which operations were affected by the feedback.
Despite the uncertainties, the basic idea of a transcription-translation feedback loop
(TTFL) was rapidly adopted and has guided circadian research in most species in the
subsequent decades.

The nascent TTFL in Fig. 1, and the evidence that some version of this mechanism
functioned as a circadian clock, was a major achievement. But far from signaling the
end of inquiry, the question marks in it directed the community to further research that
would require many years to complete.

A diagram proposing a mechanism, when included in a research paper, typically
appears as the last figure (following a number of other figures displaying data). Hardin
et al.’s diagram exemplifies this future-facing placement. But sometimes an unanswered

Fig. 1. Use of question marks to identify alternative hypotheses for the feedback from a protein
X (no mediator or via protein Y or via protein Z and behavior) and for whether the feedback
targets the protein’s gene and/or its mRNA. Reprinted by permission from Nature/Springer/
Palgrave, from [8].
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question about a mechanism was what motivated a research project, in which case a
mechanism diagram with questions marks may be the first figure in the published paper.
Figure 2 provides an example. It is the first figure in Paddock et al. [17], a paper seeking
to identify how the circadian clock in cyanobacteria regulates the expression of most
other genes in that organism. Unlike the circadian clocks for all other orders of life, this
bacterial clock depends not on proteins suppressing the expression of a gene but instead
a cycle of reactions phosphorylating and dephosphorylating the protein KaiC. KaiC is
shown in Fig. 2 as a lumpy double doughnut—a shape conveying that it contains two
domains (labeled CI and CII on the left) and functions as a hexamer. It cycles through
four different phosphorylation states: the black circles labeled P represent phosphates
bound to site S (pST), site T (SpT), both (pSpT), or neither (ST). In each state, KaiC also
has a different relation to the proteins KaiA and KaiB and, most important here, has a
dashed arrow pointing to the word Output followed by a question mark. Paddock et al.
use this device to ask: which one of the four phosphorylation states generates the output
that helps regulate other mechanisms?

A third use of question marks is to indicate lacunae in mechanism proposals. This
occurs when researchers know enough to propose an overall operation, but are aware
that it is a placeholder for more specific operations by parts not yet identified. For
example, when Hardin et al. advanced the TTFL model, it was known that to inhibit

Fig. 2. Use of question marks to identify the question to be addressed in a research paper.
Reprinted from Paddock et al. [17] with permission of the National Academy of Sciences, USA.
(Color figure online)
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transcription, a molecule must bind to DNA—but PER lacks a DNA binding region.
This entailed that PER must interact with another molecule, which would then bind to
DNA. The question marks at the top right in Fig. 1, thus, connote not only uncertainty
about the target of the proposed feedback operation, but also the recognition that at
least one unidentified molecule and operations involving it would need to be filled in.

A common way to identify such lacunae is to compare one mechanistic hypothesis
to others that are, in at least one respect, better worked out. In their search for
mechanisms, biologists often work comparatively between species. This is motivated in
large part by the assumption that evolution is conservative—that genes, and hence the
mechanisms for which they code, are inherited through phylogeny. Although extant
species typically are not descendent from other currently existing species, they do have
common ancestors from which they may have both inherited a common mechanism.
Evolution, though, often introduces variability as another component that performs a
very similar operation replaces an initial component. Even with this variability,
researchers find it valuable to compare their current best account of what is taken to be
the mechanism in one species with the account that has been developed for other
species. Diagrams provide a particularly effective tool for this as they enable
researchers to easily detect similarities and differences. A decade after Hardin et al.’s
initial proposal of the TTFL model in the fruit fly, similar models were developed for
several other model organisms. By this time additional parts and operations had been
identified in the proposed mechanisms for one or another of these species, and this
provided a motivation for comparing the proposed mechanisms to make inferences as
to parts and operations that were still unknown in specific species. To this end, Harmer
et al. [9] constructed Fig. 3 comparing what was then known about the circadian clocks
in cyanobacteria (which at the time were still thought to employ a TTFL as their core
circadian mechanism), fungi, fruit flies, and mammals.

To make it easier to compare the four proposed mechanisms, the authors used
common shapes and coloring. Nodes shown in grey play the same role as PER in the
fruit fly—inhibiting gene expression. A red, edge-ended arrow shows the target of
inhibition. By this time PER (partnered with TIM in a PER:TIM dimer) was known to
inhibit the dimer of CYCLE and CLOCK, which otherwise would promote the
expression of per and tim. CYC:CLK is shown in yellow, as are the proteins thought to
perform the same role in the other model organisms. In this context, Harmer et al. use
questions marks to indicate unknown parts and operations. (In the case of operations,
the question marks are located adjacent to dotted green lines.) For example, in the
mouse clock the BMAL:CLK dimer was known to activate genes that transmitted the
clock output to other biological activities. In the diagrams for the Neurospora and fruit
fly clock, the comparable arrow is dotted and accompanied by a question mark.
Likewise, whereas in the fruit fly mechanism a solid red inhibitory arrow is shown
between the CLK:CYC dimer and the gene clk, in the mouse mechanism the compa-
rable arrow between the BMAL:CLK dimer and the gene bmal is dotted and accom-
panied by a question mark. In cases where they were known, the proteins that activate
gene expression at the promoter site are shown attached to the line preceding the
symbol for gene expression. To indicate genes for which the activating protein is not
known, the authors provide pink pentagons enclosing a question mark.
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The three mechanism diagrams presented in this second section show variations on
the common practice of using question marks to signify uncertainties or lacunae in the
understanding of the mechanism. Figure 1 is the final figure of the research paper, and
the question marks identify uncertainties about how, specifically, the proposed
mechanism is supposed to work. Figure 2 served as the first figure in a paper that set
out to answer the question posed by the question marks. Figure 3, from a review paper,
inserts question marks into a diagram comparing the hypothesized mechanisms in four
model organisms, in some cases in contexts in which an operation is known to occur in
one organism’s circadian mechanism, with question marks flagging where it might
occur in homologous mechanisms in other organisms. Question marks thus reveal a
way in which mechanism diagrams contribute to scientific reasoning.

3 Computationally Annotated Mechanism Diagrams

One major limitation of diagrams in providing mechanistic explanations is that they are
static structures. Mechanisms, however, only produce phenomena if they are active—
that is, if their parts are performing operations that change the state of other parts. As
discussed above, one strategy for reasoning about such activity is to mentally animate a
diagram—to imagine each part in turn carrying out its operation on other part(s),
Hegarty [11] has not only described the practice but explored the limits of peoples’
ability to mentally animate diagrams. These limits are obviously reached by the four
diagrams in Fig. 3, due to their multiple operations that are non-linear or run in parallel
with other operations. It becomes difficult to mentally animate such diagrams and even

Fig. 3. Harmer, Panda, and Kay’s comparison of the circadian clock mechanism in four model
organisms. Modified with permission from the [9], by Annual Reviews, http://www.
annualreviews.org. (Color figure online)
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more difficult to ascertain whether the actual mechanism would behave in the way
imagined. To overcome the limitations of mental animation, researchers often turn to
computational models.

Computational modeling of the circadian mechanism began with the simplest
pathway in Fig. 1, in which the protein X directly feeds back to the gene (identification
of the dimerizing and mediating proteins in Fig. 3 came later). It can be mentally
animated well enough to determine that it will produce oscillations, but not whether
these oscillations will dampen vs. be sustained. Sustained oscillation is required to
count as a mechanistic explanation of circadian rhythms. To demonstrate that this
version of Hardin et al.’s TTFL could generate sustained oscillations, Goldbeter [7]
constructed a computational model. As seen in Fig. 4, he linked the variables and
parameters in its differential equations to the parts and operations in the TTFL
mechanism. The positioning of the mathematical symbols in this annotated mechanism
diagram served as what Jones and Wolkenhauer [12] refer to as a locality aid for
constructing, modifying and reasoning about a computational model. (Note that some
models include parameters that cannot be linked to any particular operation; these
would be excluded from an annotated diagram and understood by other means.)

Figure 4 includes a few parts and operations not anticipated by Hardin et al., since
by 1995 researchers had determined that after PER was synthesized in the cytoplasm, it
had to be phosphorylated before it could be transported back to the nucleus. (PER0,
PER1, and PER2 indicate PER bound to zero, one, or two phosphates, and the nucleus
is represented by the dashed box at the upper right.) After the name of each molecule,
the variable tracking its changing concentration is shown in parentheses; for example,
to the right of per mRNA is appended the variable (M). Next to each arrow denoting an
operation is a parameter—three directly representing the rate of the corresponding
operation (vs, k1 and k2) and the others representing enzyme actions influencing rates
(e.g., ks for the translation of mRNA into the protein PER). The computational model
comprises five differential equations, one for each variable. The first equation, for

Fig. 4. Diagram of the PER TTFL annotated with names of the variables and parameters used in
the computational model. Reprinted from [7], by permission of the Royal Society.
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example, obtains oscillations in the value of M by subtracting a term that includes vm
from a term that includes PN and vs. The diagram makes clear the relevance of these
terms to the value of M and hence can help with the construction and mechanistic
interpretation of that equation. Using the full five-equation model to run simulations,
Goldbeter was able to demonstrate that, for a broad range of parameter values he
characterized as biologically plausible, this TTFL would generate sustained
oscillations.

In addition to assessing whether a proposed mechanism could produce the behavior
researchers are trying to explain, computational models enable researchers to explore
how the proposed mechanism would behave when perturbed in various ways. One
reason researchers perform simulated experiments on computational models is that this
enables them to better explain the behavior of the models. In this situation, the
annotated mechanism diagram serves not just to help construct the equations used in
the model but guides experiments that perturb it and their interpretation.

Such a use of computational models is illustrated in Fig. 5. In the two decades after
Hardin et al. first proposed the TTFL model, researchers identified multiple feedback
loops, some negative and some positive (one of these was already represented in the
mouse circadian clock shown in Fig. 3 above). That generated the question of whether
the whole complicated set of feedback loops is required to generate circadian oscilla-
tions or whether only some are essential. Relógio et al. [18] addressed this question by
creating a computational model of the mammalian circadian clock. Like Goldbeter,
they constructed an annotated mechanism diagram as a locality aid for the process of
constructing the equations (Fig. 5). For each type of clock molecule that had been
identified, the variable representing its concentration is appended to the geometric
shape representing it. Likewise, each operation was associated with a relevant
parameter in the model.

Once they established that the whole model would generate sustained circadian
oscillations, they investigated whether the feedback loop involving PER and CRY or
the loops involving BMAL, ROR, and REV-ERB could sustain oscillations on their
own. The dashed line across the middle of the figure distinguishes these loops. To
remove one or the other set of feedback loops from contributing to oscillations, the
researchers fixed all the variables either above or below the line to a constant value
(thus, preventing them from oscillating). When the variables above the line were set to
a constant, the simulation ceased to produce oscillations, but when those below the line
were so set, the simulation continued to produce oscillations. The diagram now sup-
ported the interpretation that only the feedback loops involving BMAL, ROR, and
REV-ERB are needed for circadian behavior.

The practice of annotating mechanism diagrams with labels for variables and
parameters facilitates their use in reasoning. The annotations guide the construction of
computational simulations that allow researchers to go beyond the limits of mental
animation in determining how the mechanism will behave. They also support designing
and interpreting simulation experiments on the computational model.
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4 Finding Patterns in Large Networks to Make Inferences
About Mechanisms

Mechanism diagrams typically have been constructed by entering current knowledge of
the parts and operations involved in producing a phenomenon of interest into a program
offering graphics, such as PowerPoint. In the 21st century, however, systems biologists
have offered an additional option: disregarding relevance to particular phenomena, they
input very large datasets identifying entities and their interactions into a database from
which specialized algorithms generate network representations. Further algorithms then
can identify clusters that serve as candidate mechanisms. In a variety of contexts these
network diagrams are enabling researchers to identify new mechanisms, discover new
parts and operations of previously known mechanisms, and better understand how
mechanisms are situated in a larger context.

To illustrate the practice, we start with an example from yeast systems biology.
A widely used starting point for developing a network analysis is data specifying which

Fig. 5. Annotated mechanism diagram of the mammalian circadian clock developed by Relógio
et al. as a basis for their computational model. Reprinted from [18]. (Color figure online)

Using Diagrams to Reason About Biological Mechanisms 273



proteins can form bonds with each other in a given species—an important capacity for
implementing cellular functions. Techniques for determining which proteins form
bonds with each other, such as the yeast two-hybrid technique, can be automated so as
to test for hundreds or thousands of possible interactions. Data from studies testing for
such protein-protein interactions (PPIs) are collected in large on-line databases such as
the Biological Repository for Interaction Datasets (BioGRID). Other researchers can
probe these datasets for use in their own studies and analyses.

To analyze PPI and similar data, researchers create network diagrams that represent
genes or proteins as nodes and relations between them as edges. While mechanism
diagrams are a type of network diagram, these networks are much larger and cannot
easily be constructed using a standard graphics package. Accordingly, these network
diagrams are commonly constructed using a specialized platform such as Cytoscape
[19]. The database from which the network is constructed is represented as a table
specifying nodes and edges as well as additional information, such as the expression
level of each gene. A mapping function in Cytoscape translates the additional infor-
mation in the tables into visible features such as the size and shape of nodes or the
thickness of edges. A layout algorithm is then applied to situate the nodes in a
two-dimensional array. Since a major goal of network analysis is to identify clusters of
nodes that are highly interrelated, some variant of a spring-embedded layout procedure
is often employed. Starting with either a random layout or the product of another layout
algorithm, a spring-embedded algorithm functions like a spring, gradually reducing the
distance between connected nodes that start far apart while pushing slightly apart those
that are very close to each other. This reveals clusters of highly connected nodes, often
referred to as modules. Researchers often can then relate these modules to more
classically-identified mechanisms by drawing upon extant knowledge about where in
the cell genes are expressed or what biological functions they perform. This knowledge
can be accessed from other electronic resources, such as Gene Ontology [1].
Researchers can interpret modules whose components are not known to belong to any
known mechanism as new candidate mechanisms. Also, for modules that do corre-
spond to a known mechanism, they can infer that any nodes not corresponding to its
known parts should be evaluated as candidate parts that may improve the mechanistic
account.

To illustrate the strategy, Fig. 6 presents a network diagram of proteins involved in
chromosome maintenance and duplication in yeast. Merico et al. [15] constructed the
network using Cytoscape by importing protein-protein interaction data from BioGRID.
Limiting their analysis to those proteins identified in Gene Ontology as located on
chromosomes, they employed a spring-embedded algorithm to create a network dia-
gram in which highly connected nodes were positioned near each other. Additionally,
they incorporated information about the proteins’ binding sites on chromosomes by
mapping similar site locations to the color of nodes in the network representation (red:
replication fork; green: nucleosome; blue: kinetochore; yellow: unknown chromosome
components). In constructing the network they also incorporated data about how much
the expression of each protein changes over the course of the cell cycle, mapping this
onto the size of nodes. Finally, they used thickness of edges to represent the degree of
correlation in the expression of pairs of genes.
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A few features are immediately observable. First, although information about
location on the chromosome was not used to generate the layout (instead the layout was
based on degree of protein-protein interaction), the blue, green, and red nodes that did
reflect those locations form clusters. From the fact that these clusters of interacting
nodes also bind nearby on the chromosome, the researchers interpreted them as cor-
responding to mechanisms. Second, the green nodes, representing proteins in the
nucleosome, are especially large and connected by thick edges, indicating correlated
dynamical change in the concentrations of these proteins. This further supports a
mechanistic interpretation of these clusters.

While it is interesting that one can recover a mechanistic interpretation from the
layout and feature mapping procedures of Cytoscape, what makes doing so worthwhile
is the possibility of advancing new mechanistic hypotheses. To do this, researchers use
a heuristic strategy known as guilt by association: whenever a node is not already
annotated with a specific location or function, hypothesize that it has the same location
or function as its neighbors. Nodes shown in yellow correspond to proteins that lacked
a location specification. Three such proteins, Psf1, Psf2 and Psf3 (located in a region
shaded in orange in Fig. 6), were positioned by the spring embedded algorithm among
proteins belonging to the replication fork due to having multiple interactions with these
proteins. Using guilt by association, the researchers inferred they played a role in

Fig. 6. A network representation of protein-protein interactions in yeast constructed in
Cytoscape by Merico et al. to illustrates the strategy of guilt by association in inferring new
parts and operations of a mechanism. Reprinted by permission from Nature/Springer/Palgrave,
[15]. (Color figure online)
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chromosome replication. Although the information was not used in constructing the
network, these proteins were known independently to be members of the GINS
complex that is involved in the assembly of DNA replication machinery, indicating that
guilt by association resulted in a correct inference. A similar line of reasoning leads to
the hypothesis that Cse4 (indicated by a red arrow), which lies between the nucleosome
and kinetochore clusters, figures in the interface of these two components. One can also
use network analysis as a guide to new mechanisms when highly interconnected units
lacking a specific annotation are found. In Fig. 6, Orc1-6, all shown as yellow nodes
(in a region shaded in violet), are highly interconnected, suggesting they form a
mechanism. Again, although the information was not used in constructing the network,
they were known from other research to constitute the origin recognition complex
(ORC).

By incorporating data about all known interactions, network analyses are able not
only to recover knowledge of known biological mechanisms, but also to generate
hypotheses about mechanisms not previously identified and about new parts and
operations in existing mechanisms. But they can also serve another function—of sit-
uating mechanisms within larger contexts of interacting components within the cell.
For the most part, mechanistic research looks inward to the component parts and
operations of a mechanism. The resulting diagrams, such as those shown in Figs. 1, 2,
3, 4 and 5, present the mechanisms as self-contained, often with no inputs specified. In
part this is an artifact of focusing on mechanisms responsible for circadian rhythms,
which are generated endogenously by cells. Diagrams for other mechanisms (e.g.,
fermentation) may show an input and an output (e.g., glucose and alcohol), but they
nonetheless treat mechanisms as largely autonomous from each other. Network dia-
grams like Fig. 6, while differentiating individual clusters, reveal numerous connec-
tions between them. This provides a way of identifying ways in which biological
mechanisms affect each other beyond one mechanism simply providing an input to
another. We return to a circadian example to illustrate this.

A variety of research has suggested that standard accounts of the circadian clock
mechanism underestimated the range of genes/proteins involved in generating circadian
rhythms, leading Zhang et al. [24] to use RNA interference techniques to individually
knock down 17,631 known and 4837 predicted human genes in a U2OS human
osteosarcoma cell-line. Using a luciferase reporter, they screened each for altered
rhythms in individual cells. Among the thousands of genes that produced altered
rhythms when knocked down, they selected 343 genes that yielded large and reliable
alterations. One of their goals was to understand how the various genes identified in
their study related to the core mechanism. However, the proteins coded by many of
these genes did not directly interact with any components taken to be part of the core
mechanism. To determine how they might be indirectly connected, the researchers
drew upon the Entrez Gene and Prolexys protein-protein interaction databases to
generate a protein-protein interaction network in which they identified the genes that in
their screen altered rhythms. This yielded the network diagram in Fig. 7. The known
clock genes are shown in light or dark blue as a densely interactive cluster in the center.
The researchers drew upon existing mechanistic models of the clock to represent the
edges between these genes as excitatory (green arrow) or inhibitory (red flat-edged
arrow). Genes whose knockdown resulted in a short period are shown in green, those

276 W. Bechtel et al.



generating a long period in red, and those yielding high amplitude rhythms in purple.
Shown in pink are genes that did not have a significant effect on the period or increase
the amplitude of the rhythms but are intermediates between those that did and the core
clock mechanism. The figure makes clear that in most cases one or two intermediates
lie between the genes that did have an effect on the period or amplitude of circadian
rhythms and the core clock genes. These genes need to be included in a mechanistic
account of how knockdowns affect rhythms.

An interesting example of an intermediate gene is shown in the upper left. TP53, a
major tumor suppressor gene, mediates between several proteins such as DHFR and
CDK9 that the research showed to shorten or lengthen circadian periods. This suggests
a role for TP53 itself in regulating circadian rhythms. The authors note that a study in
the same year had identified BMAL1, a core clock gene, as a potential regulator of
TP53. In Fig. 7 TP53 is only connected to BMAL1 (referred to in the figure as
ARTNL) via another intermediate PCAF. The network analysis thus provides a guide
for further investigation into how TP53 mediates the effects of knockdowns of other
genes on the functioning of the core clock mechanism and whether this connects with
its role as a cancer tumor suppressor.

Fig. 7. Network diagram of genes that when knocked down result in altered periods or increased
amplitudes of circadian rhythms. See text for details. Reprinted from [24], Fig. 5, © 2009 with
permission from Elsevier. (Color figure online)
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5 Implications

One goal of this paper was to highlight the rich database of mechanistic diagrams on
offer in the biological sciences, awaiting further attention from the diagrams research
community as well as mechanistic philosophers of science. Our brief discussion of
question marks, computational annotations, and network formats points to just a few of
the neighborhoods in this database that could fruitfully be pursued in cognitive science
experiments, ethnographic studies, case studies, and quantitative analyses. Although
we focused on the molecular mechanisms responsible for circadian rhythms, similar
diagram practices can be found in other areas of molecular biology and biology more
generally, along with other innovations that arose within particular research commu-
nities and may then have spread.

Another important goal was to emphasize how diagrams support scientific rea-
soning. They play an underappreciated role in scientists’ identification of new mech-
anisms, discovery of new parts and operations of already known mechanisms, and
attempts to understand how a mechanism is situated in a broader environment that
affects its functioning. Thus, diagrams are used not only to communicate proposed
mechanistic explanations to an audience, but also to encourage reasoning about those
explanations—leading at least to better understanding but often to tweaks or substantial
changes as well. Diagram researchers who choose to pursue the research opportunities
offered by diagrams of biological mechanisms can drill into diagram-aided reasoning,
bringing to bear the methods of their own particular disciplines.
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Abstract. Navya-Nyāya, “The New Reasoning”, is a formal philosoph-
ical logic developed in India from the 11th to the 17th centuries CE, and
which builds on the older traditions of Nyāya and Vaíses.ika. Not sur-
prisingly, Navya-Nyāya is fundamentally different from classical West-
ern logic and from the meanings ascribed to traditional logical diagrams.
For instance, although it is not entirely correct to describe Navya-Nyāya
as extensional or intensional, it has an intensional flavour: abstractions
are built up from concrete individuals of which we know only their
possession, or not, of certain properties. In this paper we look at the
implications of these semantics for the use of logical diagrams in Navya-
Nyāya. We survey the use of diagrams in modern studies of Navya-Nyāya,
notable examples having been produced by Wada, Das and Ganeri. We
use notions of well-matchedness, iconicity and Cheng’s recent frame-
work to analyse the effectiveness of the notations in the context of their
intended purposes.

1 Introduction

Indian logic is a collection of texts, traditions and techniques stretching back at
least 2000 years. The first major text of the Nyāya school is Gautama’s Nyāya-
sutra, circa 200 CE, which presents a detailed, closely argued but nevertheless
informal and analogical style of reasoning. The development of Nyāya into some-
thing more precise took place beginning around the 11th century CE with the
writings of Udayana, and by the time of Gaṅgeśa’s work Tattvacintāmani in the
14th century it was appropriate to describe the developments as a new school, the
Navya-Nyāya. Achievements of the new school include a system for constructing
unambiguous expressions imposed on the abundantly ambiguous Sanskrit lan-
guage, a detailed analysis of logical relations, a system akin to quantification
and a foundational theory of number [7, p. 91].

None of the original Sanskrit authors used diagrams. The long tradition of
logical diagrams in the West [16] is unseen in India, for reasons that are unclear;
we speculate it may be partly related to the śruti tradition which privileges the
conveying and acquiring of knowledge orally, not visually. Since Navya-Nyāya
is a linguistic activity whose main tool is an augmented Sanskrit grammar, the
c© Springer International Publishing AG, part of Springer Nature 2018
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early absence of diagrams may be expected. A number of modern authors have
used a variety of diagrams, however, and this paper is a survey and analysis of
their efforts.

Our main form of analysis is to consider how fit for purpose the notations used
are from the perspective of well-matchedness or, equivalently (for our purposes
at least), how the notation makes use of iconicity. We also apply Peter Cheng’s
recent framework [2] by way of contrast and as a modern, cognitively-focused
approach.

In the course of this study we will explain our view that spatial diagrams
(Euler, Venn, linear diagrams etc.) are poorly matched to the meaning of Navya-
Nyāya. The semantics of Navya-Nyāya means that intension, i.e. individuals and
their properties, is of the first importance. Thus, rather than notations designed
to show subsumption, intersection, disjointness and so on, diagrams based on
various kinds of network are most appropriate. Of these, we examine the dia-
grams of Chi [3], Wada [24], Das [4] and Ganeri [7]. Each of these authors had
different (frequently overlapping) purposes in mind when developing their nota-
tions, and so we approach the analysis in ways sensitive to the differing contexts.
The existing notations are intended for exposition, not for use as diagrammatic
logics. By our criteria (set out in Sect. 2) none of the notations is currently
well adapted for reasoning, i.e. for visualising inference and the development of
diagrammatic inference rules that are distinctively Nyayān.

In Sect. 2 we summarise details of the frameworks by which we analyse the
notations, whilst in Sect. 3 we explain some basic terms and concepts from
Navya-Nyāya. In Sect. 4 we survey the extant diagrammatic notations of Navya-
Nyāya, with a commentary on their fitness-for-purpose given via the methods
outlined in Sect. 2. We conclude by analysing the requirements of an analytical
notation that will highlight the key features of reasoning in Navya-Nyāya in
ways that enable and support inference.

2 Methodology

For Charles Peirce, diagrams were the preferred vehicle for reasoning. He believed
that diagrams allow us to see the relevant relations at work in a logical expression
and to manipulate those relations directly. The earlier version of Peirce’s sign
classification divides the modes in which signs convey meaning in three types:
Icons, which depict by resemblance, Indices, which depict by directly “point-
ing to” or indicating something, and Symbols, which depict by convention. Each
modality has a type of information it is best suited to convey: icons should be
used for theorems, indices for existential statements, and symbols for general
laws [20]. Of the sign modalities, iconicity is the more difficult to grasp, since
it depends on the problematic idea of resemblance [22]. This resemblance is
intended to be structural or relational, rather than pictorial. Under this inter-
pretation a sign resembles its object if and only if study of the sign can yield new
information about the object [12]. A diagram is a special kind of icon whose parts
stand in the salient relations to each other, and which comes with rules that allow
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us to manipulate the parts in reliably valid, illuminating ways. This aspect of
iconicity is also captured under the name well-matchedness [10]. A well-matched
notation shares certain important characteristics with the domain it depicts. For
instance, Euler diagrams are well-matched to propositions and assertions about
sets because they have “the potential to directly capture pertinent aspects of the
represented artifact” [11]. Well-matchedness is sometimes discussed as depend-
ing on the existence of a structure-preserving map (homomorphism) between
syntax and semantics; this is a necessary but not sufficient condition. Ambrosio
emphasises the active, contextual nature of iconicity: “‘Constructing’ an icon
amounts to discovering, and selecting, relevant respects in which a representa-
tion captures salient features of the object it stands for.” [1] Thus, designing and
using iconic diagrams sheds light on the underlying structures of reasoning and
on what it means to think diagrammatically.

To provide contrast we will also apply concepts from the framework pro-
posed by Cheng in What Constitutes an Effective Representation [2]. This work
approaches the questions outlined above both heuristically and in ways sup-
ported by results from cognitive science. Cheng identifies 19 criteria which are
organised in two main categories: Access to Concepts, for criteria which relate to
the ease of translating from external to internal representations, and Generating
External Representations, which collects criteria relating to building new content
in a notation. We will focus on the first category, Access to Concepts, in which,
although using different terminology, several of Cheng’s criteria reflect a similar
perspective on notational effectiveness to that of well-matchedness and iconicity
and seem appropriate for our needs. These include A1.1, One token for each
type, A1.2, Reflects structure of concepts, A3.2, Coherent encoding of primary
concepts and A3.3 Overarching interpretive scheme. In A1.5, Iconic expressions,
“iconic” is used to mean “clearly recognisable and particularly memorable” [2],
which is quite different to Peirce’s usage. For reasons of space we are not able
to consider each criteria against each notation, and choose the criteria which
highlight the most relevant issues in each case.

3 The Basic Terms and Concepts of Navya-Nyāya

Navya-Nyāya is a complex and detailed system of which we will only attempt to
describe the aspects needed in order to understand the diagrams in Sect. 4. Useful
introductions can be found in Ganeri [5] and Guha [9]. Like all philosophical logic,
Navya-Nyāya is concerned with the analysis of thought. It combines techniques
of rhetoric (how to construct a convincing argument), epistemology (the analysis
of truth and knowledge) and logic proper (how to draw valid conclusions on the
basis of existing evidence), three fields that have been considered distinct from
each other in the Western tradition. Nyāya (in its original and “new” forms)
is closely linked with the Vaíses.ika school, from which it takes their seven-part
ontology wholesale. The Vaíses.ika ontology divides objects in the real world
into seven types. A positive entity is either a universal, a quality, a motion, or a
substance (which may be compound or atomic) or an individuator. The types are
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distinguished from each other by inherence (samāvaya): the number of entities
each type inheres in and the number which may inhere in it. Nothing may inhere
in a universal, while universals inhere in qualities. For example, the universal
blue inheres in a quality, blueness, which is a particular shade of the colour.
Qualities inhere in substances; blueness may inhere in a pot, for example. A pot
is a compound substance composed of smaller parts. The pot inheres in each of
those parts, all the way down to the atomic substances it is made of, which inhere
in nothing. The other type of entity which inheres in atomic substances is the
individuator, which allows us to distinguish one atom from another. The seventh
type of entity is the negative entity of absence (abhāva). Since the Nyayāikas
believe that every cognition has some content, when we perceive the absence
of a pot on the ground, that absence is an entity with real existence. What we
perceive in this case is an abhāva which is counter-positive (pratiyogi) to pot-ness
(the quality of being a pot) and which has an absential-spatial location in the
ground. This is an example of relational absence, and there are other varieties
dealing with temporal absence and inequality. Nothing inheres in a negative
entity. As we will see in Sect. 4, this model of reality is reflected to a greater or
lesser degree in the diagrams used to visualise Navya-Nyāya.

The usual introduction to Navya-Nyāya is via the anumāna, or inferential
schema. There are two varieties, with three and five steps respectively. The exam-
ple below is the five part variety, or pararthanumāna, taken from Ingalls [13]:

Anumāna 1.

1. Thesis: Word is non-eternal.
2. Reason: Because it possesses the property of being produced.
3. Statement of pervasion and example(s): What possesses the property of being

produced is seen to be non-eternal, as a pot. What possesses the property of not
being produced is seen to be eternal, as the soul.

4. Application: It (word) is like this (i.e. possesses the property of being produced).
5. Conclusion: Therefore word is non-eternal.

When this logical structure was introduced to the West in 1824 by Cole-
brooke [6], it was named the “Indian syllogism”. This choice of name formed
part of the misunderstanding of Indian logic in the West that was to last the
best part of a century. Compared to Aristotle’s syllogistic, pararthanumāna is
inadequate in several respects, particularly its repetition (steps 1 and 5) and the
redundant and distracting appeal to examples in step 3. The history of these
misunderstandings is described by Ganeri [6].

In fact, pararthanumāna bears no real resemblance to syllogistic reasoning. It
is not concerned with classes of things, relations between classes or membership
of those classes. Its content concerns individuals, their “pervasion” by properties
and an inference that can be made thereby. Mullick explains that the distinction
between implication and entailment is key to (mis)understanding the nature of
inference in pararthanumāna, which should be seen as an inference schema or rule
than a series of propositions. Implication “holds by virtue of the meaning-content
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of propositions rather than their truth-values, [and] this must itself be because
of the concepts they contain.” Mullick described the inference taking place in
pararthanumāna as “conceptual implication”. Furthermore, parathanumāna is
a schema because although each example discusses particular objects (words,
hillsides and so on) the role of these “paradigmatic” objects is as placeholders
for any objects or properties that stand in the given relations to each other [17].

Two of the key notions at work in anumāna are locus and locatee. In the
example above, the loci are word (which is the pakṡa, or locus that we want to
reach a conclusion about), pot (the sapakṡa, or example which is claimed to be
like the pakṡa) and soul (the vipakṡa, the example which is claimed to be unlike
the pakṡa). The locatees are the properties of being eternal, of being produced,
and the absence of each of those properties. Non-eternal-ness is the sādhya, the
target property or thing we want to prove is true of the pakṡa.

The treatment of relation is strongly intensional. The eternal-ness of an entity
(such as the soul) is conceived of as a quality which inheres in a locus. The
quality is thus delimited by and particular to the locus (through a process called
avacchedakatva, the delimitor/delimited relation). The eternal-ness of a given
soul is not universal eternal-ness, and is not equivalent to the eternal-ness of a
separate entity. This approach extends to every cognition. To express the notion
“a pot is on the ground” the Nyayāikas construct a statement equivalent to
“contact delimited by pot-ness inheres in the ground”. This is their means of
avoiding the ambiguity of ordinary speech.

One of the most distinctive features of Navya-Nyāya is the treatment of
absence (abhāva) and negation. Recalling the example of our perception of the
absence of a pot on the ground, that absence is an entity with real existence. In
this case, “absence delimited by pot-ness inheres in the ground”. Returning to
the pararthanumāna example above, for word to be non-eternal means that the
absence of eternal-ness is located in word; this absence is also located in pot but
is not located in soul.

Our second example of pararthanumāna is the most commonly cited, which
we will use to explain the third step and use of examples:

Anumāna 2.

1. Thesis: This hill is fiery.
2. Reason: Because it is smoky.
3. Statement of pervasion and example(s): What possesses the property of being

smoky is also fiery, as in the kitchen hearth. What possesses the property of not
being smoky is not fiery, as in the lake.

4. Application: This hill is so.
5. Conclusion: Therefore this hill is fiery.

The third step has been taken by various authors as a predicate logic expres-
sion such as ∀x.S(x) → F (x). This fails to reflect the intended meaning in sev-
eral ways. Apart from S(x) and F (x) being an inadequate way to represent the
notions of locus, locatee and avacchedaka, this is a statement about pervasion,
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as the name suggests. Entities which are pervaded by smoke are necessarily per-
vaded by fire. This is about the relation between the sādhya (target) and hetu
(reason) properties. For the hetu to be a reliable reason property, the sādhya
must be seen wherever the hetu is seen. It is quite possible that the sādhya
is seen in some instances where the hetu is not; a red-hot iron is said by the
Nyayāikas to possess fire but not smoke. But it must certainly be true that the
extent of the hetu is strictly contained within that of the sādhya. This leads to
the Buddhist logician Diṅnāga’s “reason with three characteristics” [7, p. 115]:

[A proper reason must be] present in the site of inference and what is like
it and absent in what is not.

How do we know the examples are well-chosen, and what is “like” and
“unlike” the site of inference? How do we know that there are no counterex-
amples which are yet to be observed (a Black Swan event)? As pointed out by
Diṅnāga, we are concerned here with like and unlike in respect to the sādhya, not
the hetu. In commentary on Diṅnāga’s work, Dharmakirti went on to claim that
there are three ways in which hetu and sādhya may be linked: both properties
may be linked to (possibly caused by) the same phenomenon, may be linked by
metaphysical causation, or we may reach a conclusion about their interdepen-
dence based on the lack of counterexamples. After observing some small number
of examples we can be satisfied, and stop looking. [7, p. 121] The reliance on the
examples in pararthanumāna can be problematic for readers hoping to under-
stand Navya-Nyāya, leading some to think that this is an informal case-based
reasoning by analogy. However, if we accept the validity of the existence of like-
ness and unlikeness classes and accept the assumption that we are able to identify
an example from each, then the status of pararthanumāna as a formal inference
schema is clear. Matilal puts it thus ([14], quoted in [19]):

In short, the Nyāya strategy is to appeal to our intuitions about knowledge,
in order to learn something about reasoning and not vice versa.

The last concept we need to mention is paryāpti sambhanda, or the “relation
of completeness” [9, p. 50]. This phenomenon occurs when two or more entities
are joined in a grouping relation, such as the “two-ness” that inheres in each
element of a pair, (x, y). Two-ness inheres in each of x and y but only when
each is considered as part of a pair. If we consider either element in isolation,
two-ness is no longer observed. Paryāpti plays a key role in the Nyayān analysis
of cognition, but is not always given special treatment in diagrams. Next, we
describe the diagrams of Navya-Nyāya and analyse their effectiveness.

4 The Diagrams of Navya-Nyāya

The earliest use of something approaching a diagram in a text on Navya-Nyāya
appears to be from Goekoop in a book published in 1967 [8]. However, although
the figures in Goekoop’s book help the exposition, they are informal and have
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no analytic content. From a Peircean point of view these are images rather than
diagrams, since the information provided is exactly that which was needed to
construct it. A more diagrammatic style is used by Chi in his 1969 book Buddhist
Logic [3]. Chi uses Euler diagrams with shading and inscribes an “x” to indicate
the non-emptiness of regions, as seen in Fig. 1.

Fig. 1. Chi’s diagrams [3]

The major problem is the misplaced use of circles to represent such notions as
“some class such that all its members have the s-property”. This statement does
have some meaning in Navya-Nyāya, and could be explained as anugama, which
is the technique of “including diverse objects of the same category and sometimes
even of different categories into one group by a single statement” [9, p. 209]. But
anugama plays no role in this inference which is essentially intensional. The s-
property is limited, in each case, by its location in an individual. The s-property
of one is not the s-property of another. From the text it certainly appears that
Chi is aware of this and does not suggest that anugama is involved, but uses a set-
theoretic interpretation and spatial diagrams as a common ground to compare
several Indian logics. Nevertheless, this usage violates well-matchedness. Spatial
diagrams, which are widely agreed to be a very good match for logic in the
western tradition (i.e. they are iconic, in that context) [15], will not help us
to understand anumāna. If the benefits of spatial diagrams for Western logics
reside in the fact that they can represent classes and relations “as they really
are”, this is not the case for Navya-Nyāya. Schayer had formed this view in the
1930s: “In the Indian example [of the ‘syllogism’] there is no such thing as the
relation of subsumption and the attempt to represent the inference with the help
of Euler’s circles has to be rejected.” [18] In Cheng’s terms, this representation
fails to satisfy A1.2, Reflects structure of concepts and A3.2, Coherent encoding
of primary concepts, among other criteria.



Diagrams for Navya-Nyāya 287

A more promising approach using node-link diagrams is found in Wada’s
work [23,24]. In the introduction of [24] he states that the diagrams are intended
to illustrate vyapti (the connection between the fact that needs to be proved
and our reason for believing it), not for reasoning with and not to explain the
Vaíses.ika ontology. Nodes represent qualities and substances and edges the rela-
tions between them, making this notation inherently more well-matched than
any use of spatial diagrams. In Fig. 2, three types of edge are used: a plain edge
(—) to represent inherence (samāvaya), an arrow (→) for the delimitor relation
(avacchedakatva), and a double arrow (⇒) for nirūpakatva. Nirūpakatva, the
determinor/determined relation, is a type of avacchedakatva that determines a
relation or entity in a given context. Wada explains the example in Fig. 2 as fol-
lows. A pot-maker may be the cause of certain pots and a cognition of this fact
would include the cognition of the pot-maker as qualified by cause-ness. How-
ever, the same individual may be the cause of multiple things (such as children,
perhaps). If the most salient thing which he causes is the pots that are pro-
duced, then the cause-ness in question is itself qualified by an effect-ness which
is qualified by pot-ness [23]. This is illustrated in Fig. 2 by the ⇒ edge.

Fig. 2. A node-link diagram from [24]

Wada’s diagrams admit a fourth kind of edge, a dashed line which depicts
“any relation whose existence is negated”. In Fig. 3 the dashed line denies any
relation between the colour red and the kitchen.

Overall, Wada’s diagrams are a much better match for Navya-Nyāya than
any use of spatial diagrams could be. Most importantly, the node-link structure
reflects intension. The resulting structure comes close to reflecting the authen-
tic ontology of a cognition. Problems include the dashed edge and treatment of
absence; to what entity does the dashed line relate? The inherence edge doesn’t
indicate the direction of the relationship. A more serious problem is that there
may be non-unique readings of diagrams with several nirūpakatva edges (e.g.
an identical diagram for the distinct cognitions arising from “man with stick in
hand” and “stick in hand of man”). Ramesh Chandra Das provided a solution
to this problem, which is explained below. More generally, a relatively small
fragment of Navya-Nyāya is covered. For example, how should we express dia-
grammatically the different kinds of absence? How should we depict relations
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Fig. 3. Abhāva in Wada’s diagrams [24]

that involve completeness (paryāpti)? Doing so may require a multiplying profu-
sion of edges, nodes and labels that would obscure the underlying meaning. For
instance, representation of completeness (paryāpti) should immediately highlight
its “grouping” nature, but there is no device in Wada’s diagrams that could do
this. In this respect, the diagrams could be considered to fail Cheng’s criteria
A3.1, A format for each class of primary concepts. The alternative view is that
Wada does not take completeness or variations in absence to be crucial for his
needs, but both concepts can play a crucial role in inference. Other of Cheng’s
criteria highlight ways in which Wada’s diagrams could be improved: the dashed
edge does not faithfully reflect conceptual structure (A1.2).

Das introduced a form of extended node-link diagram in his 2006 work [4].
His diagrams are similar to Wada’s but richer syntax makes more types of edge
available, exposing more of the underlying semantics. Figure 4 shows the cogni-
tion “[the] pot is not on [the] ground”, and does so more fully than is possible
using Wada’s notation.

The outer rectangle drawn around the inner network of nodes and edges
represents cognition, providing the opportunity to juxtapose separate cognitions,
although none of Das’ examples do this. Edges can be drawn sourced on other
edges, not just entities, enabling the representation of the (legitimate) state of
affairs when an entity is qualified by a relation, rather than a quality or attribute.
Figure 5 shows the components available in Das’ notation.

In an important contribution to the formality of the diagrams, Das demon-
strates how to reconstruct a Navya-Nyāya expression from a diagram. This relies
on the addition of the meta-diagrammatic feature of a numbered circle to label
contextual properties (Das refers to it as “an artificial device”). Contextual prop-
erties are those which determine other entities, i.e. those which are adjuncts in
the nirūpakatva relation. The order in which contextual properties are described
affects the meaning of the expression, similar to the order of quantifiers in
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Fig. 4. Das’ extended node-link diagrams [4]

predicate logic. The numbered circles in Das’ diagrams that label contextual
properties are read in order, producing the desired meaning by reimposing the
linearity of the Sanskrit expression. The absence of this feature means Wada’s
notation is subject to ambiguity.

The orientation of nodes and edges has semantic import in Das’ diagrams; a
set of nodes and edges arranged horizontally has a different meaning to the same
nodes and edges in a vertical arrangement. In Fig. 6, because the nodes in the cog-
nition on the left are arranged vertically, we read the arrow as the locus/locatee
or property/posessor relation. In the right-hand cognition, the arrow could be
any relation and (in the absence of a label) all we know is that X is related to Y .

A label is placed in the circle of the delimitor (avacchedaka) edge to show the
kind of delimitor that is in effect. DA stands for dharam avacchedaka (attribu-
tive delimitor). Other possible delimitors are SA (sambhanda avacchedaka –
relational), KA (kala – temporal) and AA (aṁsa avacchedaka – spatial). This
vocabulary is enough for Das to give a detailed, unambiguous depiction of the
cognition “the pot is on the ground” (ghatavad bhūtalaṁ), as seen in Fig. 7.

As well as being more formal, the notation developed by Das is more com-
prehensive than that of Wada in that it corresponds to a larger fragment of
Navya-Nyāya. However, the notation relies on a larger number of conventional
features, detracting from its iconicity. These features are warranted since they
express precise meaning, but don’t help us select the essential characteristics of
inference. To understand how we can manipulate a internal conceptual model
formed from a reading of these diagrams we need to internalise a lot of rules,
some of them (e.g. orientation) quite arbitrary. Cheng’s criteria make it clear
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Fig. 5. The syntax of Das’ diagrams Fig. 6. The semantics of orientation in
Das’ diagrams

that Wada’s goal of providing a comprehensive picture of cognition is double
edged. It means that the notation performs highly in reflecting the structure of
concepts (A1.2), directly depicting the structure of cases (A1.3) and, especially,
invoking more structured internal representations (A2.3). Contextual proper-
ties enable the notation to provide an reliable overarching interpretive scheme
(A3.3). These benefits come at the cost of complexity. Consider the use of the
plain arrow (−→) to denote arbitrary relations; it would not be possible to pro-
vide a distinct, meaningful token for each type (A1.1, A1.5) in this case but
the goal of proving a comprehensive picture means the same token is used for
relations with very diverse meanings, leaving the reader to “fall back” on the
labels and violating A2.1, Prefer low cost forms of processing.

Ganeri uses diagrams extensively in his 2001 book Philosophy in Classical
India [7]. The style of the diagrams arises from Ganeri’s observation that the
11th century scholar Udayana’s justification of the Vaíses.ika ontology differen-
tiates between entities on the basis of inherence (samāvaya), and that these
differences can be seen as properties of a directed graph. Types in the ontology
are distinguished by the number of entities they can inhere in, and the number
of entities that can inhere in them. Thus, what distinguishes a universal from
the graph-theoretic point of view is that it is a node with incoming valency of
0. A universal must be “exampled” in at least two qualities, so its outgoing
valency must be at least 2. Qualities and motions are inhered in by universals,
so their incoming valency is 1. Substances are inhered in by entities which are
themselves inhered in (i.e. qualities and motions), so they can be distinguished
by their depth in the graph (the length of the paths that reach them) which
must be at least 2. Compound substances inhere in their parts (which explains
why some nodes representing substances may have a depth greater than 2), and
atomic substances inhere in nothing, so their outgoing valency is zero. Individ-
uators are unique in having an incoming valency of 0 (like universals) but an
outgoing valency of 1.
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Fig. 7. Das: “[the] pot is on [the] ground” [4]

Fig. 8. An ontology in Ganeri’s
graphs

Fig. 9. Absence in Ganeri’s graphs

Each node in Fig. 8 is a bhāva (positive entity) and an arrow between nodes
n1 and n2 means that n1 inheres in n2. The set of edges is the extent of the
inherence relation in the depicted cognition. Figure 8 shows an ontology in which
one universal inheres in two qualities which inhere, respectively, in a compound
and atomic substance, and so on. The solid black nodes represent individuators.
After explaining that individuators were considered redundant by Ragunātha [7,
p. 77] Ganeri leaves them out of subsequent graphs.

To represent absence (abhāva) a new type of node and two new edges are
introduced, as in Fig. 9. The =⇒ edge denotes counterpositiveness (pratiyogita)
while the heavy edge is the absential spatial relation. Unlike Wada and Das, no
non-existent “denial of relation” is depicted. The approach to absence allows a
simple illustration of the dielethic aspect of Nyāya cognition, whereby a propo-
sition and its negation can be true at the same time. This is an unpervaded
occurrence [7, p. 88], an example of which might be a jug with a red body and



292 J. Burton et al.

blue handle. The composite jug is inhered in by the colour blue but the absence
of blue is located in it also. See Fig. 10.

A branching edge is used to represent completeness (paryāpti). Figure 11
illustrates the situation where the “quality ‘two’ inheres in both members of a
pair of substances, another quality ‘two’ inheres in another such pair, and all the
qualities ‘two’ have inhering in them a single universal ‘two-hood’” [7, p. 91].

Fig. 10. Unpervaded occurence Fig. 11. Completeness in Ganeri’s graphs

Ganeri’s graphs are ideally well-matched to Udayana’s explanation of the
Navya-Vaíses.ika ontology, which is a directed graph. The treatment of com-
pleteness is iconic in that it has the relation (grouping, or joining) that it repre-
sents. The depiction of absence includes no redundancy. The well-matchedness
allows for a dialogue between graph-theoretic properties of a diagram and the
underlying model. For instance, one Nyayān controversy centred on whether
qualities and motions are really distinct entities, or whether a motion is actu-
ally a form of quality; in the graph-theoretic model their equivalent valencies
mean they are indistinguishable, reflecting the simplifying revision argued for
by later Nyayāikas [7, p. 77]. Overall, the notation is minimal and elegant rel-
ative to Wada and Das, but it manages this because it is more specialised to
the ontology and covers only a small fragment of other concerns (the processes
of cognition and inference). Within the context of its purpose, the graphs per-
forms well on Cheng’s framework, providing one token for each type (A1.1), and
reflecting the structure of concepts and the structure of cases more accurately
than other notations (A1.2, A1.4). The structure of directed graphs makes use of
a low-cost form of processing (A2.1). When we look outside the target domain of
the Navya-Vaíses.ika ontology, certain concepts (such as the determinor relation,
see below) are missing (A3.1, A3.2).

We now consider the task of using Ganeri’s graphs to depict the inference
embodied in anumāna. Figure 12 applies the graphs to Anumāna 2.

How can we formalise the application of step (3) to step (2), resulting in
(4)? One of the things which is hard for any beginner to understand about
Navya-Nyāya is exactly how this statement of pervasion and use of examples
works – what distinguishes it from reasoning by analogy, in what sense it is valid
reasoning? Authors such as Schayaer, Staal and others have characterised the
third step in terms of predicate logic. For instance, Staal’s occurrence relation,
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Fig. 12. Inference in Ganeri’s graphs

A, links together the evidence, h, the site of inference, p and conjecture, s:
A(h, p) → A(s, p) (if h is located in p then s must be located in p). [21] Whatever
the notation, in order to know that the example presented is a reliable one,
we must consider Diṅnāga’s “statement with three characteristics”. We need a
diagrammatic means of knowing that the evidence appears in the site of inference
(shown in step 2), in all things which are like the site of inference, and not in those
things which are unlike that site. But step (3) only shows that the second and
third characteristics are true of the particular examples. We also need to know
that the site of inference and the corresponding positive example (sapakṡa) are
in the same likeness class with regard to to the target property, and conversely
for the negative example (vipakṡa). To be used in this context, Ganeri’s graphs
need to be extended since we have no way to describe these relationships. Das
presents the same inference, fully specified, in pull-out Fig. 2 of his book [4];
we unfortunately don’t have room to show this large diagram. The result is
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well-matched in that it corresponds, through Das’ reading technique, with the
Navya-Nyāya expression but, in our view, becomes too cluttered and abstruse to
shed light on the key aspects of the inference (the three characteristics and the
likeness and unlikeness classes). It seems that in order to construct a notation
that exposes the distinctive features of Nyayān inference, a middle way between
the expressiveness of Das and the elegance of Ganeri is needed.

5 Conclusion

We have collated the first survey of the use of diagrams in the Navya-Nyāya
literature, and analysed the strengths and weaknesses of what has been done.
Each author had their own goals in mind. Wada and Das produced a similar style
of node-link diagram to illustrate their translations of Sanskrit texts, focusing on
vyapti (the link between the evidence and that which we want to prove) and the
structure of cognition. With the device of numbered contextual properties, Das’
diagrams can be used to unambiguously reconstruct sentences in Navya-Nyāya.
Ganeri produced his graphs to explore the Navya-Vaíses.ika ontology, for which
are an ideal match.

We believe that there is scope for further exploration of diagrammatic rea-
soning in logics which have intensional semantics and which focus on conceptual
implication rather than propositional entailment, to use Mullick’s terms. Our
next step is to produce a notation which is iconic in the context of this kind
of inference, which we will do by augmenting Ganeri’s graphs with elements of
Das’ notation. The augmented notation needs to expose the most salient concepts
involved in the application of the parathanumāna schema. A notation which does
that must highlight the role of likeness and unlikeness classes through the links
between the sapakṡa (positive example), vipakṡa (negative example) and the
pakṡa itself. It must make explicit the relation between the target and reason
properties (i.e. which pervades which). In keeping with Ganeri’s observations
about the Vaíses.ika ontology, the semantics of the notation should be graph-
theoretic rather than model-theoretic. We will pursue this approach to explore
the ways in which diagrams can illuminate both this distinctive style of reasoning
and our own understanding of diagrammatic logic.
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Abstract. A single feature indicator system (SFIS) is a signaling sys-
tem where a representation carries information through a one-to-one cor-
respondence of the “values” taken by its elements to those taken by a set
of represented objects. The purpose of this paper is to demonstrate that
many common diagrammatic systems are either SFISs or have SFISs as
their semantic basis. We take as examples several familiar diagrammatic
systems with seemingly diverse semantic systems (tables, charts, con-
nectivity diagrams) and show the fundamental similarities among them
that put them all under the concept of SFIS. We then explore different
ways in which an SFIS is extended to a new, perhaps more expressive
representation system. The paper paves the way to an account of the
functional commonality and diversity of diagrammatic systems in terms
of the operations that generate them from some basic systems.

1 Introduction

Investigations of the formal semantics of diagrammatic representations began
with Shin’s seminal work on Venn diagrams [17,18]. Since then further stud-
ies have been made of Euler diagrams, spider diagrams, Hyperproof diagrams,
geometry diagrams, dot diagrams and coincidence grids among other representa-
tions, [1,3,7,8,11,12]. The formal semantics of so-called heterogeneous systems,
combining diagrammatic and sentential representations, and multiple diagram-
matic representations have also been investigated, [2,3,6].

The typical approach in this work is to define an abstract syntax for the
diagrams, a model describing the subject matter for the diagram, and an inter-
pretation function which determines how the diagram is to be read as making
assertions about the model. The definitions of these three components are inter-
dependent, and are specific to the particular diagrammatic system at hand.

Collectively, this work has made significant contributions to our understand-
ing of logical properties of diagrammatic representation systems; however, the
approach has been largely individualistic. The logical properties of each system
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have been investigated on the basis of the semantic specification dedicated to that
system. While the overall strategy for defining a formal semantics is shared, the
specific mechanisms for implementing this strategy are idiosyncratic. It therefore
is not adequate to account for systematic similarities between systems. For exam-
ple, many diagrammatic representation systems support so-called free rides, and
suffer from problems of over-specificity, [14]. The individualistic account does not
have sufficient generality to describe when a system will have such properties,
or what features of the system account for the presence of the property.

To address these issues, we previously proposed a generic approach to devel-
oping a theory of representation systems in general, with diagrammatic systems
as a special case, [16]. Our approach involves giving an abstract characterization
of a class of representation systems, and then investigating the properties of all
members of the class in the abstract setting. By adopting this approach, we are
able to short-circuit investigation of individual representation systems, and also
to assign the responsibility for the possession of various properties of an indi-
vidual representation system to its membership in the class. Specifically in [16],
we formally characterized a particular class of representation systems that we
call “Single Feature Indicator Systems (SFIS)” and showed that all SFISs share
common properties, in particular that they admit a common collection of valid
inference rules.

In the present paper, we extend our generic approach by exploring different
ways in which an SFIS might be used as the basis for a new, perhaps more
expressive representation system. We identify a set of operations that can be
applied to SFISs to generate related, but functionally different representation
systems. In doing so we begin to expand the universe of representation systems
that can be described within our generic framework and show how different
representation systems can be systematically related to one another.

2 The General Picture

In this and the next section we present an informal description of our view of
representation systems and SFISs. The presentation here contains just enough
information to serve as a foundation for the ideas presented here. For a more
detailed view see [15,16].

Our notion of representation system is designed to capture important seman-
tic properties of a representational practice conducted by a group of people. A
representational practice is a recurrent pattern in which people express infor-
mation by creating a (typically proximal) object and extracting the information
from it. In many cases, the information thus expressed is about a particular (dis-
tal) object or situation. We call a proximal object created in a representational
practice a representation. A diagram is a special case of representation.

For example, a project leader may create the table in Fig. 1a to express
information about the work schedules of four workers at a research project. Many
people know how to extract the information expressed in this table and they do
extract information from it. Here we see a representational practice conducted
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by the project leader and these people. We will refer to this representational
practice as Rt and use it as the running example throughout this paper. The
tables represent the schedules of the workers.

We can think similarly of the system of bar charts in Fig. 1b, representing
the sales of a particular book over a period of months. In Fig. 1c, we see a system
of traffic lights, representing a kind of traffic light whose individual lights may
be illuminated, flashing or unilluminated, represented by white, gray and black
circles respectively. Finally in Fig. 1d we see a connectivity diagram of a transit
system.

Fig. 1. Diagrams illustrating representation systems that either are SFISs themselves
or modifications of SFISs.

Typically, a representational practice is governed by various constraints of
different origins, and the effectiveness of the practice deeply depends on these
constraints. They consist of source constraints concerning what kinds of symbols
appear in a representation and how they are arranged, semantic constraints
concerning what arrangement of symbols indicate what information, and target
constraints holding on represented objects or situations.

The source constraints in Rt include the fact that each cell of the table con-
tains one, and only one, of the symbols � and ✗. This constraint is conventional,
as it is based on essentially arbitrary syntactic stipulations among the partici-
pants of Rt. Given the set of syntactic stipulations, however, further constraints
on the arrangement of symbols naturally follow from them, due to spatial con-
straints on plane (e.g., the fact that there can be at most five checkmarks in a
single row of the table). Our notion of source constraint covers these constraints
too.



Operations on Single Feature Indicator System 299

The target constraints include the facts that every worker either does, or
does not, work on a particular day. They also include more idiosyncratic ones,
such as the fact that at least one worker works on each day.

The semantic constraints include the fact that a cell has the symbol � only if
the relevant worker works on that particular day. As with syntactic stipulations,
these semantic constraints are conventional in nature, and thus can be violated.
Still, they are fairly strong regularities holding on Rt, since the project manager,
his workers, and other users know these conventions and try to comply with them
to make their communication reliable and efficient.

The source constraints, semantic constraints, and target constraints govern-
ing a representational practice can be considered to make up a system, which
we call a representation system.

3 Single Feature Indicator Systems

Having described our conception of representation systems, we now turn our
attention to an important subclass of representation systems, Single Feature
Indicator System (SFIS). They form the basis of many commonly occurring
diagrammatic representation systems such as those presented in Fig. 1, including
tables, bar charts and connectivity graphs. They are so fundamental to our way
of codifying the world that new SFISs are constantly invented either out of blue
or as modifications of existing SFISs.

3.1 The Structure of the Target Domain

The design of a SFIS starts from a set of target issues. This set reflects how we
want to conceive of the given situation; it even determines which portion of the
reality we take as our target in the first place. In the case of the system Rt of
scheduling table (Fig. 1a) there are 5 × 4 target issues, corresponding to every
combination of relevant worker and day, which may be written as:

Does Atsushi work on Monday?
Does Atsushi work on Tuesday?
. . .
Does Mike work on Friday?

A set of target issues determines the set of subjects that we are concerned
with, as well as the range of values that these subjects may take. For the set of
target issues listed above, the subjects are the 4 × 5 worker/day combinations,
which may be written as “Atsushi on Monday”, “Atsushi on Tuesday”, . . . ,
“Mike on Friday”; the range of values is binary, consisting of “working” and
“not working”. This is the way the designer of the work scheduling tables wants
to conceive the work schedule for a series of weeks.

We call a structure like this, in which there are a set of subjects and a range
of values they uniquely take, a feature.
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3.2 Designing the Source Representation

When the target object or situation is conceived on the basis of a feature, we have
the opportunity to design a source representation which mirrors this structure.

Specifically, we can create another feature, this time in the source, whose sets
of subjects and values stand in one-one correspondence to the sets of subjects and
values of the target feature. For scheduling tables, the source feature has the set
of subjects consisting of the 4×5 cells in a table, plus the set of values consisting
of “containing �” and “containing ✗”. The cells in the source feature stand in
a one-one correspondence to the worker/day combinations in the target feature,
and the binary values “containing �” and “containing ✗” similarly correspond
to the binary values “working” and “not working.”

We call the feature consisting of the sets of source subjects and source values
the source feature. Note that the values taken by the various subjects in the
source feature are independent. That is, as far as the syntactic stipulations and
spatial constraints are concerned, a source subject in a given diagram can take
any value without consideration of the values taken by other source subjects.
We call this the independence condition.

3.3 Semantic Conventions

The semantic conventions can be specified on the basis of the twofold correspon-
dences holding between the source feature and the target feature. In the case of
Rt, they consist of the constraints of the following form, where X ranges over
the names of the workers and Y over the names of the five days of the week:

(1) If the cell in the row labeled by the name X and the column labeled by the
name Y has a �, then the person bearing X works on the day bearing Y .

(2) If the cell in the row labeled by the name X and the column labeled by
the name Y has a ✗, then the person bearing X does not work on the day
bearing Y .

Generally, establishing the basic semantic conventions for a SFIS involves three
steps: (1) specifying which subject in the source feature corresponds to which in
the target feature, (2) specifying what value in the source feature corresponds
to which value in the target feature, and (3) making it a rule that a subject in
the source feature takes a value only if the corresponding subject in the target
feature takes the corresponding value.

Informally, a representation system is a Single Feature Indicator System
(SFIS) if it satisfies the following conditions:

1. Due to the system’s target constraints, every target subject is constrained to
take a unique target value (existence of a target feature),

2. Due to the system’s source constraints, every source subject is constrained to
take a unique source value (existence of a source feature),

3. The source feature satisfies the independence condition, and
4. The source and target features are linked by the form of semantic conventions

specified above.
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The simplest possible SFIS has a single subject in the target feature taking
on a binary value and a corresponding single subject in the source feature also
with a binary value. An example of such a SFIS might have a particular piece of
machinery as its sole target subject, taking the value “working” or “not working”.
Its sole source subject is then a particular lamp on a control panel, taking the
value “illuminated” or “not illuminated”. We call such a simple signaling system
an atomic single feature indicator system. Atomic SFIS are quite common, and
we will take them as our starting point in the consideration of the operations
that can be performed on SFISs.

4 Notation

In what follows, we will use diagrams to describe SFISs. An individual feature
within an SFIS, will be represented schematically as a divided box, with a set
of subjects to the left, and a set of values to the right, as in Fig. 2a. A specific
example, with a feature of a machine that is either working or not, is shown in
Fig. 2b.

set of subjects set of values

(a) A Generic Feature

Machinery1 working, not working

(b) An Example Feature

Fig. 2. Notation for features

An SFIS then, can be represented as two features, source to the left and
target to the right, with a semantic link between them. Since we are not focussed
on semantic links in this paper, we will depict (and treat) it as a black box
between the two features. Figure 3a shows the general form of a SFIS. A concrete
SFIS involving a single lamp depicting the state of some machine is shown in
Fig. 3b.

set of
source subjects

set of
source values

set of
target subjects

set of
target values

(a) Generic SFIS

Lamp1 illuminated
unilluminated

Machinery1
working

not working

(b) An Example SFIS

Fig. 3. Notation for SFISs
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5 Operations: Subject Union

Given the lamp-machinery example just presented, it is very natural to imagine
a control panel representing the status of the machinery in a complex plant, a
factory for example. In this situation, there are many pieces of machinery, each
either operating or not. The status of each piece of machinery can be represented
by a lamp on a complex control panel. If there are three distinct subsystems in
the factory, then these can be represented using three lamps, any of which is
independently illuminated or unilluminated.

We can analyze such a system as formed from three underlying SFISs by
forming the union of the subjects, as depicted in Fig. 4. In this figure, we can see
that the three atomic SFISs depicted on the left have been combined into a single
SFIS on the right. Each feature in the new system has the union of subjects
from the component SFISs. The operation of subject union is applicable to
SFISs only when they share the same sets of source and target values.

Machinery1
working

not working
Lamp1 illuminated

unilluminated

Machinery2
working

not working
Lamp2 illuminated

unilluminated

Machinery3
working

not working
Lamp3 illuminated

unilluminated

Lamp1
Lamp3
Lamp3

illuminated
unilluminated

Machinery1
Machinery2
Machinery3

working
not working

subject union

Fig. 4. An example of the subject union operation

A more interesting use of subject union is commonly found in connectivity
maps. For example, we may want to design a transit map for the subway system
for a city. In such a system, we can think of the target subjects as pairs of
stations, and the associated values as “directly connected” (dc) or “not directly
connected” (¬dc). The simplest such feature is concerned with two stations A
and B, say, and hence one subject—the pair (A,B).1 One common way to express
such connection, is with stations represented by nodes on the plane, and direct
connectivity represented by the presence (edge), or absence (¬edge), of an edge
between two nodes. This forms an atomic SFIS.

Figure 5 shows this situation. On the left are three atomic SFISs representing
direct connectivity between different pairs of stations. The SFIS depicted at the
top describes the connectivity relation between stations A and B. In the sample
diagram to its left, these stations are depicted as directly connected by the
presence of an edge between the nodes “A” and “B”. The other two atomic
SFISs have similar features involving different pairs of nodes and stations. We
1 We assume that stations are not connected to themselves, and that connections are

bidirectional.
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show sample diagrams where “A” is directly connected to “C” and that “B” is
not directly connected to “C”.

(A,B) dc,¬dc(“A”,“B”) edge,¬edgeBA

(A,C) dc,¬dc(“A”,“C”) edge,¬edge
C

A

(B,C) dc,¬dc(“B”,“C”) edge,¬edge
B

C

(“A”,“B”)
(“A”,“C”)
(“B”,“C” )

edge,¬edge
(A,B)
(A,C)
(B,C)

dc,¬dc

A

C

B

subject union

Fig. 5. An example of the subject union operation for connectivity

The representation system to the right has all three pairs of stations as target
subjects, and all three pairs of nodes as source subjects, with the set of source
values inheriting the same semantics.

6 Operations: Value Multiplication

Imagine now that our transit system contains multiple different subway lines, and
that we therefore have a collection of SFISs of the type that we just described,
each allowing the representation of the connectivity using one particular line.
The SFIS on the right of Fig. 5 is the system for representing the connectivity
between stations on line P , say.

We would like to overlay these SFISs into a single representation system
to allow riders to determine how to travel between any two stations in the
network possibly by changing trains. We call this overlaying operation value
multiplication.

An example of this is depicted in Fig. 6. In this situation, we have two SFISs
sharing the same set of subjects. The values for each SFIS are analogous, but
not the same. In one source feature we draw solid edges in the representation
to signal that the stations are directly connected on line P , and in the other we
draw dashed edges to signal that the stations are connected on line Q. These
SFISs on the left of the figure represent possible journeys carried out exclusively
on one line. Examples of concrete representations are shown to the far left of the
figure.

The system depicted on the right is formed by taking the cartesian product of
the value sets. So a value in this new system is a pair, consisting of one possible
value drawn from each of the component sets. It is easy to show that this new
representation system is itself a SFIS. The combined concrete representation
shows the overlay of the two component representations.

Systems based on value multiplication are quite common. Imagine for exam-
ple, an extension of bar charts where the months whose values exceeded last



304 A. Shimojima and D. Barker-Plummer

(A,B)
(A,C)
(B,C)

dc
¬dc

(“A”,“B”)
(“A”,“C”)
(“B”,“C”)

edge
¬edge

BA

C

(A,B)
(A,C)
(B,C)

dc
¬dc

(“A”,“B”)
(“A”,“C”)
(“B”,“C” )

edge
¬edge

BA

C

(“A”,“B”)
(“A”,“C”)
(“B”,“C”)

(edge, edge)
(edge,¬edge)
(¬edge, edge)
(¬edge,¬edge)

(A,B)
(A,C)
(B,C)

(dc, dc)
(dc,¬dc)
(¬dc, dc)
(¬dc,¬dc)

BA

C

value multiplication

Fig. 6. Value multiplication

years sales are colored green, and those that did not are colored red. Here a
multiplied system is produced from the bar chart system together with another
system sharing the same subjects but having different sets of source values (“red”
and “green”) and target values (“exceed” and “¬exceed”). The source values of
the multiplied system would consist of pairs of bar heights and colors, which
correspond to pairs of sales numbers and “exceed/¬exceed” values.

7 Operations: Neutralization

With a SFIS we are required to convey complete information about the target
situation that specifies the value of each individual target subject. However, we
are not always in a position in which complete information is available.

Consider a situation where you are observing the author of the scheduling
table in Fig. 1a as it is being constructed. Perhaps all of the row and column
labels are present, but the author has not yet filled in all of the cells. Such a
diagram is not a representation in the scheduling table system Rt, since not
every source subject takes on a value from �, ✗. However, such a representation
does carry partial information about the target that it describes. We can see,
perhaps, that John will be working on Monday, but whether or not Atsushi is
also working that day is not expressed in the diagram.

We can model such a situation by noticing that the blank space in the source
representation serves as an additional value that source subjects can take on,
but that this value is associated with the disjunction of all the other values
in the target feature. In the case of the scheduling table system Rt, we will
denote this disjunctive value by

∨{working, not working}. We call such a value
a “neutral” value, and a resulting system a Single Feature Indicator System with
neutrality, or a neutralized SFIS. We give a formal account of neutralized SFIS
in [16].2 Unlike the cases of subject union and value multiplication, the result of
neutralizing an SFIS is a new representation system which is not itself an SFIS.

2 In [16] we give a different account of neutral values as not referring to any value in
the target system. These two accounts are equivalent, but the account here allows
us to generalize the idea of complete neutrality.
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Fig. 7. Example of additive neutralization. The source value, BL, has no semantic
significance as it corresponds to the neutral target value,

∨{working,¬working}.

Naturally, neutralized SFISs do not only occur on the way to completing
the construction of an SFIS, but they are useful when information about the
domain is, perhaps necessarily, partial. Consider the traffic light system, where
individual lights might be either “illuminated”, “unilluminated” or “flashing”.
When we don’t know the state of a light in the target situation, we might use a
new color in the source to remain neutral about the issue. The resulting diagram
expresses partial information about the world.

More generally, neutralization might not necessarily indicate a complete
absence of information. Rather, newly added source values, might be introduced
to indicate partial, but not totally absent information. In the traffic light sys-
tem above, we might introduce a way to represent the fact that a light is either
illuminated or unilluminated (i.e. not flashing) by introducing a source value
associated with the target value

∨{illuminated, unilluminated}.
The case above is an example of what we will call additive neutralization

(Fig. 7). A source value is added in the process of neutralization, with the stip-
ulation that it corresponds to a disjunctive target value.

Sometimes an existing representation system can be neutralized by making
an existing source value correspond to a neutral target value. We call the process
of modifying a representation system in this way subtractive neutralization. The
reader familiar with Euler diagrams may notice that the currently standard sys-
tem of Euler diagrams (e.g., [6]) is the result of subtractive neutralization applied
to the “older” Euler system with so-called “existential import” (e.g., [9]). In this
case, the minimal regions (or zones) of Euler diagrams are source subjects and
the sets represented by them are target subjects. In both systems, if a minimal
region is not present in a diagram, it means that the represented set is empty. If
a minimal region is present, however, it does not mean the non-emptiness of the
represented set in the newer system, while it does so in the older system. In terms
of SFISs the set of source values {present,¬present} in the older system cor-
respond to the set of target values {¬empty, empty}, whereas that in the newer
system corresponds to the set of target values {∨{empty,¬empty},¬empty},
making source value “present” correspond to

∨{empty,¬empty}. Thus, we can
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see the newer system as the neutralized version of the older system, although
neutralization in this case consists in making an existing source value correspond
to a neutral target value, rather than adding a new source value.

8 Operations: Conditionalization

The definition of SFIS requires that different source subjects take their val-
ues independently of one another because of the independence condition on
the source feature. In the example of the work scheduling system Rt, the fact
that the Atsushi-Mon cell has a checkmark does not affect, as far as syntactic
and spatial constraints are concerned, whether the Atsushi-Fri cell has a check-
mark, whether the Dave-Mon cell has a checkmark, or whether the Dave-Fri
cell has a checkmark, for example. However, when stipulations constraining the
values assumed by some source subjects on the basis of other subjects’ values
are added to a SFIS, we say that the new system results by the operation of
conditionalization.

For example, when examining a working traffic light, it is impossible (hope-
fully) for both the green and red lights to be on simultaneously. In this case
there is a constraint in the target domain. The fact that one subject, the red
light, assumes the value “illuminated”, precludes the fact that the green light
can also take this value. This constraint is a local constraint. It says that the
value of some target subject constrains the value of some other target subject,
but leaves the remaining subjects unconstrained.

When representing proportional data we often encounter global constraints.
Consider for example the results of an single vote election with four candidates.
Once the first candidate is known to have received 25% of the votes, then it is
impossible for any of the other candidates to receive 80% of the votes. This inter-
candidate constraint is a global constraint on the target system, namely that
the total of votes cast must sum to 100%. Fixing the value for any candidate,
constrains all of the values for the other candidates.

These examples are different in interesting ways. If the target feature for the
traffic light system is constrained in this way, but we continue to use pencil and
paper diagrams for representing the traffic lights, then the structural constraint
in the target feature is not projected into the representation. We can still draw
diagrams in which the red and green lights are both represented as on, even
though we know that this does not represent a permissible target situation. In
order to work with such a representation, then users of the system must keep
track of the fact that some diagrams do not represent possible situations, and
reason with them accordingly. If we ameliorate this problem by implementing
a simple computer-based editor for these diagrams which tracks the target con-
straint, it is a case of conditionalization. In this system the revised source feature
prevents the construction of representations of impermissible situations.

By contrast, we can choose to represent proportional data using a represen-
tation such as a pie chart. Even when drawn with a pencil on paper, if the angles
of the slices of the pie accurately reflect the proportions of the represented data,
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then it becomes impossible to draw a chart that represents an impossible situ-
ation. This ability to prevent the representation of impossible data even when
using very flexible tools such as pencil and paper, accounts for much of the wide
adoption of pie charts as a system for representing proportional data. The system
is a naturally conditionalized system, so to speak.

9 Operations: Uplifting

When we combine SFISs through subject union or value multiplication, we typ-
ically adopt natural (but essentially arbitrary) syntactic stipulations on the way
source subjects appear in diagrams, and that creates the possibility of percep-
tually available derived meaning.

For example, the cells of a scheduling table in Rt are organized into a grid so
that the rows share a person label and the columns share a day label. This results
in the possibility of observing facts such as “Mike’s row has three checkmarks”,
which indicates the fact that Mike works three days this week. The syntactic
constraints for this organization of cells makes a new representational practice
available, where one counts the number of checkmarks in a particular person’s
row and reads off the number of days that person works in the week. The fact
that the number of checkmarks in a row indicates the number of days that a
person works is a consequence of the semantics of the underlying system. This is
an instance of what is called derivative meaning relation [14]. We call the move
from a system involving basic meaning relations to one using derivative meaning
relations, uplifting.

Figure 8 shows the systems involved in our example. The leftmost, cell-based
SFIS serves as the basis for the uplifting of a row-based representation system
(to the right).

Fig. 8. An example of uplifting and system combination. A SFIS is uplifted from
another SFIS and combined with it to make a semantically richer system.

In this particular example, the uplifting operation produces a new SFIS
where the source subjects are the rows of cells, and the values are integers from
0 to 5. In general, there may be many ways to read derived information from
a representation system, and not all uplifting operations based on this derived
information will result in an SFIS. For example, we can uplift the cell-based
representation system to a new representation where the subjects are pairs of
columns of the table, and the value associated with a subject is the difference in
the number of checks in the columns (indicating the difference in the number of
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people working on the corresponding days.). See Fig. 9. The resulting system is
not an SFIS since the independence condition fails. Once the difference in the
number of workers between Monday and Tuesday is known, and the correspond-
ing value for Tuesday and Wednesday is also known, then the difference between
Monday and Wednesday is determined.

Fig. 9. An alternative uplifting of the cell-based scheduling table system

Uplifting can be also applied to the SFISs of bar charts and connectivity
maps in Fig. 1. Due to syntactic stipulations requiring bars to be aligned at bot-
tom, one may compare the vertical positions of the tops of two bars to compare
the sales in the relevant months. This practice is based on an uplifted SFIS,
where pairs of bars correspond to pairs of months and the differences of the ver-
tical positions of bar tops correspond to the differences of the sales of months.
Bars are also required to be even in their width and horizontal positions, so
one may also uplift a SFIS that lets the shape formed by the entire set of bars
indicate whether the sales trend is rising, falling, flat, or peaked.

The multiplied SFIS of connectivity maps in Fig. 1d can be uplifted to a
new SFIS addressing the general connectivity of two stations in the subway
system, rather than the direct connection via an individual subway line. For
example, we see a path between the nodes “A” and “F” in Fig. 1 but not between
nodes “A” and “D”. These facts indicate, respectively, that stations A and F are
connected in the subway system and that A and D are not connected. If our
basic SFIS had more pairs of stations as target subjects, it could be uplifted to
a system concerning the number of stations on the shortest path between two
stations, with non-negative integer values for connected pairs of stations and
“Not Applicable” for non-connected pairs of stations.

The uplifting of a SFIS is possible because of the general fact that new mean-
ing relations can be logically derived from more basic ones. We refer the reader
to [14] for illustration of how prevalent meaning derivation is among diagram-
matic systems. The uplifting operation offers a logical account of what has been
known as “global reading” [13] or “macro reading” of diagrams [19]. Through
uplifting, the granularity of source and target subjects is typically enlarged (e.g.,
from individual cells to entire rows, or from individual bars to a group of bars).
Thus, reading based on the uplifted system typically requires attention to larger
structures in diagrams than that based on the base SFIS. Hence the contrast
between global and local reading. On this account, learning how to read diagrams
often consists in the acquisition of not only a base SFIS but various uplifts from
it. Expertise of reading a particular class of diagrams (e.g. meteorological maps
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[10] or stock-price charts [4]) then depends on the varieties of uplifts that one
has acquired from the relevant base system.

10 Operations: System Combination and Elimination

Individuals in a representational practice might behave differently with regard
to uplifted systems in different situations.

In some situations individuals in the practice work with a complex com-
bination of the different systems simultaneously. Experts of reading a class of
diagrams (Sect. 9) probably have acquired such complex systems. Also in the case
of familiar scheduling tables, we can imagine a scheduler noticing that only one
person is working on Tuesday (column-based system), that Dave is not working
on Tuesday (cell-based system) and that since Dave is not working at all this
week (row-based system), perhaps he should be scheduled to work on Tuesday.
We describe this more complex system using the operation of system combina-
tion in which a complex representation system is formed from the simultaneous
use of multiple systems sharing the same underlying SFIS.

We can view this as an example of heterogeneous reasoning [2,3,6] as it
combines multiple representation systems with different semantic makeups. The
systems involved however do not look obviously heterogeneous since they consist
of a particular SFIS plus systems uplifted from it, and hence work on identi-
cal representation tokens (the same scheduling table in the present example).
Heterogeneous reasoning in this extended sense is closely related to the idea of
aspect-shifting, which has been discussed as a pervasive and powerful feature of
diagrammatic representation systems [5,8,14].

In other situations, some aspects of a combined system may be sufficient
for the kinds of issues that the individuals have to address in their practice.
A typical case is where the original primitive system becomes irrelevant to the
practice over time and only the uplifted systems come to be used. Take the case of
bar charts. When presented a bar chart like the one in Fig. 1b, we are often more
interested in the general trend of book sales or the relation of the sales of different
months, than the exact number of sales indicated by individual bars. At certain
times, that becomes our sole interest, and it becomes an established practice,
for both chart producers and viewers, to use uplifted SFISs only. In this case we
can conceive of the operation of system elimination as a mechanism by which
a complete sub-system of representations is removed from the representational
practice.

What, then, is it that we have multiple systems combined, as opposed to
having them separately? How does the combined system let people work with
single selected sub-systems at some times while being able to integrate pieces of
information from multiple sub-systems at other times? Answering these question
clearly requires more structures to be added to the model of representation
systems that we have posited for this paper. The task has to be left for future
work.
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11 Conclusion

The operations that we have explored in this paper show that many diagram-
matic systems, despite their apparent functional diversity, are based on rather
simple signaling systems: they are either instances of SFISs themselves or their
syntactic and semantic derivatives. The operations of subject union and value
multiplication show that apparently complex systems are constructions from
atomic SFISs, making up new SFISs themselves. The operations of additive
and subtractive neutralization identify an important class of SFIS-derivatives,
which allow the expression of partial information in diagrams where some of
the values of target subjects are left undetermined. The operation of condition-
alization identifies another class of SFIS-derivatives that track constraints on
targets by spatial or physical constraints on the way source subjects take values.
The operation of uplifting shows how a single SFIS can serve as the seman-
tic basis of multiple derivative systems that capture target subjects in different
granularities.

The final two operations, i.e. system combination and elimination, require
more detailed characterization in future work. Yet, the operation of combina-
tion does suggest an account of the capacity of diagrammatic systems to support
reasoning that looks at targets from different perspectives; the operation of elim-
ination provides an account for the change of syntax of diagrammatic systems as
the result of cultural selection of particular perspectives in combined systems.

In [16], we have proposed the generic approach to the logical study of dia-
grammatic representations as a complement to the conventional individualistic
approach. While the approach in [16] focuses on demarcating the class of SFISs
and emphasizes the similarities of diagrammatic systems falling in this class, the
present paper emphasizes variations of diagrammatic systems by characterizing
various operations applied to SFISs, which generate different types of SFISs
and non-SFISs.

The importance of this extended generic approach consists in the fact that
these operations are systematically correlated with functional modulations of
the systems involved. We have already suggested several instances. One was
concerned with the neutralization operation. By nature, a SFIS suffers from
severe over-specificity problem, which prevents a SFIS-diagram from expressing
information without specifying the value of every individual target subject. The
neutralization operation seems to alleviate this problem significantly. Another
instance was the uplifting operation. It opens up the possibility of expressing
macro-level pieces of information, while the basic SFIS can express only piece-
meal information about individual target subjects. While neutralization allevi-
ates the over-specificity problem of an original SFIS, it seems to significantly
reduce this potential of uplifting, since it weakens the semantic link between the
source and target features in the original system.

Generally, diagrammatic systems lose, preserve, and acquire functions in a
systematic manner when different operations are applied to them. So, by inves-
tigating varieties of operations applicable to SFISs and other systems, and by
specifying the functional modulations they give rise to, it is possible to account
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for the functional diversity of diagrammatic systems in a progressive manner.
We believe that the present paper opens up one avenue in such an endeavor,
although its coverage is admittedly limited given the whole range of system-
operations that our culture has invented.
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Abstract. The ability of diagrams to convey information effectively in
part comes from their ability to make facts explicit that would otherwise
need to be inferred. This type of advantage has often been referred to as a
free ride and was deemed to occur only when a diagram was obtained by
translating a symbolic representation of information. Recent work gen-
eralised free rides to the idea of an observational advantage, where the
existence of such a translation is not required. Roughly speaking, it has
been shown that Euler diagrams without existential import are observa-
tionally complete as compared to symbolic set theory. In this paper, we
explore to what extent Euler diagrams with existential import are obser-
vationally complete with respect to set-theoretic sentences. We show that
existential import significantly limits the cases when observational com-
pleteness arises, due to the potential for overspecificity.

1 Introduction

Diagrams are often seen as a useful tool in aiding our understanding of infor-
mation, particularly in contrast to symbolic or textual notations. One of many
reasons for this can be attributed to the ability of diagrams to convey facts in
accessible manner, including facts that would otherwise need to be inferred from
alternative representations. Such facts can be thought of as observable from the
diagrammatic representation but inferrable from the alternative representation.

Previously, we introduced the theory of observational advantages [16], gen-
eralising the idea of a free ride [14]. In the case of free rides, one starts with a
collection of statements, say Q ⊆ P and P ∩ R = ∅, and translates them into
a semantically equivalent diagrammatic form, such as in Fig. 1. The translation
must ensure that the original statements can all be observed from the diagram.
It can readily be seen, or observed, from Fig. 1 that Q ⊆ P (through curve con-
tainment) and P ∩ R = ∅ (through curve disjointness). In addition, it can also
be observed that Q∩R = ∅, again through curve disjointness. This information,
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Q ∩ R = ∅, is a free ride from the diagram given the original statements. In the
case of observational advantages, the requirement for a translation is removed:
the two representations must only be semantically equivalent, implying that all
free rides are observational advantages but not vice versa.

Fig. 1. No existential import and a free ride. Fig. 2. Overspecificity issues.

The observational power of diagrams has long been recognised, with Hyper-
proof incorporating an observation-style inference rule in a proof system involv-
ing both diagrams and first-order logic [2]. Dretske’s work, commonly described
as “somebody’s seeing that something is the case” [5], informed the development
of the Euler/Venn inference system, where the authors called for the distinctive
treatment of observation [18]. By formalising this insight into the benefit of dia-
grams, we can identify the set of statements that are observable, as opposed to
inferrable, from a given statement.

In [16] we presented a formal framework for studying observational advan-
tages and applied it to Euler diagrams (without existential import [3]1) and
set-theoretic sentences, limited to making subset and equality assertions. We
proved that Euler diagrams were observationally complete: given any finite col-
lection of set-theoretic sentences, S, from the class just described, there exists
an Euler diagram, d, from which any set-theoretic sentence, σ, inferrable from S
can be observed. This is a significant result, because Euler diagrams are widely
studied from the perspective of inference [4,10,13], demonstrating that diagrams
can be rich in observational advantages. An obvious question arises: if Euler dia-
grams are instead taken to have existential import, are they still rich in observa-
tional advantages? Given that many approaches exist to asserting non-emptiness
(see [11]), including existential import, it is important to answer this question.

We extend our previous work to Euler diagrams with existential import and
set-theoretic sentences which can also express the non-emptiness of a set and
non-subset relations between sets. This allows us to show that there are restricted
instances of when a finite set, S, of set-theoretic sentences has an equivalent
Euler diagram, d, with existential import from which any set-theoretic sentence,
σ, inferrable from S can be observed. This is due to the overspecificity of Euler
diagrams with existential import.

1 In Euler diagrams without existential import, zones can represent empty sets. By
contrast, under existential import all zones in the diagram represent non-empty
sets [7]. Peirce denotes non-emptiness of a set with ⊗-sequences [12] (also used by
Shin [15] and further developed by Choudhury and Chakraborty [4]). Other notations
use graphs to denote elements in sets [6,8,9].
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As an example, consider Q ⊆ P , P ∩ R = ∅, P\Q �= ∅, R = S and Q � S.
One possible visualisation of this using Euler diagrams with existential import
is in Fig. 2. Clearly the four statements are represented in the diagram; focusing
on P\Q �= ∅, this corresponds to the zone inside just the curve P (so outside
Q, R and S), which represents a non-empty set due to the existential import
assumption now placed on the diagram’s semantics. However, the diagram repre-
sents too much information such as S �= ∅: forcing zones to represent non-empty
sets leads to this overspecificity problem [14,17]. Indeed, under the existential
import semantics, there is no single Euler diagram that represents just these
four statements and nothing more. In the rest of this paper, all Euler diagrams
are assumed to be interpreted under the existential import semantics.

We provide the necessary and sufficient conditions under which a set of set-
theoretic sentences, formed using ⊆, �, = and �=, can be visualised as an Euler
diagram with existential import. We show that such a diagram is observation-
ally complete. The conditions demonstrate that existential import may not only
restrict the existence of an observationally complete diagram, but may prevent
a semantically equivalent diagram to exist at all. Our results show that Euler
diagrams with existential import suffer from overspecificity, which hugely limits
their advantages over competing notations. This insight sets this paper apart
from earlier work: it is the first to formally reveal that diagrams can have (sub-
stantial) limitations in exchange for the power to express a wider variety of
information (such as �⊆ and �=). Consequently, designers and users of diagrams
should pay careful attention when defining their syntax and semantics if one of
their goals is to harness their observational power.

The paper is structured as follows. Section 2 discusses the idea of a meaning-
carrying relationship and its role in observation. The syntax and semantics of
Euler diagrams and the fragment of set theory that we consider are given in
Sect. 3. We provide results on the model theory of these two systems in Sects. 4
and 5 respectively, which are the necessary basis for understanding the limita-
tions of Euler diagrams with existential import. Section 6 establishes the limited
set of cases when observational completeness arises. We discuss these results and
their implications in Sect. 7 and conclude in Sect. 8.

2 Observation and Meaning-Carriers

Central to the notion of observability is an understanding of how a representation
of information conveys meaning through meaning-carrying relationships, which
is discussed at some length in [16]. Here, due to space constraints, we provide a
brief discussion along with various definitions from [16] that are essential for the
remainder of this paper. As the context of this paper is on set theory and Euler
diagrams, we provide examples from those domains.

A meaning-carrying relationship is a relation on the syntax of a statement
that carries semantic value, evaluating to either true or false. This is similar to
Shin’s notion of a representing fact in her seminal work on Venn diagrams [15].
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Meaning-carriers play an important role in both her work and ours. In set-
theoretic sentences, such as P ⊆ Q, there are single meaning-carrying relation-
ships. In P ⊆ Q, the meaning-carrier is that P is written to the left of ⊆ and
Q to the right. Likewise, any set-theoretic statement formed using �, =, and
�= has just a single meaning-carrier: the set written on the left has the asserted
relationship with that written on the right.

A single Euler diagram can have numerous meaning-carrying relationships
which are given by the spatial relationships between the curves. In Fig. 2, the
curves S and R are on top of one another, asserting that S = R. These meaning-
carriers in the diagram give rise to the observable set-theoretic sentences. From
Fig. 2, we can observe Q ⊆ P , Q ∩ R = ∅, and S = R, amongst many other
things. Due to existential import, we can also observe S �= ∅ and P\Q �= ∅.

One has to understand which syntactic relationships are meaning-carriers in
order to define observability. In particular, one statement, σ1, is observable from
another, σ2, if some meaning-carrying relationship in σ2 corresponds directly
to σ1. For example, the containment of one curve, Q, by another, P , in an
Euler diagram (Fig. 2) is a meaning-carrier, allowing us to observe a subset
relationship: Q ⊆ P . Likewise, when we have existential import, the presence of
a region is a meaning-carrier: it represents a non-empty set. So, a set arising from
a region, such as the zone inside P and Q in Fig. 2, is non-empty: P ∩Q �= ∅. We
can also observe from the diagram P ∩Q = Q, since the region which represents
P ∩ Q happens to be exactly the same region as that which represents Q.

Importantly, observability must respect semantics too: if a statement is
observable then it must be semantically entailed (i.e., the observed statement
must be true whenever the statement from which it is observed is true). We
will define when a set-theoretic sentence can be observed from an Euler dia-
gram later2. For now, we assume this definition is given and present a general
definition of observability from a set of statements:

Definition 1. Let Σ be a finite set of statements and σo be a statement. Then
σo is observable from Σ iff σo is observable from some statement, σ, in Σ. The
set of statements that are observable from Σ is denoted O(Σ) [16].

We can now define what it means to be observationally complete:

Definition 2. Let Σ and Σ� be finite sets of statements. Then Σ is observa-
tionally complete with respect to Σ� if Σ� ⊆ O(Σ) [16].

Intuitively, the definition of observational completeness can be interpreted as
follows: Σ is a representation of information (such as a single diagram or a set
of set-theoretic sentences) and Σ� is a set of statements whose truth we wish to
establish. If we can simply observe those statements to be true from Σ then Σ
is observationally complete with respect to Σ�.

Definition 3. Let Σ and Σ̂ be finite, semantically equivalent sets of statements.
Let σ be a statement. If σ is not observable from Σ and σ is observable from Σ̂
then σ is an observational advantage of Σ̂ given Σ [16].
2 It is possible to define observability for other types of diagrams and statements too.
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Using the requirement that observable statements must be semantically
entailed, we see that any statement, σ, which is an observational advantage
of Σ̂ given Σ is semantically entailed by Σ.

3 Set Theory and Euler Diagrams with Existential
Import

To develop the theory of observation and observational advantages in the case of
set theory and Euler diagrams with existential import, we require a formalisation
of both systems. Since a ready comparison of statements needs to be made across
notations, the set of labels used to denote sets will be common to both set theory
and Euler diagrams, as will their interpretation.

Definition 4. Define L to be a set whose elements are called labels. Two special
symbols, ∅ and U , are not in L [16].

Definition 5. An interpretation is a pair, I = (�, Ψ), where � is a set and
Ψ is a function, Ψ : L ∪ {∅, U} → P�, that maps labels to subsets of � and
ensures that Ψ(∅) = ∅ and Ψ(U) = � [16].

3.1 Euler Diagrams with Existential Import

We now introduce the syntax and semantics of Euler diagrams with existential
import. The syntax remains unchanged from [16] and is included here for ease
of reference. The semantics, however, differ due to the requirement that zones
must represent non-empty sets. To begin, we formally define zones and regions.

Definition 6. A zone is a pair of finite, disjoint sets of labels, (Li, Lo), drawn
from L. A finite set of zones is a region.

In Fig. 2, there are four zones. The zone inside just P is ({P}, {Q,R, S})
and the zone outside all the curves is (∅, {P,Q,R, S}). This diagram uses four
labels, so we write L = {P,Q,R, S}, where L denotes the diagram’s label set.
The diagram’s set of zones will be denoted Z, so in this case

Z = {({P}, {Q,R, S}), ({P,Q}, {R,S}), ({R,S}, {P,Q}), (∅, {P,Q,R, S})}.

Formally, an Euler diagram is a set of labels together with a set of zones:

Definition 7. An Euler diagram, d, is a pair, (L,Z), where L is a finite
subset of L, and for all zones, (Li, Lo), in Z it is the case that Li ∪ Lo = L.
Given d = (L,Z), we sometimes write L(d) and Z(d) for L and Z respectively.
Given a finite set, D, of Euler diagrams we define L(D) to be

⋃

d∈D
L(d).

To define the semantics of Euler diagrams, it is useful to identify the zones
that could be present in the diagram given the labels used, but which are in fact
missing. Intuitively, missing zones represent the empty set.



318 G. Stapleton et al.

Definition 8. Let d = (L,Z) be an Euler diagram. The missing zones of d
are elements of MZ (d) = {(Li, L\Li) : Li ⊆ L}\Z.

We now extend the definition of an interpretation to identify the sets repre-
sented by zones and regions:

Definition 9. Let I = (�, Ψ) be an interpretation. An extension of Ψ to map
zones and regions to sets is defined as follows:

1. for each zone, (Li, Lo), Ψ(Li, Lo) =
⋂

l∈Li

Ψ(l) ∩
⋂

l∈Lo

Ψ(l), and

2. for each region, r, Ψ(r) =
⋃

(Li,Lo)∈r

Ψ(Li, Lo).

Our next task is to define the circumstances under which an interpretation
is a model for (i.e., agrees with the intuitive meaning of) an Euler diagram. As
well as missing zones representing empty sets we also have to account for the
existential import requirement: present zones represent non-empty sets:

Definition 10. Let d = (L,Z) be an Euler diagram and I = (�, Ψ) be an
interpretation. Then I satisfies d and is a model for d whenever Ψ(z) �= ∅ for
each zone z in Z and Ψ(z) = ∅ for each zone z in MZ(d).

3.2 Set-Theoretic Sentences

We now extend the work in [16] on set-theoretic sentences to allow statements
to be made with �= and �, as well as = and ⊆. Firstly, we define set-theoretic
expressions, which are syntactic representations of sets formed from the ‘basic
sets’ represented by labels in L:

Definition 11. The following are set-theoretic expressions or, simply, set-
expressions: (i) U and ∅ are both set-expressions, (ii) every label in L is a set-
expression, and (iii) if s1 and s2 are set-expressions then so are (s1∩s2), (s1∪s2),
(s1\s2), and s1 [16].

Given labels P , Q and R, the following are some examples of set-theoretic
expressions (omitting unnecessary brackets): P , P ∩ Q, Q ∪ R, P\(Q ∪ R) and
(P ∩ Q). Often we will blur the distinction between syntax and semantics, talking
of ‘the set P ∩ Q’ when strictly speaking we mean the set represented by P ∩ Q;
given an interpretation, (�, Ψ), this set is Ψ(P )∩Ψ(Q). Set-theoretic expressions
merely construct sets from the basic ones. We can then make assertions about
the relationship between set-theoretic expressions using ⊆, �, =, and �=:

Definition 12. Given set-expressions s1 and s2 the following are set-theoretic
sentences: s1 ⊆ s2, s1 �⊆ s2, s1 = s2, and s1 �= s2. Sentences of the form s1 ⊆ s2
and s1 = s2 are positive whereas those of the form s1 �⊆ s2 and s1 �= s2 are
negative.
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When we want to give set-expressions or set-theoretic sentences names, we will
use ≡. For example, to refer to P ∩ Q and R ⊆ P ∩ Q by the names s1 and s2,
we write s1 ≡ P ∩ Q and s2 ≡ R ⊆ P ∩ Q. This is to avoid overloading =. It is
also helpful to us to have access to set of the labels, denoted L(s), used in any
given set-theoretic sentence, s: L(s) is defined in the obvious recursive way. We
extend this to a finite set, S, of set-theoretic sentences: L(S) is

⋃

s∈S
L(s), that is,

the set of all labels appearing in members of S.
Now, to reiterate, every set-theoretic sentence only has one meaning-carrier:

the set-expression on the left is in the asserted relationship with the set-
expression on the right. This leads us to the definition of the semantics of set-
theoretic sentences. The labels over which set-expressions are formed are already
interpreted as sets (Definition 5). We extend this to cover the interpretation of
more complex set-expressions in order to identify when an interpretation ‘agrees
with’ the intuitive meaning of (i.e., is a model for) sentences.

Definition 13. Let I = (�, Ψ) be an interpretation. An extension of Ψ to map
set-expressions to sets is defined as follows. For each set-expression, s,

1. if s ∈ L ∪ {U, ∅} then Ψ(s) is already defined,
2. if s ≡ (s1 � s2), where � ∈ {∩,∪, \}, then Ψ(s) = Ψ(s1) � Ψ(s2), and
3. if s ≡ s1 then Ψ(s) = Ψ(s1) = Ψ(U)\Ψ(s1).

Definition 14. Let s be a set-theoretic sentence. Let I = (�, Ψ) be an inter-
pretation. Then I satisfies s and is a model for s under the following circum-
stances:

1. if s ≡ s1 ⊆ s2 then Ψ(s1) ⊆ Ψ(s2),
2. if s ≡ s1 �⊆ s2 then Ψ(s1) �⊆ Ψ(s2),
3. if s ≡ s1 = s2 then Ψ(s1) = Ψ(s2), and
4. if s ≡ s1 �= s2 then Ψ(s1) �= Ψ(s2).

Let S be a finite set of set-theoretic sentences. Then I satisfies S and is a
model for S provided I is a model for each set-theoretic sentence in S.

3.3 Semantic Relationships

The final prerequisite for studying the observational advantages of Euler dia-
grams over set-theoretic sentences relies on us tying up their semantic relation-
ships, beyond just mapping their (common) labels to sets in interpretations. We
generically refer to Euler diagrams and set-theoretic sentences as statements.

Definition 15. Let σ1 and σ2 be statements. If σ1 and σ2 have the same models
then they are semantically equivalent. If finite sets of statements, Σ1 and Σ2,
have the same models then they are semantically equivalent.

Definition 16. Let Σ be a finite set of statements and let σ be a statement.
Then Σ semantically entails σ, denoted Σ � σ, provided every model for Σ
is also a model for σ. If σ is semantically entailed by, but not in Σ, then σ is
properly semantically entailed by Σ.
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Lastly, since our focus is on the observational completeness of Euler diagrams
with respect to set-theoretic sentences and the conditions under which this can
be achieved, it is useful for us to introduce notation for the set of all set-theoretic
sentences that are properly entailed given the labels used:

Definition 17. Let S be a finite set of set-theoretic sentences. Define SL(S)
� to

be the set of set-theoretic sentences that are properly semantically entailed by S
such that each s ∈ SL(S)

� ensures L(s) ⊆ L(S).

We can think of the labels used – that is, those in L(S) – as being the sets
of interest, since these are the sets about which S provides information. Then
we can view SL(S)

� as containing precisely the set-theoretic sentences that make
true statements about the sets of interest, but which are not explicitly given in
S. In other words, these are the statements that we can and must infer from S.

4 Model Theory: Euler Diagrams with Existential Import

A major consideration for us is to identify when, given a set of set-theoretic
sentences, S, there exists a semantically equivalent Euler diagram, d. This is a
prerequisite for identifying whether d is observationally complete with respect
to S. Our strategy for this is to provide insight into what the models of Euler
diagrams ‘look like’. Unsurprisingly, this section establishes that the models for
Euler diagrams with existential import are those for which all of the present
zones represent non-empty sets and the missing zones represent empty sets. As
it will be beneficial to us later, we define a relation on interpretations inspired
by this insight:

Definition 18. Let L ⊆ L be a set of labels and I1 = (�1, Ψ1) and I2 =
(�2, Ψ2) be interpretations. Then I1 and I2 are L-approximate, denoted I1 ≈L

I2, provided for every zone (Li, Lo) where Li ∪ Lo = L, Ψ1(Li, Lo) = ∅ iff
Ψ2(Li, Lo) = ∅.

Intuitively, two interpretations are L-approximate if one never assigns the
empty set to a zone formed over L when the other does not. Clearly, ≈L is an
equivalence relation on the set of interpretations.

Theorem 1. Let d = (L,Z) be an Euler diagram. Then the set of models, M(d),
for d is an equivalence class of interpretations under ≈L. In particular, I =
(�, Ψ) is in M(d) iff for each zone, zp, in Z(d), we have Ψ(zp) �= ∅ and for each
zone, zm, in MZ (d) we have Ψ(zp) = ∅.

Theorem 1 demonstrates the highly constrained nature of models for Euler
diagrams with existential import: they are single equivalence classes of L-
approximate interpretations, forcing present zones to represent non-empty sets.
There is no possibility for representing uncertainty when it comes to the non-
emptiness of a set. By contrast, if the existential import requirement is removed
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(so a present zone can be empty or not) then the model sets are unions of equiva-
lence classes: the models are given by MZ1∪...∪MZ2n where: Z1 to Z2n are the 2n

subsets of Z, and MZi
is the equivalence class of interpretations where for each

zone, zp in Zi, we have Ψ(zp) �= ∅ and for each zone, zm in (Z(d)\Zi) ∪ MZ (d)
we have Ψ(zp) = ∅.

5 Model Theory: Set-Theoretic Sentences

In order to identify when a set of set-theoretic sentences, S, has a semantically
equivalent diagram, d, we start by appealing to Theorem1. This theorem tells
us that S only has such a diagram if its models are also a single equivalence
class under ≈L. Clearly, such an equivalence class determines a set of zones
that represent (non)empty sets. It is therefore useful to introduce the idea of
determining set-emptiness:

Definition 19. Let S be a finite set of set-theoretic sentences. We say S deter-
mines set-emptiness if the set of models, M(S), for S forms an equivalence
class of interpretations under ≈L(S).

For example, consider the following:

S1 = {P �⊆ Q,Q �⊆ P},
S2 = {P �⊆ Q,Q �⊆ P, P ∩ Q = ∅}, and
S3 = {P �⊆ Q,Q �⊆ P, P ∩ Q = ∅, P ∪ Q �= ∅}.

Note L(S1) = L(S2) = L(S3) = {P,Q}. Among these, only S3 determines
set-emptiness. S1 does not, since it can be satisfied by both, an interpretation
assigning the empty set to zone ({P,Q}, {}), and one assigning a non-empty
set to it, for example. These interpretations are not L(S1)-approximate, so S1

does not determine set-emptiness. With the addition of sentence P ∩ Q = ∅,
the set of models for S2 no longer has interpretations that ‘disagree’ on the
zone ({P,Q}, ∅) (every model assigns the empty set to it), yet models can still
disagree on zone (∅, {P,Q}). Adding another sentence, P ∪ Q �= ∅, to give S3

makes all models agree on the zones that can be formed over {P,Q}: they assign
the empty set to (∅, {P,Q}) and non-empty sets to ({P}, {Q}), ({Q}, {P}), and
(∅, {P,Q})); a semantically equivalent Euler diagram is given in Fig. 3. Thus,
determining set-emptiness is rather a high demand to place on the case of set-
theoretic sentences: only very limited sets of set-theoretic sentences determine
set-emptiness. By contrast, determining set-emptiness is not placing such a high
demand on Euler diagrams. Indeed, every single Euler diagram determines set-
emptiness. We obtain the following lemma:

Lemma 1. Let S be a set of set-theoretic sentences. Then S has a semantically
equivalent Euler diagram only if S determines set-emptiness.

This lemma indicates the extent of the overspecificity of Euler diagrams,
relative to set-theoretic sentences. The phenomenon of overspecificity has been
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pointed out in [17] and further investigated in [14] in connection to a wider
variety of diagrams. However, the impact of the phenomenon in a specific dia-
grammatic system has never been formalised. Our approach illustrates how it
can be investigated.

Fig. 3. Translating set-theoretic sentences. Fig. 4. Relevant zones.

Our next goal is to characterise the sets of set-theoretic sentences that meet
the demand of determining set-emptiness. To begin, we notice that positive set-
theoretic sentences provide information about the emptiness of sets; P ⊆ Q tells
us that P\Q = ∅ and R = S tells us that R\S = ∅ and S\R = ∅. Moreover,
negative set-theoretic sentences provide information about the non-emptiness of
sets; P � Q expresses P\Q �= ∅ and R �= S implies R\S �= ∅ or S\R �= ∅. It is
therefore useful to distinguish the positive and negative cases:

Definition 20. Given a set of set-theoretic sentences S, we define S+ and S−

to be the set of all positive and negative members of S, respectively.

So, positive sentences provide information about empty zones whereas nega-
tive sentences provide information about non-empty zones. This leads to the idea
of a relevant zone, which relies on a translation of a set-theoretic sentence to a
region which is determined by the sets of interest. For example, given L = {P,Q}
as the sets of interest, the expression P\Q corresponds to the zone ({P}, {Q})
since, informally, ({P}, {Q}) represents the set of things in P that are not in Q,
that is, P\Q. Likewise, the expression P – again given L = {P,Q} – corresponds
to the region {({P}, {Q}), ({P,Q}, ∅)}: the elements in P can be either in P\Q,
corresponding to ({P}, {Q}), or in P ∩ Q, corresponding to ({P,Q}, ∅).

Definition 21. Let s be a set-expression and let L be a set of labels such that
L(s) ⊆ L. The translation of s given L into a region, denoted T (s, L), is defined
recursively:

1. if s ≡ ∅ then T (s, L) = ∅,
2. if s ≡ U then T (s, L) = {(Li, Lo) : Li ∪ Lo = L ∧ Li ∩ Lo = ∅},
3. if s ∈ L then T (s, L) = {(Li, Lo) ∈ T (U,L) : s ∈ Li},
4. if s ≡ (s1 � s2), where � ∈ {∩,∪, \}, then T (s, L) = (T (s1, L) �T (s2, L)), and
5. if s ≡ s1 then T (s, L) = (T (U,L)\T (s1, L)).

Using the translation of set-expressions to regions, we can now see how to
translate set-theoretic sentences to regions too. For instance, P ⊆ Q is true
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whenever Ψ(P ) ⊆ Ψ(Q). In terms of zones formed over P and Q, the sentence
P ⊆ Q is true whenever

Ψ({({P}, {Q}), ({P,Q}, ∅)}) ⊆ Ψ(({Q}, {P}), ({P,Q}, ∅)). (*)

Figure 4 illustrates P ⊆ Q and we see that the zone ({P}, {Q}) is missing.
Therefore (*) is true, and the zone ({P}, {Q}) is relevant in this case.

Definition 22. Given a set-theoretic sentence s and a set of labels L such that
L(s) ⊆ L, we define the relevant set of zones of s given L, denoted RZ(s, L),
in the following way:

1. If s is of the form s1 = s2 or s1 �= s2, RZ(s, L) = (T (s1, L)\T (s2, L)) ∪
(T (s2, L)\T (s1, L)),

2. If s is of the form s1 ⊆ s2 or s1 �⊆ s2, RZ(s, L) = T (s1, L)\T (s2, L)).

So, continuing with the example above, we have

RZ(P ⊆ Q, {P,Q}) = {({P}, {Q})}

and, whenever P ⊆ Q, we know that ({P}, {Q}) represents the empty set. So,
the relevant set of zones of a set-theoretic sentence, s, is ‘relevant’ to s in that the
zones help to determine when s is satisfied by an interpretation. The following
lemma makes this point more precise.

Lemma 2. Let s be a set-theoretic sentence and I = (�, Ψ) be an interpreta-
tion. Let L be a set of labels such that L(s) ⊆ L. Then

1. if s is positive then I is a model for s iff Ψ(RZ(s, L)) = ∅,
2. if s is negative then I is a model for s iff Ψ(RZ(s, L)) �= ∅ for some zone

z ∈ RZ(s, L).

Our next goal is to identify conditions under which any set of set-theoretic
sentences, S, determines set-emptiness. To produce such conditions, it is impor-
tant to have an understanding of what the models for S ‘look like’. We can gain
such insight by considering the models for S+ and S− separately, informed by
Lemma 2, noting that the models for S must model both S− and S+.

The set of relevant zones, in the case of positive set-theoretic sentences, gives
us information about which zones must represent the empty set. In this sense,
the positive set-theoretic sentences in S partially characterise the models for S.
By Lemma 2, an interpretation, I = (�, Ψ), is in M(S+) (the set of models for
S+) iff, for each s in S+, Ψ(RZ(s, L(S)) = ∅. Therefore, I = (�, Ψ) is in M(S+)
provided ⋃

s∈S+

Ψ(RZ(s, L(S)) = ∅.

For ease of notation, we define the empty zones of S to be elements of

EZ(S) =
⋃

s∈S+

RZ(s, L(S))
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and the Venn zones of S to be elements of

VZ(S) = {(Li, L(S)\Li) : Li ⊆ L(S)}.

The empty zones represent empty sets in all models for S. The remaining zones
in the Venn zone set may or may not represent empty sets. Now, we have some
information about non-emptiness, provided by S−, but it need not completely
determine whether any given zone is necessarily non-empty in a model. This is
where S− must be considered carefully.

From Lemma 2, we know that an interpretation, I = (�, Ψ), is in M(S−) iff,
for each s− in S−, Ψ(z) �= ∅ for some z ∈ RZ(s−, L(S)). For S to determine set-
emptiness, therefore, we seek conditions on S− that are necessary and sufficient
to ensure that each zone in VZ(S)\EZ(S) represents a non-empty set.

In this context, we aim to identify sets of zones that partially characterise
some of the models for S−: given a set of zones, Z, under what conditions is the
set of interpretations that map the zones in Z to non-empty sets a set of models
for S−? As a first step, we introduce the idea of a choice function, which assigns
relevant zones to negative set-theoretic sentences. Importantly, assigned zones
cannot be empty zones.

Definition 23. Let S be a finite set of set-theoretic sentences. A choice func-
tion, c : S− → VZ(S)\EZ(S) for S, maps negative set-theoretic sentences in S
to zones such that for each s− ∈ S−, c(s−) ∈ RZ(s−, L(S)).

Clearly, given an arbitrary S there need not exist a choice function. This
occurs when there is a negative set-theoretic sentence in S such that all of its
relevant zones are in EZ(S). Under such circumstances, it is obvious that S
has no models and is, therefore, inconsistent. However, given an arbitrary choice
function, c, the zones in VZ(S)\EZ(S) to which c maps set-theoretic sentences
(i.e., the set of zones that is the image of c) partially characterises some of the
models for S−: all interpretations where these zones represent non-empty sets
are models for S−. Intuitively, any given model for S− is classified by some
choice function.

So far, we have characterised all of the models for S+ and the models for
S−. In a build-up to our set of necessary and sufficient conditions that identify
when S defines set-emptiness, we establish when S is satisfiable, using choice
functions. We start by building an interpretation using a choice function.

Definition 24. Let S be a finite set of set-theoretic sentences for which there
exists a choice function, c : S− → VZ(S)\EZ(S). We define the choice inter-
pretation for S given c to be the interpretation Ic

S = (�, Ψ) as follows:

1. the universal set, �, is the image of c, that is:

� = {z ∈ VZ(S)\EZ(S) : ∃s− ∈ S− c(s−) = z}, and

2. for each l ∈ L, we define

Ψ(l) =
{

{(Li, Lo) ∈ � : l ∈ Li} if l ∈ L(S)
∅ otherwise.
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Lemma 3 establishes that the choice interpretation is a model for S:

Lemma 3. Let S be a finite set of set-theoretic sentences for which there exists
a choice function, c : S− → VZ(S)\EZ(S). The choice interpretation, Ic

S =
(�, Ψ), for S given c is a model for S.

Lemma 3 builds on our insight into what sets of models ‘look like’ for S. We
have seen that choice functions can be used to define models. Importantly, the
absence of a choice function implies the absence of models: S is unsatisfiable.

Choice functions with different images correspond to models that are not
L(S)-approximate. In particular, if there is a non-surjective choice function then
there are necessarily models for S that are not L(S)-approximate. This semantic
intuition is captured syntactically via choice functions in Theorem2.

Theorem 2. Let S be a finite set of set-theoretic sentences. Then S determines
set-emptiness iff there exists a choice function for S and all choice functions for
S are surjective.

Thus, Theorem 2 is what is needed to meet our major goal for this section: the
provision of necessary and sufficient conditions for determining set-emptiness.
The models for such an S are characterised by the following theorem:

Theorem 3. Let S be a finite set of set-theoretic sentences that determines set-
emptiness. Let I = (�, Ψ) be an interpretation. Then I is a model for S iff

1. the empty zones of S all represent the empty set: Ψ(EZ(S)) = ∅, and
2. the remaining zones all represent non-empty sets: for all z ∈ VZ(S)\EZ(S),

Ψ(z) �= ∅.

6 Observational Completeness

We now set out to identify an Euler diagram that is observationally complete
given a set-emptiness defining S. Focusing first on the requisite Euler diagram, d,
for S, we need d to have the same models as S. That is, d’s present zones (which
represent non-empty sets) should correspond to VZ(S)\EZ(S), since these are
precisely the zones that represent non-empty sets in all models for S. Likewise,
the zones not in d should correspond to those in EZ(S), since these represent
empty sets in all models for S. We have already seen an example of the Euler
diagram for a given set of set-theoretic sentences in Fig. 3, given S3 on page 9.

Definition 25. Let S be a finite set of set-theoretic sentences that determines
set-emptiness. The Euler diagram for S, denoted dS , is

dS = (L(S),VZ(S)\EZ(S)).

Importantly, S and dS are semantically equivalent, which follows from Theo-
rems 1 and 3:
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Theorem 4. Let S be a finite set of set-theoretic sentences that determines set-
emptiness. Then S and dS are semantically equivalent.

We must now consider what it means for a sentence to be observable from
an Euler diagram, generalising [16]. To do this, we need to translate regions
to set-expressions. Intuitively, regions translate to multiple set-expressions. For
instance, in Fig. 4, the region comprising the single zone inside the curve P
corresponds to various set-expressions, including P and P ∩ Q, since this zone
represents both the set P and the set P ∩ Q; indeed, in this case P = P ∩ Q.
For our purposes here it is sufficient to have an intuitive understanding of what
set-expressions can arise from regions, along the lines of the example just given3.
Using this intuitive approach, we can now define observability:

Definition 26. Let d be an Euler diagram and let s ≡ s1 � s2, where � ∈
{⊆,�,=, �=}, be a set-theoretic sentence. Then s ≡ s1 � s2 is observable from d
provided there exist regions r1 and r2 of d such that

1. r1 � r2,
2. s1 is a translation of r1, and
3. s2 is a translation of r2.

Finally, we have one of our key results:

Theorem 5. Let S be a finite set of set-theoretic sentences that determines set-
emptiness. Then {dS} is observationally complete with respect to SL(S)

� .

7 Discussion

Our results on Euler diagrams with existential import demonstrate that there
are severe limitations due to overspecificity, at least from the perspective of
observational advantages. This is potentially problematic since diagrams, by
their very nature, are believed to excel as representations of information due
to their ability to make facts explicit that would otherwise need to be inferred.

To recap, an Euler diagram, d, with existential import is only semantically
equivalent to a finite set, S, of set-theoretic sentences when S determines set-
emptiness. This is a serious limitation, arising because the models for d are
a single equivalence class under the L-approximate relation. The crux of the
problem is that such diagrams require complete certainty over whether zones
represent empty sets. By contrast, most sets of set-theoretic sentences do not
make this demand on their model sets and are, in this case, more expressive than
their diagrammatic counterpart.

This suggests that diagrams which allow uncertainty to be expressed, and
thus avoid overspecificity, are more likely to have observational advantages over
competing notations. Indeed, suppose that the existential import requirement is

3 It is straightforward, yet lengthy, to define a translation from regions to set-
expressions; due to space constraints, we refer the reader to [16].
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removed and, instead, Peirce’s ⊗-sequences are used to express non-emptiness.
We conjecture that any finite set, S, of set-theoretic sentences (as in Defini-
tion 12) will be semantically equivalent to some diagram, d. Moreover, we expect
d to be observationally complete with respect to SL(S)

� . Such diagrams do not
suffer from overspecificity issues and have models that are unions of equivalence
classes under the L-approximate relation, just like sets of set-theoretic sentences.

Fig. 5. Exploiting ⊗-sequences to overcome overspecificity limitations.

To illustrate, consider again S1 = {P � Q,Q � P}. Whilst no Euler diagram
with existential import can express this information, we could use an Euler
diagram with ⊗-sequences instead to define non-emptiness (left of Fig. 5). From
the diagram, we can observe, for instance, that P\Q �= ∅ due to ⊗ inside P
but outside Q. The diagram on the right of Fig. 5 illustrates how we can depict
S2 = {P � Q,Q � P, P ∩Q = ∅}. It will be interesting to extend the work in this
paper to determine whether this alternative system of Euler diagrams is indeed
observationally complete for any given S. Importantly, in this alternative system,
the zones containing no ⊗ symbol can represent either empty or non-empty sets,
thus removing the overspecificity arising from existential import.

8 Conclusion

The ideas of observation, observational advantages and observational complete-
ness enable us to formally compare different representations of information. It
is considered advantageous if a representation of information simply allows us
to observe other statements of interest to be true. Therefore, this suggests that
designing notations that allow many observations to be made, especially com-
pared to competing representations, is sensible. In the case of diagrams, free
rides and observational advantages are seen as a major feature that indicates
how and when they may be more efficacious than symbolic or textual notations.

We demonstrated that overspecificity makes diagrams less observationally
advantageous. As in the case of Euler diagrams with existential import, over-
specificity often means there is no corresponding diagram for a given represen-
tation of information. This is clearly undesirable and leads us to posit that
diagrams should be carefully designed in order to ensure that they do not have
overspecifity issues and also support the observability of information. Indeed, our
results indicate an advantage of set-theoretic language: it can express information
freely, whether the information is strong enough to determine set-emptiness or
not. Euler diagrams with existential import are disadvantageous in that respect.
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There is still much work to be done, however, to ascertain the extent to
which observational advantages are also cognitive advantages. We think it is
important to understand the net cognitive value of observability. There is cer-
tainly cognitive cost associated with observing statements, but to what extent is
this cost ‘lower’ than the alternative task of inferring information instead? The
net cognitive value of a statement observable from a diagram depends on the cost
of recognising a meaning-carrying relationship and also on the set of available
operations to translate this meaning-carrier into an alternative representation.
This research needs to be, in the future, connected to a psychological and com-
putational model of the perceptual operations available to people alongside the
formal investigations that we have begun. Preliminary work in [1] is exploring
this important cognitive aspect, and it will be interesting to see how it develops.
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Abstract. I distinguish two kinds of observational advantages: (i) a given
representation is observationally advantageous over another if a logical conse-
quence of the information represented in it is observable in the former but only
inferable from the latter; (ii) a given representation is observationally advanta-
geous over another if a logical equivalence is observable in the former but only
inferable from the latter. The paper also discusses the following question:
observing (vs inferring) a piece of information in a given representation is an
advantage if the purpose of the system of representation is to directly observe
what could otherwise be inferred. But if the purpose were to infer what could be
otherwise be observed, then one should conversely speak of observational
disadvantages.

Keywords: Observational advantage � Logical equivalence
Logical consequence � Diagrams � Linearity � Type � Token

This paper is a philosophical discussion of the notion of ‘observational advantage’ in
logical representations, as it has been recently characterized [1]. Roughly, the contrast
is between inferring a statement from a given representation of information, and
observing that statement without inferring it. It is said that a given representation of
information is observationally advantageous over another if the former allows us to
observe something that can only be inferred from the latter.

For example, given the Euler diagram in Fig. 1 and the set-theoretic sentence in
Fig. 2, we see that the statements ‘P \ T = Ø’ and ‘R \ T = Ø’ are both observable
from the representation in Fig. 1 but not from that in Fig. 2. They are, of course,
inferable from the representation in Fig. 2 by application of inference rules. Thus the
representation in Fig. 1 has an observational advantage over the representation in
Fig. 2. This is an informal description of the notion of observational advantage; but it
will be sufficient for the purpose of the present paper.

Both ‘P \ T = Ø’ and ‘R \ T = Ø’ are logically entailed by the representation in
Fig. 2; they are both ‘logical consequences’ of the information represented in Fig. 2.
There are, however, other statements which are both observable in Fig. 1 and inferable
from Fig. 2. For example, ‘Q \ P = Ø’ is logically equivalent to ‘P \ Q = Ø’. But
while both ‘P \ Q = Ø’ and ‘Q \ P = Ø’ are observable in Fig. 1, the former
statement is observable in Fig. 2, but the latter is not. The latter is, of course, inferable
from the information represented in Fig. 2 by application of equivalence rules (in this
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case, the rule associated with the commutative property of ‘\ ’). Unlike ‘P \ T = Ø’
and ‘R \ T = Ø’, which are ‘logical consequences’ of the information represented in
Fig. 2, ‘Q \ P = Ø’ is not merely a logical consequence of the information repre-
sented in it, but is more precisely a statement logically equivalent to ‘P \ Q = Ø’.
Thus, in Fig. 2 a statement logically equivalent to a statement observable in it is
inferable, while in Fig. 1 the same statement is observable.

Since a statement logically equivalent to another is a logical consequence of it,
while conversely not all logical consequences of a statement are logically equivalent to
it, we may adopt the following terminology: a logical consequence of a statement
which is not logically equivalent to it may be called a ‘consequent’, while a statement
which is logically equivalent to another may be called an ‘equivalent’. Since no
consequent is an equivalent, we may re-phrase the characterization of observational
advantages in the following terms: a given representation of information is observa-
tionally advantageous over another if the former allows us to observe a consequent or
an equivalent that can only be inferred from the latter. We would then have two kinds
of observational advantages: ‘consequential’ and ‘equivalential’ observational
advantages.

In what sense, however, is the statement ‘Q \ P = Ø’ observable in Fig. 1 but
only inferable from Fig. 2? One might object that in order to observe ‘Q \ P = Ø’ in
Fig. 1 I have to ‘imagine’ a movement of the circles labeled Q and P, so as to have the
circle Q at the left of circle P. But by the same token, the objection would go, I could
directly observe ‘Q \ P = Ø’ in Fig. 2 by ‘imagining’ the swapping of the letters Q
and P around \ . In this sense, ‘Q \ P = Ø’ would not be more observable in Fig. 1
than in Fig. 2.

This objection is based upon an insufficient consideration of the ‘sameness’ of
formulas in a formal language. In order to appreciate in what sense ‘Q \ P = Ø’ is
observable in Fig. 1 but only inferable from Fig. 2, we have to understand in what
sense ‘Q \ P = Ø’ and ‘P \ Q = Ø’ are distinct formulas which are logically

Fig. 1. An Euler diagram

Fig. 2. A set-theoretic sentence
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equivalent (they are ‘equivalents’ in the above terminology). I distinguish between
token and type formulas as follows.1 Consider the following sentences:2

(1a) P ^ Q
(1b) P ^ Q

(2a) P ^ Q
(2b) Q ^ P

The difference between (1a) and (1b) is a typographical difference, i.e., a difference
in font and size; such typographical difference is irrelevant at the syntactic level,
because things such as font and size are not syntactically relevant features of the
notation. Therefore, we say that (1a) and (1b) are sentence tokens of the same sentence
type. In contrast, the difference between (2a) and (2b) is a difference in ordering, and
since order is syntactically relevant, (2a) and (2b) are not two sentence tokens of the
same sentence type, but two sentences types which are logically equivalents.

Whether couples of formulas should count as distinct tokens of the same type or as
distinct types depends on what the syntactically relevant features of a notation are. This
is so because the ‘sameness’ of formula types only depend on syntactically relevant
features, and is unaffected by variation in syntactically irrelevant features. For example,
in Euler circles the size, shape, position and orientation of the curves are not syntacti-
cally relevant features of the notation, but only the partial or total overlapping and
non-overlapping of the curves are syntactically relevant. Therefore, the variation in the
position of the curves by which we may obtain the Euler formula in Fig. 4 from that in
Fig. 3 does not affect the ‘sameness’ of the formula type. The formulas in Figs. 3 and 4
are not distinct formula types, but only distinct formula tokens of the same type. For this
reason, the formula in Fig. 3, which expresses the proposition that ‘No X is Y’ (or in
set-theoretical terms, ‘X \ Y = Ø’), also expresses the proposition that ‘No Y is X’ (or
in set-theoretical terms, ‘Y \ X = Ø’), and the same is true of the formula in Fig. 4.

Fig. 3. Token of the Euler diagram type for (3a–b)

Fig. 4. Token of the Euler diagram type for (3a–b)

1 The type/token distinction was introduced by Peirce in his Syllabus of Logic for the Lowell Lectures
delivered in 1903 ([2] §§2.255–272), and it has since then become canonic; cf. [3].

2 Example adapted from [4].
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On the contrary, in any linear language the ordering of the elements of a string is
generally a syntactically relevant fact, and thus any permutation of elements in a string
always produces distinct string types, and never distinct string tokens of the same string
type. Thus, the two pairs of formula (3a–b) and (4a–b) contain two distinct formula
types each, which are logically equivalent to one another.

(3a) No X is Y
(3b) No Y is X

(4a) X \ Y = Ø
(4b) Y \ X = Ø

Existential Graphs offer another example of this feature. The Alpha system of EGs
is a language for the sentential calculus based on two primitives: conjunction and
negation. Assertion is represented as the placement or position of the sentential variable
on the sheet; conjunction is represented as the unordered juxtaposition of sentential
variables on the sheet; negation is represented by encircling sentential variables in a
closed curve (or ‘oval’). Position on the sheet and size, form and orientation of the
ovals are not syntactically relevant facts, and thus variation of these features does not
affect the ‘sameness’ of a graph type. Thus, each of (a)–(d) in Fig. 5 is a graph token of
one and the same graph type, while (5a–f) are distinct formula types which happen to
be logically equivalent:

(5a) P & Q & R
(5b) P & R & Q
(5c) Q & P & R
(5d) Q & R & P
(5e) R & Q & P
(5f) R & P & Q

It is important not to conflate logical equivalence with syntactical equivalence. (4a)
and (4b) are syntactically distinct formulas which happen to be logically equivalent. On
the other hand, Figs. 3 and 4 are not only logically equivalent, but also syntactically
equivalent (they are distinct tokens of the same type).

Fig. 5. Tokens of the Alpha graph type for (5a–f)
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One might object that even in a language like that of (3a–b), (4a–b), and (5a–f),
there is still the possibility of stipulating that while permutation of the elements of a
string generally yields distinct string types, yet in some cases, e.g. in the case of
symmetric relations or operations (i.e., in those cases in which permutation would not
alter the logical value) permutation only yields distinct string tokens of the same type.
Let us represent a symmetric relation or operator by the symbol ♠ and an
anti-symmetric relation or operation by the symbol ♥, and let use the Greek letters as
schematic letters. Thus, the objection would go, one could stipulate that in such a
language (6a) and (6b) are distinct formula tokens of the same formula type, while (7a)
and (7b) are distinct formula types.

(6a) n ♠ f
(6b) f ♠ n

(7a) n ♥ f
(7b) f ♥ n

We would thus have a notation with a dishomogeneous syntax: in such a notation,
one and the same syntactical operation (permutation of elements in a string) would not
yield invariably the same syntactical result: with ♠ permutation would yield distinct
tokens of the same type, while with ♥ it would yield distinct types. The difference
would, moreover, be dependent on semantics: for the difference between the outcome
of permutation of the elements flanking ♠ and the outcome of permutation of the
elements flanking ♥ would be due to the difference in meaning between ♠ and ♥ (the
former being a symmetric relation or operation, the latter being antisymmetric). In other
words, such a notation would be the outcome of a systematic conflation between syntax
and semantics, or more precisely between syntactical equivalence and semantical
equivalence. In order to avoid such a conflation, it is only necessary to recognize that in
any linear notation whatever, permutation always yields distinct types, and that in order
to express the differences in meaning between symmetric and antisymmetric relations
rules of logical equivalence are introduced which would distinguish the outcome of the
permutation of the elements flanking ♠ (distinct types which are logically equivalents)
from the outcome of the permutation of the elements flanking ♥ (distinct types which
are not logically equivalents).

Since the possibility of syntactically dishomogeneous linear notations is thus
excluded, we can characterize linear notations in general as those in which permutation
always yields formula types and never formula tokens. In a linear notation, then, the
information conveyed by a formula resulting by permuting the elements of another
formula is not observable in the latter, but only inferable from it by means of appropriate
logical rules (like the rule of commutation). Conversely, in a non-linear notation the
information conveyed by a formula resulting by permuting the elements of another
formula can be observable in the latter, for the permutation in this case may yield distinct
tokens of the same type. Since, then, in a non-linear notation one and the same formula
token corresponds to what in a linear notation would count as distinct formula types, and
since as we have seen a given representation of information is said to be observationally
advantageous over another if the former allows us to observe a consequent (‘conse-
quential’ observational advantage) or an equivalent (‘equivalential’ observational
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advantage) that can only be inferred from the latter, it follows that in general non-linear
notations are ‘equivalentially’ observationally advantageous over linear ones, for in the
former it is possible to observe what in the latter can only be inferred (by application,
e.g., of commutation rules).

Stapleton et al. claim that ‘representations of information that allow statements to
be observed as true, without the need for inference, can be considered advantageous’
[1, p. 145]. We should speak of ‘advantages’ only in relation to a purpose. If the
purpose of devising or using a notation is to facilitate the drawing of inferences, then a
notation that allows statements to be observed without the need for inference is cer-
tainly advantageous (for that purpose). But if on the contrary the purpose of devising or
using a notation is to analyze inference itself (as contrasted to facilitating it), then it is
by no means obvious that the possibility of observing a statement to be true without the
need for inference should count as an advantage.

According to Peirce, the purpose of a notation is to analyze reasoning, not to
facilitate reasoning [2, §§2.532, 3.485]. To analyze a piece of reasoning means for
Peirce to dissect it into as many distinct inferential steps as possible [2, §§5.147,
3.641]. In the terms of the theory of observational advantages, this means that at any
given stage of a demonstrative chain, the next step must not be observable from the
preceding one, and rather has to be inferred from it according to the rules of the system.
Euler circles allow the conclusion of a syllogism to be observable as soon as the
premises are observable. By contrast, Existential Graphs do not allow this. If one’s
purpose is to facilitate reasoning, then the possibility that a notation allows of
observing a statement to be true without the need for inference is an advantage of that
notation; but if one’s purpose it to analyze reasoning in the Peircean sense (i.e., to
dissect it into as many distinct inferential steps as possible), then the possibility of
observing a statement to be true without the need for inference should count as a
disadvantage of that notation. Euler circles are more advantageous than other equiv-
alently expressive notation only if considered as an instrument for the facilitation of
inference. If they are considered as an instrument for the analysis of inference, where
‘analysis’ has to be taken in the Peircean sense, then they are more disadvantageous
than, for example, Existential Graphs.
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Abstract. This paper presents a comprehensive representation for video
analysis combining qualitative reasoning with diagrammatic reasoning.
The hybrid approach is motivated by the power of diagrams that allows
explicit relational representation of entities involved. Perception of qual-
itative information over the underlying representation, employment of
inter-diagrammatic reasoning approach and their combined relevance for
temporal abstractions holds key to the analysis. Activity recognition over
selected videos from J-HMDB dataset are performed and encouraging
results are achieved.

Keywords: Qualitative spatial and temporal reasoning
Diagrammatic representation and reasoning
Inter-diagrammatic reasoning

1 Introduction

Humans and animals perceive spatio-temporal information about spatial entities
directly through vision or basic senses. Such information many a times is incom-
plete and imprecise. An intelligent brain manipulate these with cognitive facul-
ties and experiences. Therefore, an intelligent vision system needs comprehensive
representation with cognitive knowledge processing abilities. Qualitative spatial
and temporal reasoning (QSTR) [7] is an established area boosting qualitative
information abstractions over spatial substrate for everyday reasoning. QSTR
can be further enriched with explicit representation power of diagrams or men-
tal images to deduce conclusions within unique observed relations. Diagrammatic
representation and reasoning (DR) [9] supports diagram based representation of
a situation with manipulation ability to perceive new information.

This paper presents a hybrid approach- for powerful and expressive relational
representation of video data through diagrams and reasoning via manipulation
of qualitative spatio-temporal relations among tracked video objects. QSTR onto
c© Springer International Publishing AG, part of Springer Nature 2018
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DR techniques are used as cognitive elements for space-time knowledge acqui-
sition. For proof of concept, the proposed technique is evaluated on videos of
J-HMDB dataset [12] for activity recognition and inspiring results are obtained.

2 Related Work and Motivation

Qualitative Spatial and Temporal Reasoning: QSTR for spatial knowledge pro-
cessing is a thriving area of research. Many formalism have been developed and
established: Region Connection Calculus (RCC) by Randell, Cardinal Direction
Calculus (CDC) by Frank, Rectangle Algebra (RA) by Balbiani and Allen’s
interval logic (IA) by Allen [1] to deal with variety of spatio-temporal circum-
stances. A comprehensive representation, CORE9 have been forwarded by Cohn
et al. for video analysis. Ah Lian Kor proposed an improvised hybrid cardinal
direction model using RCC and CDC.

Diagrammatic Reasoning: Cognitive knowledge processing through analogical
representation in terms of mental maps, diagrammatic representations and men-
tal images has emerged as a promising area. REDRAW [18] a qualitative struc-
ture analyzer is based on diagram manipulation with logical reasoning. Anderson
[2] defined inter-diagrammatic reasoning (IDR) for spatio-temporal abstractions
over defined ‘diagram’ based representation. Narayanan, proposed abstraction
of motion based relations over spatial structure through predefined knowledge.

Motivation: Power of heterogeneous framework, combining diagrams and for-
mal logic has influenced multidisciplinary research findings; mathematical theo-
rem prover [19], spatial problem solver [3]. A combined diagrammatic and sen-
tential representation is suggested by Gottfried in [10,11] to enrich QSTR for
results within confined relational subset. Freska [8] introduced need of com-
parison between formal and DR processes for same underlying problems. [13]
established conceptual knowledge as a common language to generalize formal
and diagrammatic approaches. Motivated by these facts, the authors aim to
unify conceptual and formal problem solving techniques for video data analy-
sis. In recent work QSTR over DR techniques are employed for motion event
detection and activity recognition [14,15]. This paper focus to elaborate QSTR
onto DR techniques for a comprehensive representation and reasoning for video
data analysis supported by activity recognition. Interval relations [1] over DR
are exploited to provide a common visual background for spatial and temporal
knowledge acquisition.

3 ‘Diagrams’: The Proposed Methodology

The paper forwards a hybrid representation and reasoning paradigm of video
data through defined diagrams. Diagrams are image matrix representation of
video frames in a 2-D frame of reference (x-y axes coinciding camera axes) with
tracked objects, their properties and relations. QSTR and DR techniques are
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implemented on diagrams through methodologies involving diagram creation,
perceptual and diagram modification for spatio-temporal knowledge acquisition.
Figure 1 shows a conceptual architecture of the proposed approach. The ‘dia-
gram’ components and defined methodologies are illustrated in this section.

Fig. 1. Conceptual architecture of proposed methodology.

Diagrammatic Objects: Diagrammatic objects are considered to be of three
types. Tracked video objects of interest are represented as ‘closed polygons’, dis-
tance among tracked object pairs as ‘lines’ and their direction of displacement
during motion are represented as ‘rays’. Object’s properties such as, minimum
and maximum extends of polygonal object along axes and length of line objects
are maintained during their origination.

Relations: Along with object properties, diagrams maintain certain qualitative
spatial and temporal relational information among polygon-polygon and ray-ray
object pairs. These include: 13 basic Allen’s interval relations [1] along axes, 18
basic relative position relations, 3 basic relative distance relations {−,+, 0}, 8
basic displacement direction relations and relative displacement direction rela-
tions derived from QD8 [4] among polygon pairs. Figure 2 shows the AI relations,
relative positions and QD8 relations.

Diagram Construction Methodology: Methodologies are defined for automatic
construction of diagrams corresponding to video frames with tracked objects of
interest. The procedure assigns each cell of such a diagram with specific gray
intensity which are exploited by IDR-OR operator for creating IDR-combined
diagrams (IDR-CD) for motion related information like direction of displace-
ment. Closed polygons representing tracked objects are assigned unique pixel
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Fig. 2. (a) Allen’s interval relations, (b) 18 basic relative position relations, and (c) 8
basic QD8 relations.

intensity and the remaining pixels contain WHITE values. A sequence of dia-
grams called key diagrams (K) are selected with difference in relative position
and relative distance among interested object pairs. Each pair of Ks are sequen-
tially combined using IDR-OR operator for IDR-CDs. IDR-CDs maintain objects
and their relations as union of diagrammatic objects and relations in both par-
ticipating key diagrams. Figure 3(a) and (b) shows a pair of diagrams automated
from video frame at time point ‘t’ and ‘t + 1’ respectively, with IA relations and
distance information as ‘line’ objects among polygons A, B (tracked objects).
Figure 3(c) represents IDR-combined diagram of (a) and (b) with IA relations
and ‘rays’ depicting direction of objects A and B traversing from time frame ‘t’
to ‘t + 1’.

Fig. 3. Example video frame diagrams (a) at time point ‘t’ (b) at time point ‘t + 1’
with objects A, B showing distance information (‘lines’), and (c) IDR-CD of (a) and
(b) with displacement ‘rays’.

Automatic Perceptual Methodology: Visual information from ‘diagram’ are per-
ceived through certain perceptual mechanisms. During diagram creation and
modification perceptual information are manipulated for automation of object
relations. Qualitative relations are perceived through analysis of quantitative
object properties. IA relations among pairs of ‘polygon’ along x-y axes are auto-
mated based on their extent along the axes. These IA relations are the core
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of visualizing relative positions and initiating diagram modification for distance
and displacement relations. Figure 4 represents the defined look up table for
automation of relative positions based on perceived IA relations. The length
of ‘line’ objects are analyzed for relative distance relations. Displacement direc-
tions are perceived by analyzing angle between ‘ray’ objects and imaginary ‘rays’
originating at considered ray origin, parallel to x-axis; and the clockwise angle
among ‘ray’ object pairs are exploited for relative displacement directions among
associated ‘polygons’.

Fig. 4. Relative positions of an object with respect to a reference object based on their
interval relations along xy-axes.

Diagram Modification Methodology: During diagram creation certain informa-
tion is not visually available. Diagram modification techniques were introduced
with abilities to endow new information through automatic insertion of new dia-
grammatic objects like ‘lines’ for distance information and ‘rays’ for displacement
information based on IA relations among associated polygon objects. Diagram
modification techniques for ‘line’ object endpoints determination are based on IA
relations among ‘polygon’ pairs along the axes. In the same way, ‘ray’ objects end
points relay on IA relations along x-y axes, among considered polygons at two
different time frames combined together in IDR-CDs. Figures 5 and 6 represent
tables based on IA relations among polygons along axes for diagram modification
to endow distance ‘lines’ and displacement direction ‘rays’.
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Fig. 5. Line object’s end points determination during diagram modification for distance
information between two polygons based on their interval relations along xy-axes.

Fig. 6. Ray object’s end points determination during combined diagram modification
for displacement information of polygons from one time frame to the next based on
their corresponding interval relations along xy-axes in time ‘t’ and ‘t + 1’.
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4 Application: An Example with Evaluation Details

Video analysis has tremendous applications over automatic video surveillance
system, starting from event detection, extending to human activity detection,
animal behavioral and movement ecology, and acquiring disaster management
scenarios. This paper advocates the proposed video representation methodology
through its application over video analysis for activity recognition.

The proposed technique is implemented over videos of J-HMDB dataset1

involving selected verbs {catch, throw, shoot ball, push and pull up}. Accurate
tracking is essential for a reliable video analysis. Due to various factors like,
occlusion, presence of noise, various lighting conditions 100% accuracy in track-
ing results is itself a challenging task. For evaluation of the proposed QSTR
and DR mechanism, tracking is achieved through manual labelling of objects
of interest; focus is only to validate the proposed methodology, attempts at
improvement of tracking being outside the scope of this work. Labelers guiding
or refining labels for accuracy might end up with inaccurate tracking information
which conflicts the fact about inter-dependability among accuracy in tracking
and reliable video analysis. A ‘diagram’ sequence is automated based on tracked
objects information in extracted video frames. QSTR techniques over DR are
employed for automatic abstraction of spatio-temporal relations among object
pairs in forward moving time in terms of displacement direction (Di) of individ-
ual objects, their relative positions (RP) at two consecutive time frames, relative
displacement directions (RDi) and their relative distances (RDt). Based on these
relations, sequence of certain short term activities (STA) are formulated among
objects while traversing among consecutive key diagrams. This STA sequence
is considered as a feature vector and a standard supervised machine (SVM) is
used for associated activity classification. For example, Fig. 7 shows (a) video
frames and associated key diagrams with IA relations and distance information
(‘lines’ in blue) and (b) IDR-combined diagrams with direction of displacement
information (red ‘rays’ depict displacement of object 1 and blue ‘rays’ depict
displacement of object 2) in a shoot ball video from J-HMDB dataset. In the
example, the abstracted sequence of relations among object 1 and 2 from the
IDR-CDs are as shown in Table 1. Based on these relations a sequence of STAs
obtained is: {AB:togIN-Tog, ABapart:TogLeftt} which constituting the minimal
sequence for shoot ball activity among object 1 and 2. ‘AB:TogIN-Tog’ infers that
objects A, B both are in motion and move from completely inside (TogIN) posi-
tion to partial overlap (TogLeft) position; ‘ABapart:TogLeft’ infers that objects
A, B both are in motion and move from completely partial overlap position
(TogLeft) to disjoint (Left) position.

The performance of the proposed video analysis methodology for activity
recognition is shown in Table 2 in terms of per class accuracy, precision, recall
and F1-score. A rough comparison of recognition accuracy of the five considered
activities with that of state-of-the art performances is presented. Since, per-
formance accuracy of the activities in published state-of-the-art techniques are

1 http://jhmdb.is.tue.mpg.de.

http://jhmdb.is.tue.mpg.de
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Fig. 7. Sequence of video frames corresponding to selected key diagram from a shoot
ball video in JHMDB dataset, with (a) key diagrams with distance information and
(b) IDR-CDs with displacement information. (Color figure online)

Table 1. Perceived qualitative relations of object A w.r.t. object B in IDR-CDs of
example in Fig. 7(b).

Relations as a set of {Di of A, Di of B, RP of B w.r.t A in time frame
‘t’, RP of B w.r.t A in time frame ‘t + 1’, RDi of B w.r.t A, RDt of B
w.r.t A}

IDR-CD1 {RL, RL+, TogIN, TogLeft, Same+, 0}
IDR-CD2 {RL, RL, TogLeft, Left, Same, +ve}

Table 2. Activity recognition performance on videos of J-HMDB dataset reported in
terms of accuracy, precision, recall and F-score. A comparison with state-of-the-art
performances is presented as per class accuracy.

STA sequence + SVM Stacked

feature

vectors

[16]

Pose-

based

CNN [6]

Dynamic

pro-

grammed

SVM [17]

GRP [5] GRP

w/o con-

straints

[5]

Activities Accuracy Precision Recall F-score Accuracy(APPROX.)

Catch 87.2 70.0 70.0 70.0 38.0 51.0 22.0 50.0 56.0

Throw 95.3 100 80.0 88.9 35.0 38.0 18.0 72.0 72.0

Shoot ball 91.1 87.5 70.0 77.8 77.0 80.0 35.0 45.0 18.0

Push 97.6 90.9 100 95.2 81.0 95.0 60.0 75.0 75.0

Pull up 89.1 69.2 90.0 78.2 100 95.0 86.0 100 100

computed over all the 21 verbs of J-HMDB dataset a coarse comparison of the
recognition performance is difficult. However, performance seems to be inspir-
ing for the underlying video analysis methodologies. Better performance may
be achieved through consideration of more relational information among STAs
during recognition or via some other recognition techniques.
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5 Conclusion

This paper focus on a comprehensive representation of video data through uti-
lization of strength of ‘diagrams’ in human problem visualization and solution
strategies. Human basically convey effective solutions based on mental maps or
spatial organization of problems. The proposed methodology is a step towards
formalizing the use of diagrams in cognitive vision for representation and rea-
soning purpose. The authors strongly advocate general concept and perception
about a spatio-temporal structure to be computationally effective over formal
computation with detailed and complex organizational information. A novel app-
roach of integrating DR and QSTR techniques is being presented for video data
representation in a cognitive vision system. This hybrid strategy narrows the
option of ambiguity in relational composition. The work presented shows how
diagrams and ‘commonsense knowledge’ can be put together for a human like
problem definition through procedures like: information perception, endowing
new information through diagram modification and inter diagrammatic reason-
ing. An application over the spatio-temporal abstractions through the proposed
methodology for activity recognition is being presented. Few videos from J-
HMDB dataset are being evaluated. STAs are defined over the abstracted spatio-
temporal information, which serve as feature vector for a supervised machine
for activity recognition. Encouraging recognition results are obtained. Further
improvement could be achieved by strengthening the feature vector. As an alter-
native, defining a formal language automata that preserves temporal co-relations
among STAs together with sequence information can be considered to uplift
the framework towards precise activity recognition. This is a part of ongoing
research.
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Abstract. We present a class of diagrams in which to reason about
causation. These diagrams are based on a formal semantics called ‘system
semantics’, in which states of systems are related according to temporal
succession. Arguing from straightforward examples, we provide the truth
conditions for causal claims that one may make about these diagrams.

1 Introduction

Diagrams offer a natural and highly expressive means of depicting causal rela-
tions. Flowcharts are the ubiquitous example, but even more concerted work
to analyse causal relations specifically employs an abundance of visual aids.
Lewis (1974, 564), for instance, diagrammatically depicts similarity orderings
over worlds, while Spirtes et al. (2000) and Pearl (2009) represent Bayes nets as
directed acyclic graphs.

In this paper we follow the diagrammatic tradition by presenting a class of dia-
grams in which to reason about causation. The bulk of the work consists in pre-
senting a variety of cases in which diagrams represent causal relations. Regarding
the underlying formal apparatus, we construct these diagrams from a semantics
called ‘system semantics’. In Sect. 2 we outline the approach of system semantics
and see how it may be used to characterise causal relations. Section 3 provides an
alternative, diagrammatic characterisation of these causal relations, and Sect. 4
refines the account by depicting two notions of ‘sometimes’ and ‘partial’ causa-
tion. In Sect. 5 we consider some further expressive power of diagrams in system
semantics, showing how they may represent an agent’s interaction with a system,
and in Sect. 6 we conclude by outlining avenues for future work.

2 System Semantics for Causal Claims

To begin by analogy, system semantics aims to do for causal claims what Kripke
semantics has achieved in the philosophical discussion of possible and neces-
sary truth. Indeed, we modify Kripke semantics for modal logic to create dia-
grams called ‘systems’ that specify precisely how parts of possible worlds change
through time. A system S is a pair 〈St,R〉 composed of a set St of states and a
relation R of temporal succession between them. Each state represents a moment
c© Springer International Publishing AG, part of Springer Nature 2018
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type rather than token, and is formally a valuation of atomic sentences in propo-
sitional logic. Given states s and t, the intuitive reading of “s is related to t” is
that, if s is the current state, t may be the next state after one step in time.

To illustrate, suppose we have two atomic sentences representing a switch
being up (S), and a light being illuminated (L). Figure 1 represents the inter-
action between the switch and light. Circles depict states, accompanied by the
sentences that are true at them, and arrows depict the succession relation. The
diagram of Fig. 1 shows, for instance, that when the switch is up and light is off
(S,¬L) the system changes into the state where the switch is up and the light
is on (S,L). And the top-left loop demonstrates that if the switch is down and
light is off (¬S,¬L), then they remain so in the next state.

¬S,¬L ¬S,L

S,¬L S,L

Fig. 1. System composed of a switch and light.

Looking at Fig. 1, it seems the following causal claim should come out true.

The switch being up is a necessary and sufficient cause of the light being on.

The truth conditions that we propose here for such a causal claim draw on
the notion of a state’s past and future states. These are encoded by a system’s
relation of temporal succession R as the states leading to and from each state
along R. We say that the switch being up is a necessary cause of the light being
on because, in every state where the light is on, we see the switch was up in the
past. And the switch being up is a sufficient cause of the light being on because
every state where the switch is up leads only to states where the light is on.

In general, of course, we also have to require that the above claims are not
trivially satisfied, as would happen, say, if the system featured only states where
the switch is up and the light is on. Triviality would result as well if the light
never changed, in the sense that states where the light is off lead only to states
where the light is off, and states where the light is on lead only to states where
the light is on. In a slogan, then, we must additionally require that the switch
being up makes some difference to the light being on.

We can deal with these worries of triviality by proposing a definition of
minimal causation. Let us say that a state s leads to a state t—and conversely, t
comes from s—just in case there is some path along R from s to t. Then define:

Definition 1 (Minimal cause). A is a minimal cause of B just in case

(1a) some B-state leads to some ¬B-state, or vice versa, some ¬B-state leads
to some B-state,
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(1b) some A-state leads to some B state, and
(1c) some ¬A-state leads to some ¬B-state.

With Definition 1 providing the minimal conditions that a causal relation must
satisfy, from the point of view of system semantics, we strengthen the conditions
to define the notions of necessary and sufficient causation. To do so, let us say
that state s must lead to state t—conversely, t must come from s—just in case
t eventually occurs from s, no matter what path the system takes from s.

We then strengthen the notion of minimal causation like so.

Definition 2 (Necessary cause). A is a necessary cause of B just in case

(2a) A is a minimal cause of B, and
(2b) every B-state must come from some A-state.

Definition 3 (Sufficient cause). A is a sufficient cause of B just in case

(3a) A is a minimal cause of B, and
(3b) every A-state must lead to some B-state.

Condition (2b) expresses that whenever B currently holds, A must have held
at some point in the past, no matter what path the system took to the current
state. Condition (3b) expresses that whenever A currently holds, B will hold at
some point in the future, no matter what path from the current state the system
will take. The reader is invited to check that, according to Definitions 2 and 3,
in the system of Fig. 1, S is indeed a necessary and sufficient cause of L.

It turns out that Definitions (1)–(3) above can be displayed in a purely dia-
grammatic way, as the next section demonstrates.

3 A Diagrammatic Definition

Given a system S, we diagrammatically represent condition (1a) by saying that
the system in question must feature some path depicted in Fig. 2. For example,
a system S features the topmost arrow from Fig. 2 just in case some state of S
where both A and B are false leads to a state where A is false and B true. (For
convenience we suppress ‘¬A’ and ‘¬B’ in Figs. 2 and 3.)

◦

A

B

A,B

Fig. 2. Some B-state leads to some ¬B-state, or vice versa.
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We likewise represent conditions (1b) and (1c) by means of the unshaded
diagrams appearing in Fig. 3. That is, some A-state leads to some B-state in a
system S—i.e. (1b) holds—just in case S features some path from the bottom-
right diagram of Fig. 3. And some ¬A-state leads to some ¬B-state—i.e. (1c)
holds—just in case S features some path from the top-left diagram of Fig. 3.

◦

A

B

A,B

◦

A

B

A,B

◦

A

B

A,B

◦

A

B

A,B

Fig. 3. Diagrams depicting paths from states to states.

The shaded diagrams of Fig. 3 correspond to the definitions of necessary and
sufficient causation, where this time we read its arrows in terms of the ‘must’
mode of coming and leading. That is, a system S satisfies condition (2b) just
in case S features no path from the bottom-left diagram, while condition (3b)
holds in a system S just in case S features no path from the top-right diagram.

The definition of minimal causation given above is too weak on its own to
serve as a definition of any intuitive notion of cause. For, conditions (1a)–(1c)
only demand some paths of some specified kind, and so are even satisfied in
systems in which states succeed one another in a completely random fashion; that
is, in which every state leads to all states. In contrast, the definitions of necessary
and sufficient causation are each more stringent by demanding that some paths
are excluded from the system. But one might also wonder whether they are too
strong to adequately capture our causal talk; there seem to be many shades of
causation falling short of conditions (2b) and (3b) that our diagrams should hope
to represent. In the next section we consider two less demanding ways that a
causal relation—such as minimal, necessary and sufficient causation—may hold
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in a system. These weaker modes of causation we call ‘sometimes’ and ‘partial’
causation.

4 Sometimes and Partial Causation

The purpose of introducing a ‘sometimes’ modifier into causal relations is to
capture causal reasoning in non-deterministic systems. Now, many analyses of
causation assume that the phenomena they wish to model behave deterministi-
cally. We will not pursue the matter here, but only point out that two of the most
popular analyses of causation assume some form of determinism. Firstly, Lewis’s
counterfactual analysis presumes a notion of determinism in order to account
for the asymmetry of causal dependence (see Menzies 2017, §2.2). Secondly, as
Cartwright (1999) notes, the Bayes nets approach of Pearl (2009) and Spirtes et
al. (2000) assumes determinism in order to satisfy one of their key assumptions,
known as the Causal Markov Condition.

There are, nonetheless, many everyday processes we wish to model in which
causes do not uniquely determine their effects. Consider, for instance, a computer
with a faulty ‘on’ button, where pushing the button only sometimes succeeds
in turning the computer on. (Or, more extremely, imagine the button’s success
depends on some quantum set up.) This on its own is a perfectly intelligible
scenario, but analyses of causation that assume determinism can only model it
by introducing extraneous variables; say, by introducing a hidden variable repre-
senting the button successfully connecting with the computer. System semantics
avoid such complication by allowing states to have multiple successors. Thus,
in system semantics we can straightforwardly depict this scenario by means of
the diagram of Fig. 4. We assume that the act of pushing the button lasts only
one moment; that is, if the button is pushed at a state, then it reverts to being
unpushed in the next state.

button not pushed, off

button pushed, off

button not pushed, on

button pushed, on

∗

Fig. 4. Pushing the button sometimes causes the computer to turn on.

The non-deterministic behaviour of the button corresponds to the fact that
there are two arrows coming from the state where the button is pushed and the
computer is off. If the system is in that state (pushed, off), then sometimes—i.e.
when the button did not work and the system moved along the arrow marked
with a star—the computer is still off in the next state. But at other times, when
the button happens to work, in the next state the computer is on.
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In some cases we wish to explicitly add extra variables into our models. This
occurs, say, when we want to make a background assumption explicit, or reveal
the influence of a previously hidden variable. Thus, for instance, one can take
into account the presence or absence of charge in the computer of Fig. 4: when
there is charge (C), the system behaves as in Fig. 4, but when there is no charge
(¬C) the system always moves into a state where the computer is off. Figure 5
illustrates this new system.

¬C,¬P,¬O

¬C,P,¬O

¬C,¬P,O

¬C,P,O

C,¬P,¬O

C,P,¬O

C,¬P,¬O

C,P,O

Fig. 5. When there is charge (C), pushing the button (P ) sometimes causes the com-
puter to turn on (O).

Upon examination of Figs. 4 and 5, it seems reasonable to assert the following
causal claims.

(4a) In the system of Fig. 4, pushing the button is sometimes a sufficient cause
of the computer turning on.

(4b) In the system of Fig. 5, when there is charge, pushing the button is some-
times a sufficient cause of the computer turning on.

In Fig. 4 we see that the path responsible for introducing the qualification ‘some-
times’ into (4a) is the path marked with a star. It is because of this arrow that
not every path from a pushed state leads to the computer being on, meaning
the system of Fig. 4 does not satisfy condition (3b). Hence, according to Defi-
nition 3, pushing the button is not a sufficient cause of the computer being on.
Nonetheless, were we to restrict attention to just those times when pushing the
button is successful—by removing the contravening arrow from the diagram—
then pushing the button would be a sufficient cause of the computer turning on.
This suggests the following truth condition for adding a ‘sometimes’ modifier to
a given causal relation, defined by means of operations on diagrams.

Definition 4 (Sometimes relation). A causal relation holds sometimes, in a
system S, just in case it holds by removing some (possibly no) arrows from S.

The system of Fig. 4 makes (4a) true since, in the system that results from
removing the arrow marked with a star, pushing the button is a sufficient cause
of the computer turning on.

Turning now to Fig. 5, it seems we want to say that pushing the button
sometimes causes the computer to turn on, but only when there is charge. We
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can give the truth conditions for such conditional assertions by taking up an
idea of Kratzer (1991), whereby conditionals are restrictions on quantifiers. In
the present context, the proposal amounts to saying that a statement of the
form ‘If A then B’ is true just in case B is true with respect to the A-states.
Such a notion of conditional causal claims we call a notion of ‘partial’ causation,
because for the causal claim to hold it need only hold in part of the model.

Definition 5 (Partial relation). A causal relation holds partially, in a system
S, just in case it holds by removing some (possibly no) states from S.

Note that the definitions of sometimes and partial causation above imply
that every partial relation is also a sometimes relation. For we can mimic the
result of removing states from a system by removing every arrow that touches a
state we wish to remove. But we cannot go the other way: there are sometimes
relations that are not partial relations, as happens whenever we have to remove
some but not all arrows leading from a given state. This occurs, for instance,
in the system of Fig. 4 because removing any state where the computer is off—
which is enough to remove the arrow marked with a star—would also make the
system falsify condition (1c) and fail the test for even minimal causation.

A further advantage of depicting causal relations in terms of system seman-
tics is that one may naturally consider multiple relations holding in the same
diagram. The following section briefly outlines how such a proposal can be used
to model an agent’s interaction with a system.

5 Modelling an Agent’s Interaction

By focusing on changes of states individually, rather than sentences, system
semantics provides a novel level of detail absent from other approaches, notably
the structural causal models of Halpern (2000) and Pearl (2009, §7.1). One
advantage of the finer grain of system semantics is the abundance of ways to
represent relations between states. For example, as some have demanded of
automata (e.g. Baeten et al. 2011), we may naturally add succession relations
to represent different kinds of change—such as those brought about by a user
interacting with a system and those brought about by the system itself.

Figures 6a and b depict two different ways to add an interaction relation to
the system depicted in Fig. 1. The dark lines indicate changes made by the system
independently (nature’s path, so to speak), while the dashed lines depict a user’s
path, interacting with the system. In Fig. 6a turning off the switch immediately
turns off the light, whereas Fig. 6b the user takes a turn, only after which the
system reacts.

Extrapolating from this simple scenario, we may model multi-agent games
by introducing one relation for each agent over states of a gameplay.
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¬S,¬L ¬S,L

S,¬L S,L

(a) Interaction with immediate effect

¬S,¬L ¬S,L

S,¬L S,L

(b) Interaction with delayed effect

Fig. 6. Two ways to add interaction to a system.

6 Conclusion

In this paper we saw some simple diagrams depict the modelling power of sys-
tem semantics. Of course, one must invest quite some work just to provide a
system-semantic representation of any given process, prior to analysing its causal
relations. In this brief exposition we have made no argument for the capacity of
the diagrams of system semantics to represent every kind of process we would
wish to model. But given the widespread use of causal notions in diverse fields,
such an argument would be required if system semantics for causal claims is to
properly fulfil its representational ambition.

We further saw how, by encoding temporal succession into the models
directly, we could analyse causal notions in a fairly straightforward manner. Of
course, we have not touched upon the metaphysical issues underlying such an
approach; for instance, we took the notion of temporal succession to be unprob-
lematic. A more comprehensive appraisal of system semantics must examine
whether the choices of primitives made by system semantics fare better than
those of other approaches to causality, such as the assumption of a similarity
ordering over worlds made by Lewis (1974). One benefit of system semantics
is that its metaphysical commitment—chiefly, an ontology of states related in
time—is reasonably transparent, though to fully make the case for the philosoph-
ical adequacy of system semantics, one must still argue that those are sensible
commitments to make.
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Abstract. Arcform is a notation for expressing diverse thoughts using nodes
and arcs in a new graph-like network structure. The structure differs from
directed graphs by including arcs that point from or to other arcs, and semi arcs
where one end points from or to itself. This supports a new generative statement
composition structure which allows expressive statements to be read as gram-
matically normal sentences while integrated into maps containing multiple
statements. This paper describes this compositional structure with a special
focus on a few patterns for assigning meaning to nodes and arcs that preserve
the above characteristics while ensuring an even tighter integration of diverse
statements into networks. A few additional features are considered before raising
some far reaching questions about how it can support thought work.

Keywords: Network notation � Generative composition � Controlled language

1 Introduction

In prior work [1], arcform has been introduced as a new network notation using a new
statement composition structure, requiring a new graph-like network structure. Fur-
thermore, in that work, the compositional structure was compared to that of a range of
other notations and various hypothetical ways of using triples and enclosures, the ease
of using the compositional structures was tested on potential users and the expres-
siveness of the compositional structure was tested while capturing a text corpus in the
notation.

Arcform has since been used in research projects in processes of untangling
stakeholder relations and beliefs from interview data [2, 3], including one project that
used the compositional structure with a language other than English [4]. It has also
been considered as a foundation for an e-learning platform [5].

This paper presents the compositional structure in more detail than provided
elsewhere. In the process it also presents a more specific, or regular pattern for how
meaning can be captured in the compositional structure. This allows us to both explore
and extend a small number of central characteristics of arcform. This version of arcform
also differentiates between statement compositions (thought compositions) and object
description compositions, and provides a new pattern for using the latter. Finally, a few
possible implications are discussed.
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2 Objects and Thoughts

The current presentation of arcform assumes an important distinction in our thinking
between objects of thought (objects) and thoughts. Objects include physical objects,
imaginary physical objects, collections of objects, events, ideas, beliefs and more. In
general, an object is anything that can be represented by the subject or object part of
speech of normal sentences. In arcform an object is always represented by a node and
labels are the simplest way of identifying an object as shown in Fig. 1. It is important to
note that a thought cannot be used directly as an object.

At least as important as objects are thoughts about these objects. They are also very
divers and may for example include imaginings about the physical world, the experi-
ential world or fictional words. In general, a thought in arcform is approximately any-
thing that can be represented by a normal declarative sentence. In arcform a thought is
always represented by an arc, normally with a single word label. There are many
different types of thoughts in arcform, let us explore some of the most common of these.

3 First Order Thoughts

All first order thoughts are arcs pointing from an object and labeled with a present tense
third person verb (written with brackets to accommodate two possible endings). One
variation of a first order thought is an ordinary arc pointing to another object to express
the same as a simple transitive sentence as shown in Fig. 2.

The other variation of a first order thought uses a different type of arc, a semi arc
that points from an object, but instead of pointing to another object, points to itself. It
expresses the same as a simple intransitive sentence as shown in Fig. 3.

Fig. 1. An object represented by a node with associated labels.

Fig. 2. The thought ‘Peter plays guitar’ represented by an arc labeled “play(s)”.

Fig. 3. The thought ‘Jane sings’ represented by a semi arc labeled “sing(s)”.
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4 Higher Order Thoughts

Arcform can use an arc pointing from or to another arc to represent thoughts with
greater context. They are called higher order thoughts because they involve at least one
other thought (a thought they point from or to). One variation of these are arcs labeled
with a preposition (e.g. “for”) as shown in Fig. 4.

Two other variations of higher order thoughts are arcs labelled with a subordinating
conjunction (e.g. “because”) and arcs labeled with an adverb (e.g. “beautifully”).
Higher order thoughts can also point from first order thoughts that are semi arcs as
shown in Fig. 5.

Another variation of higher order thoughts is labeled with modality phrases (e.g.
“do(es) not”) and point from an object to another thought as shown in Fig. 6.

A central part of higher order thoughts is that they can be involved by other higher
order thoughts to express new thoughts as shown in Fig. 7.

Fig. 4. The thought ‘Peter plays guitar for Bug Band’ represented by an arc labeled “for”.

Fig. 5. The thought ‘Jane sings beautifully’ represented by an arc labeled “beautifully”.

Fig. 6. The thought ‘Jane does not like Bug Band’ represented by the arc labeled “do(es) not”.
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This nesting of higher order thoughts within other higher order thoughts can
continue indefinitely to express thoughts with greater and greater context. The possi-
bility to do this using arcs pointing from or to other arcs differentiates arcform from all
notations relying on a directed graph structure and specifically concept maps where
longer expressions are created only by attaching arcs to nodes [6]. Because of this, it is
worth clarifying some conventions for talking about arcform expressions:

• Thought arcs. Each of the displayed arcs represent a thought. For reasons that will
become apparent, we can most often simply refer to these arcs as thoughts.

• Thought compositions. Each thought spans the tokens that it points from or to, and
the tokens that these point from or to, and so on, down to include all the involved
objects. We call this structure the thought composition.

• Composition sentences. When compositions are arranged as they are above with all
thoughts pointing from left to right the labels of all the tokens can be sequenced into
what we call the composition sentence.

5 Natural-Language-Like

Arcform is not, like a descriptive grammar, an attempt to represent how natural lan-
guage syntax works (the compositional structure serves other purposes). It is also a
controlled language [7] in that both the compositional structure and restrictions on how
the tokens are labeled (e.g. verbs are always active present tense verbs) exclude many
natural language composition sentences. However, it is meaningful to think of it as
natural-language-like.

Most significantly, it has been designed to allow composition sentences to be read as
grammatically normal sentences by reading the labels in sequence from left to right. Thus
in Fig. 7 we put together the labels “Jane”, “sing(s)”, “in”, “a choir”, “on”, “Sundays” to
read the sentence: “Jane sings in a choir on Sundays”. This exploits our familiarity with a
natural language vocabulary and word ordering when interpreting thought compositions.

Furthermore, arcform seems to be expressive in the way a natural language is. Like
natural languages, arcform uses a generative composition structure supporting indefi-
nitely many compositions. Although arcform excludes many natural language sen-
tences, different natural languages support different redundant ways of sharing the same
information [8]. As long as arcform provides natural language alternatives to the
excluded sentences (e.g. by using higher order thoughts to specify when something
happens rather than using past tense or future tense verbs), then it maintains this
expressiveness.

Fig. 7. The thought ‘Jane sings in a choir on Sundays’ involving the thought ‘Jane sings in a
choir’, which involves the thought ‘Jane sings’.
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6 Arcform Maps

Above we saw that the labels of tokens could be read in sequence from left to right as
normal sentences. However, this sequence is fully determined by how arcs point from
and to other tokens. We can change the layout of the thought structure significantly as
shown in Fig. 8 and still determine the reading order of the labels.

The obvious advantage to spreading out compositions on the plane is that multiple
compositions can reuse the same tokens. This allows us to create maps integrating these
compositions in networks as shown in Fig. 9. As before, every arc represents a thought,
its composition is identified by the nested thoughts and objects that it involves and its
composition sentence is determined by sequencing the token labels as if all arcs in the
composition pointed from left to right.

7 Unitokenality

Prior work on arcform [1] introduced the concept of unitokenality for representations. It
specifies that one meaning gets one token, no matter how many times that meaning is
used in a representation. Unitokenality was seen as a requirement for a representation to
be map-like. Consider how the city Edinburgh only needs to appear once in a geo-
graphical map of the world. Then contrast this to how a paragraph of natural language

Fig. 8. The composition of the thought ‘Jane sings in a choir on Sundays’ with an arbitrary
layout.

Fig. 9. An arcform map including multiple compositions.
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text may need to include multiple references to the city. Now there appear to be three
increasing levels in which representations can be unitokenal with respect to our mental
objects and thoughts.

1. All objects get their own token. This was the original motivation for arcform: to
simply give all subjects and objects of non-trivial grammatically normal sentences
their own node for reuse.

2. Some thoughts get their own token. This is seen in all prior versions of arcform.
Consider how the thought ‘Jane sings’ is reused without repeating in two other
thoughts in Fig. 9 above.

3. All thoughts get their own token. This requires that involved meanings in our
thinking are not subsumed in other thoughts tokens.

The current version of arcform attempts to achieve the third level of unitokenality with
its patterns for labels on arcs. Thought arcs do not just point from or to other meanings,
but point from or to the most encompassing involved meanings. Consider how the
thought ‘Jane sings in a choir’ cannot, in this version, be labeled “sings in” and point
directly from the object ‘Jane’ and how this would skip giving the involved thought
‘Jane sings’ its own token. The current version of arcform ensures that ‘Jane sings’ is
represented once and can be reused without repeating. This pattern is intended to apply
to the composition of any involved meanings in our thinking.

8 Additional Features

There are also many design features of arcform that cannot be described in detail here,
but strengthen the notation within the characteristics of natural-language-likeness and
unitokenality, or are otherwise important to know about. An important sampling of
these are: object descriptions, thoughts in objects, conjunctions, and short-handing.

Object descriptions are nodes or arcs that are neither objects or thoughts. They are a
unitokenal alternatives to using labels (e.g. “a rock band” shown in Fig. 1) to describe
objects. Like thoughts, descriptions also span the tokens that they points from or to and
all the tokens that these point from or to and so on down. When a description com-
position is arranged with all its arcs pointing from left to right the labels of the tokens
can be read as a grammatically normal description phrase. Figure 10 shows a
description composition ‘a rock band’ with its tokens drawn with a different shade to
make them easily distinguishable from objects or thoughts.

Fig. 10. A thought with an object linked to a description compositions.
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Objects are connected to their descriptions using a linking thought which does not
have a label, but is sometimes read as if it has the label “is” or “are”. Figure 10 shows
two thoughts ‘Peter starts something’ and ‘something is a rock band’, which can be
read simply as “Peter starts a rock band”. In a map the same object can have multiple
descriptions and the same description can describe multiple objects.

Description composition may also involve non description tokens. For example the
description ‘the king of Spain’ involves the object ‘Spain’. Likewise a description
composition can also involve a thought. In Fig. 11 we can read “Peter believes that
Jane likes Bug Band” where the belief is an object linked to the description ‘that Jane
likes Bug Band”. The description token labelled “that” creates a description out of a
thought. This pattern is important if we want to discuss claims or beliefs within arcform
while allowing the involved meanings in those claims or beliefs to be unitokenally
represented and reused.

Finally it should be noted that arcform maps will include shapes that are not
discussed here. For example there is a way of joining objects into conjunction or
disjunction collections that can themselves be used as objects. There are also many
ways of drawing parts of a composition in shorthand to hide tokens that do not at the
time need to be reused. For example, in Fig. 11, we could draw a single shorthand arc
labeled “believes that” from the node labeled “Peter” to the arc labeled “like(s)” when
we do not need to reuse the belief ‘that Jane likes Peter’. This and many other kinds of
short handing can greatly simplify many maps.

9 Discussion

Arcform’s design and especially its focus on expressivity, grammatically normal
sentences and a high-level of unitokenality raises some interesting question about how
it can support thought work. Through its seeming expressiveness we should be able to
create maps on any topic, but can it go beyond simply giving a map-like experience of
what would otherwise be expressed as a paragraph of text?

It seems that two maps can always be merged, here identical objects, thoughts or
descriptions in the two maps become one in a new map while unique objects, thoughts
or descriptions of the two maps coexist in the new map, but how far can this be taken?

Through nesting thoughts in (indefinite orders of) more contextualized thoughts,
the contextualized thoughts should become less and less dependent on a containing

Fig. 11. A thought with an object described using another thought.
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map for their interpretation. Will these thought compositions be interpreted correctly by
arcform users regardless of which other thoughts they are displayed next to? At the
same time the pattern of thoughts pointing from or to the most encompassing involved
meaning should allow many more opportunities for thought compositions to reuse
involved thoughts. Can the combination of these support a tighter integration of more
diverse thoughts then seen before? Could we in principle integrate our thoughts into
one big network?

Of course, such a network of meaning would in practice require a digital imple-
mentation; at the very least to avoid the shear crowdedness of drawing it on paper.
Would the composition and assignment of meaning make the expression of ideas more
predictable and retrievable with structured queries? Would filtering and layout algo-
rithms allow the dynamic and ad hoc generation of new perspectives on existing
information?

Assuming the above, would the grammatically normal composition sentences make
such a network more accessible for general use by non-programmers than existing
knowledge base schemas? What would be the benefits of users sharing and reusing
thoughts in such a network? Could it allow beliefs to be more closely connected to their
counter beliefs? Could it support a new type of online social rating, not of amorphous
containers of meaning like posts or pictures, but of individual thoughts?
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Abstract. Extension and intension are two ways of indicating the fun-
damental meaning of a concept. The extent of a concept, C, is the set of
objects which correspond to C whereas the intent of C is the collection of
attributes that characterise it. Thus, intension defines the set of objects
corresponding to C without naming them individually. Mathematicians
switch comfortably between these perspectives but the majority of logi-
cal diagrams deal exclusively in extension. Euler diagrams indicate sets
using curves to depict their extent in a way that intuitively matches the
relations between the sets. What happens when we use spatial diagrams
to depict intension? What can we infer about the intension of a concept
given its extension, and vice versa? We present the first steps towards
addressing these questions by defining extensional and intensional Euler
diagrams and translations between the two perspectives. We show that
translation in either direction leads to a loss of information, yet preserves
important semantic properties. To conclude, we explain how we expect
further exploration of the relationship between the two perspectives could
shed light on connections between diagrams, extension, intension, and
well-matchedness.

1 Introduction

A general term (e.g. “country”, “circle”, “horse”, etc.) is commonly understood
to refer to a collection of individuals who share one or more attributes. The set of
individuals to which the term refers is called its extension (or extent), while the
set of attributes shared by those individuals is called the intension (or intent) of
the term. The trio (term, intent, extent) and its structure can be represented by
a triangle (Fig. 1). Various names have been used in logic literature to capture
this distinction. Intent is sometimes referred to as the connotation of a term
while extent is said to be its denotation. Hence, a term is said to connote its
intent and denote its extent. These two names can be used to characterize the
two sides of our triangle that connect a term to its intent and extent. The object
of this paper is to diagrammatically investigate the third side of the triangle
which depicts the relation between the intent and the extent of a given term.
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Intent Extent

Term

Fig. 1. Term-intent-extent. Fig. 2. Extension. Fig. 3. Intension.

To illustrate, the diagram in Fig. 2 represents three sets containing invididu-
als: People (P ), Children (C), and Dogs (D). It therefore presents an extensional
view. The set of People, for example, comprises the individuals that have the
attributes that define what it means to be a person. By contrast, Fig. 3 presents
an intensional view, representing the sets of attributes of people, Att(P ) and so
forth. We can see, from Fig. 3, that all children have all of the person attributes,
including having eyes. Moreover, dogs possess attributes that no child or person
has, such as having a tail. So, the dog Spot has a tail but the child Finn does
not.

The distinction between intent and extent (known under various denomina-
tions) has played a significant but often undervalued role in the development of
modern logic. Although it is sometimes traced in earlier writings, the distinc-
tion itself is often attributed to Antoine Arnauld and Pierre Nicole’s Logique de
Port Royal (1662). Since then, logicians who have designed logical calculi oscil-
lated between the two interpretations. For instance, Gottfried Leibniz generally
favoured the intensional interpretation while George Boole privileged the exten-
sional interpretation, with various motivations being offered to justify the supe-
riority of each view over the other [3]. In his 1918 survey of symbolic logic, Lewis
explained the successes of Boole and his (mainly English-speaking) followers by
their appeal to extent unlike their (German-speaking) predecessors who favored
intent [6, pp. 35–37]. Although Gottlob Frege’s logic was primarily intensional,
Venn declared in 1894 that “the true intensive view is practically abandoned
now, though verbally it is from time to time espoused” [13, p. 453]. Extensional
logics apparently became dominant at the beginning of the twentieth century.
Intensional logic was then generally believed to be at best cumbersome, if not
entirely impossible [2, p. 387] [9, p. 141]. The rise and fall of intensional logics can
also be traced in the development of logic diagrams. Indeed, Leibniz and several
of his followers aimed at a scheme that could stand within both views, depending
on whether it was the intent or the extent that was represented [1]. However,
extensional diagrams shortly became dominant as geometrical relations of the
diagrams appeared to match better with the logical relations of the extents than
those of the intents [7]. Despite the declared superiority of extensional logic,
interest in intensional logics has resurfaced in the twentieth century, notably in
the footsteps of Alonzo Church and Rudolph Carnap [4]. Today, the distinction
between intent and extent is commonplace and is frequently met with in modern
logic textbooks [5, pp. 91–94].
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There are several difficulties in determining precisely what the intent and
the extent of a term involve and logicians have long considered various views on
this question. Regarding intent, an objective standpoint includes any attribute
possessed by the individuals to whom the term refers, whether that attribute is
known or unknown to the people who use the term. A subjective view, on the
other hand, supports the claim that intent should include merely the attributes
that come to the mind of those who use the term. However, since different people
might have different collections of attributes in mind, logic textbooks often adopt
a conventional attitude in which the intent of a term refers to what is commonly
attributed to it. The description of the extent of a term also involves some
complications. A major difficulty concerns the definition of what counts as an
individual. If we are to determine the extent of the concept “animal”, should
one list general species (elephants, penguins, sharks, etc.) or rather point to
every specific animal considered individually? The latter technique often leads to
long or infinite enumerations while the former has obvious practical advantages,
although it does requires the formation of sub-classes.

The relation between intent and extent is also complex. It is first noted
that, though the intent of a term might remain fixed, extent can change over
time. The extent of the term “President of France” regularly changes when
elections introduce new individuals with the salient attributes. Extents might
also be empty; we may think, for instance, of the term “current king of France”.
However, equivalent extents do not necessarily indicate equivalence of intents.
For example, there are various sets of attributes that can be offered to form the
intent of the term whose extent contains the individuals Spain and Portugal.
One might think of the term as those countries through which the Douro River
flows. Alternatively, the term could be thought of as the countries through which
the Tagus River flows. It could also be said that they are the last two winners
to-date of the UEFA European Championship. All these intensional definitions
denote the same extent, {Spain,Portugal}.

The relation between extent and intent is usually addressed through the
principle of their inverse variation, whereby increasing the intent of a term by
adding an attribute to it generally entails a decrease of its extent. If one thinks
of the intent of the term “triangle” and adds to it the attribute of being isosceles,
we remove from the extent of this term all the triangles which do not have the
latter attribute (i.e. are not isosceles). Hence, the increase of intent produced a
decrease of extent. In this example, the intent of a triangle is included in that
of an isosceles triangle. Yet, it is the inverse that is observed for the extents,
since the extent of isosceles triangles is included within the extent of triangles.
It might be that an increase of intent does not produce a decrease of extent. This
is the case for instance if one adds the attribute of being crossed by the Douro
River to the intent whose attributes define the countries which are crossed by
the Tagus River. The extent, {Spain,Portugal}, remains the same. Similarly, if
a given extent is empty it does not decrease if new attributes are added to its
intent. Still, in all these examples, when intent increases, extent is observed to
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decrease or remain stable, but definitely not increase. Similar principles are found
for decreasing intents and for comparable changes in the scope of an extent.

As interesting as these principle can be, they only account for the specific case
where a term is increased (respectively, decreased), meaning that it is entirely
included (respectively, includes) another term. In the following, we attempt a
more systematic consideration of the relations between intent and extent. In
the next section we present two systems of Euler diagrams with ⊗-sequences:
one in which curves denote the extent of terms (as is usually the case), and
one in which curves denote intent. In Sect. 3 we establish a connection between
interpretations of extensional and intensional diagrams, linking the semantics of
the two systems through a relation that embodies the notion of one interpre-
tation being respectful of another. In Sects. 4 and 5 we define translations from
extensional and intensional diagrams to their respective counterparts. We show
that these translations necessarily involve the loss of information yet preserve
important semantic properties. Finally, we conclude with some thoughts on the
implications for this work.

2 Syntax and Semantics

We follow a standard approach to formalizing the syntax and semantics of Euler
diagrams containing ⊗-sequences (see Stapleton [11] for an overview of formal-
ization techniques). We illustrate the key ideas via the example in Fig. 4. This
diagram contains three curves, each of which has a label. The curves give rise
to zones: a zone is a region of the plane inside some (possibly no) curves and
outside the remaining curves. There are four zones inside this diagram, such as
the one inside just the curve P but outside Q and R, and another zone outside
all three curves. Sometimes, zones are shaded. In this example, the zone inside
R but outside P and Q is shaded. There are two ⊗-sequences. One of them is
inside a single zone and the other comprises two ⊗ symbols joined by a line.

Fig. 4. An Euler diagram with ⊗-
sequences.

Fig. 5. Removing a curve: zonal
regions.

We formalize diagrams at the abstract syntax level. Curves can be identified
by their labels which are chosen from some given set L. Zones are then formally
defined as a pair of disjoint sets of labels, (Li, Lo). In Fig. 4, the four zones
are (∅, {P,Q,R}), ({P}, {Q,R}), ({P,Q}, {R}) and, lastly, the shaded zone
({R}, {P,Q}). The formalization of the ⊗-sequences is similar: they are identified
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at the abstract level by the set of zones in which they are placed. In our example,
the two ⊗-sequences are {({P}, {Q,R})} and {(∅, {P,Q,R}), ({P,Q}, {R})}. We
now provide a formal definition of these important concepts.

Definition 1. Given L, we define a zone over L to be a pair, (Li, Lo), where
Li ∪ Lo ⊆ L, and Li ∩ Lo = ∅. The set of all zones formed from L is denoted
ZL. A set of zones formed over L is called a region formed over L and the
set of all regions is denoted RL.

It is notable that the above definition makes the set of labels, L, over which
zones and regions are formed explicit. Later, we will be working with two distinct
systems of diagrams that draw their labels from distinct sets. So it is important
to be clear about over which label set a diagram and its components are formed.

Definition 2. An Euler diagram with ⊗-sequences, dL, formed over L is
a tuple dL = (L,Z,Z∗, S) where

1. L is a finite subset of L.
2. Z is a set of zones such that for each zone, (Li, Lo), in Z, Li ∪ Lo = L,
3. Z∗ is a subset of Z whose elements are called shaded zones, and
4. S is a set of regions that identify the ⊗-sequences: S ⊆ PZ\{∅}.

We will sometimes simply say Euler diagram with ⊗-sequences or L-diagram,
in place of Euler diagram with ⊗-sequences formed over L. Furthermore, we will
similarly omit saying ‘formed over L’ when referring to other syntactic items.

Our attention now turns to semantics. Referring again to Fig. 4, intuitively
this diagram tells us that Q ⊆ P and P ∩ R = ∅ due to the spatial relation-
ships between the curves. The shading is used in the same fashion as for Venn
diagrams [12], and as seen in Shin’s Venn-I and Venn-II systems [10]: shaded
zones represent empty sets. So, the set R is empty in our example. Again, also
following Shin’s use of ⊗-sequences, regions containing an entire ⊗-sequence are
non-empty (see Moktefi and Pietarinen [8] for the origins and development of
this notation). So, we see that P\(Q ∪ R) �= ∅ and, taking the universal set to
be U , (U\(P ∪ Q ∪ R)) ∪ ((P ∩ Q)\R) �= ∅. Given these insights, we proceed
with our formalization following a standard model-theoretic approach. In our
case, labels are interpreted as sets, which we then extend to interpret zones and
regions:

Definition 3. An interpretation over L, denoted IL, is a pair, IL = (U , Ψ),
where U is a set and Ψ is a function, Ψ : L ∪ ZL ∪ RL → PU , mapping labels,
zones and regions to sets such that

1. for each zone, (Li, Lo),

Ψ(Li, Lo) =
( ⋂

l∈Li

Ψ(l)
)

\
( ⋃

l∈Lo

Ψ(l)
)

, and

2. for each region, r, Ψ(r) =
⋃
z∈r

Ψ(z).



370 G. Stapleton et al.

The last remaining consideration, when defining the semantics, is to provide
conditions under which an interpretation ‘agrees’ with the intended meaning
of the diagram. We have already seen that shaded zones represent empty sets
and that regions containing entire ⊗-sequences represent non-empty sets. Addi-
tionally, the relationship between the curves (in a drawn diagram) is entirely
captured by the set of zones (at the abstract level). In particular, between them,
all of the (abstract) zones must represent the universal set. If these three condi-
tions are all met then the interpretation is a model :

Definition 4. Given an Euler diagram with ⊗-sequences, dL = (L,Z,Z∗, S),
and an interpretation, IL = (U , Ψ), we say that I is a model for d provided

1. between them, the zones in dL represent the universal set: Ψ(Z) = U ,
2. the shaded zones in dL represent the empty set: Ψ(Z∗) = ∅, and
3. each ⊗-sequence is placed in a region that represents a non-empty set: for all

r in S, Ψ(r) �= ∅.

Having now defined the syntax and semantics, we introduce several further
syntactic notions that will be of use later. The first focuses on the zones that
are not present, (called missing zones), given the labels used in a diagram:

Definition 5. Let dL = (L,Z,Z∗, S) be an Euler diagram with ⊗-sequences.
The missing zones of dL are elements of

MZ(dL) = {(Li, Lo) ∈ ZL : L = Li ∪ Lo}\Z.

In our running example, Fig. 4, there are four missing zones:

MZ(dL) = {({Q}, {P,R}), ({P,R}, {Q}), ({Q,R}, {P}), ({P,Q,R}, ∅)}.

Just as zones play a central role in our understanding of Euler diagrams, so
too do regions that become zones when curves are removed. Figure 5 shows the
result of removing Q from Fig. 4. The zone inside just P in Fig. 5 arises from two
zones in Fig. 4. Regions that become zones when curves are removed are called
zonal regions and, just like zones, can be identified by the curves that contain
the region and those which do not contain the region:

Definition 6. Let IN , OUT and L be sets of labels drawn from L. A zonal
region given IN , OUT and L is a set of zones, denoted 〈IN ,OUT , L〉, where

〈IN ,OUT , L〉 = {(Li, Lo) : IN ⊆ Li ∧ OUT ⊆ Lo ∧ L = Li ∪ Lo}.

For example, in Fig. 4, the zonal region inside P but outside R is given by

〈{P}, {R}, {P,Q,R}〉 = {({P}, {Q,R}), ({P,Q}, {R})}.

Having formally defined the syntax and semantics of Euler diagrams with ⊗-
sequences, and various related notions, we are in a position to explore extensional
and intensional viewpoints using Euler diagrams.
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3 Sets of Individuals and Their Attributes

Euler diagrams are typically used to represent sets containing individuals and,
therefore, visualize an extensional view of the world. An intensional viewpoint,
however, considers the attributes that characterise the individuals in sets. Con-
sider the example in Fig. 6. The diagram dEX represents sets of individuals who
are members of four sports clubs and, so, is extensional. We can see that everyone
who is in the Triathlon club (represented by the curve labelled T ) is also a mem-
ber of the Swimming club. However, nobody in the Swimming club is in either
the Cycling or Football clubs. Each club imposes the condition on its members
that they must be active participants in the relevant sport; so, members of the
swimming club must be able to swim, and those in the cycling and football clubs
are all cyclists and, respectively, footballers. Individuals who are members of the
Triathlon club have the attributes of being a cyclist, a swimmer and a runner, as
well as the attribute of Triathlon club membership. As it happens, all members
of the Cycling club are active runners. These sets of attributes therefore cor-
respond to the intensional viewpoint. Therefore, dIN (where Int(T ) is the set
of attributes that characterise set T and so forth), represents the relationships
between the attributes possessed by the individuals in the sets represented by
dEX , given the particular situation just described.

Fig. 6. Sports clubs and their members’ attributes. Fig. 7. Alternative attributes.

Whilst this example is suitable for providing intuition about the relationship
between individuals and their attributes, the diagram dIN just derived was, we
emphasise, particular to the interpretation given. We could have had an alter-
native situation where all of the footballers are runners and cyclists but are not
members of the triathalon or swimming clubs since none of them is able to swim.
This situation would give rise to the diagram in Fig. 7. Our goal is to define a
respectful translation from diagrams representing individuals to diagrams repre-
senting their attributes that ensures their models correspond entirely. Likewise,
we also seek a respectful translation from diagrams representing attributes to
diagrams representing individuals so that their models correspond. The purpose
of this section is to set up a framework that allows these translations to be
defined formally and for us to establish that the resulting diagrams’ model sets
correspond in an appropriate way.
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To this end, we investigate two parallel systems of Euler diagrams with ⊗-
sequences. We define the first system to be formed over a set of labels that we call
EX (so EX is a particular choice of L), whose elements are called extensional
labels. Further, we define the second system to be formed over a set of labels
that we call IN , whose elements are called intensional labels. Importantly,
we assume that EX and IN are disjoint and have the same cardinality. We now
syntactically link these two systems.

Definition 7. A bijective function Int : EX → IN , which maps each exten-
sional label to an intensional label is called an intensional label allocation
function. The function Ext : IN → EX is the inverse of Int.

From this point forward, we assume an intensional label allocation function,
Int , has been defined but we also need a semantic link. EX -diagrams and IN -
diagrams are taken to have semantics where the universal sets contain individuals
and, respectively, attributes. To this end, the set of individuals is denoted IND
and the attributes AT T . Consequently, for example, given IEX = (U , Ψ), we
have U ⊆ IND. All interpretations over EX have universal sets that are subsets
of IND whereas those over IN have universal sets that are subsets of AT T . As
our intention is to explore the relationship between information about individuals
and information about their attributes, we further define a function between the
sets IND and AT T to formalize this notion.

Definition 8. A function, att : IND → P(AT T ) is called an attribute iden-
tification function.

As with the function Int , we assume from this point forward that a specific
att is given. We now use att to define a link between interpretations, thus linking
the semantics of the two systems:

Definition 9. Let IEX = (UEX , ΨEX ) and IIN = (UIN , ΨIN ) be interpretations
over EX and IN respectively. We say that IIN is respectful of IEX and att
provided for all i ∈ UEX , and for all P ∈ EX

i ∈ ΨEX (P ) ⇔ att(i) ⊇ ΨIN (Int(P )).

This definition is illustrated in Fig. 8, in the case where ΨEX (P ) is not empty
(it contains i1) and neither is complement (which contains i2). The attributes
of individual i1 are att(i1) and, intuitively, since i1 is in P (blurring the distinc-
tion between syntax and semantics), i1 must have all of the attributes that are
required of individuals in P . In Fig. 8, this is visually indicated by the arrow
from i1 targeting a superset of ΨIN (Int(P )). Likewise, the individual i2 must
be missing an attribute, say a, that characterises P . From this point forward,
in general we will refer to the attributes that characterise P as P -attributes and
so forth.
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Fig. 8. Illustrating respectful interpretations.

4 From Extensional to Intensional Diagrams

Consider the example in Fig. 9, where dEX indicates that P\(Q ∪ R) is non-empty
using an ⊗-sequence. Therefore, we know that there is an element in P that has
all of the P -attributes but is missing at least one of the Q-attributes and at least
one of the R-attributes. So, more formally, given a model IEX = (UEX , ΨEX ) for
dEX , ΨEX (P ) contains an individual, say i, that is not in ΨEX (Q) nor in ΨEX (R).

Moreover, given a respectful interpretation, IIN = (UIN , ΨIN ), att(i)
ensures att(i) ⊇ ΨIN (Int(P )), att(i) � ΨIN (Int(Q)) and att(i) � ΨIN (Int(R)).
From att(i) � ΨIN (Int(Q)) we can deduce that there is a Q-attribute that is
not a P -attribute. Likewise, there is an R-attribute that is not a P -attribute,
which may or may not be the same as the Q-attribute. This situation is captured
by dIN , where two ⊗-sequences are placed in zonal regions. For instance, one
of the ⊗-sequences is in 〈{Int(Q)}, {Int(P )}, {Int(P ), Int(Q), Int(R)}〉 (i.e. the
⊗-sequence is inside Int(Q) but outside Int(P )).

Fig. 9. A respectful translation from extensional to intensional diagrams. (Color figure
online)

In general, given a single ⊗ placed in a zone, (Li, Lo), of an EX -diagram
we know that there is an element (in the set represented by) (Li, Lo); in what
follows we frequently blur the distinction between syntax and semantics as we
have just done here. This element has all of the attributes in (the sets denoted by
the) intensional labels arising from Li; in our previous example, the ⊗-sequence
in dEX was in the zone ({P}, {Q,R}) and, informally, had all the P -attributes.
Importantly, such an element is missing at least one attribute from each of the
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intensional labels arising from Lo; in the previous example, informally, the ⊗-
sequence in dEX was missing a Q-attribute and an R-attribute. This means we
know that each intensional label arising from Lo contains an attribute that is not
in any of the intensional labels arising from Li. This leads to our next definition
which identifies, for any zone, a corresponding zonal region such that if the zone
in a P -diagram contains an ⊗ then the zonal region will contain an ⊗-sequence:

Definition 10. Let (Li, Lo) be a zone formed over EX . Let 〈IN ,OUT , I〉 be
a zonal region formed over IN . Then 〈IN ,OUT , I〉 is a corresponding IN -
region of (Li, Lo) provided

1. IN contains a single intensional label arising from Lo:

IN = {Int(p)} for some p ∈ Lo,

2. OUT contains the intensional labels arising from Li:

OUT = {Int(p) : p ∈ Li}, and

3. I contains the intensional labels arising from Li ∪ Lo:

I = {Int(p) : p ∈ Li ∪ Lo}.

Given (Li, Lo), the set of zonal regions which are corresponding IN -regions is
denoted ZR(Li, Lo).

Referring again to Fig. 9, given I = {Int(P ), Int(Q), Int(R)}, we have

ZR({P}, {Q,R}) = {〈{Int(Q)}, {Int(P )}, I〉, 〈{Int(R)}, {Int(P )}, I〉}.

Fig. 10. A more complex ⊗-sequence case.
(Color figure online)

Fig. 11. The impact of shading.

Whilst this gives us insight into how to translate the information provided
by a single ⊗-sequence placed in a zone, we need to consider the more general
case where ⊗-sequences are placed in multiple zones. Extending the example in
Figs. 9 and 10, we obtain d′

IN from d′
EX . Here, we have ZR({P}, {Q,R}) (as

given above) from the (blue) ⊗ in ({P}, {Q,R}) and

ZR({Q,R}, {P}) = {〈{Int(P )}, {Int(Q), Int(R)}, {Int(P ), Int(Q), Int(R)}〉}
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from the (red) ⊗ in ({Q,R}, {P}). The blue ⊗s in d′
IN arise from the blue ⊗ in

d′
EX . Likewise for the red ⊗s. Given that ⊗-sequences provide disjunctive infor-

mation, there are a range of possibilities for the presence of attributes as shown
in d′

IN ; essentially, the ⊗-sequences in d′
IN capture this range of possibilities

in a conjunctive normal form. Definition 11 makes this insight precise, where
r = {z1, . . . , zn} can be thought of as a region containing an entire ⊗-sequence:

Definition 11. Let r = {z1, . . . , zn} be a region formed over EX . The elements
of the set of regions, R(r), given by

R(r) = {zr1 ∪ . . . ∪ zrn : zr1 ∈ ZR(z1) ∧ . . . ∧ ∪ zrn ∈ ZR(zn)}

are correspondingIN -regions of r.

Having considered the presence of ⊗-sequences in EX -diagrams, our atten-
tion now turns to shading. In Fig. 11, shading has been placed in the zones
({Q,R}, {P}) and ({P,R}, {Q}). This provides information beyond the ⊗-
sequence, such as that ({Q,R}, {P}) represents the empty set. Therefore, from
the ⊗-sequence and the shading, we know that ({P}, {Q,R}) represents a non-
empty set. Thus, the information we gain about the presence of attributes arising
from the ⊗-sequence in d′′

EX reverts to what we found in Fig. 9. Consider now
the shading in ({P,R}, {Q}). This shading tells us that there are no elements
in both P and R but outside Q but does not provide any information about
attributes.

Importantly, it is true in general that the absence of individuals in a set does
not provide any information about the absence of attributes. This is a major
point: shading in EX -diagrams does not provide information about attributes
beyond its interaction with ⊗-sequences. The same is true of missing zones.
Having considered ⊗-sequences, shading, and missing zones, we are in a position
to define the IN -diagram that is a respectful translation of a EX -diagram.

Definition 12. Let dEX = (E,ZE , Z∗
E , SE) and dIN = (I, ZI , Z

∗
I , SI) be Euler

diagrams formed over EX and IN respectively. We say that dIN is the respect-
ful translation of dEX given the intensional label allocation function, Int, pro-
vided:

1. the intensional labels in dIN arise from the extensional labels in dEX :

I = {Int(p) : p ∈ E}.

2. there are no missing zones in dIN : MZ(dIN ) = ∅.
3. there are no shaded zones in dIN : Z∗

I = ∅.
4. the ⊗-identifiers in dIN arise from those in dEX :

SI = {rIN ⊆ ZI : ∃rEX ∈ SE rIN ∈ RIN (rEX \Z∗
E)}.

In Fig. 9, dIN is the respectful translation of dEX . Likewise, d′
IN is the

respectful translation of d′
EX in Fig. 10. Interestingly, dIN , Fig. 9, is the respectful
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translation of d′′
EX in Fig. 11. This illustrates that the translation from exten-

sional diagrams to intensional diagrams inherently loses information. Theorem1,
below, establishes that respectful translations ensure, given any model for dEX
that any interpretation which is respectful of it is a model for dIN ; the theorem
is illustrated in Fig. 121.

Fig. 12. The relationship between models.

Theorem 1. Let dEX = (E,ZE , Z∗
E , SE) be an Euler diagram formed over

EX . Let dIN = (I, ZI , Z
∗
I , SI) be a respectful translation of dEX . Let IEX =

(UEX , ΨEX ) be a model for dEX . Let IIN = (UIN , ΨIN ) be an interpretation
over IN that is respectful of IEX . Then IIN is a model for dIN .

5 From Intensional to Extensional Diagrams

Our task now is to consider what, if any, information we can derive about sets of
individuals from information about attributes. We start by focusing on Fig. 13.
We see that there is an attribute in A that is not in B. However, this does
not imply that there are any individuals with that attribute: the presence of
attributes tells us nothing about the presence of individuals. By contrast, the
absence of attributes does provide information about the absence of individuals.
In our example, the shading inside B but outside A intuitively tells us that the
attributes in A include all of those in B. Therefore, any individual with all of
the attributes in A also has all of the attributes in B, so any such individual
must also be in the set Ext(B). This implies that Ext(A) is a subset of Ext(B),
as indicated by the shading in dEX .

Having established that ⊗-sequences in IN -diagrams provide no information
about individuals in EX -diagrams, our focus is now exclusively on shading and
missing zones. In Fig. 14, d′

IN contains three shaded zones. From the shading
in ({A}, {B,C}) we can see that all attributes in A are all in B or C. This
implies that any individual in both Ext(B) and Ext(C) has all attributes in A.
This insight allows us to shade the zone ({Ext(B),Ext(C)}, {Ext(A)}). Being in
just one of Ext(B) and Ext(C) need not imply membership of Ext(A), however.

1 Proofs of Theorems 1 and 2 are omitted for reasons of space but can be found in an
appendix on our website at http://readableproofs.org/looking-glass.

http://readableproofs.org/looking-glass


Euler Diagrams: Extent to Intent 377

Fig. 13. A respectful translation from intensional to extensional diagrams.

Fig. 14. A more complex shading case.

Consider next the shaded zone ({A,B}, {C}). Taking this shaded zone in iso-
lation tells us that individuals with the common attributes of A and B possess
all attributes in C. From this we cannot infer anything about the absence of
individuals in the sets represented by zones of d′

EX . A little more formally, from
this shaded zone in d′

IN , any individual, i, where

att(i) ⊇ ΨIN (A) ∩ ΨIN (B)

ensures att(i) ⊇ ΨIN (C). But there is no zone in d′
EX whose individuals are

guaranteed to have all of the attributes common to both A and B. This is
because individuals in a zone, say (Li, Lo), in d′

EX , have all of the attributes in
⋃

p∈Li

Ψ(Int(p))

as opposed to an intersection of attribute sets. From this it follows that this
shaded zone does not (in isolation) give rise to shading in d′

EX .
However, if we consider this shaded zone together with the shaded zone

({A}, {B,C}), we form a zonal region, namely 〈{{A}, {C}, {A,B,C}〉. This
shaded zonal region tells us that all individuals with attributes in A have all
attributes in C: there cannot be Ext(C) individuals that are not Ext(A) indi-
viduals. This allows us to shade the zonal region

〈{Ext(C)}, {Ext(A)}, {Ext(A),Ext(B),Ext(C)}〉

(of course, some of this shading in d′
EX was already obtained from the shading

in ({A}, {B,C})). Lastly, just as taking ({A,B}, {C}) in isolation did not yield
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Fig. 15. The impact of missing zones. Fig. 16. The relationship between
models.

information in dEX , the shading in ({B,C}, {A)}) gives rise to no information
about individuals. In summary, we gain information about the absence of indi-
viduals in EX -diagrams is when IN -diagrams contain shading in zonal regions
whose IN set contains a single label.

For our final example in the build-up to defining a respectful translation from
IN -diagrams to EX -diagrams, we consider Fig. 15. Here, there is one shaded
zone in d′′

IN and also one missing zone. These two zones form a zonal region,
namely 〈{C}, {B}, {A,B,C}〉. Consistent with our earlier examples, this gives
rise to the shading in dEX . This leads to our next definition:

Definition 13. Let 〈IN ,OUT , I〉 be a zonal region formed over IN such
that |IN | = 1. Let 〈IN ′,OUT ′, E〉 be a zonal region formed over EX . Then
〈IN ′,OUT ′, I〉 is a corresponding EX -region of 〈IN ,OUT , L〉, denoted

〈IN ,OUT , I〉 ≡c 〈IN ′,OUT ′, E〉

provided

1. IN ′ contains a label arising from OUT: IN ′ = {Ext(a) : a ∈ OUT},
2. OUT ′ contains the label arising from IN : OUT ′ = {Ext(a) : a ∈ IN }, and
3. E contains the intensional labels arising from I: E = {Ext(a) : a ∈ I}.

We are now in a position to define a respectful translation from IN -diagrams
to EX -diagrams:

Definition 14. Let dIN = (I, ZI , Z
∗
I , SI) and dEX = (E,ZE , Z∗

E , SE) be Euler
diagrams formed over IN and EX respectively. We say that dEX is the respect-
ful translation of dIN given the intensional label allocation function Int pro-
vided:

1. the extensional labels in dEX arise from the intensional labels in dIN : E =
{Ext(a) : a ∈ I}.

2. there are no missing zones in dEX : MZ(dEX ) = ∅.
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3. the shaded zones dEX arise from some shaded and missing zones in dIN :

Z∗
E = {zE ∈ 〈IN ′,OUT ′, E〉 : ∃〈IN ,OUT , I〉 ⊆ Z∗

I ∪ MZ(dI)
|IN | = 1 ∧ 〈IN ,OUT , I〉 ≡c 〈IN ′,OUT ′, E〉},

4. there are no ⊗-identifiers in dEX : SE = ∅.

In Fig. 13, dIN is the respectful translation of dEX , which illustrates that
the translation from IN -diagrams to EX -diagrams inherently loses information
provided by ⊗-sequences. We have a similar situation with shading, where d′

IN
is the respectful translation of d′

EX in Fig. 14; here the shading could only be
partially translated. Lastly, d′′

IN in Fig. 15 highlights the role of missing zones
when respectfully translating to dEX . Theorem 2, below, establishes that respect-
ful translations ensure that models for dIN respect only interpretations which
are models for dEX ; the theorem is illustrated in Fig. 16.

Theorem 2. Let dIN = (I, ZI , Z
∗
I , SI) be an Euler diagram formed over IN .

Let dEX = (E,ZE , Z∗
E , SE) be a respectful translation of dIN . Let IIN =

(UIN , ΨIN ) be a model for dIN . Let IEX = (UEX , ΨEX ) be an interpretation
over EX such that IIN is respectful of IEX . Then IEX is a model for dEX .

We now move on to summarise the results of the paper and look forward to
possible directions in which it could be taken.

6 Conclusion

In this paper we have formalised the idea of extensional and intensional Euler
diagrams, providing a systematic study of the extent and intent of a term. We
established several basic results about the relationship between the two perspec-
tives; Theorems 1 and 2 demonstrate the symmetry of the respectfulness relation,
used to give the definitions of the translations in both directions between extent
and intent. In essence our translations maintain the (minimal) information which
must be true in either perspective. These results show the inevitability of infor-
mation loss when translating from one system to the other.

Concerning information loss, it will be interesting to precisely characterise
its nature in future work. In this context, we envisage defining an equivalence
relation that syntactically characterises when two extensional diagrams (resp.
intensional diagrams) give rise the same intensional diagram. Clearly, two exten-
sional diagrams which differ only in their missing zones and shading give rise
to the same intensional diagram (resp. extensional diagram). In Fig. 17, dEX1

and dEX2 differ in this way and both translate to dIN . In addition, dEX3, which
contains an additional ⊗ in shaded zone, also gives rise to dIN . This is because
shaded zones always represent the empty set, even if they contain an ⊗ symbol.

The inspiration for exploring the relationship between extensional and inten-
sional Euler diagrams came from a thought experiment in Moktefi’s 2015
paper [7]. The subject of that article is the “iconicity” of using circles to represent
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Fig. 17. Extensional diagrams translating to the same intensional diagram.

extent, a topic beyond scope for this discussion. However, iconicity depends on
resemblances between notation and meaning; the kind of resemblance involved
in this case is said to be between spatial relations of circles (e.g. one within
another, two placed apart) and relations of sets (e.g. subsumption, disjointness).
That is, the article [7] argues that circles are iconic to extents of terms because
circles have the relations that sets do and that we want to depict. The thought
experiment involves a hypothetical intensional Euler diagram notation without
defining it, and illustrates that Euler diagrams are less iconic (i.e. do not possess
the relevant relations) when used to depict the intent of terms.

Although this paper does not do so, the purpose of creating this formalism
is to carry on the work of the thought experiment: if we accept that a notation
based on circles (or, generally, closed curves) arranged in space is an effective lan-
guage for reasoning about extent, what happens to this effectiveness when we use
a similar notation to reason about intent? What, if anything, does the transition
from extensional to intensional spatial diagrams tell us about the “effectiveness”
(whether explained as iconicity, well-matchedness or using other terminology)
of using space to depict extent? What form would a notation take which “has”
the salient relations of intension? Would translating from extensional Euler dia-
grams to such an intensional notation involve the necessary loss of information?
These open questions can be considered from numerous points of view, and the
work we have presented is the first step towards a formal logical perspective.

References

1. Bassler, O.B.: Leibniz on intension, extension, and the representation of syllogistic
inference. Synthese 2(116), 117–139 (1998)

2. Couturat, L.: La Logique de Leibniz. Félix Alcan, Metz (1901)
3. Dipert, R.R.: Individuals and extensional logic in schroder’s ‘vorlesungen uber die

algebra der logik’. Mod. Log. 2–3(1), 140–159 (1991)
4. Fitting, M.: Intensional logic (2015). https://plato.stanford.edu/archives/sum2015/

entries/logic-intensional/. Accessed Dec 2017
5. Hurley, P.J.: A Concise Introduction to Logic, 12th edn. Cengage Learning, Stam-

ford (2015)
6. Lewis, C.I.: A Survey of Symbolic Logic. University of California Press, Berkeley

(1918)
7. Moktefi, A.: Is Euler’s circle a symbol or an icon? Sign Syst. Stud. 43(4), 597+

(2015)

https://plato.stanford.edu/archives/sum2015/entries/logic-intensional/
https://plato.stanford.edu/archives/sum2015/entries/logic-intensional/


Euler Diagrams: Extent to Intent 381

8. Moktefi, A., Pietarinen, A.V.: On the diagrammatic representation of existential
statements with Venn diagrams. J. Logic Lang. Inform. 24(4), 361–374 (2015)

9. Shearman, A.T.: The Development of Symbolic Logic. Williams and Norgate, Lon-
don (1906)

10. Shin, S.J.: The Logical Status of Diagrams. Cambridge University Press, Cam-
bridge (1994)

11. Stapleton, G.: Delivering the potential of diagrammatic logics. In: International
Workshop on Diagrams, Logic and Cognition, vol. 1132, pp. 1–8. CEUR (2013).
http://ceur-ws.org/Vol-1132/paper1.pdf

12. Venn, J.: On the diagrammatic and mechanical representation of propositions and
reasonings. Philos. Mag. 10, 1–18 (1880)

13. Venn, J.: Symbolic Logic. Macmillan, Basingstoke (1894)

http://ceur-ws.org/Vol-1132/paper1.pdf


Rigor and the Context-Dependence
of Diagrams: The Case of Euler Diagrams

David Waszek(B)

Institut d’Histoire et de Philosophie des Sciences et des Techniques (IHPST),
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Abstract. Euler famously used diagrams to illustrate syllogisms in his
Lettres à une princesse d’Allemagne [1]. His diagrams are usually seen as
suffering from a fatal “ambiguity problem” [11]: as soon as they involve
intersecting circles, which are required for the representation of existen-
tial statements, it becomes unclear what exactly may be read off from
them, and as Hammer & Shin conclusively showed, any set of reading
conventions can lead to erroneous conclusions. I claim that Euler dia-
grams can, however, be used rigorously, if they are read in conjunction
with the premises they are supposed to illustrate. More precisely, I give
rigorous “heterogeneous” inference rules (in the sense of Barwise and
Etchemendy) – rules whose premises are a sentence and a diagram and
whose conclusion is a sentence – which allow to use them safely. I con-
clude that one should abandon the preconception that diagrams can only
be used rigorously if they can be given a context-independent semantics.
Finally, I suggest that context-dependence is a widespread feature of dia-
grams: for instance, Mumma [12] noticed that what may be read off from
a Euclidean diagram depends not only on the diagram’s appearance, but
also on the way it was constructed.

Keywords: Euler · Rigor · Context-dependence · Semantics
Heterogeneous inference

1 Introduction

The logical literature on diagrammatic reasoning frequently makes the implicit
assumption that, in order to be used reliably, diagrams should be free-standing,
i.e. have context-independent semantics and transformation rules. I shall claim
that in practice, this is often not the case: diagrams are often meant to be
read in conjunction with the sentences they illustrate, and this makes them
neither useless nor unreliable. To defend this claim, I shall analyze a case made
famous by Sun-Joo Shin’s work, partly in collaboration with Hammer [6,11]:
Euler diagrams. I shall show how Euler’s original use of his diagrams heavily
relies on contextual reading – a feature of his practice which has so far been
missed by logical attempts to reconstruct it – yet is perfectly sound.
c© Springer International Publishing AG, part of Springer Nature 2018
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2 Presentation of Euler’s Scheme

Euler popularized the following diagrammatic scheme for representing pieces of
reasoning.1 He represents a “general notion”, for instance the notion human,
by the inside of a circle “in which one conceives all humans to be contained.”2

Relations among circles then represent relations among notions: if A corresponds
to the notion human and B to the notion mortal, Fig. 1(a) displays “All humans
are mortal”. More generally, Euler uses this principle to illustrate the four types
of proposition recognized by Aristotelian logic, namely “All A are B”, “No A
is B”, “Some A is B” and “Some A is not B” (Fig. 1). Euler then combines
these diagrams to illustrate syllogisms, i.e. inferences with two premises and one
conclusion. Figure 2, for instance, illustrates the premises “All A are B” and “No
B is C” and displays the conclusion “No A is C”.

Fig. 1. Euler’s diagrammatic representation of propositions [1, vol. 2, pp. 99–100]

Fig. 2. Diagram for “All A are B; no B is C; therefore no A is C” [1, vol. 2, p. 106]

3 The Problem

This convention may seem clear and obvious, but there is a difficulty. As Euler
remarks, the proposition “Some B is A”, for instance, is compatible not just with
Fig. 1(c), but also with Fig. 1(a). The issue is that Euler’s diagrams always show
us more than the propositions of Aristotelian logic actually claim. Figure 1(c)

1 See [1, vol. 2, letters cii–cv, pp. 95–126], which is the first published version of
didactic letters of Euler’s from 1761 (for details, see [5] or [13, p. 417]). Similar
diagrams appear before Euler in a 1661 treatise by Sturm [2, pp. 84–96] and, more
systematically, in a 1712 logical text by Johann Christian Lange [3, pp. 249–268] as
well as in a 1686 manuscript by Leibniz, unpublished until 1903 [4, pp. 292–321].
See e.g. [14].

2 [1, vol. 2, p. 98]. All translations from the original French are mine.
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thus shows not only “Some B is A”, but also “Some A is B”, “Some A is not B”
and “Some B is not A”; similarly, Fig. 1(a) shows not only “Some B is A”, but
also “Some B is not A” and “All A are B”.3 This means that one cannot represent
say “Some B is A” without deciding further questions, e.g. whether “Some A is
not B”. The diagrams are more specific that the propositions. This problem has
a well-known counterpart for geometrical diagrams: one cannot draw a triangle
without drawing it with either an acute or an obtuse angle.

The same problem, namely that diagrams are more specific than propositions,
resurfaces as soon as one tries to combine two premises. For instance, to illustrate
“All A are B” and “Some C is A” together, Euler considers two different cases
(Fig. 3) before concluding that “Some C is B”. If one only considered the first
diagram, one might erroneously conclude that “All C are B”.

Fig. 3. Diagrams for “All A are B; some C is A; therefore some C is B” [1, vol. 2, p. 105]

As the previous example hints, a simple solution to circumvent this issue
would be to represent all possible cases. One first has to consider all diagrams
corresponding to each premise: for instance, for “Some A is B”, Fig. 1(c) and (a)
as well as the case in which both A and B are represented by the same circle.
Then, for every choice of one diagram per premise, one has to consider every
possible combination of them.

But this is not what Euler does, and so, on the face of it, his method can
lead to erroneous conclusions. Indeed, he never varies the representation of the
premises: he always represents “Some A is B”, for instance, by Fig. 1(c). Granted:
as we saw above, he does then consider the different ways in which the diagrams
of the premises may be combined (Lange and Leibniz, who used similar diagrams
before Euler (see footnote 1), never even do this and only consider one diagram
per syllogism). But it is not enough. Take, for instance, the three diagrams
Euler uses to illustrate “Some A is B” and “All C are A” (Fig. 4). Euler claims
that “one cannot conclude anything, since notion C could be inside notion B
entirely, or only partially, or not at all.”4 Yet apparently, his diagrams all display
“Some B is not C”! What is to stop us from drawing this false conclusion? A
reasoning strategy based on the enumeration of possible cases would need to
consider a diagram in which all B are A (Fig. 5). As Euler is neither drawing the
erroneous conclusion nor considering this further diagram, he must be proceeding
differently. But how?
3 [1, vol. 2, pp. 107–108].
4 [1, vol. 2, p. 113].
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Fig. 4. Diagrams for “Some A is B” and “All C are A” [1, vol. 2, p. 112]

Fig. 5. Diagram in which “Some A is B” and “All C are A” but not “Some B is not C”

4 Hammer and Shin’s Diagnosis

Hammer and Shin [11] explore the possibility that Euler actually intends Fig. 1(c)
(for instance) to represent “Some A is B” only, by implicitly relying on the posi-
tion of letters to disambiguate his diagrams. They conclusively show, however,
that no such convention can prevent all mistakes when three circles are consid-
ered together.

At any rate, it would hardly be a coherent reconstruction of Euler’s practice:
Euler himself never mentions the position of letters and freely admits that his
diagrams are ambiguous, without giving the slightest hint that he sees this as
a problem. Clearly, for Hammer and Shin, this makes no sense: “it is quite
surprising that this ambiguity did not bother Euler at all” [11, p. 5].

Hammer and Shin’s judgment relies on the assumption that diagrams can
only be used rigorously if they can be given a context-independent semantics,
that is, a semantics based solely on the appearance of the diagram. It is this
(widespread) assumption that I would like to question here. I shall argue that
Euler reads his diagrams in conjunction with the premises they are meant to
illustrate. This is, I believe, quite typical of the informal use of diagrams: their
appearance is not self-sufficient; to make sense of them, one has to look at them
in a certain way.

5 Another Analysis of Euler’s Practice

To clarify Euler’s own practice with his diagrams, let us turn to letter cv, where
he explains his procedure again, this time on an example of the form “No A is
B; some B is C; therefore some C is not A”. For “No A is B”, he uses Fig. 1(b).
For “Some B is C”, however, he adds a star to his diagram (Fig. 6), and explains
the syllogism thus:
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Since a part of space C is in B and since all of space B is outside space A,
it is obvious that the same part of space C must also be outside space A
[. . . ]
One should pay careful attention to the fact that this conclusion only
concerns the part * of notion C which is immersed in notion B. For the
rest [of notion C], it is uncertain whether it too is excluded from notion
A, as in [Fig. 7(a)], or whether it is contained in it entirely, like [Fig. 7(b)]
or only in part as in [Fig. 7(c)]. Since this is uncertain, the rest of space
C does not enter into consideration at all; the conclusion is restricted to
what is certain, namely, that the same part of space C which is contained
in space B is certainly outside space A [. . . ].5

Euler is not introducing a new, altered system here; if he was, he would at least
attempt to explain systematically how to use the new star for other kinds of
statements. Rather, he is attempting to make explicit the way he understands
his procedure. In this context, the star is a way to draw attention to the relevant
part of the diagram, or more precisely, to explain how the diagram should be
looked at.

Fig. 6. Euler’s starred version of his diagram for “Some B is C” [1, vol. 2, p. 121]

Fig. 7. Starred diagrams for “No A is B; some B is C; therefore some C is not A” [1,
vol. 2, pp. 121–122]. In diagram (b), the border of region A is not a circle: regions A
and B are supposed not to intersect.

As such, Euler’s explanations provide us with a crucial hint: he uses his dia-
grams jointly with the premises they are meant to illustrate. When looking at his
circle diagrams, he keeps in mind which regions he knows something about. For
example, in the quote above, he explains that regions other than the starred one
cannot support inferences. Drawing all possible diagrams is then unnecessary:
one can draw just one diagram, and rely only on what is general about it. I shall
argue that this procedure allows Euler to reason with his diagrams without risk
of error.
5 [1, vol. 2, pp. 121–122].
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6 Making it Precise: Heterogeneous Inference Rules

To make this analysis of Euler’s procedure precise, I shall formulate explicit het-
erogeneous inference rules which I take to provide a fairly faithful reconstruction
of Euler’s practice.

First, a clarification about the phrase “heterogeneous inference”. Barwise
and Etchemendy championed the idea of formal systems based on both sen-
tences and diagrams, the first example of which was provided by their own
Hyperproof system.6 The point of such systems was that they permitted het-
erogeneous inference rules: for instance, rules whose premise was a diagram and
whose conclusion was a sentence. This allowed a division of inferential labor
between text and diagram, under the assumption that some inferences would be
best approached diagrammatically and others sententially. What I shall suggest
here is to use heterogeneous inference rules having a sentence and a diagram as
premises and a sentence as conclusion, in order to model Euler’s contextual use
of diagrams.

Now, let us start from two syllogistic premises and a diagram with three
labeled regions. The heterogeneous inference rules are the following. The first
two only rely on the diagram; the last four rely both on the diagram and on the
premises it illustrates.7

1. From the diagram, infer “All A is B” if it contains two regions labeled A and
B, and if region A is contained in region B.

2. From the diagram, infer “No A is B” if it contains two regions labeled A and
B, and if region A and region B are disjoint.

3. From the diagram and premise “Some A is C”, infer “Some A is B” if the
diagram contains regions labeled A, B and C and if the intersection of regions
A and C is contained in region B.

4. From the diagram and premise “Some A is C”, infer “Some A is not B” if
the diagram contains regions labeled A, B and C and if the intersection of
regions A and C is disjoint from region B.

6 See in particular [8,9]. For another example in the same spirit, see Eric Hammer’s
heterogeneous system for Venn diagrams [7], based on Sun-Joo Shin’s purely dia-
grammatic system [6].

7 I argued that Euler’s diagrams cannot be given a semantics on the sole basis of their
appearance: they only make sense when read together with premises they illustrate.
But from the point of view of these heterogeneous inference rules, which reconstruct
Euler’s practice by teasing apart the roles of diagrams and of premises, matters are
different. Indeed, in the context of these rules, one could consider Euler’s diagrams
as representing universal statements only: in other words, one could give a diagram
the same semantics as the conjunction of all statements “All A are B” and “No
C is D” that it displays (in the sense that region A is included in region B and
regions C and D do not meet). Such a semantics would make our heterogeneous
rules sound. However, note that this semantics for isolated diagrams is a sort of
artifact of the formal reconstruction and makes little sense from the point of view of
Euler’s practice, in which diagrams are never used independently from the text. In
keeping with Euler’s own remarks, it would be more natural to say that e.g. Fig. 1(c)
is disambiguated by the context than to claim that it represents nothing at all.
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5. From the diagram and premise “Some A is not C”, infer “Some A is B” if the
diagram contains regions labeled A, B and C and if the difference of region
A and region C is contained in region B.

6. From the diagram and premise “Some A is not C”, infer “Some A is not B”
if the diagram contains regions labeled A, B and C and if the difference of
region A and region C is disjoint from region B.

The main idea behind rules 3–6 is that an existential conclusion can only be
reached on the basis of a subregion asserted to be nonempty by one of the
premises. For this reason, these rules do not allow the erroneous inference from
Fig. 4.

With these rules at hand, one can reconstruct Euler’s practice fully. To
derive a conclusion from two Aristotelian premises sharing a common term,
he first draws one diagram per premise using his scheme (Fig. 1) and superposes
them, producing as many diagrams as there are possible relations between the
“extreme” terms (i.e. the two terms which do not appear in both premises).
Finally, Euler draws a conclusion only if, according to the rules given above,
each of these combined diagrams allows it.

7 The Drawbacks of Euler’s Approach and the Later
History of Logical Diagrams

I argued that Euler’s practice is reliable, not that there is nothing subtle about it.
Euler does not make explicit the rules governing the context-dependent use of his
diagrams, and the fact is that his system is often perceived as confusing. Perhaps
rules which are both implicit and contextual are intrinsically difficult, or delicate
to convey; in any case, as Hammer and Shin noted [11], it is quite telling that
when Euler attempts to explain precisely how he is reasoning with his diagrams,
in letter cv, he resorts to enriching them (be it only as a temporary didactic
device) with a new symbol – a star, reminiscent of Peirce’s later crosses. In fact,
what is gained when moving to the diagrams of Venn or Peirce is precisely that
they are free-standing: they can be read independently of any sentential context.
The diagrams then become fully independent of the text, as Euler’s were not.

8 General Lessons

Diagrams, then, can have a context-dependent interpretation and yet be use-
ful and reliable reasoning tools. This phenomenon has already been noticed by
Mumma [12] in his work on Euclidean geometry. I drew a parallel between Euler
diagrams and Euclidean diagrams above: in both cases, the diagram is often
more specific than we would like; if we want to rely on it for reasoning, we need
a way to distinguish those features of the diagram which are general, and those
which are accidental and should not be taken into account. In the case of Euler
diagrams, we saw that this requires referring back to the premises the diagram is
meant to illustrate. Analogously, Mumma showed that the mere visual inspection
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of a Euclidean diagram cannot reveal what is meant to be general about it, and
therefore what we can infer from it: we also need to know how the diagram was
constructed. He tries to capture this additional information in a formal object
which he calls, precisely, the context of the diagram.

I doubt that these cases are isolated. It is probable that most informal dia-
grams present this feature to some extent, as they were not designed to be
free-standing. If we want to better account for the use of diagrams in practice,
our logical models of reasoning should incorporate this phenomenon.

Acknowledgments. I would like to thank Jeremy Avigad, Ken Manders, Nicolas
Michel, Marco Panza and David Rabouin for discussions on this topic.
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Abstract. Diagrams in mechanised reasoning systems are typically
encoded into symbolic representations that can be easily processed
with rule-based expert systems. This relies on human experts to define
diagram-to-symbol mapping and the set of rules to reason with the sym-
bols. We present a new method of using Deep artificial Neural Networks
(DNN) to learn continuous, vector-form representations of diagrams with-
out any human input, and entirely from datasets of diagrammatic reason-
ing problems. Based on this DNN, we developed a novel reasoning system,
Euler-Net, to solve syllogisms with Euler diagrams. Euler-Net takes two
diagrams representing the premises in a syllogism as input, and outputs
either a categorical (subset, intersection or disjoint) or diagrammatic con-
clusion (generating an Euler diagram representing the conclusion) to the
syllogism. Euler-Net can achieve 99.5% accuracy for generating syllogism
conclusions, and learns meaningful representations. We propose that our
framework can be applied to other types of diagrams, especially the ones
we are less sure how to formalise symbolically.

1 Introduction

Diagrams have been shown to be effective tools for humans to represent and
reason about complex concepts [1]. Several researchers have developed auto-
mated reasoning systems for diagrams. For example, Jamnik et al. [2] developed
DIAMOND for automating diagrammatic proofs of arithmetic theorems. Bar-
wise and Etchemendy [3] used blocks-world to teach and reason in first order
logic with Hyperproof. Stapleton et al. [4] developed Edith for automated Euler
diagram theorem proving. Urbas et al. [5] extended Edith to spider diagrams
and developed Speedith. In these systems, mechanising reasoning with diagrams
usually relies on methods of encoding diagrams as symbolic representation that
can be easily processed with a rule-based program. Such methods rely on human
experts to define the framework of diagram-to-symbol mapping and the set of
rules to reason with the symbols. In this work, we developed a method using Deep
artificial Neural Networks (DNN) to learn a continuous and vector-form neural
representations of diagrams without any human input rules. With this method,
diagrams can be encoded into neural representations, and reasoned about with
subsequent neural networks or human-defined rules.
c© Springer International Publishing AG, part of Springer Nature 2018
P. Chapman et al. (Eds.): Diagrams 2018, LNAI 10871, pp. 390–398, 2018.
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Recently, DNNs have achieved human comparable performance in several
tasks such as image recognition [6], natural language translation [7]. DNNs’
success in tasks that humans are good at can be partly attributed to their bio-
logically inspired architecture. Deep convolutional neural networks, a type of
DNN applied for supervised image-based tasks, have both strong architectural
and activity pattern similarity to visual cortex in the human brain [8]. This
biological similarity motivates us to apply DNN to investigate diagrammatic
reasoning. We developed Euler-Net, a type of DNN that performs syllogism
reasoning with Euler diagrams. The DNN takes as input a number of Euler dia-
grams (premises), which show set relationships between sets contained in them.
Euler-Net can generate a categorical conclusion (subset, intersection or disjoint)
about the relationship between the sets with 99.5% accuracy. It can also learn
using Generative Adversarial Network (GAN) to generate Euler diagrams that
represent the set relationships without using any additional drawing tools. This
enables Euler-Net to perform full diagrammatic inference, and shows that the
learnt neural representations encodes essential information of the reasoning task.

Euler-Net is developed on, but not limited to, Euler diagram syllogism tasks.
It can be applied to types of diagrams that are difficult to formalise into logic
symbols, and can learn feature representations that capture essential information
in the diagrams and subsequently analyse it. In our future work, we will adapt
Euler-Net to a broader range of diagrams, and develop it into a useful tool for the
diagram research community for investigating different types of diagrammatic
representations.

In the rest of this paper we first give in Sect. 2 some background to neural
nets and Euler diagrams. In Sect. 3 we present our deep neural net architecture
and its use in Euler-Net to reason with Euler diagrams. Next, we evaluate our
system in Sect. 4, and discuss these results and some future directions in Sect. 5.
Finally we conclude in Sect. 6.

2 Background

2.1 Neural Networks

Artificial Neural Network (ANN) is an information processing paradigm that
is inspired by biological nervous systems. A general ANN consists of layers of
artificial neurons connected in a graph, most often in an acyclic directed form. A
single artificial neuron has very limited computational capability. However, when
many of them are connected together to form an ANN, very complex functions
can be approximately represented. ANN can be optimised by back propagation
algorithm [9], a way to back propagate errors from higher layers to lower layers
in order to correct weights assigned to lower layer inputs.

Recently, a particular type of ANN, a convolutional neural network (CNN)
has made breakthroughs in various AI tasks such as image classification [6]. CNN
consists of convolutional layers that apply learnable filters on images to extract
features, and pooling layers that summarise local information. A typical CNN
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Fig. 1. Euler diagrams representing 4 possible relationships between non-empty sets A
and B. (Color figure online)

consists of multiple stacks of convolutional and pooling layers. The layers learn
to extract progressively more complex image features (from edges and contours
to objects). A deep CNN can learn highly complex feature representations that
are similar to neural responses in the human visual cortex [8].

2.2 Euler Diagrams

Euler diagrams [10] are a simple, yet effective diagrammatic representation for
reasoning about set relationships. We will use a colour-coded modification of the
Gergonne’s system of Euler diagrams [11] for its simplicity and visual clarity. In
this system, minimal regions are assumed to be non-empty (i.e., the Gergonne
system of Euler diagrams assumes existential import), and shading is not used.
We assign a distinct colour to each contour instead of alphabet labels to denote
classes. Colour coding facilitates the training of neural network by reducing the
need to associate Alphabet labels with circled regions. There can be four different
relationships between two sets A and B, which are: (1) A ⊃ B, (2) A ⊂ B, (3)
A ∩ B �= ∅ and (4) A ∩ B = ∅.

While in theory the fifth relationship A = B is also possible, we do not
consider it in this work because colour-coded contours will completely overlap
and thereby diminish visual clarity – we leave to explore this in the future.
Figure 1 illustrates how these 4 different set relationships can be represented by
4 different categories of colour-coded Euler diagrams (two sets denoted by Red
and Green).

Euler diagrams are very effective in representing syllogisms. A syllogism con-
sists of two premises that entail a conclusion. Figure 2 illustrates how the colour-
coded Euler diagrams represent the syllogism “All Green are Red, all Blue are
Green, therefore all Blue are Red”. In our task, we do not enforce the fixed-size
contour constraint, which means that contours representing the same class can
have varying sizes in different diagrams. As this Euler diagram system does not
represent partial information, for certain premises there is not a single directly
implied conclusion diagram, but several diagrams that are self-consistent [12]
with the given premises. An example would be for premises “All B are A, some
C are B”, consistent conclusions include “some C are A” and “all C are A”. We
later show that neural networks can learn to reason with self-consistency and
generate all conclusions that are consistent with the premises.
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Fig. 2. Euler diagrams representing the syllogism “All Green are Red, all Blue are
Green, therefore all Blue are Red”. (Color figure online)

3 Neural Network Architecture

3.1 Euler-Net for Categorical Output

We built a system, called Euler-Net, which is a neural network trained to solve
syllogisms represented with Euler diagrams. Euler-Net takes two Euler diagrams
representing the premises of the syllogism as input, and outputs a categorical
conclusion (subset, intersection or disjoint) for the syllogism. Figure 3 shows the
architecture of Euler-Net. The first input diagram shows a relationship between
a set Red and a set Green. The second diagram shows a relationship between
sets Green and Blue. There are 4 possible categories for a categorical conclusion
output from Euler-Net, as discussed in Sect. 2.2.

Fig. 3. Overview of the Euler-Net neural network architecture for Euler diagram syl-
logism reasoning. (Color figure online)

In the case of indeterminacy when no single logical conclusion can be drawn
(e.g., All Green are Red, Some Green are Blue), the neural network outputs
all conclusions that are consistent (not contradicting) with the premises. Neu-
ral networks are trained with pairs of premise diagrams and labels that encode
correct conclusions into a binary (0 or 1) vector of length 4, with 4 positions
in the vector representing each conclusion category as in Sect. 2.2. For example,
vector [0100] encodes Blue ⊂ Red. While developed on the classical syllogisms,
Euler-Net can be applied to diagram tasks with arbitrary number of contours
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in the diagram and arbitrary number of diagrams in the task. We also applied
Euler-Net on tasks where there are 3 contours in each diagram. Namely, the
first diagram contains Red, Green and Blue contours, while the second diagram
contains Green, Blue and Yellow contours. The task is to infer consistent rela-
tionships between classes Red and Yellow. In Sect. 4 we show that for 3-contour
task, the reasoning accuracy decrease is negligible.

Euler-Net is composed of two modules. The first module is a convolutional
network that recognises the diagrams and encodes them into high-level neural
feature representations. This network has a similar function to a visual cortex
in the human brain [8], which transforms visual stimuli into neural code. The
second module is a reasoning network that performs inference on the neural pre-
sentations of diagrams. This reasoning network extracts useful information from
the neural representations in order to achieve accurate inference. The reasoning
network consists of fully-connected layers that densely process the neural repre-
sentations, and outputs the probability for each categorical conclusion. Euler-Net
can be trained to minimise error rates in reasoning with standard Stochastic
Gradient Descent (SGD) and a back-propagation algorithm [9]. Formally, the
training objective is to minimise the loss function as in Eq. 1:

L(D,T ) = −
∑

(d,t)∈(D,T )

∑

i

ti log f(d) + (1 − ti)(1 − logf(d)) (1)

where D are premise diagrams, T are labels, (d, t) is a training sample of
the problem set, ti is the ith element in the label vector, and f(d) represents
Euler-Net as a function of d.

3.2 Euler-Net for Diagram Generation

Instead of generating a categorical conclusion, Euler-Net can also generate dia-
grammatic conclusion of a syllogism, such as diagram 3 in Fig. 2. This allows
Euler-Net to perform complete diagrammatic inference. Diagrams can be gen-
erated from the neural representations of the syllogism problem without any
human intervention or established drawing tools. This is accomplished by con-
catenating an image generator network to Euler-Net. Figure 4 illustrates the
architecture of Euler-Net for diagram generation. This generator network uses
latent neural code vector extracted from the last layer of Euler-Net to generate
Euler diagrams that are consistent with the given premises. The latent code vec-
tor encodes consistent conclusions for the reasoning task. The generator network
then transform this neural representation to an Euler diagram consistent with
the given premises.

The generator network is trained with Generative Adversarial Network
(GAN) [13] training objective, which recently became popular for generating
high definition and sharp images. GAN consists of a generator network and a
discriminator network that are jointly trained in a minimax game. The generator
tries to generate images as real and accurate as possible, while the discriminator
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Fig. 4. Overview of diagram generation module for Euler-Net.

tries to distinguish between the generated and the correct images. The GAN
training objective can be mathematically formulated as in Eq. 2:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (2)

where G is the generator, D is the discriminator, x is a correct data sample, and
z is the latent code vector. This can be viewed as a minimax game between G,
which tries to minimise the objective, and D which tries to maximise it. Dur-
ing training, the parameters of the generator and the discriminator are updated
alternatively to converge towards a dynamic equilibrium. The generator con-
verges after 50000 iterations, and is able to generate an accurate and clear Euler
diagram conclusion consistent with the given premises.

4 Evaluation

Euler-Net is trained with syllogism problems generated from an Euler diagram
syllogism task generator. This generator firstly generates two random logical
relationships for the first two premises, and then generates two Euler diagrams
representing the two logical relationships with random size and position, as long
as the logical relationships are not violated. Subsequently, the task generator
generates consistent conclusions from a manually constructed truth table that
maps any two premises to a set of consistent conclusions. For each consistent
conclusion, corresponding Euler diagrams are also generated with random size
and position. In total, we generated 96000 Euler syllogism reasoning problems for
neural network training. For the 3-contour dataset, the diagrams and conclusions
are generated in the same fashion. The truth table is larger as each premise now
contains relationships between 3 classes, giving 43 possible cases.

During training, we divide the dataset into training set, validation set and
test set with a split ratio of 8 : 1 : 1. We trained Euler-Net with the training
dataset, tuned its performance with reported scores on the validation dataset,
and finally, we evaluated the final performance on the test dataset. We report
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(a) p1 (b) p2 (c) c (d) p1 (e) p2 (f) c

Fig. 5. Two examples of the Euler-Net generated diagrams. p1 and p2 are premises
and c are Euler-Net generated conclusion diagrams.

here the percentage accuracy which is defined as the number of syllogism prob-
lems correctly solved over the total number of problems. Euler-Net is able to
achieve a nearly perfect accuracy of 99.5% on the 2-contour Euler syllogism
tasks, and 99.4% on 3-contour task. In order to understand the performance
results further, we separate test results for conclusive syllogism groups (a single
logical conclusion) and inconclusive groups (multiple consistent conclusions). We
found that Euler-Net achieves 100% accuracy for conclusive groups, which could
indicate that conclusive syllogisms are relatively simpler than the inconclusive
ones.

Euler-Net with added diagram generator can create high quality Euler dia-
grams from neural representations mostly without image artefacts. Figure 5
shows examples of Euler conclusion diagrams generated by Euler-Net for 2-
contour and 3-contour task. This shows that Euler-Net learns neural represen-
tations that encode essential information of the syllogism reasoning problem.
Such neural representations can be interpreted by a diagram generator network
to create a diagrammatic conclusion.

5 Discussion

While we showed that DNN can perform diagrammatic reasoning and learn use-
ful representations on the relatively simple Gergonne’s system of Euler diagram
syllogism solving, DNN is not limited to a particular type of diagram. DNN
provides a universal method for encoding all types of diagrams into neural codes
that can be subsequently analysed. While simple diagrams like Euler diagrams
can be conveniently formalised symbolically into sets of zones, labels and shad-
ings, there are many types of diagrams that are more difficult to formalise. DNN
can be applied to learn representations of such diagrams, and thus enable us to
analyse aspects of those representations, such as for example, the difficulty level
of the question, the amount of redundant information in the diagram, and how
the core logic can be efficiently encoded with DNN in the sequence of diagrams.
We will apply DNN to such more complex diagrams in our future work.

Euler-Net’s learning capacity can be increased for more complex diagrams
than Euler diagrams with 3 contours by increasing architecture complexity, and
including recent techniques such as residual network connections. While in the-
ory for n-set Euler diagram, quadratic amounts of nodes are required in the
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network, most of the nodes can be designed as a reusable module for simple
operations, similarly to how we use the CNN weights for input diagrams. We
can also introduce a recent technique called “neural network attention”, which
allows a neural network to reuse weights for learning simpler features such as
2-set relations – this would greatly improve scalability.

While Euler-Net achieves 99.5% accuracy, it is still not on-par with logical
symbolic reasoner which is 100% accurate. However, conceptually, logical sym-
bolic reasoners only reason with the symbols that represent diagrams, while
Euler-Net reasons directly with the raw diagram input. The strength of DNN
is its ability to capture feature representations for any type of diagram and its
robustness to noise. In our future work we will extend Euler-Net to diagrams
that are drawn with noise or even missing parts, and where a symbolic reasoner
may fail because of difficulty of transforming noisy diagrams into symbols. We
will also develop Euler-Net on a full set of modern Euler-typed diagrams with
shading and non-existential import, including concept diagrams and spider dia-
grams. We will develop Euler-Net as a neural-network-counterpart of modern
diagram theorem provers like Speedith [5].

6 Conclusion

We developed Euler-Net, a deep neural network that can learn to perform dia-
grammatic reasoning about Euler diagram syllogism tasks. We illustrated that
neural representations learnt by Euler-Net encode essential information about
the input diagrams and the reasoning task. Euler-Net, while developed on Euler
diagrams, is not constrained to a specific category of diagrams. Euler-Net can be
readily adapted to other more complex diagrams where information extraction
and formalisation is more difficult. We believe that deep neural networks can be
developed into a useful tool for the diagram research community.
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Abstract. Proof systems play a major role in the formal study of dia-
grammatic logical systems. Typically, the style of inference is not directly
comparable to traditional sentential systems, to study the diagrammatic
aspects of inference. In this work, we present a proof system for Euler
diagrams with shading in the style of sequent calculus. We prove it to
be sound and complete. Furthermore we outline how this system can be
extended to incorporate heterogeneous logical descriptions. Finally, we
explain how small changes allow for reasoning with intuitionistic logic.

Keywords: Euler diagrams · Proof systems · Heterogeneous reasoning

1 Introduction

Starting from the early work on formal diagrammatic systems, the analysis of
proof systems has played a major role. For example, in the seminal work of
Shin [10], she developed a proof system for each system of Venn-diagrams she
defined, and proved each to be sound and complete. Unsurprisingly, comparing
typical rules for Euler and Venn-diagrams with sentential rules is hard. This
is mainly due to two reasons. On the one hand, the former rules are inherently
diagrammatic in nature and are often not directly comparable to sentential rules.
For example, introducing a new contour into an Euler diagram is defined such
that the logical information in the diagram is not affected. That is, from a logical
perspective, the original diagram and the changed one are equivalent. While such
changes are at least unusual for sentential transformations, diagrammatic proof
systems make considerable use of equivalent transformations. On the other hand,
proofs for Euler diagrams or Spider diagrams are defined as a linear progression
from the assumptions to the conclusion [6,10], while sentential proofs are most
of the time defined as proof-trees, where an application of a rule may split the
current proof state into branches, e.g., in systems of natural deduction or sequent
calculus [9]. To the best of our knowledge, the only direct comparison between
diagrammatic inference systems and sentential reasoning styles was conducted
by Mineshima et al. [8]. They analysed proof systems for two diagrammatic
languages: Euler diagrams without shading and Venn-Diagrams, and showed,
how the former relates to natural deduction, and the latter to resolution calculus.
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In this work, we present a proof system for Euler diagrams with shading in
the style of sequent calculus [5]. We prove this system to be sound and complete.
Furthermore, we explain how simple amendments allow us to create a system
for a heterogeneous language of Euler diagrams and propositional logic.

This paper is structured as follows. In Sect. 2, we give a short definition of
Euler diagrams and the semantics we use. Section 3 contains the definition of
the calculus and the proofs for soundness and completeness, while we discuss
extensions and relations to other systems and conclude in Sect. 4.

2 Euler Diagrams

c b

Fig. 1. Euler
diagram

An Euler diagram consists of a set of contours, dividing the
space enclosed by a bounding rectangle into different, possibly
shaded zones (see Fig. 1 for an example). Traditionally, each
contour represents a set, and the diagram restricts the possible
relations between these sets. We take a slightly different app-
roach: contours represent propositional variables, taken from a
countably infinite set Vars. A zone for a finite set of contours
L ⊂ Vars is a tuple (in, out), where in and out are disjoint sub-

sets of L such that in ∪ out = L. The set of all zones for a given set of contours
is denoted by Venn(L).

Definition 1 (Abstract Syntax). A unitary Euler diagram is a tuple d =
(L,Z,Z∗), where Z and Z∗ are sets of zones for L such that Z∗ ⊆ Z, (∅, L) ∈ Z,
and for each c ∈ L, there is a zone (in, out) ∈ Z, such that c ∈ in. The set Z
denotes the visible and Z∗ the shaded zones of d. For a unitary diagram d, we
will also refer to the set of its missing zones MZ(d) = Venn(L) \ Z. The syntax
of Euler diagrams is then given as D ::= d | D → D, where d is unitary. Euler
diagrams of the form D1 → D2 are compound.

a a

Fig. 2. Literals

We allow the diagrams � = (∅, {(∅, ∅)}, ∅) and ⊥ =
(∅, {(∅, ∅)}, {(∅, ∅)}). We define negation by ¬D ≡ D → ⊥
and the missing connectives D1 ∨ D2 ≡ ¬D1 → D2, etc. A
literal is a unitary diagram for a single contour, with exactly
one shaded zone. If the zone (∅, {c}) is shaded in a literal,

then we call it positive, otherwise it is negative (see Fig. 2). Observe that our
notion of literals slightly deviates from the original definition of Stapleton and
Masthoff [11].

Definition 2 (Semantics). A valuation is a function ν : Vars → B, where B =
{tt,ff} is the set of Boolean values. We denote the set of all valuations by Vals.
Let z = (in, out) be a zone. The semantics of z is a subset of Vals, given by
�z� = {ν | ∀c ∈ in : ν(c) = tt and ∀c ∈ out : ν(c) = ff}. The semantics of Euler
diagrams is then �d� =

⋃
z∈Z\Z∗�z� and �D1 → D2� = (Vals \ �D1�) ∪ �D2�,

where d is unitary and D1, D2 are arbitrary Euler diagrams. If �D� = Vals, then
we call D valid, denoted by |= D. Otherwise, D is falsifiable.
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Note that ��� = Vals and �⊥� = ∅, as well as �D1 ∨ D2� = �D1� ∪ �D2� and
�D1 ∧ D2� = �D1� ∩ �D2�. Furthermore, the semantics of a positive literal for
the contour c consists of the valuations with ν(c) = tt.

Definition 3 (Adjacent Zone). Let z = (in, out) be a zone for the contours in
L and c ∈ L. The zone adjacent to z at c, denoted by zc is (in ∪ {c}, out \ {c}),
if c ∈ out and (in \ {c}, out ∪ {c}) if c ∈ in.

Now we can define a way to remove contours from a unitary diagram d.

Definition 4 (Reduction). Let d = (L,Z,Z∗) be a unitary Euler diagram and
c ∈ L. The reduction of a zone z = (in, out) is defined by z\c = (in\{c}, out\{c}).
The reduction of d by c is defined as d \ c = (L \ {c}, Z \ c, Z∗ \ c), where

Z \ c = {z \ c | z ∈ Z}
Z∗ \ c = {z \ c | z ∈ Z∗ and zc ∈ Z∗ ∪ MZ(d)}

That is, we remove the contour c from all zones and only shade the reduction of
a shaded zone z, if its adjacent zone at c is shaded or missing.

If each shaded or missing zone in a diagram d has a shaded or missing adjacent
zone, then the conjunction of the reduction of d by each of its contours preserves
the semantic information. That is, we can distribute the information contained
in d among simpler diagrams.

Lemma 1. Let d = (L,Z,Z∗), where for each z ∈ Z∗∪MZ(d), there is a contour
� ∈ L such that z� ∈ Z∗ ∪ MZ(d). Then �d� =

⋂
c∈L�d \ c�

Proof. For each c ∈ L, we have �d� ⊆ �d \ c�. Hence the direction from left to
right is immediate. Now let d = (L,Z,Z∗) and ν be such that ν ∈ �d \ c� for
all c ∈ L. Hence, for each c, there is a zc ∈ Z, such that ν ∈ �zc \ c�. Now we
have to show that in fact there is a single zone z ∈ Z, such that ν ∈ �z \ c� for
all c. Observe that there are two zones ztt, zff ∈ Venn(d) such that ν ∈ �ztt \ c�
and ν ∈ �zff \ c�, whose only difference is that c is in the in-set of ztt and in the
out-set of zff . Now, assume ν(c) = tt, hence ν ∈ �ztt�. If ν �∈ �d�, this means that
ztt ∈ Z∗∪MZ(d). By assumption, there is a contour � such that ztt

� ∈ Z∗∪MZ(d).
In the reduction of d by �, this means that ztt is either shaded or missing as well,
and hence ν �∈ �d \ ��, which contradicts the assumption on ν. Hence ν ∈ �d�.
The case for ν(c) = ff is similar. ��

3 Sequent Calculus

Sequent calculus, as defined by Gentzen [5] is closely related to natural deduction.
It is based on sequents, which are decomposed by rule applications.
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Γ, D, E ⇒ Δ
L∧

Γ, D ∧ E ⇒ Δ

Γ, D ⇒ Δ Γ, E ⇒ Δ
L∨

Γ, D ∨ E ⇒ Δ

Γ ⇒ Δ, D Γ, E ⇒ Δ
L→

Γ, D → E ⇒ Δ

Γ ⇒ Δ, D Γ ⇒ Δ, E
R∧

Γ ⇒ Δ, D ∧ E

Γ ⇒ Δ, D, E
R∨

Γ ⇒ Δ, D ∨ E

Γ, D ⇒ Δ, E
R→

Γ ⇒ Δ, D → E

Fig. 3. Proof rules for Boolean operators

Definition 5 (Sequent). A sequent Γ ⇒ Δ consists of two multisets Γ and Δ
of Euler diagrams. The multiset Γ is called the antecedent and Δ the succedent.

If Γ (Δ) is the empty multiset, we write ⇒ Δ (Γ ⇒, respectively). If a
sequent is of the form Γ, l ⇒ Δ, l, where l is a positive literal, or Γ,⊥ ⇒ Δ,
or Γ ⇒ Δ,� then it is called an axiom. A sequent D1, . . . , Dk ⇒ E1, . . . , En

is equivalent to (D1 ∧ · · · ∧ Dk) → (E1 ∨ · · · ∨ En). The notions of validity and
falsifiability carry over from the semantics of Euler diagrams.

A deduction for a sequent Γ ⇒ Δ is a tree, where the root is labelled by
Γ ⇒ Δ, and the children of each node are labelled according to the rules defined
below. A deduction where each leaf is labelled with an axiom is called a pf
for Γ ⇒ Δ. We denote the existence of a proof for Γ ⇒ Δ by � Γ ⇒ Δ.
Intuitively, the prover tries to refute the sequent, i.e., she tries to find a valuation
that satisfies all diagrams in the antecedent and falsifies every diagram in the
succedent. If all possible ways to find such a valuation fail, i.e., each branch
ends with an axiomatic sequent, then the diagram is valid. For proof search, it
is beneficial to apply the rules backwards, that is from bottom to top.

Lemma 2. A sequent containing only positive literals is valid iff it is an axiom.

Proof. The right to left direction is immediate. Now let d1, . . . , dk ⇒ e1, . . . , en

be valid, where each di and ej is a positive literal, and assume it is not an axiom.
Hence, for no i and j, we have that di = ej . Then the valuation ν with ν(di) = tt
and ν(ej) = ff falsifies the sequent, which contradicts our assumption. ��

The rules to treat compound diagrams, as shown in Fig. 3, are directly taken
from sequent calculus for propositional logic and are sound [9].

Lemma 3 (Soundness). The rules for Boolean operators are sound.

Let d = (L,Z,Z∗) with |Z∗| > 1, and let di = (L,Z,Z∗
i ), for i ∈ {1, 2}, such

that Z∗ = Z∗
1 ∪Z∗

2 . Then the rules Ls and Rs shown in Fig. 4a separate d. These
rules are closely related to the Combine equivalence rule for Spider diagrams [6].

For d = (L,Z,Z∗) with |MZ(d)| > 0 and z ∈ MZ(d), let dz = (L,Z∪{z}, Z∗∪
{z}). The rules LMZ and RMZ in Fig. 4b introduce the missing zone z.

Now let d = (L,Z,Z∗), where for each z ∈ Z∗ ∪ MZ(d) there is a contour
� ∈ L, such that z� ∈ Z∗ ∪ MZ(d). Let L = {c1, . . . , ck}. Then we can reduce d
according to the rules Lr and Rr shown in Fig. 4c.
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Γ, d1, d2 ⇒ Δ
Ls

Γ, d ⇒ Δ
Γ ⇒ Δ, d1 Γ ⇒ Δ, d2

Rs
Γ ⇒ Δ, d

(a)

Γ, dz ⇒ Δ
LMZ

Γ, d ⇒ Δ
Γ ⇒ Δ, dz

RMZ
Γ ⇒ Δ, d

(b)

Γ, d \ c1, . . . , d \ ck ⇒ Δ
Lr

Γ, d ⇒ Δ
Γ ⇒ Δ, d \ c1 . . . Γ ⇒ Δ, d \ ck

Rr
Γ ⇒ Δ, d

(c)

Γ ⇒ Δ, n1 . . . Γ ⇒ Δ,
nk Γ, o1 ⇒ Δ . . . Γ,

ol ⇒ Δ
Ldec1

Γ, d ⇒ Δ

Γ, n1 , . . . ,
nk ⇒ Δ, o1 , . . . ,

ol
Rdec1

Γ ⇒ Δ, d

(d)

Fig. 4. Proof rules to decompose unitary diagrams

Finally, let d = (L,Z,Z∗), where d is not a positive literal or ⊥, and either
|Z∗| = 1 and |MZ(d)| = 0 or |MZ(d)| = 1 and |Z∗| = 0. Let z = (in, out) be
the corresponding shaded or missing zone, where in = {n1, . . . , nk} and out =
{o1, . . . , ol}. Then the rules Ldec1 and Rdec1 (see Fig. 4d) decompose d into
positive literals.

An example of a proof is shown in Fig. 5. In the applications of Ldec1 and
Rdec1, the diagram denoting the disjointness of u and w is decomposed on the
left side (right side, resp.) of the sequent. The application of Lr is possible, since
for each shaded or missing zone z, there is a contour c such that zc is also shaded
or missing. E.g., consider z = ({u}, {v, w}). Then zw = ({u,w}, {v}) is missing.
Hence, in the reduction of the diagram by w, the zone ({u}, {v}) is also shaded.
That is, we can decompose a complex diagram into simpler diagrams, whose
conjunction comprises the same information as the original.

v w

,

u v

,
u

,
w ⇒ u

v w

,

u v

,
u

,
w ⇒ w

Ldec1
v w

,

u w

,

u v

,
u

,
w ⇒

Rdec1
v w

,

u w

,

u v

⇒
u w

Lr
u vw

⇒
u w

Fig. 5. Example of a deduction

Lemma 4. The conclusion of each rule in Fig. 4 is falsifiable, if and only if, at
least one of its premises is falsifiable.
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Proof. First we consider Ls. Let d = (L,Z,Z∗), where |Z∗| > 1, and d1, d2 be as
required for an application of Ls. Furthermore, let ν be a valuation that falsifies
Γ, d ⇒ Δ, i.e., ν satisfies Γ and d, and falsifies Δ. Since Z∗ = Z∗

1 ∪ Z∗
2 , we have

�d� = �d1�∩�d2�. Hence ν falsifies Γ, d ⇒ Δ if and only if ν falsifies Γ, d1, d2 ⇒ Δ.
For Rs, let ν falsify Γ ⇒ Δ, d. That is, ν falsifies d. Since �d� = �d1� ∩ �d2�, this
is equivalent to ν falsifying at least one of d1 and d2.

The rules Lr and Rr can be proven sound similarly, due to Lemma 1.
For Ldec1 and Rdec1, let z = (in, out) be the single shaded zone in d (the

case for z being missing is similar). Now consider Ldec1. Let ν be a valuation
that falsifies Γ, d ⇒ Δ. Hence, ν ∈ �d�. That is, either ν(n) = ff for at least one
n ∈ in, or ν(o) = tt for at least one o ∈ out. Assume that ν(ni) = ff (the other

case is similar). This is equivalent to ν falsifying Γ ⇒ Δ,
ni . Consider Rdec1.

If ν falsifies Γ ⇒ Δ, d, then ν �∈ �d�. Since �d� = Vals \ �z�, we have ν ∈ �z�.
That is, ν(n) = tt and ν(o) = ff for all n ∈ in and o ∈ out. Hence ν falsifying the
premiss of Rdec1 is equivalent to ν falsifying Γ ⇒ Δ, d.

LMZ and RMZ are sound, since missing and shaded zones are equivalent. ��
From Lemmas 3 and 4, we immediately get the necessary soundness theorem.

Theorem 1 (Soundness). � Γ ⇒ Δ implies |= Γ ⇒ Δ.

Proof. By induction on the length of proofs, using Lemmas 3 and 4. ��
To prove completeness, we need to show that each diagram can be decom-

posed into positive literals. That is, each deduction can be maximised until only
positive literals remain. Note that the example in Fig. 5 is not maximal.

Lemma 5. Every deduction for a sequent Γ ⇒ Δ can be extended to a maximal
deduction, where all diagrams in each leaf are either positive literals, ⊥ or �.

Proof. Assume we have a deduction for Γ ⇒ Δ, where one of the leaves contains
a diagram D, which is not a literal. If D is compound, we use the rules for
Boolean operators to decompose D, until we reach a sequent where D is reduced
to a set of unitary diagrams (possibly on both the left and the right side of the
sequent). Now, let d be such a unitary diagram. If d contains only one shaded
or missing zone, then depending on the side on which d appears, we can apply
Ldec1 or Rdec1 to decompose d to literals. Otherwise, we have to distinguish two
cases. If d contains more than one missing zone, we can apply LMZ or RMZ to
change them to shaded zones. If d contains more than one shaded zone, we can
repeatedly apply Ls or Rs to separate d to diagrams which only contain a single
shaded zone. Finally, if d does not contain any shaded or missing zones, we can
reduce it by using Lr and Rr. We can repeat these steps for every diagram in
the leaves for the derivation of Γ ⇒ Δ. Since each step reduces the number of
operators or of missing or shaded zones, this yields a maximal derivation. ��
Theorem 2 (Completeness). |= Γ ⇒ Δ implies � Γ ⇒ Δ.
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Proof. Assume |= Γ ⇒ Δ. By Lemma 5, we can create a maximal derivation for
Γ ⇒ Δ. Since Γ ⇒ Δ is valid, the premises constructed in each step are valid as
well, due to Lemmas 3 and 4. Hence the leaves of the deduction tree are valid,
and the only valid leaves are axioms by Lemma 2. Accordingly, � Γ ⇒ Δ. ��

4 Discussion

In this section, we compare our calculus with existing proof systems for Euler
diagrams and discuss its properties, implications and possible extensions.

c b ∧ (a b) c a

Fig. 6. Heterogeneous Euler diagrams

Burton et al. analysed strategies
for completeness proofs of diagram-
matic languages [3]. They emphasise
that usually the strategy how to prove
an Euler diagram E from the assump-
tions D1, . . . , Dn is to first create a
maximal diagram Dmax incorporating

the information from all of the Di. Then, all information that is not part of E
will be removed from Dmax . We do not apply this strategy. Instead, the rules
decompose the diagrams, with the only exception being the rules to introduce
missing zones. This is due to the similarity of our calculus to typical sentential
calculi.

The proof system presented in this paper is related to both systems presented
by Mineshima et al. [8]. It is oriented towards refutations, like the resolution
calculus for Venn-diagrams, but also contains rules for the connectives and dia-
grammatic elements, like natural deduction for Euler diagrams. However, our
language comprises both Venn-diagrams and Euler diagrams without shading.

We can extend our calculus to facilitate heterogeneous sequents in a rather
simple way. We can allow compound diagrams to be mixed with propositional
formulas, as for example shown in Fig. 6. The rules for Boolean operators can
then be directly applied to propositional formulas. The only extension we need
to incorporate into the calculus are heterogeneous axioms.

Γ, a ⇒ Δ, a Γ, a ⇒ Δ, a

This system then allows us to reason about heterogeneous Euler diagrams.
However, it is hardly a heterogeneous reasoning system in the sense of Barwise
and Etchemendy [2], since it does not include rules to transfer information from
one representation into the other.

Furthermore, it is simple to amend our calculus to represent intuitionistic
logic instead of classical propositional logic. To that end, we restrict the succe-
dent of sequents to be a single formula, and change the Boolean rules accord-
ingly1. For most of the diagrammatic rules, this change is sufficient as well, the
only exceptions are Ldec1 and Rdec1. However, we can change these rules as
follows.
1 Compare with the textbook by Negri et al. [9].
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Γ, d ⇒ n1 . . . Γ, d ⇒ nk Γ,
o1 ⇒ D . . . Γ,

ol ⇒ D
Ldec1

I

Γ, d ⇒ D

Γ,
n1 , . . . ,

nk ⇒ oi

Rdec1
I

Γ ⇒ d

That is, in Ldec1
I , we keep the diagram in the antecedent for the branches

with the new literals in the succedent, while we omit it in the branches, where
we add literals to the antecedent. For Rdec1

I , we choose a single occurrence of a
literal to keep in the succedent. These changes are similar to the changes for the
Boolean operators. Observe that the semantics presented in Sect. 2 is no longer
suited for this proof system. We would have to define a semantics based on intu-
itionistic models, for example Heyting algebras. However, how such a semantics
should look like is not obvious. It would be interesting to study the connection
of this proof system to traditional proof systems for Euler diagrams, since the
graphical notations for intuitionistic logic are sparse. Notable exceptions are the
work of de Freitas and Viana [4], defining a graphical calculus for relational rea-
soning, and Alves et al. [1], in which they present a visualisation of intuitionistic
proofs. In a similar way, we could try to change the system to reflect substruc-
tural logics, i.e., logics for which the structural rules of weakening, contraction
and/or permutation do not hold2. However, in these logics, new operators arise
and would have to be reflected in the diagrams as well. Such a radical change is
not part of this paper, and left as future work. Of course, classical diagrammatic
systems are possible ways to extend our calculus as well. A natural next step is
an extension to treat Spider diagrams or Constraint diagrams.

A sequent calculus style proof system is suited for automatic proof search.
Hence, an implementation into the theorem prover Speedith [12] is obvious future
work, since it already supports backward reasoning and several proof branches.
Furthermore, extending the tactics within Speedith [7] to our calculus would
allow us to delay the application of rules creating new branches in the proof.
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Abstract. Does the choice of colour-coding scheme affect the usability of
metro maps, as measured by the accuracy and speed of navigation? Using colour
to differentiate lines or services in maps of metro rail networks has been a
common practice around the world for many decades. Broadly speaking, there
are two basic schemes: ‘route colouring’, in which each end-to-end route has a
distinct colour, and ‘trunk colouring’, in which each major trunk has a distinct
colour, and the individual routes inherit the colour of the main trunk that they
run along. A third, intermediate scheme is ‘shaded colouring’, in which each
trunk has a distinct colour, and each route has a distinct shade of that colour. In
this study, 285 volunteers in the US were randomised to these three
colour-coding schemes and performed seventeen navigational tasks. Each task
involved tracing a route in the New York City subway map. Overall, we found
that route colouring was significantly more accurate than the trunk- and
shaded-colouring schemes. A planned subset analysis, however, revealed major
differences between specific navigational hazards: route colouring performed
better only against certain navigational hazards; trunk colouring performed best
against one hazard; and other hazards showed no effect of colour coding. Route
colouring was significantly faster only in one subset.

Keywords: Metro maps � Colour coding � Navigational hazard
New York City subway � Vignelli � Usability testing

1 Introduction

We report on the first part of a project to study the effect of colour coding on the
usability of metro maps. A map designer’s choice of which colour-coding scheme to
use—in particular, colour-coding by individual route versus trunk—is a long-standing
point of controversy, but it has not previously been subject to systematic empirical
study.

The subway system of New York City has in the past switched between
route-colouring and trunk-colouring, and currently has an official online map that
shows individual routes but is coloured by trunk. It is therefore an ideal vehicle for
investigating the effect of colour-coding scheme in a realistic system. The New York
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City subway has one of the most complex service patterns in the world, and is currently
undergoing re-evaluation and development of its information delivery, so it is espe-
cially suited to the present study. Although this study specifically addresses a metro
map of New York City, we believe the results have wider application to metro maps in
other cities.

1.1 Basic Concepts and Nomenclature

Metro maps exhibit a great variety, as shown by Ovenden (2015). Nomenclature is also
varied, and so we will explicitly define the terms that we will be using, as follows.

Metro maps are diagrams of urban rail networks, in which the nodes represent
stations, edges represent services, and the layout, colouring, and graphical symbolism
are designed to assist the passenger in understanding and navigating the network, in
order to use it to travel around the city. Thus the map must show both (a) the topo-
logical connectivity between the stations as effected by the physical tracks and the
passenger services that run along those tracks, and (b) the approximate relationship of
the network to the geographic layout of the city.

A line comprises one, two, three, or four tracks running together: the tracks that
make up a line are usually laid side-by-side, but sometimes are vertically one above the
other. In a two-track line, the tracks go in opposite directions, ‘up’ and ‘down’; in a
four-track line, two tracks go up (one express and one local) and two go down (again,
express and local); in a three-track line, the third track runs express and alternates
between up and down in the morning and evening rush hours; in a single-track shuttle,
the train alternates direction. A local train stops at all stations; an express train stops at
some and skips others. A route is a named individual train service, which normally has
a single terminal at each end. A trunk is a bundle of routes carried on the same line.
A path is a series of one or more segments of routes, connected by transfers.
A journey is a project by a rider to travel between origin and destination stations.
A run is a single-route segment of a path between transfers. More informative metro
maps show the routes as well as the lines, and a fully informative metro map will show
the variation of route service patterns over time of day and day of week.

Route tracing is the mental activity of following a single route as it wends its way
through a metro map, whereas journey planning is the mental activity of navigating a
journey based on the map; it comprises ‘path construction’, that is, assembling a path
from one or more route segments, and ‘path selection’, that is, choosing the best one of
several alternative paths. A navigational hazard is an identifiable local feature of map
that increases the likelihood of a user’s making a mistake in these activities.

The map to be examined in this study is an official diagram of the subway network
of New York City, used on the MTA (Metropolitan Transportation Authority)
Weekender web site (MTA 2017). The map was designed by Yoshiki Waterhouse
(formerly of Vignelli Associates, now at Waterhouse Cifuentes Design) based on an
original 1972 design by Massimo Vignelli, and maintained under Chuck Gordanier,
MTA. This diagram was chosen because it is a large and complex map whose structure
is suited to experimental changes of colour scheme. Although primarily an online map,
the same diagram is increasingly being used in print. This study compares three dif-
ferently coloured experimental variants of this Weekender map. Figures 1, 2 and 3
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show excerpts from the three variant maps used in this study. A route-coloured map
(Fig. 1) shows each route in a distinctive colour, although this may involve re-using
colours, as there may be more routes in total than easily distinguishable colours.
Trunk-coloured maps (Fig. 2) show each trunk in a distinctive colour: all the routes
that run along the same trunk share the same colour. Finally, a shaded-colour map
(Fig. 3) shows each trunk in a distinctive colour, and each route in a different shade of
that colour. Note that a line with no trunk-and-branch structure might still have route
colours distinct from trunk colours because the line might carry routes with different
express and local stopping patterns. Hybrid maps have a mix of trunk and route
colouring: this is seen in complex maps, e.g. Cologne (KVB 2017). A hybrid map may
be referred to as trunk- or route-coloured if one style predominates.

A map can be route-drawn (routes drawn as separate lines) or trunk-drawn (the
trunk is drawn as one line, with branches). A route-drawn map can be route-coloured,
trunk-coloured, or shade-coloured; but a trunk-drawn map must be trunk-coloured. The
London Underground map is an example of a predominantly trunk-drawn diagram,
while the Weekender is a route-drawn, trunk-coloured map.

Use of Colour Coding. Colour coding of metro services started in 1907, when
underground railways had already been in use for half a century (Roberts 2012).
Different cities adopted the concept differently (Lloyd 2012; Ovenden et al. 2008). For
example, in London, Paris, and New York, lines were first coloured by operating
company, with trunk colouring used within each line. When those lines were subsumed
under municipal control (in 1933, 1930, and 1940 respectively) the maps initially

Fig. 1. Route colours (Color
figure online)

Fig. 2. Trunk colours (Color
figure online)

Fig. 3. Shaded colours
(Color figure online)
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retained that historic colour-coding method. In London, that colour scheme mostly
continues today; in Paris, it was replaced by route colouring in 1934; in New York, it
was replaced by a route-drawn, route-coloured map in 1967; and by a trunk-drawn,
trunk-coloured map in 1979 (Lloyd 2012). In 2011, the MTA introduced the Week-
ender, a route-drawn map that preserved the 1979 trunk colouring.

1.2 Usability

Historical Usability Studies. Metro maps have traditionally been created in an arti-
sanal manner without recourse to psychological theory or empirical studies of usability.
In recent years, though, a notion of the evidence-based design of metro maps has
emerged, combining psychological models with empirical studies of the relationships
between observable characteristics of the map and objective measures of the map’s
usability.

An early study of the usability of a metro map was carried out by the marketing firm
Barrington (1966), commissioned by the New York City Transit Authority. Their
survey comprised riders’ opinions about a prototype design of the map, plus a small set
of navigation tests. In the following decade, publicity around the Vignelli map
prompted new studies in 1973 by Bronzaft et al. (1976), who selected test journeys
with the intention of showing that Vignelli’s new schematic map had navigational
hazards. She did not intend the study to establish any principles of map design, or to
produce an objective evaluation of the Vignelli map in relation to some alternative
design.

Although these studies did not provide specific insights into the hazards or design
of metro maps, we may at least glean a corroboration of anecdotal reports that enough
users find it hard to use metro maps (or, at least, the New York City subway map) to
warrant further investigation to characterize and quantify the problem.

Bronzaft and Schachter (1978), Garland et al. (1979) found that colour-coded maps
were more usable, and more strongly preferred, than non-colour-coded maps, but they
did not address what effect the choice of particular colour-coding schemes might have.

Modern Usability Studies. The systematic investigation of metro maps following
scientific principles was instigated comparatively recently. Guo (2011) found that the
London Underground map layout led to sub-optimal journeys. Roberts (2014a),
Roberts and Vaeng (2016) report on the usability effects of large-scale features of the
map layout in the London Underground, the London Docklands Light Railway (DLR),
the Paris Metro, and the Berlin U-Bahn. The work described in this paper extends those
studies by addressing colour coding and local navigational hazards.

Bronzaft in the 1970s used a mix of in vivo travel and pencil-and-paper navigation,
and modern studies have mostly used pen-and-paper tasks (Roberts et al. 2016) with
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some use of touch-sensitive screens (Roberts and Rose 2016). Guo et al. (2017)
extended the methodology by using the automated presentation of map tests remotely
over the internet via Mechanical Turk, a technique that we have adopted in the present
study.

The main results yielded by these contemporary usability studies (summarised by
Roberts 2014a) are: that objective and subjective evaluations of usability are uncor-
related; that layout affects journey planning; that Beck’s octilinear layout is not a ‘gold
standard’ for map layout in all cities, and that instead a framework of more general
principles for map layout can be identified, involving the simplicity, coherence, and
harmony of line trajectories, and the balance and topographicity of the map layout. This
is in stark contrast to the formerly prevailing Beck-centric conventional wisdom (e.g.
Field and Cartwright 2014). Which aspects of a map have the most impact on objective
usability is an open question for empirical research. Factors likely to influence usability
are: overall layout; colour coding; symbolism and layout of transfer stations; sym-
bolism of non-transfer stations; junction layout; and positioning and typography of
labels.

Theory. Until recently, cognitive theory focused on topographic rather than dia-
grammatic maps (Robinson 1952; MacEachren 1995; Montello 2002). Stemming from
the original work of Miller (1956), the notion of cognitive load is a key to under-
standing metro maps. For example, Gallotti et al. (2016) have applied cognitive theory
to quantify the information overload in map navigation in megacities. In the present
project, our model is: (a) tracing a route is essentially a perceptual task, while
(b) journey planning is cognitive and involves constructing and comparing alternative
paths. Roberts (2014b) outlines two features of map reading: cognitive load and at-
tention capture. Individuals can handle limited information (‘cognitive load’). If the
input exceeds that limit, accuracy and speed decline abruptly. Conversely, the salient
elements of a task must capture and retain attention. To reduce cognitive load, and
heighten attention on salient features, the map should minimise irrelevant noise and be
organised to allow the user to find and grasp relevant information. The use of separate
route colours is expected to enhance the perceptual task of route tracing but degrade
journey planning because their added cognitive load would outweigh the perceptual
advantage of distinct colours. Here we test just the first, perceptual part of this theory,
that is, route tracing.

Prediction. The perceptual task of visually tracking something is easier if that thing
can be picked out with distinctive attributes, in this case distinctive colour; and the
countervailing disadvantage, namely that route-colouring adds visual clutter to the map
as a whole, does not come into play because the subject is not performing a cognitive
task. When we isolate route tracing from the more general problem of journey
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planning, we expect it to be more accurate and faster with route-colouring than with
trunk-colouring map; and shaded-colouring to be intermediate. Note: We consider only
route-drawn maps and do not address the effect of route-drawn v trunk-drawn layouts.

Motivation. The study’s impetus comes from a 2014 workshop of wayfinding pro-
fessionals, which suggested that route-coloured maps would have higher usability. Its
relevance comes from metros that switch between colour schemes (e.g. Frankfurt, New
York City), plus those that use shaded-colour schemes (Kick 2017; KVB 2017). So
there is theoretic and practical interest in the question: what effect does colour scheme
have on metro map usability—especially its accuracy, as this has more real-life impact?

2 Method

Map Sourcing. The MTA provided a vector image file of the subway map of New
York City, current at the start of this study (September 2015), and we modified the
colours in Adobe Illustrator for this project. We wanted our results to apply to both
screen and print media, but the latter has a narrower range of colour tones than screens,
so we adjusted the trunk colours of the Weekender map (see below). Our three schemes
were:

• Route-coloured map used RGB colours approximating the Pantone colours of the
1972 Vignelli map. Some routes did not exist in 1972 and have no ‘correct’ Uni-
mark colours and so were assigned subjectively reasonable colours (Fig. 1).

• Trunk-coloured map closely matched the colours of the Weekender, toned down
to the printable range, and adjusted to maintain visibility of station markers (Fig. 2).

• Shade-coloured map was inspired by Jabbour’s KickMap, but the colours were
toned down to the printable range, and adjusted to maintain tonal separation. In each
trunk, light and dark shades were alternated for greater contrast (Fig. 3).

We omitted route labels from the map to prevent the route-tracing task becoming
trivial. And we omitted background details that were not pertinent to the navigation
task (wheelchair access and bus routes) to reduce possible sources of extraneous
variance.

We defined test journeys #1 to #17 by selecting seventeen pairs of stations, so that
each journey would present one main navigational hazard (Table 1) characterised thus:

• Route slips: flipping (‘Slip F’) where two or more routes switch places (Fig. 4);
joining (‘Slip J’) where two or more routes converge into one trunk on a shared
segment of line (three instances are shown in the orange routes in Fig. 5), under-
passing (‘Slip U’), where one trunk passes underneath another (Fig. 6), the twin
hazard (‘Slip T’) of flipping on an underpass (Fig. 7), and parallel running (‘Slip
P’) where two or more routes have a long run together (Fig. 8).
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• Branch jumps: these com-
prise route jumps (‘Jump R’)
where the rider ‘jumps’
across a branched route, in
this case Beach 90 St to
Beach 44 St (Fig. 9) and
trunk jumps (‘Jump T’) where
the rider jumps across a
branched trunk, 138 St-Grand
Concourse to 3 Av-138 St in
this case (Fig. 10).

Fig. 5. Slip J, #8/#9Fig. 4. Slip F, #12

Fig. 8. Slip P, #7

Fig. 6. Slip U, #10/#11

Fig. 7. Slip T, #14/#15

Fig. 9. Jump R, #2 Fig. 10. Jump T, #4
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• Mistransfers: The only mistransfer considered
was the phantom transfer (‘Trans P’), where the
user believes a transfer is needed when it is not, in
this case when travelling from 168 St to 157 St
(Fig. 11).

Four attention exercises were added, which were trivial journeys to check that the
user was paying attention and not just clicking at random, #18 to #21.

Recruitment. Subjects were recruited from across the USA through the Amazon
Mechanical Turk crowdsource service (Amazon 2017) and paid $7.50 for up to an
hour’s work. Such crowdsourcing tools have been established as a platform for con-
ducting behavioural science experiments (Crump et al. 2013; Paolacci et al. 2010).
Whilst laboratories provide a controlled space for experimenters, they are typically
restricted in participant numbers and demographics (Gadiraju et al. 2017). Crowd-
sourcing provides access to a large number of diverse participants (Mason and Suri
2012). Issues can arise: first, a lack of control of participants’ attention to the task, who

Table 1. Routes.

# From To Hazard

1 104 St (A) Aqueduct | North Conduit Ave (A) Jump R
2 Beach 90 St (A) Beach | 44 St (A) ʺ

3 Nereid Av (5) Eastchester | Dyre Av (5) ʺ

4 138 St-Grand | Concourse (4,5) 3 Av | 138 St (6) Jump T
5 72 St (B,C) 5 Av-53 St (M,E) ʺ

6 175 St (A) 155 St (B,D) ʺ

7 Prince St (R,N) Queensboro | Plaza (N,Q,7) Slip P
8 Coney Island | Stillwell Av (D,N,F,Q) Wood|haven Blvd (R,M) Slip J
9 Coney Island | Stillwell Av (D,N,F,Q) Forest Hills|-71 Av (R.F.M,E) ʺ

10 Spring St (C,E) Lafayette|Av (C) Slip U
11 Spring St (C,E) Nostrand Av (A,C) ʺ

12 New Lots Av (3) Harlem | 148 St (3) Slip F
13 New Lots Av (3) 149 St-Grand Concourse (2,4,5) ʺ

14 Jamaica-179 St (F) Court Sq | 23 St (M,E) Slip T
15 Jamaica-179 St (F) Roosevelt | Island (F) ʺ

16 City Hall (R) Queensboro | Plaza (N,Q,7) ʺ

17 168 St (A,C,1) 157 St (1) Trans P
18 Euclid AV (A,C) Grant Av (A) Attention
19 Kings Hwy (N) Coney Island | Stillwell Av (D,N,F,Q) ʺ

20 Fulton | St (G) Clark St (3) ʺ

21 Kingsbridge | Rd (4) Woodlawn (4) ʺ

Fig. 11. Trans P, #17
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might be clicking randomly to complete the task as quickly as possible; second, the
lack of a means of interacting with the participant for training. We mitigated these, in
the first case through attention-checking questions that could be performed without
much cognitive effort, and in the second case through careful design of the study
software to include a sizeable automated training phase (which was developed in the
supervised pre-pilot study).

Study Software. We presented the maps as Scalable Vector Graphic (SVG) images in
JavaScript within Mechanical Turk. As each subject began, the software randomly
allocated a colour scheme (trunk, route, or shaded). It then presented four predefined
training trials, which had the same appearance as the test trials, but the subject was told
whether his/her answer was correct. For each test trial, the software randomly selected
one of the twenty-one origin-destination pairs, and displayed them in a zoomed rect-
angle of the map, with blue and red outlines around the start and end station names.
The words “Start” and “Finish” were displayed (in blue and red respectively) in a large
font (40 pixels) to draw attention to these stations, these two words fading over ten
seconds.

Above the map was the question, “Can you travel from station <S1> to station <S2>
without changing trains?” (e.g. Fig. 12), followed by radio buttons labelled “Yes” and
“No”. When the user clicked on one them, a third button appeared, labelled “Finish”,
which the user clicked to close that trial and go to the next. There were three clickable
symbols immediately above this, “+” and “−” for zoom in and out, and “Reset”, and
users could pan the map by clicking to grab it—all reproducing the interface on the
Weekender site. In a laboratory pre-pilot study, we found that users had difficulty using
these controls, so zooming by thumbwheel was added. An online pilot study using
Mechanical Turk showed no further changes were needed, so we moved to the full
study.

Software and data: https://www.cs.kent.ac.uk/projects/metromap/.

Fig. 12. Sample screenshot (for test journey from 72 St to 5 Av–53 St) (Color figure online)
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Each subject was allowed three minutes per trial: any timeouts were logged as a
‘failure by timeout’ (and counted as a non-success in the statistics), and the subject
moved to the next trial. A total of 10 trials were timed out (4 trunk, 4 route, 2 shaded).

Exclusions. Neither the training trials nor the attention exercises were included in the
statistics presented here. We excluded all data from any subject who failed in two of the
four attention exercises, or who failed to complete the full set of tasks, or who com-
pleted the tasks but failed to upload the data to Mechanical Turk. Of 305 subjects who
were randomised, 20 were excluded for those reasons.

3 Results

Navigation accuracy when following a route in the NewYork City diagrammatic subway
map is significantly affected by the colour-coding scheme. Table 2 and Fig. 13 shows the
analysis of 4,845 trials by 285 subjects (98 trunk, 93 route, 94 shade colouring). Each
subject’s accuracy is scored as the percentage of correct answers in 17 trials.

Route colouring was the most accurate, while trunk colouring was only slightly
more accurate than shaded. A one-factor, three-level analysis of variance showed a
statistically significant effect of colour scheme on accuracy (p < 0.01), although only
one pair-wise comparison (route v shaded) was significant (p < 0.05). Route colouring
was also the fastest, but the effect of colour coding on time was not statistically
significant.

Table 2. Effect of colour coding on accuracy & speed of navigation.

Mean score (%), S ± SE Mean time (seconds), T ± SE

Trunk Route Shaded Trunk Route Shaded

66.8 ± 1.4 71.9 ± 1.2 65.7 ± 1.3 p < 0.01,
F(2,282) = 5.7

26.8 ± 1.0 24.5 ± 1.1 27.3 ± 1.4 NS,
F(2,282) = 1.5

0%

10%

20%

30%

40%

50%

60%

70%

80%
ShadedRouteTrunk

Overall

Fig. 13. Mean score
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The main navigational hazard presented in each trial affected the accuracy of
navigation. We examined two classes of hazard: slippage between routes, and jumping
across branches (Table 3 and Fig. 14). In slippage, route colouring’s advantage was
more pronounced, but in branch jumping, the effect was inverted and trunk performed
best.

In both subsets Slip and Branch, a three-level analysis of variance showed a sig-
nificant effect of colour coding (both p < 0.01). In the Slip subset, pair-wise analysis of
variance showed that route colouring is significantly more accurate than either trunk or
shaded (both p < 0.01) but trunk and shaded are not significantly different from each
other. In the Jump subset, pair-wise analysis of variance shows only that trunk
colouring is significantly more accurate than route (p < 0.05).

Analysis of eight specific types of navigational hazard indicated a strong depen-
dence of the colour-coding effect on the main navigational hazard that is presented in a
trial: three out of five slippage hazards showed large and significant advantages in route
colouring, while the other two showed no significant dependence on colour coding
(Table 4 and Fig. 15). The two branch-jumping hazards showed a significant effect, but
with opposite directions–one favouring trunk colouring, the other route. Phantom
transfers showed worse-than-chance error rates, with a significant advantage in route
colouring.

In most subsets, route colouring yielded the fastest navigation, but only in one
(‘Jump T’) did this attain statistical significance.

Table 3. Subset analysis by general class of navigational hazard.

Mean score (%), S ± SE Mean time (seconds), T ± SE

Trunk Route Shaded Trunk Route Shaded

Slip 68.4 ± 1.5 81.1 ± 1.5 71.3 ± 1.6 p < 0.01,
F(2,282) = 15.8

31 ± 1.2 29.4 ± 1.3 31.8 ± 1.6 NS,
F(2,282) = 0.8

Jump 69.0 ± 2.3 60.0 ± 1.9 61.9 ± 2.3 p < 0.01,
F(2,282) = 4.8

21.0 ± 1.0 18.0 ± 1.0 21.8 ± 1.4 NS,
F(2,282) = 3.0
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20%

40%

60%

80%

100%
ShadedRouteTrunk

JumpSlip

Fig. 14. Mean score, by class of navigational hazard
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Where the main navigational hazard is route slippage due to flipping (Slip F),
joining (Slip J) and the twin hazard of flipping on an underpass (Slip T), route
colouring shows a strong and statistically significant advantage in accuracy of navi-
gation. Trunk colouring is worst, and shaded colouring has intermediate accuracy. In
each of these three subsets, three-level analysis of variance shows a significant effect of
colour scheme (p < 0.01); and pair-wise analyses show that route colouring is sig-
nificantly more accurate than trunk (p < 0.01) or shaded (p < 0.05) but trunk and
shaded are not significantly different from each other.

In the trials where the main navigational hazard is route slippage due to parallel
running (Slip P) or underpassing (Slip U), neither the accuracy nor the speed of
navigation exhibited any significant dependence on the colour coding.

Table 4. Subset analysis by specific type of navigational hazard

Mean score (%), S ± SE Mean time (seconds), T ± SE

Trunk Route Shaded Trunk Route Shaded

Slip F 70.9 ± 3.1 89.2 ± 2.4 75.0 ± 3.3 p < 0.01,
F(2,282) = 9.9

38.1 ± 2.1 38.9 ± 2.4 39.7 ± 2.9 NS,
F(2,282) = 0.1

Slip J 52.6 ± 2.3 68.8 ± 2.6 56.4 ± 2.7 p < 0.01,
F(2,282) = 10.1

53.6 ± 3.1 43.6 ± 3.0 52.3 ± 3.7 NS,
F(2,282) = 2.6

Slip T 65.3 ± 3.0 85.7 ± 2.1 71.3 ± 2.2 p < 0.01,
F(2,282) = 15.8

22.5 ± 1.1 20.9 ± 1.2 22.4 ± 1.3 NS,
F(2,282) = 0.5

Slip P 79.6 ± 4.1 75.3 ± 4.5 80.9 ± 4.1 NS,
F(2,282) = 0.5

23.1 ± 1.5 26.0 ± 2.2 26.4 ± 2.1 NS,
F(2,282) = 0.8

Slip U 80.6 ± 3.5 81.2 ± 3.5 77.7 ± 3.7 NS,
F(2,282) = 0.27

20.3 ± 1.0 19.8 ± 1.1 20.2 ± 1.3 NS,
F(2,282) = 0.0

Jump R 46.3 ± 3.7 23.7 ± 3.6 35.8 ± 3.5 p < 0.01,
F(2,282) = 9.25

21.4 ± 1.2 18.6 ± 1.1 21.6 ± 1.6 NS,
F(2,282) = 1.5

Jump T 91.8 ± 1.9 96.4 ± 1.5 77.7 ± 2.2 p < 0.01,
F(2,282) = 4.9

20.6 ± 1.1 17.4 ± 1.1 22.1 ± 1.5 p < 0.05,
F(2,282) = 3.5

Trans P 37.8 ± 4.9 51.6 ± 5.2 33.0 ± 4.8 p < 0.05,
F(2,282) = 3.68

14.2 ± 1.0 15.4 ± 1.1 15.8 ± 1.5 NS,
F(2,282) = 0.5
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Trans PJump TJump RSlip USlip PSlip TSlip JSlip F

Fig. 15. Mean score, by individual type of navigational hazard
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Branch jumping exhibits quite different behaviour from route slippage. In the trials
where the main navigational hazard is jumping across a route branch (Jump R), both
the accuracy and speed of navigation are strongly dependent on colour scheme, but—
unlike in the slippage hazard—the trunk colour scheme is most accurate and route
colouring worst. Note that these results are all worse than chance: in effect, the shaded-
and route-coloured maps are positively misleading, while the trunk-coloured map is
almost as good as tossing a coin. In a three-level analysis of variance, colour coding has
a significant effect on accuracy (p < 0.01), and pair-wise analysis of variance shows
that trunk is significantly better than route colouring (p < 0.01). The other pair-wise
comparisons are not statistically significant.

In the trials where the main navigational hazard is jumping across a trunk branch
(Jump T), the error rate is low, but the pattern is the same as in the slippage hazards:
route colouring is the most accurate. Three-level analysis of variance shows that colour
coding has a significant effect on accuracy (p < 0.01); pair-wise analysis of variance
shows that route colouring is significantly better than shaded (p < 0.05). The other
pair-wise comparisons are not statistically significant.

In both of these Jump subsets, route colouring is the fastest. Three-level analysis of
variance shows a significant effect of colour coding only for Jump T. Pair-wise anal-
yses of variance are not statistically significant.

In the trials where the only hazard is a phantom transfer, we have a situation where,
like Jump R above, the map is positively misleading with success rates substantially
below chance, and there is a significant dependence on colour-coding scheme. In
contrast with Jump R, however, in Trans P, route colouring is most accurate.
Three-level analysis of variance showed a significant effect of colour coding
(p < 0.05); but the pair-wise analyses of variance are not significant. Speed of navi-
gation shows no clear pattern in this subset, and analysis of variance yields nothing
statistically significant.

4 Discussion

4.1 Navigational Hazards

Route Slippage. The results confirm the central plank of our theoretical platform: the
navigational task of tracing a line as it weaves through the subway map is more
accurately performed when done with a map that employs route colouring. It was
expected that shaded colouring would yield an intermediate accuracy between those of
route colouring and trunk colouring. In fact, in these tasks there is no real difference in
accuracy between the trunk and shaded colouring.

Route colouring’s advantage is mainly manifested in two recognisable navigational
hazards: flipping, where two routes swap their positions within a trunk (referred to as
‘Slip F’); and joining, where routes join a trunk (‘Slip J’). Two other hazards that were
expected to be comparable were also analysed: underpassing, where one trunk passes
under another trunk (‘Slip U’); and parallel running, where a trunk runs for a long
distance with multiple bends but without any of the other hazards (‘Slip P’). In all four
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hazards, we expected the perceptual task of tracing one route in a trunk of identically
coloured routes would be less accurate than doing so when each trunk is distinctly
coloured. In fact, the hazards Slip U and Slip P showed no differential effect of colour
coding. A fifth subset was analysed, whose principal risk was the twin hazard of
flipping immediately next to an underpass: as expected, this yielded a higher error rate
than Slip F or Slip U alone, and exhibited a significant effect of the colour coding, but
this appears to be due entirely to the flipping, not the underpassing.

It appears that when the parallel routes closely follow each other (as in Slip P and
Slip U), it is easier for the eye to follow them, and route colouring offers no advantage;
but when the routes behave differently (as in Slip F and J), they are harder to follow as
they split the user’s attention, and then route colouring offers an advantage.

Branch Jumping. We expected that colour coding might affect the reading of bran-
ches, and that subjects might mistakenly believe they can ‘jump’ across junctions
without changing trains. We therefore included six trials to investigate ‘branch
jumping’: three to test for jumping across trunk junctions, where a route splits off from
a trunk (‘Jump T’), and three for jumping across route junctions, where a route splits
into two limbs (‘Jump R’). A clear result was obtained: Jump R had a high error rate,
and route colours performed worst; Jump T had a low error rate, and route colours
performed best. It is curious that Jump R is affected by the colour scheme, despite the
fact that the junction itself looks the same whichever scheme is used. Only the context
provided by the rest of the map changes. It is hypothesised that in a route-coloured
map, the user is confused by the inconsistent use of the colour coding in the branch,
with two undifferentiated routes given the same colour, and the confusion disrupts the
thinking and causes errors.

Mistransfers. Besides the test trials, four trivial trials were included to provide a check
on the subject’s attention. In the laboratory pre-pilot study, however, one of these tasks,
the phantom transfer (‘Trans P’), had surprisingly high error rates and showed a strong
effect of colour coding. This was therefore added as the seventeenth test trial in the
online pilot study and the main study; and a replacement attention trial added. The
cause of the errors seems to be a misreading of the Vignelli transfer symbolism at 168
St station, at the junction of the 7 Ave Broadway Line (formerly IRT) and the
Washington Heights line (BMT), where the three station dots are not aligned. As this
navigational task does not involve tracking routes over any long distances or through
any perceptual hazards, it is surprising that accuracy in this task was strongly affected
by colour coding. Its high error rates mean that, in a trunk- or shaded-coloured map,
this junction is positively misleading. (With route colours, the passenger has an even
chance of reading it correctly.) We speculate that trunk and shaded colouring increases
the perceived separation of station markers on the two lines, as the two Broadway
routes are linked by the same colour, while the Washington Heights route is differ-
entiated by its colour.

Speed. Our original hypothesis was that route colouring would enhance the speed of
navigation as well as its accuracy. The results neither prove nor disprove the
hypothesis, but they do suggest the alternative hypothesis that the tracking component
of following a route takes the same time whether it is done correctly or incorrectly. The
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only subset where colour coding had a significant effect on speed was Jump T, which
involves no tracking but the more cognitive task of understanding a junction. It is
expected that a correlation between accuracy and speed will emerge in the more
cognitive task of journey planning, which we will address in the second part of this
project.

4.2 Implications for Design

The original impetus for this research was the practical design question of whether to
draw a metro map with route or trunk colour coding. It was hypothesised that route
colouring would make it easier to carry out the navigational task of tracing a route, but
that the visual clutter it creates would make it harder to carry out complex journey
planning. It was an open question whether one or the other of those two factors would
predominate and therefore whether it is possible to recommend one or the other colour
scheme. The present study examines only the route-tracing task; a further study of the
effect of colour coding on journey planning is in preparation.

We have found that colour coding does not have a consistent effect across the
board. It depends on navigational hazard. Route colouring offers its greatest advantage
in tracing routes against the hazards of flipping and joining. If a metro map has a lot of
those hazards, but is not so complex that it requires difficult journey planning, then we
would expect route colouring to yield a more usable map.

A more general outcome is the identification of distinct navigational hazards, which
a designer may address in mapmaking, and software should avoid in automated design.

• Flipping causes the user to lose track of a route, especially in a trunk-coloured
map. Change the layout to avoid flips or develop less hazardous flips.

• Joining routes within a trunk causes the user to lose track of a route: make the
separation clearer by changing the layout or the colouring.

• If routes are drawn separately in the map, then splitting a route creates a high risk of
branch jumping. Never split routes. This argues against hybrid maps.

• If transfers are shown with Vignelli-style dot proximity then always keep the dots
aligned, and try to avoid drawing such stations at junctions.

4.3 Implications for Automated Design

Work on the automated design of metro maps (e.g. Stott and Rodgers 2004; Wolff
2007) has centred on algorithmic solutions to the mathematical problem of laying out a
metro map subject to multiple criteria of what constitutes of a good layout. The results
of the present study indicate that besides the overall layout, the colour coding and
specific local navigational hazards need to be addressed. Algorithmic methods for
automatically finding and fixing local navigational hazards could have an important
role to play.
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4.4 Implications for Further Research

Inspection of the data from this study reveals that users often make poor choices, either
journeys that are longer than necessary, or that involve more transfers than necessary,
or that involve attempts to execute non-existent routes or transfers. Work by Roberts
has led to a framework for the ‘macro design’ of a map layout. The present work points
to a need for a comparable investigation of ‘micro design’ to establish the effect of
colour, transfer layout and symbolism, and junction layout on usability.

5 Conclusions

There is a strong interaction between the colour-coding scheme and usability in the
diagrammatic New York City subway map, as measured by accuracy of navigation
when carrying out route-tracing tasks. This can be understood in terms of specific
navigational hazards. In a broad class of hazards (Slip F, Slip J, Slip T, Jump T, and
Trans P), the route colouring has a large, statistically significant advantage in accuracy.
In one type of hazard (Jump R), the pattern is reversed, and trunk-colouring outper-
forms route-colouring; in two cases (Slip P, Slip U), colour coding has no significant
effect.

In terms of the psychological model: We conclude that route-coloured maps
become more accurate than trunk- and shaded-coloured maps when routes that belong
to the same trunk behave differently by branching and switching places, and thereby
divide the user’s attention, as opposed to simply running in parallel. We also conclude
that route-coloured maps become less accurate if the colour coding is applied incon-
sistently (for example, route splitting), thereby confusing the user’s thinking.

These results indicate that local navigational hazards can play a major role in the
overall usability of a metro map. And that the choice of a colour-coding scheme that
would yield the most usable map in real-life usage must depend on the comparative
frequency of different kinds of hazard in the map, and the comparative frequency of
different navigations (route tracing versus journey planning) undertaken by passengers.

Acknowledgement. The MTA very generously allowed the use of the Weekender map in this
study, and provided a digital copy of the map.
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Abstract. We present a study that investigates how graph format and
training can affect undergraduate psychology students’ ability to inter-
pret three-variable bar and line graphs. A pre and post-test design
was employed to assess 76 students’ conceptual understanding of three-
variable graphs prior to and after a training intervention. The study
revealed that significant differences in interpretation are produced by
graph format prior to training; bar graph users outperform line graph
users. Training also resulted in a statistically significant improvement
in interpretation of both graph formats with effect sizes confirming the
intervention resulted in substantial learning gains in graph interpreta-
tion. This resulted in bar graph users outperforming line graph users pre
and post training making it the superior format even when training has
occurred. The effect of graph format and training differed depending on
task demands. Based on the results of this experiment, it is argued that
undergraduate students’ interpretations of such three-variable data are
more accurate when using the bar form. Findings also demonstrate how
a brief tutorial can result in large gains in graph comprehension scores.
We provide a test which can be used to assess students understanding of
three-variable graphs and the tutorial developed for the study for edu-
cators to use.

1 Introduction

Analysing and interpreting quantitative data is a key skill taught in all scientific
undergraduate degree courses because the ability to work with data is a fun-
damental activity in the sciences [1]. Although different skills are important for
students to master, one vital skill in the development of scientific inquiry is the
ability to work with quantitative data [2] The expectation that people should
be able to read and interpret basic data has progressed to an expectation that
individuals can actively work with the data and manipulate information depend-
ing on the nature of scientific inquiry [3]. Active interpretation of data requires
skills which allow a reader to make inferences from given data, find trends, crit-
icise data and use data to support and evaluate claims. Therefore proficiency in
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data literacy in today’s information age is a necessary pre-requisite to scientific
inquiry skills [1].

The expanding utilisation of visual presentation of information in science, the
media and regular daily life depends on the presumption that charts and graphs
are straightforward to the viewer, due to the human capability of recognising a
pattern and inferring the quantitative relationship being depicted [4]. However,
reading scientific graphs requires more than encoding of pattern [5] and when
progressing beyond the interpretation of simple pattern relationships [6,7], the
utility of the representation will depend on an interaction between the individ-
ual’s graphical literacy, the graph format used and whether the format supports
the task the reader is required to engage in [8–13].

Although many experienced graph users take their abilities for granted, the
knowledge and skills required are far from trivial and require considerable train-
ing and practice to be mastered [3,9,14]. A large body of research investigating
graph reading ability has revealed that novice students misinterpret scientific
graphs and that most errors can be traced to a deficit in perceptual and concep-
tual understanding of how the visualisation represents information [4,5,15]. For
example, a consistent and ubiquitous finding in the physics education literature
[16] is that students exhibit misconceptions such as interpreting graphs literally
(as pictures) and ‘slope-height’ confusion where students incorrectly assume a
greater slope implies a higher value.

Similar findings concerning consistent misconceptions have been found with
graphs representing data from experimental designs depicting the effect of a one
or more independent variables on a dependant variable. These type of experi-
mental designs are very prevalent in psychology; a subject where students are
required to learn the fundamentals of experimental design and statistical analy-
sis of one or more independent variable on a dependant variable. These designs
are known as “factorial research designs”.

2 Factorial Research Designs

Factorial research designs are widely used in all branches of the natural and
social sciences as well as in engineering, business and medical research. The
efficiency and power of such designs to reveal the effects and interactions of
multiple independent variables (IVs) or factors on a dependent variable (DV)
has made them an invaluable research tool and, as a consequence, the teaching
of such designs, their statistical analysis and interpretation lies at the core of all
natural and social science curricula.

The simplest form of factorial design is the two-way factorial design, contain-
ing two factors, each with two levels, and one DV (for example the differences
in wellbeing (DV) between men and women (IV1) as a function of high and low
exercise regimes (IV2)). Statistical analysis of these designs most often results
in a 2 × 2 matrix of mean values of the DV corresponding to the pairwise com-
bination of the two levels of each IV. Interpreting the results of even these sim-
plest of designs accurately and thoroughly is often not straightforward however,
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but requires a significant amount of conceptual understanding—for example the
concepts of ‘simple’, ‘main’ and ‘interaction’ effects [9]. Like most statistical
analyses, interpretation can be eased considerably by representing the data in
diagrammatic form [17–19]. Data from two-way factorial designs are most often
presented as either three-variable line or bar graphs—variously called ‘interac-
tion’ or ‘ANOVA’ graphs. Examples of such bar and line graphs (taken from the
experiments reported here) are shown in Fig. 1. Consistent with findings in the
domain of physics, research investigating these three-variable graphs reveals a
systematic bias in interpretation centred on two-variables with a deficiency of
interpretation concerning the third variable.

Although the graphs displayed here are relatively simple (depicting the rela-
tionship between three variables) research has consistently revealed that the
majority of graph viewers will struggle to interpret them accurately when the
information is depicted in line graph format [5,15,20]. Despite relatively minor
differences between the two types of graphs experimental studies have revealed
that line graph users were significantly more likely to misinterpret or be unable
to interpret the data represented than bar graph users [15]. In previous research
we hypothesised that these observed differences result from a combination of two
factors: (a) the inadequate knowledge structures and procedures of some novice
users and (b) Gestalt principles of perceptual organisation [21] that made data
points and their relationships more visually salient in the bar graphs, thereby
making their interpretation, particularly by novices, much more detailed and
accurate [15,20].

Specifically, the visual salience of the lines in the line graphs drew atten-
tion to them and readers could associate the line pattern to the legend via a
colour matching process. However, the line connecting the data points made
the identification and interpretation of the specific data points relating to the
variable plotted on the x axis more difficult. These errors were less likely to be
found in bar graph interpretations because each data point is represented by
a unique, readily identifiable bar. To test this notion we designed a novel line
graph design [15] to offset the bias present in traditional line graphs. Data points
were coloured and matched to their corresponding variables by placing a colour
patch next to the associated variable on the x axis. Consistent with the analysis
once this novel colour match line graph shared similar anchoring principles as
the bar graph format performance was equivalent for both graph formats [15].

One potential implication of these findings is that three-variable data of this
type may be more effectively taught to undergraduate students in the form of bar
graphs than with the more traditional line graphs (or the modified graph design
of the colour match graph). Based on previous findings it would appear that
bar graphs are superior to line graphs when presenting statistical information
to a student population. A possible longer term implication may be that this
recommendation is more generally applicable to other forms of data.
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3 The Effect of Training on Statistical Reasoning

There still remains however an important question regarding the robustness of
this effect and whether training can produce any discernible benefits. Although
research has been conducted demonstrating that design modification [15,22] and
cognitive scaffolding [23] can boost accuracy and quality of interpretation, no
studies which we are aware of have investigated the effect of direct training
on comprehension of three-variable bar and line graphs and how training may
potentially interact with graph format.

Additionally, although working with visual representations of data is con-
sidered to be an essential skill in scientific reasoning and there is an increasing
demand in the literature for these skills to be taught [3] we could not find any
tutorial guiding students on how to interpret three-variable Cartesian co-ordinate
graphs or graphical tests which assessed comprehension of these types of graphs.
Graph comprehension is a complex task [14] so it is often the case that novices
will not benefit from the purpose of the visualisation, or worse the representation
will increase misconceptions and erroneous interpretations of data [20]. Dreyfus
and Eisenberg (1990, p. 33) argue that: “Reading a diagram is a learned skill; it
doesn’t just happen by itself. To this point in time, graph reading and thinking
visually have been taken to be serendipitous outcomes of the curriculum. But
these skills are too important to be left to chance” [14].

A systematic review of the literature [3] concluded that graph interpretation
and construction had to explicitly be taught in order for graduate students to
develop scientific inquiry skills in data handling and interpretation. The level
of skill needed to appropriately interpret data from graphs depends on the task
demands on the user. These task demands have traditionally been classified
as elementary, intermediate and advanced [1,3] in the literature and increasing
sophistication of skills is associated with higher educational achievement. Ele-
mentary reasoning is the simplest and requires the user to simply read the data
by locating specific information from the graph. For example, a point reading
question for the graph in Fig. 1a would be “How much CO2 do Quebec plants
which are chilled uptake?” The graph user is then expected to read the informa-
tion from the graph and accurately locate that the CO2 uptake is 50 units.

Intermediate reasoning involves identifying the relationship between variables
and trends being depicted in the graph. For example an intermediate reasoning
question for the graph in Fig. 1a would be “Describe how the treatment affects
each plant type?”. The user is then expected to describe the relationship between
variables, a step up from reading information off such as point reading. An exam-
ple of an intermediate interpretation is: “In the case of chilled treatment both
plants take up the same amount of CO2 but for non-chilled treatment Mississippi
takes up a lot more CO2 than Quebec”. Advanced reasoning involves extrapo-
lating from the data such as generalising to a population, making a prediction
based on the trend or a comparison of trends and variable groupings [1,3]. In
factorial research designs advanced reasoning involves identifying main effects of
each independent variable (e.g., for the graph in Fig. 1b, “Overall fasting results
in a much higher glucose uptake than not fasting”) and if there is an interaction
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effect present. An example of an interpretation of an interaction effect in the
graph in Fig. 1b is “When you are fasting relaxation training slightly increases
glucose uptake. When you are not fasting relaxation training slightly decreases
glucose uptake. Therefore the effect of relaxation training on glucose uptake
reverses depending on whether fasting occurred or not”.

In previous research we have demonstrated that novices may be able to pro-
vide interpretations of the graphical pattern but do not have the knowledge
structures to be able to explicitly identify main and interaction effects (indeed it
is only in an expert sample such advanced reasoning occurs [9,20]). In addition,
we also found that novice students struggle with elementary interpretation if
they cannot relate the pattern to the variables the pattern represents [9,20]. It
is crucial therefore that the rules of graphical representations are taught or even
basic reasoning may be difficult for a non-expert audience of graph users. To
address this need for training this paper describes an experimental intervention
where students were taught how to interpret these graphs depicting results of
factorial research designs. In order to assess graph comprehension prior to train-
ing and after training, pre- and post-tests designed to measure graph reading
ability were also developed. Both measures are described in more depth below.

It may be the case that a high rate of error in graph interpretation emerges
in the absence of appropriate and explicit instruction. If so, the conclusion to be
drawn would be that explicit and rigorous teaching of line graph interpretation is
essential in statistics to prevent it being hampered by the potentially confusing
features of the format. Alternatively, it is possible that the visual salience of the
lines in line graphs is so high that its effect on interpretation is still found after
explicit training has occurred. If this is the case, then it may be wise to conclude
that such data would be best taught and communicated in bar graph form. The
key questions this study aims to address are:

1. Is one particular graph format more appropriate than another for students in
Further and Higher Education?

2. What effect (if any) does a training intervention have on students’ ability to
reason with graphical information?

3. How does the effect of graph format and training differ depending on task
demands?

4. Is there an interaction effect between graph format and training?

4 Method

4.1 Participants

Participants were 80 foundation level undergraduate psychology students at the
University of Huddersfield with 40 participants in each graph condition. There
were 36 participants who completed both the pre and post-test in the line graph
condition and 40 participants who completed both in the bar graph condition
making the overall sample size 76.
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4.2 Materials

Two tests were constructed using two data sets that produced two pairs of
bar and line graphs. These graphs were informationally equivalent in that no
information can be inferred from one that cannot be inferred from the other and
each can be constructed from the information in the other [19]. In addition, all
features were identical between the two graph formats apart from the pattern
in the centre connecting the data points. The graphs for the session 1 test are
shown in Figs. 1a and 1b while those for session 2 are shown in Figs. 1c and 1d1.
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Fig. 1. Factorial graph stimuli used in the pre-training and post-training tests

1 The pre-test is available at http://peebles.sdfeu.org/heapn/q1b.pdf and the post-
test is available at http://peebles.sdfeu.org/heapn/q2l.pdf.

http://peebles.sdfeu.org/heapn/q1b.pdf
http://peebles.sdfeu.org/heapn/q2l.pdf
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The variables in the graphs used for the test were chosen so that no prior
knowledge of the domain or relationships would influence interpretation. The
values of the conditions were devised to present and test the fundamental items
of knowledge required to produce an appropriate knowledge structure or schema
for each graph and to produce patterns that would test the various hypothe-
ses under investigation. The questions in both questionnaires were essentially
identical, with only minor changes in wording to account for the different graph
formats. The questions were devised to examine students’ knowledge of rele-
vant concepts at an elementary, intermediate and advanced level. Elementary
questions (questions 1–4) probed for knowledge of independent and dependent
variables, correct identification of causal relationships and point reading ques-
tions. The maximum score for these set of questions was 9.

These questions were followed by questions 5–12 which required intermediate
reasoning. Specifically the questions required a simultaneous consideration of the
two independent variables to establish the effect on the dependant variable, e.g.,
mean values, minimum and maximum values etc.). The maximum score for these
set of questions was 16. Advanced reasoning involved questions which probed
knowledge of main effects, an interaction effect and ability to be able to consider
every combination of the levels of each IV on the DV (questions 13–15). The
maximum score for these set of questions was 6. Both sessions 1 and 2 graphs
showed a possible main effect of the independent variable plotted on the x-axis
and an interaction effect.

Similar to the test, a tutorial was also developed as an instructional inter-
vention to teach students how to interpret these three-variable graphs (one for
line graphs and the other for bar graphs). The information in both tutorials
was essentially identical, with only minor changes to account for the different
graph formats. The tutorial mirrored the test of graphicacy and covered basic to
advanced skills in graph reading and statistical information extraction. Therefore
the tutorial begins with elementary instruction, such as where the independent
and dependant variables are plotted, how to associate pattern to variables, etc.
then progresses onto intermediate reasoning (how to simultaneously consider
the effect of two IV’s on a dependant variable, how to transform data to provide
mean scores etc.) and advanced instruction which focussed on how to establish
whether a main effect and an interaction effect is present2.

For the purpose of the experiment the tutorial was delivered as a 25 min
presentation (in a lecture theatre, during a first year cognitive psychology class)
by the two authors who practised delivery prior to the experiment and read off
standardised scripts to ensure consistency between conditions.

4.3 Design and Procedure

The study consisted of three elements; a pre-test, an instructional intervention
and a post-test 2 weeks later. A mixed design was employed to assess the effect
of graph format and instruction on graph comprehension. An independent group

2 The tutorial is available at: http://peebles.sdfeu.org/heapn/heapn-tutorial.swf.

http://peebles.sdfeu.org/heapn/heapn-tutorial.swf
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design was employed to assess the effect of graph format, with different partic-
ipants being given bar or line graphs. The test was a repeated measures design
where participants completed both the pre-test and the post-test.

The test was in either bar or line graph form and was randomly distributed
to students which resulted in random allocation to each experimental condition
(bar or line graph). They were then immediately given a 25 min lecture on graph
interpretation at the same time by each respective author in separate lecture
rooms. We chose this setting (lecture hall where students attend teaching ses-
sions) to increase the validity of the learning material and the learning environ-
ment. However, employing elements of a field study meant that counterbalancing
of graphs was not possible in the pre and post-test design.

The lecture was simply a presentation delivered of the tutorial produced. Stu-
dents were informed that they needed to remember whether they were assessed
using the bar or line graph format. A period of 14 days separated the two tests
after which the students completed the second test, again in class. The students
informed the authors the graph condition they had been allocated to, and the
authors did a check of pre and post-tests to ensure they were completed by the
same person.

4.4 Scoring

Each question was scored as correct or incorrect by the author. Where questions
had multiple response options (e.g., name the independent variable(s)) negative
marking was employed to control for guessing and to prevent inflation in scores.
The maximum overall score which could be obtained on the test is a score of 31.

5 Results

The results are discussed in terms of effect size as well as statistical significance
which allows for a meaningful consideration of the results in an educational
context. Descriptive analysis (Fig. 2) reveals bar graph users outperform line
graph users before and after training, with the one exception being the post-
test scores assessing foundation reasoning whereby performance is very similar
in both groups. Therefore this format is superior to the line graph format for
depicting three-variable data sets. Training itself improves performance although
the benefit differs depending on task demand. Therefore the improved effect of
training interacts with task demands, improvement in intermediate reasoning
is more pronounced than improvement in foundation or advanced reasoning.
Variance is similar in both conditions apart from when intermediate reason-
ing is being assessed, in which case variance is much higher in the line graph
condition compared to the bar graph condition. Therefore, in a student sample
performance is better when the bar graph format is used and there is more con-
sistency in performance when intermediate reasoning is required if this format
is used (Fig. 2).
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Fig. 2. Proportion of correct responses for each comprehension level and testing session,
bar and line graph conditions. Error bars indicate 99% confidence intervals.

A mixed method ANOVA determined that test scores differed significantly
as a function of graph format, F (1, 74) = 14.613, p < .001, η2

p = .165, and
this difference is large—bar graph users scored on average 17% higher than
line graph users. Training also resulted in statistically significant improvement,
F (1, 74) = 15.230, p < .001, η2

p = .171, and the effect size is also large, indicating
a substantial benefit from the educational intervention. There was no interaction
effect between graph format and training, F (1, 74) = 0.033, p = .855, η2

p = 0.0.
To establish whether improvement from training differed as a function of

task demands and graph format, paired samples t-tests were conducted using
a Bonferroni corrected alpha of 0.017. These revealed that in the line graph
condition there was a statistically significant improvement from pre to post-
test when foundation reasoning is assessed (p = .009) and when intermediate
reasoning is assessed (p = .01) but not when advanced reasoning is required
(p = .134).

In the bar graph condition training did not produce significant gains in foun-
dation reasoning (p = .177) but produced significant improvement in interme-
diate reasoning (p = .007). The adjustment of the alpha level results in train-
ing not producing a statistically significant improvement in advanced reasoning
(p = .022).

6 Discussion

The experiment presented in this article provides insight into how graph format,
task demands and training in graph interpretation affects the comprehension of
three-variable bar and line graphs. The experiment revealed three key findings
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which have important implications for graphical display design and educational
recommendations for which graph format to use when presenting data from
statistical analyses.

First, informationally equivalent bar and line graphs are not computationally
equivalent for students in higher education. Bar graph users are more likely to
correctly interpret information than line graph users prior to any training. This
effect is stable, irrespective of task demands. This finding has now been replicated
using different methods to assess comprehension including verbal protocols, writ-
ten responses and question answer tasks of the type used in this study [15,20].
The effect size is large and indicates that 17% of variation in performance on
the test can be accounted for by graph format, consistent with previous findings
that novice students perform substantially better when the representation they
work with is in bar form. The increased benefit of training for bar graph users
means that this format still surpasses the line format post-training (Fig. 1).

Secondly a brief training intervention designed to improve graph comprehen-
sion results in a marked improvement when the results are considered in the
context of a one off tutorial in graph interpretation lasting 25 min. The effect
size is large, indicating that the educational intervention resulted in significant
improvement, especially in the line graph condition. Training results in improve-
ments in foundation reasoning when data is presented in the line graph form
but not in bar graph form. This is consistent with previous findings that novice
students struggle with elementary reasoning when data is presented in the line
graph form but not the bar form. Specifically novice users struggle to correctly
associate the pattern in the centre to variables plotted on the axes [15,20,24].
Once this simple matching process has been taught through the tutorial a sig-
nificant improvement emerges in foundation and intermediate reasoning when
using the line graph form.

Advanced reasoning requires a long time to develop [9]; novices are unlikely
to have the knowledge structures to assist them in identifying main effects and
interaction effects [15,20]. However, the improved performance in the bar graph
condition extends to advanced reasoning indicating some benefit from the tuto-
rial. Therefore the component of the tutorial providing instruction on advanced
reasoning would require additional study, although study can be tailored around
the individual student’s test score using our pre and post tests. The video can
also be treated as a hyperlink so components of the tutorial can be targeted for
re-study such as components involving advanced reasoning.

7 Summary and Recommendations

Bar and line graphs are some of the most commonly used graphical formats for
presenting data from some of the most commonly used statistical tests in the
social sciences [25]. Our research findings demonstrate that degree level students
perform better when using bar graphs than when using line graphs. The effect
of graph format is substantial even without training. It is reasonable to assume
that further training would result in instruction accounting for a greater variance
in performance.
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Training results in improvements in reasoning with both graph formats.
Therefore, the recommendations are clear: students should use bar graphs when
interacting with visual displays depicting quantitative data and a brief tutorial
can improve reasoning with this format to a considerable extent. Higher edu-
cation institutions can use our tutorial to provide such training whilst teaching
statistics as part of the psychology degree program. The training can be tai-
lored around the sophistication of skills. For example, a student may find one
off instruction is sufficient for them to be able to manage elementary reason-
ing, but repeated practise would be necessary to develop advanced skills such as
identifying holistic trends such as main effects and interaction effects. We also
provide a test of graphicacy for HEI’s to assess students’ reasoning with graphs
presenting results of experimental designs.
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Abstract. How do you make sense of a graph that you have never seen before?
In this work, we outline the types of prior knowledge relevant when making
sense of an unconventional statistical graph. After observing students reading a
deceptively simple graph for time intervals, we designed four instructional
scaffolds for evaluation. In a laboratory study, we found that only one scaffold
(an interactive image) supported accurate interpretation for most students.
Subsequent analysis of differences between two sets of materials revealed that
task structure–specifically the extent to which a problem poses a mental
impasse–may function as a powerful aid for comprehension. We find that prior
knowledge of conventional graph types is extraordinarily difficult to overcome.

Keywords: Graph comprehension � Scaffold � Unconventional graph

1 Introduction

Imagine when reading a paper you encounter a graph, teeming with information—
surely important by virtue of the precious column inches it spans. But as you scan for
patterns, willing the author’s insight to leap off the page, you find there is something
unattainable. Like the writing of a foreign language, you see familiar symbols and
structure, yet the rules for assembling these pieces into a meaningful whole are just
outside your grasp. How do you make sense of the graphic?

As Larkin and Simon note, “a representation is useful only if one has the pro-
ductions that can use it,” [1, p. 71]. If we lack the ability to draw inferences from a
representation, then we may find it largely useless. How is it that we develop such
productions for new graphical forms, when even familiar systems (like scatter plots and
line graphs) can prove challenging to interpret [2]? In this work, we build upon
research on reading and graph comprehension to explore how readers make sense of an
unconventional statistical graph. After generating hypotheses for instructional scaf-
folding techniques through observation (Study One), we evaluate their efficacy in the
laboratory (Study Two). We find that even with explicit (text or image-based)
instructions, the influence of prior knowledge from conventional graph forms is diffi-
cult to overcome. Our results suggest that when presenting unconventional graphical
forms, effective techniques will direct readers’ attention to the salient differences
between their expectations and reality, and that designers mustn’t take for granted that
readers will notice they are dealing with an unconventional form.
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1.1 Cognitive Aids for Graph Comprehension

Owing largely to their importance in STEM education, techniques for supporting graph
comprehension have been a focus of research in the learning, cognitive and computer
sciences. The most minimal interventions involve graphical cues—visual elements that
guide attention, akin to gesture and pointing in conversation. Acartürk [3, 4] investi-
gated the influence of point markers, lines and arrows on bar charts and line graphs,
finding that different cues can lead readers to interpret a graph as depicting either an
event or process. Similarly, Kong and Agrawala [5] proposed the term “graphical
overlays” to refer to elements layered onto content to facilitate specific graph-reading
tasks. Reviewing a corpus of statistical graphs in popular media they identified five
common types of overlays: (1) reference structures (such as gridlines) (2) highlights,
(3) redundant encodings (such as data value labels), (4) summary statistics and (5) an-
notations, each aimed at reducing cognitive load for particular graph-reading tasks.

Turning to more elaborate interventions, Mautone and Mayer [6] investigated
techniques from reading comprehension to support meaningful processing of graphs in
the college classroom. In a series of experiments, they presented learners with scat-
terplot and line graphs augmented by signaling (animations to reveal components of a
graph, adding cues to highlight the relationship of depicted variables), concrete graphic
organizers (diagrams & photographs of the real-world referents of variables in a graph)
and structural graphic organizers (diagrams depicting a relationship analogous to the
one represented in a graph). They found that the type of cognitive aids provided to
learners affected subsequent structural interpretation of the graphs (measured by rela-
tional or causal statements).

Importantly however, these studies did not differentiate between prior knowledge of
the domain and knowledge of the graphs [3, 4, 6]. The cognitive aids explored in this
literature do not instruct users on how to read the graphs – the “rules” for their
representational systems. Rather, it is assumed that the reader has familiarity with the
type of graph being read. Scatterplots, time series and line graphs all rely on the
Cartesian coordinate system, serving as a common graphical framework [7]. We are
interested in what happens when presented with a graph that doesn’t rely on this
framework. Might we need a different type of scaffolding to learn a novel represen-
tational system?

1.2 Prior Knowledge and Graphical Sensemaking

Modern theories of graph comprehension posit a combination of bottom-up and
top-down processing [8]. While the design of a graph is clearly important, so too is the
nature of prior knowledge we bring to the task. When making sense of a graph, we
draw on at least two sources of prior knowledge: our knowledge of the domain, and of
the graphical form [2]. Scarcity from either source will impede comprehension in
different ways.

Limited Prior Knowledge. If presented with an unfamiliar graph, depicting infor-
mation in an unfamiliar domain, I will be unable use knowledge of one to bootstrap
inferences for the other. Consider a novice physics student reading a Feynman diagram:
without the requisite understanding of particle physics, they cannot reverse-engineer
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the formalisms of the diagram. Without these formalisms, they cannot draw inferences
about particle physics.

Limited Domain Knowledge. Alternatively, if presented with a familiar graph
depicting data in an unfamiliar domain, I might draw on my knowledge of the graph
system to learn something new about the content. If I know a straight line represents a
linear relationship, I can infer that such a relationship exists between the (unfamiliar)
variables in a line graph connected by a straight line [8]. It is this situation we aim to
optimize in STEM education. Mautone and Mayer [6] demonstrated that animations,
arrows, diagrams and photographs can all help students connect their prior knowledge
of graphs to depicted variables, improving their ability to draw inferences about the
related scientific processes. Of course, our expectations about how a graph works, if
inappropriate, can also lead to systematic errors in interpretation [2].

Limited Graphical Knowledge. We are interested in the reciprocal case: an unfa-
miliar representation depicting information in a familiar domain. Importantly, by
graphical knowledge we are not referring to knowledge of graphs in general–graphical
competency–but rather knowledge of the rules governing a particular graph form. We
reason that existing techniques for scaffolding are insufficient for this case, as the
information added to the graphs serve only to strengthen the relationship between the
graph-signs and (real-world) referents. This fails to address the learner’s scarcity of
knowledge for the representational system. If we cannot perform first order readings–
such as extracting a data value–we cannot hope to perform second order readings–like
inferring relationships between variables.

With sufficient domain knowledge, we expect that learners may be able to
reverse-engineer the formalisms governing an unconventional graph. We wish to
scaffold this process to support self-directed graph reading. As a first step, we select an
obscure graphical form using an unconventional coordinate system so that we might
shed light on the graphical framework: the foundation of the graph schema [7].

1.3 The Triangular Model of Interval Relations

Several representational systems for reasoning about time intervals have been explored
in the literature [9], due largely to their importance in data analysis across the sciences
and humanities. We have selected two informationally equivalent [1] types of time
interval graphs, each representing the start and end time, duration, and relations
between intervals.

In Fig. 1-left—the Linear Model of Temporal Relations (hereafter LM)—inter-
vals are depicted as line segments along a one-dimensional timeline running from
left-to-right. The left and right boundary points of a line segment indicate the start and
end time, respectively, while the length of the segment indicates its duration. In the
LM, the y-axis is solely exploited to differentiate between intervals, for example, by use
of a label. In this way, the second dimension contains no metric information. As a
result, intervals can be sorted along the y-axis in numerous ways (e.g. by start time,
duration, alphabetically by label, etc.). As noted by Qiang et al. [10] this polymorphism
prohibits the existence of a standard approach to visual pattern recognition with the
LM, making it ill-suited for applications in exploratory data analysis and inspection of
extremely large data sets.
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Based on work by Kulpa [9] extended by Qiang et al. [10, 11] the Triangular
Model of Temporal Relations (hereafter TM) overcomes this shortcoming by rep-
resenting intervals as points in 2D metric space (Fig. 1-right). Each point represents an
interval. In the vertical dimension, the height of the point indicates its duration. The
intersection of the point’s triangular projections (using diagonally oriented grid lines)
onto the x-axis indicate the start and end time. In this way, every interval is represented
as a unique point in the 2D graph space, and each of its elementary properties are
explicitly encoded by the location of the point.

A brief inspection of the TM by even the most experienced graph readers
demonstrates its relative obscurity. However, while the non-Cartesian coordinate sys-
tem is unconventional, the graph depicts information about a domain in which we all
share substantial prior knowledge: events in time.

1.4 The Present Studies

We are interested in what happens when experienced graph readers (undergraduate
STEM majors) attempt to interpret the TM graph. Further, we wish to develop and
evaluate a series of instructional scaffolds to support comprehension of the graph by
self-directed readers. We start by observing students using the TM graph to solve
simple questions about the properties and relations between events, and then elicit
suggestions for how to make the graph easier to read (Study One). In Study Two, we
evaluate four scaffolds inspired by these observations.

2 Study 1: Observing Learning of an Unconventional Graph

What strategies do we employ to make sense of an unconventional graph? In this
exploratory study, we observed students solving problems with the Triangular Model
(TM) graph (Part A). After a short interview, we challenged students to design
instructional aids making the graph easier to read (Part B). From these data we generate
hypotheses for how we might scaffold comprehension for novel statistical graphs.

A Linear Model (LM) Graph A Triangular Model (TM) Graph

Fig. 1. Informationally-equivalent graphs for intervals of time
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2.1 Methods

Participants. Twenty-three (70% female) English speakers from the experimental-
subject pool at a large American university (M(age) = 20, SD(age) = 1) participated in
exchange for course-credit. All students were majors in STEM subjects. Participants
were recruited in dyad pairs (9 pairs, n = 18) to encourage a naturalistic think-aloud
protocol. In cases where one recruit was absent we conducted the session with the
individual (n = 5), altering the procedure only by encouraging them to think-aloud as
though explaining their reasoning to a partner. In total, we conducted 14 observation
sessions (9 dyads, 5 individuals).

Materials and Procedure. The entire procedure ranged from 45–60 min. In Part A:
The Graph Reading Task, sixteen multiple choice questions were used to probe the
reader’s ability to use the graph to reason about the properties of and relations between
intervals. For example, a question testing the “duration” property might read: For how
many hours does event [x] last? Participants were given one sheet of paper containing
the questions and a second sheet containing a large TM graph with 15 data points1.
After delivering instructions, we started the video recording and left the room.

Upon task completion, we conducted a short interview, prompting participants to
explain how they would plot a new data point on the graph. If participants misinter-
preted the graph, we began a didactic interview, prompting students to ask questions
they thought might help them discover the rules of the graph system. We responded by
only revealing the information explicitly requested, minimizing the effect our teaching
might have on the designs produced in the next task. Once students could plot a new
data point, we proceeded to Part B: The Scaffold Design Task. We asked participants to
think about what they could do to make the graph easier to read for the next participant
and invited them to make marks on the graph.

2.2 Study One: Results

Part A. Graph Reading Task. Participants in only 3 of the 14 sessions correctly
interpreted the TM graph (M(score) = 12/16 points, (SD = 1.7), (M(time) = 19 min,
SD = 30 s). These participants correctly described the graph’s rules in the post-task
interview. In the remaining 11 sessions, participants correctly answered only 2.2
questions on average (SD = 2.1), and were unable to correctly plot a point in the
interview. Yet in these sessions, participants did persist in answering all questions,
spending about the same amount of time on the task (M(time) = 21 min, SD = 2 min).
Reviewing the artifacts participants generated gives us a window into their interpre-
tations. Looking first at the lowest scoring sessions, we noticed many cases where
participants appeared to superimpose the conventional representation for time inter-
vals–the linear model (see Fig. 1-left) – atop the triangular graph (Fig. 2-left). We
dubbed this the “linear interpretation” of the TM, which relies on participants assuming

1 Note. All materials, data and computational notebooks for data analysis are available at https://
madebyafox.github.io/Scaffolding_Graph_Comprehension
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the data points are situated in a Cartesian coordinate system with a single x and y in-
tercept. They must also infer that a point represents a moment in time, rather than an
interval, and that the interval is represented by a line segment which they must mentally
project (or physically draw) atop the graph. They must also decide which moment
along an interval the point represents. In this sense, the “linear interpretation” relies on
two kinds of prior knowledge: first of Cartesian coordinates in which a point has a
single x-intercept, and secondly of conventions for representing intervals as linear
extents, rather than points. This interpretation also requires students to ignore—or
assign no meaningful referent to—the graph’s diagonal gridlines. Once constructed,
participants could extract information from the “linear interpretation” following the
same procedure one would follow for the conventional linear (LM) graph.

Alternatively, In Fig. 2-right we see the artifact from the highest scoring session.
Participants have reinforced the triangular intersections for several points with the x-
axis. Noticeably, we do not see reinforcement of the intersections with the y-axis,
presumably because this is a convention of the coordinate system participants did not
need assistance to interpret.

Testing the Linear Interpretation Hypothesis. From our review of participants’
graph markings, as well as the procedure they (initially) described for plotting a new
data point, we hypothesized that the 11 low-scoring sessions had formed a “linear
interpretation” of the graph. To test this hypothesis, we constructed an alternative
answer key. First, we constructed a “linear interpretation” graph by drawing a vertical
intersect for each data point to the x-axis and construing this as the start time. We then
drew horizontal line segments from each point, with a length determined by the du-
ration given on the y-axis. Using this “linear interpretation” graph, we determined the
correct answer for every problem and re-scored each session. Under this alternative
answer key, the mean score for the 11 lowest-scoring sessions improved from 2.2 to 8.3
(SD = 2.7 points), while the mean score for the 3 highest-scoring sessions decreased
12.3 to 3.0 (SD = 2.0 points), supporting the hypothesis that low-scoring participants
interpreted the graph in accordance with the conventional linear model.

The lowest-scoring session shows an 
(incorrect) Cartesian interpretation.

The highest-scoring session shows a 
(correct) triangular interpretation. 

Fig. 2. Graph artifacts from lowest (left) and highest (right) scoring sessions.
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Part B. Scaffold Design Task. We evaluated the artifacts produced in response to our
prompt to make the graph easier to read, and found evidence of three instructional
approaches: adding pictorial intersections (Fig. 3a), providing annotations/examples
(Fig. 3b, c) and text instructions (Fig. 3d).

In Fig. 3a (at right) participants have drawn
attention to the diagonal gridlines and their dual-
intersections with the x-axis by darkening and col-
oring them. These participants explained the most
challenging part of the graph was realizing they had
to look for two intersections with the x-axis.

In Fig. 3b (at left) participants have annotated their
highlighted intersections. We see a partial worked
example, via the annotation “7 h” to the span for the
red interval.

In Fig. 3c (at right) we see a worked example
where participants both highlighted the intersection
and gave explicit values for a sample point on the
plot. Under the graph they added a production rule
for finding the start-time of a hypothetical point “S”,
indicating that some learners may prefer text instruc-
tions. (triangular grid faded in digital scanning)

Finally in Fig. 3d (at right) we see explanatory
text with an explicit definition of several graph
elements.

Fig. 3a. Pictorial intersections
(Color figure online)

Fig. 3b. Annotations & exam-
ples (Color figure online)

Fig. 3c. Worked example (Color
figure online)

Fig. 3d. Text instruction
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2.3 Discussion of Study One

The results of Study One suggest the Triangular Model (TM) graph is challenging for
STEM undergraduates. While the graph is elegant in its simplicity—as one participant
noted, “once you see [the triangles], you can’t (sic) unsee them”—most re-imagined the
marks on the page as components of the more conventional representation for intervals.
In interpreting this graph students invoked prior knowledge of conventions for the
domain (intervals as line segments) and graphs in general (Cartesian coordinates).
When prompted for instructional aids, students believed they could easily improve
performance of future participants by adding instructions highlighting the multiple
intersections of a point with the x-axis. Importantly, these scaffolds are substantively
different than those explored in previous literature [2–6]. These instructions are most
similar to graphical cues [3, 4], but rather than reinforcing the main argument of the
graph (e.g. local maxima/minima, salient trend, etc.) they draw attention to the structure
of the coordinate system. Both text and image instructions focus on the graphical
framework and how to perform a first-order reading, rather than reinforcing the con-
nection between the graph’s signifiers and referents.

Owing to the limited sample size and observational methods, we fall short of
explaining why some students (3 sessions) were able to interpret the graph while most
were not. In one case, an individual interpreted the graph in the very first question, but
failed to think-aloud, leaving their strategy a mystery. In the second case, the dyad pair
also developed a correct model in the first question. In the third case, the dyad read the
graph incorrectly for about half the questions before realizing their mistake and
re-solving the problem set. These outcomes could be driven by individual differences in
graphical competency, or different problem-solving strategies. Addressing this question
will require further observation with directed post-task interviews.

3 Study Two: Testing Scaffolds for an Unconventional Graph

Inspired by the instructional aids produced by participants in Study One, we designed
four scaffolds for self-directed learning: two text instructions (adjacent to the graphs)
and two illustrations (highlighting x/y intersections). The “what-text” design (Fig. 4a)
specifies the components of the graph and describes their meaning. The “how-text”
design (4b) provides a set of production rules for extracting data from the graph. In the
“static-image” (Fig. 4c), intersections are displayed for a single data point persistent
throughout the task. In the “interactive-image” (Fig. 4d), the appropriate intersections
appear & disappear when a participant hovers their mouse over any data point.

Prior work [11] has demonstrated that the computational efficiency of the TM graph
can be achieved by students after 20 min of interactive video instruction. In Study Two
we test the effectiveness of our designs by seeking to replicate these results with
scaffolding alone. Assigning each participant to a scaffold condition, we compare their
performance on both the LM and TM graphs, and subsequent ability to draw a TM
graph for a small data set. We hypothesize that: (1) scaffolding will not affect per-
formance on the LM graph, because it is conventional and relatively easy to read;
(2) learners without scaffolding (control) will perform better with the LM than TM;
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(3) learners with (any form of) scaffolding will perform better with the TM than LM
(replication of [11]). Finally, based on observations in Study One we expect that
graph-order will act as a scaffold. (4) Learners who solve problems with the LM graph
first will perform better on the TM (relative to TM-first learners) as their attention will
be drawn to the salient differences between the graph types.

3.1 Methods

Design. We employed a 5 (scaffold: none-control, what-text, how-text, static image,
interactive image) � 2 (graph: LM, TM) mixed design, with scaffold as a
between-subjects variable and graph as a within-subject variable. To test our hypothesis
that exposure to the conventional LM acts as a scaffold for the TM, we counterbalanced
the order of graph-reading tasks (order: LM-first, TM-first). For each task, we measured
response accuracy and time. For the follow-up graph-drawing task, we coded the type
of graph produced by each participant.

Fig. 4c. “static-image” displays x/y intersec-
tions for one data point

Fig. 4d. “interactive-image” displays x/y inter-
sections on mouseover

A point is an interval of time
The left intersection with the x-axis along the 
diagonal gridline is the start time
The right intersection with the x-axis along the 
diagonal gridline is the end time
The intersection with the y-axis is the 
duration. 

Fig. 4a. “what-text” specifies graph com-
ponents and their meaning

Start-time: follow the left-most diagonal 
gridline to the intersection with the x-axis
End-time: follow the right-most diagonal 
gridline to the intersection with the x-axis 
Duration: follow the horizontal gridline to the 
intersection with the y-axis
Label: the letter directly above the point

Fig. 4b. “how-text” specifies how to extract
data from the graph
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Participants. 316 (69% female) STEM undergraduates aged 17 to 33 were recruited
from the experimental-subject pool at a large American university (M(age) = 21, SD
(age) = 2), yielding approximately 30 participants per cell in the 5 x 2 design.
Materials

Scaffolds. For the first five questions of each graph-reading task, participants saw their
assigned scaffold along with the designated graph. On the following ten questions, the
scaffold was not present. Examples of each scaffold-condition for the TM graph are
shown in Fig. 4. Equivalent scaffolds were displayed for the LM graph (see
footnote 1).

The Graph Reading Task. Each graph reading task consisted of a graph (LM or TM)
and 15 multiple choice questions (used in Study One). Questions were presented one at
a time, and participants did not receive feedback as to the accuracy of their response
before proceeding. The order of the first five (scaffolded) questions was the same for
each participant, while the order of the remaining 10 were randomized. For each
question, the participant’s response accuracy (correct, incorrect) and latency (time from
page-load to “submit” button press) was recorded. Because each participant completed
the reading task once with each graph, we developed two matched scenarios: a project
manager scheduling tasks (scenario A), and an events manager scheduling reservations
(scenario B). In each scenario, an equivalent question can be identified in the other
pertaining to the same interval property/relation. For example, in scenario A the
question mapping to the “starts” property reads: “Which tasks are scheduled to start at
1 pm?”, and the correct answer consists of 2 tasks (Fig. 5 – left – tasks O & H). In
scenario B, the equivalent question reads: “Which reservations start at 8:00 AM?”, the
correct answer referencing 3 events (Fig. 5 – right – events D, C & L). For the LM
graphs, intervals were sorted in order of duration, with the longest appearing at the top
of the graph. A pilot study on Amazon Mechanical Turk using the LM graph revealed
no significant differences in response accuracy or latency between the scenarios. The
four graphs constructed for the study are shown in Fig. 6.

The Graph Drawing Task. Participants were given a sheet of isometric dot paper with
a table of 10 time intervals, and directed to draw a triangular graph of the data (“like the
triangle graph you saw in the previous task”), using the pencil, eraser and ruler pro-
vided. Isometric dot paper equally supports the construction of lines at 0, 45 and 90
degrees, minimizing any biases introduced by the paper on the features of the graph
drawn by participants.

Procedure. Participants completed the study individually in a computer lab. They
completed the two graph-reading tasks in sequence, one with a TM graph and the other
with an LM graph (order counterbalanced). Afterward, participants completed the
graph drawing task. The entire procedure ranged from 22 to 66 min.

3.2 Results: The Graph Reading Task

Performance on graph-reading tasks is a combination of response accuracy (score) and
time. Table 1 displays the mean values for score (as % correct) and time (in minutes)
for each graph across the scaffold conditions. As we found little variance in response
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time we focus our discussion on performance as judged by response accuracy. To
explore the potential influence of graph, scaffold, and graph-order on scores, we per-
formed a mixed effects ANOVA on score with graph as the within-subjects factor, and
scaffold, graph-order and scenario as between-subjects factors (Fig. 6).

Effect of Graph. We found a significant main effect of graph type on score, F
(1,297) = 97.67, p < .001. In Fig. 6 we see that across all factors, LM scores [green

Task Scheduling (Scenario A) Event Scheduling (Scenario B)
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Fig. 5. LM and TM graphs for each scenario of graph reading task

Table 1. Mean score and response time for graph reading tasks

Mean score (% correct) Mean time (mins)

LM graph TM graph LM graph TM graph

Scaffold M SD M SD M SD M SD

none-control 73 16 46 30 8.6 2.1 11.2 3.6
what-text 74 15 59 29 9.8 2.9 11.6 3.6
how-text 73 14 58 31 9.1 2.3 10.9 3.0
static-image 73 15 57 30 9.1 2.6 10.6 3.5
interactive-img 73 13 71 23 9.4 2.6 9.9 2.6
Total 73 14 59 30 9.2 2.5 10.9 3.3
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squares] (M = 10.96, SD = 2.13) are significantly higher than TM scores [red trian-
gles] (M = 8.78 SD = 4.44), t(316) = −9.45, p < 0.001, r = 0.47, consistent with our
motivating assumption that the TM graph is more challenging to interpret.

Effect of Scaffold. We found a
significant main effect of scaf-
fold on score, F(4,297) = 4.24,
p < .05. A post-hoc t-test sup-
ports our second hypothesis,
that across all other factors,
participants in the no-scaffold
control group performed sig-
nificantly better with the LM
graph (M = 10.98, SD = 2.33)
than the TM graph (M = 6.9,
SD = 4.51), t(60) = 7.07, p <
0.001, r = 0.67. Regarding our
third hypothesis, we found a
significant interaction between
graph and scaffold, F(4,297)
= 10.03, p < .001. As pre-
dicted, scaffolds did not influence the score when solving problems with the LM (hy-
pothesis 1), but made significant improvements in score for the TM. However, none of
our scaffolds resulted in significantly higher scores for the TM relative to the LM. In
fact, post-hoc pairwise comparisons (with Bonferroni correction) on TM scores showed

Fig. 6. Mean response score by graph, Scaffold and task order LM scores (squares) remain
steady across scaffold (x-axis) and graph-order (right/left plot), while TM scores (triangles) differ
by scaffold, highest in the interactive image condition. (Color figure online)

Fig. 7. Only the interactive image scaffold was signifi-
cantly better than no-scaffold control condition.
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that only the interactive image scaffold yielded scores significantly higher than the
no-scaffold control (Fig. 7).

Effect of Graph-Order. Counter to hypothesis 4 that graph-order would act as a
scaffold for comprehension, we found no main or interaction effects for graph-order on
response accuracy. Perhaps in order to glean salient differences between the TM and
LM graphs, they need to presented simultaneously (as in Fig. 1).

Effect of Scenario. As our mixed design necessitated the use of two matched sce-
narios, we tested for effects of scenario in our statistical model. Unexpectedly, we
found a main effect of scenario on score, F(1,297) = 22.29, p < .001, and significant
interaction between graph and scenario, F(1,297) = 34.34, p < .001. When answering
questions in the “task scheduling” scenario A (M = 9.20, SD = 4.12), participants had
significantly lower scores, t(316) = –4.77, p < 0.001, r = –.26, compared to the
“events scheduling” scenario B (M = 10.52, SD = 2.97). In an online pilot we found
no significant differences in performance between the scenarios when tested with the
LM graph. To explore the source of this effect, we examined the data sets constructed
for each scenario, and in particular, the very first question students solved with the TM
graph. In the “task scheduling” scenario A (Fig. 8–left) we see that if a learner makes
the most common mistake—seeking an orthogonal intersection from the x-axis—there
is a single data point that intersects the line: an available answer. However, in the
“events scheduling” scenario B (Fig. 8—right), there is no intersecting data point.
Students who were randomly assigned to this second scenario received implicit feed-
back that they were misreading the graph if they sought the orthogonal intersect
because there was no answer to the question. We suspect this drove students to
re-evaluate their strategy, yielding significantly higher scores for the “events
scheduling” scenario.

What tasks start at 1pm? A data point inter-
sects the erroneous orthogonal projection. 

What events start at 8 am? No data points
intersect the mistaken erroneous projection. 

Fig. 8. First question for the task (left) and event (right) scenarios.
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3.3 Results: The Graph Drawing Task

The graph drawing tasks allows us how to explore how each scaffold supports students
learning the graphical framework of the TM. We expect that accurately drawing
requires deeper understanding of how the graph works, and analysis of any systematic
mistakes students make in drawing may reveal sources of difficulty in comprehension.
Following the directed approach to qualitative content analysis [12], a team of 3 raters
classified all 316 drawings first into a priori categories [triangular, linear, other] and
finally into 5 categories based on the data present in the sample: (correct) triangular,
linear, scatterplot, “asymmetric triangular” and “right-angled”. Interrater reliability was
high (a = 0.96) and disagreements were resolved through negotiation. The majority
(73%) of participants drew correct TM graphs. 17 individuals (5%) constructed LM
graphs, while 3 participants drew scatterplots with start & end time on the x/y axes
respectively. Most interesting were the two alternative triangular forms constructed by
66 (21%) individuals: right-angle triangle, and asymmetric triangles (described in
Fig. 9).

While the overall distribution of graph drawing-types was too heterogeneous to
reliable correlate with TM task performance, we did examine the performance of the
subset of participants who produced the two alternative triangular forms. TM scores for
participants who drew “right-angle” graphs were significantly lower (M = 2.3, SD =
1.98) than for participants who drew “asymmetric triangle” graphs (M = 8.55, SD =
3.73), t(27.11) = –7.36, p < 0.001, r = 0.82.

Fig. 9a. 230 students drew correct TM
graphs

Fig. 9b. 17 students drew LM graphs

Fig. 9c. 44 students drew “right-angle” graphs.
They plot duration on the Y axis and the interval as
a point, but mistakenly use an orthogonal
x-intersect for start time

Fig. 9d. 22 students plotted the vertical inter-
section as the midpoint of the interval, but the
triangles were not geometrically similar because
duration was not on the y-axis.
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3.4 Discussion of Study Two

The results of Study Two leave us with a conundrum: why were the scaffolds designed
by learners in Study One largely ineffective?

None of our designs replicated the results of Qiang et al. [11] which yielded better
performance with the TM than LM graph, though there were notable differences in our
tasks, including their use of an interactive graph interface with hundreds of data points,
and feedback in the video instruction. Setting aside the differences in performance
between the LM and TM graphs, we assessed the efficacy of scaffold designs by
looking at TM scores alone. The widely-held assertion of Study One participants that
simple text and image instructions would dramatically improve readability of the graph
were not borne out, as on average, participants who received the static scaffolds per-
formed no better than those who received (as participants in Study One) no graph
instructions at all (Fig. 7).

We suspect the source of this discrepancy lies in a hindsight bias. Once students
understand how the graph works, they cannot “unsee” it, and therefore underestimate
the strength of their prior expectations. The unexpected effect of scenario on TM scores
supports this interpretation, as students who received implicit feedback they were
reading the graph incorrectly (because there was no available answer) performed better
than those who did not (Fig. 8 right vs. left). In this way, the structure of the task
presented the reader with a mental impasse [13] where their expectations (based on
prior knowledge of Cartesian graph forms) left them with no solution, and their
attention was actively redirected to reconsidering these expectations. The role of
attention can also address why the interactive image was superior to the static text and
image scaffolds. If it is the case that a reader does not realize they are misreading the
graph (as we observed in Study One), it is easy to ignore the static scaffolds. However,
it is much more difficult to ignore a stimulus that appears every time the mouse is
moved over a data point. To critically evaluate the role of attention in our ongoing
studies we are employing both mouse and gaze-tracking to quantify the extent and
time-course of attention paid to both scaffolds and graph features.

As in Study One, the most substantial open question in this work remains the
source of individual differences. Across all conditions, we see a high standard deviation
(30% or 5 points) in score, again with some participants in the no-scaffold control able
to correctly interpret the graph. In our ongoing work we seek to address this question
with post-task interviews that prompt participants to explain their interpretation strat-
egy while viewing a screencast replay of the their problem-solving session.

4 General Discussion

While the Triangular Model (TM) graph is elegant in its simplicity, the results of our
studies demonstrate this simplicity is deceptive. Without assistance, most readers
misinterpret the graph as the conventional representation for time intervals: the linear
model. Even with cognitive aids, many students persisted in this erroneous interpre-
tation, and only an interactive image scaffold significantly improved comprehension.
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These results have implications for both the design of scaffolds and of uncon-
ventional graphs. First, when designing scaffolds one should consider the reader’s
expectations based on the conventional representation for variables in the domain. It is
from that prior knowledge that readers begin their interpretation, not from a blank-slate
(i.e. general graph schema) we might expect based on a graph’s surface features. To
overcome this, our results suggest that techniques actively directing attention to salient
differences may prove most effective. The interactive-image scaffold achieves this
through repeated, user-driven exposure to the multiple intersections of a TM data point
with the x-axis. Similarly, the mental impasse provided by the questions in our
event-scheduling scenario actively directed readers’ attention to their mistaken inter-
pretation. We are presently conducting a follow-up study testing the relative efficacy of
attention-directing explicit (e.g. interactive image) and implicit (e.g. mental impasse)
scaffolds.

When constructing unconventional graphs, a designer’s priority is the computa-
tional affordances making the new graph-form suitable to the data and task. But as we
learn from these studies, a designer should also ask, “What expectations will be
invoked by the marks on the page?” For the TM graph, we suspect it is the orthogonal
axes that drive readers to expect a single orthogonal intersection for each data point.
But there is—strictly speaking—no reason that the axes need to be orthogonal. In fact,
one clever participant in our graph drawing task produced what we believe to be a
substantial improvement upon the TM graph, where the y axis was positioned diago-
nally on the left side of the graph’s “bounding triangle”. We are presently conducting a
follow-up study to investigate alternative axis and grid designs, hypothesizing that such
diagonally positioned axes will yield significantly better performance.

In this work, we have explored only a small subsection of the total design space of
scaffolding techniques for a particular kind of unconventional graph. We expect our
conclusions generalize to unconventional coordinate systems, but that other techniques
need to be explored when employing unconventional markings. Our choice of scaffolds
was inspired by direct observation and participatory design, however, we suspect a
wider range of techniques might be effective in more instructional settings, including
explication of worked examples, or seeing the graph being drawn. While we chose to
separate our text and image scaffolds to test their differential efficacy, a combined
text/image annotation could prove effective even in static media, and is a part of our
ongoing work.

We started by reasoning that existing scaffolding techniques would be insufficient
for unconventional graphs because learners would lack the prior knowledge of the new
graph system required to make use of them. As Pinker [7] suggests, when confronted
with an unfamiliar graph form, the reader instantiates a generic “general graph
schema”. However, it seems that despite differences in surface structure, a learner’s
prior knowledge of other graph forms can actively interfere with interpretation of a new
graph. The novelty of the diagonal gridlines in the TM graph was not enough for most
learners to suspend their Cartesian expectations. To overcome this prior knowledge, we
think that successful scaffolds for unconventional graphs must not only show or tell us
how to read them, but to rather alert us that that we need to pay attention, and
reconsider our expectations in the first place.
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Abstract. Almost 100 years ago, Otto Neurath developed the Isotype (Inter-
national System of Typographic Picture Education) method to communicate
statistical information to the broad public in an intuitive, pictorial way. It
translates numerical data into arrangements of repeated pictograms. This method
is still well-used in information design and data journalism. Neurath’s original
publications contained a lot of assumptions on how Isotype diagrams are pro-
cessed by recipients: e.g. they can be understood easily, because pictograms are
processed in the same way as everyday observations of the same concepts. But
documented empirical proof was entirely missing. We present a model for the
reception of Isotype-like diagrams from a cognitive perspective. This model
includes Isotype’s positive effects of countability, iconicity and ancillary
semantic information on graph comprehension. Positive effects on engagement
and perceived attractiveness are included as additional factors commonly
attributed to Isotype. We discuss existing empirical studies, point out research
gaps and propose a roadmap for further research.

Keywords: Isotype � Information visualization � Pictographs
Pictorial representation

1 Introduction: Isotype as Conceptualized by Otto Neurath

In the early 1920s, Otto Neurath (1882–1945) with his team of designers, statisticians
and transformers created the International System of Typographic Picture Education
(Isotype). The main idea behind Isotype was to communicate statistical data on social,
economic, and political topics to the broad public in an intuitive, pictorial way.

1.1 Design of Isotype

The method established a set of rules for a consistent design of pictorial statistics
(Hartmann 2006a, b): Icons should (1) be used consistently for the same concept, (2) be of
the same size, and (3) bear a strong resemblance to the object they represent (“speaking
symbols”, O. Neurath 1926/2006, p. 8). Contrary tomany other visualizations at that time
that used stretched icons (Fig. 1, top left), the icons of an Isotype visualization are
countable and each of them stands for a concrete number of the respective concept
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(as defined in the legend). The icons are repeated from left to right according to reading
direction (Neurath 1936). Icons can be compared across years or countries on a vertical
axis (Fig. 1, bottom left). Additionally, correlations can be shown by combining two or
more different symbols (Fig. 1, right). Details should only be given if they have some
informative value and Neurath argued that the actual numbers should not be presented in
detail, as he was convinced that it is better for people to forget the actual numbers and
instead remember the whole picture (Neurath 1936).

Even though the basic elements of the Isotype grammar are simple, the transfor-
mation process is not. In his autobiography, Neurath (2010) compares it to writing a
novel: Knowing only the words and grammar will not make you a good author, “one
also has to know how to select combinations of words to produce a striking result”
(p. 102). This is highly evident when MacDonald-Ross (1977) compares an
Isotype-like visualization by Vernon (1946) with an Isotype visualization of the same
data by Marie Neurath (see Fig. 2): Using icons is not enough, their arrangement, the
selection of data, and the guiding pictures are also important factors. In Neurath’s
version critical information is added in the caption, whereas the labels are simplified.
The pictograph-to-number-ratio is reduced and some years were omitted. As a result,
Neurath’s visualization implies a specific message, i.e. a strict difference in the
importance of military and civil occupation.

Fig. 1. NOT Isotype (top left) and Isotype visualization (bottom left) as explained by Neurath
(1936), correlating variables in Isotype (right, Neurath 1939)
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1.2 Effects of Isotype

Otto Neurath wanted to communicate statistical facts in a way that made them readily
comprehensible and easy to remember. The content of an Isotype visualization, the
general view, should be recognizable at first sight (Neurath 1936). To facilitate this
effect, Isotype builds on pictorial icons: According to Neurath, pictures are not only
more attractive than numbers only, but these “speaking symbols” also share some of the
visual attributes of the objects they represent and are thus easier to understand than the
more abstract spoken or written language (Neurath 1936, p. 20). Furthermore, “Isotype
symbols have fewer positive or negative associations than the words of a language”
(Neurath 2010, p. 125). On controversial problems “both sides could get their argu-
ments from the same chart” (Neurath 2010, p. 125). Neurath and his collaborators
believed that Isotype presented neutral data and kept evaluation and judgment to the
viewer (Neurath and Kinross 2009, p. 26).

Otto Neurath reported different evaluations of Isotype: Allegedly, psychological
studies compared Isotype material with stretched icons with the result that “the Isotype
technique is better” (Neurath 2010, p. 115). Additionally, his team conducted field
observations in elementary schools and at the Museum of Society and Economy in
Vienna, which helped to gain a more comprehensive understanding of the Isotype
technique (Neurath and Kinross 2009). However, no detailed results are reported from
any of these empirical approaches.

Although remnants of Neurath’s method are still present in contemporary info-
graphics and data visualizations, his claims on their benefits have rarely been scruti-
nized. As there are no historical documents on the actual effectiveness of Isotype and
newer research on the cognitive aspects of Isotype-like visualizations is rare, we want to
review the Isotype principles from a cognitive-scientific perspective to close this gap.

2 A Cognitive Model of Isotype Reception

Within the existing publications on Isotype, different effects have been described, which
can be summarized in cognitive terms as follows: (1) Pictograms in Isotype can be
counted, making it easier to grasp the numerical information than in non-countable

Fig. 2. A visualization of the same data by Vernon (1946, left) and Marie Neurath (right).
Images were taken from MacDonald-Ross (1977).
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graphs (countability), (2) the iconic character of pictograms assists the comprehension
process (iconicity), (3) additional information like title, caption or guiding pictures
assist the comprehension process (ancillary semantic information), and (4) the
increased attractiveness of Isotype pictures results in higher engagement (aesthetic
preference). In the following, we review existing research from cognitive science and
information visualization and discuss the most relevant results for each aspect.

2.1 Countability Effect

As a general rule, Neurath proposed to reduce large numbers to a small amount of
discrete objects, each representing a fixed quantity to facilitate the comprehension of
statistical information. Does recent research support this idea?

One possible starting point is the phenomenon called subitizing, our ability to
immediately generate exact counts of a small number of objects with highest precision
(Haroz et al. 2015). Subitizing has been observed with up to four objects and is
hypothesized to stem from a specific mechanism of the visual system (Choo and
Franconeri 2013). In their first two experiments, Haroz et al. (2015) found substantial
evidence for a beneficial effect of subitizing on the perception of Isotype visualizations.
Participants were shown four different variations of visualizations (Fig. 3) for 1.5 s and
were asked to write down the shown numbers immediately afterwards. Stacked visu-
alizations significantly reduced the observed error rates in comparison to stretched
visualizations, but only in the range of 1–5 elements. This effect vanished for higher
numbers. There was no difference between abstract shapes and pictographs. Haroz et al.
(2015) assume that the redundant encoding of the data as length as well as a small
countable numbers leads to an improved memory performance.

While it is widely accepted that graphical representations can promote under-
standing and improve statistical reasoning (McDowell and Jacobs 2017), theories of
underlying causes are highly controversial and are commonly tested empirically in the

Fig. 3. The four variations used in Haroz et al. (2015): stretched vs. stacked and shapes vs.
pictographs, (source: http://steveharoz.com/research/isotype/)
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field of Bayesian reasoning. Brase (2014) studied whether our brain is especially
well-suited to deal with frequencies because it evolved to deal with the discrete objects
of the real world (frequency hypothesis), or if any representations that provide trans-
parent information on the structure of a subject matter would improve performance
(nested sets hypothesis). In four experiments, he gave participants a Bayesian reasoning
task with varying pictorial representations. Participants in the condition with icons as
visual aids outperformed the participants in the other conditions (roulette wheel rep-
resentation or no visual aid) by far (Fig. 4). Brase concludes that “these results indicate
that icon representations, which better approximate actual ecological presentations of
frequencies, are the most powerful pictorial technique currently known for facilitating
correct Bayesian reasoning” (p. 93). But similarly to Haroz et al. (2015), no differences
between realistic and abstract icons were found.

Though we do not have ample evidence on a countability effect of Isotype, recent
research at least indicates that memory performance and reasoning can be improved
through the visualization of discrete icons. Perhaps Neurath was even aware of one of
the underlying mechanisms: According to Revkin et al. (2008), first accounts on
subitizing date back as far as 1908 (Bourdon 1908).

2.2 Iconicity Effect

Expectations for actual effects of figurative pictographs on the perception process are
very high: For example, Tversky (2011) suggests likenesses (i.e., pictorial represen-
tations of objects) to be readily recognized, more quickly understood, and better
memorized. It has been proposed that likenesses could possibly support the decoding of
graphs: “If the form of the external representation matches the internal form of the
mental representation the workload for the cognitive system gets minimized”

Fig. 4. The conditions used by Brase (2014): the control group had text information (a) only, the
experimental groups additionally had pictographs (b), abstract icons (c), or roulette wheel
representation (d)
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(Rehkämper 2011, p. 4112). A low cognitive load can be desirable for perception, as it
allows recipients to discern the topic and the main information quickly by reducing the
mental effort necessary to decipher detailed data. A lowered cognitive load induced by
easy perception also means that resources can be redirected to reflection and reasoning,
i.e. from elementary to higher levels of graph comprehension (Friel et al. 2001).
Nevertheless, the experiments mentioned above did not find any differences for fully
abstract visual marks (like geometric shapes) and figurative icons. Is the iconicity-effect
only a myth?

There is empirical data that points to positive effects of iconicity, but the conditions
that lead to observable effects have to be scrutinized. In their third experiment, Haroz
et al. (2015) found that visualizations featuring pictographs lead to a slightly lower
error rate using a 1-back design. This means that participants were tested on the chart
they saw before the currently presented chart and thus had to memorize both to be able
to answer correctly. Haroz et al. (2015) conclude that pictographs should be used for
demanding tasks as the information is recalled more accurately when working memory
is under load.

Lin et al. (2013) studied whether bar-charts with semantically-resonant colors
improve the speed of proportional comparisons by asking participants questions like
“Which is larger, blueberry + peach or grape + banana?” (Fig. 5). Compared to a regular
color assignment, response times were somewhat smaller for semantically-resonant
charts.

Though this experiment did by no means aim at pictographs we argue that it taps
into a similar cognitive process: Semantically-resonant colors not only help to dis-
criminate between categories but also help to relate the numerical data to meaningful
objects. As the majority of time spent in graph comprehension is spent on reading and
reexamining axes and labels, Carpenter and Shah (1998) assume that people are often
not able to keep this information in the working memory. Pictographs in Isotype as
well as semantically-resonant colors (that were used in Isotype as well, cf. Neurath
1936) add this semantic information to the quantitative information in the graph,
thereby possibly reducing the amount of information recipients have to hold in working
memory.

Fig. 5. Semantically-resonant colors (left) and standard palette (right) as used by Lin et al.
(2013) (Color figure online)
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The specific task as well as the seven categories used by Lin et al. (2013) and the
1-back design by Haroz et al. (2015) definitely put a bigger strain on the working
memory than the studies on Bayesian reasoning (like Brase 2014), which mostly use
only one or two different categories. In the latter case little can be won by using
pictographs to support the cognitive process of relating the data to real world objects.

Pictographs can also aid memory on a more global level: Borkin et al. (2016)
studied recognition and recall in 393 different visualizations. Participants viewed 100
randomly selected visualizations for 10 s each while their eye movements were
tracked. Afterwards, the 100 selected visualizations and 100 new visualizations were
presented for 2 s each in a random order. Participants had to indicate recognition of the
visualizations that had been shown in the previous phase. Finally, blurred, smaller
images of the target visualizations were presented and participants had to write down as
many descriptions as possible. On average, the quality of descriptions was higher for
the visualizations with pictograms. Pictograms received less visual attention (fixation
time) than other parts of the visualization, but assisted recognition and recall of the
target visualizations. One explanation by the authors is that redundant information (of
the data or message) assists with understanding and recalling the visualization.

2.3 Ancillary Semantic Information

Original Isotype visualizations not only consisted of numerical data encoded in rows of
pictographs, but also of a title and captions. The experiment by Borkin et al. (2016)
provides strong arguments for this strategy: They found that during the encoding phase
participants spent most time looking at text elements, especially titles, and that titles were
the most prominent feature they described or even reworded during the recall phase.

Additionally, many Isotype visualizations had guidance pictures or icons that
provided additional qualitative or contextual information (Fig. 6). From a contempo-
rary perspective, these could easily be disregarded as mere embellishments without
further purpose - what Tufte (1983) would have called “chart junk”. However, a
minority of information visualization researchers highlight the informative value these
elements can bear. In their design space on “figurative frames”, Byrne et al. (2017,
p. 19) distinguish different roles of figurative elements in information visualization:
They can provide a background context, show data content or label data points. Still,
irrelevant images have no connection to the data and topic and will hinder compre-
hension and recall.

In their experiment on “useful junk” Bateman et al. (2010) compared plain bar
charts to embellished charts created by Holmes (1984) for Time Magazine (Fig. 7). The
visualizations were presented to the participants, who first had to describe the charts
with as much detail as possible by answering the experimenter’s questions (e.g. “What
is the basic trend of the graph?”). Half of the participants were asked to recall as many
of the charts as possible immediately afterwards, the other half had to recall the charts
two to three weeks later. Though no differences regarding the details of the description
or the immediate recall were found, the participants were able to recall more details on
the charts by Holmes in the long-term condition. Arguably, this result can be explained
by elaborative encoding as the additional information provided by the embellishments
provided a deeper level of processing.
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2.4 Aesthetic Preference

Neurath (1936) argued that Isotype images are more attractive to recipients than
numbers, but did not offer any explanations on potential causes. Overall, recent
research supports his general presumption: For example, in their experiment on risk
perception, Zikmund-Fisher et al. (2014) found higher preference ratings for charts
with human icons or photographs in comparison to blocks and abstract representations
of faces, especially for participants with lower numeracy and graphical literacy scores.
Similarly, Gaissmaier et al. (2012) studied the reception of health-related statistical
information presented in five different levels of iconicity (numerical information,

Fig. 6. Left: “Automobiles produced in 1929” (Neurath 1936) - guidance pictures on top
provide additional cues on the categories. Right: “The Development of the Railroad”
(Gesellschafts- und Wirtschaftsmuseum Wien 1930) - note that not only the length of the rails
in different years is depicted and contextualized with a world map, but also the technological
development of traction vehicles is shown as a series of pictographs.

Fig. 7. Chart used by Bateman et al. (2010), provided by Nigel Holmes
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abstract icons, pictographs, detailed pictographs, and photographs). Though they found
no effect of the iconicity levels on memory, attractiveness was generally rated higher
for graphical information than numerical information.

Haroz et al. (2015) studied how Isotype visualizations attract the participants’
attention in comparison to other visualizations. Participants were able to choose
between 9 different visualizations seen as a blurred preview to explore different topics.
They were able to select a visualization, inspect it for as long as they wanted, and then
return to the previews to select another visualization. Isotype visualizations did attract
initial attention much more, and a higher engagement was consistently observed
throughout the experiment.

To properly analyze the underlying processes of aesthetic preferences, Graf and
Landwehr (2015) suggest to study more than generic liking judgments: According to
dual process theories, automatic and controlled processes can be distinguished.
Automatic processing is stimulus-driven and the result of a “passive exposure”. It leads
to a generic aesthetic judgement of pleasure or displeasure. In addition, controlled
processes, which are dependent on the motivation to further process or interact with the
stimuli, can lead to interest, boredom or confusion. Haroz et al. (2015) obviously aimed
at the controlled processing, because the participants were able to actively choose the
visualizations they wanted to inspect. As the motivation to engage with visual stimuli
opens the variety of aesthetic evaluation beyond generic liking judgements, future
research could focus on elements of Isotype that include stimulus-intrinsic triggers that
increase the motivation to actively engage with the visualizations.

3 Discussion and Roadmap for Further Research

For a method that is nearly 100 years old and was widely used in social science and is
still used in information visualization, research is extremely limited. Nevertheless, a few
empirical studies – only one of them was directly aimed at analyzing Isotype – support
some of Otto Neurath’s claims. We tried to disentangle possible effects of Isotype into
four categories (countability, iconicity, ancillary semantic information and attractive-
ness) and reviewed recent publications on these topics. Next, we want to discuss open
questions and limitations of present research and propose future research questions.

Which Effects of Isotype Are Supported by the Reviewed Research? We found
some evidence for benefits of using discrete icons that can be linked to the well-known
phenomenon of subitizing. Still, comparisons with other well-established visualization
methods are scarce and we do not know under which circumstances this method is
actually more powerful than others. Subitizing suggests to only use a very low number
of icons per variable, but could this effect possibly extend to differences in variables?
Can differences be accurately determined by a single gaze when variables are depicted
with a larger number of pictographs?

Iconicity effects are even more contested as most studies do not find any differences
between abstract icons and pictographs. A possible reason is that pictographs only
support the comprehension process when the working memory is under load, which is
not the case in most experiments. Until now, this deduction remains purely a working
hypothesis.
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Future experiments on iconicity should consider cognitive load in their experi-
mental design. Presumably, tasks that are more strenuous for the working memory and
dependent variables like time on task are required to test for iconicity effects.

Otto Neurath stated that viewers should understand the most important facts from
an Isotype picture at first sight. He wanted to communicate the main idea, but not
concrete numbers. A rather pointed and often cited quote (e.g. Jansen 2009) that
demonstrates Neurath’s view is: “To remember simplified pictures is better than to
forget accurate figures” (Neurath 1973, p. 220). Most of the reviewed studies used the
accuracy of statistical problem solving as dependent variables (Brase 2009, 2014), but
also recall of concrete numbers (Haroz et al. 2015; Zikmund-Fisher et al. 2014). These
concepts have little in common with Neurath’s idea. In contrast, gist knowledge as
applied by Gaissmaier et al. (2012) refers to this idea of an overall understanding of the
message. Also the research design applied by Borkin et al. (2016) is quite close to
Neurath’s idea: recognizing already seen visualizations and describing their contents in
one’s own words.

For further research, we suggest to focus on more complex outcomes than problem
solving: visual attention, gist knowledge and free recall are promising approaches. But
further research should also go beyond comprehension processes: Otto Neurath
highlighted a possible impact of Isotype on opinion formation. A recent study by Boy
et al. (2017) investigated the influence of human icons on empathy. Though they did
not find a positive effect, it would be worthwhile to also study outcomes on an emo-
tional or motivational level.

Which Elements of the Isotype Design Space have been Studied? Taking a closer
look at the diagrams used in the experiments, we found that none of them follows the
full Isotype grammar; rather we have to contend that the only commonality is that they
use naturalistic icons. For example, Haroz et al. (2015) use vertical instead of hori-
zontal alignment, and different studies on statistical reasoning (Brase 2009, 2014)
arrange the icons in an icon array or Venn diagram. Neurath once stated that we should
not turn “boring rows of numbers into boring rows of symbols” (Neurath and Kinross
2009, p. 104). Rather, he wanted to make more complex charts with more than one
variable and present them in a way that triggers questioning and reflective thinking by
the recipients.

Therefore, it would be worth investigating not only the effect of using pictograms,
but also some of the other design principles inherent to Isotype: for example, selection
of data, more complex principles of arrangement, use of guiding pictures.

Historically speaking, it is interesting to note that there is little research on a
formerly important method. While most researchers agree that Isotype continues to
influence contemporary InfoVis design, its fundamental principles remained largely
untested and unverified. Overall, the reviewed studies show some promising results for
Isotype visualizations, but more research into their effects and design principles is
needed to give a final verdict on Otto Neurath’s claims from a cognitive perspective.

The type of cognitive phenomena that can be investigated through experiments on
information visualizations is largely dependent on the specific designs and visualization
methods used to create test stimuli. Both the aesthetics and the aims of Isotype are very
different than their counterparts in the majority of contemporary information
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visualization designs. Recently, information visualizations are more frequently regar-
ded as everyday objects intended for laypeople, and not only tools for experts
(Pousman et al. 2007) – which could be seen as a chance to revisit a method that was
invented with similar goals? Based on our first insights, we suggest that a renewed
focus on cognitive phenomena that have been neglected in the field of graph com-
prehension could profit from an investigation of this historical example.
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Abstract. To date, research on the processing involved in comprehending and
learning from animated diagrams has accorded a minor role only to perceptual
operations in general and peripheral processing in particular. For those aspects
where the role of perception is acknowledged, it is foveal rather than peripheral
processing that is regarded as the main player. In this paper, we use the results
from additional finer grained analysis of data collected in a recent empirical
study to suggest that information from a viewer’s peripheral field can play a
much more central role in animation processing than has previously been rec-
ognized. It appears that if the dynamic information comprising an animated
diagram is presented in a suitable way, the resources available for visual per-
ception can be partitioned so that responsibility is shared efficiently between
foveal and peripheral processing. Implications with regard to elaboration of the
Animation Processing Model and possible interventions for improving anima-
tion processing are discussed.

Keywords: Animated diagrams � Peripheral processing � Relation formation

1 Introduction

In this paper, we elaborate some aspects of the five-phase Animation Processing Model
(APM) [1, 2], a theoretical framework concerned with the perceptual and cognitive
activity involved in comprehending an externally presented animated diagram
depicting complex, unfamiliar subject matter. The basic building blocks for this activity
are individual event units (where event units are the entities depicted in an animation
plus their associated dynamics). Figure 1 summarizes the APM phases involved in
building a high quality mental model from an animation by a blend of bottom-up and
top-down processes. APM Phase 1 processing involves a viewer’s initial parsing to
decompose the animated display’s continuous flux of information into the separate
event units that constitute the raw material for further processing. The APM charac-
terizes this initial decomposition as an essentially bottom-up activity that is based
largely on perceptual attributes of the animated display. The other four phases involve
the progressive composition of event units into increasingly inclusive knowledge
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structures that culminate in a high quality mental model of the depicted subject matter.
For the purposes of this article, our discussion is confined to Phases 1, 2 and 3 because
the role of perceptual processing is considered much less important in the cognitively-
dominated 4th and 5th phases.

With respect to bottom-up, perceptually-based activity, our initial version of the
APM accorded a minor role only to peripheral processing and essentially confined its
involvement to supporting Phase 1 decomposition. We implied that once event units
had been separated out as raw material for mental model construction, the perceptual
activity contributing to their subsequent hierarchical composition into causal chains
essentially relied on foveal processing alone. This implication was consistent with the
then prevailing orthodoxy regarding the centrality of such processing (a view probably
reflecting the fact that measuring foveal fixations is the basis of eye tracking, a tech-
nique of proven value to the research community).

An example of the implied reliance on foveal processing can be illustrated by APM
Phase 2 which involves the viewer’s primary composition of adjacent event units into
small local groups (termed dynamic micro-chunks). These groups are posited to be
formed by the bonding together of multiple event units on the basis of domain general
relationships, a knowledge of which has been acquired from the viewer’s experience of
the everyday world and its dynamics. Fundamental to the formation of dynamic
micro-chunks are cause-effect relations where there is (i) a directed association between
multiple dynamic changes that occur close together in time, and (ii) some type of link
that connects these changes. Our initial exposition of the APM attributed viewer
extraction of information about both the dynamic changes occurring (e.g., movements

Fig. 1. The animation processing model summary diagram showing its five phases, the
processing involved in each of the phases, and the outcomes of that processing.
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of components) and the interactions that linked adjacent components by cause-effect
relations to processing involving solely foveal fixations.

The elaboration of the APM presented later in this paper was prompted by
empirical and theoretical research undertaken in the ten years since its original expo-
sition [1]. Although this work initially targeted APM Phase 1 processing (the pre-
liminary decomposition of an animated display), the present contribution relates to
subsequent activities in Phases 2 and 3 by which the viewer progressively composes
individual event units into higher order knowledge structures. Our particular focus is
upon the necessity of effective perceptual processing as a foundation for characterizing
key relationships depicted in an animated diagram.

1.1 Composing Relations

The APM provides an account of the processing involved in learning from
conventionally-designed animations that provide a comprehensive and dynamically
faithful representation of their subject matter. On the basis of this account we
hypothesized that deficiencies in learning from such materials are due to a mismatch
between (i) the dominant design approach used to develop conventional animations and
(ii) the way learners actually process dynamic representations [2]. If this is so, better
alignment between animation design and learner processing should improve learning.
A novel animation design was therefore devised that departed radically from the
standard approach of providing a veridical presentation of the subject matter’s
dynamics. This alternative ‘Composition Approach’ [2] provides learners with a con-
tiguous succession of carefully crafted partial (mini) animations designed to facilitate
extraction of relevant information and its progressive composition into higher order
mental structures. Using the working of a traditional upright piano mechanism as the
to-be-learned subject matter (Fig. 2.), we employed three experimental conditions to
compare the effectiveness of different animation designs (see [3] for experiment
details): (i) Comprehensive (conventionally designed, with all components and
behaviors included, as per Fig. 2), (ii) Contiguous (a succession of partial animations,
each depicting two contacting and directly-relatable components at a time), and
(iii) Non-contiguous (a succession of partial animations in which pairs of components
were not in contact and therefore not directly relatable) (Fig. 3). The set of partial
animations in both the Contiguous and Non-contiguous versions covered all compo-
nents depicted in the Comprehensive animation.

In essence, the varied set of pivoted components comprising a piano mechanism act
as two chains of interacting levers. When the pianist presses down on a piano key
(lower right, Fig. 2), this input motion is transferred from lever to lever through the
mechanism so that it finally reaches the output components that are directly responsible
for producing the corresponding musical note (hammer, string) then stopping the note
from sounding (damper). The intervening levers between input and output perform
vital roles in controlling and coordinating these actions, particularly the proper
sequencing of the hammer and damper movements. When a note is played, the various
component motions required to produce the piano’s proper functioning occur simul-
taneously or in rapid cascades. This makes its operation appear very complex to the
uninitiated and so challenging to learn. Participants in the piano animation experiment
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were required to learn how the mechanism works, including the ways in which its
various components contribute to the piano’s overall operation. Their learning was
evaluated by assessing the quality of the mental model they developed for the mech-
anism’s operation as a result of studying the animation.

Fig. 2. Traditional piano mechanism. A conventional (Comprehensive) animation presents all
these components together and faithfully depicts their dynamics (operational details in [3]).

Fig. 3. Example Contiguous (left) and Non-contiguous (right) partial animation frames.
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Participants who studied the Contiguous version performed significantly better on a
test of mental model quality than those in the Comprehensive and Non-contiguous
conditions (Contiguous mental model scores were more than half as large again as
scores from the other two conditions) [3]. Eye tracking data were collected using Areas
of Interest (AOIs) based on parts of the piano mechanism such that the outline of each
AOI captured the region swept out by that component or sub-component during the
course of its movement. Further (much smaller) AOIs were located on the regions
where two components interacted due to a point of contact. Figure 4 is a notional
depiction that illustrates the principle used to define these component and contact AOIs
(but in practice, the boundaries of AOIs were extended somewhat to ensure that all
relevant fixation data are included). Viewers’ foveal fixations on different parts of the
display were analyzed in terms of their frequency and duration.

According to the eye tracking literature, longer total fixation durations invariably
occur because more fixations are being made within areas of interest. However, eye
tracking data from our experiment revealed an unusual negative correlation (r = −0.81)
between number of fixations made and fixation duration. These fewer, longer fixations
were interpreted as an indication of deeper processing. Comparison of the eye tracking
videos from the three conditions suggested that participants in the Contiguous condi-
tion made particularly prolonged fixations in the small regions of contact between pairs
of components (e.g., where the key riser contacts the underside of the whippen, see
Fig. 4, AOI-2).

Statistical analysis of the eye tracking data showed that the total fixation duration
on each of these contact regions (key-whippen, whippen-jack, jack-butt, etc. etc.) was
significantly greater for Contiguous participants (Table 1a). This contact region is of
particular importance with regard to the dynamic relations that occur for component
pairs presented in the Contiguous condition because it is the crucial link between a
cause and its effect.

Fig. 4. Grey regions provide a notional illustration of the three AOIs used to capture regions
swept out by the key, whippen and key riser contact during operation of the piano mechanism.
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Unusual clusterings of fixation activity in the immediate vicinity of the contact
point where two components interacted were observed in the Contiguous condition
videos taken by the eye tracker. Such clustering was not present in videos from the
other two conditions. This observation prompted us to single out the set of eye tracking
data obtained from those in the Contiguous condition for more in-depth analysis. Of
particular interest were activities concerned with the processing of fundamental
cause-effect relationships that are central to APM processing phases 2 and 3. According
to the APM, the cause-effect relationships a viewer establishes during these phases are
domain-general (rather than domain-specific). In order to establish such a relationship
between two interacting components of the piano mechanism, the viewer must char-
acterize not only the contact interaction that links the cause and effect components
involved, but also the respective dynamics of those two components (refer to Fig. 4).

We therefore expected further analysis of the Contiguous participants’ eye tracking
data to show that their concentration of foveal processing on this contact interaction
region was accompanied by a similarly close monitoring of component movements. If
both of these substantial monitoring tasks were being carried out by foveal processing,
fixation activity should be appropriately distributed between the contact AOIs and the
component AOIs. To test this expectation, we devised an index of foveal processing
intensity that expressed fixation durations per unit area (calculated as the ratio between
the total foveal fixation duration in each AOI (seconds) and the total area of that

Table 1. Part a of this table presents means (SD) and one way ANOVAs for eye fixation lengths
(in seconds) and counts across the total animation exposure time. It reports results from all three
conditions (Contiguous, Non-contiguous and Comprehensive, each one N = 20) for (i) contact
AOIs in the animation, and (ii) the remaining non-AOI area. Part b of the table concerns just a
short subsection of the total exposure time for the Contiguous condition only and compares the
foveal processing intensity indices (see explanation below) for the contact and component AOIs.

Gaze measures Locations Contiguous Non-contiguous Comprehensive ANOVAs

Part a
Total animation
exposure:4 min
Fixation length

All contact
AOIs

120.02
(18.38)

89.73
(18.55)

103.62
(20.67)

F(2,57) = 12.49
p < .0001
ηp2 = .30

Non AOI
area

107.79
(14.35)

133.62
(14.61)

124.50
(19.91)

Total 227.81
(15.53)

223.36
(22.52)

228.13
(20.51)

Fixation count All contact
AOIs

204.20
(45.03)

196.15
(44.23)

215.40
(61.89)

F(2,57) = 0.71
P = .49
ηp2 = .02

Non AOI
area

272.65
(71.03)

364.15
(57.58)

327.85
(51.00)

Total 476.85
(107.93)

560.30
(89.39)

543.25
(96.92)

Part b
20 s subsection of
animation exposure:
foveal processing
intensity index (seconds
of fixation per square cm)

Contact
AOIs

0.52

Component
AOIs

0.04
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AOI (cm2). Fine grained analysis using this index was concentrated on a 20 s segment
of the Contiguous animation comprising the movements of the key, whippen and jack.
The AOIs on which this analysis was based captured two classes of eye tracking data
(i) fixations on the small areas of contact between adjacent components where
cause-effect interactions took place (for key-whippen, whippen-jack and jack-butt) and
(ii) fixations on the much larger areas swept out by whole components or major
subcomponents as they performed their operational movements (the key, whippen,
jack, and butt). Results for the index of foveal processing intensity are shown in
Table 1b. Contrary to our expectations, these results indicated that although partici-
pants in the Contiguous condition applied a very high level of foveal processing
intensity to the regions of contact interaction, they applied a very low level of such
processing activity to the components themselves (Table 1b). Further, almost none of
the 20 participants ever fixated on the key or the whippen whereas they all made
multiple and prolonged fixations within contact AOIs.

This puzzling apparent neglect of information that is absolutely central to estab-
lishing causal relationships left us with the question of how participants could be
characterizing the respective behaviors of the cause and effect components, if not via
foveal processing. In the next section, we suggest an alternative means by which those
in the Contiguous condition may have extracted this vital information. To prepare the
ground for explaining our suggestion, we first use a specific example to elucidate the
types of dynamics involved when two piano components interact.

2 Partitioned Perceptual Processing

Figure 5 depicts a subset of the piano mechanism that consists of just the key and the
whippen. These two components are in contact at the point where the key’s riser meets
the whippen’s lower surface. Before a piano player depresses the key, this point of
contact is located at position C1. Then when the key is played, it rotates clockwise
around its pivot and the riser protruding from its top surface pushes on the whippen.
This interaction causes the whippen to rotate anticlockwise around its pivot until the

Fig. 5. Example showing (i) global cause and effect movements of a pair of piano components
and (ii) the local contact interaction that links these together into a causal relationship.
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key and whippen both reach the limit of their respective swings. By that moment, the
key-whippen contact has reached position C2. Then upon release of the key, its riser
retraces its journey back to C1 along the undersurface of the whippen as these com-
ponents return to their starting positions.

Two very different types of movements are present in this complete cycle. On one
hand, there are the macro-scale reciprocal swings of the key (clockwise) and the whippen
(anticlockwise). This movement patterns exemplifies a very common type of see-saw
behavior exhibited by many everyday devices involving simple levers consisting of a
rigid bar that is free to rotate about a pivot. Our extensive experience with such devices
equips us with well-developed domain general background knowledge about their typ-
ical behavior. On the other hand, the riser-whippen contact interaction that takes place
to-and-fro along the path between C1 and C2 occurs on a far more restricted (micro) scale.
The exhibited behavior is also highly specific to this particular case of the piano
mechanism and therefore not underpinned by the type of domain general knowledge that
is available for the macro-scale reciprocal swings of the key and whippen.

We suggest that the extreme differences in these two aspects of the dynamics likely
have important implications for viewers’ allocation of perceptual resources when they
process such pairs of interacting components. Our assumption is that in order to
comprehend the role that this type of interaction plays in the piano mechanism’s overall
functionality, viewers need to be able to comprehensively characterize the cause-effect
linkage involved. This requires them to relate (i) the micro-scale details of the con-
tinuous contact interaction along the C1 - C2 pathway to (ii) the macro-scale reciprocal
swings of the key and whippen that occur during this interaction. A parsimonious way
to perceive the information required for establishing this relationship internally would
be to process these two aspects of the dynamics in parallel.

Human visual perception in general relies on the complementary, coordinated
operation of foveal and peripheral processing [4]. Perception can be optimized by
appropriately partitioning these perceptual resources between the various aspects of a
set of visual information that confronts the viewer. With regard to the present
key-whippen example, we contend that foveal processing should be better suited to the
more detailed analysis required for characterizing micro-level information about the
riser-whippen contact interactions, while peripheral processing should be better suited
to dealing with the macro-level information concerning the overall reciprocal motion of
the key and whippen. Such matching of processing type to processing task can be
thought of as a form of perceptual partitioning. If this type of partitioning does indeed
occur, eye tracking data should indicate that viewers tend to allocate most of their
foveal processing resources to the small region in which contact interactions occur,
while leaving peripheral processing to take care of the more global movements of the
key and whippen.

3 Elaborating the APM and Improving Effectiveness

The preceding discussion raises the possibility that peripheral processing can play a far
more central role in comprehension of animated diagrams than previously acknowl-
edged. Our empirical results reported above support this possibility. The almost total
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neglect of peripheral processing in research on learning from animation can perhaps be
attributed to influences such as the dominance of eye tracking approaches in this field
(a technique based on foveal processing only) and the widespread view that peripheral
processing is intrinsically ‘inferior’ to its foveal counterpart, a notion that has been
contradicted by recent research. [4]. It may well be time to confront these influences
and redress the limiting effects they could have on future progress of animation
research. This would require researchers to no longer ignore the possibility that
information acquired via peripheral vision may make a substantial and ongoing con-
tribution to animation processing (c.f. [5]).

However, it is important to note that the phenomenon of perceptual partitioning
reported in this paper came to light under the very particular circumstances that existed
in the Contiguous animation condition (which produced the best mental models). Those
circumstances allowed Contiguous participants to devote their foveal processing
capacity almost exclusively to the demanding task of analyzing and characterizing
details of a contact interaction linking cause to effect. In parallel with this all-
consuming foveal activity, they were also able to monitor associated changes of the
cause and effect components by delegating such monitoring to peripheral processing.
A far less satisfactory alternative scenario for Contiguous participants based on foveal
processing alone would have been for them to make multiple fixation switches between
highly localized contact interaction dynamics and more global component dynamics
(c.f. [6]). In addition to being a much less parsimonious use of processing resources,
such an alternative would carry the risk of various disruptions involved in switching
between different sites of activity.

Despite not having previously been reported in the animation research literature,
such a partitioning between foveal and peripheral processing that enables them to
operate in parallel is in fact a normal (rather than exceptional) feature of everyday
vision [4], especially in dynamic situations. For example, in situations such as car
driving, an individual can automatically monitor a vehicle’s wider dynamic surrounds
while at the same time performing detailed, analytical visual interrogation of far more
localized information [7]. However, this efficient and highly successful form of
resource allocation can of course be severely compromised by misallocation of foveal
processing (such as viewing a mobile phone screen during driving) and the serious
disruptions that switching between different visual targets typically involves.

The ‘ideal’ processing situation that appeared to pertain for participants who
studied the Contiguous version could also be similarly compromised by introducing
changes likely to degrade peripheral processing. One way to introduce such change
would be to add more information to the surroundings of each of the component pairs
used in the Contiguous condition (for example, by including more of the piano’s
mechanism in these partial animations). Addition of such ‘clutter’ introduces visual
crowding that can have a negative effect on the scope, accuracy and coherence of
information extraction via peripheral processing [4]. This may partly explain why the
results obtained by animation researchers (who almost exclusively use cluttered con-
ventional comprehensive animations in their investigations) have not alerted them to
the possible role of peripheral processing that has been indicated by our present
findings.
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Although our argument about perceptual partitioning is based on empirical results
from only a small subsystem of the piano mechanism (specifically, the key-whippen
pair), it seems likely that this phenomenon could apply far more generally. However,
instantiation of this visual ‘division of labour’ would require the presentation cir-
cumstances to be sufficiently similar to those that characterized the Contiguous ani-
mation approach. Key requirements would be a minimal number of components (e.g., a
pair), components whose respective movements are related by a contact interaction,
and gross component motions that are easily recognized as resembling the familiar
dynamics of everyday experience. These circumstances in fact apply throughout the
piano mechanism so that perceptual partitioning would be expected to occur for other
pairs of components where contact interactions are present (such as the jack and the
hammer). Work in progress supports this expectation. Further, we see no reason why
this phenomenon should be restricted to the piano mechanism alone. Provided the
requirements mentioned above are fulfilled and the subject matter is appropriate, the
same type of processing economies could be invoked for many different types of
mechanisms.

3.1 Elaborating APM Stages 2 and 3

While acknowledging the caveats given above, it seems prudent to review several
aspects of the APM (as outlined in its original exposition) to take account of the
findings presented in this paper. In the initial version of the APM, it was suggested that
once the continuous flux of a presented animation had been decomposed into indi-
vidual event units during Phase 1, Phase 2 processing could proceed during which the
viewer connects two or more event units at a time into superordinate composite
structures that we termed ‘dynamic micro chunks’. However, if a viewer is able to
invoke the form of partitioned perception discussed in this paper, it would presumably
be best to process event units in pairs, rather than in larger groups. Pairwise processing
should allow a highly efficient allocation of perceptual resources in which there is a
near optimal match between (i) the processing aspect that is engaged (foveal or
peripheral) and (ii) the task to which that aspect is applied (detailed analysis of contact
interaction or global characterization of cause-effect dynamics). The efficacy of dealing
with dynamic targets in a pairwise fashion has been clearly demonstrated in research
with air traffic controllers [8].

With respect to Phase 3 processing, the initial version of the APM is somewhat
lacking in processing detail about just how the dynamic micro chunks formed during
Phase 2 become connected up by bridging relations to form a superordinate structure of
causal chains. A pairwise approach similar to that posited for Phase 2 also seems
applicable to Phase 3 since it could be based on the same type of perceptual parti-
tioning. To make this more concrete, consider two possible combinations of event units
that could be formed during Phase 2 processing of a conventionally designed (com-
prehensive) piano animation: (i) a key-whippen dynamic micro chunk and (ii) a
jack-hammer micro chunk. The linking up of these two chunks as part of a causal chain
is via the pivot that attaches the base of the jack to the riser of the whippen. In terms of
the perceptual partitioning approach, the task of characterizing what happens in this
highly localized site would be allocated to foveal processing. The detailed analysis
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occurring in this small region would be complemented by peripheral processing of the
dynamics of the proximal whippen (cause) and the jack (effect) rather than the
dynamics of the more distant hammer and key (Fig. 6). Note that Fig. 6 is merely a
stylized conceptual representation of this possibility; in reality, there would be gradual
degradation of the peripheral information with distance from the centre, rather than the
sudden change depicted here.

The elaborations of APM phases 2 and 3 suggested in the foregoing discussion
have been considered only from the perspective of the role that perceptual partitioning
could play in the progressive composition of individual event units into domain general
causal chains. However, this perceptually-oriented account should be complemented by
a consideration of how contributions from top-down processing could modulate the
apportioning of perceptual processing discussed earlier. For example, in the case of the
piano animation, it is highly improbable that a top-flight piano repair technician (i.e.,
someone with domain specific expertise in the animation’s subject matter) would
follow the same processing route during viewing as those who lack specialist knowl-
edge in this domain. Instead, the technician’s focus is likely to be on the finer points of
piano functioning (rather than its basic operation), with foveal processing used
extensively to interrogate these aspects of the mechanism’s dynamics.

3.2 Intervening to Improve Conventionally Designed Animations

Researchers have considered a variety of factors that may influence comprehension of
animations [9], ranging from the dynamic spatial ability of the viewer [10] to the forms
of support that are provided to accompany presentation of an animation [11]. Most
interventions intended to improve animation processing have, at best, met with limited

Fig. 6. Hypothetical situation in which perceptual partitioning could be invoked (conceptual
representation only). Partitioning is confined to peripheral field closest to contact interaction.
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success. However, it is possible that the phenomenon of perceptual partitioning may
provide a more promising basis for devising supportive interventions, not the least
because it appears to be theoretically robust and is derived from empirical evidence.

Pronounced partitioning of perceptual resources by which foveal and peripheral
processing were optimally allocated to local and global aspects of cause-effect relation
formation occurred only for participants who studied the Contiguous version of the
animation. However, because the design of this version according to the Composition
Approach involves a radical departure from the currently prevailing entrenched design
orthodoxies, this strategy for improving effectiveness is something not likely to be
widely adopted by animation designers overnight. This raises the question of whether
or not it would instead be possible to devise other ways of obtaining the processing
efficiencies afforded in the contiguous condition but with a conventional comprehen-
sive animation design rather than one designed according to the Composition
Approach.

One possibility could be to approximate the type of situation that exists with a
contiguous version pair by applying a suitable intervention to an existing conven-
tionally designed comprehensive animation. If we consider a comprehensive animation
of the piano mechanism as an example, perhaps the desired processing affordances
could be obtained by ‘visually suppressing’ all parts of the mechanism except for a pair
of event units (e.g., the key and whippen) using anti-cueing techniques such as fading
(Fig. 7). Changing the region across which this anti-cueing is applied in a stepwise
fashion over time should produce a situation that presents a succession of pair-wise
processing opportunities resembling those that were provided in the Contiguous con-
dition. Empirical research is needed to investigate this and other intervention strategies
that have the potential to stimulate beneficial perceptual partitioning.

Fig. 7. Possible use of anti-cueing to produce a situation resembling that available in a
composition approach (i.e., Contiguous pairs) but with a conventionally designed animation.
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4 Discussion and Conclusion

Our motivation for updating the APM in light of recent empirical and theoretical work
is a continuing quest to develop a principled basis for redressing the mismatches
between design features and human information processing that exist with conventional
animations. Effective extraction from an animated diagram of information about
dynamics plays a crucial role in building a high quality mental model of the depicted
subject matter because this behaviour indicates the causality that underpins the oper-
ation of a system. One feature of research into animation processing to date has been
the relative neglect of perception (compared with cognition). This is a considerably
more important issue for dynamic displays like animated diagrams than it is for static
diagrams because of the powerful influence that dynamics have on perception (and
hence information extraction).

We were initially alerted to the possibility of a previously unreported type of
perceptual processing by unexpected patterns of fixation in eye tracking videos from a
recent experiment. Empirical evidence subsequently gathered from further analysis of
the eye tracking data suggested that not only foveal but also peripheral perception can
be important in processing animated diagrams efficiently and effectively. For the
Contiguous paired presentation, this evidence indicated that, in essence, foveal pro-
cessing was being devoted exclusively to close monitoring of contact interaction
between the components in a pair leaving the task of characterizing the associated
overall movement patterns of those components to peripheral processing. More
specifically, available perceptual resources were being allocated in parallel according to
individual task requirements: detailed analysis of micro-scale dynamics to foveal
processing and broad characterization of highly familiar everyday macro-scale
dynamics to peripheral vision. Despite the findings being highly novel (and unex-
pected), this form of tailored resource allocation is not in fact exceptional but rather
perfectly normal in everyday visual perception. The findings are also highly consistent
with a central aspect of the APM: the composition of event units into more inclusive
knowledge structures.

The likely implications for elaborating the APM are that (i) perceptual processing
plays crucial role not only in extracting individual event units from an animation’s
dynamic flux (Phase 1) but also in contributing to the composition of these basic
building blocks into higher order information structures such as causal chains (Phases 2
and 3), and that (ii) considerable benefits can be achieved by fostering perceptual
partitioning in which responsibility is shared between foveal and peripheral processing
resources. However, it appears that such partitioning is contingent on the dynamic
subject matter being offered in a suitable fashion (in the case considered here, this was
according to the specific pairwise presentation regime available in the Contiguous
condition).

The Contiguous animation discussed in this paper was devised primarily for
research purposes. Despite its effectiveness, we did not intend it to be adopted ‘as-is’ by
practicing animation designers. Rather, we acknowledge the reality that conventional
approaches to designing animations will continue to be dominant into the foreseeable
future. However, the situation that exists in unsupported Comprehensive animations is
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the antithesis of what is required to allow highly efficient partitioning of perceptual
resources. For this reason, we are interested not only in using our findings to elaborate
the APM, but also in using the insights gained to suggest related interventions (such as
the use of anti-cueing to support pairwise processing) that may improve the effec-
tiveness of comprehensive animations. It would also be important to empirically test
the effectiveness of using anti-cueing with comprehensive animations (as proposed in
this paper) to simulate the type of pairwise processing situation found in the Con-
tiguous condition. The perceptual partitioning finding appears likely to be generalizable
to animations of many other mechanical systems that are based on similar types of
cause-effect relationships (such as the toilet cistern studied by Hegarty and colleagues
[12]). However, this possibility needs to be investigated by future empirical research.
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Abstract. This paper explores how people understand and visualize
externally a synchronous multi-threaded four-party conversation that was
audio-recorded, and investigates whether conversation-analytical knowl-
edge and/or digital skills with social media tools have an effect on the
nature and complexity of the conversational structure depicted in the rep-
resentation constructed. An experiment has been performed, in which 60
participants took part. Their task was to listen to a conversation, and
to display it on a magnetic whiteboard in their own way. Predesigned
conversation’s utterances and pictures of participants were provided, as
well as markers of different colors. Both visualization process and product
were coded. Coding of process included production time and relistening
behavior. The product was analyzed with respect to the ordering of utter-
ances. We used four characterizations of ordering: by chronology, by reply-
to relationships, by topic, and by conversational participant. Production
time and relistening behavior turn out to have varying effects on prod-
ucts. Results of the representations’ analysis suggest that conversation-
analytical knowledge or experience with a variety of social media influence
the type and the number of ordering principles used.

Keywords: External representation · Conversational structure
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1 Introduction

In visual communication, application domains are linked to graphical domains.
An interpretational link maps application domain entities to graphical ones.
Application domain entities are inherently visible or not. Visibility may influ-
ence the graphical marks chosen by people to construct external representations
[4]. Especially in the invisible, abstract case it is interesting to see how people
conceptualize the abstract information in the application domain and represent
it externally. As pointed out by [1], self-constructed external representations are
affected by individual differences, e.g. prior knowledge. [3] shows that abstract
c© Springer International Publishing AG, part of Springer Nature 2018
P. Chapman et al. (Eds.): Diagrams 2018, LNAI 10871, pp. 484–491, 2018.
https://doi.org/10.1007/978-3-319-91376-6_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91376-6_43&domain=pdf
http://orcid.org/0000-0002-6173-4433
http://orcid.org/0000-0002-2970-9027


Visualizing Conversational Structure 485

knowledge is involved in the application of diagrams visualizing different infor-
mational structures. Both the visualization of something in the world that is not
inherently visible, and the influence of more or less abstract domain knowledge,
will be addressed in this paper. The abstract entity involved is a multi-party,
multi-threaded conversation, and in particular the underlying structures it can
be associated with. Different groups are targeted in this study. On the one hand
we distinguish people with and without some prior knowledge regarding abstract
conversational notions, such as turn-taking, mentioning and topic shift. On the
other hand we focus on differences in computer-mediated communication expe-
rience with a variety of social media tools, such as Facebook, Reddit and text
chat. The outcomes of this paper will give insight in (i) external representations
of conversational structure, and (ii) effects, on these representations, of prior
knowledge, either of abstract conversational notions or of a broad repertoire of
different online discussion representations. This study is part of a larger research
where we investigate visualizations of conversations, not only from a production,
but also from a comprehension perspective. Results may provide clues for opti-
mizing user interfaces of applications representing group discussions.

This study focuses on conversational structure. A conversation is defined as a
collection of related utterances, also referred to as messages. The utterances are
bound by various relationships, based on different aspects involved in conversa-
tions. One such aspect is chronology, which corresponds to a sequential ordering
of utterances by time. Interactional coherence is another aspect, which is based
on reply-to relationships between utterances. If emphasis is put, not on chronol-
ogy, but on coherence, conversations can be viewed as having a tree structure.
Much more ordering approaches are imaginable [2].

Fig. 1. Message orderings according to the sequential (left) and tree (right) model.

One branch of research interested in the analysis of computer-mediated con-
versations concerns the effective and efficient visualization of online discussions.
As pointed out in [5], implicit in online conversational designs are two models of
conversation, the sequential and the tree model. Figure 1 shows schematic rep-
resentations of these models. A visualization supporting the sequential model
allows to answer questions about the chronological order of utterances (e.g.
‘which of these two messages was sent first?’) at a glance, that is, with direct
simple visual inspection. Text chat interfaces are often based on this model. A
visualization based on the tree model allows to answer questions about reply-to
relationships between utterances (e.g. ‘Does this message have any replies?’) at
a glance. Reddit’s interface supports the tree model. Facebook and many online
discussion sites use a mixed model, in which, however, the tree model is generally
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not applied in a consistent way; comments are presented as responses to an orig-
inal post, but are not ordered with respect to reply relations among one another.
We have added two other ordering criteria of utterances to the ones discussed
above, which we will refer to as the topic and the participation model. Topic
clusters utterances based on the subject discussed. Participation aggregates mes-
sages according to their contributor. Visualizations supporting the topic model
allow to answer questions such as ‘Which topic does this message address?’ at a
glance, ones based on participation facilitate answering questions such as ‘Who
contributes to the discussion with this message?’.

2 Method

This study aims to address the following research questions: RQ1: Which model
types (sequential, tree, topic, or participation) and which model tuples (combina-
tions of model types) is/are supported by the visualizations individuals produce
of the conversational structure, implied in a multi-party and multi-threaded con-
versation? RQ2: Does more or less abstract knowledge of conversation have an
effect on the model type and tuple used in the visualizations produced? An
empirical experiment has been conducted in order to answer RQ1 and RQ2.

2.1 Participants: Recruitment and Description

Sixty persons, aged between 22 and 50 years, were recruited for par-
ticipation in this experiment. We have made a distinction between two
types of prior knowledge, conversation-analytical knowledge, and knowledge
based on experience with computer-mediated conversations via a variety
of interfaces. The first one implies abstract conversational concepts, rules
and patterns, either acquired as communication specialists or as graphical

22

85

25 no / no
no / yes
yes / no
yes / yes

Fig. 2. Distribution of participants
(N = 60) with respect to conversation-
analytical knowledge and/or experi-
ence with social media tools.

designers of online conversations. The sec-
ond type is based on concrete examples and
is acquired by reading and/or participating
in online conversations in various applica-
tions, viz. Facebook, WhatsApp, Reddit,
text chat, and online discussion boards.
Thirty participants (14 women and 16
men) with conversation-analytical knowl-
edge were recruited. The other half (15
women and 15 men) was selected as not
having prior abstract knowledge. A ques-
tionnaire at the end of the experiment was
used to get information about the experi-
ence of the participants with online conversations. Analysis of the questionnaire
answers shows that all 60 participants use Facebook and WhatsApp regularly.
Remarkably, participants who indicated to use Reddit, turn out to partici-
pate more in chat conversations and online discussions. We decided to con-
sider this group (N = 27) as the participants with a broad experience with
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different social media tools. As shown in Fig. 2, the majority of the prese-
lected knowledgeable participants (yes/no and yes/yes segments) turns out to
be experienced (yes/yes). We think that this relation, which is significant (χ2(1,
N = 60) = 19.46), is not causal, but just a coincidence. A few non-knowledgeable
participants are experienced (no/yes segment). What does not seem to be for-
tuitous is the predominance of males in the group of experienced participants (8
women versus 19 men).

2.2 Design and Procedure

The experiment has a between-group factorial design. All participants were indi-
vidually exposed to the same experimental conditions. They got the task 1) to
listen to two conversations, a simple and a more complex one, between four
conversational participants (the same for both conversations: two women and
two men, with distinguishable voices), and 2) to visualize them on a white-
board. The simple conversation (of 14 s) consisted of five utterances continuing
the same topic, and served as a means to get the participants acquainted to
the type of experiment. The second, more complex, conversation (of 49 s), which
is the focus of this study, consisted of 24 utterances, and involved two main
different topics, each containing subtopics; the four conversational participants
discussed the buying of a present for a mutual friend (topic 1), and the cooking
of a meal (topic 2). Discussion of one (sub)topic was disrupted by discussion of
other (sub)topics. Relistening was allowed. We chose to expose the participants
to an audio-recording of these conversations and to allow relistening in order to
reduce the cognitive load. The exact wording of the task was (translated from
Dutch): ‘Please represent the conversation you hear on the whiteboard in your
own way. There is no time limit. You may relisten the conversation, or parts of
it. You are allowed but not obliged to use the materials provided.’ With this suc-
cinct wording, we hoped to elicit as spontaneous productions as possible within
the boundaries of the experiment (see materials below). The wording has been
kept constant for each participant. Several aspects of the visualization process
were recorded. Photographs were taken of all visualization products.

2.3 Materials and Coding

The experimental materials consisted of a magnetic whiteboard, small white
rectangular magnets corresponding to the conversation’s utterances (five for the
first and 24 for the second conversation). The utterance text (in black) preceded
by name of utterer (different color for each of the four utterers) were printed on
the magnet. Four circular magnets with photo and name of each conversational
participant were available, as well as markers of different colors, and a wiper.
We have chosen to provide these aids in order to relieve the participants and to
steer toward listening carefully to and laying out the whole conversation.

The construction process was coded with respect to construction time and
number of times that (part of) the conversation was relistened. Coding of the
final visualization product was performed by two coders and based on the four
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Table 1. Frequencies of model types supported by the visualizations constructed
(N = 104).

Model Type Total

C (%) R (%) T (%) P (%)

51 (49) 9 (9) 27 (26) 17 (16) 104 (100%)

model types introduced in the introduction. Different series of questions were
answered in order to decide which model type(s) is/are supported by the repre-
sentation laid out on the whiteboard. The following labels were used to charac-
terize the conversational structure visualized: C (chronology) , R (reply-to), T
(topic), and P (participation), for the sequential, tree, topic and participation
model respectively. Theoretically, each ordering criterion (C, R, T, P) and its
combination with other criteria (e.g. CR, CT, CTR, CRTP) could end up as a
visualization label. There was a high degree of agreement (96%) about the final
labels for each product.

3 Results

3.1 Visualization Process and Products

Every participant was able to depict the conversation on the whiteboard prop-
erly, that is, design a visualization corresponding correctly to aspects of the
conversation overheard. In most representations (93%), all 24 utterances are
used. Only 25 participants (42%) decided to use all discussants’ profile pictures,
and more than half (58%) chose to augment their representations with their own
graphical marks (mostly lines or arrows), using the color markers. There is quite
some variation in the time spent for relistening and construction. The mean time
is 8.1 min (SD = 4.3; mode and median = 7; range = [3–25]).

Three (5%) participants did not relisten (parts of) the conversation, 18 (30%)
did only once, and 38 (63%) (one missing value) more than once. Relistening the
conversation more than once tends to take more time to produce the visualization
than relistening zero times or only once. The relation approaches significance
(t(57) = 1.9547, p = 0.0556).

Tables 1 and 2 show the results of the visualizations produced.

Table 2. Frequencies of (combinations of) models supported by the visualizations
constructed (N = 60).

Single Double Triple Quadruple Total

C R T P CR CT CP RT RP TP CRT CRP CTP RTP CRTP
16 0 4 4 1 15 11 1 0 0 6 1 1 0 0 60

24 (40%) 28 (47%) 8 (13%) 0 (0%) 60
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Fig. 3. Illustrations of the visualizations supporting the C, CT, CP and CRT models.

On average, each participant bases his/her visualization of the conversation
on 1.73 models. All models are used, but in different proportions. The sequential
model prevails, the tree model is applied the least, and the topic model is used
more frequently than the participation model (see Table 1). The difference in
proportion is significant at the 0.01 level (χ2(3, N = 104) = 38.4).

Table 2 shows visualizations supporting the quadruple don’t occur, while sin-
gle and double models occur more often than triple models. When we oppose
single models (40%) to mixed (double and triple) ones (60%), the difference in
proportions is not significant (χ2(1, N= 60) = 2.4), but it is when we oppose
single and double models to triple ones (χ2(2, N = 60) = 9.8). There is no rela-
tion between relistening behavior and complexity of visualization, that is, the
tuple based on, nor between relistening and type of model used to layout the
conversation’s utterances.

In general, we see clear patterns in the diversity of the external representa-
tions participants produce. The models most frequently supported are the C-,
CT-, CP-, and CRT-model (see Table 2). Each picture in Fig. 3 illustrates visu-
alizations of each of these models.
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Table 3. Frequencies of model types supported by the visualizations constructed
(N = 104), per knowledge group.

Type of prior knowledge Model Type Total

C (%) R (%) T (%) P (%)

yes - yes (N = 22) 18 (35) 5 (56) 17 (63) 4 (23) 44 (42%)
yes - no (N = 8) 8 (16) 2 (22) 3 (11) 1 (6) 14 (13%)
no - yes (N = 5) 5 (10) 0 (0) 2 (7) 3 (18) 10 (10%)
no - no (N = 25) 20 (39) 2 (22) 5 (19) 9 (53) 36 (34%)

51 (49) 9 (9) 27 (26) 17 (16) 104 (100%)

3.2 RQ2: Effects of Prior Knowledge on Model Type and Tuple

Conversation-analytical knowledge has an influence on the model type(s) chosen
for the construction of the conversational structure. While use of the sequen-
tial model is equally distributed among participants, the topic model shows up
more often in the visualizations of the knowledgeable group, and the participa-
tion model occurs more in those of the non-knowledgeable group (see Table 3).
The proportional differences between topic and participation is significant (χ2(1,
N = 44) = 8.6). The distributional frequencies between the two groups of partic-
ipants differentiated by experience demonstrate a similar pattern, but without
significant differences (χ2(1, N = 44) = 3.57). In general the tree model is applied
sparsely, but more frequently by the knowledgeable group than by the non-
knowledgeable one. Remarkably, there is no clear preference for the tree model
by experienced participants, who are acquainted with Reddit’s tree design of
discussions.
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Fig. 4. Frequencies of model tuples,
per group.

Figure 4 shows the use of simple and more
complex models by the different groups of
participants. Participants with conversation-
analytical knowledge base their constructions
significantly more often on a mixed (double
or triple) model than on a single one (χ2(1,
N = 60) = 6.94). And so do experienced par-
ticipants (χ2(1, N = 60) = 9.44).

Although the experienced group con-
tained more men than women, no gen-
der effect has been observed; neither type
nor complexity outcomes are influenced by
gender.

For all groups, the relation between the
model complexity and the production times
follows the same pattern. Applying more
complexity takes more time. An exception is the group with no conversation-
analytical knowledge, but with experience. This may be due to the small numbers
involved (no-yes: N = 5). No significant relations are observed between knowl-
edge/experience groups and relistening behavior.
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4 Discussion

The sequential model is supported by almost all visualizations constructed. This
does not come as a surprise, given the stimulus, which is a synchronous dis-
cussion, in which participants apply turn-taking rules properly. The poor use
of the tree model, even by Reddit users, may be explained by the effort it
takes to detect reply-to relations in the conversation overheard. Conversation-
analytically knowledgeable participants base their constructions more on the
topic model, while the participant model is predominant in those of the group
without abstract knowledge. The availability of participants’ pictures in com-
bination with the relatively easy attribution of utterances to each conversa-
tional participant probably has steered the non-knowledgeable group to use the
participation model rather than the topic model. Identifying different conversa-
tional topics and relating them to utterances requires more conversation-analytic
knowledge than identifying conversation participants and cluster their utter-
ances.

Both the conversation-analytical knowledgeable group and the group with
social media experience create more complex visualizations of conversational
structure, without taking more time or relistening more often, than the non-
knowledgeable and the non-experienced group. We can conclude that knowl-
edge, either of conversational abstract notions or of a broad repertoire of online
discussion interfaces, allow people to recognize and identify more conversa-
tional aspects, and to give indications of how to represent them externally.
Conversation-analytical knowledge, or experience, or both have an effect, and
future research should give insight in the exact nature of prior knowledge.

The quadruple model was not supported by any visualization. This may have
several reasons. It may be cognitively too demanding to remember more than
three utterance-related aspects of conversations overheard, the depiction of four
aspects risks to give rise to cluttered depictions, or participants just don’t get the
idea that this is an option as well. Existing interfaces of commonly used social
media tools don’t give any clues how to visualize more than three orderings.
This finding also gives rise to future research.
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Abstract. The study strategy of comparing-and-contrasting has been well vali-
dated for learning from text, but not from diagrams. As part of a semester-long
study strategies intervention for undergraduate biology students, we created 4
short instructional videos demonstrating the strategy of comparing-and-
contrasting within diagrams (CC DIA) and delivered these just before the first
course exam. We hypothesized that this strategy would help students develop a
deeper comprehension of the instructed biology content. Participants were 128
undergraduates in a 2nd semester introductory (molecular and cellular) biology
course, who participated in exchange for extra course credit. Students who
accessed our videos scored a significant 5.5% points higher on the first exam of
the semester, compared to students in other conditions or non-viewers (d = .35).
Our brief (approx. 10 min per week � 4 weeks) instruction in using diagrams to
learn biology yielded significant gains in undergraduate achievement.

Keywords: Strategy instruction � Compare-and-contrast � Biology

1 Introduction

1.1 Comparing and Contrasting as a Study Strategy

The study strategy of comparing-and-contrasting has been well validated for learning
from text [1], but not as much from diagrams [but see 2]. When students engage in the
compare-and-contrast strategy, they use two stimuli about similar topics (e.g., 2 texts or
paragraphs, one about mitosis and one about meiosis; 2 diagrams, one about animal
cells and one about plant cells) and articulate what is similar across the two and what is
different across the two. Comparing-and-contrasting (CC) is cognitively complex, in
that it draws on numerous cognitive processes. CC draws on analogical reasoning (“this
is like that”), which necessarily involves metacognitively monitoring the state of one’s
knowledge [3]. It also draws on deductive reasoning, such as reasoning through why
two historical figures wrote differently about the same event [4]. CC may also involve
elaborative inferences that incorporate prior knowledge with information from a text,
such as knowledge about colonialism in Central America to inform learning from
multiple texts on the Panama Canal [5]. In addition, CC in diagrams usually involves
matching identical or analogous structures, which are sometimes indicated by identical
color codes, arrows, or other conventional diagram features. Therefore, CC in diagrams
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likely requires a better understanding of conventions of diagrams than does interpreting
a single image within a diagram.

A small body of research has examined comparing and contrasting with diagrams
and other visualizations. For example, in an influential 1998 paper, Bransford and
Schwartz [6] reported on a highly effective teaching method they called “contrasting
cases,” in which students are given multiple examples to learn from simultaneously. In
some cases, the examples included realistic drawings, photographs, schematic dia-
grams, and graphs. Comparing-and-contrasting among these visualizations led to better
conceptual learning of content; two contrasting cases presented simultaneously were
more effective than multiple cases presented simultaneously.

In a meta-analysis of learning with contrasting cases, Alfieri et al. [7] found that
cases targeting perceptual skills (e.g., find common elements across a set of drawings,
compare and contrast across videos) had even larger effects on learning (d = .72) than
those focused on declarative or procedural skills (d = .54 and .40, respectively). More
recently, Schunn and colleagues (under review) delivered contrasting cases instruction
in hundreds of middle school classes, sometimes using textual contrasts and sometimes
diagrams. They found that CC students performed significantly better than students not
receiving CC instruction on both researcher-developed diagram comprehension ques-
tions and on diagram questions from statewide end-of-course standardized tests.

These large effect sizes from instruction suggest that students are not already using
CC to learn, and teachers are not routinely providing effective instruction in CC. For
example, Cromley et al. [8] found few examples of comparing and contrasting when
undergraduate biology students—not provided with any training about diagrams—
provided think-aloud protocols from their own course textbook (see Fig. 1), even when
the diagrams invited such comparisons.

Fig. 1. A diagram analogous to one used in used in a think-aloud study by Cromley et al. [8].
Open-source image from Wikipeda.
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In addition, the nature of biology learning suggests that contrasting cases should be
a particularly effective instructional technique. A major theme in biology is the rela-
tionship between biological structure and biological function [9]. That is, the particular
biological elements and their inter-relationships (e.g., alveoli, bronchi, ribs and the
muscles around the lung; stomata, veins, epidermis, palisade cells, and mesophyll in
leaves) are directly related to the functions of those parts (intake of oxygen and dis-
charge of carbon dioxide in the lungs; water intake for photosynthesis in leaves).
Teaching diagram comprehension with single representations may lead students to
focus too much on structure, whereas contrasting diagrams may invite more consid-
erations of function—Why do these structures (e.g., in plant and animal cells) differ?
Because they must perform different functions. Taken together, the literature review and
our understanding of the structure-function challenge in learning science suggests that
CC in diagrams is a promising instructional technique for science learning, but one that
has rarely been systematically tested at the undergraduate level.

We therefore developed a series of instructional materials, rooted in students’ own
course, designed to teach them how to compare and contrast within the diagrams in
their textbook. To give a sense of what this task involves, consider Fig. 2, where a
molecule in chromosomes called histone is shown three times. On the far left, a small
number of histone proteins are shown before the histone combines with acetyl groups
(small molecular components). This is linked with dashed lines to multiple
un-acetylated histones which form “spools” that DNA wraps around. Between part
(a) and the left image in part (b), it is critical for the reader to recognize that the same
molecule (histone) is shown, it is unacetylated, and that DNA is wrapped tightly around
the histone molecules. Between the left part of (b) and the right part of (b), there is a
change; the acetyl groups have attached to the “tails” of the histone molecules (labeled
in (a)), because of this the DNA unwinds from the histone “spools,” and as the caption
explains, this unwinding allows transcription to happen. Comparing and contrasting is
thus a powerful strategy for making sense of the diagram, and for linking the structures
(histone, “tails,” DNA, acetyl groups) to functions (unwinding the tightly packed
chromosome so that DNA transcription can happen; see another example in Table 1).

We expected that our instruction engaging in comparing-and-contrasting in dia-
grams would help students better learn the biology content taught in their course.
Specifically, we hypothesized that accessing the CC DIA instructional materials from
chapters that were tested in the first exam of the semester would lead to higher scores
on that first exam, compared to students who did not access the CC DIA instructional
materials.

2 Method

2.1 Participants

Eligible students were enrolled in a 2nd semester undergraduate biology course
intended for science majors (e.g., biology, biochemistry, bioengineering, kinesiology),
typically taken by Sophomores, at a large, urban, East Coast US research-focused
university. Participants were 128 students who had enrolled in the study before the first
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exam of the semester, were assigned to an experimental condition, and completed
Exam 1. They were 64% female and were mostly Sophomores (78%), with 41% from
families where neither parent had a Bachelor’s degree. They were racially diverse, with
38% self-identifying as White, 27% as East Asian, 14% as South Asian, 7% as Black,
and 14% as belonging to other or multiple races.

2.2 Measure

In this paper, we analyze scores on exam 1, which was a professor-designed exam
given during a single 50-min class period in October, 2015. Exam scores had a mean of
75.0 (SD = 15.9), ranged from 36 to 108, and were normally distributed.

2.3 Intervention Materials

We describe our Compare-and-Contrast in diagrams intervention materials, which were
part of a larger semester-long study delivered via the Blackboard learning management
system. Students accessing the Compare-and-Contrast in diagrams videos also received
one of three motivational supports not described here which were delivered either 1
week before or 1 week after the first exam.

To create our Compare-and-Contrast in diagrams videos, the first author began by
identifying diagrams within students’ textbook that would be covered in weeks 1–4 of
the semester. Among these diagrams, we sought multi-part diagrams where the
compare-and-contrast strategy would be required (see Fig. 2).

Fig. 2. A diagram analogous to the one used to create the script and subsequent video for the
Compare-and-contrast in diagrams strategy instruction. Open-use image from Wikipeda.
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After identifying the diagrams, we then drafted a written script demonstrating the
strategy within each diagram; this script followed 6 steps in the Pressley and Harris
[10] strategy instruction model (see Table 1). Within each script, the strategy was
demonstrated 3 times (i.e., a total of 12 diagrams over 4 textbook chapters). After each
diagram, we asked the students to “Keep going with comparing and contrasting in
diagrams, try this in Figure [X] on page [X]. Pause the video and see if you can use this
study strategy. When you start up again, I’ll show my answer.” We did not capture any
data on whether students actually paused the video or tried enacting the study strategy.

Table 1. Operationalization of the 6 steps in the Pressley and Harris [9] model.

Step

1. Introducing the strategy
The first strategy we’ll show you for studying biology is looking for similarities and differences
in diagrams. Your textbook shows a lot of material in diagrams, and not all of that information is
in the text. Most diagrams have multiple parts, such as different forms of a molecule or different
views of the same molecule, chemical reactions, different parts of an organism, or different
molecules that are similar in some ways and different in other ways
2. Explaining the usefulness of the strategy
Paying close attention to the similarities and differences across complex diagrams can help you
better understand the biology and will definitely help you on exams. Studying the diagrams
doesn’t just help some types of students, it can help all students
3. Demonstration of how to enact the strategy
I’m going to show you how I would do comparing and contrasting in diagrams in Chap. 27. I’m
looking at Fig. 27.3 on p. 569. Gram staining a) gram-positive bacteria. B) gram-negative
bacteria. The photo doesn’t help much, but for gram-positive we’ve got cell wall, plasma
membrane, and the cell wall is a peptidoglycan layer and the plasma membrane is a…. plasma
membrane. The gram-negative also have the cell wall and plasma membrane, but the cell wall is
different, it has an outer membrane, then a thin peptidoglycan layer at the base of the cell wall.
What does staining have to do with it? Too large to pass through the thick cell wall…masks the
safranin dye. Then on the right, can pass through this thin cell wall….stains the cell pink or red
4. Opportunity for practice
Now you try it. Can you use comparing and contrasting in the Fig. 27.11 on p. 573? Pause the
video and see if you can use this study strategy. When you start up again, I’ll show my answer
5. Feedback
Here’s how I did it, yours might be slightly different. A phage infects a bacterial cell” so I can
see the phage on the outside of the bacterium…

6. Attribution to strategy use
Doing this comparing and contrasting helped me see that every little detail in every diagram is
important, and so is all of the text. The color change is pretty small, so I didn’t see it until I read
through the whole diagram, but now that I know what changes from step 1 to step 5 I can see
how the color reinforces that

Note: Italics indicate parts of the script that are read directly from the diagram.
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Note that the compare-and-contrast strategy is a multi-faceted one, combining
feature detection (‘the phage’), spatial relations (‘on the outside’), comparison pro-
cesses (‘The gram-negative also have the cell wall and plasma membrane’), contrasts
(‘but the cell wall is different’), deductive inferences (‘thick cell wall…too large to pass
through…masks the dye…thin cell wall…can pass through and stains), and uses of
conventional diagram features (‘I can see how the color reinforces that’).

After the scripts were checked for biological accuracy and pedagogical soundness
by the second author, we videotaped the scripts using Camtasia screen capture to record
the diagram, pointing the mouse at relevant parts while reading the script. This was
then captioned and produced as an.mp4 video and posted to the study Blackboard site
via a link to the Ensemble video platform to allow viewing via web link, preventing
download and sharing of the videos across conditions.

2.4 Procedure

Participants signed a paper consent form and scheduled a proctored session in a
computer lab to complete online demographics and various pre-intervention cognitive
and motivational measures not described here. After that 1-h session, all further
engagement was done via the study-specific Blackboard site at a time and place con-
venient to the student. After completing the pretests, students were randomly assigned
by Blackboard to conditions including study strategies, conditions including worked
examples (not described here), and a no-treatment control condition. Assignment to a
condition restricted each student’s access within Blackboard to only those intervention
components they had been assigned to. Weekly reminder emails for specific conditions
were sent to remind participants to access the intervention materials.

Once pretests were completed around the 2nd week of the semester, we launched
the Compare-and-contrast in diagrams videos for the first two chapters (already taught
in class) and then on the Sunday before each subsequent chapter was taught in lecture.
Video access was at a lower rate in the weeks before the exam and reached a peak on
the day before the exam.

Despite emailed reminders, before Exam 1 only 34 students had accessed the
strategy videos, out of 59 assigned to study strategies. We therefore analyze the effect
of these videos on exam scores of the students who actually did access them, compared
to all students who did not access them (either the 59 assigned to worked examples, 12
control students, or the 25 non-compliant students [3 students of 131 assigned to
conditions did not take Exam 1]).

2.5 Data Analysis

After verifying that exam scores were normally distributed within groups and that there
were equal variances across groups, we conducted a one-tailed (CC DIA > no CC
DIA) independent-samples t test to compare exam scores of those who accessed
Compare-and-contrast in diagrams videos to those who did not. All analyses were
conducted using SPSS 24.
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3 Results

3.1 Differences Between Those Accessing CC DIA and not Accessing

Students accessing the CC DIA videos before exam 1 scored statistically significantly
higher on the exam (M = 79.06, SD = 15.03) than those not accessing (M = 73.57,
SD = 16.02; t [126] = 1.74, p = .042, d = .35). This advantage is not only statistically
significant, but represents an increase from an average B to a B+ using the course grade
rubric.

4 Discussion

4.1 From Basic to Applied Research on Learning from Diagrams

Our brief (approx. 40 min over 4 weeks) video-based instruction on the Compare-and-
contrast in diagrams strategy was associated with significantly better scores for the
exam on the material covered in the videos. It appears that modeling the complex
process of comparing-and-contrasting within diagrams can substantially help students
learn biology content. This study strategy is multifaceted, as it incorporates noticing
parts of the diagram (selective attention), using conventions such as color coding and
arrows, comparing within diagrams, contrasting within diagrams, deductive reasoning
(e.g., “What does staining have to do with it?” in Table 1), summarizing at the end of
each diagram, and modeling metacognitive monitoring strategies. In this way, it is quite
similar to other multifaceted strategy instruction programs that have been tried with
multiple representations [11]. Despite this complexity, viewing brief examples that
model the process of comparing-and-contrasting in biology is effective in increasing
student learning. This is particularly impressive, as the exam did not test any of the
instructional materials directly, so we can consider it a measure of near transfer.

Like the small number of other instructional programs implemented with diagrams
and other visualizations [12], our intervention was successful at improving learning.
Such applications of laboratory findings—that experts engage in comparing and con-
trasting within diagrams—to classroom experiments continue to serve an important role
in providing improved instruction.
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Abstract. The way in which cueing a local element of a hierarchical
diagram influences the distribution of visual attention was examined.
Using a modified spatial cueing paradigm, the relation between the cue
and the target was manipulated by two factors: the level at which the
target was presented (higher, identical, lower), and the component to
which the target belonged (same or different). The results showed an
interaction between these two factors, and simple main effect analysis
revealed that the detection time of the target was influenced by three
factors: belongingness to the same component, geometrical collinearity of
the nodes, and top bias, which regards the top of the diagram as being
more informative. All of these factors are related to the conventional
knowledge normally possessed about the particular category of the dia-
grams, and to how such knowledge affects the efficiency of the diagram
comprehension process.

Keywords: Hierarchical diagram · Visual attention
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1 Introduction

1.1 The Global Structure and Local Components
of Hierarchical Diagrams

Schematic diagrams are essential tools for visual thinking, and hierarchical dia-
grams are representative examples of such diagrams [1]. They represent graphi-
cally the hierarchical relationship between items as a difference in levels, which
are visually salient. In addition, they consist of the nodes that indicate the
objects in the real world, and the line segments that connect each node to another
at an either higher or lower level in the hierarchy. Some examples of hierarchi-
cal diagrams include: phylogenetic trees that show the evolutionary relationship
between different plants and animals, tournament brackets that are often seen
in sporting events, such as the Olympics, and organization charts that illustrate
the relationships between the parts of and positions within an organization, such
as a company. As seen in such examples, the levels in hierarchical diagrams may
c© Springer International Publishing AG, part of Springer Nature 2018
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represent abstract relations in both the spatial and temporal dimensions. Due to
the visuospatial nature of such diagrams, we mistakenly feel that we can under-
stand them intuitively without any prior knowledge in comparison with verbal
description of the same data.

It has often been reported that visual attention is first directed to the global
properties of stimuli, a phenomenon referred to as global precedence [2]. There-
fore, when first glancing at a diagram, it is likely that we extract its global
properties. The globality of the diagram’s stimulus properties can be defined in
terms of its level in the hierarchy of the data. In general, diagrams are more
abstract than pictures [3]. Although they need not resemble the objects that
they depict, the spatial and temporal relationships among the objects should be
mirrored in the visuospatial structure of diagrams. Such relational information
can be derived from multiple local elements of diagrams, so it occupies a higher
level in the information hierarchy. Owing to the nature of diagrammatic repre-
sentation, we can use relational information within the diagram to predict the
possible behavior outcomes of the objects.

What kind of relational information in the diagrams, and how it is repre-
sented, differs according to the categories to which they belong [1]. For example,
a matrix-type table represents combinatorial information between two different
sets of items in an exhaustive manner, which is to say that the global structure of
matrices is invariant with respect to changes in the actual existence of respective
relations. If the problem that needs to be solved demands a close examination
of the possible combinations of two sets of items, depicting the situation as a
matrix is useful. Meanwhile, to obtain some information from the matrix, we
need to have conventional knowledge of how it is constructed. By using such
knowledge, we can guide our attention to the task-relevant relation effectively.

For hierarchical diagrams, their global shapes can be characterized in terms
of the top and bottom sides of a circumscribed rectangle. Since the number of
items decreases as the level in the hierarchy becomes higher, it is normally con-
sidered that a shorter side depicts a higher level. This property is characteristic
of hierarchical diagrams in comparison with other types of schematic diagrams
(i.e., matrices and networks, [1]). Whether such a property may act as a retrieval
cue for the category to which the diagram belongs depends on the conventional
knowledge of the observer.

On the other hand, the local components of the hierarchical diagrams need
to be defined with care. The main purpose of reading a hierarchical diagram is
not only to know what items are represented in the diagram, but also to obtain
information about the hierarchical relationship among them. Therefore, neither
a single node nor a line segment connecting multiple nodes may function as a
component of a hierarchical diagram. According to Novick and Hurley, a build-
ing block of the hierarchical diagram consists of at least three nodes and two
directional links connecting these nodes [1]. Such a block indicates the minimal
unit of relational information. Thus, to obtain information from a hierarchi-
cal diagram in an effective way, the application of conventional knowledge is
inevitable. Although appropriate knowledge can be activated in various ways,
the global structure of the diagram serves as an effective cue for retrieval.
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1.2 Effects of the Conventional Knowledge on Spatial Attention
to Hierarchical Diagrams

As we have seen, conventional knowledge of a particular type of diagram plays
an essential role in both its construction and comprehension. Empirical evidence
showing the interaction between reading tasks and graph formats is compati-
ble with this view [4]. The interaction between the bottom-up and top-down
processes facilitates robust and efficient diagram comprehension. Trapp and Bar
reviewed empirical findings showing the competitive nature of the perceptual
process, and proposed a hypothesis that expectations were derived from the low
spatial frequency component of visual images [5]. In the case of a diagram, con-
ventional knowledge about how the information is visually organized may guide
the attention of the viewer in an appropriate way. At the same time, perceptual
cues such as the diagram’s global shape or salient features may help activate the
category to which the diagram belongs. In other words, both the bottom-up per-
ceptual process and the use of top-down, conventional knowledge are involved in
diagram comprehension, and understanding the underlying mechanisms of this
comprehension may account for the effectiveness of diagrams in many situations.

Thus, when reading a diagram, visual attention is guided by both salient fea-
tures and top-down knowledge. Understanding the attentional process in reading
a diagram is important in that it shows both temporal and spatial range of infor-
mation processing capabilities involved. There is also an empirical evidence that
spatial attention is required for semantic processing [6]. Furthermore, studying
the attentional mechanism of diagram reading could enable us to obtain a bet-
ter understanding of how the diagram should be designed. However, few exper-
imental results about such a mechanism are available to date. In the present
experiment, a modified version of the spatial cueing task was used to examine
the conditions in which the benefits for cueing arise [7].

2 Experiment

The purpose of the present experiment was to examine how cueing a local ele-
ment of a hierarchical diagram affects the distribution of visual attention in the
diagram spatially. Abstract four-layer hierarchical diagrams were used as stim-
uli (Fig. 1). Participants were told to fixate on the center of the diagram, and
their task was to detect changes in the luminance of the rectangle, which repre-
sented a particular item. Before the change in luminance, one of the rectangles
was brightened to induce the orientation of visual attention. In valid trials, the
change in luminance occurred at the cued rectangle. In invalid trials, the change
in luminance took place at a non-cued rectangle. The differences between the
cue and target, that is, the rectangle at which the luminance was changed, were
manipulated with respect to the following two variables: target level in regard
to the cue (higher, identical, lower), and belongingness to the same component
(a V-shaped figure that consists of three nodes connected by directional lines).
Since the distance between the cue and the target is averaged across condi-
tions, any performance difference between the conditions should be attributed
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to the differences in the objects that participants form internally with the stim-
uli. Within the same object, attention directed at some part of it automatically
spreads, resulting in benefits in performance at positions other than the cued
position.

2.1 Method

Participants. The participants were 20 undergraduate students at Doshisha Uni-
versity (five males and 15 females, mean age 21.9 years). All students were all
paid for their participation, and all had normal or corrected vision.

Apparatus. Stimulus presentation and data collection were managed by Super-
Lab version 5 (Cedrus Corporation) running on a personal computer (HP Com-
paq Elite 8300SFF) with 17-inch cathode ray tube monitor (Iiyama, HF703U).
Screen resolution was set to 1280 × 1024 pixels during the experiment. The
viewing distance was set as about 60 cm, and the participants’ heads were stabi-
lized using a chin rest. Responses were measured using a RB-530 response pad
(Cedrus Corporation).

Stimuli. The stimuli were abstract hierarchical diagrams with rectangles as nodes
(Fig. 1). All diagrams were composed of four layers, and each node was connected
to two other nodes at a lower level. The fixation cross, stimuli, and target were
gray, and the cue was white. The fixation cross was a plus sign, which subtended
about 0.04◦ × 0.04◦. Each stimulus subtended about 10◦ × 10◦ with a stroke
of approximately 0.02◦, and a square node subtended about 0.04◦ × 0.04◦. The
retinal distance between the cue and the target in the invalid condition was
about 2.5◦. The retinal distance between the fixation cross and the target was
2.5◦ on average, ranging from approximately 1.0◦ to 5.0◦.

Design. The target appeared at either the same square as the cue (valid con-
dition) or a different square from the cue (invalid condition). In the invalid
condition, the target appeared at one of six different locations, that is the com-
binations of the level in the hierarchy compared to the cue (high, identical or
low) and the belongingness to the same component as the cue (same or differ-
ent). In total, 60% of the trials were valid, and 24% were invalid (4% for each
condition). The remaining trials were catch trials in which no targets appeared.

Procedure. Each trial began with the presentation of overlapped stimuli (a fix-
ation cross) for 1,000 ms, after which, the cue, brightening (i.e., a change in the
luminance of the square from gray to white), was superimposed for 100 ms, and
then returned to gray. The fixation display was presented again for 200 ms, and
the target was presented (the square was filled-in). The target remained on the
screen until a response was given, or, if there was no response, for 2,000 ms. Par-
ticipants were told to respond by pressing the center button of a response pad as
quickly as possible when they detected the target, and to withhold responses in
the catch trials. A subsequent trial began after a 500-ms interval. The hierarchy
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Fig. 1. The time course of a single trial in the experiment.

level at which the cue appeared was counterbalanced across trials to control the
difference in density between above and below the cued level. The presentation
sequence was randomized across participants. The time course of a single trial
is shown in Fig. 1.

The participants were told that although their response latency would be
recorded, it was important to minimize the number of errors. If a participant
made an anticipatory response, defined as a response within 150 ms of the target
presentation or a false alarm, a feedback beep was presented for 500 ms. Partic-
ipants were also asked to maintain their focus on the fixation cross throughout
each trial.

The experiment consisted of eight blocks of 125 trials each. Participants were
allowed to take a rest between blocks if necessary. The task was explained at
the beginning of each block and before the main trials, and 27 practice trials
were given. If a participant could not respond correctly for 20 consecutive trials, a
practice session was restarted, and the task was explained again. When there was
no response to the target within 2,000 ms, when a response was made within 150
ms of the target response, or when the participant failed to withhold a response
for the catch trial, the trial was considered as an error.

2.2 Results

The total error rate was 1.0%. The participants’ median response latencies for
correct trials under both the valid and invalid conditions were then compared
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using a paired t test; the results showed a significant difference (valid condition
= 411.350 ms vs. invalid condition = 461.325 ms; t(19) = 2.330, p = .031).

The median response latencies for the invalid conditions were analyzed using
repeated analysis of variance (ANOVA), with the within-participant factors of
target level and component. The results are shown in Fig. 2. The main effect of
target level and the interaction between two factors were significant (Greenhouse-
Geisser adjusted results for target level: F (1, 19) = 4.055, p = .045, η2

p = .176;
interaction: F (2, 38) = 4.318, p = .020, η2

p = .185). Multiple comparison for tar-
get level performed using Shaffer’s method found that the lower condition took
significantly longer than the higher or identical conditions (both p < .05). As
for the interaction, simple effect analysis revealed that the effect of level was
marginally significant when both the cue and the target belonged to the same
component (Greenhouse-Geisser adjusted F (2, 38) = 3.454, p = .058, η2

p = .154),
and highly significant when the target appeared at the node of a component
different from the cue (F (2, 38) = 5.827, p = .006, η2

p = .235). Multiple compar-
ison for the simple effect under the same component condition showed a signif-
icant difference between the lower and identical levels (p < .05), and that the
higher-level condition was significantly faster than the lower- and identical-level
conditions for the different component conditions (both p < .05). The simple
effect of the component was only significant when both the cue and the target
were presented at the identical level in the hierarchical diagram (p < .05).

Fig. 2. Interaction between the target level and component for response latencies.
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2.3 Discussion

The results clearly demonstrate that the effects of spatial cueing of a node in
the hierarchical diagram differ according to the hierarchy level at which the
target appears and the local V-shaped component to which the target belongs;
both factors determine the informational structure of the hierarchical diagram.
The present results support the claim that when viewing a hierarchical diagram,
conventional knowledge about how the diagram is organized globally, and what
constitutes its elements is activated automatically. Consequently, task-relevant
information can be obtained from the diagram efficiently.

The main effect of target level showed that when a target appeared at a level
lower than the cue, more time was needed to detect the change in luminance.
This was not the case for the higher level, which suggests that we read the
diagram from a level higher than the cued level in the hierarchy preferentially.
Based on the global shape of the hierarchical diagram, we can easily determine
which side is the top. We know that the top side of a hierarchical diagram depicts
the items that indicate superordinate concepts, and such biases might help us
comprehend the diagram.

The interaction between the target level and component is also important in
that it suggests how nodes are organized as building blocks across different levels
in the hierarchical diagram. When the target level was different from the cue,
no significant difference was observed in detection time between the component
conditions. On the other hand, when the target level was identical to the cue, the
target was detected faster under the same component condition. This suggests
that attending to a particular node in a diagram benefits from both the global
structure and the local component of that diagram. Identifying the level in the
hierarchy is essential in determining the representational range of the node, e.g.,
whether the node represents an animal or a fish. It may also be related to the
entry level often discussed in the categorization literature [8]. By using the global
features of a diagram, such as node collinearity, we may be able to identify the
hierarchical structure and the level considered the entry point.

The examples in which the target was detected relatively faster are shown
in Fig. 3. When the target was on the identical level as the cue and belonged to
the same component (the left panel in Fig. 3), detection was faster, suggesting
that spatial cueing is affected in two distinct manners. On the one hand, visual
attention is directed at the information unit of the diagram, which consists of
three nodes connected by two directional line segments. When one of the nodes
is cued, the effect automatically spreads to other nodes in the same unit. On the
other hand, visual attention is directed at a particular level in the hierarchy; this
is guided by geometrical features such as collinearity. However, as shown in the
right panel in Fig. 3, when the target appears at the node of a different unit, the
node for which the level is higher than the cue is detected faster. These results
suggest that the effect of geometrical collinearity is contingent on the information
unit to which the node is assigned. If the target node does not belong to the same
information unit as the cue node, the higher level is detected faster, indicating
that the reading process takes place from a particular direction in the hierarchy
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Fig. 3. Examples of the stimulus for which the detection of the targets (filled squares)
was relatively rapid (the cues are the squares with brighter contours).

(“top bias”, [9]). In order to resolve this confounding, the follow-up experiment
was performed by using the same stimuli in the inverted position. According to
my unpublished data from this follow-up experiment, the simple effect of level
for the interaction was significant only for the same component condition. This
result suggested that when the top of hierarchy in the diagram is consistent
with that of a visual scence, the viewer receives attentional benefits both from
the component of the diagram and the environmental upright. This attentional
benefit from the environmental upright eliminates when the hierarchical diagram
is presented in the inverted position, but the effect of the component remains.

In sum, the following three different types of spatial features are used in
reading a hierarchical diagram to implement an efficient process: belongingness
to the component, geometrical collinearity, and top bias. The usefulness of these
features is based on the conventional knowledge of hierarchical diagrams that
has been acquired throughout encounters with them in daily situations.

3 Conclusion

The present study examined how the global structure and local components of
a hierarchical diagram influence the cueing effect on a particular node in the
diagram. How a particular diagram is constructed and comprehended depends
on the conventional knowledge possessed by the observer; the results suggest
that different types of perceptual features influence the orientation of visual
attention to the encountered diagram. These results might also provide a clue to
the appropriate design for diagrams used in a variety of situations in daily life.

The use of conventional knowledge requires a certain amount of process-
ing resources, such as working memory. Hence, individual differences in working
memory might be related to performance in a comprehension task. Furthermore,
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it has been reported that individuals with autism spectrum disorder require
more time for global processing [10]. How such individual differences affect per-
formance in a diagram task might contribute to the concept of universal design,
and should therefore be examined in a future study.
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Abstract. Among the growing body of research on the interpretation of dia-
grams there appears to have been relatively little attention paid to emotional or
attitudinal responses, despite the fact that they may be significant for commu-
nicators aiming to stimulate interest, influence attitudes, or motivate action. This
research explores the impact on affect of visual context in biological life cycle
diagrams. In two qualitative studies, participants viewed decontextualized life
cycle diagrams along with diagrams that included a contextual backdrop, and
discussed their interpretations, associations, and attitudes toward the diagram
content. Thematic analysis of the data revealed that context was associated with
an elevated sense of empathy and concern for the animal, and a stronger per-
ception of personal relevance—clear indications that diagram design can have
important emotional and attitudinal impacts.

Keywords: Context � Diagram � Affect � Empathy � Relevance

1 Background and Introduction

Science graphics are studied as tools for conveying data, conceptualizing science, and
teaching science, however they are less studied as tools for communicating science and
related issues to non-specialist audiences—a common use of diagrams in science
communication and environmental communication settings.

The majority of existing research on the design of science diagrams (and perhaps
diagrams in general) focuses on cognitive outcomes such as information transfer,
comprehension, recall and so on. These are undoubtedly important outcomes that are of
great interest to educators and designers of data and information displays. However this
narrow focus on cognitive outcomes ignores a swath of other affective, emotional, and
attitudinal outcomes that are potentially important for communicators. For example, in
addition to information transfer, environmental and risk communicators may be
interested in the emotional impacts of graphics aimed at promoting attitude and
behavior change. Similarly, science communicators (and science educators for that
matter) may be interested in the influence of a graphic on interest and motivation in
addition to its impact on understanding.
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A common recommendation for instructional graphic design is that clarity and
comprehension should be achieved through focus and simplicity, driving a tendency
toward reductionism in diagram design. This notion is supported by a variety of
research which suggests that recognition, transfer, and understanding are improved by
reducing extraneous details [e.g. 1–3]. However, removing the ‘extraneous’ also often
means removing context, and context has been shown to be not just important for
learning and motivation [e.g. 4], but fundamentally critical for cognition [5] and
meaning making [6].

This paper poses the following question. While there is a significant amount of
research to support reductionism in diagram design as an effective approach for
information transfer and data interpretation outcomes, what affective roles might visual
context play in the interpretation of diagrams that have hitherto been overlooked? With
little indication from the literature for an obvious point of departure for such a study,
we took a broad exploratory qualitative approach aimed at identifying interesting and
potentially important aspects of the relationship between context and affect. Rather than
numerical confirmations of the prevalence of a pre-determined relationship, qualitative
methods allowed insight into the spectrum of possibilities that we could not have
known otherwise. This was particularly suitable for the exploratory nature of this
project. Specifically, this project investigated impacts of visual depictions of envi-
ronmental contexts in biological life cycle diagrams on viewers’ attitudes toward the
subject animal.

2 Study 1

To explore potential influences of visual context on viewers’ interpretation and atti-
tudes toward content, a series of focus groups was conducted at the University of
Tsukuba, Japan. The study did not target any particular aspect of this relationship, but
rather aimed to capture the widest possible range of responses to context.

2.1 Method

Three 90-min focus groups were conducted involving a total of 17 participants (19–39
yo) of various nationalities and backgrounds. This cultural and demographic hetero-
geneity was expected to encourage a rich diversity of responses. Each focus group
consisted of a word-association exercise and a loosely guided discussion about par-
ticipants’ interpretations, associations, and attitudes regarding a selection of life cycle
diagrams with and without a contextual background.

A total of five diagrams portraying fish (salmon, snapper) and crustacean (prawn,
lobster) life cycles were sourced from websites and online publications for use in the
focus groups. Diagrams were categorized as either contextualized or decontextualized.
Decontextualized diagrams were completely devoid of any background or visual
context, and simply represented the various life stages of the animal in a circular
arrangement on a plain white backdrop. Contextualized diagrams showed a similar
circular arrangement of life stages, but on a backdrop depicting the habitat of the
animal, including different habitats for different life stages. The visual context also
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included direct or indirect indications of the presence of humans (e.g. nearby houses, a
boat, a scuba diver). The subject species were selected to be less likely to invoke strong
emotive responses (e.g. cute, repulsive).

Focus group sessions were recorded and later transcribed for analysis using the
software package, NVivo 11 by QSR International. Thematic analysis of the tran-
scriptions was conducted using a Template Analysis approach [7].

2.2 Themes and Outcomes

This section describes the major themes to emerge from the focus group data.

Context and Habitat
The contextualized diagrams depicted species within their natural habitats, and this
prompted many participants to view those animals as free, living entities embedded
within their natural environments. This was in stark contrast to impressions that
decontextualized diagrams represented dead animals. Participants were clearly linking
the animal with where it lives at different stages in its life, and this in turned raised
further questions for some participants about how and why the animal moved, its
dependence on its environment, and the inter-relatedness of the various habitats.

Context and Empathy/Concern
Of the 15 participants who were asked directly if they felt differently about the species
represented in a contextualized life cycle diagram compared to the species represented
in a decontextualized diagram, 12 responded that they did. These participants indicated
that they viewed the contextualized species more as a living organism, and were more
able to understand how the animal lives in its natural environment. During the dis-
cussion, participants clearly indicated more emotional investment in species depicted
with a contextual background. This often emerged as a tendency to view the animal’s
life from the point of view of the animal itself, greater sensitivity to the challenges the
animal faces throughout its life, as well as direct expressions of empathy.

Context and Vulnerability
Some participants commented that they saw species represented in contextualized
diagrams as vulnerable to environmental change or to human influence. In some cases
this was prompted by indications of the presence of humans in the diagram.

2.3 Discussion

Diagram context certainly appeared to have some effect on viewers’ attitudes and
opinions toward the content. For many participants visual context encouraged a view of
the animal as an integrated part of its environment, and invoked feelings of empathy
and concern for the species portrayed.

Environmental educators have stressed the need to promote empathy for the natural
world if conservation efforts are to be successful [e.g. 8]. Environmental psychology
researchers have found empathy to be a reliable predictor of conservation behavior [9],
and have shown that under some conditions, environmental concerns could be influ-
enced by manipulating an individual’s sense of empathy for the animals involved [10].
Perhaps evident of this relationship between empathy, environmental concern, and
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environmental behavior, in this study context was not only associated with empathy,
but also seemed to prompt participants to consider stresses on the animal from envi-
ronmental and fishing issues, to contemplate the importance of habitat conservation,
and to imagine how the animal lives its life from the animal’s own perspective. It
follows that a relationship between visual context and empathy as observed in this
study would be of interest to environmental psychology research and potentially of
value to environmental communicators.

Limitations
Although the diagrams used in this study were carefully selected to represent the
contextualized and decontextualized archetypes, there was considerable variation in
color, illustration style, and aesthetics. This variety contributed to a richer range of
responses to the diagrams, as was intended, but also impeded a strict comparison of
context versus no context. Consequently, it should be acknowledged that when par-
ticipants responded in a particular way to context, they may also have been responding
to some extent to color, illustration style, or other aesthetic qualities that could not be
considered separately from context in this study.

3 Study 2

To further confirm and explore the findings of Study 1 and to address a number of
limitations in that study, a second series of focus groups was conducted. In this second
study, diagrams were purpose-built for more control over design and a more direct
comparison of the impact of context. Also, the questioning route was more focused
towards recognition of connections between the animal and its environment, as well as
feelings of empathy and concern for the animal.

3.1 Method

Four 90-min focus groups were conducted at the Australian National University,
Australia, with a total of 14 participants (18–33 yo). Again, participants represented a
variety of nationalities and backgrounds, increasing the potential diversity of responses.
The association exercise was conducted using the decontextualized life cycle diagram
of one of the species used in this study, and then repeated with the contextualized
diagram of the other species (i.e. each focus group used two diagrams—either
MA-1/BB-1 or BA-1/MB-1).

The diagrams used in this study (Fig. 1) were generalized life cycles of an aquatic
mussel and a gooseneck barnacle. These species were chosen for their expected
unfamiliarity, relative complexity of their life cycle, and low likelihood of invoking an
extreme emotional reaction. Contextualized and decontextualized versions contained
identical representations of each animal’s life cycle, differing only in the presence or
absence of an illustrated background depicting the animal’s environment. Each life
stage was labeled and short text descriptions were added for further explanation of the
life cycle and to ensure both versions contained details on habitat location (also pre-
sented visually in the contextualized diagram).
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Each focus group session was recorded, and later transcribed and analyzed with
NVivo 11 software by QSR International. As in Study 1, data analysis was guided by a
template analysis approach.

3.2 Themes and Outcomes

The most significant themes to emerge from Study 2 were as follows.

Context and Relevance
Although participants once again clearly indicated feelings of empathy for the animals
depicted in diagrams, and concern about their fate, a much more pronounced theme to
emerge from Study 2 was a strong and clear indication that context led participants to
feel a greater sense of personal connection and involvement with the animal depicted
and the environment it lives in. There were clear indications of this for both of the
species involved in this study. For these participants, recognizing familiar scenes,
places, or objects in the contextual background allowed them to feel that the animal, its
life, and the information presented in the diagram were more closely connected to their
own lives, and that they might encounter that animal or its habitat. We interpreted this

Fig. 1. Diagrams used for Study 2 focus group discussions: MA-1 decontextualized life cycle of
an aquatic mussel, MB-1 contextualized life cycle of an aquatic mussel, BA-1 decontextualized
life cycle of a gooseneck barnacle, BB-1 contextualized life cycle of gooseneck barnacle.
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as an elevated sense of personal relevance. Conversely, diagrams without context were
dismissed as distant, unrelated, and uninteresting.

Context and Curiosity
Since the questioning route directly asked participants what else they would like to
know about the animal depicted in the diagram, all groups produced comments about
aspects of the life cycle that participants were curious about, or that they did not
completely understand, and therefore little can be surmised about the mere presence of
such comments. There were, however, major differences in expressions of indifference
or disinterest (and consequently a lack of curiosity) between diagram types. The
questioning route did not directly ask about disinterest, so these types of comments
were spontaneous, and almost exclusively referred to decontextualized diagrams.

3.3 Discussion

Thus an important outcome to emerge from Study 2 was the apparent link between
context and an elevated perception of personal relevance. Participants were sensing a
personal connection triggered by the environment depicted in the contextual back-
ground, and this was apparent for both species. The educational psychology and per-
suasion literature reports that relevance is linked to increased attention, motivation,
learning [11], interest [12], and cognition [13]. A relationship between context and
curiosity, a subset of interest, was not directly apparent in this study, however there was
an inverse relationship between expressions of disinterest in the information content of
decontextualized diagrams and perceptions of personal relevance of information rep-
resented in contextualized diagrams. Although this is not definitive evidence of the
entire context-relevance-interest relationship, it is a strong, albeit indirect suggestion
that such a relationship may exist. Certainly this study suggests a context-relevance
relationship, while the relevance-interest end is predicted from the literature.

There may also be a connection between relevance and empathy. Environmental
psychology researchers consider empathy for the natural world to be closely related to,
and mediated by a personal connection to nature, both of which are predictors of
environmental concern [9]. Definitions of relevance center around the concept of being
closely connected, so a personal connection to nature, which mediates empathy and
predicts environmental concern, could alternatively be considered as a view that nature
is personally relevant. The connection to nature of environmental psychology is an
entrenched, stable attitude, while the personal relevance observed in this study was
specific and situational, however there is clear potential for a relationship between
relevance, empathy, and concern, and this might explain why these themes have
emerged strongly over the two studies reported in this paper.

Limitations
Any apparent influence of context in this study may also include influence from
specific characteristics of the diagram, illustration style, and content used in this study.
This should not rule out cautious extrapolation to effects of context more generally, but
care should be taken.
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4 General Discussion and Conclusions

Repeatability is not a realistic expectation for the intricate settings of qualitative
research, but rather each research situation is considered unique and assessed on its
own merits. The heterogeneity of Studies 1 and 2, then, serve to offer greater breadth
for considering potential relationships between context and affect. The studies were,
however, consistent, in that context was associated with affective responses in both
studies, and the major themes across the two studies—relevance, empathy, and concern
—are conceivably related. Taken together the findings of the two studies suggest that
context may play a role in encouraging feelings of empathy and concern, and a per-
ception of relevance, but that other mediating factors are also involved. These factors
might include the nature and content of the context, along with illustration style, clarity,
perspective, viewer background, content familiarity, external prompts, and so on. These
studies have made an initial foray into the relationship between context and affect, but
subsequent research is required to further clarify the relationships revealed in this
paper, and to determine their prevalence among viewers and across content and
illustration style.

As discussed in previous sections, empathy and concern are of interest to envi-
ronmental psychology studies, and relevance has implications for interest, motivation,
and learning. So the findings from this study would be of specific interest to researchers
in these areas along with communicators and educators. More generally though, these
studies clearly reveal that diagram design can have important emotional and attitudinal
impacts on viewers. This prompts one to consider what other aspects of design might
have emotional and attitudinal impacts, and conversely, what other emotions and
attitudes might be influenced by diagram design. The role of affect in interpretation has
potential implications for a broad array of researchers and practitioners in fields such as
science communication, risk communication, health communication, education, or any
other field where diagrams are employed toward objectives that can benefit from an
emotional or attitudinal influence. This is certainly an area that deserves further
attention.
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Abstract. Latent Semantic Analysis is widely used for natural language
processing, but is difficult to visualise and interpret. We present an inter-
active visualisation that enables the interpretation of latent semantic
spaces. It combines a multi-dimensional scatterplot diagram with a novel
clutter-reduction strategy based on hierarchical clustering. A study with
12 non-expert participants showed that our visualisation was significantly
more usable than experimental alternatives, and helped users make bet-
ter sense of the latent space.

1 Introduction

This design case study explores an increasingly common class of diagram, which
represents a statistical model used to explore unstructured, qualitative datasets,
such as our example dataset: a snapshot of Wikipedia. We focus on Latent
Semantic Analysis (LSA), one of a class of methods that represents words as
vectors, where dimensions of the vector space capture aspects of word meaning
[1,2]. LSA dimensions have been shown to be good predictors of human meaning-
based judgements [3], perform well in tasks based on word similarity [4] and
are useful in sentiment analysis [5]. Unfortunately, users do not find it easy to
interpret the dimensions extracted from LSA.

Our research therefore investigates whether interactive diagrams can be used
to provide a more interpretable mapping between a model created using LSA and
the domain content of the vocabulary being mapped, and whether a mapping of
this kind can provide an effective basis for sensemaking and exploration.

Conventional quantitative graphs are valuable to experts who are interested
in understanding and refining the model. It is not unusual for experts in a
domain to invent tools that will assist them in their own tasks, and as a result,
we find that statistical visualisation approaches are widespread in the data ana-
lytics and natural language processing literature. However, such visualisations
may be less valuable to those who are not experts.

Our distinctive approach focuses on presenting the semantic relationships
between words, treating the problem as one of diagram design. We visualise
c© Springer International Publishing AG, part of Springer Nature 2018
P. Chapman et al. (Eds.): Diagrams 2018, LNAI 10871, pp. 517–525, 2018.
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semantic structure using geometric regions that summarise clusters of related
words. The user can explore any word group cluster by selecting and “expanding”
the view to focus on those words. Exploration of clusters can be recursive, allowing
navigation of a semantic hierarchy. Interaction with lower levels of the hierarchy
allows the user to explore closely related words, while interaction with higher lev-
els provides a thematic overview of the corpus. We use diagrammatic design cues
to communicate these different interpretation opportunities to the user.

We demonstrate through a user study that our system improves the ability
of non-expert users to discover groups of related words and assign meaning to
dimensions, when compared to two more conventional alternative visualisations.

1.1 Related Work

Visualisation of multidimensional datasets has been previously explored. Scat-
terDice uses scatterplots and scatterplot matrices to represent the dataset [6].
An alternative approach uses parallel coordinates and hierarchical clustering [7],
lines are coloured according to the proximity of their corresponding data points
in a cluster hierarchy. Other approaches to scatterplot matrices, including den-
sity contour, sunflower plots, and density estimations, have been compared [8].

A notable prior design, aimed at improving the understanding of latent
semantic spaces, is a flattened network visualisation of the space [9]. A separate
network can be displayed for each dimension, where the length of edges between
words corresponds to the similarity between those words on that dimension.

Strategies for clutter-reduction have been well-explored. Some taxonomies
distinguish between clutter reduction strategies affecting the appearance of indi-
vidual data points, those spatially distorting the space to displace the data
points, and animation techniques [10]. Another survey presents visual aggre-
gation strategies including multidimensional scatterplots, parallel coordinates,
star plots, and a model of hierarchical aggregation related to our approach [11].

2 LSA Model Construction

The Westbury Lab Wikipedia Corpus [12] was used during development as well
as the experiment. This snapshot of the English Wikipedia contains articles as
plain text without Wiki markup, links and other non-content material.

After removing stopwords and words occurring in fewer than two documents,
we constructed word-document co-occurrence matrix A. Rows correspond to
words, columns to documents, and each entry aij corresponds to the appearances
of word i in document j. We applied inverse document frequency (IDF) weighting;
words appearing in fewer documents were prioritised relative to common words.
We then used a standard LSA library [13]. The co-occurrence matrix is factorised
using singular value decomposition [14]. The n × m matrix A can be written as
the product A = UΣV T , where U is an orthogonal n× n matrix that recasts the
original row (word) vectors as vectors of n derived orthogonal factors; likewise V
is an orthogonal m × m matrix describing the original columns. Σ is an n × m
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diagonal matrix, whose diagonal entries are ‘singular values’ of the matrix and
the columns of U and V are respectively the right and left singular vectors.

The top k singular values, and the corresponding rows and columns from U
and V , give a k-rank approximation for A. The word vectors in U can thus be
expressed with k dimensions, instead of in terms of every document. The choice
of k is task and content dependent [15] and is typically tuned empirically [1].
Using the L-method [16] we found k = 5 dimensions sufficient for our corpus.

3 Interface Design

Our interface consists of: (1) A hierarchically-clustered diagram for clutter man-
agement, (2) a heatmap matrix for navigating between dimensions, (3) a graph-
ical history for navigation context, and (4) a word cloud for inspecting clusters.

3.1 Hierarchically-Clustered Scatterplot

We construct a cluster hierarchy, allowing fluid navigation between multiple
levels. This supports exploratory analysis, where it is not known in advance
which aspects of the data are most important. We use agglomerative hierarchical
clustering using Euclidean distance and centroid linkage. Every datapoint is
initialised as a separate ‘cluster’. In each iteration, the pair of clusters with the
lowest inter-cluster distance is merged. This is repeated until all points have
been merged into a single cluster. This process creates a tree (represented as
a dendrogram (Fig. 3, left)): the root node is a cluster containing the whole
dataset, nodes have exactly two children, and leaves are individual datapoints.

Visualising a Cluster. Clustering trades detail about individual data points
for aggregate information. A good cluster representation would convey infor-
mation about its contents (scenting) for effective exploration (foraging) [17]. In
our representation of each cluster (Fig. 1a), the shape of the cluster is preserved

(a) Multiple clusters visualised. A word is
being inspected via tooltip.

(b) Heatmap matrix. Blue indicates a
high probability density.

Fig. 1. Cluster visualisation and heatmap matrix. (Color figure online)
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by rendering the convex hull of its constituent points; the colour of a cluster is
mapped to its cardinality – darker clusters contain more points; and, the centroid
is plotted in red. Data points (words) are shown explicitly, and can be inspected
individually, if a cluster contains very few of them.

Cluster Expansion. Double-clicking a cluster expands it, ideally resulting in a
display that efficiently uses the available screen space while minimising overlap
of the newly displayed clusters. Each expansion may correspond to a descent
of multiple levels in the hierarchy tree, based on a criterion that supports the
fastest descent of the hierarchy while avoiding clutter.

We developed the heuristic of a ‘minimal displayable centroid distance’. The
idea is that the centroids of clusters onscreen should never be closer than this
amount. We set this to 30 pixels, corresponding roughly to 1 cm on our dis-
plays. Clusters higher in the hierarchy tree correspond to a greater centroid
distance between that cluster’s children. On expanding a cluster, the scatterplot
is rescaled to tightly fit the expanded cluster, such that the minimum and max-
imum value on the x and y axes corresponds to the extents of the cluster on the
dimensions being plotted on x and y, respectively. The pixel size of the overall
scatterplot is known, giving a mapping between data and screen space. From
this, we map a distance of 30 pixels back to data space and get the optimal tree
cut height (the lowest height where clusters are sufficiently distant) (Fig. 3).

Fig. 2. Word clouds corresponding to four clusters. Font size and colour encode the
words’ distances from the centroid. Can you assign a meaning to each cloud? (Color
figure online)

Fig. 3. Expanding a cluster. When C is expanded, a cut (red line) is made at the
height corresponding to the minimum displayable distance between clusters. (Color
figure online)
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3.2 Heatmap Matrix: Helping Users Navigate Between Dimensions

The user must select which two dimensions of the n-dimensional dataset will be
plotted. Without guidance, this task can degenerate into tedious enumeration of
dimension pairs, or ineffective random switching. A scatterplot matrix displays
all dimension pairs, letting users quickly identify plots of interest, but is costly
to render: for 30,000 words it requires plotting 30,000 points per dimension pair.
One strategy to reduce the rendering cost is to display a näıve random sample,
but this only works on uniformly distributed data; with outliers and areas of
varying density, it produces distorted or misleading plots.

Our solution is to plot the sampled probability density of the data as a
heatmap, with colour mapped to density, as seen in Fig. 1b. We used bivariate
kernel density estimation (KDE)[18]. This significantly reduces the complexity
of rendering while still capturing the overall shape of the data. The resultant
heatmap matrix is a navigational aid: users click on cells in this matrix to select
which two dimensions are displayed in the cluster diagram.

3.3 Word Cloud

There are two ways to inspect words. Hovering on single points displays a tooltip
that remains open if the point is clicked. When a cluster is clicked, a subset of the
words contained in the cluster is visualised in a word cloud to the right (Fig. 2).
To manage the cloud’s visual complexity, only the 30 words closest to the cluster
centroid are displayed, as these are most representative of the cluster. The size
and colour of words are mapped to the distance of the words from the centroid.

3.4 Graphical Expansion History

When a cluster is expanded, its place within the larger cluster hierarchy is
no longer visible. A graphical history [19] preserves this context. Upon clus-
ter expansion, a snapshot of the current plot, highlighting the expanded cluster,

Fig. 4. Cluster expansion step. Expanded clusters are marked in red. (Color figure
online)
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Fig. 5. Our interface in use.

is added to the history. A sequence of expansions provides context for each
expanded cluster, showing how the expanded cluster relates both to its immedi-
ate context as well as the entire data space (Fig. 4). Any snapshot in the history
can be clicked to revert to that level, creating a multi-level overview+detail [20].

Taken together, the four components: clustered scatterplot, heatmap matrix,
graphical history, and word cloud constitute our interface (Fig. 5). The heatmap
matrix is accessed with the ‘change dimensions’ button, which displays the
matrix to the right of the cluster diagram in place of the word cloud.

4 User Study

We define two goals of latent semantic space exploration: (1) finding groups of
related words and assigning a meaning to the common underlying theme, and (2)
interpreting the meaning of each dimension. We were interested in evaluating:

– Effectiveness: were the two goals of exploration achieved?
– Style: was exploration broad, exploring many combinations of dimensions, or
deep, emphasising word inspection and navigation within dimension pairs?

– Usability: do users find the system usable?

We conducted an experiment to assess these questions, comparing our interface
with the following two alternatives. Firstly, a plain scatterplot system replaces
the cluster visualisation with a scatterplot that users can pan and zoom – a
conventional clutter management strategy (Fig. 6a). Secondly, a heatmap sys-
tem uses the KDE heatmap as the primary display (Fig. 6b). To view individual
points, the user selects an area of the plot, within which individual points are
rendered. When the selection is made, the plot zooms into the selection, and
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individual points are rendered which can be inspected using tooltips. Both sys-
tems retain the navigation matrix, but lose the graphical history and word cloud,
leaving tooltips as the method for word inspection.

4.1 Experiment Design and Procedure

Twelve Cambridge University undergraduates with no prior exposure to LSA
were recruited via convenience sampling. The experiment was a within-subjects
comparison of the three systems. Participants were briefed on LSA and on the
operation of each interface. For each of the three interfaces, participants carried
out an experimental task, then completed two usability questionnaires.

In each task, the participant was instructed to (i) assign a meaning to groups
of words which they found to be related, and (ii) assign a meaning to each of
the dimensions. Three disjoint datasets of 30,000 words were sampled from the
corpus. The design was counterbalanced: each dataset was assigned to each inter-
face in equal representation across participants. The 3 systems were presented
to participants in different orders, each of the 6 possible orders being assigned
exactly twice. These measures mitigated learning effects and order effects.

We recorded the number of meanings offered by the user, counting at most
one assigned meaning per word group/dimension, even if the participant offered
multiple interpretations. Participants were free to continue exploration as long
as they desired. General usability ratings were obtained using IBM’s Post-Study
System Usability Questionnaire (PSSUQ), while IBM’s After-Scenario Question-
naire (ASQ) was used to measure task-specific usability [21]. Both use a 7-point
scale with lower values reflecting superior usability.

4.2 Results

We refer to our interactive Cluster diagram as C, the Heatmap alternative as H,
and the plain Scatterplot alternative as S. All post-hoc tests were subjected to
Bonferroni correction.

(a) Plain scatterplot with pan/zoom. (b) Heatmap showing selected points.

Fig. 6. Experimental alternative interfaces



524 A. Šemrov et al.

Assignment of Meaning : Participants assigned meaning to significantly more
word groups using C (average of 7.92 groups) versus H (5.33 word groups,
p = 0.037) and S (4.25, p = 0.038). (Planned contrasts after one-way repeated
measures ANOVA yielded F (2, 22) = 5.162, p = 0.019). A significant difference
was not found in the number of meaning assignments for dimensions.

Style of Exploration: We studied how often users switched the dimensions dis-
played using the heatmap matrix. Participants switched dimensions several times
in S, but less frequently when using C. In contrast, participants inspected a
far greater number of words with C than with either alternative. C therefore
promoted a more depth-first style of exploration due to the ease of navigating
the hierarchy, facilitating model interpretation grounded in specific words. Con-
cretely: a significant Friedman’s test was followed with Wilcoxon signed rank
tests. Users switched dimensions more often with S (p = 0.037). With a similar
analysis, the number of words inspected was significantly different (p = 0.028).
The average number of words explored when using C was 1517 (p = 0.010), as
compared to 479 with H and 772 with S (p = 0.050).

Usability : Users found C more usable than either alternative. C significantly
improved the users’ exploration effectiveness in terms of the number of groups
of related words found. This was expected, as the word cloud allows more words
to be inspected simultaneously, and clusters encapsulate the semantics of a given
word group. Concretely: The PSSUQ score for C (average 1.86) was significantly
better than H (average 4.08, p = 0.002) or S (average 3.01, p = 0.015) (Wilcoxon
signed-rank tests following significant Friedman’s test (p = 0.001)). The differ-
ences in task-specific ASQ ratings for the dimension interpretation task were
significant (p = 0.002). C was rated better than both S (mean difference −1.389,
p = 0.02), and H (mean difference −1.528, p = 0.001). For the word group task
we observed similar, but non-significant mean differences.

5 Conclusion

Latent semantic spaces are a valuable tool for the analysis of large text corpora.
However, interpreting latent semantic spaces is difficult, and visual scalability is
a major design challenge, as is accessibility for non-experts.

Our novel interface uses a hierarchical clustering approach to clutter reduc-
tion, allowing users to gain an overview of semantic structure in the corpus.
The cluster diagram can be combined with summary distributions arranged in
a heatmap matrix. A user study showed that the usability of our interactive
diagram was significantly superior to alternatives based on either plain scatter-
plots or heatmaps alone. Moreover, the hierarchical cluster diagram facilitated
the identification and assignment of meaning to more word groups.
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Abstract. A combination of node-link diagram and matrix seems to be
beneficial since their respective strengths and weaknesses complement
each other. However, users have to read both representations in different
ways and switch between these representation styles. We conducted a
user study to understand how users transform a node-link diagram to a
matrix representation and vice versa. For this purpose we let participants
draw node-link diagrams and matrices. The drawings were analyzed to
identify strategies how user convert one visualization into the other one.

Keywords: Information visualization · Node-link diagram · Matrix

1 Introduction

The analysis of graphs is essential for many areas, e.g., social network analysis,
biology, or medicine. The traditional approach is to visualize graphs as node-link
diagrams. This kind of visualization is easily understandable for many users.
Nevertheless, there are some drawbacks related to node-link diagrams. Even rel-
atively small graphs result in large node-link diagrams and dense graphs lead
to clutter so that nodes and links can be occluded. As an alternative, matrix
visualizations have been suggested because they use space more efficiently and
are free of clutter. The disadvantage of this kind of visualization is that inexperi-
enced users have difficulties in interpreting matrices [14] and that the detection
of relationships is not as intuitive as in node-link diagrams.

In this paper we try to clarify how users translate node-link diagrams into
matrices and vice versa which can inform the design of hybrid visualizations.
When using such hybrid visualizations users have to relate the information
gained from one visualization to the information gained from the other one. We
hope that this study also contributes to a more detailed understanding of the
problem why matrices are not as easily understandable as node-link diagrams.
We want to analyze what conceptual problems may occur when people engage in
such activities. To achieve this we asked the participants to look at either node-
link diagrams or matrices and draw a sketch of the other visualization based on
the same data. We then analyzed the errors which occurred and, more generally,
the strategies the users adopted to relate both visualizations with each other.
c© Springer International Publishing AG, part of Springer Nature 2018
P. Chapman et al. (Eds.): Diagrams 2018, LNAI 10871, pp. 526–534, 2018.
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2 Related Work

There is a considerable amount of research about the advantages and disadvan-
tages of node-link diagrams and matrices and how to design these visualizations.
Ghoniem et al. [5] used simple, generic tasks and found out that matrices are
especially useful for larger, denser networks. Graphs are suited for path related
tasks (cf. [9]). Henry and Fekete [7] developed MatLink, a hybrid tool consist-
ing of node-link diagram and matrix. To support path-related tasks MatLink
shows graphical curved links of the connecting nodes in lines and columns. In an
evaluation, they showed that MatLink is superior to either node-link diagram
or matrix. Alper et al. [1] compared weighted node-link diagrams and matri-
ces and also found that matrix representations in general are more efficient than
node-link diagrams. In general, those studies used generic and fairly simple tasks
(e.g., find a node or identify a path between two nodes). Some visualization tools
combine matrices and node-link diagrams, such as the MatrixExplorer [6], where
a node-link diagram is juxtaposed with an adjacency matrix. Another combina-
tion of node-link diagrams and matrices is implemented in NodeTrix [8], where
dense sub-networks are depicted as adjacency matrices and the sparse parts of
the network are drawn as links that connect the matrices. Liu and Shen [11] show
that square matrices lead to improved pattern recognition in comparison to tri-
angular matrices and propose a compact juxtaposition of many matrices. There
is also some research proposing to use multiple links between nodes. Node-link
diagrams using multivariate edges, so called multiple threads, were presented in
Ko et al. [10]. They argue that there are many application areas for such multiple
edges, but state that such multiple links are sometimes difficult to distinguish
and that an appropriate design is important. Beck et al. [3] also discuss the usage
of different multiple links.

3 Empirical Evaluation

The study aimed to address the following research questions:

– RQ1 - Correctness and Efficiency: Do participants convert node-link
diagrams to matrix or vice versa more correctly? Does transforming node-
link diagrams to matrices or vice versa yield faster completion times?

– RQ2 - Interpretation: How do participants convert node-link diagrams
to matrices and vice versa? How do they transform the connections between
those two representations? How do they transform the nodes from a node-link
diagram to a matrix and vice versa?

Since hand drawn sketches are an effective method that allow for creative free-
dom and help to express, develop, and communicate concepts with a low entry
barrier (cf. [4,15,16]), we decided to let participants draw node-link diagrams
and matrices to avoid any restrictions or influences resulting from any software.
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Materials. For the evaluation two test cases were generated. For each test case,
node-link diagram/matrix examples of the following four different types were
prepared: Type 1 - 1 connection type with 5 nodes, Type 2 - 3 different connection
types with 5 nodes, Type 3 - 3 different connection types with 10 nodes, and
Type 4 - 3 different connection types with direction information and 8 nodes.

The goal of Type 1 is to verify if participants understand the relationship
between a node-link diagram and its corresponding matrix and vice versa. In
order to avoid errors which may result from the complexity imposed by a large
number of nodes and connections, we decided to restrict the examples to five
nodes. For Type 2 we increased the complexity by increasing the number of con-
nection types. For better differentiation of the three connection types, different
line types were used. The number of nodes stayed the same as in Type 1 to ensure
that the connection types and not the number of nodes influence the result. In
contrast to Type 2, we doubled the number of nodes for Type 3 to investigate if
the number of nodes has any influence on the outcome. Finally, the focus of Type
4 was on the direction information of the connection types and how participants
will transform this information between the two representations. We decided to
use city names and the connection types represent different modes of transport.

Sample. We recruited 12 Computer Science students (6 males and 6 females
with an average age of 25.16) who have at least basic knowledge with matrix
and node-link visualizations. No compensation was offered.

Procedure. The experimental session was conducted in a quiet seminar room. The
session started with a short introduction and participants had the possibility
to ask questions to clarify any issues with the study. Next, the participants
got the two test cases as discussed above. To counteract learning effects the
participants were divided into two groups. The first group of participants got
the four matrices from one test case and were asked to draw the corresponding
node-link diagrams. After they finished, they got the four node-link diagrams
from the other test case and were asked to draw the corresponding matrices. For
the second group, the order was reversed. The average duration for drawing all
node-link and matrix examples was about 47 min (min. 37 min and max. 60 min).
Lastly, the participants were asked if they found it laborious to convert matrices
into the corresponding node-link diagram or/and vice versa.

4 Results

RQ1 - Correctness and Efficiency. First, we assessed if participants converted
node-link diagrams to matrices and vice versa correctly. In total 32 errors were
made by 11 out of 12 participants. One participant did not make a single mistake.
The analysis of errors showed only minimal differences if participants converted
node-link diagrams to matrices (17 errors) or vice versa (15 errors). However, an
interesting observation was that of the 11 participants who made errors, four par-
ticipants made the errors only when converting matrices to node-link diagrams,
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Fig. 1. Matrix examples for (a) Type 1, (b) Type 2 and 3, and (c) Type 4.

five participants only when converting node-link diagrams to matrices, and only
two participants made errors in both direction. Most of the errors were made
with the examples of Type 4 (n = 19), followed by Type 3 (n = 9) and Type 2
(n = 3). Only one person made an error with an example of Type 1. This person
doubled the connections when converting the matrix to a node-link diagram.
Asked about the reason, the participant noted that the matrix included each
entry twice (due to symmetry reason). Although 13 of the 32 errors (made by
4 participants) were semantic errors (e.g., only the number of connection types
was added in the matrix without making a difference between them), most errors
(n = 19) which were made by 11 participants were syntax errors (e.g., connec-
tions between nodes were missed). Since syntax errors were mainly mistakes due
to inadvertences but semantic errors resulted from misinterpretations, most of
the participants (8 out of 12) transform node-link diagrams to matrices and vice
versa correctly. We could observe that the participants took slightly longer to
convert the node-link diagrams to matrices (27 min for all four examples) than
for the other way round (21 min).

RQ2 - Interpretation. We observed that five participants preferred to convert
matrices to node-link diagrams and seven participants favored to convert node-
link diagrams into matrices. Participants noted the following reasons for their
preference to convert node-link diagrams to matrices: the raster layout from the
matrix (2 statements) and the clear arrangement of the matrix (3). Participants
who favored to convert matrices to node-link diagrams noted that: it made more
fun (1) and it was easier to understand (2) than drawing matrices. Furthermore,
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one participant mentioned that nodes and edges needed to be drawn twice for
matrices which is not necessary for node-link diagrams. However, on average
converting matrices to node-link diagrams and converting node-link diagrams
to matrices was found equally laborious in both cases. Next, we analyzed how
participants transformed node-link diagrams to matrices and vice versa.

Node-Link Diagrams to Matrices: Most of the participants (7 out of 12) drew
a × symbol in the matrix examples of Type 1 to represent connections between
the nodes. A line and number 1 as a symbol were used by two participants each.
One person grayed out the cell in the matrix. Figure 1(a) shows four examples
how the connections were drawn in the matrix. For the matrix examples of Type
2–4, we observed that most of the participants used the same line types in the
matrix as used in the node-link diagram (Type 2 : 8 participants, Type 3 : 9, and
Type 4 : 9). The image at the top in Fig. 1(b) shows an example how participants
represented different connection types with lines in the matrix. However, it was
interesting to observe that participants did not pay much attention to the order
of the line types. For only about 50% of the examples the order of the line
types in the matrices corresponded to the order of the line types in the node-
link diagrams. Four participants used numbers instead of the different line types.
Two participants only used the sum of the number of connections between nodes.
Two other participants assigned the different connection types to the numbers
1, 2, and 3 and wrote the corresponding numbers in the cells (see Fig. 1(b)).
These two participants changed the presentation style for examples of Type 3
and Type 4. One participant used the different line types instead of the numbers.
The second participant used different symbols for the example of Type 4. The four
participants, who used numbers, converted the node-link diagrams to matrices
first before they converted the matrices to node-link diagrams. The analysis of
the examples of Type 4 showed that 10 participants give the reading direction
of the connections along the left side of the matrices. Only two persons drew the
direction information of the connections directly within the cells of the matrices.
Again, we could observe that these two participants drew the matrix examples
first. Figure 1(c) shows excerpts of examples how participants drew the direction
information in the matrix. The most used strategy to transfer the nodes from
the node-link diagrams to matrices was clockwise or counterclockwise if the
arrangement of nodes in the node-link diagram exhibited a circular structure.
However, if the arrangement of nodes in the node-link diagram did not resemble
a circular layout, other strategies such as left-to-right or top-to-bottom, were
used. Interestingly, the structure of the edges did not seem to play an important
role for how the participants converted the node-link diagrams to matrices. A
similar phenomenon was also observed by Ballweg et al. [2] who noticed that
edges did not play an important role for the similarity perception of graphs.

Matrices to Node-Link Diagrams: We could observe that in 57% of the exam-
ples participants arranged nodes in a star-like fashion with one node being drawn
in the center (see Fig. 2(b) for an example) if they went through the nodes from
left-to-right. If they went through the nodes clockwise or counterclockwise, the
nodes were arranged circular in 66% of the cases (see, e.g., Fig. 2(a)). In total,
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Fig. 2. Examples for (a) circular layout, (b) star layout, and (c) focus on edges.

the circular layout was used slightly more often (41.6% of the examples) than
the star layout (33.3%). Only for the examples of Type 3 and Type 4, partici-
pants considered the edges when arranging the nodes to minimize edge crossings
(Type 3 : 33% of the examples; Type 4 : 41%). Figure 2(c) shows an example. For
the remaining examples star layout and circular layout were used. Consideration
of edges was also given as reason why participants changed the arrangement
of nodes, which they used for examples of Type 1 and 2, for the examples of
Type 3 and 4. Similar to the converting node-link diagrams to matrices, partic-
ipants did not pay much attention to the order of the different connection types
if they transformed them from matrices to node-link diagrams. The analysis of
the examples of Type 4 showed no clear preference for drawing the directions
of the edges in node-link diagrams. Four participants doubled the lines to rep-
resent both directions, three participants used a single line with an arrow head
for each direction, and five participants drew a single line with arrow heads for
both directions.

5 Discussion

Node-Link Diagram to Matrix Conversion. The analysis of the matrix sketches
showed us that participants who drew the matrices first, converted the node-link
diagrams to matrices differently. For example, numbers were used for matrices
instead of different line types to represent the connection types between nodes.
In return, there were no differences in converting matrices to node-link diagrams
independently if participants first converted node-link diagrams to matrices or
vice versa. This led us to the assumption that how node-link diagrams should
look like is unequivocal whereas the representation of matrices allows different
options (e.g., numbers vs. symbols).
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Order of Line Types. The results showed us that most of the participants made
differences between different representations of the connections but they did not
pay much attention to the order of the different connection types when converting
one visualization into the other. Although it seems that participants paid more
attention in case of the smaller node-link diagrams with five nodes than in case
for node-link diagrams with the double number of nodes. A reason could be that
no information about the order of the connection types was provided and hence
they focused only on the obvious differences between the connection types.

Arrangement of Nodes. The results showed us that the Law of Good Gestalt
(cf. [12]) seems to play a role for how the participants arranged the matrices
and node-link diagrams. In this context, an interesting observation is that the
clockwise or counterclockwise arrangement of nodes seems to be dependent on
if they form a simple pattern. The Law of Good Gestalt could also be the reason
that most of the participants preferred a circular and star layout for node-link
diagrams since these layouts can be seen as simple, orderly, coherent, and regular.
In addition, arranging nodes in an orderly fashion allowed the participants to
preserve the mental model of the graph more easily.

Importance of Edges. We could observe that the number of edges as well as
the structure of the edges does not seems to play an important role how the
participants converted the node-link diagrams to matrices. This was interest-
ing since the arrangement of nodes based on the edges can be helpful to see
patterns, e.g., highly connected nodes. A possible reason for ignoring the edges
can be that no analysis of the node-link diagram or the corresponding matrix
was required. In contrast to converting node-link diagram to matrix, it seems
that graph drawing aesthetics [13] gain in importance (e.g., minimization of edge
crossings) if the number of nodes increased. This corresponds with the answers
of participants preferring matrices; the raster layout from the matrix allowed a
clear arrangement. This is an advantage over node-link diagrams which can be
easily confusing because of possible edge crossings.

6 Conclusion

In this paper, we presented a user study conducted to get a more detailed under-
standing of the conceptual problems which may occur when people have to con-
vert node-link diagrams to matrices and vice versa. The analysis of the sketches
of the participants showed us, that the representation of matrices allowed more
creative opportunity to present the connections than the node-link diagrams.
Another interesting observation was that the participants did not pay much
attention to the order of the connection types after they converted them from a
node-link diagram to matrix or vice versa.
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As future work, we will address the question if edges and the order of the
connection types will gain in importance when participants have to analyze
and interpret the node-link diagrams and matrices. In the next phase of this
research we will also investigate how interaction strategies will influence users’
interpretation of the data if they have to relate the information gained from one
visualization to the information gained from the other visualization.
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Abstract. Using the proof of Peirce’s Law [{(x ! y) ! x} ! x] as an
example, I show how bilateral tableau systems (or “2-sided trees”) are not only
more economical than rival systems of logical proof, they also better reflect the
reasoning Peirce actually gives for securing the law’s acceptance as an axiom.
Moreover, bilateral proof trees are readily adapted to Peirce’s own graphical
notation, producing a proof system in that notation that is even more efficient
and easier to learn than Peirce’s system of permissions. This is in part due to the
fact that Peirce’s graphical notation is similarly bilateral. In effect bilateral proof
trees in Peirce’s notation can be understood as representing the space of out-
comes for a game very much like what Peirce envisions as his endopereutic, and
they embody insights of certain expressions of the pragmatic maxim that Peirce
offers around 1905. Taken together, this suggests to me that Peirce would have
embraced such a system of logic, and so I find it especially unfortunate that he
was evidently unaware of Lewis Carroll’s pioneering efforts to develop tree-like
proof systems to solve logical puzzles with multiliteral sorites.

Keywords: C. S. Peirce � Proof � Tableau � Trees � Graphs � Lewis Carroll

Let’s begin by considering the fifth (and final) axiom that Peirce presents in his 1885
“On the Algebra of Logic” [10]:

A fifth icon is required for the principle of excluded middle and other propositions connected
with it. One of the simplest formulae of this kind is: {(x ! y) ! x} ! x.

This schema has come to be known as “Peirce’s Law,” and while he notes that the
form hardly appears self-evident enough to be axiomatic, what intrigues me is the form
of justification that Peirce subsequently gives to secure its acceptance. He continues:

This is hardly axiomatical. That it is true appears as follows. It can only be false by the final
consequent x being false while its antecedent (x ! y) ! x is true. If this is true, either its
consequent, x, is true, when the whole formula would be true, or its antecedent x ! y is false.
But in the last case the antecedent of x ! y, that is x, must be true (CP 3.384).

Note how Peirce begins this justification by working out the consequences of
denying the law – of holding it false – and then showing that the subsequent pattern of
affirmations and denials that that denial carries in its train inevitably leads to a con-
tradiction or collision of commitments – of both affirming and denying one and the
same proposition. Peirce’s reasoning is displayed virtually line-by-line in the corre-
sponding bilateral (2-sided) diagrammatic tree proof of the law:
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The tree (or Tableau) method of proof works by developing the consequences of
affirming some claim or claims (starting with premises) and also the consequences of
denying claims (beginning with conclusion(s)), with the aim of exposing incompati-
bilities between patterns of affirmations and denials. In the “one-sided” trees more
commonly found in logic texts, the consequences of denying a claim is represented as
the consequences of affirming that claim’s negation. One-sided (or “Smullyan”) trees
thus have a symbolic element (the negation sign) occupying a role that could instead be
played by a visual or diagrammatic feature (alternating sides of a path). Intuitively, one
can see why a two-sided tree system would be commensurate with natural deduction
systems deploying the standard Fitch-style elimination and introduction rules for the
various sentential operators (See Fig. 1). The rules for developing affirmations of certain
contents obviously correspond to elimination rules, while the rules for developing
denials of contents correspond to the introduction rules – except (as explicitly suggested
by one-sided trees) that they work in the “opposite” direction. In essence, the right hand
(or negation decomposition) rules in Tableau, serve to “tollens” the introduction rules.1

One occasionally encounters a sentiment to the effect that tree diagrams such as the
one above are not truly “proofs” at all. Rather, the method of trees is just an especially
efficient trick or technique for navigating truth tables - which can happily be extended
to first-order and modal logics - with the aim of honing in on possible counterexamples.
By contrast, “bona-fide” proof systems, such as axiom or natural deduction systems,
are supposed to mimic more closely step-by-step patterns of natural reasoning in
language. I think the fact that this tree proof parallels so closely the argument that
Peirce actually gives for the axiom should put to rest any such sentiment that such tree
or tableau systems are not “really” systems of proof at all.

Indeed, it pays to contrast this tree proofwith the corresponding derivation of the same
law using a standard system of natural-deduction using Gentzen-style rules of inference.

1 With that in mind, one can readily discern what the Tableau rules for Belnap’s infamous “Tonk”
operator would be, even though it would be impossible to read such rules off of a truth table: namely
the left-hand rule of a conjunction, paired with the right-hand rule of a disjunction.
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Such a proof is not nearly as straightforward, containing as it does, two refutations (or
applications of negation elimination) embedded within a conditional proof:

1.     (X→Y) →X Assumption (→ Int.)
2.         ~X Assumption (~ Elim.)
3.           X Assumption (→ Int.)
4.                ~Y Assumption (~ Elim.)
5.                 ⊥ ⊥ Int.; 2, 3
6.            Y ~ Elim.; 4-5 
7.         X→Y → Int.; 3-6 
8.         X → Elim.; 1, 7
9.         ⊥ ⊥ Int.; 2, 8
10.      X ~ Elim.; 2-9 
11.  ((X→Y) →X) →X → Int.; 1-10

The construction of this derivation requires a bit of ingenuity that isn’t needed for
the corresponding tree proof, and despite the system’s bearing the label “natural
deduction”, it is definitely not how one would naturally reason toward such a claim!
Indeed, the proof of Peirce’s Law is sometimes used as a test to separate those who
have acquired genuine mastery of the construction of such derivations from the “merely
competent.” The chief difficulty (and source of frustration) with the construction of
natural-deduction derivations stems from the system’s relative open-endedness. It’s not
always clear just how one should begin, or how to go about pursuing subsequent
subgoals. The specific order of applicable rule applications matters. Moreover, it takes

Fig. 1. Correspondences between ND inference rules and Tableau decomposition rules.
Elimination rules correspond to left-side decomposition rules, while introduction rules
correspond to right-side decomposition rules.
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a certain measure of intuition or insight to “see” when one should back out of a direct
strategy for deriving a formula in favor of a different strategy, including that of pur-
suing a goal formula indirectly by refuting its negation.2 None of these are issues for
tree proofs. There are no indirect strategies, and for any compound formula in a tree
proof, there is only one applicable rule to decompose that formula. Furthermore,
though some proofs may be more unwieldy than others on account of their having more
branches than is necessary, the specific order of rule applications doesn’t matter in the
end. As a result, it takes far less technique and practice to master tree systems, and the
method requires virtually no intuition whatsoever.3

But what of Peirce’s own graphical notation and method of proof – his “moving
pictures of thought”? Peirce’s graphical system of logic certainly has its fans [12, 14], and
it does possess an impressive economy (largely borne of the fact that its notation collapses
distinctions between separate but equivalent formulas in more familiar symbolic nota-
tions). That makes proofs in the system relatively shorter than in more conventional
systems. For instance, Fig. 2 depicts a proof of Peirce’s Law that is just 8 steps long.4

There is even an evident bilaterality built into Peirce’s diagrams that begins to
resemble the bilaterality of two-sided trees. We begin with one side of a piece of paper,
which represents the sheet of assertion (the “recto”). But that sheet of paper is to be
understood as having a reverse side (the “verso”), upon which one lists claims to be
denied. The representation of a negation is to be understood then by drawing a circle
around a denied claim. Peirce tells us that this is like “cutting” a hole in the sheet around
a denied claim and then “flipping it” around so that it appears upon the sheet of assertion.

Should the Graphist desire to negative a Graph, he must scribe it on the verso, and then, before
delivery to the interpreter, must make an incision, called a Cut, through the Sheet all the way
round the Graph-instance to be denied, and must then turn over the excised piece so as to
expose its rougher surface carrying the negativized Graph-instance (CP 4.556).

In short, Peirce intends his logical diagrams to be understood as bilateral (or
two-sided) in the most literal sense of the term! Cuts on a sheet of either assertion or
denial give us a glimpse of what appears on “the other side.” In his system of existential
graphs, proofs are transformations of graphs (“moving pictures of thought”) according
to rules or permissions, which in effect depend upon which side of the sheet of paper
(front or reverse) a claim is inscribed. Roughly, elements may be added to graphs on
the reverse side, and deleted from graphs on the front (“recto”). As Peirce explains,
these operations are akin to stacking conditions into the antecedent of conditionals and
removing conditions from their consequences (CP 4.564).

2 Chapters 5–6 of Wilfried Sieg’s Logic and Proofs [13] contains perhaps the best discussion of
strategies for going about constructing natural-deduction derivations using standard introduction and
elimination rules.

3 Axiomatic systems, of course, fare even worse by comparison. For instance, an axiomatic derivation
of Peirce’s law using Mendelson’s three-axioms (which of course do not include Peirce’s Law) takes
over 30 steps, and requires a rather ingenious selection of initial forms of the axiom schema.

4 One can actually shorten this proof to seven steps by combining the insertions in steps 5 and 8. I find
the proof in Fig. 2 to be more perspicuous in that it shows why the content of the consequent in the
most deeply embedded conditional (the Y that is the second insertion in step 8) is immaterial to the
overall truth of the schema.
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Nevertheless, as a proof system, Peirce’s system of permissions is still not as
efficient as bilateral proof trees. Nor does it resemble the line of reasoning Peirce
actually deploys to justify Peirce’s Law. Unlike tree proofs, Peirce’s system lacks a
ready means of illustrating collisions of commitments or incompatibilities, and while
Peirce’s permissions are sensitive to the side on which a given graph element is, as it
were, inscribed, the system displays the proof only from the side of assertion. In that
respect, it is like more conventional axiomatic and natural deduction proof systems, and
it suffers from the same open-endedness that those more familiar systems bear in
comparison to tree systems. A certain intuition or creativity is required on the part of
Peirce’s graphist to craft a desired proof, especially with respect to the free choices of
elements to insert into a “verso” portion of a graph. By contrast, bilateral (two-sided)
tree proofs depict the sides of assertion and denial on the same page at once as different
sides of a path, and then they display on different branches the various possible con-
sequences of a given pattern of commitments of assertions and denials.

But note that one can readily come up with a bilateral tree system using Peirce’s
own notation (at least for his alpha graphs). Since the notation for graphs are simply
composed of concatenations of simpler graphs (which may be understood as con-
junction) and cuts (which may be understood as negation), all one needs to do is to
adapt graph decomposition rules for concatenation and the cut that mimic the regular

Fig. 2. Proof of Peirce’s Law using Peirce’s system of permissions
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bilateral tree rules for conjunction and negation. Concatenations of graphs on the left
are simply pulled apart and then placed separately on the left, while concatenations of
graphs on the right require one to split a branch and place separate concatenends on the
right of each resulting branch. The rule for cut is even more straightforward; for a cut
that is either on the left or the right, simply erase the cut and place the remainder on the
opposite side. As in other bilateral tree systems, branches close when one and the same
formula (or graph) appears on both the left and the right sides of a path. The tree proof
for Peirce’s law using this system is displayed in Fig. 3.

To be sure, this proof is slightly more involved than Peirce’s reasoning. That is
because these particular rules force us to understand a conditional in the graphical
notation “endoporeutically” - as a negation of a conjunction (of antecedent and negated
consequent). By contrast, Peirce’s own justification for the law - as well as the cor-
responding bilateral tree proof in standard symbolic notation - directly applies the
decomposition rule for conditionals. One can easily fix this shortcoming by adopting a
multiple-reading understanding of the graphs ([12], Chap. 3), and then supplementing

Fig. 3. Tree proof of Peirce’s Law in graphical notation (read endoporeutically)
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the set of rules with appropriate bilateral rules for the other sentential operations that
may then be read off of them. Figures 4 and 5 gives us two such alternative bilateral
tree proofs of the law, the first of which recapitulates Peirce’s justification for the law
just as directly as a bilateral tree proof in standard symbolic form. The second is
noteworthy in that it treats the graphical representation of the law as a disjunction rather
than a conditional, and proceeds by applying the relevant rule for a disjunction on the
right. Since multiple readings may be extracted out of a single graph, they do not
decompose in a unique fashion. As a result, such a system might yield bilateral tree
proofs that are even shorter in the graphical notation than in the standard symbolic
notation.5

One might have noticed that these rules for decomposing alpha graphs resemble the
rules of the “endoporeutic” game Peirce envisions being played between a graphist and
a grapheus, as they go about simplifying a given graph to determine whether or not it is
true (against a set of antecedent constraints representing a given model or truth-value
assignment) [3, 6, 11]. As Peirce shows, a given graph is true (according to a model)
just in case the graphist (or proposer) has a winning strategy against the grapheus (or
skeptic). Thus we can see Peirce here implementing in diagrams his long-standing idea
that truth is that which would survive ultimate challenge. As in Peirce’s endoporeutic,
the rules of the proof system just described have us stripping off negations and handing
graphs over to the other side. In effect, these bilateral tree diagrams illustrate the space
of outcomes of a game strikingly reminiscent of Peirce’s game, whereby a skeptic (the
Grapheus) searches for a possible counterexample to a given argument form or sequent.
In this game, players taking on the role of a skeptic have choices about which graph
elements they wish to pursue in order to latch onto a particular counterexample. Those
choices are then represented by branches in the bilateral proof diagram. If the Grapheus
has a winning strategy, then a counterexample to that sequent form exists. The tree
diagram effectively reduces a complex graph to elements inscribed on the recto (the
left) and the verso (the right). It is as if one is viewing all the possibilities the game
might play out from “sideways on.”

About the same time he was developing his graphical system of logic, Peirce was
also attempting to give a logical “proof” of the correctness of pragmatism that would
“leave no reasonable doubt on the subject, and to be the one contribution of value that
he has to make to philosophy.” (CP 5.415) Peirce clearly thought the two projects to be
interrelated. “I beg leave, Reader, as an Introduction to my defense of pragmatism, to
bring before you a very simple system of diagrammatization of propositions which I
term the System of Existential Graphs” (CP 4.534). For Peirce, a chief virtue of this
system is that it allows the study of reasoning to escape psychologism and to become a
normative science of diagrams in its own right.

Diagrammatic reasoning is the only really fertile reasoning. If logicians would only embrace
this method, we should no longer see attempts to base their science on the fragile foundations of
metaphysics or a psychology not based on logical theory; and there would soon be such an
advance in logic that every science would feel the benefit of it (CP 4.571).

5 Consider, for instance, the respective proofs of conditional exchange and the DeMorgan’s
equivalencies.
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Here it pays to look at the specific formulations of the pragmatic maxim for which
he was actually trying to provide a proof. Consider, for instance, the following from the
same Monist series of 1904–5 in which he introduces his existential graphs:

Fig. 4. Tree Proof of Peirce’s Law (read as a conditional)

Fig. 5. Tree Proof of Peirce’s Law (read as a disjunction)
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Endeavoring, as a man of that type naturally would, to formulate what he so approved, he
framed the theory that a conception, that is, the rational purport of a word or other expression,
lies exclusively in its conceivable bearing on the conduct of life; so that, since obviously
nothing that might not result from experiment can have direct bearing on the conduct, if one can
define accurately all the conceivable experimental phenomena which the affirmation or denial of
a concept could imply, one will have therein a complete definition of the concept, and there is
absolutely nothing more in it (CP 5.412).

This articulation of the maxim is strikingly different from earlier expressions, in that
it directs us to look at the consequences of affirming (and denying) claims, rather than
emphasizing the (largely sensible) consequences of a claim’s being true.6 Another
example from a 1904 review of Nichols’ Cosmology is even more striking, in that it
explicitly minimizes the role that sensation plays in the pragmatic maxim:

The word pragmatism was invented to express a certain maxim of logic, which, as was shown at
its first enouncement, involves a whole system of philosophy. The maxim is intended to furnish
a method for the analysis of concepts. A concept is something having the mode of being of a
general type which is, or may be made, the rational part of the purport of a word. A more
precise or fuller definition cannot here be attempted. The method prescribed in the maxim is to
trace out in the imagination the conceivable practical consequences,–that is, the consequences
for deliberate, self-controlled conduct,–of the affirmation or denial of the concept; and the
assertion of the maxim is that herein lies the whole of the purport of the word, the entire
concept. The sedulous exclusion from this statement of all reference to sensation is specially to
be remarked (CP 8.191).

Such an exclusion is clearly not observed in Peirce’s original articulations and
illustrations of the pragmatic maxim (the ones most widely repeated as canonical
expressions of pragmatism), which have far more psychological elements. While Peirce
doesn’t comment on the reasons he makes these specific adjustments to the maxim’s
formulation, it stands to reason that these differences are at least partly driven by his
desire to accommodate it to a logical proof – not an empirical demonstration. In
moving from the sensible effects of a claim’s being true to the consequences that
redound to a speaker by affirming (and denying) a claim, Peirce is evidently moving
away from an understanding of pragmatist semantics that aligns it with some form of
verificationism. Such distancing from crude verificationism allows the maxim to avoid
familiar self-application problems that plague expressions of verificationist principles
of meaning. In so doing, Peirce allows for the maxim to be vindicated, not by its having
specific empirical content, but rather by having practical application.

If that is so, however, then there is another striking feature of these 1904–5 for-
mulations of the pragmatic maxim that has largely gone unnoticed by commentators [7,
11]. That would be their bilaterality; they direct us to look not only at the consequences
of affirming claims, but also to the consequences of denying them. It is quite possible
that these bilateral formulations of the pragmatic maxim are meant to map onto features
of his system of logical notation, which we have seen to be similarly bilateral – as

6 By contrast, compare this formulation with the one Peirce gives in his Baldwin’s Encyclopedia entry
on pragmatism (1902): “In order to ascertain the meaning of an intellectual conception one should
consider what practical consequences might conceivably result by necessity from the truth of that
conception; and the sum of these consequences will constitute the entire meaning of the conception”
(CP 5.9).
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comprised of flip sides of assertion and denial. That is, in speaking of the consequences
of affirmation and denial, Peirce is thinking about claims and concepts as they appear
on his existential graphs. The success of his graphs, then, might then provide some sort
of vindication for his pragmatic maxim, so formulated. But as we have seen, this very
bilaterality is incorporated much more directly in bilateral tree systems of proof than in
his own system of permissions. For bilateral tree proofs explicitly show how tracing the
consequences of both affirming premises and denying conclusions factor into deter-
mining whether and how entailment relations exist between claims. As a result,
bilateral tree proofs literally embody these bilateral formulations of the pragmatic
maxim, and that in turn could pave the way for a much more direct pragmatic justi-
fication for these expressions of pragmatism.

Unfortunately the promised proof of pragmatism, which Peirce told us (CP 4.572)
to expect in a fourth article of the 1905 Monist series, never appears. Any recon-
struction of how that demonstration is (or was) supposed to go has been left as a largely
frustrating exercise for his commentators [7]. In any event, by 1907 Peirce seems to
have given up his attempts to prove the maxim by means of his graphs, opting instead
for a strategy that leans more heavily upon his general theory of signs. Pietarinen [11]
suggests that this is likely due to the graphs’ inability to represent certain features of
modal reasoning, which Peirce stresses would need to be captured in order to
accommodate appropriately subjunctive readings of the pragmatic maxim. However,
that only points to yet another advantage of tree systems, which are readily extended to
modal reasoning [5].

For these reasons, I close by surmising that had Peirce only been aware of tree
methods of proof, he might not have been so quick to abandon his efforts to demon-
strate the truth of his pragmaticist formulations of the pragmatic maxim, by way of
orienting or incorporating them in a system of logical diagrams. Herein lies something
of a sad ironic twist. While the development of Tableau systems of proof are mostly
associated with E. W. Beth and Jaakko Hintikka in the 1950’s, and then popularized by
Jeffreys and Smullyan in the 1960’s, they actually go back to one of Peirce’s con-
temporaries [2]. In 1894, Lewis Carroll devised a tree method to solve extended,
multiliteral sorites puzzles. As Carroll wrote in his diary on July 16, 1894:

Today has proved to be an epoch in my Logical work. It occurred to me to try a complex Sorites
by the method I have been using for ascertaining what cells, if any, survive for possible
occupation when certain nullifies are given. I took one of 40 premises, with ‘pairs within pairs,’
& many bars, & worked it like a genealogy, each term proving all its descendents. It came out
beautifully, & much shorter than the method I have used hitherto - I think of calling it the
‘Genealogical Method’ ([4], p. 279).

Eventually, Carroll settled on labeling his discovery “the method of trees,”
describing it as follows:

In the Method of Trees this process is reversed. Its essential feature is that it involves a Reductio
ad Absurdum. That is, we begin by assuming, argumenti gratia, that the aggregate of the
Retinends (which we wish to prove to be a Nullity) is an Entity: from this assumption we
deduce a certain result: this result we show to be absurd: and hence we infer that our original
assumption was false, i.e., that the aggregate of the Retinends is a Nullity ([4], p. 280).
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That is, Carroll’s method has one hypothesize a possible object with a set of
attributes and non-attributes determined by endpoints generated from the premises of a
given sorites. The method then systematically applies the various premises within the
sorites to determine what further attributes and non-attributes such an object would
have to have. Occasionally, such determinations require us to branch paths and con-
sider various alternate combinations of attributes and non-attributes. I take such path
branching to be the key diagrammatic innovation behind all tree systems of proof. Like
contemporary tree systems, the ultimate aim is to close off branches, either by deducing
that the hypothesized object would have to possess both an attribute and its negation or
by showing that such a combination is explicitly ruled out by a premise. Accordingly,
Carroll’s system has two negations built into it, one (signified by a ‘) representing the
non-possession of an attribute, the other (signified by a 0) representing the
non-existence of a certain class of object. In the end, the full closure of an entire tree
signifies that we may conclude the non-existence of the originally hypothesized object.

The story of Carroll’s “method of trees” is a tale worthy of its own telling. Orig-
inally slated to be included in Volume II of his Symbolic Logic, Carroll sent a
description of the method to John Cook Wilson in 1896. Wilson had not returned the
copy to Carroll by the time of his death in 1898. So while most of the material in
Carroll’s Oxford office was subsequently tossed out with the rubbish, fortunately a
relatively complete description of Carroll’s method of trees survived. However, it
largely remained lost until William Bartley III brought the method back to light in
Book XII of his attempted reconstruction of the second volume of Carroll’s Symbolic
Logic [4]. In the meantime, Hintikka, Beth and their followers had independently
developed tree methods with branching features similar to those that Carroll had
devised earlier.

Carroll was evidently aware of the attempts by Peirce and his students at Johns
Hopkins to develop visual or diagrammatic methods of demonstrating argumentative
validity. Carroll’s personal library included a copy of their 1883 Studies in Logic [9],
and it has been suggested that the inference engine driving Carroll’s method of trees is
inspired by Christine Ladd-Franklin’s inconsistent triad (or antilogism) [1]. That
Carroll was aware of Ladd-Franklin is evident from the several exercises he “borrows”
from her.7 However, Carroll’s logical sensibilities were dramatically different from
Peirce’s. Centered as it was around categories and not propositions, Carroll’s logic
would have struck Peirce as still quaintly wed to the Aristotelian tradition. He would
have been unimpressed by Carroll’s use of multiple flavors of negation, and even less
impressed by his adherence to the idea that universal claims have existential import. So
it is likely that the recognition and admiration was not mutual, especially when one
considers Peirce’s disparaging remarks about “overcultivated Oxford Dons – I hope
their day is over” (CP 5.520). That is a shame, for those commitments about logic that
divide Peirce and Carroll can easily be pried apart from the type of logical diagram that
Carroll was developing. Had Peirce only been (more?) appreciative of, or even familiar

7 Amirouche Moktefi has pointed out to me (in correspondence) that this raises the question of whether
Peirce himself appreciated the originality of Franklin-Ladd’s antilogism. As noted above, Peirce’s
system of permissions does not take advantage of potential incompatibilities in the way that tree
systems (including Carroll’s) do.
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with, the work of the estimable Charles Dodgson, then I imagine that the method of
trees would not have been lost until their rediscovery in the mid 1900s, and logic might
have taken a more visual, and less symbolic, turn.8

References

1. Abeles, F.: Lewis Carroll’s method of trees: its origins in studies in logic. Mod. Log. 1, 25–
35 (1990)

2. Anellis, I.: From semantic tableaux to smullyan trees: a history of the development of the
falsifiability tree method. Mod. Log. 1, 36–69 (1990)

3. Burch, R.: Game-theoretical semantics for peirce’s existential graphs. Synthese 99, 361–375
(1994)

4. Carroll, L.: Symbolic Logic, Part I and Part II. Bartley III., W.W. (ed.). Clarkson N Potter,
New York (1977)

5. Garson, J.: Modal Logic for Philosophers. Cambridge University Press, Cambridge (2006)
6. Hilpinen, R.: On C. S. Peirce’s theory of the proposition: Peirce as a precursor of

game-theoretical semantics. Monist 65, 182–188 (1982)
7. Hookway, C.: The Pragmatic Maxim. Oxford University Press, Oxford (2012)
8. Misak, C.: Cambridge Pragmatism. Oxford University Press, Oxford (2017)
9. Moktefi, A.: Are other people’s books difficult to read? The logic books in Lewis Carroll’s

private library. Acta Baltica Historiae et Philosophiae Scientarum 5(1), 28–49 (2017)
10. Peirce, C.S.: The Collected Papers of Charles S. Peirce, 8 volumes, Hartshorne, C., Weiss,

P., Burns, A.W. (eds.). Harvard University Press, Cambridge (1931–1966). (References to
Peirce’s papers are designated by CP followed by volume and paragraph number)

11. Pietarinen, A.-V.: Moving pictures of thought II: graphs, games, and pragmaticism’s proofs.
Semiotica 186, 315–331 (2011)

12. Shin, S.-J.: The Iconic Logic of Peirce’s Graphs. MIT Press, Cambridge (2002)
13. Sieg, W.: Logic and Proofs. Course available through the Open Learning Initiative. http://oli.

cmu.edu/courses/all-oli-courses/logic-proofs-course-details/
14. Sowa, J.: Peirce’s tutorial on existential graphs. Semiotica 186, 345–394 (2011)

8 While it is rather hard to imagine how Peirce could have been exposed to Carroll’s later work on
logical diagrams, there nevertheless was at most only two degrees of separation between them. Not
only did Peirce maintain a substantial correspondence with Victoria Welby from 1903–11, Welby
(who championed Peirce’s thought in the UK) is also known to have corresponded with Cook
Wilson (see [8], p. 83). That then might be one place to look for any hint of a flow of information
back from Carroll to Peirce.

548 D. Beisecker

http://oli.cmu.edu/courses/all-oli-courses/logic-proofs-course-details/
http://oli.cmu.edu/courses/all-oli-courses/logic-proofs-course-details/


A Weakening of Alpha Graphs:
Quasi-Boolean Algebras

Minghui Ma1 and Ahti-Veikko Pietarinen2,3(B)

1 Institute of Logic and Cognition, Sun Yat-sen University, Guangzhou, China
mamh6@mail.sysu.edu.cn

2 Tallinn University of Technology, Tallinn, Estonia
ahti-veikko.pietarinen@ttu.ee

3 Nazarbayev University, Astana, Kazakhstan

Abstract. Peirce introduced the Alpha part of the logic of Existen-
tial Graphs (egs) as a diagrammatic syntax and graphical system cor-
responding to classical propositional logic. The logic of quasi-Boolean
algebras (De Morgan algebras) is a weakening of classical propositional
logic. We develop a graphical system of weak Alpha graphs for quasi-
Boolean algebras, and show its soundness and completeness with respect
to this algebra. Weak logical graphs arise with only minor modifications
to the transformation rules of the original theory of egs. Implications of
these modifications to the meaning of the sheet of assertion are then also
examined.

Keywords: Existential Graphs · Weak Alpha graphs
Quasi-Boolean algebra · Sheet of Assertion

1 Introduction

Alpha graphs are the first part of the theory of Existential Graphs (egs) which
Charles Peirce developed in 1896. Named as Alpha and systematically investi-
gated in his 1903 Lowell Lectures (see e.g. R 450, R 454, R 455–455),1 most
of Peirce’s ideas have remained unpublished despite the fact that he studied
his graphical method extensively in his later manuscripts. The second part of
egs is the first-order quantificational logic (Beta graphs, [22]) and the third the
modal and higher-order logic (Gamma graphs). Peirce also mentioned, but did
not develop, the fourth, Delta part. As a logical syntax, egs are two-dimensional
graphs, and in contrast to linear notations are sometimes considered as having
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the nature of diagrams [21]. The theory of Alpha graphs as classical propositional
logic has been studied in [1,20,24–27], among others.

Alpha graphs emerged when Peirce was developing the graphical method of
logic arising from his work on the algebra of the copula (R 411, 417, 482, [2]).
His work in mathematical logic began with the improvement of Boole’s algebra
in 1867 [15]. Boole’s operations of negation and disjunction were modified to
become operations in contemporary Boolean algebras. Later, in his 1880 work
on the algebra of logic [16], Peirce proposed the first sound and complete system
for Boolean algebras in the history of mathematical logic.2 This work was soon
followed by his paper on the algebra of logic published in 1885 [17], taken as a
contribution to the philosophy of notation. Peirce continued his work on Boolean
algebras in the 1890s, culminating in his invention of egs in 1896. The purpose
of this method was to divide necessary, mathematical reasoning into its ultimate
elementary logical steps, and to analyze those steps and their composition by
the special rules of inference of the graphical system.

We mention this algebraic preface to his graphical or diagrammatic phase
of logical investigations for the following reason. Peirce recognized the power of
the algebraic way of thinking in guiding the progress of logical investigations.
This is communicated well in Peirce’s response to the letter he had received
from his former student, Christine Ladd–Franklin, who had written to Peirce in
order to ask his opinion of what the study of graphs would add to the study
of the algebraic approach that they already had at their disposal. Peirce’s reply
is worth noting: “You ask whether Logical Graphs have any bearings on Non-
Relative logic. Not much, except in one highly important particular, that they
supply an entirely new system of fundamental assumptions to logical algebra”
(November 9, 1900, Peirce’s own emphasis).

As we will observe in this paper, Peirce was right in the recognition of the
value of logical graphs in the following sense. It is possible not only to pro-
vide algebraic rules and algebraic semantics to the theory of Alpha graphs (on
this, see [11]), but also to develop other graphical logics besides classical Alpha
graphs or extensions to the Beta and the Gamma parts, based on the underlying
algebraic motivations of the theory (see e.g. [13,22]). In the present paper, we
show how to weaken the Alpha graphs from classical bivalent propositional logic
to obtain a four-valued logic. One of the algebras of that logic is known as a
quasi-Boolean or De Morgan algebra [5,7].

Peirce’s theory of egs is not only a theory of logical syntax and semantics but
also a proof theory for many logics. In a sense his “entirely new system of funda-
mental assumptions” that logical graphs add to logical algebra is uncovered in
the different way inferential relations can be conceived of in the two-dimensional
diagrammatic syntax of logical graphs. A set of transformation rules of graphs
defines a proof system for a graphical logic. Now Brünnler [6] has developed
a deep inference system for classical propositional logic in which a rule can be
applied at any position in a deep structure. Ma and Pietarinen [11] reconstructed

2 He presented the 1880 system as an instrument for the analysis of the logical conse-
quence relation, and thus came close to a sequent-style calculus in that presentation.
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a graphical system of Alpha graphs for classical propositional logic which has
the nature of deep inference. The graphical and diagrammatic syntax of graphs
allows to apply transformation rules at any position of a graph. This is exactly
the deep inference methodology, where inference rules apply not only on outer-
most connectives of formulas but also arbitrary deep inside them.

For the purposes of the present study, the rules of transformation are modi-
fied to achieve desired effects that can breed novel graphical logics. Our proposed
modification here results in a weakening of the classical logic—or, alternatively,
a strengthening of an implication-free intuitionistic logic. The intuitionistic logic
of Alpha graphs has been developed in [4,13,14]. There the graphical language
has two new primitives: the scroll, notation , which corresponds to intuition-
istic implication, and the double-scroll (and its generalisations), notation ,
which corresponds to intuitionistic disjunction. In the present paper, we begin
with the language of the Alpha graphs which uses not these scroll notations but
simple closed curves or ovals, notation , together with the nesting of ovals
around any graph.

The resulting expressions of weak Alpha graphs thus look just like what the
syntax of Peirce’s original theory of Alpha graphs would produce. The difference
is that in our weakening of the Alpha there is no sign of implication: the nested
structures of ovals can only be interpreted either as conjunctions or as disjunc-
tions. Also, ovals do not have the meaning they have in original Alpha graphs,
namely that of the classical negation: although the double-oval rule P = P
is valid in a quasi-Boolean algebra, it does not imply the presence of a classi-
cally interpreted rule of double negation. The meaning of the double-oval rule is
that of an algebraic operation of involution. The oval is a dual endomorphism
operator. These weak Alpha graphs thus preserve a natural duality: there is the
Sheet of Assertion SA on which the graphs are scribed, and the blank SA is
the top element of the algebra. An oval drawn on the blank SA is the dual of
the top element, namely the bottom. Unlike in intuitionistic graphs, in which
¬(P ∧Q) → ¬P ∨¬Q is not valid, both of the De Morgan rules come out as valid
in the system of these weakened Alpha graphs. Hence the name ‘De Morgan’ is
sometimes used instead of ‘quasi-Boolean’ algebras.

The next section presents quasi-Boolean algebras in a logical perspective.
Section 3 presents the new language and the system for weak Alpha graphs.
Section 4 proves the soundness and completeness of the system with respect to
quasi-Boolean algebras. Section 5 puts the proposal into a perspective and pro-
poses an application to machine-based reasoning methods. Section 6 concludes.

2 The Logic of Quasi-Boolean Algebras

In this section, we present the essentials of quasi-Boolean algebras in the logical
perspective. Throughout, we assume familiarity with the basics of Peirce’s theory
of eg, especially those of its Alpha part that corresponds to the theory of classical
propositional logic.
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Definition 1. A bounded distributive lattice is an algebra A = (A,∧,∨, 0, 1)
satisfying the following conditions for all a, b, c ∈ A:

– Lattice laws:

a ∧ b = b ∧ a a ∨ b = b ∨ a (Commutativity)
a ∧ (b ∧ c) = (a ∧ b) ∧ c a ∨ (b ∨ c) = (a ∨ b) ∨ c (Associativity)

a ∧ a = a a ∨ a = a (Idempotency)
a ∧ (a ∨ b) = a a ∨ (a ∧ b) = a (Absorption)

– Distributivity: a ∧ (b ∨ c) ≤ (a ∧ b) ∨ (a ∧ c).
– Boundedness: a ≤ 1 and 0 ≤ a.

The order ≤ is defined by: a ≤ b if and only if a = a∧b, or equivalently a∨b = b.
A quasi-Boolean algebra (qBa for short) is an algebra A = (A,∧,∨,∼, 0, 1)

where (A,∧,∨, 0, 1) is a bounded distributive lattice and ∼ is a unary operation
on A satisfying the following condition for all a, b ∈ A:

– De Morgan Laws: ∼(a ∨ b) = ∼a ∧ ∼b (the first De Morgan Law) and ∼(a ∧ b)
= ∼a ∨ ∼b (the second De Morgan Law).3

– Involution: ∼∼a = a.
– ∼0 = 1 and ∼1 = 0.

Let qBa be the variety of all quasi-Boolean algebras.

Let BA be the variety of Boolean algebras. It is clear that a quasi-Boolean
algebra A = (A,∧,∨,∼, 0, 1) is a Boolean algebra if and only if a ∨ ∼a = 1 for
all a ∈ A. Hence BA is a subvariety of qBa.

Definition 2. Let V be a denumerable set of variables. The set of all terms T
is defined inductively by the following rule:

T � φ ::= p | ⊥ | 
 | (φ1 ∧ φ2) | (φ1 ∨ φ2) | ∼φ

where p ∈ V. A sequent is an expression of the form Γ ⇒ φ where Γ is a
non-empty finite multi-set of terms and φ is a term. For any nonempty finite
multi-set of terms Γ = {φ1, . . . , φn}, let f(Γ ) = φ1 ∧ . . . ∧ φn.

Definition 3. The Gentzen sequent calculus GqBa for quasi-Boolean algebras
consists of the following axioms and rules:

(1) Axioms:
(Id1) p, Γ ⇒ p (Id2) ∼p,Σ ⇒ ∼p

(⊥⇒) ⊥, Γ ⇒ φ (⇒∼⊥) Γ ⇒ ∼⊥

3 The De Morgan law ¬(a∧ b) ≤ ¬a∨ ¬b with intuitionistic negation ¬ does not hold
in Heyting algebras while its converse ¬a ∨ ¬b ≤ ¬(a ∧ b) does. However, both De
Morgan laws hold in quasi-Boolean algebras.
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(2) Logical rules:

φ, ψ, Γ ⇒ χ

φ ∧ ψ, Γ ⇒ χ
(∧⇒)

Γ ⇒ φ Γ ⇒ ψ

Γ ⇒ φ ∧ ψ
(⇒∧)

φ, Γ ⇒ χ ψ, Γ ⇒ χ

φ ∨ ψ, Γ ⇒ χ
(∨⇒)

Γ ⇒ φi

Γ ⇒ φ1 ∨ φ2
(⇒∨)(i = 1, 2)

∼φ, Γ ⇒ χ ∼ψ, Γ ⇒ χ

∼(φ ∧ ψ), Γ ⇒ χ
(∼∧⇒)

Γ ⇒ ∼φi

Γ ⇒ ∼(φ1 ∧ φ2)
(⇒∼∧)(i = 1, 2)

∼φ,∼ψ, Γ ⇒ χ

∼(φ ∨ ψ), Γ ⇒ χ
(∼ ∨ ⇒)

Γ ⇒ ∼φ Γ ⇒ ∼ψ

Γ ⇒ ∼(φ ∨ ψ)
(⇒∼∨)

φ, Γ ⇒ χ

∼∼φ, Γ ⇒ χ
(∼∼⇒)

Γ ⇒ φ

Γ ⇒ ∼∼φ
(⇒∼∼)

A derivation in GqBa is a tree-like structure D where each node is either an
axiom or derived by a rule from the child node(s). The height of a derivation D
is the length of the longest branch of D. The notation GqBa � Γ ⇒ ψ stands for
that Γ ⇒ ψ is derivable in GqBa. A sequent rule is a fraction

Γ1 ⇒ ψ1 . . . Γn ⇒ ψn

Γ0 ⇒ ψ0
(R)

where Γ1 ⇒ ψ1, . . . , Γn ⇒ ψn are called premisses of (R), and Γ0 ⇒ ψ0 is called
the conclusion of (R). A sequent rule (R) is admissible in GqBa, if the conclusion
of (R) is derivable in GqBa whenever the premisses of (R) are derivable in GqBa.

Example 1. The distributivity law φ ∧ (ψ ∨ χ) ⇒ (φ ∧ ψ) ∨ (φ ∨ χ) is derived in
GqBa as follows:

φ, ψ ⇒ φ φ, ψ ⇒ ψ
(⇒∧)

φ, ψ ⇒ φ ∧ ψ
(⇒∨)

φ, ψ ⇒ (φ ∧ ψ) ∨ (φ ∧ χ)

φ, χ ⇒ φ φ, χ ⇒ χ
(⇒∧)

φ, χ ⇒ φ ∧ χ
(⇒∨)

φ, χ ⇒ (φ ∧ ψ) ∨ (φ ∧ χ)
(∨⇒)

φ, ψ ∨ χ ⇒ (φ ∧ ψ) ∨ (φ ∧ χ)
(∧⇒)

φ ∧ (ψ ∨ χ) ⇒ (φ ∧ ψ) ∨ (φ ∧ χ)

Other distributive laws can be derived in GqBa similarly.

Theorem 1. The following cut rule is admissible in GqBa:

Γ ⇒ φ φ,Δ ⇒ ψ

Γ,Δ ⇒ ψ
(cut)

Proof. The proof proceeds by simultaneous induction on the heights of deriva-
tions of the premisses of (cut) and the complexity of the cut term φ. The details
can be found in [9]. �



554 M. Ma and A.-V. Pietarinen

An assignment in a qBa A = (A,∧,∨,∼, 0, 1) is a function θ : V → A. An
assignment θ in A can be extended homomorphically to the term algebra on T .
For any term φ ∈ T , let θ(φ) be the value of φ in A under the assignment θ in
A. A sequent Γ ⇒ ψ is valid in A, notation A |= Γ ⇒ ψ, if θ(f(Γ )) ≤ θ(ψ) for
any assignment θ in A. We say that a sequent Γ ⇒ ψ is valid in qBa, notation
qBa |= Γ ⇒ ψ, if A |= Γ ⇒ ψ for all A ∈ qBa.

Theorem 2. GqBa � Γ ⇒ ψ if and only if qBa |= Γ ⇒ ψ.

Proof. The soundness part is shown easily by induction on the height of a deriva-
tion of Γ ⇒ ψ. The completeness part is shown easily by standard Lindenbaum–
Tarski construction. The details can be found in [9, Theorem 4.11]. �

3 A Graphical System for qBas

Peirce introduced the Alpha graphs and a graphical system for deductive infer-
ences for Boolean algebras in a number of manuscripts (R 480–482, cf. [11]). In
November 1896 he presented his innovation at the National Academy of Sciences
meeting held in Columbia College, New York City (R 488).

The logic of qBas is a weakening of the classical propositional logic. In order
to develop a graphical system for the logic of qBas, we shall use the geometrical
(or the diagrammatic) syntax of Alpha graphs which are graphical expressions
scribed on the Sheet of Assertion (SA). The SA is a two-dimensional, open-
compact space uniform in all directions. What does the SA express? Here we
take the SA to mean the top element 
 in a qBa, without any further significance
attached to it.

A variable in V or the SA is called an atomic graph. For the construction
of an Alpha graph, we may write an atomic graph on the SA or start from the
SA. An Alpha graph is constructed from atomic graphs using the operations of
the oval and juxtaposition. The operation of the oval is to draw a simple closed
curve around a graph such that it encloses another Alpha graph G to form
a new Alpha graph G . In particular, we have the Alpha graph which is
obtained from the SA by an application of the operation of drawing an oval on
the SA. The main function of the oval is to partition the SA into areas. An area
is a continuous space in a graph. For example, the Alpha graph

1 2 3 4

contains four areas (annotated here by numbers for clarity), from the outside-
in direction. Juxtaposition is the operation which scribes two graphs G and
H in the same area. Ovals are either nested or juxtaposed and cannot produce
overlapping instances of Alpha graphs. Now we give the formation rules of Alpha
graphs.

Definition 4. The set of all Alpha graphs Gα is constructed from variables or
from the SA by using the following inductive rule:

Gα � G ::= p | SA | GH | G
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where p ∈ V. The Alpha graph GH is obtained from G and H by the operation of
juxtaposition. The graph G is obtained from G by the operation of encircling
by the oval. Let us define G � H as the graph:

G H .

The graph G � H is called the graphical disjunction of G and H. A graphical
consequence is of the form G � H where G and H are Alpha graphs.

Every graph G has a parsing tree Tα(G) which can be defined inductively
(see [11, Definition 2.3]). A partial graph (a sub-graph) of G is the graph of a
node of the parsing tree Tα(G). An entire graph of G is the graph labelled at
the root of the Tα(G) and it is the graph on the SA juxtaposed with nothing but
the blank.

For any graph G, each area in G has a polarity. The polarity of an area is
positive if it is enclosed within an even number of ovals, and it is negative if it is
enclosed within an odd number of ovals. The SA occurs within a zero number of
ovals and is thus positive. An area can be viewed as a continuum of points, or
positions, and at each position in an area a graph can be scribed. A graphical
context is a graph G{ } with a single slot { }, the empty context or an area in
G. Let G{H} be the graph obtained from G{ } by scribing H on the slot area.

The slot in a graphical context is either positive or negative. The notations
G+{ } and G−{ } stand for that the slot is a positive and negative area, respec-
tively. Let G+{J} and G−{J} be graphs in which J is in a positive area and in
a negative area, respectively.

Definition 5. A graphical rule is a fraction of the form

G

H
(R)

where G is called the premiss and H is called the conclusion of (R).

The transformation rules of the graphical system for quasi-Boolean algebras
are formulated in terms of deep structures in an Alpha graph. It follows that
the graphical system is indeed a deep inference system in which a rule can be
applied at an appropriate position in any graph. This gives graphical systems
advantage over other, non-graphical methods, as the deep-inference nature of
inference rules is a natural property of graph transformations. The advantage
comes in especially handy when devising proof systems for various non-classical
logics.

The primary rules can be used to identify some graphs. The following rules
of commutativity and associativity come to mind:

(CM) G{H1H2} = G{H2H1}; (AS) G{H1(H2H3)} = G{(H1H2)H3}.

The commutativity (CM) says that positions of H1 and H2 in H1H2 are imma-
terial. The associativity (AS) says that the order of forming graphs as indicated
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by parentheses is immaterial. Notice that (AS) can express order only in such
linear notation that has parentheses among its alphabet. The complete commu-
tativity of juxtaposition in graphs G and H can nevertheless be shown as the
identity of the following graphs:

GHJ ,
G
HJ

, HJG ,
HJ
G

, . . .

This shows that each area in a graph is symmetric in all directions. Associativity
follows from this commutativity.4 Also, a formulation of the rule of conjunction
becomes unnecessary, since the continuity of the SA guarantees that the pre-
misses that rest on the same area of the sheet are juxtaposed with each other.

Definition 6. The system SqBa consists of the following graphical rules:

– Deletion rule:
G+{H}
G+{SA} (Del)

Every positive partial graph H in a graph G can be deleted, leaving the blank
SA in its place.

– Insertion rule:
G−{H}
G−{JH} (Ins)

Any graph can be inserted into a negative position in a graph G.
– Positive Iteration/Positive Deiteration rules:

K{GH+{J}}
K{GH+{GJ}} (Pit)

K{GH+{GJ}}
K{GH+{J}} (Pdeit)

In any graph K{GH+{J}}, the partial graph G can be iterated in the con-
text H+{ }. Conversely, any graph that is the result of such iteration can be
deiterated.

– Involution rule:

G{H}
G{ H }

(Inv1)
G{ H }

G{H} (Inv2)

A doubly occurring nested oval with nothing but a blank between the two ovals
can be added to or removed from any partial graph.

A derivation from a graph G to H in SqBa is a finite sequence of graphs
K0, . . . ,Kn such that K0 = G and Kn = H and each Ki is obtained from some
Kj (j < i) by a rule in SqBa. A graphical consequence G � H is derivable in
SqBa, notation G �SqBa

H, if there is a derivation of H from G in SqBa.
A graph G is equivalent to H with respect to SqBa, notation G ≡SqBa

H, if
G �qBa H and H �SqBa

G.

4 Peirce knew well this point: “[I]f an operation is thoroughly commutative . . . , it is
necessarily associative; and associative property is a mere corollary from its commu-
tative property” (R 482).
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Remark 1. There are some important points of difference between SqBa and the
Alpha graphs under Peirce’s original conception (see the definition of the Alpha
system given e.g. in [11]). Among them we list the following:

(1) The axiom of SA does not occur in SqBa.
(2) No implication appears in the language of SqBa. Although the definition

of the well-formed graphs of SqBa is equivalent to the definition of the
well-formed Alpha graphs, the systemic restrictions make it impossible to
read graphs such as G H as representing implications. In terms of
the language of propositional logic, this graph can be interpreted either as
∼(G ∧ ∼H), ∼(∼H ∧ G), (∼G ∨ H) or (H ∨ ∼G)), and that is all.

(3) The iteration/deiteration rules familiar from the set of basic transformation
rules of the Alpha system are restricted to positive iterations and deiterations
as given by the rules of transformation (Pit) and (Pdeit). Only graphs on
positive areas can be iterated, and only graphs iterated from positive areas
can be deiterated. This restriction prevents the derivability of the Laws of
the Excluded Middle as well as Non-Contradiction: SA ��SqBa

G G and

SA ��SqBa
G G . The proof by completeness is given at the end of the next

section.
(4) The oval around graphs, G , does not represent a Boolean negation. Taking

it as complementation would make SqBa a system for Boolean algebra, in
which case we would call the oval the cut. But here, the oval is involution
expressing duality. We do not cut what the oval encloses from the SA.

(5) The meaning of the Sheet of Assertion SA also differs from the classical
Alpha. In SqBa it is a sheet, that is, it provides the geometrical, two-
dimensional surface upon which graphs are projected. But in contrast to
the proposals in the previous literature (including Peirce’s own writings),
here the sheet is no longer the Sheet of Assertion. That is, we will divest the
SA from its significance of being about assertions. This conceptual change
creates some potential for applications proposed in Sect. 5.

Proposition 1. The following distributive laws are derivable in SqBa:

(D1) G H K � GH GK

(D2) GH GK � G H K

(D3) G H G K � G HK

(D4) G HK � G H G K

Proof. The derivations in SqBa are displayed as follows:

G H K
(Pit)

G GH K
(Pit)

G GH GK
(Del)

GH GK

GH GK
(Pit)

GH GK GH GK
(4 times Del)

G G H K
(Pdeit)

G H K
(Inv2)

G H K
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G H G K
(Pit)

G H G K G K
(Del)

G H G K
(Pit)

G H G HK
(Del)

G G HK
(Inv2)

G G HK
(Pdeit)

G HK

G HK
(Pit)

G HK G HK
(Del)

G H G HK
(Del)

G H G K

In the derivation of (D2), (Pdeit) is used as follows: the (Pdeit) is applicable to

the graph G
+{ G } H K since the second occurrence of the partial

graph G can be deiterated from G in the same area. Note that G
+{ G } is

the partial graph of G G . Similarly, (Pdeit) is applicable in the derivation
of (D3). This completes the proof. �
Proposition 2. The following absorption and idempotency laws are derivable
in SqBa:

(Ab1) G G H � G (Ab2) G � G G H

(Ab3) G GH � G (Ab4) G � G GH

(Ide1) GG � G (Ide2) G � GG

(Ide3) G G � G (Ide4) G � G G

Proof. Clearly (Ab1) is obtained by (Del). The derivations of (Ab2), (Ab3) and
(Ab4) are given as below:

G (Pit)
G G (Inv1)

G G
(Ins)

G G H

G GH
(Del)

G G
(Pdeit)

G
(Inv2)

G

G (Ab2)
G G H

(Pit)
G G GH

(Del)
G GH

Obviously (Ide1) and (Ide2) are obtained by (Del) and (Pit) respectively. (Ide3)
is obtained by (Pdeit) and (Inv2). (Ide4) is obtained by (Inv1) and (Ins). �
Proposition 3. The following distributive laws are derivable in SqBa:

(DM1) GH � G H

(DM2) G H � GH

(DM3) G H � G H

(DM4) G H � G H
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Proof. (DM1) is obtain by twice (Inv1). (DM2) is obtained by twice (Inv2).
(DM3) and (DM4) are obtained by (Inv2) and (Inv1) respectively. �

On Peirce’s derivation of distributive laws in the Boolean algebra as well as
in his classical Alpha graphs, see [10].

4 Soundness and Completeness

In this section, we prove the soundness and completeness of SqBa with respect
to the variety qBa.

Definition 7. The translation τ : T → Gα from the set of all terms to the set
of all Alpha graphs is defined inductively as below:

τ(p) = p; τ(
) = SA; τ(⊥) = ; τ(∼φ) = τ(φ) ; τ(φ ∧ ψ) = τ(φ) τ(ψ).

For any non-empty finite multi-set Γ = {φ1, . . . , φn}, let τ(Γ ) = τ(φ1) . . . τ(φn).
The translation ρ : Gα → T from the set of all Alpha graphs to the set of all

terms is defined inductively as below:

ρ(p) = p; ρ(SA) = 
; ρ( G ) = ∼ρ(G); ρ(G1G2) = ρ(G1) ∧ ρ(G2).

For any graph G, let τ ◦ ρ(G) = τ(ρ(G)).

Let A = (A,∧,∨,∼, 0, 1) be a qBa. For any assignment θ in A and an Alpha
graph G, define θ(G) = θ(ρ(G)). We say that a graph G is a logical consequence of
H with respect to qBa, notation G |=qBa H, if θ(G) ≤ θ(H) for any assignment
θ in any qBa A. A graph G is equivalent to H with respect to qBa, notation
G ≡qBa H, if G |=qBa H and H |=qBa G.

Lemma 1. For any graphs G,H and K, the following hold in SqBa:

(1) If G |=qBa H and H |=qBa K, then G |=qBa K.
(2) If G |=qBa H, then GK |=qBa HK.
(3) If G |=qBa H, then H |=qBa G .
(4) If G |=qBa H, then K+{G} |=qBa K+{H}.
(5) If G |=qBa H, then K−{H} |=qBa K−{G}.
(6) If G ≡qBa H, then K{G} ≡qBa K{H}.
(7) GH+{J} ≡qBa GH+{GJ}.
(8) G ≡qBa G.

Proof. (1)–(3) are obvious by definition. (4) and (5) are shown easily by simul-
taneous induction on the construction of K. (6) is easily shown by induction on
the construction of K. Details are omitted here. For (7), we have GJ |=qBa J . By
(4), H+{GJ} |=qBa H+{J}. Hence GH+{GJ} |=qBa GH+{J}. Conversely, it is
easy to show that GH+{J} |=qBa GH+{GJ} by induction on the construction
of H+{ }. (8) holds because of the involution of ∼ in qBas. �
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Theorem 3 (Soundness). If G �SqBa
H, then G |=qBa H.

Proof. Assume that G �SqBa
H. Let H0, . . . , Hn be a derivation of H from G

in SqBa. We show that G |=qBa Hi by induction on i ≤ n. The case that i = 0
is obvious. Let i > 0. we have the following cases:

(1) Hi is obtained from Hi−1 by (Del). Let Hi−1 = J+{K} and Hi = J+{SA}.
By induction hypothesis, G |=qBa J+{K}. Clearly K |=qBa SA. By Lemma 1
(1), J+{K} |=qBa J+{SA}. Therefore G |=qBa J+{SA}.

(2) Hi is obtained from Hi−1 by (Ins). Let Hi−1 = J−{K} and Hi = J−{KL}.
By induction hypothesis, G |=qBa J−{K}. Clearly KL �SqBa

K. By
Lemma 1 (2), J−{K} |=qBa J−{KL}. Therefore G |=qBa J−{KL}.

(3) Hi is obtained from Hi−1 by (Pit), (Pdeit), (Inv1) or (Inv2). We obtain that
G |=qBa Hi by induction hypothesis and Lemma1 (6)–(8).

Lemma 2. For any graphs G,H and K, the following hold in SqBa:

(1) If G �SqBa
H and H �SqBa

K, then G �SqBa
K.

(2) If G �SqBa
H, then GK �SqBa

HK.
(3) if G �SqBa

H, then H �SqBa
G .

(4) If G �SqBa
H, then K+{G} �SqBa

K+{H}.
(5) If G �SqBa

H, then K−{H} �SqBa
K−{G}.

(6) If G ≡SqBa
H, then K{G} ≡SqBa

K{H}.
Proof. (1) and (2) are obvious by the definition. For (3), assume that G �SqBa

H.
Then there is a derivation H0, . . . ,Hn = H. We show that Hi �SqBa

G
by induction on i ≤ n. The case that i = 0 is obvious. Let i > 0. If Hi is
obtained from Hi−1 by (Pit), (Pdeit), (Inv1) or (Inv2), it is easy to obtain
that Hi �SqBa

G by induction hypothesis and the rule. Suppose that Hi is
obtained from Hi−1 by (Del). Let Hi = J+{SA} and Hi−1 = J+{K}. By induc-
tion hypothesis, J+{K} �SqBa

G . Clearly J+{K} �SqBa
J+{SA} .

Hence J+{SA} �SqBa
G . The case that Hi is obtained from Hi−1 by (Ins)

is shown similarly.
For (4) and (5), assume that G �SqBa

H. We prove that K+{G} �SqBa

K+{H} and K−{H} �SqBa
K−{G} by simultaneous induction on the construc-

tion of K. The case that K is atomic is obvious. Assume that K = K1K2. Let
K+{ } = K1K

+
2 { }. By induction hypothesis, K+

2 {G} �SqBa
K+

2 {H}. By (2), we
obtain that K1K

+
2 {G} �SqBa

K1K
+
2 {H}. Let K−{ } = K1K

−
2 { }. By induction

hypothesis, K−
2 {H} �SqBa

K−
2 {G}. By (2), we obtain that K1K

−
2 {H} �SqBa

K1K
−
2 {G}. Assume that K{ } = J{ } . Then K+{ } = J−{ } and K−{ } =

J+{ } . By induction hypothesis, J+{G} �SqBa
J+{H} and J−{H} �SqBa

J−{G}. By (3), J+{H} �SqBa
J+{G} and J−{G} �SqBa

J−{H} .
For (6), the proof proceeds by induction on the construction of K. The

case that K is atomic is obvious. Suppose that K = K1K2{ }. By induction
hypothesis, K2{G} ≡SqBa

K2{H}. By (2), K1K2{G} ≡SqBa
K1K2{H}. Sup-

pose that K = J{ } . By induction hypothesis, J{G} ≡SqBa
J{H}. By (3),

J{G} ≡SqBa
J{H} . �
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Lemma 3. If GqBa � Γ ⇒ ψ, then τ(Γ ) �SqBa
τ(ψ).

Proof. The proof proceeds by induction on the height of a derivation of Γ ⇒ ψ
in GqBa. Details are omitted here. Note that Propositions 1, 2, 3 and Lemma 2
are used.

Lemma 4. For any graph G, τ ◦ ρ(G) ≡SqBa
G.

Proof. By induction on the construction of G. The case that G is atomic is
obvious. Let G = G1G2. Then τ ◦ ρ(G) = G1G2. Then τ ◦ ρ(G) ≡SqBa

G.
Assume that G = H . Then τ ◦ ρ(G) = τ ◦ ρ(H) . By induction hypothesis,
τ ◦ ρ(H) ≡SqBa

H. By Lemma 2 (3), τ ◦ ρ(H) ≡SqBa
H .

Theorem 4 (Completeness). If G |=qBa H, then G �SqBa
H.

Proof. Assume that G |=qBa H. Then ρ(G) |=qBa ρ(H). By the completeness of
GqBa with respect to qBa, GqBa � ρ(G) ⇒ ρ(H). By Lemma 3, τ ◦ ρ(G) �SqBa

τ ◦ ρ(H). By Lemma 4, G �SqBa
H. �

By the completeness theorem, one can show that SA ��SqBa
p p and

SA ��SqBa
p p . Consider the following four-valued distributive lattice with the

unary operation ∼ [5]:

•

• •

•

F

N B

T
x ∼x
T F
F T
N N
B B

Let θ(p) = N. Then θ( p ) = N. Hence θ( p p ) = N and θ( p p ) = N. But

θ(SA) = T. Hence SA �|=qBa p p and SA �|=qBa p p . By the completeness

theorem, SA ��SqBa
p p and SA ��SqBa

p p .

5 Application and Discussion

Quasi-Boolean algebras are generalisations of Boolean algebra. A common struc-
ture for many-valued logics, including fuzzy logics and the Dunn–Belnap four-
valued logic, quasi-Boolean algebras have found application in approximative
reasoning and reasoning with inconsistent information.

We mention one area of interest for our proposed weak Alpha graphs. Since
does not represent Boolean complementation, graphical languages that have

been divested of that meaning tolerate inconsistencies and may be better suited
for representing conflicting and vague information. We see the role of the SA
indeed to be different in SqBa precisely in that in this logic we no longer assume
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the sheet to be the Sheet of Assertions.5 That is, those who scribe and inter-
pret graphs on the sheet need not bear responsibility for the truth of proposi-
tions. This in fact comes close to the interpretation Dunn and Belnap proposed
for four-valued logic and the logic of first-degree entailments: such logics repre-
sent normative reasoning of how computers should think or should behave [5,7].
Machines, unlike minds, work with “told values” and not with truth-values per
se. Slaves to syntactic manipulation, they do not question the propositions put
to them, even if the information presented were inconsistent.

Accordingly, we could call the sheet in SqBa, not the Sheet of Assertion but
the Sheet of Instruction. Scribing the graphs on the sheet expresses not an act
of assertion but a delivery of instruction. We can nevertheless go further and
propose that the question of how computers ‘should think’ does not stop at
the level of ‘being instructed about’ or ‘being told’ the propositions. What the
graphical languages in general, and the expressions of SqBa in particular bring
to the picture is precisely that their values are not ‘told’ but shown. Scribing
them on the sheet is to show something rather than saying. When a computer
is shown a graph G of SqBa, we show a computer the graph G while we do not
show G , and when we show the graph G we do not show G. Moreover, since
the Law of Non-Contradiction cannot be derived in this logic, we can show G and
G . That is, we can bring both instances of such graphs to the “field of distinct
vision”—a phrase used by Peirce to mean the range of the interpreter’s attention
(R 280, 1906)—of a sensory machine. Fourth, since the Law of Excluded Middle
is not valid either, showing a graph G, including that of showing the blank SA, is
not an expectation to commit computer to a truth-value regarding that graph.
Showing a graph does not imply showing the value of that graph, and a machine
could as well behave quite innocently at the presence of what might look like a
contradiction in the classical language of egs. As to the fourth case, recall also
that the only axiom in classical egs, namely that the blank sheet is a tautology
which can always be added anywhere on the sheet juxtaposed with other graphs,
is not present in SqBa. Thus the common convention we find in Peirce’s own
theory, namely that “We always have a logical right to a blank sheet” (R 497,
1897), is not universal.

The present modification is only one suggestion among many others concern-
ing the ways in which one could modify the significations of the basic geometrical
and topological building blocks of these graphical languages to get new logics.
For example, other generalisations of Boolean algebra are very well possible. We
mention as examples the following three:

1. Distributive lattices, in which the SA does not represent anything at all and
there are no ovals . The only primitive operations are disjunction (rep-
resented as n-scrolls) and juxtaposition. Transformation rules lack insertion
and iteration/deiteration and all areas are positive.

2. Bounded distributive lattices, which add the blank SA as 
 and as ⊥.

5 To the opposite direction, namely making it explicit that the sheet is precisely that
of the assertions, see [3,4].
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3. Ockham algebras, which take the ovals to be real cuts, that is, they are comple-
mentations such that an empty cut on the SA is a complement of that sheet,
and a cut around the complement of the sheet is the sheet itself. Insertions
on negative areas are not permitted, however.

Each of such generalisations can then become the desired structure for a graph-
ical language in the large family of these supra-classical egs.6

6 Concluding Remarks

Peirce introduced the Alpha part of the logic of Existential Graphs (eg) as a
diagrammatic syntax and a graphical system corresponding to classical proposi-
tional logic. The logic of quasi-Boolean algebras is a logic below classical Alpha
which we have used in the present paper as the algebraic structure for a new
graphical system of weak Alpha graphs. It was shown to be sound and com-
plete with respect to the class of all quasi-Boolean algebras. We also studied
some implications of these modifications regarding the meaning of the basic
components of eg, including the meaning of the SA, and proposed that these
modifications can find applications in machine-related reasoning that use sensors
to grasp information-based logical content. Thus various non-classical graphical
logics are not only possible but important and come about with only minor
modifications to the transformation rules of Peirce’s original theory of egs.

This overall idea is reflected in our proposed modification and its algebraic
underpinnings. The modification is to have a graphical language that (i) can deal
with such additional values detached from what the sheet naturally represents,
(ii) is a system of deep inferences increasingly in demand for non-classical logics
that represent and reason about inconsistent, finite and bounded computational
processes, and (iii) preserves a conceptually and historically motivated approach
that started off from Peirce’s original insights.
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Abstract. Peirce’s graphical logic of Existential Graphs (egs) has no
specific sign for assertion, although the notion is used virtually every-
where in Peirce’s logical theories. We outline the new system of Assertive
Graphs (ags) that makes the embedded notion of assertions in egs
explicit, and show how to inferentially transform ags to a classical graph-
ical logic clag, without having to introduce polarities explicitly. We
compare the philosophy of notation of ags to egs, where the latter has
polarities both in its intuitionistic and classical cases. Our comparison
is framed with respect to three different representations of implication,
namely as cuts, boxes and scrolls. We also identify three fundamental
differences in the meaning of the Sheet of Assertion and compare those
with Peirce’s own proposed interpretation.
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1 Introduction

Various graphical languages to capture logic based on Peirce’s method of Exis-
tential Graphs (egs) have burgeoned in recent years. This paper provides a
synopsis and a philosophical and notational comparison of three recent propos-
als: Assertive Graphs (ags, [4]), intuitionistic egs (the system GrIn of [11], cf.
[12]) and classical Assertive Graphs (clag, [6]). We compare three major rep-
resentational aspects of these languages: namely the notation that they employ
to represent logical implication (the sign of conditional), the phenomenon of the
polarity of areas that these graphs may or may not have, and the differences in
the meaning of the Sheet of Assertion (SA) assumed in these graphical logics.
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We focus only on propositional cases, which in Peirce’s terms means the Alpha
part of the theory of egs. We assume familiarity with the basic features of his
Alpha system.

Peirce’s original proposal was classical in the sense that the logic of Alpha
graphs satisfies bivalence and that all classically valid tautologies come out as
true in it. Yet he laid considerable emphasis on the notion of assertion involved in
the graphical method of logic. For example, in R 492 (1903) he writes that the SA
is such that the universe that it represents is definite (i.e., the Principle of Non-
Contradiction comes out as a tautology), individual (i.e., the Law of Excluded
Middle comes out as a tautology), and real.1 He explained the last point as “so
that what is true and what false of it is independent of any judgment of man
or men, unless it be that of the creator of the universe; in case this is fictive”
(R 482). Any graph scribed on the sheet is in Peirce’s view being asserted of
some universe satisfying these three requirements. SA is a representation of that
universe or universes, and an existential graph is a representation of a fact that
exists in those universe(s).

Indeed assertion has enjoyed a wide and important role in a number of occa-
sions in the development of modern logic. In addition to being an essential com-
ponent of egs, assertion has a distinguished inferential role in Frege’s logic of
judgments [7], and it has been used by Heyting in the explication of intuition-
istic constants of logic [9]. Assertion has likewise been a major speech-act class
analysed in illocutionary and pragmatic logics [5,17].

Yet the logic of assertion itself has not been a subject of investigation in
the context of logical graphs and diagrams. A new diagrammatic system, called
Assertive Graphs (ags), was developed in [4] in order to provide a formal and
philosophical account of the logic of assertions in the graphical context. ags
build upon many of the elements of egs but also differ from them in three major
respects: First, ags take the assertion itself as the central constant of that logic.
Second, the theory relies on intuitionistic rather than classical interpretation of
logical constants. Third, the graphs of ags need not distinguish between positive
and negative areas of the graphs and hence the language does represent polarities.

It was shown in [6] that with an addition of one inferential rule, called Elim-
ination of Coinciding Corners, intuitionistic logic of ags can be converted into a
classical graphical logic of assertions. The output is the system called clag, from
classical assertive graphs. Significantly, the conversion is done without having to
introduce polarities explicitly into the system. Since also intuitionistic variants of
egs have been proposed [11,12] which do rely on the representation of polarities,
it now becomes topical to compare some of the key notational and philosophical
aspects of these classical and intuitionistic versions of both egs and ags.

The present paper summarizes the basics of these three graphical logics and
presents a notational comparison between them. The notion of assertion is conge-
nial in all of them. Specifically, we will focus on three different graphical notations
for implication that these logics make use of, namely by cuts as in classical
egs, by scrolls as in intuitionistic egs (GrIn), and by boxes as in both

1 The reference R is to Peirce’s manuscripts by the Robin number [15].
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ags and clag. We then discuss the pros and cons of dispensing with polarities
in the graphical languages of ags and clag. Third, we recount the role of the
SA, as is remains as a central notion in both ag and egs: The SA represents
both the universe of discourse as well as provides the platform on which graphs
are scribed as juxtaposed with each other and continuously connected by the
blank of the sheet. The blank of the SA, we notice, is not empty, but it has dif-
ferent meanings in these three different notational systems: in egs it means all
truths, in ags all justified assertions, and in intuitionistic egs, the blank means
all transformations.

2 Assertions in Graphs

We begin with a brief exposition of the theory of assertive graphs (ags) [4,6].

2.1 Intuitionistic Assertive Graphs (AGs)

Constructions. The logic of ags justifies intuitionistically valid principles. Its
logical constants have a meaning that agrees with Heyting’s explication of intu-
itionistic constants [9]. In short, an assertion is justified when it becomes possible
to provide a construction (or a method of verification, demonstration, transfor-
mation etc.) that yields a proof of a proposition. Briefly, taking P and Q as
propositions, (i) P and Q can be asserted iff both P and Q can be asserted, (ii)
P or Q can be asserted iff at least one of the propositions P,Q can be asserted,
(iii) ¬P can be asserted iff one possesses a construction which, from the sup-
position that a construction for P were carried out, leads to a contradiction,
(iv) the implication P → Q can be asserted iff one possesses a construction R
which, joined to any construction proving P would effect a construction proving
Q—that is, a proof of P , together with R, would form a proof of Q.

The notion of proof is an informal one. It may be, for instance, a valid and
rigorous mathematical argument, or its skeletal idea. An assertion is justified
when it becomes possible to possess a construction that leads to the proof of a
proposition. This assertion-based explication of logical constants, together with
the graphical and diagrammatic elements of egs spreading the syntax into two-
dimensions, provides an inspiration for the construction of ags. The meaning
of the SA might then concern all justified assertions: the justification condition
for the act of assertion is conveyed by a construction that yields the proof for a
propositional content of the graph instance scribed on the SA.

Conventions and Rules of AGs. We briefly describe the system of ags. The
expressions of the language of that system are graph-instances standing for asser-
tions and their relations. We use G,H, J etc. as names of propositions to stand
for graph-instances. All graphs that are scribed on the SA are graph-instances.
The fundamental conventions are listed first.

Convention 1: We always have a right to a blank SA.
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Convention 2: We denote the assertion of a graph by scribing α on the SA
enclosed within a box. Whenever α is the proposition G, then we can also
scribe G , and vice versa. That is, rectangular boxes can be written around
graphs and removed around them at will.
The box merely adds a stress and as such pertains to the paralinguistic or
prosodic component of a language: one way of reading it would be to take it
to draw our attention to its contents G, such as stating “Look, here’s a G”.

Convention 3: A juxtaposition is an assertion of graphs on the SA at two
different positions of the sheet, such as G H . Graphs asserted at different
positions of the SA are independently asserted. Since the conjunction of an
assertion is equivalent to the assertion of its conjuncts, this is equivalent
to G H . By virtue of these conventions, this is moreover equivalent also
to any of G H, G H , G H, H G, etc. Since SA is unordered
in all directions, the following graphs are likewise equivalent to the above:
G
H

,
G

H
,

G

H

, etc.

Convention 4: Two juxtaposed graphs conceived not independently but alter-
natively asserted are connected by a thin line with a bar crossing it, such as
G H .

Convention 5: The nesting of boxes with the inner and outer boxes connected
by sharing two adjacent sides represents an implication between two asser-

tions, notated by G H .

This is not equivalent to G H , which by Convention 2 expresses a conjunc-
tion of two assertions.

Convention 6: An absurdity is represented by the blot: �.2

Convention 7: Nothing else is a convention.

The well-formed graphs of the language of ags are defined inductively along the
lines of these conventions. We skip the details and refer to [4,6]. The logic is
then defined by the set of its graphical axioms and the rules of transformation
on the graphs of the language of ags.

Axioms of AGs. There are three axioms.

Axiom I. The blank SA: ,

Axiom II. (Any graph implies a blank): H

Axiom III. (Ex falso): � H .

Rules of Transformation. There are altogether nine transformation rules in
the logic of ags.

2 The blot is assumed to blacken the entire area within which it occurs. Since it is
impractical to show this by actually blackening large blank areas, a heavy bullet is
used instead.
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(As/Am) The Rule of Antecedent Separation/Antecedent Merg-
ing:

G H J if and only if G J H J .

That is, the disjunction of the antecedents of a conditional can be split into
juxtaposition. Conversely, any two conditionals with the same consequent can
be merged into a conditional with the disjunction of the antecedents.

(Cm/Cs) Consequent Merging/Consequent Separation:

G H G J if and only if G H J .

That is, the consequents of two conditionals with identical antecedents can be
merged into the consequent of a conditional. Conversely, juxtaposed conse-
quents in a conditional can be split into the juxtaposition of two conditionals.

(DC) Rules of Disjunct Contradiction:

H if and only if H �.

That is, any graph is equivalent to its disjunction with the blot.
(CR) The Cornering Rule:

H if and only if H .

That is, any graph is equivalent to the conditional having the same graph as
a consequent with a blank antecedent.

(It/Deit) Iteration/Deiteration Rule: For this rule, we introduce the
notion of the context of graphs. A context is of the form K {}, where a single
slot {} is the empty context. Let K {H} be the graph obtained from K {} by
substituting H for the slot. The two rules are:
(It) If a graph G occurs on the SA or anywhere in the nest of graphs, it may

be scribed on any area (not part of G) which is contained by {G}:
If K{GH{J}} then K{GH{GJ}}.

The converse of (It) is deiteration (Deit):
(Deit) If K{GH{GJ}} then K{GH{J}}.

(CE) Conjunction Elimination:

If G H then G .

That is, from the assertion of G and H it is possible to derive the assertion
of one of them.

(DI) Disjunction Introduction:

If G then G H .

That is, from the assertion of G it is possible to derive the assertion of G or
the assertion of H.

(IA) Insertion in the Antecedent:
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If K{ G H } then K{ G J H }.

The rule (IA) is applied to the contexts K {} of graphs. The restriction of
(IA) is to conditionals whose immediate context in K (that is, the area on
which the conditional is placed) is not that of the antecedent of another
conditional. That is, in any unoccupied position in the area of the antecedent
of the conditional which itself does not reside in an antecedent of a conditional
of its immediate context, it is possible to insert any graph.

(DC) Deletion from the Consequent:

If G H J then G H .

That is, one can delete any graph from a consequent of a conditional.

With these rules, one can derive all intuitionistic validities, and one cannot
derive the Law of Excluded Middle (LEM), for example [4,6].

2.2 Classical Assertive Graphs (CLAG)

A classical variant of ags, called clag, is obtained by introducing the following
rule of Eliminating Coinciding Corners (CC) for absurdum:

(CC) Eliminating Coinciding Corners:

If G � � then G.

That is, if there are no intermediate graphs (other than the blank) between
two corners each occupied by nothing but a blot, then these two corners cancel
each other out.

What remains after the application of this rule is G , which is the same as
the graph G. The rationale for the rule (CC) is a natural graphical and spatial
property: in the absence of any intermediate graphs occupying the intermediate
space between two corners occupied by nothing but the blots, then these two
corners would annihilate each other out (imagine the amorphous blots welding
into each other). In clag, we can now derive Peirce’s Law, which is equivalent
to the LEM and to the elimination of a double negation ¬¬G → G, as well as
all the other classically valid principles.

3 Intuitionistic Existential Graphs (GrIn)

Our third example of a graphical system that introduces certain new notational
innovations is an intuitionistic modification of Peirce’s original egs, called GrIn
[11]. After a brief introduction to GrIn, we compared its notation with the key
elements of ags and egs, namely the representation of implication, polarity, and
the meaning of the SA.
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3.1 The Language of Intuitionistic Graphs

Intuitionistic egs are constructed on the SA by their diagrammatic syntax which
is inductively defined from atoms by the operation of juxtaposition and by the
following n-ary scrolls for finite n > 0:

There are three types of atomic graphs: (1) a denumerable set of propositional
letters Prop, (2) the Sheet of Assertion (SA) and (3) the nullary scroll , which
has nothing but a blank in its interior. The unary scroll has one outer close and
one inner close. For n ≥ 2, the n-ary scroll has one outer close and n inner
closes.

The graph obtained by scribing a graph G at the outer close and a graph H at
the inner close of the unary scroll is called the implicational graph. It is notated
as G H , and it has an antecedent G and a consequent H. The graphical sign
that corresponds to the intuitionistic implication → is thus .

The binary scroll of G and H, notation G H , is interpreted as the oper-
ation of disjunction. The graphical sign that corresponds to the intuitionistic
disjunction commonly symbolized as � is thus .

The graph GH is called the juxtaposition of G and H on the SA, and is
interpreted as the operation of conjunction.

3.2 Rules

Given this language as informally described above, the graphical system GrIn
consists of four axioms and six rules of transformation. The rules of dele-
tion, insertion and iteration/deiteration are as in classical EG. The first
two are irreversible and they appeal to the polarity of the area being positive
and negative, respectively. Rules of iteration and deiteration are reversible rules.
Obviously there is no rule of double cuts. Instead, there are the following addi-
tional rules:

(BA1/BA2) The rules of the blank antecedent:

G{H} if and only if G{ H }.

That is, any partial graph (that is, a sub-graph) of a graph can be replaced
by H and vice versa.
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(AmR/AmS) The antecedent merging/splitting rules:

K{ G J H J } if and only if K{ G H J }.

That is, the antecedents of two scrolls with the same consequent can be
merged into a double-scroll. Conversely, two graphs of a double-scroll in the
antecedent of a scroll can split into the juxtaposition of two scrolls.

(CD1–4) The rules of disjunction:

The first two of these rules ((CD1) and (CD2)) mean that any partial graph
H of a graph G can be replaced by disjuncting a pseudo-graph to it and
vice versa. The second pair ((CD3) and (CD4)) mean that any partial graph
H of a graph G can be replaced by any number of equivalent inloops and vice
versa.

The above systems have the obvious properties of colligation, commutativity
and associativity. They follow from the properties of the space of the SA, which
is an open-compact, isotropic manifold. Given the non-linear syntax of these
graphs, such properties need no separate statement at the level of rules. In
fact we would not be able to state such rules in the “diagrammatic syntax” (R
485, 1897-8; 515, L 376, 1911) of these graphical logics. Rather, we show them.
Since the SA is continuous, and since by Convention 3 a co-occurrence of two
propositions is an assertion of them both, the colligation merely means that
two independently asserted graphs on the same area are juxtaposed, which is
a conjunction. No separate rule of conjunction expresses colligation, which just
means that partial graphs are co-located in the same area of the sheet.

Commutativity is shown in GrIn by the equivalence of graphs such as
GH J I , G

HJ
I , HJG I . Also G H and H G are exactly the same

graph, for example.
Likewise, in a 3-scroll

the inloops can be at any position in the area of the outloop, that is, they can
traverse past each other without overlapping. Commutativity of intuitionistic
disjunction thus means that the order and the position on the outloop in which
the inner closes of an n-ary scroll occur is immaterial. Inloops have no designated
position for their intersection points on the outloops. Associativity follows from
commutativity of the inloops of the double scroll for disjunction, which is a
primitive sign. The resulting system GrIn is sound and complete with respect to
the class of all Heyting algebras [11].
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4 A Notational Comparison of Conditionals, Polarities
and the Sheets of Assertion

In this section, we compare these three graphical logics, egs, ags (and clags)
and GrIn, with respect to three characteristic features: the representation of
conditional assertions in terms of the notations for the sign of implication, the
role of polarities in the representation of these graphical languages, and the
signification of the sheet of assertion SA in them. We also contrast these notions
with Peirce’s original insights, as much of those derive from his writings that
have so far remained unpublished.

4.1 Comparing Three Graphical Representations of Conditionals

The signs of implication (G → H) are shown in these graphical logics in three
different ways. The first, notation with nested cuts, is the implication in classical
egs, the second, the box-notation, is the implication in ags, and the third, the
scroll, is the notions for implication in intuitionistic egs:

G H G H G H

egs ags GrIn

Notational differences between these three representations of implication are
important. Classical implication with nested cuts has zero intersection points
between the cuts. Intuitionistic implication in GrIn has precisely one intersection
point; it is where the inloop and the outloop connect. The sign of implication
in the box-notation for assertive graphs has two adjacent sides between the two
nested rectangulars that coincide, that is, the intersection consists of the interval
of the two adjacent sides of the inner box which is strictly smaller than the outer
box.

These differences are all material and distinctive characteristics of the respec-
tive representations. The intuitionistic meaning of the implication is as an oper-
ation that transforms the construction for its antecedent to that of the con-
struction for its consequent. Unlike what is the case in Peirce’s material con-
ditional de inesse in his egs, intuitionistic scroll shows the connection between
the antecedent and consequent in terms of the non-separation between the two
constructions: at least one intersection point is shared between the boundaries
that define the areas of the antecedent (the area of the outloop) and the areas
of the consequent (the area of the inloop).

Peirce’s view on conditionals de inesse was that in graphs of the theory of
egs such as A C ,

[n]either A nor C is positively asserted; and therefore neither can be written on
the sheet of assertion. They must be cut off from that sheet. Moreover, they
must be separated from one another, and in such a manner that they shall not
appear as reciprocally related in any one way. They must therefore be in separate
enclosures of a different character in one from the other, but connected. (R 482,
alternative draft)
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Peirce observes that in material conditionals, the notation may not exhibit any
connection between the antecedent and the consequent, as the conditional could
just as well be taken to be a negation of two conjunctive assertions, and con-
junctions are juxtapositions independently asserted on the SA.

Typically Peirce would use both the nested-cut and the scroll notation inter-
changeably, assuming that the inloop of the scroll could be detached from the
outloop at will. “The node”, he claims in R 482, “or point of intersection, has no
particular significance”. He took both the nested-cut and the scroll notations as
insignificant typological variations that can be interpreted in exactly the same
way. He assumes conditionals to be de inesse, that bivalence holds, and that the
LEM as well as other rules of egs that yield classical logic are valid, and thus
that the logic that one gets would correspond to the Boolean algebra [10].

Yet this assimilation of the two notations of nested cuts and the scrolls,
and thus the detachment requirement for conditional signs, was not without
exceptions in Peirce’s writings. His earliest manuscripts on eg, written in late
1896 (R 481, 482, 488), all begin the exposition of the graphical language with
the conditional drawn as a scroll, never as two nested and detached ovals. There
are also some further, collateral reasons that we can learn from his philosophy
of logic that indicate that some of Peirce’s ideas were not far removed from
an intuitionistic interpretation of logical constants. For example, he graphically
derived the sign of negation from the sign of implication [1]. Nearly all of his
main presentations concerning egs interpret negation as validating the double-
cut rule, however, so that both introduction and elimination of double negations
come out as valid.

This said, the scroll G H as an intuitionistic implication has an interesting
interpretation originating from Peirce’s remarks concerning the method of how
these graphical forms are to be conceived and how they are to be transformed
to some other graphical forms. Both in his algebraic and graphical logics, the
conditional is the primary logical constant because it is the only primitive rela-
tion that mirrors illation. Negation is defined by the conditional, not vice versa
(R 481). For this idea to work, the inner scroll which contains a pseudo-graph in
its enclosure would need to disappear—not the two boundaries of the scroll, the
outloop and the inloop. This those boundaries must not be exactly of the same
quality and form. In R 481 Peirce indeed draws the inloop of the scroll with a
qualitatively different, saw-edged shape, thus distinguishing it from the outloop
which he retains as a simple closed curve. Those signs of implication that we
find in R 481 are given in the graph below, in Peirce’s hand for “If the roads are
muddy, then it has rained”:

Later in 1906 (R 292, 295, S-30) he draws this qualitative difference between the
representations of the inloop and the outloop in words and calls the outloop “the
Wall” and the inloop “the Fence”. We could take this as a sign of an anticipation
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of the intuitionistic idea that the interpretation of the conditional should concern
assertions of the method of construing a method:3 there has to be a method (or
a proof, transformation, verification etc.) that applies, as soon as the method
is applied to the antecedent of the conditional, also to the consequent of that
conditional. The metaphor of the outer close being bound by “the Wall” from the
outside captures the idea that the method according to which a graph becomes
entitled to be asserted on the outer close will at once also guarantee the method
of asserting a graph on the inner close. (Take the latter being surrounded by a
construction weaker than walls.) Once you have penetrated to the area of the
antecedent, you will be able to penetrate to the area of the consequent as well.
Movement is from the graphs permitted to be asserted on the antecedent area,
to the graphs permitted to be asserted on the consequent area.

Interpretations of graphical logical constants by a close notational exami-
nation are not mere figures of speech or grounded on typographical minutiae.
In them, we hear Peirce’s pre-intuitionistic conception of mathematics, namely
that mathematics is the exact study of mental creations.4 Peirce took mental
and imaginative creations and constructions literally as objects that are to be
best analyzed in their diagrammatic outfit. They are not abstract objects. As
soon as diagrams can be given precise logical interpretations and the associated
calculi of rules of transformations (namely having logical graphs scribed upon
the “Phemic sheet” which is endowed with the property of them being at once
asserted; see R 855, 669, 292, S-30), one is prepared to suggest that these sys-
tems fulfill the purpose of analysing the nature of mathematical constructions,
and ultimately the nature of mathematical reasoning.

4.2 Comparing Polarity

The assertive and intuitionistic characters of conditionals are clearly two different
things. They can be distinguished by digging deeper into the nature of the two
graphical representations. There is more than one singular intersection point,
namely the interval intersected in . The remaining boundary of the inner
box separates the areas of the antecedent and that of the consequent. This means
that information from the area outside of the conditional into the antecedent area
of that conditional (say by the application of the rule of iteration) can traverse
either across the overlapping or the non-overlapping boundaries, that is, either
passing or not passing through the area of the antecedent.
3 This reflects Peirce’s own turn of phrase from 1885: “But I cannot doubt that others,

if they will take up the subject, will succeed in giving the notation a form in which
it will be highly useful in mathematical work. I even hope that what I have done
may prove a first step toward the resolution of one of the main problems of logic,
that of producing a method for the discovery of methods in mathematics” (added
emphasis).

4 A historical tidbit is that the first to notice that Peirce’s conception of negation in
logic might mean that the LEM would not hold was Gerrit Mannoury, Brouwer’s
supervisor. Peirce was surely keen to limit the applicability of the LEM to proposi-
tions that are determinate.
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In classical egs, there would always be a polarity switch when traversing
across the boundary of the cut, from the negative to the positive area or vice
versa. But in the box notation of ags, the rectangular shapes do not give rise to
polarities. They are not cuts. Everything in assertive graphs rests on the sheet of
assertion. Boxes do not cut their interiors, nor are they punctuation marks like
the cuts in egs. Only implicitly do the cornered boxed introduce the distinction
between what lies on the antecedent and what on the consequent areas (cf. also
the rule (IA)). The absence of cuts means that nothing is removed from the sheet
and nothing rests anywhere else than on the sheet. Thus the precise location by
which the information traverses in these graphs endoporeutically5 is immaterial.
The absence of polarities distinguishes ags also from intuitionistic egs, as in the
latter the scrolls do demarcate two different qualities of areas, and crossing the
boundary means switching the polarity.

Another and related notational difference of note is that in n-scrolls (n ≥ 2),
such as in G H , the area between the inloops is inactive and nothing may
be scribed in it. The language of ags make this manifest by taking disjunctions
as primitives in which disjuncts are graphs which are not independently but
alternatively asserted. This is notated by having them connected by lines, so
that no spatial area between is present at all, such as in G H or G H J
etc.

The polarities can as well be interpreted, as Peirce at least since 1906 often
did, in terms of the difference between the two sides of the SA, namely in terms
of the verso and the recto leafs of the sheet. In GrIn, this means that the area
of the outloop of the scroll is an area that resides on the reverse, recto side of
the leaf of the sheet, while the area of its inloop marks an area on the leaf that
obtains on the verso side.

Here no two graphs of which one is scribed on the antecedent and the other
on the consequent area are independently asserted, since the justification of an
intuitionistic implication is that it is conditional upon the method of transfor-
mation which is applied to its antecedent area (such as insertions), such that the
method in question would also suffice to verify the justification of the assertion
of the graph in the area of the antecedent. That the former is cut off by “the
Wall” as its boundary means that there is a reversal of the side of the leaf upon
which the graph is scribed, while the latter being cut off by “the Fence” as its
boundary means that the leaf is returned from its reversed position to match the
quality of the original sheet (as erasures are permitted on both sides of the leaf).
Recall that these boundaries do not mean negations: their meaning concerns the
intuitionistic interpretation of implicational signs.

In terms of its inferential system, representation of logic that retains polarities
as egs also retains the irreversible rules of insertion and erasure. These are
the only rules that depend on the presence of boundaries (such as walls and
fences) that also are markers to switch polarities. This is what contradictory
negations do in egs; in a weaker sense they may be other operations such as

5 That is, from the outside-in direction, from the context of the conditional inside
conditional forms, see R 292b, 293, 300, 515, 650, 669.
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involutions in so far as they preserve the duality. When as in ags and clags the
boundaries do not mark polarity, insertion and erasure rules may be supplanted
by (restricted) insertions to the antecedents of a conditional and by erasures
from the consequents of those conditionals.

None of the boundaries in these notations directly characterize negative oper-
ations. Negation is defined in terms of an implication of the pseudo-graph (the
empty cut or the blot). That the boundary is not the cut is the common fea-
ture that distinguishes these graphical logics from Peirce’s original method of
egs. However, this does not mean that Peirce would have missed to consider
the alternative: since his 1880 paper on the algebra of logic, he had represented
negation as an implication of the falsity (such as A → 0, where 0 means ⊥).
By omitting just one of the axioms from his 1885 algebra, namely the fifth icon
(Peirce’s Law), one would get an intuitionistic kernel of that logic.

4.3 Comparing the Meaning of the Sheets

What is the meaning of the SA in these different cases? Peirce’s original idea of
the sheet is that nothing can be scribed on the sheet which is not at once also
asserted. Scribing expresses an act of asserting, and the sheet is endowed of the
property that whatever comes to transpire upon it as the result of the scribing
is also at once asserted. The pseudo-graph, which signals absurdity, is not an
assertion as a boundary is not something that can be scribed.

We made this idea explicit in the logic of ags. The act of assertion is a logical
constant of that system. One of the virtues of this approach is that the sign of
assertion is an embedded sign in the notion of the sheet. We can thus avoid typical
problems that proposals that have explicit, or ad hoc, signs of assertion would
accrue [2]. There are no polarities and no incisions by negations, and hence all
areas are areas on the SA. Consequently, the implication is strictly speaking not
a hypothetical conditional, because also the area of the antecedent rests on the
SA. This is so also in the classical rendering of clag.

In GrIn, in contrast, the conditional, as represented by the scroll is
hypothetical. Its antecedent does not rest on the SA, nor does the area of its
inloop. But those areas are not cut off from the sheet as there are no cuts. We take
the scroll to have a natural intuitionistic interpretation in which constructions
associated with conditionals are graph transformations.

Spatial transformations are indeed central in graphical logics. What the dia-
grammatic syntax of these logics boils down to is that areas of graphs are con-
stituted by a continuum of positions. Rules of transformation can be applied at
arbitrary positions. This has the effect that the inferential component of these
logics is that of a deep inference. (See [8] for a review of the current literature.)
GrIn is a fundamental logic of illative transformations. There are, for example,
many more permissible transformations in GrIn than in egs.

The rule of blank antecedents (BA1/BA2), for example, has an important
intuitionistic interpretation. As asserting a graph G on the SA may be thought
of as an equivalent to “there is a transformation of G”, then in intuitionistic
graphs, unlike in standard Alpha graphs, asserting a graph by scribing it on
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the SA is not an existence claim concerning that proposition. Scribing a graph
means committal to the producibility of a method for its transformation. Hence
the scroll around G, G , means that the space of transformations that occupy
the antecedent area, as indicated by the blank, implies the graph G.

Therefore intuitionistic graphs are strictly speaking not species of existential
graphs. Assertions that are made by scribing graphs on intuitionistically con-
ceived sheets of assertion are assertions neither of a property nor an identity
of anything that exists in the universe of discourse represented by the sheet.
They are affirmations that one can find that what is asserted by some suit-
able method, such as there being a series of transformations that would bring
about what the assertion expresses. The presence of transformations affirms the
presence of a demonstration or verification of those objects of the graphs that
assertion-makers scribe on the SA.6

Peirce explained “existential” in egs to refer to facts or characters that exist
in the mutually recognized universe when we scribe graphs on the SA and thus
assert them as signifying those facts and characters:

[I]ts fundamental symbol expresses the relation of existence. I speak of exis-
tence as a relation, because it consists in the occurrence of a nature among a
collection of individual objects of experience,—not necessarily all actually expe-
rienced, but all destined to be experienced, could the experience be rounded out
to completion. (R 485, 1897–8).

Intuitionistic graphs of the kind defined in GrIn express this positive relation as
the graph’s relation to the possibility of its illative transformations, its verifica-
tions or proofs. These graphs do not symbolize that relation as existence. The
sheet upon which intuitionistic graphs are scribed is indexically connected to the
universe of discourse which consists of those illative transformations as verifica-
tory methods that pertain to the common body of experiences between those
who undertake to discourse upon the graphs and to whom the meaning of the
SA is assumed to be well understood, namely the utterers and the interpreters.
Peirce often termed them the (imaginary) “graphist” and the “interpreter”.7

6 Similar remarks hold on other logical constants of GrIn besides the scroll. In intu-
itionistic Beta graphs the phenomenon that the blank of the continuous sheet is that
of the space of all transformations becomes even more pronounced, since the line of
identity could be interpreted as signalling an identity of proofs.

7 “[I]f we take a piece of blank paper, and form the resolve to write upon it some part
of what we think about some real or imaginary condition of things, then . . . the whole
sheet having been devoted to that purpose exclusively, by the common understanding
called of the graphist (as the person who makes assertions by “scribing”,—that is,
by writing, drawing, or otherwise putting—on the sheet so devoted is to be called),
and the interpreter (i.e. the person to whose understanding the graphist addresses
the assertions that he scribes on the sheet), the graphist is at liberty to scribe any
assertion on the sheet that he may be disposed to assert” (R 678).
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Again, Peirce is looking for innovative meanings to the SA:

[T]he sheet of assertion is a graph-instance, and its meaning is the meaning
of all the standing permissions of the system, together with anything else
that may be which is, in all cases well understood between the graphist
and the interpreter. (R 280, 1904, alternative drafts)

The signification of the SA is the totality of what the standing permissions (the
set of conventions plus the set of illative transformations) of the system allow it
to stand for, including the mutually agreed interpretation of the graphical lan-
guage. Those permissions include all graphs transformations scriptible upon the
sheet. When the permissions change, the meaning of the SA changes accordingly.
Likewise, by restricting the totality of the meaning of the standing permissions
to the meaning of illative transformations which are topological constructions,
one can endow the sheet with new significations such as intuitionistic ones.8

5 Conclusion

We have compared three approaches to graphical logics with respect to their
representation and meaning of the sign of implication, polarity, and the sheet
of assertion. We remarked on main differences these logics have with respect to
Peirce’s original method of egs, and showed that the representation of polarity
is not a necessary feature of neither intuitionistic nor classical graphical logic
of assertions. This approach might pave the way towards graphical analyses of
assertions where the choice of the method need not depends on differences of
whether the underlying logic is intuitionistic or whether it subscribes to certain
‘classical’ rules such as Peirce’s Law.

Our other finding was that the signification of the SA in intuitionistic logic is
to represent all transformations. A closer look at Peirce’s motivations in devel-
oping the graphical method of logic reveals that he chose the scroll, as the
sign of implication, to be the fundamental logical constant because it mirrors
the process of illation, and logical reasoning is about illative inferential rela-
tions [1]. In the intuitionistic case, this motivation comes out even stronger than
in Peirce’s own, ‘classical’ egs, because the scroll embodies the idea later stated
in Brouwer–Heyting–Kolmogorov interpretation as a construction that trans-
forms the proofs of its antecedent into those of the consequent. The scroll itself
is that construction and the illative rules involving those constructions codify
the transformations. In intuitionistic graphs, SA is the representation of all such
possible transformations. The blank sheet is not empty as it implicitly contains
all the scrolls, just as the classical SA implicitly contains all the cuts that can be
brought, as Peirce once put it, to the “field of distinct vision” or to the “mental

8 There is a continuum of intermediate logics and as logical graphs they have not yet
been studied. One would expect changes in the meaning of the SA to be an important
indicator of logical differences between intermediate logics.
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vision of [the] attention” (R 280, 1906) of the graphist and the interpreter who
scribe and interpret these graphs.9

We noted in the introduction that this mutually recognized universe which
the SA represents is in Peirce’s view both definite (LNC: “so that no assertion
can be both true and false of it”), individual (LEM: “so that any assertion is
either true or false of it”) and real (“so that what is true and what is false
of it is independent of any judgment of man or men, unless it be that of the
creator of the universe; in case this is fictive”) (R 492, 1903). In intuitionistic
graphs, we preserve the definiteness but are compelled to give up the property
of individuality, though we do so without evoking any third truth value. If the
universe is not definite, inconsistency-tolerant graphs may arise. Moreover, if the
methods of transformation themselves are taken to govern judgments of those
who undertake to discourse upon graphs, then we might also be compelled to
give up the reality of the universe of discourse. Peirce’s gadget was to take there
to be also the “grapheus”, who “creates the fictitious universe”, “determines its
characters” and “authorizes the assertions” of the graphist (R 492, R S-28). We
leave any further examination of such wider philosophical repercussions of these
non-classical graphical methods as the topic of another paper.
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Abstract. The aim of this paper is to show the symmetric organization
of the transformation rules for erasing or inserting graphs in Existential
Graphs, which Peirce constructed as the diagrammatical system of logic
that uses graphical apparatus instead of formulae of standard formal
logic. Many researchers have overlooked the symmetry of Peirce’s initial
layout of the transformation rules of erasure and insertion. In this essay,
I will symmetrically rearrange the rules of erasure and insertion on the
basis of the accurate understandings of Peirce’s statements.

1 Diagrammatical Representations

Existential Graphs is divided into three parts; the Alpha part, the Beta part,
and the Gamma part. Roughly speaking, the Alpha part is propositional logic,
the Beta part corresponds to first-order predicate logic, and the Gamma part
might be taken as modal logic. I will focus on the Beta part, because I think that
we do not have a more precise grasp of Peirce’s project in the part yet. In the
standard notation of formal logic, “Something is an F and a G” is expressed in the
following manner; ∃x(Fx ∧ Gx). Existential Graphs represents it by connecting
“F” and “G” with a heavy line, as the left-hand graph in Fig. 1 shows.

Existential Graphs calls these diagrammatical representations graphs. Peirce
calls the heavy line that lies between “F” and “G” a line of identity, which
asserts the identity of the individuals denoted by its two extremities [1, 4.443].
Peirce also uses a closed curve termed a sep or a cut, the effect of which is to
deny the proposition represented by the entire graph within it [1, 4.402]. Peirce
calls the area within a cut its close [1, 4.437]. By enclosing with a cut “G” of
the left-hand graph in Fig. 1, we obtain the middle graph in Fig. 1 signifying the
sentence, “Something is an F and not a G.” If we enclose that entire graph with
a cut, then we arrive at the graph meaning that there is nothing that is an F
and not a G, as displayed by the right-hand graph in Fig. 1. The assertion of
this graph conforms to the proposition, “Every F is a G,” or, ∀x(Fx → Gx).

Peirce stipulates two basic rules for transforming graphs, one of which per-
mits us to scribe a new graph in a designated close of a given graph, and is
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P. Chapman et al. (Eds.): Diagrams 2018, LNAI 10871, pp. 582–589, 2018.
https://doi.org/10.1007/978-3-319-91376-6_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91376-6_52&domain=pdf
http://orcid.org/0000-0002-8269-0898


The Transformation Rules in the Beta Part of EG 583

F GF F GG

Fig. 1. “Some” & “Every”

called insertion [1, 4.505]. For example, in the left-hand graph in Fig. 2, which
is simplified here for brief explanation, insertion enables us to scribe “G” next
to “F” in the close formed by the cut, so that we obtain the middle graph in
Fig. 2. By insertion, we may also connect “F” to “G” with a heavy line, as the
right-hand graph in Fig. 2 shows. This graph affirms that there is not anything
that is at once an F and a G. (I will give their accurate expressions in Sect. 3.)

F GF F G

Fig. 2. Insertion

The other operation is erasure by which we may remove a graph from a
designated close of a given graph. For instance, in the left-hand graph in Fig. 3,
we are allowed to delete the heavy line lying between “F” and “G” by erasure.
Thus, this operation leads us from the left-hand graph in Fig. 3 to the middle
graph in Fig. 2. In the latter graph, by erasure, we may obliterate “G” from
the juxtaposition of “F” and “G.” Through these transformations, we conclude
that something is an F (the right-hand graph in Fig. 3) from the premise that
something is an F and a G (the left-hand graph in Fig. 3).

F G FF G

Fig. 3. Erasure

Many researchers have referred to Peirce’s Existential Graphs from their own
standpoints. In particular, Roberts made Peirce’s complicated descriptions of the
transformation rules much clearer [2]. However, Roberts’ interpretations contain
some problems, which have prevented us from observing a symmetry of Peirce’s
arrangement of the transformation rules of erasure and insertion in the Beta part.
As Shin points out, a kind of symmetry is built in Peirce’s systems of Existential
Graphs [3, 81]. According to Shin, it interferes with a more efficacious develop-
ment of Existential Graphs [3, 81]. However, I think that we can reconstruct a
more systematic configuration of the rules on the basis of Peirce’s original design
of them. This is only feasible by an exact reading of the explanations that Peirce
offers for the graphs and the rules in the Beta part.
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2 Roberts’ Reading

Roberts’ reading of the transformation rules includes difficulties. The crucial
problem is Roberts’ notion of a line of identity. Roberts decides to adopt the
conception that any line of identity can cross cuts [2, 50]. However, Peirce clearly
asserts that “a line of identity is a partial graph; and as a graph it cannot cross
a sep” [1, 4.499] Thus, in Fig. 4, Peirce considers the heavy line to be a series
of two heavy lines abutting upon one another at the cut, and calls that series
a ligature [1, 4.499]. In Peirce’s terms, the line of identity in Fig. 2 is a ligature
composed of two heavy lines; one of which is outside the cut and extended to
the point of intersection on it; the other is inside it and joined to that point.
Roberts’ approach to Existential Graphs does not choose this notion of ligatures.

Fig. 4. Ligature

Roberts introduces the following rule: any evenly enclosed graph and any
evenly enclosed portion of a ligature may be erased [2, 56]. If a graph is evenly
enclosed, then it is enclosed by an even number of cuts. Roberts gives two exam-
ples to illustrate applications of this rule [2, 56]. In the first graph from the left
in Fig. 2, by use of this rule, the portion outside the cut of the ligature may be
erased, for it is enclosed with no cut, so that we obtain the second graph. The
portion inside the inner cut of the ligature of the third graph is enclosed with
two cuts, and we may transform it into the fourth graph by erasing that portion.
Therefore, Roberts regards these applications as one and the same operation of
erasure. (The graphs in Fig. 5 are simplified, and their accurate expressions will
be given in Sect. 3.)

To the contrary, Peirce considers one of the two operations as a different
transformation from the other. Peirce gives the following stipulation about one
of them: “It permits any ligature, where evenly enclosed, to be severed from the
inside of the sep immediately enclosing that evenly enclosed portion of it” [1,
4.505]. What type of operation is permitted by this rule? First, it refers to an
evenly enclosed portion of a ligature. Second, a cut immediately encloses that
portion of the ligature, which, therefore, lies inside the cut. In Fig. 5, the first and
third graphs from the left have evenly enclosed portions of the ligatures. However,
in the first graph, the evenly enclosed portion of the ligature lies outside the cut,
while that of the third lies inside the cut. Hence, Peirce’s above rule enables us
to erase the evenly enclosed portion of the ligature of the third graph, so that
we obtain the fourth graph. The rule cannot be applied to the evenly enclosed
portion of the ligature of the first graph.

Peirce also introduces the following rule: “This rule permits any ligature,
where evenly enclosed, to be severed” [1, 4.505]. It might seem to conform to the
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F GF G F G F G

Fig. 5. Examples of erasure

rule of erasure formulated by Roberts. We have observed that Peirce divides a
ligature into a heavy line inside a cut and one outside it and that he gives the
transformation rule for erasing the evenly enclosed portion inside the inner cut
of the ligature of the third graph from the left in Fig. 5. Therefore, it should be
assumed that this rule is formulated to erase the evenly enclosed portion outside
a cut of a ligature. According to Peirce, points on a cut lie outside the close
of the cut, and are treated as if they were away from it [1, 4.450]. In the first
graph, the point of intersection on the cut at which two heavy lines outside and
inside the cut are linked to each other is placed outside the close of the cut.
Thus, the portion outside the cut of the ligature of the first graph from the left
in Fig. 5 stands in the same situation as the ligature of the left-hand graph in
Fig. 3. Both of them are deleted by the rule of erasure that Peirce prescribes
with no reference to any cut.

3 Dots

This investigation reveals that the function of a heavy line consists in coupling
one point with another. Peirce states that heavy lines have “the effect of joining
dots on the sep to dots outside and inside of it” [1, 4.449]. Peirce uses the word
“dot” instead of “point.” For example, in the third graph from the left in Fig. 5,
the portion inside the outer cut and outside the inner cut of the ligature links the
dot next to “F” with that of intersection on the inner cut, and the portion inside
the inner cut links the dot next to “G” with it. The ligature does not directly
connect “F” and “G” in Fig. 5. Perice calls “F” and “G” spots, and identifies them
as those predicates with blanks, which we shape by eliminating their subjects
from propositions of the form of subject-predicate [1, 4.441], for instance, “is a
logician.” This blank being filled with a proper name, that predicate is turned
into a complete proposition; “Peirce is a logician.” Peirce calls each blank of a
spot a hook, and states: “A spot with a dot at each hook shall be a graph” [1,
4.441]. Hence, the diagrammatical representation for the sentence, ”Something
is an F,” is the first graph from the left in Fig. 6, and the second graph stands
for the sentence, “Something is an F and a G.”

F GF GF GF

Fig. 6. Hook dots & cut dots
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We may call a dot with which each hook of a spot is filled a hook dot. A dot
on a cut may be called a cut dot. By using cut dots, we draw the third graph
from the left in Fig. 6 as diagrammatically signifying the sentence, “Whatever
is an F is a G,” and the fourth graph means the sentence, “Something is an F
and not a G.” As we have seen, a line of identity or a heavy line does not cross
any cut. In both of the third and the fourth graphs, each ligature is composed
of the two heavy lines outside and inside the cut. In the third graph, the evenly
enclosed portion inside the inner cut of the ligature may be erased inwards. In
the fourth graph, since the non-enclosed portion of the ligature lies outside the
cut, it may be erased outwards from the cut. We may term the former erasure
disjoin and the latter separation. This classification divides the erasures in even
enclosures into two kinds; inward and outward.

Basically, the rule of erasure is applied to the evenly enclosed portions of
ligatures. In addition, Peirce puts forward the following rule: “It permits any
ligature to be retracted from the outside of any sep in the same enclosure on
which the ligature has an extremity” [1, 4.505]. According to this, we may erase
that portion, either evenly or oddly enclosed, of a ligature that outwards extends
to a dot on and stops at the cut which is placed in the same close as that portion.
This erasure is about each ligature of the left-hand and the right-hand graphs
in Fig. 7. We have already introduced the rule for erasing the ligature of the
latter graph as separation, because any cut dot is coordinate with a dot outside
the cut. Therefore, we should assume that the Peirce’s above statement sheds
light, especially on the other kind of erasure that indicates the outward erasure
in an odd enclosure. The rule allows us to erase the oddly enclosed ligature of
the left-hand graph in Fig. 7 and transform it into the graph composed of a pair
of cuts in whose inner close “G” with its hook dot lies and in whose annulus, in
the area between the outer cut and inner cut, “F” with its hook dot lies without
any heavy line, as the middle graph in Fig. 7 shows.

F GF G F G

Fig. 7. Retraction

These considerations offer us a new conception of the way to organize the
rules of erasure and insertion that Peirce originally gave. We can adjust the rules
of erasure and insertion from two viewpoints; outward or inward ; even or odd
erasure, so that the eight rules can be symmetrically set out with their names:

1. The inward/outward erasure in an even enclosure: disjoin/separation.
2. The inward/outward insertion in an odd enclosure: join/connection.
3. The inward/outward erasure in an odd enclosure: disjoint/retraction.
4. The inward/outward insertion in an even enclosure: joint/extension.
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4 Symmetric Arrangement

Now I illustrate what types of transformation these rules permit, based upon
Peirce’s original descriptions. Peirce declares about the rules of erasure and
insertion as follows:

This rule permits any ligature, where evenly enclosed, to be severed, and
any two ligatures, oddly enclosed in the same seps, to be joined. It permits
a branch with a loose end to be added to or retracted from any line of
identity. It permits any ligature, where evenly enclosed, to be severed from
the inside of the sep immediately enclosing that evenly enclosed portion of
it, and to be extended to a vacant point of any sep in the same enclosure.
It permits any ligature to be joined to the inside of the sep immediately
enclosing that oddly enclosed portion of it, and to be retracted from the
outside of any sep in the same enclosure on which the ligature has an
extremity. [1, 4.505]

This passage is to be partitioned into seven sentences. (1) “This rule permits
any ligature, where evenly enclosed, to be severed[.]” As we have seen in Figs. 5
and 6, this is separation. (2) It permits “any two ligatures, oddly enclosed in
the same cuts, to be joined.” This means the transformation of the left-hand
graph in Fig. 8 into the right-hand graph, in which transformation the hook dot
of “F” and the cut dot on the inner cut are oddly enclosed with the outer cut
and the ligature links them outwards from the inner cut. Therefore, according
to the above list, this transformation can be identified as connection.

F GF G

Fig. 8. Connection

(3) “It permits a branch with a loose end to be added to or retracted from
any line of identity.” I have to clarify what a branch and a loose end stand
for to explain the permits of this rule. I will address this later. (4) “It permits
any ligature, where evenly enclosed, to be severed from the inside of the sep
immediately enclosing that evenly enclosed portion of it[.]” In Figs. 5 and 6, it
has been already demonstrated that this is disjoin.

(5) It permits any ligature, where evenly enclosed, “to be extended to a
vacant point of any sep in the same enclosure.” This operation shapes the left-
hand graph in Fig. 9 into the middle graph. In the former graph, the hook dot of
“F” and any vacant dot on the cut are in the same close as that cut. The ligature
is permitted to reach the vacant cut dot from the hook dot of “F” outside the
cut. The list of the rules tell us that it is to be characterized by extension. (6) “It
permits any ligature to be joined to the inside of the sep immediately enclosing
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that oddly enclosed portion of it[.]” By the rule, the right-hand graph in Fig. 9
is fashioned from the left-hand graph. In the latter graph, the hook dot of “G”
is oddly enclosed, and the ligature is extended from the hook dot of “G” to a
dot on the cut inwards. This is join. (7) It permits any ligature “to be retracted
from the outside of any sep in the same enclosure on which the ligature has an
extremity.” This transformation is confirmed as retraction in Fig. 7.

F GF G F G

Fig. 9. Extension & join

Rule (3) remains to be examined: “It permits a branch with a loose end
to be added to or retracted from any line of identity.” According to Peirce, a
branching ligature is a diagrammatical representation “signifying the identity
of the three individuals” [1, 4.446]. A heavy line has its two extremities and
designates the identity of the two individuals denoted by its two ends. Since
a branching ligature denotes the identity of the three individuals, it has three
extremities, as the first graph from the left in Fig. 10 shows.

F GF G F G

Fig. 10. Branches

A loose end is an extremity of a heavy line which links up with neither a
hook nor a cut. A dot is put on a loose end, which dot may be called a loose end
dot. As Peirce states, a heavy line with a loose end can be extended or retracted
in one and the same close without being connected to any hook or cut [1, 4.502].
Hence, rule (3) authorizes us to eliminate from or add to a ligature a branch with
a loose end dot in a different close, since rule (3) imposes no restriction on the
erasure or the insertion of a branch with a loose end dot. The two rules remain to
be explained; joint and disjoint. Joint is the inward addition to a ligature of a
branch with a loose end dot within an evenly enclosed cut and permits us to
transform the second graph from the left in Fig. 10 into the third graph. Disjoint
is the inward retraction from a branching ligature of its branch with a loose end
dot within an oddly enclosed cut. In the fourth graph from the left in Fig. 10,
the heavy line branching inwards to the cut may be erased by this rule.
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5 Conclusion

Peirce’s way of formulating the rules of erasure and insertion in the Beta part of
Existential Graphs covers all of the eight types into which I have classified them
in the two pairs of terms; outwards and inwards, evenly and oddly. The notion
that a line of identity crosses a cut precludes us from detecting the original
symmetry which Peirce built in his prescriptions of them. To avoid this difficult,
we need to pay much more attention to Peirce’s basic conception that any line
of identity cannot cross a cut, and to select the way of interpreting a line of
identity as a ligature that links hook dots, sep dots, or loose end dots.
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Abstract. On the verge of the 20th century, Charles S. Peirce was convinced that
his Existential Graphs were the best form of presenting every deductive argument.
Between 1900 and 1909, Peirce chose the scroll as a basic sign in his Alpha sys-
tem for Existential Graphs. According to a recent paper by Francesco Bellucci and
Ahti-Veikko Pietarinen, the reason for this choice lies mainly in the non-ana-
lyzable nature of the scroll:Only one sign expresses the basic notion of illation. In
this paper, some analogies between this early version of the Alpha system and
Structural Reasoning (in the sense of Kosta Došen and Peter Schröder-Heister)
are explored. From these analogies, it will be claimed that the system Alpha based
on the scroll can be used as an accurate framework for (i) constructing basic
structural deductions and (ii) accomplishing a diagrammatic interpretation of
logical constants of First-Order Language. Moreover, EGs show cognitive
advantages with respect to sequent systems. In this paper, the basic conception is
outlined in an informal way, without making an exposition of the technical details.

Keywords: Diagrammatic reasoning � Existential graphs � Structural reasoning

1 Introduction: Peirce’s Iconic Conception of Deduction

Charles Sanders Peirce (1839–1914) belongs to the “grounding fathers” of mathematical
logic. He began his work in logic in the algebraic tradition of mathematical logic
stemming from Boole. However, due to philosophical reasons, he became dissatisfied
with the algebraic notation and he started developing at the end of the 19th century a
diagrammatical system for logic: his Existential Graphs (EGs). As it is known, he
regarded them as his masterpiece, his chef d’oeuvre, in logic, and in a letter to William
James he characterizes them as the logic of the future (see the classic book [1], p. 11).

In fact, all mathematics was diagrammatic for Peirce, including mathematical proof.
As he stressed in papers posthumously published in volume IV of New Elements of
Mathematics, mathematical proof is a process of transformation of diagrams by
showing their logical structure. Since diagrams are icons, a proof has an iconic function
with respect to deduction. In Peirce’s theory of signs, icons are characterized not only
as being similar to their objects, but also as being signs that provide information
through their observation and manipulation. This idea is already sketched in Peirce’s
seminal paper on algebra of logic from 1885 (see [2] 3.363 and 5.165).
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In short, Peirce conceived his EGs as the best formulation of logical systems,
according to both his iconic conception of logic and mathematics and his idea of an
“exact logic” (i.e., mathematical logic). Peirce formulated different systems for the EGs
that have been intensively studied and expanded in recent time on the basis of
examining unpublished manuscripts. His Alpha system corresponds to propositional
logic, the Beta system corresponds to Predicate Logic with identity and the Gamma
system aims at modal and Higher-Order Logic.

The main underlying assumptions of this paper can be summarized as follows:
(1) diagrams can be used as an intuitive way to express the nature of deduction (with
interesting cognitive properties) and as a mathematical tool; (2) the theory for for-
mulating logic systems on the basis of EGs evolves from a coherent philosophical
perspective (i.e. Peirce’s iconic conception of deduction), so that there is a clear cor-
respondence between logical theory and philosophical theory; (3) the philosophical
theory does not make deduction and logical concepts dependent on ordinary language,
so that logical form is not a linguistic one. On this basis, this paper attempts to explore
some fruitful analogies between Peirce’s EGs and Structural Reasoning in the sense
conceived by Došen and Schröder-Heister (see [3, 4]).

2 Peirce’s Existential Graphs and the Scroll

In the first versions of the Alpha system for propositional logic, the basic sign was the
scroll: a sole continuous line, giving rise to two attached or connected ellipses, one
inside the other, both drawn in the sheet of assertion (see, v.g., Peirce MS 450, p. 14,
quoted in [1], p. 34). The resort to the scroll relates this interpretation to Peirce’s notion
of illation, represented in the algebra of logic by the “craw foot” sign (–<) (see v.g. [2],
3.66, 3.139 and 3.175). Peirce also observed:

“I thought I ought to take the general form of argument as the basal form of composition of
signs in my diagrammatization; and this necessarily took the form of a ‘scroll,’ that is a curved
line without contrary flexure and returning” ([2] 4.564).

The resulting diagram was the following:

Of course, the same diagram is obtained if Fig. 1 is rotated like in Fig. 2.

Fig. 1. Scroll. Example 1.

Fig. 2. Scroll. Example 2.
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So, it should be clear that it is not the case of a one-dimensional notation in disguise.
The inner line of the scroll was designated as the inner loop of the scroll, the outer

line being the outer loop. Any graph outside the inner loop and inside the scope of the
outer loop was hypothetical, and any graph inside the inner loop depended on the
hypothesis. Hence, a sentence of the form ‘Under the hypothesis A, B holds’ (or an
explicit conditional sentence like ‘If A, then B’, where A and B are sentences) was
represented in the Alpha System of EGs as (Fig. 3).

So, the scroll could be regarded as an illative graph.
It is easy to see that the procedure to “inscribe” the outer loop of the scroll can be

iterated, so that a scroll can include several nested outer loops, as in the following
Fig. 4, where the hypothetical role of A and B with relation to C is clear, C being
implied by both hypothesis.

It must be noted that a scroll with more than one inner loops remains a sole continuous
line.

However, this representation becomes troublesome in the formulation of rules of
transformation for graphs in the Alpha system and in the proof of classical equiva-
lences. The problems arise quite clearly in cases involving negation. For example, in
classical logic, a sentence of the form ‘If A, then B’ is equivalent to ‘It is not the case
that A and not B’. In later versions of EGs, Peirce represented negation with ‘cuts’ in
the sheet of assertion, that is, with closed lines like the following (Fig. 5):

Fig. 3. The scroll as illative graph.

Fig. 4. Scroll with nested loops.

Fig. 5. The cut.
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Now, the diagrammatic representation of ‘It is not the case that A and not B’ should be

From a diagrammatic point of view, this representation is not the same as Fig. 2. The
inner loop of Fig. 6 is not in contact with (or attached to) the outer loop. This fact had
the consequence that Peirce, finally, represented the conditional using two nested cuts,
as in Fig. 6, and not through a continuous line. On this basis, Fig. 6 represented both
‘If A, then B’ and ‘It is not the case that A and not B’ showing their logical equiva-
lence. Both propositional forms are used in ordinary language to express the same
logical structure. Therefore, there is in EGs a (implicit) diagrammatic rule concerning
the contact of two lines. In fact, it comes to be irrelevant that the inner loop is in contact
with the outer loop.

3 Structural Reasoning

The diagrams resulting from applying the scroll of EGs correspond to structural
deductions. Kosta Došen pointed out that “the term ‘structural’ […] should be
understood in the sense this word has in Gentzen’s sequent-systems” ([3], p. 364).
From the point of view of structural reasoning, logic begins with structural deductions.
According to Peter Schroeder-Heister,

“By structural reasoning we mean reasoning in a sequent style system using structural rules
only. Structural rules do not refer to the internal compositions of formulas by means of logical
connectives or quantifiers but only affect the way formulas appear within sequents” ([4],
p. 246).

This perspective stems from Gerhard Gentzen’s original ideas of in order to analyze
deduction developed in his groundbreaking paper [5]. A sequent sign ‘)’ could be
characterized as a one-dimensional or linear form of the scroll in Fig. 1, and the graph
in Fig. 2 would correspond to the sequent

A ) B;

Where A and B are, normally, sentences of First-Order Language (FOL). In this paper,
only singular sequents of the general form

A1; . . .;An ) C

are taken into account. Notwithstanding, it is possible to correlate the scroll with
multiple sequents as they were originally used by Gentzen, that is, sequents of the form

Fig. 6. The conditional as two cuts.
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A1; . . .;An ) B1; . . .;Bm:

In fact, Peirce conceived scrolls withmultiple inner loops as in Fig. 7 (see [2] 4.457).

(where the lower case letters stand for sentences). So, the scroll can be generalized in
two senses: (a) scrolls containing embedded inner loops (see Fig. 4) or (b) scrolls
containing many inner loops from an only one outer loop (see Fig. 7). In the inner
loops, the sentences (represented by Peirce through lower case letters) should be
understood disyunctively, like the formulas in the succedens of Gentzen’s multiple
sequents.

Gentzen’s Structural rules, like thinning, contraction, interchange or cut (see [6],
Sect. 3) have their counterparts in particular cases of the rules of insertion, erasure and
iteration for the Alpha system (see [1] p. 40 passim and [2]. 4.425 ff.). Thinning in
singular sequents corresponds to insertion in odd: Any graph may be scribed on any
oddly enclosed area. Contraction is understood as a special case of deiteration: Any
graph in the outer loop whose occurrence could be the result of iteration can be erased.
Interchange corresponds to the fact that an order (absent in EGs) is set up in the system
of sequents. The cut rule corresponds roughly to the transitivity of the scroll, a property
that required a proof in the Alpha system.

An essential feature of the EG is their analytic nature. They are the continuation of
Peirce’s previous algebraic study of logic but carried out more accurately. Through his
contributions both in algebra and in diagrammatic logic, Peirce tried “to dissect the
operations of inference into as many steps as possible” (Peirce [2], 4.424). Hence,
“exact” or mathematical logic had mainly an analytical role. In 1893 he wrote that the
aim of logic was “to analyze reasoning and see what it consists in”, and in relation to
his exposition of Existential Graphs, he argued that it is “the business of logic to be
analysis and theory of reasoning, but not the practice of it” ([2], 2.532 and 4.134).

Furthermore, this formulation of EGs provides the right analysis of logical concepts.
The reason for that rests on Peirce’s special idea of analysis as uniqueness of decom-
position. This conclusion was recently reached by Francesco Bellucci and Ahti-Veikko
Pietarinen on the basis of some passages from Peirce’s unpublished manuscripts.
According to Peirce, the system of Existential Graphs provides “the only method by
which all connections of relatives can be expressed by a single sign”, as “the System of
Existential Graphs recognizes but one mode of combination of ideas” (MS 482, 1897
and MS 490, 1906, see [6], 211). The scroll is the sole sign that cannot be decomposed,
and this is shown by the actions performed in constructing the sign, by inscribing “a

Fig. 7. Multiple inner loops.
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curved line without contrary flexure and returning”, in Peirce’s own words. This is a
pure “diagrammatological” fact, using the expression coined by Stjernfelt (see [7]). In
the case of structural reasoning, a similar feature can be determined.

4 A Diagrammatic Interpretation of Logical Constants

Logical constants of FOL can be interpreted in the assertion sheet by means of exis-
tential graphs. For example, a way of characterizing negation as cut results from
Peirce’s scroll and his idea of continuity in diagrams. Under the condition that nothing
is inscribed within the inner loop (it is a pseudograph, see [2], 4.454 f. and [1], p. 36),
the scroll can be shrunk continuously, so that it is finally transformed into a cut, as
illustrated in Fig. 8.

Hence, the graph

is ultimately transformed into the graph

(In fact, Peirce represented the pseudograph as a black spot entirely filling the loop that
“may be drawn invisibly small” [2] 4.455).

This characterization can be compared with (and, furthermore, could also be seen as
a diagrammatic proof of) the derivation of the sequent

) :A

from the sequent

A )

Fig. 8. The shrinking scroll and the pseudograph.
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From this comparison, the sign ¬ of FOL in ¬A is interpreted by saying that
A plays, in this sentence, the same role that it plays in the scroll when it is in the outer
loop and the inner loop is a pseudograph. Hence, an interpretation in the EG of the
logical constants of FOL could be devised. The procedure is, to some extent, analogous
to the elucidation of logical constants by means of sequents.

A special case of this approach is the idea of analyzing logical constants in terms of
structural deductions developed by Došen, where logical constants point out structural
features of deductions (in the sense of features that are purely schematic, see [3], 365
f.). According to Došen, structural deductions are deductions “that can be described
independent of the object language”, that is, they are “independent of the language to
which the premises and conclusions belong” (see loc. cit.). The language would be in
this case FOL.

Obviously, Došen’s framework is different from the present one and his idea of
analysis does not depend on features of the notation; it is essentially analysis of
meaning (see Došen’s discussion on the subject in [3], 368 ff.). So, two different
notions of analysis must be distinguished here. However, Došen’s approach can be
transposed to Peirce’s diagrammatical context, where EGs serve the elucidation (or,
better, interpretation) of logical constants of FOL.

Thus, the sign ! in the sentence A ! B is interpreted by saying that A and B are
connected in this formula like they are connected in a scroll, when A is in the outer
loop and B is in the inner loop. Furthermore, the sign ¬ in ¬A is interpreted by saying
that A plays, in this sentence, the same role that it plays in the scroll when it is in the
outer loop and the inner loop is a pseudograph. This interpretation of logical constants
has been only a sketch because it was limited to the case of some connectives of FOL.
It should be extended to quantifiers and the identity sign. In this case, the use of the line
of identity from the Beta systems of EGs can be unavoidable.

5 Conclusions and Final Remarks

From the exploration of the analogies between EGs and Structural Reasoning, it can be
conclude that EGs based on the scroll offer a diagrammatic way to understand struc-
tural deductions and to interpret logical constants, being a visual way where specific
cognitive skills are implied. This interpretation is based on a non-analyzable sign, in
the sense of a diagrammatology. Here lies the most important conceptual novelty of
using the EGs instead of the traditional sequent systems. This interpretation also paves
the way to a semiotic analysis (basically based on the well-known Peircean definition
of sign in [2] 2.228). For example, it could be argued that the logical constants of FOL
designate logical concepts that are visualized through EGs with the scroll. Of course,
such claim requires a thorough examination.

Finally, the illatives graphs characterized by the scroll seem to be incomplete with
respect to classical logic (and it has been suggested that they correspond to intu-
itionistic logic, see [8] inter alia). Presumably, Peirce realizes this fact and ultimately
adopted the cut as a basic graph in the system of EGs. A deeper examination of the
scroll could lead to the characterization of non-classical logical constants in a similar
way to the so-called substructural logics.
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Abstract. In her writings, Shin points out that non-symbolic representation
systems have so far been underestimated in favour of symbolic systems. Her
alternative aims to overcome the shortcomings of diagrammatic systems while
saving the benefits by formalising them in a way that takes advantage of the
iconic properties of diagrammatic representations. Specifically, it proposes a
natural system by providing a new formulation for reading algorithms and the
inference rules of C. S. Peirce’s Existential Graphs (EG) that is easy to
understand and use. In this study, I cover issues related to multiple readings. In
their papers, Bellucci and Pietarinen critically examines Shin’s arguments from
several points of view. According to Shin, multiple readings are an example that
shows the typical characteristics of diagrammatic systems that are not possible
in symbolic systems but possible in the alpha part of EG. According to Bellucci
and Pietarinen, in contrast, the multiple readings argument is useless to distin-
guish diagrammatic systems from symbolic ones because it contains circular
arguments. Through an examination of this issue, this study considers the dia-
gram and language differences, and differences between the icons and symbols.

Keywords: Existential graphs � Multiple readings � C. S. Peirce

1 Shin’s Argument

C. S. Peirce’s Existential Graphs (EG) is analysed by Shin as one of the multi-modal or
heterogeneous representation systems that employs both symbolic and diagrammatic
elements. As background to her analysis, the following two assumptions are cited
([2], p. 2):

1. Symbolic representation systems can be distinguished from non-symbolic systems,
especially diagrammatic ones.

2. Diagrammatic representation systems have thus far been underestimated more than
symbolic representation systems.

Shin mainly questioned assumption (2), namely, the prejudice against diagrammatic
systems. This underestimation has been brought about by emphasising the disadvantage
of diagrammatic systems in spite of their benefits. The typical benefit is the increased
efficiency and the disadvantage is the possibility of errors. As the weak points of EG, the
difficulty of deciphering it, the user-unfriendly inference rules, and its unnaturalness are
cited. Her alternative aims to overcome the shortcomings of diagrammatic systems
while saving the benefits by formalising them in a way that takes advantage of the iconic
features of EG. Specifically, it proposes a natural system by providing a new
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formulation for reading algorithms and the inference rules of EG that is easy to
understand and easy to use. In what manner are those iconic features reformulated as
benefits of EG? Shin mainly stresses the multiple readings of the Alpha graphs of EG. In
this study I consider the points of criticism of the multiple readings argument.

Multiple-Readings Algorithm
Let X and Y be Alpha graphs.

1. If X is an empty space, its translation is ⊤.
2. If X is a sentence letter, its translation is X.
3. If a translation of X is a, then a translation of [X] is :a.
4. If a translation of X is a and a translation of Y is b, then

(a) a translation of X Y is a ^ bð Þ,
(b) a translation of [X Y] is :a _ :bð Þ,
(c) a translation of [X [Y]] (i.e., scroll with X in the outside cut and Y in the inner

cut) is (a ! b), and
(d) a translation of [[X] [Y]] is a _ bð Þ ([2] p. 75).
According to her description, in symbolic systems, multiple readings cause ambi-

guity. Therefore, we must provide every wffs in the system with a unique reading to
avoid ambiguity through syntax and semantics. On the other hand, in EG, we can make
multiple readings and it does not cause ambiguity because these readings are logically
equivalent to one other.

What causes the difference and ambiguity between symbolic and diagrammatic
systems represented by EG in multiple readings? In other words, why are multiple
readings possible in EG without causing ambiguity while in symbolic systems a unique
readability should be ensured?

Shin says that the linearity is the difference ([3] p. 338). The linearity of the
symbolic notations requires unique readability. If the way of separating sequences of
various symbols has no restrictions, we cannot avoid ambiguity on the assumption of
linearity.

On the other hand, in EG the arrangement of graphs representing facts has no
linearity. It is two-dimensional instead of one-dimensional. In this way, multiple
readings without ambiguity become possible due to the non-linearity in diagrammatic
representation systems. Moreover, according to Shin, multiple readings are not only
theoretically feasible in diagrammatic systems, but also enable these systems to be
more natural and efficient from a practical point of view.

2 Objection to Shin’s Argument

Bellucci and Pietarinen insist that there is confusion in this view. According to them,
the multiple readings argument could hold under the following two conditions:

Condition 1: ‘Reading off’ an Alpha graph corresponds to translating it into a formula
in ordinary symbolic notation.

Condition 2: In order to generate multiple readings, the target-language must have a
richer logical vocabulary than the source-language ([1] p. 21).
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That is, from condition (1), the Alpha graph of EG is the source language and the
symbolic notation is the target language to which the source language is translated. If
condition (2) is not satisfied, it means that the symbolic language as the target language
only has two logical connectives of negation and conjunction, like EG as the source
language. Multiple readings would then become a unique reading because we would be
unable to distinguish alternatives for the reading of the representation in that case.

As to condition (1), Shin refers to the limitations inherent in the approach of
translating graphs of EG into language in general ([2] p. 93). However, it seems to be
correct at least as a condition for this argument. Bellucci and Pietarinen point out that if
the purpose of the argument is to find out the difference between EG and symbolic
notation in general, it is problematic.

As can be seen from these conditions, this argument is possible when we take EG
with two logical connectives as the source language, and take symbolic language with
four connectives as the target language into which EG is translated. Additionally, EG is
compared to a symbolic language with four connectives as another source language
that is unable to have multiple readings in the target language with four connectives.
Finally, whether or not the source languages have such readings is considered to be the
difference between both languages. However, considering the purpose of this discus-
sion, EG should be compared to a symbolic language with two of the same connectives
of negation and conjunction (2SL). The difference between EG and symbolic notation
in general should be found through translating both EG and 2SL into a symbolic
language with four connectives. Since we can adjust the algorithm to translate 2SL into
4SL, symbolic language also has multiple readings that meet conditions (1) and (2).
Therefore, Bellucci and Pietarinen point out that the multiple readings argument has a
third condition:

Condition 3: A formula can have multiple readings in a symbolic target language only
if it is not itself symbolic.

This condition poses a serious difficulty. For Shin’s aim is to find a feature that
would prove that Alpha is not symbolic, and in general one that distinguishes
non-symbolic from symbolic notations. She thinks she has found one in that the former
may have multiple readings while the latter cannot. Unfortunately, the notion of
multiple readings is here itself defined in terms of such a distinction: when a symbolic
language has multiple translations in another, possibly more expressive symbolic
language, we do not call these multiple readings. Shin’s argument therefore boils down
to that Alpha has multiple readings because it is not symbolic, as the multiple-readings
algorithm in general only applies when a non-symbolic language is multiply translated
into a symbolic language. There is a circulus in definiendo here. ([1] p. 23)

This criticism is sharp and convincing. In particular, the idea that a symbolic system
has multiple readings is an important suggestion, while Shin seems to suggest that it is
only possible in EG. However, do the arguments that focus on multiple readings lose
their value by noting this suggestion? Do some characteristics of EG worth noting have
no connection with this matter? Through a comparison of Alpha graphs of EG with
2SL, I consider this issue because Bellucci and Pietarinen point out that we should
make this comparison.
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3 Comparison of EG and 2SL with 4SL

In the following example, the graph of the Scroll in EG has three readings in 4SL,
which consist respectively of (1) : P ^ :Qð Þ, (2) :P _ Q, and (3) P ! Q.

As can be seen from this example, according to conditions (1) and (2) there seems
to be no problem in understanding formula 2SL as a source language, as well as the
Alpha graph of EG (scroll) as having the three available readings in the target language
4SL. To be exact, in the case of 2SL, one of the three in 4SL is exactly the same
expression (Fig. 1).

On this basis, this study asks, can I deduce something from such a comparison? In
other words, what can I learn from this comparison about the similarities and differ-
ences between 2SL and EG?

What are the similarities between 2SL and EG? Firstly, both notations have two
logical connectives, negation and conjunction, and cut and juxtaposition. Secondly, as
a result, it will enable multiple readings. As already seen, multiple expressions (1), (2),
and (3) in 4SL, which are logically equivalent but do not resemble each other, can be
represented in one expression or graph in 2SL and EG.

This could mean that we can grasp the logical equivalence of (1), (2), and
(3) without proving it by inference rules if we know how to read these representations.
Conversely, since in 4SL different information about (1), (2), and (3) is represented
separately by different formulas that are not similar to each other, their equivalence will
have to be proven by using inference rules. However, it seems to be difficult to use this
feature to make the distinction between diagrammatic and symbolic representations,
because the phenomenon itself is available in 2SL as well as EG, as pointed out by
Bellucci and Pietarinen.

4SL 

2SL 

(1) (P Q) 
(2) P Q 
(3) P→Q

(P Q) 

Fig. 1. Scroll of EG and the readings of the graph in 2SL and 4SL
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Thirdly, we can regard a complex expression as one thing that consists of some
simple formulas or graphs with two logical connectives shared by 2SL and EG. These
complex notations can have the same function as disjunction and conditional con-
nectives, which are the derived connectives in 4SL. As for EG, Shin’s multiple read-
ings algorithm 4(d) corresponds to the conjunction which reflects the NNF reading, and
4(c) corresponds to the conditional, which reflects Peirce’s ‘scroll’.

In this way, this third point is one of the necessary elements needed to realise
multiple readings. Presumably, one thing that Shin wants to show is what one can do
with EG by using these visually obvious features. According to the previous example,
this point can be explained as follows.

Firstly, in the example of the scroll, if we read the Alpha graph from the outside to
the inside with regard to every conjunction and negation as a basic element, we can get
: P ^ :Qð Þ which corresponds to the formula in 2SL and (1) in 4SL. It is what Peirce
calls an ‘endoporeutic reading’. Secondly, if we read one complex graph as a dis-
junction, we find that it is the result of erasing a cut enclosing P from the original graph,
and therefore we are able to confirm (2). Thirdly, if we read ‘scroll’ as conditional, we
can confirm (3).

The same can be said about the case of 2SL. If we read : :P ^ :Qð Þ as a dis-
junction, : P ^ :Qð Þ as conditional, we can confirm (2) and (3) in 4SL. Following
Norman, we call this a molecular reading [4].

It is clear that the third property has a relation with multiple readings. Both in EG
and 2SL we can grasp the logical equivalence of (1), (2), and (3) without proving it
according to inference rules if we know how to read these representations. From this
point we can also see the merit of the four connectives in 4SL. The information of
(2) and (3) can be expressed without using brackets in 4SL. This is the important
difference between 2SL and 4SL.

In these cases, brackets are necessary when ambiguity concerning the scope of
logical connectives may occur without it. In the case of the conditional connective, if
we removed the brackets from formula 2SL, the scope of the negation of the original
formula is different from the original ‘: P ^ :Qð Þ’. However, in 4SL we can remove
the brackets by adding the derived connectives of disjunction and conditional.
Although this seems to be trivial at first, it is related to important issues as will be
described later.

4 Comparison of EG with 2SL

What are the differences between 2SL and EG? Firstly, if we consider the propositional
symbol as a starting point, there are differences in the patterns of the representation that
are required within propositional logic. In the case of EG, there are only two patterns,
that is, enclosing the propositional symbol or graph by a cut and juxtaposing propo-
sitional symbols. In contrast, 2SL has the negation symbol :ð Þ and brackets that
correspond to the cut of EG, and the conjunction symbol _ð Þ and brackets that cor-
respond to the juxtaposition of EG.

In this way, there are differences between both concerning the apparatus and the
way in which it realises logical representation. In particular, in order to make a new

602 T. Sasaki



proposition from any proposition, EG requires only the cut, but 2SL requires a negation
symbol, conjunction symbol, and brackets. In other words, in order to determine what
new propositions can be made from arbitrary propositions, the following discernible
differences arise with the exception of the existence of the propositional symbol.

That is, in the case of 2SL, it is necessary to discriminate whether a negative sign is
attached, a conjunctive sign is attached, and whether brackets are present, and if so,
which range is being sandwiched. In contrast, in the case of EG, all we need to discern
is whether or not it is surrounded by cuts.

This difference causes the differences of the object for molecular reading in 2SL
and EG. The objects for molecular reading are complex formulas or graphs, but in EG
the objects form a shape consisting of just two elements of propositional symbols and
cuts. In 2SL, they are complex formulas linear in nature, consisting of the four elements
listed above.

In particular, a composite graph as a whole is grouped by the two-dimensional
enclosure of a cut in EG, which makes it easier to understand, write, and memorise than
representation using brackets to specify scopes. In general, a difference arises in the
ease of use. If we compare it to each of the following, in the practice of molecular
reading, there seems to be differences in these regards between 2SL and EG. This
difference seems to be related to the naturalness and efficiency seen from the practical
point of view mentioned earlier (Fig. 2).

Secondly, this relates to the first point, 2SL uses brackets but EG does not need it.
The cut of EG plays the role of the logical connective of negation that negates the
figure surrounded by it, and at the same time determines the scope of the negation.

2SL
( P Q)

4SL 
(1) ( P Q) 
(2) P Q 
(3) P Q 
(4) Q

Fig. 2. The graph of EG corresponding to disjunction and the readings in 2SL and 4SL
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However, in the case of 2SL as described above, it is necessary to determine the scope
of the negative symbol using brackets if necessary. This not only means that EG
requires less necessary apparatus for representation than 2SL, but also that there is an
important difference between 2SL and EG. That is, the boundaries of the scope indi-
cated by the cut will be more easily distinguished visually than that indicated by
brackets. This difference comes from two facts. One is that the brackets are aligned
linearly as well as in terms of character. The other is that they must make a pair in order
to indicate the scope. The larger the number of brackets, the more prominent this
difference becomes.

It was due to the merit of adding derived connectives in 4SL that logical infor-
mation is expressed as much as possible without the use of brackets. In the case of 4SL,
in exchange for this benefit it causes the necessity of using inference rules to prove
equivalence. However, we can avoid this disadvantage in EG through multiple read-
ings. Therefore, in that regard, we can take advantage of the 4SL without losing the
advantages of the 2SL.

5 Conclusion

Thus far I have recognised 2SL as source languages as well as EG, and found simi-
larities between 2SL and EG by comparing them to 4SL. I then examined the differ-
ences between 2SL and EG.

Through the discussion of multiple readings, Shin tries to state the difference
between EG as being representative of the graphic system and 4SL as a symbolic
system. Certainly, according to this discussion, it cannot be argued that EG and 2SL are
also different based on the possibility of multiple readings. In this sense, it can be said
that Bellucci and Pietarinen’s criticism clarifies why multiple readings are possible.

However, by comparing EG and 2SL, several differences were clarified as to how
to realise multiple readings. Firstly, there is a difference regarding tool construction and
how to realise logical representation. Secondly, the necessity of using brackets is
another difference. These differences are features of EG, unlike the general symbolic
system, and these features are considered to be related to practical advantages.
Therefore, the discussion of multiple readings can play a role in highlighting such
features of EG.
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Abstract. We attempt to develop a proof theory for heterogeneous logic
combining first-order formulas and diagrams. In proof theory, normal
proofs and normalization play a central role, which makes it possible
to analyze and characterize the structure of proofs in a given system. In
light of the difference between linguistic reasoning and diagrammatic rea-
soning, we apply the traditional proof theory developed in symbolic logic
to heterogeneous logic, and we give a characterization of the structure of
heterogeneous proofs based on our normalization theorem.

1 Introduction

Heterogeneous reasoning combining various graphical/diagrammatic and sen-
tential/linguistic representations has been an important subject in the study of
diagrammatic reasoning, and several heterogeneous systems have been investi-
gated so far. Blocks world systems [1,3]; Euler and Venn systems [6,14,17]; and
correspondence table systems [2,16] are some examples of such studies. However,
proof theory of heterogeneous logic has not yet been developed much.

Existing development in proof theory has taken place by investigating logical
proofs based on sentential/linguistic representation. One of the major goals of
proof theory is to analyze and characterize the structure of proofs, and thereby
investigate effective strategies to construct/search proofs in a system. Thus, proof
theory offers a basis in theorem proving. In such proof theory, normal proofs
and normalization play a central role. Thanks to the normalization theorem,
any proof is reduced to a normal form, and we are able to focus on normal
proofs for their analysis and characterization. Therefore, Gentzen [5] called the
normalization theorem as Hauptsatz (Main Theorem) of proof theory.

If we translate diagrams into formulas of first-order logic (FOL), we can apply
the usual proof-theoretic techniques to heterogeneous/diagrammatic logic in a
straightforward manner. Based on this idea, the author in [15] investigated a
class of Euler diagrammatic proofs called “N-normal diagrammatic proofs” that
has a one-to-one correspondence with normal proofs in FOL. Although N-normal
diagrammatic proofs have the structure of linguistic FOL proofs, they do not
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reflect characteristics of diagrammatic proofs. Thus, by using such an N-normal
form, it is difficult to characterize the structure of diagrammatic proofs in a
general sense.

There is a major difference between linguistic reasoning and diagrammatic
reasoning with respect to their methods and strategies. Linguistic reasoning, as
characterized by the normalization theorem (cf. [10,11]) for FOL, consists of (1)
decomposition of given premises, and (2) construction of a conclusion by com-
bining the decomposed formulas. In contrast, diagrammatic reasoning consists
of (1) construction of a (maximal) diagram by unifying pieces of information
contained in given premises, and (2) extraction of a conclusion from the uni-
fied diagram (see, for example, [13]). In light of such a distinction, we apply
and extend the traditional proof theory developed in symbolic logic, and we
give a characterization of the structure of heterogeneous proofs based on our
normalization theorem. We study heterogeneous logic combining first-order for-
mulas and diagrams within the framework of natural deduction. We investigate
abstract properties of heterogeneous proofs independent of particular systems.
Such properties are shared by various concrete systems such as Euler and Venn
systems (e.g., [6,7,9,12]); blocks world systems [1,3]; and correspondence table
systems (e.g., [2,16]). In Sect. 2, we describe our abstract syntax of heterogeneous
logic. In Sect. 3, we introduce our inference rules. Rules for formulas are the usual
natural deduction rules for FOL. We investigate, among various inference rules,
heterogeneous rules Apply and Observe (cf. [1,3,6]), as well as diagrammatic rules
Unification and Deletion (cf. [7,9,12]) exclusively, since these rules are considered
to be the most basic rules and are shared by various heterogeneous systems.
In Sect. 4, we investigate a normalization theorem in our heterogeneous system,
and provide a characterization for the structure of our heterogeneous proofs.

2 Syntax of Heterogeneous Logic

We introduce syntax of heterogeneous logic abstractly. While concrete syntax is
defined in each system, here we extract common items to be specified in each
system. The syntax of heterogeneous logic is defined by specifying the following
formulas, diagrams, diagrammatic objects, and diagrammatic formulas:

Formulas: denoted by ϕ,ψ, σ, ϕ1, ϕ2, . . . . Formulas of FOL (first-order logic)
are defined inductively as usual:

ϕ:: = A(t1, . . . , tn) | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ¬ϕ | ⊥ | ∀xϕ | ∃xϕ

where A(t1, . . . , tn) is an atomic formula consisting of a predicate A and terms
t1, . . . , tn. When A is a unary predicate, we usually omit parentheses and write
an atomic formula such as At.

Diagrams: denoted by D, E ,F ,D1,D2, . . . . The answer to what qualifies as a
concrete diagram depends on each system. Cf. Example 1 below.

Diagrammatic Objects: denoted by o, o1, o2, . . . . They are components of
diagrams, and the answer to what qualifies as a concrete diagrammatic object
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depends on each system. By ob(D), we denote the set of diagrammatic objects
that appear on a diagram D.

For example, diagrammatic objects are named circles and points, linking
between points, shading in Euler and Venn systems; and blocks such as cubes
and tetrahedron in blocks world systems.

Diagrammatic Formulas: denoted by ϕd, ψd, σd, ϕd
1, ϕ

d
2 . . . . They describe

pieces of basic information contained in diagrams. The answer to what kind
of formulas qualify as diagrammatic formulas is specified in each system.

For example, in a Venn diagrammatic system, ¬∃x(A1x∧· · ·∧Anx∧¬B1x∧
· · · ∧ ¬Bmx) is a diagrammatic formula describing that the region inside circles
A1, . . . , An and outside B1, . . . , Bm is shaded. See Example 1 for an example of
an Euler system. In a blocks world system, atomic formulas of hyperproof such
as small(t), cube(t), leftof (t1, t2), and so on are diagrammatic formulas.

We identify a diagrammatic object in a diagram with a predicate or a term
describing the object in a diagrammatic formula. Thus, for a diagrammatic for-
mula ϕd, we use ob(ϕd) to denote the set of predicates and terms appearing in
ϕd, each of which expresses a diagrammatic object. We further identify a relation
holding on a diagram with a diagrammatic formula that describes the relation.

For a diagram D, type(D) is the set {ϕd
1, ϕ

d
2, . . . , ϕ

d
n} of diagrammatic for-

mulas, such that the relation ϕd
i holds on D if and only if ϕd

i ∈ type(D). We
identify type(D) with the conjunctive formula ϕd

1 ∧ ϕd
2 ∧ · · · ∧ ϕd

n. The type of a
diagram is the symbolic specification of the diagram.

Based on the above specification, we elucidate our postulates in this article.

1. We presume the set of diagrammatic formulas to be a subset of FOL formulas.
Thus, every piece of basic information contained in the diagrams is described
by a formula of FOL.

2. We regard a diagram, in view of FOL, as the conjunction of diagrammatic
formulas comprising the diagram. Thus, we do not consider linking between
diagrams in this article, since linking between diagrams makes its type dis-
junctive. (Although we allow linking between points.)

3. We presume type(D) is deductively closed with respect to diagrammatic for-
mulas. That is, when type(D) = {ϕd

1, ϕ
d
2, . . . , ϕ

d
n}, if ϕd

1 ∧ϕd
2 ∧· · ·∧ϕd

n implies
a diagrammatic formula ψd such that ob(ψd) ⊆ ob(D), then ψd ∈ type(D).
The above “implies” is considered as an appropriate semantic consequence or
syntactic consequence in FOL.

Although we do not enter into detail, the semantics of our heterogeneous
system is defined as the usual set-theoretic semantics for FOL, since our diagram
corresponds to a conjunction of diagrammatic formulas.

Although we illustrate only one concrete Euler diagrammatic system of [9]
below because of space limitation, our definition is valid for other Euler and
Venn systems (e.g., [6,7,12]); blocks world systems [1,3]; correspondence table
systems (e.g., [2,16]), and so on.
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Example 1 (EUL-diagrams). An Euler diagram of [9], called an EUL-diagram, is
defined as a plane with named circles and points. Each EUL-diagram is specified
by inclusion and exclusion relations maintained between circles and points on the
diagram. EUL-diagrams can express neither disjunctive information with respect
to the location of a point, nor information of contradiction.

Diagrams. An EUL-diagram is a plane with a finite number of (named) sim-
ple closed curves (simply called (named) circles and denoted by A,B,C, . . . ),
constant points (denoted by a, b, c, . . . ), and existential points (denoted by
x, y, z, . . . ). Constant points and existential points are collectively called
(named) points, and are denoted by t, s, t1, t2, . . . .

Diagrammatic objects are named circles and points.
Diagrammatic formulas. An EUL-diagram is specified in terms of topological

relations � (inside of), 
� (outside of), and �� (crossing) between diagrammatic
objects holding on the diagram. These relations are expressed by the following
diagrammatic formulas:

• ∀x(Ax → Bx) for A � B (A is inside of B);
• ∀x(Ax → ¬Bx) for A 
� B (A is outside of B);
• ∀x(Ax → Ax) ∧ ∀x(Bx → Bx) for A �� B (there is at least one crossing

point between A and B);
• At for t � A (t is inside of A); • ¬At for t 
� A (t is outside of A).

For example, the topmost diagram in Fig. 1 of Example 2 consists of EUL-
relations A � B,A 
� E,B �� E, and hence, its type is {∀x(Ax → Bx),
∀x(Ax → ¬Ex),∀x(Bx → Bx) ∧ ∀x(Ex → Ex)}.

3 Inference Rules of Heterogeneous Logic

We first review the usual inference rules of natural deduction for FOL in Sect. 3.1.
Then, in Sect. 3.2, we introduce our heterogeneous inference rules Apply and
Observe, as well as purely diagrammatic inference rules Unification and Deletion,
which are shared in the typical heterogeneous systems. In contrast to a linguistic
FOL rule, whose conclusion is always well-defined given well-defined premises,
a diagrammatic rule’s conclusion may not be defined even if the premises are
well-defined, because of the expressive limitations of diagrams.

3.1 Natural Deduction Rules for FOL

A proof in natural deduction is structured as a tree consisting of formulas as
its nodes and the following inference rules as its edges. The top formulas of the
tree are the assumptions, and the other formulas of the tree follow from the
formulas immediately above, using one of the rules. A formula A in the tree is
said to depend on the assumptions standing above A that have not been closed
by some inference preceding A. In the following rules, a formula written within
square brackets indicates that, the assumptions of this form occurring above the
premises are closed at the inference. See [4,10,11] for a detailed introduction to
natural deduction.
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Definition 1 (Rules for FOL). The natural deduction rules for FOL consist
of the following dual pairs, each pair consisting of an introduction (I) and an
elimination (E) rules, for each connective ∧,∨,→,¬,∀,∃, as well as ⊥E and
RAA:

....
ϕ

....
ψ

ϕ ∧ ψ
∧I

....
ϕ1 ∧ ϕ2

ϕi
∧E(i = 1, 2)

....
ϕi

ϕ1 ∨ ϕ2
∨I

(i = 1, 2)

....
ϕ ∨ ψ

[ϕ]n
....
σ

[ψ]n
....
σ

σ ∨E, n

[ϕ]n
....
ψ

ϕ → ψ
→ I, n

....
ϕ

....
ϕ → ψ

ψ
→ E

[ϕ]n
....
⊥
¬ϕ ¬I, n

....
ϕ

....¬ϕ

⊥ ¬E

....
ϕ(x)

∀xϕ(x)
∀I

....
∀xϕ(x)

ϕ(t)
∀E

....
ϕ(t)

∃xϕ(x)
∃I

....
∃xϕ(x)

[ϕ(x)]n
....
ψ

ψ
∃E, n

....
⊥
ϕ ⊥E

[¬ϕ]n
....
⊥
ϕ RAA, n

In ∀I, the variable x may not occur freely in any open assumption, on which
ϕ(x) depends; in ∃E, x may not occur freely in ψ nor in any open assumption
on which ψ depends, except in ϕ(x).

3.2 Heterogeneous Rules

As representative rules of heterogeneous systems independent of specific dia-
grams, we investigate the following rules, where app and obs consist of the dual
pair of heterogeneous rules, and uni and del consist of the dual diagrammatic
rules.

Definition 2. Heterogeneous rules of Apply (app) and Observe (obs), and dia-
grammatic rules of Unification (uni) and Deletion (del) have the following forms:

....
D

....
ϕd

D + ϕd
app

....
D
ψd obs

....
D

....
E

D + E uni

....
D

D − {o1, . . . , on} del

where ψd ∈ type(D) in obs, and o1, . . . , on ∈ ob(D) in del.
These rules are applicable when every D + ϕd,D + E ,D − {o1, . . . , on} is a well-
defined diagram.
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In del, D − {o1, . . . , on} is the diagram obtained by deleting diagrammatic
objects o1, . . . , on from D. In app, D+ϕd is the diagram that extends from D by
adding the information of ϕd (cf. [1,3]). In uni, D+E is the unified diagram of D
and E (cf. [7,9]). Depending on the specific definition of diagrams in each system,
D + ϕd and D + E are not always defined. There may be various constraints on
app and uni in order to avoid the case where its conclusion is undefined. Two of
the major constraints are that for indeterminacy and for contradiction as seen
in [9]. In this article, we presume that app as well as uni are applicable when
D + ϕd (resp. D + E) is defined as a single diagram. This allows us to exclude
the case where several distinguishable diagrams or linking of them is needed (as
[7,12]) for representing D + ϕd (resp. D + E). We also do not take the rule of
Cases Exhaustive [1,3] into consideration in this article.

Applications of our inference rules are illustrated in Fig. 1 in Example 2.
A heterogeneous proof, denoted by π, π1, π2, . . . , is defined inductively as

a tree consisting of formulas and diagrams as its nodes, and inference rules as its
edges. We write α1, . . . , αn 
 α, when α is provable from premises α1, . . . , αn,
where αi is a formula or a diagram.

4 Normalization of Heterogeneous Proofs

We review the notions of detour, reduction, and normal proof in the usual natural
deduction for FOL (cf. [10,11]) in Sect. 4.1. Then, we discuss their counterparts
for our heterogeneous system in Sect. 4.2. In Sect. 4.3, we prove our normaliza-
tion theorem of heterogeneous proofs. Based on the theorem, we investigate a
characterization of the structure of heterogeneous proofs in Sect. 4.4.

4.1 Normal Proof and Normalization in FOL

In general, a natural deduction proof may contain some redundant steps and
formulas called maximal formulas, i.e., formulas that stands at the same time
as the conclusion of an introduction rule and as the major premise of an elimi-
nation rule. For example, the formula ϕ1 ∧ ϕ2 and the pair of applications of ∧I
and ∧E rules on the left in the following proof are redundant, because without
them we already have a proof π1 of ϕ1 as illustrated on the right.

.... π1

ϕ1

.... π2

ϕ2

ϕ1 ∧ ϕ2
∧I

ϕ1
∧E

.... π1

ϕ1

A maximal formula along with its related pair of applications of an introduction
and an elimination rule are together called detour in a proof, and it is possible
to remove such a detour as illustrated above. This rule of rewriting a given proof
by removing a detour is called the reduction rule, and it is defined for every
pair of the dual introduction and elimination rules. In addition to the above
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∧-reduction rule, the reduction rules for →,∨,∀,∃ are defined as follows, where
the part in a given proof on the left is rewritten into a form on the right:

• →-reduction • ∨-reduction
[ϕ]
.... π1

ψ

ϕ → ψ
→ I

.... π2

ϕ

ψ
→ E �

.... π2

ϕ
.... π1

ψ

.... π
ϕi

ϕ1 ∨ ϕ2
∨I

[ϕ1].... π1

σ

[ϕ2].... π2

σ
σ ∨E �

.... π
ϕi.... πi

σ (i = 1, 2)

• ∀-reduction • ∃-reduction
.... π(x)

ϕ(x)

∀xϕ(x)
∀I

ϕ(t)
∀E �

.... π(t)

ϕ(t)

.... π1

ϕ(t)

∃xϕ(x)
∃I

[ϕ(x)]
.... π2(x)
σ

σ ∃E �

.... π1

ϕ(t)
.... π2(t)
σ

These are the main reduction rules, and see [4,11] for other technical rules.
A natural deduction proof is said to be in normal form when it does not contain
any redex, i.e., detour. Then, the following normalization theorem holds: If
ϕ is provable from a set of formulas Γ , then there is a normal proof of ϕ from
Γ .

Normalization theorem makes various proof-theoretic analyses possible. For
example, the notion of normal proofs enables us to characterize the structure of
proofs in a formal system. Prawitz [10,11] shows that each normal proof consists
of two parts: (1) an analytical part in which premises are decomposed into their
components by using elimination rules; (2) a synthetic part in which the final
components obtained in the analytical part are put together for constructing the
conclusion using introduction rules.

4.2 Reduction Rules for Heterogeneous Proofs

The notion of reduction in natural deduction for FOL is explained as the removal
of a detour, i.e., a redundant maximal concept (formula) as well as its intro-
duction and elimination rules. Let us consider what a detour inherent in our
diagrammatic inference is. Diagrammatic inference can be characterized by con-
structing a (maximal) diagram and extracting a conclusion from the diagram.
(See, for example, [13].) In such a diagrammatic inference, the use of redundant
subconcepts (diagrams/formulas) may be considered as a detour. This detour
is part of a proof where one infers by deducing subconcepts, even though one
can infer directly by using a superior concept. For example, Bc and the pair of
obs-app in the following proof on the left are redundant, i.e., a detour, since the
information of Bc is already contained in the diagram above the obs, and we can
obtain the same conclusion by directly unifying two premise diagrams without
deducing the formula Bc.
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B

D

A
c

B

Bc
obs

B
c

D

app

�

B

D
A

c
B

A
c

B

D

uni

B
c

D

del

....
E

....
D
ϕ obs
....
ψ

E + ψ
app

�

....
E

....
D

E + D uni

E + ψ
del

This kind of a detour and its reduction can be formulated by the above rule.
When ψ depends only on ϕ (i.e., ϕ 
 ψ), ϕ and ψ as well as formulas/diagrams
between them are redundant subconcepts. This is because our diagrams are
deductively closed, and we are able to infer E + ψ by directly unifying E and D
without deducing ϕ nor ψ as illustrated on the right. Note that this reduction is
possible under the following conditions: (1) E + D is defined as a legal diagram;
(2) ψ depends only on ϕ (ϕ 
 ψ). In other words, when we focus and cut out
the part from ϕ to ψ, it stands as a legal proof independent of the other part of
the given proof. Otherwise, we cannot deduce ψ from D, as well as E + ψ from
E + D after the reduction.

Note that the notion of “detour” is conceptual, and it is not necessarily
related to the length of proofs. It is known, in symbolic logic proof theory, that
normal proofs may be more lengthy and complex than non-normal proofs, but
they are conceptually simpler in the sense that no detour is contained.

The above obs-app-reduction is generalized as follows:
When (1) E +

∑(∑ Dn + σd
l

)
is defined, where

∑ Dn is the unified diagram
D1 + D2 + · · · + Dn; and (2) ϕ1, . . . , ϕn, σd

1 , . . . , σ
d
l 
 ψ, the following part in a

proof on the left is reduced to the part on the right:

....
E

....
D1

ϕ1
obs· · ·

....
Dn

ϕn
obs

....
σd
1 · · ·

....
σd
l....

ψ

E + ψ
app

�

....
E

....
D1· · ·

....
Dn

∑ Dn
uni

....
σd
1 · · ·

....
σd
l

∑ (∑ Dn + σd
l

) app

E +
∑ (∑ Dn + σd

l

) uni

E + ψ
del

In the above reduced proof on the right, the double line uni means repeated
applications of uni to D1, . . . ,Dn; similarly for app. Each σd

i is a diagram-
matic formula independent of obs. Since ψ may depend not only on diagrams
D1, . . . ,Dn but also on formulas σd

1 , . . . , σ
d
l , the similar structure of our detour

may occur in such a part. Thus, we generalize our reduction by including σd
i to

reduce such a part; cf. Fig. 1 of Example 2.
Let us further consider the dual pair del and uni of diagrammatic rules.

The following proof on the left consisting only of diagrams, is considered to
contain a similar detour as the obs-app pair. Without deducing the diagram of
Bc by deleting circle A, we may directly unify the given two premise diagrams
as illustrated on the right.
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B

D

A
c

B

c
B

del

B
c

D

uni

�

B

D
A

c
B

A
c

B

D

uni

B
c

D

del
....
E

....
F
F ′ del
....
D

E + D uni �

....
E

....
F

E + F uni

E + D del

Thus, we can also formulate a reduction rule for a del-uni pair, where, as in the
obs-app-reduction, we assume that (1) E + F is defined; and (2) D depends only
on F ′, i.e., F ′ 
 D.

Since del and obs share a similar structure (i.e., extraction of information), a
pair of del and app may form the same detour as before, although del and app are
not in duality. Thus, for removing all of the detours of a same kind in a proof,
we generalize our reduction to obs/del-app-reduction and del/obs-uni-reduction
as follows.

Definition 3. obs/del-app-reduction and del/obs-uni-reduction are defined as
follows.

• obs/del-app-reduction (1)

When −→ϕn,
−→F ′

m,
−→
σd

l 
 ψ and E +
∑(∑

(
∑

Dn + Fm) + σd
l

)
is defined in the fol-

lowing part in a proof:

.... π′

E

.... π1
1

D1

ϕ1
obs· · ·

.... π1
n

Dn

ϕn
obs· · ·

.... π2
1

F1

F ′
1

del· · ·

.... π2
m

Fm

F ′
m

del· · ·

.... π3
1

σd
1 · · ·

.... π3
l

σd
l.... π′′

ψ

E + ψ
app

where n �= 0 or m �= 0, it is reduced to:

.... π′

E

.... π1
1

D1 · · ·

.... π1
n

Dn
∑ Dn

uni

.... π2
1

F1 · · ·

.... π2
m

Fm
∑

(
∑ Dn + Fm)

uni

.... π3
1

σd
1 · · ·

.... π3
l

σd
l

∑ (∑
(
∑

Dn + Fm) + σd
l

) app

E +
∑ (∑

(
∑

Dn + Fm) + σd
l

) uni

E + ψ
del

• obs/del-app-reduction (2)

When −→ϕn,
−→F ′

m,
−→
σd

l 
 E and
∑(∑

(
∑

Dn + Fm) + σd
l

)
+ ψ is defined in the fol-

lowing part in a proof:
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.... π2
1

F1

F ′
1

del· · ·

.... π2
m

Fm

F ′
m

del· · ·

.... π1
1

D1

ϕ1
obs· · ·

.... π1
n

Dn

ϕn
obs· · ·

.... π3
1

σd
1 · · ·

.... π3
l

σd
l.... π′

E

.... π′′

ψ

E + ψ
app

where m �= 0 or n �= 0, it is reduced to:
.... π1

1

D1 · · ·

.... π1
n

Dn
∑ Dn

uni

.... π2
1

F1 · · ·

.... π2
m

Fm
∑

(
∑ Dn + Fm)

uni

.... π3
1

σd
1 · · ·

.... π3
l

σd
l

∑ (∑
(
∑

Dn + Fm) + σd
l

) app

.... π′′

ψ
∑ (∑

(
∑

Dn + Fm) + σd
l

)
+ ψ

app

E + ψ
del

• del/obs-uni-reduction (1)

When −→ϕn,
−→F ′

m,
−→
σd

l 
 D and
∑(∑

(
∑

Dn + Fm) + σd
l

)
+ E is defined in the fol-

lowing part in a proof:

.... π1
1

D1

ϕ1
obs· · ·

.... π1
n

Dn

ϕn
obs· · ·

.... π2
1

F1

F ′
1

del· · ·

.... π2
m

Fm

F ′
m

del· · ·

.... π3
1

σd
1 · · ·

.... π3
l

σd
l.... π′

D

.... π′′

E
D + E uni

where m �= 0 or n �= 0, it is reduced to:
.... π1

1

D1 · · ·

.... π1
n

Dn
∑ Dn

uni

.... π2
1

F1 · · ·

.... π2
m

Fm
∑

(
∑ Dn + Fm)

uni

.... π3
1

σd
1 · · ·

.... π3
l

σd
l

∑ (∑
(
∑

Dn + Fm) + σd
l

) app
.... π′′

E
∑ (∑

(
∑

Dn + Fm) + σd
l

)
+ E uni

D + E del

• del/obs-uni-reduction (2) is defined similarly for π′′.
A redex is a tuple of applications of rules and diagrammatic formulas (obs, . . . ,
obs, del, . . . , del, σd

1 , . . . , σ
d
l ; app) or (del, . . . , del, obs, . . . , obs, σd

1 , . . . , σd
l ; uni) to

which, a reduction rule can be applied. A heterogeneous proof is said to be in
normal form when it does not contain any redex.
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Example 2 (obs-app-reduction). By reducing the obs-app pair of the following
proof on the left in Fig. 1, we obtain the normal proof on the right.

Fig. 1. obs-app-reduction

Note that in a given proof, our redex is not uniquely determined, and there
are several choices of a redex with respect to the same app/uni. Cf. Fig. 2.

4.3 Normalization

Based on our reduction rules, we establish our normalization theorem. One of
the difficulties is that after an obs/del-app-reduction, new applications of app and
uni are provided and they may induce new redexes. To overcome this difficulty,
we choose the topmost-leftmost redex in a given proof, and apply our reduction
twice in a row.

Theorem 1 (Normalization). Let αi be a diagram or a formula. Any proof
of α from α1, . . . , αn is reduced to a normal proof of α from α1, . . . , αn.

Proof. We distinguish linguistic FOL parts and diagrammatic parts in a given
proof, and we first reduce the linguistic parts, whose normalization theorem is
already established. Let π be a heterogeneous proof whose linguistic parts are
already reduced to normal form. For every application of app or uni in π, we
define its degree deg(app) or deg(uni) as the number of applications of obs and
del that form redexes with respect to the application of app or uni in question.
Thus, in any normal form, deg(app) = deg(uni) = 0 for every application of app
and uni in the proof. We choose the topmost-leftmost redex in π, which is the
leftmost application of app or uni whose degree is minimal in π. We divide the
cases according to the rule: app or uni.
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When the rule is app, let the topmost-leftmost redex be the following form:
.... π1

1

E1

E ′
1

del· · ·

.... π1
k

Ek

E ′
k

del
.... π′

E

.... π2
1

D1

ϕ1
obs· · ·

.... π2
n

Dn

ϕn
obs· · ·

.... π3
1

F1

F ′
1

del· · ·

.... π3
m

Fm

F ′
m

del· · ·

.... π4
1

σd
1 · · ·

.... π4
l

σd
l.... π′′

ψ

E + ψ
app

where every del and obs is the topmost application that forms a redex with
respect to the given app, and hence there are no obs nor del in

−→
π1

k,
−→
π2

n,
−→
π3

m that
forms a redex with respect to the given app.

Note that there is application of neither obs nor del in
−→
π4

l . Since, if such an
application exists, it has to be one of π2 or π3. Furthermore, above E , i.e., in
π′ and

−→
π1

k, there is only application of del without obs, or there is application of
neither del nor obs (i.e., k = 0). This is because, if there is an obs, then there has
to be an application of app for inferring the diagram E and Ei. This contradicts
the assumption that the given app forms the topmost-leftmost redex.

By applying del-app-reduction to π′, we obtain the following proof:

.... π1
1

E1 · · ·

.... π1
k

Ek
∑ Ek

uni

.... π2
1

D1

ϕ1
obs· · ·

.... π2
n

Dn

ϕn
obs· · ·

.... π3
1

F1

F ′
1

del· · ·

.... π3
m

Fm

F ′
m

del· · ·

.... π4
1

σd
1 · · ·

.... π4
l

σd
l.... π′′

ψ
∑ Ek + ψ

app

E + ψ
del

By further applying obs/del-app-reduction to π′′, we obtain the following proof:

.... π1
1

E1 · · ·

.... π1
k

Ek
∑ Ek

uni

.... π2
1

D1 · · ·

.... π2
n

Dn
∑ Dn

uni

.... π3
1

F1 · · ·

.... π3
m

Fm
∑

(
∑ Dn + Fm)

uni

.... π4
1

σd
1 · · ·

.... π4
l

σd
l

∑ (∑
(
∑ Dn + Fm) + σd

l

) app

∑ Ek +
∑ (∑

(
∑ Dn + Fm) + σd

l

) uni

E + ψ
del

Although new applications of uni and app are produced, there is neither obs nor
del in

−→
π1

k,
−→
π2

n,
−→
π3

m,
−→
π4

l that forms a new redex with respect to these uni and app.
This is justified because, if there is an obs or del that forms a new redex, then
it must have already formed a redex in the original proof, which contradicts the
assumption that the deleted obs and del are topmost. Thus, the degrees of these
new uni and app are 0.
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The case where the topmost-leftmost redex consists of an application of uni
is similar. Let the degree deg(π) of the given proof π be the sum of all degrees
of applications of app and uni in π. Let π� be the proof obtained by the above
topmost-leftmost reduction. Then, we have deg(π�) < deg(π). Therefore, by
repeated applications of the topmost-leftmost reduction, we obtain a proof whose
degree is 0, i.e., we obtain a normal proof. �

Example 3 (Normalization). By repeatedly reducing the topmost-leftmost redex,
we obtain a normal proof as shown in Fig. 2.

Note that in the normal form, the application of uni seems to be redundant,
since one of its premises and its conclusion are the same diagrams. There may be
this kind of redundancy in our normal form, as we see in the usual normal form
in natural deduction for FOL. However, this kind of redundancy is different from
our essential detour, which uses redundant subconcepts. Thus, we leave this kind
of inessential redundant parts untouched in our normal form.

By applying our reduction, every redundant linguistic part that lies between
diagrammatic parts is removed. From the perspective of diagrams reducing cer-
tain complexity of linguistic inference, it is ineffective to infer diagrammatically
by way of some linguistic parts, and hence our reduction is also verified from
this perspective.

4.4 Characterization of Normal Heterogeneous Proofs

Let us investigate how diagrammatic inference and linguistic inference appear,
and are related in our heterogeneous proofs. The following proposition holds
straightforwardly in a system that does not constrain any inference rules such
as Venn and Euler systems without any points.

Proposition 1 (Normal form). In a heterogeneous system, where app and uni
are applicable to any diagram and formula without any constraint, every normal
proof has the following form:

.... uni/app

D3

.... uni/app

D6

.... uni/app

D8

ϕ4.... FOL(4)
ϕ3

D7

app

D5
uni

.... uni(3)
D4

D2
uni

.... del(2)
D1
ϕ2

obs
.... FOL(1)

ϕ1

⎫
⎪⎬

⎪⎭
Linguistic part (i)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Diagrammatic part

⎫
⎪⎬

⎪⎭
Linguistic part (ii)
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Proof. Starting from a given conclusion, we examine possible rules in a nor-
mal proof from the bottom-up. The following number corresponds to that in
the above figure. Assume that the given conclusion is a formula ϕ1. When the
conclusion is a diagram, we start from the following case (2).

(1) ϕ1 should be obtained by FOL-rules or obs, since the conclusion of other rules
del,uni, and app is a diagram. Thus, we assume without loss of generality,
that ϕ1 is obtained after application of FOL-rules followed by an application
of obs from the bottom-up.

(2) Above the obs of (1), possible rules are del, uni, and app. (FOL-rules and obs
are not possible, since their conclusion has to be a formula.) Since there is no
del above uni or app in a normal proof, we assume without loss of generality,
that del is applied certain times.

(3) Above the del-rule of (2), possible rules are uni or app. Although any of them
is possible, we assume without loss of generality, that D2 is obtained by some
applications of uni followed by an application of app.

(4) Above the app of (3), the only possible rule is one of the FOL-rules, since
there is no obs (nor del) above app in a normal proof. Therefore, only suc-
cessive applications of FOL-rules are possible. �

By Proposition 1 above, a normal heterogeneous proof is divided into the
following three parts from the top-down, which also indicates a strategy to con-
struct heterogeneous proofs.

Linguistic part (i) By FOL-rules, given premises represented by formulas are
decomposed, and apply-formulas are constructed.

Diagrammatic part uni is applied to given premises represented by diagrams,
and app is applied to apply-formulas obtained at the linguistic part (i), and a
maximal diagram is constructed. Then, by del and obs, diagrammatic formulas
are extracted from the maximal diagram.

Linguistic part (ii) By FOL-rules, the conclusion is constructed.

5 Discussion and Future Work

By slightly extending the notion of free ride of Shimojima [13], let us call dia-
grammatic formulas of the conclusion of app and uni, free rides, if they do not
appear in the given premise diagrams or sentences, but (automatically) appear
in its conclusion [15]. From the perspective of symbolic specification, a diagram
is a deductively closed set of diagrammatic formulas. The deductive closedness
of diagrams induces the free rides. The larger a diagram is, the more free rides
appear in general. Thus, since a maximal diagram is constructed in our normal
heterogeneous proof, we may say that a normal heterogeneous proof takes full
advantage of the free rides. However, from a cognitive standpoint, a maximal
diagram is not necessarily comprehensible or manageable. This is because, the
more complex a diagram is, more cognitive cost is required to construct and
read the diagram in general. In [8], to make proofs readable by avoiding clutter
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in diagrams, tactics are introduced to an interactive theorem prover for spider
diagrams Speedith [18].

It is often pointed out that there is a trade-off between the expressive power
and the cognitive clarity/complexity of diagrams. In general, on top of inher-
ent geometrical constraints of diagrams, if we increase their expressive power by
introducing various conventional devices (for example, linking between points
as well as between diagrams), then it is appropriate that the cognitive clarity
of the diagrams is decreased. Conversely, if we restrict introducing conventional
devices, then such diagrams maintain their cognitive clarity in exchange for lim-
ited expressive power. Our characterization of heterogeneous proofs of Propo-
sition 1 shows another trade-off between constraints on inference rules, and the
complexity of the structure of proofs or of the strategy to construct proofs.
As discussed in Sect. 3.2, there may be various constraints on inference rules
such as constraints for indeterminacy and for contradiction of app and uni. Such
a constraint is mainly imposed to avoid cognitive complexity or to maintain
actual feasibility of the rule. (Although a constraint on inference rules pertains
to expressive limitation of diagrams, they are not the same.) The characteriza-
tion of the structure for heterogeneous proofs of Proposition 1 is valid for systems
without constraints on inference rules app and uni. Thus, in a system with some
constraints, we cannot apply our strategy to construct proofs in a straightforward
manner. We need a more complex strategy or a heuristic method to construct
proofs in such a system. In general, within a system with various constraints
on inference rules, although cognitive clarity and actual feasibility of the rules
are maintained due to those constraints, the structure of proofs in such a sys-
tem becomes complex and an automatic strategy to construct proofs cannot be
applied. Conversely, in a system with few constraints on rules, the structure of
proofs in such a system is simpler and we are able to apply an automatic strategy
to construct proofs. However, the cognitive clarity and actual feasibility of each
inference rule are decreased in such a system.

In this article, we restrict our type of a diagram to the conjunction of diagram-
matic formulas thereof, and hence, we exclude from our consideration devices to
express disjunctive information. For future work, we aim to extend our frame-
work in order to include such diagrams representing disjunctive information.
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Abstract. This paper provides a programmatic overview of a concep-
tion of iconic logic from a Wittgensteinian point of view (WIL for short).
The crucial differences between WIL and a standard version of symbolic
logic (SSL) are identified and discussed. WIL differs from other versions
of logic in that in WIL, logical forms are identified by means of so-called
ideal diagrams. A logical proof consists of an equivalence transformation
of formulas into ideal diagrams, from which logical forms can be read
off directly. Logical forms specify properties that identify sets of mod-
els (conditions of truth) and sets of counter-models (conditions of false-
hood). In this way, WIL allows the sets of models and counter-models to
be described by finite means. Against this background, the question of
the decidability of first-order-logic (FOL) is revisited. In the last section,
WIL is contrasted with Peirce’s iconic logic (PIL).

1 Introduction

This paper outlines an alternative to standard symbolic logic (SSL), namely,
Wittgenstein’s iconic logic (WIL), as a basis for first-order logic (FOL), while
avoiding the algorithmic details.1

I call the outlined approach “Wittgensteinian” for two reasons: (i) it is
inspired by Wittgenstein’s early philosophy of logic, and (ii) I wish to distin-
guish it from Peirce’s conception of an iconic logic (PIL). However, I will not
present any justification demonstrating that the outlined conception of logic
is indeed that of Wittgenstein’s early works, nor will I compare the details of
Wittgenstein’s and Peirce’s approaches. Instead, I will focus on the program-
matic ideas and fundamental concepts of this Wittgensteinian approach to iconic
logic (WIL). In doing so, I intend (i) to make manifest that FOL can be pur-
sued within different paradigms and (ii) to encourage others to work within a
Wittgensteinian paradigm of iconic logic.

T. Lampert—I am grateful to Wulf Rehder for many helpful comments on an earlier
draft of this paper.

1 Algorithms that realize some of Wittgenstein’s ideas concerning logical proofs
are available at the following link: http://www2.cms.hu-berlin.de/newlogic/
webMathematica/Logic/home.jsp.
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I begin by given the rationale behind WIL (Sect. 2). In the main body of the
paper, I explain the conception of proof in WIL and the crucial notion of ideal
diagrams as representations of logical forms (Sects. 3 to 5). I then allude to sev-
eral significant differences that arise when applying WIL and SSL by addressing
the questions of adequate formalization and decidability (Sects. 6 and 7). Finally,
I distinguish WIL from PIL (Sect. 8).

Since the concepts of logical forms and ideal diagrams are crucial, I will define
them here at the outset. Concrete examples and explanations of the concepts
used in these definitions will be given below in Sects. 2 to 5.

Logical Form: The logical form of a first-order formula φ is the form of the
conditions for truth and falsehood that hold for all formulas that are logically
equivalent to φ.

According to WIL, ideal diagrams represent logical forms unambiguously. Ideal
diagrams are unique representations of equivalence classes of logical formulas. I
define them by using (i) a pole-group notation that Wittgenstein introduced in
his early writings and (ii) minimal disjunctive normal forms of first-order logic
(minimal FOLDNFs). The complete details will be presented in Sects. 4 and 5.

Ideal Diagram: An ideal diagram is the translation of the set of minimal FOLD-
NFs that is generated from an initial formula φ into Wittgenstein’s pole-group
notation.

Paraphrases of ideal diagrams, in turn, are the results of a mechanical reading
algorithm for ideal diagrams. They make use of a standardized informal language
that makes explicit how ideal diagrams should be read as representations of the
conditions for the truth and falsehood of instances of initial formulas.

2 The Case for the WIL Approach

Russell writes the following in [Russell (1992)], p. xvi:

The fundamental characteristic of logic, obviously, is that which is
indicated when we say that logical propositions are true in virtue of their
form. [. . .] I confess, however, that I am unable to give any clear account of
what is meant by saying that a proposition is “true in virtue of its form”.

In SSL, “logical propositions” are defined as formulas that are true in all
interpretations. In this sense, SSL places priority on semantics. Accordingly, it
does not make sense to characterize logical propositions as “true in virtue of their
form”. The set of logical propositions is defined not by any specific logical form
shared by all logical propositions but rather by the characteristic of being true
in any interpretation. In the case of FOL, this means that logical propositions
cannot be identified algorithmically by evaluating single interpretations because
the number of possible interpretations is infinite.

By contrast, WIL can be characterized as a logic that is intended to fulfill
Russell’s desideratum. In general, the primary aim of WIL is to assign logical
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forms to equivalence classes of logical formulas. It is important to recognize that
such a conception is reasonable only if one does not rely on either paraphrases
or interpretations based on the structure of the logical formulas whose logical
properties are in question. Such methods of reading or evaluating formulas do
not refer to anything that is common to all formulas in the same set of logically
equivalent formulas and that may thus serve to identify conditions for the truth
or falsehood of propositions sharing the same logical form.

According to [Etchemendy (1999)], there are two ways of understanding the
semantics of a formal language. In the representational view, different models
and counter-models represent different logically possible configurations of the
world. According to this view, “interpretations” are understood as conditions for
the truth value of a sentence. Instances of propositional function variables are
fixed, and their meanings do not change with varying interpretations; only their
truth values do. By contrast, in the interpretational view, different models and
counter-models correspond to the assignment of different actual extensions to
expressions. This conception does not consider “logical possibilities” or “mean-
ing” in terms of conditions for truth and falsehood. The interpretational view
is the standard view of mathematical logic, for example, in Tarski’s semantics.
The representational view, by contrast, is commonly adopted in philosophical
approaches to the semantics of FOL. WIL essentially adopts this view; hence,
referring to models and counter-models is equivalent to referring to conditions
for truth and falsehood in terms of various logically possible states of the world.
According to WIL, the general task of logic is to distinguish conditions for truth
and falsehood within a space of logical possibilities by identifying the logical form
of admissible instances of logical formulas.

In WIL, the logical form of a formula must first be revealed, and it is not
until such a logical form has been identified that one can answer the question of
what such a form contributes to the representation of conditions for truth and
falsehood. As in the case of ordinary propositions, the outer form of a logical
formula disguises its logical form. This is so for the following reasons:

1. Any set of logically equivalent formulas is infinite, and although all of the
equivalent formulas in such a set share the same logical form, they may have
different outer forms. For example, although formulas such as P , P ∨ P ,
P ∨ Q ∧ ¬Q and P ∨ ¬(R ∨ ¬R) differ from each other, instances of these
different formulas share the same conditions for truth and falsehood.

2. Consequently, one cannot paraphrase an arbitrary logical formula such that
(a) the paraphrase clarifies what each sign contributes to the representation of

the conditions for truth and falsehood (i.e., how each part of the formula
specifies certain properties of models or counter-models),

(b) the signs are unambiguously paraphrased to achieve such a clarification
(i.e., identical signs are paraphrased identically and different signs are
paraphrased differently), and

(c) all of the (finite number of) non-redundant paraphrases of the conditions
for truth and falsehood are provided (i.e., all paraphrases that do not
contain any part that can be eliminated without resulting in a paraphrase
of a different set of models or counter-models).
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By contrast, in WIL, one and only one ideal diagram is assigned to all equiva-
lent formulas, and a proper reading algorithm for such ideal diagrams satisfies
conditions 2(a) to 2(c). In doing so, such an algorithm “reads off” the logical
form from an ideal diagram.

WIL qualifies as an “iconic logic” because ideal diagrams identify logical
forms by their syntactic properties. The features of ideal diagrams serve as iden-
tity criteria for sets of (counter-)models that share certain properties. Syntax is
prior to semantics in WIL in the sense that for a given formula, the properties
of models and counter-models are identified prior to and independently of the
evaluation of that formula with respect to single interpretations.

According to WIL, not only the outer form of ordinary language but also the
outer form of logical formulas can lead to (logical, linguistic or philosophical) mis-
understandings. WIL avoids such misunderstandings by revealing logical forms
through equivalence transformation. Such a procedure elucidates our implicit
understanding of the construction of logical formulas and what it contributes to
specifying conditions for the truth and falsehood of propositions.

3 Logical Proofs

In SSL, logical proofs derive theorems from axioms (or auxiliary assumptions)
within a correct and complete calculus. In WIL, however, a proof procedure
transforms initial logical formulas into ideal diagrams that enable the identifi-
cation of the corresponding logical form. Hence, logical proofs in WIL are not
merely proofs of logical theorems. A proof in WIL answers the more general
question of how an initial formula contributes to identifying conditions for truth
and falsehood in general. The proof of a logical theorem (or, likewise, a logical
contradiction) is merely a special case of this general procedure.

Because ideal diagrams identify conditions for truth and falsehood and, con-
sequently, also allow one to decide whether the initial formulas are “true in all
interpretations”, a proof procedure in WIL amounts to a decision procedure. I
will discuss the general question of decidability in Sect. 7. For now, it may suffice
to say that the crucial challenge in WIL is to specify algorithms for transforming
logical formulas into ideal diagrams. In the remainder of this paper, I will present
a programmatic overview of WIL, without discussing the technical details of the
algorithms for solving this problem. In the following two sections, however, I will
address the question of how to specify the ideal diagrams that result from the
aforementioned transformation from initial formulas.

4 Ideal Diagrams I - Propositional Logic

From 1912 to 1914, Wittgenstein developed his so-called ab-notation as a means
of uniquely representing conditions for the truth and falsehood of propositions
of a certain logical form.2 He illustrated this notation with various diagrams
2 Cf. his letters to Russell during this period, reproduced in [Wittgenstein (1997)], as

well as Wittgenstein’s Notes on Logic and his Notes dictated to G.E. Moore, both
printed in [Wittgenstein (1979)].
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of several logical formulas. He used similar diagrams in [Wittgenstein (1994)],
remark 6.1203, to demonstrate how to identify tautologies by applying syntactic
criteria to the resulting expressions. Instead of the ab-notation, he used T and F
as “poles” representing the possibilities of truth and falsehood. Wittgenstein also
suggested transforming his diagrams into a simpler pole-group notation that cor-
responds to certain disjunctive normal forms (DNFs) (cf. [Wittgenstein (1979)],
p. 102, and [Wittgenstein (1997)], letter 30). His notation was intended to apply
not only to propositional logic but also to FOL (cf. [Wittgenstein (1979)], p.
95f). In a letter to Russell, he even conjectured that applying his notation to
FOL would enable the identification of tautologies throughout the entire realm
of FOL (cf. [Wittgenstein (1997)], letter 30). However, he never spelled out in
detail how to apply his notation to arbitrary FOL formulas, nor did he discuss
in detail how to achieve unique representations of logical forms in propositional
logic (or even FOL). The following is an attempt to revisit Wittgenstein’s claim
and specify in more detail what is needed in order to represent logical forms by
means of ideal diagrams. In this short paper, I cannot elaborate all of the rules
for generating such diagrams from logical formulas. Instead, I will focus only on
their general properties.

I will initially restrict the discussion to propositional logic. In this case, the
application of the well-known Quine-McCluskey algorithm to obtain a set of min-
imal DNFs is a crucial step in the generation of ideal diagrams. Minimal DNFs
distinguish sufficient conditions for truth (the disjuncts) and non-redundant
parts of those conditions (the conjuncts); cf. condition 2(a) on p. 3. This allows
conditions for the truth of admissible instances of an initial formula to be read
off. The same applies to conditions for falsehood, if one also generates the set of
minimal DNFs of the negation of the initial formula. By the nature of minimal
DNFs, no part of the paraphrase of any single minimal DNF is redundant; cf.
condition 2(c) on p. 3.

However, the minimal DNFs of a formula of propositional logic are not
unique. Therefore, their paraphrase does not satisfy condition 1 on p. 3. For
example, formula (1) has the two minimal DNFs expressed in (2) and (3):

P ∧ ¬Q ∨ ¬P ∧ Q ∨ P ∧ R ∨ Q ∧ R (1)
P ∧ ¬Q ∨ ¬P ∧ Q ∨ P ∧ R (2)
P ∧ ¬Q ∨ ¬P ∧ Q ∨ Q ∧ R (3)

However, if one regards a representation of the entire finite set of minimal DNFs
as the ideal diagram, then the requirement of uniqueness is satisfied. One might
object that if both formulas (2) and (3) together are taken to be part of the ideal
diagram, then the non-redundancy requirement for the paraphrases of ideal dia-
grams (cf. condition 2(c) on p. 3) is not satisfied. However, I propose to interpret
the non-uniqueness of the minimal DNFs in terms of an “ambiguity of the log-
ical form”. This ambiguity is represented by a corresponding ambiguity within
the ideal diagram. Therefore, the ideal diagram must represent all alternative
minimal DNFs, and thus, no alternative is superfluous. Each alternative might
be called a representation of a “variant” of the logical form. Such an alternative
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must not, in itself, contain any redundancy in the description of the conditions
for truth or falsehood. However, all alternatives in the entire set of such alter-
natives must be considered in order to characterize the ambiguity of the logical
form. The extent of that ambiguity can be quantified by the number of min-
imal DNFs. This is why condition 2(c) on p. 3 refers to “all non-redundant
paraphrases”. The non-redundancy requirement applies only to each paraphrase
individually and not to the set of all such paraphrases.

Instead of representing all minimal DNFs as a set, one may distinguish com-
ponents that are common to all minimal DNFs from those that are different by
using a two-dimensional notation as in expression (4):

P ∧ ¬Q ∨ ¬P ∧ Q ∨ P∧R
Q∧R (4)

In contrast to (4), only one minimal DNF is generated from ¬(1) to represent
the conditions for the falsehood of propositions that are admissible instances
of (1):

¬P ∧ ¬Q ∨ P ∧ Q ∧ ¬R (5)

Wittgenstein’s ab- or TF-notation also translates logical constants. T- and
F-poles assigned to atomic propositions indicate the affirmation and negation,
respectively, of the corresponding atomic propositions. Single T-pole-groups (F-
pole-groups) list the non-redundant subconditions that constitute a sufficient
condition for truth (falsehood). These single pole-groups, in turn, are arranged
into lists of the sufficient conditions for truth or falsehood. Making use of the
features of this pole-group notation, one obtains the following ideal diagram as
a representation of the logical form of (1):

Fig. 1. Ideal diagram of (1)

From this diagram, it is possible to directly read off the conditions for the
truth and falsehood of admissible instances of formula (1). The following is a
paraphrase of this ideal diagram:3

3 I abstain here from cumbersome references to instances of atomic formulas. Thus, I
refer to P instead of “an admissible instance of P”, etc. I also abstain from specifying
the trivial algorithm for paraphrasing ideal diagrams of propositional logic.
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An admissible instance of formula (1) is true iff
– P is true and Q is false, or
– P is false and Q is true, or
– one of the following alternatives:

P is true and R is true/Q is true and R is true.
An admissible instance of formula (1) is false iff

– P is false and Q is false, or
– P is true and Q is true and R is false.

This paraphrase of the ideal diagram is valid for all formulas equivalent to (1).
Unlike the paraphrases of propositional formulas in general, the paraphrase of the
ideal diagram of a propositional formula identifies common features of the models
and counter-models for all formulas in the set of logically equivalent formulas.
Instead of specifying single interpretations as models and counter-models, as
is the case in model theory, the ideal diagram describes the properties of sets
of models and counter-models. This difference is significant when there are an
infinite number of models and counter-models, as in FOL.

In the case of logical theorems, Wittgenstein’s TF-notation makes explicit
that the conditions for truth and falsehood do not depend on the truth values
of any atomic propositions. P ∨ ¬P and Q ∨ ¬Q ∨ (R ∧ S), for example, are
logically equivalent theorems. As long as one is interpreting logical formulas,
the interpretation of the first formula seems to depend on the truth values of
instances of P , whereas the interpretation of the second seems to depend on the
truth values of instances of Q, R and S. According to WIL, however, this is an
illusion caused by the outer forms of the formulas. As soon as one is relating
semantics not to initial formulas but rather to ideal diagrams, it becomes clear
that logical theorems and their instances do not depend on the truth values
of any atomic propositions. They all have the same conditions for truth and
falsehood; they all say the same thing, namely, nothing. This becomes apparent
upon the application of a reduction algorithm that deletes atomic propositions in
the process of generating the ideal diagram. One may use T − {�} to represent
that the conditions for truth comprise the entire space of logical possibilities,
whereas F − { } (or, alternatively, F − {}) may be used to represent that the
conditions for falsehood are not included within the space of what is logically
possible. This is the shared logical form of all “logical propositions” that Russell
was unable to present within his symbolism (cf. p. 2).

By applying the well-known Quine-McCluskey reduction algorithm in propo-
sitional logic and several rather trivial rules for generating ideal diagrams within
Wittgenstein’s TF-notation, the concept of proof in the WIL version of proposi-
tional logic is fully defined. From this, it is clear what must be achieved within
FOL: one must find a procedure for generating minimal DNFs in FOL (= FOLD-
NFs) and translate the resulting sets of minimal FOLDNFs into ideal diagrams
in Wittgenstein’s notation. [Lampert (2017b)] prescribes how to achieve this for
the fragment of FOL that starts from formulas that do not contain any dyadic
sentential connectives in the scope of quantifiers. [Lampert (2017c)] generalizes
this prescription to a decision procedure for the FOL fragment that is translat-
able into disjunctions of conjunctions of formulas that do not contain ∨ in the



Iconic Logic and Ideal Diagrams: The Wittgensteinian Approach 631

scope of quantifiers. [Lampert (2017a)] defines an effective procedure for gener-
ating FOLDNFs in general and specifies an effective procedure for minimizing
them.4 However, this procedure does not fully satisfy the requirements for a
proof procedure of WIL because it does not fully minimize the FOLDNFs in
every case. The task of finding such a procedure remains an open problem. In
the following section, I first define the syntactic properties of minimal FOLDNFs
and then specify (i) how to translate them into ideal diagrams and (ii) how to
paraphrase those ideal diagrams. This discussion should clarify the meaning of a
representation of a logical form in FOL, although to date, no general algorithm
has been specified that can generate such representations in all cases.

5 Ideal Diagrams II - First-Order Logic

Minimal FOLDNFs are defined in terms of primary formulas, which correspond
to negated and non-negated atomic formulas in the DNFs of propositional logic.
The term negation normal forms (NNFs) refers to formulas that contain ¬ only
directly to the left of atomic propositional functions and ∧ and ∨ only as dyadic
connectives.

Primary Formula:

1. An NNF that does not contain ∧ or ∨ is a primary formula.
2. NNFs that contain ∧ or ∨ are primary formulas iff they satisfy the following

conditions:
(a) Any conjunction of n conjuncts (n > 1) is preceded by a sequence of

existential quantifiers of minimal length 1, and all n conjuncts contain
each variable of the existential quantifiers of that sequence.

(b) Any disjunction of n disjuncts (n > 1) is preceded by a sequence of
universal quantifiers of minimal length 1, and all n disjuncts contain each
variable of the universal quantifiers of that sequence.

3. Only NNFs that satisfy condition 1 or 2 are primary formulas.

Primary formulas represent the limit to which quantifiers can be driven
inwards by applying PN laws, i.e., the equivalence laws that are used to generate
prenex normal forms if applied in the opposite direction. Cases 2(a) and 2(b)
above are the only cases in which PN laws cannot be applied to drive quan-
tifiers any farther inwards. As will be shown below, primary formulas can be
translated into diagrams within Wittgenstein’s notation that satisfy the con-
ditions for ideal representations given that no conjunct or disjunct is redun-
dant. [Lampert (2017a)], Sect. 2, specifies an effective algorithm for generating

4 This procedure as well as others are implemented at and can be applied via the link
given in footnote 1.
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FOLDNFs (i.e., disjunctions of conjunctions of primary formulas).5 Thus, there
is no difficulty in establishing this part of the procedure for generating ideal
diagrams for FOL.

Minimal FOLDNFs are defined as follows:

Minimal FOLDNF: A minimal FOLDNF is a disjunction of conjunctions of
primary formulas that satisfies the following condition: If any number of con-
juncts or disjuncts (whether they occur inside the scope of quantifiers, i.e.,
within the primary formulas, or outside the scope of quantifiers) is deleted,
then the resulting formula is not equivalent to the initial one.

Thus, no conjunct or disjunct is redundant in the case of minimal FOLDNFs.
Defining a general procedure for generating the set of minimal FOLDNFs from
FOLDNFs is the problematic part of implementing Wittgenstein’s concept of
proof within FOL.

The crucial difference between FOLDNFs and the DNFs of propositional
logic is the use of primary formulas. In order to clarify how they contribute
to specifying the properties of models and counter-models, I will describe how
they can be translated into ideal diagrams in Wittgenstein’s notation and then
illustrate how to paraphrase those ideal diagrams. Consider first an example of
a minimal primary formula to motivate its translation into some other notation:

∃y(∀x(¬Fxx ∨ Hxy) ∧ Gy) (6)

Suppose that this primary formula is part of a minimal FOLDNF that is
equivalent to an initial formula (the details of which are unimportant here).
(6) does not satisfy the standards of WIL in two respects: (i) it is equivalent
to all formulas obtained by renaming the variables, and (ii) it contains ∧ and
∨, although these signs do not contribute to specifying truth conditions in the
same way that they do when they occur outside the scope of quantifiers within
FOLDNFs. Because (i) is true, the particular type of each variable does not con-
tribute to representing the properties of models (or counter-models). Instead, it
is the relations between bound variables and the positions at which those vari-
ables occur in the atomic propositional functions that represent the properties
of models. Because (ii) is true, ∧ and ∨ cannot be paraphrased in the same
way both inside and outside the scope of quantifiers in FOLDNFs. Within pri-
mary formulas, ∧ does not separate non-redundant subconditions of a sufficient
condition for truth, and ∨ does not separate sufficient conditions for truth. (i)
highlights how conditions 1 and 2(a), as listed on p. 3, contribute to the ability
of the outer forms of logical formulas to disguise their logical forms, whereas (ii)
highlights the contribution of conditions 2(a) and 2(b).

These problems can be solved by applying the following algorithm to trans-
late primary formulas into their corresponding ideal two-dimensional “primary
diagrams” in a Wittgensteinian notation:
5 FOLDNFs are far less complex than Hintikka’s distribute normal forms of FOL; cf.

[Lampert (2017a)] for details.
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1. Translate the propositional functions. Replace variables with numbers to indi-
cate positions, and denote affirmation by T and negation by F.

2. Symbolize the relations between the bound variables and their positions. Use
forks to connect the numbers of the positions as follows:
(a) Open forks, e.g., /

\ , connect the numbers of positions connected by a
disjunction and bound by a universal quantifier.

(b) Closed forks, e.g., <, connect the numbers corresponding to all other
positions of one and the same variable.

When a bound variable occurs only once within only one propositional func-
tion, no fork is needed.

Proceeding from inside to outside, this algorithm results in the following trans-
lation of (6):

Fig. 2. Ideal diagram of (6)

Thus, the bound variables, ∨ and ∧ are eliminated in favour of forks con-
necting the positions of the corresponding propositional functions.

This ideal diagram can now be paraphrased using a simple procedure that
proceeds from outside to inside:

– Some object, the same in the second position of H12 and in the first position
of G1, combined with all objects distributed among (i) the first and second
positions of F12 (where the same object appears in both positions) and (ii)
the first position of H12, makes the dyadic propositional function F12 false,
the dyadic propositional function H12 true, and the monadic propositional
function G1 true.

This paraphrase clarifies how the properties of Fig. 2 identify the properties
of models. Open forks represent distributions of objects, whereas closed forks
indicate identical objects in different positions.

Here, I omit the cumbersome but trivial specification of (i) the general algo-
rithm for translating FOLDNFs into ideal diagrams of FOL and (ii) the reading
algorithm for ideal diagrams of FOL. It should be clear that the crucial problem
encountered in an attempt to detail the proof procedure for WIL is specifying a
procedure for fully minimizing FOLDNFs.

The translation of a minimal FOLDNF results in a finite ideal diagram in
the TF-pole-group notation (cf. p. 5), in which each finite group describes the
properties of a possibly infinite set of models (or counter-models) and each pri-
mary ideal diagram describes certain properties that all (counter-)models in
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such a set share. Instead of referring to an infinite number of models that may,
in turn, involve infinite domains and infinite interpretations of atomic propo-
sitional functions, finite descriptions of the properties of such infinite sets are
provided, independently of and prior to the evaluation of interpretations. The
logical form of the models is identified, thus making it superfluous to explic-
itly refer to infinity. From the perspective of computability, this is crucial and
desirable.

6 Application of Logic - The Question of Adequate
Formalization

In this section, WIL is applied for the analysis of the logical forms of ordinary
propositions. Two examples are presented that illustrate the misleading form
thesis with respect to ordinary propositions, and the standard for adequate for-
malization according to WIL is explained. I assume the logic to be FOL. There-
fore, the logical forms are restricted to logical forms that are expressible in terms
of first-order formulas.

Example 1 concerns propositions of the following form:

All F’s of G’s are F’s of H’s. (7)

This form assumes that F , G and H are variables of atomic propositional
functions. The following propositions are instances of (7):

All children of mothers are children of fathers. (8)
All heads of horses are heads of animals. (9)

All bets on winning numbers are bets on prime numbers. (10)

The logical forms of (8) to (10) must be independent of any specific internal
relations between the meanings of the concepts invoked. From a logical stand-
point, any possible combinatoric extension of these concepts is logically possible
regardless of how strange, or even inconceivable, such a state of affairs would
be. Therefore, mothers also being fathers, horses not being animals and headless
horses are all logical possibilities. However, this does not mean that such strange
possibilities correspond to truth conditions of their respective sentences. Instead,
according to WIL, distinguishing between logical possibilities that make a sen-
tence true and those that falsify it is a question of adequate logical formalization.
The logical form shows how the truth conditions of a complex proposition depend
on logically possible extensions of its atomic propositional functions.

The following two logical formulas are reasonable candidates for a logical
formalization of propositions instantiating (7):6

6 Standard logic textbooks, such as [Copi (1979)], p. 131f., or [Lemmon (1998)], p.
131f., formalize (9) by (11); by contrast, [Wengert (1974)] argues that only (8) should
be formalized by (11), whereas (9) should be formalized by (12).



Iconic Logic and Ideal Diagrams: The Wittgensteinian Approach 635

∀x(∃y(Fxy ∧ Gy) → ∃z(Fxz ∧ Hz)) (11)
∀x∀y((Fxy ∧ Gy) → (Fxy ∧ Hy)) (12)

WIL requires ideal diagrams to make explicit the conditions for the truth and
falsehood of the formalized propositions in relation to certain atomic proposi-
tional functions. According to WIL, it is not logical formulas but ideal diagrams
that are judged to be adequate or inadequate as representations of the logical
forms of formalized propositions. Consequently, it is possible to assign unique
logical forms to unambiguous propositions within this framework. There is no
need for formalization criteria that call for a similarity between logical and gram-
matical forms to allow one to choose among logically equivalent formulas (cf.,
e.g., [Peregrin and Svoboda (2017)], p. 73).

For simplicity, I will write down only the ideal diagrams for the falsehood
conditions of (11) and (12) (cf. Figs. 3 and 4, respectively). The corresponding
representations of the truth conditions are symmetrical in this case.

Fig. 3. F -pole-groups of the ideal diagram of (11)

Fig. 4. F -pole-groups of the ideal diagram of (12)

According to an understanding of (8) in which “mother” and “father” refer
to “biological mother” and “biological father”, respectively, one can view Fig. 3
as an adequate formalization of the conditions for the falsehood of (8), whereas
Fig. 4 can be seen as an adequate formalization of the conditions for the falsehood
of (9). The difference is that (9) is false if there exists a head that is the head
of a horse that is not an animal, whereas (8) is not false if there exists a child
that is a child of a mother who is not a father. Instead, (8) is false only if some
child exists who is a child of a mother but not of a father. In the case of (10),
both Figs. 3 and 4 present reasonable forms for paraphrases of the conditions for
falsehood. This situation shows that the meaning of (10) is ambiguous. Overall,
this discussion demonstrates that the shared outer form (7) does not determine
a unique logical form. This, however, does not mean that it is not reasonable to
assign a logical form to a certain ordinary proposition with respect to a given set
of atomic propositional functions. Instead, WIL provides the tools to do so while
clarifying the conditions for the truth and falsehood of the initial propositions.
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Example 1 has demonstrated that the outer form of a proposition does not
determine a unique logical form. The following example illustrates that the outer
form of a proposition also does not determine whether a proposition has a proper
logical form at all. Thus, WIL provides the tools not only to express the condi-
tions for the truth and falsehood of propositions within a logical framework but
also to make explicit that certain propositions are not expressible within this
framework.

Consider propositions of the following form:

If someone (is in relation) F (to) a G, then a G exists. (13)

The following propositions are instances of (13) (cf. [Montague (1966)], p.
266, and [Quine (1960)], Sect. 30):

If someone loves a women, then a woman exists. (14)
If someone seeks a unicorn, then a unicorn exists. (15)

(13) can be translated into the following FOL formula:

∃x∃y(Fxy ∧ Gy → Gy) (16)

(16) is a logical theorem. Thus, it seems reasonable to formalize (14) by the
ideal diagram of logical theoremhood (i.e., a diagram with empty conditions
for falsehood). However, this is not the case for (15), which will most likely
be judged to be false. This is why “x seeks y” is commonly regarded as an
inadmissible instance of an atomic function variable within FOL.7 From this it
follows that logical forms cannot be assigned to propositions involving such a
predicate. Therefore, (15) has no proper logical form, whereas (14) does.

The outer form of a proposition determines neither a unique logical form
(cf. (7)) nor whether various propositions of a certain form share a logical form
at all (cf. (13)). This is even true in cases of instances of provable formulas.
The equivalence of the conditions for truth and falsehood is the criterion for
adequate formalization when applying logic to propositions, and this cannot be
judged without first generating ideal diagrams. According to WIL, interpretation
comes last, not first.

7 Application of Logic - The Question of Decidability

A typical argument against Wittgenstein’s conception of logic asserts that his
understanding of logical proof assumes decidability, which is in conflict with
7 According to [Quine (1960)], Sect. 30, a predicate such as “x seeks y” does not refer

to a set of pairs and, thus, does not satisfy the principle of extensionality. However,
the question is how one can know this without referring to some failure of logical
formalization. For our purposes, it is sufficient to note that mere instantiation of
logical formulas does not guarantee that those instances behave in accordance with
the laws of logic. Therefore, one must distinguish between admissible and inadmis-
sible instances. According to WIL, instances are inadmissible if they are not judged
to be true despite instantiating provable formulas.
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the Church-Turing theorem (cf., among others, [Landini (2007)], p. 118, and
[Potter (2009)], p. 181f). However, this argument is not conclusive because the
undecidability proof of FOL makes assumptions that WIL rejects.

Turing’s undecidability proof relies on a formalization of the code of Tur-
ing machines. Furthermore, it relies on a claim that propositions about Turing
machines that result from substituting propositional functions for function vari-
ables in provable formulas are true. To justify this claim, Turing explicitly refers
to the following general principle (cf. [Turing (1936)], p. 262):

If we substitute any propositional functions for function variables in a
provable formula, we obtain a true proposition.

As argued in the previous section, this principle applies only to “admissible
instances”, i.e., instances that have a certain logical form and, hence, have con-
ditions for truth and falsehood that are expressible within FOL. However, the
expressibility within FOL is questionable in the case of diagonalization, which
produces self-referential propositions. For example, it is common to reject “This
proposition is not true” as an admissible instance of the function variable P in
the provable formula P ↔ P . Like other undecidability proofs, Turing’s unde-
cidability proof rests on diagonalization. Turing argues that a Turing machine
E that decides on any logical formula cannot exist because the decision on a
formula involving the formalization of E in the diagonal case cannot correspond
to the behavior of certain machines involving E . The quoted principle does not
demonstrate that Turing’s formalization of Turing machines is adequate in the
diagonal case. Therefore, his inference of the non-existence of a Turing machine
E is a fallacy.8

8 Wittgenstein and Peirce

There are many similarities and differences between WIL and PIL.9 I refer only
to the most essential ones in the following.

Peirce distinguished two purposes of logic: to investigate logical theories and
to aid in the drawing of inferences. A logical calculus serves the latter purpose,
whereas a logical system serves the former. Such a system should explain what
is expressible through logic. To this end, it must not allow for ‘any superfluity
of symbols’ ([Peirce (1931–1958)], 4.373):

8 In fact, I have detailed a decision procedure for pure FOL without identity on the
basis of a Wittgensteinian conception of proof (cf. the link given in footnote 1).
For the details of a Wittgensteinian critique of undecidability proofs, cf. [Lampert
(2017d)].

9 Cf., in particular, [Shin (2002)] and [Dau (2006)] for detailed elaborations of PIL.
[Pietarinen (2006)] provides a game-theoretic interpretation of PIL and relates this
interpretation to the later work of Wittgenstein. By contrast, I refer to the early work
of Wittgenstein and his conception of a logical proof as a mechanical transformation
into ideal diagrams.
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It should be recognized as a defect of a system intended for logical study
that it has two ways of expressing the same fact, or any superfluity of
symbols, although it would not be a serious defect for a calculus to have
two ways of expressing a fact.

Similar to Peirce’s distinction between the calculi of symbolic logic and
his existential graphs, Wittgenstein drew a distinction between the axiomatic
proof method and his own proof method (cf. [Wittgenstein (1979)], p. 109, and
[Wittgenstein (1994)], 6.125). On the one hand, he emphasized that the two
methods are equivalent (i.e., do not differ in their results; cf. [Wittgenstein
(1994)], 6.125f., and [Wittgenstein (1994)], p. 80). On the other hand, he
regarded the traditional method of symbolization, which allows for ‘a plurality’
of equivalent symbols, as defective with regard to the analysis of propositions
([Wittgenstein (1997)], p. 102[3]; see also p. 93[1] and [Wittgenstein (1994)],
5.43):

If p = not − not − p etc., this shows that the traditional method of
symbolism is wrong, since it allows a plurality of symbols with the same
sense; and thence it follows that, in analyzing such propositions, we must
not be guided by Russell’s method of symbolizing.

Iconic logic can be distinguished from symbolic logic by the search for a pro-
cedure for transforming logical formulas into ideal diagrams that do not permit
any ‘plurality’ or ‘superfluity’ of symbols.

Wittgenstein considered the need for a theory of deduction and for semantics
as foundations of pure logic to be a result of a deficient symbolism. He desired to
eliminate the need for semantic foundations by identifying ‘the sense’ of propo-
sitions (i.e., the conditions for their truth and falsehood) by means of iconic
features of ideal diagrams. According to Wittgenstein, it is not reality (facts)
but rather the logical possibilities of truth and falsehood that are represented
by ideal diagrams. This is why WIL introduces bipolarity as a fundamental
property of a proper logical notation, whereas Peirce claims that ‘symmetry
always involves superfluity’ and that symmetries ‘are great evils’ for ‘the pur-
poses of analysis’ (cf. [Peirce (1931–1958)], 4.375). In this respect, WIL differs
from Peirce’s existential graphs, which seem to instead be guided by the desire
to represent reality (cf. the above quote from [Peirce (1931–1958)], 4.373, and
[Shin (2002)], p. 52). It is for this reason that existential graphs do not corre-
spond to FOLDNFs, nor even to NNFs (given an endoporeutic reading). The
question of how to read or interpret existential graphs is a controversial one.
From a Wittgensteinian perspective, this very controversy indicates that these
graphs share some of the deficiencies of the conventional logical symbolism.
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Abstract. Nearly all squares of opposition found in the literature repre-
sent both the Aristotelian relations and the duality relations, and exhibit
a very close correspondence between both types of logical relations. This
paper investigates the interplay between Aristotelian and duality rela-
tions in diagrams beyond the square. In particular, we study a Buridan
octagon, a Lenzen octagon, a Keynes-Johnson octagon and a Moretti
octagon. Each of these octagons is a natural extension of the square,
both from an Aristotelian perspective and from a duality perspective.
The results of our comparative analysis turn out to be highly nuanced.

Keywords: Aristotelian relations · Duality relations
Square of opposition · Aristotelian diagram · Duality diagram
Logical geometry

1 Introduction

The square of opposition represents four propositions, and certain logical rela-
tions holding between them. This diagram has a long and well-documented his-
tory in philosophy and logic [36]. In contemporary (analytic) philosophy, it has
been used in various areas, such as philosophy of language, epistemology, philos-
ophy of religion, ethics, and philosophy of law. In logic, the square of opposition
has been used to study systems of modal logic, various non-classical logics, prob-
abilistic and fuzzy logics, and logics of rational agency. Finally, because of the
ubiquity of the logical relations that it represents, the square is nowadays also
frequently used outside the boundaries of philosophy and logic, in disciplines
such as psychology, linguistics and computer science. A comprehensive overview
of this wide diversity of applications (including many bibliographic references)
can be found in [15,16]. The square of opposition visually represents the Aris-
totelian relations: contradiction, contrariety, subcontrariety, and subalternation.
However, most—nearly all—squares that appear in the literature also exhibit
another type of logical relations, viz. the duality relations: internal negation,
external negation and duality. Based on the concrete diagrams found in the lit-
erature, the notions of Aristotelian square and duality square thus seem to be
c© Springer International Publishing AG, part of Springer Nature 2018
P. Chapman et al. (Eds.): Diagrams 2018, LNAI 10871, pp. 640–656, 2018.
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almost co-extensional with each other. Nevertheless, there also seem to be clear
conceptual differences between both types of logical diagrams.

The research program of logical geometry is concerned with the systematic
study of logical diagrams in general, and Aristotelian diagrams and duality dia-
grams in particular. We investigate these diagrams using cognitive and geometric
notions, such as informational vs. computational equivalence [12,14], Euclidean
distance [16,44], vertex-first projections [10] and subdiagrams [6,42]. On the log-
ical side, we focus on issues such as diagram informativity [43], logic-sensitivity
[8], diagram classification [45] and Boolean structure [15,46]. The visual and log-
ical properties of Aristotelian diagrams and duality diagrams are thus relatively
well-understood in isolation. However, we do not yet have a clear picture of the
precise interconnections between these two types of logical diagrams. Smessaert
[41] has achieved some promising results in this direction, by moving beyond the
square of opposition and focusing on a specific hexagon of opposition.

The main goal of this paper is to further advance this line of research,
by analyzing the interplay between Aristotelian and duality relations in sev-
eral octagons of opposition. These octagons will be shown to be very natural
extensions/generalizations of the classical square of opposition, both from an
Aristotelian perspective and from a duality perspective. With respect to the
latter, we will discuss two main generalizations of ‘classical’ duality, viz. com-
posed operator duality and generalized Post duality. This approach constitutes
a major improvement over that of [41], since the comparative analysis there is
based on a hexagon, which naturally extends the classical square from an Aris-
totelian perspective, but arguably not from a duality perspective. Consequently,
the comparative analysis in this paper will provide a more solid basis for drawing
conclusions regarding the interconnections between Aristotelian and duality dia-
grams. In particular, we will first focus on the individual Aristotelian and duality
relations, and argue that the systematic correspondence, as found in the square
of opposition, is lost in the octagons (albeit to varying degrees).1 Furthermore,
there is no systematic correspondence at the level of entire diagrams either. Nev-
ertheless, we show that at a higher level of abstraction, the correspondence does
seem to remain intact (again, to varying degrees).

The paper is organized as follows. Section 2 describes the interplay between
Aristotelian and duality relations in the classical square of opposition. Next,
Sect. 3 discusses the (in)dependence of these two types of relations, and exam-
ines Smessaert’s [41] comparative analysis based on a hexagon of opposition. Sec-
tions 4 and 5 constitute the core of this paper. Section 4 is concerned with com-
posed operator duality, and analyzes the interplay between Aristotelian and dual-
ity relations in a Buridan octagon and a Lenzen octagon. Next, Sect. 5 focuses
on generalized Post duality, and analyzes the interplay between Aristotelian and
duality relations in a Keynes-Johnson octagon and a Moretti octagon. Finally,

1 Similar conclusions were reached in [41], but there, one could still object that the loss
of correspondence beyond the square is merely due to the fact that from a duality
perspective, the hexagon is not a natural generalization of the square of opposition.
Such an objection cannot be raised against the conclusions drawn in this paper.
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Sect. 6 summarizes the results obtained in this paper, and mentions some ques-
tions for future research.

Fig. 1. Squares of opposition for (a) syllogistics, (b) modal logic, (c) propositional
logic; (d) code for visualizing the Aristotelian relations.

2 Aristotelian and Duality Squares

We begin by considering the three most well-known squares of opposition. With-
out a doubt, the oldest and most frequently used square of opposition is that
for syllogistics, as shown in Fig. 1(a). Both with respect to history and to fre-
quency of use, a close second is the square of opposition for modal logic, as shown
in Fig. 1(b). Furthermore, with the seminal work of authors such as Boole, De
Morgan and Frege in the 19th and early 20th century also came the square of
opposition for propositional logic, as shown in Fig. 1(c). Each of these square
diagrams exhibits four key propositions of their underlying logical system, and
the Aristotelian relations holding between them. These relations can be defined
on various levels of generality and abstractness [13], but for our current purposes
it will suffice to consider the most informal definition: two propositions are

contradictory iff they cannot be true together and
they cannot be false together,

contrary iff they cannot be true together and
they can be false together,

subcontrary iff they can be true together and
they cannot be false together,

in subalternation iff the first one entails the second one and
the second one does not entail the first one.
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These relations will be abbreviated as CD, C, SC and SA, respectively, and
visualized according to the code in Fig. 1(d). For example, in Fig. 1 we observe
that CD(some A are B, no A are B) in the syllogistic square, C(�p,�¬p) and
SC(♦p,♦¬p) in the modal square, and SA(p∧q, p∨q) in the propositional square.

The contradiction relation is the most important Aristotelian relation,2 and
accordingly, it plays a crucial role in Aristotelian diagrams. Each proposition
ϕ has a unique contradictory (up to logical equivalence), viz. ¬ϕ. The square
of opposition, and almost all other Aristotelian diagrams found in the litera-
ture as well, are closed under contradiction: if the diagram contains ϕ, then it
also contains ¬ϕ.3 The propositions occurring in an Aristotelian diagram can
thus naturally be grouped into pairs of contradictory propositions (PCDs). Con-
sequently, a square of opposition should not simply be seen as consisting of 4
‘individual’ propositions, but rather of 2 PCDs. This perspective also suggests
a natural way of extending the square, viz. by adding more PCDs. We thus go
from 2 PCDs to 3 PCDS, 4 PCDs, etc.—or in more geometric/diagrammatic
terms: from square to hexagon, octagon, etc.4

The squares of opposition in Fig. 1(a–c) not only represent the Aristotelian
relations, but also the duality relations. Just as before, these relations can be
defined on various levels of generality and abstractness [13], but for our current
purposes it will again suffice to consider the most informal definition. Suppose
that ϕ and ψ are the results of applying n-ary operators Oϕ and Oψ to the same
n propositions α1, . . . , αn, i.e. ϕ ≡ Oϕ(α1, . . . , αn) and ψ ≡ Oψ(α1, . . . , αn). We
then say that ϕ and ψ are each other’s

external negation iff Oϕ(α1, . . . , αn) ≡ ¬Oψ(¬α1, . . . ,¬αn),
internal negation iff Oϕ(α1, . . . , αn) ≡ ¬Oψ(¬α1, . . . ,¬αn),
dual iff Oϕ(α1, . . . , αn) ≡ ¬Oψ(¬α1, . . . ,¬αn).

These relations will be abbreviated as eneg, ineg and dual, respectively.
Note that ineg operates on all propositions α1, . . . , αn. In Fig. 1 we see that
eneg(some A are B, no A are B) in the syllogistic square, ineg(�p,�¬p) and
ineg(♦p,♦¬p) in the modal square, and dual(p ∧ q, p ∨ q) in the propositional
square.

The logical behavior of the duality relations is well-understood [11,45]. In par-
ticular, these relations are all functional (up to logical equivalence); for example,
if ineg(ϕ,ψ1) and ineg(ϕ,ψ2), then ψ1 ≡ ψ2. Hence we can also view them as
functions, and write, for example, ψ = ineg(ϕ) instead of ineg(ϕ,ψ). Further-
more, since the ineg-relation is symmetrical—i.e. ineg(ϕ,ψ) iff ineg(ψ,ϕ)—,
2 Note that the definitions of contrariety and subcontrariety can both be seen as

weakened versions of that of contradiction. It can also be shown that contradiction
is the most informative of the Aristotelian relations [43].

3 Furthermore, the contradiction relation is usually visualized by means of central
symmetry, so that all pairs of contradictory propositions are represented by diagonals
that intersect each other in the Aristotelian diagram’s center of symmetry [10,12,14].

4 In this paper we will not distinguish between different geometrical representations
of the same set of PCDs. For example: (i) 3 PCDs can be visualized as a hexagon or
as an octahedron; (ii) 4 PCDs can be visualized as an octagon or as a cube [12,14].
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the ineg-function is idempotent: ineg(ineg(ϕ)) = ϕ. (All of this applies not
only to ineg, but also to eneg and dual.) In sum, the three duality functions,
together with the identity function id (defined by id(ϕ) := ϕ for all ϕ) form a
Klein 4-group under composition (◦) [1,37], with the following Cayley table:

◦ id eneg ineg dual
id id eneg ineg dual

eneg eneg id dual ineg

ineg ineg dual id eneg

dual dual ineg eneg id

The Klein 4-group is isomorphic to Z2×Z2. This group-theoretical isomorphism
gives us a firm syntactic handle on the duality relations: each copy of Z2 gov-
erns an independent negation position: the first copy corresponds to external
negation, and the second corresponds to internal negation.5 This also suggests
a natural way of extending duality behavior beyond the square of opposition
(i.e. beyond the Klein 4-group), viz. by adding more independent negation posi-
tions (i.e. by adding more copies of Z2). We thus go from Z2 × Z2 (2 negation
positions, yielding a group of 22 = 4 duality functions) to Z2 × Z2 × Z2 (3
negation positions, yielding a group of 23 = 8 duality functions), etc.

If we now bring the Aristotelian and duality perspectives together, we see that
the squares of opposition in Fig. 1(a–c) exhibit a highly uniform correspondence
between both types of logical relations. In particular, there is a correspondence
between (i) the Aristotelian relation CD and the duality relation eneg, (ii) the
Aristotelian relations C and SC and the duality relation ineg, and (iii) the Aris-
totelian relation SA and the duality relation dual. Each square thus gives rise to
an Aristotelian/duality multigraph (ADM) as shown in Fig. 2. This ADM visu-
alizes, for each combination of an Aristotelian and a duality relation, how many
times that specific combination occurs in the square of opposition.6 Although
the correspondence between Aristotelian and duality relations is not perfect,
the ADM clearly shows that it is still highly regular. Using graph-theoretical
terminology [18], the ADM for the square of opposition has 4 connected com-
ponents, viz. {CD,eneg}, {C,SC, ineg}, {SA,dual} and {EQ, id}. More con-
cretely, each Aristotelian relation corresponds to a unique duality relation; vice

5 Under the group-theoretical isomorphism between the Klein 4-group for the duality
functions and Z2 × Z2, id corresponds to (0, 0) (apply no negations at all), eneg to
(1, 0) (only apply external negation), ineg to (0, 1) (only apply internal negation) and
dual to (1, 1) (apply both external and internal negation). If the duality function f
corresponds to (i, j) ∈ Z2×Z2, we thus get f(O(α1, . . . , αn)) = ¬iO(¬jα1, . . . , ¬jαn)
(with the usual definitions ¬0ϕ := ϕ and ¬1ϕ := ¬ϕ).

6 Note that the ADM includes EQ (logical equivalence) as the Aristotelian counterpart
of id. Strictly speaking, EQ is not one of the Aristotelian relations, but it is closely
related to them [43], and it is implicitly present whenever we write multiple, logically
equivalent propositions in a single vertex of an Aristotelian diagram. (Each vertex
thus has an EQ-loop to itself.) Note, in this context, that the square of opposition
is sometimes also referred to as ‘the square of opposition and equipollence’ [33].
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Fig. 2. Aristotelian/duality multigraph (ADM) for the classical square of opposition.

versa, the duality relations eneg, dual and id correspond to a unique Aris-
totelian relation, while ineg corresponds to two Aristotelian relations.

In summary, the well-known squares of opposition from Fig. 1(a–c) show that
there is a clear correspondence between Aristotelian and duality considerations.
At the level of diagrams, these squares of opposition are simultaneously Aris-
totelian squares and duality squares. At the level of the individual relations, the
correspondence is summarized by the ADM in Fig. 2. Finally, it bears empha-
sizing that this correspondence can also be observed in more recent (and thus
lesser-known) squares of opposition, such as those for public announcement logic
[7], future contingents [21], definite descriptions [9], and rough set theory [48].

3 (In)dependence of Aristotelian and Duality Diagrams

Because of this correspondence, several authors [5,39,48] come close to outright
identifying the two types of squares—e.g. by using Aristotelian terminology to
describe the duality square (or vice versa), or by viewing one as a generalization
of the other. The correspondence was already noted in medieval logic: influential
authors such as Peter of Spain [4], William of Sherwood [29] and John Wyclif [19]
discussed the mnemonic rhyme pre contradic, post contra, pre postque subalter, in
which external negation (pre) is associated with contradiction, internal negation
(post) with contrariety, and duality (pre postque) with subalternation.7

Despite this close correspondence, there are still some crucial differences
between Aristotelian and duality diagrams [3,47]. Regarding the individual rela-
tions, it should be pointed out that (i) the duality relations are all symmetric,
whereas the Aristotelian relation SA is asymmetric, and that (ii) the duality
relations are all functional, whereas the Aristotelian relations C, SC and SA are
not (i.e. a single proposition can have multiple, non-equivalent contraries, sub-
contraries, and subalterns). Furthermore, the Aristotelian relations are far more
7 This rhyme is incomplete, because as we have seen above (Fig. 2), internal negation

(post) should not just be associated with contrariety, but also with subcontrariety
[29, Footnote 54]. However, this omission can be explained in terms of the famous
non-lexicalization of the O-corner [22]. The fact that no A are B is the internal
negation of all A are B (i.e. no ≡ all ¬, or in Latin: nullus ≡ omnis ¬) is a
contingent, empirical fact about English (resp. Latin), and should thus be captured
by the rhyme. By contrast, the fact that some A are not B is the internal negation
of some A are B (i.e. some not ≡ some ¬, or in Latin: aliquis non ≡ aliquis ¬)
is almost analytically true, and thus need not be captured by the mnemotechnic
rhyme.
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Fig. 3. (a) Aristotelian relations and (b) duality relations in the modal JSB hexagon.

sensitive to the details of the underlying logical system than the duality relations
[8]. Consider, for example, the propositions �p and �¬p. In the normal modal
logic KD, these two propositions are contrary to each other, but in the weakest
normal modal logic, K, they do not stand in any Aristotelian relation at all [23].
Nevertheless, in both KD and K, these two propositions are each other’s inter-
nal negation. In general, as long as two logical systems have classical Boolean
connectives, they will yield the same duality relations, even though they might
yield vast differences in the Aristotelian relations.

Perhaps the most powerful way to argue for the independence of Aristotelian
and duality diagrams consists in analyzing diagrams beyond the square. For
example, Smessaert [41] has studied the interplay between Aristotelian and dual-
ity relations in a hexagon of opposition, as shown in Fig. 3.8 From an Aristotelian
perspective, this hexagon is a very natural extension of the square: it is obtained
by adding one pair of contradictory propositions (PCD), thus moving from a
diagram with 2 PCDs to one with 3 PCDs. This type of hexagon is very well-
known [15,42]; it was first studied in the 1950s by Jacoby [25], Sesmat [40] and
Blanché [2], and is therefore called a ‘Jacoby-Sesmat-Blanché (JSB) hexagon’.

This hexagon clearly illustrates the discrepancy in functionality between the
Aristotelian and the duality relations. For example, �p has a unique internal
negation, viz. �¬p, but it has multiple contraries, e.g. �¬p and ♦p ∧ ♦¬p. The
contrariety between �p and �¬p thus corresponds to an ineg-relation (just like
in the square), but the contrariety between �p and ♦p∧♦¬p does not correspond
to any duality relation at all (which we will denote as ∅). Similarly, �p has a
unique dual, viz. ♦p, but it has multiple subalterns, e.g. ♦p and �p ∨ �¬p. The
subalternation from �p to ♦p thus corresponds to a dual-relation (just like in

8 For reasons of space, we only consider the modal hexagon, which extends the modal
square in Fig. 1(b). In exactly the same way, one could also extend the other two
squares in Fig. 1(a)/(c) to hexagons, and draw the same conclusions about them.
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Fig. 4. Aristotelian/duality multigraph (ADM) for the modal JSB hexagon.

the square), but the subalternation between �p to �p∨�¬p does not correspond
to any duality relation at all (∅). Furthermore, ♦p∧♦¬p turns out to be its own
internal negation, so this ineg-relation will correspond to a logical equivalence
(EQ). Consequently, �p ∨ �¬p is not only the external negation of ♦p ∧ ♦¬p,
but also its dual; these eneg- and dual-relations thus both correspond to the
Aristotelian CD-relation. The entire configuration of Aristotelian and duality
relations in the modal JSB hexagon is summarized by the ADM in Fig. 4.

By comparing the ADM for the square (Fig. 2) with that for the JSB hexagon
(Fig. 4), we immediately see that the latter is much more ‘cluttered’. Instead of
having 4 connected components, the entire multigraph in Fig. 4 is connected.
Each Aristotelian relation corresponds to multiple duality relations (or the com-
plete absence of any duality relation, ∅); vice versa, dual corresponds to two
Aristotelian relations, while ineg corresponds to two Aristotelian relations and
logical equivalence (EQ). In sum: the systematic correspondence between Aris-
totelian and duality relations is completely lost in the JSB hexagon.

One might object to the conclusion of this analysis. After all, the JSB hexagon
is a natural extension of the square from an Aristotelian perspective, but not
from a duality perspective. The hexagon is obtained by adding an extra PCD, but
in terms of duality, this does not correspond to adding an extra negation position.
Consequently, the hexagon cannot be seen as a single, ‘unified’ duality diagram,
but should rather be seen as the superposition of two separate, independent
duality diagrams, viz. the original duality square and the extra PCD (which
are classified in [45] as a clcl1 duality square and a collapsed, self-internal
duality square, respectively). The independence of these two duality diagrams is
illustrated by the high number of edges involving ∅ in the ADM in Fig. 4.

In the remainder of the paper, we will thus consider diagrams that are natural
extensions of the square of opposition from both an Aristotelian and a duality
perspective. In particular, we focus on octagons of opposition: these extend the
Aristotelian square (from 2 PCDs to 4 PCDs, i.e. from 2 × 2 = 4 to 4 × 2 =
8 propositions) as well as the duality square (from 2 negation positions to 3
negation positions, i.e. from 22 = 4 to 23 = 8 propositions). We thus consider a
new duality group Z2 × Z2 × Z2, which has been studied purely abstractly [35],
but which also has two distinct concrete interpretations, viz. composed operator
duality and generalized Post duality. These two types of duality, and the octagons
that they give rise to, will be discussed in Sects. 4 and 5, respectively.
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4 Octagons for Composed Operator Duality

Suppose that ϕ is the result of applying an n-ary composed operator O1 ◦ O2 to
n propositions α1, . . . , αn, i.e. ϕ ≡ (O1◦O2)(α1, . . . , αn) = O1(O2(α1, . . . , αn)).9

For example, in modal logic we can view �(p ∧ q) as the result of applying the
composed operator �◦∧ to the propositions p and q. (Westerst̊ahl [47] discusses
a linguistic example, viz. possessives with quantifiers; e.g. some athletes of each
country.) By moving to composed operators, we have added an extra negation
position, viz. intermediate negation. The proposition O1(O2(α1, . . . , αn)) has

• a unique external negation (eneg): ¬O1(¬O2(¬α1, . . . ,¬αn)),
• a unique intermediate negation (mneg): ¬O1(¬O2(¬α1, . . . ,¬αn)),
• a unique internal negation (ineg): ¬O1(¬O2(¬α1, . . . ,¬αn)).

Since each of these 3 independent negation positions may or may not be occupied,
O1 ◦ O2 gives rise to 23 = 8 propositions in total, which exhibit a much richer
duality behavior [6]. We now have three negation operations, and thus three
pairwise combinations: eneg◦ineg, eneg◦mneg, and mneg◦ineg (abbreviated
as ei, em and mi, respectively). Finally, there is eneg◦mneg◦ineg (abbreviated
as emi), which operates on all three negation positions simultaneously.

4.1 The Buridan Octagon in Modal Syllogistics

In the logical works of the medieval philosopher John Buridan, we find three dis-
tinct octagons that exhibit composed operator duality [17,28,38]. We will focus
on (a simplified version of) Buridan’s modal octagon, which contains quanti-
fied de re modal propositions such as ∀x�Px. This proposition is the result of
applying the composed operator ∀ ◦� to Px. This octagon can be thought of as
capturing the interaction between the syllogistic square and the modal square
from Fig. 1(a–b), and is thus a natural extension of both of these squares [17].
The logical behavior of this type of diagrams is well-studied; within the classi-
fication of Aristotelian diagrams, it is called a ‘Buridan octagon’ (for obvious
historical reasons) [15].

The modal octagon is shown in Fig. 5(a).10 For example, we observe that
∀x�Px is contrary to three propositions, viz. (i) ∀x�¬Px, (ii) ∀x¬�Px, and
(iii) ¬∀x¬�¬Px. The first of these contrarieties corresponds to an ineg-relation,
the second one to an mneg-relation, and the third one to an emi-relation. There
are also four pairs of propositions that do not stand in any Aristotelian relation
at all; Buridan himself called these disparatae; today, such pairs are called uncon-
nected (Un) [43]. Two Un-pairs correspond to ei-relations, while the two oth-
ers correspond to ineg-relations. The entire distribution of Aristotelian/duality
relations in Buridan’s modal octagon is summarized by the ADM in Fig. 6.
9 If O2 is n-ary, the composed operator O1 ◦ O2 will also be n-ary. Furthermore, O1

will be assumed to be unary, but this assumption is not essential.
10 To avoid cluttering the diagrams, we will henceforth not explicitly show the CD-

and eneg-relations. These occur exactly at the diagram’s diagonals, which intersect
each other in the diagram’s center of symmetry (recall Footnote 3).
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Fig. 5. (a) Buridan octagon in modal syllogistics; (b) Lenzen octagon in S4.2.

Fig. 6. ADM for the Buridan octagon in modal syllogistics.

This ADM has only 3 connected components. Two of these components
are {CD,eneg} and {EQ, id}, which represent two clear-cut correspondences
between Aristotelian and duality relations. However, in all other cases, the cor-
respondence is highly irregular. Apart from CD, all Aristotelian relations cor-
respond to multiple duality relations. Vice versa, mi and em correspond to a
unique Aristotelian relation (just like eneg), but all remaining duality relations
correspond to multiple Aristotelian relations. All of this illustrates the lack of any
systematic correspondence between Aristotelian and duality relations in Buri-
dan’s modal octagon. Furthermore, it should also be emphasized that this lack of
correspondence cannot be due to Buridan’s octagon purportedly not being a nat-
ural extension of the square of opposition from a duality perspective (unlike the
JSB hexagon that was analyzed in Sect. 3). After all, we have already seen above
that this octagon is a natural extension of the square from both an Aristotelian
and a duality perspective.11

4.2 The Lenzen Octagon in S4.2

Another example of composed operator duality can be observed in the octagon
in Fig. 5(b). This octagon is a natural extension of the modal square in Fig. 1(b):
it is based on ‘doubly modalized’ propositions such as ��p, which can be seen
as the result of applying the composed operator � ◦ � to the proposition p. In
the well-known normal modal logic S4.2, these propositions stand in the Aris-
totelian relations shown in Fig. 5(b). (The key axiom of S4.2 is ♦�p → �♦p [23].)
11 Compare the ADMs for the modal JSB hexagon and Buridan’s modal octagon in

Figs. 4 and 6, and note the absence of ∅ in the latter.
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Furthermore, some of these propositions can be simplified to ‘singly modalized’
propositions (e.g. ��p is logically equivalent to �p in S4.2), but we have not
done so, in order to emphasize the composed operator duality exhibited by this
octagon. This octagon belongs to a well-known type of Aristotelian diagrams,
viz. the ‘Lenzen octagons’ (which is so-called because a diagram of this type was
first used by Lenzen [30]). A Lenzen octagon has recently also been used in [9].

Looking at the octagon in Fig. 5(b), we observe, for example, that ¬��p is
subcontrary to three propositions, viz. (i) ¬��¬p, (ii) �¬�¬p, and (iii) ¬�¬�p.
The first of these subcontrarieties corresponds to an ineg-relation, the second
one to an emi-relation, and the third one to an mneg-relation. We also note that
emi(��p,¬�¬�¬p) and emi(�¬�¬p,¬��p); the first of these emi-relations
corresponds to a contrariety, while the second one corresponds to a subcontra-
riety. The entire distribution of Aristotelian and duality relations in the Lenzen
octagon in S4.2 is summarized by the ADM in Fig. 7.

Fig. 7. ADM for the Lenzen octagon in S4.2.

This ADM shows that the correspondence between Aristotelian and duality
relations in the Lenzen octagon in S4.2 is again quite irregular, although not as
bad as in Buridan’s modal octagon (recall Fig. 6). Apart from CD, all Aristotelian
relations again correspond to multiple duality relations. Vice versa, however, only
mneg, emi and ineg correspond to multiple Aristotelian relations—all other
duality relations correspond to a unique Aristotelian relation.

When we compare the ADM for the Lenzen octagon (cf. Fig. 7) with
that for the square of opposition (cf. Fig. 2), the similarities between both
ADMs seem to prevail, rather than the dissimilarities. Both ADMs have 4 con-
nected components, two of which are {CD,eneg} and {EQ, id}, which repre-
sent clear-cut correspondences between Aristotelian and duality relations. Fur-
thermore, the component {C,SC, ineg} from the square has expanded into
{C,SC,mneg,emi, ineg}. The composed operator duality relations mneg, emi
and ineg thus jointly fulfill the role of the original ineg-relation, in correspond-
ing to C and SC. Similarly, the component {SA,dual} from the square has
expanded into {SA,mi,em,ei}, i.e. the composed operator duality relations mi,
em and ei jointly fulfill the role of the original dual-relation, in corresponding
to SA.

5 Octagons for Generalized Post Duality

Recall that with classical duality, we assume that internal negation is applied
to all argument positions, i.e. if O is an n-ary operator, the internal negation of
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O(α1, . . . , αn) is defined as O(¬α1, . . . ,¬αn) (also cf. Footnote 5). However, we
can also drop this assumption, and let internal negation apply to each argument
position independently [24,31]. In the case of a binary operator O, we thus have
3 independent negation positions in total:12 the proposition O(α1, α2) has

• a unique external negation (eneg): ¬O(¬α1,¬α2),
• a unique first internal negation (ineg1): ¬O(¬α1,¬α2),
• a unique second internal negation (ineg2): ¬O(¬α1,¬α2).

Since each of these 3 independent negation positions may or may not be occupied,
we obtain 23 = 8 propositions in total, which again exhibit a much richer duality
behavior. We now have three negation operations, and thus three pairwise com-
binations: eneg ◦ ineg1, eneg ◦ ineg2, and ineg1 ◦ ineg2 (abbreviated as ei1,
ei2 and i12, respectively). Finally, there is eneg ◦ ineg1 ◦ ineg2 (abbreviated
as ei12), which operates on all three negation positions simultaneously.

5.1 The Keynes-Johnson Octagon in Syllogistics with Subject
Negation

Classically, a categorical statement of the form all A are B is seen as the result
of applying the unary operator all A to the predicate B—which gives rise to the
square of opposition in Fig. 1(a). However, we can also view such a statement as
the result of applying the binary operator all to the predicates A and B. If these
two predicates can be negated independently, we obtain 8 propositions in total.
Assuming that the extensions of A and B are neither empty nor the entire
universe of discourse, these 8 propositions constitute the octagon of opposition
shown in Fig. 8(a), which was first studied by Keynes [27] and Johnson [26].
The logical behavior of this Aristotelian diagram is well-studied [8,20]; from a
classificatory perspective, it is called a ‘Keynes-Johnson octagon’ [13].

Fig. 8. (a) Keynes-Johnson octagon in syllogistics with subject negation—note that
∀(A, B) should be read as all A are B ; (b) Moretti octagon in propositional logic.

12 In general, for an n-ary operator, we have n + 1 independent negation positions,
viz. 1 external negation and n internal negations (one for each argument position).
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Looking at the octagon in Fig. 8(a), we observe, for example, that ∀(A,B)
is contrary to two propositions, viz. ∀(A,¬B) and ∀(¬A,B). The first of these
contrarieties corresponds to an ineg2-relation, and the second one to an ineg1-
relation. We also note that the ineg2 of ∀(A,B) is ∀(A,¬B) and that the ineg2
of ¬∀(A,¬B) is ¬∀(A,B); the first of these ineg2-relations corresponds to a
contrariety, and the second to a subcontrariety. The entire distribution of Aris-
totelian and duality relations in the Keynes-Johnson octagon for syllogistics with
subject negation is summarized by the ADM in Fig. 9.

Fig. 9. ADM for the Keynes-Johnson octagon in syllogistics with subject negation.

This ADM shows that the correspondence between Aristotelian and dual-
ity relations in the Keynes-Johnson octagon is quite regular. Apart from CD,
all Aristotelian relations correspond to multiple duality relations. Vice versa,
however, only ineg1 and ineg2 correspond to multiple Aristotelian relations—
all other duality relations correspond to a unique Aristotelian relation. The
ADM has 5 connected components, two of which are {CD,eneg} and {EQ, id},
which represent clear-cut correspondences between Aristotelian and duality rela-
tions. In comparison with the ADM for the square (cf. Fig. 2), the component
{SA,dual} from the square has expanded into {SA,ei1,ei2}. The generalized
Post duality relations ei1 and ei2 thus jointly fulfill the role of the original
dual-relation, in corresponding to SA. Similarly, the component {C,SC, ineg}
has expanded into {C,SC, ineg1, ineg2}, i.e. the generalized Post duality rela-
tions ineg1 and ineg2 thus jointly fulfill the role of the original ineg-relation,
in corresponding to C and SC.

5.2 The Moretti Octagon in Propositional Logic

Another example of generalized Post duality can be observed in the octagon in
Fig. 8(b). This octagon is a natural extension of the propositional logic square in
Fig. 1(c). It was first studied by Moretti [34] and later also by others [32]. Within
the classification of Aristotelian diagrams, it is called a ‘Moretti octagon’.

Looking at the octagon in Fig. 8(b), we observe, for example, that p ∧ q is
contrary to three propositions, viz. ¬p∧ q, p∧¬q and ¬p∧¬q. The first of these
contrarieties corresponds to an ineg1-relation, the second one to an ineg2-
relation, and the third one to an i12-relation. We also note that the ineg1 of
p∧q is ¬p∧q and that the ineg1 of ¬(¬p∧q) is ¬(p∧q); the first of these ineg1-
relations corresponds to a contrariety, and the second to a subcontrariety. The
entire distribution of Aristotelian and duality relations in the Moretti octagon
for propositional logic is summarized by the ADM in Fig. 10.
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Fig. 10. ADM for the Moretti octagon in propositional logic.

This ADM shows that the correspondence between Aristotelian and dual-
ity relations in the Moretti octagon is quite regular. Apart from CD and
EQ, all Aristotelian relations correspond to multiple duality relations. Vice
versa, however, only ineg1, ineg2 and i12 correspond to multiple Aristotelian
relations—all other generalized Post duality relations correspond to a unique
Aristotelian relation. The ADM has 4 connected components, two of which are
{CD,eneg} and {EQ, id}, which represent clear-cut correspondences between
Aristotelian and duality relations. In comparison with the ADM for the square
(cf. Fig. 2), the component {SA,dual} from the square has expanded into
{SA,ei1,ei2,ei12}. The generalized Post duality relations ei1, ei2 and ei12
thus jointly fulfill the role of the original dual-relation, in corresponding to
SA. Similarly, the component {C,SC, ineg} from the square has expanded into
{C,SC, ineg1, ineg2, i12}, i.e. ineg1, ineg2 and i12 thus jointly fulfill the role
of the original ineg-relation, in corresponding to C and SC.

6 Conclusion

In this paper we have analyzed the correspondence between Aristotelian and
duality relations in four octagons of oppositions. These octagons are all natural
extensions of the square of opposition from both an Aristotelian and a duality
perspective, and hence, they provide a solid basis for our comparative analysis.
The results we obtained are quite nuanced.

On the one hand, the clear-cut correspondence between Aristotelian and
duality relations that is found in many squares of opposition (cf. Fig. 2) is lost.
In each octagon, we find several cases of a single Aristotelian relation corre-
sponding to multiple duality relations, and vice versa (cf. Figs. 6, 7, 9 and 10).
Furthermore, there is no uniform correspondence at the level of diagrams either:
composed operator duality corresponds to (at least) two types of Aristotelian
diagrams (viz. a Buridan octagon and a Lenzen octagon), and generalized Post
duality also corresponds to (at least) two types of Aristotelian diagrams (viz. a
Keynes-Johnson octagon and a Moretti octagon).

On the other hand, at a higher level of abstraction, the correspondence seems
to remain largely intact. Recall that the ADM of the square has 4 connected com-
ponents. In the ADMs of the Lenzen, Keynes-Johnson, and Moretti octagons,
the number of connected components does not decrease. Furthermore, the con-
nected components remain logically meaningful. For example, in the square, SA
corresponds to dual, but in the Lenzen octagon, this Aristotelian relation cor-
responds to ei, mi and em, in the Keynes-Johnson octagon to ei1 and ei2, and
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in the Moretti octagon to ei1, ei2 and ei12. Finally, note that the ADMs for
the Lenzen and Moretti octagons (Figs. 7 and 10) are isomorphic to each other.

In future work, we will further investigate the correspondence between Aris-
totelian and duality diagrams. The results obtained in this paper will provide
valuable input for such an investigation. Another research question is of a more
historical nature. Apart from the square of opposition, the two oldest Aristotelian
diagrams that have ever been used, are probably the Buridan octagon (14th cen-
tury) and the Keynes-Johnson octagon (end of the 19th century). By contrast,
the JSB hexagon—which is the most natural extension of the square from a
strictly Aristotelian perspective—was only proposed in the 1950s. In this paper,
we have argued that, unlike the JSB hexagon, the Buridan octagon and the
Keynes-Johnson octagon can also be seen as duality diagrams (according to a
suitably generalized notion of duality). Consequently, one might wonder whether
these historical facts should primarily be explained in terms of the octagons’
duality relations, rather than their Aristotelian relations.
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Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition,
pp. 93–110. Springer, Basel (2012). https://doi.org/10.1007/978-3-0348-0379-3 6

39. Schumann, A.: On two squares of opposition: the Leśniewski’s style formalization
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José Mart́ın Castro-Manzano(B)

Faculty of Philosophy and Humanities, UPAEP, 21 sur 1103, Puebla, México
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1 Introduction

In this contribution we try to accomplish two goals: (i) to introduce a system that
represents syllogistic by exploiting an analogy with jigsaw puzzles and (ii) show
that it is sound and complete with respect to its decision procedure. To reach
these goals we briefly review a relation between logic and diagrams (Sect. 2),
we mention some general aspects of syllogistic and jigsaw puzzles (Sect. 3), and
finally, we present the system along with some of its properties (Sects. 4 and 5).

2 Logic and Diagrams

2.1 Logical Systems

Reasoning is a process that produces information given previous data by follow-
ing certain norms that allow us to describe inference as the unit of measurement
of reasoning: inference may be more or less (in)correct depending on the com-
pliance or violation of such norms. Logical systems, the tools used to model and
better understand inference, may be defined by pairs of the form 〈L,B〉, where
L stands for a language, and B for a semantic base (often equivalent to a calcu-
lus). Usually, some syntax is used to determine, uniquely and recursively, the well
formed expressions of the system; while semantics is used to provide meaning to
such expressions.

2.2 Diagrams

In order to represent knowledge, we use internal and external representations.
Internal representations convey mental images, for example; while external
representations include physical objects on paper, blackboards, or computer
c© Springer International Publishing AG, part of Springer Nature 2018
P. Chapman et al. (Eds.): Diagrams 2018, LNAI 10871, pp. 657–671, 2018.
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screens. External representations can be further divided into two kinds: sen-
tential and diagrammatic [1]. Sentential representations, as the name indicates,
are sequences of sentences in a particular language. Diagrammatic representa-
tions, on the other hand, are sequences of diagrams that contain information
stored at one particular locus, including information about relations with the
adjacent loci : diagrams are information graphics that index information by loca-
tion on a plane [1,2]. For the purposes of this contribution, we take it that a
logic diagram is a two-dimensional geometric figure with spatial relations that
are isomorphic with the structure of logical statements [3, p. 28]. The difference
between diagrammatic and sentential representations is that, due to this spatial
feature, the former preserve explicitly information about topological relations,
while the latter do not—although they may, of course, preserve other kinds
of relations. This spatial feature provides some computational advantages: dia-
grams group together information avoiding large amounts of search, they auto-
matically support a large number of perceptual inferences, and they grant the
possibility of applying operational constraints (like free rides and overdetermined
alternatives [4]) to allow the automation of perceptual inference [1].

2.3 Logic with Diagrams

To wrap all this up, if reasoning is a process that produces information given
previous data and information can be represented diagrammatically, it is not
uncomfortable to suggest that diagrammatic inference is the unit of measure-
ment of diagrammatic reasoning: diagrammatic inference would be (in)correct
depending on the compliance or violation of certain norms. This relation would
define our intuitions around the informal notion of visual inference and would fol-
low, ex hypothesi, classical structural norms (reflexivity, monotonicity, and cut)
by way of free rides, that is to say, by way of processes that allow us to gain infor-
mation without following any step specifically designed to gain it, i.e., processes
that allow some reasoner to reach automatically (and sometimes inadvertently)
a diagrammatic representation of a conclusion from a given diagrammatic rep-
resentation of premises [4, p. 32][5]. VENN is a diagrammatic logical system of
this sort [6].

3 Syllogistic and Jigsaw Puzzles

3.1 General Aspects of Syllogistic

Syllogistic is a term logic that has its origins in Aristotle’s Prior Analytics [7]
and deals with the consequence relation between categorical propositions. A cat-
egorical proposition is a proposition composed by two terms, a quantity, and
a quality. The subject and the predicate of a proposition are called terms: the
term-schema S denotes the subject term of the proposition and the term-schema
P denotes the predicate. The quantity may be either universal (All) or particu-
lar (Some) and the quality may be either affirmative (is) or negative (is not).
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These categorical propositions have a type denoted by a label (either a (universal
affirmative, SaP), e (universal negative, SeP), i (particular affirmative, SiP), or
o (particular negative, SoP)) that allows us to determine a mood. A categorical
syllogism, then, is a sequence of three categorical propositions ordered in such a
way that two propositions are premises and the last one is a conclusion. Within
the premises there is a term that appears in both premises but not in the conclu-
sion. This particular term, usually denoted with the term-schema M, works as a
link between the remaining terms and is known as the middle term. According
to the position of this last term, four figures can be set up in order to encode
the valid syllogistic moods or patterns (Table 1)1.

Table 1. Valid syllogistic moods

Figure 1 Figure 2 Figure 3 Figure 4

aaa (Barbara) eae (Cesare) iai (Disamis) aee (Calemes)

eae (Celarent) aee (Camestres) aii (Datisi) iai (Dimatis)

aii (Darii) eio (Festino) oao (Bocardo) eio (Fresison)

eio (Ferio) aoo (Baroco) eio (Ferison)

3.2 General Aspects of Jigsaw Puzzles

A tessellation in the euclidean plane is a covering of the plane without gaps or
overlappings by congruent polygons called tiles. A square-tiling, for example, is
a tessellation that uses squares as tiles; formally, it is a subset of the euclidean
plane that is the union of two sets of equally spaced parallel lines such that
the lines of each different set are perpendicular [8, p. 69] (Fig. 1a). Notable and
more complex examples of tessellations can be found within Islamic patterns
[9], Kepler’s monsters [10], Escher’s lithographs [11], and Penrose’s aperiodic
tessellations [12].

Fig. 1. Tessellations

1 For sake of brevity, but without loss of generality, here we omit the syllogisms that
require existential import.
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In particular, a jigsaw puzzle is some sort of tessellation: it is a tiling array
composed by a finite set of tessellating pieces that require assembly by way of
the interlocking of tiles known as knobs and sockets (Fig. 1b). These types of
puzzles date back as far as Archimedes [13, p. 13], although the typical pictorial
jigsaw puzzles we are familiar with have their roots in the 1760’s when John
Spilsbury first dissected maps for educational purposes [14, p. 24].

4 The System JGSW

With this background in mind, we now suggest that a modern version of syllo-
gistic can be represented with jigsaw puzzles: just as jigsaw puzzles require the
interlocking of tiles, syllogisms require the linking of terms. JGSW is a diagram-
matic system that exploits this analogy by using a square-tiling tessellation in
order to provide representation and a decision procedure for syllogistic. In this
section we define JGSW by detailing its vocabulary, its syntax, and semantics.

4.1 Elements of JGSW

The vocabulary of JGSW is defined by two elementary diagrams (i.e., pieces or
tiles), sockets and knobs (Fig. 2).

Fig. 2. Vocabulary

Syntax is defined by two rules: (i) given two elementary diagrams, the com-
binations of diagrams in Fig. 3a are well formed diagrams (wfd); and (ii) a finite
sequence of wfds is also a wfd (we call this sequence a stack) (Fig. 3b).

Fig. 3. Syntax
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Fig. 4. Semantics

Semantics is given by the interpretation of Fig. 4.
With these elements we can represent the categorical propositions. For sake

of brevity, we will label each tile with an affirmative subject or predicate term-
schema, S or P, given that the tile already indicates the quantity associated
to each term (later we will use S and P in order to denote the complementary
term-schemas of S or P); and for sake of visualization, we will color the terms2.
The diagrams in Fig. 5a represent, thus, the categorical propositions: (A) SaP,
(E) SeP, (I) SiP, and (O) SoP.

With this information, we can arrange a boolean square of opposition in
which the only rules preserved would be the rules for contradiction between
A and O, and between E and I; contrariety, subalternation, and subcontrariety
do not work (Fig. 5b). Thus, this system’s square behaves as a modern square
of opposition rather than a traditional square. However, despite this apparent
shortcoming, the equivalence rules of conversion, contraposition, and obversion
are preserved in JGSW by the mechanical operations of rotating diagrams and
switching tiles.

Fig. 5. Propositions

4.2 Equivalence Rules

Conversion consists in rotating a wfd by 180◦. In Fig. 6 we can notice the con-
version of a proposition E (I) semantically—and visually—remains a proposition
E (I), but the conversion of a proposition A (O) does not remain a proposition A
(O). Hence, conversion holds only between propositions E and I (the arrows in
Fig. 6 indicate the equivalence).
2 We use colors with the purpose of showing the reasoning process. A logical use of

color can be seen in [15].
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Fig. 6. Conversion

Contraposition consists in switching the position of a socket to a knob (or
vice versa) with its respective complementary terms. In Fig. 7 we can see the
application of a contraposition to a proposition A (O) remains semantically and
visually a proposition A (O), but contraposition of propositions E and I produce
propositions I and E, which are not equivalent to the original propositions. Thus,
contraposition holds only between propositions A and O.

Fig. 7. Contraposition

Finally, obversion consists in switching sockets to knobs (or vice versa) just
in the predicate terms along with their respective complements. In Fig. 8 we can
see the application of an obversion to any proposition produces an equivalent
proposition.

Fig. 8. Obversion
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4.3 Decision Procedure

Up to this point, we can represent categorical propositions. Now we need a way
to represent categorical syllogisms and some method to decide whether these are
(in)valid. In order to achieve the former goal, we just need to stack up the wfds
that represent the premises of each syllogism; to achieve the latter, suppose we
build categorical propositions using a single term-schema, say M (Fig. 9). We can
observe that, from these representations, only proposition A, All M is M, is a
tautology. Using this tautology, we suggest a decision procedure for JGSW that
takes any syllogism σ as an input and decides whether it is (in)valid by verifying
a single rule: if the interlocking of its middle terms produces a proposition of
type A, the syllogism is valid; otherwise, it is invalid (Algorithm1).

Fig. 9. Propositions using the term M

Algorithm 1. A1

Input: syllogism σ
if interlocking of middle terms of σ == A then

σ is valid;
else

σ is invalid;
end

4.4 Validity of the Syllogisms

Using the rules of equivalence and the previous decision procedure, we now prove
the 15 valid syllogisms depicted in Table 1 (Figs. 10, 11, 12 and 13). We start
by stacking up the wfds that represent the premises of each syllogism. Then we
apply A1 and we check if the middle term tiles interlock each other forming a
proposition A (a step denoted by the arrows in the following Figures); in case
it does, the inference is valid, thus allowing a free ride by letting the tiles S
and P interlock in the third diagram (i.e., the conclusion), which is below the
turnstile. These steps will be exemplified with more detail below; meanwhile, in
what follows, conv stands for conversion, contra for contraposition, and obv for
obversion.
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Fig. 10. Proofs of the syllogisms of the first figure

Fig. 11. Proofs of the syllogisms of the second figure

4.5 Examples

Now, in order to illustrate how we can use JGSW, let us show some examples that
give the feeling of the mechanical operations involved, because besides having
diagrammatic properties, JGSW can be materialized, so to speak: JGSW is, after
all, a jigsaw puzzle made up of physical tiles.

Hence, the following examples differ from the previous proofs in that these
are not proofs but applications that presuppose the results of the proofs. First
we show an example of a valid syllogism, then the result of applying our method
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Fig. 12. Proofs of the syllogisms of the third figure

Fig. 13. Proofs of the syllogisms of the fourth figure

to an invalid syllogistic form, and finally, an example of how the system may
be used to find a missing conclusion given an enthymeme. In the next Figures,
the arrows indicate transitions between steps and the superscript index denote
steps.

Example 1. Consider a Baroco syllogism (Fig. 14). We stack up the premises
(step 1) and we overlap them in order to meet the S with the P, because the
conclusion requires meeting the S with the P (step 2). Since the P must be to
the right in the conclusion, we rotate the overlapped diagrams (step 3) and we
can observe that, by an application of A1 , since the middle terms do produce a
proposition A (step 4), this example must be a valid syllogism, and thus, we can
reach the conclusion (step 5). This is a fair example of a free ride.

Notice how the proof of the Baroco syllogism (Cf. Fig. 11) differs from the
application of JGSW to it: while the proof requires the adherence to the explana-
tory principles of syllogistic (semantics, equivalence rules, and so on), the appli-
cation does not appeal to such principles; therefore, we do not require a previous
knowledge of what the conclusion should be. Also, note that the operation of
overlapping resolves a potential issue with A1: it is true that the algorithm merely
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Fig. 14. An example of a valid syllogism

checks whether the middle terms produce a proposition A when the premises are
stacked, which seems to imply that only the syllogisms from Fig. 1 will come
out to be valid; and if the equivalence rules must also be applied, and it is only
after they are applied that A1 will give the correct decision, it seems there is no
clear indication that the application of rules will ever terminate. However, the
process of overlapping, as we have exemplified it in the previous example, allows
us to dodge this issue because it results in a configuration that grants a direct
application of A1. This solution yields Algorithm2.

Algorithm 2. A2

Input: syllogism σ
σ′ ← overlap σ
apply A1(σ′)
if A1(σ′) == invalid then

σ′′ ← rotate σ′;
apply A1(σ′′);

end

Example 2. Consider the syllogistic form iai-1 (Fig. 15). We first stack up the
premises (step 1) and we overlap them in order to meet the S with the P (step
2). By A2, since the middle terms do not produce a proposition of type A (step
3), this example must be invalid, that is to say, we cannot reach the conclusion:
this is indicated by the X.

Notice that, in this particular example, regardless of how the original stack is
manipulated, we will never reach the criterion of validity, since it can be shown
that a proposition of type I (i.e. two connected knobs) cannot be transformed
into a proposition of type A (i.e. a socket linked to a knob). A general answer to
this issue will be given with the results of Sect. 5.

Example 3. Consider a syllogistic form with missing conclusion: ia?-3
(Fig. 16). Since the application of JGSW differs from a proof, we do not require
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Fig. 15. An example of an invalid syllogism

to know the right conclusion before we begin. Thus, if the premises yield a con-
clusion, the application of JGSW must provide such conclusion. So, we stack up
the premises (step 1) and we apply A2. Since the middle terms do produce a
proposition of type A (step 3), we can find the right and unique conclusion (step
4). This process indicates that this example has the form iai-3: it is a Disamis
syllogism. The same method can be applied when searching for missing premises.

Fig. 16. An example of an enthymeme

5 Properties of JGSW

In this section we try to accomplish our second goal by exploring the soundness
and completeness of JGSW w.r.t. A2. But before we show proof of these proper-
ties, we need a preliminary result that we call Aristotle’s lemma, in homage to
Pr. An. A.1, 25b1.

Lemma 1 (Aristotle’s lemma). All valid syllogisms can be reduced to valid
syllogisms of the first figure.

Proof. To provide proof of this statement, we proceed by cases (Figs. 17, 18 and
19). The proof requires us to introduce two simple rules: move, which moves a
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Fig. 17. Reduction of the second figure to the first figure

Fig. 18. Reduction of the third figure to the first figure

diagram in the stack of premises; and contradiction, which takes the contradictory
diagram of the conclusion and interchanges it with a diagram in the stack of
premises.

With this result in our hands, we can now present proofs of soundness and
completeness w.r.t. A2. Let us denote the application of A2 to a given syllogism
σi,j from figure i ∈ {1, 2, 3, 4} and row j ∈ {1, 2, 3, 4}, as in Table 1, by A2(σi,j);
thus, for instance, the application of A2 to a Ferison syllogism is A2(σ3,4); and
for sake of exposition, A2(σ4,4) is a placeholder.

Proposition 1 (Soundness w.r.t. A2). If A2(σ) = valid, then σ is valid.

Proof. We prove this proposition by cases. Since there are four figures, we need to
cover each valid syllogism from each figure. This is what we have done in Sect. 4,
Figs. 10, 11, 12 and 13: for every σi,j we have checked that when A2(σi,j) = valid,
σi,j is valid.

Proposition 2 (Completeness w.r.t. A2). If σ is valid, then A2(σ) = valid.

Proof. We prove this by contradiction. Suppose that for all i, j, syllogism σi,j

is valid but for some valid syllogism σk,j , A2(σk,j) = invalid. We know σi,j

is valid and if we apply A2(σk,j) we obtain A2(σk,j) = valid, as we have seen
from Proposition 1. Since all valid syllogisms σn>1,j can be reduced to the valid
syllogisms of Fig. 1 by Aristotle’s lemma, it follows that A2(σn>1,j) = valid,
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Fig. 19. Reduction of the fourth figure to the first figure

and thus, for all valid syllogisms k, A2(σk,j) = valid, which contradicts our
assumption.

Proposition 3 (Decidability). JGSW is decidable.

Proof. JGSW is decidable w.r.t. A2 since it is a finite, sound, and complete
procedure that takes any syllogism and decides whether it is (in)valid.

Proposition 4 (Equivalence). JGSW is equivalent to VENN w.r.t. a syllogis-
tic base.

Proof. In order to provide proof for this statement we show that every valid
syllogism in JGSW is a valid syllogism in VENN and vice versa. From left to
right: suppose that for any valid syllogisms σ, σi,j is a valid syllogism in JGSW
but is invalid in VENN. Given the soundness and completeness of JGSW, if σi,j

is a valid syllogism in JGSW, σi,j is valid simpliciter. But since VENN is sound
and complete as well [6], if σi,j is invalid in VENN, then σi,j must be invalid,
which is a contradiction. From right to left the proof is similar.

What this brief exploration shows is that JGSW is a bona fide diagram-based
logic because it produces valid (soundness) and only valid inferences (complete-
ness) by providing a mechanical method of decision (decidability) that helps
the automation of perceptual inference while preserving our common intuitions
about diagrammatic inference (equivalence).

5.1 Representational Properties

In order to evaluate the representational attributes of JGSW, let us consider a
framework based upon [2, p. 305]. According to it, these representational qual-
ities include: comprehension (diagrams promote system understanding), clarity
(diagrams are not ambiguous), parsimony (diagrams are explanatory), relevance
(diagrams support problem solving), and separability (diagrams allow multilay-
ered descriptions).
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1. Comprehension. Does JGSW promotes system understanding? It seems ade-
quate to say that JGSW does promote system understanding, since it offers a
structural explanation of categorical propositions (JGSW diagrams are struc-
tures that represent terms) and a working explanation of the main core of
syllogistic (the algorithms provide an explanation of syllogistic by exploiting
an analogy with jigsaw puzzles).

2. Clarity. Are JGSW diagrams ambiguous? JGSW diagrams have a clear moti-
vation and a well defined vocabulary. Syntax and semantics guarantee that
JGSW diagrams are not syntactically nor semantically overloaded because
each diagrammatic object means a thing and one thing only.

3. Parsimony. Are JGSW diagrams explanatory? It seems fair to say that JGSW
diagrams are parsimonious in so far as they provide a level of abstraction high
enough to explain a term logic in which the basic elements include, properly
speaking, terms, quantity, and quality.

4. Relevance. Do JGSW diagrams support problem solving? It also seems fair to
say that JGSW diagrams are good enough to solve inferential problems, given
that they allow perceptual inference while preserving our common intuitions
about diagrammatic inference.

5. Separability. Do JGSW diagrams allow multilayered descriptions? It is clear
JGSW diagrams can be (dis)assembled as to avoid representational issues.
Plus, the mechanical operations of rotation, interchange, stacking, and inter-
locking allow modular descriptions of syllogistic inference.

6 Conclusions

By exploiting an analogy with jigsaw puzzles, in this contribution we have intro-
duced a diagrammatic logical system that represents a modern version of syllo-
gistic. We think this goal is compelling in and of itself, but it is also interesting
because a system like this has not been developed previously, as far as we are
aware (Cf. [3,16]); and because the system offers a non-linear (Cf. [17–19]) and
non-regional (Cf. [6,20,21]) diagrammatic approach for syllogistic that is capa-
ble of being externalized—given the very analogy with jigsaw puzzles—, for
instance, by way of wooden or metal tiles, thus allowing combinations of colors,
materials, and textures that may provide some sort of non-linguistic information
for performing heterogeneous inference. Also, we are currently trying to incor-
porate another aspects of syllogistic inference with singular terms, relations, and
non-classical quantifiers.
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Abstract. Data privacy is a cross-cutting concern for many software
projects. We reify a philosophically inspired model for data privacy into
a concept diagram. From the concept diagram we extract the privacy con-
straints and demonstrate one mechanism for translating the constraints
into executable software.

1 Introduction

There have been many definitions and analyses of “privacy” as a concept; how-
ever, clarity and consensus are still lacking. A widely cited definition of privacy
is “the right to be left alone” [1]. In the contemporary digital information era,
the information aspect of privacy dominates one’s privacy: “you are your infor-
mation” [2]. It follows that, privacy is largely information privacy. The right to
privacy (to be left alone) is therefore, the right to information privacy.

The difficulty in maintaining information privacy can be illustrated using an
example of transitive friendship on social networks. In the example a student has
not shared their phone number with an employer. However, another employee
of the same organisation, who is a personal friend of our student, may share our
student’s phone number with the employer. In this case, the employee has moved
the visibility of the student’s number from the personal domain to a professional
domain. The example serves to further demonstrate how information privacy is
not solely a problem of software security. To address the need for a model for
privacy the 3CR model was developed [3].

In this paper we present a reification of an extension of 3CR using concept
diagrams [4]. As this is the first application of concept diagrams to enforce run-
time constraints we also believe the method we followed is of use to researchers.
Finally, we demonstrate how key constraints from the concept diagram can be
implemented in a software application.

This paper is organised as follows. The 3CR model is presented in Sect. 2. A
brief introduction to concept diagrams is presented in Sect. 3. Our method for
reifying 3CR is presented in Sect. 4 and our constraint implementation, using
Haskell’s software transactional memory, is explained. We present a discussion on
the related work in Sect. 5. Finally, the conclusion and future work are presented
in Sect. 6.
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2 3CR: A Privacy Ontology

The 3CR model is grounded in the core value framework [5] and is presented
in an informal diagrammatic notation, Fig. 1a, which is visually similar to that
of concept diagrams. The model concerns itself with the question of an actor’s
agency regarding their information or “who can do what to my information”.

The who concerns one’s relationship to others. This concern requires a con-
sideration of situations in which the relationship is recognized. Since relation-
ships evolve over time, a situation is determined spatiotemporally - i.e., when
and where, if applicable. Thus, the right to information privacy has a situation
dimension - i.e., in what situation can the right be claimed.

The what concerns information content and details its information about
“my information”. The right in this dimension is to determine size, volume and
granularity of the allowed operations on the information.

The do concerns actions on the what (i.e., the selected information). Do-
actions can be observation, presentation, access, manipulation or distribution.
Observation means watching and remarking on the information, presentation
refers to the freedom in presenting the information (i.e., when, where and how
to present the information), access means ways of viewing and retrieving the
information, manipulation refers to modification of the information, and dis-
tribution means sharing the information out with one or among a number of
recipients.

(a) (b)

Fig. 1. Ontological grounding of 3CR

The 3CR model views the consistency between how data is used and the pur-
poses for which it is collected as fundamental to protecting privacy. This view
follows from two principles of information privacy introduced by the OECD1,
namely the Purpose Specification Principle and the Use Limitation Principle. A
UML-like notation is used in [3] to present the grounding of 3CR in the purpose
1 http://www.oecd.org/sti/ieconomy/oecdprivacyframework.pdf.

http://www.oecd.org/sti/ieconomy/oecd privacy framework.pdf
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specification principle, Fig. 1b. The Purpose Specification Principle governs the
reasons the data is gathered and restricts further uses of the data to the pur-
poses for which it was collected. We refer to the 3CR model with an informal
grounding of data purpose and data usage as the 3CR+ model [3]. The next
section introduces concept diagrams that will be used to reify 3CR+ in Sect. 4.

3 Concept Diagrams

Concept diagrams [6] are a formal diagrammatic system which focus on express-
ing semantic web concepts. Concept diagrams represent classes and properties
using closed contours and arrows respectively. Concept diagrams express sub-
sumption and disjointedness of classes spatially, using the same visual notation
that Euler diagrams use to express subset and disjoint sets. Arrows in a con-
cept diagram represent properties and are allowed between contours and between
individuals and contours. The notation for individuals within classes is borrowed
from Spider diagrams [7], which denote an individual using a dot as depicted in
Fig. 2b.

The example concept-diagram in Fig. 2b asserts the existence of two classes.
These are DataObject and DataPurpose. Moreover, it asserts that elements
of DataObject are related to subsets of DataPurpose under dataCollection.
In addition, the property dataUse relates the same anonymous individual of
DataObject to some anonymous subset of the “image” of dataCollection. That
is to say, dataUse is a sub-property of dataCollection.

(a) (b)

Fig. 2. Constraints on data purpose

The semantics of concept diagrams are provided in [6]. Some facts from the
diagram in Fig. 2b are captured by the following statement in description logic:

DataPurpose ⊆ DataObject ⊆ ⊥ � (dataCollection � dataUse)
�DataPurpose : work � DataPurpose : marketing � DataPurpose : friend

This statement in description logic also provides our motivation for prefer-
ring to diagrammatically formalise 3CR+. The stakeholders in the formalisation
process were uncomfortable working in symbolic logic but embraced the dia-
grammatic presentation.
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4 Reifying and Implementing 3CR+

3CR+ is presented as a set of diagrams; an ontology in a concept-diagram like
notation and data use/purpose presented in a UML-like notation. Our method
for formalising 3CR+ produces a concept diagram and follows 3 steps:

Formalising Individuals. The informal 3CR+ diagrams do not distinguish
between individuals and classes. Using concept diagrams we can represent this
distinction and introduce more of the information described in the text accom-
panying 3CR+ into the diagram.

The diagram in Fig. 1a represents privacy using a closed contour. Under a
concept diagram interpretation this asserts that privacy is a class. However the
text in [3] enumerates the core values as a superset of those contained in the
UN declaration of human rights2. As such, there are only a limited number
of CoreValues. To capture both the diagrammatic and textual information we
represent each textually enumerated item as a spider in Fig. 2a. The upper bound
on the cardinality of the enumeration is denoted using shading.

Formalising Properties. We consider the textual description of 3CR+ and the
relationships depicted in the existing diagrams. These relationships are for-
malised as properties with labels that convey their intended semantics more
specifically. Moreover, we replace all the ternary relations in 3CR+ with multi-
ple binary relations.

Of particular interest is the interpretation of data usage and data purpose
in Fig. 1b. In both cases there exists a ternary relation involving data object
and either purpose or usage. The accompanying text in [8] informs that “usage
... can be interpreted by ‘purpose of use’ ”. As such, this constraint may be
modelled in a concept diagram using property subsumption. We introduce the
property dataUse relating DataObject to DataPurpose. The dataUse property
is subsumed by dataCollection and reflects the key constraint that data objects
must not be used for purposes other than those which they were collected.

Enriching Properties. By enriching properties we link the formalised concept-
diagram to other ontologies realising some of the promised advantages of the
semantic web. The text accompanying Fig. 1a describes how the diagram repre-
sents a user’s perspective of 3CR+. In a concept diagram we wish to represent
the relationship between all users and the CoreValue of privacy. Using the
extensibility of semantic web technologies we may introduce a Person class from
the FOAF ontology3 to represent our users . A Person may be related to an iden-
tity under the foaf:nick property. The change in perspective, brought about by
the reification process, requires us to realign the properties from Person through
Identity to CoreValues. This relates all people to privacy.

2 http://www.un.org/en/universal-declaration-human-rights/.
3 http://xmlns.com/foaf/spec/.

http://www.un.org/en/universal-declaration-human-rights/
http://xmlns.com/foaf/spec/
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Constraint Implementation. To enforce constraints from the formalised
3CR+ ontology we use software transactional memory (STM) techniques
from [9]. Our example demonstrates aspects of constraint assertion that can-
not be modelled in STM alone and requires the programmer to show due care
and attention to protecting privacy. The concept diagrams containing our con-
straints serve to guide the programmer implementing the system.

We concentrate on the contacts directory in Sekope’s mobile phone. Sekope is
the friend of our student, from the introdution, and both of them are employed
by the same company. We consider two constraints, in Fig. 2, extracted from
our formalisation process. In this instance we find that there are at least three
DataPurposes. We can infer from the context that Sekope stores our student’s
number for the purpose of friend indicating that it is not for use in a work pur-
pose. We implement the concept of a DataPurpose in Haskell using an algebraic
data type on line 1 of Fig. 3. A contact record is also represented as an algebraic
data type but in this case there are two functions dataCollection and dataUse
that relate a ContactEntry to a set of DataPurposes. Haskell’s type system, like
the type systems of all mainstream programming languages, cannot express the
constraint that for every DataPurpose the range of dataUse must be a subset
of dataCollection. The constraint expressed in the diagram in Fig. 2b must
necessarily be implemented using run-time, as opposed to compile-time, checks.

1 data DataPurpose = Friend | Work | Marketing
2 data ContactEntry = ContactEntry {
3 number : : PhoneNumber
4 , dataCollection : : (S. Set DataPurpose) , dataUse : : (S. Set DataPurpose)
5 }

Fig. 3. Implementing DataPurpose, dataCollection and dataUse

We implement a directory of contacts as a transactional variable. Because of
this design decision we may use features of Haskell’s software transactional mem-
ory implementation to specify run-time constraints. The constraint that the use
purposes agree with the collection purposes of each ContactEntry is expressed on
line 5 of Fig. 4. This invariant constraint is installed into the STM subsystem at
runtime. The constraint is checked after each transaction involving the transac-
tional variable. If the constraint fails, then the transaction is rolled-back. There-
fore inserting ‘ContactEntry 1234 (S.fromList [Friend, Work]) (S.fromList [Friend ])’

will succeed as the set of use purposes (S.fromList [Friend]) is a subset of the col-
lection purposes (S.fromList [Friend, Work]). A transaction to insert an invalid
entry ‘ContactEntry 5555 (S.fromList [Friend, Work]) (S.fromList [Marketing])’ will
fail as the set of use purposes is not a subset of the collection purposes. In short,
if Sekope collects our student’s number for the purposes of being a friend, he
cannot then add her number to his directory in a work context.

The object of our exercise is to ensure that Sekope cannot share his friend’s
phone number with their employer. This cannot be modelled inside the Haskell
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1 predicate dataUseIsCollectionPurpose : : ContactsDirectory → STM Bool
2 predicate dataUseIsCollectionPurpose addressBook = do
3 addresses ← getAllAddresses addressBook
4 return $ all checkPurposes addresses
5 where checkPurposes number =
6 S. isSubsetOf (dataUse number) (dataCollection number)

Fig. 4. Describing an invariant

STM constraint system as it is ill-advised make reading a transactional variable
conditional upon the state of the variable itself. We use information hiding to
provide a getContact function, see Fig. 5, which returns the contact if and only
if the stated use purpose for the contact is one of the collection purposes of the
contact. Internally in our module we make use of getContactUnsafe, a function
that reads a ContactEntry from our transactional ContactsDirectory without
checking whether the use purpose agrees with the collection purpose. Haskell’s
information hiding ensures that we do not expose our unsafe function to the
rest of the application. As such, the transfer of a friend’s phone number is only
allowed if the number does not leave the friend context.

1 getContactUnsafe : : PhoneNumber → ContactsDirectory →
STM (Maybe ContactEntry)

2 getContact : : PhoneNumber → (S.Set DataPurpose) →
STM (Either (Maybe ContactEntry))

3 transferContact : : PhoneNumber → PhoneNumber → ContactsDirectory →
STM (Either (Maybe ContactEntry))

Fig. 5. Signatures for safely transferring a contact

We have presented our formal reification of the 3CR+ ontology and we have
demonstrated how the constraints may be realised in a software application. We
now turn our attention to the related work in this field.

5 Related Work

KAoS [10] provides a mechanism for specifying ontology-based access policies in
a variety of systems including web services. KAoS policies can be specified in
OWL 2 [11] and are compiled into a form that is enforced at run-time through
a theorem prover. KAoS polices can be defined graphically however, unlike our
approach, reasoning about KAoS models is performed symbolically. Both Rei [12]
and the W3C P3P project [13] similarly allow providers of web services to model
what personal information they use in a transaction and how that information
is processed. The primary concern of Rei is that of specifying security control
whereas P3P, in intent, extends the ‘do not track’ feature found in modern web
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browsers to include privacy options. Both the authorization mechanisms within
Rei and the privacy mechanisms of P3P may be implemented by any software
agent that interacts with the web. User interfaces for P3P present a number of
controls to users who may customise their personal privacy policies. Again, like
KAoS, Rei and P3P do not support diagrammatic reasoning. All reasoning is
performed at a symbolic level.

In [14] the authors extend existing role-based access control (RBAC) mecha-
nisms to support privacy. Their concepts of OwnerConsent and temporal periods
closely reflect aspects of the 3CR model. This work similarly applies the Purpose
Specification Principle and Use Limitation Principal from the OECD guidelines.
Translating [14]’s RBAC policies into OWL can be achieved through either of
the representations described in [15]. Our approach differs from [14] in the philo-
sophical inspiration of the privacy model and in the number of transformations
of the model in order to implement it. Our approach transforms an informal
diagrammatic model into a formal diagrammatic model and from there allows
implementation.

The diagrammatic modelling of privacy constraints in [16] allows, like our
approach, diagrammatic reasoning to be performed with the constraints. The
presentation in [16] is motivated by the need for clear communication of privacy
legislation within large engineering teams. As such, UML diagrams – a notation
favoured in real-world engineering – are the preferred diagrammatic notation.
Through our use of concept-diagrams we provide an unambiguous model where
the translation to implementation can be assisted using a theorem prover.

6 Conclusion

Diagrams in [3] were intended as illustrative rather than formal. We have demon-
strated how an informal diagrammatic system can be reinterpreted as a formal
concept diagram. Our reification resulted in a constraint-diagram that makes
extensive use of axioms found in [4]. While we cannot offer proof that the formal
system captures precisely the informal system, we have provided an implemen-
tation of the formal system. In our implemenation we rely on functionality pro-
vided by Haskell’s software transactional memory. It is clear that our approach
to implementing constraints may be extended to other transactional systems
that allow expressive constraints.

In future work we wish to extend mechanisms for enforcing privacy in infor-
mation systems. In particular we want to introduce notions of time into concept
diagrams so that sharing of information may be bounded temporally. Moreover,
we wish to algorithmically refine constraints in our concept diagram into suitable
type-level and runtime transaction constraints.
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Abstract. We introduce a general approach, based on diagrams, to the
specification and construction of model checkers. This approach gives
general model checkers that can be instantiated to a model checker for
a specific modal logic with semantics described by graphical rules. This
paper proposes a way of combining graphical and general approaches to
model checking so that the instantiation to specific logics is user-friendly
and natural.
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1 Introduction

We introduce a general approach, based on diagrams, to the specification and
construction of model checkers. This approach gives general model checkers that
can be instantiated to model checkers for specific logics with semantics described
by graphical rules. We illustrate the approach by applying it to classical and
intuitionistic modal logics.

Many new modal logics have been proposed for expressing properties of finite-
state (concurrent) systems. Model checking is a very powerful and mature tech-
nique for this task. A model checker for a specific logic receives (representations
of) a finite model M, a formula ϕ and state a of M and decides whether M
satisfies ϕ at a [4].

Our aim is to provide a general graphical framework to express modal logics
and to generate model checkers in an easy and neat way. Instead of developing
a specific model checker for each modal logic, our approach will provide a single
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general model checker that can be easily instantiated to one for each logic. Such
a general model checker, which can be instantiated easily for a large class of log-
ics, has several interesting possible applications in teaching and in investigating
newly developed logics.

This approach involves two components: a logic-dependent converter and a
general model checker; the former receives a formula ϕ and converts it to a
graphical expression E, whereas the latter, upon receiving E, a model M and a
state a of M, decides whether M satisfies E at a. The user will be concerned only
with the graphical description of the semantics of the specific logic (see Fig. 1,
p. 2). The converter will eliminate the symbols of the formula according to this
description.

This approach has crucial issues concerning formulation of general rules and
handling expressions; graphical concepts, based on diagrams, are very conve-
nient for them. The visualization provided by diagrams is a useful guide for the
translation of the semantics. The graphical machinery we employ here extends
that used in [2] (for binary relations) by the addition of unary arcs (for subsets).

Fig. 1. General model checker GMC with converter Cnv

The structure of this paper is as follows. In Sect. 2, we introduce, informally,
some basic ideas involved in graphical specification of logic. Sect. 3 presents the
precise ideas underlying our graphical approach. In Sect. 4, we examine more
precisely graphical formulations of semantics: graphical expressions and elimi-
nation rules. In Sect. 5, we introduce our general graphical converter and model
checker and examine their instances. Sect. 6 presents some concluding remarks
about our graphical approach.

2 Graphical Specification: Basic Ideas

We now introduce some basic ideas, which will be defined in Sect. 3.
Our graphical objects involve nodes and arcs. Nodes stand for states

(see p. 4).
An important concept is satisfaction of a formula at a state; we use unary

arcs for this. We represent that formula ϕ holds at node w by a dashed line from
w to ϕ: w � ���� ϕ . We can also represent joint satisfaction at a node, e. g.
p w�� � � � � ���� q represents that both formulas p and q hold at node w.
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Another important ingredient is state transition; we use binary arcs for this.
We represent that node v is accessible from node u by the relation of r by a solid

arrow labelled r from u to v: u r �� v .
Sets of nodes and arcs will form drafts (see Sect. 3, p. 4). We now wish to

represent that a node “sees” some node where a formula holds. For this purpose,

we mark this node, obtaining a page (see Sect. 3, p. 4). Page û r �� v � ���� p
represents that some node r-accessible from node u satisfies formula p.

We also wish to represent non-satisfaction: we use complementation (noted by
an overbar) for this. Page ŵ � ���� ϕ represents that formula ϕ does not hold at
node w. We also consider complementation of pages obtaining expressions. Page
p ŵ�� � � � � ���� q represents that both formulas p and q hold at w, and expression

p ŵ�� � � � � ���� q represents that formulas p and q do not hold simultaneously

at w.

A (simple) modal language ML is characterized by 2 sets of symbols: PL, of
propositional letters, and RN, of relation names. A model M for ML, over universe
M �= ∅, assigns a subset pM of M, to each propositional letter p ∈ PL, and a
2-ary relation rM on M to each relation name r ∈ RN.

We can now outline the semantics of our graphical concepts (see Sect. 3, p.
4). The behaviour of a page P is the set [[ P ]]M consisting of the values assigned
to its marked node by assignments satisfying its arcs. For a formula ϕ, we use
ϕM for the set of states satisfying ϕ in M, and similarly (E)M for an expression
E, with (E)M := M \ (E)M.

This graphical machinery is already powerful enough to specify some frag-
ments of classical modal logic KM, as we now illustrate. We will first recall the
notion of satisfaction of a formula at a state of a model and, then formulate it
graphically.

We begin with the propositional fragment of classical modal logic KM having
only negation ¬ and conjunction ∧.

Satisfaction of formula ϕ at state a of model C is recursively defined [1]. In
particular: C, a � ¬ϕ iff C, a �� ϕ and C, a � ψ ∧ θ iff C, a � ψ and C, a � θ.

We wish to formulate this semantics in a graphical manner. For this purpose,
we provide appropriate graphical expressions: a �∈ ϕC iff a ∈ (ϕ)C and a ∈ ψC

and a ∈ θC iff a ∈ ( ψ x̂�� � � � � ���� θ )
C
.

We thus obtain the graphical formulation in Example 1.

Example 1 (Graphical classical propositional fragment semantics). Satisfaction
and expressions.

(¬) C, a � ¬ϕ iff C, a �� ϕ iff a �∈ ϕC iff a ∈ (ϕ)C (complemented expression).
(∧) C, a � ψ ∧ θ iff C, a � ψ and C, a � θ iff a ∈ ψC and a ∈ θC iff

a ∈ ( ψ x̂�� � � � � ���� θ )
C

(1-node page). �
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We now consider a fragment of classical modal logic KM with negation ¬,
conjunction ∧ and modalities 〈r〉. Negation ¬ and conjunction ∧ are as before.
So, we concentrate on the modalities 〈r〉.
Example 2 (Classical modal semantics). Satisfaction and expressions.

1. Satisfaction for 〈r〉ϕ: C, a � 〈r〉ϕ iff for some b with (a, b) ∈ rC: C, b � ϕ.
2. C, a � 〈r〉ϕ iff for some b with (a, b) ∈ rC: C, b � ϕ iff for some b with

(a, b) ∈ rC: b ∈ ϕP iff a ∈ ( x̂ r �� y � ���� ϕ )
C
. (2-node page). �

We now consider another graphical concept. A book is a finite set of (alterna-
tive) pages (see Sect. 3, p. 4). For instance, the empty book { } has no pages. The
behaviour of a book is the union of the behaviours of its pages, e. g. [[ { } ]]M = ∅
(see Sect. 3, p. 4).

We now can extend our fragment of classical modal logic KM by adding absur-
dity ⊥ and disjunction ∨. We will focus on the new symbols.

Example 3 (Extended classical modal semantics). Satisfaction and expressions.

(⊥) Absurdity ⊥: C, a �� ⊥, i. e. ⊥C = ∅; so ⊥C = ∅ = [[ { } ]]C (empty

book).
(∨) Disjunction ∨: C, a � ψ ∨ θ iff C, a � ψ or C, a � θ, i. e. (ψ ∨ θ)C =

ψC ∪ θC; so (ψ ∨ θ)C = ψC ∪ θC =
(

{ ψ x̂�� � � � , x̂ � ���� θ }
)

C
(2-

page book). �

Example 4 (Classical modal defined symbols). In classical modal logic KM, con-
ditional and the box modalities can be introduced by definitions, namely:
ψ → θ := (¬ψ) ∨ θ and [r]ϕ := ¬ 〈r〉 ¬ϕ. With these definitions, Examples 1
and 3 (p. 4) give immediately the following graphical translations.

(→) C, a � ψ → θ iff a ∈
(

{ ψ x̂�� � � � , x̂ � ���� θ }
)

C
(2-page book).

([ ]) C, a � [r]ϕ iff a ∈ ( x̂ r �� y � ���� ϕ )
C

(complemented 2-node

page). �

3 Graphical Concepts and Constructions

We now introduce graphical concepts. For more details see, e. g. [2,7].

(E) The expressions are the formulas, the pages, the books and their comple-
ments (represented by an overbar); they will represent sets of states.

(a) Arcs are 1-ary or 2-ary. Unary arc: w � ���� E (node w, expression E).

Binary arc: u r �� v (nodes u, v, relation name r).
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(Δ) A draft consists of finite sets N, of nodes, and A, of arcs. An example of a

4-node draft is Δ = p u�� � � � r �� v w s �� z � ���� q .
(P) A page P consists of an underlying draft P together with a link node (marked

̂). For instance: P = p û�� � � � r �� v w s �� z � ���� q is a
page.

(B) A book is a finite set of pages. An example of a 2-page book is {P, ẑ }.

Graphical semantics is as follows. Consider a model M, over universe M
(cf. p. 3).

(E) Set of expression: for a formula ϕ, (ϕ)M := ϕM, if expression E is a page
or a book, then (E)M := [[ E ]]M (see below); (E)M := M \ (E)M.

(�) Satisfaction under assignment g : N → M (assigning to node w ∈ N state

wg ∈ M).

(a) M, g � w � ���� E iff wg ∈ (E)M and M, g � u r �� v iff
(ug, vg) ∈ rM.

(Δ) Draft: M, g � Δ iff M, g � a, for every arc a of Δ.
(Pg) The behaviour of page P, with link w and underlying draft P, is the

set of all values wg ∈ M for the assignments g satisfying P, i. e.
[[ P ]]M := {wg ∈ M /M, g � P}.

(Bk) Behaviour of book : [[B ]]M :=
⋃

P∈B [[ P ]]M.
(≡) Expressions E and F are equivalent in a class KK of models iff (E)M = (F)M,

for every model M ∈ KK.

We introduce graphical constructions for expression set FF = {F1, . . . ,Fh } and
expression E. They aim at capturing simultaneous and alternative satisfaction,
as well as change under transition (see Lemma 1: Graphical constructions, p. 5).

(PG) Page of expression set PG(FF ) := x̂ � ����

� ��
�

�
� F1

...

Fh

Pg(E) := PG({E}).

(BK) Book of expression set :
BK[FF ] := {Pg(F1), . . . , Pg(Fh)} = { x̂ � ���� F1 , . . . , x̂ � ���� Fh }.

(FP) Follow-page (for r ∈ RN) FP(r , FF ) := x̂ r �� y � ����

� ��
�

�
� F1

...

Fh

.

We use the abbreviation: fp(r , E) := FP(r , {E}) = x̂ r �� y � ���� E .

These concepts will be used for formulating semantical clauses in the sequel.

Lemma 1 (Graphical constructions). [[ Pg(E) ]]M = (E)M, [[ fp(r , E) ]]M =

{a ∈ M / ∃ b ∈ M ((a, b) ∈ rM ∧ b ∈ (E)M)}; [[ PG(FF ) ]]M =
⋂

F∈FF (F)M, [[BK[FF ] ]]M =
⋃

F∈FF (F)M and [[FP(r , FF ) ]]M = {a ∈ M / ∃ b ∈ M ((a, b) ∈ rM ∧ b ∈ [[ PG(FF ) ]]M)}. �
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Proof. The assertions follow from graphical semantics (p. 4).

We also use neat assertions and finite neat-assertion sets, jointly generated
by:

F :: = p | F | PG(FF ) | BK[FF ] | FP(r , FF ) (p ∈ PL, r ∈ RN)

FF :: = ∅ | FF ∪ {F} (FF = {F1, . . . , Fh})
(1)

4 Graphical Formulations of Semantics

A (graphical) specification for a logic Lg consists of rules ϕ := E, with formula
ϕ and expression E. In Sect. 2 (Graphical Specification: Basic Ideas), we have
indicated how one can obtain a specification for the Kripke semantics of classical
modal logic KM (cf. Examples 1, p. 3, to 4, p. 4). Figure 2 (p. 5) summarizes this
specification with our graphical constructs (cf. Sect. 3: Graphical Concepts and
Constructions, p. 5.)

Fig. 2. Graphical constructs for classical modal logic KM

Thus, we obtain the elimination rules for KM shown in Fig. 3 (p. 6).

Fig. 3. Elimination rules for classical modal logic KM

We now consider intuitionistic modal logic JM [5].

Example 5 (Intuitionistic modal semantics). Consider an intuitionistic modal
model I with world precedence �I.

1. Satisfaction of formula ϕ at state a of I is recursively defined as follows [5].
For p,⊥,∧,∨, and 〈 〉: as in classical modal semantics (cf. Sect. 2, p. 3).
For ¬: I, a � ¬ϕ iff for every b with (a, b) ∈ �I: I, b �� ϕ (i. e. there is no b
such that (a, b) ∈ �I and I, b � ϕ).
For →: I, a � ψ → θ iff whenever (a, b) ∈ �I: if I, b � ψ then I, b � θ (i. e.
there is no b with (a, b) ∈ �I such that I, b � ψ and I, b �� θ).
For [r]: J, a � [r]ϕ iff whenever (a, b) ∈ �J and (b, c) ∈ rJ: J, c � ϕ (i. e.
there are no b, c with (a, b) ∈ �J, (b, c) ∈ rJ and J, c �� ϕ).
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2. We now provide the graphical formulation.

(¬) Formula ¬ϕ JM-equivalent to x̂
� �� y � ���� ϕ .

(→) Formula ψ → θ JM-equivalent to x̂
� �� y � ����

� 	���� ψ

θ

.

([ ]) Formula [r]ϕ JM-equivalent to x̂
� �� y r �� z � ���� ϕ .

(�) For ⊥,∧,∨ and 〈r〉, as in classical modal semantics (cf. Sct. 2, p. 3). �

Figure 4 (p. 6) shows the elimination rules for the intuitionistic connectives
¬ and → and for the intuitionistic modality [r].

Fig. 4. Elimination rules for intuitionistic ¬, → and [r]

Proposition 1 (Graphical specifications). Consider the specifications for
KM (cf. Fig. 3, p. 6) and for JM (cf. Fig. 4, p. 6). For every elimination rule ϕ := E:
formula ϕ is equivalent to expression E in the corresponding class of models. �

Proof. By the graphical constructs (cf. Sect. 3, p. 5) and each semantics.

In general, graphical formulation of semantics (as illustrated in the preceding
examples) involves two steps as follows.

1. Translate the satisfaction clauses to graphical expressions. Cf. Examples 1
to 3 (p. 3) and 5 (p. 6). Here, the visualization provided by diagrams is very
useful.

2. Formulate the resulting expressions by means of expression constructs PG,
BK and FP (cf. Sect. 3: Graphical Concepts and Constructions, p. 5).

5 General Converter and Model-Checker

We will consider modal languages, with a set PL of propositional letters, each
one characterized by its 0-ary, 1-ary and 2-ary connectives (†, ∇ and •) and
modalities (µ ∈ Ξ). Such a language ML has set Φ of formulas generated by the
grammar:

ϕ :: = p | † | ∇ϕ | ϕ′ • ϕ′′ | µϕ (p ∈ PL, µ ∈ Ξ) (2)
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As a special case, we have the language ML for KM and JM (cf. Sect. 2, p. 3).
A general converter generates, for each logic Lg, a converter GCLg, which elim-

inates logical symbols producing neat expressions (cf. grammar (1), p. 5). We
define our general converter GC : Logic → (Formulas → Expressions) as follows:

GCLg(p) := p; GCLg(†) := ERLg(†); GCLg(∇ϕ) := ERLg(∇)[GCLg(ϕ)];
GCLg(ψ • θ) := ERLg(•)[GCLg(ψ), GCLg(θ)]; GCLg(µϕ) := ERLg(µ)[GCLg(ϕ)].

We now consider instantiated graphical converters for KM and JM: from
formulas to neat expressions. It suffices to apply their elimination
rules: e. g. GCKM(〈r〉 [s]¬p) = fp(r , (fp(s , p))) and GCJM(〈r〉 [s]¬p) =

fp(r , (fp(� , (fp(s , fp(� , p)))))).
We now consider our general graphical model checker.
We will use a Boolean sort Bln, having 2 values false and true, with the usual

2-ary operations and and or, as well as the 1-ary operation not, which we extend
naturally to finite sets. We will also use reachable sets consisting of the states
reached under a transition: [ar]M := {b ∈ M / (a, b) ∈ rM}, for a relation name
r ∈ RN (cf. Sect. 2, p. 3).

A general model checker receives a finite model M, a state a of M and a
neat expression E (cf. grammar (1), p. 5), and checks whether M satisfies E at
a. Our general graphical model checker is a function GMc : ( Model M , State
a : Neat expression E ) → Bln. We use simply GMc(a : E), when model M is
clear. We define GMc(a : E) based on the form of E as follows: for a propositional
letter p ∈ PL, GMc(a : p) := true iff a ∈ pM. GMc(a : F) := not GMc(a : F); GMc(a :
PG(FF )) := and({GMc(a : F) /F ∈ FF }); GMc(a : BK[FF ]) := or[{GMc(a : F) /F ∈ FF }];
GMc(a : FP(r , FF )) := or[{GMc(b : PG(FF )) / b ∈ [ar]M}].

We can instantiate our general graphical model checker GMc by a logic Lg (cf.
Fig. 1, p. 2). We obtain a graphical model checker for logic Lg, defined as follows:
GMcLg(M, a : ϕ) := GMc(M, a : GCLg(ϕ) ).

Example 6 (Graphical model checker for KM). Consider a model C for KM with uni-
verse M = {a, b, c, d}, subsets pC = {d} and qC = {b}, of M, and 2-ary relations
rC = {(a, b), (a, c)} and sC = {(c, d)} on M. We wish to check whether formula
ϕ = 〈r〉 [s]¬p holds at state a of model C. Model checker GMc(a : ϕ), short for
GMcKM(C, a : ϕ), operates as follows: GMc(a : 〈r〉 [s]¬p) = GMc(a : fp(r , (fp(s , p)))) =
GMc(b : fp(s , p))orGMc(c : fp(s , p)) = not GMc(b : fp(s , p))ornot GMc(c : fp(s , p)) =
not falseornot GMc(d : p) = trueornot GMc(d : p) = trueornot true = trueorfalse =
true. �

Example 7 (Graphical model checker for JM). Consider model J for JM with
universe M = {a, b, c, d, e, f}; subsets pJ = {f} and qJ = {b, d}; and relations
rJ = {(a, b), (a, c), (a, d), (a, e)}, sJ = {(c, f), (e, f)} and ≺J = {(b, d), (c, e)}
(we use ≺ for ‘strictly precedes’: “precedes and different”). We wish to check
whether formula ϕ = 〈r〉 [s]¬p holds at state a of model J. Model checker
GMc(a : ϕ), short for GMcJM(J, a : ϕ), operates as follows: GMc(a : ϕ) = GMc(a :

fp(r, (fp(�, (fp(s, fp(�, p))))))) = true. �
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6 Concluding Remarks

We have introduced a general graphical approach to specification and construc-
tion of model checkers, which gives general model checkers that can be instanti-
ated to model checkers for specific logics. Our approach involves two components:
a logic-dependent converter and a general model checker; the user is concerned
only with the former (cf. Fig. 1, p. 2), which can be obtained by instantiating
a general converter. We have illustrated the application of this approach to two
modal logics: classical KM and intuitionistic JM (which clearly applies to their
propositional fragments).

Our approach is rather flexible. It can be easily used to handle some rela-
tional constants and special modalities, like the universal operator E and the
difference operator D [1]. Also, it can be extended to to structured modalities
(as in PDL [3]): it suffices to describe the semantics of the structured relations
(see, e. g. [6]). Tests cause no problem: we can eliminate 〈ψ?〉 θ and [ψ?] θ to the
1-node page PG({ψ, θ}).

We finally comment on the user’s task: graphical specification of semantics.
As illustrated in Sect. 4 this is not too difficult. One often reasons intuitively
about modal semantics also in a graphical manner: our approach formalizes
such intuitive arguments. We think we have combined graphical and general
approaches in an interesting way.

The main feature of our approach is its generality, which provides flexibility
without loss of efficiency. A user-friendly way of obtaining an instantiation ade-
quate to a particular logic is crucial for the general applicability of this method.
We think that the proposed graphical notation for the satisfaction conditions
and its processing by a uniform method provide an interesting approach to these
issues.
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Abstract. An incessant debate that history of syllogistic reasoning has
witnessed is on the status of fourth figure after its alleged invention.
Commentators on Aristotle and several other logicians have advocated
various approaches to include or abandon this last figure. However, in the
middle of last century, the debate seemed to have reached quiescence with
fifteen valid syllogisms present in four figures. Among this, some moods
are distinct, i.e. they are valid in one figure whereas others are non-
distinct as they are valid in multiple figures. In this paper, the notion of
diagrammatic congruence for non-distinct syllogisms using Venn-Peirce
diagrams is introduced. Consequently, we establish the equivalence of
moods that are diagrammatically congruent. Furthermore, it is argued
that the presence of a distinct mood is pivotal to recognize an arrange-
ment as a separate figure, which is evident in Aristotle’s own treatment
of figures. With this, the redundancy of fourth figure is demonstrated.

Keywords: Fourth figure · Galen · Moods · Syllogistic reasoning
Venn-Peirce Diagrams

1 Introduction

Aristotle recognized three figures and found fourteen syllogisms valid. The num-
ber of syllogisms that are valid rose to twenty four (pooling the strengthened
and weakened moods) with the inclusion of the fourth figure. The inclusion of
this last figure to syllogistic reasoning has been a matter of controversy, ever
since its inception. The disagreement pertaining to this is on two grounds. First,
who has invented the fourth figure? And the second question, does this figure
encapsulate the essence of Aristotle’s syllogistic?

Galen is usually accredited with the discovery of fourth figure after Averroes’
account [7]. However, it was always surrounded by allegations and apprehensions.
The invention of fourth figure may be attributed to an unknown scholar, [9] as
it is certain now that at least Galen has not invented it [14,17]. Moreover, this
question can be done away with, as it is a minor contribution to syllogistic [14].

The second question on the relevance of fourth figure, however, is far more
significant and a formidable one to tackle. The present paper addresses this ques-
tion using Venn-Peirce diagrams for syllogisms. This paper is divided into three
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parts. In the first part, we discuss approaches of those who reject the necessity
of fourth figure. In the second part, we review suggestions to incorporate the
last figure. In the conclusive part, we develop two key concepts namely – dis-
tinct and non-distinct syllogisms along with their equivalence using Venn-Peirce
framework. With this, we show that there are exactly three figures.

2 The (In)significance of Fourth Figure

Most textbooks of logic [1,2,6,7], etc. report four figures in syllogistic. Aristotle’s
short-sighted approach, as he could not decipher the last figure is a frequent
corollary of the above proposition. This is a historical mistake. It is claimed
that as per Aristotle, the position of middle term is the basis of distinction
into figures [1,13]. If this is true, then he must presuppose, the predicate of
conclusion is the major term and the subject of conclusion is the minor term.
But, this presupposition is not found in Aristotle [4].

In fact, Aristotle never gave a general definition of middle term. On the
contrary, his definition of middle term is different for each figure [10]. This has
perplexed many commentators on Aristotle, as it posed challenge to identify the
middle term. Later, Alexander of Aphrodisias suggested that major term is the
predicate of that term whose provability is to be investigated, and afterwards
Philoponus’ account, that the major term is the predicate of the conclusion
became widely accepted [8]. Thus, the subject of conclusion becomes minor term
and the common term of both premises becomes the middle term.

A way to defend Aristotle’s three figures in place of four, is to understand his
usage of letters for propositions and syllogisms [16]. He represented propositions
with two letters with predicate at the left and subject at the right (e.g. PS) and
syllogisms with three letters (say, PMS). Thus, PMS, MPS, and PSM are the
three combinations possible (as P will always come before S in this convention).
It is just a matter of convention though, as Aristotle has no qualms stating the
minor premise first [16]. The number of figures is limited to three because the
order of premises is such that the major premise must precede the minor. In
order to explain this, many scholars also conjecture that he perhaps used the
following diagram1 as found in many early commentaries [8].

Here, each upper link between the letters is taken to represent the relation
of terms expressed in a premise, and each lower link to represent the relation
expressed in a conclusion. If Aristotle’s thought was guided by such diagrams,
then it is easy to see why he assumed that there are only three syllogistic figures
[8]. It is clear from the diagrams that there are only three ways in which the

1 Adapted and redrawn from Kneale and Kneale [8].
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middle term can be ordered with respect to the two other terms, namely, the
major and the minor terms.

Both the above approaches2 discussed rely heavily on the arrangement of
major and minor premise in a syllogism. Along with this, they also show how
a relation between major and minor can be inferred by varying the position of
middle term. This, in turn opens the debate once again as the position of middle
term is crucial in generating figures. If this line of argument is adhered, then it
is easier to see that there can be four figures as well. These linguistic approaches
appeal to a ‘convention’ of arrangement to be followed, rather than anything else.
There is nothing intrinsic or concrete about conventions in general and (in this
case) figures in specific. By defending Aristotle’s three figures in this manner,
the withstander(s) paves way for the opponent(s), who use the same platform
(arrangement of terms and premises) to establish the legitimacy of four figures.

3 The Significance of Fourth Figure

In this section, we discuss how this arrangement of terms and premises (as dis-
cussed in the last section) produces four figures. As we know that the division
of syllogisms into different ‘figures’ is keenly contested by several scholars. How-
ever, the view that syllogisms can be divided into four figures is widespread [1].
Here too, we find that the major premise serves as the first premise and minor
as the second premise of the syllogism. This is exactly the same as emphasized
by those, who support the three figures theory. The illustration is given below:

M — P P — M M — P P — M
S — M S — M M — S M — S
——— ——— ——— ———
S — P S — P S — P S — P

Figure 1 Figure 2 Figure 3 Figure 4

The above arrangement is elegant, and gives symmetry to the scheme of
figures, which was initially lacking in Aristotle’s treatment. Furthermore, it is
also opined that Aristotle’s own work was exploratory but cumbersome in nature.
It was later solved and simplified by generations, which followed him [5]. This
arrangement of propositions into figures is frequently used by many medieval
logicians [9]. Subsequently, it also found place in later works. Several ‘moods’
occur in these four figures of which, some are valid whereas others are not.
In what follows, we enlist valid moods in four figures from the traditional and
modern point of view.

3.1 Valid Moods in Four Figures (Traditional)

If we take into account the Aristotelian3 interpretation, there were exactly six
syllogisms valid in each figure, as given below:
2 A similar approach is also found in Peterson [12].
3 ‘Aristotelian’ here refers to both Aristotle’s and his commentators.
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First Figure AAA EAE AII EIO AAI EAO

Second Figure AEE EAE AOO EIO AEO EAO

Third Figure IAI OAO AII EIO AAI EAO

Fourth Figure AEE IAI AAI EIO AEO EAO

If we exclude the strengthened and weakened moods, then there are 19 valid
moods. They are AAA, EAE, AII, EIO in the first figure; EAE, AEE, EIO,
AOO in the second figure; AAI, EAO, IAI, AII, OAO, EIO in the third figure
and AAI, AEE, IAI, EAO, EIO in the fourth figure.

3.2 Valid Moods in Four Figures (Modern)

There are 15 valid syllogisms in the modern interpretation. Both AAI and EAO
in the third and fourth figures are shown to be invalid as they commit ‘Existential
Fallacy4’. The revised list is as follows:

First Figure AAA EAE AII EIO — —

Second Figure AEE EAE AOO EIO — —

Third Figure IAI OAO AII EIO — —

Fourth Figure AEE IAI — EIO — —

The above discussion shows the inconclusive nature of linguistic analysis,
since by following any one of the conventions, our ratiocinator can support either
of the claim that there are three or four figures. However, Venn-Peirce framework
clears this confusion, which we discuss next.

4 Venn-Peirce Framework

Venn-Peirce framework [11,21] (imprecisely known as Venn diagrams) is widely
used to test the validity of syllogisms. It is now a well proven fact that diagrams
are not only effective in human logical reasoning, [18] but also helps in improving
our performance and precision [19]. Moreover, it also allows to envision the line
of reasoning, which is cumbersome using symbols and becomes complicated in
language. In this section, three notions namely, distinct syllogisms, non-distinct
syllogisms and diagrammatic congruence are introduced. With this, we argue
that the fourth figure is supernumerary.

Distinct Moods—A mood is distinct, if it is valid in one figure only. AAA,
AOO and OAO are distinct moods in Figs. 1, 2 and 3 respectively.

Non-distinct Moods—A mood is non-distinct, if it is valid in more than one
figure. EIO is valid in Figs. 1, 2, 3 and 4; EAE in Figs. 1 and 2; AII in Figs. 1
and 3; AEE in Figs. 2 and 4 and IAI is valid in Figs. 3 and 4.

4 A particular conclusion does not follow from two universal premises.
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Diagrammatic Congruence—Two or more moods are diagrammatically con-
gruent, if they have identical Venn-Peirce diagram. Let us understand this
notion, with the help of examples:

1. EIO- 1,2,3,4 are represented as:
EIO-1 EIO-2 EIO-3 EIO-4
No M is P No P is M No M is P No P is M
Some S is M Some S is M Some M is S Some M is S
Some S is not P Some S is not P Some S is not P Some S is not P

Fig. 1. EIO

The ubiquitous EIO in each figure is diagrammatically congruent.
2. EAE-1,2 and AEE-2,4 are drawn as:

EAE-1 EAE-2 AEE-2 AEE-4
No M is P No P is M All P is M All P is M
All S is M All S is M No S is M No M is S
No S is P No S is P No S is P No S is P

Fig. 2. EAE and AEE

EAE and AEE are not diagrammatically congruent even though they have
same combination of premises arranged differently. Nonetheless, EAE-1 and
EAE-2 are diagrammatically congruent and the same goes for AEE-2 and
AEE-4.

3. AII-1,3 and IAI-3,4 are diagrammed as:
AII-1 AII-3 IAI-3 IAI-4
All M is P All M is P Some M is P Some P is M
Some S is M Some M is S All M is S All M is S
Some S is P Some S is P Some S is P Some S is P
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Fig. 3. AII and IAI

AII and IAI are not equivalent to each other although, AII-1 and AII-3 are
diagrammatically congruent as well as IAI-3 and IAI-4.

4. The distinct moods of AAA-1, AOO-2 and OAO-3 are shown below:
AAA-1 AOO-2 OAO-3
All M is P All P is M Some M is not P
All S is M Some S is not M All M is S
All S is P Some S is not P Some S is not P

Fig. 4. AAA, AOO and OAO

AAA-1, AOO-2 and OAO-3 are the distinct moods.

4.1 Summary and Findings

There are exactly 8 (3 distinct and 5 non-distinct) moods that are valid based
on the notion of diagrammatic congruence using Venn-Peirce model. They are
AAA-1, AOO-2, OAO-3, IAI-3 & 4, AII-1 & 3, AEE-2 & 4, EAE-1 & 2 and EIO-
1, 2, 3 & 4. Diagrammatically congruent also mean that they are non-distinct
moods present in different figures, which are equivalent5. When the position of
premises are interchanged (IA & AI and AE & EA), the syllogism so formed
look similar though incongruent. There is a distinct mood in every figure except
fourth. These findings are important to prove the irrelevance of fourth figure,
which we discuss next.

5 The notion of ‘Equivalence’ is discussed in Richman [15].
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4.2 Argument Against the Fourth Figure

We have witnessed in Sects. 2 and 3 that the debate on the (in)significance of
fourth figure is skewed towards the position of terms. Supporters of three figures
end up, calling it a ‘matter of convention’ whereas admirers of the fourth figure
call it, ‘elegant and symmetrical’. If the convention of major preceding minor is
dropped, we can have eight figures. Furthermore, if we drop the distinction of
major and minor terms, we will go on to have sixteen figures. Along with all
this, the number of syllogisms valid in all these figures too will increase fourfold.
This amplified approach is neither significant nor profound.

Thus, it is prudent to consider something more fundamental. Commentators
of Aristotle have earned their livelihood by asking various questions on syllogisms
and ‘Why Aristotle considered only three figures?’ is one of them [3]. Was he
really short-sighted, not to see the very obvious fourth figure? Let us answer this
question after reconsidering a historical piece of information known to all.

For Aristotle, first figure is the perfect figure6 and there are four valid syl-
logisms in it. Why then, are there valid syllogisms in other figures which are
(im)perfect? They can be reduced to first figure syllogisms after elementary
transformations. If they can be reduced to first figure syllogisms, why is it
an imperative to consider them as a separate figure at the very first place?
It contains something unique and signifies a different and robust arrangement
of premises and conclusion so formed, to produce an inference in its own way.
There lies his reason of treating middle term in three unequal ways and his
[non]-short-sighted approach of ignoring the very obvious fourth figure.

Reasoning with Venn-Peirce diagrams allows us to visually comprehend dis-
tinct syllogisms. Additionally, the notion of diagrammatic congruence helps us
avoid unnecessary iterations of the same syllogisms. An arrangement of premises
and conclusion is separate, when it produces a distinct syllogism. If not, they are
non-distinct syllogism(s), that is/are already been considered elsewhere. Thus,
a figure is significant and admissible, if and only if it has a distinct syllogism.
Absence of a distinct syllogism declares the fourth figure – redundant.

5 Conclusion

This paper is a diagrammatic justification to dispense with the fourth figure using
Venn-Peirce framework. Also, it shows the efficacy of diagrammatic techniques
to follow the principle of parsimony. The fourth figure neither adds anything
substantial nor is a cornerstone of syllogistic from any standpoint. Thus, exclu-
sion of it is justified and takes away nothing. In the wake of above development,
we reduce the number of valid syllogisms to eight, applying the differentiation
of distinct and non-distinct moods. The scope of this paper is limited to explore
the notions of distinct, non-distinct and diagrammatic congruence of valid syl-
logisms only. Application of these concepts to invalid syllogisms will definitely
serve as an avenue for discourse(s), but falls beyond the scope of present work.

6 A diagrammatic justification of perfect syllogisms is demonstrated in Sharma [20].
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Towards Diagram-Based Editing
of Ontologies
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Abstract. Ontology creation and editing involves multiple stakeholders,
not all of whom may be mathematically trained. Whilst ontology editors,
such as Protege, are extensible with visualisation tools to enhance under-
standing of the ontology, these tools are static representations only. We
present initial work on creating editable visualisations for a fragment of
OWL, which will in turn update the underlying ontology. The diagrams
used are linear diagrams, which have previously been shown to aid com-
prehension of set-based data. In particular, we focus only on those OWL
statements which do not include properties or datatypes.

Keywords: Interactive · Linear diagrams · Ontology

1 Introduction

Ontologies are a way of reasoning about data in an efficient manner. Ontologies
are increasingly prevalent in a range of applications, including the Semantic Web,
medicine and law. The development and maintenance of ontologies are skilled
tasks requiring knowledge of logical reasoning and symbolic notations. However,
the wide variety of stakeholders for each ontology may not have the necessary
skill set to perform ontology engineering effectively. Given the critical systems
in which ontologies are used, it is of paramount importance that the ontologies
encode exactly the information intended.

To alleviate the difficulties in understanding ontologies, various visualisations
have been proposed [4]. Some have limited expressiveness, but are implemented
as software tools, such as CropCircles [13], and OWLViz [3]. Others are more
expressive, but are as yet not implemented, such as concept diagrams [11] and
VOWL [6]. Of the existing visualisations, however, all are static, with the excep-
tion of OntoTrack [5]. In that visualisation, subclasses and superclasses can be
added and deleted from the graphical view. The ontology itself is represented as
a directed graph, and thus shows only subsumption relationships directly. Thus,
features of the hierarchy such as disjointness of classes, or subsumption under a
union, are not explicitly represented.

W. Roberts was supported by an Edinburgh Napier University Internal Research
Grant.
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We propose, and have completed initial work on, inLineD (for interactive
Linear Diagrams) an ontology visualisation tool that allows users to: edit how
the ontology hierarchy is represented; add, remove and edit new classes, includ-
ing intersection and union information; and add, remove and edit disjointness
axioms.

2 Adding Interactivity to Linear Diagrams

Linear diagrams are originally due to Leibniz [2], and use horizontal line seg-
ments to represent sets. The vertical alignment of the segments represents inter-
section properties amongst the sets. For example, consider Fig. 1, representing
the interests of people in a social network. We see six sets represented, using 14
overlaps and 10 line segments. The fifth overlap from the left, consisting of line
segments in the first, third and fourth rows, encodes the information that the set
Relaxation ∩ Media ∩ Design ∩ Cars ∩ Travel ∩ Health is non-empty. Similarly,
since every overlap containing a line segment in the sixth row also contains
a line segment in the first row, we can infer that Health ⊆ Relaxation. Finally,
since there is no overlap containing line segments from both the fifth and sixth
rows, we can infer that Travel ∩ Health = ∅.

Fig. 1. A linear diagram

Figure 1 was produced using the predecessor of our tool, the Linear Diagram
Generator [8]. The layout of the diagram is based upon the layout principles of
[9]: the total number of line segments is minimised; there are vertical guidelines
to aid reading overlaps; the lines are each of a single colour; the lines themselves
are relatively thin; the orientation of the diagram is horizontal; and the vertical
order of the sets is adjacency-driven. By the last, we mean that two sets which
have segments which begin and end next to each other (as between the fourth and
fifth overlaps for the lines Relaxation and Cars) are drawn as close as possible
to each other. In this example, they are drawn next to each other.
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These layout principles were shown in [9] to aid in answering general set-based
questions. However, the user may want to ask questions for which this layout
is not optimal. Interaction in a visualisation can allow the user to interrogate
the underlying data more effectively [7]. For example, consider the question “is
everyone interested in Health also interested at least one of Media and Cars?”
By redrawing Fig. 1 using inLineD to draw the sets Cars and Media as single
segments, and bringing the three sets of interest next to each other, the answer
to the question (no) is more readily apparent, as shown in Fig. 2. This redesign
uses 13 line segments, compared to the original’s 10, and is thus sub-optimal in
general. In the context of ontologies, by giving the ontology engineer facility to
redraw the diagram, specific relationships amongst small numbers of classes can
be closely analysed, and, as we shall see in the next section, manipulated.

Fig. 2. A redrawn version of Fig. 1

3 Next Steps - Heterogeneous Reasoning

Manipulating diagrams, unlike the example in the previous section, may some-
times change the semantic content of the diagram. For example, consider Fig. 3,
the top diagram of which is Venn-2. Suppose that this arrangement was not
what the ontology engineer was expecting. By removing the overlap where the
two sets A and B both have line segments, we would have introduced the fact
that A ∩ B = ∅ (bottom left of Fig. 3). Similarly, by removing every overlap
where A has line segments but B does not would introduce the fact that A ⊆ B
(bottom right of Fig. 3). These two types of statement form the basis of OWL
axiom schemes, as disjoint(A,B) and A is A B respectively [1]. By manipulating
the diagram, then, the engineer could introduce new axioms into the ontology.
Adapting and implementing the translations of [10,12] to the case of linear dia-
grams would then create a heterogeneous system: axioms could be entered as
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Fig. 3. Manipulations that change the underlying semantics

text, and the diagram would update automatically; conversely, changing the dia-
gram would update the set of axioms. The move to such as a system is the next
stage for inLineD.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nadi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

2. Couturat, L.: Opuscules et fragments inédits de Leibniz. Felix Alcan, Paris (1903)
3. Horridge, M.: OWLViz. http://protegewiki.stanford.edu/wiki/OWLViz. Accessed

Aug 2014
4. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology

visualization methodsa survey. ACM Comput. Surv. (CSUR) 39(4), 10 (2007)
5. Liebig, T., Noppens, O.: OntoTrack: combining browsing and editing with rea-

soning and explaining for OWL lite ontologies. In: McIlraith, S.A., Plexousakis,
D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 244–258. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30475-3 18

6. Lohmann, S., Negru, S., Haag, F., Ertl, T.: Visualizing ontologies with VOWL.
Semant. Web 7(4), 399–419 (2016)

7. Munzner, T.: Visualization Analysis and Design. CRC Press, Boca Raton (2014)
8. Rodgers, P.: Linear diagram generator (2017). https://www.cs.kent.ac.uk/people/

staff/pjr/linear/index.html. Accessed Dec 2017
9. Rodgers, P., Stapleton, G., Chapman, P.: Visualizing sets with linear diagrams.

ACM Trans. Comput.-Hum. Interact. (TOCHI) 22(6), 27 (2015)
10. Stapleton, G., Masthoff, J.: Incorporating negation into visual logics: a case study

using Euler diagrams. In: Visual Languages and Computing 2007, pp. 187–194.
Knowledge Systems Institute (2007)

11. Stapleton, G., Howse, J., Chapman, P., Delaney, A., Burton, J., Oliver, I.: Formal-
izing concept diagrams. In: Visual Languages and Computing, pp. 182–187 (2013)

http://protegewiki.stanford.edu/wiki/OWLViz
https://doi.org/10.1007/978-3-540-30475-3_18
https://www.cs.kent.ac.uk/people/staff/pjr/linear/index.html
https://www.cs.kent.ac.uk/people/staff/pjr/linear/index.html


Interactive Linear Diagrams 703

12. Swoboda, N., Allwein, G.: Heterogeneous reasoning with Euler/Venn diagrams
containing named constants and FOL. In: Proceedings of Euler Diagrams 2004.
ENTCS, vol. 134. Elsevier Science (2005)

13. Wang, T.D., Parsia, B.: CropCircles: topology sensitive visualization of OWL class
hierarchies. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika,
P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 695–708.
Springer, Heidelberg (2006). https://doi.org/10.1007/11926078 50

https://doi.org/10.1007/11926078_50


Diagrams Including Pictograms Increase
Stock-Flow Performance

Friederike Brockhaus(&) and Peter Sedlmeier

Chemnitz University of Technology, 09107 Chemnitz, Germany
{friederike.brockhaus,

peter.sedlmeier}@psychologie.tu-chemnitz.de

Abstract. Stock-flow (SF) systems are omnipresent in our lives while difficult
to understand. An example is the amount of CO2 in the atmosphere (stock) that
changes in dependence of incoming CO2 (inflow) and outgoing CO2 (outflow).
When participants are to deal with such tasks, they show poor performance.
Despite several attempts to facilitate SF knowledge in participants, as far as we
know, only one manipulation led to meaningfully increased SF performance:
Changing the representation of the flows into pictograms. In the current study,
we intend to modify these kind of diagrams so that they communicate SF
information in a simple way. We tested whether the modified representation
triggered basic SF understanding. Each participant worked on two tasks; one
shown as line graph and one shown as diagram with pictograms. Getting the
pictograms at first position led to strongly improved SF performance. A t-test
revealed more correct solutions for pictograms than for line graph at first
position. Again, the representation of the flows as pictograms led to better SF
performance.

Keywords: Stock-flow systems � Representation format � Pictograms

1 Introduction

Since SF systems are omnipresent in our personal lives, it is very important to
understand them correctly. When people have to solve SF problems, they often fail,
even if they are highly educated [1]. They seldom understand the “principle of accu-
mulation”: as long as the inflow is larger than the outflow, the stock is increasing and
vice versa [2]. For example, participants received a graph of water flowing in and out of
a water tub. They had to draw the changes of the stock into an empty graph. 40% to
70% or more were committing errors [1–4]. Authors from different backgrounds tried
to improve participants’ problem-solving performance. However, up to now, almost no
meaningful amelioration has been found [2, 5].

Brockhaus et al. [6] examined if changing the representation format of the flow
graphs led to better SF performance. Indeed, using diagrams including pictograms
instead of line graphs increased SF performance: 57% to 83% solved the tasks correctly
compared to 23% to 30% in the baseline condition with line graphs (b = .59 to b = .53
with R2 = .39; F(5,84) = 10.86; p < .001). Another study was conducted in order to
find out, whether the improved performance still occurred when subjects answered
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questions instead of drawing the changes of the stock [7]. This way, a basic SF
knowledge was tested, since participants only judged the maximum and minimum of
the stock instead of calculating the stock for each moment. Performance was still better
for the diagrams including pictograms than for the line graphs, but the effect decreased
strongly. When line graphs were given, about a third of the participants solved the tasks
correctly, whereas in the conditions with pictograms, they ranged from 41% to 53%
(b = .20 with R2 = .22; F(10,120) = 3.424; p < .001).

The aim of the present pilot study was to check whether basic SF knowledge can be
triggered, when we change the format of the diagram performance following Neurath’s
[8] suggestions to create such diagrams. Our hypothesis was that the new flow-diagram
including pictograms led to meaningfully better performance than the line graphs.

2 Method

Twenty-four undergraduates from Chemnitz University of Technology (58% female;
mean age: 22 years, SD = 4.02) participated in a paper-pencil test and received course
credit. Every participant had to work on two tasks. Each task included two questions:
When is the stock at its maximum and when at its minimum? Answers were coded as
correct or incorrect. The inflow- and outflow-patterns were identical for the two tasks
but the representation format was changed: Line graphs (Fig. 1) or pictograms (Fig. 2)
showed the flows. We varied the position of the line diagrams and pictograms to work
on: half of the participants worked on the line graph first and then on the diagram
including pictograms, the other half started with pictograms.

Fig. 1. Conventional line graph of the flows
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3 Results

SF performance was rather bad in all conditions, ranging from 8% to 33% of correct
solutions. When we took the position of the diagrams into account, the picture changed
(Fig. 3).

Fig. 2. Diagram including pictograms of the flows [9]

Fig. 3. Amount of correct solutions (mean percent correct) and 95% Confidence Intervals for
both diagrams and both questions concerning the stock, separated into the group being at first
position vs. the group being at second position (legend: Line = line graph, Pict = pictograms)
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Participants who worked on the line graph first showed bad performance for both
tasks. Performance was much better for those who worked on the pictograms first.
Comparing the SF performance for line graph at first position vs. pictograms at first
position showed a significant better solutions for the pictograms (t(22) = 2.861,
p = .01 and d = 1.17).

4 Discussion

Pictograms at first position led to better SF performance than line graphs at first
position. Because of the small sample, it is necessary to replicate the study to see
whether the effect is stable. Furthermore, the flow-patterns of the two tasks were
identical and the solutions’ correctness of the two tasks correlated (r = .89). Therefore,
it was unclear, if one group was better in solving SF tasks, if participants realized that
the two tasks were identical, or if they used the same solving approach for both tasks.
Further studies should control these possibilities. Up to now, the present data suggests
that pictograms support SF performance.
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Abstract. We present a method of digraphs for Syllogistic that uses
only two rules for testing the validity of syllogisms without existential
import and a third rule for cases in which the existential import of terms
is used. This method derives from Martin Gardner’s network method
for Classical Propositional Logic, preserving the iconicity features that
Gardner attributes to the propositional case also in the case of Syllo-
gistic. We will first present the graphical representations and the rules
for manipulating these representations in the case of syllogisms in which
the existential import of terms are not admitted. Then, we will extend
the method with a graphical representation for the existential import
and with a new rule for the manipulation of this representation. Finally,
we will show some applications of the method. It was first presented in
Portuguese in Cognitio 14(2013): 221–234.

Keywords: Digraph · Martin Gardner · Supreme Rules of Inference

1 Introduction

Gardner [1] examined a network method for Classical Propositional Logic, and
later formulated a variant that uses digraphs [2]. In spite of asking about the
possibility of applying the technique to other logical systems, he was unable
to apply it to logical systems as simple as Syllogistic. Sautter [3] developed a
variant of Gardner’s Method for Syllogistic. This method preserves the iconicity
features that Gardner attributes to his own method applied to the propositional
case.

First, we will present the graphical representations and the rules for manip-
ulation of these representations to the syllogisms in which the existential import
of the terms are not admitted. Then, we will extend the method with the graph-
ical representation of the existential import, as well as with a new rule for the
manipulation of this graphical representation. Finally, we will show briefly some
applications of the method.

2 The Basics of the Method

Our method implements the conceiving of Syllogistic as a theory of subordination
of concepts. They occur in pairs, for instance the concept X and its related con-
c© Springer International Publishing AG, part of Springer Nature 2018
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cept Other-than-X (represented as X̄). Pairs of arrows expresses a subordination
and a single straight line expresses a non-subordination. “All X is Y” expresses
the subordination of the concept X to the concept Y; “No X is Y” expresses the
subordination of the concept X to the concept Other-than-Y; “Some X is Y”
expresses the non-subordination of the concept X to the concept Other-than-Y;
and “Some X is not Y” expresses the non-subordination of the concept X to the
concept Y (See Fig. 1).

All X is Y : X

X̄

Y

Ȳ

No X is Y : X

X̄

Y

Ȳ

Some X is Y : X

X̄

Y

Ȳ

Some X is not Y : X

X̄

Y

Ȳ

Fig. 1. Categorical propositions

Traditionally, there are two supreme rules of rational inference, distinguished
one from another by the quality of the categorical propositions: one rule for
syllogisms only with affirmative premises and the other rule for syllogisms with
affirmative and negative premises. Our method also operates only with two rules
for the validity of syllogisms without existential presupposition, but they are dis-
tinguished one from another by the quantity of the categorical propositions: one
rule for syllogisms only with universal premises and the other rule for syllogisms
with quantitatively mixed premises, i.e. one premise is universal and the other
is particular (See Fig. 2). This implies the existence of four fallacious rules: two
of them related to the cases in which the arrows move in the opposite direction,
one of them in which a straight line follows (and not precedes) an arrow, and
the last of them in which there are two straight lines.

Diagrams show the artificiality of the division into figures and modes. There
are only eight distinct diagrams that stand for valid presuppositionless syllo-
gisms: a diagram for BARBARA; a diagram for CELARENT and CESARE;
a diagram for DARII and DATISI; a diagram for FERIO, FESTINO, FERI-
SON and FRESISON; a diagram for CAMESTRES and CAMENES; a diagram
for BAROCO; a diagram for BOCARDO; and a diagram for DISAMIS and
DIMARIS.
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Rule for purely universal syllogisms: X

X

Y Z

Z

Rule for quantitatively mixed syllogisms: X

X

Y Z

Z

Fig. 2. Rules of inference

3 Existential Import

Figure 3 shows how to represent the existential presupposition of a term and also
a new rule applicable to such cases. If existential pressuposition is admitted, there
are six new diagrams for valid syllogisms: one of them stands for BARBARI;
other stands for CELARONT and CESARONT; other stands for CAMESTROS
and CAMENOP; other stands for DARAPTI; other stands for FELAPTON and
FESAPO, and other stands for BRAMANTIP.

Existential presupposition of X: X

Rule for existential presupposition: X

X

Y

Y

Fig. 3. Existential presupposition

4 Applications

Figure 4 shows several applications of the method. Figure 4(a) shows the validity
of the syllogism EIO of the First Figure, because it is possible to move from
the premises to the conclusion by applying the rule for quantitatively mixed
premises. No valid rule can move us from the premises to the conclusion in the
invalid syllogism IAI of the First Figure represented by Fig. 4(b). Figure 4(c)
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shows BARBARI; the existential import of the term S, followed by the applica-
tion of the rule for existential presupposition, followed by the rule for quantita-
tively mixed premises are required to verify its validity. Finally, Fig. 4(d) shows
a pair of premises; “Some S is not P” can be concluded. Given a premise and the
conclusion, the method can also be easily applied to find the missing premise of
a valid syllogism when it exists.

S

S̄

M

M̄

P

P̄

S

S̄

P

P̄

(a)

S

S̄

M

M̄

P

P̄

S

S̄

P

P̄

(b)

S

S̄

M

M̄

P

P̄

S

S̄

P

P̄

(c)

S

S̄

M

M̄

P

P̄

(d)

Fig. 4. Some applications of the method.
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Abstract. Mathematical research is best characterized by problem-
solving activities which make use of a variety of modes of representa-
tion. Against this background, my aim is to discuss the epistemic value
of diagrammatic representation in problem-solving. To make my point,
I consider a case study selected from Wallis’s work on the quadrature of
conic sections. Wallis’s definition of conic sections is given in terms of
algebraic equations setting them free from ‘the embrangling of the cone’.
This suggests the aim to eliminate figures and other iconic elements with
a view to attaining higher level of abstraction but, in Wallis’s work, geo-
metric diagrams display relations that can be fruitfully used to calculate
arithmetically the area of a figure. The use of displayed relations leads
to the formulation of algebraic equations defining curves and it is also
what makes room for arithmetical calculations. Accordingly, the notion
of a general method of resolution is grounded on properties read off the
diagram so that despite Wallis’s insistence on algebraic representation -I
argue- diagrams remain essential working tools.

Keywords: Conic sections · Diagrams · Algebraic equations · Wallis

1 Introduction

Twenty century philosophy of mathematics focused on the foundations of
axiomatic systems and formal arguments, assuming that mathematical reason-
ing is best characterized as purely syntactic without any reference to the context
of work. The syntactic presentation makes explicit all relevant steps in a proof
guaranteeing formal rigor. From such assumptions follows that figures and, more
generally, iconic ingredients are to be eliminated from a fully systematic presen-
tation. In accordance with the rejection of any reference to context of work the
specificity of problem solving activities have been eliminated.

More recently, and despite the apparent persistence of this perspective, some
critical voices have been insisting upon the value of paying closer attention to the
work of the research mathematician focusing on the specificity of his problem-
solving activities in the relevant context of work. Following Grosholz [1] we argue
that mathematical research is best characterized by problem-solving activities
which make use of a variety of modes of representation such as symbolical nota-
tions, equations and diagrams. Against this background, my aim is to discuss the
c© Springer International Publishing AG, part of Springer Nature 2018
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epistemic value of diagrammatic representation in problem-solving. To make my
point, I will consider a case study selected from Wallis’s work on the quadrature
of conic sections.

2 Defining the Conics: From the Cone to Algebraic
Equations

The goal underlying Wallis’s exposition in Sectionibus Conicis (SC) and Arith-
metica Infinitorum (AI) (1656) is to find a general method to solve quadrature
problems. In the SC Wallis gives a systematic treatment of conic sections that
culminates in the definition of these figures in terms of algebraic equations. The
aim of these definitions developed in SC is to determine the properties needed to
solve quadrature problems by means of arithmetical series. On the other hand,
in AI Wallis offers a general method to solve quadrature problems based on
the definitions given in the first text. Wallis was aware of the limitations of
purely geometrical approaches to solve quadrature problems by means of a gen-
eral method. In his research he acknowledges the contribution of the method of
indivisibles as well as Descartes’s work in geometry. His recognition of the value
of Cavalieri’s contribution is exhibited in the first proposition of SC where Wallis
explicitly appeals to the method of indivisibles: “I suppose at the start (accord-
ing to the Geometria indivisibilium of Bonaventura Cavalieri) that any plane
whatever consists, as it were, of an infinite number of parallel lines. Or rather
(which I prefer) of an infinite number of parallelograms of equal altitude; which
indeed the altitude of a single one is 1

∞ of the whole altitude, or an infinitely
small divisor; (. . . ); and therefore, the altitude of all of them at once is equal to
the altitude of the figure”. [2, p. 68] [4, p. 4]

Once that Wallis has established the frame of his investigation, he next con-
siders the parabola, the ellipse and the hyperbola as sections of a cone. Following
Descartes, Wallis considers these curves not as sections of a cone, but as plane
figures (Fig. 1) susceptible of being described by algebraic equations. To find the
equations defining the conics Wallis examines the geometrical relations (ratios)
among the elements the curves consist of. For the parabola he considers ordinates
of the curve, the latus rectum and the diameters (DO, LA and AD respectively
in Fig. 1) [4, pp. 46–59]. Focusing on the relation between the ordinates and
diameters, Wallis derives the equation of the parabola p2 = ld.

We note that Wallis’s treatment of conics relies on the work of Apollonius,
while he considers these curves as sections of a cone and retains the geometri-
cal terminology for its constitutive parts. But differences between them become
clearer, as soon as he incorporates elements from other mathematical tradi-
tions which he articulates in the diagram that accompanies his exposition. Dia-
grams now represent curves re-conceived as planar figures. Following Cavalieri’s
method, he takes planar figures to consist of an infinite number of parallelo-
grams having indefinitely small altitude. Moreover, according to Descartes, such
curves are susceptible of description by algebraic equations. The elements thus
articulated in diagrams, exceed the synthetic and finitary character of classical



714 E. R. Ortiz

Fig. 1. Conic section as planar figures [4, p. 63, 60 and 79].

geometry showing to be fundamental for the determination of properties needed
to solve quadrature problems in a general way. With the aim to evaluate the role
of these innovative diagrams in the next section I will present the resolution of
the quadrature of the parabola.

3 The Arithmetical Quadrature of the Parabola

The first stage in the determination of the quadrature of the parabola aims to
calculate the ratio between the series of square numbers and the series with the
same number of terms equal to the greatest term of first series. The investigation
proceeds by induction and the result is reached in proposition 21 which affirms
that “If there is proposed an infinite series, of quantities that are as squares of
arithmetic proportionals continually increasing (. . . ) it will be to a series of the
same number of terms equal to the greatest as 1 to 3”. [3, p. 27] After estab-
lishing this arithmetical result Wallis focuses on the determination of the area
under the parabola. Wallis formulates the problem referring explicitly to the dia-
gram that goes with the text (Fig. 2). The resolution requires to determine the
proportion between the area of AOT and the rectangle ATOD. As the diagram
shows, both figures are considered according to Cavalieri’s method as consisting
of indivisibles - lines DO and TO. The initial problem is thus transformed into
the problem to determine the proportion between collection of indivisibles. To
determine the required proportion Wallis associates numerical values to indivis-
ibles composing both figures. In this case, the initial terms of both series are
put in correspondence with the vertex of the figure (point A), while indivisibles
of AOT correlate with terms of the series of square numbers and indivisibles of
ATOD with terms of the series whose terms are equal to the greatest term of first
series. The correspondence between numerical values and indivisibles can only
be established if the relations (ratio) between terms of series is the same as the
one that holds between ordinates and diameter of the curve. Relations between
ordinates and diameters were already examined by Wallis - we recall - when
focusing on the definition of conics by algebraic equations (Sect. 2). Here Wallis
refers to previous results which establish that straight lines DO (ordinates) are
as the square roots of the lines AD (diameters) and conversely lines AD - that
is, TO - will be as the squares of the same DO - that is, AT [4, pp. 46–50]. This
result guarantees the correspondence between numerical values and indivisibles
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Fig. 2. [3, p. 28]

and allows Wallis to apply the arithmetical results reached in preceding propo-
sitions: “Therefore the whole figure AOT (. . . ) will be, to the parallelogram of
equal height TD (. . . ), as 1 to 3”. [3, p. 28]

4 Concluding Remarks

In our case study we saw how the diagram introduced by Wallis for the cal-
culation of the area under the parabola does not show any reference to the
cone but shows a new way to formulate quadrature problems. Thus, problems
about determination of areas are transformed into problems of determination of
proportions between collection of indivisibles. Wallis realizes that the required
proportion can be achieved by associating indivisibles with numerical values.
This association can only be done if the relation between the terms of series is
the same as the one that holds between indivisibles of figures. Wallis appeals to
the geometrical relations established in his search of algebraic equations defin-
ing the conics. Geometric relations on which equations are based thus become
conditions of solvability of quadrature problems. To conclude, Wallis’s novel for-
mulation of quadrature problems is made possible by the method of indivisibles,
while his resolution depends on the Cartesian approach. Both elements collapse
in his conception of the conics as planar figures that can only be fully articulated
by the diagrams accompanying the text.
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Abstract. We propose an algorithmic procedure for the automatic anal-
ysis of syllogisms with negative terms based on the modified version of
Shin’s Venn-I diagram. Our computational procedure can automatically
generate all the possible conclusions derivable from the two premises of a
given syllogism with negative terms. Our approach relies on the reformu-
lation of the logic behind the relations between points, lines, and surfaces
in the Venn diagram by employing conditional propagation rules.

1 Introduction

In this paper, we provide a three-step algorithmic procedure for the automatic
analysis of syllogisms with negative terms based on the formalization of the
modified Shin’s Venn-I diagram [3]. Our proposal applies slight changes in the
representation of the points, lines and surfaces in the Venn-I diagram for com-
putational convenience (Sect. 2.1). It also introduces 48 conditional propagation
rules for displacement of the existential points (Sect. 2.2). In the next section,
we briefly describe how these changes are sufficient for the automatic evaluation
of syllogisms with negative terms.

2 Algorithmic Procedure

Given X and Y , (distinct) members of the set of terms {S, P,M} (unary pred-
icates in modern logic sense), we can define Every X is Y as XaY ; No X is
Y as XeY ; Some X is Y as XiY and Some X is not Y as XoY . This defini-
tion can be extended to a syllogism that allows to include the negation of the
terms {S′, P ′,M ′}. This extension allows to have the equivalent formulas such as
XaY = XeY ′. Moreover, it adds new kind of propositions with negative terms
that were absent in the standard definition of the syllogism. Now, we define a
syllogism which consists of two premises and one conclusion. The first premise
can have two terms S(or S′) and M(orM ′) with different possible quantifiers;
the same thing for the second premise but with the two terms M(orM ′) and
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Fig. 1. Venn diagram for syllogism with negative terms

P (or P ′). The conclusion has only two terms S(or S′) and P (or P ′)—the middle
term M(orM ′) is absent from the conclusion.

Figure 1 illustrates a labeled version of the Venn diagram [2]. As one can
observe, all the 6 points, 12 lines and 8 surfaces1 are labeled by using the indexed
variables in the diagram. Given G = {P1, · · · , P6, L1, · · · , L12, S1, · · · , S8}, we
define a valuation Vi (i ∈ N) a mapping from G to {0, 1, u} such that valuations
of the points and lines are never 0. We interpret 0 as emptiness and 1 as non-
emptiness (or existential import) and u as undefined value (stating nothing in the
diagram). The formula Vi(L) = 1 means that one of the two adjacent surfaces,
separated by the line L, is 1. The formula Vi(P ) = 1 means that one of the four
adjacent surfaces – which P is the point of intersection between their borders
– is 1. The geometrical interpretation can be seen in the legend map of Fig. 2.
Having these concepts, we can describe the procedure:

2.1 Step I: Valuation

In this paper, we assume existential import for all the terms2. Consequently, we
can assume the non-emptiness of S, P,M,P ′, S′,M ′ in the Venn diagram, so, we
can state this fact with V0(Pi) = 1 (for 1 ≤ i ≤ 6). Given two potential premises
of a syllogism, we can define a valuation V1 provided in the rows (1–16) of the

1 The term surface is called zone in the classical Venn and Euler diagram literature.
2 Our proposal also works without assuming existential import. We only need to elim-
inate 24 point-to-line propagation rules introduced in Sect. 2.2. Another possibility
is to keep the rules without assigning valuation 1 to the points. Obviously, the com-
bination of those two solutions is also possible.
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Table 1. We have V1(Pi) = V0(Pi) = 1 for 1 ≤ i ≤ 6 and the remaining geometric
variables are assigned u by V1.

Table 1. Venn diagram valuations and conditions

2.2 Step II: Propagation Rules

The conditional propagation rules permit the displacement of existential values,
namely 1, from points to lines and from lines to surfaces. These movements
are needed for deriving all of the permissible conclusions; otherwise some of
them would be missed. Figure 2 shows the general scheme of geometrical status
before/after the application of the rules. The point P is located in the intersection
of the lines with the four adjacent surfaces. The line L is located in the border
of two adjacent surfaces. The Fig. 2 expresses graphically the following formal
rules:

1. If Vi(P ) = 1, Vi(S1) = 0 and Vi(S2) = 0 then Vi+1(L) = 1 and Vi+1(P ) = u
2. If Vi(L) = 1 and Vi(S1) = 0 then Vi+1(L) = u and Vi+1(S2) = 1.

First, we should apply the point-to-line rules and right after that the line-to-
surface rules. The case-by-case (automated) verification of the algorithm shows
that:

(i) The application of the rules is confluent and it always terminates. Hence,
one always reaches to the unique result—no matter in which order the rules
are applied.

(ii) No point with the value 1 stands in the intersection of four adjacent empty
surfaces, i.e. surfaces with value 0.

(iii) No line with the value 1 stands between two adjacent empty surfaces, i.e.
surfaces with value 0.
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Fig. 2. Two general schemes of the propagation rules

2.3 Step III: Interpreting the Result of the Valuations

In this step, we interpret the Venn-I diagram in order to either generate all the
possible permissible conclusions from two premises or to check the validity of
a given syllogism. This can be considered as an inverse counterpart of the first
phase. We can do this task by reading the valuations provided in the rows (17–
24) of the Table 1. As one can observe, all of the valuations for the universal
propositions are formulated conjunctively while the existential propositions are
formulated disjunctively. Each valuation formula should be interpreted as the
condition that when satisfied let us mark the relevant conclusion as derivable.

3 Conclusion and Possible Extensions

We have implemented and verified our proposal by means of spread-sheet pro-
gramming3. Each point and line trigger four and two conditional propagation
rules, respectively. So, the proposed procedure employs only 48 rules which are
not a lot in terms of quantity comparing to 32, 768(= 32 ∗ 32 ∗ 32) cases as the
large number of potential syllogistic forms. This case study and its implemen-
tation support the idea that there is no intrinsic difference between symbolic
and diagrammatic reasoning as far as their underlying logics go hand in hand
together. We can express that our proposed propagation rules are the implicit
logic underlying Venn diagram, and with a bit of modification, we can apply it
to other proposals that exist in the literature [1].

Acknowledgement. We would like to show our gratitude to Gholamreza Zakiani for
his enlightening suggestions in the early stage of this paper.

3 Please visit https://sites.google.com/view/mehdimirzapour/publications for getting
access to the spreadsheet and the codes.
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Abstract. It is little known that Schopenhauer (1788–1860) made thorough use
of Euler diagrams in his works. One specific diagram depicts a high number of
concepts in relation to Good and Evil. It is, hence, uncharacteristic as logicians
of that time seldom used diagrams for more than three terms (the number
demanded by syllogisms). The objective of this paper is to make sense of this
diagram by explaining its function and inquiring whether it could be viewed as
an early serious attempt to construct complex diagrams.
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1 Introduction

Arthur Schopenhauer used numerous Euler diagrams in his writings and lectures.
Although most of them are easily understood by the modern reader, an uncommon
diagram deserves a specific attention (Fig. 1). It represents a complex network of
relations between about thirty-five spheres located within a space between large areas
that stand for ‘Good’ and ‘Evil’. This diagram depicts an unusually high number of
concepts in a period where diagrams were mainly used to depict relations between three
terms at most. The objective of this paper is to analyze and to make sense of
Schopenhauer’s diagram of Good and Evil.

2 Schopenhauer’s Diagram

Schopenhauer is seldom mentioned in history of logic literature. It is true that little logic
is found in the writings that were published in his lifetime. His doctoral thesis, On the
Fourfold Root of the Principle of Sufficient Reason (1813), contains some remarks on
the structure of logic, on conceptual logic and on metalogical topics. These themes are
slightly revised in Schopenhauer’s main work The World as Will and Representation
(1819) where some Euler diagrams are included. In 1844, Schopenhauer expanded the
conceptual logic of the supplementary volume of the The World by adding a logic of
judgement and a logic of syllogisms. For a much longer exposition of logic and eristic,
one must consult the lesser-known Berlin lectures of the 1820s, first published in 1913
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([1], pp. 234–366; [2]). Contrary to previous works, the lectures contain numerous logic
diagrams. This contrast may be due to the nature of the writings: Schopenhauer regarded
his main work as rather popular philosophical treatise, whereas the lectures were
intended for students and academic philosophers. The diagram of Good and Evil is
found in the section on eristic, i.e. § 9 of the The World ([3], pp. 48–49), but a slightly
altered form also appeared in the eristic of the Berlin lectures ([1], pp. 363–366).

In Schopenhauer’s logic (and eristic), every concept is said to have a sphere, i.e. an
extension, and this sphere commonly stands in relation to other spheres. Schopenhauer
thoroughly represented these relations between spheres with the help of circles.
Although he did not think highly of the practical utility of logic, Schopenhauer cer-
tainly made high claims for logic diagrams which could be used to produce the rules on
which syllogistic rests: “This schematism of concepts, which has been fairly well
explained in several textbooks, can be used as the basis of the theory of judgments, as
also of the whole syllogistic theory, and in this way the discussion of both becomes
very easy and simple. For all the rules of this theory can be seen from it according to
their origin, and can be deduced and explained” ([3], p. 44).

3 Diagrams for a High Number of Terms

It is well-known that the design of logic diagrams for more than three terms became
prominent in the late nineteenth-century. Their need was not previously felt by the
logicians who worked within the syllogistic tradition. Indeed, only three terms are

Fig. 1. Schopenhauer’s diagram (redrawn from [3], pp. 48–49).
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found in syllogisms, and more complex problems were usually reduced to series of
syllogisms. For instance, there are no higher diagrams in Euler’s Letters to a German
Princess (1768). Although complex diagrams occasionally appeared in literature, one
had to wait for John Venn to find a systematic discussion of the topic. Indeed, in the
footsteps of George Boole, Venn (and several of his followers) aimed at a graphical
method for handling problems involving any number of terms [4].

Venn himself claimed the novelty of his work on diagrams for more than 3 terms,
acknowledging only one earlier attempt: “The traditional logic has been so entirely
confined to the simultaneous treatment of three terms only (this being the number
demanded for the syllogism) that hardly any attempts have been made to represent
diagrammatically the combinations of four terms and upwards. Almost the only serious
attempt that I have seen in this way is by Bolzano” ([5], p. 511). Schopenhauer’s
diagram of Good and Evil clearly represents relations between numerous spheres of
concepts. Interestingly, many similar diagrams for more than three terms are found in
Schopenhauer’s writings, although none reaches, or even approaches the complexity of
the Good and Evil diagram. Hence, one might legitimately wonder if Schopenhauer’s
work could be considered as another ‘serious attempt’ (in Venn’s words) to depict such
complex diagrams.

4 The Route to Good and Evil

In order to understand the working of the diagram of Good and Evil, let us consider the
sphere that stands for ‘Traveling’ and how it is connected to Evil. The sphere of
‘Traveling’ partly intersects with that of ‘Expensive’. Hence, the diagram indicates that
‘Some traveling is expensive’. However, a speaker might attempt to persuade that
traveling is expensive, by merely considering those travels that are expensive and
disregarding those that, possibly, are not. That would be incorrect for such a speaker
will operate an undue generalization. However, Schopenhauer precisely argues that
“the art of persuasion depends on our subjecting the relations of the concept-spheres to
a superficial consideration only, and then determining these only from one point of
view, in accordance with our intentions” ([3], p. 49). With this technique, our per-
suasive speaker will chain ‘Traveling’ to ‘Expensive’, then the latter to the sphere of
‘Causing losses’ which is itself connected to ‘Cause of becoming poor’. The latter is
shown to intersect with ‘Evil’, hence, reaching the ultimate destination of the speaker’s
argument. Another speaker who wishes to persuade us that ‘Traveling’ is rather ‘Good’
will follow the opposite path. He would argue that traveling is dispelling boredom and
hence is exhilarating. Then, exhilaration is said to be pleasant and hence, good. Both
speakers apply the same persuasive (fallacious) method which is summarized by
Schopenhauer as follows: “The sphere of a concept is almost invariably shared by
others, each of which contains a part of the province of the first sphere, while itself
including something more besides. Of these latter concept-spheres we allow only that
sphere to be elucidated under which we wish to subsume the first concept, leaving the
rest unobserved, or keeping them concealed. On this trick all the arts of persuasion, all
the more subtle sophisms, really depend” ([3], p. 49).
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It has been argued that the persuasive strategy described by Schopenhauer in this
diagram exploits the ambiguity of the concept-spheres themselves ([6], pp. 83–84). We
rather argue that the strategy involves a shift in the presentation of the relations
between spheres, exhibiting partial inclusion as a strict inclusion. Schopenhauer’s
diagram depicts ‘routes’ of persuasion that are used by speakers to convince of the
belonging of a specific concept to Good or Evil, depending on the speaker’s intention.
In Schopenhauer’s words: “thus one can represent the sphere of a concept A, which lies
only partly in another B, but partly also in a completely different C, now after one’s
subjective intention as lying completely in the sphere B, or in the C” ([1], p. 364).
Hence, each relation between successive concepts depicts a step in the argument.
However, Schopenhauer does not attempt to depict the relation between non-successive
concepts. For instance, while some traveling is said to be expensive, and expensiveness
is shown to cause losses, the diagram does not depict the expected relation of (some)
traveling causing losses. So, it cannot be said that Schopenhauer attempted to represent
the actual relations of a high number of concepts, but merely the relations of a high
number of concept considered in pairs.

5 Conclusion

A close examination of Fig. 1 shows that Schopenhauer does not aim at representing
the whole relations between the concepts that are depicted, but rather to show ‘routes’
that connect each sphere to Good and Evil, at the speaker’s convenience. This is an
important difference between the n-term diagrams of Schopenhauer’s eristic and
Venn’s symbolic logic: The diagram of Good and Evil is not embedded in logic, but in
the eristic and is thus an early ‘serious attempt’ to visualize the art of persuasion.
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Abstract. Multimedia learning research pointed out that adding a picture to a
text is not systematically beneficial to learners. One of the most influential
factors is the necessity for learners to identify mutually referring information in
the written and pictorial representations. This study investigates how
Cross-Representational Signaling (CRS) facilitates learning from multimedia
document. In this study, CRS is implemented by mutually referring visual and
verbal cues which highlight semantic links between text and picture. Two
versions of the same multimedia document explaining the risks of being caught
in a rapid, with or without CRS, are compared. The study that is still ongoing
will provide data on online processing (eye-tracking data) and learning out-
comes. The results will provide insights on the use of CRS to improve the
design of instructional diagrams.

Keywords: Multimedia learning � Eye-tracking � Signaling
Cross-representational signaling

1 Theoretical Framework

Diagrams and pictorial representations are often used to support comprehension of
instructional documents. Multimedia learning research showed that learning with
multiple representations (particularly written text and pictures) can be beneficial to
comprehension provided that learners can identify links between representations
through cross-references [3, 10]. The most widely accepted models of multimedia
learning (CTML from Mayer [6]; ITPC from Schnotz and Bannert [10]) claim that
information from verbal and pictorial representations are first processed by media
specific (verbal or pictorial) channels before being integrated in a coherent model of the
situation relying on both those representations and previous knowledge. The latest
version of the ITPC model from Schnotz [9] includes a coherence principle which
predicts that “students learn better from words and pictures than from words alone if
the words and pictures are semantically related to each other” ([9] p. 23), especially for
students with poor reading skills or little prior knowledge.
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Effectively guiding learners’ integration processes may be channelled through the
insertion of visual or verbal cues in either one or both verbal and pictorial represen-
tations [11]. A meta-analysis by Richter et al. [8] found an overall significant beneficial
effect of signaling text-picture relations on comprehension that was more profitable to
low to medium prior-knowledge than to high prior-knowledge learners. These results
confirm the ITPC [9] claim that supporting text-picture semantic links facilitates the
construction of a coherent mental representation. A possible moderating effect of
reading abilities was however not investigated.

Kalyuga et al. ([4] Exp. 2) used interactive colour coding in both representations to
facilitate search of corresponding verbal and pictorial elements. The cueing group
performed significantly better than the no-cueing group. Using eye-tracking to compare
the use of verbal cues (labelling) in the pictorial representation Mason et al. [5] found
that more integrative processing, measured through eye-fixations, occurred with
labelled pictures. This research shows that eye-tracking data can give interesting
insights in on-line processes of text-picture integration.

In the present study, we implemented Cross-Representational Signaling (CRS) through
colour coding cues and picture labelling to highlight semantic links between written texts
and visual pictures. Two versions (with or without CRS) of the same multimedia document
(a 5-page text and picture instruction explaining the risks of being caught in a rapid) were
designed. After completing reading skills tests, participants learned with one of the two
versions of the multimedia document and answered comprehension (text-based and
inference) questions.

We assume that CRS facilitates the construction of a coherent mental model, which
should lead to better comprehension scores, especially for students with lower reading skills.
Eye-tracking datawill provide insights on thewayCRS affects the processing of instructional
diagrams. In particular, following Mason et al. [5], we expect that signaling in the text will
prompt exploration of the pictures and increase the total time spent on the pictures.

2 Method

The experimental material was a 5-page expository document including text and static
representational pictures on how to escape the Maytag effect when being caught in a
rapid. The material was carefully selected and designed to ensure that both media were
necessary for no prior knowledge learners to comprehend the document. The pictures
were designed to be representational in the sense of Carney and Levin [1]. CRS
encompassed the following mutually referencing verbal and visual cues: colours,
symbols and labels (see Figs. 1 and 2). The material was presented on a 23” screen, and
participants’ eye-movements are recorded with a Tobii TX300.

Participants’ prior knowledge was evaluated online, before the experiment, with a
self-assessed multiple-choice knowledge questionnaire. Because the ITPC advocates
that semantic links are helpful only to low prior knowledge readers, only participants
with low or no prior knowledge on the topic were recruited. During the experiment,
participants completed two reading skills assessments (a vocabulary test from Deltour
[2] and an inference generation test adapted from Meteyard et al. [7]). Then they
studied the multimedia document in one of two experimental conditions (with vs.
without CRS). After reading, participants completed a 7 items Likert scale
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questionnaire on motivation, perceived difficulty and perceived effort. They ended with
the comprehension test, with 13 open-ended questions at three levels: text-base com-
prehension, local bridging and global-bridging inference. A drawing task was also
included, in which participants had to draw and name the different currents involved in
the formation of a whitewater.

The experiment was still running when we wrote this paper. A random sample of
40 to 50 undergraduate university students in education sciences or psychology will be
recruited overall.

3 Data Analyses and Expected Results

Following previous research in multimedia learning using eye-tracking as an online
measure of comprehension [3, 5], we will analyze the collected data with first-pass and
second-pass fixations. Specifically, we will consider fixations as gazes and focus on
look from text to picture, both in general and with targeted AOI.

First, following the ITPC model [9] we expect that multimedia comprehension will
be higher in the CRS than in the control condition, especially for students with low
reading skills. Regarding on-line processing, we expect that participants reading the
multimedia document with CRS will look at the picture during first-pass and
second-pass reading more often than participants without CRS. Indeed, research by
Mason et al. [5] pointed out that a picture with verbal cues elicited more integration
with the text than a picture without verbal cues. Further exploratory analyses of
eye-tracking data will provide insights on how text-picture integration processes differ
with and without CRL. Participants reading skills will be inserted in the analyses as a
potential moderator.

This study will contribute to test an implementation of the coherence condition,
theoretically developed in the ITPC model, when a document is designed with

[…] 
Formée en amont (avant), la lame d’eau de 

profondeur, échappe toutefois au tourbillon pour 
ressurgir en aval (après) d’un bouillonnement 
d’eau. Dans celui-ci la densité de l’eau est divisée 
par 2, ce qui limite la flottaison. 

Fig. 1. Sample of the material with CRS

[…] 
Formée en amont (avant), la lame d’eau de 

profondeur, échappe toutefois au tourbillon pour 
ressurgir en aval (après) d’un bouillonnement 
d’eau. Dans celui-ci la densité de l’eau est divisée 
par 2, ce qui limite la flottaison. 

Fig. 2. Sample of the material without CRS
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Cross-Representational Signaling. The findings will provide guidelines regarding the
design of commented diagrams used for instructional or public awareness purposes.
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Abstract. The impact of the dominant hand on the response time and precision
in mental rotational tasks seems to be controversial. The goal of this study was
to compare the differences in response times of mental rotation tasks when the
task is performed with the dominant or non-dominant hand. In this study, 44
right-handers and 45 left-handers participated in mental rotation tests with 2-D
and 3-D figures. Findings indicate that the right-handers had shorter response
times than left-handers in tests with both types of figures.

Keywords: Reaction time � 2-D figures � 3-D figures � Right-handers
Left-handers

1 Introduction

Spatial visualization and mental rotation are considered to be among the at the core of
human visuo-spatial abilities. Shepard and Metzler [1] and Cooper [2] provided initial
results indicating that humans have a measurable ability to mentally rotate
two-dimensional or three-dimensional objects. Further, they provided plausible
Reaction-Time-based methods for deciding whether these figures are the same objects
in different positions.

Several studies emphasize the importance of (1) strategy, (2) impact of gender,
(3) age, and (4) the properties of the rotational stimulus in the visual field. Many of the
studies have been conducted with right-handed subjects; however, almost no studies
have explored the impacts of handedness on the rotational tasks. Right-handers and
left-handers are described as people who tend to use the right or the left hand as the
dominating and are convenient for doing different tasks. The impact of the dominant
hand on the response time and precision in mental rotational tasks seems to be con-
troversial though. Additionally, studies by Metzler and Shepard [3] and Jones and
Anuza [4] indicate that left-handers are less effective than right-handers in mental
rotation tasks.

However, Herrmann and van Dyke [5] argues that the opposite is the case: that
mental rotation is performed more quickly by left-handed participants (with their
dominant hand) and 2-dimensional images are retained by the linear relationship
between the reaction time and the turning angle. The study by Peters et al. [6] does not
show any differences in mental rotation between right- and left-handers, but only that
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there are differences between male and female subjects according to their responses.
One of the explanations for the handedness differences is based on the specialization of
the cerebral hemispheres; verbal or symbolic ability is considered to be provided by the
left hemisphere of the brain, while the right hemisphere is responsible for processing
spatial information [7]. All these studies are considered to be inconclusive [6] as it can
be assumed that the process of spatial encoding for the left and right hand varies
according to the hand they use for responding [8].

The present study aimed to investigate the possible advantages of right- and
left-handers in the tasks of mental rotation. The goal of the study was to compare the
differences in response times when performing mental rotation tasks with the dominant
or non-dominant hand.

2 Method

Mental rotation tasks were displayed on a computer screen at a distance of 60–65 cm
from the subjects. Eighty-nine (89) subjects participated in the study (44 right-handers
and 45 left-handers) and the age range was 19–33. Subjects without a dominant hand
were excluded from the study. The Right-hand test (R-test) was performed by 21
right-handed and 21 left-handed subjects; the Left-hand test (L-test) was performed by
23 right-handed and 24 left-handed subjects. The 2-D figures used in the mental
rotation tests and stimuli used were adapted from Cooper [2] and the 3-D figures from
Shepard and Metzler [1]. The computer program presented 2-D or 3-D figures in a
random order at four different angles (0°, 60°, 120° and 180°). 2-D figures chosen were
those that were closer to recognizable objects, such as fish, flower, dog (see Fig. 1 2-D
stimuli), but 3-D stimuli chosen were abstract objects.

Subjects sat in front of the computer screen and positioned their right and left index
fingers on a keyboard button. The group of right-handers (RH) performed the
Right-hand test (R-tests - RH) and gave the answers about the similar figures displayed
on the screen with the right hand and about the different figures – with their left hand.
The second right-hander group performed the Left-hand test (L-test - RH) and reacted
to similar figures by pressing the button with the left hand. The same procedure was
used for the two groups of left-handers. The test was not done for the same subjects in
both conditions because of concerns about learning effects. All figures (2-D and 3-D)
were randomly presented three times in one test session. The program recorded the
response times for each figure and the correct and incorrect answers given.

2-D stimuli 3-D stimuli

Fig. 1. The 2-D and 3-D figures used in the study. Each figure was shown three times and
presented in four different angles of rotation.
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In the data analysis, non-parametric statistical methods were used to compare
response times. The Mann-Whitney U test was used to compare the mean response
times of all correctly recognized figure pairs and differences in results between the
right- and left-handers. Non-parametric one-way analysis using the Kruskal-Wallis test
was used to compare the difference between the four orientations (0°, 60°, 120°, and
180°).

3 Results and Discussion

The Kruskal-Wallis test of variance showed significant effect (p < 0.0001): in all tests
(R- and L-tests with 2-D and 3-D figures) the response time increased as a function of
the rotation angle. According to these results, it can be seen that there is a significant
impact of test type on the performance of the right-handers. The right-handers who
performed the test with their right-hand showed shorter response times than when they
performed the test with their left-hand (p < 0.05) for both tasks, (2-D and the 3-D
figures) (see Fig. 2, for RH results). In contrast, the difference between right- or
left-hand tasks with 2-D and 3-D figures was not observed (p > 0.3) in the left-handers,
(see Fig. 2, for LH results).

Response times in R-tests for left-handers were crucially different when compared
with the right-handers. The right-handers rotated the 2-D and 3-D figures (p < 0.0001)
faster than the left-handers. However, results of L-tests showed no statistically sig-
nificant difference (p > 0.3) between the subjects with the left dominant hand and the
subjects with the right dominant hand. Test results achieved by both groups using their
dominant hand showed that the left-handers’ response times were longer than the
right-handers’ response times (p < 0.01). When using their non-dominant hand,
right-handers mentally rotated 2-D figures faster than left-handers (p = 0.04) but
response times for 3-D figures rotation showed no significant difference (p = 0.07).
Left-handers performed the mental rotation tasks slower in all cases.

A statistically significant difference between right-handers and left-handers can be
observed when using their dominant hand; the left-handed subjects performing the
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Fig. 2. Right-handers (RH) and left-handers (LH) response times when using the dominant and
non-dominant hand. The graphs present mean ± SE results.
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tasks slower than the right-handers (p < 0.05). However, if the impact of non-dominant
hand is taken into account, results show no significant differences between the groups.
At the same time, left-handers show longer reaction times in the 3-D test in all test
conditions. These data indicate that right-handers have shorter response times than
left-handers in all test conditions. This may be due to many reasons but most likely
there is some sensorimotor overload which impacts on those tendentially larger reaction
times in left-handers.

The results from this study have relevance for diagram research since mental
rotation task occurs frequently while reading information in diagrams. This work shows
some tentative evidence that right-handers and left-handers perceive rotation tasks
differently. This has important consequences for information visualization and should
be kept in mind when diagrams containing mental rotation are used. According to these
results, it is possible to hypothesize that the underlying process of using visualizations
by offloading cognition on external visuo-spatial representations can be impaired in
left-handers. Although more research on rotational diagrams is needed, these results
relate to the principles of perception and expressiveness of displays [9, 10], suggesting
that left-handers’ capacity limitations may impact on the results of mental rotation.

4 Conclusion

From these results it can be concluded that right-handers have shorter response times
than left-handers in mental rotation of 2-D and 3-D figures. These results also indicate
that the impact of handedness is more complex than one might assume as results from
the group of left-handers do not indicate a linear correlation between the rotation angle
and the response time in the 2-D version of the task. A general observation from these
results can be made that sensorimotor task complexity for left-handers increases the
reaction times of this group and this should be taken into account in the development of
visual materials.
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Abstract. Venn andEuler diagrams are valuable tools for representing the logical
set relationships among events. Proportional Euler diagrams add the constraint that
the areas of diagram regions denoting various compound and simple events must
be proportional to the actual probabilities of these events. Such proportional Euler
diagrams allow human users to visually estimate and reason about the probabilistic
dependencies among the depicted events. The present paper focuses on the use of
proportional Euler diagrams composed of rectangular regions and proposes an
enhanced display format for such diagrams, dubbed “Euler boxes”, that facilitates
quick visual determination of the independence or non-independence of two
events and their complements. It is suggested to have useful applications in
exploratory data analysis and in statistics education, where it may facilitate intu-
itive understanding of the notion of independence.

Keywords: Euler diagrams � Proportional Euler diagrams � Probability

1 Introduction

The use of closed-curve diagrams to represent sets is usually attributed to Leonhard
Euler. This work was expanded and applied to the study of logic by John Venn. In recent
decades, such diagrams have become widely used in logic and mathematics education
[1, 2]. The diagrams have important applications in probability theory and statistics
education [3–5]. In some scientific domains, proportional Euler diagrams have been
used as a means to visualize data [6, 7]. Proportional (or “scaled”) Euler diagrams
impose the constraint that the distinguished subareas in the diagram should be pro-
portional to a set of weights. Most often, the weights represent the probability or relative
frequency of the corresponding event. Recent work in computer and information science
has developed algorithms for automatic generation of proportional Venn and Euler
diagrams, using both circles and polygons [8–12]. Some of these algorithms are widely
available as R packages, among them venneuler, VennDiagram, and eulerr.

The present paper proposes an enhanced display format for proportional Euler
diagrams composed of rectangular regions (“Euler boxes”), that represents the areas of
simple and joint events in a way that facilitates user inferences about the independence
of simple or marginal events. The diagram is advocated as a way for students of
probability theory to visualize and better understand the concept of the independence of
two events or random variables, and as a form of graphical data analysis providing a
means to visually detect non-independence in contingency tables.
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2 The Euler Box Diagram

2.1 Example: Independent Events

The Euler box diagram is a type of proportional Euler diagram using rectangular
regions. Such diagrams can be seen as direct visualizations of a contingency table [8].
Consider an example of independent events generated by the flip of a coin, resulting in
Heads (H) or Tails (T), and the simultaneous roll of a die, with 4 of the faces colored
Red and 2 faces White. The joint event probabilities are easily calculated, and can be
represented by the diagram shown in Fig. 1.

In this diagram, the overall area is assumed to be 1, the total probability of the
outcome space. Probabilities of the simple events Red and White are represented by the
overall areas of the regions indicated by the blue and white colors, while the probability
of Heads (H) is depicted by the overall area with grey shading. Texture shading could
also be used to differentiate one facet of the diagram, if colors are not available.
Importantly, the areas of all joint events (e.g., Heads \ White) are also proportional to
their area. Finally, the projections of the rectangles on the axes are another way to
visualize the probabilities of the simple events, as the proportions of their extent on
each axis. In Fig. 1 these marginal probabilities are explicitly noted; e.g., P Hð Þ ¼ 1

2.
The diagram in Fig. 1 illustrates the concept of independence in a very directway.One

definition of independence states that two events A and B are independent if P(A \
B) = P(A)P(B). It is clear from the diagram that the area corresponding to (Heads \ Red)
is simply equal to P(H)P(Red) = (1/2)(2/3) = 2/6. Another definition of independence
states that two events A and B are independent if P(A|B) = P(A). It is apparent from the
diagram that P(Red|H) = P(Red|T) = P(Red) = 2/3, although this involves some visual
reasoning, namely mental estimation of proportional areas, e.g., the proportion of the
grey-shaded region (H) that is also blue (Red),which is the visual counterpart of P(Red|H).
Thus, the diagram directly represents the fundamental relationships involved in the
concept of independence, which may be helpful for statistics learners.

Fig. 1. Euler box diagram of independent events
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2.2 Example: Euler Boxes for Non-independent Events

According to the U. S. Centers for Disease Control (CDC), smoking is a prevalent
health risk for adults in the U.S. This risk is heightened for adults living in poverty:
according to CDC data on smoking trends 2005–2015, in one study the rate of smoking
among adults living below the federal poverty line was 32.4%; among adults at or
above the poverty line it was 20.0%. According to the U.S. Census, 14.8% of U.S.
adults were living below the poverty line in that period, implying the following 2 � 2
joint probability distribution (Table 1). From the table, it is difficult to tell at a glance if
independence is satisfied or not.

The Euler box representing these non-independent events is constructed as follows.
First, the Euler diagram representing independence of the simple or marginal events is
constructed. Then, the rectangular regions representing the joint events are enlarged or
reduced, so that the area of each rectangle is proportional to the observed relative
frequency for that joint event, as shown in Fig. 2. This involves enlarging or shrinking
each rectangular region by a factor s ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

oij=eij
p

, where oij and eij are the observed and
expected relative frequencies for cell (i, j). This scaling factor is applied to both height
and width dimensions. Note that the outline of the original diagram representing
independence is retained as a frame or “graphical overlay” [13] (with the same total
area as the four rectangles representing the joint events). This enables direct visual

Table 1. Smoking among US adults by poverty level (CDC 2005–2015): observed relative
frequencies, expressed as percentages.

Poverty At/above poverty Marginal

S 4.8% 17.0% 21.8%
NS 10.0% 68.2% 78.2%

14.8% 85.2%

Fig. 2. Euler box diagram for data linking smoking and poverty.

736 J. E. Corter



inferences regarding whether a given cell is more or less likely than expected under
independence. The Euler box in Fig. 2 visually demonstrates that the two random
variables (and all joint events) are not independent, and that (for example) adults living
in poverty are much more likely to smoke.

3 Future Directions

Future research is needed to assess the utility of the present work. In statistics edu-
cation, studies might assess if the Euler box diagram indeed helps students learning
probability to better understand independence. In visual data analysis, the effectiveness
of the display for rapid assessment of independence relations might be assessed. Just as
importantly, more work is needed to generalize the enhanced Euler boxes display
format beyond the case of two dichotomous events and variables. If one (or both) of the
categorical random variables has three or more levels, what adjustments or accom-
modations should be made to the diagram to preserve the user benefits discussed here?
Can useful extensions to the case of three or more variables be devised? Future work is
planned to examine these questions.
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Abstract. Symmetry is often considered a desirable feature of dia-
grams. However, quantifying the exact amount of symmetry present is
often difficult. We propose a novel symmetry metric that can score the
amount of rotational, translational, and reflective symmetry present in
a graph or line diagram.
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1 Introduction

Symmetry is a property of visual layouts that is frequently considered to be
desirable. Many believe greater symmetry improves understandability and that,
for example, force-directed layout promotes symmetry [1,2]. In the study of
Kieffer et al., human subjects showed a preference for graphs with reflectional
symmetry [3]. Likewise, Marriot et al. confirmed that various layout features—
including symmetry—make graphs more memorable [4].

For graphs, Purchase defined an algorithm for computing a symmetry score
and used this to test various claims [5]. Purchase’s symmetry algorithm has two
important limitations which this paper attempts to address. First it focused
only on the symmetries of vertices, but ignored edges. Second it measured only
reflective symmetries, ignoring rotational and translational symmetries.

In this paper we develop a new symmetry metric for straight line diagrams.
Our symmetry metric is an extension of that described by Loy and Eklundh
[6] which extracts reflective, rotational and translational symmetries of feature
points from photographs. We adapt their algorithm to work on known vector
lines, rather than feature points detected in raster images. Unlike points, lines
can be symmetrical with respect to themselves, and for the line drawing we
consider you have perfect knowledge about the lines. This holds true for images
stored in vector formats (e.g. SVG).
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2 Background

Purchase [5] defined a symmetry metric for graphs that measured how much
reflective symmetry was present between vertices. However, an important limi-
tation of Purchase’s algorithm is that it does not consider edges when calculating
a symmetry score. In all connected graphs which are not trees, edges will out-
number vertices. Additionally, edges are drawn as lines connecting the vertices.
This results in the edges having a lot of influence on visual symmetry within the
graph. Therefore, in this work we focus on quantifying the symmetry of edges.

We extend the symmetry detection method of Loy and Eklundh as it is works
in 2D and can identify rotational, translational, and reflective symmetries [6].
However, Loy and Eklundh focus on identification of symmetry for points that
have been extract from photographs, in order to identify regions of symmetry.
However, as we consider lines, which are symmetrical with respect to themselves,
we develop a new method following their process.

An important feature of Loy and Eklundh’s algorithm is that it can detect
when multiple different detected symmetry axes/centres are actually very similar
(i.e. rather than only when they are identical), and groups them together into
a single axis. This is very useful in generated diagrams as they may have minor
imperfections which should not be penalised.

3 Symmetry Metric

Our extended symmetry metric is described in Algorithm 1. The rest of this
section describes each part of the algorithm. The implementation can be found
as part of our open source graph analysis library [7].

The general idea of the algorithm is that it finds every possible axis of mirror,
translational, or rotational symmetry that is present in the diagram. It then
votes to identify which axes affect the largest number of lines. The number of
axes detected is a user defined parameter N . Note that the score for each type
of symmetry is computed separately.

We start with an empty list of pairs of an axis (two floating point numbers)
and its quality score (a number between 0 and 1). Each kind of symmetry has
a different sort of axis: rotational symmetry has a centre of rotation, transla-
tional symmetry has a direction vector, and reflective symmetry has the Hough
transform [8] of the mirror line.

We then convert the lines into a standard format for easy manipulation. Fol-
lowing Loy and Eklundh [6] we convert them into Scale Invariant Feature Trans-
form (SIFT) [9] features. Each SIFT feature is a four-tuple consisting of a location
(centre of the line), orientation (angle between the line and x-axis in degrees), scale
(length of the line in pixels), and identifying characteristics (always 1).

The first set of axes we generate are those that are symmetries of an axis
with itself. For reflective symmetry there are two axes that can be generated
from a single line: its perpendicular bisector, and the line itself. For rotational
symmetry there is one: the position of the line, as a line can be spun around
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Algorithm 1. Symmetry metric.
Data: symmetryType ∈ {reflective,rotational,translational} & N the number of

axes to find
Result: score ∈ [0..1]
axes = empty list
features = Convert all edges to SIFT features
for fi ∈ features do

if symmetryType == reflective then
axes.add(perpendicularBisector(fi), 1)
axes.add(parallelAxis(fi), 1)

else if symmetryType == rotational then
axes.add(getLocation(fi), 1)

foreach fi, fj ∈ features do
axis = find symmetry axis(symmetryType, fi, fj)
quality = find symmetry quality(symmetryType, fi, fj)
axes.add(axis, quality)

axes = quantiseAxes(axes)
bestAxes = pickBest(axes, N)
score = score(bestAxes)
return score

its centre 180◦ to get the same line. There are no such axes for translational
symmetry. In each the symmetry is perfect, therefore the quality score for all
these axes is 1. Note that these single feature axes of symmetry are not present
in Loy and Eklundh’s algorithm.

All other possible axes of symmetry can be generated by calculating the axes
of symmetry between every pair of lines. The quality score for each axes is the
product of its scale quality (Sij) and orientation quality (Φij) scores. Each score
is bound by [0 . . . 1].

The scale quality (Sij) is the same for all symmetry types and is the same as
Loy and Eklundh’s original paper [6]. In the equation Sij is the scale similarity,
sk is the length of line k, and σs is a scaling factor (sensitivity).

Sij =

(
e

−|si−sj |
σs(si+sj)

)2

(1)

The axis of reflective symmetry is the perpendicular bisector of the line
between the line centres. The orientation quality (Φij), is adapted from Reisfeld
et al. [10], with consideration for lines being symmetrical after 180◦ rotations.

Φij = |cos (θi + θj − 2 ∗ θij)| (2)

For translational symmetry the required translation is the vector difference
in the position of the features. This needs to be normalised (multiplied by −1 if
dy <0) to compensate for ordering. For translational symmetry the orientation
quality has to be adjusted as the lines are not mirrored.
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Φij = |cos (θi − θj)| (3)

For each pair of features there can be up to two centres of rotational sym-
metry. This is because there are two ways to line up the feature orientations,
head to head and head to tail, each of which may require its own centre. When
θ1 = θ2 = 180 both centres will be the same. This is different from the original
paper where there was only one possible centre, and is a result of a line being
indistinguishable after a 180◦ rotation. The orientation metric score is always 1.

Having enumerated all of the axes of symmetry, the quality scores are now
used to vote to find the N best axes. We quantise the space, to deal with minor
deviations in location, and sum the symmetry scores for each distinct axis. The
N axes with the highest total scores are the chosen axes.

The final stage of the algorithm is to turn the set of N best axes found into
a number that can be used as a metric. We use the following equation:⎛

⎜⎜⎝
∑
axes

number of lines that voted for this axis

N × number of lines

⎞
⎟⎟⎠

4 Conclusion

We developed a novel metric to evaluate how symmetrical a given line diagram
is with respect to reflective, rotational and translational symmetries.

References

1. Eades, P.: A heuristic for graph drawing. Congr. Numer. 42, 149–160 (1984)
2. Purchase, H.C., Cohen, R.F., James, M.: Validating graph drawing aesthetics.

In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0021827

3. Kieffer, S., Dwyer, T., Marriott, K., Wybrow, M.: HOLA: human-like orthogonal
network layout. IEEE TVCG 22(1), 349–358 (2016)

4. Marriott, K., Purchase, H., Wybrow, M., Goncu, C.: Memorability of visual fea-
tures in network diagrams. IEEE TVCG 18(12), 2477–2485 (2012)

5. Purchase, H.C.: Metrics for graph drawing aesthetics. JVLC 13(5), 501–516 (2002)
6. Loy, G., Eklundh, J.-O.: Detecting symmetry and symmetric constellations of

features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006 Part II.
LNCS, vol. 3952, pp. 508–521. Springer, Heidelberg (2006). https://doi.org/10.
1007/11744047 39

7. Klapaukh, R.: GraphAnalyser. https://github.com/klapaukh/GraphAnalyser.
Accessed 20 Dec 2013

8. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves
in pictures. Commun. ACM 15(1), 11–15 (1972)

9. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceeding
of Computer Vision, pp. 1150–1157 (1999)

10. Reisfeld, D., Wolfson, H., Yeshurun, Y.: Context-free attentional operators: the
generalized symmetry transform. Int. J. Comput. Vis. 14(2), 119–130 (1995)

https://doi.org/10.1007/BFb0021827
https://doi.org/10.1007/11744047_39
https://doi.org/10.1007/11744047_39
https://github.com/klapaukh/GraphAnalyser


Wrapping Layered Graphs
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Abstract. We present additions to the widely-used layout method for
directed acyclic graphs of Sugiyama et al. that allow to better utilize a
prescribed drawing area. The method itself partitions the graph’s nodes
into layers. When drawing from top to bottom, the number of layers
directly impacts the height of a resulting drawing and is bound from
below by the graph’s longest path. As a consequence, the drawings of cer-
tain graphs are significantly taller than wide, making it hard to properly
display them on a medium such as a computer screen without scaling the
graph’s elements down to illegibility. We address this with the Wrapping
Layered Graphs Problem (WLGP), which seeks for cut indices that split
a given layering into chunks that are drawn side-by-side with a prefer-
ably small number of edges wrapping backwards. Our experience and
a quantitative evaluation indicate that the proposed wrapping allows
an improved presentation of narrow graphs, which occur frequently in
practice and of which the internal compiler representation SCG is one
example.

1 Introduction

The layer-based layout approach is a successful method to lay out directed acyclic
graphs. In its original form it has been presented by Sugiyama et al. in 1981 [4]
and since then has been refined for many use cases. Healy and Nikolov give a
comprehensive survey of the state of the literature in 2013 [1]. The approach’s
central idea is to assign nodes to indexed layers such that edges point from layers
with lower index to layers with higher index. The overall layout task is split
into three consecutive phases: layering, crossing minimization, and coordinate
assignment. To allow cyclic graphs, an additional initial cycle breaking phase
can be added to make the graph acyclic, and a final edge routing phase can be
added to support different edge routing styles.

If a graph is laid out from top to bottom, the number of used layers directly
impacts the height of the resulting drawing and is bound from below by a graph’s
longest path. Thus, an inherent problem of the layering process is that graphs
with long longest paths may yield drawings which are significantly taller than
wide, resulting in unfortunate aspect ratios. Certain graph types occurring in
practice encourage such drawings by nature. See, for instance, Fig. 1a, which
shows the drawing of a sequentialized Sequentially Constructive Graph (SCG) [5],
a type of control flow diagram, where each node represents an execution step
c© Springer International Publishing AG, part of Springer Nature 2018
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(a) No cuts,
one chunk

(b) One cut, two chunks

(c) Two cuts, three chunks

Fig. 1. A sequentialized SCG drawn with dif-
ferent numbers of cuts. The aspect ratios of the
drawings vary significantly, each well-suited for
a certain prescribed drawing area.

(a)

(b)

(c)

Fig. 2. Three drawings of the
same graph, each time with a
different number of cuts and
backward wrapping edges.

of a program. With increasing program sizes, either only a small part of the
created drawings can be displayed on a monitor, or the drawings have to be
scaled down to illegibility. However, in particular the labels within the nodes
require a presentation in which they can be properly read by a user.

We address this with the Wrapping Layered Graphs Problem (WLGP) as
defined below. It seeks for cut indices that split a given layering into chunks
that are to be drawn side-by-side such that a prescribed drawing area is used
as good as possible and such that a preferably small number of edges wraps
backwards. Results can be seen in Figs. 1b, c and 2b, c. Note that while the
edges connecting one chunk with another chunk point upwards, something that
the original approach seeks to avoid, the chunks are well-separated and the
overall flow of the diagram remains clearly visible. Our method is implemented
in the Eclipse Layout Kernel (ELK) open-source project1.

2 Wrapping Layered Graphs

A layering L of a directed acyclic graph G = (V,E) is a partitioning of the
graph’s nodes into distinct layers L = (L1, . . . , Lm). Let L(v), denote the index
of v’s layer. In the context of Sugiyama et al.’s method, it is required that
∀(u, v) ∈ E: L(v)−L(u) ≥ 1 holds. Furthermore, from the crossing minimization
phase on a proper layering is required, in which all edges must be short : L(v) −
L(u) = 1, (u, v) ∈ E. A proper layering can be constructed by splitting all
edges that span multiple layers, introducing a dummy node in each spanned
1 https://www.eclipse.org/elk/.

https://www.eclipse.org/elk/
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layer. A cut index c is an index out of [2, . . . ,m] where m ≥ 2 is assumed
since otherwise splitting a layering is not required. A cut index c may be valid.
The exact definition of valid depends on the use case and will be defined more
precisely later on. An edge (u, v) ∈ E is spanning an index i with 1 < i ≤ m
if u ∈ Lj , j < i and v ∈ Lk, k ≥ i. An ordered set of monotonically increasing
valid cut indices C = (c1, . . . , cn) partitions a layering L into n + 1 chunks:

S1, . . . , Sn+1 = (L1, . . . , Lc1−1), (Lc1 , . . . ), . . . , (. . . , Lcn−1), (Lcn , . . . , Lm).

Let m′ = max1≤i≤n+1 |Si|. A new layering L′ = (L′
1, . . . , L

′
m′) can be constructed

by subsequently adding the nodes of each Si to the layers of L′, each time starting
at L′

1. An edge that spans a cut index is said to be cut in the new layering. To
compute reasonable cut indices one must be aware of the dimensions a final
drawing would have if a certain layering were to be used. During layering these
dimensions can only be estimated [3]. For the remainder of this paper and for a
layering L, let w(L) and h(L) denote such estimates of the layering’s width and
height. Now to the problem we seek to solve:

Problem (Wrapping Layered Graphs (WLGP)). Given a graph G =
(V,E), a corresponding layering L, and a prescribed drawing area, the prob-
lem is to find a set of valid cut indices C such that for the induced layering L′

(1) the prescribed drawing area is used as good as possible and (2) the number
of edges that point into the “wrong” direction is kept small2.

We assess the first point using the max scale measure [2]. It states for a prescribed
drawing area R = (rw, rh) the largest scale factor s that can be used to display
a graph’s drawing within R and is computed as s = min {rw/w(L′), rh/h(L′)}.

We also consider a variant of WLGP that is restricted to wrapping a single
edge per cut and solely optimizes point 1), but is far easier to implement within
the layer-based approach; we refer to this variant as WLGPse. Valid cuts then
are in-between pairs of layers that are connected by exactly one edge: a cut
index c is valid if |{e ∈ E : e spans c}| ≤ 1. Next, the ideas of the heuristics we
use are briefly outlined. Detailed descriptions and hints regarding the technical
implementation of the overall procedure within the layer-based approach of both
variants can be found in a technical report [3].

2.1 Heuristics

ARD. The aspect ratio-driven (ARD) heuristic selects cut indices such that the
aspect ratio it estimates for the altered layering comes close to the aspect of
the prescribed drawing area. The aspect ratio of the new layering L′ is a =
w(L′)/h(L′). The number of chunks z the old layering has to be split into in order
to achieve a can be estimated as follows, where one assumes w(L′) ≈ z · w(L)

2 Note that this does not relate to the number of cuts but to the number of edges that
span a certain cut index.
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and h(L′) ≈ h(L)/z. Given z, a corresponding set of potential cut indices C can
be defined as well:

z = round

(√
a · h(L)
w(L)

)
, C =

{⌈ |L|
z + 1

· i
⌉

+ 1, 1 ≤ i ≤ z

}
.

MSD. Aiming at a specific aspect ratio does not necessarily result in a drawing
that uses a prescribed drawing area to its full potential. Hence, the max scale-
driven (MSD) heuristic tries to directly maximize the max scale value at the cost
of further work. It uses ARD’s z as an initial guess on a number of cut indices
that would create a drawing with an aspect ratio close to the prescribed drawing
area’s one and then tries to find an altered layering with minimal height. The
height estimate h(L′) we use is the maximum of sums (each sum represents the
height of a single chunk, i. e. the heights of the chunk’s layers). A set of cut indices
that minimizes this maximum can be calculated efficiently when z is given: Since
the order of layers must not be altered, one can simply iteratively add the original
layers to a chunk, starting a new chunk each time the current chunk’s combined
height exceeds h(L)/z + 1. MSD then slightly increases and decreases the z to
check if a larger or a smaller number of chunks yields a better result.

Validification and Edge-Awareness. Remember that WLGPse, unlike WLGP, is
not allowed to cut at every index, forbidden cut indices thus have to be validi-
fied. We evaluated two interchangeable strategies: first, incrementing a forbidden
index (and all its succeeding indices) until it is valid, and second, finding the
closest valid index for each forbidden index. Note that in both cases indices may
have to be omitted. In the context of the unrestricted variant, “good” cuts are
between pairs of layers that have a small number of edges in-between. Since
neither ARD nor MSD considers this, we apply a greedy improvement strategy
that tries to slightly alter the previously computed cuts in order to reduce the
number of cut edges.

3 Results

We evaluated our method using 135 sequentialized SCGs and 146 graphs from
the well-known North (AT&T) collection and found that it behaves as desired. To
give an example, for prescribed drawing areas with aspect ratios between 1.0 and
4.0, MSD creates drawings that can be scaled between two and four times larger
on average than when no wrapping is applied. Detailed results can be found in
the technical report [3]. To conclude, we proposed an extension of the layer-based
approach that creates drawings specifically tailored to prescribed drawing areas
and which can easily be explained to and understood by a user. Apart from the
cut points, a drawing looks similar to a traditional drawing without any cuts
applied. Our method works best with sparse and “elongated” graphs and with
graphs that regularly have “bottlenecks”. It becomes less effective when many
edges have to be cut, as is the case for dense graphs, for instance.
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3. Rüegg, U., von Hanxleden, R.: Wrapping layered graphs. Technical report 1803,
Kiel University, Department of Computer Science, February 2018. ISSN 2192–6247

4. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)

5. von Hanxleden, R., Duderstadt, B., Motika, C., Smyth, S., Mendler, M., Aguado, J.,
Mercer, S., O’Brien, S.: SCCharts: sequentially constructive statecharts for safety-
critical applications. In: Proceedings of ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 2014), Edinburgh, UK. ACM,
June 2014



Diagrams, Musical Notation, and the Semiotics
of Musical Composition

Vinícius Jonas de Aguiar(&)

Centre for Philosophy of Science of the University of Lisbon,
1749-016 Lisbon, Portugal

viniciusjonass@gmail.com

Abstract. The semiotics of Charles Sanders Peirce was responsible for the
blossoming of many semiotic approaches to music in the past few decades.
Whilst it is clear that musicologists and philosophers of music have benefited
from Peirce’s semiotics to better explain and discover aspects of music, the same
cannot be said about Peirce’s philosophy of diagrams in particular, that seems to
remain widely ignored by semioticians of music. Notwithstanding, music in
general, and musical composition in particular, widely rely on schemas, rules,
notational systems and other signs that might be understood as diagrams in some
sense of the term. Following that clue, in this text we focus on the role played by
the musical notation in the compositional process and argue that such role can be
understood under the concept of diagram. We analyse an aspect of the com-
positional process of Beethoven’s Sehnsucht (WoO 146) and argue that the
notational system functions here as a diagram that mediates a diagrammatic
reasoning process.

Keywords: Diagram � Musical composition � Music semiotics
Diagrammatics of music

1 The Concept of Diagram in Charles S. Peirce

In his well-known division of signs in 10 classes, Peirce [1, CP 2.227-264] mentions
the diagram twice: to exemplify the Iconic Legisign and the Iconic Sinsign. As an
Iconic Legisign, the diagram is general, a sort of law or type that is able to produce and
govern replicas, i.e. the particular diagrams. The particular diagrams, in their turn, have
the features of the Iconic Sinsigns. Moreover, the Interpretant of these two iconic signs
is a Rheme. As Bellucci [2] puts it, the Iconic Legisign is another name for Hypoicon.
It encompasses, on the one hand, the generality and structure of the Symbol and on the
other, the abstraction and openness of the Icon. For instance, a particular diagram of a
triangle is an Iconic Sinsign constructed based on the semiotic features of the triangles
in general—the Iconic Legisign [see also 3–5].

Another source to grasp what Peirce means by diagram can be found in his famous
manuscript entitled ‘PAP’—more specifically in a passage quoted by Stjernfelt [3]. In
this long analysis of the concept of diagram, Peirce describes it as the Interpretant of a
Symbol; as such, it must encompass the generality of the Symbol as it brings its rational
relations to a more sensible and particular representation through an Icon—and hence
its comparison with Kant’s concept of schema.
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Such a broad description obviously raises different interpretations regarding the
scope of this concept, especially regarding the link between diagrams and logic, as the
debate between Stjernfelt and Pietarinen shows us [6]. However, the debate just
referred to might be avoided—at least for the moment—if we agree that one can also
employ an extension of the concept of diagram to discuss musical semiosis. For now,
we only wish to highlight the use of the musical notation as some sort of diagrammatic
sign that allows the compositional process to be conducted in a way that very much
resembles the one of diagrammatic reasoning as explained in Stjernfelt [3], as we shall
indicate.

2 The Diagram in Beethoven’s Sehnsucht

To avoid the complexity of the semiotic chains involved in the music composing
process, we decided to focus on a rather specific part of a particular case, namely,
Beethoven’s sketches of the rhythmic variations for the piece Sehnsucht (WoO 146). It
is known that Beethoven relied heavily on his sketchbooks in order to compose (for
instance [7, 8]). The sketches of Sehnsucht are particularly attractive due to the sig-
nificant number of experimentation with metrical and rhythmic patterns that were left
registered by the composer.

This piece consists of vocal melody accompanied by piano, a typical lied. The
lyrics of Sehnsucht are a poem by C. L. Reissig. As has been mentioned [7], by the time
of this composition, Beethoven had already put into music other poems with similar
verse and rhythmic structures. However, a considerable change happens in Sehnsucht:
Beethoven uses a quite surprising time signature (3/4) which becomes central to the
very melodic organisation of the vocal line. As the sketches left by Beethoven show, he
tried at least eighteen rhythmic variations in three different time signatures (2/4; 3/4;
6/8) before deciding which one would be the right metre to compose the rhythm of the
voice. Moreover, the rhythmic variations that were written to test the metric structures
also appear in the final score with a few changes added. As Lockwood [7] summarises
it, the notational sketches suggest that Beethoven was testing or experimenting with
different metrical and rhythmic formulations composed as variations of the structure of
the poem, that is, the verse pattern of 7 + 6 syllables.

Now, if we observe Beethoven’s steps during the experimentation with the different
time signatures, and this might be applied to the compositional process of the rhythmic
structures as a whole, it is possible to notice a dynamic extremely similar, if not exactly
the same, to the one described by Stjernfelt [3] as the diagrammatic reasoning process
(see Fig. 1). Moreover, in the case of Beethoven’s compositional process, the sign that
functions as the diagram in the semiotic chain is the musical notation (see Fig. 1). We
believe that music notation systems might indeed be classified as diagrams at least in a
more broad sense of the term, for not only do they encompass the features of the Iconic
Legisigns and Iconic Sinsigns mentioned in Sect. 1, but also their relation to their
objects is visually more or less similar to the representational systems in mathematics
and in logic. Musical notation systems are general and abstract signs that nonetheless
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have a few strict rules that guide possible transformational processes and the con-
struction of replicas that represent their objects (music or musical ideas) solely under
some relational aspects. It encompasses the representational side as well as the con-
structive one (as the Schriftbildlichkeit [9]).

The eighteen diagrammatic variations of the poem’s metric pattern are just one of
the many semiotic chains that led to the full composition. However, the diagrammatic
semiosis, so to speak, is particularly relevant in this case. For instance, the composing
of the rhythmic line sung in this lied consists of diagrammatic variations of the general
diagram (the metrical division aforementioned). Moreover, if one considers the
well-known relation between the metrical and rhythmic aspects of the Sehnsucht and
the last movement of the Hammerklavier (op. 109) [7], it is clear that Beethoven
transformed the metrical and rhythmic figures of Sehnsucht into a general diagram that
was the object of several variations in the sonata Hammerklavier, and the same hap-
pened to certain harmonic and melodic elements (see also [10]). Taking into account
the striking amount of pieces composed based on variations of other themes, patterns,
rules, styles, etc., and the role of the musical notations in those cases, one can notice
that the concept of diagram can be of help to approach the semiotics of musical
composition.

Fig. 1. A schema adapted from Stjernfelt [3, p. 104]. In the first step, the composer abstracts
certain relations contained in the poem creating an Iconic Legisign; then, by the observation of
these relations noted down in a diagrammatic way in the score (Iconic Legisign), the composer is
able to manipulate the diagram and produce the variations until a definite version is reached.
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3 Final Remarks

Even though very few scholars of Peirce’s semiotics have noticed possible relations
between music and diagrams (see for instance [11, 12]), we believe that the brief hints
presented above suggest the importance of Peirce’s concept of diagram to tackle the
semiotics of compositional processes and possibly other aspects of music. It is also
worth mentioning that due to the role of the diagrammatic sign in the experimentation
and probing phases of musical composition, a taxonomy of diagrams employed in
musical composition can be of great help both to composers and to music scholars in
general—see, for instance, the model to compose music based on diagrams extracted
from some of Kandinsky’s and Mondrian’s paintings [13].
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Abstract. The paper outlines the advantages and limits of the so-called ‘Cal-
culus CL’ in the field of ontology engineering and automated theorem proving.
CL is a diagram type that combines features of tree, Euler-type, Venn-type
diagrams and squares of opposition. Due to the simple taxonomical structures
and intuitive rules of CL, it is easy to edit ontologies and to prove inferences.
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Ontology Visualisation

1 Introduction

The idea presented here is to use Calculus CL as ontology editor and inference engine.
CL was named after the so-called ‘Cubus Logicus’ by Johann Christian Lange, who
published several similar diagrams in 1714 (cf. [1]). CL unifies the advantages of tree,
Euler-type, Venn-type diagrams and the square of opposition. Due to its simple
structure, it is especially recommended for users with little experience in ontology
engineering and diagrammatic reasoning. The aim of the paper is to attract researchers
for the elaboration and development of CL. A long-term goal is to offer CL as software
that simplifies ontology editing and diagrammatic reasoning for non-specialists of
different disciplines. In the following, only a few basic features of CL can be discussed.

2 Calculus CL as Ontology Editor

In their simplest taxonomical structures, good ontologies are based on the principle of
JEPD, i.e. jointly exhaustive and pairwise disjoint (cf. [2]). Even the simplest structure
of CL is based on this principle of classification and illustrates classes (A–P) and
instances (Q–t) by boxes as given in Fig. 2. The taxonomical structure is for example:

is a B; Að Þ ^ is a C; Að Þ ð1Þ
is a D; Bð Þ ^ is a E; Bð Þ ^ is a F; Cð Þ ^ is a G; Cð Þ ð2Þ

is a H; Dð Þ ^ is a J; Dð Þ ^ is a K; Eð Þ ^ is a L; Eð Þ ^ is a M; Fð Þ ^ is a N; Fð Þ
^ is a O; Fð Þ ^ is a P; Fð Þ

ð3Þ
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instance of Q; Hð Þ ^ instance of R; Hð Þ ^ instance of S; Jð Þ ^ instance of T; Jð Þ ^
instance of U; Kð Þ ^ instance of X; Kð Þ ^ instance of Y; Lð Þ ^ instance of Z; Lð Þ ^
instance of a; Mð Þ ^ instance of b; Mð Þ ^ instance of g; Nð Þ ^ instance of d; Nð Þ ^
instance of e; Oð Þ ^ instance of z; Oð Þ ^ instance of h; Pð Þ ^ instance of t; Pð Þ

ð4Þ

(1)–(4) can be illustrated by tree diagrams (Fig. 1) or by the cube diagram of CL
(Fig. 2). In order to see how CL would look like as an ontology editor, Fig. 3 shows the
famous UMLS ontology for organisms (cf. [3], slightly modified and without indi-
viduals). This would of course also work with the tree diagram in Fig. 1. But Fig. 1
needs top-down arrows to clarify the structure of the relations of classes and individ-
uals. In contrast, CL (Fig. 2) uses the space of the diagram more efficiently. Thus, the
arrows can be used in a different way in the diagram, e.g. to depict theorems.

2.1 Arrows Depicting Theorems

In the diagram of CL, arrows can be used to make theorems explicit and machine-
readable. The fletching of an arrow indicates the subject or the first class of a theorem
and the arrowhead the predicate or the second class of a theorem. For example, the
following theorems are represented in Fig. 4 by arrows (according to their color):

bottom-up arrow(s) ð5Þ

top-down arrow(s) ð6Þ

horizontal arrow ð7Þ

transversal arrow ð8Þ

(5)–(8) show that categorical propositions can be represented in CL. Similar to
Euler-type diagrams (cf. [4], Sect. 3.2), some representations of the categorical

Fig. 1. Tree diagram Fig. 2. Basic CL diagram
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propositions are ambiguous (e.g. cf. below Sect. 3.1). However, some of these ambi-
guities can also be explicitly represented in CL. For example, (5) implies the following
Theorem (9). However, (9) can also be represented explicitly by the yellow arrows in
Fig. 4:

ð9Þ

Similar to Venn-type diagrams, however, only one diagram (e.g. Fig. 2) is needed
in order to draw various theorems with the help of arrows. With regard to the square of
opposition, contradictory propositions are immediately prevented: For example, if
Theorem (5) can be represented in CL, the contradictory theorem including the same
classes, i.e. , cannot be represented since it is impossible to draw a
horizontal arrow (representing ¬9x) from the class D to the class B in Figs. 2 or 4.

2.2 Properties

Properties are best represented by a 3D visualization of CL. For the sake of simplicity I
use a simple 2D method, in which properties are represented by a color primer in the
corresponding class boxes. A diagram key outside of CL
indicates what the color means. Properties in theorems
are represented by arrows that fill only one solid box:
The less colored part of the box shows the class or
instance, while the more colored part shows the prop-
erty. For example, Fig. 5 displays the following Theo-
rem (10):

All E has_a = ð10Þ

Fig. 5. Properties in CL (2D)
(Color figure online)

Fig. 3. UMLS ontology for organisms (Color
figure online)

Fig. 4. Theorems (5)–(9) in CL (Color
figure online)
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3 Calculus CL as Inference Engine

CL can be used for various logics, e.g. predicate logic, propositional calculus or modal
logic. The tasks of CL include proving theorems if the inference is complete, or
extracting information if the inference is incomplete.

In the following, I will give just two examples of a monadic predicate calculus,
both containing three theorems (i.e. three arrows) including either three classes or two
classes and one property. In this case, two main rules (R) must be observed:

(RI): CL shows an inference, if two arrowheads and two arrow shafts meet in the same
solid box of one class.

(RII): The inference of (RI) is valid, if all three theorems can be displayed in the
diagram.

The first premise is given in blue, the second in green, and the conclusion in red. As
example theorems I use the UMLS ontology for organisms in Fig. 3 again.

3.1 Example 1 (E1)

ð11Þ

ð12Þ

ð13Þ

Theorem Proving: As seen in Fig. 6,
(11)–(13) can be represented in CL and
(RI)–(RII) are fulfilled. Therefore, (E1) is
a valid inference.

Information Extraction: Suppose Theo-
rem (13) is unknown to the user. Since the
premises, (11) and (12), are given, the
software based on CL would have to per-
form forward chaining and would then have to complement the missing Theorem (13)
on the basis of (RI) and (RII).
(Ambiguity: In Fig. 6, the transversal green arrow depicts a universal negation, i.e.
¬9x in (12), since it is impossible to draw a bottom-up arrow from E to C.)

Fig. 6. Example 1 (E1) (Color figure online)

All bryophytes are plants.

No vertebrate is a plant.

No vertebrate is a bryophyte.         
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3.2 Example 2 (E2)

ð14Þ

ð15Þ

ð16Þ

Theorem Proving: Theorems (14)–
(16) can be represented in CL (Fig. 7)
and (RI) and (RII) are fulfilled.
Therefore, (E2) is a valid inference

Information Extraction: Suppose
Theorem (15) is unknown to the user.
Since one premise (14) and the conclusion (16) are given, the CL-program would have
to perform backward chaining and would then have to complement the missing the-
orem on the basis of (RI) and (RII).
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Fig. 7. Example 2 (E2)

o vertebrate is an invertebrate.

All vertebrates have a vertebral column.

No invertebrate has a vertebral column. 
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Abstract. In this contribution we present an extension of Englebret-
sen’s linear diagrams in order to deal with non-classical quantifiers.
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1 Introduction

Under direct influence of [1–4], in other place we have presented an intermediate
term functor logic for relational syllogistic (TFL+). Now, under direct influence
of [5,6] and TFL+, we present an extension of Englebretsen’s linear diagrams in
order to deal with non-classical quantifiers (TFL⊕).

2 TFL⊕

Englebretsen’s system requires two basic diagrammatic objects: the dot and the
straight line. For instance, in order to represent the categorical propositions of
syllogistic, it provides the syntax displayed in Fig. 1.

(a) All S is P (e) No S is P

(i) Some S is P (o) Some S is not P

Fig. 1. Syntax for Englebretsen’s linear diagrams (adapted from [5])

Given this representation, Englebretsen’s system offers a clear decision pro-
cedure: a reasoning is valid if and only if the diagram of the conclusion is auto-
matically represented after drawing down the diagram of the premises. So, for
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(a) Barbara (b) Darii

Fig. 2. Examples of syllogisms with linear diagrams (adapted from [5])

example, valid syllogisms Barbara and Darii can be represented by the diagrams
depicted in Figs. 2a and b.

Englebretsen’s diagrams provide a simple and clean diagrammatic approach
for syllogistic that, alas, does not cover cases of common sense reasoning involv-
ing non-classical quantifiers such as “most,” “many,” or “few.” Now, since we
already have sentential systems to deal with this issue (for instance, TFL+) but
we lack the corresponding diagrammatic device, we produce TFL⊕, a diagram-
matic system designed to capture TFL+. Basically, we propose a vocabulary with
the next basic diagrammatic objects: the dot, the straight line, and the circle
(Fig. 3). Clearly, TFL⊕ is an extension of Englebretsen’s diagrams.

Fig. 3. Vocabulary for TFL⊕

With the aid of these diagrammatic objects we propose a modification of
Englebretsen’s linear diagrams in order to represent TFL+ (Fig. 4). The reason
behind this modification is simple: conforming to the TFL+ framework, non-
universal intermediate propositions are particular to some extent but have an
index, and so we have to retain Englebretsen’s notion of linear intersection but
with the addition of circles enclosing the very intersections. This choice has the
following features: since propositions a, e, i, and o have level 0 to denote the fact
that they behave as usual, so the TFL⊕ diagrams for a, e, i, and o have zero
enclosing circles to denote the fact that they behave as usual. However, since
TFL+ requires the new quantifiers to imply some sort of order (p (b) implies t (d),
t (d) implies k (g), and k (g) implies i (o)), the superscript indexes are associated
with a certain number of enclosing circles. Plus, since the indexes induce an order
(3 ≥ 2 ≥ 1 ≥ 0), so the number of circles induce an order (3 ≥ 2 ≥ 1 ≥ 0) that
indicates that a (e) does not entail p (b), t (d), k (g), i (o); but p (b), t (d), k (g)
do entail i (o). Finally, since the superscript indexes are attached to both terms
as to specify the detail that propositions p, t, k, b, d, and g are not convertible,
so the enclosing circles are consistent with the emphasis on the scope of the
terms affected by the level of quantification (so, for example, the diagram for
the proposition Few S are P (+S3 − P0 in TFL+) must be read as having three
circles around the intersection on S but not on P).
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(a) All S is P
S0 + P0

(e) No S is P
S0 P0

(p) Few S are not P
+S3 + P0

(b) Few S are P
+S3 P0

(t) Most S are P
+S2 + P0

(d) Most S are not P
+S2 P0

(k) Many S are P
+S1 + P0

(g) Many S are not P
+S1 P0

(i) Some S is P
+S0 + P0

(o) Some S is not P
+S0 P0

Fig. 4. Syntax for TFL⊕ and TFL+

Given this new diagrammatic representation, the adaptation of the deci-
sion procedure is trivial: a syllogism is valid if and only if the diagram of the
conclusion is automatically represented after drawing down the diagram of the
premises. So, for example, in the valid reasoning shown in Fig. 5, the conclusion
gets clearly drawn by drawing down the premises.

As we can see, the TFL⊕ framework gains the advantages of a diagrammatic
method (a reduction of an algebraic representation to a simple and unified dia-
grammatic approach) and, at the same time, it gains the advantages of a theory
of syllogisms with extra quantifiers (an assessment of a wide range of common
sense reasoning patterns that extends the scope of traditional syllogistic). As
expected, TFL⊕ is reliable in so far as its results match those of TFL+: all valid
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Proposition TFL+

1. No citizen is free. C0 F0

2. Most adults are citizens. +A2 + C0

Many adults are not free. +A1 F0

Fig. 5. A valid reasoning in TFL⊕ and in TFL+

syllogisms in the TFL+ framework can be obtained by drawing down the modified
diagrams of TFL⊕, and vice versa.

3 Conclusions

We believe these moded diagrams are quite promising, not only as yet another
set of critical thinking tools or didactic contraptions, but as a set of research
devices for probabilistic reasoning (cf. [7]), psychology (cf. [8]), AI (cf. [9]), and
of course, philosophy of logic (cf. [1,6,10,11]).
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{josemartin.castro,jorge.medina}@upaep.mx

2 Faculty of Philosophy and Letters, BUAP, Juan de Palafox y Mendoza 229-227,
Puebla, México
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Abstract. In this contribution we review Murner’s syllogistic fragment
as it appears in his Logica memorativa.
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1 Introduction

At the beginning of the sixteenth century we find a visual expression of Peter of
Spain’s Tractatus: Murner’s Logica memorativa Chartiludium logice siue totius
dialectice memoria, & nouus Petri hyspani textus emendatus: Exercitio pictas-
matis iucundo [1]. In this contribution we focus on Murner’s approach to syllo-
gistic by describing some of his diagrams.

2 Murner’s Cards

Between the Tractatus and the Chartiludium there are approximately three cen-
turies of distance filled with a huge number of editions and commentaries. The
commented edition of the Tractatus which served as the basis for Murner’s Char-
tiludium was Tartaret’s. Murner summarized Tartaret’s explanations—matching
Peter’s at times—by enriching and transforming the original text which, as can
be appreciated in the Chartiludium prologue, Murner did not find “competent.”
Murner summarized the major treatises and the parva logicalia in 51 cards (if
we add the final one—which is the summary of all summaries—, we get 52 cards
as in a conventional deck of cards). Each card stands for a chapter and is divided
into numbered phrases. Sometimes it takes four or five phrases, sometimes more
than ten, as to exhaust the doctrine of each chapter. In each card, Murner relates
a sentence to a diagrammatic object (say, a gesture, an artifact, an animal) that
will appear in the card along with many others elements up until the number of
sentences that summarizes the chapter is reached. The diagrammatic elements
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of each card are, without a doubt, striking: at times grotesque, at times enig-
matic, but never dull. Some of these elements include the pole star, the tar, the
rosary, the hoof of a horse, the fire, the mirrors, the pigeons, the pots, etc., and
all of them stand for concepts and their positions express relation of concepts.
In addition to these symbols whose purpose is to refer to the summary, there
are others that give the reader the idea of which of Peter of Spain’s treaties is
summarized there, and given certain characters (King, Queen, Knight, Lady, ...)
one can tell how far along in the Chartiludium one is.

3 Murner’s Syllogistic

To pinpoint the use of Murner’s cards for syllogistic we now focus on the 4th
treatise by describing cards 23, 24, 25, and 26 (Fig. 1). In Fig. 1a we see one
acorn. Since the acorn is the image Murner uses to represent a syllogism, this
first image includes one acorn to indicate it is the first section of the fourth
treatise: previous notions and remarks. In this card we see (1) the rosary beads
fixed in the horse’s mounth: this means the proposition, as explained in the
Queen card. (2) The polar star and the wheel make an appearance once again to
indicate that propositions are defined by terms, subject and predicate terms. (3)
and (4) represent the sun that relates universal quantification to either term.

In Fig. 1b we see two acorns: we are in the second section, the one that
indicates the general structure of a syllogism. We see (1) three cats, because a
syllogism requires three categorical propositions. Then we see (2) a spear that
is greater to the left (2a) to indicate the major term, has a middle section to
indicate the middle term (2c), and is pointy to the right (2b) to indicate the
minor term. (3) indicates the three propositions. (4) is a mirror that stands for
the figure of the syllogism. (5) is the balance that represents the moods. (6) is
the sun that captures the notion of quantity, while (7), the stone, represents
quality. Finally, (7) the five feathers above the cap represent the five rules of
validity.

In Fig. 1c we see three acorns: we are in the third section, the one that
indicates the structure of the syllogisms of the first figure. Notice this card has
no arabic numbers: we can see the mirror that denotes the figure, but now with a
roman number, I, to indicate this card represents the syllogisms of the first figure.
The key indicates that the conclusion follows directly (i.e., the minor term is the
subject and the major term is the predicate) whereas the lock pick (hidden in the
gentleman’s back) indicates that the conclusion follows indirectly. The feathers
above the cap indicate we require two rules of validity for the syllogisms of the
first figure.

In Fig. 1d we see four acorns: we are in the fourth section, the one that
indicates the structure of the syllogisms of second and third figures. Notice this
card has no arabic numbers as well: we can see a mirror to the left (in the lady’s
right hand) with the roman number III that denotes the third figure of the
syllogism, while to the right (in the lady’s left hand) we see a mirror with the
roman number II, which denotes the second figure of the syllogism. Notice also
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that, again to the left there are two feathers while to the right there are also
two feathers, indicating the corresponding rules of validity. The table hanging
in the lady’s chest indicate the moods. And the four bees above the lady are
going back to their queen as to indicate that these figure can be reduced to the
syllogisms of the first figure, as in Pr. An. A.1, 25b1.

(a) Card 23. Previous notions (b) Card 24. General structure

(c) Card 25. First figure
(d) Card 26. Second and third fig-
ures

Fig. 1. Murner’s summary of syllogistic
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4 Conclusions

That Murner’s cards for syllogistic are logic diagrams [2, p. 28] may be called
into question, but it is safe to say, after this quick review, that we have enough
elements to claim that Murner’s cards for syllogistic do constitute a system of
diagrams stricto sensu nonetheless. Consider that (i) they convey spatial infor-
mation just as bona fide diagrams do: indeed, the cards contain all the basic
tenets of syllogistic stored at one particular locus by also including information
about relations with the adjacent loci [3]; and so (ii) they summarize sentential
information just as diagrams do: each card groups together a lot of information
thus avoiding large amounts of search [3]. (iii) The cards work as instruments [4]
that promote system understanding just as any set of legitimate diagrams would
do in so far as they offer a visual explanation of the structure of syllogistic. This
visual explanation is clear: by using compositionality and having a clear moti-
vation, (iv) Murner’s cards guarantee the diagrammatic objects are not seman-
tically overloaded and they allow a hierarchical description of syllogistic [5]. (v)
Finally, Murner’s cards support the process of explaining or teaching the general
structure of a sentential system, just as typical diagrams do. For these reasons,
we think it is fair to say that Murner’s system deserves not only a place in the
history of logic, but in the history of diagrams.
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Abstract. Human interaction is increasingly mediated through tech-
nological systems, resulting in the emergence of a new class of socio-
technical systems, often called Social Machines. However, many systems
are designed and managed in a centralised way, limiting the participants’
autonomy and ability to shape the systems they are part of.

In this paper we are concerned with creating a graphical formalism
that allows novice users to simply draw the patterns of interaction that
they desire, and have computational infrastructure assemble around the
diagram. Our work includes a series of participatory design workshops,
that help to understand the levels and types of abstraction that the
general public are comfortable with when designing socio-technical sys-
tems. These design studies lead to a novel formalism that allows us to
compose rich interaction protocols into functioning, executable architec-
ture. We demonstrate this by translating one of the designs produced
by workshop participants into an a running agent institution using the
Lightweight Social Calculus (LSC).

Keywords: Social machines · Diagrammatic interface
Rapid assembly · Prototyping

1 Introduction

Ubiquitous computation and digital communication systems have produced new
forms of socio-technical systems, vast networks where people achieve coordi-
nated action at scale. Examples include Wikipedia, Twitter, Ushahidi and so
on. Characterising such systems requires thinking beyond their software infras-
tructure: one unified lens for viewing them is Berners-Lee’s concept of social
machines [2,7], that describes systems in which humans and computation play
complementary roles.

In this paper, we explore the design and construction of social machines
through a diagrammatic language. Our main design goals for the language are
(i) to be accessible to non-specialists, enabling them to craft their own social
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machines themselves, and (ii) to be sufficiently formal to be able to turn into
executable code, so that designers can create running systems directly from dia-
grams. The language we propose has been shaped by a series of design workshops
where non-expert participants designed Social Machines with limited guidance,
using some suggested constructs based on the notions of roles and protocols –
and their own free-form diagramming skills.

From the outcomes of these workshops we designed a diagrammatic lan-
guage and methodology to design Social Machines as Electronic Institutions,
formalized with the Lightweight Social Calculus (LSC [5]) to provide executable
infrastructures. We present an intuitive design process for users to construct
Social Machine models using this formalism, and demonstrate the execution of
a model using a generic LSC engine.

2 Design Method

Our language has been refined based on four participatory design workshops,
mostly involving non-experts (who were new to the concept of social machines),
where participants collaboratively designed their own social machines from
scratch, using paper and markers. At the beginning of each session, partici-
pants were provided handouts with example diagrammatic primitives that we
designed (Fig. 1a), that they could (optionally) use to help them sketch their
social machines.

Figure 1b shows one ad-hoc diagram created by non-specialists, showing roles,
coordination, interactions, implementation hints and social aspects of the system
concisely and comprehensibly. From such diagrams we extracted the following
key elements: People, playing a range of roles: restaurants that provide waste
food, informants who spot people in need, madres that mediate the interactions
and so on; Infrastructure, whether physical or computational, that coordinates
the activity of humans around their purpose; and finally connecting arrows,
representing the transmission of messages or physical objects (‘gives food’); more
general geo-spatial interactions (‘detects’); and bundles of possible operations on
computational systems (‘make announcements’) that implicitly include access
control, posting, retracting and updating information etc.

At the conclusion of each session, each group was asked to present their social
machine; photos were captured of diagrams made, and verbal descriptions were
recorded, transcribed, and archived. We then analysed the graphical vocabu-
lary used in the diagrams, along with descriptions, to identify where graphical
primitives were appropriated, reused, and extended. This enabled us to identify
robust components, eliminate and refine components that were not used or mis-
understood. For the final workshop, we presented the participants with a paper
based version of the diagram tool discussed in this paper, prompting them to
investigate and define the interactions between actors.
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(a) (b)

Fig. 1. (a) Some of the graphical elements from the first Sociograms workshop. (b) The
Cybermadres social machine, sketched by workshop participants. This Social Machine
would support the activities of volunteers in Mexico, who collect excess food from
restaurants and distribute it to people in need.

3 Diagram Language

Our diagrammatic language contains the following elements, with a full demon-
stration given in Fig. 2:

Nodes represent actors in the system, whether computational or human.
Edges define the interactions between these actors, by specifying interaction
protocols (Fig. 2a).
Protocols are specified as generic activities (e.g. ASK, ESCROW), and spe-
cialised to define the kinds of data that flows through them. For example,
a simple communication protocol might carry a specification of the kinds of
messages to be transferred, which then implies that the roles involved in the
interaction are capable of providing or processing that type of information.

The diagram shown in Fig. 2c details the key interactions of a particular social
machine infrastructure—in this case, a system that supports the CyberMadres
example in Fig. 1b. Our interface mock-ups sketch the design process and the
extra information needed to create a working system.

3.1 From Diagrams to Executable Systems

Diagrams created in this manner can be automatically transformed into the
Lightweight Social Calculus (LSC) [4,6], a high level protocol language. An LSC
protocol consists of the roles that each participating agent may play, by exe-
cuting the part of the protocol that corresponds to their role locally. Each role
may involve message passing and computation, tied together with conditions
(If ... then) and temporal sequencing (Then and Or). Computation involves input
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(a) Definition of actors in the system, with protocols
describing interactions between them

(b) Specialisations of the protocols to carry appropriate
data for the given interaction

(c) A complete system, with multi-way interactions and
composed capabilities

(d) Eliciting connections between the inputs and outputs
of different actors

Fig. 2. Example operation of the Sociogrammer tool, from initial specification of actors
through to linking predicates

predicates e(), and output predicates k(). Inputs elicit information, typically
through a local knowledge base, or by “asking a human” via an interface, at which
point human decision making can enter the computational system. Output predi-
cates indicate that the agent now knows something, which implies that the agent
be capable of processing the information, e.g. storing it in a local knowledge base
or otherwise changing the state of the world in a representative way.

The design process (Fig. 2d) involves connecting inputs from one protocol to
outputs of another, or else flagging particular inputs to be fulfilled by processes
outside the scope of the system.

4 Discussion and Conclusions

There are two key questions behind this work: (i) Can we develop a diagrammatic
language for designing social machines, accessible to non-experts? and (ii) Can we
design this language in such a way that it produces executable infrastructures?

A key design challenge is to find the correct, composable units to build these
diagrams from. Here we have used interaction protocols, as a way to cover com-
plex patterns of activity that unfold in time using simple, human identifiers,
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e.g. “arrange a meeting”. Our workshops have shown that participants see real
possibilities in designing such systems, and their ad-hoc diagrams show some
of the key concepts needed to describe interaction protocols. Participants to
produce meaningful and plausible social machine designs in a 2–3 h workshop,
from a standing start. Designs included social interventions that help the home-
less, shared diaries for nomads, crowdsourced traffic reports and interpersonal
archives.

Relative to the second question, we have shown a prototype interface, where
a version of the simple, at-hand iconography can be used to specify enough
detail to create executable infrastructures. This demonstrates the potential for
a translation from simple readable diagrams into working systems.

The question remains as to what a meaningful set of interaction primitives
might be, simple yet expressive enough to describe most social machines. Our
initial analysis has brought up a range of useful constructs, which allowed us to
fulfil the designs created by workshop participants.

This leaves us with a form of extremely concise Model Driven Development
[1,3] that supports a democratic, participatory approach that allows a wide
range of people to design a profusion of small social machines, adapted to their
particular communities of practice.

This proof of concept indicates that there is a level of representational com-
plexity that allows people to make their intentions clear about complex systems
that would otherwise be beyond their ability to design.
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Abstract. Design Thinking can be employed to define services, new product
(features), innovative processes and disruptive business models collaboratively
for digitization. Diagrammatic models play an essential role here as they capture
relationships between different aspects of the problem. When computed by
means of software they also explicitly show details which in design thinking
tools users implicitly fill with their own world-understanding, thus fostering a
clear and transparent representation of the problem space. In addition, dia-
grammatic models can be enriched by semantics and subsequently be queried,
analysed and processed.
The paper at hand shows the DigiTrans (http://www.interreg-danube.eu/

approved-projects/digitrans) project approach for an automated transformation
process of haptic storyboards into diagrammatic models by means of video-
imaging and web-services.

Keywords: Design Thinking � Storyboards � Diagrammatic models

1 Introduction

Digitization greatly challenges small and medium enterprises (SMEs) to innovate their
products/services and/or their business model to remain competitive. Yet strapped for
resources they have difficulties in facing these challenges. DigiTrans, an EU-funded
project, aims to offer a mixed approach of training and incubation, to increase inno-
vation capabilities of SMEs and support them through the digital transformation
process.

Because the problems faced in the digital transformation process tend to be com-
plex and vaguely defined the project recommends different Design Thinking based
tools to visualize the problems and to generate innovative solutions. Some of these
tools focus on storyboarding as a means to aid innovation. Storyboards are a sequence
of scenes that represent the main points of a story. They are designed to communicate
intuitively high-level ideas to the viewer. Yet how different scenes relate together and
what the exact semantic meaning and importance of each object in a scene is remains
largely at the understanding of each individual visualizing it. As shown by [3] in such
cases viewers tend to implicitly fill the missing information with their own
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world-understanding. Yet when aiming to materialize an innovative idea presented in a
storyboard different aspects of the problem and the relations between them need to be
unambiguously described in order to avoid conflicts. Transforming the haptic story-
board by means of an automated import into diagrammatic models and facilitating
semantic enrichment (e.g. by describing object properties) can help increasing infor-
mation transparency, clarity for model users and model consistency.

The remainder of this paper describes a real-world digital transformation scenario
(Sect. 2), the environment provided for prototyping (Sect. 3) and the application
experience (Sect. 4).

2 The Digital Transformation Scenario

A manufacturer (an SME) of cleaning products is facing a steep revenue decline. An
initial analysis (a series of ideation workshops) has produced the following insights: the
company’s strong points are its products and customer knowledge. The weak point is
the distribution via direct marketing, which the company uses since the 1970’s, and
which nowadays represents a problem due to the changing structure of households.

The company has identified the opportunity to use online distribution via a mobile
app/website to attract a new group of customers. They defined the key customer via a
persona description: young women (between 25 and 45), family or double-income-
no-kids, disposable income, environmentally aware, interested in the quality of prod-
ucts and low-pollutants ingredients, working. Such a female must be able to choose
between a catalogue and electronic order. In the electronic channel she can select the
delivery date, place and time according to her availability in addition to her products.

As a next step a storyboard needs to be defined for the interaction between the
customer and the company’s online channel/mobile app. These scenes represent sub-
sequently interaction points for the company’s processes and IT services.

3 Developing the Scene2Model Service Environment

Scene2Model is an end to end process for the software-supported transformation from
tangible figures to diagrammatic models with the possibility of simultaneous semantic
enrichment of objects. This and the automatic composition of models into storyboards
innovate the way diagrams can be used in industry work environments.

Several preparation and development steps were necessary before the Scene2Model
service could be used in a workshop setting for design thinking prototypes.

1. Prepare the incubation space – this includes a table with a transparent top, a
web-enabled camera underneath it and haptic storyboard figures with tags glued to their
bottoms.

During workshops haptic figures will be positioned on a table. They depict the
scenes of a storyboard. These haptic figures are intuitively understandable, easily
rearrangeable and help to facilitate the mental design process of people, by allowing
them to interact with a physical representation of their thoughts [5]. In our prototypical
implementation we used SAP Scenes [4] storyboard figures.

Scene2Model Service 771



The tags, i.e. unique IDs, glued at the bottom of each figure are used to identify and
map the haptic objects to modelling objects (of a modelling application) as well as to
calculate their relative position on the table. The camera positioned underneath the
table records a live video stream of the tags. The ID and the coordinates are offered
over a network interface, which can be used by other applications.

2. Develop a modelling method and an ontology for transforming the haptic
scenes into diagrammatic models

The prerequisite for the automatic transformation was the development of a
modelling method [2] describing the haptic figures. Modelling methods can facilitate
the Design Thinking process (cf. [1]). For the prototype a meta-model was created to
define syntax, notation and semantics of the different haptic figures or objects. Each
meta-model class possesses multiple graphical presentations, which are defined by the
Type of an object. Type is a property, just like the properties Name and Description.
The first one defines an identifier for a modelling object and the second one holds a
natural language description. Classes with a Text property, show this text directly in
diagrammatic model. The class Character also implements the properties Role and
Age, which can be used to specify the humans in the modelled scenario.

An ontology is used to map the IDs, from the tag recognition to modelling objects.
Therefore, the information from the meta model is saved in the ontology and enhanced
with a TagID property.

The described meta model was implemented in the ADOxx1 metamodeling plat-
form, which supports the definition of classes and their properties, the implementation
of mechanisms as well as the use of a built-in modelling toolkit, where defined models
can be used.

A mechanism implementation is used to trigger the Scene2Model software directly
from the ADOxx modeling tool. Data is gathered from the tag recognition software.
With the received ID, the additional information is read from the ontology. Then the
combination of the ontological information and the position (from the tag recognition)
is sent back to ADOxx, where the modelling objects are created and positioned
automatically.

4 Applying the Scene2Model Service

The first step in the workshop is the creation of the storyboard. Participants identified
ordering via app using a tablet at home as a key scene. The different objects were
arranged accordingly. The description of the customer interaction with the app was
pinned on handwritten notes on a meta-plan board. As soon as the participants agreed
on the scene design, ADOxx was triggered and a computable diagrammatic model was
created automatically. The results of both steps are shown below in Fig. 1.

Subsequently participants reviewed the model and entered different properties and
explanatory descriptions to the different objects to make the scene more descriptive.
Generating and updating models from the new storyboard layout is possible at any

1 https://www.adoxx.org/live/home.
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time. The differences, at class and attribute level, between the original and the modified
storyboard can be queried by mechanisms provided out of the box by the platform.

The workshop participants were positively receptive towards the perceived benefits
of the solution, especially in lieu of the time and location-independent preservation of
the workshop results as well as their usability to further enhance scenarios by intro-
ducing information into the diagrammatic models directly and collecting all informa-
tion in one place. Further evaluations of the usability and value of the implementation
will be done during 2018 in different Central European countries with SMEs.
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Abstract. In this contribution, we introduce an approach to visualize
and analyze logical reasoning problems in a UML and OCL tool by using
logical puzzles represented with UML diagrams. Logical reasoning is for-
malized as a UML class diagram model enhanced by OCL restrictions.
Puzzle rules and questions are expressed as either partial object diagrams
or OCL formulas within the model. Solutions can be found and explored
by a tool as object diagrams.
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1 Introduction

UML diagrams, such as class and object diagrams, are utilized to diagrammat-
ically represent real-world system at an abstract level with some constraints
formulated in OCL. Taking this as a basis, UML and OCL can be a promising
solution for representing and visualizing logical reasoning problems. One app-
roach for that will be introduced in this paper. A logical reasoning problem is
represented as a UML class model enhanced by OCL restrictions. Rules and
questions are formulated as either partial diagrams or OCL formulas within the
model. The solutions can be found using a deduction system integrated in a tool
and represented as object diagrams. This contribution focuses on representa-
tion and analysis of logical reasoning problems, in the context of the tool USE
(Uml-based Specification Environment) [2].

Recently, the application of diagrammatic representation for reasoning has
been a widely considered topic. For example, the approaches for reasoning with
diagrams, i.e., Euler, Spider diagrams and Graphs, have been presented recently
in [5], [6] and [4], respectively. In contrast to these approaches, our contribu-
tion uses UML diagrams, i.e. class and object diagrams, to visualize and analyze
logical reasoning problems. In next section we will illustrate the idea of repre-
senting and visualizing a logical reasoning problem with our tool USE. In the
last section, the paper ends with concluding remarks.

c© Springer International Publishing AG, part of Springer Nature 2018
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2 Solving and Representing Logical Reasoning Problems

Running Example: In order to demonstrate our approach, an example of a
logical reasoning problem is discussed. The deduction problem that we introduce
here is ‘Einstein’s Puzzle’, a very well-known logic puzzle which sometimes is
used as an example in teaching logic and formal methods [3].

Fig. 1. Einstein’s puzzle.

The problem can be described as follows: Let us assume that there are five
houses of different colors next to each other on the same road. In each house
lives a man of a different nationality. Every man has his favorite drink, his
favorite brand of cigarettes, and keeps a particular pet. There are fifteen clues
of deduction that are listed below, and Fig. 1 illustrates the reasoning problem.

01. The Briton lives in the red house.

02. The Swede keeps dogs as pets.

03. The Dane drinks tea.

04. Looking from in front, the green house
is just to the left of the white house.

05. The green house’s owner drinks coffee.

06. The person who smokes Pall Malls
raises birds.

07. The owner of the yellow house smokes
Dunhill.

08. The man living in the center house
drinks milk.

09. The Norwegian lives in the leftmost
house.

10. The man who smokes Blends lives
next to the one who keeps cats.

11. The man who keeps a horse lives next
to the man who smokes Dunhill.

12. The owner who smokes Bluemasters
also drinks beer.

13. The German smokes Prince.
14. The Norwegian lives next to the blue

house.
15. The man who smokes Blends has a

neighbor who drinks water

Person
nationality : String
housecolor : String
pet : String
drink : String
cigarettes : String

right

left

Fig. 2. Model of the log-
ical reasoning problem.

Construct a Model: Firstly, a model correspond-
ing to the problem being solved must be constructed.
Depending on the problem, the model must include all
necessary information, i.e., classes, attributes and asso-
ciations, so that the model can simulate the problem.

For Einstein’s Puzzle, we have formulate a model
with five attributes: nationality, housecolour, pet,
drink, cigarettes, and one association that represents
the neighborhood relationship between the persons.
Figure 2 presents the class diagram of the model.
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Formulate Invariants: After constructing a suitable model, a collection of OCL
invariants must be formulated on the model, one invariant for each clue (rule).
As mentioned before, it is important that the model must cover all information
from all clues. Therefore, we formulate 15 invariants corresponding to 15 rules
of the puzzle. For instance, the following listing is the invariant corresponding
to the rule 08 “The man living in the center house drinks milk”.

context Person inv clue08:

Person.allInstances()→one(p|Set{p} →closure(left)→size()=Set{p}

→closure(right)→size() and p.drink=’Milk’)

In addition to the textual representation, some rules can be represented as a
partial object diagram, which can enhance the understandability. For example,
the diagrammatic visualization for the rule 08 is shown in Fig. 3.

:Person :Person :Person :Person:Person

drink = ‘Milk’

Fig. 3. The diagrammatic visualization of rule 08.

The other invariants are formulated analogously. The full model including all
invariants is presented in [1].

Solving the Problem with the Model Validator: After constructing a
suitable model with all necessary invariants corresponding to all clues, we apply
the model validator to solve the problem and find the answer. In the case of
Einstein’s puzzle, the model validator finds a solution as an object diagram,
which is shown in Fig. 4. We arranged the 5 persons (objects) according to their
neighborhood relationships from left to right. In the found solution we can easily
check that some simple rules, e.g., rules 01, 02, 03, 13, are satisfied. Further
analysis of the satisfaction of more complicated rules (invariants) on the found
solution can be done with our tool with the ‘Evaluation browser’ functionality.

person2:Person
nationality='German'
housecolor='Green'
pet='Fish'
drink='Coffee'
cigarettes='Prince'

person3:Person
nationality='Swede'
housecolor='White'
pet='Dogs'
drink='Beer'
cigarettes='Bluemasters'

person1:Person
nationality='Dane'
housecolor='Blue'
pet='Horse'
drink='Tea'
cigarettes='Blends'

person5:Person
nationality='Norwegian'
housecolor='Yellow'
pet='Cats'
drink='Water'
cigarettes='Dunhill'

person4:Person
nationality='Briton'
housecolor='Red'
pet='Birds'
drink='Milk'
cigarettes='Pall Malls'

Fig. 4. Found solution for Einstein’s puzzle.

The search space of the model validator is defined by a configuration. There-
fore we can speed up the solving process by setting a suitable configuration.
Setting a proper configuration plays an essential role in the context of solving
reasoning problem with the model validator. To archive this, one can go through
the description of the problem and underline the number of objects (man/per-
son) and the values which are given corresponding to the class attributes. As a
result, the following list is the configuration for Einstein’s puzzle.
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Person_min_max = 5..5
Person_nationality =

Set{’Norwegian’,’Dane’,’Briton’,’German’,’Swede’}
Person_housecolor = Set{’Red’,’Yellow’,’Blue’,’Green’,’White’}
Person_pet = Set{’Cats’,’Birds’,’Horse’,’Fish’,’Dogs’}
Person_drink = Set{’Water’,’Tea’,’Milk’,’Coffee’,’Beer’}
Person_cigarettes =

Set{’Dunhill’,’Prince’,’Blends’,’Pall Malls’,’Bluemasters’}
Connecting_min_max = 4..4

Explore Solution Universe: In a case of having more than one solution, the
model validator also provides an option to explore all of them. Naturally, this will
be possible only if the solution universe is relatively small. To achieve all solutions
we use the command mv -scrollingAll <PropertyFile>, and the additional
succeeding command mv -scrollingAll [prev|next|show(<N>)] allows us to
scroll through the solution interval and show each of them as an object diagram.
For example, after executing the command mv -scrollingAll show(1), the
first (and only) solution is shown as an object diagram presented in Fig. 4.

3 Conclusion and Future Work

In this contribution we have described our method for visualizing and analyzing
logical reasoning problems in the tool USE. We have used diagrammatic repre-
sentations and puzzles as a cheap-prized entry to formal methods. Beside the
Einstein’s Puzzle, we have been applied the introduced approach for several pop-
ular logical reasoning examples, e.g. Sudoku puzzles or scheduling problems; the
details can be seen in [1]. As future work we have identified to handle the various
puzzle examples present in the literature in our approach. A further option is to
develop a particular USE plugin particularly aiming at puzzle representation and
to handle their solutions, as well as to allow the specification of OCL expressions
with (partial object) diagrams.
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Abstract. In this study I aim to develop a cognitive evaluation of how
semantically-driven and rule-based diagrammatic reasoning were psychologi-
cally plausible for particular cases of scientific practice: an actual trackless path
reconstruction in bubble chamber experiments, as reported by Galison (1997).
I will propose “cognitive imagery projection and manipulation” (CIPM) as the
most plausible psychological (perceptual/attentional/cognitive) mechanism
matching the specific explanatory requirements for the case study, outlining the
most significant current theories about this mental phenomenon (Shimojima
2011).

Keywords: Diagrammatic reasoning � Imagery � Particle physics

1 Introduction and Methodology

In this paper I aim to develop a cognitive evaluation of how semantically-driven and
rule-based diagrammatic reasoning (departing from the experimental data of Shimojima
[4]) could be psychologically plausible, for particular cases of scientific practice [1]: an
actual trackless path reconstruction in bubble chamber experiments. The case study
reported by Galison [2] will be briefly described in the next section. In Sect. 3, I will
propose “cognitive imagery projection and manipulation” (CIPM) as the most plausible
integrative psychological (perceptual/attentional/cognitive) mechanism, empirically
tested by Shimojima [4] matching the specific explanatory requirements for this his-
torical case study. I will flesh out in Sect. 4 every diagrammatic operation actually
performed by “scanners” in a trackless path reconstruction of an invisible particle within
a bubble chamber picture following the CIPM model.

2 Case Study: Visualizing Particles by Diagrammatic
Operations

In the postwar period of 1954–1968, bubble chambers experiments were the forefront
of scientific experimentation. Bubble Chambers consisted of a tank full of ionized
superheated liquid, wherein every elastic or inelastic collision happening within the
chamber, after a neutrino beam were emitted, were exhaustively photographed, gen-
erating uncountable kilometers of film containing bubble chamber pictures (BCP).
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P. Chapman et al. (Eds.): Diagrams 2018, LNAI 10871, pp. 779–782, 2018.
https://doi.org/10.1007/978-3-319-91376-6_80

http://orcid.org/0000-0002-4409-7719
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91376-6_80&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91376-6_80&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91376-6_80&amp;domain=pdf


Woman “scanners” had to explore vast amounts of BCP in order to visually recognize
plausible interesting events, just with their own cognitive abilities and a limited set of
basic technical instruments.

Galison [2] reported that in some occasions “scanners learned to “see” the unseen
by “reconstructing the paths of trackless neutral particles”, for instance when two
visible diverging curves appears (“V” shaped pattern) on a BCP with no visible source.
Although invisible, scanner inferred that must actually exist an invisible particle
causing the two visible “V” shaped curved tracks by means of a complex and extremely
fast diagrammatic reconstruction of this invisible particle’s trajectory. Although, Gal-
ison did not explained how was psychologically possible that scanners “learned to see
the unseen” by means of trackless path reconstructions, as they in fact did. It seems
reasonably and not trivial at all to understand how they did it, because, as I will
methodologically defend, the production of evidential knowledge in this scientific
practice strongly depends on developing highly-specific diagrammatic abilities. By
understanding how those perceptual-cognitive processes underlying diagrammatic
operations work, we will gain much comprehension on the role of diagrammatic rea-
soning in the general production of scientific knowledge.

3 Cognitive Imagery Projection-Manipulation Underlying
Diagrammatic Operations

Here, I will postulate a psychological mechanism that will explain quite satisfactorily
how scanners could identify/reconstruct invisible tracks of particles in BCP by means
of (diagrams 1, 2 & 3). Cognitive Imagery Projection-Manipulation (CIPM):

Cognitive Imagery: CIS process information contained in Imagery States
functionally-depended on their representational content (Imagistic Meaning) in psy-
chological coordination with perceptual/attentional processing. (Cognitive) Imagery
Projection/Manipulation: Cognitive imagery can be mentally projected either toward
the visual scene or toward the physical scenery. Cognitive imagery can be mentally
manipulated across the visual/physical scenery and processed by CIS in coordination
with visual system.

The visual content already present within the sample BCP (e.g. the two diverging
curved tracks) will remain fixed all along the reconstructive-inferential process. On the
other hand, many imagistic representations will be mentally added or projected by
scanners women onto their visual space/BCP space during the line-of-flight recon-
struction: the center of each curved track, the radius between each center and the
common vertex or the diagonal of the parallelogram. Once fixed on the visual/BCP
scenery, all the projected imagistic representations would be “literally” seen by the
scanners. A current theory in the market concerning CIPM mechanism is the “hypo-
thetical drawing” of Shimojima [4]. He the idea that meaningful imagery could be
literally projected and indexed onto the visual scenery in order to perform
semantically-driven visual inferences. Following an in vitro-like methodology, Shi-
mojima studied in two different experimental setting the experimental subject’s eye
movements when semantic rules were given to them in real practices of diagrammatic
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and spatial reasoning with no physical manipulation. For instance, two imagistic ele-
ments “A” and “B” were vertically displayed on a screen and it was uttered that the
upper element B was lighter than the lower A; afterwards it was uttered that a third
invisible element “C” were lighter than B. The vast majority of the subjects projected
the imagistic element C up to B by entertaining the imagistic meaning of “upper is
lighter”. These tests showed very positive results, in the form of statistical correlation
between eye tracking and semantically-driven imagistic indexing, for the very mech-
anism of CIPM itself.

4 Diagrammatic Cognition in Bubble Chambers Experiments

Now, I will tend to explain by means of CIPM how each diagrammatic operation were
actually carried by those scanners:

4.1 Radius Location and Right Angle Rotation (Fig. 1 Left)

First of all, it was necessary to measure the curvature of both curved tracks. With
enough training, material curvature template were not mandatorily required so scanner
women would start to use “mentally projected” curvature template to accurately locate
the center of each curved track in a much faster-efficient manner. Once the center was
visually indexed in a non-necessarily filled space on the BCP, the radius of each track
could be determined by mentally projecting a straight line between each indexed center
and the visible vertex, visually fixing these lines on the BCP. Then, radius of each
curved track (charged particle paths) were inversely proportional the length of the
tangent lines obtained. These classic-mechanical and electromagnetic theoretical
assumptions were deeply taken by scanners entertaining its “imagistic meaning”,
namely the diagrammatic representation of those theoretical concepts: if they would
mentally rotate [3] each previously projected radius 90º toward their respective curved
track, their vector momentum will be visually fixed and their magnitude inverse-
proportionally established.

4.2 Translation of Tangents and Parallelogram Construction (Fig. 1
Center)

When scanners “could (literally) see” the momentum of each curved track, it was
relatively easy to visually infer that the invisible track causing the two-particle decay
will spatially coincide with the vector addition of both momenta. This is what we
would call the “imagistic meaning” of conservation of momentum in a three particles
elastic collision. For obtaining the vector addition by the well-known “parallelogram
method” are required complex cognitive operations: to imaginary translate each pro-
jected momentum along the other momentum vector’s length and viceversa, preserving
vector direction and magnitude. If the two translated vectors accurately coincided on a
vertex, the correctly constructed projected parallelogram would be indexically fixed on
the BCP. Then, scanners could visualized momentum addition by mentally tracing a
straight line between the two more distant vertexes.
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4.3 Diagonal Prolongation and Vertex Intersection (Fig. 1 Right)

In order to “visualize” the invisible line-of-flight, scanner women imaginarily (and
indefinitely) prolonged the imagistically drown parallelogram’s diagonal towards the
lower vertex direction. If this projected line-of-flight intersect at some point an “in-
teresting” pattern of tracks, for instance other two diverging curved tracks, then this
might plausibly be the source vertex-represented event from where the neutral particle
where emitted until it collided in the initial vertex/event, causing the two-particles
decay. In this case, the invisible segment or line-of-flight will be de-limited by two
vertex already present in the BCI.

5 Conclusion

Beside almost all recent studies on diagrammatic cognition are focused on every day
cases or simple experimental cases, I have tried to show in this study that it is also
possible to understand the complex psychology underlying cases of diagrammatic
reasoning in real scientific practice as the one introduced along this paper. For carrying
such operations, were necessary to project and manipulate cognitive imagery in an
extremely efficient and accurately manner. In conclusion, diagrammatic cognition had
constantly played a deeply disregarded but highly decisive role both in the develop-
ment of leading experimental high-energy physics.
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Abstract. This paper describes how bodily positions and gestures were used to
teach argument diagramming to a student who cannot see. After listening to
short argumentative passages with a screen reader, the student had to state the
conclusion while touching his belly button. When stating a premise, he had to
touch one of his shoulders. Premises lending independent support to a conclu-
sion were thus diagrammed by a V-shaped gesture, each shoulder proposition
going straight to the conclusion. Premises lending dependent support were
diagrammed by a T-shaped gesture, the shoulder premises meeting at the collar
bone before moving down to the belly button. Arguments involving two pairs of
entailments were diagrammed by an I-shaped gesture, going from the collar
bone to a mid-way conclusion above the abdomen before travelling to the final
conclusion at the belly button. The student’s strong performance suggests that
placing propositions at different locations on the body and uniting them with
gestures can help one discern correct argumentative structures.

Keywords: Arguments � Body � Gestures

Last year, I did something I had never done before: I taught argument diagramming to a
student who cannot see. Shortly before the start of classes, I was informed by my
university’s Accessibility Services that one of my students was blind and would
therefore need accommodations. This posed a problem, since I usually spend the first
month of my Critical Thinking course teaching students how to convert argumentative
texts into diagrams with numbers and arrows. It was made clear to me that, given the
costs and delays involved, Braille was not an option (even with unlimited resources,
Braille struck me as an inferior option). A puzzle-like device has been built to help
blind students figure out categorical syllogisms [1], but syllogisms are only one type of
argument, while I was aiming for greater generality. I could have assigned different
course content. However, I had just published an article arguing that non-visual logics
are possible [2]. My student’s needs let me put this academic background to good use.

Diagrams are signs that mimic only relations, not relata [3]. Consider the argument
diagrams taught in Critical Thinking courses. Typically, individual propositions are
represented by numbers. Although this numerical assignment is arbitrary, the skeletal
structure that emerges when one relates the numbers is not, since that structure is
answerable to the logical relations holding among the various propositions. I was
already committed in print to the idea that diagrams can express such relations
non-visually, so I liked the idea of now putting that commitment to the test.
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Research has shown that, “[i]f the environment in which learning occurs is not
supportive to students with visual impairments, their learning will automatically be
interrupted” ([4], pp 22–23). I therefore met with my student beforehand, at the start of
the term. When he came to my office, I could sense that he was nervous. I therefore
broke the ice: “Listen, I’m going to be frank. I have never taught argument diagrams
with any channel other than vision. I have some promising ideas about how we might
do this. But, I want to be clear from the get-go that this will be a first, for both of us.”
This transparency put him at ease. The epistemological fallibilist in me then stepped in:
“Let’s start from the assumption that we are going to mess up. If we indeed mess up,
then I will give you a month-long extension, so that you can complete a different
chapter from our textbook. If, however, things work and you end up acquiring the skill
in question, there will be no need for an extension. Agreed?” He agreed.

Our first session was devoted to introducing the method. The goal was to translate a
string of symbols, namely a textual passage, into a diagram that exhibits the argu-
mentative structure at play in that passage. My student showed me how he uses a
computer program to hear (in a monotone robotic voice) what is written. Importantly,
he has to remember all that he hears. Since there are limits to what one can recall, I
decided to make adjustments. First, I made sure that the arguments would be at most
three propositions long (we were going to spend a mere four weeks on this, so we had
to pick battles big enough to matter but small enough to win). Second, I typed all the
passages in a simple Text document, since I discovered that extra formatting merely
hindered his computer reader. Third, I made sure to skip a line after each sentence. The
computer program did not make any noticeable pause when it encountered a period, so
I wanted to give my student a chance to really bite down on these grammatical units.
Fourth, I typed out the exercise numbers with regular language, since the computer
program reads numbers 0 to 9 quite well but starts saying things like “One Six” when it
encounters larger numbers like “16.” Finally, I lifted all time constraints and allowed
my student to listen to auditory contents as often as he wished.

The opening drill consisted in listening to a variety of arguments and picking out
the main conclusion. What is the point being made? My student had to state this
conclusion out loud. I gave him immediate feedback after each answer. To supply him
with exercises, I usually brought a USB key with a Text file that he copied onto his
laptop. However, for this warm-up exercise, I read him the arguments from a book,
repeating them in a clear voice whenever he wished.

The second task was similar to the first, only this time my student had to pick out
the reasons given to support the conclusion. I noticed that he had a tendency to shorten
the sentences by rewording them. I warned against doing this, since important parts
connecting the premises risk being discarded.

In the next task, we started incorporating the body. The goal was to exploit my
student’s prior familiarity with his own lived body in order to structure the layout of
arguments. When stating a conclusion out loud, he had to touch his belly button. When
stating a premise, he had to touch one of his shoulders. Since I could see him making
these gestures, he no longer had to preface his answers with verbal locutions like “The
conclusion is…” and “The first premise is…” Because we were working with a
maximum of three propositions, there was always enough space on his torso to locate
the relevant constituents of an argument.
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At this early stage, I included only two types of arguments, namely those where the
premises lend dependent support and those where they lend independent support. Once
my student has pinned the conclusion to his belly button, he would determine the type
of support by going from one shoulder to the belly and asking whether that relation
made any sense. Independent relations of support were thus signified by a V-shaped
gesture where each shoulder proposition went straight to the conclusion. An example of
an independent argument would be “Sushi is made from seaweed. Sushi is made from
rice. Therefore, sushi contains plant matter.” Dependent relations of support were
signified by a T-shaped gesture that first connected the premises at the collar bone
before moving straight down to the belly button. An example of a dependent argument
would be “Either the baby in my belly is kicking or I have gas. I do not have gas.
Therefore, the baby is kicking.” As my student announced the propositions and per-
formed the gestures, he looked like a Christian making the sign of the cross.

For every argument, I required my student to move in two directions before settling
on his answer. When working downward from the shoulders to the belly button, he had
to use connecting words like “and” and “Therefore,” timing those verbal cues with his
gestures. When moving upward from his belly button to his shoulders, he had to use
transition words like “Why? Because…” If there was an error in his preliminary
diagram, it tended to get exposed when it was tested in both directions.

After three weeks of practice, I felt that my student was ready for his first quiz. This
quiz was comprised of 10 questions, each worth 1%. He had his headphones on, so I
was unable to hear how many times he re-listened to the texts on his computer. I think
this privacy was a good thing, since it left him free to listen to the arguments as many
times as he needed, without worrying about what I might think. While he deliberated, I
worked silently on something else (I told him as much). My student tended to do his
trial gestures silently. However, I think that talking out loud would have been better,
pedagogically speaking. In any event, when he was done toying with an argument, he
notified me that he was ready to give his answer. I would then look and listen as he
diagrammed the argument. I graded his results silently on a notepad, scoring his
answers in an all or nothing manner, giving 1 point for a perfect diagram and 0 for
anything else. I was able to divulge his quiz result immediately after he was done.

My student was clearly intent on doing well, so he was putting a lot of pressure on
himself. In previous sessions, I noticed that he would occasionally rush to a verdict.
Diagrammatic reasoning is at its most fertile when it includes an element of play, so I
encouraged my student to toy creatively with the different logical-cum-gestural rela-
tions, feeling out which fits best.

The weeks of in-office and at-home practice proved sufficient, since my student
earned 10 out of 10 for his quiz. We kept practicing for a more challenging test that
would be worth 25%. This test added a new diagram to the mix, namely chain argu-
ments. In this structure, a premise (starting at the collar bone) leads to a mid-way
conclusion (located above the abdomen) which in turn serves as a premise for a final
conclusion (at the belly button). If dependent support is T-shaped and independent
support is V-shaped, then this iterated relation of entailment yields a bodily diagram
that is I-shaped. An example of a chain argument would be “Sarah must go visit her
parents for the holidays. As a result, she will need to take the train. Therefore, she will
need money.” What I learned was that, on its own, this diagrammatic structure was
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easy to grasp, no doubt because it reduces the threefold linkage to two pairs. That said,
when chain arguments were randomly mixed with dependent and independent argu-
ments, they became harder to spot. My student scored 20 out of 25 for this test.

All told, we worked on bodily diagramming for a month before moving on to the
next course content. One promising possibility we had no time of exploring is that of
recycling a conclusion into a premise, by sliding it from the belly button to a shoulder.
I suspect that, once mastered, this could allow one to handle lengthier arguments.

In any event, the foregoing has been predicated on a realistic, not an idealized,
conception of how inquiry proceeds. Innovations emerge from the vicissitudes of
practical engagements (that are often best expressed in a narrative format). While the
positive learning/teaching experience I have recounted was insufficiently controlled to
justify full-on theses about diagrammatic reasoning and argumentative cognition, my
student’s strong performance suggests that placing propositions at different locations on
the body and uniting them with gestures can help one discern correct argumentative
structures.

Although the diagramming method that I have described was designed to meet
special learning needs, I see no reason why it could not be used in regular class
contexts. The next step, then, would be to teach this method to more students (as a main
skill or side drill), make adjustments where necessary, and report back the findings.
Teachers and students are well placed to judge whether a given exercise works, so
ideally their first-hand reports should be incorporated into experimental designs [5].

Given that there are always students who recoil from mainstream notations, it might
be worthwhile to have an alternative method on stand-by that appeals to a sense
modality other than sight. There are many ways to learn [6] and many ways to make an
argument [7], so hopefully this bodily diagramming can add a useful arrow to the
teacher’s quiver.
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Abstract. My presentation draws upon and combines results from some of my
articles on the role of diagrams in contemporary mathematics. Referring to [1, 2]
I will present examples of how diagrams function as tools for discovery in
contemporary analysis. The purpose in this talk is to analyse why these diagrams
are fruitful. In most of the talk I use ‘diagram’ in its ordinary sense referring to
certain (2-dimensional) visual representations composed of lines and sometimes
letters standing for mathematical objects.
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Carter [1] considers a case study from free probability theory (a field combining
analysis with probability theory) where certain diagrams are used to represent per-
mutations (and constructions on permutations). The diagrams give rise to the concepts
of a ‘crossing permutation’ (Fig. 2) and a ‘neighbouring pair’ (Fig. 1). That is, new
concepts are found by representing permutations by diagrams. Furthermore these
diagrams can be “manipulated” and by doing this new results have been discovered.
One of these results establishes a connection between the two concepts, that is, of a
crossing permutation and a permutation having no neighbouring pairs. Note that these
properties can be shown in a diagram – in a crossing permutation lines cross and
neighbouring pairs are neighbouring numbers. That is, in addition to giving rise to new
concepts, the diagrams visualise these concepts as well as relations holding between
them.

Carter [2] discusses an example where manipulations with diagrammatic presen-
tations of directed graphs have contributed to establish that a certain type of C*-
algebras exists. In the theory of C*-algebras an important question concerns their
classification, that is, determining which different types of algebras exist up to iso-
morphism. An important tool in order to do this is to compute their K-groups, denoted
K0 and K1. Unfortunately these K-groups are difficult to define. Recently an easier way
has been found by instead generating C*-algebras and their corresponding K-groups
from so-called directed graphs. A directed graph consists of a collection of vertices and
directed edges between these vertices. See Fig. 3 for an example.

A particular graph gives rise to a collection of generators and relations from which
a C*-algebra may be defined. Read in a different way the graph gives rise to a linear
map. From this map one can easily define the two groups, K0 and K1. One natural
question that arises in this context is how many different C*-algebras can be obtained
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from directed graphs. It is a response to this question that is considered in [2]. The
result is found by manipulating the directed graphs while calculating their associated
K-groups.

In both of the above cases diagrams function as objects – or signs – that can be
manipulated and so experimented on. Furthermore I noted in the first case study that
certain properties and relations are directly observable in diagrams. These two features
are central to Peirce’s description of ‘diagrammatic reasoning’ and so in the second part
of my talk I will give a few relevant details of what he means by this (referring to
[3–5]). First it should be noted that according to Peirce a ‘diagram’ includes repre-
sentations that one would normally not consider as diagrams. Moreover it should be
stressed that it is not entirely clear what Peirce took a diagram to be. Peirce states that a
diagram is an icon and in some places a representation of relations or rationally related
objects see ([6], pp. 316–317). According to Peirce diagrammatic reasoning is a
description of (mathematical) necessary reasoning. Thus an important role of a diagram
is to allow you to see the necessary relation holding between the antecedent and
conclusion of a proposition. Reasoning proceeds by constructing “a diagram, or visual

Fig. 1. A representation of a permutation with neighbouring pairs, (1,2) and (4,5).

Fig. 2. A representation of a crossing permutation.

Fig. 3. A picture of a directed graph with vertices, v1; v2; v3 and edges e1; e2 . . . e5. Arrows show
the direction of the edges.
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array of characters or lines. Such a construction is formed according to a precept
furnished by the hypothesis. Being formed, the construction is submitted to the scrutiny
of observation, and new relations are discovered among its parts, not stated in the
precept by which it was formed, and are found, by a little mental experimentation, to be
such that they will always be present in such a construction”([7], CP 3.560). This
seems to fit the procedure in Euclid’s Elements. A diagram is constructed so that it
represents the hypothesis of the stated proposition. Sometimes further constructions
have to be made (e.g. lines drawn) until the conclusion can be seen to follow from the
diagram. What is remarkable is that Peirce holds that this characterises mathematical
reasoning in general (and so accordingly he extends the notion of ‘a diagram’). To
mention a simple example, a proof consisting of a calculation to prove the proposition
the product of the sum and difference of two numbers is equal to the difference between
their squares would also be a diagrammatic proof. It is important for Peirce that a proof
– or the drawn diagram – is a concrete representation, in other words a token, so that it
is possible to observe. At the same time the diagram is the representation of a symbolic
statement (or the interpretant of a symbolic statement) and so general. The combination
of the two gives the necessity of the conclusion.

Peirce’s idea of diagrams as concrete objects that can be experimented on and
observed fits well with the observations made in the two case studies above. Firstly, in
both cases are certain representations that were manipulated with when discovering
new results. The idea of a sign that can be manipulated gives rise to the notion of a
‘faithful representation’, which I propose may be used to explain the fruitfulness of
certain representations [2, 8]. Note that a faithful representation can be any type of
representation, including a formal expression, in case it fulfils the characterisation
given below.

A faithful representation fulfils that (i) it resembles or shares certain relations with
the represented object (i.e., represents iconically) and (ii) manipulations can be per-
formed on the representations, respecting relevant relations between the represented
objects, so that new relations may become visible.

Secondly I noted in the first case study that certain concepts as well as relations
between them are shown in the diagrams. (Now taking ‘diagram’ in its usual meaning.)
In both case studies it is possible to compare diagrammatic representations with formal
representations of the same concept. Here the diagrams show the relations holding
whereas the formal expressions describe them. Furthermore in both cases it can be
argued that the diagrammatic presentations offer a cognitive advantage over formal
expressions. In the case study on graph algebras, for example, a case can be made that
it is easier to read off relevant information from the diagrammatic presentation of a
graph. I measure ‘cognitive advantage’ in terms of the number of cognitive resources
drawn upon in order to perform a given task. In conclusion diagrams seem to offer two
advantages that I propose are relevant components in a characterisation of under-
standing. First is their capacity in some cases to show relations in contrast to describing
them. Second is the fact that they sometimes offer cognitive advantages.
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Abstract. The expression of scientific knowledge relies on a set of non-
linguistic representations: “pictorial representations”, such as encyclopaedic
illustrations (photographs, paintings, figurative drawings, etc.), “schematic
representations”, such as textbook illustrations (for instance the drawing of a cell
in a biology textbook) and finally “diagrammatic representations” [1, Chap. 7],
such as those found in subjects like physics which are used to simplify calcu-
latory expressions (Feynman diagrams, Penrose diagrams, etc.). Diagrammatic
representations are of particular interest because they play a crucial role, which
is not only pedagogical and heuristic, but also epistemic. This paper will
endeavour to contribute to the study of the epistemic role of diagrammatic
representations through a notable and yet little-noticed case-study: Darwin’s
diagram. Introduced in the middle of the fourth chapter of his On the Origin of
Species (1859), this diagram could at first be mistaken for a family tree. Through
an analysis of all the elements of the diagram (continuous lines, dotted lines,
letters, Roman numerals, etc.) and Darwin’s own comments, this paper will
show how the explanatory hypotheses of a major scientific theory can be best
understood thanks to this tool of epistemic representation.

Keywords: Darwin’s diagram � Epistemic representation � Theory of evolution

1 Introduction

Darwin’s diagram is well-known as it has been cited many times, both by science
historians and biologists since the 1859 publication of On the Origin of Species [2]. In
spite of this, it seems that a number of features have been neglected. This figure is
unique because it is the only non-linguistic representation used in the book: it is
introduced and commented on in Chap. 4, then reinterpreted by Darwin in Chaps.
10 and 13, either to emphasize its vertical dimension or to emphasize its horizontal
dimension. Why did Darwin choose to call this figure “diagram”? What does it rep-
resent? A classification? A family tree? I will show that the “queer diagram” [3, p. 123]
is indeed a diagrammatic representation serving an epistemic function whose object is
Darwin’s theory of evolution. Moreover, I will demonstrate that it is a “theoretical
representation” [1, p. 367] insofar as it expresses hypotheses and exhibits mechanisms,
which grants it predictive and explanatory power.
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2 Symbolic System and Diagrammatic Representation

Before answering these questions, it is necessary to briefly return to the analyses ini-
tiated by Nelson Goodman [4]. Goodman, through the notion of “symbolic system”,
sought on the one hand to generalize the notion of language in order to extend it to
non-linguistic representations, and on the other hand, to classify these representations
into different types: “pictorial representations” (which look like their objects), “sche-
matic representations” (which keep the topological structure of their target) and “dia-
grammatic representations” (which spatially represent non-spatial relationships)
[1, Chap. 7]. A symbolic system can thus be defined as a set of marks that first maintain
syntactic relations between each other, but also semantic relations with the objects of a
field of reference, in order to fulfil various functions; be they aesthetic, mnemotechnic or
epistemic. This paper will study the epistemic function of diagrammatic representations.

The diagram (see Fig. 1) illustrates the mechanism of natural selection by high-
lighting four principles (variation, descent, divergence and extinction) that converge
towards the same phenomenon: descent with modification. How is it organized?

3 Epistemological Analysis of Darwin’s Diagram

First of all, the diagram is organized around two axes: one vertical, the other horizontal.
It reads from bottom to top. On the vertical axis, a series of 14 Roman numerals
indicate the course of time: this axis does not measure duration, but stratifies genera-
tions. It can be interpreted as a generational axis (this is actually what Darwin does in
Chap. 4) or as a paleontological depth axis (as Darwin does in Chap. 10). On the
horizontal axis, a series of 11 upper case letters represent 11 varieties, which can refer
to different species as well as varieties of the same type, or variations within a single

Fig. 1 Darwin’s diagram. Charles Darwin, On the Origin of Species by Means of Natural
Selection, or the Preservation of Favoured Races in the Struggle for Life, 1st ed., London, John
Murray, 1859, Chap. 4, p. 116–117.
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population or even several populations, according to Darwin’s comments. This enables
him to “quantify freely”, as Grothendieck argued when discussing the theory of cat-
egories [5, p. 259]. It was the mathematical theory of category that directly inspired
contemporary biology since it tried come up with more natural formalisms able to
model living beings [6].

However, it is essential to understand that Darwin’s aim is not to expose a phy-
logenetic classification of living forms, but to symbolize a “dangerous idea” [7].
According to this idea, there cannot be any intelligent design to explain the principle of
the evolution of species, but rather a process of natural selection without purpose,
which operates when chance and necessity work together, in a Malthusian context of
struggle for existence [8, p. 21].

Moreover, the 11 letters below the first horizontal line express a morphological,
anatomical and ecological divergence: their variable deviation stands for the relative
distance between varieties or species (it can be noted that there is more proximity
between E and F than between F and G). This means that the uppercase letters rep-
resent undetermined taxonomic categories: they are indeterminate variables that allow
taxonomic categories to be freely specified. By proceeding this way, Darwin does
exactly what the philosopher of sciences Jean Cavaillès calls an operation of
“thematization”, a notion whose paternity seems to go back to Husserl [9, p. 165]:
Darwin indeed turns properties into objects whose properties he will study. Variation,
filiation, divergence and extinction are properties that are objectified by the lines of the
diagram and polarized following the two axes: this is what allows “taxonomic bran-
ches” to appear [3, p. 127]. In allowing the survival and extinction of species to be
perceived in the blink of an eye, Darwin captures the infinite variability of nature in a
finite synoptic representation: the diagram thus symbolizes a dynamic totality through a
static representation [10, Chap. 5]. However, it should be noted that it was because of a
competitive context that Darwin was forced into representing his theory of evolution in
a diagram that was inspired by the image of the tree. Indeed, had Alfred R. Wallace not
rehabilitated this crucial image, Darwin might have not have been inclined to do so
himself [10, Chap. 4].

If the lines of each close variety (A, B, C, D) are extended, they can be connected
outside the diagram to converge towards a point of origin that allows the hypothesis of
a group or population of origin to be formulated. Conversely, the dotted lines that run
from A to the upper strata do not represent the actual descent of this variety, but the
resulting variations. It can be noted that there is a high variability for population
A whereas there is none for population D. The more the initial variations, the more the
population A proliferates over time: the differences, which were first minimal, lead to
considerable differentiation in the long run. As time goes by, the populations differ
from one another. The diagram thus performs a synoptic function, because it allows to
present simultaneously different time perspectives.

Darwin then displays new lowercase letters to articulate this differentiation (a, m, z,
etc.). If the horizontal lines numbered from I to X indicate the variations of each
generation, they only continue one of them when it gives rise to a major deviation. On
the last four horizontal lines (XI to XIV), Darwin draws general evolutionary lines
(a14, q14, p14, etc.) that disregard the variations abandoned during evolution (between
lines I and X).
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Thus, Darwin succeeds in showing that the same starting population can be divided
into different species, families, types and classes very distant from each other and that
are no longer tied to the former population. After fourteen temporal sequences, A no
longer exists: it turned into eight new varieties more or less distant from each other
(a14, q14, p14, b14, f14, o14, e14, m14). Conversely, other species, such as E and F, have
no variation: unchecked and unmodified, they can withstand time without diversifying.
On the other hand, some lines of populations, for example those of C or D, meet over
time with the lines of other populations that have proliferated: if they were prolonged,
they would come into conflict within the drawing. Darwin thus thereby illustrates the
competition between species. Better adapted, the new varieties supplant the old ones,
which then go extinct. This means that varieties that are too close compete with each
other. Therefore, the more variability in a population and the more divergent the
characteristics, the more likely a population is to survive, proliferate and diversify.

The forms of stratum XIV may no longer be able to interbreed or have descendants
together, but they share a common ancestor if their line is extended, which explains
why life forms can keep common characteristics that they inherited from extinct
ancestors.

4 Conclusion

Darwin’s diagram is a diagrammatic representation in the strong sense of the word,
because the spatial relationships it represents do not represent spatial relations as in
pictorial or schematic representations, but causal, temporal and hierarchical relations
between life forms. Moreover, if its object is the theory of evolution, the object is
actually an abstract set of mechanisms: for example, the intergenerational genealogical
mechanism or the mechanism of coordination of variation and heredity leading to
divergence and extinction. Its elements, and the way in which they are organized, allow
us to express theoretical hypotheses: such as this imaginary prediction made by Darwin
in the first edition, but withdrawn from the second, according to which the power of
natural selection could, with time, transform a bear into a whale [3, p. 135]. (Translated
by Lucie Lopez)
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1 Background

The necessity of results obtained through formal proof is a defining feature of modern
mathematics, and so it is not surprising that the question of what constitutes a valid
proof is of central concern in the philosophy of mathematics.Currently, the dominant
view is that a proof must consist of a series of propositions in which each statement
follows logically from those preceding. Diagrams, while widely recognized as useful
heuristic devices, are generally not considered an acceptable means of mathematical
proof. Recently, however, various scholars have argued for an expanded role for visual
representations in mathematical justification [1], with some going so far as to claim that
“pictures can prove theorems” [2].

The claim that a diagram can function as a proof is controversial for a number of
reasons [3].Most notable for the study reported here is the concern that diagrammatic
proofs are necessarily finite and particular, while the theorems they are intended to
prove generally encompass an infinite number of cases. Nevertheless, diagrammatic
proofs have been described as “rapidly and deeply convincing”, in some cases even
more so than their formal counterparts [4].

To illustrate these issues, consider the theorem 1 + 3 + … + (2n – 1) = n2. In
Fig. 1(a) we verify that this theorem is true for the n = 1 through n = 4 cases, which
might lead us to conclude (via inductive reasoning) that the general theorem is likely
true. However, these examples alone do not constitute a proof that the theorem is
necessarily true for all natural numbers; this would require a formal proof (in this case,
a proof by mathematical induction would work). Fig. 1(b) shows a diagrammatic proof
of the same theorem. The diagram only displays the first four cases of the theorem;
however, the image contains structure that may suggest that the pattern will continue to
hold as new layers are added. Indeed, diagrammatic proofs like the one in Fig. 1(b)
have been described as “completely convincing” [5]. Moreover, unlike a formal proof
by mathematical induction, the diagrammatic proof is free of complex notation and
sophisticated algebra; successful interpretation seems to rely only on simple concepts
like odd numbers, addition, and squaring. The apparent simplicity of the image has led
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some to suggest that this diagram can function as a proof even for viewers with only
“basic secondary school math knowledge” [6], and for viewers who are not familiar
with formal mathematical induction [2].

In this study, originally reported in [7], we applied empirical methods to investigate
the extent to which this diagram may serve a proof-like function for viewers. Specif-
ically, we asked two questions: (1) Given the diagrammatic proof, do viewers gener-
alize the theorem to cases not depicted in the image? (2) If so, is that conclusion
considered necessary, as in formal mathematical proof, or only likely, as in standard
inductive reasoning? To explore claims that the image is interpretable even by viewers
with no particular mathematical training, we also assessed the effect of expertise with
formal proof-writing on interpreting the image.

2 Methods

We recruited participants from two distinct populations. Our first group of participants
(n = 25) was drawn from the general subject pool and consisted of university-level
students with a variety of majors including psychology, cognitive science, and lin-
guistics. None of these students had taken a university-level mathematics course on
proof-writing, and so we call these participants “proof-untrained”. Despite not having
taken a course on proofs, these participants were all highly-educated adults enrolled at a
prestigious university such that we expected them to have a firm grasp of the relatively
simple mathematical concepts involved in the diagram. We recruited our second group
(n = 24) of participants through the mathematics department; specifically, we enrolled
participants who had received at least a B- in “Mathematical Reasoning”, an
upper-division mathematics course that covers a variety of formal proof strategies
including mathematical induction. We refer to this group as “proof-trained”.

We gave each participant the diagrammatic proof in Fig. 1(b) and asked him or her
to explain how the image was related to the mathematical theorem it was intended to
prove. We then conducted a semi-structured interview with each participant, which was
designed to determine whether they had generalized the theorem and, if so, whether this
conclusion carried the necessity associated with formal proof. We assessed general-
ization by asking each participant two questions: (1) “Do you think the statement is true
in all cases?” and (2) “What would be the sum of the first 8 odd numbers?” Any
participant who answered “yes” and “64” was classified as having generalized the
theorem. To assess necessity, we then raised the possibility of large-magnitude

(a) 1 = 12    (b)
      1 + 3 = 4 = 22

      1 + 3 + 5 = 9 = 32

      1 + 3 + 5 + 7 = 16 = 42

Fig. 1. Numerical (a) and diagrammatic (b) evidence that 1 + 3 + … + (2n – 1) = n2.
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counterexamples: “very large numbers where the statement actually isn’t true.” We
gauged each participant’s resistance to this possibility on a 0–5 scale, where 0 indicated
no doubt that counterexamples exist and 5 indicated complete rejection (stating
counterexamples are impossible, indicating high mathematical necessity).

3 Findings

Participants in both groups generalized the theorem to cases not depicted in the image
(Fig. 2, left); however, proof-untrained participants subsequently showed significantly
less resistance to the possibility of counterexamples than did the proof-trained partic-
ipants (Fisher Exact test, p = 0.008; Fig. 2, right). We take these results to suggest that
for most participants without knowledge of formal proof-writing the diagram functions
as set of a examples which allows for a standard inductive generalization, but does not
provide the necessity associated with formal proof.

Thus, while the diagrammatic proof was in some sense “convincing” to all viewers,
careful empirical work revealed nuances in the conclusions that viewers drew from the
image. Specifically, the diagrammatic proof did not reliably convince proof-untrained
viewers that the theorem was necessarily true for all natural numbers – this conclusion
appears to rely on familiarity with formal proof strategies.
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Isotype is a system of diagrammatic representation originally designed in the 1920s for
conveying statistical information to visitors of the Vienna Museum of Society and
Economy. The system was conceived by the museum’s director, the Vienna Circle
philosopher Otto Neurath (1882–1945), who saw it as an implementation of aspects of
his philosophy of language and semiotic theory. In the 1930s Neurath came into
contact with the English scholar C. K. Ogden (1889–1957), co-author with
I. A. Richards (1893–1979) of The Meaning of Meaning [1], a classic text in semiotics,
and inventor of the international language project Basic English. In the contact and
resulting collaboration between Neurath and Ogden there is a clear convergence in their
views. This abstract reports on recent research into Neurath, Ogden and their milieu,
published principally in McElvenny [2] and McElvenny [3].

‘Words divide – pictures unite’ is Neurath’s repeated slogan for Isotype [4–5]. It
echoes his call for unified science: ‘Metaphysical terms divide – scientific terms unite’
[6]. In common with many philosophers of his time, Neurath believed that pictures,
unlike words in language, possess an inherent connectedness to the world. According
to Neurath, pictures show – and can only show – concrete, tangible objects; they are
incapable of expressing the abstract entities that populate the metaphysician’s world.
The concreteness of pictures also makes them universally accessible: anyone should be
able to understand a well-constructed pictorial diagram, regardless of their native
language, level of education or cultural background.

Isotype was intended as an implementation of this philosophy of language, initially
for the specific purpose of conveying statistical information. A typical example of
Isotype in this mode can be seen in Fig. 1, which illustrates the different types of
economies found in the world and their distribution over various population groups,
with their sizes. The toothed wheel represents modern industrial economies, the
hammer economies based around skilled trades and agriculture, and the bow and arrow
hunter and gatherer economies with primitive agriculture. Each figure represents 100
million people: the outlined figures with hats represent Europeans; the brown figures
with turbans represent ‘orientals’, Indians and Malays; the black figures Africans and
‘mulattoes’; and the yellow figures with pointed hats represent ‘Mongols’.
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Ogden was among the contemporaries of Neurath who similarly accorded pictures
high status for their transparency and faithfulness. The heart of Ogden’s international
language project Basic English [8] was a ‘core vocabulary’ of 850 words ‘scientifically
selected’ for their reliability in picking out referents in the world. In choosing these 850
words, Ogden preferred nouns to verbs because – among other reasons – nouns gen-
erally name things that can be ‘pictured’, while verbs do not. The Basic core vocabulary
was intended to provide the necessary building blocks that speakers of the language can
use to paraphrase their concepts in simple terms. Paraphrases in terms of visual or
otherwise observable properties were preferred over more elusive descriptions [9].

In the correspondence between Ogden and Neurath, beginning in the early 1930s
and continuing until Neurath’s death in 1945, we can see the two scholars discovering
their common views on philosophy of language and semiotics and coming closer
together on many points. In this period, Ogden, in his role of editor at Kegan Paul
publishers, commissioned a number of books from Neurath on Isotype, Isotype:
international picture language [5] and Basic by Isotype [10]. We see in the title of the
first book Ogden’s success in convincing Neurath to align his Isotype with the inter-
national language movement which, at the time, was a major interest in many quarters
of academia and society at large. The second book used Isotype diagrams as a method
to bootstrap the learning of Basic. Although Neurath was always cautious in pressing

Fig. 1. ‘Economic systems of the earth’ [7]
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the claims of Isotype to being a complete linguistic system in itself, in the years of his
collaboration with Ogden the system was used increasingly for instructions and nar-
ratives where a series of iconic pictures was presented stepping through an action or a
sequence of events. Figure 2, for example, instructs parents to take their children to the
doctor to be cured when they exhibit the symptoms of rickets.
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Abstract. Despite a long historical relationship between mathematics and music,
the use of diagrammatic approaches in computational musicology is a relatively
recent phenomenon. Within the different branches of formal methods in music
analysis, the so-called “transformational” paradigm has progressively shifted from
an object-oriented to a graph-theoretical and categorical approach. Both graph
theory and category theory make large use of diagrams which enable the
description of the inner relationships of musical structures. In the categorical
framework recently proposed by the authors, whose results are summarized and
discussed in this abstract, musical transformations are viewed as natural transfor-
mations between chords represented as labelled graphs with vertices corresponding
to the notes and arrows corresponding to musical transpositions and inversions
operations. The diagrammatic approach also provides a very powerful conceptual
tool that can have crucial theoretical implications for music cognition. We discuss
this aspect by showing some deep connections between transformational music
analysis and some mathematically-oriented directions in developmental psychol-
ogy and cognition (such as Halford and Wilson’s neostructuralistic approach,
Ehresmann and Vanbremeersch’s Memory Evolutive Systems, Phillips and Wil-
son’s Categorical Compositionality, Fauconnier and Turner’s Conceptual Blending
and its structural extension proposed by Goguen) and epistemology
(Gaston-Granger’s “objectal” and “operational” duality).
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1 The Transformational Approach in Music Analysis

Within the different formal approaches in transformational music analysis,
neo-Riemannian theory occupies a singular position by stressing a “dualistic” per-
spective on the Tone System based on inversional relations between major and minor
chords. After a first algebraic formalization by David Lewin through the concept of
Generalized Interval System [9], neo-Riemannian theory and analysis have developed
more and more sophisticated tools by showing their deep categorical roots [5, 10].

According to this music-theoretical and analytical paradigm, there are three ways of
transforming a major chord into a minor chord by preserving two common notes: the R
transformation (as “relative”), that changes for example the C major chord into the A
minor chord; the P transformation (as “parallel”) that changes the C major chord into
the C minor chord; the L transformation (as “Leading-Tone operator”), changing the C
major into the E minor chord. In a categorical framework, the neo-Riemannian oper-
ations are viewed as natural transformations between major and minor chords repre-
sented as labelled graphs with vertices corresponding to the notes and arrows
corresponding to transposition and inversion operations [12−14]. By definition a
transposition by h semi-tons is an operation indicated by Th that sends a generic
element x of the cyclic group of order 12 (i.e. a pitch-class in the musical set-theoretical
terminology) into x + h (modulo 12). Similarly, one may define the generic inversion
operation indicated by Ik that sends a pitch-class x into k − x (always modulo 12). The
diagrammatic approach to neo-Riemannian operations is shown in Fig. 1

Fig. 1. The sequence of six neo-Riemannian transformations constituting the hexagonal cycle
that generates the Tonnetz by musical transpositions. We have associated to the chord sequence
the underlying diagrammatic framework displaying the transformations between major and minor
chords viewed as labelled graphs with vertices corresponding to the notes and arrows
corresponding to musical transposition. Although inversions Ik do not play any role in this case,
one may find so-called “negative isographies” < Ik> acting on the arrows Tk of the corresponding
labelled graphs (for example, the first negative isography <I8> transforms T7 into T5, T4 into T8
and T3 into T9). Each negative isography is accompanied with the transformation acting on the
vertices of the labelled graph (in the previous case, for example, the notes C, E and G are
transformed respectively in the notes E, C and A via the map −x + 4).
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2 Towards a Diagrammatic and Category-Based Music
Cognition

Following some previous attempts at developing a category-based approach to creativity
[2], the diagrammatic formalization of musical structures provides a very powerful
conceptual tool that can have crucial theoretical implications for cognitive sciences and
mathematical psychology. Combining the transformational approach, with a computa-
tional perspective has some crucial theoretical implications for cognitive sciences and
mathematical psychology, as one may see by analyzing some mathematically-
oriented directions in developmental psychology and cognition [3, 4, 6, 8, 11]. From
an epistemological point of view, transformational analysis provides an instantiation, in
the music domain, of Gilles-Gaston Granger’s articulation between the “objectal” and the
“operational” dimensions [7]. This duality was considered by the French epistemologist
as the foundational basis for the very notion of “concept” in philosophy.

The use of diagrams within a categorical framework enables precisely to explain
the shift from the object-oriented perspective provided by tradition musical Set Theory
[1] to a “relational” approach in transformational music analysis [14].
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Abstract. Thinking in mathematics is often mediated by diagrammatic
notations which support specific manipulations. In this note, I address
epistemic issues concerning knot diagrams. They form an effective nota-
tion, but they over-determine the target of study: knot types. Neverthe-
less, the over-determination contributes to their effectiveness because it
underwrites the possibility of both exploiting topological intuition and
performing automatic computations.
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In the present abstract, I focus on the role of diagrams in knot theory. I consider
a recent article: “More knots in knots: A study of classical knot diagrams” by
Millett and Rich [4] to analyze two different ways in which mathematicians use
knot diagrams: by visual manipulation and by computer assisted procedures.

Briefly, a knot is a simple (i.e. with no self-intersection) closed curve embed-
ded in space. Generally, we are interested only in how a knot is knotted, and not
in its specific shape, that is, we focus on knot types. In Fig. 1 are three diagrams
of the trefoil knot. In order to present a knot, we can take a physical model or
a picture of it, assign to it a name, or appeal to a smooth function. However,
in practice it is common to use knot diagrams. These are essentially different
from pictures of knots. Knot diagrams follow strict constraints which guarantee
that all the relevant information is clearly displayed. Moreover, they do not only
serve as illustrations, but they present a well-regimented operative dimension,
which makes them effective in the practice of knot theory. Knot diagrams are
usually considered as topological diagrams: their geometric shape is generally
not relevant for the knot theorist. Accordingly, diagrams in Fig. 1(a) and (b)
are equivalent. Moreover, we can define a series of operations on knot diagrams
which allow us to connect all the different diagrams representing the same knot
type: the three Reidemeister Moves. All three diagrams in Fig. 1 are equivalent
modulo Reidemeister moves. When projecting knots on a surface, some infor-
mation about the geometric shape of the knot is lost: infinitely many geometric
knots give rise to the same knot diagram. Nevertheless, this should not be inter-
preted as a flaw of knot diagrams, but rather as an advantage. In fact, the lost
information is irrelevant for the purposes of studying knot types.

Manders [conference talk] has stressed the problem of over-determination
even in the case of knot diagrams. As we saw, the particular geometric shape
c© Springer International Publishing AG, part of Springer Nature 2018
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(a) (b) (c)

Fig. 1. Diagrams of the Trefoil Knot

of diagrams is not what interests the knot theorist, who will generally interpret
a knot diagram topologically. Moreover, as explained in [2], we often study dia-
grams to track knot types, that is, modulo Reidemeister moves. Therefore, we can
individuate at least two levels of ‘extra information’: geometric and topological.1

Nevertheless, I claim that both ways in which a knot diagram over-determines
a knot type is conducive to the practice of knot theory. This is because they
respectively underwrite the possibility of: (1) Manipulating knot diagrams via
“enhanced manipulative imagination;” and (2) ‘Discretizing’ knot diagrams in
multiple ways.

One of the advantages of representing knots via knot diagrams is that the
latter can be manipulated by exploiting cognitive abilities developed in our inter-
action with concrete objects. Given their geometric shape and their topological
interpretation, we can easily ‘visualize’ many transformation that do not alter
the corresponding knot, as in Fig. 1. In a previous work in collaboration with
Giardino [2] we labeled the faculty at play “enhanced manipulative imagination”
to refer to both its connection with manipulative abilities and the fact that it is
enhanced by specific mathematical training. Brown [1, Ch. 6] also highlights the
importance of knot diagrams’ visual appearances. He claims that knot diagrams
form an effective mathematical notation because, thanks to their visual features,
we can calculate with them.

Therefore, whereas it is true that knot diagrams over-determine knot types,
it is also the case that such representations trigger manipulative imagination
exactly because they are geometric representations. In a recent article, Millett
and Rich [4] aim at analyzing the compositional structure of knots and knot
diagrams. Part of their analysis is done by visual inspection of the knot diagrams
present in standard knot tables. This is possible because knot diagrams, although
less redundant than knots, still present geometric information that allows human
agents to exploit topological intuition.

After such visual inspection, Millett and Rich’s results are derived from auto-
matic computations that can be implemented after a discretization of knot dia-
grams. These can in fact be divided into discrete components canonically: the
strands (curves going from one undercrossing to another undercrossing) and the
crossings of which they are composed. As pointed out in [3, p. 152], this dis-
cretization underwrites the possibility of deploying algebraic and combinatorial
1 That is, knot diagrams have a specific geometry (which distinguishes between dia-

grams in Fig. 1(a) and (b)), and a specific topology, (which distinguishes between
diagrams in Fig. 1(a) and (c), but not between diagrams in Fig. 1(a) and (b)).
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tools in the study of knots. We can get different discrete counterpart of knot
diagrams: e.g. by (1) coding knot diagrams with numbers; (2) creating discrete
graphs that can be interesting on their own or shed light on knot’s properties;
and (3) associating algebraic invariants to knots.

In the paper, I analyze all these discrete counterparts of knot diagrams and
focus on their epistemic roles in the practice. For example, Millett and Rich use
the Dowker-Thistlethwaite (DT) code. The DT code is a sequence of integers
that can be easily obtained from a knot diagram by associating numbers to its
crossings. Note that even if codes are used to study knots, they do not refer
directly to knots, but only indirectly, via referring to knot diagrams. Because
of their intermediary status, knot diagrams play a special epistemic role in the
practice knot theory.

Conceiving mathematics as a human activity and not only as a timeless
body of truths leads to acknowledging the importance of mathematicians’ daily
practices. Mathematicians’ reasoning is mediated by external material artifacts,
which support manipulations corresponding to mathematical operations. In knot
theory, the importance of diagrammatic notations is evident. Knot diagrams
are both interesting for their own mathematical properties and used to refer
to (mathematical) knots. Knot diagrams are an example of a perspicuous and
transparent notation because they can be easily interpreted and manipulated
correctly. They allow mathematicians to exploit cognitive abilities they devel-
oped from manipulating concrete objects by re-deploying them in the abstract
domain of mathematics. In this respect, they differ from their code counter-
parts. However, by their own ‘discretizable’ nature, knot diagram bridge the
domain of low-dimensional topology proper of knots to the one of discrete math-
ematics. The possibility of associating canonically discrete counterparts to knot
diagrams underwrites the possibility of extracting their combinatorial properties
and encoding them into sequences of numbers. Such encodings are useful in the
practice because they can be used to perform automatic computations.

Both methods of inquiry mediated by knot diagrams, visual analysis and
automatic computations, are essential in the practice of contemporary knot
theory.
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Abstract. It seems possible to know that a mathematical claim is necessarily
true by inspecting a diagrammatic proof. Yet how does this work, given that
human perception seems to just (as Hume assumed) ‘show us particular objects
in front of us’? I draw on Peirce’s account of perception to answer this question.
Peirce considered mathematics as experimental a science as physics. Drawing
on an example, I highlight the existence of a primitive constraint or blocking
function in our thinking which we might call ‘the hardness of the mathematical
must’.

Keywords: Necessity � Epistemology � Mathematics � Hume � Peirce

1 Introduction

We can come to know that a mathematical claim is true by inspecting a diagram, as in
Fig. 1. What is being perceived here? Not just that 2 � 3 is 3 � 2, but that 2 � 3 must
be 3 � 2. It is clear that trying to create an option such as 2 � 3 = 3 � 3 would be
futile. We could of course prove the same claim in a more stepwise, symbolic manner,
but this diagram seems to give us everything we need to ascertain the necessary truth.

Yet how exactly does this work? Much mainstream analytic epistemology arguably
makes such knowledge-gathering seem impossible [1], through a materialist under-
standing of perception, deriving ultimately from Hume’s empiricism, according to
which, we might say, ‘experience only shows us the particular objects in front of us’.
This produces a highly sceptical treatment of modality, which Hume famously used to
undermine so-called causal necessity [1]. Attempts to challenge this often meet
intimidating charges of anti-naturalism.

2 Hume’s Legacy and Its Challenges

Hume’s particular empiricism led him to coin a supposedly common-sense maxim,
widely taken for granted today: “There are no necessary connections between distinct
existences”. The maxim follows from two key Humean claims about perception: (i) it
is passive—involving nothing more than ‘registering’ the impact of individual physical
objects on the sense organs, (ii) it is atomistic—ideas are only distinct if fully separable
in imagination. Consequently Hume banishes from his epistemology abstract ideas,
whose determinable properties lack determination (e.g. a ‘general triangle’). Allowing
these would render the mind active in choosing which determinables to elide. The early
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modern Hume sees this denial as properly naturalistic against scholasticism. Consider
Fig. 1. Does it display a necessary connection between distinct existences? Well, what
are the ‘existences’? Humeans have a number of choices here:

(i) Physical Marks: The relevant existences are 5 oval-shaped and 6 star-shaped
marks, exactly as inscribed on the page. This choice appears natural given the
organisation of our visual field and—invoking Hume’s separate imaginability criterion
—we can imagine each shape existing alone on the page. But there are necessary
connections between these objects in Fig. 1. For instance one cannot remove stars from
the vertical ovals without changing the number of stars in the horizontal ovals. Inter-
preted thus, then, Hume’s maxim seems simply incorrect.

(ii) Abstract Objects: Alternatively one might claim that Fig. 1 displays a truth
about something more ideal—e.g. three ‘2s’ and two ‘3s’. These are arguably not
distinct, since 2 is made up of ‘two ones’ and 3 of ‘three ones’, so 2 is a proper part of
3. At this point, then, Hume might defend his maxim by stating that Fig. 1 expresses
relations between ideas, not matters of fact, and only the latter is accessed through
perception, whilst the former is mere semantic stipulation. But this is somewhat
unsatisfying. If mathematics merely concerns a world of ideas, how are physical dia-
grams so startlingly effective? Furthermore, now Hume’s maxim seems to beg the
question. Is he not arbitrarily ruling out that we perceive existences between which
necessary connections hold, effectively stating: “There are no necessary connections
between distinct existences, which are those existences without necessary
connections”.

(iii) “Both”: One might consider combining the two views as follows: the exis-
tences are ovals and stars and ‘2s’ and ‘3s’. However this raises tricky questions about
the relationship between the physical marks and the numerical objects. If they are all
separate, why include physical marks in the diagram? Why not ‘cut to the chase’ and
just include the numerical objects? Obviously that is impossible, which points to our
preferred interpretation.

(iv) “Hybrid…but not both”: Attribute to the physical marks and numbers partial
identities. What does this mean? Just that ‘twoness’ is a property which may be
abstracted from two star-shaped marks on the page, while precisely not being separable
from them. Abstraction without separation is essential for all structural reasoning. This

Fig. 1. Why 2 � 3 = 3 � 2
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includes our example since it turns on recognising that two abstractable but not sep-
arable structures: 2 � 3 (two rows of three stars) and 3 � 2 (three columns of two
stars) – are in fact identical. Structural reasoning is surely a significant part of math-
ematics. So what theory of perception could do justice to it?

3 A Peircean Approach

Peirce suggests we need to give separate, interlocking, accounts of: (i) immediate
experience of objects: the percept, (ii) the truth of symbols derived from that experi-
ence: the perceptual judgment. The percept is a non-cognitive direct encounter with
some object. It is not a Humean idea, nor does it express truth-claims, it “simply knocks
at the portal of my soul and stands there in the doorway” [5]. On the other hand, the
perceptual judgement takes propositional (subject-predicate) form, and its interpreta-
tion opens to the community of inquiry in an endless series of judgments, each member
of which is logically related to prior members. The perceptual judgement does not copy
the percept, as they are too unlike one another. How do they relate? Contra Hume,
percepts cause perceptual judgements, while not being the source of their content.
Human evolution ensures that each percept causes “direct and uncontrollable inter-
pretations”. This process can and must be trained through cultivating appropriate
mental habits, through public criticism in a common language.

So what kind of ‘existence’ is the mathematical percept? We should take seriously
Peirce’s repeated claims that mathematics is as experimental a science as physics, but
the mathematician’s laboratory is the diagram [5]. Again consider Fig. 1. First note that
the mathematical percept, like all percepts, is strictly impossible to describe in words.
However, when I ‘got’ this proof, I suddenly grasped the horizontal and vertical
star-arrangements as one, as if the same 5 ovals were ‘holding both together’. ‘Holding
together’ is a metaphor, as the arrangements are not strictly parts of the diagram (as not
separable, only abstractable). But looking at the diagram and thinking about abstracting
other arrangements from it (such as three threes), I could feel myself not being able to
think of them. We might call this primitive blocking or constraint, in homage to
Wittgenstein, ‘the hardness of the mathematical must’. With my prior mathematical
training, this prompts me to an ‘uncontrollable interpretation’ that the proposition
2 � 3 = 3 � 2 must be true. No matter how hard I try to interpret Fig. 1 as
2 � 3 = 3 � 3 – I simply cannot think that way. (Try it yourself…) Thus Peirce notes
that although mathematics deals with a world of ideas, not material objects, its dis-
coveries are something to which our minds are forced. My felt ‘hardness’ now becomes
the necessity of the perceptual judgment: 2 � 3 = 3 � 2.

Thus, despite many philosophers’ bafflement, we do perceive necessity. I have
argued that perception is in fact the only way we come to know necessity, as all
necessary reasoning involves experimenting on diagrams to determine structural
dependencies [2–4]. Necessary truths are abstract able from physical marks and this is
not an ontological reification but an epistemic capacity. Arguably the whole concept of
‘abstract object’, so problematic in recent philosophy of mathematics, arises from not
understanding that (contra Hume) one can abstract without separating.
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Abstract. The great achievement of Cantor and Dedekind in the 19th c. was
not the arithmetization of the geometrical line, but rather the use of the notion of
set to extend the number system to the reals and the transfinite numbers, and to
recast the line as a set of points and numbers systems as sets of numbers: this
prepares the ground for the emergence of topology and then algebraic topology
in the 20th c. and the novel diagrams that accompany its presentation in the
textbook written by Singer and Thorpe.
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1 Introduction

Set Theory and Group Theory in the 19th century play an important role in the
development of Topology and then Algebraic Topology in the 20th century, and novel
diagrams play a central role in this development. The axioms defining a topological
space were first formulated successfully by Felix Hausdorff. Problems in analysis (such
as the search for new, more abstract definitions of function and integral), and the
development of Set Theory by Cantor, had led mathematicians like René Fréchet to
search for ways of talking about abstract sets and spaces, whose components were not
points or real numbers, but simply elements (Manheim 1964, pp. 116–119). It was
Hausdorff who first noted the distinction between the traditional understanding of
distance and limit, and the notion of neighborhood. The concept of distance is tied to a
metric, and that of a limit depends on a relation of countability, so Hausdorff selected
the notion of neighborhood as more fundamental. He also “knew how to choose,
among the axioms of Hilbert on neighborhoods in the plane, those which were able to
give his theory both the desirable precision and generality.” (Manheim 1964, pp. 122–
123). Hausdorff spaces are spaces where there are enough open sets for any two distinct
elements to be contained in two open sets that do not intersect.

2 Homotopy and Homology Theory

First, we explore the role of diagrams in homotopy theory. The key to Algebraic
Topology is to construe, or construct, a topological space as a group. What then should
the elements be? The points of a topological space itself, or even open subsets, would
be unwieldy as group elements because there are just too many of them. The elements
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must, however, be something is it possible to find in every Hausdorff space. One choice
is functions called paths, which map the unit interval {[0, 1] onto the topological space.
Requiring that 0 and 1 get mapped to the same point p of the space, and that p is the
same for all paths, it is possible to cover the whole space with these ‘loops.’ A binary
operation of two path-functions a and b can be defined by saying that ab maps [0,1] to
the space (i.e. ab is itself a path-function) when ab(0) = a(0), ab(1) = a(1) = b(0), and
ab(1) = b(1). That is, ab maps the unit interval around two loops, images of a and b.

However, this set of elements has a problem: there are too many of them. So far, we
only succeeded in assigning a group with an infinite number of elements to every
topological space. To make the association useful, we define as elements not paths, but
equivalence classes of paths, via the equivalence relation homotopy. A homotopy
exists between functions (that is, two functions are homotopic) when they have the
same domain, and one function can be continuously deformed into another. In formal
terms, this condition is expressed a ’ b (a is homotopic to b) when there exists
a continuous map F such that F:[0,1] x [0,1]! T (the topological space) and F(x,0) = a
(x) and F(x,1) = b(x). Consider the situation when the topological space (say the
Euclidean plane) has a hole in it. The ‘loops’ a and b can be continuously deformed,
shrunk back, until they collapse in the point p.

This means that they are in the same homotopy equivalence class as the identity
path-function which maps all of [0,1] to p. But there is no way to draw ‘loop’ c back to
p unless it breaks to get around the hole; but then the deformation is not continuous.
Then c must be in a homotopy equivalence class different from the one which includes
a, b, and the identity (Singer and Thorpe 1967, Chap. 3). This construction of a

Fig. 1. Homotopy Equivalence Classes, on Plane with Hole

Fig. 2. Homotopy Equivalence Classes: Plane with a Hole, and Torus

Fig. 3. A Smooth Manifold: Hausdorff Space and Collection of Maps
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homotopy group, whose elements are homotopy equivalence classes, offers an alge-
braic structure which distinguishes between topological spaces which exhibit signifi-
cantly different features. For instance, the Euclidean plane has no holes, and so its (so
called) fundamental group structure has only one equivalence class, the identity,
because all the loops can be collapsed into the single point p. The same is true of the
surface of a sphere. However, a plane with a hole in it has a fundamental group which
is isomorphic to the integers.

Once around the hole corresponds to 1, twice to 2 and so forth; once around the
hole the other way corresponds to −1 etc. and the identity corresponds to 0. The torus
has two holes, one in the center and one inside, so its fundamental group corresponds to
the Cartesian product of the set of integers with itself, the pairs (x,y), with x and
y integers. There are many other ways to develop this thought, for instance, mapping
sphere-like images onto the space instead of loops, or changing the notion of equiv-
alence from homotopy to homology.

Manifolds are good focus for homology Theory. Although they come in compli-
cated shapes and curves, their definition insures that they are locally homeomorphic to
n-dimensional Euclidean space (the prototype of any n-dimensional vector space)
(Singer and Thorpe 1967, Chap. 5). That is, for every point x of the manifold there is an
invertible function / that maps an open set (a neighborhood) around x one-to-one and
onto an open set in Rm. We will confine ourselves to smooth manifolds, where
functions behave nicely on the overlap of neighborhoods. Formally, a smooth manifold
is a pair (M, /) where M is a Hausdorff topological space and / is a collection of maps
such that the domain of the / are small open neighborhoods of M which completely
cover M, and each one maps these neighborhoods homeomorphically onto neighbor-
hoods in Rm, so that the coordinate functions (r1, r2, … rm) in Rm correspond to local
coordinate functions on the manifold (m1, m2, … mm) via the local representation
mi = ri ° /. In addition, /i ° /j

−1 must be a smooth map on the overlap of their
respective domains, going from the image of /i in Rm back to Rm.

This set U of homeomorphisms insures us that, at least locally, whatever structure
we can find in Rm (a vector space is a likely place to look for structure) will have an
analogue on the manifold, and further than that, whatever structure we get locally we
can translate smoothly from neighborhood to neighborhood, and so understand the
global structure. This search for structure on the manifold, translating back and forth
between the manifold and Rm, will lead us through the algebraic structure of vector
spaces, linear transformations, Grassman algebra and finally back to a glimpse of De
Rham’s Theorem.

Acknowledgments. This abstract draws on Part IV, Chapter 2 of my book Great Circles, which
is forthcoming in 2018 from Springer.
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Abstract. This study investigated the efficacy of providing instruction and
practice to promote spontaneous diagram use in the math word problem solving
of 70 students (mean age = 14 years) participating in a quasi-experiment in a
real school setting. The experiment required the students to solve math word
problems which could be more efficaciously solved by using appropriate dia-
grams (based on the structure of the problems). In the pretest, diagrams were
rarely used by the students. However, following an intervention (provided as
instruction and practice in construction and use of the appropriate diagrams), the
students’ spontaneity in diagram use and their correct answer rates significantly
increased. The intervention encouraged the use of specific diagrams to match
features of the problem to solve. This demonstrated the domain specificity of
diagram use in math word problem solving. Furthermore, the level of diagram
use and correct answer rates maintained over the experimental period. We also
confirmed that cognitive load (based on student self reports of cognitive effort)
decreased as a consequence of the intervention provided, thereby providing one
explanation for the increased spontaneity we observed.

Keywords: Spontaneous diagram production � Math problem solving
Strategy use advice and encouragement � Diagram use instruction
Skills practice

1 Introduction

It is necessary for us to use mathematics in various facets of everyday life. Developing
skills in solving math word problems are particularly important because such problems
contextualize the need to apply math knowledge and skills, rendering them as useful
practice for real life situations. However, the correct answer rates tend to be low and, in
general, students do not use diagrams spontaneously when solving such problems even
though diagrams are considered effective tools for solving them [1].

Previous studies suggest that instructions about diagrams are effective in encour-
aging students to construct the appropriate diagrams, but such instruction did not
always improve the correct answer rates [2]. But, in a recent study in the context of
communication, students’ spontaneous diagrams use was increased and maintained by
using an intervention that added practice to instruction [3]. This suggested that practice
lowered cognitive cost associated with diagram production. Therefore, in the present
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study, we hypothesized that an intervention combining instructions and practice would
likewise promote spontaneous diagram use by reducing cognitive cost, and that such
use would also result in improving the correct answer rates in math word problem
solving. One of our aims was to elucidate the mechanism of spontaneous diagram use
by considering cognitive load [4] as factor influencing such use.

2 Method

Participants were 70 8th-grade students (female = 37; mean age = 14 years). We
employed a pre- and post-test design, with intervention phases (baseline, interventions
on diagram knowledge, delayed posttest), and with task factors (line diagram, table,
graph). Interventions of instruction and practice (3 separate sessions) and tests (5 times)
were carried out over 5 days in an actual classroom setting, with each session being
40 min in duration (see Table 1).

A questionnaire was administered immediately after each task. In the intervention
sessions, instructions to develop semantic knowledge and procedural knowledge for
use of each kind of diagram (line diagram, table, and graph) were provided. Equivalent
math word problems (isomorphic in structure and requirements), in which each of these
kinds of diagrams were required to more efficiently arrive at their solutions, were
created and used in the instructions and tests (different problems were used in
instructions and tests). All the math problems were presented in sentences only and did
not include expressions to explicitly induce the use of diagrams.

Eight minutes were allowed for solving each problem, and no feedback was pro-
vided. The questionnaire (using 10-point Likert-type scales) measured intrinsic cog-
nitive load (load imposed by the given task; 4 items), germane cognitive load (load that
can be allocated for solving the task; 4 items), and expectancy-value perceptions (10
items). The diagrams included on the students’ answer sheets were scored based on
rubrics that allocated 0–2 points depending on appropriateness and detail.

Table 1. Implementation plan
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3 Results and Discussion

Comparisons of scores at baseline and delayed posttest phases revealed that, in all
diagram problem types, cognitive load decreased, and diagram scores and correct
answer rates increased (p < .01 in all cases). Judging from the changes in scores that
occurred between the instructions, each intervention affected only one problem type –

the one that it specifically targeted (e.g., table-type problems only). These effects of the
interventions were maintained even in the delayed posttests (see Fig. 1).

Germane cognitive load also increased in all problem types (p < .01 in all cases).
Significant correlations were also found between germane cognitive load and partici-
pant scores on the expectancy-value scales (r = .45 – .55).

The results of the present study demonstrate that interventions combining
instruction with opportunities for practice successfully facilitated students’ spontaneous
diagram use and improved their correct answer rates. Thus, the hypothesis we posed
was supported. The results suggest that intrinsic cognitive load in diagram production
can be reduced by cultivating the necessary knowledge and skills in construction. The
freed up cognitive resources can then be utilized as germane load, which can be
deployed for actual solving/cognitive processing of the problems given. Furthermore,
the relationship between germane cognitive load and motivation (expectancy and
value) scores may provide an explanation for the maintenance of diagram use (i.e.,
higher expectation of success in being able to use diagrams + higher perception of
value of using diagrams = higher motivation to use). The findings of this study also
indicate the domain specificity of the diagram types and associated instructions.

Fig. 1. Mean proportions of intrinsic cognitive load (CL), diagram use, and correct answer rates
for each of the problem types (line diagram, table, and graph) across the phases of the study
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Abstract. Diagrams are powerful opportunities for attending to abstract rela-
tionships, yet this is cognitively effortful, and individual differences in how
reasoners benefit from such opportunities are not well understood. We posit that
cognitive control is critical for both abstracting relational representations and
using these representations analogically in subsequent problem solving. This
hypothesis is evaluated using simulations in a symbolic connectionist model of
analogical thinking, DORA/LISA (Discovery Of Relations by Analogy; Dou-
mas, Hummel, & Sandhofer, 2008). Varying the base level of lateral inhibition
in DORA affected the ability to learn and draw inferences from relational rep-
resentations. These simulated accuracy rates and errors observed in children
learning from repeated experiences in reasoning from geometric diagrams.

Keywords: Analogy � Diagrams � Cognitive control � Reasoning

1 Introduction

1.1 Empirical Trajectories of Children Learning from Geometric
Diagrams

Diagrams are powerful opportunities for grappling with and learning abstract rela-
tionships, for example learning the relations between elements in an ecosystem rather
than simply memorizing the objects within the system. Further, what is crucial from
any diagrammatic learning opportunity is the ability to use this relational knowledge in
a new context or with new materials, beyond simply understanding the initial pre-
sentation. This is cognitively effortful, however, and individual differences in how
reasoners benefit from such relational learning opportunities are not well understood.
We describe a computational simulation that examines how cognitive control of
attention enables relational learning from visual stimuli such as diagrams. Specifically,
we propose that cognitive control is critical for both abstracting relational represen-
tations from that visual stimuli, and to the ability to use these representations in new
problem solving.
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This study draws on extant longitudinal data from children who viewed and solved
geometric analogy problems repeatedly over six months [1]. Each set of stimuli were
geometric diagrams that contained a key set of relationships, such as inside (see Fig. 1).
Children were presented with A:B :: C:D problems in which they had to draw the D
term to make a valid analogy. Children’s performance could be categorized into three
distinct learning trajectories: analogical reasoners throughout, non-analogical reasoners
throughout, and transitional - those who start non-analogical and grew to be analogical.

Developments in children’s analogical reasoning are traditionally attributed either
to increased working memory resources due to maturation [2] or accretion of knowl-
edge relevant to the particular task [3]. Both principles have empirical support, so in
order to develop a comprehensive framework for how knowledge accretion and indi-
vidual differences in cognitive skills together affect learning from diagrams, we test a
theory for their integration using computational simulations in a symbolic connectionist
model of analogical thinking, DORA/LISA (Discovery Of Relations by Analogy) [4].

1.2 Model Description

LISA [5] is a symbolic-connectionist model of analogy and relational reasoning.
DORA [4] is a model, based on LISA, that learns structured (i.e., symbolic) repre-
sentations of properties and relations from unstructured inputs. That is, DORA provides
an account of how the structured relational representations LISA uses in the service of
relational reasoning can be learned from examples. These models account for over 40
phenomena from the literature on children’s and adults’ relation learning [see 4–7].

2 Computational Simulations of Learning Trajectories

We hypothesized that differences between the children’s analogical diagram learning
trajectories [1] were at least partially a product of differences in working memory. We
simulated these differences in LISA/DORA by varying levels of lateral inhibition.
In LISA, inhibition is critical to the selection of information for processing in working

Fig. 1. Analogy problems varying in complexity based on those in Hosenfeld et al. (1997) [1].
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memory. Inhibition determines LISA’s intrinsically limited working-memory capacity
[4], controls its ability to select items for placement into working memory and also
regulates its ability to control the spreading of activation in the recipient.

We defined three groups following the behavioral data: (1) non-analogical,
(2) transitional, and (3) analogical. We ran 100 simulations for each group. During each
simulation we chose an inhibition level from a normal distribution with a mean of .4 for
the non-analogical group, .6 for the transitional group, and .8 for the analogical group
(each distribution had a SD = .2). For each simulation we ran 800 learning trials and
checked the quality of the representations DORA had learned during the last 100 trials
after each 100 trials. Quality was calculated as the mean of connection weights to
relevant features (i.e., those defining a specific transformation or role of a transfor-
mation) divided by the mean of all other connection weights + 1. A higher quality
denoted stronger connections to the semantics defining a specific transformation rel-
ative to all other connections (i.e., a more pristine representation of the transformation).

As observed in Fig. 2, DORA/LISA’s growth trajectories closely followed the
behavioral data. Like the non-analogical children, LISA/DORA with a low inhibition
level performed poorly throughout. Like the transitional children, LISA/DORA with a
medium inhibition level started slow but improved slowly. Like the analogical children,
LISA/DORA with a high inhibition level performed well virtually from the start and
maintained this throughout.

3 Summary

In sum, children’s learning from diagrams may vary due to their level of internal
inhibitory control over the noise abstracted from diagrams as inputs, which may impact
how likely they are to build and use relational representations from diagrams.

Fig. 2. Results from Hosenfeld et al., (1997 [1]) and LISA simulations. Simulation results were
the result of training in DORA followed by reasoning in LISA. Groups were created solely by
changing DORA/LISA’s working-memory capacity (i.e., adjusting lateral inhibition).
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Abstract. Creative translation as a method for investigation was an idea sys-
tematically explored by the Brazilian poet and translator Haroldo de Campos.
According to Campos’ approach, creative translation corresponds to the tran-
screation of a multi-level system of constraints, “selected” and revealed by the
target system. We intend to describe this process as diagrammatic (sensu
Peirce), in which the physicality of its source and target systems have the
ontology of a relation. Hence our approach is a tentative association of Jakob-
son’s concept of intersemiotic translation, with De Campos’ notion of tran-
screation based on Peirce’s notion of diagrams. We intend to describe it by
taking the following arguments into consideration: I. Intersemiotic translation
can be described as fundamentally triadic phenomenon, that involves the
selection and interpretation of properties and methods from one semiotic system
to be translated into another semiotic system, bearing the production of an
interpretative effect in the latter, that is analogous to the interpretative effect
produced by the former. II. Intersemiotic translation is a method of investiga-
tion. As a mainly iconic process, it produces a sign that signifies by means of its
own qualities and structures: this is a well-known property of iconic signs,
namely operational criterion of icons.

1 What Is the Role of Intersemiotic Translation
for Discovery?

The idea of creative translation as a method for literary investigation was systematically
explored by the Brazilian poet and translator Haroldo de Campos. According to Cam-
pos’ approach, mainly based on Roman Jakobson [1] and Walter Benjamin [2], creative
translation corresponds to the transcreation of a multi-level system of constraints,
“selected” and revealed by the target-sign, an idea strongly inspired on Peirce’s mature
notion of iconicity. For Campos, transcreation is an iconic operation on the physicality
of semiosis. Here we generalize this notion to intersemiotic translation phenomena. We
associate Jakobson’s concept of intersemiotic translation with De Campos’ notion of
transcreation. This association is based on Peirce’s concept of diagrams as icons of
relation. As a mainly iconic process, intersemiotic translation produces a sign that
signifies by means of its own qualities and relational structures: this is a well-known
property of iconic signs, namely operational criterion of icons (see Sect. 2.) [3]. In order

© Springer International Publishing AG, part of Springer Nature 2018
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to properly investigate processes of intersemiotic translation based on those arguments,
we are going to analyze a case of translation from architecture (Fig. 1(a)) to photog-
raphy: the exhibitions named Fachwerkhäuser des Siegener Industriesgebietes, by the
German photographers Bernd and Hilla Becher (Fig. 1(b)).

2 Intersemiotic Translation as Operational Icon

The icon is operationally defined [3] as a sign whose manipulation reveals, by direct
observation of its property, some information on its object [4]. This definition repre-
sents a de-trivialization of the concept of icon as a similar entity. If an icon can be
characterized as a sign consisting of interrelated parts that reveals information through
its manipulation followed by observation [3–5] and, if these relations are subject to
experimental modifications regulated by rules, we are working with diagrams. Based
on those rules, the translation creates a target-sign, in which selected properties from
the source are transcreated to the target. Since target and source have different phys-
icalities, the intersemiotic translation recreates the selected characteristics in different
materials in a different semiotic system, revealing important and sometimes not easily
perceived, semiotic and material perspectives on the process, on the source-sign and the
on target-sign.

3 The Intersemiotic Translation of the Fachwerkhäuser des
Siegener Industriesgebietes and the Models of Iconic
Semiosis

We approach intersemiotic translation basing on two models [6]: (i) the source of the
translation is the sign, and the target is the interpretant (Fig. 2), (ii) the source is the
object and the target is the sign (Fig. 3). The first model highlights the production of

Fig. 1. The architectural landscape of the Siegerland region (the source of the intersemiotic
translation) and an example of a photographic grid from the Fachwerkhäuser des Siegener
Industriesgebietes exhibition (the target-sign of the intersemiotic translation). (Sources: http://www.
freudenberg-stadt.de/ and http://westfalium.de/2015/10/30/mettingen-die-kunst-des-aufbewahrens/)
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the target as the interpretative effect of an intersemiotic translation (the target is a
cognitive system), and the second one highlights the production of an effect on a
cognitive system, that might be a reader of a book, a person that goes in an art
exhibition or even an audience composed of several people. By applying the models to
the translation from the architectural landscape of the Siegerland Region, Germany (as
illustrated in Fig. 1(a)), to the exhibitions Fachwerkhäuser des Siegener Industries-
gebietes (as illustrated in Fig. 1(b)), we derive the following models:

According to this model, we have the source (the tridimensional spatial configu-
ration of the areas with framework houses in the Siegerland region) as the sign of the
relation, the target (the photographic exhibitions) as the interpretant, and the object of
the source as the object of the semiosis. The consequence of approaching the source as
the sign instead of as the object, is to stress that the same source has the capacity of
determining several different semiotic objects. In this case, we have the architectural
pattern revealed by source as the source’s object, that produced the exhibition as its
interpretant in an intersemiotic translation.

As the second model shows, the source of the intersemiotic translation (the tridi-
mensional spatial configuration of the areas with framework houses in the Siegerland
region) is behaving as the object, the target (the photographic exhibitions) as the sign,
and the effect that the sign might produce in a potential cognitive system as the
interpretant. This model stresses the production of an effect on a cognitive system, and
the consequence of it is the creation or revealing of new and/or surprising information
that would lead even to the accomplishment of more intersemiotic translation processes
or similar processes of aesthetic critic and creation. According to our example, the
second model is in dialogue with the affordances and procedures adapted from the
Becher’s works into the aesthetic principles of the, for example, so called Düsseldorf
School of Photography (where the Becher’s used to lecture), composed by artists such
as Andreas Gursky, Candida Höffer, Thomas Ruff, Thomas Struth and Axel Hütte.

Fig. 2. The intersemiotic translation of the Fachwerkhäuser des Siegener Industriesgebietes
applied to the first model.
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4 Conclusion

Intersemiotic translation iconically replicates semiotic experimental modifications regu-
lated by rules to observe how another sign system produces analogous effects. The
operational criterion of iconicity connects discovery to the manipulation of diagrams as a
process of translation in which the physicality of the source- and target-signs has the
ontology of a relation. What is translated by the target is a system of rules and regula-
tions. In this sense, the target reveals a multilevel system of constraints that is analo-
gously observable in the source - in the case of the Fachwerkhäuser des Siegener
Industriesgebietes, this multilevel system of constraints is a set of architectural-
topological properties, that is analogously observable in the tridimensional spatial con-
figuration of the areas with framework houses in the Siegerland region.
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