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Abstract. The SPIN model checker has been successfully applied to the
modelling, validation, and verification of different safety-critical systems.
In this paper, we model and validate the Hybrid ERTMS/ETCS Level 3
Case Study using SPIN; in particular, we show the assumptions we made
to keep the state space limited, and present the problems and ambiguities
that arose during the modelling. Although SPIN offers several advantages
in terms of validation and verification facilities, its modelling language
PROMELA is limited if compared to higher level notations of other for-
mal methods. Therefore, we discuss the advantages and disadvantages
of using the tool, and how it could be improved in terms of modelling
facilities.

1 Introduction

In the context of the ABZ 2018 conference, the Hybrid ERTMS/ETCS Level
3 Case Study [6] has been proposed as benchmark for comparing the strengths
(and weaknesses) of different state-based formal methods. The solutions provided
for the case study should demonstrate the modelling, validation, and verification
facilities of different methods.

The aim of the Hybrid ERTMS/ETCS Level 3 [6] is to increase the through-
put of railway tracks, by integrating the physical information coming from
the trackside detection system with information transmitted by the train itself
regarding its position and integrity. In pre-Level 3 systems the railway track
is divided in TTD (trackside train detection) sections and entering and exiting
each TTD is physically detected; in such a situation, a whole TTD section is
blocked when there is a train inside (i.e., no two trains can be in a single TTD?).
In Hybrid ERTMS/ETCS Level 3 the train also periodically sends information
about its position and integrity to the trackside system; in this situation, each
TTD is further divided into several virtual sub-sections (VSSs) and the system
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! Actually, two trains can be in a TTD if they are operating in on-sight mode in which
the drivers are fully responsible for the train movement; this setting, however, is an
exceptional case that is not a part of normal operational mode.
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should avoid presence of two trains on the same VSS. We remind to [6] for the
complete description of the requirements.

As widely demonstrated in literature [14], there is no golden method for
system analysis, and each particular method can provide a better support for
some aspects (e.g., modelling), but be deficient on some others (e.g., scalability
in verification). High-level notations as Abstract State Machines [4] and B [1]
provide a wide support for modelling and refining the model and can be also used
for documentation purposes when discussing with the stakeholders. In addition,
they also provide different facilities for verification in terms of model checking [2,
15]; they usually translate their models into the notation of an existing model
checker [2,7,16,17] and use this for the verification. The problem of this approach
is that the mapping usually introduces a non-trivial overhead that limits their
scalability.

On the other hand, implementing the problem directly in the notation pro-
vided by the model checker (e.g., PROMELA for SPIN [12] or the input notation of
NuSMYV [8]) usually allows one to obtain a more simple model that scales better.
This is due to the fact that the notation provided by model checkers is rather
limited and allows to get a better understanding of the consumed resources.
However, such notations are usually less readable than notations as ASMs and
B. Therefore, there is a trade-off between readability and scalability.

In this paper, we propose a solution of the aforementioned case study in
SPIN. In developing the system, we tried to abstract as much as possible from
all the unnecessary details, but still preserving the soundness of the verification.
Since we have taken the approach of modelling the system directly in the input
language of an explicit model checker, our solution can be taken as a baseline
comparison for evaluating the performances of solutions developed in higher level
notations. Such comparison could be used to assess the overhead introduced by
mapping tools (and eventually bring to their improvement). On the other hand,
we also aim at identifying those features that are missing in PROMELA (e.g.,
logging and visualization facilities) and that could be added to the language
without compromising the performance.

Section 2 illustrates how we modelled the case study in PROMELA, and Sect. 3
describes the experiments we conducted. Section 4 discusses some problems we
faced during the development of the model and some lessons learned. Finally,
Sect. 5 reviews some related work and Sect. 6 concludes the paper.

2 Model

2.1 SpPIN Modelling Platform

The PROMELA language is the input language for the SPIN model checker [12].
A PROMELA model consists of global variables and definitions of process types.
Each process type can be instantiated resulting in a process (instance), which
becomes the active entity of the model. A process consists of local variables and
a sequence of statements, which are executed basically in the order in which
they are written. The value of local variables and the process program counter
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define the state of the process. The model is then defined as all allowed inter-
leavings of particular processes’ statements; in turn, the (global) model state is
the composition of states of all processes and the values of global variables.

SPIN allows for both simulation and verification of the models. While during
verification, the entire state space, i.e., all states of the model are explored, the
simulation can be seen as one particular execution, i.e., one particular inter-
leaving of processes’ statements, similarly to an execution of a multi-threaded
program.

SPIN provides several means for specifying, and also verifying specific model
properties. They include asserts (as known from imperative programming lan-
guages, such as Java and C/C++), LTL formulae, checking for deadlocks and
non-progress cycles, and so-called “never claims” [12]. While asserts can be used
in a similar way as in common programs to check variable values at particular
model places (i.e., expressing safety properties), LTL and non-progress cycles
allow the developer for expressing and checking more complex properties, includ-
ing both safety and liveness ones. Never-claims provide even more precise way for
specification of the properties in an imperative way (complementary to declara-
tive LTL).

2.2 Description of Model

In this section, we give a general overview of the model we developed.

The model (the model.pml file) consists of two main parts, each one rep-
resented by a PROMELA process—a reality process and a trackside process.
On the other hand, each train is represented by a data structure (Train), thus
being a passive entity in our model.

The reality process represents the real situation. It manipulates an array
of VSS (reall]) representing the actual position of the trains and updates the
fields of the Train structure accordingly.

The trains are moved either according to their movement authority in a
random manner, or according to a defined scenario. The operation mode and
the particular scenario to be executed is determined by the value of the sce
variable; if none is defined, random mode takes place. The scenarios are specified
in a separate file scenarios.pml.

The trackside process represents the behaviour of the trackside infrastruc-
ture. It receives the information reported by trains (by means of reading the
fields of the Train structure) and changes the state of particular VSSs accord-
ingly. The VSSs and their states are stored in an array (vss[]), similarly to the
real state (reall]).

Code 1 shows an excerpt of the data structures used in the model. Each VSS
(i.e., a VSS) can be in one of the four states FREE, OCCUPIED, AMBIGUQUS, and
UNKNOWN as described in the case study document [6]. The VSSs of the real
array, instead, can be set just either to FREE or to OCCUPIED; the real array is
not accessed by the trackside detection system, but it is only used for debugging
and verification purposes to compare the assumed state with the real one.
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mtype = {REAL, TRACKSIDE}; TTDSection ttd[TTDCOUNT];
mtype schedule = REAL;
typedef Train {
mtype = {FREE, OCCUPIED, AMBIGUOUS, UNKNOWN}; byte front;
typedef VSS { byte rear;
mtype state; bool connected;
byte ttd; bool integer;
byte eom;
VSS vss[VSSCOUNT]; byte eoma;
VSS real[VSSCOUNT]; bool hasreported;
byte reportedposition;
mtype = {TTDFREE, TTDOCCUPIED}; byte reportedintegrity;
typedef TTDSection {
byte firstVSS; }
mtype state;
bool ghost; Train trains| TRAINCOUNT];
}

Code 1. Data structures

Array ttd represents the real state of each TTD section; note that the TTD
information is always considered safe by the trackside, and so there is only
one copy of the array. In order to model the division of TTDs in VSSs, each
TTDSection stores the index of the first VSS in the section. Similarly, each VSS
stores an index of the TTDSection of which it is a part.

The Train structure involves fields both representing the real situation (e.g.,
position of the train) and those communicated to the trackside (e.g., reported
position). The most important Train fields are:

— front and rear representing the real VSSs containing the front end and the
rear end of the train (either the same one, or two consecutive ones)—see
Sect. 2.3;

— eoma is the end of movement authority that the trackside grants to the train;

— eom is the destination of the train (i.e., “end of mission”);

— hasreported tells whether the train has reported in its last step;

— reportedposition, reportedintegrity, ... represent the information
reported by the train through the PTD; for example, reportedposition
is the last reported position of the front end of the train.

Often, we use high values (254, 255) to model “unknown” or “invalid” values.
For example, if a train has never reported, the last reported position is set 255.

The behaviour of the model is specified by the rules partially shown in Code 2.
The model alternatively executes two processes: the reality process models the
movement of the train, while the trackside process models the trackside system.
The scheduling is determined by the value of the schedule variable. An alter-
native approach would be using the d_step or atomic blocks, but this solution
brings several issues: (1) when using d_step blocks, the non-deterministic choices
would not be explored, (2) a statement inside an atomic block can become
blocked (by mistake in the model), so the other process would get executed
(unexpectedly), and (3) when experimenting with d_step blocks, spin reported
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#tdefine rule2A (ttdstate == TTDOCCUPIED) && (trainidonvss !|= 255) && ...
#tdefine rule7A trainidonvss = 255 && ((mutetimer[0] == 2 && trainidonvss == 0) || ...

inline updateVsS(i) {

if
. vss[i].state == FREE —>
if

i rule2A —> vss]i].state = OCCUPIED; log("transition #2A taken\n");

fi
:: vss[i].state == OCCUPIED —>
if

i rule7A —> vssi].state = UNKNOWN; log(" transition #7A taken\n");

fi
i vss[i].state == AMBIGUOUS —> ...
i vssi].state == UNKNOWN —> ...
fi
}

proctype trackside() {
do
:: schedule == TRACKSIDE —>
...//set timers
atomic {
for (i: 0 .. VSSCOUNT — 1) {
updateVSS(i);

...//update end of movement authority
schedule = REAL;

i timeout —> break;

od;

proctype reality() {

do
::ischedule == REAL —>
if
i (vss[0].state == FREE) && (alive < 2) —> spawntrain(alive); alive++;
:: trains[0].alive —> move(0); // train 0 moves
i trains[1].alive —> move(1); // train 1 moves
fi;

trainreport(0); // train O can either report or not
trainreport(1); // train 1 can either report or not
schedule = TRACKSIDE;

od;

Code 2. Rules

artificial deadlocks. We assume that the last issue is caused by too many state-
ments inside a single d_step block.

When executed, the reality process non-deterministically performs one of
the following actions:
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— spawn of a new train (up to the fixed maximum train number of 2);
— progress of the spawned trains. Each train can perform one of the following
actions:
e if the train occupies only one VSS, it can either move only the front in
the next VSS (so occupying two VSSs), or move entirely in the next VSS.
The type of movement is chosen non-deterministically;
e if the train spans over two VSSs, the rear of the train can be moved to
the VSS containing the front;
e the train disappears if it reaches eom, or the end of the modelled part?;
e the train can decide not to move from the current position. This mod-
els the situation in which the train moves while staying inside the same
VSS(s);
e the connected train can disconnect and vice versa;
e the train can also split into two trains, if there is just one train in the
system so far.

Moreover, at each step, the train can either report or not. The report always
includes information about the position of the train, but may or may not involve
integrity information.

At each step, the trackside process:

1. non-deterministically sets the starting and expiration of timers;

2. updates the states of the VSSs according to the rules of the case study doc-
ument;

3. updates the eoma of the trains up to the first free VSS.

2.3 Abstractions

One of the main difficult aspects in modelling is to decide which details of the
requirements can be abstracted away as not necessary for checking the correct-
ness of the system. Leaving out details of the model has two advantages: the
model is simpler to understand and maintain, and can be handled by verifica-
tion tools (i.e., to tackle the state explosion problem). In the following, we report
on the abstractions we applied to the case study requirements.

Train Length. We do not explicitly model the train length. We assume that a
train can fit in a VSS and, therefore, during its journey, it can span at most over
two VSSs. This decision is motivated by the specification document [6] (including
the scenarios) that only considers these train lengths.

Number of Trains. The scenarios also report at most two trains. We assume this
situation to be general enough to capture situations with a greater number of
trains. As in the case of the train length, we were inspired by the specification
document and the motivation to keep the model state space smaller.

2 Note that the case study assignment [11] considers movement only in one direction,
i.e., no backward moves.
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Train Behaviour. We assume that the train can do at most one action at a
time: move the front end, move the rear end, move entirely to the following
VSS, disconnect, or reconnect. Therefore, for example, it is not possible that the
reality process moves and disconnects a train in a single step. However, we can
still model a given combination of train actions in several consecutive steps; for
example, the simultaneous train movement and disconnection is captured by two
steps, in which the train first moves and then disconnects. Our experiments with
scenarios show that this approach includes also all the one-step VSS updates,
so we consider it an over-approximation. In addition to that, the train can also
disappear after reaching either its eom or the end of the modelled railway track.

Timers. The timers are modelled in quite a precise way. Each timer is started
and stopped when the conditions for it [6] are met. Since PROMELA does not
provide any real time support, the timers in our model non-deterministically
expire after they are started. This can lead to unrealistic situations in the model,
which would not appear in practice. For example, a train can move over several
VSS without reporting its position and without expiring its mute timer. On the
other hand, there is no precise relation between the timer expiration time, train
speed and VSS lengths in the requirements document [6], which we consider its
particular deficiency®. Our approach also allows us not to explicitly model the
wait integrity timers, since they can be covered by the integrity loss propagation
timers.

3 Experiments

We run all the experiments on a Linux blade server with Xeon X5687 CPU
with 192 GB RAM. The model file together with the scenario definitions and
output of scenario simulations are available at http://d3s.mff.cuni.cz/~kofron/
abzl8casestudy.html. Modelling the whole case study took about one month:
two weeks for creating the model and other two weeks for debugging it.

In order to validate our approach, we simulated the nine scenarios reported
in the requirements [6]; in order to automatize the approach, we had to specify
in the model itself a mechanism for forcing some particular steps: more details
are given in Sect.4. In almost all the steps of all the scenarios, we were able to
reproduce the exact VSSs configuration, using the same rules reported in the
requirements to update the single VSSs. In some particular steps, instead, our
simulation differs because of errors and/or ambiguities in the specification; we
detail all of them in Sect. 4.

In addition to validation, we performed a more detailed analysis in terms
of formal verification. We ran several verification runs with different settings
(stack size limits, storage modes—exhaustive vs. bitstate hashing) to cover as
large part of the state space as possible. We learned that the state space is
branching a lot and so that it makes sense to run the verifier with both large

3 Formulations in [6] such as “A value between 5-10s would seem to be practical” and
“...this timer could be set to a value of at least 27s ...” are not of much use.
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and small stack sizes. In sum, we ran the verification over more than a week,
being able to explore over 6 x 10'! states. Of course, we are not aware of the
total size of the state space, however, several bitstate hashing verifications were
successfully accomplished. Even though being just approximative method, no
error was found this way.

We attempted at proving a set of safety properties (assertions in the model)
regarding the correct movement of trains:

— In order to avoid train collision, we check that a train does not move in a
VSS occupied by another train. We actually found a violation of this property
when the mute timer of the first train is started and does not expire while the
train is moving over several VSSs; in this case, the chasing train can proceed
and enter the VSS of the first train®. The violation is due to the fact that, as
explained in Sect. 2.3, we do not put any constraint on the timer expiration
(for example, a timer can start and never expire or it can take arbitrarily
long). We think that there should be a relation between the train speed,
timers duration, and the lengths of VSSs that, however, is not articulated in
the requirements. The assertion violation was found in about 30s, using the
stack size of 4,000 states.

— We also check that a train does not move beyond its end of movement author-
ity (EoMA) nor beyond its end of mission (EoM). This property can be vio-
lated (and we assume that in practice it is—c.f. step 2 of scenario 8) in the
“on-sight mode”, which we do not attempt to model. The reason for this is
that the safety requirements of the system cannot be guaranteed in this mode.

In addition to functional correctness of the modelled system, we checked
whether the requirements are consistent. The conditions specified in the state
machine for the VSS (see Sect.5 in [6]) should guarantee that, for a VSS, it
is not possible that two rules bringing to different target states are applicable
at the same time; when this is possible, the requirements explicitly specify the
priority among the rules. Therefore, the update of VSSs should be deterministic.
However, it could still be that the requirements document is not correct or
that we wrongly implemented the rules. In order to check that the update of
VSSs is deterministic, we performed an additional check. Before updating a
VSS (by non-deterministically selecting one rule that is applicable), we count
all the rules that are actually applicable and, if more than one applies, we raise
an assertion violation. In this way, we found that in a particular scenario two
rules are applicable: in step 5 of scenario 8, both rules #10A (the one reported
in the requirements document) and #9A can be applied for VSS12. The VSS
is the last one of TTDI10, it is in state AMBIGUOUS, and a train has just
left it and crossed the TTD border. Rule #10A is applicable when “VSS is
left by all reporting trains”, while #9A when “TTD is free”; both conditions
are clearly satisfied in the current situation. The same problem appears in the
update of VSS 12 in step 7 of scenario 9. We believe that the problem is due to

* The simulation output of the assertion violation can be found at http://d3s.mff.cuni.
cz/~kofron/abz18casestudy.html.


http://d3s.mff.cuni.cz/~kofron/abz18casestudy.html
http://d3s.mff.cuni.cz/~kofron/abz18casestudy.html

Modelling the Hybrid ERTMS/ETCS Level 3 Case Study in SPIN 285

an ambiguous description of rule #10A in the requirements document; indeed,
the description of the rule refers to paragraphs 3.6 and 3.7 that regard non-
integer trains; however, in scenarios 8 and 9 both trains are always integer, and,
therefore, it is not clear why rule #10A should apply. Also, it is not clear to us
what “all reporting trains” refers to—all reporting trains at the same TTD or
all reporting trains in the system?

4 Discussion

In this section, we discuss the problems we faced during the model development.
In particular, we focus on the problems that are caused by the deficiencies of the
adopted modelling language (see Sect. 4.1), and on those that arise when reading
the requirements (see Sect.4.2).

4.1 Missing Facilities

PROMELA provides a limited support to debug/log the model by means of stan-
dard printing to the standard output. In order to visualize the train movement,
we had to add suitable printing outputs into the model. Figure 1 shows an excerpt
of the simulation of a scenario®. For each simulation step, we report events related
to trains and signals, which VSSs have been updated and by which rule, and
EoMAs of existing trains. Moreover, we also visually depict the real position
of the trains in the first line (4, a, B, b for the first train connected, for the
first train disconnected, for the second train connected, and for the second train
disconnected, respectively), the VSSs statuses in the second line, and the TDDs
statuses in the third line. The last line shows the TTD number.

Although the implemented solution worked pretty well for our purposes, some
formal methods provide nicer ways to visualize the model evolution; for example,
for the B method, ProB provides an animator [13] that allows to visualize specific
pictures associated with model states. The advantages of this method are several:
first of all, the visualization can be much nicer and understandable than that
obtainable by standard text printing; moreover, since the visualization is defined
in a separate function, there is a clear separation of concerns (specification of
the behaviour and logging) in the model. As future work, we could consider to
add some animation facilities to PROMELA /SPIN.

Another feature that we missed during the development is a proper support
for guided simulation. SPIN allows to simulate the model by choosing, at each
step, which state to take as next state (by selecting the values of variables that
are non-deterministically updated); however, if the model is big, doing a manual
simulation can be particularly cumbersome. Some formal methods allow to spec-
ify scenarios of the model execution by writing script in which non-deterministic

5 Note that in SPIN, we sometimes need to perform multiple steps in order to model a
single step of a scenario reported in the requirements document; therefore, the step
numbers (6 and 7) reported in the figure are different from the corresponding steps
of the requirements document (steps 3 and 4).
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Step 6 of scenario 9

Train 1 disconnects

Train O reported having left VSS3
Train O reported with integrity
Train 1 NOT reported

Timer ghosttimer expired

VSS2: transition #1F taken
VSS3: transition #1F taken
VSS4: transition #8B taken
Train A - eoma: 9

Train B - eoma: 3

b A

U U U U A F F F F F
0 0 0 0 0 F F F F F
0 0 1 1 1 2 2 2 3 3

Step 7 of scenario 9

Moving front of train O forward

Moving both front and rear of train 1 forward
Train O reported having left VSS3

Train O reported with integrity

Train 1 NOT reported

VSS5: transition #3A taken

Train A - eoma: 9

Train B - eoma: 3

b A A
U U U U A A F F F F
0 0 0 0 0 0 0 0 F F
0 0 1 1 1 2 2 2 3 3

Fig. 1. Two steps (steps 3 and 4) of simulation of scenario 9

choices are fixed and the model is forced to perform a given number of steps (in
a kind of test script). The main advantage of these tools is that scenarios can
be executed as many times as necessary (usually, after the model update) in
order to check the correctness of the model in that particular situation. In our
model, we provided a basic support for scenarios. A scenario is described by
means of an array of steps (typedef Step shown in Code 3) that specifies the
non-deterministic choices to perform at each step. A Step is constituted by
some variables as train[] and mutetimer[]; the train[] array, for example,
encodes which actions should be performed by each train (moving, disconnect-
ing, reporting, etc.). When running the model, we can specify whether it must
be run randomly (if variable sce is not defined) or if it must read the choices
specified in a given scenario sce. In order to drive the simulation according to
the scenario commands, we had to modify the model such that, in all the points
in which a non-deterministic choice is done, the choice specified in the scenario
is chosen. Since a scenario variable can encode multiple commands, in the model
we use proper masks to extract the commands.

Such approach allowed us to easily specify all the scenarios reported in the
case study document. The main drawback of the approach is that the reading of
the scenario had to be hard-coded in the model itself, decreasing the readability
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typedef Step { inline initScenarios() {
byte train[2];
byte mutetimer[2]; //step 3
byte disconnecttimer[VSSCOUNT]; scenarios[9].step[6].train[0] = 48;//train O reports
byte integritylosstimer[VSSCOUNT]; scenarios[9].step[6].ghosttimer = 2;//ghost timer expires
byte shadowtimerA[TTDCOUNT]; scenarios[9].step[6].train[1] = 5; //trains 1 disconnects
byte shadowtimerB[TTDCOUNT]; //the end of movement authority of train 1 is extended to VSS3
byte ghosttimer; scenarios[9].step[6].eoma[l] = 3;
byte eomal2]; //step 4
byte eom[2]; //train 0 moves front and reports
} scenarios[9].step[7].train[0] = (2 | 48);
//train 1 moves entirely without reporting
typedef Scenario { scenarios[9].step[7].train[1] = (8);
Step step[SIMULATIONSTEPS];
}

Code 3. Excerpt of scenario 9 specification

and maintainability of the model. As future work, we plan to develop a higher
support for scenario (e.g., a DSL for writing scenarios) as, for example, that
provided for the ASM method [5].

4.2 Issues in Modelling the Requirements

One of the advantages of adopting formal methods is that they allow to highlight
the inconsistencies and/or ambiguities contained in the requirements. Although
the case study document [6] is already quite detailed, there are still some parts
that we had problem in understanding. In the following, we review all these
issues and describe how we handled them.

Delay in TTD Processing. According to the requirements [6], the “TTD infor-
mation is considered as safe”, i.e., it reports “free only if no train is present on
the TTD section”. Therefore, on the base of this requirement, we always consider
the TTD information trustworthy; however, step 7 of scenario 5 reports a case in
which “due to the delay time of the TTD detection system, the TTD is still con-
sidered occupied”. We agree that the information provided in the requirements
is not stating that the TTD is occupied only if the train is present; however, we
think that the requirement is ambiguous and can bring to this misunderstanding.
We are not sure about the length of the delay with respect to the train speed,
report frequency, etc., to understand if it is important to consider this particular
delay in the model. Therefore, since we are still not sure about which should be
the correct behaviour, we decided to keep the model that we produced starting
from the reading of the requirements and so we free the TTD section as soon as
the train leaves it; therefore, we do not support step 7 of scenario 5.

Updating the End of Movement Authority. The requirements [6] do not exactly
specify how and when the end of movement authority (EoMA) is modified and
by whom. In the model, we assumed that the EoMA is modified by the track
side authority after each update of the VSSs states: the EoMA is extended as
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long as the VSSs are free or unknown or end of movement EoM is not reached.
This is also motivated by the specification scenarios and it seems to be the most
permissive choice that still preserves the safety of the system.

Order of Update. At first, we assumed that the update of VSSs depends on the
previous state of the other VSSs; actually, this seems to be not true. In step 3 of
scenario 9, VSS23 must become ambiguous if the previous VSS is unknown; how-
ever, the previous VSS becomes unknown in the same step. Therefore, we update
the VSSs from left to right; however, we are not sure whether this assumption
is correct.

Loosing the Integrity After Train Split. The requirements do not specify which
is the integrity status of a train (actually the integrity status of the two parts
of the train) when it splits. At first, we assumed that the train can be either
integer (if it splits on purpose and it is aware of its integrity) or non-integer (if
it splits accidentally). However, from scenario 5, it seems that the train always
looses its integrity when it splits, and so we modelled this behaviour.

On Sight Mode. Requirements [6] mention the possibility for a train to operate
in on sight (OS) mode “that gives the driver partial responsibility for the safe
control of his train” [9]. We do not support the OS mode in the model, because
handling it would not allow any kind of safety check regarding the correct oper-
ation of trackside detection system (as the driver could bring the train in an
unsafe situation). However, we support the OS mode in scenarios, in which we
can force the train to perform a given not allowed movement, as proceeding after
its eoma; in this way, we have been able to reproduce step 2 of scenario 8.

Inconsistencies in the Scenarios. We identified some inconsistencies in some
scenarios that report wrong rules for the reported state transitions of the VSS.
In particular, in steps 6 and 7 of scenario 8, rule #2A is used to modify VSS22
and VSS23 from UNKNOWN to OCCUPIED; however, rule #2A goes from
FREE to OCCUPIED. In other cases, instead, we think that the scenarios are
not precise and they do not mention an additional transition that must be taken
before the reported one:

— in step 8 of scenario 6, rule #6A is used to modify VSS23 from AMBIGUOUS
to FREE (however, rule #6A goes from OCCUPIED to FREE); we think that
the requirements imply that rule #11 must be taken before.

— in step 5 of scenario 8, rule #11A is used to modify VSS21 from UNKNOWN
to OCCUPIED (however, rule #11A goes from AMBIGUOUS to OCCU-
PIED); we think that the requirements imply that rule #5 must be taken
before. The same issue appears in step 7 of scenario 9 for VSS21.

5 Related Work

At the time of writing, we are not aware of any formalization and/or validation
and verification of the Hybrid ERTMS/ETCS Level 3 system.
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Regarding the SPIN model checker, it has been applied to the modelling and
verification of different safety-critical systems®; Havelund et al. [10], for example,
applied it to the verification of the multithreaded plan execution module of an
artificial intelligence-based spacecraft control system architecture part of the
DEEP SPACE 1 mission.

A common approach in model checking models developed in high-level nota-
tions is to exploit existing model checkers as SPIN, NuSMV, UPPAAL, etc. For
example, in [3], the authors discuss the advantages of using high-level notations
in hardware design. They observe that HW designers are used to high level
notations as Bluespec and they have problems when dealing with the lower level
notations; the authors claim that the notation of the verification tool should
be transparent to the designer, who should specify the model and the proper-
ties in the same high level notation, without caring about the intricacies of the
notation of the verification language. With this aim, a common approach is to
automatically translate high level models in models of existing model checkers;
this requires to define the mapping from the source notation to the target nota-
tion, and also a reverse translation of the counterexamples returned by the model
checkers in concepts of the source notation.

However, such translation often introduces an overhead that affects the scal-
ability of the verification; for example, this is reported for translation of ASMs
to NuSMV [2], of UML models to PROMELA [7], and of Simulink models to
NuSMV [16].

On the other hand, a more recent approach is to develop model checkers
directly handling the high level notation, as ProB that directly model checks
B models. In [14], the model checker ProB is compared with SPIN. The author
notices that, whenever the number of states of a B model and a PROMELA model
are the same (models developed for the same problem), SPIN outperforms ProB
of several orders of magnitude, as SPIN performs verification directly in C and
it employs several optimizations (e.g., partial order reduction, bitstate hashing),
while ProB uses an interpreter written in Prolog. On the other hand, the author
also shows that, in some cases, the ProB model checker behaves better as it avoids
the state explosion occurring in SPIN (if the atomic construct is not used), it
employs a mixed depth-first breadth-first strategy, and it exploits symmetries
present in high-level models.

6 Conclusions

In this paper, we proposed the modelling, validation, and verification of the
Hybrid ERTMS/ETCS Level 3 Case Study in SPIN. The tool allowed us to model
all the requirements of the case study, reproduce all the scenarios reported in the
case study document, and verify the model. We have shown that, although very
powerful in terms of verification, SPIN misses some facilities (logging and scenario
specification) that could help in debugging and validating the model. For this
work, we devised an approach to encode scenarios that, however, requires to

5 http://spinroot.com /spin/success.html.
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modify the model itself; as future work, we plan to design a language for writing
scenarios (as test cases) and implement a tool that, given a model and a scenario
for it, drives the SPIN simulation over the model as specified in the scenario.
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