®

Check for
updates

An Automation-Friendly Set Theory
for the B Method

Guillaume Bury?, Simon Cruanes?, David Delahaye?®)
and Pierre-Louis Euvrard?®

1 LSV, ENS Paris-Saclay, Inria, Cachan, France
Guillaume.Bury@inria.fr
2 Aesthetic Integration, Austin, TX, USA
simon@aestheticintegration.com
3 LIRMM, Université de Montpellier, CNRS, Montpellier, France
{David.Delahaye,Pierre-Louis.Euvrard}@lirmm.fr

Abstract. We propose an automation-friendly set theory for the B
method. This theory is expressed using first order logic extended to poly-
morphic types and rewriting. Rewriting is introduced along the lines of
deduction modulo theory, where axioms are turned into rewrite rules
over both propositions and terms. We also provide experimental results
of several tools able to deal with polymorphism and rewriting over a
benchmark of problems in pure set theory (i.e. without arithmetic).

Keywords: B method - Set theory - Automated deduction
Polymorphic types - Rewriting

1 Introduction

In this paper, we present the set theory of the B method [1] using polymorphic
types and rewriting. Expressed this way, this theory has the benefit of being
quite automatable for several reasons. In particular, the use of polymorphism
allows us to make the theory more synthetic by removing some typing predicates,
which therefore improves proof search. As for rewriting, it is introduced along
the lines of deduction modulo theory [5], where axioms are turned into rewrite
rules over both propositions and terms. Deduction modulo theory has proved to
be also very useful to improve proof search when integrated to usual automated
proof techniques. In this paper, we also aim to advertise that more and more
automated tools are able to deal with polymorphic types and rewriting, and we
provide some experimental results involving the latest versions of these tools.

© Springer International Publishing AG, part of Springer Nature 2018
M. Butler et al. (Eds.): ABZ 2018, LNCS 10817, pp. 409-414, 2018.
https://doi.org/10.1007/978-3-319-91271-4_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91271-4_32&domain=pdf

410 G. Bury et al.

Axioms of Set Theory

(JS, y) Etup(ar,an) S Xag,ast —> T €ay SAY Eay t
5 Eset(a) Pa(t) — Vo :iaw €a s=>x €t
5 =cet(a)t — VX QX €0 S T EQt

Set Inclusion
5Cat —5 Eset(a) Palt) sCatlt—5CatAs o)t

Derived Constructs

T EqSUagt —xELSVITELT T EQGSNat —>T ELSANTELL
TES—qt—TEaSATEat T Eq 0o — L
T Eq {a}a — T =aa Py a(S) HPO&(S) ~a {wa}set(a)

Binary Relation Constructs: First Series

p eset(tup(al,ag)) U Sag,ay UV —

Vo ar.Vy:a2.(2,Y) Cwplar,an) P =T Eay UNY Eay ¥
(y,x) Ctup(az,a1) p;11,02 — (2,y) Ctup(ar,a2) P
T €ay doMay ay(p) — 3b: @2.(2,b) Erplay,az) P
T €ay aANay,a0 (P) — 3a: 01.(a, T) Erp(ar,aq) P
(%, Y) Ewp(a,as) Piar.az.as ¢ — b1 2.(2,b) Ewp(ar,az) PA (b,Y) Ewp(az.az) 4
qOay,00,03 P — Piar,az,a3 4
(,Y) €up(asa) 1da(u) — T Eq uAT =0y
(JS, y) etup(cq,az) S <a1,a2 p— (Ivy) Etup(al,oq) p ANz 6041 S
(93» y) Ctup(ag,az) P Pag,as t— (l’vy) Etup(ar,as) PAY €ay t
(-T»y) etuP(al,az) s < ag,asP — (I,y) etup(ahaz) p/\QS gal s
(-Tvy) Ctup(ay,az) P B a0t — (‘73’ y) Ctup(ay,az) P ANy €O¢2 t

Fig. 1. Rewriting rules of the B set theory (part 1)

2 A Set Theory with Polymorphism and Rewriting for B

In the following, we consider the pure set theory part of the B method, i.e. the
material introduced in Chap. 2 of the B-Book [1]. This part of the B theory is
suitable as it can be easily turned into a theory that is compatible with deduction
modulo theory, i.e. where a large part of axioms can be turned into rewrite rules.
We therefore transform whenever possible the axioms and definitions into rewrite
rules. The resulting theory is summarized in Figs.1 and 2, where we omit the
set BIG and the sets defined in extension.

As can be seen, the proposed theory is typed, using first order logic extended
to polymorphic types a la ML, through a type system in the spirit of [2]. This
extension to polymorphic types offers more flexibility, and allows us to deal with

An Automation-Friendly Set Theory for the B Method 411

Binary Relation Constructs: Second Series

T €ay PW]ay,an —> Fa: 1.0 Eay WA (A, %) Erup(ar,ag) P
(T,9) Erup(ar,a2) <Far a0l —
((.’L’,y) etup(al,az) q Nx goq domah@z (p)) \ (x7y) 6tup(a1,a2> p
(z, (y, 2)) Etup(ay tup(az,og)) f ®ay,02,05 9 — (2,) Ctup(ay,az) A (@ 2) Cwp(ar,az) 9
((z,v),2) Etup(tup(a,az2),a1) Pt a1,a2(s’t) -
(z,y), 2) Ctup(tup(arg,a2),01) (5 Xay,as 1) Xtp(ar,az),a1 SNT =ay 2
((%y)w’«’) etup(tup(al,ag),ag) pr.jZ aq,o (S7t) —
((‘r7y)7 Z) Gtup(tup(al,u2),al) (S Xalva2 t) XtuP(”lﬂ’Z)aul tA Y=a 2
((z,9), (z,w)) Ctup(tup(r1,03),tup(era,0rg)) h‘lal,azyasvtmk -
(1‘,2) Ctup(ay,az) h A (y7 w) Ctup(az,aq) k

Function Constructs: First Series

f Eset(tup(ar,az)) S+ ar,asl — f Eset(tup(ar,az)) S $raj,ay LA
Vo a1Vy, 2t az.(z,y) Ewp(ar,az) [A (z,2) Ctup(ar,an) f = Y =ay 2
f Eset(tup(ay,an)) § —ag,an L —
! Eset(tup(ar,a)) 5 T ar,asl A doma,as, (f) set(ay) S
f Eset(tup(ar,a)) 5 agaxl —
f Esetftup(araz)) S+ ariant A falas Esettuplazar)) t+ az.en s
[Ceet(up(ar a2)) § —ar,a0 t —
! Eset(tup(ar,az)) 57 ag,azt A f Eset(tup(ary,an)) S ai,as b
f Cset(tup(ar,az)) § ™ ar,anl —
[Eset(tup(ar,a2)) 8+ arast ATaNayas (f) Zset(as) t
f eset(tup(al,a2)) S Paq,as t—
[Eset(tup(ar,an)) § ™ a1,a0t A f Eset(tup(ar,az)) S —Far,az t
f Cset(up(ar,az)) $7% arsast —
[Eset(tup(ar,az)) 87 a1,a0t A f Eset(tup(ar,az)) 8 ar,ast
f Ceet(p(ar,a2)) § 7 a1,ast —
[Eset(tup(ar,a2)) 8 ara2 t AT Eset(tup(ar,az)) § Par.az b

Fig. 2. Rewriting rules of the B set theory (part 2)

theories that rely on elaborate type systems, like the B set theory. The complete
type system used here can be found in [3]. The type constructors, i.e. tup for
tuples and set for sets, and type schemes of the considered set constructs are
provided in Fig. 3 of Appendix A, where Type is the type of types and o the type
of formulas. Type arguments are subscript annotations of the construct, and to
improve readability, we remove the type annotations in tuples when they are
redundant with the membership construct.

G. Bury et al.

Table 1. Experimental results over the B set theory benchmark

319 problems | Zenon Modulo | ArchSAT | Zipperposition | Alt-Ergo
Proofs 138 272 306 232
Rate 43.3% 85.3% 95.9% 72.7%
Time(s) 2.86 268.69 109.88 8.42

3 Experimental Results

To test the previous theory, we consider 319 lemmas! coming from Chap.2
of the B-Book [1]. As tools, we consider automated theorem provers able to
deal with polymorphic types and rewriting natively. Our set of tools includes:
Zenon Modulo (version 0.4.2), a tableau-based prover that is an extension of
Zenon to deduction modulo theory; ArchSAT (development version?), a prover
that combines a SAT solver with tableau calculus and rewriting; and Zipperpo-
sition (version 1.5), a prover based on superposition and rewriting. To show the
impact of rewriting over the results, we also include the Alt-Ergo SMT solver
(version 1.01), which deals with polymorphic types but not rewriting.

The experiment was run on an Intel Xeon E5-1650 v3 3.50 GHz computer,
with a timeout of 90 s and a memory limit of 1 GiB. The results are summarized
in Table 1. These results show the high performances, in terms of proved prob-
lems, obtained by the provers extended to rewriting, Zipperposition and ArchSAT
in particular, compared to the SMT approach of Alt-Ergo. Looking at the cumu-
lative times, Alt-Ergo is not really faster than Zipperposition and ArchSAT, which
take more time to find few more difficult problems (with a timeout of 3 s, they
respectively find 303 and 260 proofs in 17.61s and 16.61 s, while Alt-Ergo finds
the same number of proofs). The low results of Zenon Modulo are probably due
to the fact that it uses a heuristic to transform the axioms into rewrite rules.

4 Conclusion

In light of the previous experimental results and as perspectives, we aim to apply
our approach, consisting of a B set theory using polymorphic types and rewriting
together with appropriate tools (Zenon Modulo, ArchSAT, and Zipperposition),
to proof obligations coming from the formalization of real-world applications. In
particular, we plan to use the benchmark provided by the industrial partners of
the BWare project [4], which gathers about 13,000 proof obligations.

! The benchmark is available at: https://github.com/delahayd /bset.
2 Git version 7720d8c, available at: https://gforge.inria.fr/projects/archsat.

https://github.com/delahayd/bset
https://gforge.inria.fr/projects/archsat

An Automation-Friendly Set Theory for the B Method

A Typing of the B Set Theory

413

Type Constructors
tup : o, : Type. Type set : ITa : Type.Type
Type Schemes of the Set Constructs
-€- :Ila: Type.a — set(a) — o
(-,-) :Hoar, a0 : Type.ar — a2 — tup(au, asz)
-x - ITag,as: Typeset(ar) — set(az) — set(tup(ai, az))
P(-) :ITa: Type.set(a) — set(set(a))
-=- :IHa:Typea—a—o
BIG : Ila: Type.set(«)
-C-, -C-:
IIa : Type.set(a) — set(a) — o
-U- -N- - —-
I : Type.set(a) — set(a) — set(a)
{-} s [T : Type.aw — set(a)
0 s Ha : Type.set(a)
Pi(-) :Ia: Type.set(a) — set(set(a))
- - ITan, az: Typeset(ai) — set(az) — set(set(tup(ai, a2)))
- s Iy, ag : Type.set(tup(au, az)) — set(tup(az, 1))
dom(-) : ITar, g : Type.set(tup(au, a2)) — set(a)
ran(-) : o, asz : Type.set(tup(ai, az)) — set(az)
-;- s I, ag, a3 @ Type.set(tup(air, a2)) — set(tup(az, as)) — set(tup(aa, as))
-o- :ITan,as,as : Type.set(tup(asz, as)) — set(tup(aui, az)) — set(tup(ai, as))
id(-) : Ha: Typeset(a) — set(tup(a, a))
-<- :ITan, as: Typeset(ar) — set(tup(aua, az)) — set(tup(au, az))
->- o ITan, as : Typeset(tup(ai, az)) — set(as) — set(tup(a, az))
-<g- :ITon,as: Typeset(ar) — set(tup(ai, as)) — set(tup(ai, az))
- - ITan, as : Typeset(tup(ai, as)) — set(as) — set(tup(ai, az))
-[-] s ITan, s : Type.set(tup(an, az)) — set(a) — set(az)
-<t- :ITan, as @ Type.set(tup(ai, as)) — set(tup(ai, az)) — set(tup(ai, az))
-®- :ITon,as,as : Type.set(tup(an, a2)) — set(tup(ar, az)) —
set(tup(au, tup(az, as)))
prii(-) : Hai, s : Type.tup(set(a),set(az)) — set(tup(tup(aa, az), a1))
pri2(-) : Hai, s : Type.tup(set(a),set(az)) — set(tup(tup(aa, az), asz))
-||- s Mo, ag, as, aq - Typeset(tup(ai, az)) — set(tup(as, as)) —
set(tup(tup(au, asz), tup(ae, as)))
——&—)—7——>—7—H—>—7—>—>—7—+»—,—~»—,—>+—»—7—>—»—:
o, as : Type.set(ai) — set(a) — set(set(tup(aa, a2)))
-(-) s I, ag : Typeset(tup(an, a2)) = a1 — as

Fig. 3. Type constructors and type schemes of the set constructs

414 G. Bury et al.

References

1. Abrial, J.-R.: The B-Book, Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996). ISBN 0521496195

2. Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with
rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol.
7898, pp. 414-420. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38574-2_29

3. Bury, G., Delahaye, D., Doligez, D., Halmagrand, P., Hermant, O.: Automated
deduction in the B set theory using typed proof search and deduction modulo. In:
Fehnker, A., Mclver, A., Sutcliffe, G., Voronkov, A. (eds.) Logic for Programming,
Artificial Intelligence and Reasoning (LPAR) - Short Presentations, vol. 35, pp.
42-58. EasyChair, Suva (Fiji), November 2015

4. Delahaye, D., Dubois, C., Marché, C., Mentré, D.: The BWare project: building a
proof platform for the automated verification of B proof obligations. In: Ameur,
Y.A., Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 126-127. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43652-3_26

5. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reasoning
(JAR) 31(1), 33-72 (2003)

https://doi.org/10.1007/978-3-642-38574-2_29
https://doi.org/10.1007/978-3-642-38574-2_29
https://doi.org/10.1007/978-3-662-43652-3_26

	An Automation-Friendly Set Theory for the B Method
	1 Introduction
	2 A Set Theory with Polymorphism and Rewriting for B
	3 Experimental Results
	4 Conclusion
	A Typing of the B Set Theory
	References

