
Using a Formal B Model at Runtime
in a Demonstration of the ETCS Hybrid

Level 3 Concept with Real Trains

Dominik Hansen1(B), Michael Leuschel1, David Schneider1, Sebastian Krings1,
Philipp Körner1, Thomas Naulin2, Nader Nayeri2, and Frank Skowron2

1 Institut für Informatik, Heinrich-Heine-Universität Düsseldorf,
Düsseldorf, Germany

{hansen,leuschel,schneider,krings,korner}@cs.uni-duesseldorf.de
2 Thales Deutschland GmbH, Berlin, Germany

{thomas.naulin,nader.nayeri,frank.skowron}@thalesgroup.com

Abstract. In this article, we present a concrete realisation of the ETCS
Hybrid Level 3 concept, whose practical viability was evaluated in a field
demonstration in 2017. Hybrid Level 3 (HL3) introduces Virtual Sub-
Sections (VSS) as sub-divisions of classical track sections with Track-
side Train Detection (TTD). Our approach introduces an add-on for
the Radio Block Centre (RBC) of Thales, called Virtual Block Function
(VBF), which computes the occupation states of the VSSs according to
the HL3 concept using the train position reports, train integrity infor-
mation, and the TTD occupation states. From the perspective of the
RBC, the VBF behaves as an Interlocking (IXL) that transmits all sig-
nal aspects for virtual signals introduced for each VSS to the RBC. We
report on the development of the VBF, implemented as a formal B model
executed at runtime using ProB and successfully used in a field demon-
stration to control real trains.

Keywords: B-method · Animation · Model-based testing · ETCS

1 Introduction and Requirements

The specification “Hybrid ERTMS/ETCS Level 3” (HL3) [1] describes a novel
train control concept, incorporating classical trackside train detection, radio-
based position reports, and train integrity information. The main difference
between the HL3 concept and a solution without any trackside train detection
(pure Level 3) is that not all trains need to be equipped with an ETCS on-board
unit and a TIMS (Train integrity monitoring system). In addition, the informa-
tion from the underlying trackside train detection system can be used as fall
back to, e.g., handle degraded situations and to improve the performance.

In June 2017 the Heinrich Heine University Düsseldorf (HHU) was asked by
Thales Deutschland GmbH to contribute to a field demonstration of feasibility of
the ETCS Hybrid Level 3 principles. The call for tender was initiated by ProRail
c© Springer International Publishing AG, part of Springer Nature 2018
M. Butler et al. (Eds.): ABZ 2018, LNCS 10817, pp. 292–306, 2018.
https://doi.org/10.1007/978-3-319-91271-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91271-4_20&domain=pdf

Using a Formal B Model at Runtime in a Demonstration 293

Netherland, with a demonstration planned on a test track at the ETCS National
Integration Facility (ENIF), provided by Network Rail (UK) for December 2017.

This resulted in the present cooperation between Thales and HHU, with
additional support provided by ClearSy. The goal was to develop an executable
version of the HL3 specification, called Virtual Block Function (VBF), which is
an add-on for the existing Thales Radio Block Centre (RBC) without adapting
the RBC core functionalities. The main idea is that the VBF partitions each
Trackside Train Detection section (TTD) into Virtual Sub-Sections (VSS). For
the RBC, the track is thus decomposed into finer grained sections compared
to the TTDs. The VBF computes the occupation status of each VSS by using
the TTD occupation status and train position reports including train integrity
information. For example, in Fig. 1 at the bottom you can see that we have
two areas each with a trackside detection device (realised by axle counters or
track circuits). The VBF knows that the left one is occupied and the right one
is free. However, for the RBC it simulates the existence of six areas and six
trackside detection devices. Based on the train position information, the VBF
can already free part of the occupied left track for following trains, enabling
higher throughput without having to install additional trackside equipment.

occupied free TTD

occupied free free free VSSfreefree

Interlocking (IXL)

Radio Block Centre (RBC)

Virtual Block Function (VBF)

Train

TTD Status

VSS Signal Status
Train Position

& Integrity,
MA

OBU

Fig. 1. The role of the VBF (Virtual Block Function)

In the following sections, we will report on our experience building a software
product for the VBF based on a formal B model. In Sect. 2 we outline our tasks
and early design decisions. Section 3 provides an overview of the formal B model
and the modelling challenges, along with some ambiguities and inconsistencies
we found in the HL3 specification. Section 4 describes the architecture of VBF

294 D. Hansen et al.

software which embeds the B model. Visualisation was important in our project
and we discuss it Sect. 5. We conclude with discussion about practical results
and insights gained in Sect. 6.

2 Project Constraints and Design Decisions

Due to the strict deadline and the very short time span for the project, it was
decided to use off-the-shelf RBC and interlocking systems and use a formal B
model [2] of the VBF as an executable demonstrator. More precisely:

– The Thales RBC core was to be used as is, without modifications for HL3.
(Thales owns a product line for the RBC software to configure the generic
software to the project specific requirements).

– The interlocking was used as is, without modifications for HL3.1

– The VBF had to be developed from scratch as an add-on for the RBC, which
was to mimic an interlocking and transmits the signal aspects for the virtual
signals to the RBC. The VBF contains a VSS state machine, with four possible
states (free, occupied, unknown and ambiguous) for each VSS, exactly as
required by the HL3 specification.

The following main tasks are the focus of this paper:

T1: Providing evidence that the HL3 principles are consistent and complete to
handle possible hazards and to allow the desired operational behaviour.

T2: Implementation of the VBF as an independent software unit by supporting
the given interfaces to the other components. The implementation should
be conform to the HL3 principles.

To accomplish the first task, we decided to derive a formal B model from the
HL3 specification. The decision was based on diverse work (e.g., [3–9]) which
provided evidence that B is well suited for the railway domain. Moreover, first
experiments were very promising: in a few days it was possible to model some
simpler transitions of the HL3 specification.

For task T2, we intended to implement all interfaces (boundaries) to other
components by hand and to use a classical testing approach to ensure their
correct functioning. To reuse the formal model from task T1 for task T2, we had
three options:

1. Using the model as a template to implement the VBF core by hand.
2. Generating code from the model and combine this code and the handwritten

boundaries.
3. Executing the model at runtime by incorporating the execution engine and

the handwritten boundaries.

1 Except for the TTD occupation status which has to be send from the IXL to the
VBF/RBC.

Using a Formal B Model at Runtime in a Demonstration 295

The first option would require us to maintain both the model and the code.
This could be time-consuming if there were changes to the specification (due to
feedback from ProRail, the specification was changed considerably). With the
second approach, we would have to use an existing code generator (there was no
time to develop our own) and thus have to refine our abstract B model down to
implementation level B0—also time-consuming. Concerning the third option, we
had already gained some experience of integrating ProB [10] as the execution
engine in different software products [11,12]. Given our time constraints, the
third option was the only feasible option, but it also posed the biggest research
challenge: using a formal model at runtime interacting with various hardware
and software components.

3 The Formal B Model

Below, we present some relevant aspects of our B model along with some source
code snippets. Due to space limitations we cannot cover all interesting aspects,
such as the modelling of timers and time.

3.1 Basic Datatypes

The modelling of the track was relatively straightforward, which is not surpris-
ing since B’s relations can be used to represent graphs and B provides many
convenient operators on relations and functions, which are just a special case of
graphs (see, e.g., Chap. 14 of “Modeling in Event-B” [13]).

However, for pragmatic reasons, we did not use Event-B [13] but rather clas-
sical B [2] for modelling the VBF. For example, we have modelled the VSSs,
TTDs and trains as classical B strings. For simulation and execution purposes,
we had to read topology and configuration data from XML files. The conversion
of the XML file into B data structures for the VBF model is also done in clas-
sical B using records and strings.2 Finally, we have used other features, such as
machine composition and operation calls (see Sect. 3.2), not readily available in
Event-B.

Below, we try to give a flavour of our modelling by showing some derived
data structures for the track topology.

PROPERTIES

VSS : POW(STRING)

& TTD : POW(STRING)

& VSS /\ TTD = {}

& next_vss : VSS +-> VSS

& vss_ttd: VSS --> TTD // maps VSS to their TTD

& TTD_STATE = {free,occupied} // TTDs only have two states

& next_ttd : TTD +-> TTD

& last_vss: TTD --> VSS

2 The conversion is not shown in this paper since the XML data format is proprietary.

296 D. Hansen et al.

& /*@label "the last vss is part of its TTD" */

!t.(t:TTD => vss_ttd(last_vss(t)) = t)

& /*@label "a successor of a last vss is in another TTD" */

!(t,n).(t:TTD & last_vss(t)|->n : next_vss => vss_ttd(n) /= t)

...

For example, the next vss constant is a partial function which links VSS to
their successor VSS. The direction of the track is thus constant for any given
execution run.3 However, the direction of the track can be toggled, since the
conversion of the XML data is parameterised. Observe that we allow the IF-
THEN-ELSE to be applied to expressions and use an external B function (see
Sect. 6.3 in [11]) to read in the track data from an XML file.

PROPERTIES

TRACK_DATA = READ_XML("./resources/prj_ENIF_01@STR.xml")

...

& C_VSSSequence = DeriveVSSSequence(TRACK_DATA)

...

& next_vss = UNION(i, ii).(

i : dom(C_VSSSequence) & ii : dom(C_VSSSequence) & ii = i + 1

| {IF RUNNING_DIRECTION = "LEFT_TO_RIGHT"

THEN C_VSSSequence(i) |-> C_VSSSequence(ii)

ELSE C_VSSSequence(ii) |-> C_VSSSequence(i) END

})

Train Status. Modelling the integrity state of trains revealed some ambigui-
ties and inaccuracies within the HL3 specification. The concept “integer” (for
a train) is used in different contexts within the specification. We try to explain
the differences with the aid of our model:

SETS

REPORTED_TRAIN_INTEGRITY = {lost_integrity, confirmed_integrity,

no_integrity_information}

; INTERNAL_TRAIN_INTEGRITY = {integer, not_integer}

PROPERTIES

TRAIN_INTEGRITY_MAPPING = {

"TRAIN_INTEGRITY_CONFIRMED_BY_INTEGRITY_MONITORING_DEVICE"

|-> confirmed_integrity,

"TRAIN_INTEGRITY_CONFIRMED_BY_DRIVER" |-> confirmed_integrity,

"NO_TRAIN_INTEGRITY_AVAILABLE" |-> no_integrity_information,

"TRAIN_INTEGRITY_LOST" |-> lost_integrity}

...

INVARIANT

3 Every scenario in the HL3 specification only has a single linear track with trains
running in one direction. Points are not considered by the current version of the
HL3 specification and they were not required for the field tests at ENIF.

Using a Formal B Model at Runtime in a Demonstration 297

registeredTrains : POW(STRING) &

& train_reportedTrainIntegrity

: registeredTrains --> REPORTED_TRAIN_INTEGRITY

& train_integrity : registeredTrains --> INTERNAL_TRAIN_INTEGRITY

...

According to the ERTMS/ETCS specifications [14], a train can send four
possible integrity status values within a train position report, which are rep-
resented by the domain of the constant TRAIN INTEGRITY MAPPING. Within
the VBF, we only need to distinguish between three, which are represented
by the enumerated set REPORTED TRAIN INTEGRITY. The surjective function
TRAIN INTEGRITY MAPPING defines the respective mapping.

Moreover, the HL3 specification [1, Sect. 3.5] defines a further integrity state
by using the terms “integer” and “not integer” which is represented by the
enumerated set INTERNAL TRAIN INTEGRITY.4 Yet, an unambiguous mapping
from the reported train integrity to the internal train is missing in the HL3
specification [1]. Thus, we were forced to find a sensible interpretation; we defined
the following two conditions as triggers for the transition from “integer” to “non-
integer”:

– “train reports ‘lost integrity”’
– “PTD [Positive Train Detection] with no integrity information is received
outside of the integrity waiting period”

Both conditions are part of the transitions #7B and #8A [1, Sect. 5.1.1.6]. The
change of the train length (the remaining condition of #7B and #8A) does not
affect the internal integrity status of a train but can have a consequence for VSS
states as it triggers the “train integrity propagation timer” of the VSSs where
the train is located.

The following operation manipulates the internal train integrity variable in
our model:

Train_SetIntegrityStatus(train, integrityStatus) =

PRE integrityStatus : REPORTED_TRAIN_INTEGRITY

THEN

train_reportedTrainIntegrity(train) := integrityStatus ||

IF integrityStatus=lost_integrity

THEN train_integrity(train) := not_integer

ELSIF integrityStatus = confirmed_integrity

THEN StartTimerDelta(train|->WAIT_INTEGRITY_TIMER)

|| train_integrity(train) := integer

ELSIF // no information available

train |-> WAIT_INTEGRITY_TIMER : expiredTimers

THEN train_integrity(train) := not_integer

END

END

4 The term “internal” refers to the internal state of the VBF.

298 D. Hansen et al.

However, the model checker ProB directly reported an invariant violation.
This is because a train does not register itself by a train position report, thus
the variable train reportedTrainIntegrity is not a total function with the
registered trains as its domain. As a consequence, we had to make a further
decision by treating a train as non integer before the VBF receives the first
position report (interpretation to the safe side). We always tried to avoid partial
functions as it would mostly introduce handling of special cases. Moreover, the
description in the HL3 specification is imprecise regarding when to start the first
“wait integrity timer”: “A ‘wait integrity timer’ runs continuously for every train
[. . .]” [1, Sect. 3.4.1.3.1]. We decided to start the timer with first train position
reported but not with the registration.

We found a further inaccuracy with regard to the integrity status in the
specification: “For an integer train the confirmed rear end location of the train is
derived from [. . .]” [1, Sect. 3.3.3.1]. Here, the term “integer train” is used which
corresponds to the internal train integrity of our model. However, in Sect. 3.3.3.4
it is stated that “the confirmed rear end of the train location is never updated
by position reports with integrity status ‘Lost’ or ‘No information available”’
[1, Sect. 3.3.3.4]. Thus, Sect. 3.3.3.1 of the specification should rather start with
“For a train which reports confirmed integrity” since a train can be integer while
reporting “No integrity information available”.

Train Location. Another essential concept in HL3 specification is the definition
of the train location (in our case the image of the train location seen by the
VBF) which is frequently referred within the state machine transitions of the
HL3 specification. We mapped each registered train to a set of VSS within our
model:

INVARIANTS

...

& train_location : registeredTrains --> POW(VSS)

& /*@label The train location must not have any gaps */

!loc.(loc: ran(train_location)

=> #s.(s : iseq(loc)

& !i,ii.(i : 1..size(s-1) => s(i) |-> s(i + 1) : next_vss)))

In most cases, we just want to know if a certain train is located on a certain
VSS. For these cases, the data structure for train location is very convenient.
Alternatively, we could have used a relation but we prefer functions over relations
except for the next vss constant which is frequently inverted in our model.
The order of the VSS is not incorporated into the location definition as this
information is already contained in the next vss constant. The condition that a
train location must not have any gaps (which is not explicitly mentioned in the
HL3 specification) can also easily be expressed with the aid of this constant.

While the modelling of the train location data structures was relatively
straightforward, the updates to this variable are, in our opinion, the most under-
specified part of the HL3 specification. Some issues referring to the location are:

Using a Formal B Model at Runtime in a Demonstration 299

– Minor: “As long as the TTD where the max safe front end is reported is free,
the train location is not extended onto the VSS which are part of this free
TTD” [1, Sect. 3.3.2.1.2]. This is imprecise as the condition should be: only
if the max safe front is reported to be on the next free TTD but not the
estimated front of the train.

– Fundamental: “[. . .] the train location is derived from the estimated front end
[...] of the last position report [. . .] as well as from TTD information [. . .].” Is
the train location only updated/changed by processing train position reports
(in this case the TTD information will of course be considered)? Or does a
single TTD change event without a train position report also update the train
location? We had tried both alternatives and in the end we decided to use a
train position report as the only trigger to update the train location. (The
other alternative, forced us to adapt several transitions in order to be able to
replay all scenarios of the HL3 specification.)

3.2 State Machine Transitions and Priorities

Below, we show the B translation of the state machine transition (#9A) of the
HL3 specification.

DEFINITIONS

Guard9A(vss) == vss:VSS & vss_state(vss) = ambiguous

& /*@label "(TTD is free)" */

ttd_state(vss_ttd(vss)) = free

...

OPERATIONS

VSS_Ambiguous_Free_9A(vss) =

SELECT

Guard9A(vss)

THEN

vss_state(vss) := free ||

// state of the virtual signal which protects the vss

vss_signalState(vss) := PROCEED ||

...

END

The reason for separating out the guards into DEFINITIONS (in a separate
file) is to encode the priorities of the HL3 specification. We have experimented
with various ways of encoding the priorities, and have finally pursued a solution
based on using a large IF-THEN-ELSE with the guards as conditions, calling
respective operations of a subsidiary machine. The IF-THEN-ELSE ensures that
the priorities of the transitions are respected, e.g., that transition 2A has priority
over 3. A return variable out stores the exact VSS transition taken for debugging
and analysis.

out <-- VSSUpdateStep(vss) = PRE vss : VSS

THEN

IF Guard1A(vss) THEN VSS_Free_To_Unknown_1A(vss) || out := "1A"

300 D. Hansen et al.

ELSIF Guard1B(vss) THEN VSS_Free_To_Unknown_1B(vss) || out := "1B"

...

ELSIF #train.(train : registeredTrains & Guard11B(vss, train))

THEN

ANY train WHERE train : registeredTrains & Guard11B(vss, train)

THEN

VSS_Ambiguous_Occupied_11B(vss, train) || out := "11B"

END

ELSE

out := "NONE"

END

END

Execution of all VSS updates in a VBF cycle is done by a B WHILE loop
calling VSSUpdateStep.

3.3 Animation of Scenarios

The HL3 document describes a number of scenarios in addition to the VSS state
machine. We used these scenarios as test specifications, i.e., to check that these
scenarios are feasible in our model (detection of inconsistencies).

To animate the scenarios with ProB, we developed an environment model
and composed it with the VBF core model (software model) to obtain a system
model. The environment model has knowledge of the “real” (physical) position
of a train, which allows it to move the train and to send train positions reports
which are inputs of the VBF. Figure 2 shows a system state where the “real”
position differs from the train position within the VBF. In this case, the physical
train has already moved to VSS21 and the VBF still sees the train in VSS12.
Note that this is a very common situation as trains usually only send its position
cyclically (e.g., each 6 s). Otherwise, this state can be seen as the situation where
Train1 has already sent its position report but the VBF has not yet received it
due to the delays of the communication interface.

Fig. 2. Environment Model: “physical” train position ($Train1) vs. train position image
in the VBF (Train1)

In summary, with the environment model it is possible to trigger all interfaces
of the VBF by generating the following inputs:

Using a Formal B Model at Runtime in a Demonstration 301

– Train position reports including train integrity information
– Train registration message
– Train deregistration message
– Train data message (includes the train length)
– TTD occupation status
– Movement Authorities (MA) for trains

The environment model can make use of different tracks. For example, we
used the track snippet from the HL3 specification to validate its scenarios and
used the real track for onsite execution and to define a test plan for onsite
execution.

While animating the scenarios of the HL3 specification, we detected more
issues.5 One issue, which is easy to understand but hard to find without tool
support, is the following: in scenario 4 (Start of Mission/End of Mission) at step
8, it is stated that all VSS of TTD 20 go to “unknown” because the discon-
nect propagation timer of VSS 22 has expired. This is wrong because after the
deregistration of the train in step 7, the train will be immediately treated as a
ghost train and the corresponding transition #1A will apply. The result for the
remaining VSSs of TTD20 is the same but at a different point in time; the VSSs
go directly to “unknown” and not just after the disconnect propagation timer
(of VSS22) has expired. As an aside, we think that transition #1A is erroneous,
too: there should be an “and” instead of the “or” in “(no FS MA is issued or
no train is located on this TTD)”. Otherwise, a connected train (with a FS MA)
which physically enters a free TTD would always be treated as a ghost train
because the TTD occupation usually arrives before a new train position report.
In this case, the second condition “no train is located on this TTD” would be
fulfilled which would allow applying transition #1A.

Besides the validation of the scenarios, the environment model permitted us
to specify system level invariants. For example, the system state shown in Fig. 3
should never occur. Here, a physical train ($Train2), which is not connected, is
located on a VSS which is seen as “free”. The threat in this situation is that
another train (not displayed in the figure) in rear of the non-connected train
could receive a movement authority (FS MA) for VSS31 and VSS32. We were
able produce a scenario which finally led to this state caused by an invalid
stopping criterion for the ghost train propagation.6

Replaying Recorded Runs with ProB. Simulations runs (with On-Board-
Unit simulators) as well as demonstration runs (with real trains) were logged by
the VBF and could be replayed in the animator. This was vital, as it allowed us
to analyse defects without inspecting (huge) RBC, IXL and Java log files. Log
replay was also used to define timer values of the HL3 specification.

5 Overall we detected more than 30 issues which we reported to authors of the HL3
specification.

6 The scenario is too complex to be presented in this paper.

302 D. Hansen et al.

Fig. 3. Invalid system state: Non-connected train ($Train2) is located on a VSS with
state “free”.

4 Architecture

The VBF model described above is part of a larger application developed to con-
duct the field demonstration. The application embeds the VBF model using the
ProB Java API [15] (often referred to as ProB2) and manages all the model’s
interactions with the outside world. The Java API exposes all of ProB’s ani-
mation and model checking features to programs running on the Java Virtual
Machine. This approach has been successfully used in several applications that
use B models at runtime [12] and is the basis for a new ProB UI that is currently
being developed.

The responsibilities of the application are: firstly, to interact with external
input sources such as the RBC and others that provide information about the
current state of the track, of physical and of simulated trains, etc. Secondly, to
process these inputs and forward them to the model. And lastly, to act on the
newly computed state of the model to update the visualisation and send updates
to the RBC.

Figure 4 provides an overview of the application’s architecture. The external
inputs are provided via a variety of inputs, such as UDP packages, XML-RPC
calls, plain files, etc. These inputs represent train information from the RBC
as well as TTD information from real and simulated trains. These events are

Fig. 4. Application architecture

Using a Formal B Model at Runtime in a Demonstration 303

received by the application, normalised and dispatched to the model. In case
there are no external events, the application will, after a given delay, begin
sending idle events to the model in specific intervals until it receives new external
events. These events are used to update the timers in the model and compute
an updated system state even in the absence of external events. Each type of
input event is dispatched to a corresponding operation of the B machine by
executing one guided animation step and computing a new state of the model.
From each new model state computed by ProB, we derive an application-level
state representation. This representation is based on the state variables of the
model. These variables are exposed through the ProB Java API and extracted
from the state, mapped to Java structures and used to compute the application’s
outputs. From this application-level state the signal aspect changes are extracted
and sent to the RBC. The state is provided to the visualisation layer to update
the track diagram and information tables. Lastly, the delta between two states
is logged for debugging purposes.

5 Visualisation

One requirement for the actual onsite field demonstration was to provide a visu-
alisation for checking the correct functioning of the VBF. Additionally, our expe-
rience has shown [16–18] that a visualisation combined with an interactive ani-
mator can be especially useful in early stages of the development such as the
modelling and analysis stage.

Thus, our intention was to develop one visualisation that could be used in
the early stages and during the field demonstration. As a consequence, the visu-
alisation was developed as a separated software component with clearly defined
interfaces for it to be integrated both into the ProB-Animator and the final
VBF product. In both cases, the state information is extracted from the same
(core) model. The only difference is that within the ProB-Animator the model
is interactively controlled via an environment model by a user and in the final
VBF software, the model is controlled via the real interfaces of the VBF.

Having the visualisation in the early stages of the project provided the fol-
lowing benefits:

– We quickly spotted mistakes in the specification and the model.
– We used the visualisation to communicate the model within our team and to

the domain experts.
– We were able to replay the scenarios in the HL3 specification and detected

inconsistencies between them and the state machine description.
– The visualisation enabled us to let a domain expert act as a tester by inter-

actively inspecting the model.

For the project, we have also developed a new feature in ProB, namely
to export an entire animation trace into an HTML file with one visualisation
per state. This feature was useful to send entire animation scenarios to domain
experts.

304 D. Hansen et al.

For the main application, we created a custom visualisation using the JavaFX
UI framework. The visualisation is linked to the B model’s state, and updates
itself as soon as a new state is provided. As such, the same visualisation could
be used as a plugin in the ProB-Animator during development.

Figure 5 shows a screenshot of the VBF visualisation running as a plugin in
the ProB-Animator.

Fig. 5. Screenshot of the visualisation running as a ProB-Animator plugin

6 Practical Results, Discussion, Conclusion

Building upon the Thales domain knowledge, the formal B model was developed
from July until the end of October (including the embedding application), with
fine-tuning performed afterwards. A first integration with the Thales RBC was
carried out in the beginning of November. The field demonstrations were carried
out in November and December 2017. The VBF demonstrator was finished on
time and on budget, and the demonstration of the HL3 principles using the
Thales RBC was successful. The VBF model (without environment) consists
of 13 B Machines, 14 definition files and has 45 constants and 28 variables.
The required scenarios were demonstrated, with simulated and real trains. Five
persons from HHU worked on the VBF demonstrator (two on the formal B
model, three on the boundaries and the visualisation). Also, within the project,
some ProB extensions were developed.

Using a Formal B Model at Runtime in a Demonstration 305

ProB had two different roles in our project. Its first role was, as described in
Sect. 4, the execution engine for our B model. From the formal methods perspec-
tive, it is interesting to note that the B model can be used to control simulated
and real trains in real time. Moreover, no problems with ProB occurred at
runtime, performance and memory consumption were no issues.7 In addition,
the ProB Java API turned out to be a flexible way to link a formal model to
external data sources or components.

In its second, more common role, ProB was the central tool in the validation
process of the model and specification. Animation combined with visualisation
were crucial for the success of the project, in particular to replay and validate the
scenarios of the HL3 specification. We think this approach, of using animation
and custom visualisations at every stage of development – especially the early
ones – should be more widely used for safety critical (e.g., SIL 4) projects in
industry. For example, the specification engineer can take over some work of the
testing team as he is able to interactively derive test cases from the model8,
which are much more precise and consistent compared to the description of the
scenarios contained in the HL3 specification.

From the project, we can conclude that formal models can be useful and
cost-effective for demonstrators. Animation with forward/backward stepping and
visualisation were extremely useful in the development process. We were able to
develop a complete formalisation of the HL3 specification: the B formal model
can now serve as an executable reference specification, for understanding the
HL3 principles, for deriving test cases from it or possibly to generate code using
Atelier-B.

Acknowledgements. Jens Bendisposto, David Geleßus, Christoph Hein-zen, Antonia
Pütz, Yumiko Takahashi, Fabian Vu and Michelle Werth for all the work that went
into the ProB Java API and the new ProB-Animator UI. We thank Mirko Aigner,
Stefano Allrath, Burkhard Börner, Joachim Jost, Editha Nentzl, Sebastian Neuhau,
Michael Schilling, Wilfried Seibt, Tom Seidel and Tino Wegner from Thales as well as
the staff from ClearSy for their work and support on the demonstrator. Moreover, we
are thankful to the authors of the HL3 specification and the reviewers of ABZ for their
useful feedback.

References

1. Hybrid ERTMS/ETCS Level 3. Principles Ref: 16E042, Version: 1A, EEIG ERTMS
Users Group, 123–133 Rue Froissart, 1040 Brussels, Belgium, 7 2017

2. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
3. Dollé, D., Essamé, D., Falampin, J.: B dans le transport ferroviaire. L’expérience

de siemens transportation systems. Tech. Sci. Inform. 22(1), 11–32 (2003)

7 For example, in one 6-min run ProB’s response time was—with one exception—
between 0.03 and 0.14 s per event. One event required 0.31 s, possibly due to garbage
collection being triggered.

8 Note that we talk here about product and system level tests and not just unit tests.

306 D. Hansen et al.

4. Essamé, D., Dollé, D.: B in large-scale projects: the canarsie line CBTC experience.
In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 252–254.
Springer, Heidelberg (2006). https://doi.org/10.1007/11955757 21

5. Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated property verification
for large scale B models with ProB. Formal Asp. Comput. 23(6), 683–709 (2011)

6. Lecomte, T., Burdy, L., Leuschel, M.: Formally Checking Large Data Sets in the
Railways. CoRR, abs/1210.6815 (2012)

7. Sabatier, D., Burdy, L., Requet, A., Guéry, J.: Formal proofs for the NYCT Line 7
(flushing) modernization project. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid,
S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp.
369–372. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30885-
7 34

8. Sabatier, D.: Using formal proof and B method at system level for industrial
projects. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS,
vol. 9707, pp. 20–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33951-1 2

9. Comptier, M., Déharbe, D., Perez, J.M., Mussat, L., Pierre, T., Sabatier, D.: Safety
analysis of a CBTC system: a rigorous approach with Event-B. In: Fantechi, A.,
Lecomte, T., Romanovsky, A. (eds.) RSSRail 2017. LNCS, vol. 10598, pp. 148–159.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68499-4 10

10. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

11. Hansen, D., Schneider, D., Leuschel, M.: Using B and ProB for data validation
projects. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016.
LNCS, vol. 9675, pp. 167–182. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33600-8 10

12. Schneider, D., Leuschel, M., Witt, T.: Model-based problem solving for university
timetable validation and improvement. In: Bjørner, N., de Boer, F. (eds.) FM
2015. LNCS, vol. 9109, pp. 487–495. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-19249-9 30

13. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

14. ERTMS/ETCS Baseline 3. System Requirements Specification Ref: SUBSET-026-
3, Issue: 3.0.0, EEIG ERTMS Users Group, 123–133 Rue Froissart, 1040 Brussels,
Belgium, December 2008

15. Bendisposto, J., Clark, J., Dobrikov, I., Körner, P., Krings, S., Ladenberger, L.,
Leuschel, M., Plagge, D.: Prob 2.0 Tutorial. In: Proceedings of the 4th Rodin User
and Developer Workshop, TUCS Lecture Notes, Turku, June 2013. Turku Centre
for Computer Science

16. Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising Event-B models with B-
motion studio. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS,
vol. 5825, pp. 202–204. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04570-7 17

17. Ladenberger, L.: Rapid creation of interactive formal prototypes for validating
safety-critical systems. Ph.D. thesis, University of Düsseldorf, Germany (2017)

18. Hansen, D., Ladenberger, L., Wiegard, H., Bendisposto, J., Leuschel, M.: Valida-
tion of the ABZ landing gear system using ProB. In: Boniol, F., Wiels, V., Ait
Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 66–79. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07512-9 5

https://doi.org/10.1007/11955757_21
https://doi.org/10.1007/978-3-642-30885-7_34
https://doi.org/10.1007/978-3-642-30885-7_34
https://doi.org/10.1007/978-3-319-33951-1_2
https://doi.org/10.1007/978-3-319-33951-1_2
https://doi.org/10.1007/978-3-319-68499-4_10
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-319-33600-8_10
https://doi.org/10.1007/978-3-319-33600-8_10
https://doi.org/10.1007/978-3-319-19249-9_30
https://doi.org/10.1007/978-3-319-19249-9_30
https://doi.org/10.1007/978-3-642-04570-7_17
https://doi.org/10.1007/978-3-642-04570-7_17
https://doi.org/10.1007/978-3-319-07512-9_5

	Using a Formal B Model at Runtime in a Demonstration of the ETCS Hybrid Level 3 Concept with Real Trains
	1 Introduction and Requirements
	2 Project Constraints and Design Decisions
	3 The Formal B Model
	3.1 Basic Datatypes
	3.2 State Machine Transitions and Priorities
	3.3 Animation of Scenarios

	4 Architecture
	5 Visualisation
	6 Practical Results, Discussion, Conclusion
	References

