
Chapter 5
Functional Lifting for Variational
Problems with Higher-Order
Regularization

Benedikt Loewenhauser and Jan Lellmann

Abstract Variational approaches are an established paradigm in the field of image
processing. The non-convexity of the functional can be addressed by functional
lifting and convex relaxation techniques, which aim to solve a convex approximation
of the original energy on a larger space. However, so far these approaches have been
limited to first-order, gradient-based regularizers such as the total variation. In this
work, we propose a way to extend functional lifting to a second-order regularizer
derived from the Laplacian. We prove that it can be represented efficiently and thus
allows numerical optimization. We experimentally demonstrate the usefulness on a
synthetic convex denoising problem and on synthetic as well as real-world image
registration problems.

Introduction and Related Work

In this work, we consider variational energy minimization problems of the form

inf
u:Ω→Γ

∫
Ω

ρ(x, u(x)) dx + λS(u), (5.1)

for estimating some unknown data u defined on an open, bounded, connected—
usually rectangular—image domain Ω ⊆ R

d with values in Γ ⊆ R
n. The data

term in (5.1) is of integral form, with the integrand ρ(x, u(x)) typically depending
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on some noisy, corrupted measurements. We are particularly interested in the case
where ρ is non-convex in u(x).

The regularizer S, weighted by a parameter λ > 0, encodes prior knowledge in
order to account for randomness and is often used to resolve ambiguities and render
the problem well-posed.

A classical convex example is the Rudin-Osher-Fatemi model with

ρ(x, u(x)) := 1

2
(u(x) − g(x))2 and S(u) := TV(u), (5.2)

which can be used to remove noise from a given image g : Ω → Γ while preserving
discontinuities [35]. The total variation TV(u) is defined as the integral

TV(u) :=
∫

Ω

d‖Du‖, (5.3)

where the vector-valued Radon measure Du is used to represent the distributional
derivative of u in order to allow for discontinuities [1, 41]. For (weakly) differen-
tiable u, the total variation assumes the simpler form

TV(u) =
∫

Ω

‖∇u(x)‖2dx. (5.4)

As we will be mainly focused on the discretized setting, we will restrict ourselves
to the regular case and use the more suggestive notation (5.4).

In the ROF model, as ρ is convex, computing a global minimizer of (5.1)
numerically is feasible even for large problems [4]. However, in many applications,
one cannot assume convexity. As a prime example, consider the problem of image
registration [24], also sometimes referred to as large-displacement optical flow: one
starts with two images R, T : Ω → R and aims to find a deformation, also called
displacement, u : Ω → R

d which is “sufficiently regular” and aligns R and T in
the sense that

R(x) ≈ T (x + u(x)) (5.5)

for all x ∈ Ω . A suitable energy is

1

2

∫
Ω

(R(x) − T (x + u(x))2dx + λS(u). (5.6)

This data term is also referred to as sum-of-squares distance (SSD) [25].
Numerically minimizing (5.6) is a challenging problem: not only is the data term

generally non-convex, the degree of non-convexity is also completely determined
by the data R and T , which are generally noisy and result in an energy landscape
with many local minima.
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Typical methods for minimizing (5.6) therefore rely on local solvers such as
gradient-based and (Quasi-)Newton methods; see [30] for an algorithmic overview.
In the context of optical flow [16], the classical, and still most common, method
is to linearize T around a current estimate, which renders the problem convex.
These approaches suffer from the typical issue of local non-convex optimization:
the algorithm can get stuck in local minima and requires a good initial estimate.
Much work has been dedicated to finding such a starting point, such as “warping”
and coarse-to-fine strategies [3].

Non-convexity also appears in much simpler settings, such as q-(pseudo-)norm
denoising with energies of the form

∫
Ω

|u(x) − g(x)|qdx + λS(u), (5.7)

with q < 1. This choice of q makes the method more robust against outliers in
the data g, as the influence of outliers diminishes as q → 0. Choosing q < 1
also encourages the sparsity of the argument more than convex variants with q ≥
1; this is a particularly useful feature in the context of sparse representation [11].
See also [29] for an extensive analysis of non-convex regularization. However, it
again renders the data term non-smooth and non-convex. A recent development is
to modify methods for non-smooth convex optimization to the non-convex setting
[26, 27], however these are again local and convergence results are currently very
limited.

Computational and algorithmic advances have recently made another strategy
viable: Instead of solving the non-convex problem directly, one aims to approximate
it by a—usually much larger—convex one, which can be solved to a global optimum.
In order to approximate the original problem well, one relies on functional lifting,
i.e., embedding the original problem into a much larger space: Instead of solving

inf
u:Ω→Γ

f (u), (5.8)

one solves the lifted problem

inf
ū:Ω→P(Γ )

f̄ (ū), (5.9)

whereP(Γ ) is the set of probability measures over the range Γ , and f̄ is a suitable
extension of f on this larger function space in the following sense: with each
u : Ω → Γ , one can associate a function ū : Ω → P(Γ ) which is a Dirac
measure at every point, ū(x) := δu(x), and require that f̄ (ū) = f (u) for all u in
the original space. On the other hand, if the solution of (5.9) is a Dirac measure
δu(x) at every point and f̄ does not introduce artificial minimizers, then u will be a
solution of the original problem (5.8), as each element of the feasible set of (5.8)
has a corresponding element in the feasible set of (5.9).
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This leaves the question of how to define f̄ on arguments ū that are not
Dirac measures, but rather mixtures or even diffuse measures. There is a series of
publications discussing different strategies for deriving “good” liftings, starting with
image segmentation [20, 32, 38, 39], general convex first-order regularization [33]
as a functional-analytic formulation of the classical paper [17], recently advancing
the framework to manifold-valued problems [21] and more accurate discretizations
[18, 28, 40].

However, all these works assume that the regularizer depends only on the first-
order derivative ∇u or its distributional counterpart. For natural images, such first-
order regularization is often sub-optimal, as it penalizes linear parts and, in the case
of TV, prefers -wise constant solutions.

For natural images, regularizers that use second- and higher-order derivatives
have been found to be muchmore suitable [2, 7, 22, 23, 31, 36]. Therefore one would
like to use these more advanced regularizers in the functional lifting framework.
However, so far there has been little progress in this direction. The reason is that the
space of probability measuresP(Γ ) is usually discretized as a discrete probability
measure on � chosen points in the range Γ . If one follows the same strategy as for
lifting TV, one ends up with a large number of constraints on the dual variables,
which is at least cubic with respect to �. This requires to choose � very small,
which corresponds to a very rough discretization of the range Γ of u and brings
the accuracy below acceptable thresholds.

Contributions

In this work, we propose a method for approximating energies of the form (5.1)
using functional lifting and convex relaxation, where ρ is a general non-convex data
term and the regularizer S incorporates second-order information:

• We investigate the non-smooth “Absolute Laplacian” regularizer, which incor-
porates second-order derivatives and coincides with TV2 on one-dimensional
domains (section “Lifting for Absolute Laplacian Regularization”).

• After reviewing mathematical prerequisites (section “Notation and Mathematical
Preliminaries”) and the discretized version of the problem, we discuss where
the usual strategy for computing a convex extension of the regularizer fails for
more involved regularizers (section “Approximate Relaxation of the Absolute
Laplacian”).

We prove that by introducing an approximation step, the number of required
constraints can be reduced from cubic (�3) to linear (�) growth in the one-
dimensional case (Theorem 5.1). We propose an extension to the case d ≥
2, which—although currently without theoretical guarantees—has been very
successful in all of our experiments.

• In order to show that a non-convex data term combined with higher-order
regularization has practical benefits, we illustrate the method on a synthetical
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q-pseudo-norm denoising example as in (5.7) with second-order regularization
(section “Non-convex Denoising with Second-Order Regularity”).

• We demonstrate the applicability to the non-convex problem of image registra-
tion as in (5.6) (section “Image Registration Using the Absolute Laplacian”).

We conclude with an outlook and notes on further open questions (section “Conclu-
sion and Outlook”).

Lifting for Absolute Laplacian Regularization

In the following, we will consider a special case of second-order regularization: For
u = (u1, . . . , un) : Ω → R

n, we define the absolute Laplacian regularizer

SAL(u) :=
∫

Ω

‖Δu(x)‖1 dx. (5.10)

By convention the Laplacian Δu := (Δu1, . . . ,Δun)
	 is vector-valued for n > 1.

Similar to the total variation, SAL can be extended to functionswith distributional
Laplacians as well using a dual formulation; it can also be viewed as the set of
functions with a gradient of bounded deformation [37]. Again we will focus on the
discretized energy and therefore use the simplified notation (5.10).

The absolute Laplacian regularizer (5.10) has some drawbacks:most importantly,
it is not isotropic in the sense that SAL(u) = SAL(Ru) for some rotation matrix
R ∈ R

n×n, and it has a large kernel that includes all harmonic functions. The latter
issue was also discussed in detail in [14] for quadratic Laplacian regularization.

It is tempting to substitute a full Hessian regularization such as [9, 15, 23]

∫
Ω

(
n∑

i=1

‖∇2ui(x)‖22
) 1

2

dx, (5.11)

however this couples all components of u, which invalidates the argument used in
the proof of Theorem 5.1 below. As of now, we have not found a way for efficiently
computing a convex relaxation in the full Hessian-regularized case.

In contrast, the absolute Laplacian (5.10) decouples in the components ui .
Moreover, in the one-dimensional scalar case with d = 1 and n = 1, it is identical
to the second-order total variation [9],

SAL(u) =
∫

Ω

|u′′(x)| dx (5.12)

or its distributional equivalent.
The absolute Laplacian is motivated by a regularizer that is—in a slightly loose

interpretation of the term—known as “curvature” regularization in the medical
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image registration community [10] and penalizes the squared Laplacians ‖Δu(x)‖22
instead of ‖Δu(x)‖1. However, as we will see in the next sections, the 1-
homogeneous nature of SAL is crucial in order to accurately lift the regularizer.

Notation and Mathematical Preliminaries

In the following, we detail the discretized lifting approach. We follow the notation
in [28]. In order to discretize the probability measures P(Γ ), we choose an n-
dimensional regular grid of points {t1, . . . , t�} ⊆ Γ , which are referred to as labels.
The number of labels in each dimension of the range Γ is denoted by lk, k =
1, . . . , n, and the grid spacing h is assumed to be uniform and constant.

The spaceP(Γ ) is discretized as the unit simplex in R
�,

Δ� := {p̄ ∈ R
�|p̄ ≥ 0,

�∑
i=1

p̄i = 1}. (5.13)

In a slight abuse of notation, we will from now on denote by ū a function mapping
into the set of discretized probability measures, i.e., ū : Ω → Δ�. The i-th unit
vector ei ∈ Δ�, i ∈ {1, . . . , �}, is associated with the Dirac measure δti at label ti .
Rather than associating a general vector ū(x) ∈ Δ� with a weighted sum of Dirac
measures as is commonly done, we assign to each vector a single Dirac measure
δu(x), where u(x) ∈ Γ is obtained by linear weighting of the labels:

u(x) =
�∑

i=1

ūi (x)ti . (5.14)

Whenever (5.14) holds, we refer to ū(x) ∈ R
� as a lifted representation of u(x) ∈ Γ .

A function ū : Ω → Δ� is called a lifted representation of the function u : Ω → Γ

if (5.14) holds point-wise for all x ∈ Ω .

Approximate Relaxation of the Absolute Laplacian

In order to illustrate the basic process of constructing an energy function for the
lifted representation, first consider the data term in integral form:

F(u) :=
∫

Ω

ρ(x, u(x)) dx. (5.15)
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We discretizeP(Γ ) as in the previous section, and seek a suitable convex extension
of F ,

F̄ (ū) :=
∫

Ω

ρ̄(x, ū(x)) dx, (5.16)

to all ū : Ω → Δ�. A classical way [6] is to find the largest convex ρ̄ : Ω×Δ� → R

such that

ρ̄(x, ei) = ρ(x, ti ), i = 1, . . . , �. (5.17)

In order to do so for some fixed x, one first defines a function

φ(p) :=
{

ρ(x, ti), if p = ei,

+∞, otherwise,
(5.18)

and sets ρ̄(x, p) := φ∗∗(p), where φ∗∗ is the Legendre-Fenchel biconjugate [34].
More precisely,

φ∗(f ) := sup
p

{〈p, f 〉 − φ(p)} = max
i∈{1,...,�}{〈ei , f 〉 − ρ(x, ti)}, (5.19)

φ∗∗(p) := sup
f

{〈p, f 〉 − φ∗(f )}. (5.20)

As can be seen from (5.19), even for integrands ρ that depend only on a single value
u(x), the conjugate is generally composed of � pieces. Using common first-order
solvers, this incurs a cost of � dual or auxiliary variables per point.

For the regularizer, this issue is much worse: Assume Ω ⊆ R, then the Laplacian
of u at a point x is simply the second derivative and commonly discretized as

u′′(x) ≈ (u(x − η) − 2u(x) + u(x + η))/η2, (5.21)

which depends on three different values of u. A finite difference-based second-order
regularizer will therefore be of the form

∫
Ω

ρ(u(x − η), u(x), u(x + η)) dx, (5.22)

which results in three running indices in (5.19) and thus �3 terms in the maximum.
Even for a very moderate choice of � = 10, this results in 1000 additional variables
per point, which is impractical.

In this section, we therefore consider an approximation of this process for the
special case of the absolute Laplacian regularizer (5.10), which only requires linear
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complexity. We derive the model for the one-dimensional case d = 1 and n = 1,

∫
Ω

|u′′(x)|dx, (5.23)

and subsequently discuss how to generalize it to n-dimensional image domains and
vector-valued u.

The first step is to separate computation of the second derivatives from the lifting
process, i.e., we also apply the derivative operator to the lifted representation ū and
seek a lifted regularizer

∫
Ω

ρ̄(ū′′(x))dx ≈
∫

Ω

ρ̄
(
(ū(x + η) − 2ū(x) + ū(x − η)) /η2

)
dx, (5.24)

where x ± η are the neighboring points of x. For simplicity, we assume η = 1.
We apply the same process as in (5.18) to ρ(z) = |z| and set

φ(p) =
{

|μ| · ∣∣ti1 − 2ti0 + ti2

∣∣ , if p = μ · (ei1 − 2ei0 + ei2),

+∞, otherwise,
(5.25)

where 1 ≤ i0, i1, i2 ≤ �. The free variable μ ∈ R is not required, but ensures that φ
is positively homogeneous. This implies that the conjugateφ is an indicator function
of some set, which simplifies the later optimization. Taking the convex conjugate,
we obtain

φ∗(f ) = δK1D(f ) :=
{
0, f ∈ K1D,

+∞, otherwise,
(5.26)

with the set

K1D :=
⋂

1≤i0,i1,i2≤�

{
f ∈ R

� : fi1 − 2fi0 + fi2 ≤ h |i1 − 2i0 + i2|
}
. (5.27)

This is a straightforward computation following from the definition of the convex
conjugate and making use of the 1-homogeneity of φ, and using the assumption that
the labels ti are uniformly spaced with distance h. The above formulation consists
of �3 constraints, which would render the problem numerically intractable except
for very small �.

A main contribution of this work is the following theorem, which shows that the
number of constraints can be reduced to linear order.
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Theorem 5.1 The set K1D in (5.27) with �3 linear constraints can be equivalently
represented by � linear constraints:

K1D = {
f ∈ R

� : f2 − f1 ≤ h, f� − f�−1 ≥ −h
} ∩

⋂
2≤i≤�−1

{
f ∈ R

� : fi−1 − 2fi + fi+1 ≤ 0
}
. (5.28)

Proof Denoting the right-hand side in (5.28) by Kred
1D , and using the definition of

K1D in (5.27), we have to show that K1D = Kred
1D .

K1D ⊆ Kred
1D

Assume f ∈ K1D as in (5.27), i.e., fi1 − 2fi0 + fi2 ≤ h|i1 − 2i0 + i2| holds
for all triples i0, i1, i2 ∈ {1, . . . , �}. Choose i1 = i2 = 2 and i0 = 1, then the
first inequality in (5.28) follows. Analogously we obtain the second inequality f� −
f�−1 ≥ −h by setting i1 = i2 = � − 1 and i0 = �. All other inequalities in (5.28)
follow by setting i1 = i − 1, i0 = i, i2 = i + 1, therefore f ∈ Kred

1D .

K1D ⊇ Kred
1D

Suppose f ∈ Kred
1D , i.e., the inequalities in (5.28) hold. We define the vector

a ∈ R
�−1, ai := fi+1 − fi as the difference between two consecutive components

of f . Using this notation, we reformulate the constraints (5.28) in terms of a:

a1 ≤ h, (5.29)

a�−1 ≥ −h, (5.30)

ai−1 ≥ ai, ∀i ∈ {2, . . . , � − 1}. (5.31)

Thus the components of ai form a finite, monotonously non-increasing sequence
that is absolutely bounded by h, i.e., a ∈ S := {x ∈ [−h,+h]�−1 : xi ≥ xi+1}.

If i0 = i1 = i2, the inequality in (5.27) holds trivially. Otherwise, if two of the
indices agree, then the inequality in (5.27) takes the form

fj − fk ≤ h|j − k|. (5.32)

Assuming without loss of generality that j > k, this inequality follows from

fj − fk = ak + . . . + aj−1 ≤ |ak| + . . . + |aj−1| ≤ h|j − k| (5.33)

due to the observation that all ai are bounded by ±h.
We are left with the last case of distinct i0, i1, i2. Without loss of generality

assume i1 > i2, otherwise we swap the symbols.
As all inequalities are invariant with respect to the addition of a constant to f , it

suffices to prove the claim for all f with f1 fixed to some constant. Therefore we
can assume f1 = 0. Under this assumption, the linear map between vectors f ∈ R

�
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in Kred
1D and vectors a ∈ R

�−1 satisfying (5.29)–(5.31) is bijective. As the vertices
of the latter set consist of the vectors of the form (h, . . . , h,−h, . . . ,−h), from
bijectivity we deduce that the vertices of the set Kred

1D ∩{f |f1 = 0} are the elements
satisfying the equality |fi+1 − fi | = h and the inequality fi−1 − 2fi + fi+1 ≤ 0.

Showing that all f satisfying (5.28) are contained in the set in (5.27) is equivalent
to showing

max
f ∈Kred

1D ∩{f |f1=0}
{fi1 − 2fi0 + fi2 } ≤ h|i1 − 2i0 + i2|. (5.34)

As the maximum problem is a linear program, it assumes its maximum on the set of
vertices of Kred

1D ∩ {f |f1 = 0}. Therefore we only have to show that

fi1 − 2fi0 + fi2 ≤ h|i1 − 2i0 + i2| (5.35)

for all f in the finite set of vertices, i.e., satisfying |fi+1−fi | = h and the inequality
fi+1 − 2fi + fi−1 ≤ 0 (and still f1 = 0). This can be argued case by case:

i0 < i2 < i1
As the left-hand side in (5.35) can be written as (fi1 − fi0) + (fi2 − fi0) and

due the observation (5.33), the maximum is assumed on the vertex f satisfying
fi+1 = fi + h for all i, with maximum value

fi1 − 2fi0 + fi2 = h(i1 − i0) + h(i2 − i0) = h(i1 − 2i0 + i2) = h|i1 − 2i0 + i2|,
(5.36)

which shows that the inequality in (5.27) holds for this case.

i2 < i0 < i1
In this case the maximum is assumed if either fi+1 = fi +h or fi+1 = fi −h

for all i, depending on which of i2 − i0 and i0 − i1 is larger. Therefore

fi1 −2fi0 +fi2 ≤ max{±(h(i0− i2)−h(i1 − i0))} = h|i1−2i0+ i2|. (5.37)

i2 < i1 < i0
Again with the observation (5.33), we see that in this case the maximum is

attained for fi+1 = fi − h for all i, in which case

fi1 −2fi0 +fi2 = −(fi0 −fi1)−(fi0 −fi2) = h(−i2+2i0−i1) = h|i1−2i0+i2|.
(5.38)

This shows that (5.35) holds for all vertices in the set Kred
1D ∩ {f |f1 = 0}, and

therefore for all points, which concludes the proof of the remaining inclusion
Kred

1D ⊆ K1D . ��
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Interestingly, in the classical convex relaxation for the (first-order) total variation
used in [19, 33], the dual constraint set is of the form

KTV,1D =
⋂

1≤i≤�−1

{
f ∈ R

� : |fi − fi+1| ≤ h
}
. (5.39)

As the second intersection in (5.28) enforces fi+1 − fi ≤ fi − fi−1, we obtain

K1D = KTV,1D ∩
⋂

2≤i≤�−1

{
f ∈ R

� : fi−1 − 2fi + fi+1 ≤ 0
}
. (5.40)

Thus, when moving from first- to second-order regularization in the proposed way,
the only addition is an extra non-positivity constraint on the second derivative of the
dual variable f .

So far we have only considered the case of a one-dimensional domain Ω . In
order to generalize the construction in (5.25) to d > 1 dimensions, we replace the
one-dimensional three-point stencil by the correspondingLaplacian stencil in higher
dimensions:

φ(p) =
⎧⎨
⎩

|μ| ·
∣∣∣∑d

j=1(i1,j − 2i0 + i2,j )

∣∣∣ , if p = μ · ∑d
j=1(ei1,j − 2ei0 + ei2,j ),

+∞, otherwise,
(5.41)

where i1,j and i2,j are the indices of the neighboring points of i0 in the j -th spatial
direction. The convex conjugate can be computed in a similar fashion as in the one-
dimensional case:

φ∗(f ) = δK(f ) (5.42)

with the set

K :=
⋂

1≤i0,i1,1,i2,1,...≤�

{
f ∈ R

� :
d∑

j=1

(fi1,j − 2fi0 + fi2,j ) ≤ h

∣∣∣∣∣
d∑

k=1

(i1,j − 2i0 + i2,j )

∣∣∣∣∣
}
.

(5.43)

Taken all together, the lifted absolute Laplacian regularizer for scalar-valued images
in a d-dimensional image domain becomes

S̄AL,s(ū) :=
∫

Ω

sup
f ∈K

〈Δū(x), f 〉 dx. (5.44)

In order to approximate the absolute Laplacian for lifted vector-valued func-
tions u = (u1, . . . , un), we apply (5.44) to the marginal distributions ū(k)(x) :=
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Πkū(x) ∈ Δlk separately in each component k ∈ {1, . . . , n}, where

Πk := (1, . . . , 1)︸ ︷︷ ︸
l1·l2·...·lk−1ones

⊗ Idlk ⊗ (1, . . . , 1)︸ ︷︷ ︸
lk+1·lk+2·...·lnones

∈ R
lk×� (5.45)

computes the k-th marginal distribution by summing the entries of ū over all
dimensions of the range with the exception of the k-th dimension. As the absolute
Laplacian regularizer decouples in the components of u, it can be approximated by
summing the one-dimensional regularizer of the marginalized label distribution over
the label dimensions:

S̄AL(ū) :=
n∑

i=1

S̄AL,s(Πiū) =
n∑

i=1

∫
Ω

sup
f i∈Kli

〈ΔΠiū(x), f i(x)〉 dx. (5.46)

Here Kli ⊆ R
li denotes a set of the form (5.43) in li-dimensional space, which

accounts for the fact that there may be a different number of labels in each dimension
of the range.

After discretizing the image domain Ω ⊆ R
d on a d-dimensional Cartesian

grid Ω ′, the full discretized problem can be formulated in saddle point form:

inf
ū:Ω ′→Δ�

sup
f i :Ω ′→Kli

, i=1,...,n

∑
x∈Ω ′

ρ̄ (x, ū(x)) + λ
∑
x∈Ω ′

n∑
i=1

〈ΔΠiū(x), f i(x)〉.
(5.47)

This problem can be readily solved using any available primal-dual method for non-
smooth convex optimization.

We do not know of a result similar to Theorem 5.1 yet in order to reduce the
number of constraints for the sets Kli in a similar way as for K1D. Therefore, we
take a pragmatic approach: we approximate each of the sets Kli by the set K1D
in the corresponding dimension, which amounts to an outer approximation of Kli .
We can then apply Theorem 5.1 to solve the problem using the reduced number of
constraints.

Experimental Results

We evaluate the proposed strategy for higher-order relaxation of non-convex
problems on two applications. Firstly, we consider a non-convex denoising problem,
using the MATLAB extension CVX [12, 13] to solve the primal formulation of the
saddle-point problem (5.47) on an Intel Core i7-4500U CPU with 8 GB of RAM.
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Secondly, we examine a real-world image registration problem, using a CUDA
7.5.17 implementation1 of a first order primal-dual algorithm with diagonal precon-
ditioning [5] which runs on an Nvidia GeForce GTX 680 GPU with an Intel Core
i7 960 CPU and 24 Gb RAM. The implementation uses a more recent “sublabel-
accurate” approach for lifting the data term in order to reduce the required resolution
for the data term [18, 28].

Non-convex Denoising with Second-Order Regularity

In order to illustrate that non-convexity can be beneficial when combined with
second-order regularization, we consider the simple one-dimensional denoising
problem

inf
u:Ω→R

∫
Ω

|u(x) − g(x)|q dx + λ

∫
Ω

|u′′(x)|dx (5.48)

with Ω ⊆ R. For q = 1, one obtains a simple convex TV2 −L1 denoising model,
while for q < 1, the energy is generally non-convex.We used the proposed method
to approximate a global solution of (5.48).

The method was applied to a smooth input signal g distorted by heavy salt-
and-pepper noise, with 80% of the values randomly set to 0 or 1. The locations of
the outliers were unknown to the solver, and no additional preprocessing or outlier
masking was performed.

As can be seen from Figs. 5.1 and 5.2, combining higher-order regularization
with a non-convex data term allows to reconstruct the signal more faithfully. While
both approaches prefer piecewise linear results as expected from the function-space
formulation, in the convex approach with q = 1, input noise is carried over into the
output before the structure is fully visible.

While convex methods relying on L1 data terms are often—rightfully—referred
to as “robust” methods in comparison to methods using smooth or quadratic data
terms, the non-convex approach with q = 0.1 is even more robust against outliers
and returns a decent reconstruction for a range of λ on this challenging problem.
Run times were in the order of 0.3 s for a discretization of Ω using 120 grid points
and � = 63 labels.

1See [28] and http://github.com/tum-vision/prost for the most recent version.

http://github.com/tum-vision/prost
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Fig. 5.1 Classical convex second-order (TV2 −L1) denoising of a smooth signal corrupted by
80% blind salt-and-pepper noise using varying regularization strength λ. The result is piecewise
affine as expected from TV2 regularization. Starting from large λ with heavy over-regularization
and decreasing λ, noise is picked up early. There is no regimen where both noise is removed and
the signal reconstructed faithfully

Image Registration Using the Absolute Laplacian

For a more challenging application, we apply the method to the image registration
problem with SSD data term (5.6) and absolute Laplacian regularization.

Translation-Only Synthetic Image

We first apply the absolute Laplacian regularizer to a synthetic binary image
registration problem. The input reference image R is a binary 64 × 64 image of
two vertical boxes. The template image T is obtained by translating the input image
by 12 pixels (Fig. 5.3, first row). Thus the ground truth is a uniform translation by
12 pixels and constitutes a global minimizer, as it has vanishing data term and the
second-order regularizer does not penalize linear deformations. This configuration
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Fig. 5.2 Non-convex second-order (TV2 −Lq with q = 0.1) denoising of the signal in Fig. 5.1
using the proposed convex lifting and approximation with varying regularization strength λ. The
proposed approach allows to approximate globalminimizers of such higher-order regularized non-
convex models. The additional non-convexity achieves a better reconstruction of the signal (top
right) than in the convex case (Fig. 5.1) before giving in to noise (bottom left)

is challenging for methods based on local optimization, as there is a strong local
minimum. Furthermore, as the images contain large constant regions, the energy
landscape has extensive flat regions with zero gradient.

We compare our approach to a traditional curvature-regularized model solved
using a single-resolution local minimization method implemented in the MATLAB

extension FAIR [24, 25]. The regularization strength was manually set to λ = 10,
however a wide range of values for λ produced the same qualitative behavior. The
traditional approach leads to a solution that is not globally optimal (Fig. 5.3, second
row). Using our approach, we retrieve the globally optimal ground truth with � = 9
labels in the label space Γ = [−12, 12]2 and a run time of 85 s, without having to
resort to approaches such as coarse-to-fine or affine pre-registration for initialization
(Fig. 5.3, bottom row).
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Fig. 5.3 Application of the proposed lifting for absolute Laplacian regularization to a synthetic
image registration problem. A traditional curvature-regularized model solved using a local Gauss-
Newton method serves as a baseline. The input reference image R (top left) and template
image T (top right) differ by a ground truth translation of 12 pixels. The second and third row
show the final difference images 1

2 (R(x) − T (x + u(x)))2 (left) and obtained deformation u

visualized as a deformation grid (right). The classical local optimization method (second row)
converges to a local solution which is not globally optimal and yields a non-constant deformation
with a mean displacement of 2.3 pixels. Using the proposed functional lifting for absolute
Laplacian regularization (bottom row), the global optimum is retrieved accurately with an average
displacement of 12.0002 pixels
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Real-World Image Registration

As a real-world example, we employ the SSD energy with absolute Laplacian
regularization to solve the image registration problem on a pair of X-ray images,
and compare to the existing lifting approach [18] with total variation regularization.
The regularization strength was manually set to λ = 0.05. Run times were 933 s for
total variation, and 515 s for absolute Laplacian minimization.

As can be seen from the numerical results (Fig. 5.4), while the first-order total
variation regularization achieves a very good data fit, it results in a physically
implausible self-intersecting deformation grid (Fig. 5.4, second row). This behavior
can be partly attributed to the well-known fact that total variation promotes
piecewise constant solutions, also commonly referred to as stair-casing effect [8].
In the context of medical image registration, this is a highly undesired behavior, as
jumps in the deformation map u correspond to infinite stretch or compression and
often lead to self-intersections. In contrast, the proposed second-order regularizer
(Fig. 5.4, bottom row) maintains a physically meaningful deformation, while still
achieving an acceptable data fit.

Conclusion and Outlook

In this work, we have taken a first step towards extending the convex relaxation
and functional lifting framework to second-order regularization. We showed how
to solve the main issue of an exploding number of constraints for the absolute
Laplacian regularization.

Experiments on a denoising problem showed that the combination of higher-
order regularization and non-convex data terms can lead to better results than a
convex model, and allows to recover highly corrupted data in a piecewise linear
fashion. In the application of image registration, the absolute Laplacian faithfully
retrieves simple translations and leads to a more realistic deformation grid than total
variation regularization on a real-world problem.

While our relaxation allows to reduce the number of required constraints to linear
complexity, it is an approximation, rather than a “tight” relaxation in the sense of an
exact biconjugate, and the proof is still limited to one dimension. An open question
is whether one can find a similar compact representation for the tight relaxation in
more than one dimension.
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Fig. 5.4 Comparison between two global optimization methods for medical image registration:
classical first-order total variation regularization [18] and the proposed second-order lifting
approach. The input data consists of a pair of 128 × 128 grayscale X-ray images of two right
hands (top row). Both approaches are evaluated using � = 102 = 100 labels, Γ = [−12, 12]2,
Ω = [0, 128]2, and a regularization strength of λ = 0.05. The classical first-order total variation
regularization generates piecewise constant deformations and a physically implausible self-
intersecting deformation grid (second row). The second-order regularizer avoids discontinuities
and maintains a physically meaningful deformation grid (bottom row)
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Finally, in this work we have constrained ourselves to the discretized setting. A
functional-analytic discussion as well as an extension to the more recent manifold-
valued and sublabel-accurate relaxations remain subject of future work.
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