Chapter 1 )
Adaptive Regularization for Image Shethie
Reconstruction from Subsampled Data

Michael Hintermiiller, Andreas Langer, Carlos N. Rautenberg, and Tao Wu

Abstract Choices of regularization parameters are central to variational methods
for image restoration. In this paper, a spatially adaptive (or distributed) regulariza-
tion scheme is developed based on localized residuals, which properly balances the
regularization weight between regions containing image details and homogeneous
regions. Surrogate iterative methods are employed to handle given subsampled data
in transformed domains, such as Fourier or wavelet data. In this respect, this work
extends the spatially variant regularization technique previously established in Dong
et al. (J Math Imaging Vis 40:82—-104, 2011), which depends on the fact that the
given data are degraded images only. Numerical experiments for the reconstruction
from partial Fourier data and for wavelet inpainting prove the efficiency of the newly
proposed approach.

Introduction

Image restoration is one of the fundamental tasks in image processing. The quality
of the obtained reconstructions depends on several input factors: the quality of the
given data, the choice of the regularization term or prior, and the proper balance
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of data fidelity versus filtering, among others. The goal of the present paper is to
reconstruct an image, defined over the two-dimensional Lipschitz (image) domain
£2, from contaminated data f, defined over the data domain A. Given the original
image u : 2 — R, the data formation model is assumed to be

f=Ku+n, (1.1)

where K represents possibly subsampled data which results from a linear sampling
strategy and 7 is related to white Gaussian noise (with zero mean). As we later
describe, 1 is given by white Gaussian noise in the numerical tests, and in the
function space setting we assume it to be a zero mean L? function. A more precise
description of the data formation model is postponed until section “Problem Settings
and Notations”.

A popular approach to image restoration rests on variational methods, i.e., the
characterization of the reconstructed image u as the solution of a minimization
problem of the type

min - @ (u; f) + aR (), (1.2)

where @ (-; f) represents a data fidelity term, R(-) an appropriate filter or prior, and
a > 0 a regularization parameter which balances data fidelity and filtering. The
choice of @ is typically dictated by the type of noise contamination. As long as
Gaussian noise is concerned, following the maximum likelihood we choose

1
P; )= IKu = flz2ny

On the other hand, R encodes prior information on the underlying image. For the
sake of edge preservation, we choose

R(u) = |Du|($2), (1.3)

i.e., the total variation of a function u (see Eq.(1.5) below for its definition).
Then the resulting model (1.2) becomes the well-known Rudin-Osher-Fatemi
(ROF) model [31] which has been studied intensively in the literature; see, e.g.,
[5, 6, 8, 14,21, 24, 29, 32, 33] as well as the monograph [38] and many references
therein.

It is well known that the proper choice of « is delicate. A general guideline
is the following one: Large « favorably removes noise in homogeneous image
regions, but it also compromises image details in other regions; Small «, on the
other hand, might be advantageous in regions with image details, but it adversely
retains noise in homogeneous image regions. For an automated choice of « in (1.2)
several methods have been devised; see for example [10, 18, 20, 34, 40] and the
references therein, and see [22, 25] for the spatially distributed o methods. We note
that instead of considering (1.2) one may equivalently study A® (u; f) + R(u) with



1 Adaptive Regularization for Image Reconstruction from Subsampled Data 5

A = 1/a. Based on this view, in [2], a piecewise constant function A over the
image domain is considered: The partitioning of the imagine domain is done via
pre-segmentation and X is computed by an augmented-Lagrangian-type algorithm.
While still operating in a deterministic regime, [2] interestingly uses a spatially
variant (more precisely a piecewise constant) parameter function A.

Later it was noticed that stable choices of A (or respectively «) have to
incorporate statistical properties of the noise. In this vein, in [1, 15] automated
update rules for A based on statistics of local constraints were proposed. For
statistical multiscale methods we refer to [16, 17, 26]. A different approach has
been proposed in [35] for image denoising only, where non-local means [4] has
been used to create a non-local data fidelity term. While the methods in [1, 15, 23]
are highly competitive in practice, the adjustment of A requests the output of K
to be a deteriorated image which is again defined over £2. This, however, limits
the applicability of these approaches in situations where K involves transformation
of an image into a different type of data output space. Particular examples of such
transformations include wavelet or Fourier transforms. It is therefore the goal of this
paper to study the approach of [15] in the context of reconstructing from such non-
image data, possibly coupled with subsampling for the sake of fast data acquisition.

Here we also mention other spatially weighted total variation methods from the
existing literatures. Very often these methods, different from [15, 23] (and also
the present paper), weight the total variation locally by certain edge indicators. In
[9, 42, 43] the difference of the image curvature was used as an edge indicator,
while alternatively the (modified) difference of eigenvalues of the image Hessian
was considered by Yan et al. [41] and Ruan et al. [30]. Recently, the authors in
[27, 28] used similar edge indicators to weight the total variation anisotropically
under the framework of quasi-variational inequalities.

The rest of the paper is organized as follows. Section “Problem Settings
and Notations” describes in detail the problem settings and the notations. Our
adaptive regularization approach is presented in section “Adaptive Regularization
Approach”. Section “Numerical Experiments” concludes the paper with numerical
experiments on reconstruction of partial Fourier data and wavelet inpainting.

Problem Settings and Notations

In the data formation model (1.1), we shall consider the continuous linear operator
K as a composition of two linear operators, i.e., K = § o T. More precisely, T :
L2(.Q) — LZ(A) is a linear orthogonal transformation which preserves the inner
product, i.e., (u, v) 2oy = (Tu, Tv) 2.4 forany u, v € L?(£2). Typical examples
of T include Fourier and orthogonal wavelet transforms. Further, we denote the
subsampling domain by A, which is assumed to be a (measurable) subset of A of
finite positive measure, i.e., 0 < |A| < co. Such a A may arise in application
cases where there is no access to the complete measured data over A, but only to a
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reduced version of it. Define 1 ; as the characteristic function on /], i.e., 1; equals
1 on A and 0 elsewhere. Then the so-called subsampling operator S : L*(A) —
L?(A) is defined by (Sf)(y) = 1;(y)f(y) almost everywhere (a.e.) on A. It is
worth mentioning that S is an orthogonal projection which satisfies idempotency,
ie., 82 =S, and self-adjointness, i.e., S* = S, and that the range of S, denoted by
Ran S, is a closed subspace of LZ(A). In this setting, we consider the noise 7 as an
arbitrary oscillatory function in Ran S with

/ndy=0, and/|n|2dy=02|/i|, (1.4)
A A

for some o > 0. As a direct consequence, the data f according to (1.1) also lies in
Ran S.
Foru e Ll(.Q), the total variation term | Du|($2) in (1.3) is defined as follows:

|Dul(2) ::sup{/gu div pdx : p € CHR2:RY), |IpllL~g) < 1]. (1.5)

Here, Cé (£2; R?) denotes the set of all R?-valued continuously differentiable
functions on §2 with compact support.

Adaptive Regularization Approach

The focus of this paper is to reconstruct a high-quality image from subsampled data
in a non-image data domain using an adaptive regularization approach. The present
section is structured as follows. In section “ROF-Model and Surrogate Iteration”,
we introduce the surrogate iteration method for solving the ROF-model [31]. Then
in section “Hierarchical Spatially Adaptive Algorithm” we incorporate spatially
adaptive regularization into the surrogate iteration. We further accelerate the spatial
adaptive algorithm by hierarchical decomposition.

ROF-Model and Surrogate Iteration

Our variational paradigm is chosen to follow Rudin et al. [31], which allows
to preserve edges in images. Further, due to the properties of the noise term 7
in (1.4), the ROF-model restores the image by solving the following constrained
optimization problem:
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minimize (min) |Du|(§2) overu

subject to (s.t.) /AKudyzf/ifdy, (1.6)
/~IKu—f|2dy=02|/T|-
A

Usually (1.6) is addressed via the following unconstrained optimization problem:

A
min | Du|(2) + 2/_|Ku—f|2dy (1.7)
u A

for a given constant A > 0. Note that, since Ku — f € Ran S, the objective in (1.7)
remains unchanged if the integration in the second term of the objective is performed
over A rather than A. Assuming that K does not annihilate constant functions, one
can show that there exists a constant A > 0 such that the constrained problem (1.6)
is equivalent to the unconstrained problem (1.7); see [6].

Our purpose is to modify the objective in (1.7) in order to handle a spatially vari-
ant parameter A over the image domain §2 and the operator K: L2(2) — L%*(A).
Note that this can not be done directly by inserting A on the integral over Ain (1.7)
since we require A to be defined over £2. Hence, instead of tackling (1.7) directly we
introduce a so-called surrogate functional S [12]. In this vein, for givena € L?(£2),
S is defined as

A
S, @) :=|Dul(2) + (1K u = F1 gy + 8l = @l o) = IK = @)l22)

AS
=1Dul(2)+ " llu = fx @]} + P K, f,2),

2
(1.8)
with
1 * 2
frx(a):=a— SK (Ka— f) e L(£2),
where we assume § > 1. Since ||S*|| = |IS|| < 1 and |T*|| = ||IT]]| = 1, we
have |K|| < 1 < §. We note that here and below | - || denotes the operator
norm || - || ¢ 12y We also emphasize that ¢ is a function independent of u.

It is readily observed that minimization of S(u, a) over u is no longer affected
by the action of K. Rather, minimizing S(u, a) for fixed a resembles a typical
image denoising problem. In order to approach a solution of (1.7), we consider the
following iteration.
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Surrogate Iteration: Choose u® ¢ L2(.Q). Then compute fork =0, 1,2, ...

8
u**D = argmin | Du|(2) + 2/ Au — 1((k)|2dx- (1.9)
u 2,
with £ = fx @®).

It can be shown that the iteration (1.9) generates a sequence (u(k))keN which
converges to a minimizer of (1.7); see [12, 13]. Moreover, the minimization problem
in (1.9) is strictly convex and can be efficiently solved by standard algorithms such
as the primal-dual first-order algorithm [5], the split Bregman method [19], or the
primal-dual semismooth Newton algorithm [24].

For a constant A > 0, the above iteration can be formulated as a forward-
backward splitting algorithm: Let F(u) := |Du|(£2) and F>(u) := 3 fg |Ku —
f|?dx, and define the proximal operator

1
= i F —wl’dx ).
prox,, g, (u) := argmin,, ( 1(w) + 2y /Q lu — w| x)
Then, (1.9) is equivalent to
1
(k+1) _ kK k
u =Pproxi p, (u MVFz(u )) .

A different scenario is present if instead we consider a spatially adapted A as we do
next.

Hierarchical Spatially Adaptive Algorithm

The problem in (1.9) is related, via Lagrange multiplier theory, to the globally
constrained minimization problem

min |Du|(2) s.t. / lu— f0Pdx < A, (1.10)
u 2

where A > (is a constant depending on o and K ; see [6]. In order to enhance image
details while preserving homogeneous regions, we localize the constraint in (1.10),
which leads to the modified variational model:

min |Du|($2) s.t. .S (u) <A ae.inS2. (1.11)
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Here the local variance term .% (u) () := f_Q w(-, x)|u— fx () |2(x)dx is defined for
some given localization filter w. A popular choice for w, utilized in what follows,
is a window type filter. Thus the constraint in (1.11) with u = u**! reads

S () = / we, )|~ ® 4 ;K*(Ku(k) — A dx < A.
2
(1.12)

Given the convergence result, as k — oo, for scalar A alluded to in connection
with (1.9), one expects the term u® D — 4 ® (o vanish. This indicates that
fg w(-, x)| ; K*(Ku® —HPP(x)dx < Ais expected in the limit. This consideration
leads to the following pointwisely constrained optimization problem:

min |Du|(2) s.t. f w(-,x)‘;K*(Ku ) 2(x)dx <A ae.in.
u 2
(1.13)

Next we discuss the choice of A. In view of the (global) estimate for the
backprojected residual K*(Ku — f), i.e.,

IK* (Kt = P20, < IKFIPIKE = flI72, < 07 1AL

we thus choose

_o?4]
A= 52
In deriving the above inequglities, we have used the facts that |[K*|| = ||K]|| < 1
and [|K@ = f175 ) = o°|Al.

In a discrete setting, we now describe a strategy, based on a statistical local
variance estimator, to adapt the spatially variant regularization parameter A. The
idea behind considering a spatially varying A (instead of a constant one) is motivated
by the fact that the constraint in (1.13) is spatially dependent, in contrast to the one
in (1.10); see [15] for further discussion. For this purpose, consider a discrete image
u defined over the discrete 2D index set §2, (of cardinality |£2;]), whose nodes lie
on a regular grid of uniform mesh size & := /1/|§2;|€ N. The total variation of a
discrete image u is denoted by | Du|(£2;); see (1.15) below for a precise definition.
We also define the residual image associated with fg (-) by

r(u) = fxu) —u.
Concerning the filter w associated with . in (1.11), we exemplarily choose the
mean filter pertinent to a square window centered at x. For this reason and in our
discrete setting, we define the averaging window

o L ns i wo—1 w-—1 7
Qi,j'_ (l+ S,]+ t)'sﬁte - 2 ? 2 N ’
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where w > 1 is an odd integer representing the window size, and then compute the
estimated local variance at (i, j) € £2;, by

y‘”(u),-,j = 632 Z ‘r(u);’;‘z.

@ heey;

Given the reconstruction u,, associated with A, we use .* (u,,) to check whether A,,
should be updated or it already yields a successful reconstruction u,. In particular,
motivated by Dong et al. [15], we intend to increase A, at the pixels where the
corresponding local variance violates the upper estimate A. More specifically, we
utilize the following update rule:

Guiig ="y Y min {A, ((An);, i ullialles (7o n); 5/ - 1)) }
(. )ew;
(1.14)
Here

SO, j = {yw(u)i’j’ ifyw(.u)i’j s
A, otherwise,

% > 01is a prescribed upper bound, and || A, ||¢= is a scaling factor suggested in [15].
Two step-size parameters, ¢, > 1 and p, > 0, will allow a backtracking procedure
should %,,4+1 be overshot by (1.14), on which we refer to the HSA algorithm below
for a more detailed account.

We are now ready to present our (basic) spatially adaptive (SA) image recon-
struction algorithm.

SA Algorithm: Initialize ug € R A € Rf”, n := 1. Iterate as follows
until a stopping criterion is satisfied:

(k+1)

1) Set uflo) :=u,_1.Foreachk =0, 1,2, ..., compute u, according to

. Sh? 2
uf D =argmin [ Dul( @) + ) D7 Gy @ = £
(i, ))€s2

with f,,(k) = uflk) — é K*(K u,(,k) — f). Letu, be the outcome of this iteration.
2) Update A1 according to (1.14). Setn :=n + 1.
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Following [15] we further accelerate the SA algorithm by employing a hierar-
chical decomposition of the image into scales. This idea, introduced by Tadmor,
Nezzar and Vese in [36, 37], utilizes concepts from interpolation theory to represent
a noisy image as the sum of “atoms” u(), where every u() extracts features
at a scale finer than the one of the previous u(_1y. This method acts like an
iterative regularization scheme, i.e., up to some iteration number / the method yields
improvement on reconstruction results with a deterioration (due to noise influence
and ill-conditioning) beyond /.

Here we illustrate the basic workflow of hierarchical decomposition in a denois-
ing problem (i.e., where K equals the identity). Given the exponential scales
{;lko :1=0,1,2,...} with g € Rf” and ¢ > 1, the hierarchical decomposition
operates as follows:

1. Initialize uo € R by

, h? )
uo i=argmin [ Dul(2) + ) Y Godij |@— il
(@, 7)es2n

2. Forl =0,1,...,setAjy1 :=¢A;and v; ;= f — u;. Then compute

2

3

h2
d :=argn}lin|Du|(.Qh) + 5 Z as1)ij | = )i
@i, ))€s2n

and update u;y1 = u; + dj.

Now we incorporate such a hierarchical decomposition into the SA algorithm,
which we shall refer to as the hierarchical spatially adaptive (HSA) algorithm. We
note that all minimization (sub)problems in the HSA algorithm are solved by the
primal-dual Newton method in [24]. There, the original ROF-model is approximated
by a variational problem posed in H(} (£2) via adding an additional regularization
term ’2‘||Vu||iz(g), with 0 < pu <« 1/(esssup ), to the objective and assuming,
without loss of generality, homogeneous Dirichlet boundary conditions. In this case,
the (discrete) total variation is given by

Dul(2) =h Y (e = i+ g1 = i), (1.15)
(i,j)es2p

with u; ; = 0 whenever (i, j) ¢ $2,. We refer to [24] for a detailed account of this
algorithm.
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HSA Algorithm: Input parameters § > 1, w € 2N + 1. Initialize ug € Rk,
A€ Rf" (sufficiently small), o > 1, po > 0.

1) Set u(()o) :=ug. Foreachk =0, 1, 2, ..., kg, compute u(()kH) by
(k+1) . , sh? CNE
uf D =argmin [ Dul@) + ) Y Gy @ = £l

(i.j)es2n

with fo(k) = u(()k) - é K*(K u(()k) — f). Letu; be the outcome of this iteration,
andsetn := 1.

2) Setv, := f — Ku,—1 and d,(,O) :=0.Foreachk =0, 1,2,...,«,, compute
dr(lk+1) by

. 8h? 2
4 = argmin | Dul(@) + 5 Y Gadig | = £,
(i,))e

’

with fn(k) = d,gk) — é K*(K d,(lk) —vy,). Let d,, be the outcome of this iteration,
and update u,, := u,—1 + dy.
3) Evaluate the (normalized) data-fitting error

M R
oA

If6, > 1, thensetn :=n, & = &y—1, Pn ‘= Pn—1, and continue with step
4;
If 0.8 < 6, < 1, then return u,, A, and stop;
If 0, < 0.8, then set u,, := uz, Ay := Aj, &n := &/Cn—1> Pn ‘= Pn—1/2, and
continue with step 4.

4) Update A, according to formula (1.14). Set n := n + 1 and return to step
2.

We also remark that the initial A; € Rf" should be sufficiently small such that
the resulting normalized data-fitting error 8 is much larger than 1. Then the HSA
iterations are responsible for (monotonically) lifting up A, in a spatially adaptive
fashion as described earlier in this paper. Such a lifting is performed until the data-
fitting error || Ku, — f ||§2 /| An| approaches the underlying noise level 2. If the data-
fitting error drops too far below o2, then the algorithm may suffer from overfitting
the noisy data. In this scenario, we backtrack on X, through potential reduction of
¢n and py; see step 3 of the HSA algorithm.
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Numerical Experiments

In this section, we present numerical results of the newly proposed HSA algorithm
for two applications, namely reconstruction from partial Fourier data and wavelet
inpainting. All experiments reported here were performed under Matlab. The image
intensity is scaled to the interval [0, 1] in advance of our computation. For the
HSA algorithm, we always choose the following parameters: § = 1.2, ® = 11,
o = 2,0 = 1, X = 100, uop = K*f. In the primal-dual Newton algorithm
[24], we choose the H '-regularization parameter 4 = 10™%, the Huber smoothing
parameter y = 1073, and terminate the overall Newton iterations as soon as
the initial residual norm is reduced by a factor of 10~*. Besides, the maximum
iteration numbers {k,} for the surrogate iterations are adaptively chosen such that
I — dy ™2 < 1070/ 2.

The images restored by HSA are compared, both visually and quantitatively, with
the ones restored by the variational model in (1.7) with scalar-valued ). For quanti-
tative comparisons among restorations, we evaluate their peak signal-to-noise ratios
(PSNR) [3] and also the structural similarity measures (SSIM) [39]; see Table 1.1.
To optimize our choice for each scalar-valued X, we adopt a bisection procedure, up
to a relative error of 0.02, i.e., |)J‘Jrl — kK | < 0.02)%, to maximize the following
weighted sum of the PSNR- and SSIM-values of the resulting scalar-X restoration

Table 1.1 Comparisons with respect to PSNR and SSIM

Cameraman Knee

Fourier Scalar-valued A HSA Scalar-valued A HSA

o #rad’l PSNR SSIM  PSNR SSIM  PSNR SSIM  PSNR SSIM
0.05 75 26.7895 0.8051 26.9559 0.8124 30.4347 0.8247 30.5399 0.8290
0.05 90 27.5399 0.8215 27.5020 0.8262 30.8355 0.8337 30.9442 0.8389
0.05 105 28.1553 0.8307 28.1667 0.8346 31.1155 0.8402 31.3328 0.8478
0.1 75 249336 0.7576 25.1809 0.7639 28.2375 0.7570 28.4896 0.7639
0.1 90 25.2738 0.7666 25.7072 0.7775 28.4811 0.7627 28.7140 0.7721
0.1 105 25.6780 0.7740 26.2317 0.7843 28.5856 0.7662 28.8373 0.7745

Cameraman Barbara

Wavelet Scalar-valued A HSA Scalar-valued A HSA

o S.I. PSNR SSIM  PSNR SSIM  PSNR SSIM  PSNR SSIM
0.05 2.5% 24.0319 0.7388 24.5702 0.7436 229489 0.6174 24.4184 0.6777
0.05 5% 26.5279 0.7969 27.1539 0.7964 24.6622 0.6922 26.1698 0.7438
0.05 10%  28.6248 0.8374 29.5812 0.8351 26.5317 0.7645 27.8187 0.8083
0.1 25% 23.7416 0.7301 24.1510 0.7326 22.7299 0.6067 24.0291 0.6605
0.1 5% 25.7625 0.7786 26.5195 0.7791 24.1307 0.6733 252635 0.7095
0.1 10%  27.3033 0.8136 27.5671 0.7937 254469 0.7410 26.3245 0.7591

Bold values in the table correspond to the best in their respective classes



14 M. Hintermiiller et al.

Fig. 1.1 Test images (from left to right): “Cameraman”, “Knee”, and “Barbara”

PSNR(%) N SSIM(%)
max{PSNR(X) : » € I} max{SSIM(X) : % € I}

over the interval / = [102, 10°]. The maximal PSNR and SSIM in the above
formula are pre-computed up to a relative error of 0.001. The original images used
for our numerical tests are given in Fig. 1.1.

Reconstruction of Partial Fourier Data

In magnetic resonance imaging, one aims to reconstruct an image which is
only sampled by partial Fourier data and additionally distorted by additive white
Gaussian noise of zero mean and standard deviation o. Here the data-formation
operator is given by K = So T, where T is a 2D (discrete) Fourier transform and S
represents a downsampling of Fourier data. In particular, we consider S which picks
Fourier data along radial lines centered at zero frequency.

Our experiments are performed for the test images “Cameraman” and “Knee”
with o € {0.05, 0.1} and #radials € {75, 90, 105} respectively. In these experiments,
we have always initialized HSA with A; = 100. The resulting restorations via
the total-variation method with scalar-valued A and via our HSA method are both
displayed in Figs. 1.2, 1.3 and 1.4. We also show the ultimate spatially adapted
A from HSA in each test run, where the light regions in the A-plot correspond
to high values of A and vice versa. It is observed that the values of A in regions
containing detailed features (e.g. the camera and the tripod in “Cameraman”)
typically outweigh its values in more homogeneous regions (e.g. the background sky
in “Cameraman”). As a consequence, this favorably yields a sharper background-
versus-detail contrast in the restored images via HSA. In Fig. 1.3, we observe face
and camera of “Cameraman” reconstructions with a better performance of our HSA
method. According to the quantitative comparisons reported in Table 1.1, HSA
almost always outperforms scale-valued X in terms of PSNR and SSIM. As a side
remark, it is also observed that the spatially adapted A via HSA is able to capture
more features of the underlying image at a lower noise level (Fig. 1.4).
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c=0.05
90 radials 105 radials

75 radials

Restorations via HSA

Spatially variant A’s via HSA

c=0.1
75 radials 90 radials 105 radials

Spatially variant A.’s via HSA

Fig. 1.2 Reconstruction of partial Fourier data on “Cameraman”
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0=0.05
75 radials 90 radials 105 radials

Restorations via optimal scalar-valued A’s

Restorations via HSA

c=0.1
75 radials 90 radials 105 radials

Restorations via optimal scalar-valued A’s

Restorations via HSA

Fig. 1.3 Zoom in for reconstructions of partial Fourier data on “Cameraman”

To test the robustness of HSA, we perturb our choices of the window size w and
the initial choice of A in our experiments. In Fig. 1.5, we report the resulting PSNRs
and SSIMs of such sensitivity tests on the particular Fourier-Cameraman example
with o = 0.05 and #radials = 90. It is observed that HSA behaves relatively stable
with different choices of w. On the other hand, one should be cautioned that the
results of HSA deteriorate as the initial A is chosen too large. Nevertheless, among
all initial A’s smaller than a certain threshold (in this case 200), smaller choices do
not always claim advantages over larger ones.
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6 =0.05
75 radials 90 radials 105 radials

Restorations via HSA

Spatially variant A’s via HSA

c=0.1
75 radials 90 radials 105 radials

Restorations via optimal scalar-valued 4’s

\
\

Restorations via HSA

o & &

Spatially variant A’s via HSA

Fig. 1.4 Reconstruction of partial Fourier data on “Knee”
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Fig. 1.5 Sensitivity test: image = “Cameraman”, o = 0.05, #radials =90

Wavelet Inpainting

Wavelet inpainting is about restoring missing wavelet coefficients due to lossy
compression or error-prone data transmission; see, e.g., [7, 44]. Here we consider
the scenario where a test image is compressed by storing the largest Daubechies-
4 wavelet coefficients [11] in magnitude only up to a small sampling rate (s.r.),
namely s.r. € {2.5%, 5%, 10%}. The compressed wavelet coefficients are further
contaminated by additive white Gaussian noise of mean zero and standard deviation
o € {0.05,0.1}. For wavelet inpainting, we have initialized HSA with A; = 10.
The experiments are performed for the test images “Cameraman” and “Barbara”,
and the corresponding results, both restored images and the adapted A’s, are shown
in Figs. 1.6 and 1.7. A detailed view of the face region of “Barbara” is given in
Fig. 1.8, where the results are in favor of our HSA algorithm.

In the wavelet-Cameraman example, the results via scalar-valued A’s and HSA
are almost identical to human eyes. Even though, HSA always outperforms the
scale-valued A in terms of PSNR, while the SSIM-comparison is somewhat even; see
Table 1.1. Interestingly, the adapted A’s in this example exhibit patterns analogous
to the ones in the Fourier-Cameraman example.

Our HSA method gains more advantages when it is applied to the “Barbara”
image with a stronger cartoon-texture contrast than “Cameraman”. In Fig. 1.7, it is
witnessed that the restored images via scalar-valued A’s suffer from undesirable
staircase effects. In comparison, spatially adapted A’s yield significant improve-
ments on the restorations, even in the cases where the pattern of A is less transparent
due to lack of data or strong noise. In Table 1.1, the PSNR- and SSIM-comparisons
also dominantly favor the HSA method.
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o= 0.05
2.5% coeft. 5% coeft. 10% coeft.

Restorations via HSA

Spatially variant A’s via HSA

c=0.1
2.5% coeff. 5% coeft. 10% coeff.

Restorations via HSA

-~
:

Spatially variant A’s via HSA

Fig. 1.6 Wavelet inpainting on “Cameraman”
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c=0.05
2.5% coeff. 5% coeff. 10% coeff.

Restorations via HSA

Spatially variant A’s via HSA

c=0.1
2.5% coeff. 5% coeff. 10% coeff.

Restorations via HSA

Spatially variant A’s via HSA

Fig. 1.7 Wavelet inpainting on “Barbara”
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Restorations via HSA

Fig. 1.8 Zoomed view on wavelet inpainting on “Barbara”

Qualitative Relation to Other Spatially Distributed Parameter
Methods

A particular feature of the HSA algorithm is that it allows to assign a spatially
variant parameter A, on the image domain £2, associated to a data fidelity term that
is determined by an integral over A C A, a non-image domain. Such configuration
renders certain variational methods with spatially variant A’s not applicable: For
example, the SATV algorithm developed in [15] requires K to map into functions
over the image domain 2. This obstacle has been overcome in [22] and [25] where
the spatially variant parameter is not longer related to the data fidelity term, but
rather to the regularization functional. Specifically, a parameter « : £2 — R in the
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model
. 1 2
min | o(x)|Dul| + |Ku — f|~dy, (1.16)
u Jo 2 Ji

is automatically selected based on a bilevel formulation involving also localized
variance estimators.

For non-negative constants A and « in (1.7) and (1.16), respectively, it holds
true that if A = o~ solutions of the optimization problems are identical. In the
spatially variant case for A and «, the relationship between the parameters does
no longer hold exactly when automatically chosen via local variance estimates of
reconstructions, i.e., we only expect A(x) =~ (a(x))"! for x € £2. One specific
difference between the two approaches is related to the fact that A is only required
to be essentially bounded while (in the function space setting) o requires to have
higher regularity for the objective in (1.16) to be well-defined. The latter translates
into the need of having an additional regularization term for the smoothing of « in
the upper level objective. This has a clear consequence in differences for A and « for
the HSA algorithm and the bilevel method in [22] and [25], respectively: A seems
to be able to have more variability than « on £2. On the other hand, although XA and
« have, in general, high and low values on details, respectively, « seems to decrease
on edges more drastically, while A has slower transitions there. In particular, the
previous explains how the selection of « is a preferable choice over the one of A in
images with large homogeneous regions, sharp edges, and corners, and vice versa
for images with significant number of details on small regions and certain textures.
A quantitative analysis for such differences is beyond the scope of the paper, and an
active research direction.

In order to compare with the HSA method, we consider the spatially distributed
method described in [22] and [25], where « is chosen in (1.16) via a bilevel
formulation. We define K = S o T to collect Fourier coefficients along 120 radial
lines centered at zero frequency, and take data distorted by additive white Gaussian
noise of zero mean and standard deviation o = (.05. For the bilevel scheme, we
utilized the same configuration and parameters as in [25], where the local variance
bounds are chosen as in (#2); see [25] for all details. For the HSA algorithm, we use
the same setup as above in the reconstruction of partial Fourier data. When K maps
into functions over the image domain, it was observed that the bilevel formulation
provides, in general, reconstructions with better SSIM than the ones from the SATV
algorithm in [15]. However, the SATV performs better in terms of PSNR than the
bilevel scheme. This same behavior is observed between the HSA algorithm and
the bilevel one. Reconstructions for both methods are given in Fig. 1.9, and we
take zoom views of the two framed regions in the “Chest” image for further detail
comparison in Fig. 1.10. Finally, in Fig. 1.11, we observe the o parameter of the
bilevel scheme, and A~! where A is HSA parameter. As fine details are hard to
observe in the black and white images, we have included red colored plots of the
surfaces associated with both parameters with a specific light effect to show such
details.
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(a) (b) (©

Fig. 1.9 Fourier inpainting: “Chest”. (a) “Chest” image. (b) Bilevel restoration. PSNR: 28.8837—
SSIM:0.8406. (c) HSA restoration. PSNR:29.2488—SSIM:0.8282

Original Backprojection Bilevel HSA

Fig. 1.11 Fourier inpainting parameters. (a) « in bilevel. (b) 2~1in HSA
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Conclusion

In this work, it has been shown that spatially adapted data fidelity weights help
to improve the quality of restored images. The automated adjustment of the local
weights is developed based on the localized image residuals. Such a parameter
adjustment scheme can be further accelerated by employing hierarchical decompo-
sitions, which aim at decomposing an image into so-called atoms at different scales.
The framework of the paper is suitable for subsampled data in non-image domain, in
particular incomplete coefficients from orthogonal Fourier- and wavelet transforms
as illustrated in the numerical experiments.
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