
Teaching an Old Dog New Tricks

The Drudges of the Interactive Prover in Atelier B

Lilian Burdy and David Deharbe(B)

ClearSy Systems Engineering, 320, av Archimède – Les Pléiades III,
13857 Aix-en-Provence CEDEX 3, France

{lilian.burdy,david.deharbe}@clearsy.com

Abstract. This paper presents an evolution of an industrial proof
support framework that integrates state-of-the-art technologies without
compromising the existing tool qualification status. Third-party provers
produce proof rules that may be applied by the legacy system and veri-
fied using a certified approach. This approach has been implemented in
Atelier B, a formal-methods based IDE for the development of software
components and for the modeling of systems.

1 Introduction

The industrial applications of formal methods rely on the formal verification of
conditions, e.g., invariant preservation. In case the specification logic is undecid-
able, human interaction is required to discharge proof obligations. This is the
case of the B method and Event-B, two closely related formal methods, based
on a first-order language with integer arithmetics and set theory. So even though
automatic theorem provers are available, their application requires their users to
interact with proof assistants. Atelier B, an integrated development environment
for both the B method and Event-B, includes custom automatic and interactive
provers. Increasing the success rate of automatic provers and decreasing the
amount of user interaction are key to reducing the cost of formal methods and
increasing their application in the industry. This paper addresses the former
approach.

One main industrial application of formal methods in the industry is the
development of safety-critical, software-based, systems. Mostly, formal meth-
ods are used when mandated or recommended by an industrial standard (e.g.
EN50128 [3]). In that context, all the tool support must be qualified. Obtain-
ing such a qualification has a significant cost and then usually only applies to
a specific version of the tool. Atelier B has been qualified to formally develop
software components by large industrial partners in the railway industry. This
paper presents an extension to Atelier B that improves its support for interactive
proof without compromising the certification obtained by the existing code base.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Butler et al. (Eds.): ABZ 2018, LNCS 10817, pp. 415–419, 2018.
https://doi.org/10.1007/978-3-319-91271-4_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91271-4_33&domain=pdf


416 L. Burdy and D. Deharbe

2 Technical Background

Atelier B and Proof. In Atelier B, proof obligations (POs) are produced auto-
matically, two proof engines being available to check them. One solver, called pr,
is a conditional term rewrite engine written in a Prolog-like notation, called the
theory language, together with a default set of rules. Users may also write their
own rules, which need also be verified eventually. The second solver, called pp for
predicate prover, was developed to prove such rules and takes an (incomplete)
tableaux-based approach. Both have been certified1. For rules that pp cannot
handle, the certified verification procedure is to first prove the rule with a math-
ematical demonstration and then have a third-party independent expert validate
this demonstration. Note that pp is also available to solve proof obligations.

In interactive mode, the user is presented with a PO composed of a goal, local
hypotheses and global hypotheses. In the course of an interactive session, the
goal and the hypotheses evolve, new POs are created and the current PO may be
discharged. Examples of commands are: rewrite the goal using an equality from
the hypotheses; call a built-in expression simplifier; apply either pr or pp on the
current goal; instantiate a universally quantified hypothesis; apply a given rule
(or set of rules); case split on a condition. The execution of some commands
produce new PO, e.g., case splits and instantiations. A PO is discharged when a
so called terminal rule is applied. An example of terminal rule is: binhyp(a) =>
a or b. Here a and b are so-called jokers and stand for terms, => is a delimiter
in the rule between the conditions (to the left) and the conclusion (to the right).
Such a rule can be applied if the current PO goal matches a or b, i.e., it is a
disjunction, and the term matching a is found in the hypotheses (that is the
semantics of the binhyp operator).

Leveraging Automatic Provers in Interactive Proof Assistant. Since Atelier B has
been originally developed, mechanical theorem proving has seen a lot of progress
and powerful automatic provers are now available, such as SMT solvers [2,4].
The area of formal methods has also made efforts to use such tools to address its
own verification challenges (see, e.g. [5,6]). Our goal has been to take advantage
of some of these advances in Atelier B without compromising certification.

We follow the approach taken in the general purpose proof system Isabelle [7],
extended with “sledgehammer” [8], a command to invoke external solvers on the
current PO and, when successful, to reconstruct an Isabelle proof script from
their output. Our take on applying this approach in the legacy proof system of
Atelier B is an extension we named the drudges of the interactive prover.

3 The Drudges of the Interactive Prover: Principles

Even though the logic of POs in Atelier B is rich and undecidable, it is often
the case that, during the course of an interactive proof, proving the current goal
1 E.g., sanctioned for software development by RATP for line 14 (operated completely
automatically).



Teaching an Old Dog New Tricks 417

only requires arguments that may be cast in a decidable logic, such as proposi-
tional logic, equality and integer arithmetics. For such goals, the layered solving
architecture found in most SMT solvers is particularly fit. However this is not
how Atelier B solvers function, and they sometimes fail to prove automatically
POs that only require propositional reasoning or substitution of equals.

So our approach consists in applying SMT solvers to an abstraction of the
current goal, i.e., a simplified version where the set operators are uninterpreted
(i.e., their semantics is lost). Such simplified POs contain the declarations for
the symbols from the original PO, then a series of assertions. There is one such
assertion for each hypothesis (and so, all hypotheses are thus abstracted) and
one assertion with the negation of the goal. All these assertions are labeled. If
an SMT solver finds the simplified PO to be unsatisfiable, the original PO is
valid. Then, all we have to do is build a rule that can be applied by the solver of
Atelier B. This rule needs to be logically sound, applicable to the current PO,
and as general as possible.

To this end, the SMT solver is then queried to obtain an unsatisfiable subset
of the assertions, using the get-unsat-core functionality [2]. The solver then
returns the set of the labels of the assertions it used to conclude unsatisfiability.
Now all needs to be done is to build a rule from the logical formulas associated
with these labels. Assuming the solver is sound, such a rule is valid. Also, by con-
struction, it is applicable to the current PO. To make it more general, terms are
replaced with jokers. The issue here is where jokers are introduced. To illustrate
this point, consider the following PO:

{· · · ; 0 ≤ fn(s3); s1 = s2 ∨ s1 = s3; 0 ≤ fn(s2); · · · � fn(s1) ≤ fn(s2) + fn(s3)},
where the hypotheses are to the left of � and the goal is to the right. Only the
hypotheses returned by get-unsat-core are shown. Consider the proof rule,
built with these formulas:

binhyp(0<=fn(s3)) &
binhyp(s1 = s2 or s1 = s3) &
binhyp(0<=fn(s2)

=> fn(s1) <= fn(s2)+fn(s3)

This rule is sound but it only applies to POs where the goal and some hypotheses
are identical to those in the rule.

To gain generality, we can replace (sub)-terms with jokers, by recursing over
the structure of the given formulas, keeping the operators known to the SMT
solver, and by introducing a joker for each different sub-term. The result is the
following rule:

binhyp(0<=a) &
binhyp(b=c or b=d) &
binhyp(0<=e)

=> f <= e+a

However, the abstraction here is too coarse and the resulting rule is no longer
sound.



418 L. Burdy and D. Deharbe

However, when jokers are introduced one level deeper in the syntactic struc-
ture, the rule obtained is sound, applicable to the original PO, and as general
as possible given the initial problem.

binhyp(0 <= a(b)) &
binhyp(c=d or c=b) &
binhyp(0 <= a(d))

=> a(c) <= a(d)+a(b)

This discussion illustrates the main principles in the generation of proof rules.
Jokers are introduced at a given level, and if the rule is sound, the process stops,
otherwise it is repeated one level deeper. This process is guaranteed to end
at most when the level is the height of the original PO. The verification of the
soundness is carried out by the same SMT solver that was applied to the original
proof obligation.

4 The Drudges of the Interactive Prover: Application

The functionality is in release 4.5 of Atelier B. The user sets the preferences of the
interactive prover to create drudges. A drudge is an SMT solver with settings to
enable quantifiers and arithmetics reasoning. These settings guide the procedure
that simplifies the POs for the SMT solver; e.g., disabling quantifiers forces all
quantified sub-formulas to be abstracted.

The new functionality can be run in the interactive prover either with a com-
mand smt or with the click of a button. In case the interaction fails to prove
the PO, a message is printed to the console. Otherwise, the following steps take
place. First, a “most-general”, sound, proof rule is created as described above.
Second, the rule is added to the “pmm” file, a file containing the rules for the
current component, in a section named SMT Rules (actually, the rule is added
only if no other equivalent rule is already present). Third, a command to apply
the rules from SMT Rules is issued to the Atelier B solver. The current PO is then
proved. The interactive prover either loads the next proof obligation or signals
completion of the session. In practice, the smt command is successful as soon as
the proof only involves arithmetics, equalities and properties of Boolean opera-
tors. The pmm file of the component then contains all the rules that have been
created through this command, thus guaranteeing compliance with certification
requirements.

All the proof rules introduced in a development process should be verified.
This includes the rules created by drudges. For this activity, the pp prover is
applicable and practice shows that it is able to verify many such rules. For the
rest, a manual proof must be performed.

5 Conclusion and Future Work

We extend the proof assistant of Atelier B with a command to run SMT solvers
in a proof session. The main requirements to use a solver in our framework are



Teaching an Old Dog New Tricks 419

efficiency and a function returning the hypotheses used in a proof. This extension
then creates and applies automatically proof rules.

For certification, these rules need to be verified. The pp solver of Atelier B
is able to check only part of these rules. The remainder need to be verified and
validated manually. We envision the following alternatives: to put a bridle to
the function by only adding rules that are checked with pp; to develop a more
efficient rule checker; to translate the proofs generated by the SMT solvers into
a human-readable proof. Future work also includes: to evaluate axiomatizing
set operators for the SMT solvers, to experiment with SMT solvers handling
set operators (namely, CVC4 [1]), to use other classes of solvers (e.g., TPTP
provers).

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22110-1 14

2. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Technical
report, Department of Computer Science, The University of Iowa (2017)

3. CENELEC - EN 50128: Railway applications-communication, signaling and pro-
cessing systems-software for railway control and protection systems (2011)

4. Cok, D.R., Déharbe, D., Weber, T.: The 2014 SMT competition. J. Satisf. Boolean
Model. Comput. 9, 207–242 (2016)

5. Couchot, J., Déharbe, D., Giorgetti, A., Ranise, S.: Scalable automated proving and
debugging of set-based specifications. J. Braz. Comput. Soc. 9(2), 17–36 (2004)

6. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Integrating SMT solvers in Rodin.
Sci. Comput. Program. 94, 130–143 (2014)

7. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-
Order Logic, vol. 2283. Springer Science & Business Media, Berlin (2002). https://
doi.org/10.1007/3-540-45949-9

8. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer,
a practical link between automatic and interactive theorem provers. In: PAAR@
IJCAR, pp. 1–10 (2010)

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9

	Teaching an Old Dog New Tricks
	1 Introduction
	2 Technical Background
	3 The Drudges of the Interactive Prover: Principles
	4 The Drudges of the Interactive Prover: Application
	5 Conclusion and Future Work
	References




